


Lecture Notes in Computer Science 3707
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Doron A. Peled Yih-Kuen Tsay (Eds.)

AutomatedTechnology
for Verification
and Analysis

Third International Symposium, ATVA 2005
Taipei, Taiwan, October 4-7, 2005
Proceedings

13



Volume Editors

Doron A. Peled
University of Warwick
Department of Computer Science
Coventry, CV4 7AL, UK
E-mail: doron@dcs.warwick.ac.uk

Yih-Kuen Tsay
National Taiwan University
Department of Information Management
No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (ROC)
E-mail: tsay@im.ntu.edu.tw

Library of Congress Control Number: 2005932760

CR Subject Classification (1998): B.1.2, B.2.2, B.5.2, B.6, B.7.2, C.2, C.3, D.2, D.3,
F.3

ISSN 0302-9743
ISBN-10 3-540-29209-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29209-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11562948 06/3142 5 4 3 2 1 0



Preface

The Automated Technology for Verification and Analysis (ATVA) international
symposium series was initiated in 2003, responding to a growing interest in
formal verification spurred by the booming IT industry, particularly hardware
design and manufacturing in East Asia. Its purpose is to promote research on
automated verification and analysis in the region by providing a forum for inter-
action between the regional and the international research/industrial communi-
ties of the field. ATVA 2005, the third of the ATVA series, was held in Taipei,
Taiwan, October 4–7, 2005. The main theme of the symposium encompasses de-
sign, complexities, tools, and applications of automated methods for verification
and analysis. The symposium was co-located and had a two-day overlap with
FORTE 2005, which was held October 2–5, 2005.

We received a total of 95 submissions from 17 countries. Each submission
was assigned to three Program Committee members, who were helped by their
subreviewers, for rigorous and fair evaluation. The final deliberation by the Pro-
gram Committee was conducted over email for a duration of about 10 days
after nearly all review reports had been collected. In the end, 33 papers were se-
lected for inclusion in the program. ATVA 2005 had three keynote speeches given
respectively by Amir Pnueli (joint with FORTE 2005), Zohar Manna, and Wolf-
gang Thomas. The main symposium was preceded by a tutorial day, consisting
of three two-hour lectures given also by the keynote speakers.

ATVA 2005 was supported by National Science Council, Ministry of Educa-
tion, and Academia Sinica of Taiwan and also by the Center for Information and
Electronics Technologies at National Taiwan University and Cadence Design Sys-
tems. Their generous sponsorships are gratefully acknowledged. We would like
to thank the Program Committee members and their subreviewers for the hard
work in evaluating the submissions and selecting the program. We thank the
keynote speakers for their extra effort in delivering the tutorials. We thank the
Steering Committee for their advice, particularly Farn Wang, who also served
as program chair of the two previous ATVA symposia and of FORTE 2005, for
providing many valuable suggestions and for being very cooperative with the
joint events of ATVA 2005 and FORTE 2005.

For administrative support, we thank the Department of Information Man-
agement and the Department of Electrical Engineering at National Taiwan Uni-
versity. In particular, we thank Mr. Yu-Fang Chen for maintaining the conference
Web site among many other administrative chores. We thank also the MyReview
team for making available a free and convenient submission system.

October 2005 Doron A. Peled and Yih-Kuen Tsay



Organization

Steering Committee

E. Allen Emerson University of Texas at Austin, USA
Oscar H. Ibarra University of California, Santa Barbara, USA
Insup Lee University of Pennsylvania, USA
Doron A. Peled University of Warwick, UK
Farn Wang National Taiwan University, Taiwan
Hsu-Chun Yen National Taiwan University, Taiwan

General Chair

Insup Lee University of Pennsylvania, USA

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Rajeev Alur University of Pennsylvania, USA
Christel Baier University of Bonn, Germany
Tevfik Bultan University of California, Santa Barbara, USA
Yung-Pin Cheng National Taiwan Normal University, Taiwan
Ching-Tsun Chou Intel, USA
Jin Song Dong National University of Singapore, Singapore
Susanne Graf VERIMAG, France
Teruo Higashino Osaka University, Japan
Pei-Hsin Ho Synopsys, USA
Gerard J. Holzmann NASA/JPL, USA
Pao-Ann Hsiung National Chung Cheng University, Taiwan
Chung-Yang Huang National Taiwan University, Taiwan
Oscar H. Ibarra University of California, Santa Barbara, USA
Bengt Jonsson Uppsala University, Sweden
Orna Kupferman Hebrew University, Israel
Robert P. Kurshan Cadence, USA
Shaoying Liu Hosei University, Japan
Doron A. Peled University of Warwick, UK (Co-chair)
Scott Smolka SUNY, Stony Brook, USA
Yih-Kuen Tsay National Taiwan University, Taiwan (Co-chair)
Moshe Y. Vardi Rice University, USA
Bow-Yaw Wang Academia Sinica, Taiwan
Hsu-Chun Yen National Taiwan University, Taiwan
Tomohiro Yoneda Tokyo Institute of Technology, Japan
Lenore Zuck University of Illinois, Chicago, USA



VIII Organization

Local Arrangements

Chung-Yang Huang National Taiwan University, Taiwan
Bow-Yaw Wang Academia Sinica, Taiwan

Reviewers

Zaher S. Andraus
Ittai Balaban
Constantinos Bartzis
Samik Basu
Frederic Beal
Aysu Betin-Can
Per Bjesse
Bernhard Boigelot
Chunqing Chen
Yean-Ru Chen
Yu-Fang Chen
Johann Deneux
Yifei Dong
Julien Dorso
Ashvin Dsouza
Lars-Henrik Eriksson
Yi Fang
Yuzheng Feng
Martin Fränzle
Xiang Fu
Noriyuki Fujimoto
Jim Grundy
Anubhav Gupta

Kiyoharu Hamaguchi
Ziyad Hanna
Kunihiko Hiraishi
Chun-Hsian Huang
Geng-Dian Huang
Marcin Jurdzinski
Andreas Kassler
Tomoya Kitani
Barbara König
Gregor von Laszewksi
Martin Leucker
Yuan Fang Li
Shang-Wei Lin
Annie Liu
Shiyong Lu
Rupak Majumdar
Oded Maler
In-Ho Moon
Akio Nakata
Andrei Paun
Andreas Podelski
Hongyang Qu
Jakob Rehof

Kai Salomaa
Pierluigi San Pietro
Hiroyuki Seki
Oleg Sokolsky
Martin Steffen
Scott Stoller
Jun Sun
Ashutosh Trivedi
Ming-Hsien Tsai
Tatsuhiro Tsuchiya
Takaaki Umedu
Björn Victor
Dirk Walther
Dong Wang
Heike Wehrheim
Frank Wolter
Keh-Ren Wu
Ping Yang
Pei Ye
Wang Yi
Fang Yu
Gaoyan Xie

Sponsoring Institutions

National Science Council, Taiwan (ROC)
Ministry of Education, Taiwan
Institute of Information Science, Academia Sinica, Taiwan
National Taiwan University (NTU), Taiwan
Center for Information and Electronics Technologies, NTU, Taiwan
Department of Information Management, NTU, Taiwan
Department of Electrical Engineering, NTU, Taiwan
Cadence Design Systems



Table of Contents

Keynote Speeches

Ranking Abstraction as a Companion to Predicate Abstraction
Amir Pnueli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Termination and Invariance Analysis of Loops
Aaron Bradley, Zohar Manna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Some Perspectives of Infinite-State Verification
Wolfgang Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Model Checking

Verifying Very Large Industrial Circuits Using 100 Processes
and Beyond

Limor Fix, Orna Grumberg, Amnon Heyman, Tamir Heyman,
Assaf Schuster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A New Reachability Algorithm for Symmetric Multi-processor
Architecture

Debashis Sahoo, Jawahar Jain, Subramanian Iyer, David Dill . . . . . . . 26

Comprehensive Verification Framework for Dependability of
Self-optimizing Systems

Y. Zhao, M. Kardos, S. Oberthür, F.J. Rammig . . . . . . . . . . . . . . . . . . . 39

Exploiting Hub States in Automatic Verification
Giuseppe Della Penna, Igor Melatti, Benedetto Intrigila,
Enrico Tronci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Combined Methods

An Approach for the Verification of SystemC Designs Using AsmL
Ali Habibi, Sofiène Tahar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Decomposition-Based Verification of Cyclic Workflows
Yongsun Choi, J. Leon Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



X Table of Contents

Timed, Embedded, and Hybrid Systems (I)

Guaranteed Termination in the Verification of LTL Properties of
Non-linear Robust Discrete Time Hybrid Systems

Werner Damm, Guilherme Pinto, Stefan Ratschan . . . . . . . . . . . . . . . . . 99

Computation Platform for Automatic Analysis of Embedded Software
Systems Using Model Based Approach

A. Dubey, X. Wu, H. Su, T.J. Koo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Quantitative and Qualitative Analysis of Temporal Aspects of Complex
Activities

Andrei Voinikonis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Automatic Test Case Generation with Region-Related Coverage
Annotations for Real-Time Systems

Geng-Dian Huang, Farn Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Abstraction and Reduction Techniques

Selective Search in Bounded Model Checking of Reachability
Properties

Maciej Szreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Predicate Abstraction of RTL Verilog Descriptions Using Constraint
Logic Programming

Tun Li, Yang Guo, SiKun Li, GongJie Liu . . . . . . . . . . . . . . . . . . . . . . . . 174

State Space Exploration of Object-Based Systems Using Equivalence
Reduction and the Sweepline Method

Charles A. Lakos, Lars M. Kristensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Syntactical Colored Petri Nets Reductions
S. Evangelista, S. Haddad, J.-F. Pradat-Peyre . . . . . . . . . . . . . . . . . . . . . 202

Decidability and Complexity

Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic
Model Checking and Its Applications to Systems Biology

V. Mysore, C. Piazza, B. Mishra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A Static Analysis Using Tree Automata for XML Access Control
Isao Yagi, Yoshiaki Takata, Hiroyuki Seki . . . . . . . . . . . . . . . . . . . . . . . . . 234



Table of Contents XI

Reasoning About Transfinite Sequences
Stéphane Demri, David Nowak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Semi-automatic Distributed Synthesis
Bernd Finkbeiner, Sven Schewe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Established Formalisms and Standards

A New Graph of Classes for the Preservation of Quantitative Temporal
Constraints

Xiaoyu Mao, Janette Cardoso, Robert Valette . . . . . . . . . . . . . . . . . . . . . 278

Comparison of Different Semantics for Time Petri Nets
B. Bérard, F. Cassez, S. Haddad, Didier Lime, O.H. Roux . . . . . . . . . . 293

Introducing Dynamic Properties with Past Temporal Operators in the
B Refinement

Mouna Saad, Leila Jemni Ben Ayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Approximate Reachability for Dead Code Elimination in Esterel�

Olivier Tardieu, Stephen A. Edwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Compositional Verification and Games

Synthesis of Interface Automata
Purandar Bhaduri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Multi-valued Model Checking Games
Sharon Shoham, Orna Grumberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Timed, Embedded, and Hybrid Systems (II)

Model Checking Prioritized Timed Automata
Shang-Wei Lin, Pao-Ann Hsiung, Chun-Hsian Huang,
Yean-Ru Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

An MTBDD-Based Implementation of Forward Reachability for
Probabilistic Timed Automata

Fuzhi Wang, Marta Kwiatkowska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Protocols Analysis, Case Studies, and Tools

An EFSM-Based Intrusion Detection System for Ad Hoc Networks
Jean-Marie Orset, Baptiste Alcalde, Ana Cavalli . . . . . . . . . . . . . . . . . . . 400



XII Table of Contents

Modeling and Verification of a Telecommunication Application Using
Live Sequence Charts and the Play-Engine Tool

Pierre Combes, David Harel, Hillel Kugler . . . . . . . . . . . . . . . . . . . . . . . . 414

Formal Construction and Verification of Home Service Robots: A Case
Study

Moonzoo Kim, Kyo Chul Kang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Model Checking Real Time Java Using Java PathFinder
Gary Lindstrom, Peter C. Mehlitz, Willem Visser . . . . . . . . . . . . . . . . . . 444

Infinite-State and Parameterized Systems

Using Parametric Automata for the Verification of the Stop-and-Wait
Class of Protocols

Guy Edward Gallasch, Jonathan Billington . . . . . . . . . . . . . . . . . . . . . . . . 457

Flat Acceleration in Symbolic Model Checking
Sébastien Bardin, Alain Finkel, Jérôme Leroux,
Philippe Schnoebelen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Flat Counter Automata Almost Everywhere!
Jérôme Leroux, Grégoire Sutre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505



Ranking Abstraction as a Companion to Predicate
Abstraction�,��

Amir Pnueli1,2

1 New York University, New York
amir@cs.nyu.edu

2 Weizmann Institute of Science

Abstract. Predicate abstraction has become one of the most successful method-
ologies for proving safety properties of programs. Unfortunately, it cannot be
used for verifying all liveness properties. In order to handle liveness properties,
we introduce the method of ranking abstraction. This method augments the an-
alyzed system by a “progress monitor” which observes whether a given rank-
ing function decreases or increases at any step of the program. The fact that
the ranking function ranges over a well-founded domain is expressed by a com-
passion (strong fairness) requirement, which states that a function over a well-
founded domain cannot decrease infinitely many times without also increasing
infinitely many times. In analogy to predicate abstraction which uses a predi-
cate base P = {P1, . . . , Pm} consisting of a set of predicates, we augment the
program with a ranking core Δ = {δ1, . . . , δn} consisting of several ranking
components. The augmented system is then abstracted using standard predicate
abstraction, but retaining all the compassion requirements. The abstracted aug-
mented system is then model checked for an arbitrary LTL property. The ranking
abstraction method is shown to be sound and (relatively) complete for proving all
LTL properties, including safety and liveness.

In the presented talk we focus on the strong analogy between predicate ab-
straction and ranking abstraction. Predicate abstraction can be viewed as a pro-
cess which determines the best inductive invariant which can be formed as a
boolean combination of the predicate base. In a similar way, ranking abstrac-
tion can be viewed as a search for the best well-founded global ranking function
which can be formed as a lexicographic combination of the ranking components
included in the ranking core Δ. In the talk, we present an algorithm for an explicit
construction of such a global ranking function. Another important element of the
predicate abstraction methodology is that of abstraction refinement by which, a
coarse abstraction can be refined by analyzing a spurious counterexample. We
show that ranking abstraction also possesses an analogous refinement process.
We discuss how a spurious counter example can lead to a refinement of either the
current predicate base or ranking core.

The talk is based on results obtained through joint research with I. Balaban,
Y. Kesten, and L.D. Zuck.

� The full version of this paper is included in the proceedings of FORTE’05.
�� This research was supported in part by NSF grant CCR-0205571, ONR grant N00014-99-1-

0131, and Israel Science Foundation grant 106/02-1.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Termination and Invariance Analysis of Loops

Aaron Bradley and Zohar Manna

Computer Science Department, Stanford University

Abstract. Deductive verification aims to prove deep properties about
programs. The classic Floyd-Hoare-style approach to verifying sequential
programs reduces program validity queries to first-order validity queries
via verification conditions. Proving that a program is totally correct re-
quires proving the safety aspect with invariants and the progress aspect
with invariants and ranking functions. Where do the invariants and rank-
ing functions come from?

A verifying compiler that reads program annotations enables the
programmer to write desired properties as assertions. Unfortunately, ver-
ifying a safety property requires strengthening it to an inductive asser-
tion, while proving termination requires finding ranking functions. The
strengthening process often involves writing many tedious facts, while
ranking functions are not always intuitive. In practice, programmers do
not want or are unable to invent inductive assertions and ranking func-
tions. Instead, the ideal verifying compiler strengthens the given asser-
tions with facts learned through static analysis. Invariant generators are
a class of static analyzers that automatically synthesize inductive in-
variants. Ranking function generators automatically synthesize ranking
functions, sometimes with supporting invariants. Together, they reduce
the burden on the programmer by automatically learning facts about
programs.

In this talk, we discuss our approach to invariant and ranking func-
tion generation. A constraint-based method labels program points with
parameterized expressions, which encode the shape of the desired in-
ductive assertions or ranking functions. For example, the shape of an
inductive invariant could be an inequality between affine combinations
of program variables, while the shape of a ranking function could be
an affine combination of program variables. It then generates a set of
parameterized verification conditions and solves for the parameter val-
ues that make them valid. Instantiating the parameterized expressions
with these values results in a set of inductive assertions or ranking func-
tions. We discuss recent work for analyzing termination of programs that
manipulate variables via affine expressions. We also discuss a constraint-
based analysis for programs with integer division and modulo operators.
Finally, we present experimental evidence indicating that invariant and
ranking function generation is a powerful technique for scaling deductive
verification to large programs.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Some Perspectives of Infinite-State Verification

Wolfgang Thomas

RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. We report on recent progress in the study of infinite tran-
sition systems for which interesting properties (like reachability of des-
ignated states) can be checked algorithmically. Two methods for the
generation of such models are discussed: the construction from simpler
models via operations like unfolding and synchronized product, and the
internal representation of state spaces by regular sets of words or trees.

1 Introduction

The method of model-checking has developed largely in the domain of finite sys-
tem models, and its success in industrial applications is built on highly efficient
data structures for system representation. Over infinite models, the situation is
different, and for practical applications the field is still in its beginnings. Even
simple properties may be undecidable over infinite state spaces, and thus a care-
ful preparatory analysis is necessary in order to determine the possible range of
fully automatic verification.

The purpose of the present short survey is to report on some techniques
which yield classes of infinite models such that the model-checking problem is
decidable for interesting properties. Our presentation is far from complete; it
is biased towards results which were obtained in the author’s research group
and collaborations with other groups (mostly that of D. Caucal, Rennes). We
focus on system models in the form of edge-labelled transition graphs; thus a
central aspect is the investigation of structural properties of infinite graphs. An
alternative and equally fundamental approach for introducing infinite models,
which is not discussed in this paper, is to extend finite transition graphs by
infinite data structures, for example over the natural or real numbers (as in
timed systems).

Transition graphs are considered in the format G = (V, (Ea)a∈Σ) where V is
the set of states (vertices) and where Ea (for a symbol a from a finite alphabet
Σ) is the set of a-labelled edges. We write E for the union of the Ea. State-
properties may be introduced by subsets Va of V , where a is from a second label
alphabet Γ .

The logics we consider allow to express the reachability relationE∗, the reflex-
ive transitive closure of E, since reachability is the most fundamental property
arising in verification. A prominent logic of this kind is monadic second-order
logic MSO. It encompasses most standard temporal logics. On the other end,

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 3–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 W. Thomas

as a kind of minimal logic in this context, we consider FO(R) (”first-order logic
with reachability”), the extension of first-order logic by a relation symbol for E∗.

We shall address two methods for constructing infinite transition graphs
where model-checking (with respect to MSO or FO(R)) is decidable. First we
review the effect of fundamental model constructions – namely, interpretation,
unfolding, and synchronized product – on the existence of model-checking pro-
cedures. Secondly, we discuss model-checking as based on “regular” internal rep-
resentations of infinite transition graphs, using finite automata over strings or
trees, respectively.

2 Operations on Graphs

2.1 Interpretations

Rabin’s Tree Theorem [19] states that the MSO-theory of the infinite binary
tree T2 is decidable (or in other terminology: that model-checking the binary
tree with respect to MSO-properties is decidable). We can view T2 as a graph
({1, 2}∗, S1, S2), where {1, 2}∗ is the set of vertices and S1, S2 the successor
relations with Si = {(v, vi) | v ∈ {1, 2}∗}. Many other theories were shown
decidable (already in [19]) using interpretations in the tree T2. To show that the
model-checking problem for a structure S with respect to formulas of a logic L
is decidable one proceeds as follows: One gives an MSO-description of S within
the binary tree T2, and using this one provides a translation of L-formulas ϕ into
MSO-formulas ϕ′ such that S |= ϕ iff T2 |= ϕ′. Taking L = MSO, we see that
an MSO-interpretation (i.e., a model description using MSO-formulas) preserves
decidability of model-checking with respect to MSO-formulas.

As a simple example of interpretation consider the n-ary branching tree Tn

(for n > 2), with vertices in the set {1, . . . , n}∗ rather than {1, 2}∗ as for T2. We
may represent the vertex i1 . . . ir of Tn by 1i12 . . . 1ir2 in T2. It is easy to give an
MSO-definition of the range of this coding in T2 and to supply the translation
ϕ �→ ϕ′ as above. As a second example, consider a pushdown automaton A
with stack alphabet {1, . . . , k} and states q1, . . . , qm. Let GA = (VA, EA) be
its configuration graph; here VA consists of A-configurations (qj , i1 . . . ir) (with
state qj and stack content i1 . . . ir, reading i1 as top symbol), and we restrict to
those configurations which are reachable from the initial one (say (q1, 1)). The
edge relation EA is the one-step transition relation of A between configurations.
Choosing n = max(k,m), we can exhibit an MSO-interpretation of GA in Tn:
Just represent configuration (qj , i1 . . . ir) by the vertex ir . . . i1j of Tn. Note that
then the A-steps lead to local moves in Tn, from one Tn-vertex to another, e.g. in
a push step from vertex ir . . . i1j to a vertex ir . . . i1i0j

′. These moves are easily
definable in MSO, and reachability (from the initial vertex 11) as well. Due to
this interpretation, we obtain the fundamental result of Muller and Schupp ([18]):
For the configuration graph of a pushdown automaton, checking MSO-properties
is decidable.

It is known that the ε-closures of the pushdown transition graphs capture
precisely those graphs which are MSO-interpretable in T2 (or equivalently in Tn);



Some Perspectives of Infinite-State Verification 5

see Section 3 below. We do not consider here a slightly more general version of
MSO-interpretation, the “MSO-definable transduction” in the sense of Courcelle
[7]; such a transduction from S to T involves a description of S in a k-fold copy
of T rather than T itself.

2.2 Unfoldings

In the previous section we explained how to generate a model “within” a given
one, via defining formulas. A more “expansive” way of model construction is the
unfolding of a graph (V, (Ea)a∈Σ) from a given vertex v0, yielding a tree TG(v0) =
(V ′, (E′a)a∈Σ): V ′ consists of the vertices v0a1v1 . . . arvr with (vi−1, vi) ∈ Eai ,
and E′a contains the pairs (v0a1v1 . . . arvr , v0a1v1 . . . arvrav) with (vr, v) ∈ Ea.
The unfolding operation has no effect in bisimulation invariant logics, but is
highly nontrivial for MSO. Consider, for example, the singleton graph G0 over
{v0} with a 1-labelled and a 2-labelled edge from v0 to v0. Its unfolding is the
infinite binary tree. While checking MSO-formulas over G0 is trivial, this is quite
difficult over T2. A powerful result due to Courcelle and Walukiewicz [8] says: If
model-checking MSO-formulas over G is decidable and v0 is an MSO-definable
vertex of G, then model-checking MSO-formulas over TG(v0) is decidable. The
result holds also for a slightly more general construction (“tree iteration”) which
can also be applied to relational structures other than graphs (see [1,24]).

MSO-interpretations and unfoldings are two operations which preserve decid-
ability of MSO model-checking. Caucal [4] studied the structures generated by
applying both operations, alternating between unfoldings and interpretations.
(In [4] a more special type of interpretation was used; the link to MSO was
supplied by Carayol and Wöhrle in [9]; for a detailed treatment see [25].) Start-
ing with the class of finite graphs, one first obtains the regular infinite trees by
unfoldings, then a class of graphs containing all pushdown transition graphs by
interpretations, then the algebraic trees by unfoldings, and so on. The process
yields many more complicated structures, all with a decidable MSO-theory. It
is known that this “Caucal hierarchy” of graphs and trees is strict and quite
rich, but we do not really have an overview which structures belong to it. An
introduction with some examples is given in [23]. We also know of a few infinite
graphs outside the Caucal hierarchy which still have a decidable MSO-theory
(see [9]).

A related problem is to find more extensive classes of transition graphs for
which the unfolding operation also preserves decidability of model-checking, but
now for suitably chosen weaker logics than MSO. Note that MSO covers more
than reachability properties (for example, one can express the existence of global
colorings satisfying local constraints) and thus is more expressive than needed
for many practical purposes.

2.3 Products

Products of transition graphs with different synchronization constraints are ubiq-
uitous in system modelling, in particular for representing distributed systems.



6 W. Thomas

While this construction causes fundamental complexity problems when the com-
ponents are finite-state (“state space explosion”), undecidability may arise over
infinite state spaces.

As an example, consider the successor structure (IN, S) over the natural num-
bers with S = {(i, i + 1)|i ∈ IN}, whose MSO-theory is known to be decidable
(Büchi’s Theorem; see [21]). The asynchronous product of (IN, S) with itself is
the structure (IN× IN, E) where ((i, j), (k, l)) ∈ E iff either i = k and l = j + 1,
or j = l and k = i + 1. This is the infinite grid, where the model-checking
problem with respect to MSO-properties is undecidable (see e.g. [21]). Thus, if
product formation should preserve decidability of model-checking, then MSO is
too strong.

If products should preserve decidability of model-checking, the task is to com-
pose model-checking algorithms for the component structures to a corresponding
algorithm for the product. Such composition results have a long tradition in logic,
starting with the work of Feferman and Vaught [11] in first-order model theory.
The situation is more complicated when second-order aspects enter (as involved
in reachability properties).

Builing on the approach of [11], a preservation result on decidability of model-
checking is shown in [26] for the logic FO(R) (first-order logic with reachability).
In each component graph Gi (1 ≤ i ≤ n), synchronizing and local actions are dis-
tinguished by a partition of the label alphabetΣi. Transitions may be executed lo-
cally via local labels, or else via a “synchronization constraint” (c1, . . . , cn) where
each ci is either a synchronizing label or ε. A corresponding execution leaves the
states identical in the components with entry ε and involves a ci-transition for
each of the other components Gi. We speak of a finitely synchronized product if
for each constraint (c1, . . . , cn) and each ci �= ε, only from finitely many vertices
in Gi a ci-labelled transition exists. This assumption applies to products of in-
finite systems where synchronization can only be realized within finite parts of
the components. In [26], the following is shown: If the graphs G1, . . . , Gn have a
decidable model-checking problem with respect to FO(R)-specifications, then this
holds also for any finitely synchronized product of the Gi.

This result is sharp in several ways. First, the assumption on finite syn-
chronization cannot be weakened. If there is just one component which shares
infinitely many synchronized transitions, the result fails. Also it is not possible
to generalize the logic in any essential way; for example, the result fails if the
reachability operator is restricted to regular sets of label sequences or if universal
path quantification enters (see [26,20]).

In all the decidability results mentioned above, very high lower bounds for
the complexity are known. One of the main tasks in the field is to single out
cases which are both practically significant and at the same time allow more
efficient procedures than those derived from the first decidability proofs.

3 Regular Presentations

Automata provide a natural framework for finite representations of infinite struc-
tures. For graphs (V,E), the idea is to represent the vertex set as a regular



Some Perspectives of Infinite-State Verification 7

language and the edge set by some sort of “regular relation”. Since there are
many versions of finite-state transducers, there are several options for the latter;
for an introduction see e.g. [22]. One choice, leading to the “automatic struc-
tures”, is based on the “automatic” (or “synchronized rational”) relations. Here
an edge relation E is defined by an automaton which processes a given word
pair (u, v) synchronously in both components letter by letter (and one assumes
that, if necessary, a dummy letter is used to extend the shorter word to the
same length as the longer word). An automatic structure has a decidable first-
order theory (see [2]); however, already the point-to-point-reachability problem
(“Given vertices u, v, is there a path from u to v?”) may be undecidable for
an automatic structure. As an example, one can use the transition graph U of
a universal Turing machine: Its configuration space is a regular language, and
the one-step relation between configurations is clearly automatic. The halting
problem for Turing machines can be reduced to the point-to-point reachability
problem over U .

The one-step transition relation over Turing machine configurations is an in-
fix rewriting relation. Restricting to prefix rewriting, as it occurs in pushdown
transition graphs, the reachability problem becomes decidable. This follows al-
ready from classical work of Büchi [3] on his “regular canonical systems”. If for
the graph G = (V, (Ea)a∈Σ) the vertex set is presented as a regular language,
and the edge relations Ea by finite prefix-rewriting systems, then G has a de-
cidable MSO-theory; this is shown by an interpretation in T2 as in Section 2.1
above. As observed by Caucal [5], the prefix-rewriting rules can even be general-
ized to the form U1 → U2 for regular sets U1, U2, meaning that a prefix u1 ∈ U1

can be replaced by any u2 ∈ U2. The “prefix-recognizable” graphs arising this
way coincide with those which can be obtained from the binary tree T2 by an
MSO-interpretation (see, for example, [15]).

The idea of prefix-rewriting underlies many decidability results in infinite-
state model-checking. It can be generalized in several ways while keeping (at least
some of) the mentioned decidability properties. We present two such generaliza-
tions, the higher-order pushdown systems, and the ground tree rewriting graphs.

3.1 Higher-Order Pushdown Systems

Higher-order pushdown automata are a classical model of computation which
arises in the evaluation of higher-order recursion schemes (see [10,14]). The idea
is to generalize the stack symbols of a pushdown automaton to be again of stack
format, and so on iteratively, which yields stacks of stacks of stacks etc. If k
levels of stacks occur, we speak of a level-k pushdown automaton. For example,
in a transition of a level-2 pushdown automaton, one can access the topmost
symbol of the topmost stack, can modify the topmost stack in the usual way, or
can execute global operations on the topmost stack, by deleting it or adding a
copy of it as new topmost stack.

The configuration graphs of higher-order pushdown automata, called higher-
order pushdown graphs, are of bounded out-degree (since only finitely many
successor configurations can be reached directly from a given one). When we



8 W. Thomas

consider the ε-closure, i.e. we allow ε-moves and compress sequences of ε-moves
into a single transition, then transition graphs of infinite degree are generated.
Surprisingly, the hierarchy of these transition graphs (for increasing level k)
coincides with the Caucal hierarchy of graphs mentioned in Section 2.2: In [9]
(and with full proof in [25]) it is shown that a graph can be generated from
finite graphs by k applications of unfolding and MSO-interpretation iff it is the
transition graph of the ε-closure of a level-k pushdown automaton. Of course,
it follows that model-checking a higher-order pushdown graph with respect to
MSO-properties is decidable.

3.2 Ground Term Rewriting Graphs

The transition graphs generated by higher-order pushdown automata are still
tightly connected with infinite trees – in fact, they can be generated for a given
level k from a single tree structure via MSO-interpretations. So these graphs are
too restricted for many purposes of verification (excepting applications on the
implementation of recursion).

A more flexible kind of model is generated when the idea of prefix-rewriting is
generalized in a different direction, proceeding from word rewriting to tree rewrit-
ing (which we identify here with term rewriting). Instead of modifying the prefix
of a word by applying a prefix-rewriting rule, we may rewrite a subtree of a given
tree, precisely as it is done in ground term rewriting. A ground term rewriting
graph (GTRG) has a vertex set V which is given by a regular tree language, and
each edge relation Ea is defined by a finite ground term rewriting system.

A simple example of a GTRG is the infinite grid: It is generated from the tree
f(c, d) by applying the rules c → g(c) and d → g(d), which produces the trees
f(gi(c), gj(d)) in one-to-one correspondence with the elements (i, j) of IN × IN.
Thus over GTRG’s, model-checking MSO-properties is in general undecidable.

In work of C. Löding (see [16,17]), the structural and logical properties
of GTRG’s are investigated. As it turns out, the model-checking problem over
GTRG’s is decidable for a logic which covers reachability and even recurrent
reachability. The atomic formulas of this logic refer to regular state properties
(specified by finite tree automata), and the connectives are, besides the boolean
ones, EXa, EF , and EGF (in CTL-like notation). This result is optimal in the
sense that adding universal quantification (for example, when adjoining the op-
erator AF ) leads to undecidability of the model-checking problem. On the other
hand, it is possible – as for pushdown graphs – to generalize the rewriting rules
without affecting the decidability results: Instead of allowing replacement of a
single subtree by another one, one may use rules of the form T → T ′ for regular
tree languages T, T ′, meaning that an occurrence of subterm t ∈ T can be re-
placed by any t′ ∈ T ′. More results, also connecting GTRG’s with asynchronous
products of pushdown graphs, are shown in [6].

4 Conclusion

The above-mentioned results are as yet mosaic pieces of a picture which hopefully
will grow into an esthetically pleasing and practically useful algorithmic theory



Some Perspectives of Infinite-State Verification 9

of infinite models (which the author would call “algorithmic model theory”). It
seems that the two approaches mentioned – global model construction and local
descriptions based on automata theoretic concepts – can be developed much
further and also be combined in new ways.

There is, of course, a different approach for infinite-state model-checking,
based on the admission of infinite data structures (like counters over the natural
numbers, or addition and inequalities over the real numbers). An interesting
direction of current work aims at establishing bridges between that approach
and the results treated in the present paper. As an example, we mention the
recent paper [13] where transition graphs arising from monotonic counters are
discussed.

A dual track of research is to destillate efficient model-checking procedures
from the general decidability results mentioned above, by restricting both the
models and the logics to simple but relevant cases.

References

1. D. Berwanger, A. Blumensath, The monadic theory of tree-like structures, in: [12],
285-302.

2. A. Blumensath, E. Grädel, Automatic structures, in: Proc. 15th LICS, IEEE Com-
put. Soc. Press 2000, 51-62.

3. J.R. Büchi, Regular canonical systems, Z. Math. Logik Grundl. Math. 6 (1964),
91-111.

4. D. Caucal, On infinite terms having a decidable theory, in: Proc. 27th MFCS,
Springer LNCS 2420 (2002), 265-176.

5. D. Caucal: On infinite transition graphs having a decidable monadic theory., Theor.
Comput. Sci. 290 (2003), 79-115.

6. Th. Colcombet, On families of graphs having a decidable first order theory with
reachability, in: Proc. 29th ICALP, Springer LNCS 2380 (2002), 98-109.

7. B. Courcelle, Monadic second-order graph transductions: a survey, Theor. Comput.
Sci. 126 (1994), 53-75.

8. B. Courcelle, I. Walukiewicz, Monadic second-order logic, graph coverings and
unfoldings of transition systems, Ann. Pure Appl. Logic 92 (1998), 51-65.

9. A. Carayol, S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata, in: Proc. 23rd FSTTCS, Springer LNCS
2914 (2003), 112-123.

10. W. Damm, A. Goerdt, An automata theoretical characterization of the OI-
hierarchy, Inf. Contr. 71 (1986), 1-32.

11. S. Feferman, R. Vaught, The first-order properties of products of algebraic systems,
Fund. Math. 47 (1959), 57-103.

12. E. Grädel, W. Thomas, Th. Wilke (Eds.), Automata, Logics, and Infinite Games,
Springer LNCS 2500 (2002).

13. W. Karianto, Adding monotonic counters to automata and transition graphs, Proc.
9th Conf. on Developments in Language Theory, Springer LNCS 3572 (2005), 308-
319.

14. T. Knapik, D. Niwinski, P. Urzyczyn, Higher-order pushdown trees are easy, in:
Proc. 5th FOSSACS. Springer LNCS 2303 (2002), 205-222.

15. M. Leucker, Prefix recognizable graphs and monadic logic, in: [12], 263-284.



10 W. Thomas

16. C. Löding, Infinite Graphs Generated by Tree Rewriting, Dissertation, RWTH
Aachen 2002.

17. C. Löding, Reachability problems on regular ground-tree rewriting graphs, Theory
of Computing Systems (to appear).

18. D. Muller, P. Schupp, The theory of ends, pushdown automata, and second-order
logic, Theor. Comput. Sci. 37 (1985), 51-75.

19. M.O. Rabin, Decidability of second-order theories and automata on infinite trees,
Trans. Amer. Math. Soc. 141 (1969), 1-35.

20. A. Rabinovich, On compositionality and its limitations, ACM Trans. on Compu-
tational Logic (to appear).

21. W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer
Science, Vol. B (J.v. Leeuwen, Ed.), Elsevier, Amsterdam 1990, 133-191.

22. W. Thomas, A short introduction to infinite automata, in: Proc. 5th Conf. on
Developments in Language Theory Springer LNCS 2295, 130-144

23. W. Thomas, Constructing infinite graphs with a decidable MSO-theory, in: Proc.
28th MFCS, Springer LNCS 2747 (2003), 113-124.

24. I. Walukiewicz, Monadic second-order logic on tree-like structures, Theor. Comput.
Sci. 275 (2002), 311-346.

25. S. Wöhrle, Decision Problems over Infinite Graphs: Higher-Order Pushdown Sys-
tems and Synchronized Products, Dissertation, RWTH Aachen 2005.

26. S. Wöhrle, W. Thomas, Model checking synchronized products of infinite transition
systems, in: Proc. 19th LICS, IEEE Comp. Soc. 2004, 2-11.



Verifying Very Large Industrial Circuits Using

100 Processes and Beyond

Limor Fix2, Orna Grumberg1, Amnon Heyman3, Tamir Heyman2,
and Assaf Schuster1

1 Computer Science Department, Technion, Haifa, Israel
2 Logic and Validation Technology, Intel Corporation, Haifa, Israel

3 Phonedo, Herzliya, Israel

Abstract. Recent advances in scheduling and networking have cleared
the way for efficient exploitation of large-scale distributed computing
platforms, such as computational grids and huge clusters. Such infras-
tructures hold great promise for the highly resource-demanding task of
verifying and checking large models, given that model checkers would be
designed with a high degree of scalability and flexibility in mind.

In this paper we focus on the mechanisms required to execute a high-
performance, distributed, symbolic model checker on top of a large-scale
distributed environment. We develop a hybrid algorithm for slicing the
state space and dynamically distribute the work among the worker pro-
cesses. We show that the new approach is faster, more effective, and thus
much more scalable than previous slicing algorithms. We then present a
checkpoint-restart module that has very low overhead. This module can
be used to combat failures which become probable with the size of the
computing platform. However, checkpoint-restart is even more handy for
the scheduling system: it can be used to avoid reserving large numbers
of workers, thus making the distributed computation work-efficient. Fi-
nally, we discuss for the first time the effect of reorder on the distributed
model checker and show how the distributed system performs more effi-
cient reordering than the sequential one.

We implemented our contributions on a network of 200 processors,
using a distributed scalable scheme that employs a high-performance
industrial model checker from Intel. Our results show that the system was
able to verify real-life models much larger than was previously possible.

1 Introduction

This paper presents several novel techniques to enhance distributed reachability
computation. The techniques enable effective use of a network of 100 computers
for the verification of large industrial hardware designs that could not be verified
by previously available tools.

For a long time the state explosion problem has been the showstopper of
BDD-based (symbolic) model checking [3]: The BDD structures simply can-
not squeeze into the RAM available to a single computer. SAT-based model
checking [2] can find errors in very large systems, but is limited when used for

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 11–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



12 L. Fix et al.

verification [9]. In fact, BDD-based model checking is usually superior, when ver-
ification is required. Larger systems usually have longer diameters and therefore
SAT-based bounded model checking can cover smaller parts of their state space.

In recent years, several distributed BDD-based reachability algorithms have
been introduced [8,7,6] for networks of communicating computers with dis-
tributed memory. Reachability is an important problem because model checking
of all temporal safety properties can be reduced to it [1]. Distributed reacha-
bility exploits the memory modules and the computation power of a heteroge-
neous cluster of computers, where more and more machines can be employed
on demand. The collective storage offered by the cluster RAM is utilized in a
memory- and work-efficient manner, essentially operating as a yet another layer
in the memory hierarchy.

However, if these algorithms are to be scaled for very large models that re-
quire hundreds of computers, then several enhancements are required. First, fast
and effective slicing is needed, in order to accommodate frequent splits in the
memory content of overflowed computers. Second, a checkpoint/restart mecha-
nism is needed to recover from a single computer failure and in order to better
utilize clusters of computers when memory requirements vary significantly dur-
ing computation. Finally, dynamic BDD variable reordering should be adapted
to work well with the distributed algorithm.

Our work provides solutions for all of these requirements. We developed a
hybrid algorithm for slicing very large sets quickly and effectively. The user
provides the algorithm with measures for an effective slicer, and the algorithm
searches for an adequate one. The algorithm is designed to spend as little time
as possible in finding an adequate slicer, not necessarily the best one. It starts
with a fast estimated computation. If no adequate slicer is found, it gradually
applies more precise computations. We compare our hybrid algorithm with the
fast estimating algorithm Est [5]. We show that our algorithm produces far
fewer duplications. We also compare our algorithm to the exhaustive algorithm
Exh [8], which is better than or equal to other exhaustive algorithms [4,11,10].
We show that it is faster than Exh, and, in fact, the difference in run time
increases when the size of the BDD or the size of its support increase.

We also propose a non-coordinated checkpoint/restart mechanism as part of
the distributed reachability computation. In the distributed reachability analy-
sis [8], each worker owns a subset of the state space and iteratively computes
the set of reachable states within its ownership. It may also find states owned
by others workers, which it sends to them. Likewise, it receives owned states,
found by others. The checkpoint mechanism consists of occasionally freezes by
each worker. The worker stores its configuration, including the set of states it
owns, the set of states computed so far, the iteration number, and the BDD vari-
able ordering. Restart is performed by finding a set of configurations, all taken
from the same iteration, whose ownership covers the whole state space. A set of
new free workers is then initialized with these configurations and resumes the
computation.



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 13

The checkpoint/restart mechanism is particularly useful when running on a
non-dedicated network. Two tasks running on such a network may reach their
memory peak at the same time, thus blocking each other. It then might be
necessary to freeze one of them and enable the other to continue. When the
memory requirement of the active task decreases, the frozen one can be resumed.
In addition, when memory requirements vary significantly during computation,
an effective utilization will require clusters of varying sizes. Changing the cluster
size is done by freezing the active workers and restarting them on a different
cluster with an appropriate size.

In order to maintain effective dynamic reordering, we propose a distributed
paradigm to control the points at which dynamic variable reordering is per-
formed. In sequential computation, reorder is invoked after garbage collection, if
the BDD size exceeds a certain threshold. The distributed computation applies
the same policy. In addition, for each worker, it uses two new controlling oper-
ations: enforcing reorder when an overflow occurs; and updating the threshold
following an action that reduces the BDD size. Reorder when overflow occurs
may save unnecessary splits.

Another improvement to the BDD package enforces timeout on BDD opera-
tions that do not terminate within a reasonable time. Usually this is due to the
size of their operands. We then split the BDDs and resume the operations on
two smaller BDDs.

We demonstrated the utility of our scheme by implementing it as a large-scale
distributed engine that consists of more than 100 computers and uses a high-
performance model checker. We ran our experiments on clusters composed of
ordinary PCs. Our results show that the system can verify (apply full reachability
to) much larger models than could previously be verified. In addition, our results
show that in some cases, when the distributed algorithm needs more processes
than available, it still reaches a further step than SAT-base bounded model
checking does.

In summary, the contributions of the paper are:

– Fast and effective slicing with small memory overhead.

– A checkpoint/restart mechanism.

– An enhanced BDD package: adaptive dynamic variable reorder and timeout
on BDD operations.

– Orthogonality to high-performance model checking: all features of sequential
model checking remain effective in the distributed framework.

All of the above allows the verification of large industrial components.
The rest of the paper is organized as follows. Section 2 presents a new al-

gorithm for fast and effective slicing of very large sets. Sections 3 describes
the checkpoint/restart mechanism. Finally, Section 4 presents our distributed
reachability analysis, including a paradigm for dynamic variable reordering, and
presents our experimental results on verification of large industrial designs.



14 L. Fix et al.

2 Hybrid Algorithm for Slicing Very Large Sets

In this section we present a new algorithm for slicing very large sets quickly and
effectively. The approach makes use of user-supplied measures of effectiveness:
the algorithm simply searches for a slicer that meets the measures. The algorithm
attempts to reduce the time spent finding a sufficiently effective slicer; it does
not necessarily search for the best one. Rather than checking all variables in the
support of the set to be sliced, as was done previously, the proposed algorithm
makes use of the abundance of good slicers in the support to pick one from a
randomly selected sample.

The algorithm gets as its input a set of states as a characteristic function
f and returns a variable v called slicer, which slices f into two subsets: f ∧ v
and f ∧ v. Such slicing is effective if two requirements are fulfilled. First, the
size of each of the subsets is smaller than the size of f itself: max|f∧v|,|f∧v|

|f | < δ1.

Second, the amount of duplication is not too big: |f∧v|+|f∧v|
|f | < δ2. The minimum

reduction factor and the maximum duplication factor δ1, δ2 are provided by the
user, or by the higher-level procedure calling the algorithm.

The algorithm proceeds through a sequence of three phases. In each consec-
utive phase the algorithm spends more time trying to find an effective slicer.
Once an effective slicer is found the algorithm declares success and terminates.
After three unsuccessful phases the algorithm returns the best slicer it has found
so far.

In order to test the effectiveness of a candidate slicer, the BDDs of f ∧ v and
f ∧ v must be built and their relative sizes measured. This consumes time and
memory. In contrast, one can estimate the sizes of the slices in a single scan of
the BDD of f without creating a new BDD [12]. Estimation is a lot faster than
precise calculation and requires far fewer resources.

In the first phase the algorithm employs the method Est [5] to search for an
effective slicer. This method initially computes an estimate of the size of f∧v and
f ∧ v, for each variable v in the support of f . Then it selects as a slicer, among
all other variables, the variable v for which the maximum estimates for f ∧v and
f ∧v is minimal. Next, a precise calculation is used to determine whether v is an
effective slicer. If v is found to be effective, the algorithm terminates; otherwise
it proceeds to the next phase.

In the second phase, the algorithm randomly selects a subset varSet of vari-
ables out of the support of f . The varSet’s size depends on the required con-
fidence degree in finding at least one effective variable (See Subsection 2.1).
effectiveSet holds all the variables in varSet that were first estimated as
effective, and only those that seem to be effective are checked precisely. If
effectiveSet is empty, the second phase ends unsuccessfully. Otherwise, the
best slicer from effectiveSet is selected by Exh. We remark that the Exh pro-
cedure itself is no different than the slicing mechanisms described in [8]. Thus,
in this paper, we use it as a black box.

The third phase is similar to the second. The difference is that effectiveSet
now holds all the variables from varSet that slice effectively using a precise cal-



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 15

function Hybrid(f)
1 v=Est(f)
2 if effective(v, precise) return v
3 varSet=randomselect(support(f))
4 effectiveSet={v | v ∈ varSet ∧ effective(v, fast) ∧ effective(v, precise)}
5 if effectiveSet �= ∅
6 return Exh(f, efectiveSet)
7 effectiveSet={v | v ∈ varSet ∧ effective(v, precise)}
8 if effectiveSet �= ∅
9 return Exh(f, efectiveSet)

10 return MEff(f, efectiveSet)

Fig. 1. Pseudo–code for the slicing algorithm Hybrid

culation. Finally, if the third phase fails and none of the variables is effective, the
most effective variable, MEff, is selected among the variables that were computed
in the third phase and this variable is returned.

Figure 1 describes the algorithm Hybrid for finding a slicer. Lines 1-2 de-
scribe the first phase, which uses the Est method to select a slicer v. If v is found
to be effective, the algorithm terminates. Lines 3-6 describe the second phase
where varSet is randomly selected from the variables in the support of f . Then
effectiveSet gets only the variables that are effective slicers. This computation
is done by first applying a fast estimated check and only then a precise check. The
precise check is applied only on slicers that are estimated to be effective. Finally,
the algorithm Exh is used to find the best slicer out of effectiveSet. Lines 7-9 de-
scribe the third phase where a precise check is applied to all variables in varSet.
If the third phase fails, the most effective slicer found so far is returned in line 10.

2.1 Size of the Randomly Selected Subset

In this section we discuss the relation between the confidence in finding at least
one effective variable and the number of samples. Lemma 1 defines this relation.

Lemma 1. [Sample size required] Let sup be the size of the support of a set.
Let ef be the number of effective slicers in the support (ef ≤ sup). Let s be
the number of randomly selected variables(s ≤ sup). Let pr be the confidence in

finding at least one effective slicer out of s samples. Then, pr ≥ 1−
(
1− ef

sup

)s

.

The proof is straightforward and is omitted for lack of space.
Our experimental results (Figures 5(a), 5(b), explained later) show that the

minimum percentage of effective slicers is 4%. Therefore, confidence in finding at
least one effective variable converges to 100% exponentially fast in the number
of samples. More importantly, it does not depend on the number of variables.
If, for example, we want 90% confidence that we will get at least one effective
variable and 5% of the variables are effective, we need only 45 samples.

2.2 Experimental Results

We compare three slicing algorithms. The new algorithm Hybrid, presented in
Figure 1; the exhaustive algorithm Exh when working on the entire set of support;
and the fast estimation Est when working on the entire set of support.



16 L. Fix et al.

Table 1. Benchmark suite characteristics. For each set of examples we give the BDD

size of the sets of states and the support size.

Set BDD size range Support size range Number of sets of states

Small 0.5 - 3 Million 70 25
Large 0.5 - 6 Million 239 - 255 46
Extra large 0.5 - 7 Million 687 - 712 18

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  1  2  3  4  5  6

S
cl

ic
in

g 
tim

e 
in

 s
ec

on
ds

Set size in Million BDD nodes

Exhaustive
Hybrid

(a) Run time

-40

-20

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6

D
up

lic
at

io
n 

pr
ec

en
t

Set size in Million BDD nodes

Exhaustive
Hybrid

Estimated

(b) Duplication

Fig. 2. Comparing the slicing algorithms for support size 687 - 712

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1  2  3  4  5  6

S
cl

ic
in

g 
tim

e 
in

 s
ec

on
ds

Set size in Million BDD nodes

Exhaustive
Hybrid

(a) Run time

-40

-20

 0

 20

 40

 60

 80

 0  1  2  3  4  5  6

D
up

lic
at

io
n 

pr
ec

en
t

Set size in Million BDD nodes

Exhaustive
Hybrid

Estimated

(b) Duplication

Fig. 3. Comparing the slicing algorithms for support size 239 - 255

We use three sets of examples, each with different support size. Each set
includes varying BDD sizes, from half a million to 7 million nodes. The charac-
teristics of the three sets are presented in Table 1.

Slicing Efficiency and Memory Overhead. We now analyze the run time
and the duplication by the different slicing algorithms. Figures 2(a), 3(a) display
the run time of the slicing algorithms. In each graph the run times of Hybrid,
and Exh algorithms can be seen in relation to the size of the set being sliced.

Figures 2(a), 3(a) show that the run time of the Exh algorithm increases
proportionally to the BDD size and increases proportionally to the support size,
while the Hybrid algorithm runs in constant time.



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 17

Percentage of duplication is the difference between the size of the set being
sliced and the sum of the subsets, in proportion to the size of the set being sliced:(
|f∧v|+|f∧v|

|f | − 1
)
∗100. Figures 2(b), 3(b) compare the percentage of duplication

obtained by the Est algorithm to that obtained by the Hybrid algorithm. In each
graph, the percentages of duplication in the Est and in the Hybrid algorithms
can be seen in relation to the size of the set being sliced. The graphs show that
when the support size increases, the slicing by the Est algorithm generates much
more duplication than Hybrid. When the size of the support is 239 - 255 variables
(Figure 3(b)), the Est algorithm has 50% duplication on average, while, while
the Hybrid algorithm creates 7 percentage of duplication on average. When the
size of the support is 687 - 712 variables (Figure 2(b)), the average percentage
of duplication by the Est algorithm is 89, while the Hybrid algorithm creates 3
percentage of duplication on average.

Figures 2(b), 3(b) compare the percentage of duplication obtained by the
Exh algorithm and the Hybrid algorithm. The percentages of duplication of the
Exh and the Hybrid algorithms are shown in relation to the size of the set
being sliced. We set the maximum duplication factor δ2 to be 1.2. We set the
minimum reduction factor δ1 to be 0.85. For all set sizes that are not too small
(larger than 100K BDD nodes), the resulting slicer creates less duplication than
the maximum duplication factor. When the set size is very small, no effective
slicer is found by any of the three phases. Thus, the final phase finds a slicer
with duplication factor of 1.5. The small memory requirement of such small sets
means that slicing them is not effective.

In some cases the percentage of duplication may be negative. This means
that the sum of the sizes of the two subsets is less than the original set size.
The Exh algorithm finds slicers with a very small percentage of duplication —
as low as 30%. In other words, the sum is 30% smaller than the original set size.
Because the Hybrid algorithm stops as soon as it finds an effective slicer, it may
miss these.

Changing the Measures of Effectiveness. Figures 4(a), 4(b) present the
effect of different values for maximum duplication factor, 120% and 105%, on
run time and on percentage of duplication. In each graph the duplications are
shown in relation to the size of the set being sliced. Figure 4(a) presents the
duplications when the maximum duplication factors are 105% and 120%. For all
set sizes, the final slicer creates duplication which is smaller than the maximum
duplication factors; hence, the duplication with 105% is less than or equal to the
duplication with 120%.

Figure 4(b) presents the run time for duplication factors 105% and 120%. In
most cases the run time of the algorithm is longer when the maximum duplication
factor is 105%. In cases when the algorithm needs to run more phases, the
run time with 105% can take up to five times longer than that with 120%.
Since the algorithm uses a random selection, different runs may terminate with
different results. Sometime the run time takes comparably longer when using
larger maximum duplication, but these are rear and caused by the randomization
of the algorithm.



18 L. Fix et al.

-25
-20
-15
-10
-5
 0
 5

 10
 15
 20
 25

 0  1  2  3  4  5  6

D
up

lic
at

io
n 

pr
ec

en
t

Set size in Million BDD nodes

120%
105%

(a) Duplication

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5  6

S
cl

ic
in

g 
tim

e 
in

 s
ec

on
ds

Set size in Million BDD nodes

120%
105%

(b) Run time

Fig. 4. Support size 239 - 255. 105 means maximum duplication factor 105%. 120

means maximum duplication factor 120%.

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

Pr
ec

en
tag

e o
f e

ffe
cti

ve
 sl

ice
rs

Set size in Million BDD nodes

(a) Support size 239 - 255.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7

Pr
ec

en
tag

e o
f e

ffe
cti

ve
 sl

ice
rs

BDD order Id

(b) Support size 242 with different
orders.

Fig. 5. Percentage of effective slicers

Percentage of Effective Slicers. The experiments presented in this section
demonstrate that for different set sizes, regardless of the BDD order, at least
4% of the variables are effective slicers. Figure 5(a) presents the percentage of
effective slicers in different sets. The percentage of effective slicers is given in
relation to the size of the set being sliced. Figure 5(a) shows, that regardless
the set size, a minimum of 4% of the slicers are effective. This means that the
confidence in finding at least one effective slicer converge to 100% exponentially
fast in the number of samples (see Section 2.1).

Figure 5(b) presents the percentage of effective slicers in a single set with
different BDD orders. This example has 242 variables in the support and the set
size is 2.4 million BDD nodes with the best order. The percentage of effective
slicers is given for each order. Figure 5(b) shows that even when we change the
BDD order, as happens in the distributed reachability algorithm, a minimum of
4% of effective slicers is maintained.

3 The Checkpoint Restart Algorithm

In this section we briefly describe the iterative BDD-based distributed algorithm
for reachability [7]. We explain how to extend this algorithm with checkpoints



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 19

and how to exploit these checkpoints in order to restart the reachability al-
gorithm when needed, according to some scheduling policy. Finally we present
experimental results which show that the associated overhead is negligible.

The basic paradigm followed by the algorithm is to compute the set of states
which are reachable from a given set of initial states. At each iteration, starting
from the set of initial states, the set R is computed. R consists of reachable
states found so far. In addition, the set N of undeveloped states is computed.
These are states that do not belong in R and are reachable from R in a single
step, whose successors have not yet been found.

The distributed algorithm runs on a network of communicating workers with
distributed memory. A set of window functions defines for each worker the subset
of states it owns. This set is complete, meaning that it covers the whole state
space. Worker id with window function Wid computes the sets Rid and Nid, both
subsets of Wid.

Three coordinators control the distributed operation: the pool manager keeps
track of the free processes; the exchange coordinator maintains the window func-
tions of the active workers, and the small coordinator joins the windows of work-
ers whose memory utilization decreases below a certain threshold.

Figure 6 describes an extension of the distributed algorithm with checkpoint-
restart capability, called reach checkpt. The pseudo–code is described for a
single worker. For brevity, we omit the worker subscript id from Rid, Nid, and
Wid. We remark that the sets R and N , and the window function W , may change
during the execution.

The algorithm uses two utility functions to transfer BDDs between a sender
and a receiver whose BDD orders may be different: bdd2msg translates a BDD
into a compact msg data and msg2bdd translates the msg data back to a BDD
after it has been transferred. We remark that the functions bdd2msg and msg2bdd
themselves are not different from the functions described in [8]. Thus, in this
paper, we use them as a black box.

The algorithm follows the same lines of the distributed reachability algorithm,
except at the end of each iteration workers sometimes store checkpoints. The
data stored in a checkpoint consists of R,N,W , the iteration number #it, and
its current BDD order bdd order (line 9). The checkpoint of a worker may be
stored on a persistent storage system, e.g., a distributed file system such as NFS,
or simply on the private disk of a peer worker (in which case it is assumed the
peer worker does not crash when the worker does).

Recall that the basic reachability paradigm is an iterative, synchronous pro-
cess. Thus, the collection of all checkpoints from all workers at the end of an
iteration forms a consistent view of the global reachability process at that point.

If a restart is needed because of a failure, or due to rescheduling of the reach-
ability process on another distributed system, the collection of checkpoints may
set a starting point for pursuing the computation. The restart algorithm searches
for a set of checkpoints taken from the same iteration, which forms a complete
set of window functions. If an incomplete set is found, indicating that some but
not all the workers succeeded in storing checkpoints for the corresponding iter-



20 L. Fix et al.

function reach checkpt(R, W, N)
1 Loop until termination()
2 N = Image(N), split if needed
3 send non-owned states (N \W ) to their owners
4 N=N∪ (received states in W from others), split if needed
5 N=N \R
6 R=R ∪N
7 Collect small(R, W, N)
8 if (W = ∅) return to pool
9 Check point(R, W, N,#it, bdd order)

Fig. 6. Pseudo–code for a worker in the distributed reachability computation with

checkpoints

ation previous to the abort, then the algorithm searches for a complete set that
was stored at the end of a previous iteration. Such a set is guaranteed to exist
because the workers follow the same policy, at the end of which iteration check-
points are stored, and because a previous checkpoint is never removed before the
current global checkpoint is known to be complete (e.g., at the end of the next
iteration).

Every active worker in the restarted process is restored using its local check-
point data, and is replaced by a worker from the free pool in the new distributed
system. The new worker restores R and N according to the BDD order bdd order
and assumes W as its window function.

3.1 Experimental Results

The resources consumed by the distributed algorithm are evaluated by consid-
ering the following two figures. The reserved size is the number of machines
carrying out the computation. These machines are either actively taking part
in the computation, or they are part of the free pool. If they are part of the
free pool, they might not be carrying out any useful computation because they
are being reserved as potential additional resources for the reachability com-
putation. The utilized size is the number of active non-free workers that are
actually taking part in the reachability computation. Of course, at any point
during computation the utilized size is less than the reserved size.

Figure 7(a) presents the utilized size and reserved size during the distributed
reachability computation. The graph shows how the checkpointing mechanism
is used in order to reduce reserved size to a minimum. Checkpointing is used
to vary the number of workers reserved, starting from a small cluster with only
10 machines. When more than 10 machines are required, the run temporarily
halts, a cluster with more machine is reserved, the last checkpoint is moved to
new cluster, and the computation is resumed on that cluster. With the larger
cluster, the run can reach a further step, while it utilizes at least 10 machines.
This way the free pool (of idle machines) is kept small compared to the number
of reserved workers.

Yet another contribution of the checkpoint restart mechanism is in the case
of termination as a result of failure in one of the resources. In case of a fail, the
amount of wasted resources is the accumulate of reserved size in each iteration



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 21

 0

 5

 10

 15

 20

 25

 30

 90  95 100 105 110 115 120 125 130 135 140

#w
or

ke
rs

BFS steps

utilized size
reserved size

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.5  1  1.5  2  2.5  3  3.5  4

Ru
n 

tim
e

Set size in Million BDD nodes

checkpoit
image

(b)

Fig. 7. (a) reserved size is the number of machines carrying out the computation. uti-

lized size is the number of active non-free workers. (b) Run time of image computation

and the time to store the checkpoint data.

from the first one till the iteration where the failure appeared. Furthermore, the
more machines take part in the computation, and the more iterations involved
in the computation, the higher the chance of a failure. Thus, the importance
of the checkpoint restart mechanism increases with the number of iterations to
fixpoint, and with the scale of the model checked (as indicated by the reserved
size).

Figure 7(b) compares the run time of image computation and the time it
takes to store the checkpoint data. For each set size, the graph shows the run
time required for image computation and the run time required to store the
checkpoint data. The graph shows that for all set sizes the checkpoint run time
takes less than 20 seconds. Moreover, if there is no job failure, there is almost
no overhead for storing checkpoints.

4 Distributed Reachability Analysis for Very Large
Circuites Using 100 PCs

In the previous sections two enhancements to distributed reachability analysis
were discussed. This section describes the extensions to the algorithm
reach checkpt. These extensions enable high performance distributed reach-
ability analysis for very large circuits using 100 PCs. With these extensions, the
algorithm verifies circuits that could not be verified by any other tool. Further-
more, although an overflow in the required number of workers occurs in several
cases, the distributed scheme still reaches a much further iteration than that
reached by the sequential BDD based model checker.

In order to have our distributed scheme scale out, two additional extensions
to reach checkpt are needed: distributed reorder and BDD operations timeout.
We discuss the two extensions and then give experimental results.

4.1 Distributed Dynamic Variable Reordering

The dynamic variable reorder suggested by Rudell [13] works well for the se-
quential algorithm. Here we show how to use it with our distributed approach.

Rudell’s algorithm is called by the BDD package according to the growth
in the number of BDD nodes. A dynamic reorder threshold dr th determines



22 L. Fix et al.

where the next threshold should be triggered. The threshold is examined after
each garbage collection cycle, and variable reordering is triggered if the number
of nodes allocated after the garbage collection is greater than dr th. After each
invocation of reorder, a new value for dr th is set according to the number of
nodes in the new order.

In the distributed scheme the BDD package uses Rudell’s algorithm in the
same way. However, since there are events such as splits and joins which affect
the size of the BDD package, the distributed algorithm also controls the value
of dr th externally. The worker forces the BDD packages to adjust the value
of dr th after splitting a worker, after which the number of nodes decreases
dramatically, and after exchanging nonowned states, after which the number of
nodes may decrease or increase.

In addition, in case of overflow during image computation, triggering reorder
may reduce the size of the BDD and thus avoid the costly splitting. Therefore,
when an overflow occurs after many micro-steps but before the image compu-
tation is completed, the worker invokes reorder and then tries to complete the
image computation. However, if the BDD package triggers reorder just before
the micro-step overflowed, the worker avoids the additional reorder since it is
unlikely to prevent the splitting.

4.2 Escape from BDD Operation Livelock Using Timeouts

BDD engines use a cache for previously executed BDD operations. When this
cache is used, the run time commonly becomes linear in the sizes of the BDD
operators, rather than exponential. Since the size of the cache cannot hold all
the BDD operations, the engine replaces old results with new ones. If the result
of a replaced BDD operation is required, it will be recalculated. Recalculation
increases the run time, and in some cases, can cause the execution of a single
BDD operation to proceed for hours.

In the distributed scheme a split can help a single worker if it got stuck on
a single BDD operation, because the size of the cache is effectively doubled as a
result of the split, and because the split reduces the BDD operation operands.
A single micro-step is stopped if it turns out to be too long and split is invoked,
just as if a memory overflow occurred. Our experiments show that cases in which
a large number of recalculations take hours can be efficiently avoided in this way.

4.3 Experimental Results

Our parallel testbed consists of 100 PC machines, each consisting of a two-way
2.4GHz Pentium 4 processors with 1GB memory. For optimal utilization of this
configuration we let two workers execute on the same machine. A fast Ethernet
connection is used for communication between the nodes. The sequential runs
use a PC machine consisting of four way 3.1GHz Pentium 4 processors with 4GB
memory.

The distributed algorithm that we tested uses reach checkpt enhanced with
the algorithm Hybrid, as well as distributed dynamic reordering and the micro-



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 23

steps timeout. The external model checker used by the distributed algorithm is
a high-performance industrial tool from Intel.

We conducted our experiments using examples for which the fixpoint had
never been reached before, such as the s1423 design from the ISCAS89 bench-
marks. We remark that other examples from this benchmark suite, such as
s3330, s1269 and s5378, require only a single process when using Intel’s high-
performance model checker. Thus, they are not suitable as benchmarks for the
distributed system. In addition to s1423, we experimented with six large exam-
ples which are components in Intel’s designs.

The characteristics of the six test cases are given in Table 2.

Table 2. Benchmark suite characteristics. In each example we give the step in which

the memory requirements by the sequential model checker overflow and the size of the

BDD representing the set of reachable states R at that step.

Circuit #vars Overflow step Overflow | R |
H21 274 55 3,203,064
H20 276 44 3,922,742
I1 147 98 8,006,120
H11 300 44 5,211,955
I3 793 46 5,557,672
I3s 439 54 7,076,762
s1423 88 14 9,705,214

The distributed reachability analysis results are given in Table 3. Four exam-
ples reached fixpoint and the verification is completed. Three examples required
more workers than were available to us at this point (we did not always have all 100
machines at our disposal), Therefore worker overflow occurred at some step, but
always at a much further step than that reached by the sequential model checker.

We next compare the results in Table 3 to the results of the high performance
industrial SAT model checker tool of Intel. The SAT model checker could not
complete the verification of any of the examples. Computing bounded model
checking with timeout of 10,000 seconds, SAT reached the bounds of 85 and 94
on I3s and I3, respectively.

Finally we compare these results to previous distributed symbolic model
checking [7] and [8]. In [8] a high performance model checker was used by the
distributed algorithm, yet s1423 reached only step 17, while the new distributed
algorithm reached step 19. Additional examples from ISCAS89 are so small that
they were completed by the sequential model checker. Other examples from [8]
were not made available to the public. In [7] a non-sophisticated model checker
was used. Therefore a relatively small example such as s3330 required 54 workers
to complete. The high performance model checker used in this work can complete
this example using a single worker.

It is especially interesting to compare Tables 2 and 3. It turns out that at the
point where the sequential algorithm overflows, the aggregate space requirement
for the distributed algorithm (given in the tables as the size ofR in BDD nodes) is



24 L. Fix et al.

Table 3. Distributed reachability on the benchmark suite. Four examples reached

fixpoint and verification was completed. Three examples required more workers than

were available to us and therefore worker overflow occurred. The Max workers column

indicates the maximum number of active workers during the computation. The run

time when the verification is completed is given in hours. Run time is time elapsed

since the first worker starts to run until the last worker finishes the run. Two measures

are given for the iteration at which the sequential algorithm overflows: The sum of

the sizes of the BDDs representing the subsets of reachable states, and the number of

active workers at this iteration.

Circuit Fixpoint Max workers Time maxite

∑
i | Ri | at Seq Overflow∑

i | Ri | #workers

H21 85 3 23h
H20 85 9 11h
I1 139 25 70h 15.5M 6.6M 3
H11 98 7 28.5h 4.4M 1.3M 4
I3 WOvf(60) >50 47.2M 7.1M 5
I3s WOvf(118) >150 358.8M 7.1M 4
s1423 WOvf(19) >200 208.3M 8.8M 8

smaller than the corresponding size in the sequential algorithm! This means that
the distributed algorithm is more efficient in maintaining its data structures (the
BDD which holds R,N), sometimes to a factor of two or more. This comes as a
surprise, since common wisdom tells us to expect some overhead and duplication
of work, rather than increased efficiency.

The explanation, however, is straightforward. Recall that with the distributed
scheme reorder is optimized individually at every worker, taking into account the
worker data only. In this way, BDD reordering by the distributed algorithm is
much more efficient than by the sequential algorithm because every worker finds
a better order when looking only at its data. The overall effect is an aggre-
gate reduction in the number of BDD nodes, which implies improved overall
efficiency.

Acknowledgement. We would like to thank Moshe Vardi for many creative and
helpful discussions. We would also like to thank Inessa Chernoguz, Ilan Harari,
Alexander Barapp, Eran Galon and Ohad Livnat from Intel, for enabling us to
perform our experiments.

References

1. I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An Industry-Oriented
Formal Verification Tool. In 33rd Design Automation Conference, pages 655–660,
1996.

2. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model
Checking using SAT Procedures Instead of BDDs. In 36th Design Automation
Conference, pages 317–320, 1999.



Verifying Very Large Industrial Circuits Using 100 Processes and Beyond 25

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
171, June 1992. Special Issue: Selections from 1990 IEEE Symposium on Logic in
Computer Science.

4. G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large
FSM. In Proceedings of the IEEE International Conference on Computer Aided
Design, pages 354–360. IEEE Computer Society Press, June 1996.

5. R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioritized Traversal: Effi-
cient Reachability Analysis for Verification and Falsification. In Proc. of the 12th
International Conference on Computer Aided Verification, LNCS, 2000.

6. O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in
distributed symbolic reachability analysis through asynchronous computation. In
CHARME (to appear), 2005.

7. O. Grumberg, T. Heyman, and A. Schuster. A Work-Efficient Distributed Algo-
rithm for Reachability Analysis. In Proc. of the 15th International Conference on
Computer Aided Verification, LNCS, 2003.

8. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in
Parallel Reachability Analysis of Very Large Circuits. Formal Methods in System
Design, 21(2):317–338, November 2002.

9. K.L. McMillan. Interpolation and SAT-Based Model Checking. In Proc. of the
15th International Conference on Computer Aided Verification, LNCS, 2003.

10. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reach-
ability Analysis Using Partitioned-ROBDDs. In Proceedings of the IEEE Interna-
tional Conference on Computer Aided Design, pages 388–393. IEEE Computer
Society Press, June 1997.

11. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-
ROBDDs. In Proceedings of the IEEE International Conference on Computer Aided
Design, pages 547–554. IEEE Computer Society Press, June 1996.

12. Kavita Ravi, Kenneth L. McMillan, Thomas R. Shiple, and Fabio Somenzi. Ap-
proximation and Decomposition of Binary Decision Diagrams. In 35th Design
Automation Conference, pages 445–450, 1998.

13. R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
Intl. Conf. on Computer Aided Design, Santa Clara, Ca., November 1993.



A New Reachability Algorithm for Symmetric

Multi-processor Architecture

Debashis Sahoo1, Jawahar Jain3, Subramanian Iyer2, and David Dill1

1 Stanford University, Stanford CA 94305, USA
2 University of Texas at Austin, Austin, TX 78712, USA

3 Fujitsu Labs of America

Abstract. Partitioned BDD-based algorithms have been proposed in
the literature to solve the memory explosion problem in BDD-based ver-
ification. A naive parallelization of such algorithms is often ineffective
as they have less parallelism. In this paper we present a novel parallel
reachability approach that lead to a significantly faster verification on
a Symmetric Multi-Processing architecture over the existing one-thread,
one-CPU approaches. We identify the issues and bottlenecks in paral-
lelizing BDD-based reachability algorithm. We show that in most cases
our algorithm achieves good speedup compared to the existing sequential
approaches.

1 Introduction

A common approach to formal verification of hardware is checking invariant
properties of the design. Unbounded model checking [1, 2] of invariants is usu-
ally performed by doing a reachability analysis. This approach finds all the states
reachable from the initial states and checks if the invariant is satisfied in these
reachable states. However, exhausting the state space using the reachability ap-
proach is an intractable problem. Not surprisingly, such approaches suffer from
the so-called state explosion problem for representing large state sets.

In practice, reachability analysis is typically done using Reduced Ordered
Binary Decision Diagrams (OBDDs) [3, 4]. A more compact representation of
boolean functions, Partitioned-OBDDs (POBDDs) [5] leads to further improve-
ment in reachability analysis [6]. Various improvements to BDD data structures,
variable ordering schemes, as well as the reachability algorithm itself have also
been suggested to improve capturing the total reachable state space using reach-
ability based verification. However, in practice the verification problem typically
consumes far more resources than are typically available for even small sized
problems of 100 state variables, and the gap between requirement and perfor-
mance is continually growing.

The growing prevalence of, increasingly powerful, clustered high performance
SMP (Symmetric Multi-Processing) machines appears to be an inevitable trend.
However, it is not straightforward to devise a reachability algorithm to mean-
ingfully use a very large number of processors.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 26–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A New Reachability Algorithm for Symmetric Multi-processor Architecture 27

Given the above two trends, it is important to develop efficient parallel verifi-
cation algorithms that can appropriately exploit the SMP architecture. Though
the intractability of the problem will remain, the verification time can get re-
duced by a significant factor.

In this paper, we show that the naive parallelization of the POBDD-based
reachability analysis doesn’t have good parallelism. We present a novel parallel
reachability approach that improves the parallelism. Our algorithm also im-
proves the performance of sequential POBDD based approaches drastically in
some cases. This is because, in sequential POBDD-based algorithms, the rela-
tive order in which the partitions are analyzed plays a critical role in the overall
performance. Finding an optimal schedule is a very hard problem. Therefore,
any heuristic to find a good schedule is likely to not perform well in all cases. In
a few cases, the approach can get stuck in some difficult partition and, hence,
many remaining states which otherwise could have been easily computed are not
reached at all. Our algorithm clearly obviates this scheduling problem since it
runs all partitions in parallel. Also, in a parallel shared-memory environment,
using our techniques of Early Communication and Partial Communication, state
space traversal in some partitions can continue even while remaining partitions
are proving to be difficult.

We show that in most cases our algorithm performs much better than the
corresponding sequential run using 8 processors. Using our approach, we can lo-
cate error states significantly faster than other BDD based methods. We can also
show that our results are much better than the standard reachability algorithms
in many passing cases as well. Finally, we show that our method is more robust
than the standard sequential POBDD-based reachability algorithm as it is able
to solve various easy reachability instances which prove to be problematic for
current POBDD approaches.

2 Preliminaries

Reachability analysis is usually based on a breadth-first traversal of finite-state
machines [4, 2]. The algorithm takes as inputs the set of initial states and a
transition relation (TR) that relates the next states a system can reach from
each current state. The set of reachable states is obtained by repeatedly per-
forming image computations until a fixed point is reached [4, 2]. This is termed
as the Least Fixed Point computation. Verification based on reachability can
often be improved by the use of POBDDs [7, 6, 8]. Essentially, the POBDD
based-reachability algorithm performs as many steps as possible of image com-
putation within each partition i in a step of least fixed point within the partition.
When no more images can be thus computed, it synchronizes between partitions
by considering the transitions that originate in partition i and lead out from
there. The term Communication refers to these cross-partition image computa-
tions that are followed by transferring the computed BDDs to other partitions.
Notice that the POBDD-based reachability algorithm performs a BFS which is
local to individual partitions, and then synchronizes to add states that result
from transitions crossing over from one partition to another. We may charac-



28 D. Sahoo et al.

terize this as a region-based BFS, where individual regions of the state space,
i.e, the partitions, are traversed independently in a breadth first manner. We
term the computation within individual partitions as a local Least Fixed Point
computation or a local LFP computation in short.

Related Work

Several methods have been proposed to do parallel verification. Stern and Dill [9]
parallelize an explicit model checker. In [10], parallelized BDDs are used for
reachability analysis. Verification using parallel reachability analysis has been
studied in [11, 12, 13]. A scalable parallel reachability analysis is presented in
[12]. They perform distributed reachability using the classical BFS traversal of
the state space in a parallel environment, using distributed memory. A differ-
ent disjunctive partitioning approach based on iterative squaring is explored in
[14]. A thread-based approach has been applied to Constraint-Based Verification
in [15].

We implemented our algorithm as a multi-threaded program. We would like
to compare our algorithm with other distributed approaches. However, at the
time of submission of this paper, we didn’t have an implementation of other
distributed algorithms to compare with our approach. Therefore, we keep this
as a future work.

3 Improving Parallelism in the Reachability Analysis

The reachability analysis involves construction of a TR and the actual reacha-
bility steps using the TR. We use the standard sequential approach of building
the transition relation. We keep the parallelization of the construction of the
transition relation as a future work. In this paper we parallelize the reachability
algorithm using various heuristic improvement.

The POBDD-based algorithm given in [6] is naturally parallelizable. The lo-
cal LFP computation of each partition combined with their communication can
be processed in parallel. We have to wait for all the partitions to finish their
local LFP computation and the communication to begin transferring the com-
municated states to the appropriate partition. However, empirically we find that
this simple parallelization of the algorithm in [6] doesn’t have much parallelism.
This may be due to following reasons

High Variation of BDD Computations
The performance of the image computations inside each partition depend on the
BDD variable order. We call a partition an easy partition if the BDDs inside the
partition are compact and a hard partition otherwise. For a majority of circuits,
the complexity of the BDD computations can have significant variations between
different partitions. In such cases, all easy partitions wait for the hard partitions
to finish their image computation, which reduces the parallelism significantly.

Depth of the local LFP computation
Another reason for the reduced parallelism may be because the depth of the lo-
cal LFP computation can vary a lot between partitions. In this case the partition



A New Reachability Algorithm for Symmetric Multi-processor Architecture 29

with smaller depth finish faster whereas the partitions with larger depth take
longer time. This results in many idle processors which reduces the parallelism.

In practice we find that a large number of partitions wait for a few hard
partitions. To address this issue we use following heuristics[16] to improve the
parallelism.

Early Communication: Communicate states to other partition after the least
fixed point.
Partial Communication: Initiate a partial communication in an idle proces-
sor.

3.1 Early Communication

After a partition finishes its local LFP computation, we allow the partition to im-
mediately communicate its states to the other partitions. Each partition accepts
this communicated states asynchronously during their local LFP computation.
This would enable the easy partitions to make progress with their subsequent lo-
cal LFP computation without waiting for the hard partitions to finish. Therefore,
the early communication from easy partitions to other easy partitions enables
all such partitions to reach a fixed point. This is very difficult to achieve in se-
quential partitioned reachability analysis because such scheduling information is
difficult to obtain.

If new states are communicated during early communication, then we restart
the current image computation after adding these states. Such augmentation can
make a harder image computation significantly easier in some cases. This may
be because the states that would have been hard to compute in one partition
can be more easily computed in another partition and then communicated to
the first partition.

3.2 Partial Communication

Even after applying the above technique, we found that some partition that
have completed the local LFP on their current states were waiting for other
partitions to communicate some states, so that they can continue their local
LFP computation. This case arises when all the easy partition finish their local
LFP and need communication from a hard partition to make further progress.
To improve parallelism, the active partition initiates a communication in an idle
processor using a small subset of the state space of the hard partition. The
communication introduces new states in the easy partitions. This enables easy
partitions to make progress further with their collective least fixed point from the
communicated states. Intuitively this tries to accelerate the activity among easy
partitions. We found that communicating the full BDD to a different partition is
very hard. Therefore, we find a small subset of state space that can be expressed
with a compact BDD (High Density BDD[17]). This heuristic tries to keep all the
processors busy there by improving the parallelism. Further, this heuristic can
increase the number of early communication instances. Thus, the combined effect
of the partial communication and early communication improves the parallelism
significantly.



30 D. Sahoo et al.

Parallel-Reachability(n, TR, InitStates) {
Create n partitions for InitStates
Run in parallel for each partition i{

After every microsteps runs
ImproveParallelism(i) {

Get all the communicated states
Calculate LeastFixedPoint(Rch) in partition i
Compute cross-over states from i to all parts

}
} until (No new state is found in any partition);

}
ImproveParallelism(n: Partition Number) {

check and add all the communicated states
if new states are added

restart current image computation
request a waiting partition to initiate

partial communication procedure
}

Fig. 1. Parallel Reachability Algorithm

3.3 Parallel Reachability Algorithm

We present our complete parallel POBDD-based reachability algorithm as shown
in Figure 1 using the techniques discussed in last section.

We run the local LFP computation combined with the Communication in
parallel. All computation inside a partition is managed by a dedicated proces-
sor. Each processor polls for the communicated states from the other processor.
After every micro-step of the image computation, each processor calls a function
ImproveParallelism that implements two heuristics for improving parallelism.
The first heuristic is to do early communication. As a part of the first heuristic,
the function checks whether other processors have communicated some states
to the current partition. If it finds any processors, then it transfer all the com-
municated states from their corresponding partitions to the current partition.
This simple check and update subroutine performed by each processor imple-
ments the early communication heuristic. The second heuristic is to do partial
communication. As a part of this heuristic, every active processor checks for an
idle thread. If an idle processor is found, then it gives a small subset of the state
space from the current partition to the idle processor. The idle processor start
a Communication from this subset of states to the partition associated with the
idle processor.

3.4 Termination Condition

In our approach, each processor manages a partition. The processor goes back
to idle state if no new states are communicated to the partition associated with
that processor. One of the processor manages the global termination conditions.
The processor asserts a global termination flag if all the processors are idle.



A New Reachability Algorithm for Symmetric Multi-processor Architecture 31

4 Engineering Issues

Our implementation of the POBDD-data structure and algorithms uses VIS-
2.0 package. The VIS-2.0 package uses CUDD [18] for the BDD operations.
We implemented our parallel reachability algorithm as a multi-threaded pro-
gram in a symmetric multi-processing (SMP) architecture. SMP systems can
be programmed using several different methods. In a multi-threaded approach,
the program divides the work across the processors by spawning multiple light-
weight threads, each executing on a different processor and performing part of
the calculation. Since all threads share the same program space, there is no need
for any explicit communication calls. However, designing a multi-threaded FV
approach using BDDs poses significant challenges.

BDD Issues in Multi-threaded Reachability: The CUDD BDD package
is designed for use in a non-thread based environment. Further, there are var-
ious optimization features in CUDD, that prevent it to function correctly in a
multi-threaded environment. It uses many global variables, which needs to be
synchronized in a multi-threaded environment. Nevertheless, fixing this problem
enables the program to behave correctly provided each thread work on their
respective BDD-managers. However, this leads to a non-deterministic behavior
in the BDD-computation.

The CUDD package uses various memory based optimization to boost its per-
formance. However, such optimizations behave non-deterministically in a multi-
threaded environment. Therefore, the produced computation trace is often non-
reproducible and the program becomes very difficult to debug. It also results in
many orders of magnitude difference in run times. Thus, the program behavior
is not predictable. However, deterministic behavior of the program is very im-
portant for the evaluation of its performance. We re-engineered all the relevant
features in the CUDD package that leads to a non-deterministic behavior. This
enables the BDD-package to be safe to run in a multi-threaded environment and
makes the program more conveniently analyzable. However, this was surprisingly
painful to implement.

In addition to the above, each thread needs to synchronize based on a de-
terministic measure before communicating to another thread. Otherwise, the
program would behave non-deterministically because of the non-determinism in
the thread scheduling. We synchronize the threads using a fixed count based on
the number of BDD conjunction operations and the number of sift operations
during variable reordering. Further, we find that the deterministic version of
the program performs as good as the non-deterministic program as described in
Section 5.2.

Performance Issues on SMP Machine: Further, the scheduling of the
threads in an SMP machine, although improved significantly over the years,
might not be optimal for our application. Each thread, in our case use sepa-
rate BDD managers for carrying out various BDD operations. Therefore, if the
system thread scheduler assigns the thread to a different processor, then the
thread would loose all its cached data and the new processor would re-fetch all



32 D. Sahoo et al.

the necessary data to carry out the BDD operations. Thus, assigning a thread
to a new processor would incur unnecessary large overhead. However, a very
simple scheduling strategy of assigning each thread to an exclusive processor
would reduce the overhead generated by the heavy cache misses significantly.
On the other hand, it is quite difficult to quantify the performance penalty due
the non-optimality of scheduling threads.

Performance Issues on Uniprocessor Machine: Furthermore, the simulated
parallel execution of the multi-threaded algorithm in a uniprocessor machine may
perform better than other sequential algorithm because of the scheduling flexi-
bility. However, the program may have large overhead due to the cache misses
because of the frequent switching of threads in one processor. We find that
reducing the frequency of switching of threads in a uniprocessor machine sig-
nificantly improve the results. Moreover, a simulated sequential approach in an
8-CPU machine, where each thread can potentially use different processor cache
improves the results further. We use explicit locks to run one thread at a time
in the 8-CPU machine. We find that the performance in this simulated case is
2-6 times faster than the corresponding uniprocessor run. Thus, the uniproces-
sor performance is significantly penalized by the cache overhead. Therefore, we
provide results from this simulated sequential approach in the 8-CPU machine
in our final table to give a good overview of the parallelism achieved. However,
the performance in any uniprocessor machine is much worse than the simulated
sequential case in an 8-CPU machine.

5 Experimental Results

We run our experiments using default cluster size of 5000, lazy sift reorder-
ing, MLP image method on a 8-way SMP Linux machine based on Intel(R)
Xeon(TM) MP CPU 2.20GHz and 8GB RAM. We run all the sequential algo-
rithms on a Linux box with Intel(R) XEON(TM) CPU 2.20GHz and 2GB RAM.
We report results only on a few VIS-verilog [19] and industrial circuits because
of limited time. In keeping with the typical timeout limits set in our in-house
verification tools, we set a timeout of 5000 seconds on all circuits. For sake of
brevity, we present our results only on those circuits where VIS requires more
than 100 seconds. Results are omitted for the circuits where all the methods
timeout. We use 8 different partitions for all POBDD-based approaches. We se-
lect the partitioning variable using the method in [6]. We use same partitioning
strategy for all partitioned approaches in order to perform a fair comparison.

5.1 Overview of Table

Table 1 shows our invariant check results on various public and industrial cir-
cuits. In Table 1, we separate the total reachability time into the transition
relation construction time and the actual reachability time. We compare the ac-
tual reachability time taken by the following approaches: the standard approach
of VIS, the simple partitioning approach and our parallel POBDD-based reach-
ability algorithms. We compare the naive parallel approach with the successive



A New Reachability Algorithm for Symmetric Multi-processor Architecture 33

Table 1. Time (in sec) for Invariant Checking on a few VIS-verilog and Industrial

Circuits using 8 CPUs

Parallel (early comm +
Parallel 8 CPUs partial comm)

TR seq 8 CPUs (early Parallel Simulated
ckts time vis pobdd (naive) comm) 8 CPUs Seq

(a) Industrial Circuits
c1 36 371 T/O T/O T/O 227 286
c2 12 3346 1789 1564 93 917 917
c3 17 2540 T/O T/O T/O 62 228
c4 11 2236 2084 1174 161 161 509

(b) Few VIS-benchmark Circuits
spprod 5 891 61 53 93 440 510

am2910 9 T/O 281 122 204 356 386
palu 3 273 4 9 8 9 9

s1269b-1 2 3635 T/O T/O 59 60 72
s1269b-5 2 2287 T/O T/O 55 55 67
blkjack-3 2 T/O 1213 470 340 70 98

(c) Simple Industrial Circuits
d1 11 6 T/O T/O 13 13 13
d2 15 10 11 13 45 30 39
d3 12 15 21 23 100 100 130
d4 8 11 T/O T/O 39 38 60
d5 7 12 16 15 34 37 37

(T/O = Timeout of 5000 sec)

introduction of the two heuristics for communication – early communication and
partial communication. The columns in the table are arranged in the same order.
The first column is the circuit name, followed by transition relation construction
time, vis, sequential POBDDs, naive parallelization, the parallel approach with
just early communication and finally with both techniques. The final column
has two parts – 8 CPUs and Simulated Seq, which report, respectively, the to-
tal reachability time in a parallel environment using 8 CPUs and the time in a
simulated sequential approach in an 8-CPU machine. The simulated sequential
approach is discussed in section 4. Note that many of the sequential results are
better than standard POBDD-based reachability because of the partition and
communication scheduling flexibility. The details of the processor utilization are
presented in Section 5.3 using Gantt charts.

5.2 Efficiency Issues

Table 1 is composed of three different sections. Section (a) and (c), respectively
shows the results on a few hard and easy industrial circuits. Section (b) shows the



34 D. Sahoo et al.

Table 2. Time (in sec) for Invariant Checking on the Industrial Circuits using different

redundancy value in a parallel and sequential framework

redundancy [6]
0.3 0.5 0.7

Parallel seq Parallel seq Parallel seq

c1 227 288 226 286 229 292
c2 73 386 917 917 2569 2570
c3 1492 1493 62 228 1407 T/O
c4 2967 2970 161 509 158 520
d1 26 28 13 13 92 138
d2 30 40 30 39 31 39
d3 53 67 100 130 102 133
d4 29 37 38 60 38 59
d5 13 13 37 37 37 38
s1269b-1 61 73 60 72 165 183
sp prod 446 510 440 510 259 260

(T/O = Timeout of 5000 sec)

results on a few VIS-verilog benchmark circuits. As can be seen from the table,
the resulting parallel run times with all the heuristics, i.e, the last column of the
table have no timeouts. They are also clearly superior to classical partitioned-
reachability. The proposed parallel approach will all heuristics, is also usually
superior to the less sophisticated parallel techniques. The parallel approach with
only early communication, i.e the 6th column in Table 1, often works well and
have fewer timeouts compared to the naive parallel approach. Consider the cir-
cuit blkjack-3, which represents the best scenario, where the results improve with
each successive addition of the heuristics. We find that the parallel approach is
usually more robust than the sequential approaches. Note that the last column
shows the results of simulated sequential approach in an 8-CPU machine to
demonstrate the parallelism achieved. The corresponding uniprocessor results
are 2-6 times worse than the simulated sequential approach. We find that the
parallelism is very small and hope to improve it in a future work.

Scheduling is a Problem Even on Easy Functions: Consider the results
of some properties from an industrial design whose OBDDs are fairly small as
shown in Table 1 (c). The partitioned reachability for such cases gets harder.
Both the standard sequential POBDD-based reachability and naive parallel
reachability falls in the trap of an inefficient computation. An early commu-
nication often helps in this case, as can be seen from the table. However, both
early communication and partial communication are needed to finish all the cir-
cuits. The reachability of small circuits using 8 partitions might contribute to
some overhead in the partitioned reachability approaches.

Further, we will like to comment on the relative speedup of the multi-threaded
8-CPU approach over the simulated sequential approach. This speedup is not
only proportional to the algorithm but also to the choice of partitioning variables.



A New Reachability Algorithm for Symmetric Multi-processor Architecture 35

Table 3. Time (in sec) for Invariant Checking on the Industrial Circuits using the

non-deterministic and the deterministic program

Time in sec
ckts non-det det

(a) Industrial Circuits

c1 T/O 227
c2 962 917
c3 809 62
c4 903 161

(b) Simple Industrial Circuits

d1 13 13
d2 24 30
d3 84 100
d4 30 38
d5 13 37

(T/O = Timeout of 5000 sec)

For the same algorithm, even though the same partitioning variables may be
provided to both the approaches, depending on the splitting choices, the amount
of parallelism that is generated can vary dramatically. For example, in Table 2
it can be seen that for almost half of the entries, by varying redundancy and
balancedness, the two parameters that are calculated for evaluating partitioning
variables, the amount of parallelism that is generated can vary dramatically.
This points to the need for an approach which can dynamically evaluate different
choices in deciding the partitioning variables. Such an idea is motivated by the
strong results presented in Sahoo et al. [8], where it was shown the successful
BDD decisions can be taken if we generate different short traces of reachability
computation for each choice and then make the required decision.

Finally, we show that the deterministic version of our program doesn’t loose
the performance by a great margin to the non-deterministic version. Table 3
shows the results of Invariant checking on the industrial circuits using both the
non-deterministic and the deterministic version of our program. As we can see
from the table, the performance of non-deterministic program is very similar to
the deterministic program in the simple circuits, i.e. Table 3 (b). However, the
performance of the deterministic program is better than the non-deterministic
version in the hard circuits in Table 3 (a). Therefore, we strongly prefer the
deterministic version to the non-deterministic version.

5.3 Improving Parallelism

Consider the reachability analysis of s1269b-5 from the VIS Verilog benchmark
suite. As shown in Table 1 (b), we perform reachability analysis using 8 parti-
tions, each of which runs in a separate thread.

Figure 2 shows the Gantt charts of three parallel reachability analysis on
s1269b-5 circuit. We use the three charts to show the effect of the two heuris-



36 D. Sahoo et al.

0s
 T

ot
al

 ti
m

e 
=

 5
00

0s
 

0s
 T

ot
al

 ti
m

e 
=

 5
5s

 

0s
 T

ot
al

 ti
m

e 
=

 5
5s

(a) (b) (c)

Fig. 2. Parallel Reachability with successive addition of each heuristics

tics added successively to the reachability algorithm. Figure 2(a) shows Gantt
chart of the naive parallel reachability. Figure 2(b) shows the Gantt chart of
reachability analysis when early communication is allowed. Figure 2(b) shows
the Gantt chart of reachability analysis when both early communication and
partial communication are allowed. Each partition is represented by a vertical
broken line. The filled segment represents the cpu time for the partition to per-
form a computation. At the end of each such stage, a small cross indicates the
communication of states to other partitions. A break in the line indicates that
the corresponding processor is idle. However, in a multi-threaded uniprocessor
environment, the processor can immediately schedule another thread for execu-
tion. The total time is the reachability time on a multi-processor machine. As
we can see from the figure, more gaps are being filled with the addition of each
heuristic. This shows a clear trend of improved parallelism in each case.

6 Conclusion

Partitioning based state space traversal approaches where reachability on each
partition is processed independently appear very suited for parallelization. How-
ever, we find that a naive parallelization of such algorithms is often ineffective.
In this paper we discuss an algorithm suitable for parallel reachability on a sym-
metric multi-processing architecture. We show that in most cases our algorithm
achieves good speedup in a multi-processor shared memory environment, com-
pared to the corresponding sequential run. Further, the parallel algorithm is
significantly faster than both the standard sequential reachability algorithm as
well as the existing partitioned approaches especially when the property is er-
roneous. We have made the multi-threaded program behavior deterministic. We
found that the performance of both the non-deterministic and the deterministic
program is similar.

Our investigation, one of the first in the area of a parallel reachability al-
gorithm exploiting SMP architecture reveals that there are significant areas of
performance improvements. These include improving scheduling of threads on



A New Reachability Algorithm for Symmetric Multi-processor Architecture 37

various processors, selecting window functions that can potentially enhance par-
allelism, and communication strategies between threads to decrease number of
idle CPUs.

Acknowledgments

The authors thank Fujitsu Laboratories of America, Inc for their gifts to support
the research. Prof. Dill thanks the NSF for support via grants CCR-012-1403.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

References

[1] Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Proc. IBM Workshop on Logics of Programs.
Volume 131 of Lecture Notes in Computer Science. (1981)

[2] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
[3] Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers C-35 (1986) 677–691
[4] Coudert, O., Berthet, C., Madre, J.C.: Verification of sequential machines based

on symbolic execution. In: Proc. of the Workshop on Automatic Verification
Methods for Finite State Systems. (1989)

[5] Jain, J.: et. al., Functional Partitioning for Verification and Related Problems.
Brown/MIT VLSI Conference (1992)

[6] Narayan, A.: et. al., Reachability Analysis Using Partitioned-ROBDDs. In: IC-
CAD. (1997) 388–393

[7] Iyer, S., Sahoo, D., Stangier, C., Narayan, A., Jain, J.: Improved symbolic Verifi-
cation Using Partitioning Techniques. In: Proc. of CHARME 2003. Volume 2860
of Lecture Notes in Computer Science. (2003)

[8] Sahoo, D., Iyer, S.: et. al., A Partitioning Methodology for BDD-based Verifica-
tion. In: FMCAD. (2004)

[9] Stern, U., Dill, D.L.: Parallelizing the murphy verifier. In: CAV. (1997)
[10] Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package.

In: DAC. (1996) 641–644
[11] Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction

for model-checking. In: SPIN workshop on Model checking of software, Springer-
Verlag New York, Inc. (2001) 217–234

[12] Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scalability in
parallel reachability analysis of very large circuits. In: CAV. (2000)

[13] Yang, B., O’Hallaron, D.R.: Parallel breadth-first bdd construction. In: sym-
posium on Principles and practice of parallel programming, ACM Press (1997)
145–156

[14] Cabodi, G., Camurati, P., Lavagno, L., Quer, S.: Disjunctive partitioning and
partial iterative squaring: An effective approach for symbolic traversal of large
circuits. In: DAC. (1997) 728–733

[15] Pixley, C., Havlicek, J.: A verification synergy: Constraint-based verification. In:
Electronic Design Processes. (2003)



38 D. Sahoo et al.

[16] Sahoo, D., Jain, J., Iyer, S.K., Dill, D.L., Emerson, E.A.: Multi-threaded reacha-
bility. In: To appear In DAC. (2005)

[17] Ravi, K., Somenzi, F.: High-density reachability analysis. In: ICCAD. (1995)
154–158

[18] Somenzi, F.: CUDD: CU Decision Diagram Package ftp://vlsi.colorado.edu/pub
(2001)

[19] VIS: Verilog Benchmarks http://vlsi.colorado.edu/˜ vis/ (2001)



Comprehensive Verification Framework for

Dependability of Self-optimizing Systems�

Y. Zhao, M. Kardos, S. Oberthür, and F.J. Rammig

Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany

Abstract. By integrating formal specification and formal verification
into the design phase of a system development process, the correctness
of the system can be ensured to a great extent. However, it is not suffi-
cient for a self-optimizing system that needs to exchange its components
safely and consistently over time. Therefore, this paper presents a com-
prehensive verification framework to guarantee the dependability of such
a self-optimizing system at the design phase (off-line verification) as well
as at the runtime phase (on-line verification). The proposed verification
framework adopts AsmL as intermediate representation for the system
specification and on-the-fly model checking technique for alleviating the
state space explosion problem. The off and the on -line verifications are
performed at (RT-UML) model level. The properties to be checked are
expressed by RT-OCL where the underlying temporal logic is restricted
to time-annotated ACTL/LTL formulae. In particular, the on-line veri-
fication is achieved by running the on-the-fly model checking interleaved
with the execution of the checked system in a pipelined manner.

1 Introduction

Mechatronic systems represent a special class of complex cross-domain embedded
systems. The design of such systems involves a combination of design techniques
and technologies used in mechanical and electrical engineering as well as in com-
puter science. The increasing complexity, even emphasized by the system het-
erogeneity, is one of the major problems in today’s mechatronic industry (e.g.,
automotive industry). To deal with this complexity, one approach is to build
mechatronic systems in a self-reflecting, self-adapting and self-optimizing way.
In the Collaborative Research Center 614 of the German National Science Foun-
dation (DFG), entitled “Self-optimizing concepts and structures in mechanical
engineering”, we are investigating such an approach. The main focus is put on
self-optimizing applications with highly dynamic software components which are
optimized and even replaced at runtime. Moreover, the considered applications
run under real-time constraints. As failures of these technical systems usually

� This work is developed in the course of the Collaborative Research Center 614 -
Self-Optimizing Concepts and Structures in Mechanical Engineering - Paderborn
University, and is published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft (DFG).

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 39–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



40 Y. Zhao et al.

have severe consequences, dependability is of paramount importance. This puts
new demands on verification of such complex and highly dependable systems.

For real-time systems with a dynamic task set, acceptance tests with respect
to schedulability are state of the art in RTOS. In reconfigurable and depend-
able systems the safety and consistency after component replacement has to be
checked as well. This extends the classical area of on-line acceptance testing.
Traditionally in real-time systems one tries to execute as many checking activi-
ties as possible off-line. In systems of dynamic structure this would mean that all
components that may be used in a substitution have to be checked correct (e.g.,
using conventional model checking) in an arbitrary context, i.e., in the most gen-
eral context. Of course, this very general correctness requirement would result
in highly over-dimensioned and thus inefficient components, what would be a
contradiction to the overall objective of self-optimization.

It is well known that formal methods for specifying and verifying complex
systems can offer a greater assurance of correctness than traditional simulation
and testing. In the Collaborative Research Center 614, a design technique [1]
has been presented for self-optimizing systems, which integrates formal spec-
ification (RT-UML) and formal verification (Model Checking) into the early
design phase of a system development. This paper concerns the formal verifica-
tion methodology applicable to the design technique and consequently presents a
comprehensive verification framework to ensure the safety and consistency of the
self-optimizing systems not only at the design phase but also at execution phase.
The former is named off-line verification and the latter on-line verification. The
proposed verification framework adopts AsmL as intermediate representation to
bridge the gap between the RT-UML models and the model checking tools on
the one hand, and on-the-fly model checking methods to alleviate the state space
explosion problem on the other hand. Simply speaking, both off and on -line veri-
fication are performed at model level. The properties to be checked are expressed
by RT-OCL where the underlying temporal logic is restricted to time-annotated
ACTL/LTL formulae. In particular, the on-line verification works as service of
a real-time operating system (RTOS) so that the on-the-fly model checking can
run interleaved with the execution of the checked system in a pipelined manner.

The remainder of this paper is organized as follows: section 2 outlines the
preliminaries; section 3 details the comprehensive verification framework; section
4 addresses the on-line verification mechanism; section 5 discusses the related
work; finally, section 6 ends with the conclusion.

2 Preliminaries

2.1 Real-Time UML Statechart

According to the design technique used [1], the self-optimizing systems are de-
signed with the CASE tool Fujaba1 based on the modeling concepts of UML
2.0. That is, the architecture of a system is specified by a component diagram
1 http://www.fujaba.de/



Comprehensive Verification Framework 41

Fig. 1. Part of real-time UML statechart

together with the definitions for ports and connectors; the overall behavior of
the system is specified by UML state machines with real-time extension, called
RT-UML statecharts, associated to each component, port and connector. In fact,
the whole behavior of a component C is the parallel composition of the RT-UML
statecharts M r

i (1 ≤ i ≤ m), which are the refinements of the corresponding pro-
tocol state machines associated to the ports Pi (1 ≤ i ≤ m) of C, and the internal
synchronization statechart M s of C, i.e., MC = M r

1 ‖M r
2 ‖ · · · ‖M r

m ‖M s. It is
easy to reason that the overall behavior of the system model just is the parallel
composition of such a set of RT-UML statecharts.

As far as RT-UML statecharts are concerned, there are many different vari-
ants to extend the usual UML statechart with timing constraints in the liter-
ature. Here we introduce the RT-UML statechart presented in [2] and realized
in the Fujaba tool suite as plug-in. Simply speaking, a RT-UML statechart is
obtained by adding real-time annotations to the usual UML statechart. Without
loss of generality, Fig. 1 illustrates a typical part of a RT-UML statechart. The
state S1 has the time invariant t0 ≤ 5 (time units) and S2 has the time invari-
ant t0 ≤ 20 and t1 ≤ 13, where t0 and t1 are global clocks. The entry action
entryS1() of S1 has the worst case execution time (wcet) w = 1 (time unit) and
the clock t0 is reset while entering S1, the do activity doS1() of S1 has w = 2
together with period p ∈ [2, 3] and the exit action exitS1() of S1 has w = 1.
Similarly, the clocks t0 and t1 are reset while exiting S2. The transition from S1

to S2 is triggered whenever the event e is available and the guard x ≤ 2 and the
time guard 1 ≤ t0 are held. In the mean time, the clock t2 is reset and the action
with w = 2 is executed. The firing of the transition has to be finished within the
time interval [1, 10] and whenever the clock t1 ∈ [3, 6]. By default, the transition
is urgent and has the priority 1.

2.2 Real-Time OCL

Real-time OCL (RT-OCL) [3] is a state-oriented temporal extension to the usual
Object Constraint Language by introducing additional bounded temporal logic
operators over the sequence of active state configurations of RT-UML state-
charts. E.g., the following invariant requires that for each instance of the class
C, at each time point of the next 20 time units, on all possible execution paths,
the states S1 and S2 must be subsequently entered:

context C
inv:
self@post[1, 20]→ forall(p : OclPath | p→ includes(Sequence{S1, S2}))



42 Y. Zhao et al.

The introduced notations are compliant with the syntax of the OCL 2.0
Proposal and are mapped to real-time CTL (RTCTL) [4], a discrete time variant
of the Computation Tree Logic, for further application to model checking. In the
future, we’ll further extend the RT-OCL [3] to cover timed linear temporal logic.

2.3 Abstract State Machine Language

The Abstract State Machine Language (AsmL) [5] is an executable specifica-
tion language built upon the theory of Abstract State Machines (ASMs) [6],
a formal method for high-level modeling and specification that has proven its
strong modeling and specification abilities in various application domains. The
main strength of AsmL resides in its rich and expressive syntax, formally un-
derpinned by the ASM theory, which gives user the ability to create precise and
comprehensible specifications at any desired level of abstraction. Among other
things, AsmL provides a powerful type system that facilitates a wide scale of
designs ranging from pure mathematical specifications of algorithms to the com-
plex object-oriented software specifications. Besides the language features, the
AsmL comes with a tool support that allows usual validation via specification
execution as well as enhanced model-based testing. Moreover, the AsmL tool
suite provides a functionality to drive the exploration of the model state space.
This feature can be used for constructing a corresponding Kripke structure from
the given specification so that it can further serve as basis for model checking.

3 Comprehensive Verification Framework

3.1 Overview

The comprehensive verification framework in Fig. 2 illustrates our verification
mechanism for the RT-UML models designed with the Fujaba tool suite. First
of all, the RT-UML statecharts of the modeled system and the related RT-OCL
constraints are exported from the Fujaba Tool Suite in the form of the XML
documents and then translated into the corresponding AsmL models and real-
time ACTL/LTL formulae respectively at the Translation phase. Afterwards, the
Verification Engine is launched to fulfill the verification task under the assistance
of the efficient model checking tools.

To alleviate the state space explosion problem on model checking for complex
systems, we adopt on-the-fly model checking for time-annotated ACTL/LTL
formulae in our verification framework. For this purpose, the Kripke structure
of each AsmL model is derived by applying the exploration functionality to the
AsmL model and the ACTL/LTL formulae to be verified are transformed into
Büchi automata. Note that the time-annotated ACTL formulae are just RTCTL
(Real-time Computation Tree Logic) [4] formulae with only universal quantifiers
allowed and the time-annotated LTL is defined in a similar way. That is, a time
interval of the form [a, b], where a and b are Integers and a ≤ b, is attached
to the usual temporal operators, named bounded temporal operators. E.g., the
formula AG(p→ AF[0,t]q) specifies that p always leads to q within t time steps.



Comprehensive Verification Framework 43

However, to avoid the fairness conditions caused by the eventuality operators,
we require that the eventuality operators must be bounded ones if any. In this
way, the bounds on the eventuality operators prevents indefinite postponement.
In a word, the verification engine provides the on-the-fly model checker with
Kripke structures and Büchi automata as shown in Fig. 2. Finally, the checking
result is reported to the Fujaba tool suite by the verification engine if necessary.
As for a negative result, a counterexample is also reported to the Fujaba tool
suite and is analyzed there to help figure out the possible problems in the system
model. Consequently, the system model is modified and then checked again. This
process is repeated until the system model does satisfy the given properties.

Fujaba Tool Suite

Yes No

AsmL Model

Simulation

RAVEN

ModelChecker

Other Type

Model Checker

RT-UML

Statechart
RT-OCL

Translation

AsmL

Model

Temporal

Logic

AsmL Model

Verification Engine

Kripke

Structure

Büchi

Automaton

Counter-

example

On-the-fly

Modelchecker

Model-based

Testing

Comprehensive

Verification

Framework

Fig. 2. Comprehensive Verification Framework

In this verification framework, AsmL model plays essentially a role as an
intermediate representation from the perspective of model checking. As a result,
model checking can be done based on the resulting Kripke Structure derived
from the AsmL model, which makes it independent of any model checker’s input
format. Hence, our verification framework can be easily extended by binding
other model checking tools. In particular, instead of modifying the internal de-
cision algorithm of a given model checker, many advanced model checking tech-
niques, such as abstraction, compositional and incremental model checking, can
be fulfilled at verification engine level. In addition, AsmL model simulation and
model-based testing supported by the AsmL tool suite can provide a complement



44 Y. Zhao et al.

to model checking if needed. Also, using AsmL model as intermediate represen-
tation makes the updating of the RT-UML statechart and RT-OCL transparent
to model checkers and vice versa.

3.2 Translation Approach

By using the Fujaba tool suite, we can conveniently design individual RT-UML
statecharts of a given system and then export them as the corresponding XML
documents. Considering that the translation from RT-OCL to Temporal Logic
formulae is straightforward, here we mainly focus on the translation approach
to convert an RT-UML Statechart into an AsmL model, i.e., to derive AsmL
models from the above XML documents. The resulting AsmL model consists of
two AsmL files: declaration.asml and instantiation.asml where the former
is common and the latter is special, for different RT-UML statecharts.

Therefore, the goal of translating a real-time UML statechart into an AsmL
model is to generate an instantiation.asml from the given XML document.
Then, the complete AsmL model is obtained by combining the declarations of
classes StateMachine, State, Transition and the like defined in the AsmL
file declaration.asml. That is, from the XML document, the state machine
itself, the states, the transitions and others in the state machine are derived
and instantiated as the instances of the corresponding classes StateMachine,
State, Transition and so on in instantiation.asml. E.g., state s in a state
machine is instantiated as the instance s of class State and transition t as
the instance t of class Transition; the behavior of state s (transition t) is
defined as procedure Run State s()(procedure Run Transition t()), which
is associated to the instance s (the instance t) in instantiation.asml. Of
course, we also need to make the behaviors of the states and the transitions in
the state machine coherent so that the AsmL model can correctly simulate the
behavior of the state machine. Except for the timing factor, the control logic of
the RT-UML statechart is similar to that of the usual UML statechart. Note that,
in real-time state machine, since the control can stay in active states and active
transitions in the same time interval, therefore, the active states and the active
transitions may coexist in some time intervals. That is, the configuration of RT-
UML state machine consists of both active states and active transitions. As for
the timing problem, we define procedure tick() to increase the values of all the
global and local clocks in the state machine one time unit per tick. In this way, the
complete AsmL model is the combination of the special instantiation.asml
with the common declaration.asml. Due to the limited space, we just outline
the basic idea here and refer to [7] for details.

3.3 Verification Engine

The verification engine is the pivot of the whole verification framework. The
AsmL models obtained at the translation phase are explored to acquire the
Kripke structures by invoking the AsmL exploration functionality. Note that we
implicitly assume that each component in the self-optimizing systems owns one
finite state machine. Since we adopt the on-the-fly model checking technique, the



Comprehensive Verification Framework 45

composition of the resulting Kripke structures can be done on-the-fly according
to the guidance of the property automaton to be checked. In this way, only a small
portion of the state space could be constructed before a counterexample were
found (if any). In fact, the Kripke structure here is represented as unit delay state
transition graph, in which “next state” is identified with “next time”. Therefore,
the timing constraints in the extended ACTL/LTL formulae can be expressed in
the usual ACTL (LTL) using the next operator. In this sense, bounded temporal
operators are just abbreviations for nested next formulae [4]. Consequently, the
construction of Büchi automata for our real-time temporal formulae can be
done in the similar way as for the usual ACTL [8] (LTL [9]). Of course, efficient
simplification techniques are suggested to reduce the size of the resulting Büchi
automata if necessary. The Büchi automata here are also represented as unit
delay state transition graph. For convenience, let M stand for the system model
and B for the property automaton to be checked. In what follows, we discuss
the on-the-fly ACTL and LTL model checking methods respectively.

We do on-the-fly ACTL model checking by checking the simulation preorder
between M and B incrementally [10]. That is, the decision problem of checking
simulation preorder is converted into the satisfiability problem for weakly nega-
tive Horn formulae [11], called NHORNSAT problem. The basic idea is to encode
the properties of the simulation relation between M and B into a type of CNF
(Conjunctive Normal Form) formula Γ , i.e., weakly negative Horn formula, and
then prove on-the-fly in polynomial time that the CNF formula Γ is satisfiable.

Let Xp,q be a variable in Γ , where p and q are states in M and B respectively.
Then, the clauses in the formula Γ are of the following three types:

1) Positive literal Xp,q, when (p, q) to be in the simulation relation;
2) Negative literal Xp,q, when (p, q) cannot be in any simulation relation;
3) Implication clause of the form Xp,q →

∨
p′,q′ Xp′,q′ , when for (p, q) to be in

the simulation relation, one of the (p′, q′)’s must be also in the simulation
relation. Here (p′, q′) belongs to the successors of (p, q).

It is easy to reason that, starting from the initial states of M and B, we
can construct the CNF formula Γ by adding to Γ the proper clauses derived
from the reachable pairs of states in M × B layer by layer in BFS (Breadth
First Search) order. An efficient on-the-fly algorithm is presented in [12], which
receives one Horn clause at a time and allows fast queries about the satisfiability
of the whole formula so far received. Let l be the size of the inserted clause and
n the size of the whole formula so far received. Then, the algorithm inserts a
clause of size l in O(l) amortized time, propagates the effect of this insertion
operation on the previous result in O(n) and decides the satisfiability of the
formula heretofore constructed in O(1). This algorithm outperforms by an order
of magnitude the best known algorithms for the same problem in [13] and [14].
Similarly, a dualization of the algorithm in [12] also gives an efficient linear time
on-the-fly solution to the NHORNSAT problem [10].

We follow the emptiness checking method in [15] for the on-the fly LTL model
checking. To do this, the property automaton B is derived from the negation
of the LTL formula to be verified. Thus, the emptiness of the intersection of



46 Y. Zhao et al.

M and B is checked on-the-fly: the states of the intersection of M and B are
computed in BFS order from initial states on demand. Let (p, q) be the current
state of the search, where p is a state of M and q a state of B. To continue
the search, we compute the successors of the state (p, q) one at a time. Because
B is already constructed, the successors q1, q2, · · · , qk of q have already been
computed. Let p′ be the successor of p that is calculated next. Then, a successor
(p′, qi) (1 ≤ i ≤ k) of (p, q) exists if the propositions of p is consistent with those
of qi. If the intersection is not empty, a counterexample is reported directly. The
time complexity of this method is linear in the size of the product of M and B.

4 On-line Verification Mechanism

Self-optimizing systems need to adjust themselves to dynamic environments over
time by means of exchanging components. If such a dynamic adjustment is safety-
critical, the dependability problem becomes paramountly significant. Even if
we can off-line check at design phase that the current components of a self-
optimizing system really hold the required properties, however, it is still possible
that the self-optimizing system might not hold the new required properties after
some old components were replaced with some new ones at runtime. Hence, in
this section we address an on-line verification mechanism based on the on-the-
fly model checking technique mentioned in section 3.3, by which the safety and
consistency of the dynamic reconfiguration can be checked even at runtime.

4.1 Case Study

Let’s take a typical example in Fig. 3 to show how our on-line verification is
applied to the self-optimizing systems with safety-critical requirements. Suppose
a real-time application contains four components A, B, C and D running in
parallel. Now, due to the environment change, a substitution request is passed
to a RTOS at time point tr that the component C would be replaced by the
component E at the td’th time step after tr. Before the replacement is really done
at time point tr + td, the RTOS will trigger the on-line verification mechanism
integrated into the RTOS as system service to check if the system still maintains
safe and consistent after the replacement. According to the response from the
verification service, Y es, No or Unknown, the RTOS would decide to accept or
reject the requirement for substitution.

Obviously, the substitution of the component E for the component C will
cause the environment of each component in the system to be changed at runtime
directly (i.e., B, D and E) or indirectly (i.e., A). For component-based systems,
each component is verified correct under the given assumptions to the environ-
ment of the component. As in our case study, the environment of each component
in the system might be changed dynamically due to the runtime reconfiguration.
Does the changed environment still satisfy the required assumption? To answer
this question, traditional model checking unfortunately is not suitable any more:
on the one hand, it is difficult to predict how and when the reconfiguration will
happen; on the other hand, it is difficult to check the safety and consistency



Comprehensive Verification Framework 47

Substitution

?

:Component

E

:Component

A

:Component

B

:Component

D

:Component

C

Model-based Runtime

Verification Service

Information on System Models,

Properties, Current State and

Timing Constraint.

Information on System Models,

Properties, Current State and

Timing Constraint.
Real-time

Application

RTOS

Yes/No/Unknown
Yes/No/Unknown

Substitution

?

:Component

E

:Component

E

:Component

A

:Component

B

:Component

D

:Component

C

Model-based Runtime

Verification Service

Information on System Models,

Properties, Current State and

Timing Constraint.

Information on System Models,

Properties, Current State and

Timing Constraint.
Real-time

Application

RTOS

Real-time

Application

RTOS

Yes/No/Unknown
Yes/No/Unknown

Fig. 3. Case study

of the reconfiguration within the limited time interval. In practice, it is unre-
alistic to check off-line all the possible cases of the reconfigurations due to the
huge time and space complexity. To our knowledge, the state of the art runtime
verification [16,17,18,19,20] is also not suitable for our needs. On the one hand,
only linear temporal logic formulae as well as trivial assertions and invariants
can be checked by tracing the program execution. On the other hand, potential
errors can be detected only when they have already happened. In fact, we hope
to predict and avoid errors after the reconfiguration. Fortunately, we can resolve
this problem by making our on-line verification cooperate in a pipelined working
manner with the self-optimizing system via the RTOS as intermediary as shown
in Fig. 4.

4.2 Pipelined Working Principle

The self-optimizing operation may cause the system to reconfigure at runtime
in many ways. We mainly concern such a case that one component is replaced
with another one. Obviously, the replacement may change the environment of
every active component in the system directly or indirectly. On the other hand,
the only constraint on the components replaceable with each other is that they
must follow the compatible protocols, i.e., the protocol of the new one must be
the same as or the refinement of the old one. Therefore, it is quite necessary to
provide an on-line verification service to make sure that such a reconfiguration
does maintain safe and consistent.

Without loss of generality, suppose that a self-optimizing system model M
contains n components C1, C2, · · · , Cn (n ≥ 2) working in parallel and is re-
quested at time point tr to replace one component Ck (1 ≤ k ≤ n) with another
one, say, C′k at time point td relative to tr, denoted as M ′ = M(C′k/Ck)@(tr�td).
Accordingly, let B′ be the new property automaton to be satisfied by M ′. Con-
sequently, the goal of our on-line verification is to check within the time interval



48 Y. Zhao et al.

td starting from tr if M(C′k/Ck)@(tr � td) |= B′. It is easy to see that the tim-
ing constraint is the main barrier for our on-line verification. To leap over this
barrier, we adopt a pipelining technique to gain more execution time for ver-
ification. The sequence diagram Fig. 4 illustrates the cooperation between the
verification service and the real-time application. More precisely, the pipelined
working mode is done between the RTOS and the verification service and thus
transparent to the application.

Fig. 4. Pipelined working principle

Whenever the RTOS receives a component substitution request from the ap-
plication, it will invoke the verification service to check if the substitution is legal
or not. The answer must be given within the required timing constraint, say td,
in our example. If lucky, the verification may finish the checking task before
the timing constraint is over. Unfortunately, it might be not the case for more
complex systems. Therefore, it is quite possible that, within td time units, only
the next t1 time steps starting from the initial states are checked Y es, which
means the substitution is safe up to the coming t1 time steps. In this case, the
RTOS does allow the application to make the substitution and execute forward
t1 time steps. During this period, the verification continues to check, say the
next t2− t1 time steps. Accordingly, the application can then go ahead the next
t2 − t1 time steps. Note that at each time point td + ti (i ≥ 1) with respect
to tr, the application can report its current state, say si, to the verification.
Based on this runtime information, the verification can locate in the system
model the corresponding state with respect to si and thus avoid checking the



Comprehensive Verification Framework 49

whole state space of the system model by only checking a sufficient sub-space
reachable from this specific state mapped from si. In this way, the computation
load of the verification can be reduced to a great extent.

The above process is repeated. If at some time point an error is detected,
then the verification can be terminated with the answer No to the RTOS. An-
other situation occurs when at some time point, say td + tj+1 (relative to tr),
the checking result is still positive, but the time interval tj+1− tj is less or equal
to the pre-defined time constant tc, which denotes the minimum time steps that
the verification must keep ahead of the application. In this case the verification
process has to stop and report Unknown to the RTOS. Note that these two
cases only mean that the errors might happen in the future, because we check
at model level and thus do not know if the errors are spurious or not. To avoid
that the errors really happen, we have to conservatively choose to reject the
substitution request and inform the application that an error might emerge in
the future. That is, an exception will be raised by the RTOS together with a
counterexample if necessary. It is possible to let the application to handle the
predicted failure in this case, because failure recovery is integrated into the self-
optimizing application itself. E.g., for a self-optimizing feedback controller, if
the optimization fails, the system would be “near” a critical region (indicated
by means of sensor data) and thus could switch into a classical control algorithm
in time, which is known to be robust enough (but not optimal or comfortable) to
make the system still keep running safely. Finally, if a sufficient sub-space that
covers this actual run of the real-time application is successfully checked, then
we can report definitely Y es to the RTOS and terminate the verification process.
From now on, the application can guarantee to execute safely and consistently
after the substitution. In fact, Fig. 4 just illustrates an ideal pipelined coopera-
tion between the application and the verification via the RTOS as intermediary
without considering any implementation details.

To make the above on-line verification feasible, the implementation of each
component in the system must conform to the corresponding model of the com-
ponent. In our design environment this is automatically achieved by using Fujaba
to generate code directly from the RT-UML model. Therefore, the implementa-
tion of a component is the refinement of the model of the component or, put it
another way, the model is the abstraction of the corresponding implementation.
Thus, an ACTL/LTL formula being true at the model level implies that it is
also true at the implementation level, while it being false at the model level does
not imply that it is also false at the implementation level. That is, our on-line
verification is conservative due to its being applied to model level. However, the
benefits of predicting and avoiding errors are gained just due to its being ap-
plied to model level. Note that we implicitly assume that the components under
consideration own finite state machines and that they have been off-line checked
correct under the given assumptions on the environments they depend on at the
design phase. In addition, the processing speed for verification is assumed to be
faster enough than that for application.



50 Y. Zhao et al.

4.3 Improved Model Checking Procedure

It is easy to see that the pipelined working principle between the verification
service and the real-time application requires that model checking must be done
on-the-fly in a top-down way as mentioned in section 3.3. However, we also need
to cooperate the on-the-fly model checking seamlessly with the application via
RTOS as intermediary in a pipelined working manner.

Fig. 5. On-the-fly ACTL/LTL model checking

Due to the limited space, we just use Fig. 5 to intuitively demonstrates how to
improve the on-the-fly ACTL/LTL model checking as system service of an RTOS,
where “�” stands for “�”(simulation relation) for ACTL model checking and
“|=” (satisfaction relation) for LTL model checking. In order to make the on-line
verification efficient, the Kripke structures and the Büchi automata are stored in
a repository in advance. Thus, whenever a verification request from the RTOS is
received (Fig. 3), the verification service can fetch the related Kripke structures
and Büchi automata directly from the repository and then immediately start
the on-the-fly model checking. As mentioned in Section 4.2, from initial states,
only the next t1 time steps may be checked Y es within the given td time units.
Similarly, within the next t1 time units, the next t2 − t1 time steps may be
checked Y es. This procedure is repeated until a definite answer Y es, No, or
Unknown is concluded. Note that when the on-the-fly model checking runs to
the (td + ti)’th (i ≥ 1) time step, it will know that the current state of the
application is si. Therefore, model checking can locate the corresponding state
mapped from si in the system model. For simplicity, we still use si to denote



Comprehensive Verification Framework 51

its counterpart in the system model. From now on, model checking can continue
from this si in the system model. In this way, only a part of the state space of the
system model needs to be traversed. That is, by introducing the current state
si from the application, only a subgraph of M ′ is processed in every checking
period. Therefore, in a local view, the time complexity of every checking round is
acceptable with respect to the timing constraints. Thus, this runtime ACTL/LTL
model checking is feasible in practice. We refer to [21] for details.

5 Related Work

There are two major approaches presented in the literature to translate a (real-
time) UML statechart to the input language of a model checker, e.g., SMV,
SPIN and UPPAAL. One approach is to flatten the hierarchical UML state
machines and then map the flattened statecharts into the input format of a
model checker [22,23]. The other approach is to translate each (composite) state
into an equivalent ordinary automaton (seen as process) and then use auxiliary
signals to synchronize the relevant automata (processes) [24,25]. In addition,
there is also the third approach, which translates a UML state machine via
an intermediate representation, say ASM, into the input language of a model
checker. For instance, [26] adopts XASM [27] to define the formal semantics of
the UML statechart diagram and thus model checking can be done based on the
semantic model given by XASM.

The related work to traditional (off-line) model checking is well-known and
thus omitted here. As for on-line model checking, typically, [16] presents run-
time checking for the behavioral equivalence between a component implementa-
tion and its interface specification; [17] presents runtime certified computation
whereby an algorithm not only produces a result for a given input, but also
proves that the result is correct with respect to the given input by deductive
reasoning; [18] presents monitoring-oriented programming (MOP) as a light-
weight formal method to check conformance of implementation to specification
at runtime. Similar to MOP, Temporal Rover [19] is a commercial code gener-
ator allowing programmers to insert specifications in programs via comments
and then generating executable verification code, which is compiled and linked
as part of the application under test, from the specifications. In addition, Java
PathExplorer (JPaX) [20] is a runtime verification environment for monitoring
the execution traces of a Java program.

6 Conclusion

This paper presents our ongoing work on the comprehensive verification frame-
work for the dependability of the self-optimizing systems with safety-critical
requirements. The main characteristics of our verification framework are using
AsmL as intermediate representation and using on-the-fly model checking for
both ACTL and LTL formulae. For ACTL formulae this means an on-the-fly
solution to the NHORNSAT problem, while in the case of LTL formulae, the



52 Y. Zhao et al.

emptiness checking method is applied. The verification framework provides flex-
ible mechanism to integrate other model checking tools or to extend the current
model checking method itself. In particular, the paper extends the verification
framework to provide on-line verification service for the self-optimizing systems
by introducing the pipelined cooperation between the verification and the appli-
cation via the RTOS as intermediary. To summarize, our comprehensive verifi-
cation framework is suitable not only for the off-line model checking at design
phase but also for the on-line model checking at runtime phase.

References

1. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compo-
sitional Verification of Real-time UML Designs. In: Proceedings of the European
Software Engineering Conference (ESEC), Helsinki, Finland (2003)

2. Giese, H., Burmester, S.: Real-time Statechart Semantics. Technical Report tr-ri-
03-239, Computer Science Department, Paderborn University (2003)

3. Flake, S., Mueller, W.: An OCL Extension for Real-time Constraints. In Clark,
T., Warmer, J., eds.: Object Modeling with the OCL. Number 2263 in LNCS,
Heidelberg, Germany, Springer Verlag (2002)

4. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal
reasoning. In: Proceedings of the 2nd International Workshop on Computer Aided
Verification, London, UK, Springer-Verlag (1991) 136–145

5. Gurevich, Y., Schulte, W., Campbell, C., W.Grieskamp: AsmL: The Abstract
State Machine Language Version 2.0. (http://research.microsoft.com/ founda-
tions/AsmL/)

6. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, E., ed.: Specifica-
tion and Validation Methods. Oxford University Press (1995)

7. Zhao, Y.: Build Asml Model from Real-time UML Statechart. Technical report,
Heinz Nixdorf Institute, Paderborn University (2005)

8. Grumberg, O., Long, D.E.: Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems 16 (1994) 843–872

9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
London, UK, UK, Chapman & Hall, Ltd. (1995) 3–18

10. Shukla, S., Rosenkrantz, D.J., Hunt III, H.B., Stearns, R.E.: A HORNSAT Based
Approach to the Polynomial Time Decidability of Simulation Relations for Finite
State Processes. DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, American Mathematical Society 35 (1997)

11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
tenth annual ACM symposium on Theory of computing, New York, NY, USA,
ACM Press (1978) 216–226

12. Ausiello, G., Italiano, G.F.: On-line algorithms for polynomially solvable satisfia-
bility problems. J. Log. Program. 10 (1991) 69–90

13. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program. 1 (1984) 267–284

14. Itai, A., Makowshy, J.A.: Unification as a complexity measure for logic program-
ming. J. Log. Program. 4 (1987) 105–117



Comprehensive Verification Framework 53

15. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1
(1992) 275–288

16. Barnett, M., Schulte, W.: Spying on components: A runtime verification tech-
nique. In Leavens, G.T., Sitaraman, M., Giannakopoulou, D., eds.: Workshop on
Specification and Verification of Component-Based Systems. (2001)

17. Arkoudas, K., Rinard, M.: Deductive Runtime Certification. In: Proceedings of
the 2004 Workshop on Runtime Verification (RV 2004), Barcelona, Spain (2004)

18. Chen, F., Rosu, G.: Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. In: Proceedings of the 2003 Work-
shop on Runtime Verification (RV 2003), Boulder, Colorado, USA (2003)

19. Drusinsky, D.: The Temporal Rover and the ATG Rover. In: SPIN. (2000) 323–330
20. Havelund, K., Rosu, G.: Java PathExplorer — a runtime verification tool. In:

Proceedings 6th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (ISAIRAS’01), Montreal, Canada (2001)

21. Zhao, Y., Oberthür, S., Kardos, M., Rammig, F.J.: Model-based runtime verifica-
tion framework for self-optimizing systems. In: Proceedings of the 2005 Workshop
on Runtime Verification (RV2005), Edinburgh, Scotland, UK (2005)

22. Diethers, K., Goltz, U., Huhn, M.: Model checking UML statecharts with time.
In Jürjens, J., Cengarle, M.V., Fernandez, E.B., Rumpe, B., Sandner, R., eds.:
Critical Systems Development with UML – Proceedings of the UML’02 workshop,
Technische Universität München, Institut für Informatik (2002) 35–52

23. Knapp, A., Merz, S., Rauh, C.: Model checking - timed uml state machines and col-
laborations. In: Proceedings of the 7th International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, London, UK, Springer-Verlag
(2002) 395–416

24. David, A., Möller, M.O.: From huppaal to uppaal: A translation from hierarchical
timed automata to flat timed automata. Technical Report RS-01-11, BRICS (2001)

25. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electronic Notes in Theoretical Computer Science 55 (2001) 13 pages

26. Shen, W., Compton, K.J., Huggins, J.: A toolset for supporting uml static and
dynamic model checking. In: COMPSAC. (2002) 147–152

27. Anlauff, M.: Xasm - an extensible, component-based asm language. In: Proceedings
of Abstract State Machine Workshop. (2000) 69–90



Exploiting Hub States in Automatic Verification

Giuseppe Della Penna1,�, Igor Melatti1, Benedetto Intrigila2,
and Enrico Tronci3

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna, melatti}@di.univaq.it

2 Dip. di Matematica, Università di Roma “Tor Vergata”,
Via della Ricerca Scientifica, 00133 Roma, Italy

intrigil@mat.uniroma2.it
3 Dip. di Informatica, Università di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma, Italy
tronci@di.uniroma1.it

Abstract. In this paper we present a new algorithm to counteract state
explosion when using Explicit State Space Exploration to verify protocol-
like systems.

We sketch the implementation of our algorithm within the Caching
Murϕ verifier and give experimental results showing its effectiveness.

We show experimentally that, when memory is a scarce resource, our
algorithm improves on the time performances of Caching Murϕ veri-
fication algorithm, saving between 16% and 68% (45% on average) in
computation time.

1 Introduction

State Space Exploration (Reachability Analysis) is at the very heart of all algo-
rithms for automatic verification of concurrent systems.

As well known, the main obstruction to automatic verification of Finite State
Systems (FSS) is the huge amount of memory required to complete state space
exploration (state explosion).

For protocol and hybrid systems verification, Explicit State Space Explo-
ration often outperforms Symbolic (i.e. OBDD based, [4,5]) State Space Explo-
ration [1,13,8]. Since here we are mainly interested in protocol verification we
focus on explicit state space exploration. Tools based on explicit state space
exploration are, e.g., SPIN [17,23] and Murϕ [11,19].

In our context, roughly speaking, two kinds of approaches have been studied
to counteract (i.e. delay) state explosion: memory saving and auxiliary storage.

In a memory saving approach essentially one tries to reduce the amount of
memory needed to represent the set of visited states. Examples of the memory
saving approach are, e.g., in [30,7,18,28,26,16,12].

� Corresponding Author: Giuseppe Della Penna. Tel: +39 0862 43 3130 Fax: +39 0862
43 3057.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 54–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Exploiting Hub States in Automatic Verification 55

In an auxiliary storage approach one tries to exploit disk storage as well as
distributed processors (network storage) to enlarge the available memory (and
CPU). Examples of this approach are, e.g., in [24,25].

1.1 Background

In [27,10,9] we presented verification algorithms exploiting statistical properties
of protocol transition graphs to save on RAM usage as well as to speed up disk
based Breadth First (BF) state space exploration. Our algorithms have been
implemented within the Murϕ verifier. We call CMurϕ (Caching Murϕ [6]) the
resulting verifier.

Shortly, CMurϕ takes advantage of a statistical property of protocol transi-
tion graphs, namely the transition locality. That is, w.r.t the levels of a BF state
space exploration, state transitions tend to be between states belonging to close
levels of the transition graph. Thus, CMurϕ replaces the hash table used in a
BF state space exploration with a cache memory (i.e. no collision detection is
done) and uses auxiliary (disk) storage for the BF queue. The rationale behind
this approach is that a cache maintains only recently visited states. Thanks to
transition locality this is sufficient, in most cases, to complete the verification
task. Our experimental results [27,9] show that, with the same amount of RAM,
CMurϕ can verify systems more than 40% larger than those that can be handled
using a hash table based approach. On the other hand, CMurϕ verification time
can be up to twice that of standard Murϕ.

Note that CMurϕ caching techniques is not an alternative to state compres-
sion techniques (e.g. hash compaction [28,26,16,12]) or to state space reduction
techniques (e.g. symmetry and multiset reduction [7,18], partial order reduction
[22]). On the contrary, caching is intended to be used together with the available
reduction options [27,9]. The only thing that caching does is storing data in
the cache. Such data can be full states, state signatures, or anything else. This
is not relevant to the caching schema. This, of course, may be relevant for the
effectiveness of the caching schema. As long as the implemented BF search uses
a hash table to store visited states (or their signatures) CMurϕ caching scheme
can be used. For this reason CMurϕ can reuse all state reduction procedures
implemented in the standard Murϕ verifier [27].

1.2 Goal

CMurϕ memory saving stems from the fact the most transitions are local. On
the other hand, CMurϕ time penalty stems from the fact the not all transitions
are local. A nonlocal transition leading to a rather old state that has been over-
written (and thus forgotten) in CMurϕ cache may trigger revisit of large portions
of the transition graph and may even lead to nontermination because of loops
in the transition graph. The higher CMurϕ cache collision rate (i.e. the ratio
between collisions and insertions) the higher the probability of revisiting already
visited states because of nonlocal transitions.

When the collision rate is high (i.e. close to 1) it means that we do not
have enough RAM to hold all visited states. So our only hope to decrease the



56 G. Della Penna et al.

time penalty due to revisiting in such a situation is to make a better use of the
available RAM.

Quite clearly a (large) fraction of the available RAM must be used to store
recently visited states. This is indeed what CMurϕ already does. Here we propose
to use a (small) fraction of the available RAM to store hub states, that is states
that have an in-degree (i.e. number of incoming transitions) much greater than
the average in-degree of the set of reachable states. The rationale behind such
proposal is that many nonlocal transitions will lead to hub states. Thus avoiding
revisiting hub states (and so their successors) may be an effective way to reduce
CMurϕ time penalty when the collision rate is high.

Note that when the collision rate is low (close to 0) it means that we have
(almost) enough RAM to store all reachable states. In such a case CMurϕ does
not incur any time penalty. That is, verification with CMurϕ takes the same
amount of time as with standard Murϕ [19].

Unfortunately our goal of storing hub states faces a substantial obstruction:
we do not know before hand if a state is a hub or not. Thus, to carry out our
goal we need a both time and memory effective way to select hub states among
the states visited so far. In other words, the obstruction here is not in storing
(the few) hub states, but rather in recognizing that a state seen during the visit
is indeed a hub state.

In this paper we show that protocol-like systems do have hub states and
present an effective algorithm to select hub states among the states visited so
far.

Intuitively, we use a hard to write cache L2, that is a cache in which an
insertion request is actually carried out with (a small) insertion probability p.
This means that states that are frequently seen during our visit will have a
greater chance than seldom seen states of actually making their way into L2. As
a result, statistically speaking, L2 will tend to store the hub states among the
states visited so far. Of course not all hub states will be in L2 nor all states in
L2 will be hubs. Still, we can show experimentally that L2 is an effective way to
catch hub states.

1.3 Main Results

Our main results can be summarized as follows.
In Section 3 we show experimentally that protocol-like systems do have hub

states. We support our claim by measuring the distribution of the in-degree
of the reachable states for the set of protocols included in the Murϕ verifier
distribution [19].

In Section 4 we present our algorithm to select hub states among the states
visited so far.

In Section 5 we show how an appropriate value for the insertion probability
p in L2 can be computed.

We implemented our algorithm within the CMurϕ [6] verifier. We call
HubCMurϕ the resulting verifier. In Section 6 we give experimental results on
HubCMurϕ as compared to CMurϕ. Our experimental results show that when



Exploiting Hub States in Automatic Verification 57

the collision rate is high typically HubCMurϕ allows between 16% and 68% (45%
on average) of saving in the verification time. Of course when the collision rate
is low HubCMurϕ behaves essentially as CMurϕ.

1.4 Related Works

A rather systematic study of statistical properties of transition graphs is pre-
sented in [21]. The author of [21] concludes that there are no hubs in transition
graphs. Note however that the definition of hub state used in [21] is different
form ours. For us a reachable state s is a hub state if its in-degree is much higher
than the average in-degree of the reachable states whereas [21] also requires the
s in-degree to be not too smaller than the number of (reachable) states.

Of course what is the right definition of hub depends on the intended ap-
plication. Anyway, because of this different definition of hub states there is no
contradiction between our results about hub existence and those in [21].

Moreover the focus of our paper is not proving or disproving hub existence
but rather finding ways to exploit the fact that there are states whose in-degree
is much higher that the average one. Finally, the issue of exploiting statistical
properties of transition graphs is not investigated in [21].

A survey on caching schemes is presented in [15]. Note however that [15]
studies Depth First (DF) search with a linked list based hash table. Caching
Murϕ [27,9] instead uses a BF search with an open addressing hash table. As
remarked in [15] this is a quite different scenario. In fact, CMurϕ caching schema
works quite well [27,9] with open addressing and BF search and does not seem
to work with a DF search (SPIN like).

Note that we do not reduce the state space using our hub states. So our
approach has nothing to do with Partial Order (PO) reduction [22] techniques.
On the other hand we can exploit hub states (if any) in a PO reduced state
space.

Finally, [3], using static analysis techniques, studies the issue of which states
should be stored in order to save RAM. The results in [3] are orthogonal to ours,
note however that the two approaches can be usefully combined.

2 Background

In this section we give some basic definitions that will be useful in the following.
For our purposes, a protocol is represented as a Finite State System.

Definition 1
1. A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite

set (of states), I ⊆ S is the set of initial states, A is a finite set (of transition
labels) and R is a relation on S × A × S. R is usually called the transition
relation of S.

2. Given states s, s′ ∈ S and a ∈ A we say that there is a transition from s to
s′ labeled with a if and only if R(s, a, s′) holds. The set of successors of state
s (notation next(s)) is the set of states s′ such that there exists a ∈ A such
that R(s, a, s′) holds.



58 G. Della Penna et al.

3. The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in 0 (zero) or more steps from I. Formally, Reach(S) is the
smallest set such that
1. I ⊆ Reach(S), 2. for all s ∈ Reach(S), next(s) ⊆ Reach(S).

FIFOQueue Q; HashTable T;

bfs(FSS S) { let S = (S, I,A, R);
foreach s in I {Enqueue(Q, s); Insert(T, s);} /*init */

while (Q is not empty) { s = Dequeue(Q);
foreach s’ in next(s) { if (s’ is not in T) {

Insert(T, s’); Enqueue(Q, s’); }}}}

Fig. 1. Basic Breadth First Search

In the following we will always refer to a given system S = (S, I, A, R). Thus,
for example, we will write Reach for Reach(S). Also, we may speak about the
set of initial states I as well as about the transition relation R without explicitly
mentioning S.

The core of all automatic verification tools is the reachability analysis, that
is the computation of Reach given a definition of S in some language.

Since the transition relation R of a system defines a graph (transition graph),
computing Reach means visiting (exploring) the transition graph starting from
the initial states in I. This can be done, e.g., by using a Depth–First (DF) search
or a Breadth–First (BF) search. For example, Murϕ [19] and (the latest version
of) SPIN [23] may use a DF as well as a BF search.

In the following we will focus on BF search. The Murϕ algorithm for the BF
visit is shown in Figure 1. Namely, function bfs of Figure 1 takes as input a FSS
S and performs a BF visit of S transition graph. To this end, it uses a FIFO
queue Q and a hash table T. The first maintains the BF front (i.e. the states to
be expanded), while the latter stores the visited states, so avoiding to revisit
the same states. Thus, state explosion occurs on T and Q. Finally, note that, if
T and Q fit in the available memory, bfs will surely terminate, since the set of
reachable states is finite.

3 Hub States

Inspired by [14,2,29] we call hub a reachable state which in-degree is much higher
than the average in-degree of all reachable states. Note that, as discussed in
Section 1.4, our definition of hub state is different from the one used in [21].

In this section we show experimentally that for protocol-like systems hub
states do exist. We do this by showing that all our benchmark protocols indeed
have hub states. We use as benchmark protocols all those available in the Murϕ
verifier distribution [19]. The protocols tested cover a wide range of concurrent
software typologies such as synchronization, authentication, cache coherence,
distributed locks, etc. Thus we have a fairly representative benchmark set.



Exploiting Hub States in Automatic Verification 59

3.1 Measuring Hub States Presence

In this section we give the basic definitions needed to understand the experi-
mental results in Section 3.2.

Definition 2. Let S = (S, I, A, R) be an FSS, and let s ∈ S be a state. We
call in-degree of the state s the number indeg(s) of transitions leading to s. That
is: indeg(s) = |{(r, a) ∈ Reach(S)×A | R(r, a, s)}|.

Our goal is to study the in-degree distribution in protocol-like systems. As
usual when reporting statistical results, to make distributions relative to different
systems easily comparable we replace the absolute number of states with the
fraction x of reachable states and the actual in-degree value with its fraction of
the maximum in-degree. In this way all quantities lie in the interval [0, 1].

To build the in-degree distribution we proceed in the standard way. Namely,
we divide the interval [0, 1] in � 1

Δ� subintervals of length Δ and, for each subin-
terval k, we compute the fraction of the reachable states whose fraction of the
maximum in-degree falls in interval k. The following definition gives the formal
details.

Definition 3. Let S = (S, I, A, R) be an FSS, Mindeg = max{indeg(t)|t ∈
Reach(S)} be the maximum in-degree of S and Δ ∈ [0, 1].

– We define function θ : (0, 1]× N → [0, 1] as follows:

θ(Δ, k) =
| {s ∈ Reach(S) | (k − 1)ΔMindeg < indeg(s) ≤ kΔMindeg} |

|Reach(S)|

Function θ(Δ, k) returns the fraction of reachable states whose in-degree is
a fraction y ∈ ((k − 1)Δ, kΔ] of the maximum in-degree. In other words,
θ(Δ, k) returns the probability that a reachable state has an in-degree which
is a fraction y ∈ ((k−1)Δ, kΔ] of the maximum in-degree. Thus, technically
speaking, θ(Δ, k) is a probability density. Of course, for us, function θ(Δ, k)
is only interesting when k ≤ 1

Δ .
– We define function τ : (0, 1]× [0, 1] → [0, 1] as follows:

τ(Δ,x) = θ
(
Δ,
⌈ x
Δ

⌉)
We also write τΔ(x) for τ(Δ,x) and denote with τΔ function λx.τ(Δ,x).
That is, τΔ : (0, 1] → [0, 1] is defined as τΔ(x) = τ(Δ,x).
Note that function τΔ is completely defined once we know the values τΔ(Δ),
τΔ(2Δ), . . . τΔ(1).

3.2 Experimental Results About Hub States

To carry out our plan we modified the Murϕ verifier so as to compute function τ
in Definition 3. Namely, we compute τ 1

n
( 1

n ), . . . , τ 1
n
(n−1

n ), τ 1
n
(1) while performing

state space exploration. In our experiments, we set n = 20.



60 G. Della Penna et al.

Our results are shown in Figure 2 where, for each protocol in our benchmark,
we plot τ( 1

n , x) (y-axes) versus the fraction x of the maximum in-degree (x-axes).
The graphs in Figure 2 show that most reachable states have an in-degree

that is a rather small fraction of the maximum in-degree. However there is a
small fraction of states that have an in-degree that is close to the maximum
in-degree.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“adash.dat”
“adashbug.dat”

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“ldash.dat”
“eadash.dat”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“ns.dat”
“ns-old.dat”

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“list6.dat”
“list6too.dat”
“newlist6.dat”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“cache3.dat”
“sym.cache3.dat”

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“cache3multi.dat”
“newcache3.dat”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“sci.dat”
“n peterson.dat”

“arbiter.dat”

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

“mcslock1.dat”
“mcslock2.dat”

Fig. 2. Density of probability τ 1
20

graphs for protocols included in the Murϕ distribu-

tion. The curves show the fraction of reachable states y which in-degree is a fraction x
of the max in-degree. Thus, by definition y > 0 when x = 1. Note log scale on y axes.



Exploiting Hub States in Automatic Verification 61

4 Exploiting Hub States in State Space Exploration

In this section we present an algorithm that is able to effectively select hub
states among the states visited so far. Note that the correctness of our algo-
rithm does not depend on the results in Section 3. However such results will
help us to understand why the proposed algorithm is effective on protocol-like
systems.

Before describing our algorithm, in Figure 3 we briefly recall the CMurϕ
[9] one. With respect to Figure 1, we have that in Figure 3 the queue is now
implemented on disk, and the hash table T is replaced by a cache. That is, if the
insertion of a state s’ causes a collision because of a state t already in cache
T, then t is overwritten (and thus forgotten). This implies that, if t is reached
again, it will be revisited, since it is not in our cache anymore. This means that
in general cache T may not be able to prevent nontermination of our visit. As
shown in Figure 3, to guarantee termination in CMurϕ, the main while cycle is
guarded by the collision rate, i.e. the ratio between the number of collisions and
the number of insertions in cache T. In fact, when the collision rate becomes too
high, we are visiting over and over the same set of states. In this case we should
give up our verification task because of lack of memory.

In order to improve CMurϕ time performances, we present a new two-level
caching algorithm. The rationale behind this algorithm is the one discussed in
Section 1.2.

To implement the ideas in Section 1.2 we proceed as follows. We modify the
cache based BF algorithm in Figure 3 as shown in Figures 4 and 5. Namely, we
split cache T in two parts, L1 and L2, with a split ratio 0 < ph < 1. Thus, if
M was the amount of RAM dedicated to T, then phM is now dedicated to L1
and (1− ph)M to L2. In our experiments, we set ph = 0.7. This is a reasonable
value, since hub states are always a very small subset of the reachable states (see
Figure 2).

The idea is to use L1 to store the recently visited states, so inheriting the
goal of T (i.e. to exploit transition locality) in CMurϕ, and L2 (our hard to write
cache) to store the hub states. To this end, the algorithm now stores the visited
states in L1 (function Insert in Figure 4) and, when the insertion of a state s’
causes a collision in L1 on state t, t is passed to L2 before being overwritten. If
this causes a collision also in L2 on a state r, r will be overwritten by t with
a fixed probability p ovrwrt (functions Insert L2 and prob decide in Figure
5). Of course a state is considered visited if it can be found in L1 or L2 (see
functions Insert and Lookup L2 in Figures 4 and 5, respectively).

In this way, if state t is a hub, it will have a high probability of being
eventually inserted in L2 and remaining there. In fact, since t will be reached
more often than the other states, it will be often present and overwritten in L1
and, as a result, it will attempt insertion in L2 many times. This gives t more
chances of entering L2 since it will compete more times for the insertion.

We implemented the algorithm of Figures 4 and 5 within the CMurϕ verifier
[6], calling HubCMurϕ the resulting verifier.



62 G. Della Penna et al.

FIFOQueue Q; Cache T;

collision_rate = 0.0; /* #collisions on T
#insertions in T */

cbfs(FSS S) { let S = (S, I,A, R);
foreach s in I {Enqueue(Q, s); Insert(T, s);}

while ((Q is not empty) and (collision_rate <= 0.9)) {

s = Dequeue(Q);
foreach s’ in next(s) if (s’ is not in T) {

Insert(T, s’); Enqueue(Q, s’);}}}

Fig. 3. Cache based Breadth First Search

Insert(s) {h = hash_key (s);

if (L1[h] == s) { /*cache hit (state found)*/

return true; /* report a cache hit */

} else { /* s not in L1 */

if (Lookup_L2 (s)) { /* but s is in L2 */

return true; /* report a cache hit */

} else { /*s is neither in L1 nor in L2 , insert it*/

if (L1[h] is empty) {L1[h] = s;

} else { /* the slot is full , overwrite it */

s’ = L1[h];
/* before overwriting s’ , pass it to L2 */

Insert_L2 (s’); L1[h] = s; }}

return false; /* report a cache miss */ }}

Fig. 4. Function Insert

Lookup_L2 (s) { h = hash_key2 (s);

if (L2[h] == s) return true; else return false; }

Insert_L2 (s) { h = hash_key2 (s);

if (L2[h] == s) return true; /* report a cache hit */

else if (L2[h] is empty) L2[h] = s;

else /* slot full , we may choose to overwrite */

if ( prob_decide (p_ovrwrt )) L2[h] = s;

return false; /* report a cache miss */ }

prob_decide (p) {

return true with probability p, false otherwise ;}

Fig. 5. Functions Lookup L2, Insert L2 and prob decide



Exploiting Hub States in Automatic Verification 63

5 Tuning the Overwrite Probability

As already said in Section 4, a state that causes a collision in the L2 cache is
overwritten with a fixed probability p ovrwrt. To make L2 effective in finding
and retaining hub states, it is important to choose a suitable value of p ovrwrt.

We carried out a set of experiments to determine a reasonable value
for p ovrwrt. In particular, Figure 6 shows the collision rate as a func-
tion of the fraction of visited reachable states for values of p ovrwrt in
{10−4, 10−3, 10−2, 10−1, 1}. When p ovrwrt ≤ 10−5 the collision rate becomes
soon pretty high and the visits stops. This is because when p ovrwrt s too small
it is almost like not having L2 at all. For this reason we only plotted p ovrwrt
in the range {10−4, 10−3, 10−2, 10−1, 1}. Note that the protocol set used in these
experiments is the same one used in Section 6 to assess performances of our
algorithm.

Figure 6 shows that when p ovrwrt is 1 there are cases in which verification
does not terminate. For example this happens for protocols mcslock1, mcslock2
and newlists6 in Figure 6.

Note that setting p ovrwrt to 1 is equivalent two using the standard victim
cache approach in processor design [20]. However, this does not work in our
setting, since in this way the algorithm will overwrite too many states (hubs
included) thus leading to nontermination.

On the other hand if p ovrwrt is too small (namely less than 10−4) then
L2 will (almost) never be used and, all in all, we have wasted a fraction ph (see
Section 4) of our RAM.

Finally, if p ovrwrt is small enough, only states that are encountered many
times during the exploration process will make their way to L2. Summing up, in
our experiments we choose to set p ovrwrt = 10−4.

6 Experimental Results

We report the experimental results we obtained using HubCMurϕ (Section 4).
We want to measure how much time and (RAM) memory we can save by

using our approach. To make the results from different protocols comparable we
proceed as follows.

First, for each protocol we determine the minimum amount of memory needed
to complete verification using the Murϕ verifier (namely Murϕ version 3.1 from
[19]).

Let M be the amount of memory and g (in [0, 1]) be the fraction of M used
for the queue (i.e. g is gPercentActive using a Murϕ parlance). We say that
the pair (M , g) is suitable for protocol p iff the verification of p can be completed
with memory M and queue gM . For each protocol p we determine the least M
s.t. for some g, (M , g) is suitable for p. In the following we denote with M(p)
such M .

Of course M(p) depends on the compression options one uses. Murϕ offers
bit compression (-b) and hash compaction (-c). However, since in our scenario



64 G. Della Penna et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"adash.1.0.dat"
"adash.0.1.dat"

"adash.0.01.dat"
"adash.0.001.dat"

"adash.0.0001.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"newlist6.0.1.dat"
"newlist6.0.01.dat"

"newlist6.0.001.dat"
"newlist6.0.0001.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"cache3multi.1.0.dat"
"cache3multi.0.1.dat"

"cache3multi.0.01.dat"
"cache3multi.0.001.dat"

"cache3multi.0.0001.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"sci.1.0.dat"
"sci.0.1.dat"

"sci.0.01.dat"
"sci.0.001.dat"

"sci.0.0001.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"mcslock1.0.1.dat"
"mcslock1.0.01.dat"

"mcslock1.0.001.dat"
"mcslock1.0.0001.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"mcslock2.0.01.dat"
"mcslock2.0.001.dat"

"mcslock2.0.0001.dat"

Fig. 6. Collision rate as a function of the fraction of visited protocol states. Each
graph shows the collision rate for values of p ovrwrt in {10−4, 10−3, 10−2, 10−1, 1}. A
missing line indicates that the verifier was unable to complete the verification with the
corresponding value of p ovrwrt.

RAM is a scarce resource, in the following we only consider the case in which both
options are enabled on all verifiers (i.e. Murϕ, CMurϕ, HubCMurϕ). Moreover,
in order to visit all reachable states, all experiments have been carried out with
deadlock detection disabled (-ndl).

Our results are in Figure 7, where we only show protocols requiring at least
10 kilobytes of RAM and a nonnegligible amount of time to complete state space
exploration. In Figure 7, column M gives the minimum amount of memory (in
kilobytes) needed to complete state space exploration and column T gives the
time (in seconds) to complete state space exploration when using memory M.
Finally, column Reach gives the number of reachable states.

Our next step is to run each protocol p with less and less memory using
both HubCMurϕ and CMurϕ. That is we run protocol p with memory limits
αM(p), α ∈ [0, 1], with the new (L1+L2) and the old (just CMurϕ L1) cache



Exploiting Hub States in Automatic Verification 65

based algorithm. This approach allows us to easily compare the experimental
results obtained from different protocols.

The results obtained in such a way are in Fig. 9. Note that in these experi-
ments the value used for g (gPercentActive) is not relevant since the queue is
implemented on disk. We give the meaning of rows and columns in Fig. 9.

Column α (with α ∈ [0, 1]) gives information about the run of protocol p
with memory αM(p) (for this reason, the row heading is Mem).

Row States gives Nhub

Nnohub
, where Nnohub is the number of visited states using

CMurϕ and Nhub is the number of visited states using HubCMurϕ.
Row Time gives Thub

Tnohub
, where Tnohub is the computation time needed by

CMurϕ and Thub is the computation time needed by HubCMurϕ.
A verifier (CMurϕ or HubCMurϕ) is stopped when its collision rate be-

comes greater than 0.99. We mark with a ∗ superscript the data obtained when
CMurϕ gives up state space exploration because its collision rate exceeds the
given threshold (0.99) and, on the contrary, HubCMurϕ succeeds in completing
the verification. In such cases, instead of giving a ratio, rows States and Time
display, respectively, the absolute values for the visited states and the computa-
tion time (in seconds) of HubCMurϕ. Note that there was no case in which only
CMurϕ completed the verification.

We are interested in the case in which the collision rate is high, since this
means that we do not have enough RAM to store all visited states. For this
reason when comparing CMurϕ and HubCMurϕ performances we only consider
the results obtained from the experiments relative to the least α in which both
CMurϕ and HubCMurϕ terminate. This means that column (α - 0.01) is marked
with a ∗ (only HubCMurϕ terminates). When the collision rate is low (i.e. we do
have enough memory to store most of the visited states) CMurϕ and HubCMurϕ
have similar performances. This can be seen from Figure 9 by looking at the
column with the largest value of α (namely the leftmost column).

The experimental results in Figure 9 show that, with respect to CMurϕ,
HubCMurϕ typically saves from 16% to 68% (45% on average) in computation
time. Note also that for all protocols there are cases in which, with the available
memory, only HubCMurϕ is able to terminate.

Of course there are protocols (e.g. n peterson in Figure 9) where HubCMurϕ
is less efficient than CMurϕ. We conjecture that this is due to the shape of the
in-degree distribution curves in Figure 2. First, we should note that, technically
speaking, the curves in Figure 2 are density of probabilities. Now, for each proto-
col p we can compare the curve for p in Figure 2 with HubCMurϕ performances
for p as from Figure 9. From this we see that if the curve of p is rather concen-
trated (i.e., has a small variance) then HubCMurϕ performs well on p (e.g., as
for protocol sci). On the other hand, if p curve has a large variance (e.g. as for
mcslock2 and n peterson) then HubCMurϕ does not perform well on p.

We also wanted to test our approach with a large protocol that heavily loads
our machine. The results are in Fig. 8. We used protocol sci with parameter
MemorySize set to 5. As shown in [10], this protocol has 75,081,011 reachable



66 G. Della Penna et al.

Protocol Reach M T
n peterson 163298 813 273.32

adash 10466 55 62.98
cache3multi 13738 73 35.11
newlist6 13044 67 18.34
mcslock1 23644 120 16.76
mcslock2 540219 2693 237.48

sci 18193 94 28.17

Fig. 7. Results on a SUN Sparc
machine with 512M RAM

Mem 0.41 0.37

States 80430178∗ 84045856∗
Time 47129∗ 46604∗
Mem 0.33 0.29

States 92322597∗ 120543398∗
Time 51009∗ 66676∗

Fig. 8. HubCMurϕ experimental
results for protocol sci-31151

with parameter MemorySize = 5

Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
mcslock1 States 0.603 0.352 72358∗ 104019∗ 134834∗

Time 0.69 0.42 3.89∗ 5.62∗ 7.36∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

cache3multi States 0.828 0.89 0.769 0.77 66687∗ 87096∗
Time 0.83 0.92 0.78 0.79 19.39∗ 25.22∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

mcslock2 States 0.99 0.976 0.956 0.93 0.919 0.885 0.805 0.714 1164348∗ 1397335∗ 2085105∗
Time 1.19 1.16 1.14 1.12 1.09 1.05 0.96 0.84 39.67∗ 47.92∗ 72.06∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

newlist6 States 0.697 0.296 48882∗ 63843∗
Time 0.75 0.32 5.14∗ 6.69∗
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

adash States 0.87 0.873 0.421 0.584 21362∗ 32166∗
Time 0.88 0.91 0.44 0.61 11.52∗ 17.27∗
Mem 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 0.39 0.38

sci States 0.914 0.799 0.833 0.797 0.693 0.818 0.626 0.305 34019∗ 41096∗ 47845∗ 91666∗
Time 0.95 0.8 0.84 0.8 0.69 0.86 0.64 0.32 5.28∗ 6.42∗ 7.39∗ 14.17∗
Mem 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59

n peterson States 1.079 1.078 1.028 1.311 1.071 0.663 1.635 1.188 1.032 5588575∗
Time 1.2 1.2 1.14 1.46 1.18 0.73 1.82 1.32 1.14 368.17∗

Fig. 9. Comparison of CMurϕ and HubCMurϕ experimental results on an INTEL
Pentium 3.2GHz machine with 512M RAM

states and requires 563 Megabytes of memory to be verified with standard Murϕ
in 35,905 seconds.

CMurϕ was not able to complete verification with less than 225 Megabytes,
that is 40% of the required (563MB) memory.

On the other hand, as shown in Fig. 8, HubCMurϕ completed the verification
with about 163 MB, that is 29% of the required memory, and a time penalty
(w.r.t. standard Murϕ with 563MB of RAM) of 85%.

This suggests that for large protocols HubCMurϕ can achieve huge (about 71%
in our example above) memory savings, possibly at the expense of time. This is
better than being left with an out of memory message after hours of computation.

7 Conclusions

We presented a novel explicit verification algorithm that exploits hub states (Sec-
tion 3) to save on memory usage (Sections 4, 5). We implemented our algorithm
within the CMurϕ verifier [6] and call HubCMurϕ the resulting verifier.

Our experimental results (Section 6) show that, with respect to CMurϕ,
HubCMurϕ typically saves from 16% to 68% (45% on average) in computation
time.



Exploiting Hub States in Automatic Verification 67

Acknowledgments

We gratefully acknowledge discussing with Alan Hu during CHARME 2001 con-
ference the possibility of using a small victim cache in order to improve CMurϕ
performances. Although in its basic form a victim cache does not meet our goals
here, it is also quite clear that our hard to write second level cache is a sort of
(lucky) victim cache.

References

1. A.J. Hu, G. York, and D.L. Dill. New Techniques for Efficient Verification with
Implicitly Conjoined BDDs. In 31st ACM/IEEE Design Automation Conference
(DAC), San Diego, CA, USA, 1994.

2. Albert-Laszlo Barabasi. Linked. Perseus Publishing, 2002.
3. G. Behrmann, K. G. Larsen, and R. Pelánek. To store or not to store. In Proc. of

15th Int. Conf. on: Computer Aided Verification (CAV), volume 2725 of Lecture
Notes in Computer Science, Boulder, CO, USA, July 2033. Springer.

4. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C-35(8):677–691, Aug 1986.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

6. Caching murphi web page: http://www.dsi.uniroma1.it/∼tronci/cached.murphi.html,
2004.

7. C.N. Ip and D.L. Dill. Better verification through symmetry. In Computer Hard-
ware Description Languages and their Applications, Ottawa, Canada, 1993. Else-
vier Science Publishers B.V., Amsterdam, Netherland.

8. G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,
E. Tronci, and M. Venturini Zilli. Automatic verification of a turbogas control
system with the murϕ verifier. In Hybrid Systems: Computation and Control,
HSCC, Proc., volume 2623 of Lecture Notes in Computer Science. Springer, 2003.

9. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli. Exploit-
ing transition locality in automatic verification of finite state concurrent systems.
STTT, 6(4), 2004.

10. G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Exploiting transition
locality in the disk based murϕ verifier. In Formal Methods in Computer-Aided
Design, FMCAD’02, Proc., volume 2517 of Lecture Notes in Computer Science.
Springer, 2002.

11. D. L. Dill, A. J. Drexler, A. J. Hu, and C. Han Yang. Protocol verification as a
hardware design aid. In Proc. of the 1991 IEEE Int. Conf. on Computer Design
on VLSI in Computer & Processors. IEEE Computer Society, 1992.

12. Peter C. Dillinger and Panagiotis Manolios. Bloom filters in probabilistic verifica-
tion. In Formal Methods in Computer-Aided Design, FMCAD, Proc., volume 3312
of Lecture Notes in Computer Science. Springer, Nov 2004.

13. Cindy Eisner and Doron Peled. Comparing symbolic and explicit model checking of
a software system. In SPIN Workshop, Proc., Lecture Notes in Computer Science.
Springer, 2002.

14. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law re-
lationships of the internet topology. In SIGCOMM ’99: Proc. of the Conf. on
Applications, technologies, architectures, and protocols for computer communica-
tion, New York, NY, USA, 1999. ACM Press.



68 G. Della Penna et al.

15. Jaco Geldenhuys. State caching reconsidered. In SPIN Workshop, Proc., volume
2989 of Lecture Notes in Computer Science. Springer, 2004.

16. Gerard J. Holzmann. An analysis of bitstate hashing. Form. Methods Syst. Des.,
13(3):289–307, 1998.

17. Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison Wesley Professional, 2004.

18. C. N. Ip and D. L. Dill. Efficient verification of symmetric concurrent systems.
In Proc. of the IEEE Int. Conf. on Computer Design: VLSI in Computers and
Processors, Cambridge, MA, October 1993. IEEE Computer Society Press.

19. Murphi web page: http://sprout.stanford.edu/dill/murphi.html, 2004.
20. David A. Patterson and John L. Hennessy. Computer architecture: a quantitative

approach. Morgan Kaufmann Publishers Inc., 1996.
21. Radek Pelánek. Typical structural properties of state spaces. In SPIN Workshop,

Proc., volume 2989 of Lecture Notes in Computer Science. Springer, 2004.
22. D. Peled. Ten years of partial order reduction. In Computer Aided Verification,

CAV, Proc., volume 1427 of Lecture Notes in Computer Science. Springer, 1998.
23. Spin web page: http://spinroot.com, 2004.
24. U. Stern and D. Dill. Parallelizing the murϕ verifier. In Computer Aided Verifi-

cation (CAV), Proc, volume 1254 of Lecture Notes in Computer Science. Springer,
1997.

25. U. Stern and D. Dill. Using magnetic disk instead of main memory in the murϕ
verifier. In Computer Aided Verification (CAV), Proc., volume 1427 of Lecture
Notes in Computer Science. Springer, 1998.

26. U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic verifi-
cation. In IFIP TC6/WG6.1 Joint Int. Conf. on: Formal Description Techniques
for Distributed Systems and Communication Protocols, and Protocol Specification,
Testing, and Verification, volume 69 of IFIP Conference Proceedings. Kluwer, 1996.

27. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition
locality in automatic verification. In Correct Hardware Design and Verification
Methods, CHARME, Proc., volume 2144 of Lecture Notes in Computer Science.
Springer, 2001.

28. U. Stern and D.L. Dill. Improved Probabilistic Verification by Hash Compaction.
In Correct Hardware Design and Verification Methods, volume 987, Stanford Uni-
versity, USA, 1995. Springer-Verlag.

29. D. J. Watts. Small Worlds: The Dynamics of Networks Between Order and Ran-
domness. Princeton Univ. Press, Princeton, NJ, USA, 1999.

30. Pierre Wolper and Dennis Leroy. Reliable hashing without collision detection.
In Computer Aided Verification (CAV), Proc., volume 697 of Lecture Notes in
Computer Science. Springer, 1993.



An Approach for the Verification of SystemC

Designs Using AsmL

Ali Habibi and Sofiène Tahar

Concordia University, Montreal, Quebec, H3G 1M8 Canada
{habibi, tahar}@ece.concordia.ca

Abstract. The spectacular advancement in microelectronics resulted
in the creation of new system level design languages, such as SystemC,
which put fourth new design and verification challenges. In this paper,
we present an approach verifying SystemC designs using model check-
ing and assertion based verification. Such verification is enabled through
two transformations from SystemC to AsmL (the Abstract State Ma-
chines Language) and vice-versa. The soundness of these transforma-
tions, proved using abstract interpretation, guarantees the correctness of
the model checking results and the validity of the generated assertion
monitors (to be checked by simulation). We illustrate our approach on
the SystemC/AsmL modeling and verification of the widely used Accel-
erated Graphics Port (AGP) standard. The verified AGP model can be
either refined to implement an AGP core or used to validate existent
compatible device.

1 Introduction

SystemC [18] is an object-oriented system level language for embedded systems
design and verification. It is expected to make a stronger effect in the area of
architecture, co-design and integration of hardware and software. The SystemC
library is composed of a set of classes and a simulation kernel extending C++
to enable the modeling of complex systems at a higher level of abstraction than
state-of-the-art HDLs. Nevertheless, except for small models, the verification of
SystemC designs is a serious bottleneck in the system design flow. While simu-
lation is the mostly widely used verification technique, it is unable to guarantee
the correctness of the design with respect to its specification. On the other hand,
model checking is considered as a relevant technique to cover for simulation in-
sufficiencies. Nevertheless, direct model checking of SystemC is not feasible due
to the complexity of this library. Besides, the state explosion problem led, for
complex systems, to the use of assertion based verification (ABV) where the
property under verification is turned into a monitor, checked by simulation and
evaluated using coverage metrics. The soundness of ABV relies, in particular, on
the correctness of the generation of the SystemC monitor from the property.

In order to enable the model checking of a SystemC design, we translate it
to an intermediate representation in AsmL [16]. This latter is an object-oriented
abstract state machines (ASM) [2] description language providing features to

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 69–83, 2005.
Springer-Verlag Berlin Heidelberg 2005



70 A. Habibi and S. Tahar

capture the behavioral semantics of programming and modeling languages where
systems are modeled at a high level of abstraction allowing easier validation and
verification operations.

The AsmL language is integrated with Microsoft’s software development en-
vironment and integrated with the Asmlt tool [16] offering a reachability algo-
rithm, able to generate an FSM of the model that can be adapted to perform
model checking. When a state explosion happens the design properties are trans-
lated to SystemC assertion monitors and verified by simulation. This is made
possible through the embedding of the property specification language (PSL [1])
in the same formalism.

The soundness of our approach is established using abstract interpretation by
proving the correctness of both transformations: (1) from the original SystemC
design to its AsmL representation; and (2) from the PSL property, in AsmL, to
the generated monitor, in SystemC.

To illustrate our approach, we considered the AGP bus [14] that was, as far
as we know, only verified by simulation due to its complexity and very large state
space. We will show that our technique combined with the abstraction features of
AsmL allows, using an inductive proof, the model checking of a set of properties
on the bus. These properties are also translated to a SystemC monitor that can
be used as a separate Intellectual Property (IP) to validate AGP compatible
devices.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 presents our verification approach. Section 4 contains the proofs of the
transformation from SystemC to AsmL. Section 5 describes the application of
the proposed methodology for the case of an AGP bus modeled in SystemC.
Finally, Section 6 concludes the paper.

2 Related Work

Related work to ours concerns both finite-state verification and assertion based
verification. Concerning the first issue, we cite in particular the Bandera [5]
project that aims at interfacing Java code to model checking tools like SMV
[3] and SPIN [13] by applying program analysis, abstraction, and transforma-
tion techniques. In its actual status, Bandera cannot handle SystemC designs
because any analysis of a SystemC code must go through the whole simulation
environment as well as SystemC defined data-types and classes. Besides, using
SMV as an internal model checking tool is a big handicap for Bandera to handle
large state space systems. We are not aware of any related work using a sound
syntactical transformation from SystemC to AsmL and vice-versa to perform
either model checking or ABV.

In [7] an approach is presented to add assertion checkers to SystemC. This
previous work is different from our methodology mainly in two aspects: (1) The
properties in [7] are restricted to the notation of property checker from Infineon
Technologies AG then translated to synthesizable SystemC instructions while we
consider any PSL property; and (2) SystemC is considered in [7] as a low level



An Approach for the Verification of SystemC Designs Using AsmL 71

HDL language while in this paper we do not put any restriction on any subset
of SystemC.

In [19], [12] and [10] several approaches were proposed to verify, respectively, a
PCI bus monitor in Verilog, a PCI bus model and Look-aside interface [17] (both
in SystemC). In [19], the bus was implemented in Verilog with all the properties
embedded as part of the code which makes its modification or upgrade a very
complex task. Besides, the verified Verilog model includes only two agents (one
master and one slave), which does not allow the verification of the properties
related to the bus arbitration, for example, and radically reduces the designs
state space.

In both [12] and [10] a top-down approach was used where the verification
was integrated as part of the design process and AsmL models were first designed
and verified then translated to SystemC. In this paper, we consider a bottom-
up approach where starting from an existent AGP IP in SystemC we generate
internally the AsmL model and verify the system property at the ASM level.
Besides, the designs in [19], [10] and [17] were relatively small in comparison to
AGP, with a width of 256 for data read, data write and command queues has a
minimum of 2256×32 states. Furthermore, AGP includes a number of additional
features making its verification a non-trivial task, such as pipelining. Hence,
direct model checking of AGP properties is with no doubt impossible due to the
state-explosion problem. The verification technique proposed in this paper takes
advantage of the high level of abstraction offered by AsmL which enables both
data abstraction and proofs by induction.

3 Verification Methodology

AsmL [9] is one of the very latest languages developed for Abstract State Ma-
chines (ASM) [8]. It is supported by a tester (Asmlt) that can be used to gen-
erate FSMs and test cases. It supports object-oriented modeling at higher level
of abstraction in comparison to C++ and Java. In our verification methodology
(Figure 1) we perform the model checking of SystemC by translating the original
design to an intermediate representation that omits all the details of the Sys-
temC simulator. The target (or transformed) program is modeled in AsmL to be
cross-produced with the system properties that will be verified over the whole
system’s state space. To model the properties, we used the PSL [1] standard.
PSL properties are embedded in the design as external monitors; hence, they can
be used as stand-alone IP block(s) to validate other devices, either at the AsmL
level by model checking or at the SystemC level by assertion based verification.

3.1 Model Checking

To enable the integration of both the model and the properties at the ASM level,
we embedded the PSL semantics in AsmL. At this level, it is possible to verify
these properties using model checking. For instance, we encode the properties
evaluation in every state, which enables checking its correctness on-the-fly while



72 A. Habibi and S. Tahar

Design Model in AsmL

AsmL Level

PSL Properties modeled  
in AsmL

Syntactical 
Transformation

AsmL Tool

SystemC (C++) Level

Assertion Integrator

Original SystemC 
Design

Assertion Monitor in 
SystemC

SystemC Design including 
the Assertion Monitor

Model Checking 
Result

Model Checking 
Configuration File

System’s FSM 
or Partial FSM Output

input

Syntactical 
Transformation

Fig. 1. Verification Methodology

executing the FSM generation algorithm (part of the AsmL tool). An incorrect
property detection stops the reachability algorithms and outputs a sub-portion
from the complete FSM, which represents a scenario for a counter-example.

PSL properties are defined in a hierarchical way inspired from the hardware
design modular concept. For this reason we defined the embedding in a similar
structure, where all the components are defined as objects and every PSL layer
extends its lower layer using the inheritance feature of AsmL. The main layers
include the Boolean layer, the temporal layer and the verification layer [1].

We encapsulate sequences in the verification unit as an assertion, which
is embedded in the design. Given a set of Boolean items x1, x2, . . . , xn, and
y1, y2, . . . , ym belonging to the Boolean layer, and the sequences, S1 and S2

belonging to the temporal layer, we can define: S1 = {x1, x2, . . . , xn}, and
S2 = {y1, y2, . . . , ym} and then use assertions to check any PSL operation be-
tween S1 and S2 such as S1 OP S2, where OP is a PSL operator (e.g., implication
(:), or equivalence (⇔)). The assertion is built as follows:

1. Add all the Boolean items to the sequences:
∀ i in 1 to n : S1.AddElement(xi)
∀ j in 1 to m : S2.AddElement(yj)

2. Create the property: P := S1 OP S2

3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P )

Each property is embedded in every state in the FSM generated by the AsmL
tool and is represented by two Boolean state variables Peval and Pvalue (stat-
ing, respectively, if the property can be evaluated and the value of the property
in the current state). A violated property is detected once Peval = true and
Pvalue = false. The previous condition is a filter for the FSM generation algo-
rithm stopping the generation when an error is detected. In this case, the gener-
ated portion of the state machine can be used to identify the problem through
a scenario of a counter-example. For multiple properties, the filter is set as the



An Approach for the Verification of SystemC Designs Using AsmL 73

conjunction of all the conditions for the separate properties. This technique min-
imizes radically the number of state variables (the FSM size and its generation
time). A successful verification process results in the generation of the system’s
FSM (according to the configuration file constraints). This approach may seem
to be based on an ad-hoc model checking algorithm while more advanced tech-
niques and approaches have been used in tools like SMV and VIS. We believe
there are many reasons that make our approach more efficient, in particular:
(1) It is impossible to use these tools with AsmL considering the OO nature
of the language. Therefore, a translation to the language supported by the tool
(mostly a very low HDL) is mandatory. This operation will prohibit using some
advanced features AsmL offers (e.g., data abstraction, etc.)
(2) Generating the counter-example as an FSM provides a complete path of the
error starting from the entry point to the state where the error took place [6].
(3) The configuration of the FSM generation algorithm can be set by the user
in order to stress the verification only in some particular portions of the state
space (through restricting some variables to have certain range for example) [6].

3.2 Assertion Based Verification

The proposed methodology to integrate and verify PSL assertions for SystemC
designs is given in Figure 2. It consists of the following three main steps:

(1) Updating the SystemC design in order to interface it with the assertion
monitor.
(2) Generating the assertion as a C# code from its ASM description.
(3) Integrating the C# assertion in the SystemC design.

The assertion under verification is a PSL property embedded in AsmL as a
read-only separate module. In order to guarantee that we are verifying the same
property specified in AsmL as the corresponding SystemC model, we need to:
(1) prove the correctness of the transformation from AsmL to SystemC; and
(2) connect the assertion monitor correctly to the original SystemC design. The

SystemC 
Design

Table of 
SymbolsGCC Compiler

SystemC updated design containing 
the assertion’s monitor

PSL 
Assertion

Design Updater

List of Updates

Updated Design

Assertion Integrator

Assertion Parser

ASM/PSL Property 
Generator

PSL Semantics 
(ASM)

AsmL Tool
(AsmL Compiler)

PSL Assertion in C#

Fig. 2. Assertion Based Verification Approach



74 A. Habibi and S. Tahar

second step requires updating the SystemC design to interface to the assertion
and integrating the assertion in the design. For instance, we validate the assertion
syntactically by generating the list of the variables involved. Then, we perform
a type check to make sure the variables are well instantiated in the SystemC
design. For instance, the signals (variables) that are used in the assertion must
be seen as external signals so that they can be input to the assertion monitor.
Hence, we modify the SystemC design to make the required variables visible to
the monitor. Once the design is updated, we add the required instantiation of
the assertion to bind it to the existing SystemC design modules. The assertion
monitor, acting as part of the design, can do the following: (1) stop the simulation
when the assertion is fired; (2) write a report about the assertion status and all
its variables; and (3) send a warning signal to other modules (if required).

4 Correctness of the SystemC/AsmL and AsmL/SystemC
Transformations

The work of Patrick and Radhia Cousot in [4] is the essence for any program
transformation using abstract interpretation. The tactical choice of using seman-
tics to link the subject program to the transformed program is very smart in the
sense that it enables proving the soundness proof of the transformation, related
to an observational semantics. The transformation from SystemC to AsmL, and
vice-versa, represents an online program transformation which corresponds to
the approach described in Section 3.9 of [4]. Figure 3 displays a projection of
that generic methodology on a SystemC subject program and an AsmL trans-
formed program. The same figure can be used to perform the soundness of a
transformation and also to construct it. In both cases, we need to define the
syntax, semantics and observation functions for both AsmL and SystemC.

Subject

Program PSC

Transformed

Program t[PA]

Syntactic

Transformation t

Subject Program 

Semantics SSC[PSC]

Transformed Program 

Semantics SA[t[PA]]

Semantic

Transformation t

(SSC[PSC])                  (SA[t[PA]])

SSC SA

Fig. 3. Online Program Transformation

4.1 SystemC Fixpoint Semantics

Syntactical Domains. SystemC has a large number of syntactical domains.
However, they are all based on the single SC Module domain. Hence, the mini-
mum representation for a general SystemC program is as a set of modules.



An Approach for the Verification of SystemC Designs Using AsmL 75

Definition 1. (SystemC Module: SC Module)
A SystemC Module is a set 〈DMem, Ports, Chan, Mth, SC Ctr〉, where DMem is a set
of the module data members, Ports is a set of ports, Chan a set of SystemC Chan,
Mth is a set of methods (function) definition and SC Ctr the module constructor.

Definition 2. (SystemC Port: SC Port)
A SystemC Port is a set 〈IF, N, SC In, SC Out, SC InOut〉, where IF is a set
of the virtual methods declarations, N is the number of interfaces that may be
connected to the port, SC In is an input port (provides only a Read method),
SC Out is an output port (provides only a Write method) and SC InOut is an
input/output port (provides Read and Write methods).

In contrast to default class constructors for OO languages, the SystemC
module constructor SC Ctr contains the information about the processes and
threads that will be executed during simulation.

Definition 3. (SystemC Constructor: SC Ctr)
A SystemC Constructor is a set 〈Name, Init, SC Pr, SC SSt〉, where Name is a
string specifying the module name, Init is a default class constructor, SC Pr a
set of processes and SC SSt is a set of sensitivity statements (to set the process
sensitivity list SC SL).

Definition 4. (SystemC Process: SC Pr)
A SystemC process is a set 〈PMth, PTh, PCTh〉, where PMth is a method process
(defined as a set 〈Mth, SC SL〉 including the method and its sensitivity list), PTh is
a thread process (accepts a wait statement in comparison to the method process),
PCTh is a clocked thread process (sensitive to the clock event).

Definition 5. (SystemC Program: SC Pg)
A SystemC program is a set 〈LSC Mod, SC main〉, where LSC Mod is a set of
SystemC modules and SC main is the main function in the program that performs
the simulator initialization and contains the modules declarations.

Fixpoint Semantics. In this section, we define the semantics of the whole
SystemC program, W SC Pg , and the SystemC module, MSC m sc . Then,
present the proofs (or proof sketches) of the soundness and completeness of
MSC m sc .

Definition 6. (Delta Delay: δd)
The SystemC simulator considers two phases evaluate and update. The separa-
tion between these two phases is called delta delay.

Definition 7. (SystemC Environment: SC Env)
The SystemC environment is the summation of the default C++ environment
(Env) as defined in [15] and the signal environment (Sig Store) specific to Sys-
temC: SC Store = Env + Sig Env = [Var → Addr]+ [SC Sig → (Addr,Addr)],
where Var is a set of variables, SC Sig is a set of SystemC signals and Addr

⊆ N is a set of addresses.



76 A. Habibi and S. Tahar

Definition 8. (SystemC Store: SC Store)
The SystemC store is the summation of the default C++ store (Store) as defined
in [15] and the signal store (Sig Store): SC Store = Store + Sig Store =
[Addr → Val]+ [(Addr, Addr) → (Val,Val)], where Val is a set of values such
that SC Env ⊆ Val.

Let R0 ∈ P(SC Env×SC Store) be a set of initial states, pcin be the entry point
of the main function and →⊆: (SC Env×SC Store)×(SC Env×SC Store) be a
transition relation.

Definition 9. (Whole SystemC Program Semantics: W SC Pg)
Let SC Pg = 〈LSC Mod, SC main〉 be a SystemC program. Then, the semantics
of SC Pg, W SC Pg ∈ P(SC Env×SC Store) → P(T (SC Env× SC Store)) is:
WSC Pg(R0) = lfp ⊆

∅ λX. (R0) ∪ {ρ0 → . . . ρn → ρn+1| ρn+1 ∈
(SC Env× SC Store) ∧ {ρ0 → . . . ρn}
∈ X ∧ ρn → ρn+1}

Both definitions of the semantics of process declaration (PR SC Pr ) and
SystemC module constructor (PCtr SC Ctr ) are given in [11]. In contrast to
the semantics definition of an OO object in [15], a SystemC method can be
activated either by the default context or by the SystemC simulator through
the sensitivity list of the process. A complete definition of the semantics of
a SystemC module object (OSC o sc ) through the definition of a transition
function nextsc(σ)=next(σ)

⋃
nextsig(σ), including both parts C++ related

and SystemC specific functions, can be found in [11].

Definition 10. (SystemC Module Semantics: MSCm sc))
Let m sc = 〈DMem, Ports, Chan, Mth, SC Ctr〉 be a SystemC module, then its
semantics MSCm sc) ∈ P(T (Σ)) is:
MSCm sc= {OSCo sc(vsc, ssc) | o sc is an instance of m sc, v sc ∈ D in,

s sc ∈ SC Store}

Theorem 1. (SystemC Module semantics in fixpoint) 1 Let

Gsc〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0
l0→ . . .

ln−1→ σn
l′→ σ′|

σ0
l0→ . . .

ln−1→ σn ∈ T , nextsc(σn) � 〈σ′, l′〉}
Then MSCm sc(vsc, ssc) = lfp ⊆∅ Gsc〈 Din×Store〉

The last step in the SystemC fixpoint semantics is to relate the module
semantics to the whole SystemC program semantics. Hence, we consider an up-
dated version of the function abstract ( α◦) as defined in [15]. The new function is
upgraded to support the SystemC simulation semantics, environment and store.
The complete definitions of α SC◦ can be found in [11].

Theorem 2. (Soundness of MSCm sc) Let MSC be a whole SystemC program
and let mSC ∈ MSC. Then:
∀ R0 ∈ SC Env× SC Store. ∀ τ ∈ T (SC Env× SC Store). τ ∈ WSC Pg(R0) : ∃τ ′
∈ MSCmSC . α SC◦({τ}) = {τ ′}
1 The proofs of the theorems presented in this paper are available in [11].



An Approach for the Verification of SystemC Designs Using AsmL 77

Theorem 3. (Completeness of MSC) Let mSC be a SystemC module. Then
∀τ ∈ T (Σ).τ ∈ MSCmSC :

∃ SC P ∈ 〈LSC Pg〉. ∃ρ0 ∈ SC Env× SC Store. ∃ oSC instance of mSC.
∃ τ ′ ∈ T (SC Env× SC Store). τ ′ ∈ Wρ0∧ α SC◦({τ ′}) = {τ}

4.2 AsmL Fixpoint Semantics

Syntactical Domains.

Definition 11. (AsmL Class: AS C)
An AsmL class is a set 〈AS DMem, AS Mth, AS Ctr〉, where AS DMem is a set of
the module data members, AS Mth a set of methods (functions) definition and
AS Ctr is the module constructor.

One of the important features that we are going to use in AsmL corresponds
to the methods pre-conditions (Boolean proposition verified before the execution
of the method).

Definition 12. (AsmL Method: AS Mth)
An AsmL method is a set 〈AS M, AS Pre, AS Pos, AS Cst〉, where AS M is the
method’s core, AS Pre is a set of pre-conditions, AS Pos is a set of post-conditions
and AS Cst is a set of constraints.

Note that AS Pre, AS Pos and AS Cst share the same structure. They are
differentiated in the methods by using a specific keyword for each of them (e.g.,
require for pre-conditions).

Definition 13. (AsmL Program: AS Pg)
An AsmL Program is a set 〈LAS C, INIT〉, where LAS C is a set of AsmL classes
and INIT is the main function in the program.

Fixpoint Semantics. Similar to the notion of delta delay (δd) of SystemC,
AsmL considers two phases: evaluate and update. The program will be always
running in the evaluate mode except if an update is requested. There are two
types of updates, total and partial.

Definition 14. (AsmL Environment: AS Env)
The AsmL Environment is a modified OO environment AS Env = [Var → Addr,
Addr], where Var is a set of variables and Addr ⊆ N is as set of addresses (two
addresses store the current and new values of v ∈ Var).

Definition 15. (AsmL Store: AS Store)
The AsmL store is AS Store = [(Addr, Addr) → (Val,Val)], where Val is a set
of values such that AS Env ⊆ Val.

The whole AsmL program semantics (WAS AS Pg ), method semantics
(MAS . ) and object semantics (OAS o AS ) through the definition of a tran-
sition function nextas(σ) can be found in [11]. The AsmL class constructor can
be defined according to the Definition 3.8 in [15].



78 A. Habibi and S. Tahar

Definition 16. (AsmL Class Semantics: CASc as)
Let c as = 〈as dmem, as mth, as ctr〉 be an AsmL class, then its semantics
CASc as) ∈ P(T (Σ)) is: Casc as= {OASo as(v as,s as) | o as is an instance
of c as, v as ∈ D in, s as ∈ SC Store}

Theorem 4. (AsmL Class semantics in fixpoint) Let

Has〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0
l0→ . . .

ln−1→ σn
l′→ σ′|

σ0
l0→ . . .

ln−1→ σn ∈ T , nextas(σn) � 〈σ′, l′〉}
Then CASc as(vas, sas) = lfp ⊆

∅ Has〈 Din×Store〉

The function α AS◦ is an updated version of the function abstract (α◦) defined
in [15]. The complete definition of α AS◦ is given in [11].

Theorem 5. (Soundness of CASc as) Let PAS be a whole AsmL program and
let cAS ∈ CAS. Then ∀ R0 ∈ AS Env× AS Store. ∀ τ ∈ T (AS Env× AS Store).
τ ∈ WAS Pg(R0) : ∃τ ′ ∈ CAScAS . α AS◦({τ}) = {τ ′}

Theorem 6. (Completeness of CAS) Let cAS be a AsmL class. Then
∀τ ∈ T (Σ). τ ∈ CSCcSC : ∃ AS P ∈ 〈LAS Pg〉. ∃ρ0 ∈ AS Env× AS Store. ∃

oAS instance of cAS. ∃ τ ′ ∈ T (AS Env× AS Store). τ ′ ∈ Wρ0

∧ α AS◦({τ ′}) = {τ}

4.3 Program Transformation

The equivalence in behavior, with respect to an observation αo, between the
source SystemC program and the target AsmL program is required to ensure
the soundness of any verification result at the AsmL level. Our objective is to
define a relation between the SystemC processes active for certain delta cycle
and the set of methods allowed to be executed in the AsmL model. Hence, we will
map every thread (method, sensitivity list) in the SystemC design to a method
(method core, pre-conditions) in the AsmL model.

The SystemC observation function needs to see all the active processes at
the beginning of a delta-cycle by checking for the end of the update phase.

Definition 17. (SystemC observation function: αSC
o )

Let SC Pg= 〈LSC Mod, SC main〉 be a SystemC program, the observation function
αSC

o ∈ P(SC Env× SC Store) → P(T (SC Env× SC Store)) is
αSC

o SC Pg(R0) = lfp ⊆
∅ λX. R0 ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×

SC Store) ∃ {ρi
0 → . . . ρi

m} ∈ X ∧
ρi

m → ρ̃i ∧ { m sc in MSC | ∃o sc ∈
MSC . o sc(ρi

m()) �= {ε} } = ∅}

In the previous definition, αSC
o is only tracing the initial states of a simulation

cycle. For instance, the third condition ensures that the list of process ready to
run is empty. Similarly, we define an observation function αAS

o for an AsmL
program.



An Approach for the Verification of SystemC Designs Using AsmL 79

Definition 18. (AsmL observation function: αAS
o )

Let AS Pg= 〈LAS C, INIT〉 be an AsmL program, the observation function αAS
o

∈ P(AS Env×AS Store) → P(T (AS Env× AS Store)) is
αAS

o AS Pg(R0) = lfp ⊆
∅ λX. (R0) ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×

AS Store) ∃ {ρi
0 → . . . ρi

m} ∈ X ∧
ρi

m → ρ̃i ∧ { m as in CAS | ∃o as ∈
CAS . o as(ρi

m()) �= {ε} } = ∅ }
Next, we define the notion of equivalence between the two observations. Al-

though, SystemC and AsmL have different environment and store structures, it
is possible to ensure that they contain the same information.

Definition 19. (Equivalence w.r.t. αo: ≡αo)
Let SC Pg be a SystemC program, V sc a set of its variables, AS Pg be an AsmL
program and Dout as a set of its output variables.
prog sc ≡αo prog as if

∀RSC
0 set of initial states of SC Pg. ∀RAS

0 set of initial states of AS Pg.
∀ρ̃ ∈ {ρ̃0 → . . . → ρ̃n} ∈ αSC

o SC Pg(RSC
0 ).

∃ρ̂ ∈ {ρ̂0 → . . . → ρ̂n} ∈ αAS
o AS Pg(RAS

0 ) | ∀ vsc ∈ V sc. ∃ vas ∈ V as |
if vsc ∈ SC Sig then ρ̃(vsc) = (vl1,vl2) ∧ ρ̂(vas) = (vl1,vl2)
if vsc ∈ AS DMem then ρ̃(vsc) = vl1 ∧ ρ̂(vas) =(vl1,vl1)

The observation function ensures that the AsmL program is mimicking the
evaluate and update phases (same length n of the ρ sets). The first if condition
takes care of the SystemC signals while the second one concerns basic C++
variables.

Theorem 7. (Existence of transformed AsmL program w.r.t. αSC
o ) Let SC Pg be

a whole SystemC program, SC Din a set of inputs and SC Dout a set of outputs.
Then ∃ AS Pg, an AsmL program, such that SC Pg ≡αo AS Pg

Theorem 8. (Existence of transformed SystemC program w.r.t. αA
o ) Let AS Pg

be a whole AsmL program, AS Din a set of inputs and AS Dout a set of outputs.
Then ∃ SC Pg, a SystemC program, such that AS Pg ≡αo SC Pg

Theorem 9. (Soundness of the transformations) Let SC Pg be a whole SystemC
program and let AS Pg be a whole AsmL program. Then

SC Pg ≡αo AS Pg :
∀ Prop(V sc,ρ̃) | ρ̃ ∈ αSC

o SC Pg.
SC Pg � Prop(V sc,ρ̃)
: AS Pg � Prop(V as,ρ̂) | ρ̂ ∈ αAS

o AS Pg.
where: Prop is a program’s property, V sc is a set of variables of the SystemC
program, V as are their corresponding variables in the AsmL program.

5 Application: AGP Bus Verification

5.1 Bus Description

AGP (Accelerated Graphics Port) [14] was introduced to meet consumer demand
for high-resolution 3D graphics in home computers. New software programs (es-



80 A. Habibi and S. Tahar

pecially games) require more and more video bandwidth for fancy textures, high
frame rate animations, etc. It has the advantage of allowing large amounts of
graphics data to be transferred directly between the computer’s main memory
and the AGP video card. The AGP bus is designed strictly for video processing
and does not have to share available bandwidth with other connected devices.
Both AGP bus transactions and PCI bus transactions may be run over the AGP
interface. An AGP master (graphics) device may transfer data to the system
memory using either AGP transactions or PCI transactions. The corelogic can
access the AGP master device only with PCI transactions. Traffic on the AGP
interface may consist of a mixture of interleaved AGP and PCI transactions. In
addition to the PCI features, AGP includes:
(1) Direct Memory Execute (DME) that gives AGP chips the capability to access
the main memory directly for complex operations of texture mapping.
(2) Pipelining and sideband addressing of directly accessing texture maps in
system memory.
(3) Multiple requests for data during a bus or memory access.
(4) A dedicated non-shared bandwidth with other devices.

5.2 Model Checking

In order to verify the bus properties, we first used a direct model checking
approach by considering a set of properties to verify all the possible transactions
scenarios. These cover two main classes: (1) PCI transactions and (2) AGP
transactions including both modes DMA and execute. We succeeded to prove
the first class of properties with a direct approach while we failed to prove the
second set due to state explosion. Therefore, we introduce a proof by induction.
Performing the verification of the whole model failed to complete due to a state
explosion problem. The main reason for that is the huge size of the read, write
and commands queues (each of width 256) present in both the AGP device and
the corelogic. By reducing the queues width to three, however, we succeeded to
verify all the properties. For more general verification, we defined an induction
based approach taking advantage from the abstract data types of AsmL.

We define DRQ: Device Read Queue, DWQ: Device Write Queue, DReQ:
Device Request Queue, CRQ: Controller Read Queue, CWQ: Controller Write
Queue and CReQ: Controller Request Queue. The maximum width of the queues
is Q.Wd. The number of packets in each queue is XXQ.Np (where XX ∈
{DR, DW, DReq, CR, CW, CReq}). P is the list of properties under
verification.

– Step 1: Verify P = true, ∀ DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np,
CWQ.Np, CReQ.Np ∈ [0, 1].

– Step 2:
• Hypothesis: Consider N ∈ N / 0 < N < Q.Wd
∀x∈ {DRQ.Np,DWQ.Np,DReQ.Np, CRQ.Np, CWQ.Np, CReQ.Np},
x < N : P is true.

• Prove: ∀x ∈ {DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np, CWQ.Np,
CReQ.Np}, x < N + 1 : P is true.



An Approach for the Verification of SystemC Designs Using AsmL 81

5.3 Experimental Results2

Model Checking. The CPU time used for the generation of the model checking
for queues widths in {1,2,3,6} is given in Table 1. The first three rows are required
to ensure the correctness of the initialization conditions. The fourth row, queue
width equal to six, is given to illustrate the effect of the numbers of states
and transitions increase exponentially as function of the queue size. This clearly
illustrates the impossibility of generating the complete FSM for a width of 256. In
Table 2.(a) every row corresponds to the proof of a particular queue. Generally,
the CPU time, Nodes and number of transitions is close to the case when the
queue width is equal to three (see Table 1). Table 2.(b) presents the verification
information for the PCI mode which is optional for AGP. A direct proof for this
case was possible thanks to the relative simplicity of the PCI, which does not
include any queue structure.

Table 1. Validity of Initialization Conditions

Queue CPU Number of FSM
width Time (s) Nodes Transitions

1 5.78 34 37
2 30.89 173 193
3 105.20 504 563
6 1758.78 4325 5223

Table 2. Model Checking Results

(a) AGP Mode (b) PCI Mode

Proof for CPU Number of FSM
the Queue Time (s) Nodes Trans.

DRQ 341.01 1156 1304
DWQ 345.25 1294 1325
DReQ 347.78 1302 1346
CRQ 457.89 1503 1425
CWQ 462.07 1653 1433
CReQ 487.01 1859 1481

Number of CPU Number of FSM
Masters Slaves Time (s) Nodes Transitions

1 1 2.31 20 25
1 2 2.94 39 53
3 1 26.01 236 341
2 2 26.84 293 449
2 3 101.38 658 1117
3 2 574.18 1881 3153

Assertion Based Verification. We have been able to verify all the AGP
bus structure by model checking. However, when the model checking fails, it
is possible to use the properties as assertion monitors that can be checked by
simulation on the original SystemC model. Using the syntactical transformation
defined in [11], we generate the SystemC modules corresponding to the PSL
properties. Then, we update the design and integrate the properties as read-only
monitors to the global system. We illustrate in Table 3 the simulation statistics
2 All experiments presented in this section were conducted on a platform consisting

of a 2.4 GHz Pentium IV and 512 MB of RAM (PC2700).



82 A. Habibi and S. Tahar

Table 3. Simulation Results

Number of Average Execution
Masters Slaves Time per Clock Cycle (10−9s)

1 1 29.321
3 1 32.221
2 2 33.889
2 3 36.568
3 2 38.005
3 3 41.287

of running the new model (combining the original design and the integrated PSL
properties) with a random input. The AGP controller can be seen as a slave or
a master according to the transaction. The other masters and slaves are just
PCI compatible devices. The CPU time confirms the high speed of the SystemC
model simulation, which is a direct result from the C++ implementation of the
library. Note that the set of assertion monitors including all the properties can
be considered as a stand-alone verification IP that can be used to validate other
AGP compatible devices either modeled in SystemC or even in Verilog or VHDL.

6 Conclusions

In previous work [10] we introduced a top-down approach similar to the pre-
sented in this paper where the verification was integrated as part of the design
process and AsmL models were first designed and verified then translated to
SystemC. In this paper, we consider a bottom-up approach where starting from
an existent SystemC design we generate internally a model in AsmL, an Object-
Oriented language used to model systems, and verify the system property at the
ASM level. We defined a sound syntactical transformation between SystemC
and AsmL to enable model checking at the ASM level. Both the model and its
PSL properties were defined in AsmL and checked using a reachability algorithm
available in the AsmL tool. We proposed also to translate the same properties
used for model checking back to SystemC in order to serve for assertion based
verification of the original SystemC design or to serve as a stand-alone verifica-
tion IP block. We illustrated our approach on the verification of an AGP bus,
where we performed a proof by induction to tackle the state explosion problem.
Finally, we believe that our approach is an important step towards enabling
an efficient formal and semi-formal verification of SystemC. Our future work
concerns enhancing the ABV coverage using the FSM generated AsmL models.

References

1. Accellera Organization. Accellera property specification language reference man-
ual, version 1.01. www.accellera.org, 2004.

2. E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer Verlag, 2003.



An Approach for the Verification of SystemC Designs Using AsmL 83

3. E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency - Reflections and Perspectives, pages 124–
175, Berlin, Germany, 1993.

4. P. Cousot and R. Cousot. Systematic design of program transformation frameworks
by abstract interpretation. In Proc. Symposium on Principles of Programming
Languages, pages 178–190, USA, 2002.

5. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, and R. W. Visser
amd H. Zheng. Tool-supported program abstraction for finite-state verification. In
Proc. International Conference on Software Engineering, pages 177–187, Toronto,
Canada, 2001.

6. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state
machines from abstract state machines. Software Engineering Notes, 27(4):112–
122, 2002.

7. D. Groβe and R. Drechsler. Checkers for systemc designs. In Proc. Formal Methods
and Models for Codesign, pages 171–178, San Diego, USA, 2004.

8. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

9. Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence of AsmL. Technical
report, Microsoft Research Tech. Report MSR-TR-2004-27, March 2004.

10. A. Habibi, A.I. Ahmed, O. Ait-Mohamed, and S. Tahar. On the design and verifi-
cation of the look-aside interface. In Proc. Design Automation and Test in Europe,
pages 290–295, Germany, 2005.

11. A. Habibi and S. Tahar. On the Transformation of SystemC to AsmL using Ab-
stract Interpretation. Technical report, ECE, Concordia University, December 2004
(www.ece.concordia.ca/∼habibi/techrp/TR0404/).

12. A. Habibi and S. Tahar. Design for verification of SystemC transaction level mod-
els. In Proc. Design Automation and Test in Europe, pages 560–565, Germany,
2005.

13. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

14. Intel Corp. AGP v3.0 interface specification, 2002.
15. F. Logozzo. Anhalyse Statique Modulaire de Langages a Objets. PhD thesis, Ecole

Polytechnique, Paris, France, June 2004.
16. Microsoft Corp. AsmL for Microsoft .NET Framework. research.microsoft.com,

2004.
17. Network Processing Forum. Look-Aside (LA-1) Interface, Implementation Agree-

ment, Revision 1.1. Kluwer Academic Publishers, April 15, 2004.
18. Open SystemC Initiative. www.systemc.org, 2004.
19. K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based formal specification of PCI. In

Formal Methods in Computer-Aided Design, pages 335–353. LNCS 1954, Springer-
Verlag, 2000.



 

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 84 – 98, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Decomposition-Based Verification of Cyclic Workflows 

Yongsun Choi* and J. Leon Zhao 

Dept. of Systems Management & Engineering, Inje University, Kimhae, Korea 
yschoi@inje.ac.kr 

Dept. of MIS, University of Arizona, Tucson AZ 85721, USA 
lzhao@eller.arizona.edu 

Abstract. A critical challenge in workflow analysis and design is the 
verification of workflow models, considering commercial workflow systems 
merely provide a simulation tool for validating workflow models through trial 
and error.  As a result, the current workflow technology does not guarantee that 
workflow models do not fail or will behave in a manner expected by the 
modeler. While a couple of verification methods have been reported in the 
recent literature, how to verify cyclic workflow models remains an open 
research question. In this paper, we propose a novel integrated approach of 
hierarchical decomposition and verification of cyclic workflows. This result is 
significant since it helps close the research gap that other known workflow 
verification methods fail to deal with cyclic workflow models. 

1   Introduction 

The recent surge in corporate e-business engineering has resulted in the automation of 
thousands of business processes by means of workflow management systems 
(WfMS), both within and across corporate boundaries ([5], [7], [9], [14], [24], [26]). 
WfMS enable the design, analysis, optimization, and execution of business processes. 
The basic WfMS functions include the separation between the business process logic 
and business applications, management of relationships among process participants, 
integration of internal and external process resources, and monitoring and control of 
process performances ([19], [28]).   

Workflow models must be correctly defined before being deployed in a workflow 
management system to avoid any costly maintenance delays due to runtime errors in the 
process model ([18], [23]). Therefore, it is essential to verify the workflow model before 
its deployment.  Despite the importance of workflow verification, few commercial 
workflow systems provide formal verification tools.  This lack of verification support 
can be attributed to the fact that most of the more than 250 commercially available 
WfMS use a vendor-specific ad-hoc modeling techniques [5] without a theoretical 
framework for the representation, analysis, and manipulation of workflow systems [8]. 
Although some of them allow the simulation of processes under through trial and error, 
they usually do not support formal workflow analyses. While process simulation can 

                                                           
* The first author’s work was supported in part by the 2004 Inje University research grant. 



 Decomposition-Based Verification of Cyclic Workflows 85 

 

provide useful insight about the process behavior, it does not address questions about 
the interrelationships among process components [8].  

There are two research approaches to ensure control flow correctness in workflow 
models – build it correctly, or check it completely [25]. The former ([13], [17]), 
relying on strict rules in composing the model, may not model certain processes due 
to syntactical restrictions [17] and may not be very suitable for practical 
implementation in the industry [25]. The latter, like Petri nets ([1], [4], [6], [21], [27]) 
or the graph-theoretic techniques ([8], [12], [20], [23]), on the contrary, appeals more 
by allowing the user tremendous flexibility in expressing process requirements and 
confronts significant challenges at the same time [25]. 

The Petri-nets-based workflow verification depends on the formalism of Petri nets, 
which has yet to be adopted by commercial WfMS. The majority of business 
processes in previous research have been restricted to acyclic (i.e. loop-free) free-
choice nets, a special class of Petri nets that enjoys the added advantage that 
soundness can be verified in polynomial time [1]. Additionally, establishing 
soundness in a free-choice net implies that the net is free from deadlock, and is also 
alive, i.e., no dead tasks [2]. However, the modeling of exceptions or precedence 
partially destroys the free-choiceness of the equivalent Petri net mapping. Moreover, 
modeling iteration necessitates the presence of loops in the control flow model, a 
problem that is yet to be satisfactorily addressed [25]. Graph reduction ([20], [23]) or 
block-wise abstraction [12] has been proposed to identify structural conflicts in 
workflow graphs, but both approaches are limited to acyclic models [3]. In summary, 
there is a critical need for workflow verification techniques applicable to generic 
graph-based workflow models.  

In this paper, we propose an integrated and iterative approach of workflow 
abstraction and verification of control flows represented in directed graphs. By 
workflow abstraction, we refer to the identification of reducible blocks in a given 
workflow model.  A reducible block refers to a subset of nodes and associated links in 
a workflow model that can potentially be abstracted into a ‘block activity’ node. By 
workflow verification, we refer to the detection of potential structural conflicts such as 
deadlocks and lack of synchronizations. Our approach of integrating workflow 
abstraction and workflow verification in the same analysis is unique and has a number 
of important features:  

• Our method applies verification to each block structure, which is much easier to 
comprehend and verify individually than the whole workflow model in general. 
This decomposition feature has not been seen in any existing workflow 
verification method. In each iteration, our method identifies a reducible block, 
verifies any structural conflicts in the block, and abstracts it into a block activity. 
This simplifies the workflow graph and makes it easier to analyze.  

• We also introduce several pattern-based verification rules that can save 
verification effort if a block or the simplified whole model, after abstractions, 
matches certain patterns specified by those rules.  

• Our method handles cyclic workflow models, even for nested structures, by 
partitioning the given model into acyclic subgraphs, such enabling our method to 
handle only acyclic subflows one by one when verifying a workflow block.  



86 Y. Choi and J.L. Zhao 

 

    The rest of the paper is organized as follows.  In Section 2, we present the 
preliminary concepts such as the directed graph representation and summarizes on the 
partitioning of a cyclic workflow graph into acyclic subgraphs. In Section 3, we 
extend the concept of reducible blocks to the analysis of cyclic workflow models and 
present the associated theorems. Section 4 delineates the unified framework for 
process abstraction and verification. Section 5 discusses our contributions, related 
work, and future research. 

2   Partitioning a Cyclic Workflow Graph into Acyclic Graphs 

2.1   Directed Workflow Graphs 

A workflow graph is a directed graph WG = (N, T) with a set of nodes N and a set of 
edges (i, j) ∈ T, where i, j ∈ N.  Each edge, called as a transition, links two nodes and 
represents the execution order of nodes. A node is classified into task and coordinator. 
A task, represented by a rectangle, stands for the work to be done. A coordinator, 
represented by a circle, is a point of path choice or merge of paths. Nodes are 
classified into sequence, AND-split, AND-join, XOR-split, and XOR-join (Fig. 1). 
Start and End nodes indicate the beginning and the end of workflow, respectively 
([20], [23]). 

 

sequence AND-split AND-join XOR-split XOR-join Start End  

Fig. 1. Classification of nodes in workflow graphs 

10: Prepare cheques
for ANZ Bank

18

14

6

17: Issue
cheque

16: Signatures from
finance director

15: Update accounts
database

12: Reject
request

9: Prepare cheque
for CITIBANK

4: Approval from
Finance Director

2: Payment
Request

19: File payment
request

0: Start  

20:End

US$

A$
5: Approval from

Dept. Managerr

7 8
Approved

Not Approved

3

1

13: Ask account
adjustment 

11: Ask amount
adjustment

RejectedApproved

Adjustment
required

Adjustment
required

     

10

18

14

6

17

16

15 12

9

4

2

19

0

20

5

7

8

3

1

13

11

0

1

2

3

4

5

6

7

8

9

10

11

12

FN0 FN1

 

Fig. 2. (a) An example cyclic workflow graph; and (b) the normalized graph 



 Decomposition-Based Verification of Cyclic Workflows 87 

 

Fig. 2(a) illustrates an example workflow with cycles, with two feedback paths 
added to an example found in [23]. We make a simplifying assumption on the 
workflow graph that a node cannot be a join and split at the same time, since such a 
node can be converted into a join node and a split node with a transition between 
them.  

2.2   Structural Conflicts in Workflow Graphs  

In this paper, we focus on the verification of three types of structural conflicts, 
deadlock, lack of synchronization, and livelock as illustrated in Fig. 3 ([1], [16], [23]). 
Deadlock refers to a situation in which a workflow instance gets into a stalemate such 
that no further activity can be executed. This happens when only some partial subset 
of the join paths to an AND-Join is executed, the AND-Join node k will wait forever 
and block the continuation of the process (Fig. 3a). Lack of synchronization refers to a 
situation in which the concurrent flows are joined by an XOR-Join, resulting in 
unintentional multiple executions of activities following the node k (Fig. 3b). Livelock 
refers to a situation in which certain loop(s) of tasks are continuously performed, and 
there is no execution path leading to termination or cannot terminate properly (Fig. 
3c). Note that a livelock is associated with cyclic structures. Other types of structural 
conflicts such as dangling nodes are relatively easy to detect by examining the 
reachability of nodes. 

s

k

s

k

(a) deadlock (b) Lack of synchronization (c) Livelock
 

Fig. 3. Types of structural conflicts 

2.3   Partitioning into the Acyclic Subgraphs  

Cycles in workflow models are needed for purposes of rework and information 
feedback, but makes it difficult to analyze. Choi [11] introduced a novel method to 
partition a cyclic workflow graph into acyclic subgraphs. The proposed algorithm first 
identifies and temporarily cuts off those transitions, called feedback join transitions, 
which complete each corresponding simple cycle [15] from the given model. The set 
of nodes that can reach the End node in the temporarily resulting acyclic graph is 
called as the 0-th order Feedback Nodes, denoted by FN0. Note that the subgraph 
spanned by the nodes in FN0, called as the main flow or the 0-th order Feedback Flow 
from Start to End and denoted by FF0(Start, End), is acyclic. The algorithm also 
identifies the set of nodes in FN0 that have a transition toward or from any node not  
 
 



88 Y. Choi and J.L. Zhao 

 

contained in FN0, the 0-th order Feedback Splits, denoted by FS0, and the 0-th order 
Feedback Joins, denoted by FJ0, respectively. The other subgraph spanned by the 
nodes in FS0, FJ0, and those not contained in FN0 is further partitioned into several 
smaller subgraphs, each composing a smaller workflow graph starting from fs ∈ FS0 
and ending at fj ∈ FJ0. If all these derived subgraphs are acyclic, the algorithm stops. 
Unless, the algorithm proceeds to any cyclic subgraph FF1+(fs, fj)§ in similar way, 
recursively. By this way, the algorithm classifies all the nodes in the given model into 
FNn and derives all acyclic subgraphs of FFn(fs, fj), where the feedback order n is 
increased by 1 for each recursive call.  

  

3

5
0 762 8

4
9 10 12 1413 15

19
24 16

22

11

21 20

17

18

251

23

 
(a) A workflow with nested cycles 

3

5

0 761 8

4

9 10 12 1413 15

19

24

16 22

11

2120

17

18

252

0 31 2 4 5 7 98 106 11 12 13 14 15 16 17 18 19 20

23

FN0

FN1

FN2

 
(b) Normalized graph 

Fig. 4. Normalization of a workflow graph with nested cycles 

Fig. 2(b) shows the normalized graph of Fig. 2(a), with nodes rearranged by its 
rank shown to the left. The nodes are classified into FN0 and FN1, and FJ0= { 1 }, 
FS0= { 7, 8 }. Fig. 4 shows another example with nested cycles. After first iteration, 
the algorithm derives three acyclic subgraphs and one cyclic subgraph of FF1+ (15, 
1), which is partitioned into two additional acyclic subgraphs after the first recursive 
call, resulting total five acyclic subgraphs. Table 1 summarizes the results. 

A workflow with an AND- feedback join node fj will deadlock at fj. A workflow 
with an AND- feedback split node fs will potentially result in an infinite loop or 
multiple instances [11]. While partitioning a cyclic workflow graph, we can identify 
those structural anomalies without any additional computation. The verification phase 
of our integrated method, to be described in Section 4, deals with workflow models 
that contain only XOR- feedback splits and XOR- feedback joins. 

                                                           
§ FF1(fs, fj) represents the main acyclic subgraph partitioned from the cyclic FF1+(fs, fj). 



 Decomposition-Based Verification of Cyclic Workflows 89 

 

Table 1. Summary of partitioning  

Case Target graph Classified nodes Derived subgraphs 

Workflow 
of  

Fig. 2 
WG(N,T) FJ = { 1 }; 

V – FN0= { 11, 13 }, FJ0= { 1 }, FS0= { 7, 8 }. 

FF0 (0, 20) 
FF1 (7, 1) 
FF1 (8, 1) 

WG(N,T) 
FJ= { 1, 7, 19 }; 
V – FN0= { 11, 16, 17,18, 19, 20, 21, 22, 23, 24  }, 
FJ0= { 1, 7 }, FS0= { 10, 13, 15}. 

FF0 (0, 25)  
FF1 (10, 7) 
FF1 (13, 7) 
FF1+ (15, 1) 

Workflow 
of 

 Fig. 4 
FF1+ (15, 1) 

FN1= { 11, 16, 17,18, 19, 20, 21, 22, 24 },  
FJ1= { 19 }, FS1= { 22 }; FN1= { 23 }. 

FF1 (15, 1) 
FF2 (22, 19) 

3   Identification and Abstraction of Reducible Block Structures 

Our workflow abstraction and verification method utilizes the concept of inline 
blocks. An inline block is a subset of nodes and transitions among those nodes that 
satisfies the blocked transition property [29]. According to the Workflow 
Management Coalition, the blocked transition property states that any inward 
transition to the inline block can only occur to the start node of the block and that any 
outward transition from the inline block can only occur at the end node of the block. 
In order to handle cyclic workflows, this property needs to be extended as described 
later in this section. An inline block is reducible to a block activity node or may be 
modeled as a sub-process of the original process definition. This helps in managing a 
large-scale model, including verification of structural conflicts, being represented as a 
hierarchy of simple smaller models. Identifying inline blocks manually from a 
complex workflow [2] is a difficult task even for an experienced process designer. 
Next, we extend the blocked transition property in the presence of cyclic workflows, 
leading to extended inline blocks. 

3.1   Candidates of Inline Blocks with Cycles 

Our method first configures potential inline blocks with one of the Split nodes (except 
Feedback Splits) or Feedback Joins as the block start node, called the source; and one 
of the Join nodes (except Feedback Joins) or Feedback Splits as the block end node, 
called the sink.  Those potential inline blocks are referred to as candidate blocks 
because they may or may not satisfy the blocked transition property. Although the 
source or the sink can be a sequential node, we focus on candidate blocks with split 
and join nodes as the border nodes that can be easily extended without further 
verification effort by adding sequential nodes at the borders. This way of composing 
candidate blocks can reduce computational cost significantly by focusing on the core 
candidate blocks.  Further, deadlock and lack of synchronization problems occur due 
to the incompatibility of split and join nodes, as described in section 2.  This is 
another reason we focus on candidate blocks with split and join nodes as the border 
nodes. As candidate block is a fundamental concept of our method, we define it 
formally. 



90 Y. Choi and J.L. Zhao 

 

Definition 1. For any node i ∈ FNn, let Fwd (i) denote the set of nodes in FNn that 
can be reached from i by the transitions in T. Let Bwd (i) denote the set of nodes in 
FNn that can reach to i by the transitions in T.  

Definition 2. Let CBM (σ, κ) denote a subgraph spanned by the set of nodes {σ, κ } ∪ 
(Fwd(σ) ∩ Bwd(κ)), where σ ∈ FNn and κ ∈ Fwd(σ).  Let CBF (σ, κ) denote ∪fs, fj 
FF(n+1)+(fs, fj) where fs ∈ FSn, fj ∈ FJn, and fs, fj ∈ CBM (σ, κ). Finally, let 
Candidate Block be CB (σ, κ) = CBM (σ, κ)  ∪ CBF (σ, κ).  

For convenience, the set of nodes that spans the candidate block CB (σ, κ) will be 
also denoted as CB (σ, κ), without confusion. For example, CB (1, 7) = CBM (1, 7) ∪ 
CBF (1, 7) = {1, 2, 3, 5, 7} ∪ {1, 7, 11} = {1, 2, 3, 5, 7, 11} for the workflow of Fig. 
2.  The number of candidate blocks will grow as the number of split nodes and that of 
join nodes in the workflow model increase.  We will also show that given a candidate 
block that violates the blocked transition property, we may exclude additional 
candidate blocks from further analysis to enhance computational efficiency. 

3.2   Blocked Transition Property for Cyclic Workflows 

The statements on the blocked transition property by WfMC [29], i.e., no disallowed 
inward and outward transitions should exist, assures that a block is an independent 
unit of tasks that can be separated as a subprocess. To assure this property for cyclic 
workflow models, all the tasks in a cycle should be kept together in the same block. 
Therefore, the blocked transition property should be imposed with additional 
constraints for cyclic workflows. More formally, we have the following four 
constraints for an inline block. If a candidate block CB (σ, κ), with σ, κ ∈ FNn, 
satisfies these four constraints, we say that CB (σ, κ) is an inline block.  

pred(i)  ⊂ CB (σ, κ), ∀ i ∈ CB (σ, κ) and i≠σ, (1) 
succ(i)  ⊂ CB (σ, κ), ∀ i ∈ CB (σ, κ) and i≠κ, (2) 
i ∈ CB (σ, κ),  ∀ (i, σ) ∈ FJT, (3) 
i ∈ CB (σ, κ),  ∀ (κ, i) ∈ FST, (4) 

where pred(i) = {j | (j, i) ∈ T }, succ (i) = {j | (i, j) ∈ T }, and FJT (or FST) are the 
sets of feedback join (or split) transitions, respectively. Note that constraints (3) and 
(4) are applied to only cyclic workflow process models, as explained above. 

3.3   Composing an Inline Block by Node Splitting 

In case violations of the above four constrains happen only at the source or the sink, 
of more than two associated links, we can compose an inline block by splitting the 
source or the sink. Fig. 5 shows the cases of composing an inline block by splitting 
the source σ, the sink κ, or both of them of CB (σ, κ). The transition from node A or 
the transition to node B, where A, B ∉ CB (σ, κ), does not violate the blocked 
transition property for the resulting inline block of CB (σ′, κ), CB (σ, κ′), or CB (σ′, 
κ′), respectively. Figures 5(a) and 5(b) are for the cases when conditions (1) or (2) are 
violated, and Fig. 5(c) is for the cases when conditions (3) or (4) are violated, at the 
sink or at the source, respectively. The newly added σ′ and κ′ in Fig. 5(b) are null 



 Decomposition-Based Verification of Cyclic Workflows 91 

 

activities of no tasks to perform. Note that it is not necessary the source σ and sink κ 
are of same node type and is worth for splitting only at the source or at the sink. 

σ', κ' : null
activities

κ

σ

κ'

σ'

σ

B B

(a)

κ

σ

κ

σ

κ'

κ

AA

κ

σ

κ'

σ'

σ

B B

κ

AA

σ'

(b) (c)
 

Fig. 5. Composing an inline block by splitting the source or the sink 

3.4   Exclusion of Additional Candidate Blocks from Evaluation 

When a candidate block CB (σ, κ) does not satisfy blocked transition property, 
additional candidate blocks CB (σ, κ′) or CB (σ′, κ) should be excluded from the 
evaluation.  This will reduce the computational efforts significantly, particularly when 
the number of split and join nodes are large and/or the given workflow model is more 
unstructured [12]. The following two theorems are given for this purpose. 

 
Theorem 1. If there exists an inward transition toward CB (σ, κ), where σ, κ ∈ FNn, 
from an outside node i ∈ FNn to an inside node j ≠ σ, this inward transition violation 
also exists toward CB (σ, κ′), for any κ′ ∈ Fwd(κ). Consequently, candidate block 
CB (σ, κ′) is not an inline block.  
Proof:  The given supposition of (i, j) ∈ T with i ∉ CB (σ, κ) and i ∈ FNn,  j∈ CB (σ, 
κ) and j ≠ σ  implies that i ∉ Fwd(σ), unless i ∈ CB (σ, κ), and subsequently i ∉ CB 
(σ, κ′).  Further, with κ′ ∈ Fwd(κ), it is clear that j ∈ Bwd(κ′) and subsequently j∈ 
CB (σ, κ′). Therefore, it is certain that transition (i, j) also violates condition (5) for 
CB (σ, κ′) and CB (σ, κ′) could never be an inline block.                                            

For CB (6, 14) in Fig. 2, as an example, violation of condition (1) by transition (10, 
14) results in the exclusion of CB (6, 17) and CB (6, 18) from further analysis.  

Theorem 2. If there exists an outward transition from an inside node i  ≠ κ to an 
outside node j ∈ FNn, this outward transition violation also exists for CB (σ′, κ), for 
any σ′∈ Bwd(i).  Consequently, candidate block CB (σ′, κ) is not an inline block.  
Proof: The given supposition of (i, j) ∈ T with i ∈ CB (σ, κ) and i ≠ κ, j ∉ CB (σ, κ) 
and j ∈ FNn implies that j ∉ Bwd(κ), unless j ∈ CB (σ, κ), and subsequently j ∉ CB 
(σ′, κ). Further, with σ′ ∈ Bwd(i), it is clear that i ∈ Fwd(σ′), and subsequently i∈ 
CB (σ′, κ). Therefore, it is certain that transition (i, j) also violates condition (7) for 
CB (σ′, κ) and CB (σ′, κ) could never be an inline block.                                            



92 Y. Choi and J.L. Zhao 

 

For CB (6, 14) in Fig. 2, as an example, violation of condition (2) by transition (6, 
8) results in the exclusion of CB (3, 14) and CB (1, 14) from further analysis.  

4   An Unified Framework of Abstraction and Verification  

In this section, we integrate the two related aspects, workflow abstraction and 
workflow verification, into a unified framework. Our method conducts verification 
and abstraction iteratively based on inline blocks, starting with the simplest one and 
extending to larger ones. At each iteration, the algorithm searches for an inline block 
that satisfies the blocked transition property. We then check the inline block for 
structural conflicts. Whatever the verification result is, this inline block structure will 
be replaced with a single abstract node, i.e., block activity node, marked with the 
verification result. This simplifies the structure of the workflow graph and 
subsequently the evaluation of other larger inline blocks containing the already 
condensed ones. The algorithm then proceeds to abstract further inline blocks and 
verify all the structural conflicts in the given workflow model. 

4.1   Decomposed Verification by Inline Blocks and Acyclic Partitioning   

We apply the decomposed approach by verifying each inline block in the workflow 
model. Further, verification of structural conflicts for any reducible block CB(σ, κ), 
with σ, κ ∈ FNn, will be handled by verifying CBM (σ, κ) and each FF(n+1)+(fs, fj), 
where fs ∈ FSn, fj ∈ FJn, and fs, fj ∈ CBM (σ, κ), that is each feedback flow 
originated from and merged into CBM (σ, κ). Theorem 3 below argues the correctness 
of this approach formally. 

Theorem 3.  If there exist no structural conflicts in both CBM (σ, κ) and CBF (σ, κ), 
then there exist no structural conflict in the integrated model CB (σ, κ). 
Proof: It is clear that additional deadlock conflict will not be caused by combining 
each FF(n+1)+(fs, fj) ⊂ CBF (σ, κ) to CBM (σ, κ), through XOR- coordinators.  After 
early stage verification explained at the end of subsection 2.3, each FF(n+1)+(fs, fj) 
splits from an XOR feedback split fs, merges at an XOR feedback join fj, and does not 
cross another feedback flow by an AND-split or an AND-join. Therefore, there is no 
chance that any additional Lack of Synchronization conflict would be caused in CB 
(σ, κ) by adding any FF(n+1)+(fs, fj) ⊂ CB F (σ, κ) to CBM (σ, κ).  

To be described in detail next section, our method iteratively composes candidate 
blocks from the simplest one to more complex ones by utilizing the rank of nodes in 
selecting the source and the sink. Whatever the verification result, our method 
abstracts out each reducible block into a new block activity node. In this way with 
partitioned verification approach, we only need to verify condensed feedback flows, 
with any previously abstracted block activity nodes, which are all acyclic as well as 
CBM (σ, κ). That is the block-wise decomposition and feedback-partitioning method 
enables the verification of whole workflow process with the verification of only 
acyclic structures in each inline block.   



 Decomposition-Based Verification of Cyclic Workflows 93 

 

4.2   Verification with Block Instance Flows 

Each FFn+(fs, fj) or CBM (σ, κ) composing the CB (σ, κ), after prior abstractions of 
contained blocks, is a smaller acyclic workflow. To verify any of them, we can adopt 
any verification method previously proposed, such as the graph reduction techniques 
by Lin et al. [20] or Petri-net-based approach [1], with some conversion effort if 
necessary. We introduced an instance-flow-based method that verifies structural 
conflicts by examining the instance flows of each partitioned acyclic structure of an 
inline block in [12]. An instance flow is the instantiation of certain paths in the 
workflow model and the resulting graph is called an instance graph. Fig. 6 (b), (d) 
and (e) are three instance flows for the acyclic block CB (1, 11) represented in Fig. 6 
(a). Instance flows of Fig. 6 (d) and (e) are derived by instantiating XOR-split node 5 
from Fig. 6 (c). Note that acyclic block instance flows to be handled in our method are 
much simpler, in general, than the instance flows of the whole model, which even 
may not be defined for the cyclic workflow models. .  

 

11

8

5

1

10

9

4

76

2 3

(a)    
11

8

5

1

10

9

4

76

2 3

(b)

11

8

5

1

10

9

4

76

2 3

(c)    
11

8

5

1

10

9

4

76

2 3

(d)

11

8

5

1

10

9

4

76

2 3

(e)  

Fig. 6. Derivation of three instance flows (b, d, e) of an acyclic block structure represented  
in (a) 

Two types of structural conflicts, deadlock and lack of synchronization, are 
identified using the two identification rules below. Note that a livelock occurs due to 
inadequate connection of feedback flows, which should have been detected and 
corrected earlier as described at the end of subsection 2.3. 

Deadlock identification rule: A deadlock can be identified in an instance flow graph 
when the number of instantiated paths leading to an AND-Join is less than the total 
number of join paths in the original workflow model.  
LOS identification rule: A lack of synchronization can be identified in an instance 
flow graph when the number of instantiated paths leading to an XOR-Join is more 
than one. 

For the instance graph in Fig. 6(d), it can be identified that a ‘deadlock’ conflict 
occurs at node 10. Consequently, it is concluded that the inline block CB (1, 11) will 
incur a deadlock conflict at node 10 for the instance flow of nodes {1, 3, 5, 6, 8, 9, 10, 
11}. Note that every structural conflict is detected with the exact location and the 
instance flow where it happens. 



94 Y. Choi and J.L. Zhao 

 

4.3   Verification with Pattern Rules 

To further improve verification efficiency, we have created several verification rules.  
If an inline block (or any acyclic structure of the block) or the whole model after 
abstractions matches certain patterns specified by these rules, there will be no need of 
further verification effort..  

Verification rule 1: <Sequential Flow> If every node is on a sequential path, no 
structural conflict occurs in this flow. 
Verification rule 2: <Single split and single join> When the source is the only split 
and the sink is the only join in the inline block, the given inline block is free from 
structural conflicts if the split and join are of same control type, i.e. either ‘AND’ or 
’XOR’. Otherwise, a structural conflict occurs at the join node due to incompatibility 
of the split and the join, as explained in Section 2. 
 Verification rule 3: <All splits and joins of the same type> If all split and join nodes 
are of the same type in an inline block, there will be no structural conflict in the block.  
Note that although Rule 3 is similar to Rule 2, they are not the same.  Rule 3 applies 
to inline blocks with multiple splits or joins while Rule 2 applies only to inline blocks 
with a single split and a single join.  Rule 2 can be used to conclude the existence of 
conflicts, but Rule 3 cannot.  
Verification rule 4: <Direct transition from source to sink of distinct type> If there is 
a direct transition from the source to the sink of different type, structural conflict 
occurs. 
Verification rule 5: <Non-matching splits or joins> When there are some splits (or 
joins) of certain type and no joins (or splits) for that type in an inline block, structural 
conflict also occurs in the block.   

Although the verification rules above can be applied to any verification algorithm, 
these rules become more powerful with our block-based decomposed approach, which 
handles much simpler structure than the whole workflow model. Consecutive 
abstractions will further simplify other inline blocks containing those structures, thus 
increasing the chance of applying the above verification rules. 

4.4   Unified Algorithm with an Illustrative Example 

A block chart of the unified algorithm of abstraction and verification is given in Fig. 
7.  The algorithm starts with the simplest CB (σ, κ), with σ  as one of the candidate 
sources of maximum rank and κ as one of the candidate sinks, i.e. Fwd(σ), of 
minimum rank. At the next iteration, new candidate block is selected by fetching new 
sink κ′ of the next higher rank, from Fwd(σ), with the same source σ of the current 
candidate block; when all candidate blocks with σ as source are evaluated or 
excluded, The algorithm fetches new source σ′ of the next lower rank from the stack 
of candidate sources and proceeds forward.  

An inline block that does not contain any other inline block is referred to as a 1st-
order inline block, and an inline block that contains at least one first-order (and no 
higher order) inline block is called a 2nd-order inline block.  Similarly, an nth-order 
inline block is the one that contains at least one (n-1)th-order (and no higher order) 
inline block.  



 Decomposition-Based Verification of Cyclic Workflows 95 

 

 

Identify FSn, FJn, FNn and FFn(fs, fj)

Compose next candidate block 
CB (σ, κ) = CBM (σ, κ) ∪ CBF (σ, κ)

Verify block CB (σ, κ) : CBM (σ, κ) & each FFn+(fs, fj)

Abstract block CB (σ, κ)

Exclude related 
candidate blocks

EndN

Y

Y

N

More candidate
blocks ?

Is CB (σ, κ)
an inline block?

 

Fig. 7. Illustration of the unified algorithm 

3

5

0 761 8

4

9 10 12 1413 15

19

24

16 22

11

2120

17

18

252

23

FN0

FN1

FN2

7
2/6

19/2216/24

7 /10
7/13

1/15

 

(a) All blocks indicated in the normalized graph 

Rank of 
source  Source Candidate 

sinks1) 
Blocks 

checked 
Violation for a block  
or verification result 

Excluded blocks  
or new block activity node 

16 19 22, 24 (19, 22)  
No conflict (each by Rule 

1) 
Abstracted into “19/22” 

14 16 22, 24 (16, 24) No conflict (by Rule 2) Abstracted into “16/24” 

(7, 10)  
Violates condition (3);  

No conflict after splitting 
node 7 (each by Rule 1) 

Abstracted into “7′/10”  
6 7 10, 13, 15 

(7, 13) 
No conflict (each by Rule 

1) 
   Abstracted into “7/13” 

2 2 6, 10, 13, 15 (2, 6) No conflict (by Rule 2) Abstracted into “2/6” 

1 1 6, 10, 13, 15 (1, 15) 
No conflict (each by Rule 

1) 
Abstracted into “1/15” 

1) Underlined numbers represent the candidate sinks ignored by prior abstractions 

(b) Summary of abstraction and verification process 

Fig. 8. Abstraction and verification for the workflow with nested cycles in Fig. 4  

Fig. 8 shows the abstraction and verification process for the workflow graph 
with nested cycles of Fig. 4 to be partitioned as shown in Table 1. 



96 Y. Choi and J.L. Zhao 

 

  The algorithm starts with the simplest candidate block CB (19, 22) that satisfies 
the blocked transition property. Since CBM (19, 22) and FF2(22, 19) = CBF (19, 22) 
are free from structural conflicts by Rule 1,  CB (22, 19) is found to be free from 
structural conflicts  and reduced  into a new 1st-order block activity node “19/22”. At 
the next iteration, CB (16, 24), which is acyclic with the just abstracted block activity 
node “19/22”, is found to be free from structural conflicts by Rule 2 and reduced into 
a new 2nd-order block activity node “16/24”. For the next candidate block CB (7, 10), 
the inward transition from node 13 ∉ CB (7, 10) to the source, i.e. node 7, is the only 
violation for the blocked transition property, The algorithm splits node 7 and builds 
new candidate block CB (7′, 10), to be abstracted into a new 1st-order block activity 
node “7′/10” marked with no conflict. In similar way, next candidate block CB (7, 
13), containing abstract node “7′/10” is reduced into a new 2nd-order abstract node 
“7/13” marked with no conflict, and so on. In this way, the unified algorithm 
identifies and abstracts three 1st-order inline block, two 2nd-order inline block, and 
one 3rd-order inline block “1/15”, verifies all of them by verification rules, and 
concludes there is no structural conflict in the given workflow. Fig. 8(a) shows all 
blocks, marked with the resulting block activity nodes, in the normalized graph, and 
Fig. 8(b) summarizes the abstraction and verification process.  

4.5   Comments on Complexity 

The computational complexity of our method can be estimated in 3 phases: 
partitioning into acyclic subflows; identifying and abstracting inline blocks; and 
verification of inline blocks. Partitioning phase has the complexity of O(qr|T|) < 
O(|N|· |T|), letting q be the maximum feedback order and r be the average number of 
subgraphs that need to be further partitioned after identifying FNn, n < q [11]. 
Identifying and reducing inline blocks will have the complexity of O(c⋅n⋅t), which is 
less than O(|N|2⋅|T|), letting c be the number of candidate blocks checked, n be the 
average number of nodes in candidate block, and t be the average number incoming 
and outgoing transitions of a node in the given workflow. Exclusion of candidate 
blocks by two Theorems or by prior abstracted blocks will contribute to reduce this 
complexity. Block decomposition and feedback partitioning reduces the complexity of 
verification stage as a matter of n, not of |N| found in the other approaches, such as 
O((|N|+|T|)2⋅|N|2) even limited to acyclic models ([3], [20]). As noted above, this 
complexity is related with the control flow structure of the given workflow graph, 
such as the number of inline blocks. Simplified models with prior abstractions and 
introduction of simple pattern-based verification rules will further reduce this 
complexity.  

5   Concluding Remarks  

Our integrated algorithm of abstraction and verification is decomposition-oriented and 
can deal with workflows with nested feedback structures. Our verification algorithm 
can discover potential structural conflicts by analyzing each acyclic structure of 
blocks further simplified with prior abstractions and do not require prior recognition 
of complex process patterns whereas the graph reduction technique [23] relies on. 



 Decomposition-Based Verification of Cyclic Workflows 97 

 

Our work is related to three main studies in workflow verification, namely the 
graph reduction approach ([20], [23]), the Petri nets approach ([1], [4], [6], [27]), and 
the logic-based approach ([10], [22]).  While the block-based decomposition-oriented 
approach we proposed in this paper has unique strengths compared with these existing 
approaches such as the ability to deal with cycles, the use of activity-based models, 
and the ability to do blockwise decomposition. Furthermore, our work unifies process 
abstraction and verification while other verification techniques focus mainly on 
process verification.   

We plan to extend our research in two directions.  First, we will expand our 
algorithm to handle OR-nodes, which can be done by extending the lower-level 
algorithms without changing the overall procedure.  Although the Workflow 
Management Coalition (WfMC) standard does not yet contain OR-nodes, some 
researchers have proposed the explicit support of OR-nodes in workflow systems [6].  
Second, we plan to integrate a prototype system we have developed with a full-
fledged workflow system to test its scalability and usability in the presence of 
complex workflow patterns. 

References 

[1] Aalst, W. M. P. van der, “The Application of Petri Nets to Workflow Management”, The 
Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21-66, 1998. 

[2] Aalst, W. M. P. van der, “Workflow Verification: Finding Control-Flow Errors using 
Petri-net-based Techniques”, Lecture Notes in Computer Science, vol. 1806, pp. 161-183, 
2000. 

[3] Aalst, W. M. P. van der, “An alternative way to analyze workflow graphs,” 14th Int. Conf. 
On Adv. Info. Sys. Eng., pp. 535-552, 2002. 

[4] Aalst, W. M. P. van der and A. H. M. ter Hofstede, “Verification of workflow task 
structures: A Petri-Net-based Approach,” Information Systems, vol. 25, no. 1, pp. 43-69, 
2000. 

[5] Aalst, W.M.P. van der, A.H.M. ter Hofstede, and M. Weske, “Business Process 
Management: A Survey”, Lecture Notes in Computer Science, vol. 2678, pp. 1-12, 2003. 

[6] Adam, N. R., V. Atluri, and W. Huang. “Modeling and Analysis of Workflows using 
Petri Nets,” Journal of Intelligent Information Systems, vol. 10, pp. 131-158, 1998. 

[7] Aissi, S., P. Malu, and K. Srinivasan. “E-business process modeling: the next big step,” 
IEEE Computer, vol. 35, no. 5, pp. 55-62, 2002. 

[8] Basu, A. and R. W. Blanning, “A formal approach to workflow analysis,” Information 
Systems Research, vol. 11, no. 1, pp. 17-36, 2000. 

[9] Basu, A. and A. Kumar, “Research commentary: Workflow management issues in e-
Business,” Information Systems Research, vol. 13, no. 1, pp. 1-14, 2002. 

[10] Bi, H. H. and J. L. Zhao, "Mending the Lag between Commerce and Research: A Logic-
based Workflow Verification Approach," Computational Modeling and Problem Solving 
in the Networked World, Kluwer Academic Publishers, pp. 191-212, 2003. 

[11] Choi, Y., “A Two Phase Verification Algorithm for Cyclic Workflow Graphs”, Proc. of 
ICEB 2004, pp. 137-143. 

[12] Choi, Y. and J. L. Zhao, “Matrix-based abstraction and verification of e-business 
processes,” Proc.  the 1st Workshop on e-Business, pp. 154-165, 2002.  

[13] Fan, W. and S. Weinstein, “Specifying and reasoning about workflows with path 
constraints”, Lecture Notes in Computer Science, vol. 1749, pp. 13-15, 1999. 



98 Y. Choi and J.L. Zhao 

 

[14] Georgakopoulos, D., M. Hornick, and A. Sheth, “An overview of workflow management: 
from process modeling to workflow automation infrastructure”, Distributed and Parallel 
Databases, vol. 3, pp.119-153, 1995. 

[15] Gondran, M. and M. Minoux, Graphs and Algorithms, John Wiley & Sons Ltd., 1984. 
[16] Hofstede, A. H. M. ter, M. E. Orlowska, and J. Rajapakse, “Verification Problems in 

Conceptual Workflow Specifications,” Data and Knowledge Engineering, vol. 24, no. 3, 
pp. 239-256, 1998. 

[17] Kiepuszewski, B., Expressiveness and Suitability of Languages for Control Flow 
Modelling in Workflows, PhD thesis, Queensland University of Technology, Brisbane, 
Australia, 2002.  

[18] Kumar, A., and J. L. Zhao, "Dynamic Routing and Operational Controls in Workflow 
Management Systems," Management Science, vol. 45, no. 2, pp. 253-272, 1999. 

[19] Leymann, F., D. Roller, and A. Reuter, Production Workflow: Concepts and Techniques, 
Prentice-Hall, Englewood Cliffs, NJ, 2000. 

[20] Lin, H., Z. Zhao, H. Li, and Z. Chen, “A novel graph reduction algorithm to identify 
structural conflicts,” Proc. of the 35th Hawaii Int. Conf. On Sys. Sci., pp. 289, 2002. 

[21] Murata, T., “Petri nets: Properties, analysis, and applications”, Proceedings of the IEEE, 
vol. 77, no. 4, pp. 541-580, 1989. 

[22] Mukherjee S., H. Davulcu, M. Kifer, P. Senkul, and G. Yang, “Logic Based Approaches 
to Workflow Modeling and Verification”, In Logics for emerging applications of 
databases (editors, Chomicki et al.), Springer-Verlag, LNCS, 2003. 

[23] Sadiq, W. and M. E. Orlowska, “Analyzing process models using graph reduction 
techniques,” Information Systems, vol. 25, no. 2, pp.117-134, 2000. 

[24] Sheth, A. P., W. M. P. van der Aalst, and I. B. Arpinar, “Processes driving the networked 
economy,” IEEE Concurrency, vol. 7, no. 3, pp. 18–31, 1999. 

[25] Sivaraman, E. and M. Kamath, “ On the use of Petri nets for business process modeling”, 
11th Annual Industrial Engineering Research Conference, Orlando, Florida. 2002 

[26] Stohr, E. A. and J. L. Zhao, “Workflow automation: Overview and research issues,” 
Information Systems Frontiers, vol. 3, no. 3, pp. 281-296, 2001. 

[27] Verbeek, H. M. W., T. Basten, and W. M. P. van der Aalst, “Diagnosing workflow 
processes using Woflan,” Computer Journal, vol. 44, no. 4, pp. 246-279, 2001.  

[28] Workflow Management Coalition, Glossary. Document Number WfMC-TC-1011, 1999. 
[29] Workflow Management Coalition, Interface 1: Process Definition Interchange Process 

Model. Document Number WfMC TC-1016-P, 1999. 



Guaranteed Termination in the Verification of

LTL Properties of Non-linear Robust Discrete
Time Hybrid Systems�

Werner Damm1, Guilherme Pinto1, and Stefan Ratschan2

1 Carl v. Ossietzky Universität, Oldenburg, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We present a novel approach to the automatic verification
and falsification of LTL requirements of non-linear discrete-time hybrid
systems. The verification tool uses an interval-based constraint solver
for non-linear robust constraints to compute incrementally refined ab-
stractions. Although the problem is in general undecidable, we prove
termination of abstraction refinement based verification and falsification
of such properties for the class of robust non-linear hybrid systems, thus
significantly extending previous semi-decidability results. We argue, that
safety critical control applications are robust hybrid systems. We give
first results on the application of this approach to a variant of an aircraft
collision avoidance protocol.

1 Introduction

This paper significantly extends previous semi-decidability results for LTL veri-
fication of non-linear discrete time hybrid systems. Even though this problem is
in general undecidable (by reduction from 2 counter machines), we show, that
by exploiting the natural property of robustness of real-life hybrid systems, an
abstraction-refinement based approach—employing both approximations from
above and below—is guaranteed to terminate, either establishing the truth of
the requirement, or exhibiting a concrete counterexample, even for non-linear
hybrid systems. In contrast, results from Fränzle [8, 9]—also based on robust-
ness arguments—only handle polynomial flows (in a dense time setting). It also
improves over other approaches to hybrid systems verification [6, 16, 1, 15] in that
termination is guaranteed even for a very rich class of models.

The presented approach primarily targets safety critical control applications,
such as collision avoidance systems, where designs must guarantee separation
of traffic agents by safety margins even in the presence of noise and (bounded)
inaccuracies of sensors and actuators. Intuitively, for such applications, small
variances in measurements or small deviations of actuator settings may not lead
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 99–113, 2005.
Springer-Verlag Berlin Heidelberg 2005



100 W. Damm, G. Pinto, and S. Ratschan

to a violation of safety margins between traffic agents. We will give a formal
definition of this intuitive concept of robustness, which will be instrumental
in establishing termination. The approach will be illustrated by an air traffic
conflict resolution example [10], where aircraft follow circular trajectories along
opposite directions, leading to a non-linear hybrid system.

As mathematical model we use discrete time hybrid automata, which in each
time step of fixed duration update a set of real-valued variables as determined
by assignments occurring as transition labels, allowing possibly non-linear arith-
metic expressions. This subsumes the capability to describe the evolvement of
plant variables by difference equations. Transition guards can be non-linear arith-
metic constraints. Steps of the automata are assumed to take a fixed time-period
(also called cycle-time), intuitively corresponding to the sampling period of the
control unit, and determine the new mode and new outputs (corresponding to
actuators) based on the sampled inputs (sensors). We allow arbitrary first-order
LTL formulas as requirements. Atoms are arithmetic constraints over the vari-
ables of the hybrid automaton, thus allowing to both express response time
requirements (such as “when crash sensor is activated, the airbag will be ignited
within 3 cycles”), stability properties such as ”the aircraft will be maintained at
preselected height”, as well as safety properties (such as “the distance between
two aircraft will always be greater than 10 km”).

The decision to base our analysis on discrete time models of hybrid systems is
motivated from an application perspective. Industrial design flows for embedded
control software typically entail a transition from continuous time models in early
analysis addressing control law design, to discrete time models in modeling tools
such as Scade , ASCET , or TargetLink 1, as a basis for subsequent auto-
code generation. Current industrial practice relies on informal verification of
this design step, typically by simulation. For example, if design engineers have
decided to implement a certain control law as a periodic task with periodicity
δ, then simulation would be used to ”verify” that stability of the controller is
maintained in spite of the now limited observability of the plant at the chosen
sampling rate δ. The methods of this paper replace this informal validation step.
They allow to formally prove that—even under the limited discrete time visibility
of the plant—LTL requirements, and thus both stability properties as well as
safety requirements, are guaranteed by the controller.

To our knowledge, the previous work on abstraction (and refinement) for
hybrid systems consider a continuous time model. Because of this, a direct com-
parison of the employed algorithms is not possible. We can, nevertheless, observe
some differences w.r.t. the way they compute the abstraction.

While, for example, also tools such as Hypertech [10] and Checkmate [5]
do support analysis of non-linear systems, with Checkmate offering the highly
optimized flow-pipe representation technique, none of these can guarantee ter-
mination for proving temporal properties of hybrid systems. We also note the
potential unsafeness of the Checkmate approach in the construction of the ab-

1 Scade is a trademark of Esterel Technologies, France, ASCET is a trademark of
ETAS GmbH, Germany, TargetLink is a trademark of dSpace GmbH, Germany.



Guaranteed Termination in the Verification of LTL Properties 101

stract transition relation due to rounding errors – in contrast, our constraint
solver guarantees, that rounding errors are conservatively over-approximated in
refinement steps. The high potential of interval-based evaluation methods for
hybrid system verification has already been demonstrated for chemical plant ap-
plications [16] for a more restricted logic, and without termination guarantees.

There are mechanisms for approximating non-linear continuous-time hybrid
systems by rectangular automata arbitrarily closely [11]. However, the approx-
imation has to be done manually, and even verifying only rectangular safety
properties on the resulting approximation is still an undecidable problem.

Due to the page limit, we could not include all proofs and formalizations,
and had to be selective on the included references.

The paper is organized as follows: Section 2 elaborates the notion of robust
hybrid systems, leading to a new notion of robust satisfaction and robust falsifica-
tion of LTL properties; Section 3 shows how to approximate robust satisfaction
from above and robust falsification from below by exact satisfaction/falsification
on finite approximations, and proves, that for any property that is robustly sat-
isfied (falsified) by a (non-linear) robust hybrid system, one can find a finite
approximation that establishes this fact; Section 4 casts this into a terminating
abstraction refinement algorithm and illustrates its power by application to a
non-linear collision avoidance example; and Section 5 concludes the paper.

2 Robust Hybrid Systems

The authors have substantial experience in analyzing industrial control unit
designs for automotive [2–. . . ] and avionics applications [3–. . . ]. Based on this,
we derive the following observations:

– For any sensor inputs, a combination of filtering, plausibility checking and
voting will be used to derive what is often called validated inputs.

– This preprocessing will in particular guarantee a minimal separation between
values assumed by validated inputs, in the following sense: assume, that
v ≤ 5 appears as guard of a transition, then altering the guard to v ≤ 5± ε
for some ε smaller than a sensor-dependent constant does not change the
mode-switching behavior of the system.

– To take into account noise on actuators and un-modeled disturbances, the
controller will enforce a safety margin, separating all legal undisturbed runs
from forbidden plant regions by some minimal application dependent con-
stant (catering for noise and disturbances). To this end, deviations induced
by disturbances and noise on actuators are detected using closed-loop con-
trol, and correcting actions to avoid forbidden states are designed to cater
for this difference between ideal and measured trajectories.

Designers hence solve the task to guarantee a safety property ϕ even in the
presence of noise on sensors and actuators and un-modeled disturbances. This
entails, that the classical notion of satisfiability is in fact too weak. What is called
for, is a notion of robust satisfiability, which guarantees ϕ even in the presence



102 W. Damm, G. Pinto, and S. Ratschan

of small bounded uncertainties. In the remainder of this section, we will derive
a formal definition of such a notion of robust satisfiability.

For formally modeling discrete time hybrid systems we assume a finite set
{m1, . . . , mn} of modes, and a finite set X = {x1, . . . , xk} of real-valued vari-
ables (in the formal development, we do not further distinguish between sensors,
variables, and actuators). We use constraints to specify the transition relation,
with primed variables describing the successor mode, respectively constraints on
new valuations of variables. We also explicate the predicates observable on the
hybrid system, which define the atomic predicates to be used in first-order LTL
requirement specifications on our systems.

Definition 1

– An arithmetic expression over a set of variables V is a term (in the predicate-
logical sense) over these variables with function symbols in {+,×, ,̂ sin, cos,
exp}.

– An atomic arithmetic state space constraint over a set of variables V is of
the form e r c, where e is an arithmetic expression over V , r ∈ {�=, =, <, >
,≤,≥} is a relational operator, and c is a real-valued constant.

– A mode constraint over a set of variables Mode is of the form mode = mj,
where mode ∈ Mode.

– A state space constraint over a set of variables V and a set of variables
Mode is a Boolean combination of atomic arithmetic state space constraints
over V and mode constraints over Mode.

– A transition constraint over V and Mode is a state-space constraint over
V ∪ V ′ and Mode ∪Mode′, where the primed sets denote the set of primed
variables of the corresponding unprimed sets.

Definition 2 (discrete time hybrid system). A discrete time hybrid system
S is a tuple S = (τ,π0,π1, . . . ,πk, δ) where

– τ is a disjunction of transition constraints over X and {mode} of the form
mode = m ∧ guard ∧mode′ = m′ ∧ transitions where
• guard is a conjunction of atomic arithmetic state space constraints over

X,
• transitions is a conjunction of atomic arithmetic state space constraints

over X ∪X ′.
– π0 is a state space constraint over X and {mode}, restricting the initial

valuation, and
– π1, . . . ,πk are additional state space constraints over X and {mode}, over

which we will later form LTL queries (the observed propositions),
– δ is the sampling rate in time units, a positive real number.

Discrete time hybrid systems are sufficiently expressive to express both plant dy-
namics as well as (possibly hybrid) controllers. Time is modeled implicitly, in that
each step corresponds to a fixed unit delay δ, as motivated in the introduction.

Our example is a discretized variant of an aircraft collision avoidance pro-
tocol [10] exhibiting non-linear dynamics. Two aircraft, flying in a straight line



Guaranteed Termination in the Verification of LTL Properties 103

Initial region

x

Unsafe region

8

f

4

Aircraft two

y

Fig. 1. Air traffic control protocol

and orthogonal trajectories at the same altitude, initiate a collision avoidance
maneuver when the distance between them reaches 8 miles. Both aircraft turn
90 degrees to the right and start a semi-circle trajectory to the left, as shown
in Fig. 1, with fixed angular velocities. The linear velocity is also fixed and
the same for both aircraft. After completing the semi-circle, they resume their
original trajectories.

We want to assure that their distance never becomes smaller than 4 miles.
Let the angular velocity of aircraft one be 0.95 rad/s and that of aircraft two
be 1 rad/s (note that, since they have equal linear velocity, they will follow
trajectories with different radius). The relative position of aircraft two (x, y)
(i.e., the plant dynamics), illustrated in Fig. 1, is given by the constraint below,

f ′ = f + δ ∗ (0.05) ∧ x′ = x + δ ∗ (y − 1 + cos(f)) ∧ y′ = y + δ ∗ (sin(f)− x)

where f is the angle between the vector speed of aircraft two relative to the
vector speed of aircraft one, δ is the sampling period of the controller in seconds,
which determines the three difference equations; and the initial region is f =
1.57 ∧ x2 + y2 = 64 ∧ x > 0 ∧ y < 0, which models an initial distance of 8
miles, restricted to the cases where the intersection of the trajectories lies ahead
of both aircraft.

Definition 3

– A valuation σ is a mapping X ∪ {mode} → IR ∪ {m1, . . . , mn} assigning a
real value to each variable in X and a mode to the variable mode. We denote
the set of all valuations by Σ.

– We denote by [[π]] the set of all valuations satisfying a state space constraint
π, and similarly by [[τ ]] the set of pairs of valuations 〈σ,σ′〉 satisfying the
transition constraint τ , where primed (resp. unprimed) variables are inter-
preted over σ′ (resp. σ).

– Given a set Γ , we call a tuple (→,Q0,Q1, . . . ,Qk), with →⊆ Γ × Γ , and
Q0, . . . ,Qk ⊆ Γ , an (extended) transition system over Γ

– Given a hybrid system (τ,π0,π1, . . . ,πk, δ) we denote by [[(τ,π0,π1, . . . ,πk, δ)]]
the transition system ([[τ ]], [[π0 ]], . . . , [[πk]]) over Σ.

– A run of a system (τ,π0,π1, . . . ,πk, δ) is a mapping θ : IN → Σ such that
for all t ∈ IN, 〈θ(t), θ(t + 1)〉 ∈ [[τ ]].



104 W. Damm, G. Pinto, and S. Ratschan

We use first-order LTL formulas such as G ¬ x ≥ 10 to formalize require-
ments on discrete time hybrid systems. Still, the results of this paper hold for
any temporal logic using only universal path quantifiers, such as ACTL∗. Since
steps have a defined duration, real-time constraints can be expressed using the
next-time operator. As atoms we allow the observed propositions π0, . . . ,πk. We
employ standard syntax and semantics of LTL as can be found in various text-
books [7]—the needed adaption to our definition of extended transition system
is a trivial exercise. Especially we write T |= ϕ to signify that the extended
transition system T satisfies ϕ.

Note that we do not treat the state space constraint π0 that specifies the
initial states special in any way (e.g., by allowing only runs that start in an
initial state). Instead, we encode initial states into the queries by using LTL
formulae of the form π0 → ϕ (i.e., ¬π0 ∨ ϕ).

Robustness of a hybrid system S is defined relative to a temporal specification
ϕ: it requires, that the validity of ϕ does not depend on small perturbations
of S’s transition relation. The formal definition is based on a metric between
arithmetic constraints [13]. For S to be robust wrt. ϕ requires the existence of
a bound ε, such that if ϕ holds in S, then it must also hold in any S′ whose
transition predicate has distance at most ε from the transition predicate of S.
Intuitively, this entails that avoiding forbidden plant states may not depend on
small inaccuracies of sensors or actuators. Indeed, controller designs in which
changing a guard of the form e r c to e r (c±ε) (mirroring sensor inaccuracy) or
changing an actuator setting from a′ = e to an assignment a′ = e± ε (modeling
a small error in actuator settings) causes forbidden states to be reached would
not be acceptable (and not “robust”, under our formal definition).

We now define these concepts more formally;

Definition 4

– The distance between two valuations σ1,σ2 is defined by d(σ1,σ2)
.=

• ∞, if σ1(mode) �= σ2(mode), and
• sup{d(σ1(x),σ2(x)) | x ∈ X}, where d(a, b) .= |a− b|, otherwise.

– The distance between two atomic arithmetic constraints e r c and e′ r′ c′ (we
assume that all arithmetic constraints have been brought into this form) is
defined by d(e r c, e′ r′ c′) .= ∞, if e �= e′ or r �= r′, and d(c, c′), otherwise.

– The distance between two mode constraints mode = mi and mode = mj is
∞ if mi �= mj and 0, otherwise.

– The distance between two constraints φ, φ′ is defined by d(φ,φ′) .=
• ∞, if φ and φ′ have a different Boolean structure or do not have mode

constraints at the same places, and
• the maximum of the distance between two corresponding atomic (arith-

metic or mode) constraints, otherwise.

The key definition of this paper, reported below, captures our intuition that
safety properties should be guaranteed even under disturbances, as long as these
are bounded by some ε. To this end, we define a non-standard semantics of



Guaranteed Termination in the Verification of LTL Properties 105

discrete time hybrid systems that allows transitions that miss the original tran-
sition predicate only by a slight margin below some ε. For a safety property to
be robustly satisfied, there must exist a degree of perturbation ε > 0 such that
the safety property is true in all ε-perturbed systems.

Definition 5. A set P is an ε-perturbed solution set of a constraint φ iff

– for every x ∈ P , there is a constraint φ∗ with d(φ,φ∗) ≤ ε and an x∗ with
d(x, x∗) ≤ ε such that x∗ |= φ∗, and

– for every x �∈ P , there is a constraint φ∗ with d(φ,φ∗) ≤ ε and an x∗ with
d(x, x∗) ≤ ε such that x∗ �|= φ∗.

Definition 6. A transition system (→,Q0,Q1, . . . ,Qk) is an ε-perturbed man-
ifestation of a hybrid system (τ,π0,π1, . . . ,πk) iff → is an ε-perturbed solution
set of τ , and for each i ∈ {0, . . . , k}, Qi is an ε-perturbed solution of πi.

From now on let S be a hybrid system of the form (τ,π0,π1, . . . ,πk, δ).

Definition 7. An LTL formula ϕ is satisfied by S with robustness ε (S |=ε ϕ)
iff for all ε-perturbed manifestations T of S, T |= ϕ. An LTL formula ϕ is
robustly satisfied by S (S|≡ ϕ) iff there is an ε > 0 such that S |=ε ϕ.

For example, a system that starts in state x = 0 and evolves according to
the transition constraint x′ = x, satisfies the LTL formula G¬x ≥ 1, but does
not robustly satisfy it, because any transition constraint of the form x′ = x + ε,
with ε > 0, will eventually violate the constraint ¬x ≥ 1.

Definition 8. An LTL formula ϕ is falsified by S with robustness ε iff for all ε-
perturbed manifestations T of S, T �|= ϕ. An LTL formula ϕ is robustly falsified
by S iff there is an ε > 0 such that ϕ is falsified by S with robustness ε.

For example, a system that starts in a state fulfilling 0 ≤ x ≤ 1, and evolves
according to the transition constraint x ≤ x′ ∧ x′ ≤ x + 1/10 robustly falsifies
the LTL formula G¬x ≥ 10.

3 Effective Construction of Finite Abstractions with
Bounded Imprecision

Our approach follows the abstraction refinement paradigm. In contrast to previ-
ous approaches, we are able to prove termination of the refinement loop. In this
section we introduce the key instrument—a bound on the degree of imprecision
introduced by abstraction. By proving that incremental refinements make the
degree of imprecision converge to zero, any desired degree of precision can be
reached. We also show in this section, that such abstractions can be efficiently
computed even for non-linear hybrid systems, using interval arithmetic. Section
4 puts all pieces together in defining an algorithm for proving robust first-order
LTL properties and proving its termination.



106 W. Damm, G. Pinto, and S. Ratschan

From now on, we fix a discrete time hybrid system S = (τ,π0,π1, . . . ,πk, δ),
and a LTL requirement ϕ on S over the atoms π0, . . . ,πk. For the rest of the
development, it will be convenient to assume, that negations occur only in lit-
erals, and that all atoms appear under the scope of a negation (this can eas-
ily be achieved by adapting the relational operators in arithmetic constraints).
This allows us to over-approximate the behavior of a hybrid system by over-
approximating the observed propositions π0, . . . ,πk in the same direction as the
transition relation τ , allowing more uniformity in the algorithms and proofs.
So, by over-approximating the solution set of π0 and π1 in a query of the form
G(¬π0 ∨ F¬π1), we under-approximate the literals ¬π0 and ¬π1.

It is easy to prove that the ε-perturbed solution sets of a constraint have a
maximal and a minimal element wrt. the partial order ⊆. This holds for every
constraint defining a hybrid system, and so we denote the transition system
given by the resulting maximal elements by [[S]]ε, and the transition system give
by the resulting minimal elements by [[S]]

ε
.

For checking satisfiability/falsification with a certain robustness ε it suffices
to check it on the maximal perturbed system [[S]]ε/the minimal perturbed sys-
tem [[S]]

ε
:

Lemma 1. S |=ε ϕ iff [[S]]ε |= ϕ, S �|=ε ϕ iff [[S]]
ε
�|= ϕ.

However, it is as hard to check LTL formulae against the maximal/minimal
perturbed system as against the original, unperturbed system.

Hence we use abstractions that approximate the behavior of the original
system, and then we measure the approximation error introduced by these ab-
stractions. For this we formalize the intuition that one system can show all the
behavior of another system. Here we use a notion of simulation that is slightly
different from the usual one in the literature which allows a uniform treatment
of the initial state predicate and the other (explicitly defined) observables of the
system.

Definition 9. Let T be a transition system over Γ of the form (→,Q0, . . . ,Qk)
and let T ′ be a transition system of the form (→′,Q′0, . . . ,Q′k) over Γ ′. Then a
relation H ⊆ Γ × Γ ′ is a (uniform) simulation relation iff

– for every i ∈ {0, . . . , k}, for all s, s′ such that H(s, s′), s ∈ Qi implies s′ ∈ Q′i,
and

– for all s, s1 with s → s1 there are s′, s′1 with s′ → s′1, H(s, s′) and H(s1, s
′
1).

If there is such a simulation relation then we say that T ′ simulates T (T ′ � T ,
T � T ′).

Analogously to classical simulation (c.f., e.g. Clarke et. al. [7–chapter 11]),
we have:

Lemma 2. For every transition system T and T ′, for every LTL formula ϕ, if
T � T ′ then T ′ |= ϕ implies T |= ϕ.



Guaranteed Termination in the Verification of LTL Properties 107

So, for showing satisfiability we will try to construct transition systems that
simulate the original system, and for falsification transition systems that are
simulated by the original system.

We start with the problem of showing satisfiability. Here we use predicate
abstraction, tuned to our application domain of hybrid systems. In this frame-
work, the abstract state space is given by a finite set of first-order predicates
P , which jointly cover the concrete state space, that is for all σ in Σ there is a
p ∈ P such that σ ∈ [[p]]. Different approaches for finding P have been discussed
in the literature. For example, an initial set of predicates can be derived from
transition guards and atomic formulas in the specification logic [4]; or a certain
class of predicates, such as convex polyhedra [5], or hyper-rectangles [15] can
be used.

For a given set of predicates P , we construct an abstraction αP (S) (tightest
abstraction) simulating [[S]]. It is a transition system whose transition relation
is the set of all 〈p, p′〉 for which there is a pair 〈σ,σ′〉 ∈ [[τ ]] such that σ |= p
and σ′ |= p′. The set of initial states, and the observed propositions are defined
canonically as the set of all p for which there is a σ ∈ [[πi]] such that σ |= p. It
is obvious that the satisfaction relation |=⊆ Σ × P defines a simulation relation
between the concrete infinite state transition system [[S]] and αP (S), hence for
all first-order LTL formulas ϕ, αP (S) |= ϕ implies S |= ϕ.

Note that here the abstract transition relation also might contain self-loops,
that is transitions from a predicate to itself.

We now introduce the notion of the diameter of predicate abstraction to later
measure the degree of imprecision introduced by an abstraction.

Definition 10. The diameter diam(p) of a predicate p ∈ P is defined as the
supremum of {d(σ,σ∗) | σ ∈ [[p]],σ∗ ∈ [[p]]}. The diameter diam(P ) of a predicate
abstraction over P is defined as the maximal diameter of a predicate in P.

To bound the degree of imprecision of abstraction we will ensure that for
every ε > 0 the abstraction eventually only represents a ε-perturbation of S.
Hence, the query will eventually be proven on the abstraction. Here we will
measure the perturbations against the original system not from the abstraction
directly, but from the following system represented by the abstraction:

Definition 11. A transition system (→,Q0,Q1, . . . ,Qk) over a set of predicates
P represents the transition system

γ(→,Q0, . . . ,Qk) .= (γ(→), γ(Q0), γ(Q1), . . . , γ(Qk)),

where γ(R) =
⋃

p∈R[[p]].

It is not hard to prove that, using =| (i.e., |= with switched arguments) as
a simulation relation, for every transition system T over P , γ(T ) simulates T .
Hence any query ϕ that is satisfied by γ(T ) is also satisfied by T , and in particular
γ(αP (S)) |= ϕ implies that model checking the abstraction will succeed, that is
αP (S) |= ϕ.



108 W. Damm, G. Pinto, and S. Ratschan

So we are left with the task of showing that γ(αP (S)) will be sufficiently close
to [[S]]. Here we use the result that the distance between the tightest abstraction
of S over predicates P and S itself is bounded by the diameter of P .

Theorem 1. [[S]]diam(P ) simulates γ(αP (S)).

We do not include the proof since it can be adapted from the proof of
Theorem 2 below. To sum up, an abstraction αP (S) only introduces bounded
perturbations since it can be sandwiched between the exact system [[S]] and
its perturbed version [[S]]diam(P ) due to the simulation result [[S]] � αP (S) �
γ(αP (S)) � [[S]]diam(P ).

The tightest abstraction can be constructed effectively, if we do not allow
the transcendental function symbols sin, cos, exp in our constraints. For this we
decide satisfiability of p(x1, . . . , xk)∧ τ(x1, . . . , xk, x′1, . . . , x

′
k)∧ p(x′1, . . . , x

′
k) for

defining the abstract transition relation, respectively p∧πi for determining the set
of initial states and observed propositions. However, due to the huge complexity
of the corresponding decision procedure, this approach is not viable in practice.

Consider thus a predicate abstraction of S, where each predicate p is a hyper-
rectangle, or box, of the form

∧
i∈{1,...,k} ci,l ≤ xi ≤ ci,u. Assume furthermore,

that the state space is bounded by a box B0. In this case the computational
effort in constructing the abstract transition relation can be drastically reduced
by using interval arithmetic based tests instead of full decision procedures (the
cost of a single test reduces from non-elementary in the number of variables
to linear in the expression size). Moreover, this does not restrict the allowed
function symbols to addition and multiplication. In this approach, transitions
from box p to box p′ are only added, if they cannot be excluded by interval
arithmetic. We thus further abstract from the concrete transition behavior.

More specifically, we evaluate terms over boxes by extending all function sym-
bols f to corresponding functions f I over intervals. For example, the arithmetic
expression xy+1 for a box that restricts x to [−1, 1], and y to [1, 2], evaluates to
[−1, 1][1, 2] +I [1, 1] = [−2, 2] +I [1, 1] = [−1, 3]. Given an arithmetic expression
e and a box B we denote by I(e)(B) the interval evaluation of e over B.

The properties of interval evaluation of terms have been widely studied [12].
Here we use a version that is extended to constraints. Using the Booleans {F,T}
with the order F < T one can form Boolean intervals, which allows us to extend
relations and connectives to intervals in a similar way as above. Hence we can
evaluate Boolean combinations of equalities and inequalities over intervals. The
formalization of this is a trivial exercise. For example, the evaluation of the
constraint 2x ≥ 0∨x−2 ≥ 0 over a box restricting x to [1, 3] yields [2, 2][1, 3] ≥I

[0, 0] ∨I [1, 3]− [2, 2] ≥I [0, 0] = [2, 6] ≥I [0, 0] ∨I [−1, 1] ≥ [0, 0] = [T,T] ∨I

[F,T] = [T,T]. One can easily incorporate mode constraints by employing
mode/box pairs 〈m, B〉 and evaluating a constraint of the form mode = mi to
[T,T] iff m = mi and to [F,F], otherwise.

Whenever such an evaluation yields an interval [F,F] we know that the corre-
sponding constraint cannot hold. So we get a conservatively over-approximated
satisfaction relation |=I such that B |=I φ iff T ∈ I(φ)(B) (so B �|=I φ tells us



Guaranteed Termination in the Verification of LTL Properties 109

that φ cannot be satisfied by an element of B, whereas B |=I φ does not tell us
anything since in the case when I(φ)(B) = {F,T}, T might be spurious due to
over-approximation).

From Lipschitz continuity of interval evaluation [12–Theorem 2.1.1], it is easy
to derive the following convergence result for interval evaluation of terms:

Lemma 3. For every arithmetic expression e with function symbols in the set
{+, ∗, ,̂ exp, sin, cos}, denoting a function [[e]] and box B there is a function E :
IR+ → IR+ such that limx→0 E(x) = 0, and for every box B′ with [[B′]] ⊆ [[B]],
for all y ∈ I(e)(B′), there is an x ∈ [[B′]] such that d([[e]](x), y) ≤ E(diam(B′)).

Now we can bound the approximation of interval satisfaction on constraints:

Lemma 4. For every constraint φ, mode m and box B there is a function E :
IR+ → IR+ with limx→0 E(x) = 0, such that for every box B′ with [[B′]] ⊆ [[B]],
〈m, B′〉 |=I φ implies that there is a φ∗ with d(φ,φ∗) ≤ E(diam(B′)) and an
x ∈ [[B′]] such that 〈m, x〉 |= φ∗.

Proof. Let φ, m, and B be arbitrary but fixed. Let us first assume that φ is
an atomic arithmetic constraint of the form e ≥ c. Choose E as provided
by Lemma 3, let B′ be arbitrary, but fixed, and assume B′ |=I e ≥ c. In the
case when I(φ)(B′) = {T}, the rest is trivial. In the case when I(φ)(B′) =
{F,T}, c ∈ I(e)(B′) and we can choose y = c in Lemma 3, which provides
a corresponding x ∈ [[B′]] such that d([[e]](x), c) ≤ E(diam(B′)). This implies
[[e]](x) ≥ c−E(diam(B′)). Choosing φ∗ as e ≥ c−E(diam(B′)) clearly d(φ,φ∗) ≤
E(diam(B′)) and 〈m, x〉 |= φ∗.

The case of other atomic constraints with different relation symbols are simi-
lar, and the case of mode constraints is trivial. In the case where φ is non-atomic
we can choose E as the maximum of the E’s of its atomic sub-constraints and
choose φ∗ by taking for each atomic constraint the corresponding constraint con-
structed above. ��

Note that in practice—in order to ensure efficiency—interval arithmetic is
usually implemented using floating point arithmetic. In that case, all the nec-
essary operations are rounded outwards. So, differently from other methods, we
preserve correctness also under the presence of rounding. Still, it might be neces-
sary to increase the precision during computation in order to ensure convergence.
However, experience has shown that this case does not arise in practice except
for specifically constructed examples.

Now, by using the over-approximated satisfiability |=I we get another ab-
straction αI

P (S) for a given set of boxes P . Since |=I over-approximates |=, also
αI

P (S) ⊇ αP (S), and hence γ(αI
P (S)) ⊇ γ(αP (S)). Still, we can bound the

over-approximation introduced by interval abstraction:

Theorem 2. There is a function E : IR+ → IR+ with limx→0 E(x) = 0, such
that given a set of boxes P , [[S]]E(diam(P )) simulates γ(αI

P (S)).

Proof. Let αI
P (S) be of the form (→,Q1, . . . ,Qk). Let Eτ be the function given

by Lemma 4 for the transition constraint τ of S and the box B0 bounding



110 W. Damm, G. Pinto, and S. Ratschan

the state space, and Eπ1 , . . . , Eπk
be the functions given by Lemma 4 for the

state space constraints π1, . . . ,πk of S and the bound of the state space B0.
Let E(x) .= max{x, Eτ (x), Eπ1 (x), . . . , Eπk

(x)}. We prove that [[S]]E(diam(P )) ⊇
γ(αI

P (S)), with ⊇ interpreted element-wise.

– For an arbitrary, but fixed i ∈ {0, . . . , k}, for proving that every element σ of
γ(Qi) is in the corresponding element of [[S]]E(diam(P )), we prove that it is an
element of an E(diam(P ))-perturbed solution set of the corresponding state
space constraint πi. Observe that, by Definition 11, there is a corresponding
element p of Qi such that σ |= p. By definition of interval abstraction,
p |=I πi. So, by Lemma 4, there is a π∗i with d(πi,π

∗
i ) ≤ Eπi(diam(P )), and

σ∗ with σ∗ |= π∗i . Since diam(p) ≤ diam(P ), also d(σ,σ∗) ≤ diam(P ). So,
by Definition 5, every element σ of γ(πi) satisfies the transition constraint
up to E(diam(P )).

– For proving that every element 〈σ,σ′〉 of γ(→) is in the corresponding
element of [[S]]E(diam(P )), we have to prove that it is an element of an
E(diam(P ))-perturbed solution set of the transition constraint τ . Observe
that by Definition 11 there is a corresponding transition 〈p, p′〉 in → such
that σ |= p, and σ′ |= p′. By definition of interval abstraction, 〈p, p′〉 |=I τ .
So, by Lemma 4, there is a constraint τ∗ with d(τ, τ∗) ≤ Eτ (diam(P )), and
〈σ∗,σ′∗〉 with 〈σ∗,σ′∗〉 |= τ∗. Since diam(p) ≤ diam(P ) and diam(p′) ≤
diam(P ), also d(σ,σ∗) ≤ diam(P ) and d(σ′,σ′∗) ≤ diam(P ). So, by Defini-
tion 5, every element 〈σ,σ′〉 of γ(→) satisfies the transition constraint up to
E(diam(P )). ��

We have thus shown how to construct a finite abstraction of non-linear dis-
crete time hybrid systems that simulates the original system and whose precision
can be arbitrarily increased. In the next section, we will use these results in the
development of an algorithm for proving robust satisfaction of LTL formulas of
discrete time hybrid systems.

Now we also construct a finite abstraction that under-approximates the orig-
inal system, that is, that is simulated by it. For this choose a sample point s(p)
for every predicate p ∈ P . Then let αP be the transition system whose transition
relation is the set of all 〈s(p), s(p′)〉 such that p, p′ ∈ P , and 〈s(p), s(p′)〉 |= τ ,
and for which for every i ∈ {0, . . . , k}, the i-th observed proposition contains
the set of all s(p) such that p ∈ P , s(p) |= πi. Then we have:

Theorem 3. [[S]]
diam(P )

� αP (S) � [[S]]

Proof. Assume that [[S]]
diam(P )

has the form (→,Q0,Q1, . . . ,Qk), and αP (S)

has the form (→′,Q′0,Q
′
1, . . . ,Q

′
k). Proving αP (S) � [[S]] is easy, using the iden-

tity simulation relation. For proving [[S]]
diam(P )

� αP (S) we use the simulation

relation H
.= {(x, s(p)) | p ∈ P, x |= p}:

– Let i ∈ {0, . . . , k} be arbitrary, but fixed. Let x ∈ Qi. Due to the definition of
[[S]]

diam(P )
we know that for all constraints π∗i with d(πi,π

∗
i ) ≤ diam(P ) and



Guaranteed Termination in the Verification of LTL Properties 111

x∗ with d(x, x∗) ≤ diam(P ), x∗ |= π∗i . We have to prove that for all x′ with
H(x, x′), x′ is in the corresponding element Q′i of αP (S). By definition of H
this means to prove that for all p with p ∈ P and x |= p, s(p) ∈ Q′i. Clearly
this holds since the distance between x and s(p) is smaller than diam(P ),
and hence s(p) |= πi, that is, s(p) ∈ Q′i.

– Let x, x1 be such that x → x1. Due to the definition of [[S]]
diam(P )

we

know that for all constraints τ∗ with d(τ, τ∗) ≤ diam(P ) and x∗, x∗1 with
d(x, x∗) ≤ diam(P ) and d(x1, x

∗
1) ≤ diam(P ), 〈x∗, x∗1〉 |= τ∗. Let x′ be such

that H(x, x′), and x′1 such that H(x, x′1). We prove that x′ →′ x′1. By defi-
nition of H this means to prove that for all p, p1 with p, p1 ∈ P , x |= p, and
x1 |= p1 we have that s(p) →′ s(p1). Clearly this holds since the distance
between x and s(p) is smaller than diam(P ), and the distance between x1

and s(p1) is smaller than diam(P ), and hence 〈s(p), s(p1)〉 |= τ , that is,
s(p) →′ s(p1). ��

Hence, instead of falsifying an LTL formula against the original system S we
can check it against αP (S). Moreover, by letting the diameter of P go to zero,
this check will eventually succeed for robust systems.

4 Proving Robust Satisfaction and Falsification

Now assume as given a temporal specification ϕ ∈ LTL, with the arithmetic
atoms Π = {π0, . . . ,πn} occurring negatively. Since the aim of the current paper
is to establish the overall approach, we only give a basic algorithm for abstrac-
tion refinement, which can be significantly improved according to the directions
outlined below. The key result of this section is, that the abstraction refinement
algorithm is guaranteed to terminate, if ϕ is robustly satisfied by S.

The basic algorithm creates a sequence of finer and finer partitions P0, P1, . . ..
If at a certain iteration m, αPm

(S) falsifies ϕ, we terminate with the result that
ϕ is robustly falsified in S. If αI

Pm
satisfies ϕ, we terminate with the result that ϕ

is robustly satisfied by S. Here we start with P0 = {B0} as the initial partition,
and refine a given partition by splitting the largest box in Pm along the biggest
side-length to obtain Pm+1.

The following main result opens a new line of attack to the verification of
non-linear hybrid systems.

Theorem 4. The basic algorithm is guaranteed to terminate with definite an-
swer if S robustly satisfies ϕ or ϕ is robustly falsified by S.

Proof. The abstraction refinement procedure ensures that the diameter of the
abstraction goes to zero. If S robustly satisfies ϕ, the fact that γ(αI

Pm
(S)) sim-

ulates αI
Pm

(S) due to Theorem 2, and transitivity of simulation implies that
αI

Pm
(S) is simulated by [[S]]ε with ε going to zero as m goes to infinity. Let r > 0

be such that [[S]]r |= ϕ which is ensured by robustness. Thus, there is an m,
from which on ε will be smaller than r. Then αPm(S) |= ϕ and the algorithm
succeeds. The case where ϕ is robustly falsified in S is similar. ��



112 W. Damm, G. Pinto, and S. Ratschan

Note that this theorem also includes robust progress properties. In that case,
the algorithm will eventually remove all unnecessary transitions in the abstrac-
tion that lead from a predicate to itself.

Clearly, further work is needed, to make this algorithm practically efficient.
Still—in order to evaluate its efficiency potential—we have implemented it, with
small improvements similar to the continuous time case [15], and based on the
constraint propagation engine of RSolver [14]. Already in this basic form, the
algorithm yields promising results for realistic examples.

For our example, for δ = 0.6, our interval arithmetic prototype computes
in about 20 seconds an abstraction having only 100 boxes, whose safety can be
easily checked with a finite state model checker like NuSMV. This proves the
safety of the discretized version of the problem, demonstrating that a safety
margin of the planes is maintained.

The base algorithm is compatible with many of the optimization techniques
for abstraction refinement. Promising directions for optimization currently under
investigation in the large scale collaborative research project AVACS include:

Initial Partitioning: We refine B0 to approximately discriminate all guards
and arithmetic constraints in Π , over-approximating their shapes by boxes. This
approach is already realized as part of another research activity for verification
of hybrid systems based on predicate abstraction techniques [4].

Counterexample guided abstraction refinement: We incrementally analyze
counterexample fragments for concretization [6]. We do so, by applying the
constraint propagation based solver for non-linear constraints [14] to the cor-
responding first-order formula. If the constraint is unsolvable, we dismiss the
counterexample fragment as spurious by encoding the corresponding informa-
tion into an automata representation of the abstraction.

Local search for counter-examples: Instead of just testing samples in the
abstract states for counter-examples, we use local search (based on a Newton-
like method) to find samples that form counter-examples.

5 Conclusion

This paper opens a novel line of attack to the verification of non-linear hy-
brid systems. We have argued for the naturalness of the notion of robust sat-
isfaction, and demonstrated how to construct a series of increasingly more ac-
curate abstractions, guaranteed to converge to a sufficiently precise model to
prove temporal specifications of hybrid systems in a rich specification logic
with first-order arithmetic constraints, able to express real-time requirements.
Though we have chosen LTL as the temporal framework in this paper, the
development only exploits safeness of the constructed abstractions; it is well
known [7], that also ACTL* properties are preserved under the performed ab-
stractions.

We see this paper hence as a promising starting point in exploiting the usage
of interval-based constraint solving techniques for the verification of non-linear
hybrid systems.



Guaranteed Termination in the Verification of LTL Properties 113

References

1. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.
In CAV’02, number 2404 in LNCS, pages 365–370. Springer, 2002.

2. T. Bienmüller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm, H. Hungar,
and P. Jansen. Verification of automotive control units. In E.-R. Olderog and
B. Steffen, editors, Correct System Design, volume 1710 of LNCS, pages 319–341.
Springer, 1999.

3. T. Bienmüller, U. Brockmeyer, W. Damm, et al. Formal verification of an avionics
application using abstraction and symbolic model checking. In F. Redmill and
T. Anderson, editors, Towards System Safety—Proc. of the 7th Safety-critical Sys-
tems Symp., pages 150–173. Springer, 1999.

4. J. Bohn, W. Damm, O. Grumberg, et al. First-order-CTL model checking. In
V. Arvind and R. Ramanujam, editors, Foundations of Software Techn. and Theor.
Comp. Sc., volume 1530 of LNCS, pages 283–294. Springer, 1998.

5. A. Chutinan and B. H. Krogh. Computing polyhedral approximations to flow pipes
for dynamic systems. In The 37th IEEE Conference on Decision and Control:
Session on Synthesis and Verification of Hybrid Control Laws (TM-01), 1998.

6. E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In H. Garavel and J. Hatcliff, editors, TACAS 2003, number 2619 in LNCS, pages
192–207, 2003.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity

of states. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic
(CSL’99), number 1683 in LNCS. Springer, 1999.

9. M. Fränzle. What will be eventually true of polynomial hybrid automata. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Software
(TACS 2001), number 2215 in LNCS. Springer-Verlag, 2001.

10. T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HyTech:
hybrid systems analysis using interval numerical methods. In N. Lynch and
B. Krogh, editors, Proc. HSCC’00, volume 1790 of LNCS. Springer, 2000.

11. T. A. Henzinger and S. Sastry, editors. HSCC’98 - Hybrid Systems: Computation
and Control, number 1386 in LNCS. Springer, 1998.

12. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge, 1990.

13. S. Ratschan. Quantified constraints under perturbations. Journal of Symbolic
Computation, 33(4):493–505, 2002.

14. S. Ratschan. Rsolver. http://rsolver.sourceforge.net, 2004. Software package.
15. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint prop-

agation based abstraction refinement. In M. Morari and L. Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of LNCS. Springer, 2005.

16. O. Stursberg, S. Kowalewski, and S. Engell. On the generation of timed discrete
approximations for continuous systems. Mathematical and Computer Models of
Dynamical Systems, 6:51–70, 2000.



Computation Platform for Automatic Analysis

of Embedded Software Systems Using Model
Based Approach

A. Dubey, X. Wu, H. Su, and T.J. Koo

Embedded Computing Systems Laboratory,
Institute for Software Integrated Systems,

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37212

{abhishek.dubey, xianbin.wu, hang.su, john.koo}@vanderbilt.edu

Abstract. In this paper, we describe a computation platform called
ReachLab, which enables automatic analysis of embedded software sys-
tems that interact with continuous environment. Algorithms are used to
specify how the state space of the system model should be explored in
order to perform analysis. In ReachLab, both system models and analy-
sis algorithm models are specified in the same framework using Hybrid
System Analysis and Design Language (HADL), which is a meta-model
based language. The platform allows the models of algorithms to be con-
structed hierarchically and promotes their reuse in constructing more
complex algorithms. Moreover, the platform is designed in such a way
that the concerns of design and implementation of analysis algorithms
are separated. On one hand, the models of analysis algorithms are ab-
stract and therefore the design of algorithms can be made independent
of implementation details. On the other hand, translators are provided
to automatically generate implementations from the models for comput-
ing analysis results based on computation kernels. Multiple computation
kernels, which are based on specific computation tools such as d/dt and
the Level Set toolbox, are supported and can be chosen to enable hybrid
state space exploration. An example is provided to illustrate the design
and implementation process in ReachLab.

1 Introduction

Embedded software systems are becoming an integral and ubiquitous part of
modern society. They are often used in safety critical tasks such as in airplanes
and nuclear reactors. Typically, they consist of one or more discrete software
components performing computation on a real-time operating system (RTOS)
to control the continuous environment. Fig. 1 shows a typical embedded software
system, in which the continuous state of plant is controlled by software control
tasks. The control task and the plant exchange information of continuous state
x and input u via sensors and actuators. In a very simple case, the sensor can
be a periodic sampler, while the actuator can be a zero order hold.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 114–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Computation Platform for Automatic Analysis 115

Fig. 1. A typical embedded software system

To ensure high confidence in these systems, rigorous analysis is required be-
fore deployment. However, it is often infeasible to perform analysis on the actual
system due to its scale and complexity. Model based approach has been ad-
vocated for design and analysis of these complex systems in order to produce
confidence in the design and reduce development costs. In this approach, repre-
sentative models of the system are judiciously used to predict its behavior and
analyze various properties. Hybrid automaton [1, 2, 13] has been used to model
and analyze embedded systems in which discrete and continuous components
are tightly coupled.

In order to automate the analysis of hybrid automata, algorithmic approach
has been developed. Algorithmic approach can be classified into two categories:
reductionist methods and symbolic methods [3]. The former reduces the infinite
hybrid (discrete and continuous) state space to an equivalent finite bisimula-
tion and then explores the resulting finite quotient space, while the latter per-
forms direct exploration of this infinite state space. Even though the reductionist
method based algorithms are guaranteed to terminate, the classes of systems to
which they can be applied are very limited. Therefore, symbolic method based
algorithms are generally used. Various computation tools with vastly different
implementations have been developed for symbolic method based analysis. For
example, d/dt [5] computes reachable sets by approximating reachable states
based on numerical integration and polyhedral approximation; whereas the Level
Set toolbox [4], which applies the level set methods [14], computes the evolu-
tion of a continuous set by solving the associated partial differential equation on
grid structure. Due to these implementation differences in computation method,
data structure as well as analysis purpose, designing new analysis algorithms by
using or modifying existing tools becomes infeasible or inefficient. Furthermore,
designing a common interchange format [8] for these tools is difficult.

In order to resolve the analysis problem, the computation platform called
ReachLab is designed to enable (i) separating the concern of algorithm design
for analysis of hybrid automaton model from any specific computation imple-



116 A. Dubey et al.

mentation; (ii) separating the design of algorithm from specific hybrid automa-
ton model so that the same algorithm can be reused for other system models.
ReachLab is developed based on the Model Integrated Computing (MIC) [6, 7]
approach.

MIC approach is based on models and automatic generation of useful arti-
facts. In this approach, models are used not only to design and represent the
system, but also to synthesize and implement the system using a modeling lan-
guage tailored to the needs of a particular domain. These modeling languages,
termed as Domain Specific Modeling Languages (DSML), have necessary con-
structs to allow the capture of useful information of a system as model particular
to that domain. One can perform system analysis on this model. When this mod-
eling capability is augmented with the capability of model transformation, even
automated synthesis of other design models, and generation of executable system
can be performed [7].

Based on MIC approach, the domain specific modeling language for analyzing
hybrid systems called Hybrid System Analysis and Design Language (HADL)
is introduced. Specified by meta-models, it provides a rich library comprising of
abstractions of entities and operations commonly found in the symbolic method
based computation tools, so that it enables effective design of symbolic method
based analysis algorithm for systems modeled as hybrid automata. Then, we will
focus more on ReachLab which utilizes this language to design system models
and corresponding analysis algorithms, and provides various model translators to
implement the models using the facilities provided by Generic Modeling Environ-
ment (GME) [9], which provides an end-end solution for building and deploying
MIC applications. By keeping the implementation of computation method of
computation tools, and enriching them with additional features such as support
for comprehensive data structures implemented by existing functions provided
in these tools, various computation kernels have been supported by ReachLab,
such as d/dt kernel and Level Set kernel. Model translators are used to automati-
cally generate model implementations for these computation kernels. Fig.2 shows

Fig. 2. Design of the ReachLab platform using the MIC multigraph architecture



Computation Platform for Automatic Analysis 117

how MIC approach is applied to encapsulate HADL and automate the design
and implementation process based on the MIC multigraph architecture [10].

This architecture has three model development stages, namely meta-model,
domain specific models and the executable artifacts. The first level is the meta-
programming interface, which is used to define the meta-model of HADL. This
meta-model is based on abstract entities found in the symbolic method based
computation kernels and is later implemented as the domain specific modeling
language, HADL, using the meta-translation facility provided by GME. Model-
Integrated Program Synthesis (MIPS) environment [11] is the second level and
provides tools to build and modify system models and the analysis algorithms
using HADL in a graphical manner. This level also supports construction of
model translators. The last level is the different applications (implementations)
that can be generated by translators from these models. Environment evolution
refers to modification of HADL meta-model to update features. The models of
algorithms can also be refined to evolve the analysis application.

The remainder of this paper is organized as follows: Section 2 gives an in-
troduction to HADL. Section 3 presents the architecture of ReachLab and the
details about ReachLab construction, including the model translation process.
An example is provided to illustrate the design and implementation process in
ReachLab in Section 4. Finally, we conclude our work with the future goals for
this platform.

2 Introduction to HADL

HADL is a language that enables the design and analysis of hybrid automata.
For this design and analysis purpose, HADL is used to specify models of hybrid
automata and corresponding analysis algorithm models. In [13], the mathemati-
cal definition of a hybrid automaton is given as a collectionH = (Q, X, f, I, E, G)
where Q = {q1, . . . , qN} is a set of discrete modes; X ⊆ Rn is the continuous state
space; f : Q → (X → Rn) assigns each discrete mode a Lipschitz continuous
vector field on X; I : Q → 2X assigns each q ∈ Q an invariant; E ⊆ Q×Q is a col-
lection of discrete transitions; G : E → 2X assigns each e = (q, q′) ∈ E a guard.
The analysis algorithm model specified in HADL is hierarchical in nature, and
complex algorithms can be composed from existing algorithms by using them
as subroutines. Data variables used in analysis algorithms are strong-typed, and
currently, only global scoping is supported. However, in the future, it will allow
local scoping as well.

HADL has been formalized as a five tuple of concrete syntax (C), abstract
syntax (A), semantic domain (S), semantic mapping (MS) and syntactic map-
ping (MC) [16]:

L =< C, A, S, MS , MC > .

Concrete syntax (C) defines the graphical notation used to specify the models.
Abstract syntax (A) specifies all the syntactical elements of the language, as
well as the integrity constraints. Semantic domains (S) is defined by formalism



118 A. Dubey et al.

which provides meaning to a correct sentence in the language. The mapping
MS : A → S relates every element of abstract syntax to a specific meaning
in the semantic domain. Model translators are used for this semantic mapping.
The mapping MC : A → C assigns a notational construct to every elements of
abstract syntax.

Advocated by the MIC approach, HADL is formalized by meta-models. It is
designed to enable the use of multiple aspects [7, 9] to help decompose any anal-
ysis application designed in HADL into three separate components – data (data
aspect), the system model (system aspect) and algorithm model (programming
aspect). Hence, the abstract syntax of HADL can be written as a three tuple

A =< Ldata, Lsystem, Lprogram > .

The semantic domain S of HADL is any chosen supported computation ker-
nel. Model translators can be used to provide the semantic mapping Ms :
Ldata × Lsystem × Lprogram → S. Hence, a translator is required for each se-
mantic domain.

As part of the HADL’s abstract syntax, integrity constraints can be checked by
using Object Constraint Language (OCL) [18], which guarantees the correctness
of designed models. The other part of the abstract syntax, the syntactical elements
in these three aspects, provide basic notions and constructs to specify hybrid au-
tomaton models, analysis algorithms as well as the data variables used in these
algorithms. To be specific, these elements are comprehensively listed in Table 1.

HADL has been provided with precise mathematical semantics, which are
generic and not dependent on implementation details. For example, the discrete

Table 1. HADL Language Syntactical Elements

Aspect Model of Syntactical Elements

Data Data Primitive data types: integer, float, Boolean;
Data structure: multi-dimensional list.

System Hybrid Discrete mode, associated with invariant;
automaton Discrete transition, associated with guard and reset;

Continuous set and initial continuous set;
Analysis set, as a specialization of continuous set;
Computation parameters.

Programming

Control Routine, hierarchical in nature;
flow Looping: “while” loop;

Branching: “if-then-else”;

Operators Primitive data operations: +,−, ∗;
Logical operations: equal, less than, and, or, not;
Multi-dimensional list operations: new, delete, append, ele-
ment;
Reachable set operations: discrete successor and predecessor,
(constraint) continuous successor and predecessor in a single
step (in bounded time), reset, projection, visualization;
Boolean set operations: intersection, union, complement.



Computation Platform for Automatic Analysis 119

successor operation in HADL, denoted as Postd, is defined as Postd(qi) = {q ∈
Q | ∃e ∈ E s.t. e = (qi, q)}. This operation specifies the collection of reachable
discrete states of the hybrid automaton in a single discrete transition. Simi-
larly, the constraint continuous successor operation in a single step Δt, notated
as cPostcΔt, is defined as cPostcΔt(qi, P, Xψ) = {x ∈ X | ∃t ∈ [0, Δt], ∃y ∈
P s.t. x = φ(t, y) ∧ ∀z ∈ [0, t],φ(z, y) ∈ I(q) ∩ Xψ} where P is the initial con-
tinuous set, d

dtφ(t, y) = f(qi,φ(t, y)), and Xψ = {x ∈ X | ψ(x) ≤ 0} defines the
constraint continuous set. This operation specifies the collection of reachable con-
tinuous state set of the hybrid automaton in a single time step Δt. By using such
reachability operations and algorithmic approach, many properties of a hybrid
automaton can be revealed, such as safety or liveness. However, it is known that
computation of exact or even approximate continuous successor sets is a difficult
problem due to representing continuous sets and computing the evolution of the
sets. Existing computation kernels adopt different methods to approximate it.
For example, kernels like Level Set kernel and d/dt kernel are tailored to their
own analysis needs and computation capacities so that the implementations of
these reachable set operations as well as Boolean set operations (such as union
and intersection) are quite different. HADL is defined based on the mathemati-
cal definitions of these operations and HADL is designed to ensure there exists
a correspondence between the semantics of these kernels and the semantics of
HADL. Therefore, one can use the semantics of HADL to anchor the semantics
of these kernels, which is referred to as semantic anchoring in [17]. Because of
this feature, we can design analysis algorithms by using the mathematical se-
mantics of these operations instead of considering the detailed implementation.
Furthermore, HADL enriches the functions of its computation kernels by pro-
viding constructs and operations more than these computation kernels, such as
multi-dimensional list and its corresponding operations. These constructs and
operations will be mapped to a collection of entities in the computation kernel
rather than a direct mapping.

The advantage of using this language is that (i) algorithms are designed in-
dependently from implementation and hence can be used with any supported
computation kernel; (ii) analysis algorithms can be reused for different sys-
tems; (iii) more complex algorithms can be constructed by using other existing
algorithms.

3 Construction of ReachLab

In this section, the architecture of ReachLab is introduced and the construction
issues related to model traversal and semantic mapping are presented.

3.1 ReachLab Architecture

By utilizing the language defined by HADL, a computation platform called
ReachLab has been developed, and its architecture, as shown in Fig.3, is designed
to separate the concerns of algorithm design from implementation details. The



120 A. Dubey et al.

Fig. 3. The three-layer ReachLab architecture

MIPS environment of ReachLab, facilitated by GME, provides support to build
graphical algorithm and system models. Different graphical model entities and
components are connected according to the rules specified by HADL meta-model.
Therefore, models can be designed in ReachLab graphically according to HADL
specification. Besides model design, the other key process is the use of translators
to automatically translate the models into executable artifacts. This translation
process requires mapping of the abstract entities into concrete implementations
for the target domain of a computation kernel. In [7], the translation process has
been summarized as a graph transformation: (i) Creation of “input graph” : The
models with different interconnected components are implicitly represented by
a graph structure. (ii) Model traversal and Semantic mapping : The translation
process requires creation of a “target graph” (data structure for the executable
artifact) from an “input graph”. This requires the translator to traverse various
objects in the “input graph”, recognize their patterns and calculate attributes
of output objects in the “target graph” using semantic mapping. The “target
graph” corresponds to the data structure required to represent the output form
of the executable artifacts.(iii) Printing the product : In this step, the translator
serializes the “target graph” to generate executable artifacts pertaining to the
related domain.

In ReachLab, the traversal process uses the data structures provided by GME
to store the “input graph” along with necessary information. These data struc-
tures are very generic and remain the same for different translators. However,
the data structures used to store the “target graph” vary due to implementation
differences among different computation kernels.

In the next subsection, we will explain in detail how model traversal is done
to fulfill model translation process.

3.2 Model Traversal

Translators need to perform the traversal of all three aspects in order to under-
stand the patterns and collect all useful information. This traversal process is



Computation Platform for Automatic Analysis 121

(a) (b)

Fig. 4. (a) The components of a routine are interconnected as a DAG. Routines may
be hierarchical leading to a hierarchical graph; (b) The decision enclosure is sub-graph
starting from a decision block and ending at its corresponding joint-node.

based on graph search techniques such as depth first search [12]. The complete
process can be broken down into four sub-tasks reviewed below.

Traversal of Data Aspect: All the data are defined in one single data folder
as a list. Translator traverses this list in a linear fashion to collect all useful
information about the data elements.

Traversal of System Aspect: The hybrid automaton model specified in the
system aspect can be understood as a graph, in which the discrete modes are
vertices and the discrete transitions of hybrid automaton are the edges. The
translators traverse this graph by using depth first search starting from the
initial discrete state to collect all useful information.

Traversal of Control Flow of Algorithms: The traversal of programming
aspect is more complex. Every algorithm has a root routine which is the entry
point to the algorithm. Routines can be hierarchical and may contain other sub-
routines as shown in Fig.4(a). The control flow inside each routine routes from
a “start” to an “end” . However, there might be other exit routes from a rou-
tine through “break-exit”, which is used in the same way as the break in many
programming languages. For example, the constraint continuous successor set
operation in bounded time T , denoted as cPostcT , can be implemented by iter-
ating T/Δt times by calling cPostcΔt, which is previously defined. Therefore, the
routine to implement cPostcT can use the routine of cPostcΔt as its sub-routine.
The language also provides a specialization of routine called while routine for
implementation of looping constructs such as do-while which is traversed in the
same manner as a routine. The control flow inside a routine is sequential, how-
ever it can have multiple branches due to decision blocks. Cycles in the control
flow are disallowed to demote the use of sudden jumps such as “goto”. There-
fore, the control flow inside each routine is a directed acyclic graph (DAG) [12]
with its directed edges depicting the route of control flow and each node depict-



122 A. Dubey et al.

Table 2. Decision-Enclosure Algorithm

Input:
DecisionBlock = the starting node of the enclosure

Initialization:
InitPath := DecisionBlock
Paths := {InitPath}

Start:
While true do

For each path in Paths do
Fringe := the tail of path
Succ := successor nodes of Fringe
If Succ �= φ then

Add Succ[0] to the fringe of path
Succ := Succ − Succ[0]
For each s in Succ do

path′ := path
Add s to the fringe of path′

Add path′ to Paths
End For
If ∃s ∈ Succ s.t. ∀p ∈ Paths, s ∈ p then

Return s as the joint-node
End If

End If
End For

End While

ing a block of algorithm. Since routines can contain other routines, the overall
control flow of the complete algorithm is a hierarchical DAG. The translators
traverse the graph structure of algorithms in a depth-first search manner to ex-
tract information. In each routine, the traversal starts from “start” block and
follows the directed edges. If any of the traversed entity is hierarchical, transla-
tors will traverse its subcomponents in a depth-first manner. Decision blocks are
used inside routines to design a logical branching in the control flow sequence.
For each of these blocks, the branching starts from itself, and finally merges at
a joint-node. The sub-graph enclosed by the decision block and the joint-node
in the DAG is called a decision-enclosure. This is illustrated by Fig. 4(b). The
traversal algorithm has to recognize the “if true” and “if false” part of each
decision block so that they can be mapped to the corresponding decision logic
in the implementation. This requires knowledge of its decision-enclosure. Table
2 gives an algorithm based on breadth first search technique for determining
decision-enclosure of each decision block. This algorithm has a complexity of
O(n2), where n is the number of blocks in the DAG.

The key of this algorithm is to find the joint-node, and since a joint-node is
where all branches from the decision block merge, by using breath-first search
and keeping all branching paths from the decision block, the first block that
belongs to every recorded branching paths is the joint-node.



Computation Platform for Automatic Analysis 123

Traversal of Operators: Operators are used for data manipulation. Every as-
signment expression forms a tree structure, with the left-hand-side data variable
as the root of the tree. All data variables on the right-hand-size of the expression
correspond to the leaves of this tree, and operators on the right-hand-side cor-
respond to the internal nodes of the tree. The expression itself can be restored
to reverse-polish notation by post-order traverse.

The operators have different semantic meanings depending on the input data
types. And since HADL is “strong-typed”, the data types of the tree leaves,
which are predefined, will finally determine the input data type of the operator
connected to the root data. Therefore, it is important to propagate the data
type information from leaves to the root in a post-order manner [12].

3.3 Semantic Mapping

Since the semantics of a computation kernel are anchored to the semantics of
HADL, we can find a corresponding implementation for HADL constructs in the
computation kernel. These constructs include sequential programming features,
boolean operations on state sets, as well as the reachable set operations. However,
in some cases, the operations, such as data structure manipulation operations,
are not directly supported by the computation kernel and have to be specifically
added to the computation kernel as new functions. The process of associating
the HADL constructs to its implementation in computation kernel is akin to
providing a meaning to them and is therefore referred to as semantic mapping.

We will illustrate some of the aspects of the semantic mapping process by
using the example of Level Set kernel. Level Set kernel has been implemented
as Matlab functions. It supports all the basic data types in HADL except the
multi-dimensional list structure, which we have to specifically implement along
with the relevant operations in Matlab. The hybrid system specific data types
such as discrete mode and continuous set are mapped to Matlab struct and mesh
on analysis space, respectively. This mesh is an internal structure used by Level
Set kernel. The control flow inside a routine is mapped to the sequential flow of
logical commands inside a function. We use “if-else-end” statement in Matlab to
implement branching and “while-end” statement in Matlab to implement loop-
ing. Boolean operations on state sets and reachable set operations are mapped to
their corresponding implementation in Level Set kernel. However, for some of the
operations defined in HADL, there are no straight-forward mappings, therefore
we have to write specialized functions for them by using operations provided by
the kernel.

4 Design and Implementation Process in ReachLab

In this section, we will illustrate the design and implementation process for
analysis algorithms in ReachLab by designing a forward reachability analysis
algorithm for the embedded software system shown in Fig.5(a).

Depending on the current state of the plant, it determines input u ∈ {σ1,σ2}.
By considering the direct interaction between the control task and the plant, we



124 A. Dubey et al.

(a) (b)

Fig. 5. (a) An embedded software system. The plant on the bottom has four running
modes with different continuous dynamics, controlled by the software control task
J1; (b) Hybrid automaton model for the control task and plant. It has four discrete
modes corresponding to the four running modes of the plant, and one continuous state
x = [x1, x2]

T ∈ R2.

can model the system as a hybrid automaton as shown in Fig.5(b). Multiple
tasks which share common resource with the control task, the scheduler and the
interface elements such as sampler and the zero order hold can be modeled by a
more complex hybrid automaton.

It has been shown in [15] that this system is stable in the sense of Lyapunov.
Starting from anywhere in the continuous state space, the continuous state of the
automaton moves toward the origin in a flower-like trajectory. For this system, we
are interested in computing forward reachable set using symbolic methods based
algorithms, in order to verify that starting from certain initial state, whether or
not the system can eventually enter some desired set.

Table 3 gives the specification of a generic forward reachability algorithm for
hybrid automaton. It uses the concepts of both discrete and continuous successor
set and finds the reachable set starting from a given initial set. This algorithm
unfolds the hybrid automaton into a tree like structure and explores it by using
breadth first search. Termination of this algorithm is guaranteed because of the
limit M on the depth of this tree. The data structure Reach is used to store
the reachable set. It can be noted that this specification does not delve into the
actual implementation method of reachable set operations. However, the process
of semantic mapping will relate those operations to a specific implementation
method based on the concerned computation kernel. This algorithm can be used
to verify if the system would ever execute into some desired state. In order
to perform verification, the algorithm systematically explore the hybrid state
space and check if the forward reachable set overlaps with the desired set. The



Computation Platform for Automatic Analysis 125

Table 3. Algorithm for computing forward reachable set

Input:
HA, QS, XS , QF , XF , XB , where
QS is list of initial discrete modes, XS is list of initial continuous sets, QF is
list of final discrete modes, XF is list of final continuous sets, and XB is bad set.

Constant:
T as time limit for cPostT c, M as search depth limit

Initialization:
Reach = XS , List = {}, Successors = {}, R = φ, Queue = QS

Depth = 1, i = 0, j = 0
Start:

While ¬Empty(Queue) do
List = PopAll Queue
For i = 1 : Size(List) do

R = cPostcT (List(i), Reach(i))
Successors = Postd(List(i))
For j = 1 : (Size(Successors) do

If R ∩ GuardList(i),Successors(j) �= φ Then
Push Successors(j) → Queue
Append R ∩ GuardList(i),Successors(j) → Reach

End If
End For

End For
Depth = Depth + 1
If Depth > M Then

Stop
End If
Pop first Size(List) elements of Reach

End While

main concern with this type of algorithms is termination. But if we perform the
computation in an Eulerian framework (one in which the underlying coordinate
system is fixed) within a bounded continuous state space, the algorithms will
terminate due to the fact that the partition of state space has finite number of
representative elements.

4.1 Design Steps

To analyze the safety property of the hybrid automaton model in Fig.5(b) by
using the forward reachability algorithm, we need to design its hybrid automata
model in the system aspect and design the algorithm in the programming aspect.
The data used in both of the system model and the algorithm are defined in the
data aspect. The entire process can be summarized into three steps:

1. Obtaining system model and algorithm specification:
Fig.5(b) and Table 3 provide the hybrid automaton and analysis algorithm
specifications for this example.



126 A. Dubey et al.

Fig. 6. Hybrid automaton model for the corresponding plant in the system aspect,
forward reachability analysis algorithm model in the programming aspect, and data
used in the data aspect of ReachLab

2. Design phase:
– Design of the system model: A hybrid automaton is drawn in the system

aspect with discrete transitions connecting discrete modes, as in Fig.6.
– Design of the analysis algorithm: The analysis algorithm, which is hi-

erarchical in nature, is modeled in the programming aspect by using
ReachLab library elements. Fig.6 also gives part of the algorithm model
for the algorithm given in Table 3, and the data required by both the
hybrid automaton and the algorithm model.

– Specification of computation parameters: Input parameters to the algo-
rithm and the computation kernels have to be specified before transla-
tion, such as the bounded time (T ) for cPostcT operator, the analysis
region, and how the analysis region is partitioned into finite number of
representative elements.

3. Implementation phase:
Translators are used to convert the designed models into implementation for
a certain computation kernel. For this example, we translate the system and
algorithm model into the d/dt implementation. Fig.7 shows the computa-

Fig. 7. The reachable set computed by using d/dt kernel. The white box is the initial
set, [-2.5,-1.5]x[-0.5, 0.5]. Each sub-figure denotes the reachable set in the corresponding
discrete mode. Eventually, the reachable set will reach the origin. The analysis region
is [−3, 3]× [−3, 3], the size of a representative elements in each dimension is 0.001, and
the bounded time T is 5 seconds. Time taken for execution: 180 minutes on Pentium
IV 2.59 GHz machine with 2 GB RAM.



Computation Platform for Automatic Analysis 127

tion result. This result can be used to examine system behaviors, such as
approaching the origin while evolving. It can also be used to verify system
stability properties by testing intersection between the reachable set and the
desired set.

5 Conclusion

In this paper, we presented the computation platform called ReachLab for en-
abling automatic analysis of embedded software systems modeled as hybrid au-
tomata. It implements the meta-model based language HADL whose abstract en-
tities allow users to model their algorithms and the system in an implementation
independent manner. These models are then translated to implementations for
different computation kernels. Translation is performed by using model traversal
and sematic mapping. Currently, d/dt kernel and Level Set kernel are supported
by ReachLab. In the future, we will expand this platform to other computation
kernels for more effective and efficient computation. In order to model networked
hybrid automata, shared variable could be introduced to ReachLab for specify-
ing communication protocols between hybrid automata. We are also interested
in expanding the capabilities of HADL to capture a larger class of embedded
software systems so that more sophisticated system features can be described.

Acknowledgments

This work is supported by NSF’s Faculty Early Career Development (CAREER)
Program, Award No. 0448234, and Department of EECS, Vanderbilt University.

References

1. T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, (1996), pp. 278–292.

2. R. Alur, D. L. Dill. A theory of timed automata. Theoretical Computer Science
126, (1994), pp. 183–235.

3. T.A. Henzinger, R. Majumdar. A classification of symbolic transition systems.
In Proceedings of the 17th International Conference on Theoretical Aspects of Com-
puter Science (2000), pp. 13–34.

4. I. Mitchell, J. A. Templeton. A toolbox of Hamilton-Jacobi solvers for analysis
of nondeterministic continuous and hybrid systems. In Hybrid Systems: Computa-
tion and Control, (2005), pp. 480–494.

5. E. Asarin, T. Dang, O. Maler. The d/dt tool for verification of hybrid sys-
tems. In Computer Aided Verification, (2002), vol. 2404 of LNCS, Springer-Verlag,
pp. 365–370.

6. G. Karsai, A. Agrawal, A. Ledeczi. A metamodel-driven MDA process and
its tools. Workshop in Software Model Engineering, (2003).

7. G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty. Model-integrated devel-
opment of embedded software. In Proceedings of the IEEE , (2003), pp. 145–164.



128 A. Dubey et al.

8. A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, R. Passerone.
Interchange formats for hybrid systems: Review and proposal. In Hybrid Systems:
Computation and Control , (2005), pp. 526–541.

9. A. Ledeczi, M. Maroti, A. Bakay, et al. Generic modeling environment. In
International Workshop on Intelligent Signal Processing, (2001).

10. J. Sztipanovits, G Karsai, C. Biegl, T. Bapty, A. Ledeczi, D. Malloy.
Multigraph: an architecture for model-integrated computing. In Proceedings of
the 1st International Conference on Engineering of Complex Computer Systems,
(1995), pp. 361–368.

11. J. Sztipanovits, G. Karsai, H. Franke. Model-integrated program synthesis
environment. In Proceedings of the IEEE Symposium and Workshop on Engineering
of Computer Based Systems, (1996), pp. 348–355.

12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein . Introduction to
Algorithms, Second Edition, (2001), The MIT PRESS.

13. J. Lygeros. Lecture Notes on Hybrid Systems. Cambridge, 2003.
14. S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.

Springer, 2003.
15. A.Rantzer, M. Johansson. Piecewise linear quadratic optimal control. In IEEE

Transactions on Automatic Control , (2000), pp. 629–637.
16. T Clark, A Evans, S Kent, and P Sammut. The mmf approach to engineering

object-oriented design languages. In Workshop on Language Descriptions, Tools
and Applications.LDTA, Genova, Italy, 2001. Available via http://www.puml.org.

17. Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring
infrastructure for domain-specific modeling languages. Fifth International Confer-
ence on Embedded Software (EMSOFT05), Jersey City, New Jersey, September
2005. (Accepted for publication).

18. et a.l, R. S. C. Object Constraint Language Specification ver 1.1, Sept 1997.



Quantitative and Qualitative Analysis of 
Temporal Aspects of Complex Activities 

Andrei Voinikonis 

University of Leipzig, Department of Computer Science 
 Augustusplatz 10-11, D-04109 Leipzig, Germany 

voinikon@informatik.uni-leipzig.de 

Abstract. A preparation of the consistent task schedule is significant for the 
proper functioning of reminder systems. Two problems have to be solved 
thereby: avoiding temporal task overlapping; preventing task generation with an 
unlimited task execution time. Each task consists of complex activities combin-
ing temporally linked actions. The article introduces a method for formal de-
scription of such activities. To limit the execution time of the activities, defini-
tions of timer transitions were included in the action specification. The 
expiration of the timer causes a transition to a specified action. The fact that the 
actual timer depends on the actions performed before complicates the analysis. 
A timed automaton can be built for each complex activity based on the intro-
duced description. This automaton is applied to quantitative and qualitative 
analysis of temporal aspects of the activities. The article presents an algorithm 
for calculating the duration limits of the activities and for detecting the unlim-
ited activities. 

Automated distributed reminder systems with mobile components are growing in im-
portance in the modern world of aging population [1]. Such systems can be applied 
for care for patients with memory deficits and for support of treatment of the chronic 
patients [2]. The systems can find a possible application in the corporate work. 

A reminder system is intended to prompt a person to perform the scheduled tasks at 
the appointed time. Thereby, the significant aspect is the task scheduling [1] because 
the majority of people cannot perform several tasks simultaneously and the tasks can 
hinder each other. Thus, the temporal overlapping of the tasks has to be avoided, if it 
is possible [3]. 

The Mobile Memory Aid System MEMOS1 [4] is specially developed to assist pa-
tients with memory deficits by task execution. It is also intended to support caregivers 
by task generation and execution control. The idea is to furnish each patient with a 
mobile device (PDA with GPRS [5] modem) connected to the central server via Inter-
net. This allows to remotely set the tasks. The mobile device downloads the tasks 

                                                           
1 MEMOS is supported by the German Ministry of Education and Research (BMB+F). The au-

thor takes the responsibility for the content of this publication. 

1   Introduction 

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 129 – 143, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 



from the server, requests the patient to perform a task and retrieves the result of its 
execution, providing feedback to the caregivers. 

The complex tasks are split into some autonomous uninterruptible parts - subtasks - 
called decks defining an organized structure of temporal linked actions to achieve 
sub-goals of a task. Each deck describes a “complex activity”. It consists of cards: 
each card represents a single interaction with the patient. The card describes a single 
step/action within the task execution and offers the patient the possibility to react, e.g. 
to confirm or reject the step. Each offered reaction specifies a reference to another 
card that can belong to another deck of the task. Fig.1. shows an example of a task for 
medicine taking.  

 

Fig. 1. Simplified description of task for medicine taking 

The mobile component handles decks as independent jobs: each reference to an-
other deck terminates presentation of current deck and returns the control to the main 
program with request to start presentation of the referred deck.  

The server of the system stores the tasks and manages the task schedule. To avoid 
temporal conflicts, the overlapping of the tasks (between decks, further the term 
“task” is applied to refer decks because they are handled as the independent tasks) has 
to be detected and reported to the caregivers in order to solve them. To detect task 
overlapping, the duration of the tasks has to be calculated. Another problem to solve 
is generation of correct task descriptions because mistakes in the task can confuse the 
patients: e.g. they can lead to infinite repetition of some steps. 

This article proposes the method for formal description of such tasks and intro-
duces an algorithm for the qualitative and quantitative analysis of the task description. 
The algorithm is based on the application of timed automata [6] to the task analysis. 
The proposed formal description is applied as the basis for construction of the neces-
sary timed automata.  

First, the special features of the introduced task model required by the specific of 
system application and task design issues will be discussed. Further, the method for 
formal description is introduced. After that, the method for construction of the 2-level 
timed automaton is proposed. The original algorithm for determination of clock con-
straints for transitions is introduced for the automaton. The qualitative characteristics 

130 A. Voinikonis 



of these constrains allow to draw conclusions about the maximal and minimal task du-
ration, task termination in finite time and reachability of particular actions.  

Each task describes a complex human activity. Description of the complex activity 
consists of descriptions of particular actions. The description of an action consists of 
an instruction to perform the action and a list of possible reactions such as confirma

-tion, rejection or transitions to alternative actions: they are presented to a user as con
-trol elements, e.g. as buttons. The actions are connected together according the speci-

fied reactions: the choice of a particular reaction causes the transition to the 
corresponding action description. The user can cause only the events that are specified 
by the action description (DI1).  

The actions may form cycles to provide ability of return to a description of a previ-
ous action if an alternative action is not suitable. Duration of the activities has to be 
limited in order to handle user inactivity and to make possible execution of other 
scheduled tasks.  

To limit duration of the actions, a local timer is assigned to each action. An addi-
tional task range timer (further the global timer) is introduced to limit duration of the 
action cycles. Specification of the action descriptions contains the specification of 
routines for handling of timer events. These routines (further the global or local timer 
handler) specify transition targets: task stop or the action descriptions that are shown 
after timer event. The start of presentation of each action description causes reset of 
the local timer and can cause reset of the global timer with simultaneous updating of 
the transition targets for the timer events. Expiration of the timers causes the transi-
tion to the action pointed to by the corresponding event handler. After expiration of a 
timer, no events are to be expected until the timer will be reset. In order to simplify 
design of the task description and the task generation at the runtime, each value for 
the global timer in its definitions is counted from the moment of the task start (DI2), 
not from the moment of the timer setting. It allows controlling task duration by the 
repeated visiting of the action description with a definition of the global timer better.    

As mentioned above, the objects of the analysis of such complex activities are:  

Quantitative aspect: The task overlapping has to be avoided in order to produce 
the consistent task schedule. For it, durations for the scheduled tasks have to be 
calculated. Based on the calculated durations and specified start times, the task 
overlapping can be detected and the detected conflicts can be solved, if possible. 

Qualitative aspect: Each task has to be executed in the finite time. The loops 
without temporal limitation in a task description can lead to infinite repetition of 
actions. Thereby, the object of qualitative analysis is to detect the tasks, whose 
execution time can be infinite. 

To start the analysis, the task description should be formalised. The complex activ-
ity without time aspects can be described as an automaton, where the states present 
the actions and the transitions present the handlers of the events caused by user reac-
tions. 

2   Task Model 

 Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 131 



The automaton for complex activity is a tuple: 

Ac = ( , S, S0, F, E) 

where  
 - an alphabet of the events caused by user input, 

S - a set of the states, each of them corresponds to the single action, 
S0 - a set of start states, S0 S,2 
F - a set of end states, F S, F = { se } consists of single state, that corresponds 

to the stop of the task. The state se has not any exit transitions, 
E - a set of the transitions E    S\F  S. Each transition eij = ( , si, sj) consists 

of a source state si, a target state sj and corresponds to an event . The 
transition eij is entry transition for state sj and is exit transition for state si. 

To handle the temporal aspects, the system of temporal transitions T c is defined 
over the automaton Ac. A problem arises by definition of the global timer handlers: 
the timer initiated at the start of a particular action remains valid for all following ac-
tions until it will be reset or expires.  

Furthermore, the current global timer handler for some states that can be reached 
by several different paths depends on the path to these states because these paths can 
contain the different specifications of global timer handlers. 

System with temporal transitions is a tuple:  

T c = (Ac, C, M, , T) 

where  
C - a set of decreasing timers, e.g. as in [7], which run monotonically down to 0 

and stop at 0, C ={ xL, xG }, where  
CL = { xL } corresponds to the local timer and  
CG = { xG} corresponds to the global timer, 

M - a set of cells, M ={ mL, mG}, where  
ML = { mL } contains the transition target for the local timer and  
MG = { mG } contains the transition target for the global timer, 

 -  an entry guard function for setting of the temporal transitions,  
   S\F  C  R  M  S,  = L  G, where: 

R – the set of real numbers; 
L S\F  CL  R  ML  S - an entry guard function for setting of the local 

temporal transition, so that: 
1.  si S\F   zi  L; 
2. If exists a value zi = (si, xL, tij, mL, sj)  L

 , the transition in the state si 
causes:  

setting of a transition pointer corresponding to expiration of the local 
timer mL:= sj  
reset of the local timer xL:= tij

                                                           
2 Transfer of the control to the task can be considered as transitions from a single start state, but 

they  are  irrelevant for the analysis.  However, the analysis can be performed successively 
for each s  S0 due to this condition. 

132 A. Voinikonis 



G S\F  CG  R  MG  S - an entry guard function for setting of the 
global temporal transition, so that: 
1. G can contain some elements; 
2. If exists a value zi = (si, xG, tij, mG, sj)   G

 the transition in the state si 
causes:  

setting of a transition pointer corresponding to expiration of the 
global timer mG:= sj  
reset of the global timer according formula: 

 0,  if  tij - tcurrent  0, 
xG

 :=
      

  
     tij - tcurrent,  if  tij - tcurrent > 0, 

according design issue DI2 all values for the global timer are defined from 
the moment of the task start, where tcurrent is the time elapsed from the task 
start, 

T - a set of temporal transitions, T C  M, T = {( xG, mG), ( xL, mL)} specifies 
that the transition to the state pointed to by content of a cell m takes place at 
expiration of a timer x. 

The definition of T c can be hardly applied for analysis directly, but is very useful 
as the base for further construction of the required timed automaton. 

A timed automaton is built on the base of T c for further analysis that is carried out for 
each start state scur  S0 repeatedly. The idea is to build for each start state scur  S0 a 
2-level timed automaton (further the second level timed automaton or CTAS) on the 
base of the defined system of temporal transitions T c, whose locations are timed 
automata too (further the first level timed automata or TAF).  

First, the clocks of the timed automata can take each value from R  = R {  }, 
where value  shows that the clock is stopped and R is the set of real numbers. 

The CTAS is defined as a tuple: 

CTAS
  = ( '', L'', L0'', F'', E'', C'') 

where 
''  is an alphabet of events, '' = ' { gt }, ' = { lt }, 

lt is event corresponding expiration of the local timer,  
gt  is event corresponding expiration of the global timer,  

L''  is a set of locations, each of them is TAF
 

L0''  is a set of start locations, 
F''  is a set of end locations, 
C'' is a set of clocks that increase strictly monotonically e.g. as in [6, 8],  

C'' ={ xS'', xL'', xG'' }, xL'', xG'' correspond to the timers xL, xG C of T c re-
spectively, xS'' is a system clock that is set to 0 at the start of CTAS, 

3   Construction of the Timed Automaton 

 Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 133 



E'' is a set of transitions E''  L''  L''  S  '' '' (C''), 
element from S of Ac applied to mark the source state of a transition,  

''  Pow(C'' R), '' = {{( x'', r ) | x { xL'', xG'' }, r  R}} is entry guard 
function that sets the clock x''  C'' on value r  R , 

(C'') is a set of clock constrains '' defined inductively by 

''  true | false | x  c | c x | x = c | '' ''  | '' '' , 

where x is a clock in C'' and c is a parameterised constant in R. 

 

Fig. 2. Construction of the required timed automaton on the base of the defined system with the 
temporal transitions. The system with the temporal transitions is shown left; the built 2-level 
timed automaton is shown right. The TAF

2 and TAF
3 present the scopes of the global timers; 

TAF
cur corresponds to the start state; TAF

5 corresponds to the target state for the transitions of 
the global timers; TAFF presents the end state. 

Each state of CTAS
 is a timed automaton TAF that is defined as a tuple: 

TAF = ( ', L', L0', F', E', C') 
where 

'  is an alphabet of events, ' = { lt },  
lt  is event corresponding expiration of the local timer,  

L'  is a set of locations L'  S defined below, 
L0'  is a set of start locations, 
F'  is a set of end locations, 
C' is a set of clocks that increases strictly monotonically, C' = { xL''},  

xL'' corresponds to the timer xL C of T c, 
E' is a set of transitions E'  L'  L'  ' C' ) ( C' ),  

C') = {( xL'', 0), ( xL'', )} is entry guard function that stops the clock xL'' 
if si = se or sets the clock xL'' on 0 otherwise, 

( C') is a set of clock constrains ' defined by 

134 A. Voinikonis 



' c xL'' | xL'' = c 

where c is a constant in R. 

Further, the set of locations for the first level automata is refined. First, the set of 
successors for a state si  S is defined as follows: 

succ(si) = { sj |  ( si , sj)  E   (si, xL, tij, mL, sj)  L }. 

The set contains also the elements referred by the entry guard function for setting 
of local temporal transitions in T c. Because this clock is reset by entry of each state 
si S\F, the transition corresponding to the local timer may be handled just as the 
transitions corresponding to the events of user input. 

The elements of the timed automata are built on the base of T c as in example 
shown on the Fig. 2. The second level timed automaton obtains the locations:  

for the current start state,  
for the end state,  
for each state where is defined the entry guard function for setting of a global 

temporal transition, 
for each state that is used as the transition target by definition of the entry guard 

functions for setting of a global temporal transition.  

These states are the start states for the corresponding first level timed automata. 
Thus, one TAF is built as a location for CTAS

 for each element from the set S''  S: 

S'' = {scur} {se} {si  | (si, xG, tij, mG, sj)  G}  {sj | (si, xG, tij, mG, sj)  G}, 

L'' = { TAF
i | L0'i = {si}  si  S'' }. 

The set of the start locations L0'' of CTAS consists of the TAF built on the base of 
the current start state scur, the set of end locations F'' of CTAS consists of the TAF built 
on the base of se: 

L0'' = { TAF
i | L0'i = { scur }}, 

F'' = { TAFF | L0' is a set of start locations of TAFF, L0' = { se }, TAFF  L''}, 
TAFF = ( ', { se }, { se }, { se }, , C'). 

The location set of each first level timed automaton TAF
i are the set L'i = Succ*(si) 

consisting of the states that are reachable from the start state si  S''\F of this automa-
ton and another entry guard functions for setting of global temporal transitions are not 
defined for these states. The end state se does not belong to any TAF

i except TAFF . 
Thus, such a set presents the reachable region where the global timer will be not reset. 
It is defined recursively by: 

Succ*(si) = {si} {sj | sj  succ(sk) sk  Succ*(si) (sj, xG, tjm, mG, sm)  G sj se}. 

Thereby, the set of start location for TAF
i is the set L0'i = { si }. Further, si is applied 

to designate the start location of for TAF
i. The set of end locations F'i for TAF

i is the 
subset of states L'i that have a transition to the state se or to some state for that the en-
try guard function for setting of the global temporal transition is defined: 

 Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 135 



F'i = {sk | sk  L'i   sj   succ( sk )  (( (sj, xG, tjm, mG, sm)  G sj  si ) sj = se)}. 

The set of transitions E' for TAF
i are defined as follows: 

The TAF
i obtains a transition for each corresponding transition from Ac, if source 

and target states of this transition belong to L'i. The clock constraint for such 
transitions is xL'' < tkj - the edge may be passed until the local timer expires. 

The TAF
i obtains also a transition, if entry guard function for setting of the local 

timer defines the temporal transition and its source and target states belong to 
L'i. The clock constraint for such transitions is xL'' = tkj - the transition may be 
passed at expiration of the local timer. 

E' = {(sk, sj, lt (xL'', g sj xL''= tkj) | sk  L'i sj  L'i (sk, xL, tkj, mL, sj)  L,
lt   '} {(sk, sm, (xL'', g sj xL''<tkj) | sk  L'i sj  L'i ( sk , sm)  E,  

(sk, xL, tkj, mL, sj)  L, }, 
where 

       , if sj = se, 
g sj   

 0, otherwise. 

The set of transitions E'' for CTAS is defined as follows (the clock constraints will 
be defined later): 

The CTAS obtains a transition for each corresponding edge from Ac, if source 
and target states of this edge belong to different TAF and entry guard function 
for setting of the global timer is defined for the target state or  target state is se 
( ). 

The CTAS obtains also a transition: 
if entry guard function for setting of the local timer defines the temporal 
transition, and the target state of this transition has a definition of entry 
guard function for setting of the global timer or target state is se ( ) and  
if source and target states of this transition belong to different TAF. 

The CTAS obtains transitions for each definition of a temporal transition for the 
global timer ( ). 

E'' = ( TAF
i, TAF

j, sk, {  xL'', g(TAF
j)  xG'', f(TAF

j, tjn  xS'' }  ''  ) | } 
{( TAF

i, TAF
j, sk, lt {  xL'', g(TAF

j)  xG'', f(TAF
j, tjn  xS'' }  ''  ) | } 

{( TAF
i, TAF

j, si, gt {  xL'', g(TAF
j)  xG'', f(TAF

j, tjn  xS'' } ''  ) | } 

where 

, if TAF
j = TAFF, 

g TAF
j

 0, otherwise; 

 xS'', if tjn  xS'' (sj, xG, tjn, mG, sn)  G, L0'j= {sj}, 
f(TAF

j,tjn xS'' tjn,   if tjn  xS'' (sj, xG, tjn, mG, sn)  G, L0'j = {sj},
,    if  (sj, xG, tjn, mG, sn)  G, L0'j = {sj}; 

136 A. Voinikonis 



note that no transitions with    ' exist to the locations of CTAS without the 
global timer excepts TAFF according the construction method of CTAS  

( sk, sj)  E  sk  L'i  sj  L0'j  si sj (sj, xG, tjn, mG, sn)  G      
(sk, xL, tkj, mL, sj)  L  sk  L'i  sj  L0'j  si  sj 

(sj, xG, tjn, mG, sn)  G  lt   '  
 (si, xG, tij, mG, sj)  G  si  L0'i  sj  L0'j, gt   ''; 

''   xG''= tij, (si, xG, tij, mG, sj)  G. 

Explanation for the term si  sj is that no transitions for CTAS has to be added if a 
start location is referred by transitions with    ' from its corresponding TAF. How-
ever, if a transition for global timer points to its definition state, the corresponding 
transition should be added to CTAS. 

It remains to calculate the clock constraints for the transitions of the first level 
timed automata and for the transitions of the second level automaton.  

To determine the clock constraints for CTAS with respect to xS'', the minimal and 
maximal passing times of each exit transition of TAF

i have to be calculated first for 
each TAF

i. The minimal and maximal passing times are defined recursively as fol-
lows:  

 

Fig. 3. Calculation of the maximal and minimal exit times for exit transition e' out
 ij of the loca-

tion l'i based on the maximal and minimal entry times and maximal stay time for this location. 
The stay time limited by the expiration of the local timer is taken into account by the clock con-
straint 'ij 

The idea is to define a passing time (minimal or maximal) for each exit transition 
based on corresponding reachability times of its source location defined to each entry 
transition of this location (Fig. 3.). If some reachability times are not defined, they 
have to be defined first and stored for further use. The operation has to be applied re-
cursively until the start location of this automaton is reached. If some passed locations 
are reached again during execution - the automaton contains a cycle. Maximal passing 
time for this transition is not limited. That is applied for the qualitative analysis: CTAS 
for the complex activities has not to contain such automata with the undefined transi-
tion for the global timer that has to limit the cycle passing. The algorithm can be writ-
ten in general as follows:  

 
Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 137 

4   Determination of the Clock Constraints 



function Calculate 
if start location of the automaton is reached  

calculate maximal and minimal exit times for the current exit transition  
based on maximal and minimal parameterised entry times. 
return defined values. 

for the current exit transition  
calculate the possible maximal and minimal passing times  
counted from task start 
based on maximal and minimal entry times of its source location and  
on maximal stay time for this location (ref. Fig. 3)  
with respect to a possible limitation 
if the passing times is undefined for some entry transitions of this location 

for each of these transitions 
apply function Calculate recursively, 

/* the entry transition will be handled as the exit transition  
by the next call of the function Calculate thereby.*/ 

termination: after termination the parameterised maximal and minimal passing 
times of exit transitions of a first level automaton are defined 

The algorithm for definition of the clock constraints by calculation of the passing 
times for the exit transitions of the first level automata with    ' in CTAS with re-
spect to the system clock xS'' and parameterised minimal and maximal entry times 
(Tmin

i parameter for minimal entry time for TAF
i; Tmax

i parameter for maximal entry 
time for TAF

i) is shown on the listing 1. The clock constraints for these transitions de-
pend on the internal structure of the first level automata in contrast to the transitions 
with gt. Fig. 4. illustrates the program run for TAF

3 built in example of Fig.2. 

 

Fig. 4. Recursive calculation of entry times for the first level timed automaton TAF
3. Calcula-

tion for the transition e''32 will be stopped at the location s4 because the times for entry transi-
tions of this location are already calculated. 

 for each TAF
i  L''\ F''  

Tmin
i parameter for minimal entry time for TAF

i 
Tmax

i parameter for maximal entry time for TAF
i 

138 A. Voinikonis 



for each e'': (TAF
i , TAF

j, sk,  ''  ), e''  E'',    '   
t min

ik minimal stay time for TAF
i for sk 

t max
ik maximal stay time for TAF

i for sk 
 create Results 
 create Passed_Locations 
 define pseudo-transition e' corresponding to e'' -  

e'kj: ( sk, sj,  'k),    ',  
 Min_Max_Time mmt := 

calc_Min_Max_Time(Results,Passed_Locations, e')  
 t min

ik :=  mmt.min, t max
ik :=  mmt.max 

if   (si, xG, tij, mG, sj)  G, si L0'i
'' := Tmin

i + t min
ik xS''  xS'' Tmax

i + t max
ik  ti>Tmin

i + t min
ik xS''< tij 

 else  
if  mmt.max =   

error “Infinite unlimited path.” 
else 

'' :=  Tmin
i + t min

ik xS''  xS'' Tmax
i + t max

ik . 
 
function calc_Min_Max_Time(Results,Passed_Locations,e')  

/* e' has form ( sk, sj,  kj  'kj)  */ 
if result for e' in Results  
/* no repeated calculation */ 
 return Min_Max_Time for e' 
Min_Max_Time mmt:  

mmt.min = ,  
mmt.max = 0 

if start state si of TAF
i is reached: si = sk    

if exists a cycle:  ( sj, si, ji )  E'i, ji  ' 
mmt.max := 
/* it can be walked infinitely */ 

else 
mmt.max:= tkj,    
/* 'kj for e' has form xL'' = tkj or xL'' < tkj */ 

mmt.min := 0  
store mmt in Results 

 return mmt.  
for each e'lk = ( sl, sk, lk  'lk), e'lk  E 'i of TAF

i  
if exists a cycle: sl in Passed_Locations or sl = sk  

mmt.max := /* it can be walked infinitely */
else  

add sk to Passed_Locations 
 Min_Max_Time ret := calc_Min_Max_Time( 

Results, Passed_Locations, e'lk) 
remove sk from Passed_Locations  
ret.max := ret.max + tkj,     
/* 'kj has form  xL'' = tkj or  xL'' < tkj */ 
if kj  = lt  

ret.min := ret.min + tkj,     

 
Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 139 



/* 'kj has form  xL'' = tkj */ 
if mmt.min > ret.min 

mmt.min := ret.min 
if mmt.max < ret.max 

mmt.max := ret.max  
store mmt in Results 
return mmt.  

Listing. 1. Algorithm for definition of clock constraints for exit transitions with    ' for the 
first level timed automata  

It remains to define the values of parameters Tmin
i , Tmax

i for ''  and the clock con-
straints  ''  for the transitions with gt with respect to xS''. The algorithm is built 
on the similar strategy as before; it is shown on the listing 2. If some transitions can-
not be passed, the minimal and maximal passing times for such transitions are set to  
-1. It can occur if e.g. a minimal passing time for a transition with    ' exceeds the 
value of the global timers for a corresponding TAF (a transition with    ' is impass-
able) or if a maximal passing time for the transition with    ' is less than the value 
of the global timers for a corresponding TAF (a transition with gt is impassable). 

for each s  S0  
build CTAS  
create Results  
create Passed_Locations  
calculate clock constraints /* according Listing 1 */  
for each transition with target location  

TAFF: e'':= (TAF
i, TAFF,  ''i),    '', e''  E''  

Min_Max_Time mmt :=  
calc_Global_Times (Results, Passed_Locations, e'')  

store returned Min_Max pair 
if all entry transitions unreachable 
error “Task can not terminate.”. 

find least minimum and greatest maximum  
among stored pairs with exception of  
unreachable transitions and store in mmt 
mmt contains now the maximal and minimal duration of 
current CTAS  

find least minimum and greatest maximum among CTAS  
that defines the maximal and minimal duration of T c .  

 
function calc_Global_Times(Results,Passed_Locations, e'')  

/* e'' has form (TAF
i, TAF

j, ij  '' ij),  ij   ''  */ 
if Results contains result for e''  
/* no repeated calculation */ 
 return Min_Max_Time for e'' 
Min_Max_Time mmt, ret 
if start state of CTAS

i is reached: TAF
i  L0''  

if exists a cycle:  (TAF
i, TAF

i, gt )  E''
(  (TAF

l, TAF
i, li )  E'' 

 TAF
l in Passed_Locations,  li   '') 

140 A. Voinikonis 



error “Cycle found.” 
 mmt := define_Constraints(0,0, e'') 

store mmt in Results 
 return mmt.  
if state without entry transitions is reached  

transition unreachable: mmt.min:= -1, mmt.max:= -1 
store mmt in Results 

 return mmt.  
for each e''mi : (TAF

m, TAF
i,  mi  '' mi), e''mi  E ''  

if exists a cycle:  
TAF

m in Passed_Locations or TAF
m = TAF

i  
error “Cycle found.” 

add TAF
i to Passed_Locations 

Min_Max_Time ret := calc_Global_Times( 
Results,Passed_Locations,e''mi) 

remove TAF
i from Passed_Locations  

store returned Min_Max pair 
if all entry transitions unreachable 

all exit  transitions unreachable too:  
mmt.min = -1, mmt.max = -1 
store mmt in Results  
return mmt. 

find least minimum and greatest maximum  
among returned pairs with exception of  
unreachable transitions and store in ret  

mmt := define_Constraints( ret.min, ret.max, e'') 
store mmt in Results 
return mmt. 
  

function define_Constraints( min, max, e'' )     
/* e'' has form (TAF

i, TAF
j, ij  '' ij),  ij   ''  */ 

Min_Max_Time mmt 
if  (TAF

i, TAF
l,  gt '' il)  E'' and (si, xG, til, mG, sl)  G  

if ij = gt   
if max + MAXk (F 'i, t max

ik )3 < til 
transition unreachable:  
mmt.min := -1, mmt.max := -1 

else  

mmt.min := til, mmt.max := MAX (til , max) 
/* ''2:= til xS''  xS''  MAX (til , max) */ 
else  
/* ''1:= min+ t min

ij xS''  xS'' t max
ij+ max  til>min+ t min

ij xS''<til */ 
if til  min + t min

ij  
transition unreachable:  
mmt.min := -1, mmt.max := -1 

else  

mmt.min := min + t min
ij,  

mmt.max := MIN(til, max + t max
ij)  

                                                           
3 The function chooses the maximal passing time through the corresponding first level automa-

ton calculated earlier. 

 
Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 141 



/* ''1:= min + t min
ij xS''  xS''  MIN(til, max + t max

ij)  */ 
else 

mmt.min := min +  t min
ij, mmt.max := max + t max

ij 

/* ''1:= min + t min
ij xS''  xS''  max + t max

ij */ 
return mmt.  

Listing. 2. Algorithm for definition of the clock constraints for the transitions of the second 
level timed automaton  

Thus, the least minimal and greatest maximal passing times of the transitions, 
whose target is the TAFF, calculated for all start states in S0 characterises the maximal 
and minimal duration of the complex activity T c. The objects of the qualitative analy-
sis are also reached by application of the described algorithm: if the TAFF cannot be 
reached or reachability time is infinitely or an error is reported, the corresponding task 
must not be accepted by system. 

Finally, complexity of the algorithm should be estimated. Each transition will be 
passed only once because the calculation results are stored for each passed transition 
and will be reused if they are required; complexity of the result search is O(1). The 
upper limit for the number of TAF is 2  | G| + 2 according the method of construction 
of TAF. The number of transitions in each TAF does not exceed |E| + | L|; the number 
of transitions in CTAS does not exceed |E| + | L| + | G| (propagation of the transitions 
to TAFF can be neglected). Therefore, the number of the passed transitions during cal-
culation can be estimated as |S0|  (( 2  | G| + 2)  (|E| + | L|) + (|E| + | L|+| G|)). Thus, 
the complexity of the algorithm can be estimated as O(|S0|  | G|  (|E| + | L|)) because 
|S0| << |E| + | L| and | G| << |E| + | L|. 

The algorithm was implemented in Java. The test runs have demonstrated a good 
agreement between manually and automatically calculated values for the applied 
tasks. 

5  Summary 

The proposed method for the analysis of the reminder tasks allows to define the dura-
tion limits of the task execution. Thereby, the tasks with an unlimited execution time 
can be detected. The pursuance of analysis allows preparing the consistent task 
schedule: temporal task overlapping can be avoided; generation of the tasks with the 
unlimited execution time can be prevented. The approach to construction of the 2-
level timed automata allows handling dependency of the actual timer definition on the 
actions performed before. The article introduces also the efficient algorithm for the 
analysis. 

142 A. Voinikonis 

References 

1. J. Pineau,, M. Montemerlo, M. Pollack,N. Roy, S. Thrun, Towards robotic assistants in 
nursing homes: Challenges and results, Proc. of  Robotics and Autonomous Systems 42, 
2003, p. 271–281. 

2. A. Voinikonis, A Generic Approach to a Mobile Monitoring System, Proc. of 2nd IASTED 
International Conference on Biomedical Engineering BioMED 2004, Acta-Press, Innsbruck, 
Austria, February, 2004  



3. A.Voinikonis, A Generic Data Model and a Supporting Server Architecture for the Mobile 
Memory Aid System, Proc. of 9th IASTED International Conference on Internet and Mul-
timedia Systems and Applications EuroIMSA 2005, Acta-Press, Grindelwald, Switzerland, 
February, 2005  

4. H. Schulze, A. Voinikonis, T. Hoffmann, K. Irmscher, Modeling a Mobile Memory Aid 
System, Proceedings zur 13. ITG/GI-Fachtagung “Kommunikation in Verteilten Systemen” 
(KiVS2003). 25.-28.02.2003, Universität Leipzig. Springer-Verlag, Reihe Informatik aktu-
ell. Berlin, Heidelberg, New York, 2003. p. 143-153. 

5. 3GPP, GPRS Service Description, 3G TS 22.060 v. 3.3.0, Mar. 2000. 
6. R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer Science, 1994, 

126, p. 183-235. 
7. A.Th. Henzinger, It's About Time: Real-time Logics Reviewed, Proc. of the 10th Interna-

tional Conference on Concurrency Theory, LNCS 1466, Springer, 1998, pp. 439-454 
8. E. Asarin, O. Maler, A. Pnueli. Symbolic controller synthesis for discrete and timed sys-

tems. In Hybrid Systems II, LNCS 999, Springer 1995, pp. 1-20. 

 Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities 143 



Automatic Test Case Generation with

Region-Related Coverage Annotations for
Real-Time Systems

Geng-Dian Huang1,2 and Farn Wang1

1 Dept. of Electrical Engineering, National Taiwan University, Taiwan, ROC
2 Inst. of Information Science, Academia Sinica, Taiwan, ROC

Ph: +886-2-27883799 ext. 2105
gdhuang@ntu.edu.tw

Abstract. Testing is the mainstream of verification techniques used for
real-time systems in the industry because it allows the engineers to di-
rectly observe how their system implementations react to various test
cases. In this paper, we investigate how to use symbolic techniques to
automatically generate test cases for real-time systems. Especially, our
test cases have two annotations that can be useful in the construction of
powerful test cases. First, events in our test cases are labeled with sym-
bolic timing constraints which can either be conveniently used in picking
event occurrence times or be used for choosing boundary timing values
in domain analysis. Second, our test cases are annotated with region-
related coverage estimations which support high precision in detecting
some timing bugs. Finally, we have implemented our ideas with BDD-like
data-structures which could lead to performance advantage for testing
complex embedded systems.

1 Introduction

Nowadays, as the verification cost has grown to over 50 percent of the total devel-
opment budget in most industrial projects for complex embedded systems, the
ability to control the verification process has become the major factor in the com-
petitiveness of most high-tech companies. Of the many verification techniques,
testing [14, 3] has been the mainstream in the software industry over the last
few decades. The major reason is that testing is directly applied to the software
engineers’ major product, i.e., programs, which the software engineers feel most
comfortable with. In contrast, other verification techniques, like simulation [5]
and formal verifications [2, 6], usually work on artefacts, like virtual models and
mathematical logics, which do not fuse easily with the existing development cy-
cles in many companies. However, the complexity of new-generation embedded
systems has driven the cost of testing to bigger and bigger proportions in their
development budgets. But even having spent huge money on testing, people still
found that they usually did not have time and resources to run enough test cases
for the confidence in their products. One way to overcome the challenges of ver-
ification in the industry without disrupting the existing development cycles is

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 144–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Automatic Test Case Generation with Region-Related Coverage Annotations 145

to use formal verification techniques to enhance the quality of test case gener-
ation. In this work, we investigate how to use symbolic techniques for flexible
automatic test cases generation for real-time systems.

Symbolic state space 

exploration procedure

TTCN with 
coverage

of the system
Specification

Framework

Environment 
model

   System Under Test
Implement Conformance test

Fig. 1. Framework of conformance testing

In fig 1, we show our framework of conformance testing [17] for embedded
systems. Both the SUT (System under test) and the environment are specified as
communicating timed automata (CTA) [23,24]. We apply a symbolic state space
exploration procedure to generate symbolic trace-trees annotated with coverage
estimations. Every symbolic trace from the root to a leaf in the symbolic trace-
tree is mapped to a test case. The test cases are then fed to the SUT to check
whether the SUT’s behavior conforms with the specification. The generated test
cases are sequences of input events and expected output events. Specifically, our
test cases have the following two annotations.

• Flexible timing-constraints of all the events. The constraints annotated with
the input/output events are specified as Boolean combinations of event oc-
currence time differences. The constraints can be conveniently used in both
picking the input event occurrence times and checking the correctness of
the output event occurrence times of the SUT. Test cases with specific input
event occurrence times may hardly give development teams strong confidence
in the correctness of the timing behaviors of their SUT. Usually, engineers
would like to efficiently check how their SUT behaves with respect to the
extreme cases of data-values. Thus our annotations of flexible constraints of
input events can thus be used as a basis for domain and boundary analysis
of input/output event occurrence times.

• Region-related coverage estimations. In the before, people suggested to use
coverage metrics for untimed systems, like transition coverage, to measure
the progress of testing real-time systems [4,20]. However, there can be special
timing bugs that could escape testing with such metrics. A general character-
istic of such timing bugs can be illustrated with the simple CTA in figure 2.
The periods of the first and the second processes are 3 and 5 respectively.
Thus the global period of the whole system is 15. At the 5’th time unit,



146 G.-D. Huang and F. Wang

q1

x ≤ 3

x := 0;

x = 3
x := 0; y ≤ 5

y := 0;

y = 5
y := 0;

q2

Fig. 2. An example that exposes the imprecision of the transition coverage metric

the transition coverage has already reached 100% and implies that no more
test cases are needed. However, if a bug can only happen in the 14’th time
unit, specified with x = 2 ∧ y = 4, then apparently the transition coverage
metric will not have the precision to help us detecting the bug. Our test
cases are all annotated with region-related coverage estimations [23] and can
be shown precise enough to detect such timing bugs. We have employed
two such coverage metrics, one roughly corresponding to dense-time state
coverage while the other to dense-time branch coverage.

We have implemented the ideas in this article with symbolic techniques and
BDD-like data-structures, which have been proven more efficient than DBM [8]
against several benchmarks [25]. We have developed a technique to combine an
iteration of abstract forward analysis with an iteration of backward analysis.
This technique helps us focusing on the test cases related to the reachability of
risk conditions. Our experiment data corroborates this claim since the technique
leads to smaller test plans1 in the experiment. We have also experimented to use
abstraction techniques to control the sizes of the test plans. Abstraction tech-
niques may remove some state information, make the state-equivalence relation
coarser, and in turn generate fewer test cases to guarantee coverage.

The rest of this paper is structured as follows. We review related work in
section 2. We review the basic building blocks of this work, including the formal
specification language CTA, the symbolic state space exploration procedure, and
the symbolic state coverage estimation techniques in section 3. Then, we present
techniques to extract test cases from symbolic traces in section 4. We report our
implementation and experiment in section 5. Finally, we present the conclusion
and discuss the future work in section 6.

2 Related Work

To automatically generate test cases, we need a formal specification of the SUT
and then a mechanical procedure to read in the formal specification and generate
the test cases. For testing real-time systems, people have used the popular timed
automata (TA) [1] and its variations as the formal specification languages. Peo-
ple have also adapted the existing test-case generation algorithms for untimed
algorithms. The idea is to discretize the state space before applying the untimed
test case generation algorithms. In [15], the discretization is achieved through

1 A test plan can be viewed as a sequence of the test cases.



Automatic Test Case Generation with Region-Related Coverage Annotations 147

digital clock automata. In [21], Springintveld et al. discretized timed automata
into finite grid automata and then applied untimed test case generation algo-
rithm. Both of these methods encounter the state explosion problem even with
small systems since they partition the state space with fine granularity.

Hessel et al. [10] used the fastest diagnostic trace facility of the UPPAAL [19],
a model checker for real-time systems with DBM-technology [8], to generate time
optimal test cases. Test cases can be selected through manually formulated test
purposes or automatically from three coverage metrics: edge coverage, location
coverage, definition-use pair coverage. The test cases are annotated specific time-
delay values between events. The timing constraints are preserved from symbolic
traces to test cases through summations of specific time-delay values between
events. In this work, we deduce flexible timing constraints on event occurrence
times instead of specific time-delay values. Such flexibility could support domain
and boundary analysis in the latter stage of test case generation.

Nielsen et al. [18] proposed a method to generate test cases for real-time
systems, specified as event-recording automata, in which every event has a cor-
responding clock to record the elapsed time since its last occurrence. No internal
events are permitted. The state space is partitioned, according to the trigger-
ing conditions on the transitions, for constructing an equivalence-class graph.
Then symbolic techniques are used to construct the reachability graph out of
the equivalence-class graph. Finally, test cases are generated to cover all equiv-
alence classes.

3 Review of the Basic Technology

In this section, we review some of the basic technology, on which we build this
work. In section 3.1, we give the definition of our specification language, CTA. In
section 3.2, we review the basic symbolic techniques to explore the dense state
space. In section 3.3, we then review the three coverage metrics implemented in
our test case generation algorithm. Finally, in section 3.4, we review the symbolic
state space exploration procedure.

3.1 CTA as a Specification Language

A communicating timed automaton (CTA) is a set of process timed automata
(PTA), equipped with a finite set of clocks (with nonnegative real-values) and
synchronization channels. A PTA is structured as a directed graph whose nodes
are modes (control locations) and whose arcs are transitions. The modes are
labeled with invariance conditions while the transitions are labeled with trig-
gering conditions and a set of clocks to be reset during the transitions. The
invariance conditions and triggering conditions are Boolean combinations of in-
equalities comparing clocks with integers. At any moment, each PTA can stay
in only one mode (or control location). In its operation, one of the transitions
can be triggered when the corresponding triggering condition is satisfied and its
input/output events are synchronized. Upon being triggered, the PTA instan-
taneously transits from one mode to another and resets some clocks to zero. In
between transitions, all clocks increase their readings at a uniform rate.



148 G.-D. Huang and F. Wang

� �
�����

�	
�

	
��

��


 ��

�
�

�
��

�
�
�

�
�

�
�

�
�

�
��

�
�
�

�
�

�
��

�
�

��
�

�
�

��
�

�
��

	
	

	

	

	
	�

�
�
��

idle

active

wait

transmit

7. ?cd,x:=0

8. ?cd,x:=0
9. ?busy,x:=0

x:=0

13. ?busy,x:=0

1. ?begin,x:=0 6. !begin,x:=0

x:=0 x:=0

x:=0
x:=0

(A) bus (B) adaptor

5. !cd !cd,x<26,x:=0

4. ?begin,x<26,

10. !end,

3. !busy,x≤26

12. !begin,x<52,

2. ?end,x:=0
collision
x<26

retry
x<52

14. ?cd,x<52,
11. ?cd,x<52,

Fig. 3. Specification of a bus-contending protocol

In figure 3, we draw two PTAs for specifying a bus-contending protocol. One
is for the bus and the other one is for the adaptor. The circles represent modes
while the arcs represent transitions, which may be labeled with synchronization
symbols (e.g., !begin, ?end, . . .), triggering conditions (e.g., x < 52), and as-
signments (e.g., x := 0;). For convenience, we have labeled the transitions with
numbers. In the system, an adaptor process may synchronize through channel
begin with the bus to start sending signal on the bus. While one adaptor is
using the bus, the second one may also synchronize through channel begin to
start placing message on the bus and corrupting the bus contents. When this
happens, the bus then signals bus collision (cd) to all the adaptors.

In the following, we give a brief definition of CTA. For detailed definition,
please refer to [23,24]. For convenience, given a set Q of modes and a set X of
clocks, we use B(Q, X) as the set of all Boolean conjunctions of inequalities of
the forms modep = q and x− x′ ∼ c, where modep is a special auxiliary variable
to record the current mode of process p, q ∈ Q, x, x′ ∈ X ∪ {0}, ‘∼’ is one of
≤, <, and c is an integer constant. R+ is the set of nonnegative real numbers.

Definition 1. process timed automata (PTA) A PTA A is given as a tuple
〈X, E,Q, I,μ, T, λ, τ,π〉. X is the set of clocks.E is the set of synchronization chan-
nels. Q is the set of modes. I ∈ B(Q, X) is the initial condition. μ : Q �→ B(∅, X)
defines the invariance condition of each mode. T ⊆ Q×Q is the set of transitions.
λ : (E × T ) �→ Z defines the message sent and received at each process transi-
tion. When λ(e, t) ≤ 0, it means that process transition t receives |λ(e, t)| events
through channel e.Whenλ(e, t) > 0, itmeans that process transition t sendsλ(e, t)
events through channel e. τ : T �→ B(∅, X) and π : T �→ 2X respectively define
the triggering condition and the clock set to reset of each transition. �

Definition 2. communicating timed automata (CTA) A CTA of m pro-
cesses is a tuple 〈E, A1, A2, . . . , Am〉, where E is the set of synchronization chan-
nels and for each 1 ≤ p ≤ m, Ap = 〈Xp, E,Qp, Ip,μp, Tp, λp, τp,πp〉 is the PTA
for process p. �

A valuation of a set is a mapping from the set to another set. Given an
η ∈ B(Q, X) and a valuation ν of X , we say ν satisfies η, in symbols ν |= η, iff
η is evaluated true when the variables in η are interpreted according to ν.



Automatic Test Case Generation with Region-Related Coverage Annotations 149

Definition 3. states Suppose we are given a CTA C = 〈E, A1, A2, . . . , Am〉
such that for each 1 ≤ p ≤ m, Ap = 〈Xp, E,Qp, Ip,μp, Tp, λp, τp,πp〉. A state ν
of C is a valuation of

⋃
1≤p≤m(Xp ∪ {modep}) such that

• ν(modep) ∈ Qp is the mode of process p in ν; and
• for each x ∈

⋃
1≤1p≤m Xp, ν(x) ∈ R+ such that ν |=

∧
1≤p≤m μp(ν(modep)).

For any t ∈ R+, ν + t is a state identical to ν except that for every clock
x ∈ X , (ν + t)(x) = ν(x) + t. �

A global transitions Φ of a CTA is a mapping from process indices p, 1 ≤ p ≤
m, to Tp∪{⊥}, where ⊥ means no transition (i.e., a process does not participate
in a global transition). A legitimate global transition has to be synchronized,
that is, each output event from a process is received by exactly one unique
corresponding process with a matching input event. Formally speaking, in a
global transition Φ, for each channel e, the number of output events must match
that of input events. Or in arithmetic, ∀e ∈ E,

∑
1≤p≤m;Φ(p) �=⊥ λ(e,Φ(p)) = 0.

Moreover, to be compatible with the popular interleaving semantics, we require
that two synchronized global transitions are not allowed to occur at the same
time. In the following, whenever we say “global transition”, we actually mean
“legitimate global transition” for briefness.

We define the transition relation
δ
↪→ of a CTA as follows. δ is either a time-

delay t or a global transition Φ. Given two states ν and ν′, we say that ν
t
↪→ ν′

iff ν′ = ν + t for t ∈ R+. We say that ν
Φ
↪→ ν′ iff

• ν |=
∧

1≤p≤m;Φ(p) �=⊥ τp(Φ(p)), and
• ν is identical to ν′ except that for all 1 ≤ p ≤ m and Φ(p) �=⊥,

(ν(modep), ν′(modep)) = Φ(p) and ν′(x) = 0 if x ∈ πp(Φ(p)).

3.2 Symbolic Trace Computation

Since we assume that time is continuous in a CTA (i.e., the domain of the clocks
is positive real numbers), there are infinitely many states. In order to analyze a
CTA, we use zones to represent state-space. A zone z is a state-space described
by a set of constraints in either of the following two forms.

• modep = qp, for some 1 ≤ p ≤ m and qp ∈ Qp.
• x− x′ ∼ c for clock differences, where x and x′ are clocks or 0, ‘∼’∈ {≤, <,

=, >,≥}, and c is an integer.

Many model-checkers for CTAs have been built on the symbolic manipulation
procedures of zones [19, 22, 26]. Our symbolic trace computation is also based
on a well-discussed symbolic procedure, called post(), to compute a symbolic
post-condition of a zone after a global transition and time-progress [12]. Given
a zone z and a global transition Φ,

post(z,Φ) = {ν′′|ν Φ
↪→ ν′

t
↪→ ν′′, ν ∈ z, and t ∈ R+}.



150 G.-D. Huang and F. Wang

Note that the result of the post-condition procedure can also be represented as
a zone. For briefness, we use z

Φ→ z′ to denote z′ = post(z,Φ) and a symbolic
trace can be described as z0

Φ1→ z1
Φ2→ . . .

Φn→ zn.

��
��

��
��

��
��

��
��

��
��

� � � �z0 z1 z2 z3 z4
Φ1 Φ2 Φ3 Φ4

Φ1(1) = 1, Φ1(2) =⊥, Φ1(3) = 6

Φ3(1) = 5, Φ3(2) = 11, Φ3(3) = 11

Φ2(1) = 4, Φ2(2) = 6, Φ2(3) =⊥

Φ4(1) = 1, Φ4(2) =⊥, Φ4(3) = 12

z0 : mode1 = idle ∧ mode2 = wait ∧ mode3 = wait

z1 : mode1 = active ∧ mode2 = wait ∧ mode3 = transmit ∧ x1 = x3

z2 : mode1 = collision ∧ mode2 = transmit ∧ mode3 = transmit∧
x1 < 26 ∧ x2 < 26 ∧ x1 = x2 ∧ x3 < 52 ∧ x3 − x1 < 26 ∧ x3 − x2 < 26

z3 : mode1 = idle ∧ mode2 = retry ∧ mode3 = retry ∧ x2 < 52 ∧ x3 < 52 ∧ x2 = x3

z4 : mode1 = active ∧ mode2 = wait ∧ mode3 = transmit∧
x1 < 52 ∧ x2 < 52 ∧ x3 < 52 ∧ x1 − x2 ≤ 0 ∧ x1 = x3 ∧ x3 − x2 ≤ 0

Fig. 4. A symbolic trace of the bus-contending protocol

In figure 4, we show a symbolic trace of the bus-contending protocol (in
figure 3) and the related derivation. There are three PTAs, A1 for the bus while
A2, A3 for the adaptors. For briefness, x = x′ is a shorthand for x − x′ ≤
0 ∧ x′ − x ≤ 0 and x ∼ c is a shorthand for x− 0 ∼ c, where x and x’ are clocks
or 0. The initial zone z0 describes that the bus process is in the idle mode
and the two adaptor processes are in the wait mode. With global transition
Φ1, A3 synchronizes through channel begin with A1 to start sending signal on
the bus. At zone z1, x1 = x3 since both x1 and x3 are reset at Φ1. If A2 also
starts sending signal with Φ2 before A3 can be sure of the total access to the
bus in 52 time units, a collision happens at global transition Φ3 and bumps
all transmitting adaptors to the retry mode. In the retry mode, A3 tries to
retransmit signals with global transition Φ4 in 52 time units. Similarly, x1 = x2,
x2 = x3, and x1 = x3 are true respectively at zones z2, z3, and z4. At z2, x1 < 26
since mode1 = collision and μ1(collision) is x1 < 26. For the same reason,
x2 < 52 and x3 < 52 are true at z3.

3.3 Coverage Estimation

In the following, we briefly discuss three coverage metrics, ACM, RCM, and
TCM. For more details, readers can refer to [24].

Arc coverage metric (ACM). This is a straightforward adaptation from the
FSM (finite-state machine) arc coverage [4,20] of VLSI simulation and testing.
Conceptually, we transform a circuit to an FSM and measure the set of executed



Automatic Test Case Generation with Region-Related Coverage Annotations 151

transitions. The same definition of FSM arc coverage can be readily copied for
the test case analysis of CTAs. That is, we can also use the global transitions of
CTAs to estimate coverage in ACM.

Region coverage metric (RCM). Another extreme that can also be adapted
from VLSI verification technology is the visited-state coverage metric, which
measures the reachable states in FSM. The states are discrete and countable
in VLSI’s models while they are dense and uncountable in CTAs. Instead of
measuring the reachable states directly, region-equivalence relation [1] can be
used to partition the dense-time state-space into finite set of equivalent states,
and we measure the reachable regions in RCM. We use the symbolic procedure
in [24] to estimate the number of regions in a zone.

Triggering-condition coverage metric (TCM). The third coverage metric
is called triggering-condition coverage metric (TCM), which is a hybrid measure
composed of ACM and RCM. Unlike ACM, in which a global transition is covered
once it is executed, we take the triggering conditions into account. When a
global transition is executed, we use TCM to estimate the regions that have
been covered in the triggering condition of the corresponding global transitions.

3.4 Symbolic State Space Exploration Procedure

From each zone, there could be many successor zones. Thus the symbolic traces
constructed in section 3.2 constitute a directed graph of zones. The following
symbolic procedure returns a traversing tree of the directed graph for a given
CTA and risk condition.

Symbolic trace tree(C, η) /* C is a CTA with I = z1 ∨ . . . ∨ zn; η is the risk
condition. */ {

let V := {z1, . . . , zn}; F := ∅;
while (true) {

select a zone z ⊆ V ∧ abstract(¬η) and a global transition Φ
such that post(z,Φ) �= false and post(z,Φ) �⊆ V ; (a)

if there is no such a z, return 〈V, F 〉;
z′ := abstract(post(z,Φ)); V := V ∪ {z′}; F := F ∪ {(z, z′)}; (b)

}
}

The zone z and the global transition Φ are fed to post() to compute the next-
step state space after transition and time-progress in statement (b). The while
loop continues until the generated symbolic traces have covered all reachable
state space up to the risk condition. There are two features of this procedure.

• In statement (a), we allow for the flexibility of various traversing strategies in
choosing z and Φ. With different strategies, the procedure generates different
trace-trees. The leaves of a traversing tree generated from this procedure
represent those zones which either have already been traversed (and recorded



152 G.-D. Huang and F. Wang

in V ) or are contained in the risk conditions. Typical traversing orders are
depth-first traversing, breadth-first traversing, etc.

• In statement (b), we may use abstraction techniques through procedure
abstract() to simplify the representation of V . This abstraction option cer-
tainly may over-approximate the state-space representations. Abstraction
techniques have been used widely to make state-space analysis and test-case
generation feasible with practical resource assumptions. Typical abstraction
techniques include convex-hull approximation [13] and discretization [7].

4 Test Case Generation

We now use the building blocks in subsections 3.2, 3.3, and 3.4 to design our test
case generation procedure. In the framework of conformance testing, we inject
the inputs to an SUT and observe if the outputs of the SUT conform with our
expectation. Given a CTA that specifies a system and its environment and a
risk condition, we can use procedure Symbolic trace tree() in subsection 3.4
to construct a trace-tree of the CTA. In this section, we show how to step by step
extract a test case from a symbolic trace of a CTA with coverage information.
Each test case consists of (1) the input events and the expected output events,
and (2) the timing constraints between events. This is done in three steps.

1. The symbolic trace should be strengthened by stronger constraints such that
the symbolic trace corresponds to true computations of the CTA.

2. The events of the trace and their timing constraints are extracted. Since our
CTAs allow for internal events, we need a projection procedure to eliminate
the internal events while preserving the interval timing information.

3. Finally, assuming a certain order of the test cases generated in the 2nd step,
we calculate the (region-related) coverage estimation of each steps in each
test case.

We present the three steps in subsections 4.1, 4.2, and 4.3 respectively.

4.1 Backward Analysis

Now, we present the first step. A symbolic trace z0
Φ1→ z1

Φ2→ . . .
Φn→ zn is computed

forwardly with procedure post() so that every state ν′ ∈ zi has a preceding
state ν ∈ zi−1. If we want to map each symbolic trace to a test case, we want
to make sure that the reverse is also true. However, the reverse is not true. For
example, a state ν satisfying ν(mode1) = active∧ν(mode2) = wait∧ν(mode2) =
transmit ∧ ν(x1) = 26 ∧ ν(x2) = 26 ∧ ν(x2) = 26 is in z1. But it can not
reach z2 through Φ2 since the triggering condition of Φ2(1) is not satisfied at
ν. If we extract a test case from the symbolic trace with states that breaks the
execution of the symbolic trace, we may generate an invalid test case that the
implementations are not supposed to pass.

In order to exclude the states that can not reach zn, we need a procedure

pre(z,Φ) = {ν|ν t
↪→ ν′

Φ
↪→ ν′′, ν′′ ∈ z, and t ∈ R+} to compute the pre-condition



Automatic Test Case Generation with Region-Related Coverage Annotations 153

so that every state ν ∈ pre(z,Φ) has a succeeding state ν′′ ∈ z. Like post(), the
result of pre() can be represented as a zone. In the following, based on pre(),
we present procedure Backward Prune that prunes redundant states that break
the execution of a symbolic trace.

Backward Prune(z0
Φ1→ z1

Φ2→ . . .
Φn→ zn) {

for (z′n := zn, i := n; i > 0; i := i− 1) z′i−1 := zi−1 ∧ pre(z′i,Φi);

return z′0
Φ1→ z′1

Φ2→ . . .
Φn→ z′n;

}

Intuitively, the procedure computes the pre-conditions iteratively and back-
wardly from zn through Φn,Φn−1, . . . ,Φ1. In short, we backwardly propagate
the pre-conditions from zn to z0. As a result, all states in the restricted sym-
bolic trace z′0

Φ1→ z′1
Φ2→ . . .

Φn→ z′n can reach z′n (i.e., zn) in this symbolic trace.
When we apply Backward Prune() to the trace in figure 4, we get a restricted
symbolic trace z′0

Φ1→ z′1
Φ2→ . . .

Φn→ z′4. This restricted symbolic trace differs from
the original symbolic trace in z′1 and z1. z′1 have extra constraints, x1 < 26 and
x3 < 26, that is the pre-conditions of z2.

4.2 Projection from Traces to Test Cases

From each symbolic trace, we can construct the following trace constraint, which
is a pair (K,Θ) and contains enough information to generate a test case. Given
a symbolic trace z0

Φ1→ z1
Φ2→ . . .

Φn→ zn, (K,Θ) is defined as follows.

• K is a sequence Φ0Φ1 . . . Φn of global transitions, where Φ0 is an initial global
transition that resets all clocks to zero.

• Θ is a set of inequalities, which specify the timing constraints between global
transitions in K. Let ti denote the variable that records the time when Φi

is executed. Then ti − tj is the time duration between Φ and Φ′. Given an
index i and a clock x, K[i, x] = j such that j ≤ i and x is reset in Φj but
not in Φj+1, . . . ,Φi. Θ consists of the following inequalities.
• tK[i,x] − tK[i,x′] ∼ c, if x′ − x ∼ c is a constraint in zi;
• ti′ − tK[i′−1,x] ∼ c, if x− 0 ∼ c is a constraint in zi′−1;
• tK[i′−1,x] − ti′ ∼ c, if 0− x ∼ c is a constraint in zi′−1,

where 0 ≤ i ≤ n and 0 ≤ i′ < n.

We now want to extract the test-case-related information from trace con-
straints like (K,Θ). This can be done by removing all global transitions which
are not related to the interactions among processes. In K, a global transition
is caused by either an internal action or an interaction between the environ-
ment processes and the system processes. Here the environment processes refer
the PTAs that model the environment, while the system processes refer to the
PTAs that specify the behavior of the system. A global transition is internal if it
does not involve both environment processes and system processes. For blackbox
testing (and hence conformance testing), test cases only check the interaction



154 G.-D. Huang and F. Wang

between the SUT and the environment. So our projection step eliminates those
global transitions that represent only internal actions from K. Since some global
transitions are to be eliminated, all the timing constraints with reference to the
eliminated global transitions also have to be eliminated from Θ. Suppose the
global transitions in K that are not internal are Φi1 ,Φi2 , . . . ,Φik

. Conceptually,
the elimination can be carried out with Fourier-Motzkin elimination [12] that
projects Θ to the space of dimensions tΦi1

, . . . , tΦik
. The following procedure

Project() realizes this elimination process.

Project(Φ0Φ1 . . . Φn,Θ) {
Φ′0 := Φ0; Θ′ := Θ; j := 1;
for (i := 1; i ≤ n; i := i + 1)

if Φi is internal, Θ′ := Fourier-Motzkin-elimination(Θ′, tΦi);
else { Φ′j := Φi; j := j + 1; }

return (Φ′0Φ
′
1 . . . Φ

′
j ,Θ

′);
}

Take the restricted symbolic trace in section 4.1 as an example, its trace
constraint is (Φ0Φ1Φ2Φ3Φ4, {t2−t1 < 26, t3−t2 < 26, t3−t1 < 52, t4−t3 < 52}).
Assume that we want to generate test cases for a network adaptor. We use A1

and A2 as environment processes while A3 as the system process. Project()
eliminates Φ2 and its time variable t2 from the trace constraint since they are
internal to the environment processes.

After we have generated a trace constraint (K,Θ) from Project(), we can
further map all global transitions in K to test statements in sequence. Here we
use the TTCN [14] test language to explain the mapping. Assume there is a
system clock called Time. There are two TTCN commands, START (to start the
ticking of a clock from zero) and READTIMER() (to read the current reading of a
clock). Given a trace constraint (Φ0Φ1 . . . Φn,Θ), first we start clock Time with
statement “START Time” at time t0. Then iteratively for each 1 ≤ i ≤ n,

1. print out the input and output events of Φi;
2. print out “READTIMER Time(ti)” to record the occurrence time of Φi; and
3. print out all timing constraints in Θ of the form xi−xj ∼ c and xj −xi ∼ c,

with j < i, to check if any timing constraints are violated.

For example, to continue with the restricted symbolic trace in section 4.1, we
get the following test case in TTCN format.

START Time
?begin
READTIMER Time(t1)
!collision
READTIMER Time(t3)
[t3 − t1 < 52]



Automatic Test Case Generation with Region-Related Coverage Annotations 155

?begin
READTIMER Time(t4)
[t4 − t3 < 52]

The test case checks if an adaptor retries the transmission within 52 time
unit after a bus collision is detected.

4.3 Coverage Annotations of Test Cases

We have presented how to extract a test case from a symbolic trace. Now, we
combine all the components to present our algorithm to generate test cases with
coverage annotations. The algorithm is as follows.

Test case generation(C, η) /* C is a CTA; η is the risk condition. */ {
Let 〈V, F 〉 := Symbolic trace tree(C, η); Coverage := 0;
While there is still an unchosen trace in 〈V, F 〉 {

Choose a trace z0
Φ1→ z1

Φ2→ . . .
Φm→ zm

from 〈V, F 〉 that has not been chosen before;
Let Coverage := the new coverage estimation considering z0;
For (i := 0; i ≤ m; i := i + 1) {

Coverage := the new coverage estimation considering zi and Φi;
Annotate both zi and Φi in the trace with Coverage;

}
Eliminate the internal global transitions form the trace

to generate a test case with the coverage annotations;
}

}

First, we construct trace-tree with procedure Symbolic trace tree() in sub-
section 3.4. Then, we enumerate symbolic traces in the symbolic trace-tree to
generate test cases. Here, we specifically leave the flexibility to allow for various
policies in generating the test plans in using the test cases in particular orders.
The coverage estimation annotated on the test cases are computed according to
a chosen test plan.

In our implementation, we adopt the test plan that orders the test cases
according to the depth-first ordering of the leaves of their corresponding symbolic
traces. This approach has the following advantage in black-box testing. It tends
to generate long test cases which could save us time in restarting the SUT. In
contrast, if we use several short test cases to reach the same coverage as a long
one, then we need to restart the SUT for each of the short ones.

5 Experiment

We have implemented our ideas in RED [22,23,25], a model-checker/simulator
for CTAs and linear hybrid systems. RED adopts BDD-like data-structures,



156 G.-D. Huang and F. Wang

Table 1. Experiment result of the generated test cases

Specification Trace-tree Exploration Generation Steps # test cases
strategies time(s) time(s)

Audio All 2.21 6.73 131 40
Risk 1.2 0.99 89 37

Abstraction 1.94 6.62 122 37

L2CAP All >3hr Not available
Risk >3hr

Abstraction 13.56 229.07 169 127

CRD (Clock-Restriction Diagrams) for CTAs and HRD (Hybrid-Restriction Di-
agrams) for linear hybrid systems. We have experimented with two benchmarks,
the Philips audio protocol [11, 16] and the Bluetooth L2CAP [9,24].

In table 1, we show the performance data, which was collected on a Pentium
4 3.2G machine running Mandrake 10. We have implemented the following three
strategies to generate the trace-trees.

• All: With this strategy, we generate traces to cover the whole reachable
state-space.

• Risk: We only generate traces that are related to the reachability of a risk
test property. Specifically, we use an abstract backward reachability pro-
cedure from the risk conditions to compute an approximation of the state
space which are backward reachable from a risk state. Then when we do
the trace-tree construction, we refine our exploration in this approximation.
This makes sure that our test cases, generated from the trace-tree, are highly
related to the reachability of the risk condition [24]. The test property used
for the Philips audio protocol is that the receiver enters the “ERROR” state.
The one for the L2CAP is that the master stays in the “OPEN” state, but
the slave enters the “W4 L2CA DISCONNECT RSP” state.

• Abstraction: We adopt the Game-Abstraction technique [23] to simplify the
zone representations in the trace exploration. This strategy may sometimes
reduce the time for a symbolic trace exploration.

“Exploration time” and “Steps” are the time spent in symbolic trace exploration
and the number of calls to post() in symbolic trace exploration. “Generation
time” is the time spent in test case generation and “# test cases” is the number of
generated test cases. For the audio specification, we have explored less symbolic
states and generated less test cases when strategies Risk and Abstraction are
adopted. For L2CAP specification, it takes more than three hours in symbolic
trace exploration when strategies All and Risk are adopted. This is due to the
sheer size of the CTA for the L2CAP specification. But with strategy Abstraction,
we have effectively generated test cases for the L2CAP.

We have also collected coverage data in running our test cases. Due to page-
limit, we only show two of the charts. Figure 5 shows the cumulative coverage
estimations for the Philips audio protocol SUT with strategy All. After we have
executed the first 4 test cases, we get about 60% coverage in TCM. The ACM



Automatic Test Case Generation with Region-Related Coverage Annotations 157

Fig. 5. Accumulative coverage values

of the test cases for the Philips audio

protocol, strategies is “All”

Fig. 6. Accumulative coverage values

of the test cases for the L2CAP pro-

tocol, strategies is “Abstraction”

and TCM coverage estimations reach 100% before all test cases are applied to the
Philips audio SUT. This is because ACM and TCM are both based on covered
transitions and could be less precise in discerning bugs related to dense-time
behaviors. Figure 6 shows the estimations for the L2CAP SUT with strategy
Abstract. The same pattern as in figure 5 is observed. That is, after the first few
test cases, we already have a quite high coverage in both TCM and ACM.

On the other hand, the RCM estimations grow much slower than TCM and
ACM estimations. This implies that RCM usually have better precision in dis-
cerning bugs related to dense-time behaviors. However, for large-scale systems,
when the number of global transitions is already pushing the limit of state of
the art, ACM and TCM may still offer basic confidence check of the SUT.

6 Conclusion

In this paper, we investigate how to use symbolic techniques to automatically
generate test cases for real-time systems. The test cases are annotated with
symbolic timing constraints and coverage estimations. Our framework does leave
the pace for future work. Especially, the design of various test plans, abstraction
techniques, and traversing orders to construct the trace-trees. It will be very
interesting to see how the flexibility left in the framework can accommodate
various techniques for the test case generation in real-world projects.

References

1. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems. IEEE
LICS, 1990.

2. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. IEEE LICS, 1990.



158 G.-D. Huang and F. Wang

3. G.V. Bochmann, A. Petrenko. Protocol Testing: Review of Methods and Rele-
vance for Software Testing. Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis.

4. L. Bening, H. Foster. Principles of Verifiable RTL Design: a Functional Coding Style
Supporting Verification Processes in Verilog,li 2nd ed. Kluwer Academic Publish-
ers, 2001.

5. G. Bucci, A. Fedeli, E. Vicario. Specification and Simulation of Real Time Con-
current Systems Using Standard SDL Tools. SDL Forum 2003: 203-217.

6. E. Clarke, E.A. Emerson, Design and Synthesis of Synchronization Skeletons us-
ing Branching-Time Temporal Logic. Proceedings of the Workshop on Logic of
Programs, LNCS 131, Springer-Verlag.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-Guided
Abstraction Refinement for Symbolic Model-Checking. J. Assoc. Comput. Mach.,
vol. 50, no. 5, pp. 752V794, Sept. 2003.

8. D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. CAV’89, LNCS 407, Springer-Verlag.

9. J. Haartsen. Bluetooth Specification, version 1.0. http://www.bluetooth.com/.
10. A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, A. Skou. Time-Optimal Real-

Time Test Case Generation Using Uppaal. FATES 2003.
11. P.-H. Ho, H. Wong-Toi. Automated Analysis of an Audio Control Protocol. CAV

1995, LNCS 939, Springer Verlag, 1995.
12. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for

Real-Time Systems. IEEE LICS 1992.
13. H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems. Ph.D.

dissertation, Stanford Univ., Stanford, CA, 1995.
14. ISO/IEC 9646:IT-OSI-Conformance testing methodology and framework,1996.
15. M. Krichen, S. Tripakis. Black-box Conformance Testing for Real-Time Systems.

In SPIN’04 Workshop on Model Checking Software.
16. K.G. Larsen, P. Pettersson, W. Yi. Diagnostic Model-Checking for Real-Time Sys-

tems. In Proceedings of the 4th DIMACS Workshop on Verification and Control
of Hybrid Systems, New Brunswick, New Jersey, 22-24 October, 1995.

17. D. Lee, M. Yannakakis. Principles and Methods of Testing Finite State Machines
- A Survey. Proceedings of The IEEE, Vol. 84, No. 8, August 1996, pp. 1090-1123.

18. B. Nielsen, A. Skou. Automated Test Generation from Timed Automata. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 4, 2002.

19. P. Pettersson, K.G. Larsen, UPPAAL2k. in Bulletin of the European Association
for Theoretical Computer Science, volume 70, pages 40-44, 2000.

20. P. Rashinkar, P. Paterson, L. Singh. System-on-a-chip Verificatoin, Methodology
and Techniques. Kluwer Academic Publishers, 2001.

21. J. Springintveld, F. Vaandrager, P.R. D’Argenio Testing Timed Automata. Theo-
retical Computer Science, Vol. 254, Issue 1-2, 2001.

22. F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-
Restriction Diagram, in Proceedings of FORTE, August 2001, Cheju Island, Korea.

23. F. Wang, G.-D. Huang, F. Yu. Symbolic Simulation of Real-Time Concurrent Sys-
tems. RTCSA2003, LNCS 2968, Springer-Verlag.

24. F. Wang, G.-D. Huang, Fang Yu. Numerical Coverage Estimation for Dense-Time
Systems. in proceedings of FORTE’2003, LNCS 2767, Springer-Verlag.

25. F. Wang. Symbolic Parametric Safety Analysis of Linear Hybrid Systems with
BDD-like Data-Structures. CAV 2004, LNCS 3114, Springer-Verlag.

26. S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Jour-
nal of Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.



Selective Search in Bounded Model Checking

of Reachability Properties�

Maciej Szreter

Institute of Computer Science, PAS
Warsaw, Poland

Abstract. Bounded Model Checking (BMC) encodes a model checking
problem in the propositional logic. Diagnosing the resulting formula to
be satisfiable provides a counterexample. While surprisingly efficient for
many complex systems, in general BMC still fails to be complete and is
a method of falsification rather then validation. The major obstacle is
satisfiability testing (SAT). The paper introduces a selective search to
the standard DLL SAT algorithm, allowing to profit from several opti-
mization techniques proposed for non-symbolic methods. Partial-order
reductions are shown as an example of selective search. Preliminary ex-
perimental results confirm that the selective search can significantly im-
prove the effectiveness of BMC.

1 Introduction

The general idea of BMC is to encode in the propositional logic a model checking
problem. Because models can be huge, usually the search takes into account only
a part of the whole state space, increasing the range of search if the evaluated
fragment was proved not to contain any counterexample or returning the found
one. The practical realization of the method is possible thanks to developing
efficient SAT-testing algorithms (solvers).

Many algorithms reducing the state space searched were invented for explicit-
state model checking. One of the most successful optimization approaches is a
selective search – constructing a reduced model preserving the properties of the
full one. The reduction consists in restricting the transition relation, exploring
only a subset of system transitions enabled in a state. A natural question is
whether this techniques could be applied to logic-based symbolic verification.
The formulation of the optimization problem is different in this case. Symbolic
representation and relevant operations deal with sets of states, so it must be
guaranteed that the reduction is correct with respect to all the system states.
There is no direct access to processed states (no notion of a searched state nor
a search stack) and determining states described by symbolic formulas may be
costly.

� Partly supported by the Ministry of Science and the Information Society Technolo-
gies under the grant No. 3T11C01128.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 159–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



160 M. Szreter

In this paper the problem of efficient SAT testing in BMC reachability check-
ing is examined. The general idea consists in supplying the solver with additional
information characterizing the structure of a tested formula. When a general ap-
proach sees a solver as a ”black box”, we loose generality with hope of improving
the efficiency. [Str00] introduces a simple strategy of free variable decision – a
step towards DFS symbolic search. Our original contribution extends it to the
full DFS search (Alg. SAT-DFS-2), and finally parametrizes it with a selective
search method (Alg. SAT-POR). The reduction is obtained by assigning subfor-
mulas of a formula encoding an instance of BMC with information about depth
on the symbolic path and actions they encode, and using this information by the
modified solver. Partial order reductions are chosen as a selective search realiza-
tion, which is possible thanks to enforcing the DFS search order. Preliminary
results show that the selective search can significantly improve the efficiency
particularly in the case of unsatisfiable formulas, and justify the future research
on efficient implementing the presented ideas.

Related Work. BMC was introduced in [BCCZ99] and is a subject of intensive
research. [BCC+03] offers good introduction and discussion of related research.
Despite many optimizations, in most cases BMC remains incomplete.

Partial order reductions constitute a group of optimization methods reducing
the size of the state space to be searched by model checking algorithms. The
most important groups of methods are the stubborn set, the ample set and the
persistent set approaches [CGMP99]. All the above-mentioned methods were
proposed in the context of DFS exploration. There were however attempts to
change the search algorithm to BFS, which allows for applying symbolic model
checking methods [ABH+97].

2 Preliminaries

2.1 Propositional Logic

Let PV be a set of propositional variables. F is a set of propositional formulas,
and for α ∈ F , we denote by PV(α) the set of propositional variables in α. An
assignment A is a function assigning to every variable a logical value of 1 or
0. This function is extended to formulas. A formula is satisfiable iff there is an
assignment for which it is assigned with 1. For a variable v, v and ¬v are literals.
A clause is a disjunction of literals, and a formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses.

Satisfiability-preserving conversion to CNF. The majority of SAT algo-
rithms work with CNF formulas. The efficient transformation [PG86] is usually
used to test satisfiability: given a formula γ ∈ F , it produces a satisfiability-
preserving CNF formula toCNF (γ) of polynomial length, over the set of propo-
sitional variables extending the propositional variables PV(γ) with fresh vari-
ables from the set PVC ⊆ PV (lα ∈ PVC represents a subformula α of γ,
p ∈ PV is denoted by lp for simplicity of notation, but we do not introduce a



Selective Search in Bounded Model Checking of Reachability Properties 161

new literal). Let us define a function properClauses : F → 2C assigning to every
non-propositional subformula of γ a set of clauses (we show the case of propo-
sitional variables and conjunction, the remaining ones can be found in [PG86]):

properClauses(γ) =

{
true for γ ∈ PV,

(lα ∨ ¬lγ) ∧ (lβ ∨ ¬lγ) ∧ (lγ ∨ ¬lα ∨ ¬lβ) for γ = α ∧ β,

(1)
Let PVC(α) denote the literals introduced by the translation of α. The function
toCNF : F → 2C is defined as follows:

toCNF (γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true for γ ∈ PV,

toCNF (α) ∧ properClauses(γ) for γ = ¬α,

toCNF (α) ∧ toCNF (β) ∧ properClauses(γ)
for γ = α ∼ β, and ∼∈ {∨,∧, =⇒ ,⇔}

(2)

For any assignment A of toCNF (α), for every subformula α of ϕ, if
A(toCNF (α)) = 1, then we have A(β) = A(lβ) for every subformula β of α
(in particular, A(α) = A(lα)). α ∈ F is satisfiable iff the formula toCNF (α)∧ lα
is satisfiable.

Davis-Loveland-Logemann (DLL) SAT algorithm

The DLL algorithm forms the basis
for most modern SAT solvers. Prac-
tically efficient implementations ap-
peared about three decades after in-
venting the theoretical framework,
providing clever solutions of key op-
erations: variable decision (VD),
Boolean constraint propagation
(BCP) and conflict-based learn-
ing (CBL). It is based on a DFS
search through the space of as-
signments, taking advantage of ad-
vanced optimization and implemen-
tation techniques. Alg. 1 presents
the generic SAT (). The formula ϕ
to be checked is given in the CNF
form. Below the main parts of the
algorithm are briefly explained:

input: χ =
toCNF (ϕ) ∧ lϕ

deduce();
while true do

d = d + 1;
if decide() =
ALL-ASSIGNED
then

return A;
if deduce() =
CONFLICT then

(d, cl) =
diagnose();
if d = 0 then

return ∅;
erase(d);
χ = χ ∧ cl;

Algorithm 1. SAT (ϕ)

(VD) The search is driven by assigning a logical value to a free variable
chosen by decide() (when no free variables, ALL-ASSIGNED is returned). Many
heuristics were proposed to this aim. The decision level is the number of decided
variables in the current assignment.

(BCP) BCP efficiently propagates every assigned variable, in order to iden-
tify unit clauses, i.e., the clauses of one unassigned literal only and the other



162 M. Szreter

literals evaluating to 0. Obviously, a clause composed of one unassigned literal
is unit. An unassigned literal in a unit clause must be assigned 1 in order for the
formula to be satisfied. If for some variable, BCP implies both logical values of
0 and 1, a conflict is detected.

(CBL) CBL on the basis of a conflict assignment produces a learned clause
(added to the working set of clauses), which excludes partial assignments which
imply the current conflict. diagnose() identifies a partial assignment responsible
for the conflict, returns a learned clause and computes the decision level to
which the search backtracks. erase(d) unassigns the variables assigned at the
levels greater than d.

The above procedures are repeated until either a satisfying assignment is
found or a conflict occurs at the level 0 (not dependent on any decision). Imple-
mentation details can be found in [MMZ+01].

2.2 Models of Systems

A Kripke structure is a triple K = (S, s0,−→), where S is a set of states, s0 ∈ S -
an initial state , and −→⊆ S × Σ × S is a labeled transition relation for same
fixed set Σ of actions. Elements of −→ are called transitions. Given a set of
propositional variables PV, a model for a Kripke structure K is a pair M =
(K, V ), where V : S −→ 2PV is a labeling function. We call V (s) the valuation
of the state s ∈ S.

Some actions of the modeled system can be not relevant from the point of
view of tested properties. a ∈ Σ is a label of invisible transition, if for each pair
of states s, s′ such that s

a−→ s′, we have V (s) = V (s′). We say that e ∈−→ is
enabled in s ∈ S if ∃s′ ∈ S s.t. e = s −→ s′, and by enabled(s) ⊆ Σ we denote
the set of actions labeling transitions enabled in s. A path in K is a (finite or
infinite) sequence π = s0 −→ s1 −→ . . ., where s0, s1, . . . ∈ S. We use the
standard notions related to paths. A state s ∈ S is reachable, if there is a path
in the model from s0 to s. The set of all reachable states of K is denoted by
ReachK.

A set of structures can be used to model a concurrent system, with every
structure modeling a process. These structures can be composed into a global
(product) structure by a standard multi-synchronization approach: the transi-
tions that do not correspond to a shared action are interleaved, whereas the
transitions labeled with a shared action are synchronized. Also the valuation
function is extended, with disjoint sets of labels in components. The detailed
definition is given in [PWZ02] (for more general case of timed automata).

2.3 Bounded Model Checking of Reachability Properties

Let M = (K, V ) be a (possibly product) model of a system, and let ϕ ∈ F
over the set of propositions labeling states of K be a reachability property. For
v ∈ PV(ϕ) and a state s, we say that v is satisfied in s iff v ∈ V (s). This notion
naturally extends to Boolean connectives. A reachability property ϕ is true in
M iff ∃s ∈ ReachK such that ϕ holds in s.



Selective Search in Bounded Model Checking of Reachability Properties 163

Let denote by d(M) the length of the longest loop-free path in M starting
from the initial state. Formally, let π′ be a maximal path π = s0, . . . , sm with
s0 = s0 and si �= sj for i �= j. Then d(M) = m. It is obvious that a state s is
reachable in M iff it is reachable on a k-path for k ≤ d(M). BMC reachability
testing is based on this fact. A sequence w[1], . . . ,w[n] of PV variables is a state
vector, and a function θ : S → {1, 0}g uniquely assigns a Boolean encoding over
g = �log2(|S|)� bits to every state. Let w0, . . . ,wk be a symbolic k-path of state
vectors representing all the k-paths in M.

The formula Is(w) encodes a state s over w, that is is satisfied in an as-
signment A iff A(w) = θ(s). The formula T (w, a,w′) encodes the transition
a ∈ Σ: it is satisfied in an assignment A iff A(w) = θ(s), A(w′) = θ(s′)
and s

a−→ s′. −→ is encoded by a disjunction of encoded actions over Σ:
T (w,w′) =

∨
a∈Σ T (w, a,w′) . The symbolic path representing all the k-paths in

M beginning in s0 is encoded by pathk = Is0(w0)∧
∧k−1

i=0 T (wi,wi+1). Concern-
ing the property to be verified, expressed by a formula ϕ ∈ F , the propositional
formula [ϕ](wk) encodes over the vector wk the set of states of M in which ϕ
is true. For the implementations of Is(w), T (w,w′) and [ϕ](w), see [PWZ02].

The formula ϕk represents a symbolic k-path, with the property ϕ satisfied
in the final state: ϕk = pathk ∧ [ϕ](wk) .

Lemma 1. The formula ϕk is satisfiable iff there is a k-path π = s0, . . . , sk in
M, with s0 = s0 and ϕ is satisfied in sk.

BMC encodes ϕk for k iteratively increased from 1 to d(M) and tests for satis-
fiability. If this formula is satisfied, the property ϕ holds in the system, and the
algorithm stops, otherwise the property is diagnosed to not hold in the system
if the diameter is reached. The important problem of detecting the latter fact is
not discussed in this paper.

3 Selective Search in BMC

In this section the main ideas of the paper are presented. First, we introduce
functions describing the structure of the formula ϕk. Secondly, SAT () (Alg. 1)
is extended to SAT-DFS-1 (partial DFS, [Str00]), SAT-DFS-2 (full DFS) and
finally to SAT-POR using a selective search. The idea of selective search is that
when checking the property in the state s of a model M = ((S, s0, →), V ) of
a concurrent system, instead of exploring all the transitions corresponding to
enabled(s), a subset ample(s) ⊆ enabled(s) suffices to determine whether the
property holds.

3.1 Assigning the Structure Information to ϕk

Depth on search path. We assign a depth on the symbolic k-path to the
subformulas of ϕk, as well as to the clauses and variables of toCNF (ϕk):



164 M. Szreter

� subformulas of ϕk The partial function depth : F → 2N assigns to every
subformula α of ϕk depths1 on the symbolic path encoded by α:

depth(α) = {k | α is a subformula of [ϕ](wk)} ∪
{i | α is a subformula of T (wi−1,wi), for α �∈ wi−1} ∪
{0 | for the remaining subformulas of ϕk}.

The last case includes the formulas Is0(w0),
∧k−1

i=0 T (wi,wi+1)2, pathk and
pathk∧ [ϕ](wk) Notice that each subformula of ϕk may have at most two depths
assigned (because ϕk is defined over vectors wi as propositional variables, a sub-
formula can encode at most both postcondition of some action and precondition
of another action at some depth); moreover, depth(v) = {i} for each v ∈ wi.

� clauses of toCNF (ϕk) In toCNF (α) (p. 161) we applied the function
properClauses assigning to every subformula of α a set of clauses. Because every
clause of toCNF (α) is generated by exactly one formula, we can also define the
function properClauses−1 : C → F .

We define the partial function depthC : C → 2N assigning to a clause of
toCNF (ϕk) depths of the formula which generated this clause:

depthC(c) = depth(properClauses−1(c))

A partial function depth clauses : N → 2C returns the clauses associated with a
depth: depth clauses(i) = {c ∈ toCNF (ϕk) | i ∈ depthC(c)}.

� variables of toCNF (ϕk) The function depth assigns depth on the symbolic
path to the variables of PV(ϕk) =

⋃
0≤i≤k wi (these variables are subformulas

of ϕk). Now we extend depth() to the literals of PVC(ϕk):

depth(l) = {d | (∃c ∈ toCNF (ϕk)) l ∈ c and d ∈ depthC(c)}

A function CNF vars : N → 2PV
C

associates with each depth the clause vari-
ables occurring in the clauses of this depth. Formally CNF vars(i) = {v ∈
PVC | (∃c ∈ C) c ∈ depth clauses(i) and v ∈ c}. A function depth vars :
N → 2PV

C(ϕk) gives the variables associated with a depth: depth vars(i) =
wi ∪ CNF vars(i).

Encoded actions of a depth in the path. Given a depth on the search
path, we define functions assigning to subformulas, clauses and variables actions
encoded by these, in way analogous as we did for depths:

� subformulas of ϕk The partial function action : F ×N → 2Σ assigns the
encoded actions to the subformulas of ϕk:

action(β, i) = {a | β is a subformula of T (wi−1, a,wi)} for 1 ≤ i ≤ k (3)

1 The notion of depth should not be confused with the decision level (Alg. SAT ())
representing the number of decision variables in the current assignment (see p. 161).

2 But not the formulas T (wi,wi+1).



Selective Search in Bounded Model Checking of Reachability Properties 165

Notice that for variables v ∈ wi, action(v, i) = Σ, because for every a ∈ Act,
the formula T (wi, a,wi+1) is defined over both wi and wi+1.

� clauses of toCNF (ϕk) We define a function actionC : C × N → 2Σ as
follows:

actionC(c, i) = action(properClauses−1(c), i)

A partial function action clauses : Σ×N → 2C returns the clauses encoding an
action a at the depth i: action clauses(a, i) = {c ∈ C | a ∈ actionC(c, i)}.

� variables of toCNF (ϕk) State variables of ϕk have actions already as-
signed, because are subformulas of ϕk. We extend the function action to the
literals of PVC(ϕk):

action(l, i) = {a | (∃c ∈ toCNF (ϕk)) l ∈ c and a ∈ actionC(c, i)}

A function action vars : PVC×N → 2Σ assigns actions to variables. Formally for
v ∈ PVC , action vars(v, i) = {a ∈ Σ | (∃c ∈ C) actionC(c, i) = a and v ∈ c}.

3.2 SAT Algorithms Using Formula Structure Information

Now we present algorithms extending SAT () (Alg. 1) by making use of the
structure information concerning ϕk. We give general ideas with only preliminary
implementation techniques, so there is much space for improvements.

SAT-DFS-1: variable decision. [Str00] discusses many changes to the gen-
eral SAT algorithm. A step towards DFS by changing the order of free variable
selection proved to be successful. The standard procedure decide() can result in
stepwise construction of the fragments of the path, which may lead to a con-
flict because these parts do not respect the transition relation. So decide() is
changed: a variable currD ∈ [0, k] represents the smallest depth on the symbolic
path such that for 0 ≤ i < currD, every variable from the set depth var(i) is
assigned. The correct value of currD is maintained: increased after assigning the
last variable of the current depth and decreased after backtracking, if necessary.
The modified procedure decide dfs() chooses an unassigned variable from the set
depth vars(currD). It suffices to decide only state variables of wcurrD+1, the
remaining ones are implied.3 The experimental results given in Sect. 5 confirm
the claim of [Str00] that SAT-DFS-1 alone improves the overall performance.
For us, however, it is a prerequisite for application of a selective search.

SAT-DFS-2: postponing deduction. SAT-DFS-1 implements a partial DFS,
because is restricted to VS. In Fig. 1 it is depicted a fragment of a symbolic path
...,w1,w2,w3, .... Braces at the left side represent the depths assigned to sub-
formulas. Gray fragments depict subformulas already assigned. Fig. a) shows

3 Notice that the depth assignments of the variables of depth vars(0) are determined
by the encoding of the initial state, so there is no variable decision on this depth.
When there is no free variable of wcurrD+1, currD is incremented.



166 M. Szreter

that (assuming currD = 1) deducing clauses of currD > 1 may lead to as-
signments which must be withdrawn when there will be no assignment of w2

consistent with the transition relation. SAT-DFS-2 (Alg. 2) extends SAT-DFS-1
by restricting deduction to clauses of depthC(currD) and performing postponed
deductions after increasing currD. Our solution is to stepwise extend the search
to clauses and variables encoding consecutive depths. In Fig. b), having assigned
the depth 1, the search proceeds at the depth 2. After completing it (Fig. c)), the
postponed deduction is performed in order to assign the variables and clauses
of the depth 3 induced by assigned variables of lower depths (notice that some
variables may already be assigned, namely those encoding two depths).

T (w1,w2)

T (w2,w3)

w1

w2

w3

depth = 2

depth = 3

a)

T (w1,w2)

T (w2,w3)

w1

w2

w3

b)

T (w1, w2)

T (w2, w3)

w1

w2

w3

c)

Fig. 1. a) deduce() not restricted to currD, b) deduce() restricted to currD = 2,

c) postponed deduction after increasing currD to 3

� deduction restricted to the current depth – deduce dfs(). A clause
c ∈ toCNF (ϕk) is taken into account by BCP iff currD ∈ depthC(c). Learned
clauses are never ignored. Notice that no depths are assigned to learned clauses
and to literals on the basis of learned clauses.

An assignment stack is a data structure used by the solver: it contains vectors
of variables assigned at all the levels; first element is a decision variable for every
level with the exception of level 0 where all variables are implied by unit clauses.
In SAT (), the stack grows only at the current level. The consequence of the
above deduction scheme is that it can grow at all decision levels when performing
postponed deductions. This is shown in Fig. 2 for an example system4. The path
depth 1 is completed after deciding the variables v1, v2 and v3 (these decision
variables imply further assignments, possibly conflicts happen and are resolved).
The subformulas of depths 2 and 3 are uniquely determined by decision variables
of the depths 0 and 1, possibly because some learned clauses were added earlier.

For the use in backtracking, we maintain the information how are depths
and levels related in the current assignment: first, a function initDepth : N → N

assigns to each level the value of currD when the level was initiated. Secondly,
for every initiated depth we maintain the size of the search stack at all levels:
the function ni

j gives the number of assigned variables for the level i when the
depth j was initiated.

4 Notice that all the variables of the depth 0 are implied without a decision, because
the initial state s0, uniquely determines assignments of w0 variables.



Selective Search in Bounded Model Checking of Reachability Properties 167

� postponed deduction – PostponedDeduction(). As soon as currD is
incremented, it is checked whether some clauses of the new depth are unit or
conflicting. This is done by re-assigning already assigned variables beginning
from the decision level 0, so that each implied variable is assigned at the depth
of this implication. If a clause is found to be unit, the implied variable is assigned
at the maximal search level of literals in the clause. For example, if the clause
(v1∨v2∨v3) is unit because v1 is assigned at the level 1 and v2 is assigned at the
level 2, v3 is implied at the level 2 – when re-assigning v1, the unit implication
waits for v2 to be re-assigned.


 conflict analysis –
diagnose dfs(). If during the post-
poned deduction a conflict occurs
when re-assigning a variable assigned
at the decision level n smaller than
the current decision level, we set the
decision level to n (erasing variables
assigned at depths bigger than n,
that is executing erase dfs(n + 1)).
Moreover it can happen that con-
flicting implied literals (v and ¬v
for some variable v) are assigned at
different decision levels. In such a
case, we perform the conflict analysis
on the higher level.

v1

v2

v3

path depth:

0

1

2

3

0 1 2 3
decision
level:

n0
3n0

2n0
1

n1
2 n1

3

n2
2 n2

3

n3
2 = n3

3

initDepth(1) = 0

initDepth(2) = 0

initDepth(3) = 0

Fig. 2. Assignment stack with

path depths. Variables assigned at

currD ∈ {2, 3} are shown in gray.

� backtracking – erase dfs(). When returning to the level i, we reduce the
path depth to c = initDepth(i), unassigning all the variables assigned at levels
greater than i, and for every level j < i, variables assigned after nj

c. We reduce
the number of conflicts in this way, because variables corresponding to depths
greater than c are removed from the assignment stack.

For example in Fig. 2, assume that a conflict occurs at the level 3 for
currD = 3, and the search returns to the level 2. The path depth is reduced to
initDepth(2) = 0 and the variables assigned at levels 0, 1 and 2 corresponding
to depths 2 and 3 can be withdrawn (in gray in the figure), resulting in smaller
numbers of conflicts.

SAT-POR: selective search. SAT-POR (Alg. 3) extends SAT-DFS-2 by
processing only variables and clauses of ϕk relevant not because of the basis of
depth, but also the encoded actions, with subset of relevant actions chosen by
the selective search.

� selective search – CalculateSelected(). The selective search is in-
troduced: after incrementing currD, the assignments current assignment A
of wcurrD−1 determines the global system state scurrD−1 (i.e. scurrD−1 =
θ−1(A(wcurrD−1)). Below we describe how the search is reduced to formulas



168 M. Szreter

encoding the actions from the reduced set selected(currD) ⊆ Σ, choosen by the
selective search selected(currD) = ample(scurrD−1). 5

� deduction restricted to selected actions of the current depth –
deduce por(). The aim is not to consider clauses and variables encoding only
ignored actions. Thus BCP considers a clause cl iff either

– action(cl, currD) ∩ selected(currD) �= ∅ (clause encodes some selected ac-
tions), or

– action(cl, currD) = ∅ (clause does not encode actions at all - it may encode
the reachability property ϕ or disjunction of formulas encoding actions).

Learned clauses are treated in the same way as in deduce dfs().

input: χ = toCNF (ϕk) ∧ lϕk

deduce dfs();
while true do

d = d + 1;
if decide dfs() =
ALL-ASSIGNED then

if currD = k then
return A;
currD = currD + 1;
PostponedDeduction();

if deduce dfs() =
CONFLICT then

(d, cl) =
diagnose dfs();
if d = 0 then return
∅;
currD = erase dfs(d);
χ = χ ∧ cl;

Algorithm 2. Alg. SAT (ϕk)
implementing BMC-DFS-2

input: χ = toCNF (ϕk) ∧ lϕk

deduce por();
while true do

d =d+1;
if decide dfs() =
ALL-ASSIGNED then

if currD = k then
return A;
currD = currD + 1;
CalculateSelected();
RestrictT ();
PostponedDeduction();

if deduce por() =
CONFLICT then

(d, cl) =
diagnose por();
if d = 0 then return
∅;
currD = erase dfs(d);
χ = χ ∧ cl;

Algorithm 3. Alg. SAT (ϕk) im-
plementing DFS-POR

� variable decision – decide dfs(). In order to comply with the general
reduction rule no variables encoding only ignored actions should be decided.
The simplest solution is to choose only variables of wcurrD (the same as in
SAT-DFS-2).

� restricting transition relation – RestrictT (). Assume that the depth
currD = i is completed and currD = i + 1 is to be explored. In order to
restrict the search to selected actions the formula T (wi,wi+1) is substituted with

5 Notice that a reduction is obtained even without applying the selective search,
namely disabled actions are ignored: selected(currD) = enabled(scurrD−1).



Selective Search in Bounded Model Checking of Reachability Properties 169

Tred(wi,wi+1) =
∨

a∈selected(i) T (wi, a,wi+1). We remove from the working set
χ the clauses of toCNF (T (wi,wi+1)) and add ones of toCNF (Tred(wi,wi+1)),
we also add the clause (lTred(wi,wi+1)). The above clauses are removed when
backtracking to the depth i. Removing and adding clauses is a costly operation
and a more advanced solution should be applied.

� conflict analysis – diagnose por(). SAT-DFS-2 worked with all the vari-
ables and clauses, changing the order of exploration. SAT-POR chooses relevant
variables and clauses depending on the current assignment. The consequence
is that the conflict analysis must be extended, because some decision variables
although not present in a learned clause, may implicate the resolved conflict
(states on the path and ample set selection depend on them). We applied the
very simple solution: substituted a search-based learned clause generation al-
gorithm with returning disjunction of all the decision variables negated with
respect to their assignment. In this way the learned clause is always associated
with sets of actions selected when the conflict occurred.

4 Partial Order Reductions

So far we used an abstract notion of a selective search. Now we apply the well
known approach of partial order reductions.

In the interleaving semantics the executed actions are interleaved in all possi-
ble ways. The method consists in constructing a reduced state graph, potentially
smaller than the full state graph. Usually algorithms choosing ample sets are
characterized conditions which must be fulfilled in order to preserve the required
class of properties. For preserving reachability, the following conditions suffice:
[CGMP99]

– C0 (Emptiness): ample(s) = ∅ iff enabled(s) = ∅.
– C1 (Faithful decomposition): for every path starting from the state s,

a transition that is dependent on some transition in ample(s) cannot be
executed before a transition from ample(s).

– C2 (Cycle closing): for every cycle in the reduced state space there is at
least one fully expanded node.

– C3 (Visibility): if ample(s) contains a visible transition, then the state s
is fully expanded, that is ample(s) = enabled(s).

Combining BMC and POR. Let ϕk encode the BMC problem introduced
above and be tested by SAT-POR. Because the search for a satisfying assignment
is performed in DFS mode, the current assignment of vectors w0, . . . ,wcurrD

always determines a path s0, . . . , scurrD of the model. In CalculateSelected(),
C2 is checked on the path s0, . . . , scurrD while the remaining conditions are
calculated with respect to scurrD.

Concerining invisible actions, we restrict the notion of invisibility only to
propositions occurring in the reachability property.



170 M. Szreter

5 Experimental Results

The DLL algorithm outlined in Alg. 1 has been implemented in many solvers.
We implemented the described algorithms into ZChaff. Verics [NNP+04] BMC
module was extended in order to provide necessary information. Our experi-
ments were performed on a Linux machine with 600 MHz clock and 256 MB
memory. The following parameters are given: n is the number of processes, k
- path length, and L1, L2 denote the number of local transitions added to the
model sequentially to the local transitions, in order to show how increasing the
effectiveness of the selective search influences the effectiveness of the BMC al-
gorithm. ML is maximal search level, and ND, NI, NC and NL are numbers
of variable decisions, implications, learned clauses added and literals in learned
clauses, respectively.

5.1 Mutual Exclusion Benchmark (Table 1)

The system consists of n + 1 automata modeling n processes Pi and a shared
variable X coordinating exclusive access to the critical resource (Fig. 3).

Process1 Shared Variable

enter2enter1

exit1

exit1

idle1

enter1

exit2

enter3 exit3

try1 s0s0 s1s1

s2s2
s3s3

crit1

· · · · · ·

Phi
Fi−1 Fi

s0

s1

s2

ti−1

bi−1

ti

bi li

ti

bi

ti

bi

ti+1

bi+1

s0

s1 s2

s0

s1 s2

Fig. 3. Simplified Fischer’s mutual exclusion (left), Dining Philosophers (right)

The following reduction is applied: if a local transition is enabled, it is choosen
as a singleton ample set. C0 is trivially satisfied. C1 holds, because every local
action is the only one locally enabled in a component state, and it cannot prevent
from executing any other action. C2 holds because every cycle in the reduced
space involves a state where for all processes no local action is enabled, thus all
actions enter are in the ample set. C3 holds because processes enter end exit
their critical sections by synchronous transitions.

Property describing unreachable states. Our simple mutex system is cor-
rect, as it guarantees that no pair of processes is in their critical sections. In states
violating this property the following formula is satisfied: ϕ1 =

∨
1≤i,j≤n,i�=j criti∧

critj .

Property describing reachable states. The formula ϕ2 = crit1 represents
global states in which P1 is in its critical section. In the full model, the state in
which ϕ2 holds, is reachable with two transitions, namely Pi1 performs try and
enter. In the reduced model, the state is reachable by n + 1 transitions, because
the reduction first chooses the try in all the processes and only then enter



Selective Search in Bounded Model Checking of Reachability Properties 171

becomes selected. DFS-POR is slower than the other algorithms, but for the
same instances of ϕk less operations are executed. In the satisfying assignment
found by DFS-POR, 467 of 1282 variables remain free.

Exploring the model’s diameter. In order to consider a reachability property
true only in the last state of every path of model depth we have modified the
system by cutting cycles (dashed line) and adding an additional state s4 so that
the action idle leads from the state s3 to s4. The proposition final is true in s4

and the property ϕ3 =
∧n

i=1 finali expresses that all the processes reach their
final states. This state is reachable by a path of the length equal to the diameter
and is on top of all the ”diamonds” formed by independent actions - so we can
relax C3 and choose a visible transition leave to ample sets.

Table 1. Time bold–formula SAT, numbers in exp notation rounded

SAT DFS-SAT-1 DFS-POR
k ML/ND NI NC/NL time ML/ND NI NC/NL time ML/ND NI NC/NL time

ϕ1, n = 4, L1/L2 = 0/0, d(M) = 16
2 8/50 3068 33/367 0.004 9/15 1632 15/166 0.002 0/0 135 0/0 0.006
4 15/541 63059 356/5618 0.065 19/101 14573 102/1671 0.012 0/0 213 0/0 0.013
8 28/7730 1.8e6 6697/3.3e6 5.07 39/558 1.4e5 545/1e4 0.13 3/8 1791 5/9 0.12
12 32/5.5e4 1.7e7 4.9e5/4.6e6 129 59/1106 5e5 1084/2.2e4 0.57 6/37 7088 25/85 0.83
16 39/3.6e5 1.3e8 3.4e5/ 4.8e7 1987 79/1644 1.1e6 1604/3.5e4 1.58 9/153 28548 105/549 5.171

ϕ1, n = 3, L1/L2 = 2/0, d(M) = 18
17 46/1.6e4 5.4e6 12499/7.6e5 16.62 67/955 6.7e5 922/2.1e4 0.85 4/25 8105 16/36 1.3
18 52/3.5e4 1.3e7 2.9e4/2.5e6 63 71/1027 7.7e5 990/2.3e4 1 4/25 8422 16/36 1.49

ϕ1, n = 3, L1/L2 = 2/2, d(M) = 24
22 > 300 87/2095 2.3e6 2025/6.0e4 4.06 4/25 11022 16/36 2.5
24 > 300 95/2316 2.9e6 2257/6.9e4 5.24 4/25 1.5e4 16/286 4.77

ϕ2, n = 3, L1/L2 = 0/0
2 5/9 311 1/5 0.001 2/3 315 2/16 0.001 0/1 72 0/0 0.02
3 0/2 100 0/0 0.06
4 0/4 164 0/0 0.13

ϕ3, n = 4, L1/L2 = 0/0, d(M) = 16
15 38/8.1e4 3.0e7 7.3e4/9.2e6 255 54/1325 9.2e5 1160/3.6e4 1.15 9/231 27201 65/414 3.83
16 38/468 48029 164/2096 0.05 48/49 3071 0/0 0.01 9/12 1125 3/20 0.11

5.2 Dining Philosophers Benchmark (Table 2)

The benchmark models n (n ≥ 2) philosophers Phi sitting around a table (Fig.
3), with n forks Fi lying between them. The actions ti and bi model taking and
laying back the i-th fork, respectively. The reduction consists in choosing a single
enabled local action to an ample set or taking all enabled actions. The reduction
conditions hold with the same explanation as in the previous example, because
the structures of systems are similar (processes with local actions form cycles).

Property describing unreachable states. The unreachable property ϕ4 =∨n
i=1 eatsi ∧ eats(i+1) mod n is satisfied in states where a pair of neighbour

philosophers eats simultaneously.
An interesting phenomenon can be seen for n = 4, L1/L2 = 2/0. For k ≤

12, only local transitions of philosophers are selected to singleton ample sets.
DFS-POR profits on it, as no variable decision occurs and the unsatisfiability is
diagnosed without adding learned clauses.



172 M. Szreter

Property describing reachable states. ϕ5 =
∨

1≤i,j≤n,i�=j eatsi ∧ eatsj is
satisfied when a pair of philosophers eats simultaneously. Provided that they are
not neighbours, this does not violate the mutual exclusion.
Exploring the model’s diameter. Similar to the case of mutual exclusion, we
examine a reachability property satisfied only by path of the full model depth.
The system is modified by cutting the cycle in Pi (dashed line) and adding s3

so that the action bi leads from s2 to s3. The proposition final is true in s3 and
the property ϕ6 =

∧n
i=1 finali expresses that all the philosophers reach their

final states.

Table 2. Time in bold-formula SAT, numbers in exp notation rounded

SAT DFS-SAT-1 DFS-POR
k ML/ND NI NC/NL time ML/ND NI NC/NL time ML/ND NI NC/NL time

ϕ4, n = 4, L1/L2 = 0/0, d(M) = 12
11 43/1.2e4 4.6e6 6.5e4/6.1e5 13.175 96/731 2.7e5 565/1.0e4 0.27 22/231 3.4e4 321/3384 4.68
12 51/1.6e4 6.8e6 1.4e4/9.5e5 21.8 105/811 3.1e5 634/1.2e4 0.345 27/789 7.6e4 789/9931 10.9

ϕ4, n = 4, L1/L2 = 2/0, d(M) = 20
4 15/276 2.3e4 112/993 0.02 41/160 2.1e4 110/1883 0.02 0/0 344 0/0 0.02
12 52/9354 3.4e6 6919/3.8e5 8.2 129/2524 1.5e6 2116/6.1e4 2.43 0/0 883 0/0 0.11
13 57/1.0e4 4.3e6 7870/4.6e5 10.6 140/2886 2.0e6 2454/7.3e4 3.4 4/6 3779 6/12 0.51
20 97/6.3e4 3.4e7 5.2e4/6.0e6 165 217/5423 7.6e6 4771/1.6e5 17 20/260 3.2e4 260/2647 8.2

ϕ4, n = 4, L1/L2 = 2/2, d(M) = 28
26 >2000 283/1.8e4 3.5e7 1.6e4/7.3e5 109.5 20/218 5.9e4 218/2077 18.8
27 >2000 294/1.9e4 4.0e7 1.7e4/7.8e5 124.8 22/362 1.0e5 362/3734 35.11
28 >2000 305/2.1e4 4.4e7 1.8e4/8.3e5 139.1 24/890 2.7e5 890/9338 98.8

ϕ5, n = 4, L1/L2 = 0/0
2 6/36 2991 25/145 0.005 15/25 2471 18/168 0.002 0/0 171 0/0 0.01
4 15/80 6040 31/216 0.007 33/43 2130 13/100 0.003 0/0 276 0/0 0.01
6 3/3 607 1/3 0.03

ϕ6, n = 4, L1/L2 = 0/0, d(M) = 12
11 42/8695 3.3e6 7318/4.0e5 7.74 45/637 2.8e5 483/11696 0.28 14/533 6.3e4 210/1136 9.35
12 46/727 3.4e4 104/986 0.04 45/46 2543 0/0 0.009 7/11 1211 4/20 0.16
ϕ6, n = 4, L1/L2 = 2/0, d(M) = 20
15 58/4.1e4 2.5e7 3.7e4/4.3e6 120 96/3263 2.7e6 2788/1.1e5 4.74 9/42 8506 22/95 1.3
19 >500 98/3629 5.4e7 3208/1.2e5 9.42 13/611 1.1e5 254/1523 23.4
20 78/2106 2.4e5 563/7479 0.33 90/91 5503 0/0 0.025 9/13 1957 4/24 0.38

6 Conclusions and Future Work

For almost all examined unsatisfiable formulas DFS-POR reduces the number of
implications, decided variables and conflicts in the case of unsatisfiable formulas
comparing to SAT and SAT-DFS-1. The differences are often significant. The
running time is better comparing to SAT and in some cases better comparing
to SAT-DFS-1. It can be observed that the effectiveness of SAT-POR depends
on the scale of reduction provided by the selective search. Moreover, the solver
implementation is highly optimized and the presented ideas also require ad-
vanced optimizations – mainly restricting the transition relation and performing
postponed implications. The preliminary results justify further work. Not only
can the time usage be significantly reduced, but also the algorithm efficiency
parameters (e.g. number of blocking clauses) can be improved.

For satisfiable formulas SAT and SAT-DFS-1 perform better - in particular,
find counterexamples on shorter paths. Our approach is aimed at improving the
overall effectiveness of BMC, where testing unsatisfiable formulas is the major
bottleneck.



Selective Search in Bounded Model Checking of Reachability Properties 173

Future Work. A natural question is whether can the presented approach be
used for richer specification languages. While extending it to LTL seems to be
possible (only one symbolic path is encoded), it is doubtful in the case of ACTL –
more than one symbolic paths are encoded and partial order reductions are less
effective.

A couple of possible research directions can be proposed based on the con-
nection we made between the problem and its propositional formula encoding. It
is worth considering other selective search algorithms (sleep sets, stubborn sets,
symmetry reductions).

References

[ABH+97] R. Alur, R. Brayton, T. A. Henzinger, S. Qadeer, and S. Ramajani, Par-
tial order reduction in symbolic state-space exploration, Proc. of the 9th
Int. Conf. on Computer Aided Verification (CAV’97), LNCS, vol. 1254,
Springer-Verlag, 1997.

[BCC+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, Bounded model
checking, Highly Dependable Software, Advances in Computers, vol. 58,
Academic Press, 2003.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking
without BDDs, Proc. of the 5th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’99), LNCS, vol. 1579,
Springer-Verlag, 1999.

[CGMP99] E. Clarke, O. Grumberg, M. Minea, and D. Peled, State space reduction us-
ing partial order techniques, Software Tools for Technology Transfer 2(3)
(1999), 279–287.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff:
Engineering an efficient SAT solver, Proc. of the 38th Design Automation
Conference (DAC’01), June 2001.

[NNP+04] W. Nabia�lek, A. Niewiadomski, W. Penczek, A. Pó�lrola, and M. Szreter,
VerICS 2004: A model checker for real time and multi-agent systems, Proc.
of the Int. Workshop on Concurrency, Specification and Programming
(CS&P’04), Informatik-Berichte, vol. 170(1), Humboldt University, 2004.

[PG86] D. Plaisted and S. Greenbaum, A structure-preserving clause form trans-
lation, Journal of Symbolic Computation 2(3) (1986), 293–304.

[PWZ02] W. Penczek, B. Woźna, and A. Zbrzezny, Towards bounded model checking
for the universal fragment of TCTL, Proc. of the 7th Int. Symp. on For-
mal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02),
LNCS, vol. 2469, Springer-Verlag, 2002.

[Str00] O. Strichman, Tuning SAT checkers for bounded model checking, Proc. of
the 12th Int. Conf. on Computer Aided Verification (CAV’00), LNCS, vol.
1855, Springer-Verlag, 2000.



Predicate Abstraction of RTL Verilog

Descriptions Using Constraint Logic
Programming�

Tun Li, Yang Guo, SiKun Li, and GongJie Liu

National University of Defense Technology, 410073 ChangSha, HuNan, China
tunli@nudt.edu.cn

Abstract. A major technique to address state explosion problem in
model checking is abstraction. Predicate abstraction has been applied
successfully to large software and now to hardware descriptions, such as
Verilog. This paper evaluates the state-of-the-art constraint logic pro-
gramming (CLP) techniques to improve the performance of predication
abstraction of hardware designs, and compared it with the SAT-based
predicate abstraction techniques. With CLP based techniques, we can
model various constraints, such as bit, bit-vector and integer, in a uni-
form framework; we can also model the word-level constraints without
flatting them into bit-level constraints as SAT-based method does. With
these advantages, the computation of abstraction system can be more
efficient than SAT-based techniques. We have implemented this method,
and the experimental results have shown the promising improvements on
the performance of predicate abstraction of hardware designs.

1 Introduction

Formal verification techniques are widely applied in the hardware design indus-
try. Among the techniques, model checking [1], is the widely used one. However,
model checking suffers from state explosion problem. Therefore, abstraction tech-
niques, which can reduce the state space, have become one of the most important
techniques for successfully applying formal methods in software and hardware
verification. Abstraction techniques reduce the state space by mapping the set
of states of the actual, concrete system to an abstract, and smaller, set of states
in a way that preserves the relevant behaviors of the system. In the software
domain, the most successful abstraction technique for large systems is predicate
abstraction [2]. In the hardware domain, the mostly used localization reduction
is a special case of predicate abstraction.

Traditionally, predicate abstraction is computed using a theorem prover such
as Simplify [3] or Zapato [4]. The typical techniques and applications can be
found in [2], [5], [6], [7], and there are some typical tools such as SLAM [8],
BLAST [9] and Magic [10].
� This work is supported by the National Science Foundation of China (NSFC) under

grant No. 60403048 and 60303013.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 174–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Predicate Abstraction of RTL Verilog Descriptions Using CLP 175

In hardware domain, the SAT based abstraction method is first proposed
in [11]. Then, [12] proposed SAT-based predicate abstraction techniques, and
applied it to the verification of ANSI-C programs. The main idea is to form
a SAT equation containing all the predicates, a basic block, and two symbolic
variables for each predicate, one variable for the state before the execution of the
basic block, and one variable for the state after its execution. The SAT solver is
then used to obtain all satisfying assignments in terms of the symbolic variables.
In [13], the method has been applied for word-level predicate abstraction and
verifying RTL Verilog.The technique has also been applied to SpecC [14], which
is a concurrent version of ANSI-C used for hardware design.

However, there are some limitations when using theorem prover and SAT
for predicate abstraction. Firstly, theorem prover based method has to call the
theorem prover many times during abstraction, which will make the abstrac-
tion process inefficient. Secondly, theorem provers model the variables using
unbounded integer numbers. Overflow or bit-wise operators are not modeled.
However, hardware description languages like Verilog provide an extensive set of
bit-wise operators. Thirdly, although SAT based method can only call the SAT
solver one time during abstraction, it has to flatten the word-level constraints
into bit-level constraints to model word-level variables and operations, which
will lose most word-level information and the runtime of this process typically
grows exponentially in the number of predicates.

In this paper, following the work of [13], we focus on applying constraint logic
programming (CLP) [15] to predication abstraction of RTL Verilog descriptions,
especially using CLP to solving the abstraction computation constraints obtained
from circuit model and predicates. First, we build the formal model of the cir-
cuit using decision diagrams (DD) models [16] extracted from Verilog descriptions.
Then following the method proposed in [13], we convert the abstraction compu-
tation formula into CLP constrains and apply CLP solver to solve them.

The advantage of CLP-based method is: Firstly, it can model bit, bit-vector
and bounded integer in a uniform framework, and can support various arith-
metic and logic operations. Secondly, the word-level constraints are solved with
word-level information and without flattening them into bit-level constraints.
With these advantages, we can compute the abstraction model of concrete RTL
Verilog designs very quickly. Experimental results have shown that the runtime
of abstraction process grows linearly in the number of predicates. Finally, CLP
combines the expressiveness of logic programming and the constraints solving
techniques, our method bridges the gap between EDA research and the research
progress in constraint satisfaction problem and artificial intelligence area.

The rest of the paper is organized as follows. In section 2, we formalize the
semantics of the subset of Verilog that we handle and introduce how to model
Verilog descriptions using DD models. Techniques for building formal models
from DD model for Verilog descriptions are described in Section 3. In Section
4, we briefly introduce the SAT-based predicate abstraction with the help of an
example. Techniques for translating word-level abstraction constraints into CLP
constraints are given in Section 5. We report experimental results in section 6.
Finally, we conclude the paper in section 7.



176 T. Li et al.

2 Verilog Modeling

The Verilog subset supported in this paper is the same as that used in [13]:
synthesizable Verilog with one single clock clk. We assume the clock is only used
within either posedge or negedge event guards, but not both. We also assume
that every variable is assigned values only at one place in the description.

Here, we first give the definition of DD model according to [16] with minor
modification.

Definition 1. In the general case, a DD that represents function y=F(X) is
a directed, non-cyclic graph Gy=(M, Γ , X) with set of nodes M, single root
node m0 ∈M, and relation Γ in M, where Γ (m)⊂M denotes the set of successor
nodes of m. Non-terminal nodes m for Γ (m)�=∅ have variables xi ∈X as labels.
Terminal nodes m for Γ (m)=∅ have variables xi, functional sub-expressions of
F(X), or constants as labels. Let x(m) be the label of node m. In graph Gy, for
all non-terminal nodes m for which Γ (m)�=∅, a one-to-one correspondence exists
between the values of label variable x(m) and the successors, mk ∈ Γ (m) of m.

Definition 2. Let m0 ∈ Γ (m) denote the successor of m that corresponds to
value x(m)=0 and m1 ∈ Γ (m) denote the successor that corresponds to value
x(m)=1. We call an output edge from m to me, e∈0, 1, activated when label
variable x(m) has value e. A path in DD model is activated if all the edges
forming this path are activated. A DD model is activated to the value 0 (or 1) if
there exists an activated path that includes both the root node and the terminal
node labeled by the constant 0 (or 1).

Definition 3. A DD model Gy with nodes labeled by variables x1, x2, , xn

represents function y=f(x)=f(x1, x2, , xn), if for each pattern X, the DD model
will be activated to the value mt that equals y.

Definition 4. A collection of DD models G(S)=Gy represents a digital system
S=(F, N), if for each function y=f(x) included in F, there exists a DD model
Gy. G(S)=Gy is called the DD model of digital system S.

According to the above definitions, we can build DD model for each variable
or signal in the designs. The root node of the DD model is the variable or signal it
is built for, while the terminal nodes are the expressions assigned to the variable
or signal. The non-terminal nodes are the control conditions and statements
that guard these assignments, which include if, case and loop statements, etc.
For our convenience, we do some preprocessing before building DD model, such
as translating case statement into a series of ifelse statements.

Figure 1 gives a Verilog design example which was cited from [13], and the
corresponding DD models for the variables used in it. The example and the
DD models will be used in the follows descriptions. In the DD models showed
in Figure 1, the ellipse nodes correspond to the assignment statements in the
Verilog description, the rectangle nodes correspond to the condition statements,
and the most-left circle node is the root of the DD model. Readers can refer to [17]
for the detailed algorithm for extraction of DD model from Verilog description.



Predicate Abstraction of RTL Verilog Descriptions Using CLP 177

module main(clk);
input clk;
reg [7:0] x, y;

initial x = 1;
initial y = 0;

always @ (posedge clk) begin
  y <= x;
  if (x < 100) x <= y + x;
end

endmodule

xI 1

yI 0

yS N:x

x < 100xS N:x

N:y + x

F

T

Fig. 1. Verilog example and the corresponding DD models

3 Formal Semantics of Verilog

We use the following formalism to model the concrete circuit: A transition system
T=(S, I,R) consists of a set of states S, a set of initial states I⊆S, and a transition
relation R, which relates a current state s∈S to a next-state s’∈S.

For different Verilog language constructions, we can build the formal model
using different methods based on the corresponding DD models.

3.1 Continuous Assignment

The variable of wire type in Verilog can only be assigned by only one continuous
assignment. Let wi be the wire that is assigned by the i-th continuous assignment,
and ei the value that is assigned. If A denotes the semantics of continuous
assignment, we have A:=

∧
i

(wi=ei). The formula can be obtained by traversal

the DD model for wi.

3.2 Initial and Always Statements

The statements in the initial blocks define the initial values of states, while
the statements in the clock events guarded always blocks define the transition
function (next state function) of the states. For the always blocks that do not



178 T. Li et al.

be guarded by clock events, they define combinational circuits, which will not
generate state latches. We can examine the trigger events for each always block
to distinguish sequential and combinational logics. When extracting DD models
for variables and signals from RTL Verilog descriptions, we can distinguish the
two cases by attaching tags on the root nodes. For example, for the DD models
in Figure 1, the tag “I” attached to the root node means that this assignment
is initial values, while tag “S” means that this assignment is in clock event
guarded always block. Similarly, the tag “C” not appeared in the example means
assignment in combinational always block.

3.3 Finite State Machines Representation

The notion we used here is mainly cited from [13] with minor modification. Let
V denote the set of variables, as given in the Verilog file. Let L⊆R denote the
set of state variables. The set of states S of the state machine is then defined
to be: S:={0, 1}|L|. For a state s∈S, we denote the value of an expression e in
that particular state by s(e). The set of variables that are not state variables is
denoted by C: C := V - L.

We define the notion of a process state to define the semantics of the state-
ments in the initial and always blocks. A process state φ is a mapping from the
variables r∈V into a pair of expressions. We denote the first member of the pair
by φc(r) and the second member of the pair by φf (r). The expression φc(r) is
called the current value, while φf (r) is called the final value of r. The two dif-
fer in order to distinguish non-blocking assignments from blocking assignments.
Non-blocking assignments only update the final value, but not the current value,
while blocking assignments update both. For an expression e, φc(r) denotes the
evaluation of e in the current state φc, i.e., all variables v that are found in e are
replaced by φc(v).

We can also distinguish non-blocking and blocking assignments by attaching
tags on the terminal nodes. For example, the tag “N:” denotes non-blocking
assignments, while tag “B:” denotes blocking assignments. With these tags, we
can generate FSM models by traversal DD models.

Initial States: The assignments in initial blocks are used to assign initial val-
ues before execution. For these initial values, we can build formal models as
I:={s∈S

∣∣ ∧
r∈L

s(r)=φI
f (r)}. For the example showed in Figure 1, the model for

the initial values is x=1∧y=0.

Variable Assignments: From the root node of the DD model to the terminal
nodes, when a condition node is encountered, an expression of the form “c?t:f”,
where c is the condition expression, t and f denote the expression to be assigned
when the condition is evaluated to be true or false, respectively. When a terminal
node is encountered, the assignment expression is used directly. The detailed DD
model traversal algorithm can be found in [17]. The special case to be considered
is to distinguish non-blocking and blocking assignment. For the example showed



Predicate Abstraction of RTL Verilog Descriptions Using CLP 179

in Figure 1, the expression generated for the x’ and y’ (we will explain in “Next
States Relations”) is shown as follows:

y ′ = x (1)

x ′ = ((x < 100)?(x + y) : x ) (2)

Next States Relations: First we can examine the tag of root node of each
DD model to distinguish variables and signals belong to set L to form the states
space from those used in combinational circuits. For the variables and signals
used in combinational circuits, we need the new value of each one to equal to the
value after assignments. Then the formal model for the combinational circuits is
defined as C:=

∧
v∈C

s(v)=s(φC
f (v)).

For the variables and signals in set L, besides generating assignments formula
as discussed above, we also need the assignment formula to build the model of
transition relations.

The transition relation R(s, s’) is defined under the constraints that for each
variable v∈L, we require that the next state value of v—denoted v’—is the final
value of v after the execution of assignments. By adding constraints for combi-
national circuits and continuous assignments, we can get the transition function
as follows:

R(s , s ′) :=
∧
v∈L

s′(v) = s(φS
v (v)) ∧

∧
v∈C

s′(v) = s(φC
v (v)) ∧ s(A) (3)

For example, for the design showed in Figure 1, the transition relation is
defined as follows:

R(x, y, x′, y′) := (x′ = ((x < 100)?(x + y) : x)) ∧ (y′ = x). (4)

4 Predicate Abstraction

The predicate abstraction method is the same as the method proposed in [13].
We briefly introduce the method with some modification.

In predicate abstraction [2], the variables of the concrete program are re-
placed by Boolean variables that correspond to a predicate on the- + variables
in the concrete program. These predicates are functions that map a concrete
state r∈S into a Boolean value. Let B={π1, π2, ..., πn} be the set of predicates
over the given program. When applying all predicates to a specific concrete state,
one obtains a vector of Boolean values, which represents an abstract state b. The
abstract model can make a transition from an abstract state b to b′ iff there is
a transition from r to r′ in the concrete model and r is abstracted to b and r′
is abstracted to b′. A symbolic variable bi is associated with each predicate πi.
If the concrete machine makes a transition from state r to state r′, then the
abstract machine makes a transition from state b to b′, where b′=pii(r′). Finally,



180 T. Li et al.

let T̂ denote the abstract machine, and R̂ denote the abstract transition relation
of T̂ , then R̂ is defined as follows:

R̂ = {(b, b′)
∣∣∃r , r ′ :

k∧
i=1

bi = πi(r) ∧R(r, r′) ∧
k∧

i=1

b′i = πi(r′)} (5)

For the example showed in Figure 1, the transition relation is

R(x, y, x′, y′) := (x′ = ((x < 100)?(x + y) : x)) ∧ (y′ = x) (6)

Suppose we want to prove that the concrete system (Verilog program) showed
in Figure 1 satisfies AG(x<100). In order to perform predicate abstraction we
need a set of predicates. For our example, we take {x<200, x<100, x+y<200}
as the set of predicates. We associate symbolic variables b1, b2, b3 with each
predicate, respectively. Then the following equation will be generated:

(b1 ⇔ (x < 200)) ∧ (b2 ⇔ (x < 100)) ∧ (b3 ⇔ (x + y < 200))
∧R(x, y, x′, y′)

∧(b′1 ⇔ (x′ < 200)) ∧ (b′2 ⇔ (x′ < 100)) ∧ (b′3 ⇔ (x′ + y′ < 200)) (7)

The equation for the initial state is:

(b1 ⇔ (x < 200)) ∧ (b2 ⇔ (x < 100))
∧(b3 ⇔ (x + y < 200)) ∧ (x = 1) ∧ (y = 0) (8)

Most tools using predicate abstraction for verification use general-purpose
theorem provers such as Simplify [4] to compute the abstraction. This approach
suffers from the fact that errors caused by bit-vector overflow may remain un-
detected. Furthermore, bit-vector operators are usually treated by means of un-
interpreted functions. Thus, properties that rely on these bit-vector operators
cannot be verified. However, we expect that Verilog designs typically use an
abundance of bit-vector operators, and that the property of interest will depend
on these operations. [13] proposed to use SAT solver to compute abstraction.
However, in this method, the word-level abstraction computation formula needs
to be flattened into bit-level one, which will generate large bulk of constraints.
Especially when the division and multiplication are used in the formula, a divi-
sion or multiplication circuits will be generated to model these operations. Also,
flatten the word-level formula into bit-level will lose most functional information
related to word-level structure. Here, we propose to use CLP to compute the
abstraction system of RTL Verilog descriptions. This method can support all
Verilog bounded integer and bit-vector operators. The CLP constraints gener-
ated can be very small. Finally, the bit, bit-vector and various arithmetic and
logic operations can be solved under a uniform framework.

5 CLP Constraints Generation

We use GNU Prolog [18] as the constraints solver. For the abstraction formula
generated in last section, we first translate them into CLP constraints, and then
solve them.



Predicate Abstraction of RTL Verilog Descriptions Using CLP 181

To translate the Verilog expressions into constraint equations according to
GNU Prolog format, it is necessary to consider separately the case of bits, bit
vectors and integers, because these three types belong to different domains, and
are solved in different ways.

Arithmetic operators: The arithmetic operators include addition, subtrac-
tion, (scalar) multiplication, division, shift left (right), extraction and concate-
nation, etc. The translation method must take the modulo semantics of Verilog
operators into consideration during operation.

Logic operator: For bit operators and logic compare operators, the translation
is straightforward, which only substitutes the bit-vector operators with the cor-
responding CLP predicates. However, for some bit-vector bit-wise operators, we
must model them with modulo semantics in CLP constrains without violating
their original semantics.

Bit: GNU Prolog provides various operations for bit. In this case, for each
expression involves bit type, a single GNU Prolog equation is produced. The
domain of all constraint variables used in the equations is defined as the Boolean
domain {0, 1}.

Bit-vector: If at least one variable involved in a constraint equation is a bit
vector, the situation is more complex. There are two ways that the bit vectors
involved in expression:

– Entire: The bit vector involves in computation as an entire variables. In
this case, if there are integer variables in equation, then the bit-vector will
be considered as an integer variable too. Otherwise, if there are other bit-
vectors in equation, then the bit-vector will be decomposed into bits and
generate constraints for the decomposed bits. For example, if two 4-bit bit-
vectors are involved in expression “V1==V2”, then the constraint equations
generated for this express is shown as following. Vi j represents each bit in
bit-vector, where i∈{1, 2} indicating the bit-vector variable, and j∈{1, 2, 3}
indicating the bit location in each bit-vector.

V 1 0 = V 2 0
V 1 1 = V 2 1
V 1 2 = V 2 2
V 1 3 = V 2 3

23 ∗ V 1 3 + 22 ∗ V 1 2 + 21 ∗ V 1 1 + V 1 0 = V 1
23 ∗ V 2 3 + 22 ∗ V 2 2 + 21 ∗ V 2 1 + V 2 0 = V 2 (9)

– Bit Selection: Bit selection means a portion of a bit-vector is involved in
expression. In this case, besides generating constraints for the expression,



182 T. Li et al.

we will also generate constraints for the selected bits. For example, the con-
straint equations generated for expression “V[1:0]=2’b00” are as following,
where V is a 4-bit bit vector variable.

V 1 = 0
V 0 = 0

23 ∗ V 3 + 22 ∗ V 2 + 21 ∗ V 1 + V 0 = V (10)

Integer: GNU Prolog provides various operations for integer variables. The
domain of each integer is also required to be defined.

GNU Prolog provides supports for most of the arithmetic and logical oper-
ations used in Verilog. The only thing need to be considered is the operations
taken on bit-vector and bounded integer. When concern expressions with these
variables or signals, we need to take care of the overflow problem. In GNU Pro-
log, we can solve this problem by using the rem operation built in GNU Prolog.
Let the expression we try to translate is of the form “a op b”, where a and b are
variables of bit-vector or bounded integer type, assume the width of a and b is
n, op is arithmetic operations such as addition etc. Then the translated results
is of the form “(a op b) rem 2n”.

Although the CLP constraints generation method introduced above may also
flatten the word-level constraints to bit-level when involving bit-vector signals,
we need not flat them into bit ones in most situations.

In general, the abstraction computation formula is a conjunction of a set of
equivalent formula. For each equivalent formula in the conjunction formula, we
generate a temporal variable for it and then conjunct all the generated temporal
variables. Finally, we set the value of the conjunction of the temporal variables to
constant 1. By solving the generated CLP constraints with the findall predicate
of GNU Prolog, we can get all the state transitions for the abstraction system.

Z #= (X + Y) rem 256,
Temp1 #<=> ((#\B1) #\/ (X #< 200)) #/\ (B1 #\/ (X #>= 200)),
Temp2 #<=> ((#\B2) #\/ (X #< 100)) #/\ (B2 #\/ (X #>= 100)),
Temp3 #<=> ((#\B3) #\/ (Z #< 200)) #/\ (B3 #\/ (Z #>= 200)),
Y_Bar #= X,
(X #< 100) #==> (X_Bar #= Z), (X #>= 100) #==> (X_Bar #= X),
Z_Bar #= (X_Bar + Y_Bar) rem 256,
Temp4 #<=> ((#\B1_Bar) #\/ (X_Bar #< 200)) #/\ (B1_Bar #\/ (X_Bar #>= 200)),
Temp5 #<=> ((#\B2_Bar) #\/ (X_Bar #< 100)) #/\ (B2_Bar #\/ (X_Bar #>= 100)),
Temp6 #<=> ((#\B3_Bar) #\/ (Z_Bar #< 200)) #/\ (B3_Bar #\/ (Z_Bar #>= 200)),

Out #<=> Temp1 #/\ Temp2 #/\ Temp3 #/\ Temp4 #/\ Temp5 #/\ Temp6,

For the example formula generated in last section, the generated CLP con-
straints according to formula (7) are shown as below. The semantics of the CLP



Predicate Abstraction of RTL Verilog Descriptions Using CLP 183

symbols can be known from their syntax. The second line, third line and forth
line is the constraint generated for the first, second and third equivalence for-
mula of formula (7), respectively. The first line shows the usage of the rem GNU
Prolog operation to implement the modulo semantics of x+y and a new variable
Z is generated to be used in following constraints. The X Bar and Y Bar is used
to represent the variable x’ and y’ of formula (7) respectively, Z Bar is used to
represent the value of Z in next state. By defining these new variables, lines 5-7
are constraints for the transition relation. The following 4 lines are constraints
for the last three equivalence formulas of the formula (7). In above code segment,
the last line is the constraint for the entire formula (7) in conjunction form. By
forcing the Out to be 1 and solving the generated constraints, we can get the
abstraction state transitions.

For the example showed in Figure 1, we can get transition diagrams just the
same as in [13], which is shown in Figure 2. We can also get the initial state by
solving the initial state computation constraints generated similar to the above
process. For the example in Figure 1, we can compute the initial state—“111”.

111 101

100

000 001

110

Fig. 2. State transition diagrams for the example

The abstract transition relations and initial states are converted to SMV
program, and the property is verified on the abstraction system. For the above
example, the property to be verified is AG(b2).

6 Implementation and Experimental Results

Based on the system implemented in [18], we have implemented the RTL Ver-
ilog CLP-based predicate abstraction prototype system. In order to compare
our method with SAT-based method, we follow the method proposed in [12] to
translate abstraction computation formula into SAT instance. First we build the
circuit model for the abstraction formula, and then synthesis the circuit into
BLIF format using VIS [19] system. Finally, we use the modified BLIF2CNF
[20] program to convert BLIF into CNF format, which is the acceptable input



184 T. Li et al.

format for most SAT solver. To use the SAT solver to compute all the satisfiable
assignments for the generated CNF, we use zChaff [21] as the SAT solver, and
modified it according to the algorithm proposed in [22].

Table 1 shows the characteristics of benchmarks used in our experiment.
The 8051 Controller and Viper are publicly available designs. The Decoder is
the instruction decoder unit of a 32-bit microprocessor implemented by our-
selves. SMU and DCU is the data cache unit and stack manage unit of PicoJava
microprocessor [23], respectively.

Table 1. Benchmark Characteristics

Benchmark Lines of Code Inputs Signals

8051 Controller (8051) 350 18 59
Viper Microprocessor(Viper) 400 24 57

Decoder 2092 14 94
SMU 1467 30 217
DCU 3979 43 385

According to the properties to be verified, we manually extract the predi-
cates to be used for abstraction. Then the abstraction computation formula and
its corresponding CLP constraints and SAT constraints are generated automati-
cally. We compared the performance of CLP based and SAT based method. The
experimental configuration is a Windows 2000 PC with AMD Athlon XP 1.8
GHz CPU and 256MB memory.

Table 2. Circuit statistics

CLP Based Method SAT Based Method
Benchmark Predicates Line of Constraints Time (Sec.) Literals Time (Sec.)

8051 Controller (8051) 23 239 10.10 13972 58
Viper Microprocessor (Viper) 25 247 12.34 24719 204

Decoder 25 253 15.47 17527 177
SMU 39 372 23.73 35836 361
DCU 24 255 17.49 21075 236

The experimental results are shown in Table 1. In Table 1, the “Predicates”
column shows the predicates used to compute the abstraction system, the “Line
of Constraints” column shows the lines of generated CLP constraints, while
“Literals” shows the generated SAT literals for the abstraction computation
formula. The two “Time” columns under “CLP based method” and “SAT based
method” shows the time used to solving the converted constraints, respectively.
All times are reported in second.

We can conclude from Table 1 that CLP based abstraction computation can
gain promising performance improvements than SAT based method. Although



Predicate Abstraction of RTL Verilog Descriptions Using CLP 185

the inefficient implementation of the algorithm proposed in [22] may influence the
performance of SAT based method, we believe that the distinct characteristic
such as word level modeling and constraints solving capability of CLP based
method make it more efficient than SAT based method.

7 Conclusion

In this paper, we proposed to use CLP as the abstraction computation engine for
predicate abstraction of RTL Verilog, and the experimental results showed the
promising improvements of abstraction computation by our proposed method.
In the future, we will intensively research on CLP based predicate abstraction
method, such as CLP based abstraction and refinement techniques, unsat core
extraction for CLP based method. We will also make our CLP based abstraction
system to be more practical.

References

1. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

2. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Proc. 9th INternational Conference on Computer Aided Verification
(CAV’97), volume 1254, pages 72-83. Springer Verlag, 1997.

3. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, 2003.

4. Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato: Auto-
matic theorem proving for predicate abstraction refinement. In Computer Aided
Verification. Springer-Verlag, 2004.

5. T. Ball and S.K. Rajamani. Boolean programs: A model and process for software
analysis. Technical Report 2000-14, Microsoft Research, February 2000.

6. Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. p 191-202, ACM Press, 2002.

7. Thomas Ball, Rupak Majumdar, Todd D. Millstein and Sriram K. Rajamani. Auto-
matic Predicate Abstraction of C Programs. ACM Conference on Programming
Language Design and Implementation, p 203-213, ACM Press, 2001.

8. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In The 8th International SPIN Workshop on Model Checking of Soft-
ware, volume 2057 of LNCS, pages 103-122. Springer, 2001.

9. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Soft-
ware verification with Blast. Proceedings of the Tenth International Workshop on
Model Checking of Software (SPIN), Lecture Notes in Computer Science 2648,
Springer-Verlag, 235-239, 2003.

10. Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, Helmut Veith. Modular
Verification of Software Components in C. IEEE Transactions on Software Engi-
neering, Volume 30, Number 6, p 388-402, June 2004.

11. Edmund Clarke, Muralidhar Talupur, and Dong Wang. SAT based predicate ab-
straction for hardware verification. In Proceedings of SAT’03, 2003.



186 T. Li et al.

12. Edmund Clarke, Daniel Kroening, Natalia Sharygina, and Karen Yorav. Predicate
abstraction of ANSI-C programs using SAT. Formal Methods in System Design
(FMSD), vol. 25, no. 2-3, p 105-127, Kluwer Academic Publishers, 2004.

13. Edmund Clarke, Himanshu Jain, Daniel Kroening. Predicate Abstraction and Re-
finement Techniques for Verifying Verilog. Technical report, Carnegie Mellon Uni-
versity, CMU-CS-04-139, June, 2004.

14. Edmund Clarke, Himanshu Jain, Daniel Kroening. Verification of SpecC using
Predicate Abstraction. MEMOCODE, June, 2004.

15. J. Jaffar, M. J. Maher. Constraint logic programming: A Survey. The Journal of
Logic Programming, 1994, Vol. 19 & 20: 503 582.

16. R. Ubar. Test synthesis with alternative graphs. IEEE Design & Test of Computers,
1996.13(1): 48 57.

17. Li Tun. Research on techniques of VLSI RT-Level automatic functional vectors
generation [Ph.D. Thesis]. ChangSha: National University of Defense Technology,
2003.

18. Tun Li, Yang Guo, SiKun Li. Functional Vectors Generation for RT-Level Verilog
Descriptions Based on Path Enumeration and Constraint Logic Programming. to
appear in Proceedings of 8th EUROMICRO CONFERENCE ON DIGITAL SYS-
TEM DESIGN, August, 2005, Porto, Portugal.

19. http://vlsi.colorado.edu/ vis.
20. Joao Marques Silva. BLIF2CNF. sat.inesc-id.pt/ jpms/scripts/bin/blif2cnf.
21. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an

Efficient SAT Solver. In Proceedings of 39th Design Automation Conference (DAC
2001), Las Vegas, June 2001.

22. McMillan, K. Applying SAT Methods in Unbounded Symbolic Model Checking.
In 14th Conference on Computer Aided Verification, Springer-Verlag, p 250-264,
2002.

23. Sun Microsystems. PicoJava technology.
http://www.sun.com/microelectronics/communitysource/picojava/, 1999.



State Space Exploration of Object-Based Systems Using
Equivalence Reduction and the Sweepline Method

Charles A. Lakos1,� and Lars M. Kristensen2,��

1 School of Computer Science, University of Adelaide,
Adelaide, SA 5005, Australia

Charles.Lakos@adelaide.edu.au
2 Department of Computer Science, University of Aarhus,

DK-8200, Aarhus N, Denmark
kris@daimi.au.dk

Abstract. Object-based systems present particular challenges for state space ex-
ploration. Objects can be dynamically created and discarded, and can be refer-
enced via object identifiers. Consistent relabelling of object identifiers in a state
leads to a state that is superficially different but behaviourally equivalent to the
original. Similarly, object-based systems can include garbage which has no ef-
fect on subsequent behaviour but which results in unnecessary differentiation of
states. Both of these factors can lead to state space explosion.

This paper considers state space exploration for object-based systems based on
the Petri Net formalism. It addresses the above issues by using both equivalence
reduction and the sweep-line technique. Experimental results are presented for a
simple case study of a communication protocol.

1 Introduction

Object-oriented technology has been widely adopted for the modelling and develop-
ment of software systems, thus motivating the development of formal analysis tech-
niques suitable for verifying such systems. The object-oriented paradigm views a sys-
tem as composed of autonomous entities which cooperate by exchanging messages, i.e.
a concurrent system. In this paper, we focus on object-based rather than object-oriented
systems. According to the classification in [26], this means that we do not consider in-
heritance and dynamic binding, but we do support the notion of autonomous objects
whose state and behaviour are defined by classes, which can be dynamically created
and destroyed, and which are referenced by object identifiers (or oids).

A common form of analysis applied to concurrent systems is that of state space
exploration [25]. Thus, model checking generates the reachable states (or at least rep-
resentatives of those states) and then evaluates the desired properties over those states.
This approach has a number of advantages (as detailed in [25]), including simplicity,
no requirement for specialised domain knowledge, and a high degree of automation.
The main disadvantage is the ever-present threat of state space explosion — where the
number of states is simply too large to be explored with the available computer memory.

� Supported by an Australian Research Council (ARC) Discovery Grant DP0210524.
�� Supported by the Danish Natural Science Research Council.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 187–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



188 C.A. Lakos and L.M. Kristensen

In an object-based system, the use of oids leads to state space explosion. The state
of a system consists of a set of objects, each with a unique oid. Objects refer to each
other via these oids. The oids can be memory addresses, or integers, or some other
form of reference. The particular oid value associated with each object is immaterial —
any consistent relabelling of the oids leads to an equivalent state. Essentially, the two
states are representations of the same object graph, where the nodes are the objects
and the arcs are the references between objects. Isomorphic graphs should be treated as
equivalent. In order to perform state space exploration for such object-based systems,
it will be necessary to store only one representative from each set of such equivalent
states. This requires some form of equivalence reduction [20,13] or the use of a graph
isomorphism algorithm.

An added complication for object-based systems is the approach adopted to destroy-
ing or discarding objects. One approach (as in C and C++ [24]) is to require explicit de-
struction, thus assuming that the designer knows when an object is no longer required.
This approach can lead to dangling references or memory leaks, which are difficult to
identify and remedy. Another approach (as in Java [8]) is to use garbage collection to
remove objects which are no longer reachable from a root object. This approach elimi-
nates the possibility of dangling references and memory leaks but at the cost of run-time
overheads. Any retention of non-accessible objects in the state will lead to distinctions
between states which are otherwise equivalent (modulo garbage collection).

In this paper, we examine the state space exploration of object-based systems with
garbage collection. We capture object behaviour within the Petri Net formalism [22]
which has a well-defined semantics, and has been widely used in the modelling and
analysis of concurrent systems [23]. While it is not common for Petri Nets to support the
dynamic creation and destruction of subnet instances, we adopt a formalism suitable for
modelling both mobile and object-oriented systems [19]. The main contributions of the
paper consist of the algorithms and experimental results for the state space exploration
of such systems. We extend an existing canonicalisation algorithm [9] to cater for Petri
Nets and combine it with the sweep-line technique [6,15] with mutual benefits to both.

The paper is organised as follows: Section 2 considers the background and related
work. Section 3 presents a case study of a confirmed protocol for establishing connec-
tions over a faulty link. Section 4 considers the algorithms for state space exploration
while Section 5 presents the experimental results for the analysis of the case study.
Section 6 contains the conclusions.

2 Background

There have been a number of proposals for extending Petri Net formalisms to incor-
porate object-oriented capabilities [1], but very few support any form of automated
analysis and, to the best of our knowledge, only one [5] supports state space explo-
ration. The work on CO-OPN [3] incorporates algebraic specification of data types and
supports verification via theorem proving. The work on Co-Operative Objects [2] con-
centrates on modelling and prototyping, and does not support analysis. The formalism
of Object-Based Petri Nets [18] restricts the use of references so that garbage collection
is not required. Two approaches are built on object-oriented programming languages
which means that they have difficulties in providing a complete formal semantics. The



State Space Exploration of Object-Based Systems 189

tool Renew [16] is built on the Java language and provides open access to its facilities,
but does not support state space exploration. Of particular interest is PNtalk [5] which
is built on the language SmallTalk and does consider equivalence-reduced state spaces.
However, the published papers do not include the specific algorithms and provide only
sparse experimental results (from a prototype implementation).

In this paper, we adopt the formalism of [19], which was designed to model mobile
and object-based systems. It has a clearly defined notion of garbage, based on causal de-
pendence. It captures a folded version of Object-Based Petri Nets [17] where each token
and each transition firing mode includes the oid of the associated object. This represen-
tation is particularly convenient for mapping OBPNs into Hierarchical Coloured Petri
Nets (HCPNs) [11], which can then be analysed in the tool Design/CPN [12].

The approach we adopt for the canonicalisation of each state is similar to that em-
ployed in the context of dSPIN (a Dynamic Extension of SPIN) [10,9]. As [9] observes,
earlier approaches to symmetry reduction considered systems composed of a fixed num-
ber of active components (processors), variables of a special symmetry-preserving data
type, and specification symmetries. More sophisticated techniques along these lines
continue to emerge [14]. However, these approaches to symmetry reduction do not con-
sider garbage collection and it is attractive to adopt an algorithm which combines both
canonicalisation and garbage collection.

The Iosif approach [9] essentially implements a mark-and-sweep algorithm for
garbage collection. The first phase starts from the root object and follows references
to all reachable objects, marking them on the way. A subsequent sweep phase examines
all objects and discards as garbage those which were not marked. At the same time
as marking the reachable objects, Iosif collects a relabelling map, i.e. a mapping from
existing object identifiers to new ones. During the sweep phase, the relabelling map is
applied to the retained objects. The Iosif approach is not adequate for Petri Nets where
places hold an unordered collection of objects. The order of processing affects the so-
called relabelling map which in turn affects canonicalisation. We address this issue by
extending equivalence reduction and combining it with the sweepline method.

3 Case Study

We illustrate our approach with a simple case study of a typical protocol for the con-
firmed establishment and discarding of connections. As noted above, the case study is
presented as a folded version of an object system [17], which can be represented as a
Hierarchical Coloured Petri Net (HCPN) [11] and which is then amenable to analysis
by the Design/CPN tool [12].

For those unfamiliar with the HCPN formalism, we start by considering the com-
ponents of the system. In this protocol, the lifecycle of a sender is given by the page
(or subnet) shown in Fig. 1. A net consists of places, transitions and arcs, together with
annotations of these. The places are depicted as ovals and can hold a multiset of tokens
of some type, which can consist of arbitrarily complex data values. This marking de-
termines the state of the system. In Fig. 1, the italic annotation adjacent to each place
indicates the type of resident tokens, and the non-italic annotation indicates the initial
marking (or state). Thus, the place SenderIdle holds tokens of type SenderFree, and is
initialised to hold the two tokens (2,e) and (3,e).



190 C.A. Lakos and L.M. Kristensen

Communicating
SenderConn2

Opening
SenderFree

SenderIdle
SenderFree

1‘(2,e)++1‘(3,e)

Closing
SenderConn2

SendOpenReq

RecvOpenCnf

SendCloseReq

RecvCloseCnf

OpenReq

HostPair

P Out

OpenCnf

SenderMgerConn

P In

CloseReq

SenderMgerConn

P Out

CloseCnf

SenderMgerConn

P In

Sender

P I/O

Sender_descr

1‘(2,6,closeCnf)++
1‘(3,6,closeCnf)

Recver

P I/O

Recver_descr

(s,e)

(s,e)

(s,e)

(s, sm, c)

(s, sm, c)

(s,sm,c)

(s,sm,c)

(sm, s, r)

(sm, s, c)

(sm, s, c)

(sm, s, c)

(r, rm, p)

(r, rm, p)

(s, sm,p)

(s, sm,p)

(s, sm,p)

(s, sm,p)

(s, sm, 
closeCnf)

(s,e)

Fig. 1. Subnet for the Sender processes

The transitions are depicted as rectangles, and determine the possible changes of
state. The incident arcs indicate how the transitions affect the places and are annotated
with the multisets of tokens which are added to or removed from the adjacent places.
The precise effect of a transition is determined by a firing mode (or binding), which
determines the values of variables in the arc annotations. A transition paired with a
binding is called a binding element. A transition can also be annotated with a guard (in
brackets) which constrains the possible firing modes or bindings. In Fig. 1 a binding for
transition SendOpenReq will specify values for the variables s, r, sm, rm, p.

In Design/CPN, data types are declared in a variant of Standard ML [12]. For the
sender processes, an excerpt of the relevant data type declarations is given in Fig. 2.
Object identifiers (the type OID) are defined to be a subrange of the integers. Aliases
are defined to indicate the usage of oids — Sender oid is used in a sender descriptor to
specify the oid for the associated instance, while Sender ref is used as a reference to a
sender instance. The type SenderConn2 is a product involving references to a sender, a
sender connection manager and a connection. Variables are also declared for binding to
values of particular type, e.g. the variable s will be used to refer to a sender.

The state of each sender is indicated by having a token in one of the places SenderI-
dle, Opening, Communicating, Closing (see Fig. 1), which reflects the stage reached in
the lifecycle. Initially, sender processes have a token in place SenderIdle — the token
(2,e) for the sender process with oid 2 and (3,e) for the process with oid 3. A sender
progresses round its lifecycle by firing the transitions SendOpenReq, RecvOpenCnf,
SendCloseReq, RecvCloseCnf, each of which uses the variable s to ensure that match-
ing tokens for a given sender are consumed and generated.



State Space Exploration of Object-Based Systems 191

color NoColor = with e declare ms;

(* Basic object identifier types *)
val minOID = 10; (* Min unused OID *)
val maxOID = 12; (* Max unused OID *)
color OID = int with 0..maxOID; (* Use zero for no value *)
color FreeOID = int with minOID..maxOID declare ms;

(* Aliases for object identifiers - name determines role *)
color Sender_oid = OID declare same;
color Sender_ref = OID declare same;
color SenderConnMger_oid = OID declare same;
color SenderConnMger_ref = OID declare same;
color ConnPhase = with openReq | openCnf | closeReq | closeCnf;

(* Descriptors + tokens for different classes of objects *)
color Sender_descr = product Sender_oid * SenderConnMger_ref * ConnPhase;
color SenderFree = product Sender_ref * NoColor;
color SenderConn2 = product Sender_ref * SenderConnMger_ref * Conn_ref;
color HostPair = product SenderConnMger_ref * Sender_ref * Recver_ref;
color SenderMgerConn = product SenderConnMger_ref * Sender_ref * Conn_ref;

(* Variable declarations *)
var s : Sender_ref;
var r : Recver_ref;
var sm : SenderConnMger_ref;
var p : ConnPhase;

Fig. 2. Excerpt of type definitions relevant to sender processes

In addition to the basic lifecycle described above, the transitions access a place
Sender which holds tokens which are descriptors for each of the senders. Also they
access places OpenReq, OpenCnf, CloseReq, CloseCnf which are annotated by the
symbol P to indicate that they are port places and consequently provide an interface
to external components. Thus a sender can move from idle to opening by sending a re-
quest via port place OpenReq. The sender can progress from opening to communicating
on receipt of a matching confirmation (via port place OpenCnf ). The steps in closing the
connection are analogous. Finally, we note that transition SendOpenReq also accesses
a place Recver which holds the descriptors for the receivers. The sole purpose of this is
so that the sender can choose a communication partner for the protocol. The lifecycle
of a receiver process is largely the dual of that of the sender — it responds to requests
for connection establishment and release rather than initiating them.

A Hierarchical Coloured Petri Net (HCPN) allows a system to be modelled as a
number of communicating subnets. For the protocol we are studying, the top-level net
is shown in Fig. 3. Here, the large rectangles are annotated with a tag HS to indicate
that they are hierarchical constructs, and specifically substitution transitions. Such a
transition is substituted by a subnet and the detailed annotation (not shown in the figure)
indicates which subnet is being instantiated and how the neighbouring socket places of
the substitution transitions are fused with the port places of the subnet. In our example,
these port assignments can be deduced by the naming. Thus, port node OpenReq of
Fig. 1 is fused with socket node OpenReq of Fig. 3.

On the left of the Fig. 3 is a substitution transition which instantiates the SenderEn-
tity subnet for the sender processes from Fig. 1. The senders make requests to the sender



192 C.A. Lakos and L.M. Kristensen

SenderEntity

HS

Sender#1

HS

Receiver#5

SenderConnEntity

HS HS

OpenReq

HostPair

OpenCnf

SenderMgerConn

CloseReq

SenderMgerConn

CloseCnf

SenderMgerConn

OpenInd

RecverMgerConn

OpenResp

RecverMgerConn

CloseInd

RecverMgerConn

CloseResp

RecverMgerConn

XferLtoR

ChanMessage

XferRtoL

ChanMessage

MaxLtoR

NoColor

maxTransit

MaxRtoL

NoColor

maxTransit

System

System_descr

1`(1, 2, 3, 4, 5,  6, 7)

Sender

Sender_descr

1`(2, 6,closeCnf)++
1`(3,6,closeCnf)

Recver

Recver_descr

1`(4,7,closeCnf)++
1`(5,7,closeCnf)

SenderConnMgr

SenderConnMger_descr

1`(6,8,9)

ReverConnMger

RecverConnMger_descr

1`(7,8,9)

SenderConn

SenderConn_descr

RecverConn

RecverConn_descr

Free

OID

FreeOID

Chan

Chan_descr

1`(8,true)++1`(9,false)

RecverConnEntity RecverEntity

Fig. 3. Top-level net for the object-based protocol model

connection manager and the receivers respond to requests from the receiver connection
manager (given by the substitution transitions titled SenderConnEntity, RecverEntity
and RecverConnEntity respectively). In our model, we have two sender processes which
share the one sender connection manager, and two receiver processes that share the one
receiver connection manager. It would be simple to increase the number of each.

Connection establishment and release is confirmed — it is a four stage process in-
volving request, indication, response and confirm primitives. For connection establish-
ment, these primitives are captured by places OpenReq, OpenInd, OpenResp, OpenCnf,
and similarly places CloseReq, CloseInd, CloseResp, CloseCnf are used for releasing
connections. The passing of primitives from sender to connection manager and vice
versa is error free, while message loss is possible between the connection managers.

The sender connection manager is modeled by the page titled SenderConnEntity
shown in Fig. 4. On the left are the port places for interacting with the senders, while
on the right are port places for interacting with the network channels. Most transitions
access the descriptor for the sender connection manager with a side condition to the
place SenderConnMger. (Exceptions are the transitions HandleOpenReq and Handle-
CloseReq since the sender connection manager is already indicated in the request.)



State Space Exploration of Object-Based Systems 193

OpenConnReq

HostPair

P In

OpenConnCnf

SenderMgerConn

P Out

CloseConnReq

SenderMgerConn

P In

CloseConnCnf

SenderMgerConn

P Out

SenderConn

SenderConn_descr

P I/O

ToNet

ChanMessage

P Out

FromNet

ChanMessage

P In

HandleOpenReq

[c <= maxOID]

HandleOpenCnf

[OK=(p=openReq)]

HandleCloseReq

[OK=(p=openCnf)]

HandleCloseCnf

[OK=(p=closeReq)]

XmitOpenReq

XmitCloseReq

MaxToNet

NoColor
maxTransit

P In

MaxFromNet

P Out

NoColor

maxTransit

Free

OID

FreeOID

P I/O

SenderConnMger P I/O

SenderConnMger_descr

OpenReqSending

SenderMgerConn

SenderConn
SenderConn_descr

SenderConnMger

SenderConnMger_descr

(sm,s,r)

(sm,s,c) (c,sm,s,r,c2,p)

if OK 
then 1‘(sm,s,c1) 
else empty

if OK then (c1,sm,s,r,c4,openCnf)
else (c1,sm,s,r,c2,p)

if OK then 
  1‘(sm,s,c) 
  else empty

(b,s,r,c,c4,closeCnf)

(c,sm,s,r,c2,p)

(f,s,r,c,0,openReq)

if OK
then (c,sm,s,r,c2,closeReq)
else (c,sm,s,r,c2,p)

(c1,sm,s,r,c2,p)

(f,s,r,c,c2,closeReq)

(b,s,r,c1,c4,openCnf) e

e

e

c

(c,sm,s,r,0,openReq)
(c,sm,s,r,0,openReq)

(sm,f,b)

e

(sm,f,b)

(c,sm,s,r,c2,closeReq)

(sm,f,b)

(sm,f,b)

if OK 
then (c,sm,s,r,c2,closeCnf)
else (c,sm,s,r,c2,p)

(sm,s,c)

if OK then 1‘(sm,s,c1)
else empty

Fig. 4. Subnet for the Sender Connection Manager

An open request (arriving in place OpenConnReq) can be accepted (by firing the
transition HandleOpenReq) if there is an available oid for the connection (in the place
Free). Connections have local significance — they have identifiers for the local connec-
tion, the sender manager, the sender and receiver, the receiver-side connection (when
known). They also record the phase reached (i.e. requested or confirmed). Once a
sender-side connection indicates that a request has been made, the transition XmitOpen-
Req is enabled to send a message requesting the connection. It can fire repeatedly as
long as the sender connection manager is in this state, thus providing a mechanism to
overcome potential message loss (by the faulty network channel). In order to avoid an
unbounded number of messages in the channel and hence an infinite state space, the
place MaxToNet has a number of tokens indicating the maximum number of messages
that can be in transit (in this case one).

Once an open confirmation has been processed (by firing transition
HandleOpenCnf ), the state of the sender-side connection is modified to OpenCnf and
thus the transmission of open request messages will be disabled. A similar process han-
dles close requests.

4 State Space Exploration Algorithms

In the context of HCPNs, a state space can be defined as a graph (V, E) where V is a
set of vertices corresponding to states and including the initial state M0. E is a set of



194 C.A. Lakos and L.M. Kristensen

1: Nodes = {canon(M0)}
2: Arcs = ∅
3: Unprocessed = {canon(M0)}
4: while Unprocessed �= ∅ do
5: select M ∈ Unprocessed
6: Unprocessed ← Unprocessed \ {M}
7: for all (t, b) ∈ BE s.t. M [(t, b)〉M ′ do
8: if canon(M ′) /∈ Nodes then
9: Unprocessed = Unprocessed ∪ {canon(M ′)}

10: Nodes = Nodes ∪ {canon(M ′)}
11: end if
12: Arcs = Arcs ∪ {(M, (t, b), canon(M ′))}
13: end for
14: end while

Fig. 5. Algorithm to generate a canonicalised state space for a Petri Net

(labelled) edges corresponding to the occurrence of transitions — (M1, (t, b), M2) is in
E if transition t with binding b is enabled in state M1 and the occurrence of the binding
element (t,b) in M1 leads to M2. This is commonly written M1[(t, b)〉M2.

An algorithm for state space exploration for Petri Nets is given in Fig. 5. The algo-
rithm maintains a set Unprocessed of as-yet unexplored states. At each iteration of the
while loop, an element of Unprocessed is removed and examined for enabled binding
elements. If any are found, the relevant arcs are added to the graph and newly reached
markings are added both to the graph and set Unprocessed , provided they are not al-
ready present. The above algorithms stores canonicalised versions of the markings in
the state space — if the function canon is the identity function, then the algorithm
reduces to the basic algorithm for state space exploration for Petri Nets.

The need for canonicalisation can be demonstrated with the stylised excerpt from
the state space of our protocol case study as in Fig. 6. The states are (partially) labelled
with the state of the two sender processes (s1 and s2) and the state of the sender connec-
tion manager (sm). The arcs are labelled with the relevant transition together with an
indication of the binding of the transition. Thus, the arc between states 1 and 2 indicates
that transition SendOpenReq occurs with a binding to indicate (among other things) that
this is for sender process s1. On the left is a sequence of states where sender s1 requests
an open connection first and is allocated c1, followed by sender s2 which is allocated
c2. On the right is a sequence of states where the senders request the connections in a
different order, and are consequently allocated different connections. States 8 and 9 are
equivalent since they can be obtained from each other by a consistent relabelling of the
object identifiers and the behaviour observable from each will be equivalent.

The number of states can increase significantly depending on the regime adopted
for allocating identifiers. In the state space of Fig. 6, the occurrence of transition Han-
dleOpenReq in state 2 allocates an identifier for the new connection. This object iden-
tifier comes from place Free in Figs. 3 and 4. Place Free could hold one token for each
available oid. With 100 available oids, there would be 100 arcs from state 2, each one
ending in a state with a different connection identifier. Alternatively, the oids could be



State Space Exploration of Object-Based Systems 195

s1 idle
s2 idle
sm inactive

s1 opening
s2 idle
sm inactive

s1 idle
s2 opening
sm inactive

s1 SendOpenReq s2 SendOpenReq

s1 opening
s2 idle
sm opening c1

s1 idle
s2 opening
sm opening c1

s1 opening
s2 opening
sm opening c1

s1 opening
s2 opening
sm opening c1

sm HandleOpenReq s1
sm HandleOpenReq s2

s2 SendOpenReq
s1 SendOpenReq

sm HandleOpenReq s1
sm HandleOpenReq s2

1

32

5
4

6
7

s1 opening
s2 opening
sm opening c1,c2

8
s1 opening
s2 opening
sm opening c1,c2

9

Fig. 6. Excerpt from the state space

allocated in sequence. Then the place Free would hold only the next available identi-
fier, and access to this identifier would result in the subsequent identifier being added
to the place. This approach significantly reduces the number of states but also limits the
concurrent allocation of identifiers.

Thus, in the state space exploration of object-based systems, the choice of object
identifiers (oids) is a significant contributor to state space explosion. The consistent
relabelling of oids in one system state leads to a (superficially) different derived state
which is equivalent to the original. The choice of object identifiers can be affected
by many things, including non-determinism in the allocation of oids (here the regime
for allocating oids from the place Free), and non-determinism in the sequencing of
independent activity resulting in different sequences of allocation of objects (here the
decision of which sender requests a connection first).

In order to minimise these contributors to state space explosion, it is necessary to
generate a condensed state space. One approach is to check each newly generated state
for equivalence with an existing state. If so, we do not store this as a separate state.
Another approach is to store a canonical representative for each state, as in Fig.5.

A second significant contributor to state space explosion in the analysis of object-
based systems is the presence of garbage. We normally consider the root object to be
primarily of interest. Anything that cannot affect this object (either directly or indi-
rectly) is considered to be garbage. This can be defined more precisely in terms of



196 C.A. Lakos and L.M. Kristensen

1: Nodes = {M0}
2: Arcs = ∅
3: Unprocessed = {M0}
4: while Unprocessed �= ∅ do
5: select M ∈ Unprocessed s.t. ψ(M) = min{ψ(M ′) | M ′ ∈ Unprocessed}
6: Unprocessed = Unprocessed \ {M}
7: for all (t, b) ∈ BE s.t. M [(t, b)〉M ′ do
8: if M ′ /∈ Nodes then
9: Unprocessed = Unprocessed ∪ {M ′}

10: Nodes = Nodes ∪ {M ′}
11: end if
12: Arcs = Arcs ∪ {(M, (t, b), M ′)}
13: end for
14: Nodes = {M ∈ Nodes | ψ(M) ≥ min{ψ(M ′) | M ′ ∈ Unprocessed}}
15: end while

Fig. 7. Algorithm for basic sweep-line analysis of a Petri Net

causal dependence [19]. The presence of garbage differentiates states whose behaviour
of interest is otherwise equivalent (modulo garbage collection).

In our case study, connections which have been closed (and with no related mes-
sages in transit) are no longer of interest, and do not affect the subsequent behaviour
of the protocol. Removing these connections will help to reduce the state space. It is
worth noting that the sender connection manager of Fig. 4 cannot explicitly discard a
closed connection, since there may be messages in transit which refer to it. Note that
the TCP protocol uses a three-way handshake to establish and release connections so as
to minimise this problem of having a closed connection with messages in transit [7].

The approach we have adopted for the canonicalisation of each state is similar to
that employed by Iosif in the context of dSPIN (a Dynamic Extension of SPIN) [10,9].
This is essentially a mark-and-sweep algorithm for garbage collection. The first phase
starts from the root object and follows references to all reachable objects, marking them
on the way. A subsequent sweep phase examines all objects and discards as garbage
those which were not marked. At the same time as marking the reachable objects, Iosif
collects a relabelling map, i.e. a mapping from existing object identifiers to new ones.
During the sweep phase, the relabelling map is applied to the retained objects.

This algorithm requires two passes over the state, where each pass has a linear time
complexity depending on the size of the state. In the case of dSPIN, this algorithm is
sufficient and optimal because the components of each object are fixed and hence can
be traversed in a fixed order, thus guaranteeing a unique canonical relabelling. For
Petri Nets, places can hold an unordered multiset of tokens, each of which can hold
references to other objects. The order of traversing the tokens will not affect the de-
termination of garbage, but will affect the relabelling of the state. Thus, the algorithm
will no longer be linear or will not guarantee to produce a unique canonical represen-
tative. The use of non-optimal equivalence algorithms may be appropriate in avoiding
the possible exponential costs of an optimal algorithm on pathological scenarios [14].



State Space Exploration of Object-Based Systems 197

We seek to ameliorate the inefficiencies of a non-optimal equivalence algorithm, by
combining it with the sweep-line method [6], which reduces the memory demands for
state space exploration.1 This approach is predicated on the observation that systems
often exhibit the notion of progress. A progress measure can be defined on states such
that, as the state space exploration proceeds, the progress value for states increases.
Formally, a progress measure is a tuple P = (ψ, O,%) where (O,%) is a total order,
and ψ : V → O is a mapping assigning a progress value to each state in V . The total
order is monotonic if (M1, (t, b), M2) ∈ E implies ψ(M2) ≥ ψ(M1). In other words,
a progress measure is monotonic if it is always the case that the successor of a state has
a greater or equal progress measure. In this case, states which have a lesser progress
measure than the minimum of the unexplored states can never be revisited. The states
that can never be revisited can be deleted from memory, thus reducing the storage and
time demands of state space exploration. The basic sweep-line algorithm is shown in
Fig. 7 [21,4]. Note that the markings in set Unprocessed are now examined in the order
of increasing progress, and that just prior to the end of the while loop, the nodes which
cannot be revisited because of their progress value are removed.

The above algorithm has been generalised to cater for so-called regress edges in the
state space, where one state has a greater progress measure than its successor [15]. In
this case, the target states of the regress edges are stored persistently and some parts of
the state space may be traversed more than once. Even with regress edges, the sweep-
line method can provide substantial efficiency gains for state space exploration.

There are benefits in combining the sweep-line method with equivalence reduc-
tion [21,4]. A progress measure is compatible with an equivalence relation if equivalent
states have the same progress measure. Whether compatible or not, the two techniques
can be used in combination, with beneficial results. We show that if the progress mea-
sure is not compatible with the equivalence relation, it can be used to choose the canon-
ical representative (see Section 5).

5 Experimental Results

This section presents experimental results for the communication protocol example of
Section 3. The experimental result have been obtained using the Design/CPN [12] com-
puter tool which supports full state space construction, equivalence class reduction, and
the sweep-line method for CPN models. The results presented in this section were ob-
tained on an Intel Xeon 3Ghz Linux PC with 2 Gb of memory.

As discussed in Section 4, the regime adopted for allocating oids can have a signifi-
cant impact on the size of the state space. We have experimented with both the regimes
discussed in Section 4. The first variant allocates oids in any order — here, the place
Free in Fig. 3 holds one token for each available oid, and a transition may access any
of these for assigning to a newly-generated object. The second variant allocates oids in
sequence — the place Free holds one token which indicates the next available oid, and
any transition that accesses this token will need to replace it with the subsequent oid.

1 The reader should not confuse the terms mark-and-sweep, which refers to an algorithm for
garbage collection in a state of an object-based system, and the sweep-line method, which is
an algorithm for reducing storage requirements during state space exploration.



198 C.A. Lakos and L.M. Kristensen

Table 1. Sweep-line results — oids allocated in arbitrary order, and in sequence

Full Sweep-Line ψ1 Sweep-Line ψ2 Sweep-Line ψ3

Free Nodes Arcs Sec Peak Sec Peak Sec Peak Sec

3 9,897 28,716 9 8,088 12 2,976 11 2,304 13
4 256,617 826,540 1,794 226,320 1,925 54,528 1,767 61,152 3,145

3 3,153 8,064 2 2,352 2 720 2 768 2
4 48,725 155,680 89 45,572 100 10,752 112 12,112 123
5 87,029 284,272 403 60,788 543 16,576 557 15,840 459
6 >251,500 >1 hr

We have also experimented with three progress measures. The function ψ1 defines
a generic measure for object-based systems — the number of oids in use. Progress
is made as new objects are generated. The function ψ2 defines a simple application-
specific measure for the protocol case study. Each connection (held in places Sender-
Conn and RecverConn in Fig. 3) is in one of four states — OpenReq, OpenCnf,
CloseReq or CloseCnf. These states are assigned the numbers 1 through 4, and then
ψ2 is the weighted sum of all the connections. Finally, the function ψ3 is a refined,
application-specific measure. It identifies 16 stages that a sender goes through in the
process of establishing and releasing a connection. ψ3 is the weighted sum for the two
senders.

Finally, we have experimented with two canonicalisation functions. Canon1 per-
forms a straightforward depth-first scan of each state in collecting a relabelling map
(as in [10,9]). It does not use heuristics to choose the order for scanning the tokens in
a place. The function Canon2 determines the progress of the two senders (as in func-
tion ψ3), and then scans the senders in the order of decreasing progress. Thus, the most
advanced sender (in terms of the connection stages) ends up with the lowest oid.

Table 1 gives the results for the three sweep-line measures — the top half is for oids
allocated in arbitrary order, while the bottom half is for oids allocated in sequence. The
table consists of four parts. The Free column specifies the system parameter which is
the number of available oids (i.e. maxOID −minOID + 1 from Fig. 2). The Full part
lists the number of nodes and arcs in the state space, and the CPU time in seconds it
took to generate the state space. The Sweep-Line ψ1, Sweep-Line ψ2, Sweep-Line ψ3

parts list the peak number of states stored with the sweep-line method and the CPU time
it took to explore the state space in each case. The function ψ1 is clearly too coarse to
reduce the memory requirements by much, while functions ψ2 and ψ3 perform much
better. However, on their own, they are not enough because the number of nodes and
arcs explored with the sweep-line method is the same as for the full state space.

Table 2 gives the results for the canonicalisation functions Canon1 and Canon2 —
again, the top half is for oids allocated in an arbitrary order, while the bottom half is for
oids allocated in sequence. These tables consists of four parts. The Free column and the
Full part are as before. The Canon1, Canon2 parts list the number of nodes and arcs
in the state space together with the CPU time. The Combined Canon1, ψ2 part lists the
results for combining canonicalisation function Canon1 with progress measure given
by ψ2. Table 3 provides other combinations. Canonicalisation clearly has a significant



State Space Exploration of Object-Based Systems 199

Table 2. Canonicalisation results — oids allocated in arbitrary order, and in sequence

Full Canon1 Canon2 Combined Canon1, ψ2

Free Nodes Arcs Sec Nodes Arcs Sec Nodes Arcs Sec Nodes Arcs Peak Sec

3 9,897 28,716 9 1,538 4,532 1 421 1,230 1 3,074 9,056 445 3
4 256,617 826,540 1,794 7,524 24,896 7 2,053 6,755 1 15,046 49,784 2,223 17
5 8,982 32,806 10 2,467 8,953 2 17,962 65,604 2,999 23
6 10,712 42,820 13 2,981 11,803 3 21,420 85,624 4,171 30
7 10,720 48,268 14 2,989 13,368 3 21,436 96,518 4,179 31

16 10,720 96,940 24 2,989 27,093 6 21,436 193,844 4,179 55

3 3,153 8,064 2 1,538 4,480 1 421 1,213 1 3,074 8,952 445 3
4 48,725 155,680 89 7,524 24,096 7 2,053 6,523 1 15,046 48,184 2,223 16
5 87,029 284,272 403 8,982 30,786 9 2,469 8,378 2 17,962 61,564 2,999 21
6 >251,500 >1 hr 10,712 36,736 12 2,981 10,116 3 21,420 73,458 4,171 25
7 10,720 37,592 12 2,989 10,408 3 21,436 75,170 4,179 27

16 10,720 37,592 12 2,989 10,408 3 21,436 75,170 4,169 27

Table 3. Combined results — oids allocated in arbitrary order, and in sequence

Combined Canon1, ψ3 Combined Canon2, ψ2 Combined Canon2, ψ3

Free Nodes Arcs Peak Sec Nodes Arcs Peak Sec Nodes Arcs Peak Sec

3 2,774 8,124 301 1 840 2,452 125 1 753 2,175 89 1
4 18,613 61,304 1,957 23 4,101 13,485 598 4 5,092 16,660 493 5
5 20,515 75,474 2,189 28 4,934 17,887 808 5 5,673 20,683 551 7
6 24,107 97,320 2,603 35 5,955 23,560 1,199 7 6,741 26,898 735 9
7 24,139 108,966 2,611 38 5,972 26,692 1,207 8 6,759 30,234 739 10
16 24,283 213,060 2,611 66 5,972 54,124 1,207 14 6,798 59,621 738 17

3 2,774 8,020 301 2 840 2,418 125 1 753 2,141 89 1
4 18,613 59,048 1,957 21 4,102 13,025 598 4 5,092 16,024 493 5
5 20,507 69,850 2,189 25 4,933 16,733 808 5 5,674 19,125 551 6
6 24,091 82,222 2,603 30 5,956 20,198 1,199 6 6,741 22,763 735 8
7 24,107 83,562 2,611 31 5,971 20,778 1,207 7 6,756 23,250 739 8
16 24,107 83,562 2,611 31 5,971 20,778 1,207 7 6,756 23,250 739 8

impact on the size of the state space, with a fixed point being reached in the number
of nodes once Free ≥ 7. It is also notable that with the more refined progress measure
ψ3, some states are revisited multiple times (see the discussion in [15]). Here, it leads
to time penalties, but on more memory-constrained machines, we have observed a five-
fold improvement in performance. In other words, even though function Canon2 is
based on the refined progress measure ψ3, the combined use of the sweep-line method
with the same ψ3 can produce significant time improvements because of the decreased
memory requirements.

6 Conclusion

This paper has examined the state space exploration of object-based systems with
garbage collection. We have used a folded representation of such systems in a Petri



200 C.A. Lakos and L.M. Kristensen

Net formalism which makes it possible to build on their extensive use in the modelling
and analysis of concurrent systems. Specifically, our representation of such systems has
made it possible to perform state space exploration with existing tools.

We have demonstrated that the combination of equivalence reduction and the sweep-
line method can ameliorate the state explosion problem for object-based systems. A
simple progress measure based on the number of used oids was too coarse, at least
for our case study. Application-dependent progress measures were more effective in
reducing the peak number of nodes that needed to be stored. A significant benefit of
this combination is that the effort expended in the determination of a discriminating
progress measure can help to achieve a much better canonicalisation function. This is
important given that optimal canonicalisation functions may require exponential time.

Future work will apply these algorithms to more realistic case studies incorporating
more dynamic components. We also intend to explore other heuristics and equivalence
reduction algorithms for producing more optimal canonicalisation functions.

Acknowledgements
The authors are pleased to acknowledge early discussions with Thomas Mailund about
state space exploration of Object-Based systems, and early efforts by Garen
Derharoutian and Joern Freiheit in implementing a combination of equivalence reduc-
tion and the sweep-line method in the Design/CPN tool.

References

1. G. Agha, F. De Cindio, and G. Rozenberg, editors. Concurrent Object-Oriented Program-
ming and Petri Nets, volume 2001 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2001.

2. R. Bastide, O. Sy, and P. Palanque. A Formal Notation and Tool for the Engineering of
CORBA Systems. Concurrency: Practice and Experience, 12:1379–1403, 2000.

3. O. Biberstein, D. Buchs, and N. Guelfi. Object-Oriented Nets with Algebraic Specifications:
The CO-OPN/2 Formalism. In G. Agha, F. De Cindio, and G. Rozenberg, editors, Concurrent
Object-Oriented Programming and Petri Nets, volume 2001 of Lecture Notes in Computer
Science, pages 70–127. Springer-Verlag, 2001.

4. J. Billington, G.E. Gallasch, L.M. Kristensen, and T. Mailund. Exploiting Equivalence Re-
dution and the Sweep-Line Method for Detecting Terminal States. IEEE Transactions on
System, Man and Cybernetics, 34(1):23–37, 2004.

5. M. Ceska, V. Janousek, and T. Vojnar. Generating and Using State Spaces of Object-Oriented
Petri Nets. International Journal of Computer Systems Science and Engineering, 16(3):183–
193, 2001.

6. S. Christensen, L. M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space
Exploration. In 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’2001), volume 2031 of Lecture Notes in Computer Science,
pages 450–464. Springer-Verlag, 2001.

7. D. Comer. Internetworking with TCP/IP: Principles, Protocols and Architectures, volume 1.
Prentice-Hall, Englewood Cliffs, second edition, 1991.

8. J. Gosling, B. Joy, and G. Steele. The JavaTMLanguage Specification. Addison-Wesley,
Reading Massachussets, 1996.



State Space Exploration of Object-Based Systems 201

9. R. Iosif. Exploiting Heap Symmetries in Explicit-State Model Checking of Software. In 16th
IEEE Conference on Automated Software Engineeering, pages 254–261. IEEE, 2001.

10. R. Iosif and R. Sisto. dSPIN: A Dynamic Extension of SPIN. In 6th SPIN Workshop, volume
1680 of Lecture Notes in Computer Science, pages 261–276. Springer, 1999.

11. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use — Vol-
ume 1: Basic Concepts, volume 26 of EATCS Monographs in Computer Science. Springer-
Verlag, Berlin, 1992.

12. K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPNTM: A Reference Manual.
MetaSoftware Corporation, 1992.

13. T.A. Junttila. Finding Symmetries of Algebraic System Nets. Fundamenta Informatica,
37:269–289, 1999.

14. T.A. Junttila. New Canonical Representative Marking Algorithms for Place/Transition Nets.
In J. Cortadella and W. Reisig, editors, 25th International Conference on the Application and
Theory of Petri Nets, volume 3099, pages 258–277, Bologna, Italy, 2004. Springer.

15. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties.
In 11th International Symposium of Formal Methods Europe (FME’2002), volume 2391 of
Lecture Notes in Computer Science, pages 549–567, Copenhagen, 2002. Springer.

16. O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler, D. Moldt, H. Rölke, and
R. Valk. An extensible editor and simulation engine for Petri nets: Renew. In J. Cortadella
and W. Reisig, editors, 25th International Conference on Application and Theory of Petri
Nets (ICATPN 2004), volume 3099 of Lecture Notes in Computer Science, pages 484–493,
Bologna, Italy, 2004. Springer.

17. C.A. Lakos. Object Petri Nets Definition and Relationship to Coloured Nets. Technical
Report TR94-3, Computer Science Department, University of Tasmania, April 1994 1994.

18. C.A. Lakos. From Coloured Petri Nets to Object Petri Nets. In G. De Michelis and M. Diaz,
editors, 16th International Conference on the Application and Theory of Petri Nets, volume
935 of Lecture Notes in Computer Science, pages 278–297, Torino, Italy, 1995. Springer-
Verlag.

19. C.A. Lakos. A Petri Net View of Mobility. In 25th IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems, Lecture Notes in Computer
Science, Taipei, Taiwan, 2005. Springer (to appear).

20. L. Lorentsen and L. Kristensen. Exploiting Stabilizers and Parallelism in State Space Gen-
eration with the Symmetry Method. In 2nd International Conference on Application of Con-
currency to System Design, pages 211–220, Newcastle, U.K., 2001. IEEE Computer Society.

21. T. Mailund. Analysing Infinite-State Systems by Combining Equivalence Reduction and the
Sweep-Line Method. In J. Esparza and C. Lakos, editors, 23rd International Conference
on the Application and Theory of Petri Nets, volume 2360 of Lecture Notes in Computer
Science, pages 314–334, Adelaide, Australia, 2002. Springer.

22. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer, Berlin, 1998.

23. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications, volume 1492
of Lecture Notes in Computer Science. Springer, Berlin, 1998.

24. B. Stroustrup. The C++ Programming Language (Second Edition). Addison-Wesley, New
York, 1991.

25. A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg, editors, Lectures
on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer Science, pages
429–528. Springer, Dagstuhl, 1998.

26. P. Wegner. Dimensions of Object-Based Language Design. In N. Meyrowitz, editor, OOP-
SLA 87, pages 168–182, Orlando, Florida, 1987. ACM.



Syntactical Colored Petri Nets Reductions

S. Evangelista1, S. Haddad2, and J.-F. Pradat-Peyre1

1 CEDRIC - CNAM Paris, 292, rue St Martin, 75003 Paris
2 LAMSADE-CNRS UMR 7024 Université Paris-Dauphine,

Place du Maréchal de Lattre de Tassigny, 75775, Paris Cedex 16

Abstract. In this paper, we develop a syntactical version of elaborated reduc-
tions for high-level Petri nets. These reductions simplify the model by merging
some sequential transitions into an atomic one. Their conditions combine local
structural ones (e.g. related to the actions of a thread) and global algebraic ones
(e.g. related to the threads synchronization). We show that these conditions are
performed in a syntactical way, when a syntax of the color mappings is given. We
show also how our method outperforms previous ones on a recent case study with
regard both to the reduction ratio and the automatization of their application.

1 Introduction

The concurrent programming paradigm is a powerful tool for the implementation of
complex software. However it may lead to applications where the interaction between
threads or processes produces subtle behaviours that are difficult to predict. In this con-
text, it is necessary to include in the application development life cycle a complete and
systematic verification step.

Two kinds of verification techniques are usually performed : state enumeration
based methods and structural methods. The state enumeration based methods lead to
a complete verification of the modeled system but the analysis is restricted by the com-
binatory explosion factor (i.e. the number of control states may grow exponentially
w.r.t. the number of threads and the size of the application). The structural methods are
generally efficient but they do not ensure the complete correctness of the system. Thus
an attractive trade-off is to combine both methods.

In this context, an efficient strategy is to examine the structure of the model for
reducing the number of execution traces that are to be analyzed. The obtained reduction
ratio depends on the kind of considered properties. The more specific are the properties,
the greater is the reduction.

Again, two distinct approaches can be followed to obtain such a reduction. On the
one hand, it’s possible to apply on-the-fly techniques when building the state graph.
These techniques are based on the detection that in a given state,

– some enabled actions may be forgotten since they lead to an already visited state
[GW93],

– some enabled actions may be safely delayed [Val93],
– some enabled actions may be executed simultaneously [VM97].

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 202–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Syntactical Colored Petri Nets Reductions 203

On the other hand, one can work at the model level in order to simplify it before
building a reduced state graph. In this framework, a frequent approach is the merging of
consecutive statements into a virtual atomic one whose effect is the composition of the
effects of these statements. Such a transformation presents the following advantages:

– the combinatory explosion is drastically reduced by the elimination of the interme-
diate states,

– the induced overhead computation is negligible w.r.t. the cost of the state graph
building,

– this abstraction is potentially applicable to “parameterized” programs (e.g. indepen-
dent of the number of instances of a process class) and this feature is not covered
by the on-the-fly techniques.

We have chosen to explore this approach by proposing new colored Petri nets re-
ductions that simplify the model by merging some sequential transitions [EHPP04].
These reductions enlarge earlier ones by weakening application conditions but also by
defining precisely which conditions are sufficient to preserve some specific properties
(i.e. liveness and linear temporal formulae defined on maximal or infinite sequences)
We show here, that given a syntax for colored net, application conditions and transfor-
mation rules of these reductions can performed with only fully automatic syntactical
operations.

The paper is organized as follows. In Section 2 we recall the definition of colored
nets and the definition of the colored post-agglomeration. Section 3 shows how to define
syntactical conditions enabling the manipulation of colored mapping with a well chosen
syntax for colored Petri nets. Section 4 highlights the interest of our reductions by
applying them on a recently published case study. Before concluding, we present in
Section 5 related works.

2 Colored Petri Nets and Agglomerations

We assume that the reader is familiar with Petri nets and usual mathematics notions
such as multisets or powersets. We denote by Bag(S) = INS the set of multisets over the
finite set S, and by P (S) = {true, f alse}S the set of powersets over S.

We first give in this Section some definitions related to colored Petri nets. Then,
we recall some definitions concerning color mappings properties and handling. At last,
we detail the application conditions of the post-agglomeration. For space constraint, the
pre-agglomeration will not be mentioned in this paper. The pre-agglomeration is treated
in [EHPP04].

2.1 Colored Petri Nets

Definition 1. A colored Petri net (CPN for short) is a tuple N = 〈P,T,Σ,C,W−,W +〉
where P is a finite set of places; T is a finite set of transitions, with P∩T = /0; Σ, the
colors set, is a finite set of finite and non empty sets; C, the color domain application,
is a mapping from P∪ T to Σ; W− and W+, the backward and forward incidence
matrixes associate to each (p, t) ∈ P×T a color mapping from C(t) to Bag(C(p)).



204 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

A couple (e,c) with e ∈ P∪T and c ∈C(e) is called an instance of e. In the remainder
of the paper mappings from C to Bag(C′) will be extended to mappings from Bag(C) to
Bag(C′) by the two following rules : f (λ.c) = λ. f (c) and f (c1 + c2) = f (c1)+ f (c2).
Given a place p, the sets •p and p• are defined as usual as {t ∈ T |W +(p,t) �= 0} and
{t ∈ T |W−(p, t) �= 0}. The same notations for a transition can be given in a straightfor-
ward way. A marking of a CPN associates to each of its places a multi-set over its color
domain. The firing rule defines the dynamic of the net.

Definition 2. Let N = 〈P,T,Σ,C,W−,W +,m0〉 be a CPN. A marking of N is a mapping
which associates each p ∈ P to an element of Bag(C(p)). The set of markings of a net
N is denoted by MN. A colored marked net is a couple 〈N,m0〉 with N a CPN and
m0 ∈MN the initial marking of the net.

Definition 3. Let N = 〈P,T,Σ,C,W−,W +〉 be a CPN, t ∈ T , ct ∈ C(t), and m ∈ MN.
The instance (t,ct) is firable at m, denoted by m[(t,ct)〉, if and only if ∀p ∈ P,m(p)≥
W−(p, t)(ct). The firing of (t,ct) at m leads to the marking m′, denoted by m[(t,ct)〉m′,
defined by: ∀p ∈ P,m′(p) = m(p)+W (p,t)(ct). The reachability set of 〈N,m0〉, de-
noted by Reach(N,m0), is the set {m0} ∪ {m ∈ MN |∃m′ ∈ Reach(N,m0),t ∈ T,ct ∈
C(t)|m′[(t,ct)〉m}.

Application conditions of agglomerations rely on the existence on some flows that
induce invariants.

Definition 4. A colored flow F , on the color domain CF , is a vector over P, denoted
by the formal sum F = ∑p∈P λp.F p.p, where ∀p∈P, λp ∈Z and F p is a mapping from
Bag(C(p)) to Bag(CF ) such that: ∀t ∈ T,∑p∈P λp.F p◦W (p, t) = 0 1. The colored flow
F is positive if ∀p ∈ P, λp ≥ 0.

Definition 5. A colored flow F , on the domain CF , induces the invariant:
∀m ∈ Reach(N,m0),∑p∈P λp.F p(m(p)) = ∑p∈P λp.F p(m0(p)). This invariant is a
binary invariant if ∀c∈CF ,∑p∈P λp.F p(m0(p))(c) = 1; a synchronization invariant
if ∀c ∈CF ,∑p∈P λp.F p(m0(p))(c) = 0. When no confusion is possible (i.e. the initial
marking is given), we will not distinguish a colored flow and its induced invariant.

For instance, given the right model of figure 1(b) we can automatically compute the
positive flow (on the domain ε) F = mb+ 〈AllC〉.q2 which induces the binary invariant
∀m ∈ Acc(N,m0), m(mb)+ ∑c∈C m(q2(c)) = 1. This invariant ensures that when place
mb is marked then place q2 is not, and then, that transition d1d2 is not fireable when q2
is marked.

2.2 Color Mappings Properties and Handling

Reductions techniques for Petri nets are characterized by : (1) some application con-
ditions, (2) the characterization of the reduced net, (3) the properties preserved. For
ordinary Petri nets, the application conditions rely on the structure of the net, i.e., the
physical links between the places and transitions of the net, and on algebraic conditions

1 0 denotes here the null mapping from C(t) to Bag(CF ).



Syntactical Colored Petri Nets Reductions 205

given by the invariants of the net. When reasoning with colored nets, the color mappings
also have to be considered since the structure of the colored net does not necessarily re-
flect the structure of the underlying ordinary Petri net. There is then two possibilities :
unfold the net, apply reductions on the unfolded net and fold it back; or define condi-
tions on the colored net that ensure correct ordinary agglomerations in the underlying
net. Thus operations on natural numbers, e.g., W−(p, t).W+(q, t) > 0 becomes opera-
tions on color mappings, e.g., W−(p,t)◦ t(W+(q,t)) �= 0Bag(C(q))→Bag(C(p)).

Firstly, we define a set of properties that are used in agglomerations definition.
These properties can give some precious hints on the structure on the underlying net.
For instance, a quasi-one-to-one mapping that labels an arc between a place p and a
transition t, implies that two different instances of t cannot be linked to the same in-
stance of p.

Definition 6. Let f be a mapping from C to Bag(C′). f is

– unitary when ∀c ∈C, f (c)(c′)≤ 1
– orthonormal when ∀c ∈C∃c′ ∈C′ such that f (c)(c′) = 1 and ∀c′ ∈C′∃c ∈C such

that f (c)(c′) = 1
– ortho-projection when f = g◦h with h an orthonormal mapping from C to Bag(C)

and g an orthonormal mapping from C to Bag(C′)
– quasi-one-to-one when ∀c1,c2 ∈C,c′ ∈C′, f (c1)(c′) = 0∨ f (c2)(c′) = 0
– quasi-onto when ∀c′ ∈C′,∃c ∈C such that f (c)(c′) > 0

Secondly, a frequent need is to symbolically follow a path in the underlying net.
That can be achieved by using the transposition and composition operators. The trans-
position is used to find the instances of a place linked to a transition instance, e.g.,
tW+(p,h). The composition enables to find, for example, the instances of a transition
linked to another one by an intermediary place instance, e.g., tW+(p,h)◦W−(p, f ).

Definition 7 (Transposition and composition). If f is a mapping from Bag(C′′) to
Bag(C′), and g is a mapping from Bag(C) to Bag(C′′) then f ◦ g is a mapping from
Bag(C) to Bag(C′) defined by ∀c∈C,c′ ∈C′,( f ◦g)(c)(c′)=∑c′′∈C′′ f (c′′)(c′)·g(c)(c′′).
If h is a mapping from Bag(C) to Bag(C′), then th is a mapping from Bag(C′) to Bag(C)
defined by ∀c ∈C,c′ ∈C′, t h(c′)(c) = h(c)(c′).

At last, we are usually not interested in the exact numbers of tokens produced in a
place, but rather in the fact that tokens are actually produced. The f operation can be
used for this purpose.

Definition 8. Let f ∈ S → Bag(S′). f ∈ S → P (S′) is defined by: ∀s ∈ S, f (s) = {s′ ∈
S′ | f (s)(s′) > 0}.

It is also useful to check if the image of a mapping f from P (C) to P (C′) is included in
the image of a mapping g from P (C) to P (C′); we denote this by f % g and it is defined
by f % g iff ∀c ∈C, f (c)⊆ g(c).

2.3 The Post-Agglomeration Reduction

We recall now application conditions of the post-agglomeration. The transformation
rule and the definition of the other transitions agglomeration (the pre-agglomeration)
are presented in [EHPP04].



206 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

The basic hypothesis of the post-agglomeration is that the set of transitions of the
net is partitioned as : T = T0

⊎
H
⊎

F . The underlying idea of this decomposition is that
transitions of H and transitions of F are causally dependent : an occurrence of f ∈ F in
a sequence of firings may always be related to a previous occurrence of some h ∈ H in
this sequence. Thus, in the reduced net, one fires f immediately after the firing of some
h ∈ H.

The definition of the net obtained by the agglomeration of H with F is straightfor-
ward. Thus for space constraint we will not give it in this paper. For the same reasons,
we will not detail the properties preserved by the post-agglomeration. We simply recall
that if all the mentioned conditions are verified by the net, both the reduced and the
original net will be equivalent in terms of Petri net liveness and languages of maximal
and infinite sequences which do not observe transitions of F . Indeed, since the idea of
the post-agglomeration is to advance the firing of any transition f ∈ F , the sequence
remains equivalent with respect to transitions which are not in F . The curious readers
may find these additional informations in [EHPP04].

The post-agglomeration is based on four hypotheses : the potential agglomera-
bility, the F-independence, the F-continuation and the HF-interchangeability.

Firstly we impose that the net is potentially agglomerable. This hypothesis ensures
that a transition f ∈F in a sequence of firings is related to a previous occurrence of some
h ∈ H in this sequence. The first point ensures that the place p models an intermediate
state between the firing of a transition in H and the firing of a transition in F . The
second one ensures that the firing of a transition h produces only one token in place p
(conditions on H) and that two different tokens in place p cannot be consumed by a
same firing of f (conditions on F).

Definition 9. A colored net is potentially agglomerable (p-agglomerable) if ∃p ∈ P
such that

1. •p = H, p• = F and m0(p) = 0;
2. ∀ f ∈ F, C( f ) = C(p)×Cf , W−(p, f ) is an ortho-projection from C( f ) to C(p) and
∀h ∈ H, C(h) = C(p), W+(p,h) is orthonormal

The F-independence hypothesis ensures that when the place p is marked, no transi-
tion that can produce tokens useful for the firing of a transition in F can be fired. Given
c ∈C(p), φ(c) is exactly the set of firing instances of t producing tokens useful for the
firing of ( f ,c). Similarly, given c ∈C(p), ψ(c) is exactly the set of firing instances of
t which can not be fired when a token colored by c is present in p. Additionally, the
strong independence ensures that the place p is safe, i.e. there is at most one token per
color present in p.

Definition 10. A p-agglomerable colored net is F-independent if ∀ f ∈ F, ∀q ∈ (• f \
{p}), ∀t ∈ •q \ F, ∃pt ∈ •t, ∃F = ∑r∈P F r.r a binary positive flow on a domain D
such that if φ = tW+(q,t)◦W−(q, f )◦ tW−(p, f ) and ψ = tW−(pt , t)◦ tF pt ◦F p then
φ % ψ. Furthermore, if there exists a binary positive invariant F ′ on the domain C(p)
such that tF ′

p is a quasi-onto mapping then the net is strongly F-independent.

The F-continuation hypothesis means that an excess of occurrences of h ∈ H can
always be reduced by subsequent firings of transitions of F , i.e. when the place p is
marked, a transition of F is necessarily fireable.



Syntactical Colored Petri Nets Reductions 207

Definition 11. A p-agglomerable colored net is F-continuable if ∃ f ∈F such that • f =
{p} or ∃ Fs ⊂ F such that :

1. ∀ f ∈ Fs,∃p f �= p ∈ P, • f = {p, p f },
2. ∀ f ∈ Fs, tW−(p f , f ) is an unitary quasi-one-to-one mapping;
3. there exists a flow on C(p), F = ∑ f∈Fs F p f .p f −λ.XC(p).p with

∀ f ∈ Fs, tF p f %W−(p f , f )◦ tW−(p, f ) and such that
(a) either λ = 0 and F induces a binary positive invariant
(b) or λ = 1 and F induces a synchronization invariant

At last, the HF-interchangeability hypothesis mainly restricts either the set H or
F to be a singleton in order to avoid the case where h ∈ H and f ∈ F are live in the
original net whereas the transition h f is not live in the reduced net.

Definition 12. A p-agglomerable colored net is HF-interchangeable if either H = {h}
or F = { f}, C( f ) = C(p) (thus W−(p, f ) is orthonormal since it is p-agglomerable)

3 Syntactical Rules for Agglomerations Implementation

Computing the transposition of a color mapping, or the composition of two color map-
pings is impossible for general colored Petri nets, i.e., with unstructured color domains
or color mappings. In order to enable to perform such computations in a symbolic way
without unfolding the net, we first define in this section a restricted class of colored
Petri nets with well defined color domains and mappings. In the second and third part
of the section, we will see that this class allows us to check basic mapping properties
such as orthonormality in a straightforward way, and to perform operations on color
mappings in a syntactic manner.

3.1 Quasi Well Formed Colored Nets (QWNs)

Quasi well formed nets are a restriction of the well-known well formed nets class.
QWNs are characterized by a good structuring of color domains and mappings.

At first, to such a net is associated a set of finite color classes (e.g. a set of processes)
that will be denoted Cl = {C1, . . . ,CN}. The sizes of these classes are the parameters of
the net (denoted ni for Ci). Each class can be enumerated starting from any color with
the help of a successor mapping succ, i.e. ∀c ∈Ci, Ci = {c,succ(c), . . . ,succni−1(c)}.

A color domain C is a cartesian product of color classes. For the sake of simplicity,
we assume that these domains are built upon the order of Cl, i.e., each color domain
C can be written as C = C1 × ·· · ×C1× ·· ·×CN × ·· ·×CN . Since we allow repeated
occurrences of a class, ei denotes the number of occurrences of Ci in C.

Color mappings are built using simpler mappings called elementary mappings. Four
kinds of elementary mappings are allowed: the projection, the successor (or predeces-
sor), the constant mapping, and the broadcast mapping.

Definition 13. Let C be a color domain, and Ci be a color class. The set of elementary
color mappings from C to Bag(Ci) is the set
{X j

i } j∈[1..ei]∪{X j
i ⊕n} j∈[1..ei],n∈N∪{Alli}∪{ ci}ci∈Ci



208 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

It is defined by ∀c = 〈c1
1, . . . ,c

eN
N 〉 ∈C:

- X j
i (c) = {c j

i } (a projection mapping)
- X j

i ⊕n(c) = X j
i *−n(c) = {succn(c j

i )} (a successor mapping)
- Alli(c) = ∑ci∈Ci

ci (the broadcast mapping)
- ci(c) = {ci} (a constant mapping)

Definition 14. Let C be a color domain and c = 〈c1
1, . . . ,c

eN
N 〉 ∈C then an elementary

guard G on C, a mapping from C to B = {true, f alse}, is:

– either (X j
i = X j′

i ⊕n) defined by (X j
i = X j′

i ⊕n)(c) = (c j
i = succn(c j′

i )),
– or (X j

i = ci) with ci ∈Ci defined by (X j
i = ci)(c) = (c j

i = ci)

A general guard is a boolean combination of elementary guards.

The general syntax of color mappings is based on elementary mappings and guards
with the help of three constructors: the tuple constructor, the product of a tuple by a
scalar and the sum of tuples.

Definition 15. Let C and C′ be two color domains. The syntax of a QWN color map-
ping f from C to Bag(C′) is:

f = ∑K
k=1 αk.[Gk]〈 f 1

1,k, . . . , f
e′N
N,k〉 with ∀k ∈ [1..K], i ∈ [1..N], j ∈ [1..e′i], αk > 0, Gk a

guard on C and f j
i,k is an elementary color mapping from C to Bag(Ci). It is defined by:

f (c) =
K

∑
k=1

αk ∑
{c∈C |Gk(c)}

〈 f 1
1,k, . . . , f

e′N
N,k〉(c)

3.2 Checking Color Mappings Properties

The good structuring of quasi well formed nets allows us to easily check color mapping
properties. The straightforward proof of these propositions can be found in [Eva04]. In
all the propositions, we consider a quasi well formed color mapping f from Bag(C)
to Bag(C′).

A simple condition to ensure that f is unitary is to impose that it is composed of a
single tuple of which valuation is 1.

Proposition 1. If f = [G]〈 f 1
1 , . . . , f

e′N
N 〉 then f is unitary.

To ensure orthonormality, we must haveC =C′, f composed of a single non guarded
tuple and each variable of the transition must appear in this tuple.

Proposition 2. If C = C′, f = 〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..ei],∃ j′ ∈ [1..ei],n ∈

N such that f j
i = X j′

i ⊕n then f is orthonormal.

If f is a single non guarded tuple in which only variables appear and such that the
same variable can not appear at two different positions in the tuple then it is an ortho-
projection.

Proposition 3. If f = 〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..e′i], f j

i = X j′
i ⊕n and � ∃ j′′ ∈

[1..e′i] such that f j′′
i = X j′

i ⊕m then f is an ortho-projection.

A single tuple in which all the variables of the transition appear is quasi-one-to-one.



Syntactical Colored Petri Nets Reductions 209

Proposition 4. If f = α.[G]〈 f 1
1 , . . . , f

e′N
N 〉 and ∀i ∈ [1..N], j ∈ [1..ei],∃ j′ ∈ [1..e′i],n ∈ N

such that f j′
i = X j

i ⊕n then f is quasi-one-to-one.

At last, f is quasi-onto if there is a non guarded tuple in it which is such that no
constant appear in it and no variable can appear at two different positions in it.

Proposition 5. If f = α.〈 f 1
1 , . . . , f

e′N
N 〉+ g such that these two conditions are fulfilled

1. ∀i ∈ [1..N], j ∈ [1..e′i], f j
i = Alli or f j

i = X j′
i ⊕n

2. � ∃i ∈ [1..N], j ∈ [1..e′i], j′ ∈ [1..e′i] such that f j
i = X j′′

i ⊕n and f j′
i = X j′′

i ⊕m

then f is quasi-onto.

3.3 Computing Structural Relations

Syntactic Transposition. We now focus on the specification of a symbolic transposi-
tion. At first, we notice that the transpose of a linear combination of mappings is the
linear combination of the transposes. Thus we restrict ourselves to a guarded tuple. We

now focus on the guard. We remark that if f = [G]〈 f 1
1 , . . . , f

e′N
N 〉 then f can be viewed as

the following composition: f = 〈 f 1
1 , . . . , f

e′N
N 〉 ◦ [G]〈X1

1 , . . . ,Xe1
1 , . . . ,X1

N , . . . ,XeN
N 〉. Thus

t f = t [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉◦ t〈 f 1
1 , . . . , f

e′N
N 〉. By a straightforward evaluation,

one remarks that:

t [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉= [G]〈X1
1 , . . . ,Xe1

1 , . . . ,X1
N , . . . ,XeN

N 〉

Hence supposing that the composition can be handled, we restrict the symbolic trans-
position to non guarded tuples.

We make a new observation. Let g be a mapping from C to C′ and h be a map-
ping from D to D′. Suppose that f is a mapping from C×D to C′ ×D′ defined by
f (c,d) = 〈g(c),h(d)〉. Then t f (c′,d′) = 〈t g(c′), t h(d′)〉. As it is the case for QWN map-
pings (that can be viewed as tuple of mappings from Cei to Ce′i), we can restrict ourselves
to mappings where a single class occurs (with possible repetitions) in its domain and its
codomain.

Proposition 6 (Symbolic transposition). Let C = Ce
i and C′ = Ce′

i be two color do-
mains. Since we deal with a single class Ci, we omit in the sequel the subscript i.

Let f = 〈 f 1, . . . , f e′ 〉 be a mapping from Bag(C) to Bag(C′) with f k′ being either
All, Xμ(k′)⊕mk′ or n. The transposition of f is defined by:

t f = [
e∧

k=1

Gk

e′∧
k′=1

Hk′ ]〈g1, . . . ,ge〉]

where:

– if μ−1(k) = /0 then gk = All and Gk = true
– else (μ−1(k) = { j1, . . . , jq}) gk = X j1*m j1 and Gk =

∧q
k′=2(X

jk′ *n jk′ = X j1*m j1)



210 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

and

– if f k′ = n then Hk′ = (Xk′ = n)
– else Hk′ = true

Example 1. Let us compute the transpose of the mapping f from
Bag(C1×C1×C2×C3×C3) to Bag(C1×C1×C2×C2×C3) defined by

f = 〈X1
1 *3,X1

1 ⊕1,X1
2 ,All2, 3,1〉

– We first consider the mapping f1 from Bag(C1×C1) to Bag(C1×C1) defined by
f1 = 〈X1

1 *1,X1
1 ⊕1〉.

Using previous notations, μ1(1) = 1 and μ1(2) = 2. So,
• μ−1

1 (1) = {1,2} and then g1
1 = X1

1 ⊕3 and G1 = (X2
1 *1 = X1

1 ⊕3)
• μ−1

1 (2) = /0 and then g2
1 = All1

• No constant appears in f1 so H1 = true.
– We consider then the mapping from Bag(C2) to Bag(C2×C2) f2 = 〈X1

2 ,All2〉.
• μ−1

2 (1) = {1} and then g1
2 = X1

2 and G2 = true
• No constant appears in f2 so H2 = true.

– At last consider the mapping from Bag(C3×C3) to Bag(C3) f3 = 〈 3,1〉. We obtain
• μ−1

3 (1) = μ−1(2) = /0 so g1
3 = g2

3 = All3.
• As f 1

3 = 3,1 then H3 = (X1
3 = 3,1).

So we obtain as result to our calculus:

t f = [(X2
1 *1 = X1

1 ⊕3)∧ (X1
3 = 3,1)]〈X1

1 ⊕3,All1,X
1
2 ,All3,All3〉

Syntactic Composition. Computing the composition f ◦ g of two mappings can raise
syntactical problems. For instance, if g is a mapping from Bag(ε) to Bag(C1) and f a
mapping from Bag(C1) to Bag(C1×C1) defined by f = 〈X1

1 ,X1
1 〉 and g = 〈All1〉, we

clearly have f ◦ g = ∑c∈C1
〈c,c〉 which cannot be expressed in our syntax. In the same

way, 〈Alli〉 ◦ 〈Alli〉 = ni.〈Alli〉 which is also not allowed in our syntax. So we impose
for the computation of f ◦ g that

∀i,k,gk
i = Alli ⇒ (∃! j,n such that f j

i = X j
i ⊕n) and(∀ j, f j

i �= Alli)

With this additional constraint, we can compute the transposition of any two tuples as
follows (the proof can again be found in [EHPP04]): Using linearity of QWN mappings
we restrict our self to the composition of tuples of elementary mappings.

Proposition 7 (Symbolic tuples composition). Let g = 〈g1
1, . . . ,g

e′′N
N 〉 from Bag(C) to

Bag(C′′) and f = 〈 f 1
1 , . . . , f

e′N
N 〉 from Bag(C′′) to Bag(C′) be two QWN mappings.

Then h = f ◦ g = 〈h1
1, . . . ,h

e′N
N 〉 is defined by :

∀i, j ∈ [1..e′i],h
j
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if f j
i = X j′

i ⊕n then

⎧⎪⎨
⎪⎩

if g j′
i = X j′′

i ⊕m then X j′′
i ⊕ (n + m)

if g j′
i = Alli then Alli

if g j′
i = m then n+m

if f j
i = Alli then Alli

if f j
i = n then n



Syntactical Colored Petri Nets Reductions 211

Example 2. Let f = 〈X1
1 ,X1

1 ⊕1,X1
2 〉 from Bag(C1×C2) to Bag(C1×C1×C2) and

g = 〈X3
1 ,All2〉 from Bag(C1×C1×C1×C2) to Bag(C1×C2). The mapping h = f ◦ g

from Bag(C1×C1×C1×C2) to Bag(C1×C1×C2) is h = 〈X3
1 ,X3

1 ⊕1,All2〉.

Others complications appear when computing the composition of two guarded tu-

ples [G f ] f ◦ [Gg]g when there is a predicate [X j
i ⊕ n = X j′

i ⊕ n′] in G f and when g j
i =

g j′
i = Alli. For instance, if f = [X1

1 = X2
1 ]〈X1

1 ,All1〉 and g = 〈All1,All1〉 (from Bag(C1)
to Bag(C1×C1)) then ( f ◦g) = ∑c∈C1

〈c,c〉 which is not a quasi well formed mapping.
Thus we have to introduce a second constraint for the computation:

G f = [(X j
i = X j′

i ⊕n)]⇒ (g j
i �= Alli or g j′

i �= Alli)

Proposition 8 (Symbolic guarded tuples composition). Let g = 〈g1
1, . . . ,g

e′′N
N 〉 from

Bag(C) to Bag(C′′) and f from Bag(C′′) to Bag(C′) be two QWN mappings. Then h =
[G f ] f ◦ [Gg]g = [G∧Gg] f ◦ g′ where g′ is defined by g′ ji = g j

i except for some indices
where a substitution occurs and where G is defined as follows (note that due to symmetry

of guards we just consider non symmetrical cases for g j
i and g j′

i , and that the negation
of a guard is easily defined from these constructions) :

– G f is (X j
i = X j′

i ⊕n):

if g j
i = Xk

i ⊕m then

⎧⎪⎨
⎪⎩

if g j′
i = Xk′

i ⊕m′ then G = (Xk
i ⊕m = Xk′

i ⊕ (n + m′))
if g j′

i = Alli then G = G f

if g j′
i = m then G = (Xk

i = n+m)

if g j
i = n then

{
if g j′

i = Alli then G = true and g′ j′
i = n

if g j′
i = n′ then G = (n = n′)

– G f is (X j
i = n):

if g j
i = Xk

i ⊕m then G = (Xk
i ⊕m = n)

if g j
i = Alli then G = true and g′ j′

i = n

if g j
i = n′ then G = (n = n′)

Mapping Inclusion. Our last need is to be able to check that two QWN color mappings
f and g are such that f % g. This is the case if for every tuple tup f of f there is a tuple
tupg of g which is such that the guard of tupg is true and at each position in the co-
domain of f and g, the elementary mapping in tupg is either the broadcast mapping
either the same mapping as in tup f .

Proposition 9. Let f and g be two QWN color mappings from C to C′ such that

– f = ∑
Kf
k=1 αk, f .[Gk, f ]〈 f 1

1,k, . . . , f
e′N
N,k〉

– g = ∑
Kg
k=1 αk,g.[Gk,g]〈g1

1,k, . . . ,g
e′N
N,k〉

If ∀k ∈ [1..Kf ],∃k′ ∈ [1..Kg] such that Gk′,g = true, and ∀i ∈ [1..|Cl|], j ∈ [1..e′N ], either

g j
i,k′ = Alli, either g j

i,k′ = f j
i,k then f % g.



212 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

4 Cases Studies

Flanagan and Qadeer proposed in [FQ03a] the following example where a counter
count can be either read, incremented or decremented. Two shared variables, a and
b, keep track of the number of increments or decrements performed on the counter.

int a, b, ma, mb, count = 0;

void incr(){ void decr(){ void read(){
acquire (ma); acquire (mb); acquire (ma); int x = a;
int x = a ; int y = b; acquire (mb); int y = b;
count++; count--; release (mb);
a = x+1; b = y+1; release (ma);
release (ma); } release (mb); } return (tx-ty); }

The corresponding colored Petri net is depicted Fig. 1(a) and, for simplicity, we
have duplicated some places on the figure (ma, mb, a, b and count). Note that the value
of the local variables (x and y) is modeled by the coloration of the token contained in
the places p2, . . . ,p4, q2, . . . ,q4 and u3, . . . ,u5. One aims to reduce this net, to check
that a property that does not observe the five variables declared holds.

We first perform four post-agglomerations (i4 with i5, d4 with d5, r5 with r6 and
r4 with r5r6 (the result of the agglomeration of r5 with r6). These agglomerations are
possible mainly because the transitions corresponding to f in these reductions have a
single input: the place corresponding to p in the agglomeration scheme.

Then we perform three post-agglomerations (i1 with i2, d1 with d2, r1 with r2
and r3 with r4r5r6). Let us detail the post-agglomeration of i1 with i2 :

1. the p-agglomerability is obviously fulfilled;
2. concerning the F-independence, we use the following positive flow (on the domain

ε) F = ma + p2 + 〈AllC〉.p3 + 〈AllC〉.p4 + u2 + 〈AllC〉.u3 + 〈AllC〉.u4 which in-
duces the binary positive invariant ∀m ∈ Acc(N,m0),m(ma) + ∑x∈C(m(p2)(x) +
m(p3)(x)+m(p4)(x))+∑x∈C(m(u3)(x)+m(u4)(x)) = 1. With the help of this in-
variant, we check for instance that (using notations of definition 10) for q = a,
t = i4, pt = p4 then Φ = t(〈X + 1〉) ◦ (〈X〉) ◦ t(〈Πε〉) = AllC and Ψ = t(〈X〉) ◦
t(〈AllC〉)◦ 〈Xε〉= AllC and then φ% ψ (note again that these computations are per-
formed using only the syntax of the mappings).

3. the F-continuation is verified with the help of the flow 〈AllC〉.a which induces the
binary invariant ∀m ∈ Acc(N,m0),∑x∈C m(a)(x) = 1.

4. the HF-interchangeability is ensured since |H|= {i1}
The reduced net is depicted Fig. 1(b).

In this last model, we perform a pre-agglomeration of d1d2 with d4d5. This reduc-
tion is possible since r3r4r5r6 is a neutral transition and since mb induces a binary
invariant ensuring that d4d5 is not fireable when d1d2 is fireable. Then we suppress the
place mb (now an implicit place see [Had90]) and we apply a parallel pre-agglomeration
of r1r2 with r3r4r5r6, and i1i2 with i4i5. So we suppress ma (now an implicit
place) and we obtain a net reduced to three transitions (Fig.1(c)). Note that contrary
to the results proposed in [FQ03a], our reduction process is fully automatic and, in
addition to serializability, it preserves Petri nets liveness, deadlocks, as well as other
properties expressed with the help of maximal or infinite sequences.



Syntactical Colored Petri Nets Reductions 213

mb
q1

<Y><Z−−>

<Z>

<Y>

<Y+1>

decr( )

<Y>

<Y>

count

i1

i3

i4

i5

d1

d3

d4

d5

a: C

ma

<0>

p1

p2

<X>

<X> <Z++>

<Z>

<X>

<X+1>

<X>

<X>

<X>

<X>

<X>

mb

<X>

<Y>

b: C

r3

r4

u3: C

u4: C

u5: CxC

u7

u6: CxC

r2

u2

r1

u1
ma

<X>

<Y>

a: C

incr( )

<0>

<0>

<Xg> <Yg>

<0>

<0>

p3: C

p4: C

p5: C

p6 q6

q3: C

q2

q4: C

q5: C

i2 d2

r6

r5

read( )

<X>

<X>

<Y>

<Y>

<X,Y>

<X,Y>

<X,Y>

<X,Y>

b: C

(a) The initial model

<Y>

<Z−−>

<Z>

<Y>

q1

<Yg>

<Y+1>

<Y>

decr( )q5

mb

b
<X>

<Z++>

<Z>

<X>

p1

<Xg>

<X+1>

<X>

incr( ) p5

ma

count

a

i1i2

i4i5 d4d5

<0>

<0>

<0>

d1d2

p2: C q2: C

<Y>

u3: C
<X>

<X>

b

mb

<0>

a <0>
<X>

ma

r3r4r5r6

u7

read( )

r1r2

(b) After several agglomerations

<Z>

decr( )

<Z++>

<Z>

incr( )
count

i1i2i3i4i5

<X>
a

<X+1> <Z−−>

ty

<Y>

<Y+1>

<0> <0>

p1

p5 q5

q1

read( )

<X><0> <Y> <0>

<Z>

u8

count

a

b

d1d2d3d4d5
r1r2r3r4r5r6

(c) Fully reduced

Fig. 1. The Flanagan and Qadeer’s example



214 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

5 Related Works

The first theoretical work concerning reduction of sequences into atomic actions for
simplification purpose was performed by Lipton in [Lip75]. Lipton focused only on
deadlock property preservation. Using parallel program notations of Dijkstra he de-
fined “left” and “right” movers. Roughly speaking, a “left” (resp. “right”) mover is
a local process statement that can be moved forward (resp. delayed) w.r.t. statements
of others processes without modifying the halting property. Lipton then demonstrated
that, in principle, the statement P(S), where S is a semaphore, is a “left” mover and
V(s) is a “right” mover. Then Lipton proved that some parallel program are deadlock
free by moving P(S) and V(S) statements and by suppressing atomic statements that
have no effect on variables. However, two difficulties arise: the reduction preserves only
the existence of deadlocks and the application conditions are difficult to be automati-
cally checked. Thus, this work has been extended and adapted to different formalisms
[CL98], [SC03], or to programming languages [SC03], [FQ03b], [FQ03a].

In Petri nets formalism, the first works concerning reductions have been performed
by Berthelot [BRV80, Ber85]. The author focused only the preservation of specific
Petri net properties such as liveness or boundedness. The link between transition ag-
glomerations (the most effective reductions) and general properties, expressed in LTL
formalism, is done in [PPP00]. However, these reductions rely on “pure” structural ap-
plication conditions, which are, on the one hand, very efficient, but in the other hand,
lead to a quite narrow application area.

Esparza and Schröter [ES01], simplify one point in the original pre-agglomeration
conditions. However, they consider only 1-safe Petri nets (each place is bounded by 1), the
application conditions remain purely structural, and as the authors focus only on infinite
sequences preservation, their reductions do not even preserve the existence deadlock2.

Orthogonally, Schnoebelen and Sidorova [SS00] characterize reductions by means
of bisimulation. The interest in this approach is that one only needs to consider a par-
ticular subset of the markings and thus, can obtain a very abstract model. On the other
hand, the applicability of these reductions is quite limited.

Recently we proposed in [HPP04] new Petri nets reductions that cover a large range
of patterns by introducing algebraic conditions whereas the previously defined ones rely
solely on structural conditions. We adapt them to colored nets in [EHPP04] and we show
here how to automatize their applications with a well chosen syntax for colored Petri
nets. Note that the expressiveness of colored Petri nets is sufficient to model concurrent
software. Thus, these colored Petri nets reductions are a very efficient supplementary
material for simplifying software model checking.

6 Conclusion

We have presented in this paper how new colored Petri nets reductions can be automat-
ically performed using a precise syntax of colored net. In particular, we showed that a
precise syntax of colored nets allows us to transform functional calculus into syntactical
operations.

2 Note moreover that being 1-safe is not a stable characteristic w.r.t. reductions.



Syntactical Colored Petri Nets Reductions 215

We have illustrate on a recent and significant example that the use of these reduc-
tions leads to a very effective way to simplify model (and thus concurrent programs)
while preserving general properties of the model (expressed for instance with an action-
based linear time temporal logic).

The next step in our researches in this area will be to define directly in high-level
languages (such as Ada or Java) equivalent conditions allowing to automatically infer
transactions for simplifying software model checking.

References

[Ber85] G. Berthelot. Checking properties of nets using transformations. In G. Rozenberg,
editor, Advances in Petri nets, volume No. 222 of LNCS. Springer-Verlag, 1985.

[BRV80] G. Berthelot, G. Roucairol, and R. Valk. Reduction of nets and parallel programs.
In Brauer, W., editor, LNCS: Net Theory and Applications, volume 84, pages 277–
290, Berlin, Heidelberg, New York, 1980. Springer-Verlag.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In International Conference
on Concurrency Theory, pages 317–331, 1998.

[EHPP04] S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. Colored Petri nets reductions for
concurrent software validation. Technical report, CEDRIC, CNAM, Paris, 2004.

[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar: a new
tool for analysing concurrent programs. In Reliable Software Technologies - Ada-
Europe 2003, volume 2655 of LNCS. Springer-Verlag, 2003.

[ES01] J. Esparza and C. Schröter. Net Reductions for LTL Model-Checking. In T. Mar-
garia and T. Melham, editors, Correct Hardware Design and Verification Methods
(CHARME’01), volume 2144 of Lecture Notes in Computer Science, pages 310–
324. Springer-Verlag, 2001.

[Eva04] S. Evangelista. Syntactical rules for colored Petri nets manipulation. Technical
Report 641, CEDRIC, CNAM, Paris, 2004.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for software model checking. In
Byron Cook, Scott Stoller, and Willem Visser, editors, Electronic Notes in Theo-
retical Computer Science, volume 89. Elsevier, 2003.

[FQ03b] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, pages 338–349. ACM Press, 2003.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verifi-
cation of deadlock freedom and safety properties. Form. Methods Syst., 2(2):149–
164, 1993.

[Had90] S. Haddad. A reduction theory for colored nets. In Jensen and Rozenberg, editors,
High-level Petri Nets, Theory and Application, volume 424 of LNCS, pages 399–
425. Springer-Verlag, 1990.

[HPP04] S. Haddad and J.F. Pradat-Peyre. Efficient reductions for LTL formulae verifica-
tion. Technical report, CEDRIC, CNAM, Paris, 2004.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

[PPP00] D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations for LTL model
checking. In M. Nielsen and D Simpson, editors, High-level Petri Nets, Theory
and Application, number 1825 in LNCS, pages 387–408. Springer-Verlag, 2000.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based state-space
reduction. In H. Garavel and J. Hatcliff, editors, TACAS’03, volume 2619 of Lec-
ture Notes in Computer Science, pages 489–504. Springer-Verlag, April 2003.



216 S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre

[SS00] P. Schnoebelen and N. Sidorova. Bisimulation and the reduction of petri nets. In
M. Nielsen and D Simpson, editors, High-level Petri Nets, Theory and Application,
number 1825 in LNCS, pages 409–423. Springer-Verlag, 2000.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In Proceedings of the
5th International Conference on Computer Aided Verification, pages 397–408.
Springer-Verlag, 1993.

[VM97] François Vernadat and François Michel. Covering step graph preserving failure
semantics. In Proceedings of the 18th International Conference on Application
and Theory of Petri Nets, pages 253–270. Springer-Verlag, 1997.



Algorithmic Algebraic Model Checking II:

Decidability of Semi-algebraic Model Checking
and Its Applications to Systems Biology�

V. Mysore1, C. Piazza2, and B. Mishra1,3

1 Courant Institute, New York University, New York, NY, U.S.A
2 Dept. of Mathematics and Computer Science, University of Udiné, Udine, Italy

3 NYU School of Medicine, New York University, New York, NY, U.S.A
vm40@nyu.edu, piazza@dimi.uniud.it, mishra@nyu.edu

Abstract. Motivated by applications to systems biology, and the emer-
gence of semi-algebraic hybrid systems as a natural framework for model-
ing biochemical networks, we continue exploring the decidability problem
for model-checking with TCTL (Timed Computation Tree Logic) over
this broad class of semi-algebraic hybrid systems. Previously, we had in-
troduced these models, demonstrated the close connection to the goals
of systems biology. However, we had only developed the techniques for
bounded reachability, arguing for the adequacy of such an approach in a
majority of the biological applications. Here, we present a semi-decidable
symbolic algebraic dense-time TCTL model checking algorithm, which
satisfies two desirable properties: it can be derived automatically from
the symbolic description, and it extends to and generalizes other ver-
sions of temporal logics. The main mathematical device at the core of
this approach is Tarski-Collins’ real quantifier elimination employed at
each fixpoint iteration, whose high complexity is the crux of its unfortu-
nate limitation. Along with these results, we prove the undecidability of
this problem in the more powerful “real” Turing machine formalism of
Blum, Shub and Smale. We then demonstrate a preliminary version of
our model-checker Tolque on the Delta-Notch example.

1 Prologue

It has been said1, “Biologists have generally eschewed the possibility, or even
the value, of an overarching theory of life.” Biology is considered complex and
not amenable to systematic dissection to reveal a unifying principle. However, as
complex interconnected interactions among various biological entities begin to
be cataloged from a diverse set of experiments, patterns emerge: sequences are
� The work reported in this paper was supported by grants from NSF’s ITR program,

Defense Advanced Research Projects Agency (DARPA), the US Air Force (AFRL),
National Institutes of Health (NIH) and New York State Office of Science, Technol-
ogy & Academic Research (NYSTAR). C.P. was partially supported by the MIUR
FIRB grant RBAU018RCZ and the MIUR PRIN’04 grant 2004013015.

1 Making Sense of Life, E.F. Keller, Harvard Press, MA, 2002.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 217–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



218 V. Mysore, C. Piazza, and B. Mishra

aligned; genes are clustered; genes are grouped in modules; proteins are placed
in families; motifs of interaction are listed; polymorphisms are partitioned into
blocks; chromosomal aberrations and methylation patterns are segmented. The
picture, however, remains frozen in time.

On the other hand, much less has been inferred about the temporal inter-
actions of these entities. There are two problems: a mathematically precise, but
somewhat idealized description of these interactions is often presented in a form,
that is neither succinct nor easy to analyze. We lack both theoretical frameworks
and efficient implementations for developing automatic computational tools that
will allow a scientist to explore important phenomenological properties of these
models.

The subject Algorithmic Algebraic Model Checking focuses on these issues
as it examines connections between systems biology, dynamical systems, modal
logic and computability, and how they can be useful in the biological context.
Towards this aim, we began by addressing the symbolic bounded reachability
problem for a new class of hybrid models arising in systems biology – semi-
algebraic hybrid systems, introduced in the first paper of this “AAMC” (Algo-
rithmic Algebraic Model Checking) series [28]. There, we aimed to characterize
the widest range of automata that admit sound albeit expensive mathematical
techniques, as opposed to focusing on a very narrow class of systems that often
prematurely sacrifice generalizability for the sake of efficiency. It was shown that
the bounded reachability problem can be solved using real algebraic techniques
like Taylor series approximation and quantifier elimination. It was found suffi-
ciently powerful in analyzing such systems as the Delta-Notch protein interaction
example [10,14,19]. It was expected that, building upon this algebraic bounded
reachability algorithm [28] and other recent techniques (e.g. some of Fränzle’s
ideas [13]), we can address the algebraic model-checking problem over the dense
time logic TCTL [1]. The current paper deals with this subject.

We build upon and integrate many existing ideas: we use Henzinger et al.’s
characterization of the Until operator as a fixpoint expression involving the one-
step until operator [17]. Exploiting the power of a symbolic2 approach, we retain
all parameters as variables thus obtaining an algebraic expression representing
the possible solutions. The ability to perform an entirely symbolic analysis of
arbitrary polynomial hybrid systems over a full temporal logic, limited only by
computational power, distinguishes our approach from the other methods in
literature. Furthermore, to study decidability, we use Blum et al.’s “real” Turing
machine (or equivalently, finite-dimensional machine over a field) formalism [7]
– a more apt approach to analyzing problems involving real computations. We
find that reachability is undecidable even in this more powerful computational
model. The rest of the paper is organized as follows: the main ingredients of the
paper – semi-algebraic hybrid automata, the Blum-Shub-Smale model of “real”
computation and TCTL – are reviewed in Section 2 ; the technical proofs of
our main results along with a literature survey are provided in Section 3 ; we

2 This is in contrast to traditional symbolic model-checking where we refer to the use
of BDDs as opposed to explicit enumeration of states as being symbolic.



Algorithmic Algebraic Model Checking II 219

demonstrate our software system Tolque over the same Delta-Notch example in
Section 4 (additional results are recorded in the Appendix ) and conclude with a
discussion in Section 5.

2 Technical Preliminaries

The temporal properties of a network of interacting biochemicals are typically
captured by relating two neighboring system-states at time instants t and t + δ,
and the biochemical interactions (synthesis, degradation, multimerization, etc.)
which occur in that short time interval δ. The dynamics resulting from these
interactions can be described as a set of differential equations and discrete
states [25]. Nonetheless, a direct model of transitions and flows, given through
their symbolic description, can be computationally manipulated (either numer-
ically or symbolically) to derive logical conclusions about global temporal prop-
erties, that may not have been obvious in the instantaneous description. The
exact structure of this approach depends on the complexity of the three un-
derlying frameworks: description of the dynamical system, the expressivity of
the temporal logic and the basic operations of the models of computation. In a
conventional “numerical” approach, starting with an initial system-state, succes-
sive states are chased by an integration scheme (eg. Runge-Kutta). Conclusions
about the behavior of the network are then made by tracing the trajectories
over a suitable time-frame and verifying temporal properties (eg. the Simpathica
tool [5]). The “symbolic” alternative to the numerical procedure instead uses
algebraic methods to characterize the transition of the system with time. The
appropriate frameworks for this setting consist of the following: semi-algebraic
hybrid automata which allow polynomial expressions, TCTL logic to capture
the continuous changes, and the “real” Turing machine model that computes a
semi-algebraic operation in one unit step. Their formal definitions follow.

Definition 1. Semi-algebraic Set.[26] Every quantifier-free boolean formula
composed of polynomial equations and inequalities defines a semialgebraic set
(i.e., unquantified first-order formulæ over the reals - (R, +,×, =, <)). �

Definition 2. Semi-algebraic Hybrid Automata. [28] A k-dimensional hy-
brid automaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting
of the following components:

– Z = {Z1, . . . , Zk} and Z ′ = {Z ′1, . . . , Z ′k} are two finite sets of variables
ranging over the reals R

– (V, E) is a directed graph of discrete states and transitions
– Each discrete state v ∈ V is labeled by “Init”(initial), “Inv”(invariant) and

“Flow” labels of the form Initv[Z], Invv[Z], and Flowv[Z,Z ′, t, h]
– Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[Z,Z ′] ≡

Guarde(Z) ∧ Resete(Z,Z ′)
– Init , Inv, Flow, and Jump are semi-algebraic. �



220 V. Mysore, C. Piazza, and B. Mishra

For ease of expression and clarity, we have enhanced the semantics presented
in [28].

Definition 3. Semantics of Hybrid Automata. Let H = (Z, V , E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

– A location � of H is a pair 〈v, R〉, where v ∈ V is a discrete state and
R ∈ Rk is an assignment of values to the variables of Z. A location 〈v, R〉
is said to be admissible, if Invv(R) is satisfied.

– The continuous reachability transition relation h−→
C

forces the discrete state

invariant to hold at every location except the end-location, along the evolu-
tion curve determined by the flow equations during the h(> 0) time units
from the current time t0:

〈v, R〉 h−→
C
〈v, S〉 iff(

Flowv(R, S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flowv(R,Z ′, t0, h′) ⇒ Invv(Z ′)
)

,

where Flowv(Z,Z ′, T, h) is the flow label of v.
– The discrete reachability transition relation 0−→

D
ensures that both parts of the

zero-time jump – the guard condition which needs to be satisfied just before
the transition is taken, and the reset condition which determines the values
after the transition, are satisfied.

〈v, R〉 0−→
D
〈u, S〉 iff 〈v, u〉 ∈ E ∧ Jumpv,u(R, S).

– The transition relation T of H connects the possible values of the system
variables before and after one step - a discrete step for a time h = 0 or a
continuous evolution for any time period h > 0:

T (� h−→ �′) = {h = 0 ∧ �
0−→
D

�′} ∨ {h > 0 ∧ �
h−→
C

�′}.

– A trace of H is a sequence �0,�1, . . ., �n, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (�i
hi−→ �i+1). �

Remark 1. Few remarks about this definition of trace are in order: It admits two
continuous transitions to occur consecutively, which is necessary for composition-
ality of traces. Further, two consecutive continuous transitions of time-steps h1

and h2 are not necessarily equivalent to one continuous transition of time-step
h1 + h2 in the case of non-linear approximation errors in h−→

C
.

When a semi-algebraic relation Flowv(R, S, t, h) is used between the contin-
uous states R at time t and S at time t+h in a discrete state v, it may have been
“derived” in two ways: (1) Solution Is A Polynomial : The equation describing
the continuous evolution of the variables in a discrete state is a polynomial, say



Algorithmic Algebraic Model Checking II 221

Y (t), and Flowv(Z,Z ′, t, h) ≡ { Z = Y (t) ∧ Z ′ = Y (t+h) }. Or, (2) Differential
Equation Is A Polynomial : Differential equations describing the continuous evo-
lution are approximated in Flowv using one of the symbolic integration schemes
(e.g., the Taylor series in [28] or based on a direct integration scheme such as
the linear Euler or the higher degree Runge-Kutta). The error is controlled by
an upper bound (say Δ) on the time spent in one continuous step, as we aim
for over- or under-approximating the flow equations. The Lagrange Remainder
Theorem can be used to estimate errors [23].

We now report the basic definitions of the temporal logics TCTL and Tμ-
Calculus which we use to study properties of our semi-algebraic hybrid automata.

Definition 4. TCTL[1]. It has the following syntactic structure:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1∃Uφ2 | φ1∀Uφ2 | z.φ.

Its associated semantics are described below:

– z.: The freeze quantification “z.” binds the associated variable z to the cur-
rent time. Thus the formula z.φ(z) holds at time t iff φ(t) does.

– φ1∀Uφ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least
one path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required
to be true somewhere along the path, and φ1 is required to be true all along
the path up to (but not necessarily at) that location. �

Remark 2. The basic notations are often extended by the following syntactic
abbreviations [1].

1. p ∃U≤max q ≡ p ∃U (q∧ z.(z ≤ max )) and p ∀U≤max q ≡ p ∀U (q ∧ z.(z ≤
max )): “subscripted” Until operators (max is the time-bound).

2. ∀F ≡ true ∀U p and ∃F ≡ true ∃U p: “eventuality” operators.
3. ∀G ≡ ¬∃F¬p and ∃G ≡ ¬∀F¬p: “invariance” operators.

Definition 5. Single-Step Until Operator, �, [17]. The formula p � q holds
if p∨ q is true all along “one step” of the hybrid system and q is true at the end
of the transition. �

Definition 6. Tμ-Calculus Syntax: [17]. φ ::= X | p | ¬φ | φ1 ∨ φ2 | φ1 �
φ2 | z.φ | μX.φ , where μ is the least-fixpoint operator. Thus,

– The greatest-fixpoint ν can be expressed as ¬μX.(¬φ[X := ¬X ]).
– Existential Until: p ∃U q = μX.(q ∨ (p � X))
– Universal Until: p∀Uq = ¬(¬q ∃U (¬p ∧ ¬q)) �

Notice that the translation of the universal until is valid only when q is “finitely
variable” over all premodels [17].

The undecidability result we will prove is based on the model of finite-
dimensional machines over a field R, which in our case will be R, and on the
undecidability of the Mandelbrot set over these machines. (We only introduce
these “real” Turing Machines here, and refer the interested reader to [7].)



222 V. Mysore, C. Piazza, and B. Mishra

Definition 7. Finite-Dimensional Machine Over R: [7]. A finite dimen-
sional machine M over R consists of a finite directed connected graph with four
types of nodes: input, computation, branch and output. The unique input node
has no incoming edges and only one outgoing edge. All other nodes have possibly
several incoming edges. Computation nodes have only one outgoing edge, branch
nodes exactly two, Yes and No, and output nodes none. In addition the machine
has three spaces: input space IM , state space SM and output space OM of the
form Rn,Rm,Rl, respectively, where n, m and l are positive integers. Associated
with each node of the graph are maps of these spaces and next node assignments.

1. Associated with the input node is a linear map I : IM → SM and a unique
next node β1.

2. Each computation node η has an associated computation map, a polyno-
mial (or rational) map gη : SM → SM given by m polynomials (or rational
functions) gj : Rm → R, j = 1, · · · , m, and a unique next node βη. If g is a
rational map associated with a computation node (in the case R is a field),
we assume each gj is given by a fixed pair of polynomials (pj , qj), where
gj(x) = (pj(x))/(qj(x)).

3. Each branch node η has an associated branching function, a nonzero poly-
nomial function hη : SM → R. The next node along the Yes outgoing edge,
β+

η , is associated with the condition hη ≥ 0 and the next node along the No
outgoing edge, β−η , with hη(z) < 0.

4. Each output node η has an associated linear map Oη : SM → OM and no
next node. �

Definition 8. The Mandelbrot Set [24], M is the subset of the set of com-
plex numbers C that remains bounded when subject to the following iterative
procedure: f0(C) = C , fn+1(C) = fn(C)2 + C. Formally, the complement M′

of the Mandelbrot set is defined as

M′ = {C ∈ C|fn(C) → ∞ as n → ∞}. �

It is to be noted that fi(C) ≥ 2 implies that eventually fn(C) → ∞.
In what follows, when we refer to the Mandelbrot set we mean the 2-

dimensional set of real numbers corresponding to the Mandelbrot set, i.e., the set
of pairs of the form 〈Cr, Ci〉 such that C = Cr + iCi is in the Mandelbrot set.

Theorem 1. Undecidability Of The Mandelbrot Set: [7]. The Mandelbrot
set cannot be expressed as the countable union of semi-algebraic sets over R, and
hence not decidable over R. �

3 Symbolic Algebraic Model Checking

Our main results for semi-algebraic hybrid systems may be summarized thus:
(1) Reachability is undecidable even in Blum et al.’s “real” Turing machine for-
malism. (2) The “existential” segment of TCTL (including reachability) and the



Algorithmic Algebraic Model Checking II 223

negation of the “universal” segment are semi-decidable. Further, all subscripted
operators become decidable in the absence of zeno-paths. (3) Finally, a quanti-
fier elimination tool (e.g. Qepcad [18],Redlog [12]) may be used to perform the
fixpoint iterations of a TCTL query. The technical details are presented below.

The symbolic route to model-checking TCTL-specifications of hybrid systems
is via the fixpoint expression for the until operator, which uses the standard
single-step until operator � [17] (also, see [28,13]). The exact expression for the
� operator for semi-algebraic hybrid systems proves the basis of our approach: �
corresponds to a semi-algebraic expression and is hence decidable.

Definition 9. � for Semi-algebraic Hybrid Systems. The expression p � q
is True at the current continuous state R if q is true now, or

– For one of the possible current discrete states v, there exists at least one
discrete state u to which a transition can be taken such that q holds at the
end, or

– For one of the possible current discrete states v, there exists a continuous
transition (of at most Δ time units when we need to upper-bound the flow-
approximation error) all along which p ∨ q holds, with q being true at the
end3.

p � q = q(R)
∨
∀v(
{∃S

∨
∀u〈v, R〉 0−→

D
〈u, S〉 ∧ q(S)}

∨
{∃S, h (0 < h ≤ Δ) ∧ 〈v, R〉 h−→

C
〈v, S〉 ∧ q(S) ∧

∀S′, h′ ((0 ≤ h′ < h)∧〈v, R〉 h′
−→
C
〈u, S′〉) ⇒ (p(S′)∨q(S′))}

)
�

Remark 3. The upperbound Δ on h should be omitted if there is no error in the
Flowv expression. Also, since the discrete jump is instantaneous, p(R) does not
appear in the discrete-jump expression (second line).

Theorem 2. The one-step-until operator � is decidable for semi-algebraic hy-
brid systems if p and q are also semi-algebraic.

Proof. Semi-algebraic sets are closed under boolean operations and quantifier
elimination. Since Jump, Inv and Flow are semi-algebraic, so are the expressions
t−→
C

and 0−→
D

. Thus p � q is semi-algebraic since p and q are also semi-algebraic.

Since quantifier elimination over semi-algebraic sets is decidable [32], p � q is
decidable. �

Corollary 1. For semi-algebraic hybrid systems:

1. ∃U , ∃F , ∃G and their subscripted versions ∃U≤z, ∃F≤z and ∃G≤z are semi-
decidable.

3 The last term in the formula, p(S′) ∨ q(S′), can be replaced with just p(S′) for
evaluating ∃U over semi-algebraic hybrid systems.



224 V. Mysore, C. Piazza, and B. Mishra

2. The negations of ∀U , ∀F , ∀G and their subscripted versions ∀U≤z, ∀F≤z

and ∀G≤z are semi-decidable.
3. All subscripted operators become decidable in the absence of zeno paths.

Proof. The conclusions can be drawn as follows:

– The ∃U operator can be evaluated by iterating (indefinitely) over the decid-
able “one-step-until” operator � as per the fixpoint characterization p ∃U q ≡
μX.(q ∨ (p � X)). Hence it is semi-decidable i.e. the computation procedure
is guaranteed to converge if the query is True.

– Since p∀Uq ≡ ¬(¬q ∃U (¬p ∧ ¬q)), it can be guaranteed to converge only
when it is False. Thus the negation of ∀U is semi-decidable by our procedure.

– Since ∃Fp ≡ true ∃U p, reachability is semi-decidable.
– ∀Fp ≡ true ∀U p and is not semi-decidable since ∀U is not.
– Since ∃Gp ≡ ¬∀F¬p, we can guarantee that it will converge if it is True

since ∀F is guaranteed to converge if it is False. Thus it is semi-decidable.
– Since ∀Gp ≡ ¬∃F¬p, it is guaranteed to converge only when it is False.
– A new variable time is introduced, with initial value 0, flow 1 in all discrete

states and identity resets. This allows the interpretation of freeze (z.X) and
subscripted until (U≤a) operators.

– In non-zeno systems, every path of a specified time-length can be explored
fully. Hence all subscripted operators are decidable. �

Remark 4. Purely symbolic reachability cannot be convergent as many sets (in-
cluding the Mandelbrot set) cannot be expressed as the finite union of semi-
algebraic sets [7]. Similarly, the solution of many coupled, non-linear differential
equations and simple discrete difference equations are inexpressible even using
exponential and trigonometric terms [30], let alone as a finite union of polynomial
inequalities. However, the conventional semi-decidability notion only applies to
cases where the query can be answered as True or False. It was under this default
assumption (also used by Fränzle while discussing “polynomial” hybrid systems
[13]) that the above results were derived.

3.1 General Undecidability of Reachability

System-state (or equivalently, “location”) reachability is undecidable for hybrid
automata with just two clocks [16], as the Turing machine halting-problem can
be encoded as a reachability query. It becomes pertinent to ask if this undecid-
ability result holds for the more powerful “real” computing machines of Blum et
al.[7], where semi-algebraic sets appear naturally in the computability definition
(see Path Decomposition Theorem [7]). In the following construction, we present
a semi-algebraic hybrid system and encode the Mandelbrot set as a reachability
query. Since Blum and Smale have proved that the Mandelbrot set is undecid-
able [7], this proves that reachability over semi-algebraic hybrid systems is also
undecidable, even under the “real” Turing Machine model.

Definition 10. The Mandelbrot Hybrid Automaton. Let C = 〈Cr, Ci〉 be
a pair of real numbers. The Mandelbrot Hybrid Automaton MC consists of



Algorithmic Algebraic Model Checking II 225

– One discrete state s0 with invariant False and two continuous variables Z1

and Z2.
– Flow1 : { Z ′1 = Z1 ∧ Z ′2 = Z2 } (no continuous evolution).
– One Discrete State Transition: 1 → 1 with Jump1 : (Z ′1 = Z2

1 − Z2
2 + Cr) ∧

(Z ′2 = 2Z1Z2 + Ci). �

Notice that in MC the only possible trace is the infinite zeno path of self-loops.

Theorem 3. General Undecidability Of Reachability. For semi-algebraic
hybrid systems, reachability is undecidable even in Blum et al.’s “real” Turing
machine formalism.

Proof. Consider the Mandelbrot hybrid automaton MC defined above. Let S(t) =
(Z1(t),Z2(t)) be the point reached after t discrete transitions from the initial lo-
cation 〈s0, (0, 0)〉. After one more discrete transition (self-loop), we get

S(t + 1) = S′(t) = {Z1(t)2 − Z2(t)2 + Cr}+ ı.{2Z1(t)Z2(t) + Ci}
= {Z1(t) + ı.Z2(t)}2 + {Cr + ı.Ci}

In other words, if we consider the pairs of real numbers as complex numbers,
we have S′(t) = S2(t) + C which is the defining equation of the Mandelbrot Set.
Clearly, there exists an evolution where |S(t)| ≥ 2 if and only if C = Cr + iCi

does not belong to the Mandelbrot set, i.e., the decidability of the reachability
query4 (Z2

1 + Z2
2 ≥ 4) would imply the decidability of the Mandelbrot set, thus

resulting in a contradiction. �

3.2 Literature Review

While semi-algebraic hybrid systems have been suggested in one form on another
before [20,4,13,22], the full potential of this formalization is only beginning to be
appreciated [28]. Beyond timed, multirate and initialized rectangular automata
[2,29], the linearity of continuous dynamics is another extensively studied restric-
tion [3,6]. Controllable linear systems [31], some families of linear vector fields
[22] and o-minimal hybrid automata [21] have also been shown to be decidable
for the reachability query. In the case of o-minimal hybrid automata, the decid-
ability is guaranteed by the decidability of the underlying theory and by the fact
that the resets are constant. In semi-algebraic hybrid automata, we do not have
any restriction on the resets. However, o-minimal systems admit more complex
functions (beyond polynomials) in the flows, invariants and guards.

While the above methods find efficient solutions by restricting the dynamics,
over- or under-approximating methods assume that the reachable region has a
(mathematically) convenient geometric shape such as a polyhedron, a level set or
an ellipsoid [6,8,9]. Bisimulation on the other hand is an intelligent partitioning of
the concrete system-state space of the hybrid system into fewer abstract discrete-
states such that the properties of interest continue to hold in the simpler smaller

4 Reachable(p) ≡ ∃F(p).



226 V. Mysore, C. Piazza, and B. Mishra

model [15]. Predicate abstraction has also been frequently used to map a hybrid
automaton into a discrete one [33,3].

On the algebraic side, Jirstrand [20] demonstrated the use of Qepcad for
problems in control system design. Anai [4] and Fränzle [13] independently
suggested the use of quantifier elimination for the verification of polynomial
(semi-algebraic) hybrid systems, while Lafferiere et al. [22] have described a
quantifier-elimination-centric method for symbolic reachability computation of
linear vector fields.

4 Tolque: A Symbolic Algebraic TCTL Model Checker

A preliminary version of a symbolic algebraic model checker that uses the TCTL
model-checking approach outlined in the previous section has been implemented.
This quantifier-elimination-centric model checker, christened Tolque, takes as
input a semi-algebraic hybrid automaton specification (with the flow equations
already approximated if necessary) and an Existential Until (p ∃U q) query. It
then computes the fixpoint p ∃U q = μX.(q∨ (p�X)) [17] by using Qepcad [18]
to perform the quantifier elimination in p � X . The entire process is automated
in this C/C++ implementation that runs in Linux.

A Case Study: The Delta-Notch Protein Signaling

Here we examine the Delta-Notch protein interaction system, the primary basis
of biological pattern formation. Ghosh et al. [14,19] analyzed a simplified piece-
wise linear hybrid automaton model (derived from Collier et al.’s work [10])
with the following properties: (1) The Delta (concentration vD) production is
turned on by low Notch concentration (vN ) in the same cell i.e. when −vN >
hD; (2) The Notch production is turned on by high Delta concentration in the
cell environment (neighbors) i.e. when Σiu

i
D > hN . Here, hD and hN are the

thresholds, and ui
D denotes the Delta concentration in each (i-th) neighbor.

In this section, we show how some interesting properties of the one-cell and
two-cell Delta-Notch model of Ghosh et al. [14,19] can be formulated as temporal
logic queries, that Tolque can answer. Unfortunately, Qepcad cannot support
the queries necessary to analyze system properties more complex than those
documented here. Approximate methods (such as those discussed in AAMC-
III [27]), reduction in the computational complexity of quantifier elimination,
and greater computing power will help overcome this computational bottleneck.
Rather than providing new insight about the model, at this point, Tolque is
only seen to support a more elegant and general way of thinking about system
properties. (Please see the appendix for a complete list of results.)

One-Cell System. In the hybrid automaton modeling the one-cell system [14],
there are 2 dynamic variables vD and vN corresponding to the Delta and Notch
concentration in the cell, 4 discrete states corresponding to the 2×2 possibilities
resulting from Delta and Notch production being switched “on” or “off”. The



Algorithmic Algebraic Model Checking II 227

external variable uN is assumed to be static. We will denote the upper bound
on the continuous time-step by Δ.

1. Pruned Transition Map. When the state invariants are non-overlapping,
an evolution path from discrete state i to j is possible iff Inv i ∧ {Inv i ∃U Inv j}.
Notice that invariants can be made non-overlapping by introducing a new en-
vironmental variable “discrete-state” that is reset to the destination discrete
state number during discrete state transitions, with flow always 0.

– Discrete Transition 1 0−→
D

2

[−vN ≤ hD ∧ uN ≤ hN ] ∃U [−vN ≥ hD ∧ uN ≤ hN ]
After k iterations, we get the requirement vN ≤ −hD/(1−ΔlN )k which
is True when k (≥ − log (hD/vN )/ log (1 −ΔlN )). Thus the transition
from 1 to 2 is possible.

– Discrete Transition 2 0−→
D

1

[−vN ≥ hD ∧ uN ≤ hN ] ∃U [−vN < hD ∧ uN < hN ] converges after two
iterations to False. Thus, it is not possible to jump to state 1 from state
2.

2. Estimating Continuous-State Equilibrium Concentrations. When
the state invariants are non-overlapping, an equilibrium of the continuous
state exists in state i iff Inv i ∧ ¬{Inv i ∃U (v′D �= vD ∨ v′N �= vN )}, where
v′D and v′N are the values after one step of the hybrid automaton.

Remark 5. We have extended the TCTL notation to allow more complex
temporal queries that can describe the values of the variables before and
after one step of evolution. The semi-algebraic quantifier elimination based
model-checking supports this without any additional work.

State 1: ¬{[−vN ≤ hD ∧ uN ≤ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to
False – implying the non-existence of an equilibrium in this state.

State 2: ¬{[−vN ≥ hD ∧ uN ≤ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to
vDlD − rD = 0∧ vN ≤ 0. Thus we get the equilibrium concentrations as
v∗D = rD/lD, v∗N = 0.

3. Discrete State Equilibria. When the invariants are non-overlapping, a
system can stay forever in the discrete state i iff Inv i ∧ ¬ {Inv i ∃U ¬Inv i}.

State 1: [−vN ≤ hD ∧ uN ≤ hN ] ∃U [−vN > hD ∨ uN > hN ] returns
vN ≤ −hD/(1−ΔlN )k after k iterations, effectively evaluating to True.
Thus the system always evolves out of state 1 and hence it does not
correspond to any equilibrium.

State 3: [−vN ≤ hD ∧ uN ≥ hN ] ∃U [−vN < hD ∨ uN > hN ] is non-
convergent and returns vN ≤ (−hD−ΔrN )/(1−ΔlN ) after one iteration.
So, for such a path out of state 3 to not exist, there should be no way
of satisfying the above inequality when −vN < hD. So we get (−hD −
ΔrN )/(1−ΔlN ) < −hD which simplifies to hD > −rN/lN .



228 V. Mysore, C. Piazza, and B. Mishra

Two-Cell System. The above exercise can be repeated for a two cell model,
where there are 4 dynamic variables n1, d1, n2 and d2, which stand for the Notch
and Delta concentrations in cell 1 and 2 respectively. Due to the limitations of
Qepcad, we use the numerical parameter values courtesy Hwang et al. [19] to
demonstrate our approach. In particular, we set λN = λD = rN = rD = 1, hD =
− 1

2 , hN = 1
5 , Δ = 1

2 .

1. Equilibrium Concentration Estimation
State q10 (3,2): ¬{[−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 �=

d1∨n′1 �= n1∨d′2 �= d2∨n′2 �= n2]} converges to [n1 ≤ 0∧d2 ≤ 0∧d1−1 =
0 ∧ n2 − 1 = 0]. Thus n∗1 = d∗2 = 0 and d∗1 = n∗2 = 1.

State q15 (4,3): ¬{[−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 �=
d1 ∨ n′1 �= n1 ∨ d′2 �= d2 ∨ n′2 �= n2]} converges to False, implying that in
this discrete state the variables can never be in equilibrium.

2. Are Equilibria Reversible?
State q7 (2,3): [−2n1 > −1∧ 5d2 < 1∧−2n2 < −1∧ 5d1 > 1] ∃U [−2n1 =

−1∨5d2 = 1∨−2n2 = −1∨5d1 = 1] converges to False after 2 iterations
implying that this is an irreversible discrete state equilibrium.

State q16 (4,4): [−2n1 > −1∧5d2 > 1∧−2n2 > −1∧5d1 > 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] converges to True implying that
the two-cell Delta-Notch system will always leave this discrete state.

3. Choice Of Equilibrium. We can “verify” that the wrong equilibrium
cannot be reached from a given initial relation between n1 and n2, and d1

and d2. When the invariants are non-overlapping, the initial conditions that
allow a path to discrete state i but not to discrete state j are given by
{True ∃U Inv i} ∧ ¬{True ∃U Inv j}.
State q7 (2,3): At iteration 2 of True ∃U [−2n1 > −1 ∧ 5d2 < 1 ∧−2n2 <

−1∧5d1 > 1], we get: n1−1 ≤ 0∧[[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−
3 ≥ 0∧n2 +n1−1 = 0]∨ [8n1−5d1−3 ≤ 0∧4d2 +d1−1 = 0∧2n2−1 ≥
0 ∧ 8n2 + 5d1 − 5 ≥ 0] ∨ [5d1 − 1 ≥ 0 ∧ 2n1 − 5d1 ≤ 0 ∧ 5d2 + 2n1 − 2 ≤
0∧2n2−1 ≥ 0]∨ [5d1−1 ≥ 0∧2n1−1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−3 ≥
0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤ 0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥
0]∨ [2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧2n2−1 ≥ 0∧8n2 +5d1−5 ≥ 0]] ≡ f7.

State q10 (3,2): At iteration 2 of True ∃U [−2n1 < −1∧ 5d2 > 1∧−2n2 >
−1 ∧ 5d1 < 1], we get: n2 − 1 ≤ 0 ∧ [[2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥
0∧d2 + 4d1− 1 = 0∧ 2n2 +5d1− 2 ≤ 0]∨ [2n1− 1 < 0∧ 8n1− 5d1− 3 ≥
0∧5d2+8n1−5 ≥ 0∧n2+n1−1 = 0]∨[8n1−5d1−3 ≥ 0∧5d2+8n1−5 <
0∧5d2 +2n1−2 ≥ 0∧n2 +n1−1 = 0]∨ [2n1−1 ≥ 0∧5d2−1 ≥ 0∧2n2+
5d1−2 ≤ 0∧n2+n1−1 < 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥
0∧2n2−5d2 ≤ 0]∨[5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥ 0∧2n2−1 ≤
0]∨[8n1−5d1−3 ≥ 0∧5d2−1 ≥ 0∧2n2+5d1−2 ≤ 0∧2n2−1 ≤ 0]] ≡ f10.

State q7 and not State q10: The initial conditions that lead only to q7

and not q10 are thus given by f7∧¬f10. Since we have assumed no upper
bound on the initial values and since we have been able to compute only
two iterations, this formula does not evaluate to True given the correct
initial partition n1 < n2 ∧ d1 > d2. However, when Qepcad simplifies the
above formula assuming that n1 > n2 ∧ d1 < d2, it evaluates to False.



Algorithmic Algebraic Model Checking II 229

5 Conclusion

The real limitation of this quantifier-elimination-based model-checking comes
from the computational complexity of Collins’ cylindrical algebraic decomposi-
tion (CAD) algorithm, with its double-exponential dependence on the number
of variables [11]. In our experience, Qepcad failed to support fully symbolic anal-
ysis of the two-cell Delta-Notch system. However, it is to be noted that even
this preliminary version of Tolque was able to support a very uniform way of
asking about a good spectrum of interesting temporal properties of a biolog-
ically significant hybrid system. We are in the process of rewriting Tolque in
Lisp and integrating it with Simpathica[5]. These modifications will allow bio-
chemical networks to be easily represented, stored and analyzed in keeping with
our initial “Systems Biology” motivation. Based on the results of this paper,
we can focus on complexity improvement through other meaningful approxima-
tions. The next paper in the AAMC series focuses on approximate methods like
bisimulation-partitioning, space discretization (using grids and polyhedra) and
time discretization [27]. Eventually, we plan to implement our own symbolic al-
gebra system to work hand in hand with the different quantifier elimination,
Gröbner basis and characteristic set tools that can systematically simplify the
formulæ at each fixpoint iteration.

To summarize, the “semi-algebraic” method, outlined here, enables sophisti-
cated symbolic algebraic model checking of a large class of hybrid automata, well
beyond the capabilities of current applications of symbolic methods in this area.
The semi-decidability results for the TCTL operators and the introduction of
the Blum-Shub-Smale model are expected to spark further investigations of the
relations between dynamical systems, topology and complexity. Our approach is
general: it can be extended beyond TCTL model-checking to dense-time LTL;
and it can be further enhanced by allowing non-linear (but polynomial) expres-
sions in the temporal queries that can involve the values before and after one
step of the hybrid system.

Finally, although the state of the art of algebraic hybrid systems model-
checking can only be compared to that of boolean finite-state model-checking
in the early 80s, we believe that the approach will make quick and important
strides, and yield deep insights in biological areas before the end of this decade.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems. In
International Symposium on Logic in Computer Science, 5, pages 414–425. IEEE
Computer Press, 1990.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

3. R. Alur, T. Dang, and F. Ivancic. Progress on Reachability Analysis of Hybrid
Systems Using Predicate Abstraction. In O. Maler and A. Pnueli, editors, Hybrid
Systems: Computation and Control (HSCC’03), volume 2623 of LNCS, pages 4–19.
Springer-Verlag, 2003.



230 V. Mysore, C. Piazza, and B. Mishra

4. Hirokazu Anai. Algebraic approach to analysis of discrete-time polynomial systems.
In ECC Karlsure (Germany), 1999.

5. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Reasoning about Biochemical
Processes. Cell Biochemistry and Biophysics, 38:271–286, 2003.

6. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability Analysis
of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control (HSCC’00), volume 1790 of LNCS, pages 20–
31. Springer-Verlag, 2000.

7. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1997.

8. O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation and
Computation. In F. Vaadrager and J. van Schuppen, editors, Hybrid Systems: Com-
putation and Control (HSCC 1999), volume 1596 of LNCS, pages 19–30. Springer-
Verlag, 1999.

9. A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid Automata
Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control (HSCC’99), volume
1569 of LNCS, pages 76–90. Springer-Verlag, 1999.

10. J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis. Pattern Forma-
tion by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch
Intercellular Signalling. Journal of Theor. Biology, 183:429–446, 1996.

11. G. E. Collins. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. In Proceedings of the Second GI
Conference on Automata Theory and Formal Languages, volume 33 of LNCS, pages
134–183. Springer-Verlag, 1975.

12. Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets com-
puter logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Al-
gebraic Manipulation), 31(2):2–9, 1997.

13. Martin Fränzle. What will be eventually true of polynomial hybrid automata? In
Naoki Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Computer
Software, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-
31, 2001, Proceedings, volume 2215 of Lecture Notes in Computer Science, pages
340–359. Springer, 2001.

14. R. Ghosh and C. Tomlin. Lateral Inhibition through Delta-Notch signaling: A
Piecewise Affine Hybrid Model. In M. D. D. Benedetto and A. Sangiovanni-
Vincentelli, editors, Int.l Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 232–246. Springer-Verlag, 2001.

15. Esfandiar Haghverdi, Paulo Tabuada, and George J. Pappas. Bisimulation rela-
tions for dynamical, control, and hybrid systems. Theoretical Computer Science,
November 2003.

16. T. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable about
Hybrid Automata. In Symposium on the Theory of Computing (STOC), pages
373–382, 1995.

17. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking
for Real-time Systems. In 7th Annual IEEE Symposium on Logic in Computer
Science, pages 394–406. IEEE, IEEE Computer Society Press, June 1992.

18. H. Hong. Quantifier elimination in elementary algebra and geometry
by partial cylindrical algebraic decomposition, version 13. WWW site
www.eecis.udel.edu/∼saclib, 1995.



Algorithmic Algebraic Model Checking II 231

19. Inseok Hwang, Hamsa Balakrishnan, Ronojoy Ghosh, and Claire Tomlin. Reacha-
bility analysis of delta-notch lateral inhibition using predicate abstraction. Lecture
Notes in Computer Science, 2552:715–724, Jan 2002.

20. Mats Jirstrand. Nonlinear control system design by quantifier elimination. J.
Symb. Comput., 24(2):137–152, 1997.

21. G. Lafferiere, G. J. Pappas, and S. Sastry. O-minimal Hybrid Systems. Mathematics
of Control, Signals, and Systems, 13(1):1–21, March 2000.

22. Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability
computation for families of linear vector fields. J. Symb. Comput., 32(3):231–253,
2001.

23. R. Lanotte and S.Tini. Taylor approximation for hybrid systems. In HSCC. LNCS,
2005.

24. B. Mandelbrot. The Fractal Geometry of Nature. Freeman Co., San Francisco,
1982.

25. B. Mishra. A Symbolic Approach to Modeling Cellular Behavior. In S. Sahni,
V. K. Prasanna, and U. Shukla, editors, High Performance Computing (HiPC’02),
volume 2552 of LNCS, pages 725–732. Springer-Verlag, 2002.

26. B. Mishra. Computational Real Algebraic Geometry. CRC Press, Boca Raton, FL,
2004.

27. V. Mysore and B. Mishra. Algorithmic Algebraic Model Checking III: Approxi-
mate Methods. In Third International Symposium on Automated Technology for
Verification and Analysis (ATVA), 2005.

28. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and
their Reachability Analysis. In 17th International Conference on Computer Aided
Verification (CAV), 2005.

29. A. Puri and P. Varaiya. Decidebility of hybrid systems with rectangular differential
inclusions. Computer Aided Verification, pages 95–104, 1994.

30. C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC
Press, Boca Raton, 1995.

31. Paulo Tabuada and George J. Pappas. Model checking ltl over controllable linear
systems is decidable. Hybrid Systems : Computation and Control, Lecture Notes
in Computer Science, 2623, April 2003.

32. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, second edition, 1948.

33. A. Tiwari and G. Khanna. Series of Abstraction for Hybrid Automata. In C. J.
Tomlin and M. Greenstreet, editors, Hybrid Systems: Computation and Control
(HSCC’02), volume 2289 of LNCS, pages 465–478. Springer-Verlag, 2002.

Appendix

One-Cell Delta-Notch Analysis in Tolque

1. Pruned Transition Map
– Discrete Transition 1 0−→

D
2

[−vN ≤ hD ∧ uN ≤ hN ] ∃U [−vN ≥ hD ∧ uN ≤ hN ]
After k iterations, we get the requirement vN ≤ −hD/(1−ΔlN )k which
is True when k (≥ − log (hD/vN )/ log (1 −ΔlN )). Thus the transition
from 1 to 2 is possible.



232 V. Mysore, C. Piazza, and B. Mishra

– Discrete Transition 2 0−→
D

1

[−vN ≥ hD ∧ uN ≤ hN ] ∃U [−vN < hD ∧ uN < hN ] converges after
two iterations to False. Thus, it is not possible to jump to state 1 from
state 2.

2. Estimating Continuous-State Equilibrium Concentrations
State 1: ¬{[−vN ≤ hD ∧ uN ≤ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to

False – implying the non-existence of an equilibrium in this state.
State 2: ¬{[−vN ≥ hD ∧ uN ≤ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to

vDlD − rD = 0∧ vN ≤ 0. Thus we get the equilibrium concentrations as
v∗D = rD/lD, v∗N = 0.

State 3: ¬{[−vN ≤ hD ∧ uN ≥ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to
vD ≤ 0 ∧ vN lN − rN = 0. Thus v∗D = 0, v∗N = rN/lN are the equilibrium
values.

State 4: ¬{[−vN ≥ hD ∧ uN ≥ hN ] ∃U [v′D �= vD ∨ v′N �= vN ]} converges to
the equilibrium condition v∗N lN − rN = 0 ∧ hD + v∗N �= 0 ∧ v∗DlD − rD =
0 ∧ hN − uN �= 0.

3. Discrete State Equilibria
State 1: [−vN ≤ hD ∧ uN ≤ hN ] ∃U [−vN > hD ∨ uN > hN ] returns

vN ≤ −hD/(1−ΔlN )k after k iterations, effectively evaluating to True.
Thus the system always evolves out of state 1 and hence it does not
correspond to any equilibrium.

State 2: [−vN ≥ hD ∧ uN ≤ hN ] ∃U [−vN < hD ∨ uN > hN ] converges to
False. Thus there is no path out of state 2 and hence it corresponds to
an equilibrium. Note that the transition from 2 to 4 recorded in [14] is
not possible in a one-cell model where uN is not modeled as a dynamic
variable.

State 3: [−vN ≤ hD ∧ uN ≥ hN ] ∃U [−vN < hD ∨ uN > hN ] is non-
convergent and returns vN ≤ (−hD−ΔrN )/(1−ΔlN ) after one iteration.
So, for such a path out of state 3 to not exist, there should be no way
of satisfying the above inequality when −vN < hD. So we get (−hD −
ΔrN )/(1−ΔlN ) < −hD which simplifies to hD > −rN/lN .

State 4: [−vN ≥ hD ∧ uN ≥ hN ] ∃U [−vN < hD ∨ uN < hN ] is non-
convergent and returns lNhD + rN > 0 ∧ hD −ΔvN lN + ΔrN + vN ≥ 0
after the second iteration. The second term is just a lower bound on
the starting value of vN which continues to drop with each iteration -
effectively being True. Hence, for an equilibrium to exist in State 4, the
first term must not be satisfiable i.e. lNhD + rN ≤ 0 which is equivalent
to hD ≤ −rN/lN .

Two-Cell Delta-Notch Analysis in Tolque

1. Equilibrium Concentration Estimation
State q10 (3,2): ¬{[−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 �=

d1∨n′1 �= n1∨d′2 �= d2∨n′2 �= n2]} converges to [n1 ≤ 0∧d2 ≤ 0∧d1−1 =
0 ∧ n2 − 1 = 0]. Thus n∗1 = d∗2 = 0 and d∗1 = n∗2 = 1.



Algorithmic Algebraic Model Checking II 233

State q7 (2,3): ¬{[−2n1 < −1 ∧ 5d2 > 1 ∧ −2n2 > −1 ∧ 5d1 < 1]∃U [d′1 �=
d1∨n′1 �= n1∨d′2 �= d2∨n′2 �= n2]} converges to [n2 ≤ 0∧d1 ≤ 0∧d2−1 =
0 ∧ n1 − 1 = 0]. Thus n∗2 = d∗1 = 0 and d∗2 = n∗1 = 1.

State q15 (4,3): ¬{[−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 �=
d1 ∨ n′1 �= n1 ∨ d′2 �= d2 ∨ n′2 �= n2]} converges to False, implying that in
this discrete state the variables can never be in equilibrium.

2. Are Equilibria Reversible?
State q7 (2,3): [−2n1 > −1∧ 5d2 < 1∧−2n2 < −1∧ 5d1 > 1] ∃U [−2n1 =

−1∨5d2 = 1∨−2n2 = −1∨5d1 = 1] converges to False after 2 iterations
implying that this is an irreversible discrete state equilibrium.

State q10 (3,2): [−2n1 < −1∧5d2 > 1∧−2n2 > −1∧5d1 < 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] also converges to False after 2
iterations implying that the equilibrium is irreversible.

State q16 (4,4): [−2n1 > −1∧5d2 > 1∧−2n2 > −1∧5d1 > 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] converges to True implying that
the two-cell Delta-Notch system will always leave this discrete state.

3. Choice Of Equilibrium
State q7 (2,3): At iteration 2 of True ∃U [−2n1 > −1 ∧ 5d2 < 1 ∧−2n2 <

−1∧5d1 > 1], we get: n1−1 ≤ 0∧[[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−
3 ≥ 0∧n2 +n1−1 = 0]∨ [8n1−5d1−3 ≤ 0∧4d2 +d1−1 = 0∧2n2−1 ≥
0 ∧ 8n2 + 5d1 − 5 ≥ 0] ∨ [5d1 − 1 ≥ 0 ∧ 2n1 − 5d1 ≤ 0 ∧ 5d2 + 2n1 − 2 ≤
0∧2n2−1 ≥ 0]∨ [5d1−1 ≥ 0∧2n1−1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−3 ≥
0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤ 0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥
0]∨ [2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧2n2−1 ≥ 0∧8n2 +5d1−5 ≥ 0]] ≡ f7.

State q10 (3,2): At iteration 2 of True ∃U [−2n1 < −1∧ 5d2 > 1∧−2n2 >
−1 ∧ 5d1 < 1], we get: n2 − 1 ≤ 0 ∧ [[2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥
0∧d2 + 4d1− 1 = 0∧ 2n2 +5d1− 2 ≤ 0]∨ [2n1− 1 < 0∧ 8n1− 5d1− 3 ≥
0∧5d2+8n1−5 ≥ 0∧n2+n1−1 = 0]∨[8n1−5d1−3 ≥ 0∧5d2+8n1−5 <
0∧5d2 +2n1−2 ≥ 0∧n2 +n1−1 = 0]∨ [2n1−1 ≥ 0∧5d2−1 ≥ 0∧2n2+
5d1−2 ≤ 0∧n2+n1−1 < 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥
0∧2n2−5d2 ≤ 0]∨[5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥ 0∧2n2−1 ≤
0]∨[8n1−5d1−3 ≥ 0∧5d2−1 ≥ 0∧2n2+5d1−2 ≤ 0∧2n2−1 ≤ 0]] ≡ f10.

State q7 and not State q10: The initial conditions that lead only to q7

and not q10 are thus given by f7∧¬f10. Since we have assumed no upper
bound on the initial values and since we have been able to compute only
two iterations, this formula does not evaluate to True given the correct
initial partition n1 < n2 ∧ d1 > d2. However, when Qepcad simplifies the
above formula assuming that n1 > n2 ∧ d1 < d2, it evaluates to False.

State q10 and not State q7 Similarly, ¬f7 ∧ f10 evaluates to False
assuming n1 < n2 ∧ d1 > d2.



A Static Analysis Using Tree Automata
for XML Access Control

Isao Yagi, Yoshiaki Takata, and Hiroyuki Seki

Graduate School of Information Science,
Nara Institute of Science and technology

{isao-y, y-takata, seki}@is.naist.jp

Abstract. Recently, an access control for XML database is one of the key is-
sues in database security. Given an access control policy and a query expression,
static analysis determines whether the query does not access any elements nor
attributes that are prohibited by the access control policies. In a related work,
policies and queries were modeled as regular sets of paths in trees. However, this
model loses information on the structure of the trees, and some policies cannot
be represented by the model accurately. In this paper, we propose a formal model
for access control of XML databases and provide a static analysis method based
on tree automata theory. Both an access control policy and a query are modeled
as tree automata, and a policy is provided with two alternative semantics; AND-
semantics and OR-semantics. We investigate the computational complexity of the
static analysis problem, and show that the problem in AND-semantics is solvable
in square time while the problem in OR-semantics is EXPTIME-complete.

1 Introduction

Automatic verification has been recognized as an effective and efficient approach to
improving reliability and dependability in system design, and applied to not only hard-
ware/software correctness verification but also areas such as compile time optimization
and security assurance. This paper focuses on static analysis of XML database access
control as a successful application of automatic verification based on tree automata the-
ory to security assurance.

XML is now becoming the de facto standard for data exchange format and is also
widely used as a schema language for database of structured documents (XML
database). Since a schema defined by XML is more complex than traditional database
schema such as relational database schema, a few query languages specialized to XML
database are being developed such as XPath[3] and XQuery[2]. Access control is one
of the most important technologies for database security and several models for XML
database access control have been proposed [1,6,10,14]. Usually, an access control pol-
icy (e.g., ‘a professor can read every record of student files,’ and ‘a student can read
the record of her/himself only.’) is provided to database management system (DBMS)
in advance. When a query is issued, DBMS checks whether the query is valid for the
access control policy. That is, DBMS determines whether the query is accessing only
the portion that the policy permits to access. If the query is valid, then DBMS permits

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 234–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Static Analysis Using Tree Automata for XML Access Control 235

the access, and the query is aborted otherwise. This kind of runtime access control pro-
cess sometimes brings non-negligible overhead to DBMS. Static analysis is effective in
overcoming this problem.

Especially for XML databases, Murata et al. [14] discuss the static analysis problem
that, given an access control policy AP , an XML schema S and a query R, decides
whether the query R is always valid for (or always against) the policy AP in any XML
databases conforming the schema S. In their setting, both a policy and a query are given
as XPath expressions and a schema is given as a regular tree grammar (or equivalently,
a tree automaton). Then, three finite automata on strings are constructed by extracting
regular expressions from these XPath expressions and the tree automaton, and the static
analysis problem is reduced to the set-inclusion problem for regular string languages.
They also present experimental results on static analysis of XMark queries and show
their method is efficient and has enough scalability. It is mentioned in [14] that they
did not use tree automata because decision procedures for tree automata need more
time and space complexity than string automata. However, using regular expression
as approximation of XPath expression and tree automaton loses information on the
structure of the original tree. For example, we cannot distinguish the first son labeled
with tag ‘a’ and the second son labeled with the same tag ‘a’ in the regular expression
approximation. More concrete discussion is provided in the following sections.

In this paper, we propose a formal model for access control of XML databases and
provide a static analysis method for XML access control based on tree automata theory.
As in [14], we consider the node level (or element level) fine-grained access control.

We first model both an access control policy and a query by tree automata (TA),
called a policy TA and a query TA, respectively. For this purpose, we introduce a charged
alphabet to distinguish permission/denial in a policy and access/non-access in a query
in a simple and uniform way. For simplicity, database schema is not considered in this
paper: A schema defined by DTD or XML schema can be represented by a tree automa-
ton, and it is easy to incorporate a schema as a part of a problem instance in our setting.
Next, a static analysis problem is defined based on the tree languages accepted by a
policy TA and a query TA. We introduce two alternative semantics, AND-semantics
and OR-semantics. Generally, an access control policy may contain conflicts, e.g., one
rule says that a student file is allowed to read while another rule says no [11,9]. These
two semantics provide alternative conflict resolution strategies (if any conflict occurs in
a policy). Intuitively, a query is valid for a policy in AND-semantics if for every tree t,
every possible run of the query on t meets all the individual policies for t. A query is
valid for a policy in OR-semantics if for every tree t, every possible run of the query on
t meets one of the individual policies for t. Finally, we investigate the computational
complexity of the static analysis problem and show that the problem in AND-semantics
is solvable in square time while the problem in OR-semantics is EXPTIME-complete.

Related Work. Several access control models for XML databases have been proposed
[1,6,10,14] but static analysis has not been discussed except [14]. Our model has two
alternative semantics (AND-semantics and OR-semantics) for a database administrator
to choose an appropriate conflict resolution strategy according to the database under
consideration. For a traditional database, more sophisticated conflict resolution methods
are proposed [11,9].



236 I. Yagi, Y. Takata, and H. Seki

The static analysis problem discussed in this paper can also be considered as a
model checking problem for infinite state systems. Model checking methods have been
proposed for infinite state systems such as pushdown system (PDS), Petri Net and Pro-
cess Rewrite Systems [12,7,16]. Most of these works are based on automata theory
over strings. For example, LTL model checking for PDS can be solved by reducing it
to the decision problem on the reachability set of the given PDS, which is known to
be a regular string language. The analysis method proposed in this paper uses tree au-
tomata instead of automata on strings so that more accurate analysis can be performed
by taking tree structure information into consideration.

2 Preliminaries

2.1 Trees

Each XML document can be represented by a tree, whose internal nodes correspond to
the elements and the attributes in the XML document and the leaf nodes correspond to
the contents of the elements. Such a tree is an unranked tree, which is a tree in which the
number of children of a node is not bound. In this paper, we consider only the structure
of documents and ignore the nodes corresponding to the actual values contained within
the elements and the attributes; that is, we only consider trees in which every node is
labeled the name of an element or an attribute.

We assume that we are given a finite alphabet Σ and each node label is chosen
from Σ. A tree in which each node is labeled a symbol in Σ is called a Σ-tree. The set
of unranked Σ-trees is denoted by TΣ . Formally, the unranked Σ-trees are defined as
strings which represent the tree structure. TΣ is the smallest set of strings over Σ and
the parenthesis symbols ’(’ and ’)’ such that for every σ ∈ Σ and w ∈ T ∗Σ , σ(w) is in
TΣ (T ∗Σ is the Kleenean closure of TΣ). We abbreviate σ() to σ. The set of nodes or
positions of a tree t is denoted by Dom(t). The root node of t is denoted by root(t). For
every tree t and every u ∈ Dom(t), the label of u in t is denoted by labt(u).

2.2 Tree Automata

A nondeterministic tree automaton (NTA) [5,13,15] M = (Q, Σ, δ, F ) is a 4-tuple
where

– Q is the finite set of states,
– Σ is the alphabet,
– δ : Q×Σ → 2Q∗

is the transition function such that δ(q, a) is a regular language
over Q, and

– F ⊆ Q is the set of accepting states.

A run of M on a Σ-tree t is a labeling λ : Dom(t) → Q such that for every v ∈
Dom(t) and its children v1, . . . , vn, λ(v1) . . .λ(vn) ∈ δ(λ(v), labt(v)). A run is accept-
ing if and only if the root is labeled with an accepting state. The set of Σ-trees accepted
by M is denoted by L(M) and we say that M recognizes the tree language L(M). A
tree language is regular if it is recognized by some NTA. Let ‖M‖ be the description
length of M .



A Static Analysis Using Tree Automata for XML Access Control 237

title paragraph paragraph

sectiontitle

document

section

. . .

. . .

title paragraph paragraph. . .

Fig. 1. A schema of tree-structured documents

For example, consider a schema of tree-structured documents illustrated in Fig.1.
The set of trees conforming the schema is recognized by an NTA Mt defined as fol-
lows. Note that the value of δ(q, a) for each q ∈ Qt and a ∈ Σt is denoted by a
regular expression (which allows the operator ‘+’ that means one or more repetition).
The empty string is denoted by ε.

Mt = (Qt, Σt, δt, Ft) where

– Qt = {qt, qp, qs, qd},
– Σt = {document , title, section, paragraph},
– δt(qp, paragraph) = ε,

δt(qt, title) = ε,
δt(qs, section) = qtqp

+,
δt(qd, document) = qtqs

+,
δt(q, a) = ∅ for any other pair of q ∈ Qt and a ∈ Σt, and

– Ft = {qd}.

By this definition, L(Mt) is the set of trees in which the root is labeled document
and has a leaf child labeled title as well as one or more children labeled section, and
each child of the root labeled section has a leaf child labeled title as well as one or more
leaf children labeled paragraph. Fig.2 shows a sample tree t and a run of Mt on t.

It is known that every unranked tree can be converted into a binary tree[15]. Let
tbin be the binary tree obtained by this conversion from an unranked tree t. Each node
v of an unranked tree t has exactly one corresponding node vb of tbin. The left child
and the right child of vb represent the eldest child of v and the immediately following
sibling of v, respectively. If v has no child but has a younger sibling, then the left child

title paragraph

sectiontitle

document

section

title paragraph paragraph

q
d

q
t

q
t

q
t

q
s

q
p

q
p

q
s

q
p

a sample tree  t a run of Mt on t

Fig. 2. A run of Mt



238 I. Yagi, Y. Takata, and H. Seki

e f g

b

a

dc
e

g

b

a

c

df

ε

ε

Fig. 3. An unranked tree and its corresponding binary tree

of vb is labeled ε. If v has a child but has no younger sibling, then the right child of vb

is labeled ε (Fig.3).
We can convert an NTA M = (Q, Σ, δ, F ) for unranked trees into an NTA Mb for

binary trees such that L(Mb) = {tbin | t ∈ L(M)} and ‖Mb‖ is at most O(‖M‖2),
if δ(q, a) is given as a finite automaton over Q for any q ∈ Q and a ∈ Σ. Hence, for
simplicity, we consider only tree automata for binary trees. The transition function of a
tree automaton for binary trees is restricted to δ : Q×Σ → 2{ε}∪(Q×Q). Note that we
use unranked trees in examples for readability.

Similar to regular string languages, regular tree languages have the following good
properties[5].

Lemma 1. For a tree t and a regular tree language L, membership (t ∈ L?) and
emptiness (L = ∅?) are decidable. The class of regular tree languages is closed under
boolean operations. Thus, for regular tree languages L1 and L2, inclusion (L1 ⊆ L2?)
is also decidable.

3 Access Control Model Based on Tree Automata

3.1 Charged Alphabet

For a given alphabet Σ, let Σ+,− be the alphabet whose elements are the symbols in
Σ augmented with the positive and the negative signs (‘+’ and ‘−’); that is, Σ+,− =
Σ × {+,−}. Σ+,− is called the charged alphabet of Σ. For readability, we write the
augmented symbol (a, +) as a+ and (a, −) as a−. Let Σ+ = {a+ | a ∈ Σ} and
Σ− = {a− | a ∈ Σ} (i.e., Σ+,− = Σ+ ∪ Σ−). Each Σ+,−-tree is called a charged
tree. The uncharged tree of a charged tree τ is the tree obtained from τ by removing
all + and − from the node labels of τ . The uncharged tree of τ ∈ TΣ+,− is denoted
by uc(τ).

Example 1. Let τ1 = a+(b−(c+d−)e+) and τ2 = a+(b+(c−d−)e−). Then uc(τ1) =
uc(τ2) = a(b(c d)e).

3.2 Query Automata

A query tree automaton (query TA for short) MR = (QR, Σ+,−, δR, FR) is an NTA
where Σ+,− is the charged alphabet of a given alphabet Σ.



A Static Analysis Using Tree Automata for XML Access Control 239

Intuitively, a query TA MR specifies the set of nodes accessed by the query for
each XML document. For instance, assume that τ ∈ L(MR) and t = uc(τ). This
means that when we apply the query to the XML document represented by t, the query
accesses every node u of t such that labτ (u) ∈ Σ+ and does not access any node v
such that labτ(v) ∈ Σ−. For example, a+(b−(c+d−)e+) ∈ L(MR) means that the
query accesses exactly the nodes labeled by a, c, and e when it is applied to the tree
a(b(c d)e). If there exist τ1 and τ2 in L(MR) such that uc(τ1) = uc(τ2) = t, then one
of the accesses represented by τ1 and τ2 is nondeterministically chosen.

<TreatmentAnalysis>
{

for $r in document("medical_record")/record
where $r/diagnosis/pathology/@type = "Gastric Cancer"
return
$r/diagnosis/pathology, $r//comment

}
</TreatmentAnalysis>

Fig. 4. A sample query in [14]

Fig.4 is a sample query taken from [14], which is written in XQuery. We model this
query by a query TA described below. As the same as in [14], we consider only XPath
location expressions occurring in the FLWR expression (which consists of a FOR, LET,
WHERE, and RETURN clause) of the query. This query contains the following XPath
location expressions. (Note that /record is substituted for variable $r.) We consider that
the query accesses the nodes pointed by these location expressions and does not access
any other nodes.

– /record
– /record/diagnosis/pathology/@type
– /record/diagnosis/pathology
– /record//comment

Let Σ be the alphabet of the XML database that is the target of the query, i.e., {record,
diagnosis, pathology, comment, @type} ⊆ Σ. A query TA which models the query
should accept any τ ∈ TΣ+,− such that for each node u of uc(τ), labτ (u) ∈ Σ+ if
and only if u is pointed by one of the above location expressions. We can define such a
query TA Mq as follows. Note that for any τ ∈ TΣ− , there exists a run λ of Mq such
that λ(root(τ)) = qF , by the third line of the definition of δq . Thus Mq accepts any
τ ∈ TΣ− such that labuc(τ)(root(uc(τ))) �= record .

Mq = (Qq, Σ
+,−, δq, Fq) where

– Qq = {qA, qR, qF , qD, qR1, qP },
– δq(qA, record+) = qR

∗,
δq(qA, x−) = qF

∗ for ∀x ∈ Σ − {record},
δq(qF , y−) = qF

∗ for ∀y ∈ Σ,
δq(qR, diagnosis−) = qD

∗,



240 I. Yagi, Y. Takata, and H. Seki

δq(qR, comment+) = qR1
∗,

δq(qR, z−) = qR1
∗ for ∀z ∈ Σ − {diagnosis , comment},

δq(qR1, comment+) = qR1
∗,

δq(qR1, u
−) = qR1

∗ for ∀u ∈ Σ − {comment},
δq(qD, pathology+) = qP

∗,
δq(qD, comment+) = qR1

∗,
δq(qD, v−) = qR1

∗ for ∀v ∈ Σ − {pathology , comment},
δq(qP , @type+) = qR1

∗,
δq(qP , comment+) = qR1

∗,
δq(qP , w−) = qR1

∗ for ∀w ∈ Σ − {@type, comment},
δq(q, a) = ∅ for any other pair of q ∈ Qq and a ∈ Σ+,−, and

– Fq = {qA}.

3.3 Policy Automata

An access control policy determines the set of nodes that a user is allowed to access
for a given tree. Murata et al. modeled a policy as a regular set of paths in a tree[14].
However, some policies cannot be represented by their model. For example, it cannot
represent a policy such that access permission for a node depends on the states of its
sibling nodes, e.g., a user is allowed to access a node labeled d if it has no siblings
labeled b. To solve this problem, we model a policy as a tree automaton. An access
control policy tree automaton (policy TA for short) MAP = (QA, Σ+,−, δA, FA) is an
NTA where Σ+,− is the charged alphabet of a given alphabet Σ. A policy TA MAP

specifies the set of nodes which a user is permitted to access for each XML document.
When we apply the policy to a tree t and if there is a charged tree τ ∈ L(MAP ) such
that uc(τ) = t, then the policy permits a user to access every node u of t such that
labτ(u) ∈ Σ+ and prohibits him or her from accessing any node v of t such that
labτ(v) ∈ Σ−.

For example, consider a policy which prohibits a user from accessing any subtree
rooted by a node labeled d if there exists its sibling labeled b. This policy should include
the charged trees in Fig.5. In the policy specification language introduced in [14], this
policy can be specified by the following three rules.

– (s, +r, //*)
– (s, −r, //*[b]/d)
– (s, −r, //*[b]/d//*)

e f

a

dc

g h

e f

a

dc

g h

b+ −

+ −

+ −+ −

+ −

+

+

+

+

+

Fig. 5. A sample policy



A Static Analysis Using Tree Automata for XML Access Control 241

newspaper+

article article article

newspaper newspaper++

+ - - article article article- + - article article article- - +

Fig. 6. A part of the policy of a newspaper browsing system

The first rule means that subject s is allowed to access the nodes pointed by the
XPath location expression (which points every node in a tree)1. The second and third
rules denote prohibition. A rule for prohibition for a node overrules any rules for per-
mission for the same node. We show that this policy cannot be represented accurately
by the model in [14]. In the model, each location expression in such rules is modeled
as a regular expression. For example, the location expressions in the above rules are
modeled as Σ∗Σ, Σ∗Σd, and Σ∗ΣdΣ∗Σ, respectively (i.e., the predicate [b] is con-
servatively approximated by ‘true’). It means that a user is prohibited from accessing
any node pointed by a path denoted by Σ∗ΣdΣ∗ in the approximated policy. Thus any
node in the subtree rooted by a node labeled d cannot be accessed, even if the node does
not have a sibling labeled b. On the other hand, we can define a policy TA that exactly
represents this policy.

We provide a policy TA with two alternative semantics: AND-semantics and OR-
semantics. In AND-semantics, every charged tree τ1 in a query (i.e., L(MR)) has to be
valid for all charged trees τ2 such that uc(τ1) = uc(τ2) in the policy (i.e., L(MAP )). In
OR-semantics, every charged tree τ1 in a query has to be valid for at least one charged
tree τ2 such that uc(τ1) = uc(τ2) in the policy. Formal definitions of AND-semantics
and OR-semantics are provided in section 3.5.

3.4 Example

A policy of a newspaper browsing system is given by a policy TA as an example. For
readability, we use unranked (not binary) trees and tree automata in this section. A
newspaper browsing system which distributes electronic newspapers on the Web may
have the following policy.

The system permits users to read exactly one article which they would like to
read among all articles, and prohibits them from reading the other articles at
the same time.

The policy can be represented by an (infinite) set of charged trees. Fig.6 is a part
of the policy that consists of charged trees for a newspaper with three articles. We use
OR-semantics in this example, i.e., each query should be valid for at least one of these
charged trees. Thus, the user is permitted to access exactly one article among all the
three articles. The policy TA of this system is as follows.

Mn = (Qn, Σ+,−
n , δn, Fn) where

– Qn = {q0, q1, q2},
– Σn = {newspaper , article},

1 The letter ‘r’ in the second component means ‘read’.



242 I. Yagi, Y. Takata, and H. Seki

– δ(q1, article+) = ε,
δ(q2, article−) = ε,
δ(q0,newspaper+) = q2

∗q1q2
∗,

δ(q, a) = ∅ for any other pair of q ∈ Qn and a ∈ Σ+,−
n , and

– Fn = {q0}.

3.5 Validity of Query to Access Control Policy

In section 3.2, we stated the two alternative intuitive semantics of a policy TA. In this
section, we define them formally. For the rest of this paper, we fix an alphabet Σ.

Definition 1. For charged trees τ1 and τ2 in TΣ+,− , τ1 � τ2 if and only if the following
two properties hold.

– uc(τ1) = uc(τ2).
– For every node u of τ1, if labτ1(u) ∈ Σ+, then labτ2(u) ∈ Σ+.

Proposition 1. The relation � is a partial order over TΣ+,− .

Definition 2. An equivalence relation ≈uc over TΣ+,− is defined as τ1 ≈uc τ2 if and
only if uc(τ1) = uc(τ2). A partial order � over {+,−} is defined as − � + and
+ �� −.

Example 2. If τ1 = a+(b+c+) and τ2 = a+(b−c+), then τ2 � τ1. However, if τ1 =
a+(b−c+) and τ2 = a+(b+c−), then τ1 �� τ2, because the sign of the node labeled by
c in τ2 is − while the sign of the corresponding node in τ1 is +. Similarly, τ2 �� τ1 for
the latter example.

Definition 3. 1. MR is valid for MAP in AND-semantics if and only if
∀τ1 ∈ L(MR), ∀τ2 ∈ L(MAP ), τ1 ≈uc τ2 ⇒ τ1 � τ2.

2. MR is valid for MAP in OR-semantics if and only if
∀τ1 ∈ L(MR), ∃τ2 ∈ L(MAP ), τ1 � τ2.

Example 3. Let τ1 = a+(b−c+) and τ2 = a+(b+c−) as in the latter case of example 2.
We consider each combination of three policies (∅, {τ1}, {τ1, τ2}) and two queries
({τ1}, {τ1, τ2}). The validity of MR to MAP in AND-semantics is summarized in the
following table.

L(MAP )
∅ {τ1} {τ1, τ2}

L(MR) {τ1} valid valid not valid
{τ1, τ2} valid not valid not valid

In a similar way, the validity of MR to MAP in OR-semantics is summarized in the
following table.

L(MAP )
∅ {τ1} {τ1, τ2}

L(MR) {τ1} not valid valid valid
{τ1, τ2} not valid not valid valid



A Static Analysis Using Tree Automata for XML Access Control 243

For convenience, we define the following relations and operations over the sub-
sets of TΣ+,− . As stated in lemma 2, % and %A characterize OR-semantics and AND-
semantics, respectively. L↑ is intuitively the set which contains all upper-bounds (with
respect to �) of each τ ′ ∈ L, while L↑A is the set which contains all upper-bounds of
each equivalent class defined by≈uc in L.

Definition 4. Let L, L1, and L2 be subsets of TΣ+,− . We define the following relations
and operations.

– L1 % L2 ⇔ ∀τ2 ∈ L2, ∃τ1 ∈ L1, τ1 � τ2.
– L1 %A L2 ⇔ ∀τ2 ∈ L2, ∀τ1 ∈ L1, τ1 ≈uc τ2 ⇒ τ1 � τ2.
– L↑ = {τ | τ ′ � τ for ∃τ ′ ∈ L}.
– L↑A = {τ | τ ′ � τ for ∀τ ′ ∈ L such that τ ≈uc τ ′}.

By the definition, the following lemma holds obviously.

Lemma 2. MR is valid for MAP in OR-semantics if and only if L(MAP ) % L(MR).
MR is valid for MAP in AND-semantics if and only if L(MAP ) %A L(MR).

In the following, we discuss the relationship between the two semantics.

Lemma 3. L↑A % L′ if and only if L %A L′.

Proof. It is sufficient to show that the following two statements are equivalent.

1. ∀τ2 ∈ L′, ∃τ1 ∈ L↑A, τ1 � τ2.
2. ∀τ2 ∈ L′, ∀τ3 ∈ L, τ3 ≈uc τ2 ⇒ τ3 � τ2.

(1 ⇒ 2) Assume that statement 1 holds and let τ2 ∈ L′. By statement 1, ∃τ1 ∈ L↑A,
τ1 � τ2 (and thus τ1 ≈uc τ2). By the definition of L↑A, τ3 ≈uc τ1 ⇒ τ3 � τ1 for
∀τ3 ∈ L. Assume that τ3 ∈ L and τ3 ≈uc τ2. Then, τ3 ≈uc τ1 and τ3 � τ1 � τ2.

(2 ⇒ 1) Assume that statement 2 holds. By the definition of L↑A, L′ ⊆ L↑A. Thus,
statement 1 holds by letting τ1 = τ2.

Lemma 4. If L is regular, then L↑A is also regular.

Proof. Let M = (Q, Σ+,−, δ, F ) be an NTA such that L = L(M). We construct an
NTA MA = (QA, Σ+,−, δA, FA) such that L(MA) = L↑A as follows.

– QA = Q× {0, 1},
– FA = F × {1},
– δA is the function such that for each qA ∈ QA and aA ∈ Σ+,−, δA(qA, aA) is

the smallest set satisfying the followings for any q, q1, q2 ∈ Q, a ∈ Σ, s1, s2 ∈
{+,−}, and d1, d2 ∈ {0, 1}.
• δA((q, 0), as1) � ε if δ(q, as2) � ε and s1 � s2.
• δA((q, 1), a+) � ε if δ(q, a−) � ε.
• δA((q, max(d1, d2)), as1) � (q1, d1)(q2, d2) if δ(q, as2) � q1q2 and s1 � s2.
• δA((q, 1), a+) � (q1, d1)(q2, d2) if δ(q, a−) � q1q2.

Note that max(d1, d2) denotes the larger value of d1, d2 ∈ {0, 1}.



244 I. Yagi, Y. Takata, and H. Seki

Intuitively, MA behaves as follows. For any τ1 ∈ TΣ+,− , τ1 ∈ L↑A if and only if
there exists a tree τ2 ∈ L such that τ1 ≈uc τ2 and τ1 �� τ2; that is, there exists a node
v of τ1 such that labτ1(v) ∈ Σ+ and labτ2(v) ∈ Σ−. To accept such τ1, MA simulates
a run of M on a tree τ2, by ignoring the positive and negative signs of the node labels,
and by the second component of each state, MA indicates for each node v of τ2 that
labτ1(v) ∈ Σ+ and labτ2(v) ∈ Σ− or a descendant of v fulfills this property. When
this property holds on v, there exists a run λ of MA such that the second component of
λ(v) is 1. Thus, MA exactly accepts τ2 ∈ L↑A. By lemma 1, L↑A is regular, since L↑A

is regular.

Theorem 1. For any policy TA MAP in AND-semantics, we can convert it into an
equivalent policy TA M ′

AP in OR-semantics. On the other hand, there is a policy TA in
OR-semantics such that there is no equivalent policy TA in AND-semantics.

Proof. By lemma 3, L(MAP ) %A L(MR) if and only if L(MAP )↑A % L(MR) for
any query TA MR. By lemma 4, we can obtain a policy TA M ′

AP such that L(M ′
AP ) =

L(MAP )↑A. On the other hand, the policy TA in section 3.4 is an instance such that
there is no equivalent policy TA in AND-semantics.

4 Static Analysis

4.1 Problem Statement

The static analysis problem in AND-semantics (resp. OR-semantics) for MR and MAP

is defined as follows.

Input: A query TA MR and a policy TA MAP over the same charged alphabet Σ+,−.
Output: “YES” if MR is valid for MAP in AND-semantics (resp. OR-semantics) and

“NO” otherwise.

By theorem 1, it is sufficient to give an algorithm for the problem in OR-semantics.
We propose such an algorithm and discuss the time complexity of it.

4.2 Decision Algorithm

By the following lemma, we can reduce the static analysis problem in OR-semantics to
the set-inclusion problem of regular tree languages.

Lemma 5. L1 % L2 ⇔ L2 ⊆ L1↑.

Proof. L2 ⊆ L1↑ implies τ2 ∈ L1↑ for ∀τ2 ∈ L2. By the definition of L1↑, τ2 � τ1 for
some τ1 ∈ L, and thus L1 % L2. The converse can be shown by the reverse way.

Lemma 6. If L is regular, then L↑ is also regular.

Proof. Let M = (Q, Σ+,−, δ, F ) be an NTA such that L = L(M). We define M↑ =
(Q, Σ+,−, δ↑, F ) as follows. For each q ∈ Q and a ∈ Σ,

– δ↑(q, a−) = δ(q, a+) ∪ δ(q, a−), and
– δ↑(q, a+) = δ(q, a+).

We can easily show that L(M↑) = L↑.



A Static Analysis Using Tree Automata for XML Access Control 245

Theorem 2. The static analysis problem for MR and MAP in OR-semantics is
decidable.

Proof. L(MAP )↑ is regular by lemma 6 and thus L(MR) ⊆ L(MAP )↑ is decidable by
lemma 1. Therefore, this theorem holds by lemma 2 and lemma 5.

From the proof of theorem 2, we obtain the following algorithm for the static anal-
ysis problem in OR-semantics.

Algorithm 1. Perform the following two steps in this order.
1. Construct an NTA Mb such that L(Mb) = L(MR) ∩ L(MAP )↑.
2. Decide whether L(Mb) = ∅ or not.

In the following, we consider the time complexity of the problem.

Lemma 7. [5] For NTAs M1 and M2, we can construct an NTA M such that L(M) =
L(M1) ∩ L(M2) and ‖M‖ = O(‖M1‖ · ‖M2‖).

Lemma 8. For an NTA M , emptiness of L(M) is decidable in O(‖M‖) time.

The emptiness can be decided by the following algorithm.

1. Mark all the reachable states. A state q is reachable if it satisfies one of the following
properties.

– ε ∈ δ(q, a) for some a.
– q1q2 ∈ δ(q, a) for some a and both q1 and q2 are reachable.

2. Return “YES” if all accepting states are not marked. Otherwise return “NO”.

We can use an efficient method similar to an algorithm for the emptiness check of a
context-free language (CFL)[8]. By this method, emptiness of L(M) is decidable in
O(‖M‖) time.

On the other hand, step 1 of algorithm 1 would require the construction of an NTA
N such that L(N) = L(MAP )↑; however, its size would be exponential to ‖MAP‖ in
general2. In fact, the problem is EXPTIME-complete in general as shown below.

Theorem 3. The static analysis problem in OR-semantics is EXPTIME-complete.

Proof. We can construct an NTA N such that L(N) = L(MAP )↑ and
‖N‖ = O(c‖MAP ‖) for some constant c > 1. Thus the problem is in EXPTIME by
lemma 7 and lemma 8. EXPTIME-hardness can be shown by transforming the follow-
ing problem known as EXPTIME-complete[5] to the static analysis problem.

Regular Tree Language Non-Universality
Input: An NTA M over a finite alphabet Σ.
Output: L(M) �= TΣ?

2 If M↑
AP constructed from MAP in the proof of lemma 6 is bottom-up deterministic [5], then

the size of N is the same order of ‖MAP ‖. However, M↑
AP is not bottom-up deterministic in

general even if MAP is so.



246 I. Yagi, Y. Takata, and H. Seki

From a given instance M of Regular Tree Language Non-Universality, we construct
MAP as the same as M except that its alphabet is Σ+ and it uses a+ ∈ Σ+ instead of
each a ∈ Σ. We let MR be an NTA such that L(MR) = TΣ+ . Obviously, MR is valid
for MAP in OR-semantics if and only if L(MAP ) = TΣ+ , i.e., L(M) = TΣ .

In contrast to OR-semantics, the static analysis problem in AND-semantics can be
solved in polynomial time.

Lemma 9. (L↑A)↑ = L↑A.

Proof. It is obvious by the definition of L↑A.

Theorem 4. The time complexity of the static analysis problem for MR and MAP in
AND-semantics is O(‖MR‖ · ‖MAP‖).

Proof. By theorem 1, this problem is equivalent to deciding whether L(MAP )↑A %
L(MR), which is equivalent to L(MR) ⊆ (L(MAP )↑A)↑ = L(MAP )↑A by lemma
5 and lemma 9. Thus, in step 1 of algorithm 1, it is sufficient to construct an NTA Mb

such that L(Mb) = L(MR)∩L(MAP )↑A. As is the way of constructing L↑A in lemma
4, we can directly construct an NTA MA from MAP (without determinization and ex-
plicit complementation) such that L(MA) = L(MAP )↑A and ‖MA‖ = O(‖MAP ‖).
Therefore, this theorem holds by lemma 7 and lemma 8.

5 Conclusion

In this paper, we defined a formal model for XML database access control by tree
automata and defined a static analysis problem for access control. By introducing the
notion of charged alphabet, we can concisely and uniformly formalize the distinction of
permission/denial in a policy and access/non-access in a query. Also, we provided two
alternative semantics, AND-semantics and OR-semantics, and showed that the static
analysis problems in AND-semantics and OR-semantics are solvable in square time
and EXPTIME-complete, respectively.

Implementation of an analysis tool and empirical evaluation of the proposed method
are left as a future study.

References

1. E. Bertino, S. Castano, E. Ferrari and M. Mesiti: Author-X: A Java-based system for XML
data protection, IFIP WG 11.3 Working Conf on Database Security, 2000.

2. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon:
XQuery 1.0: An XML query language. W3C working draft 16 august 2002,
http://www.w3.org/TR/xquery/, 2002.

3. J. Clark and S. DeRose: XML Path Language (XPath) version 1.0. W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

4. E. M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 2000.
5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi:

Tree Automata Techniques and Applications, http://www.grappa.univ-lille3.fr/tata, 1997.



A Static Analysis Using Tree Automata for XML Access Control 247

6. E. Damiani, S. D. C. di Vimercati, S. Paraboschi and P. Samarati: Securing XML documents,
EDBT 2000, LNCS 1777, 121–135, 2000.

7. J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon: Efficient algorithms for model-
checking pushdown systems, CAV2000, LNCS 1855, 232–247, 2000.

8. J. Hopcroft, R. Motwani, and J. Ullman: Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 2000.

9. M. Koch, L. Mancini and F. Parisi-Presicce: Conflict detection and resolution in access con-
trol policy specifications, FOSSACS2002, LNCS 2303, 223–237, 2002.

10. M. Kudo and S. Harada: XML document security based on provisional authorization, 7th
ACM CCS, 87–96, 2001.

11. E. C. Lupu and M. Sloman: Conflicts in policy-based distributed systems management, IEEE
Trans. on Software Eng., 25(6), 852–869, 1999.

12. R. Mayr: Process Rewrite System, Inform. & Comput., 156, 264–286, 1999.
13. M. Murata, D. Lee, and M. Mani: Taxonomy of XML schema languages us-

ing formal language theory, ACM Trans. on Internet Technology, 5(4), 2005,
http://www.cs.wpi.edu/˜mmani/publications.html.

14. M. Murata, A. Tozawa, and M. Kudo: XML access control using static analysis, ACM CCS
2003, 73–84, 2003.

15. F. Neven: Automata theory for XML researchers, SIGMOD Record, Vol. 31, No.3, 39–46,
2002.

16. N. Nitta, Y. Takata and H. Seki: An efficient security verification method for programs with
stack inspection, 8th ACM CCS, 68–77, 2001.



Reasoning About Transfinite Sequences�

(Extended Abstract)

Stéphane Demri1 and David Nowak2

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan, France
2 Department of Information Science, The University of Tokyo, Japan

Abstract. We introduce a family of temporal logics to specify the be-
havior of systems with Zeno behaviors. We extend linear-time temporal
logic LTL to authorize models admitting Zeno sequences of actions and
quantitative temporal operators indexed by ordinals replace the stan-
dard next-time and until future-time operators. Our aim is to control
such systems by designing controllers that safely work on ω-sequences
but interact synchronously with the system in order to restrict their be-
haviors. We show that the satisfiability problem for the logics working
on ωk-sequences is expspace-complete when the integers are represented
in binary, and pspace-complete with a unary representation. To do so,
we substantially extend standard results about LTL by introducing a
new class of succinct ordinal automata that can encode the interaction
between the different quantitative temporal operators.

1 Introduction

Control of physical systems. Modelling interaction between a computer system
and a physical system has to overcome the difficulty of the different time scales.
For example, reasoning about the connection between the physical description
of an electric circuit and its logical description in VHDL (standard language
designed and optimized for describing the behavior of digital systems) needs to
take into account that the two descriptions are dealing with objects running at
distinct speeds. The speeds can be so different that some abstraction consists in
assuming one system evolves infinitely quicker than the other one. Another kind
of interaction consists of controlling a physical system by a computer system.
Usually, a physical system is modelled by differential equations. Solving those
equations can then involve computations of limits. For instance, in the bouncing
ball example [14], in a finite amount of time an infinite number of actions can be
performed. It is a Zeno sequence of actions. However, Zeno behaviors are usually
excluded from the modelling of real-time controllers, which is a quite reasonable
requirement (see e.g. [7]), but also from the modelling of the physical systems,
see some exception in [5]. This is a quite drastic limitation, since Zeno sequences
are often acceptable behaviors for physical systems.
� The first author acknowledges partial support by the ACI “Sécurité et Informatique”

CORTOS. The second author acknowledges partial support by the e-Society project
of MEXT. Part of this work was done while the second author was affiliated to LSV,
CNRS & ENS de Cachan.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 248–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Reasoning About Transfinite Sequences 249

Beyond ω-sequences. Our main motivation in this paper is to model Zeno be-
haviors and ultimately to control physical systems admitting such behaviors.
To do so, we introduce a specification logical language that is interpreted on
well-ordered linear orderings. Reasoning problems based on this logical language
should admit efficient algorithms, as good as those for standard specification
languages as linear-time temporal logic LTL. The ω-sequences are already fa-
miliar objects in model-checking, see e.g. [28], even though such infinite objects
are never manipulated when model-checking finite-state programs. Indeed, most
problems on Büchi automata reduce to standard reachability questions on finite
graphs. In a similar fashion, the behaviors of physical system are modeled in
the paper by sequences indexed by countable ordinals, i.e. equivalence classes of
well-ordered linear orderings, even though as we will show most problems will
also reduce to questions on finite graphs. For instance, the law of movement of
the bouncing ball is modelled by a set of sequences of length ω2. The specifi-
cation of the ball, i.e. the set of acceptable behaviors, is also characterized as
a set of sequences of the same length ω2. On the other hand, the controller is
a computer system whose complete executions are ω-sequences. In this paper,
we allow Zeno behaviors of physical systems and we will present a specification
language working on sequences indexed by ordinals greater than the usual first
infinite ordinal ω.

Our contribution. We introduce a class of logics LTL(α) indexed by a count-
able ordinal α closed under addition whose models are sequences of length α.
Quantitative extensions of the standard next-time X and until U operators are
considered by allowing operators of the form Xβ and Uβ with β smaller than α.
As shown in the paper, for every α ≤ ωω, LTL(α) can be viewed as a fragment
of the monadic second-order theory 〈ωω, <〉 known to be decidable, see e.g. [10].
For every k ≥ 1, we show that LTL(ωk) satisfiability is pspace-complete with an
unary encoding of integers and expspace-complete with a binary encoding. This
generalizes non-trivially what is known about LTL. We reduce the satisfiability
problem to the emptiness problem of ordinal automata recognizing transfinite
words [9,13,29,19,8]. The reduction entails that the satisfiability problem has an
elementary complexity (by using [11]) but does not guarantee the optimal upper
bound. To do so, we introduce a class of succinct ordinal automata of level k,
k ≥ 1 in which the LTL(ωk) formulae can be translated into and we prove that
the emptiness problem is in nlogspace. Succinctness allows us to reduce by one
exponential the size of the automata obtained by translation which provides us
the optimal upper bound. Finally, we introduce and motivate a control problem
with inputs a physical system S modelled by an ordinal automaton working on
ωk-sequences, and an LTL(ωk) formula φ describing the desirable behaviors of
the system. The problem we introduce is the existence of a controller C working
on ω-sequences such that the system S ×k C satisfies φ. The synchronization
operation ×k takes into account the different time scales between S and C. As
a by-product of our results, checking whether a controller satisfies the above
conditions can be done effectively but we leave the question of the synthesis of
such controllers for future work.



250 S. Demri and D. Nowak

Related work. Our original motivation in this work is the control of systems with
legal Zeno behaviors by systems whose complete executions are ω-sequences. The
theory of control of discrete event systems was introduced in [25]. In this theory,
a process is a deterministic non-complete finite automaton over an alphabet
of events. The control problem consists in, given a process P and a set S of
admissible behaviors, finding a process Q such that the behaviors of P × Q
are in S and such that Q reacts to all uncontrollable events and cannot detect
unobservable events. Extension to specifications from the modal μ-calculus can
be found in [2] whereas the control of timed systems (without Zeno behaviors) is
for instance studied in [3,7]. It is plausible that the techniques from the above-
mentioned works (see also [24]) can be adapted to the control problem we have
introduced but the technical contribution of this paper is mainly oriented towards
satisfiability and model-checking issues.

The logics we have introduced belong to the long tradition of quantitative
versions of LTL. LTL-like logics having models non isomorphic to ω can be found
in [1,27,26,20,22]. Temporal operators in the real-time logics from [1,20,22] are
indexed by intervals as our logics LTL(α). However, among the above-mentioned
works, only Rohde’s thesis [27] contains a LTL-like logic interpreted over α-
sequences with ordinal α but the temporal operators are simply the standard
next-time and until operators without any decoration. It is shown in [27] that
the satisfiability problem for such a logic can be decided in exponential-time
when the inputs are the formula to be tested and the countable ordinal from
which the model is built.

In the paper, we follow the automata-based approach for temporal logics
from [28] but we are dealing with ordinal automata recognizing words of length
α for some countable ordinal α. So, we extend the reduction from LTL into gen-
eralized Büchi automata to the reduction from LTL(ωk) into ordinal automata
recognizing words of length ωk. Many classes of ordinal automata have been
introduced in the literature. We recall below some of them. In [9,13] automata
recognizing ωk-sequences for some k ≥ 1 are introduced making essential the
concept of layer. In [10,29,19], such automata are generalized to recognize α-
sequences for α countable. Correspondences between these different classes can
be found in [4]. In the paper, we mainly adopt the definitions from [19]. An
elegant and powerful extension to automata recognizing words indexed elements
from a linear ordering can be found in [8]. As far as we know, automata recog-
nizing sequences of length greater than ω designed to solve verification problems
have been first used in [18] to model concurrency by limiting the state explosion
problem. Similarly, timed automata accepting Zeno words are introduced in [5]
in order to model physical phenomena with convergent execution. The emptiness
problem for such automata is shown to be decidable [5].

As LTL can be viewed as the first-order fragment of monadic second order
theory over 〈N, <〉, theories over 〈α, <〉 for some countable ordinal α have been
also studied by Büchi [9], see also [10,4]. For instance, decidability of monadic
second order theories over 〈α, <〉 for some countable ordinal α is shown in [10].



Reasoning About Transfinite Sequences 251

Decidability status of elementary theories over countable ordinals have been
established in [6,12] whereas relationships with other theories are shown in [23].

Because of lack of space, the proofs can be found in [15].

2 Temporal Logics on Transfinite Sequences

2.1 Ordinals

We recall basic definitions and properties about ordinals. An ordinal is a to-
tally ordered set which is well ordered, i.e. all its non-empty subset have a least
element. Order-isomorphic ordinals are considered equals. An ordinal α is a suc-
cessor ordinal iff there exists an ordinal β such that α = β+1. An ordinal which
is not 0 or a successor ordinal, is a limit ordinal. The first limit ordinal is written
ω. Addition, multiplication and exponentiation can be defined on ordinals induc-
tively: α+0 = α, α+(β+1) = (α+β)+1 and α+β = sup{α+γ : γ < β} where
β is a limit ordinal. Multiplication and exponentiation are defined similarly. ε0 is
the closure of ω∪{ω} under ordinal addition, multiplication and exponentiation.
By the Cantor Normal Form theorem, for any ordinal α < ε0, there are unique
ordinals β1, . . . ,βp, and unique integers n1, . . . , np such that α > β1 > · · · > βp

and α = ωβ1 .n1 + · · ·+ωβp.np. If β < ωω, then the βi’s are integers. Whenever
α ≤ β, there is a unique ordinal γ such that α+γ = β. We write β−α to denote
γ. For instance, ω2−ω = ω2, ω× 3−ω = ω× 2 and ω2−ω3 is not defined since
ω3 > ω2.

An ordinal α is said to be closed under addition whenever β,β′ < α implies
β+β′ < α. For instance, 0, 1, ω, ω2, ω3, and ωω are closed under addition. In the
sequel, we shall consider logics whose models are α-sequences, i.e. mappings of
the form α → Σ for some finite alphabet Σ and ordinal α closed under addition.

2.2 Quantitative Extensions of LTL

For every ordinal α closed under addition, we introduce the logic LTL(α) whose
models are precisely sequences of the form σ : α → 2AP for some countably
infinite set AP of atomic propositions. The formulae of LTL(α) are defined as
follows: φ ::= p | ¬φ | φ1 ∧ φ2 | Xβφ | φ1Uβ′

φ2, where p ∈ AP, β < α and
β′ ≤ α. The satisfaction relation is inductively defined below where σ is a model
for LTL(α) and β < α:

– σ,β |= p iff p ∈ σ(β),
– σ,β |= φ1 ∧ φ2 iff σ,β |= φ1 and σ,β |= φ2, σ,β |= ¬φ iff not σ,β |= φ,
– σ,β |= Xβ′

φ iff σ,β + β′ |= φ,
– σ,β |= φ1Uβ′

φ2 iff there is γ < β′ such that σ,β + γ |= φ2 and for every
γ′ < γ, σ,β + γ′ |= φ1.

Actually in order to study the decidability/complexity of LTL(α), we restrict
ourselves to countable limit ordinals α so that the set of formulae is itself count-
able. Furthermore, for studying complexity issues, it is necessary to specify the



252 S. Demri and D. Nowak

encoding of the ordinals β ≤ α occurring in LTL(α) formulae. In the sequel,
we use Cantor normal form to encode ordinals 1 ≤ β ≤ ωω, and the natural
numbers occurring in such normal forms are represented in binary.

Proposition 1. Satisfiability for LTL(ωα), 0 ≤ α ≤ ω, is decidable.

The model-checking for LTL(α) takes as inputs an ordinal automaton A with
alphabet AP (see Def. 1) and an LTL(α) formula φ and checks whether there is
an α-sequence σ accepted by A such that σ, 0 |= φ.

3 Automata-Based Approach

In this section, we show how to construct an ordinal automaton Aφ such that
its set of accepted words is precisely the models of φ, extending the approach
for LTL from [28]. In the rest of this section, φ ∈ LTL(ωk) for some k ≥ 1.

3.1 Ordinal Automata

We define ordinal automata as a generalization of Muller automata.

Definition 1 (Ordinal Automaton). An ordinal automaton is a tuple
(Q, Σ, δ, E, I, F ) where:

– Q is a finite set of states, Σ is a finite alphabet,
– δ ⊆ Q×Σ ×Q is a one-step transition relation,
– E ⊆ 2Q ×Q is a limit transition relation,
– I ⊆ Q [resp. F ⊆ Q] is a finite set of initial [resp. final] states.

We write q
a−→ q′ whenever 〈q, a, q′〉 ∈ δ and q −→ q′ iff q

a−→ q′ for some
a ∈ Σ. A path of length α + 1 is a map r : α + 1 → Q such that for every β ∈ α,
r(β) −→ r(β+1) and for every limit ordinal β ∈ α, there is P −→ r(β) ∈ E s.t. P =
inf(β, r) with inf(β, r) def= {q ∈ Q : for every γ ∈ β, there is γ′ such that γ <
γ′ < β and r(γ′) = q}.

A run of length α+1 is a path of length α+1 such that r(0) ∈ I. If r(α) ∈ F
then r is said to be accepting. The set of sequences recognized by the automaton
A, denoted by L(A), is the set of α-sequences σ : α → Σ for which there is an

accepting run r of length α + 1 verifying for every β ∈ α, r(β)
σ(β)−−→ r(β + 1).

Ordinal automata from Definition 1 are those defined in [19].

3.2 Hintikka Sequences

We define below a notion of closure which generalizes the Fisher-Ladner clo-
sure [16].

Definition 2 (Closure). The closure of φ, denoted by cl(φ), is the smallest set
of LTL(ωk) formulae such that



Reasoning About Transfinite Sequences 253

– ⊥,φ ∈ cl(φ), and ¬ψ ∈ cl(φ) implies ψ ∈ cl(φ),
– ψ ∈ cl(φ) implies ¬ψ ∈ cl(φ) (we identify ¬¬ψ with ψ),
– ψ1 ∧ ψ2 ∈ cl(φ) implies ψ1,ψ2 ∈ cl(φ),
– Xβψ ∈ cl(φ) and β ≥ ωn (0 ≤ n < k) imply Xβ−ωn

ψ ∈ cl(φ),
– ψ1Uβψ2 ∈ cl(φ) and β ≥ ωn (0 ≤ n ≤ k) imply the formulae below belong to

cl(φ): ψ1, ψ2, Xωn

(ψ1Uβ−ωn

ψ2), -Uωn¬ψ1, ψ1Uωn

ψ2.

It is not difficult to show that the notion of closure introduced above gener-
alizes what is done for LTL. From a formula φ, we build an ordinal automata
Aφ such that L(Aφ) is precisely the set of LTL(ωk) models satisfying φ. Follow-
ing [28], the states of Aφ are subsets of cl(φ) containing formulae to be satisfied
in the future, including the current position. Hence, cl(φ) is built in such a way
that if either q′ −→ q or P −→ q are transitions in Aφ, then all the formulae to be
satisfied in q depending on q′ and P are part of cl(φ).

Definition 3. A set X ⊆ cl(φ) is said to be locally maximally consistent with
respect to φ iff it satisfies the conditions below:

(mc1) ⊥ �∈ X,
(mc2) for every ψ ∈ cl(φ), ψ ∈ X iff ¬ψ �∈ X,
(mc3) for every ψ1 ∧ ψ2 ∈ cl(φ), ψ1 ∧ ψ2 ∈ X iff ψ1,ψ2 ∈ X,
(mc4) for every X0ψ ∈ cl(φ), X0ψ ∈ X iff ψ ∈ X,
(mc5) for every ψ1U0ψ2 ∈ cl(φ), ψ1U0ψ2 �∈ X,
(mc6) for all ψ1U

βψ2 ∈ cl(φ) and β ≥ ωn ≥ 1, ψ1U
βψ2 ∈ X iff either ψ1U

ωn

ψ2 ∈
X or ¬(-Uωn¬ψ1), Xωn

(ψ1Uβ−ωn

ψ2) ∈ X,
(mc7) for all ψ1Uβψ2,ψ1Uβ′

ψ2 ∈ cl(φ) with β ≤ β′, ψ1Uβψ2 ∈ X implies
ψ1Uβ′

ψ2 ∈ X,
(mc8) for every ψ1U1ψ2 ∈ cl(φ), ψ1U1ψ2 ∈ X iff ψ2 ∈ X.

We denote by maxcons(φ) the set of locally maximally consistent subsets of
cl(φ).

For standard LTL, an Hintikka sequence ρ for a formula φ is an ω-sequence
of sets of subformulae of φ such that φ is satisfiable iff φ has an Hintikka se-
quence. Local conditions in ρ between two successive elements of the sequence
are easy to handle in Büchi automata with the transition relation. The only
global condition, stating that if ψ1Uψ2 occurs in the sequence, then some fu-
ture element in the sequence contains ψ2, is handled by the Büchi acceptance
condition. Sometimes the non-uniform treatment between local conditions and
the global condition is the source of confusion. The Hintikka sequences defined
below are based on a similar principle except that we can extend advantageously
the notion of locality. The Hintikka sequences ρ are of the form ρ : ωk → 2cl(φ).
Encoding conditions between ρ(β) and ρ(β + 1) can be performed by one-step
transitions in ordinal automata. However, the presence of limit transitions al-
lows us also to admit conditions between ρ(β) and ρ(β + ωn′

) with 0 ≤ n′ < k.
Hence, the global condition in Hintikka sequences of LTL formulae is replaced
by a condition between ρ(β) and ρ(β + ω). For transfinite sequences, the local
and global conditions can be treated uniformly.



254 S. Demri and D. Nowak

Definition 4 (Hintikka Sequence). An Hintikka sequence for φ is a sequence
ρ : ωk → 2cl(φ) such that

(hin1) φ ∈ ρ(0),
(hin2) for every β < ωk, ρ(β) ∈ maxcons(φ),
(hin3) for all β < ωk, Xβ′

ψ ∈ cl(φ) and 0 ≤ n′ < k such that β′ ≥ ωn′
,

Xβ′
ψ ∈ ρ(β) iff Xβ′−ωn′

ψ ∈ ρ(β + ωn′
),

(hin4) for all β < ωk and ψ1U
β′
ψ2 ∈ cl(φ), (A) ψ1U

β′
ψ2 ∈ ρ(β) iff (B) there is

β ≤ β′′ < β + β′ such that ψ2 ∈ ρ(β′′) and for every β ≤ γ < β′′, ψ1 ∈ ρ(γ).

Proposition 2. φ is LTL(ωk) satisfiable iff φ has an Hintikka sequence.

3.3 Automaton Construction

We build an ordinal automaton Aφ that recognizes only words of length ωk over
the alphabet 2AP (assuming that AP is the finite set of atomic propositions
occurring in φ). The automaton Aφ = 〈Q, Σ, δ, E, I, F 〉 is defined as follows:

– Σ = 2AP, Q = maxcons(φ)× {0, . . . , k},
– I = {〈X, 0〉 ∈ Q : φ ∈ X}, F = {〈X, n〉 ∈ Q : n = k},
– 〈X, n〉 a−→ 〈X ′, n′〉 ∈ δ iff (one-step transition)

(A1) n < k and n′ = 0,
(A2) X ∩AP = a,
(A3) for every Xβψ ∈ cl(φ) such that β ≥ 1, Xβψ ∈ X iff Xβ−1ψ ∈ X ′.

– In order to define E, we introduce preliminary definitions. For every ψ1Uαψ2

∈ cl(φ), we write Pψ1Uαψ2 to denote the set {〈X, n〉 : either ψ2 ∈ X or ¬(ψ1U
α

ψ2) ∈ X}. For every 〈X, n〉 ∈ Q we write Q〈X,n〉 to denote the subset of Q
such that for every 〈X ′, n′〉 ∈ Q, 〈X ′, n′〉 ∈ Q〈X,n〉

def⇔
(A4) n′ < n,
(A5) for every Xαψ ∈ cl(φ) with α ≥ ωn, Xαψ ∈ X ′ iff Xα−ωn

ψ ∈ X .
For every 〈X, n〉 ∈ Q, Z −→ 〈X, n〉 ∈ E iff
(A6) n ≥ 1,
(A7) Z ⊆ Q〈X,n〉,
(A8) Z contains a state of the form 〈Y, n− 1〉,
(A9) for all ψ1Uβψ2 ∈ cl(φ) and β ≥ ωn such that ¬(ψ1Uβ−ωn

ψ2) ∈ X ,
Pψ1Uβψ2 ∩ Z �= ∅.

Observe the similarities between (A3) and (A5) and between (A9) and (mc6).
For LTL(ω), the above construction roughly corresponds to the Muller automa-
ton obtained from the generalized Büchi automaton for the LTL formula φ.

The automatonAφ has 22O(|φ|)
states and 222O(|φ|)

transitions. By [11, Propo-
sition 6], the emptiness problem for ordinal automata is in P. So checking
whether Aφ accepts at least one word can be done in triple exponential time,
which provides an elementary bound but not optimal as shown in the sequel.

Proposition 3. L(Aφ) = Mod(φ).

We invite the reader to consult the tedious proof of Proposition 3 in [15] to
understand the relationships between the conditions (mc�), (hin�) and (A�).



Reasoning About Transfinite Sequences 255

4 Computational Complexity

In this section, we show complexity results about satisfiability of LTL(ωk) with
1 ≤ k < ω.

Theorem 1. For every ordinal α ≥ 1, satisfiability for LTL(ωα) is expspace-
hard.

4.1 Succinct Ordinal Automata of Level k

In order to refine the complexity result from Sect. 3, we define below specialized
ordinal automata that recognize ωk-sequences. Similar automata can be found
in the literature, see e.g. [13,19,4].

Definition 5 (Ordinal Automaton of Level k). An ordinal automaton A =
〈Q, Σ, δ, E, I, F 〉 is said to be of level k ≥ 1 iff there is a map l : Q → {0, . . . , k}
such that

– for every q ∈ F , l(q) = k;
– q

a−→ q′ ∈ δ implies l(q′) = 0 and l(q) < k;
– P −→ q ∈ E implies

1. l(q) ≥ 1,
2. for every q′ ∈ P , l(q′) < l(q),
3. there is q′ ∈ P such that l(q′) = l(q)− 1.

The automaton built in Section 3 is of level k when the input formula is
in LTL(ωk). However, Aφ is of triple [resp. double] exponential size in |φ| when
integer are encoded in binary [resp. unary] which is still too much to characterize
accurately the complexity of LTL(ωk) satisfiability. That is why we introduce
below a special class of ordinal automata which can represent succinctly an
exponential amount of limit transitions as the generalized Büchi automata can
be viewed as a succinct representation of Muller automata. Hence, we shall
construct A′φ such that L(A′φ) = L(Aφ), and A′φ is “only” of double [resp.
simple] exponential size in |φ| when integers are encoded in binary [resp. unary].

Definition 6 (p(·)-Succinct Ordinal Automaton of Level k). Given a
polynom p(·), a p(·)-succinct ordinal automaton of level k is a structure A =
〈Q, Σ, δ, E, I, F, l〉 defined as an ordinal automata of level k except that E is a
set of tuples of the form 〈P0, P1, . . . , Pn, q〉 with n ≥ 0, q ∈ Q and P0, . . . , Pn ⊆ Q
such that

– 〈P0, P1, . . . , Pn, q〉 ∈ E implies
1. 1 ≤ l(q) ≤ k,
2. each state in P0 is of level l(q)− 1,
3. each state in P1 ∪ · · · ∪ Pn is of level less than l(q)− 1,
4. n ≤ p(|Q|),

– for every state q of level strictly more than 0, there is at most one tuple in
E of the form 〈P0, P1, . . . , Pn, q〉.



256 S. Demri and D. Nowak

Each tuple 〈P0, P1, . . . , Pn, q〉 encodes succinctly the set of limit transitions

trans(〈P0, P1, . . . , Pn, q〉) def=

{P −→ q : P ⊆ Q, ∀ i Pi ∩ P �= ∅ and ∀q′ ∈ P, l(q′) < l(q)}.
In the sequel, given a p(·)-succinct ordinal automaton A of level k, we write
Ao = 〈Q, Σ, δ, E′, I, F, l〉 to denote the ordinal automaton of level k with E′ =⋃

t∈E trans(t). The language recognized by A is defined as the language recog-
nized by Ao. In that way, a p(·)-succinct ordinal automaton of level k is simply a
succinct encoding of some ordinal automaton of level k. An important property
of such automata rests on the fact that the size of E is in O(|Q|2 × p(|Q|)). By
contrast, in an ordinary ordinal automaton of level k, the cardinality of the set
of limit transitions can be in the worst case exponential in |Q|.

The automaton Aφ from Sect. 3.3 can be viewed as a p0(·)-succinct ordinal
automaton of level k with p0(x) = x.

Lemma 1 below is the key property to obtain the nlogspace upper bound
for the emptiness problem of ordinal automata of level k, even in the succinct
version. It generalizes substantially the property that entails that the graph
accessibility problem and the emptiness problem for generalized Büchi automata
can be solved in non-deterministic logarithmic space.

Lemma 1. Let A be an automaton of level k and r be a run of length ωk′
+ 1

for some 1 ≤ k′ ≤ k. Then, there is a path r′ of length ωk′
+ 1 such that

– r′(0) = r(0) and r′(ωk′
) = r(ωk′

),
– there are K ≤ |Q| and K ′ ≤ |Q|2 such that for every α ≥ ωk′−1 ×K such

that the normal form of α is ωk′−1×n+β, r′(α) = r′(ωk′−1× (n+K ′)+β).

4.2 An Optimal Algorithm to Test Emptiness

In order to test emptiness of the language recognized by an automaton of level
k, we introduce a function acc(q, q′) (see Fig. 1) that returns - iff there is a path
r of length ωl(q′) such that r(0) = q and r(ωl(q′)) = q′. We design the following
non-deterministic algorithm:

Empty?(A)
Guess q0 ∈ I and qf ∈ F ;
InLoop := false;
acc(q0, qf ).

Nondeterminism is also highly present in the definition of acc(q0, qf ). A few
global variables are used. The variable InLoop is a Boolean equals to true iff q′

in a call acc(q, q′) belongs in the periodic part of the run. Moreover, for every
i ∈ {1, . . . , k}, the variable ↑i contains the address of the occurrence of a state
in the leftmost part of a rule P → q′′ with l(q′′) = i: O(k × log|A|) bits are
needed in total. Remember that A is encoded as a string and the address of
the occurrence of a state is simply a position in that string, which requires only



Reasoning About Transfinite Sequences 257

acc(q, q′) (l(q′) ≤ k, l(q) = 0)

k′ := l(q′) − 1;
If k′ ≥ 0 then

Guess a rule P → q′;
↑k′+1 takes the value of the address of the first state in P ;
Guess K ≤ |Q| and K′ ≤ |Q|2;
Guess qrepeat

k′ ∈ P such that l(qrepeat
k′ ) = k′ (repeating state);

q0 := q;
For i = 1 to K do

Guess qk′ ∈ P of level k′;
If acc(q0, qk′) then guess q0 such that l(q0) = 0 and qk′ −→ q0;

If qk′ �= qrepeat
k′ then abort;

If k′ + 1 = k then InLoop = true;
Guess qk′ ∈ P of level k′;
If InLoop = true then (Check&Update(q0);Check&Update(qk′));
For i = 1 to K′ do

If acc(q0, qk′) then
Guess q0 such that l(q0) = 0 and qk′ −→ q0;
qaux

k′ := qk′ ;
Guess qk′ ∈ P of level k′;
If i �= K′ then (Check&Update(q0);Check&Update(qk′));

otherwise abort;
If one of the conditions below fails then abort otherwise accept
1. ↑k′+1 �= nil (some state in P has not been visited infinitely often),
2. qaux

k′ �= qrepeat
k′ (wrong choice of the repeating state of level k′)

otherwise if q −→ q′ then accept otherwise abort.

Fig. 1. Accessibility function

O(log|A|) bits. The variable ↑i is updated when the state whose address is ↑i is
detected in the periodic part of the run.

In the definition of acc(q, q′), in order to test whether there is a path r of
length ωl(q′) such that l(q′) ≥ 1, r(0) = q and r(ωl(q′)) = q′, Lemma 1 guarantees
that the periodic part of r is of length at most ωl(q′)−1 × |Q|2 and the prefix is
of length at most ωl(q′)−1 × |Q|. This explains the two main loops of acc(q, q′).
When a state t is guessed in the periodic part of the run, one has to check that
t indeed belongs to rules of the form P → q′′ with l(q′′) > l(qt) and one updates
the variables ↑i since t has been detected (see Fig. 2).

Theorem 2. For every k ≥ 0, the emptiness problem for ordinal automata of
level k is nlogspace-complete.

Corollary 1. The emptiness problem for Muller automata is nlogspace-
complete.

The discipline on memory space done in the algorithm in Fig. 1 can be
adapted to succinct ordinal automata.



258 S. Demri and D. Nowak

Check&Update(q)
For 1 ≤ i ≤ k do

If ↑i contains the address of an occurrence of q in the leftmost part of a rule
then ↑i takes the value of the next state in the rule (possibly the rightmost
state in the rule);
If l(q) ≤ i − 1 and q does not occur in the leftmost part of the rule that is
currently pointed by ↑i then abort. (one needs another variable to visit the
states in the leftmost part of that rule)

accept.

Fig. 2. Update of the variables ↑is

Corollary 2. For all k ≥ 0 and polynom p(·), the emptiness problem for p(·)-
succinct ordinal automata of level k is nlogspace-complete.

4.3 Optimal Complexity Upper Bounds

Theorem 3. For every k ≥ 1, the satisfiability problem for LTL(ωk) is pspace-
complete when the integers are encoded in unary and the problem is in expspace-
complete when the integers are encoded in binary.

Corollary 3. For every k ≥ 1, the model-checking problem for LTL(ωk) is de-
cidable.

Since the complexity of the emptiness problem for ordinal automata is not
completely characterized (we know it is in P by [11] but P-hardness is open),
our decidability proof does not provide a full characterization of the complexity
of the model-checking problem for LTL(ωk). However, with space ressources, it
is at most two exponential higher than the satisfiability problem.

Since the languages recognized by x-succinct ordinal automata of level k can
be shown to be closed under intersection, we have the following result.

Theorem 4. For every k ≥ 1, the model-checking problem for LTL(ωk) re-
stricted to x-succinct ordinal automata of level k is pspace-complete when the
integers are encoded in unary and the problem is expspace-complete when the
integers are encoded in binary.

5 Application: Control of Physical Systems

In this section, we formalize the control problem of a physical system by a com-
puter system by using ordinal automata and the logics LTL(ωk). Even though
it is the original motivation of our investigations on the logics LTL(α), at this
point of the paper we have all the necessary definitions and results to state con-
cisely the problem. We model a system by an ordinal automaton recognizing ωk-
sequences. For instance, the law of movement of the bouncing ball corresponds



Reasoning About Transfinite Sequences 259

to ω2-sequences and the set of acceptable behaviors of the ball is modelled by a
set of sequences of the same length ω2. On the other hand, the controller is an
operational model working on ω-sequences.

Before stating the control problem, we need to give definitions about the
synchronous product between ordinal automata and about the way to transform
an ordinal automaton of level 1 into an ordinal automaton of level k ≥ 2 that
has relevant actions only on states in positions of the form ωk−1 × n (lifting).
As usual, LTL(ωk) formulae can be viewed equivalently as ordinal automata of
level k and we shall use these different representations depending on the context
(see [2] for a similar standard treatment between formulae and automata).

Synchronous product. We define below the synchronous product of two ordinal
automata such that if they have the same alphabet then the language recognized
by the product is the intersection language. Otherwise, a letter that is present
in a single automaton can only affect the state component in the product re-
lated to this automaton. This is useful to deal with unobservable actions (see
below). Given two ordinal automata Ai = 〈Qi, Σi, δi, Ei, Ii, Fi〉, for i = 1, 2,
their synchronous product is defined as A1 ×A2 = 〈Q, Σ, δ, E, I, F 〉 where:

– Q = Q1 ×Q2, Σ = Σ1 ∪Σ2.
– 〈q1, q2〉 a−→ 〈q′1, q′2〉 ∈ δ iff either:

• a ∈ Σ1 ∩Σ2, q1
a−→ q′1 ∈ δ1, and q2

a−→ q′2 ∈ δ2; or
• a ∈ Σ1\Σ2, q1

a−→ q′1 ∈ δ1, and q2 = q′2; or
• a ∈ Σ2\Σ1, q2

a−→ q′2 ∈ δ2, and q1 = q′1.
– P −→ 〈q1, q2〉 ∈ E iff there exist P1 −→ q1 ∈ E1 and P2 −→ q2 ∈ E2 such that
{q : 〈q, q′〉 ∈ P} = P1 and {q′ : 〈q, q′〉 ∈ P} = P2.

– I = I1 × I2, F = F1 × F2.

We write w/Σ for the subword of w consisting only of the letters from Σ.

Proposition 4. w ∈ L(A1 ×A2) ⇔ w/Σ1 ∈ L(A1) and w/Σ2 ∈ L(A2).

Lifting. In order to synchronize the system with a controller working on ω-
sequences, we need to transform the controller so that its product with S only
constraints states on positions ωk−1 × n, n ∈ N. The other positions are not
constrained.

Let A = 〈Q, Σ, δ, E, I, F, l〉 be an automaton of level 1. We define its lifting
liftk(A) at level k ≥ 2 to be the automaton 〈Q′, Σ, δ′, E′, I ′, F, l′〉 by:

– Q′ = ({0, . . . , k − 1} × (Q \ F )) ∪ F , I ′ = {k − 1} × I,
– l′(q) = k for q ∈ F and l′(〈i, q′〉) = i,
– δ′ = {〈k − 1, q〉 a−→ 〈0, q′〉 : q

a−→ q′ ∈ δ}∪,

{〈i, q〉 a−→ 〈0, q〉 : 0 ≤ i < k, a ∈ Σ, q �∈ F}
– E′ = {{〈0, q〉, . . . , 〈i − 1, q〉} −→ 〈i, q〉 : 1 ≤ i < k, q ∈ Q} ∪ {{〈0, q1〉, . . . ,
〈k − 1, q1〉, . . . , 〈0, qn〉, . . . , 〈k − 1, qn〉} −→ q | {q1, . . . qn} −→ q ∈ E}.

Proposition 5. For all w ∈ Σωk

, w ∈ L(liftk(A)) iff the word w′ ∈ Σω, defined
by w′(i) = w(ωk−1 × i), is in L(A).



260 S. Demri and D. Nowak

The control problem. A physical system S is modelled as a structure

〈A,Actc,Acto,Act〉

where A is an ordinal automaton of level k with alphabet 2Act where Act is a
finite set of actions, Acto ⊆ Act is the set of observable actions and Actc ⊆ Acto
is the set of controllable actions. The set of uncontrollable actions is denoted
by Actnc. A specification of the system S is naturally an LTL(ωk) formula ψ.
A controller C for the pair 〈S,ψ〉 is a system whose complete executions are ω-
sequences (typically ordinal automata of level 1) verifying the properties below.

– Only observable actions are present in the controller. Hence, thanks to the
synchronization mode, in the product system between S and C, unobservable
actions do not change the C-component of the current state. So the alphabet
of C is 2Acto .

– From any state of C, uncontrollable actions can always be executed: ∀q · ∀a ⊆
Acto \Actc, there is a transition q

b−→ q′ in C such that b ∩ Actnc = a.
– Finally, the system S controlled by C satisfies ψ. Because S and C work

on sequences of different length, the controlled system is in fact equal to
liftk(C) × S. So liftk(C) × S |= ψ should hold. This is equivalent to the
emptiness of the language of the product automaton liftk(C) × S × A¬ψ .

As a consequence of Corollary 3 we obtain the following result.

Proposition 6. The problem of checking whether liftk(C) × S × A¬ψ given a
physical system S, a controller C and a specification ψ is decidable.

We explained how to check that a controller is correct with respect to a
specification, but we do not address here the controller synthesis issue. More-
over, by assuming that S and C are succinct ordinal automata, we can improve
considerably the complexity of the above problem (see e.g., Theorem 4).

Example. Consider the system is a bouncing ball [14] with three actions lift-up,
bounce and stop, where only lift-up is controllable, and only stop and lift-up are
observable. The law of the ball is described by the following LTL(ω2) formula:

φ = Gω2
(lift-up ⇒ X1(Gωbounce ∧ Xωstop))

Gαϕ is an abbreviation for ¬(-Uα¬ϕ). Informally, φ states that when the ball is
lifted-up, then it bounces an infinite number of times in a finite time and then
stops. An equivalent ordinal automaton Aφ working on ω2-sequences can be eas-
ily defined. The specification is given by the LTL(ω2) formula: ψ = Gω2

X1bounce.
Informally, ψ states that the ball should almost always be bouncing. A possible
controller for this system is described by the following LTL formula:

ϕ = lift-up ∧ Gω(stop ⇒ lift-up)

Informally, ϕ states that the controller should lift-up the ball at the beginning
and then lift-up it again each time it stops. Similarly, an equivalent ordinal
automaton Aϕ working on ω-sequences can be easily defined.



Reasoning About Transfinite Sequences 261

6 Concluding Remarks

We have introduced a family of temporal logics to specify the behavior of systems
by assuming that the sequence of actions is isomorphic to some well-ordered
linear ordering (see the bouncing ball example in Sect. 5). Our aim is to control
such physical systems by designing controllers that safely work on ω-sequences
but interact synchronously with the physical system in order to restrict their
behaviors. We have extended linear-time temporal logic LTL to α-sequences
for any countable ordinal α closed under addition, by considering quantitative
operators indexed by ordinals smaller than α. This is a new class of linear-
time temporal logics for which we have shown that LTL(ωω) is decidable by
reduction to the monadic second-order theory 〈ωω, <〉 and for every k ≥ 1,
LTL(ωk) satisfiability problem is pspace-complete [resp. expspace-complete]
when the integers are encoded in unary [resp. in binary] generalizing what is
known about LTL. Our proof technique is inspired from [28] with significant
extensions in order to deal with the interaction between arithmetics on ordinals
and temporal operators. Moreover, we have introduced a new class of succinct
ordinal automata in order to fully characterize the complexity of the logics. The
treatment of these aspects leads to the most difficult technical parts of the paper.

A lot of work remains to be done even though our logics have been shown
to admit reasoning tasks of complexity similar to that of LTL. Synthesis of
controllers working on ω-sequences on the line of Sect. 5 is on the top of our
priority list. Moreover, LTL is known to be initially equivalent to the first-order
theory of 〈ω, <〉 by Kamp’s theorem [21] and by the separation theorem [17]. Is
LTL(ωk) also initially equivalent to the first-order theory of 〈ωk, <〉?

References

1. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal
of the ACM, 43:116–146, 1996.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. TCS, 303(1):7–34, 2003.

3. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and
timed systems. In Hybrid systems II, volume 999 of LNCS, pages 1–20. Springer,
1995.

4. N. Bedon. Langages reconnaissables de mots indexés par des ordinaux. PhD thesis,
Université Marne-la-Vallée, 1998.

5. B. Bérard and C. Picaronny. Accepting Zeno words: a way toward timed refine-
ments. In MFCS’97, volume 1295 of LNCS, pages 149–158. Springer, 1997.

6. A. Bès. Decidability and definability results related to the elementary theory of
ordinal multiplication. Fundamenta Mathematicae, 171:197–211, 2002.

7. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of LNCS, pages 180–192. Springer, 2003.

8. V. Bruyère and O. Carton. Automata on linear orderings. In MFCS 2001, volume
2136 of LNCS, pages 236–247. Springer-Verlag, 2001.

9. J. Büchi. Transfinite automata recursions and weak second order theory of ordinals.
In Int. Cong. Logic, Methodology and Philosophy of Science, Jerusalem, pages 3–23,
1964.



262 S. Demri and D. Nowak

10. J. Büchi and D. Siefkes. The monadic second order theory of all countable ordinals,
volume 328 of Lecture Notes in Mathematics. Springer, 1973.

11. O. Carton. Accessibility in automata on scattered linear orderings. In MFCS 2002,
volume 2420 of LNCS, pages 155–164. Springer, 2002.

12. C. Choffrut. Elementary theory of ordinals with addition and left translation by
ω. In DLT’01, volume 2295 of LNCS, pages 15–20. Springer, 2002.

13. Y. Choueka. Finite automata, definable sets, and regular expressions over ωn-tapes.
JCSS, 17:81–97, 1978.

14. P. Cuijpers, M. Reniers, and A. Engels. Beyond Zeno-behaviour. Technical report,
TU of Eindhoven, 2001.

15. S. Demri and D. Nowak. Reasoning about transfinite sequences.
arXiv:cs.LO/0505073, May 2005.

16. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. JCSS,
18:194–211, 1979.

17. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In POPL’80. ACM Press, 1980.

18. P. Godefroid and P. Wolper. A partial approach to model checking. I&C,
110(2):305–326, 1994.

19. J. Hemmer and P. Wolper. Ordinal finite automata and languages (extended ab-
stract). Technical report, Université of Liège, 1991.

20. Y. Hirshfeld and A. Rabinovich. Logics for real time: decidability and complexity.
Fundamenta Informaticae, 62:1–28, 2004.

21. J. Kamp. Tense Logic and the theory of linear order. PhD thesis, UCLA, USA,
1968.

22. C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics: PSPACE and
below. In TIME’05, 2005. To appear.

23. F. Maurin. The theory of integer multiplication with order restricted to primes is
decidable. The Journal of Symbolic Logic, 62(1):123–130, 1997.

24. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16th ACM
POPL, Austin, Texas, pages 179–190, 1989.

25. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77:81–98, 1989.

26. M. Reynolds. The complexity of the temporal logic with until over general linear
time. JCSS, 66(2):393–426, 2003.

27. S. Rohde. Alternating Automata and The Temporal Logic of Ordinals. PhD thesis,
University of Illinois, 1997.

28. M. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115:1–37,
1994.

29. J. Wojciechowski. Classes of transfinite sequences accepted by nondeterministic
finite automata. Annales Societatid Mathematicae Polonae, pages 191–223, 1984.



Semi-automatic Distributed Synthesis

Bernd Finkbeiner and Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany
{finkbeiner, schewe}@cs.uni-sb.de

Abstract. We propose a sound and complete compositional proof rule
for distributed synthesis. Applying our proof rule only requires the man-
ual strengthening of the specification into a conjunction of formulas that
can be guaranteed by individual black-box processes. All premises of the
proof rule can be checked automatically.

For this purpose, we give an automata-theoretic synthesis algorithm
for single processes in distributed architectures. The behavior of the
local environment of a process is unknown in the process of synthe-
sis and cannot be assumed to be maximal. We therefore consider re-
active environments that have the power to disable some of their own
actions, and provide methods for synthesis (and realizability checking)
in this setting. We establish upper bounds for CTL (2EXPTIME) and
CTL* (3EXPTIME) synthesis with incomplete information, matching
the known lower bounds for these problems, and provide matching up-
per and lower bounds for μ-calculus synthesis (2EXPTIME) with com-
plete or incomplete information. Synthesis in reactive environments is
harder than synthesis in maximal environments, where CTL, CTL* and
μ-calculus synthesis are EXPTIME, 2EXPTIME and EXPTIME com-
plete, respectively.

1 Introduction

In the synthesis of distributed systems, we transform a given specification into a
collection of finite-state programs that satisfy the specification when composed
according to a given architecture. For some restricted architectures, such as
pipelines and rings in which only one designated process communicates with the
environment [1], synthesis can be done automatically. However, as soon as the
architecture contains an information fork, i.e., a pair of processes that have an
incomparable degree of information about the system state, the problem becomes
undecidable [2].

In this paper, we investigate a semi-automatic approach where we synthesize
one process at a time. It turns out that the synthesis of a single process can be
done automatically and it is always possible to decompose a realizable specifica-
tion into a conjunction of properties that can be guaranteed by single processes.
This approach therefore works for all distributed architectures, including those
with information forks.

The problem of synthesizing a single process has been studied in a number
of variations. Closed synthesis excludes any interaction with the environment

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 263–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



264 B. Finkbeiner and S. Schewe

Env

p1

Arbiter

p2

(a)

request1

request2

access1

access2

release1

release2

grant1

grant2

(b)

grant1 := true

grant2 := false

release1

grant2 := true

release2

grant1 := true

¬release1 ¬release2

Fig. 1. A simple distributed shared-resource application. (a) The system architecture.

An edge between two process nodes p and q labeled with variable v indicates that v is an

output variable of process p and an input variable of process q. (b) The implementation

of the white-box process Arbiter, represented as a finite-state automaton.

[3,4]. Open synthesis finds implementations that satisfy a specification in any
environment. For universal specifications (e.g., ACTL*), it suffices to consider
the maximal environment, which shows all possible behaviors [5,6]. In general,
it is necessary to account for reactive environments, which may disable some of
their responses [7].

We consider the problem of synthesizing a single black-box process in a given
distributed architecture. An architecture consists of an external environment
and a set of system processes, which we partition into subsets of white-box and
black-box processes: each white-box process comes with a known and fixed im-
plementation, while the implementation of the black-box processes is yet to be
found.

A single black-box process may interact with the external environment, the
white-box processes, and with other black-box processes. Like in open synthe-
sis, we assume that the behavior of the external environment is maximal. The
behavior of white-box processes is known beforehand, but may be nondetermin-
istic. The other black-box processes show reactive [7] behavior: in each state,
they may disable some (but not all) of their responses. An important difference
between synthesizing systems that consist of a single process, and synthesizing
a single process within a general architecture is that, while the process has com-
plete information about the system state in the former case, it only sees a part
of the state as defined by the architecture in the latter case.

Figure 1a shows the architecture of a simple distributed shared-resource ap-
plication. The external environment Env can request access to the resource by
setting the request variable of one of the two black-box processes p1 and p2. Mu-
tual exclusion is accomplished using a white-box Arbiter process that alternates
a grant between p1 and p2, such that each process retains the grant until the
respective release variable is set, as shown in Figure 1b.



Semi-automatic Distributed Synthesis 265

We can specify the expected behavior of the shared-resource system as a
conjunction ψ = ψ1∧ψ2∧ψ3 of three CTL* formulas, where the first two formulas
specify that there is a way for both processes to use the resource infinitely
often (ψi = EGF accessi for i ∈ {0, 1}) and the third formula specifies mutual
exclusion (ψ3 = AG ¬(access1 ∧ access2)).

Obviously, neither p1 nor p2 can guarantee ψ for all possible implementa-
tions of the other process (for example, if the other process constantly sets its
access variable to true, mutual exclusion must be violated in some branch). We
therefore strengthen ψ into two separate properties ϕp1 and ϕp2 that can be
guaranteed by p1 and p2, respectively. A natural assumption to be made by pro-
cess p3−i about process pi is that there is path, such that process pi infinitely
often releases the grant (αpi

1 = EGF releasei) and that, on every path, pi only ac-
cesses the resource when permitted by Arbiter (αpi

2 = AG access i → grant i). By
adding these assumptions, we obtain a strengthened specification ϕ = ϕp1 ∧ϕp2

where

ϕpi = αpi

1 ∧ αpi

2 ∧ (αp3−i

1 ∧ α
p3−i

2 → ψ).

Once the auxiliary formulas ϕp1 and ϕp2 have been defined, an implemen-
tation can be found automatically. For example, process pi can guarantee ϕpi

against any implementation of process p3−i, by setting access i after each request i

as soon as grant i becomes true and by setting releasei in the immediately fol-
lowing state.

Contribution. We propose a sound and complete compositional proof rule for
distributed synthesis. Applying our proof rule only requires the manual strength-
ening of the specification into a conjunction of formulas that can be guaran-
teed by individual black-box processes against the other black-box processes.
All premises of the proof rule can be checked automatically.

For this purpose, we give an automata-theoretic synthesis algorithm for sin-
gle processes in distributed architectures. Our environment model builds on
open synthesis [5], but combines the maximal external environment with reac-
tive black-box processes. Synthesis in reactive environments was studied before,
but only under the assumption of complete information [7].

Our construction turns a specification into an alternating parity automaton
accepting exactly the reactive models of a specification. For a specification ϕ
with length n = |ϕ| in CTL, CTL* and μ-calculus this automaton has nO(n),
22O(n)

and nO(n3) states, respectively. We establish 2EXPTIME and 3EXPTIME
upper bounds for synthesis with incomplete information in case of CTL and
CTL* specifications, respectively. We defer a doubly exponential lower bound
for μ-calculus specifications from the doubly exponential lower bound for CTL
and establish a matching upper bound.

Overview. In the following section, we formally introduce the synthesis problem
studied in this paper. We explain the compositional synthesis rule in Section 3.
The synthesis algorithm is presented in Section 4.



266 B. Finkbeiner and S. Schewe

2 Setting

In the distributed synthesis problem, we decide for a pair (A, ϕ), consisting of
an architecture A and a specification ϕ, whether there exists a finite-state pro-
gram (or strategy) for each black-box process in A, such that the joint behavior
satisfies ϕ.

Architectures. An architecture

A = (B, W, {Ip}p∈B�W�{env}, {Op}p∈B�W�{env}, {sw}w∈W )

is given as a set of processes P = B.W .{env} that is decomposed into a set B
of black-box processes that have to be developed, a set W of white-box processes
that already have an implementation {sw}w∈W , and the external environment
env . The processes communicate through a set V of shared variables, which
also serve as atomic propositions in the specification. Each process p ∈ P has
a fixed set of input and output variables Ip, Op ⊆ V , such that the family of
output variables {Op}p∈P decomposes V. The environment is always omniscient
(Ienv = V ).

Implementations. A process p is implemented by a (nondeterministic) strat-
egy, i.e., a function sp : (2Ip)∗ → 22Op

∅ (where 2X
∅ = 2X � {∅} denotes the

nonempty subsets of a set X). A strategy is finite-state if it can be represented
by a finite-state automaton. The implementations {sw}w∈W of the white-box
processes W are fixed for the architecture. An implementation of an architec-
ture is a set of strategies S = {sb}b∈B for the black-box processes.

We use trees as a representation for strategies and computations. As usual,
an Υ -tree is given as a prefix-closed subset Y ⊆ Υ ∗ of all finite words over
a given set of directions Υ . If the set of directions is not important or clear
from the context, we call Y a tree. We define that every non-empty node x · υ,
x ∈ Υ ∗, υ ∈ Υ , has the direction dir (x · υ) = υ and the empty word ε has
some designated root-direction dir (ε) = υ0 ∈ Υ . An Υ -tree Y is called total, if it
contains the empty word ε ∈ Y and every element y ∈ Y of the tree has at least
one successor y · υ ∈ Y, υ ∈ Υ . If Y = Υ ∗, the tree is called full.

For given finite sets Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉, consisting
of a tree Y ⊆ Υ ∗ and a labeling function l : Y → Σ that maps every node of Y
to a letter of Σ. The successor-tree 〈Y, sucset〉 of a tree Y is the 2Υ -labeled Υ -
tree, where every node is labeled with the set of its successors sucset : Y → 2Υ ,
sucset : y �→ {υ ∈ Υ |y · υ ∈ Y }.

For a set Ξ × Υ of directions and a node x ∈ (Ξ × Υ )∗, hideΥ (x) de-
notes the node in Ξ∗ obtained from x by replacing (ξ, υ) by ξ in each let-
ter of x. For a Σ-labeled Ξ-tree 〈Ξ∗, l〉 we define the Υ -widening of 〈Ξ∗, l〉,
denoted by wideΥ (〈Ξ∗, l〉), as the Σ-labeled Ξ × Υ -tree 〈(Ξ × Υ )∗, l′〉 with
l′(x) = l(hideΥ (x)).

We consider specifications ϕ that are given as CTL, CTL*, or μ-calculus
formulas. Such specifications define a set Mϕ of total 2AP -labeled Υ -trees, where
AP = V denotes the set of atomic propositions in ϕ.



Semi-automatic Distributed Synthesis 267

Let SQ =
⊗
p∈Q

22Op

∅ denote the set of possible common outputs of a set of

strategies for the processes in Q ⊆ B ∪ W . The composition
⊕

p∈Q sp = sQ :
(2V )∗ → SQ of a set of strategies {sp}p∈Q maps the global input history to the
common output of the processes in Q: For 〈(2V )∗, s′p〉 = wide2V �Ip (〈(2V )∗, s′p〉),
sQ : y �→

⊎
p∈Q

s′p(y) naturally defines a SQ-labeled 2V -tree.

A non-distributed implementation of the processes B′ is a function

sB′ : (2IB′ )∗ → SB′ , for IB′ =
⋃

b∈B′
Ib.

A (distributed) implementation is a set of strategies {sb}b∈B′ whose compo-
sition is the widening of a non-distributed implementation: 〈(2V )∗,

⊕
b∈B′ sb〉 =

wide2V �I
B′ (〈(2IB′ )∗, sB′〉) for some non-distributed implementation sB′ .

Realizability. An implementation sB′ of a set B′ ⊆ B of black-box processes
guarantees ϕ against the remaining black-box processes, if for all SB�B′-labeled
2V -trees 〈(2V )∗, sB�B′〉, the total 2V -labeled 2V -tree 〈Y, dir 〉, whose branching
restriction sucset(y) = (sB′ ⊕

⊕
w∈W sw ⊕ sB�B′)(y) × 2Oenv is defined by the

strategies, is a model of ϕ.
We say that a specification is realizable by the processes B′ ⊆ B for a given ar-

chitecture (B, W, {Ip}p∈B�W , {Op}p∈B�W , Oenv , {sw}w∈W ), (A, B′) � ϕ, if there
is a distributed implementation of the processes B′ that guarantees ϕ against
B�B′. A specification is realizable if it is realizable by the entire set of black-box
processes B.

3 A Compositional Synthesis Rule

The compositional synthesis rule reduces the realizability of a distributed system,
(A, B) � ψ, to the realizability of single processes, (A, {b}) � ϕb, for each black-
box process b ∈ B. The proof rule requires an auxiliary specification ϕb for each
process b ∈ B. If each process b guarantees ϕb against the remaining black-box
processes, the distributed system can be implemented to satisfy ψ.

For a distributed architecture A with a set of black-
box processes B = {b1, · · · , bn}, and CTL* or μ-
calculus formulas ψ, ϕb1 , . . .ϕbn ,

(R0) (A, ∅) �
∧

b∈B

ϕb → ψ

(R1) (A, {b1}) � ϕb1
...

...
(Rn) (A, {bn}) � ϕbn

(A, B) � ψ



268 B. Finkbeiner and S. Schewe

Premise (R0) shows that the auxiliary formulas ϕb1 , . . . , ϕbn strengthen the
original formula ϕ and hence any implementation that satisfies ϕb1 , . . . , ϕbn must
also satisfy ϕ. Premises (R1) through (Rn) prove that there are, for all bi in B,
strategies sbi that guarantee ϕbi against the remaining black-box processes.

Theorem 1. The proof rule is sound.

Proof. Premises (R1) through (Rn) guarantee that, for each b ∈ B, there is an
implementation sb that guarantees ϕb against the remaining black-box processes
B�{b}. Consequently, the strategies can be fixed independently; the distributed
implementation thus obtained satisfies ϕb for all b ∈ B and hence

∧
b∈B

ϕb. Premise

(R0) guarantees that every non-distributed implementation of
∧

b∈B

ϕb is also an

implementation of ψ. As the distributed implementations form a subset of the
non-distributed implementations, the claim holds true. ��

To show the completeness of the distribution rule, we derive the auxiliary
formulas from a given implementation that realizes the specification: for a given
architecture, we call a specification strict, if it completely determines its imple-
mentation. An implementation can be described by a strict LTL specification ϕ.
A distributed implementation can be described by a strict specification ϕb for
every black-box component b ∈ B, such that ϕ =

∧
b∈B

ϕb is a strict specification

for the implementation.

Theorem 2. The proof rule is complete.

Proof. Assume there is a distributed implementation for a specification ψ and
ϕ =

∧
b∈B

ϕb is a strict specification for this implementation. Then (A, {b}) � ϕb

holds true for each b ∈ B. The implementation of ϕ is completely determined
and (A, ∅) � ϕ → ψ requires that every specification of ϕ is an implementation
of ψ. As the unique implementation is by definition an implementation of ψ,
(A, ∅) � ϕ → ψ also holds true. ��

4 Single-Process Synthesis

We now develop a procedure that checks if a specification can be guaranteed by
a single black-process b against the remaining black-box processes, (A, {b}) � ϕ,
as required for premises (R1) through (Rn), and a procedure that checks if a
specification can be guaranteed by the empty set of black-processes against all
black-box processes, (A, ∅) � ϕ, as required for premise (R0).

Every formula of a temporal logic can be translated into an alternating tree
automaton that accepts exactly its set of models. This automaton is the starting
point for our construction, which consists of a series of tree automata transfor-
mations.



Semi-automatic Distributed Synthesis 269

4.1 Tree Automata

An alternating parity tree automaton is a tuple A = (Σ,Q, q0, δ, α), where Q
denotes a finite set of states, q0 ∈ Q denotes a designated initial state, δ denotes
a transition function, and α : Q → C ⊂ N is a coloring function. The transition
function δ : Q×Σ → B+(Q× Υ ) maps a state and an input letter to a positive
boolean combination of states and directions (for a predefined finite set Υ of
directions).

An alternating automaton runs on full Σ-labeled Υ -trees. A run tree 〈R, r〉
on a given full Σ-labeled Υ -tree 〈Υ ∗, l〉 is a Q× Υ ∗-labeled tree where the root
is labeled with (q0, ε) and where, for each node n with a label (q, y) with the set
of labels of its successors L = {r(n · ρ)|ρ ∈ sucset(n)}, there is a set A ⊆ 2Q×Υ

which satisfies δ(q, l(y)) such that (q′, υ) ∈ A ⇔ (q′, y · υ) ∈ L.
An infinite path fulfills the parity condition, if the highest color of the states

appearing infinitely often on the path is even. A run tree is accepting if all infinite
paths fulfill the parity condition. A total Σ-labeled Υ -tree is accepted if it has
an accepting run tree.

The set of trees accepted by an alternating automatonA is called its language
L(A). L(A) denotes the set of full Σ-labeled Υ -trees not accepted by A. An
automaton is empty, if its language is empty.

The acceptance of a tree can also be viewed as the outcome of a game,
where player accept chooses, for a pair (q,σ) ∈ Q×Σ, a set of atoms of δ(q,σ),
satisfying δ(q,σ), and player reject chooses one of these atoms, which is executed.
The input tree is accepted iff player accept has a strategy enforcing a path that
fulfills the parity condition. One of the player has a memoryless winning strategy,
i.e., a strategy where the moves only depend on the state of the automaton, the
position in the tree and, for player react, on the choice of player accept in the
same move.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulae that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {υ} for all υ ∈ Υ in every
disjunct.

For nondeterministic automata, every node of a run tree corresponds to a
node in the input tree. Emptiness can therefore be checked with an emptiness
game, where player accept also chooses the letter of the input alphabet. A non-
deterministic automaton is empty iff the emptiness game is won by reject.

Symmetric alternating automata are a variant of alternating automata that
run on total Σ-labeled Υ -trees. For a symmetric alternating automaton S =
(Σ,Q, q0, δ, α), Q, q0, and α are defined as before. The transition function δ :
Q × Σ → B+(Q × {�,♦}) now maps a state and an input letter to a positive
boolean combination over atoms that refer to some (♦) or all (�) successor
states.

A run tree on a given Σ-labeled Υ -tree 〈R, r〉 is a Q×Υ ∗-labeled tree where
the root is labeled with (q0, ε) and where, for a node n with a label (q, y) and
a set of labels of its successors L = {r(n · ρ)|ρ ∈ sucset(n)}, the following
property holds: there is a set of atoms A ⊆ 2Q×{�,♦} satisfying δ(q, l(y)) such



270 B. Finkbeiner and S. Schewe

that ∀q′ ∈ Q.((q′, �) ∈ A ⇒ ∀υ ∈ sucset(x).(q′, y ·υ) ∈ L)∧ ((q′,♦) ∈ A ⇒ ∃υ ∈
sucset(x).(q′, y · υ) ∈ L).

We introduce a function suc : (Q×Σ → B+(Q×{�,♦})) → (Q×Σ×2Υ
∅ →

B+(Q × Υ )) that translates the transition function of a symmetric alternating
automaton running on total Σ-labeled Υ -trees into the corresponding transition
function of an alternating automaton running on full Σ × 2Υ

∅ -labeled Υ -trees.
For the set 2Υ

∅ = 2Υ � {∅} of possible sets of successors, suc(δ) : Q×Σ × 2Υ
∅ →

B+(Q × Υ ) maps a state, an input letter and a set of successors to a positive
boolean combination of states and directions.

4.2 Overview

We represent the joint behavior of a system as a total 2V -labeled 2V -tree 〈Y, dir〉,
where the label is completely determined by the direction. The process strategies
determine the tree: By the proper widening of a strategy s′p : (2V )∗ → 22Op

∅ , each
input history (or initial sequence of a path) is mapped to a nonempty subset
of 2Op , restricting the set of successors. The nodes of Y consist of the root and
all nodes y · υ whose predecessor y is in Y , and whose direction agrees with the
decisions of the processes: y · υ ∈ Y ⇔ y ∈ Y ∧ ∀p ∈ B .W.υ ∩Op ∈ s′p(y).

We start our construction with a symmetric automaton Sϕ that accepts the
models of the specification ϕ. Automata transformations are simpler for au-
tomata running on full trees; we therefore represent total trees as full trees by
decorating each node with its own set of successors. Considering a full 2V ×22V

∅ -
labeled 2V -tree 〈(2V )∗, l′〉, where the nodes are additionally decorated with the
sets of relevant successors, one can easily determine the original total 2V -labeled
2V -tree 〈Y, l〉, which we call its characteristic tree.

We continue with an automaton that accepts those full 2V × 22V

∅ -labeled
2V -trees whose characteristic tree is a model of ϕ. The labeling of the nodes
(2V )∗ � Y of 〈(2V )∗, l′〉 that are not on the characteristic tree has no influence
on the acceptance of the tree. We restrict the language under consideration to
2V × Sb × SW × SB′ × S-labeled 2V -trees, where Sb, SW , SB′ and S describe
the possible restrictions on the successor sets induced by the black-box process
b, the set of white-box processes W , the remaining black-box processes B′ =
B � {b}, and the environment, respectively. By that, we obtain an automaton
Aϕ that accepts 2V × Sb × SW × SB′ × S-labeled 2V -trees. Since Sp = 22Op

∅
for all processes1 p ∈ B .W , the sets of possible restrictions can be identified
with SW =

⊗
w∈W Sw, SB′ =

⊗
b�=b′∈B Sb′ and S = {2Oenv} (as we assume the

environment to be maximal).
It remains to find a strategy sb such that for its proper widening s′b,

〈(2V )∗, dir × s′b × (
⊕

w∈W sw) × sB′ × {Oenv}〉 is accepted for all strategies
sB′ : (2V )∗ →

⊗
b�=b′∈B 22O

b′
∅ .

1 For generality, we allow all processes to be nondeterministic. If a subset D ⊆ B �W
of the processes is to be deterministic, one can simply choose, for all p ∈ D, the set
of singleton subsets of 2Op instead of the set of non-empty subsets.



Semi-automatic Distributed Synthesis 271

We first build an automatonRϕ that accepts a 2V ×Sb×SW -labeled 2V -tree,
if its complete cylinder is accepted by Aϕ, establishing independence from the
decision of the black-box processes. Sbsequently, we use the determination of
the 2V and SW fraction of the label to defer an automaton Dϕ that accepts all
strategy trees 〈(2V )∗, sb〉 that would guarantee ϕ against the remaining black-
box processes if process b were omniscient. This automaton is then transformed
into an automaton Bϕ accepting the strategies of b (22Ob

∅ -labeled 2Ib-trees).
Checking this automaton for emptiness answers the question of realizability.

In case of realizability, the emptiness test can be extended to synthesize a finite-
state strategy for b.

In summary, our construction consists of seven steps:

1. From formulas to automata: We construct a symmetric alternating au-
tomaton Sϕ that accepts the models of ϕ.

2. Characteristic trees: The alternating automaton Aϕ accepts a 2V × Sb ×
SW × SB′ × S-labeled 2V -tree if its characteristic tree is accepted by Sϕ.

3. Quantification: The alternating automaton Rϕ accepts a 2V × Sb × SW -
labeled 2V -tree if all SB′ × S extensions are accepted by Aϕ.

4. Adjusting for white-box processes: The alternating automaton Wϕ ac-
cepts a 2V ×Sb-labeled 2V -tree if the 2V ×Sb×SW -labeled 2V -tree obtained
by adding the decisions of the white-box processes is accepted by Rϕ.

5. Pruning directions from the labeling: The alternating automaton Dϕ

accepts a Sb-labeled 2V -tree if the 2V ×Sb-labeled 2V -tree obtained by adding
the direction of a node to the label is accepted by Wϕ.

6. Narrowing: The alternating automaton Bϕ accepts a Sb-labeled 2Ib-tree if
its proper widening is accepted by Dϕ.

7. Emptiness check: The realizability claim (A, {b}) � ϕ holds true iff Bϕ is
not empty. To perform an emptiness test, Bϕ can be transformed into an
equivalent nondeterministic automaton Cϕ, which can be checked for empti-
ness by solving the emptiness game. A winning strategy in the emptiness
game implies an implementation for the process b.

In the following, we discuss the automata transformations in detail.

4.3 Automata Transformations

From formulas to automata. We use standard constructions to translate a
temporal specification ϕ into a symmetric alternating automaton Sϕ that accepts
the models of the formula: L(Sϕ) = Mϕ.

Theorem 3. Given a CTL specification ϕ, we can construct a symmetric alter-
nating automaton Sϕ with O(|ϕ|) states and two colors such that L(Sϕ) = Mϕ

[8]. Given a CTL* specification ϕ, we can construct a symmetric alternating au-
tomaton Sϕ with 2O(|ϕ|) states and five colors such that L(Sϕ) = Mϕ [8]. Given
a μ-calculus specification ϕ, we can construct a symmetric alternating automa-
ton Sϕ with O(|ϕ|2) states and O(|ϕ|) colors such that L(Sϕ) = Mϕ [6]. ��



272 B. Finkbeiner and S. Schewe

Characteristic trees. For a Σ × Ξ-labeled Υ -tree 〈Y, l〉, we denote the Σ-
projection proj Σ : 〈Y, l〉 �→ 〈(Y, lΣ〉 with l(y) = (σ, ξ) ⇒ lΣ : y �→ σ that maps
Σ ×Ξ-labeled Υ -trees to Σ-labeled Υ -trees.

For a full Σ×2Υ
∅ -labeled Υ -tree 〈Υ ∗, l〉, we define the characteristic tree as the

total Σ-labeled Υ -tree 〈Y, lc〉 = char (〈Υ ∗, l〉) to be the sub-tree of proj Σ(〈Υ ∗, l〉)
with y ∈ Y ⇒ ∀υ ∈ Υ.y · υ ∈ Υ ⇔ υ ∈ proj 2Υ

∅
(〈Υ ∗, l〉). Intuitively, the second

argument in the label defines the set of successors of a node.

Lemma 1. Given a symmetric alternating automaton S = (Σ,Q, q0, δ, α), run-
ning on total Σ-labeled Υ -trees, we can construct an alternating automaton
A = (Σ × 2Υ

∅ ,Q, q0, suc(δ), α) that accepts a full Σ × 2Υ
∅ labeled Υ -tree 〈Υ ∗, l〉,

iff proj Σ(char (〈Υ ∗, l〉)) is accepted by S.

Proof. Let 〈T, lT 〉 = char (〈Υ ∗, l〉). Then the successor set of a node x ∈ T is
defined by the label: sucset(x) = proj 2Υ

∅
(lT (x)) = proj 2Υ

∅
(l(x)). ��

Quantification. To construct an alternating automaton Rϕ that accepts a
2V × Sb × SW -labeled 2V -tree if all SB′ × S extensions are accepted by Aϕ, we

1. complementAϕ, i.e., we compute an alternating automaton Iϕ with L(Iϕ) =
L(Aϕ),

2. build a nondeterministic automaton Nϕ with the same language L(Nϕ) =
L(Aϕ),

3. compute a nondeterministic automaton Pϕ that accepts a 2V × Sb × SW -
labeled 2V -tree if it is the the SB′ × S-projection of a tree accepted by Nϕ,

4. complement Pϕ, i.e., we compute an alternating automaton Rϕ with
L(Rϕ) = L(Pϕ).

Lemma 2. [9] Given an alternating automaton A = (Σ,Q, q0, δ, α) that runs
on Σ-labeled Υ -trees, the dual automaton I = (Σ,Q, q0, δ, α + 1), where δ is the
function dual to δ, accepts a tree 〈Υ ∗, l〉 iff 〈Υ ∗, l〉 is not accepted by S. ��

Lemma 3. [2,10] Given an alternating automaton A with n states and c colors,
we can construct an equivalent nondeterministic automaton N with nO(c·n) states
and O(c · n) colors. ��

Lemma 4. Given a nondeterministic automaton N = (Σ × Ξ,Q, q0, δ, α) that
runs on Σ × Ξ-labeled Υ -trees, we can construct a nondeterministic automaton
P = (Σ,Q, q0, δ

′, α) that accepts a Σ-labeled Υ -tree 〈Υ ∗, l〉 iff there is a Σ ×Ξ-
labeled Υ -tree 〈Υ ∗, lΞ〉 accepted by N with 〈Υ ∗, l〉 = proj Σ(〈Υ ∗, lΞ〉).

Proof. P can be constructed by using δ′ to guess the correct tree: we set δ′ :
(q,σ) �→

∨
ξ∈Ξ δ(q, (σ, ξ)). ��

In the following two transformations, the decisions of the white-box processes
and the labeling imposed by the directions are deleted from the label.



Semi-automatic Distributed Synthesis 273

Adjusting for white-box processes. The SW fraction of the label represents
the decisions made by the white box processes. Consequently, we are only inter-
ested in those trees, where the label of every node is in accordance with these
decisions. This information is then redundant and can be pruned. We assume
that the composed strategy

⊕
w∈W sw of the white-box processes is represented

as a finite-state automaton O = (2V , O, o0, dW , oW ), where O is a set of states,
o0 the initial state, the transition function dW : 2V ×O → O is a mapping from
the input alphabet and the set of states to the set of states, and the output
function oW : O → 22OW

∅ maps each state to a nonempty set of output letters.
The following operation performs the pruning; the state-space of the resulting
automaton is linear in the state-space of the original automaton and the number
of states of O, while the set of colors remains unchanged.

Lemma 5. Given an alternating automaton R = (Σ × Ξ,Q, q0, δ, α) over
Σ × Ξ-labeled Υ -trees and a finite automaton O = (Σ, O, o0, dW , oW ) that
produces a Ξ-labeled Υ -tree 〈Υ ∗, l〉, we can construct an alternating automa-
ton W = (Σ,Q× O, (q0, o0), δ′, α′) over Σ-labeled Υ -trees, such that W accepts
〈Υ ∗, l′〉 iff R accepts 〈Υ ∗, l′′〉 with l′′ : y �→ (l′(y), l(y)).

Proof. If δ : (q,σ, ξ) �→ b(q,σ,ξ)({qi, υi}i∈I), we can set δ′ : (q, o,σ) �→
b(q,σ,oW (o))({qi, dW (σ, o), υi}i∈I). The coloring function can simply be set to
α′ : (q, o) �→ α(q). ��

Pruning directions from the labeling. We are only interested in those trees
where the label of every node is in accordance with its direction. This information
then becomes redundant and can be pruned. The following operation performs
this pruning; the state-space of the resulting automaton is linear in the state-
space of the original automaton, while the set of colors remains unchanged.

For a Σ-labeled Υ -tree 〈Υ ∗, l〉, we define the function xray : 〈Υ ∗, l〉 �→ 〈Υ ∗, l′〉
with l′(x) = (dir (x), l(x)) that maps Σ-labeled Υ -trees to Υ ×Σ-labeled Υ -trees.

Lemma 6. [8] Given an alternating automaton W = (Υ × Σ,Q, q0, δ, α) over
Υ ×Σ-labeled Υ -trees, we can construct an alternating automaton D = (Σ,Q×
Υ, (q0, υ0), δ′, α′) over Σ-labeled Υ -trees, such that D accepts 〈Υ ∗, l〉 iff R accepts
xray(〈Υ ∗, l〉). ��

The transition function δ′ : Q×Υ ×Σ → B+(Q×Υ ×Υ ) can be constructed
from δ : Q× Υ ×Σ → B+(Q× Υ ) by replacing all occurrences of (q, υ) in each
δ(q′, υ′,σ′) by (q, υ, υ), storing the direction as quasi-input. α′ : (q, c) �→ α(q)
simply evaluates the first component of the new state-space.

Narrowing. The process b is in general not omniscient, and its output may
only depend on the history of the input visible to b. The following transformation
therefore accepts a 2Op-labeled 2Ip-tree if its proper widening is accepted by Dϕ.
The state-space and the set of colors remain unchanged.

Lemma 7. [8] Given an alternating automaton D = (Σ,Q, q0, δ, α) over
Σ-labeled Ξ × Υ -trees, we can construct an alternating automaton B =



274 B. Finkbeiner and S. Schewe

(Σ,Q, q0, δ
′, α) over Σ-labeled Ξ-trees, such that B accepts 〈Ξ∗, l〉 iff W ac-

cepts wideΥ (〈Ξ∗, l〉). ��

δ′ can be constructed from δ by replacing all occurrences of (q, (ξ, υ)) by
(q, ξ) in δ(q′,σ) for all q, q′ ∈ Q,σ ∈ Σ, ξ ∈ Ξ and υ ∈ Υ .

Emptiness check. To perform an emptiness test, Bϕ can be transformed into
an equivalent nondeterministic automaton Cϕ.

Theorem 4. Given a symmetric alternating automaton Sϕ that accepts
the models of ϕ, an architecture (B, W, {Ip}p∈B�W�{env}, {Op}p∈B�W�{env},
{sw}w∈W ) and a designated black-box process b ∈ B, we can construct a nonde-
terministic automaton Cϕ that accepts a full 2Op-labeled 2Ip-tree 〈(2Ip)∗, sb〉 iff
sb guarantees ϕ against B � {b}. If S has n states and c colors, C has 2nO(n·c)

states and nO(n·c) colors.

Proof. By applying the transformation steps in the order described in the
overview of the algorithm, we obtain an alternating automaton Bϕ with nO(n·c)

states and O(n · c) colors that accepts an implementation 〈(2Ib)∗, sb〉 of a pro-
cess b if it guarantees ϕ against B � {b}. A nondeterminisation of Bϕ by the
construction of Lemma 3 provides the required automaton. ��

Theorem 5. For a given architecture A and a black-box process b, we can check
(A, {b}) � ϕ and, if the claim is true, provide an implementation for b guarantee-
ing ϕ, in 2EXPTIME in the length |ϕ| if ϕ is a CTL or μ-calculus specification,
and in 3EXPTIME in |ϕ| if ϕ is a CTL* specification, respectively.

Proof. By Theorem 3, we can turn a specifications ϕ in CTL, μ-calculus or CTL*
with length n = |ϕ| into a symmetric alternating automaton S with O(n) states
and two colors, O(n2) states and O(n) colors or 2O(n) states and five colors,
respectively.

By Theorem 4, we can transform the symmetrical alternating automaton S
into a nondeterministic automaton C, accepting the strategies of b that guarantee
ϕ against the remaining black-box processes. C has 2nO(n)

states and nO(n) colors,

2nO(n3)
states and nO(n3) colors or 222O(n)

states and 22O(n)
colors, respectively.

The actual emptiness test or the synthesis of a strategy for process n can
be done in time polynomial in the state-space and exponential in the number of
colors. More precisely, if C has m states and c colors, a strategy (or the proof
of emptiness) can be found in mO(c) time [11]. The overall time complexity is

hence 2nO(n)
, 2nO(n3)

and 222O(n)

, respectively. ��

Lower Bounds. To demonstrate that the upper bounds are sharp, we give
a reduction from the synthesis problem in reactive environments with complete
information, which is known to be 2EXPTIME and 3EXPTIME hard for CTL
and CTL*, respectively [7]. In synthesis with reactive environments and complete
information, we have only one process b, for which a (deterministic) strategy



Semi-automatic Distributed Synthesis 275

sb : (2Oenv )∗ → Sb is sought (where Sb is the set of singleton subsets of 2Oenv .
The environment can react on the input by restricting its actions to a non-empty
subset of its output variables Oe, which can be viewed as a non-deterministic
strategy se : (2Oenv∪Ob)∗ → 22Oe

∅ ). In our terms, a strategy sb : (2Oenv )∗ → Sb

implements a specification ϕ if, for all strategies se : (2Oenv∪Ob)∗ → 22Oenv

∅ of the
environment, sb × se is a model of ϕ.

We encode this synthesis problem as the realizability of ϕ by b against a black-
box process e with output Oe and an environment without output. The second
black-box process e plays the rôle of the reactive environment. Formally, we de-
fine the architecture A = ({b, e}, ∅, {Ib = Oe, Ie = Ienv = V }, {Ob, Oe, Oenv =
∅}, ∅). The determinacy of sb can be guaranteed by the construction (by setting
Sb to the set of singleton subsets of 2Ob). Alternatively, we can ensure the deter-
minacy of sb by strengthening the specification ϕ such that only deterministic
strategies are allowed: For ψ =

∧
o∈Ob

AG (EXo → AXo), we can solve the

realizability problem for ϕ′ = ϕ ∧ ψ (which is linear in ϕ).

Theorem 6. The realizability problem (A, {b}) � ϕ is 3EXPTIME complete for
CTL* and 2EXPTIME complete for CTL and μ-calculus specifications in the
size |ϕ| of the specification.

Proof. The lower bounds for CTL and CTL* follow from the equal lower bounds
for the synthesis problem with reactive environments. The lower bound for the
μ-calculus is established by the lower bound for CTL. The upper bound is demon-
strated by Theorem 5. ��

Premise R0. The correctness of premise R0 can be checked along the same
lines: we check whether the empty strategy guarantees

∧
b∈B

ϕb → ψ against all

black-box processes. Since Sb = {∅} and Ib = ∅, the automaton Bϕ (with n states
and c colors) is an alternating word automaton over the single-letter alphabet,
whose emptiness can be checked in nO(c) time. Checking (R0) is therefore in
EXPTIME for CTL and μ-calculus specifications and in 2EXPTIME for CTL*
specifications, respectively, in |

∧
b∈B

ϕb → ψ|.

5 Conclusions

In open synthesis, where we synthesize a system that consists of a single process,
it is safe to assume that the environment behavior is maximal. For the synthesis
of a black-box process in the architecture of a general distributed system, the
environment model needs two extensions: (1) The other black-box processes add
a reactive component to the environment and (2) the process only has incomplete
information about the environment behavior.

Extension (1) turns out to be expensive. Adding the reactive compo-
nent increases the complexity for CTL specifications from EXPTIME [8] to



276 B. Finkbeiner and S. Schewe

2EXPTIME [7], and for CTL* specifications from 2EXPTIME [8] to 3EXPTIME
[7]. As shown in Section 4, extension (2) has no extra cost. This settles an open
question of [7]: The complexity of synthesizing a single process in a distributed
architecture is still 2EXPTIME and 3EXPTIME, respectively.

The complexity of single-process synthesis is especially convincing in com-
parison to the cost of distributed synthesis: in the rare cases where distributed
synthesis is decidable, the cost of synthesizing a distributed system with n pro-
cesses (with distinguishable degree of information about the system state) is
n-exponential in the size of the specification [1,2].

Dividing the synthesis problem into several synthesis problems for single
processes therefore appears as a promising approach to cope with the complexity
and general undecidability of distributed synthesis. The situation is similar to
the verification of distributed systems, where the compositional approach is well-
established [12]. Our proof rule in Section 3 is a first example of a compositional
synthesis technique. The rule is complete and therefore sufficient to decompose
any realizable specification. The rule may, however, be less convenient to use than
some compositional verification rules that, for example, apply circular assume-
guarantee reasoning [13]. Defining such rules for the synthesis problem is an
interesting topic of future research.

References

1. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: IEEE Sympo-
sium on Logic in Computer Science. (2001)

2. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: IEEE Symposium
on Logic in Computer Science. (2005)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc. IBM Workshop on Logics of Pro-
grams. Volume 131 of LNCS., Springer-Verlag (1981) 52–71

4. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

5. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Proc. 2nd
International Conference on Temporal Logic (ICTL’97). (1997)

6. Kupferman, O., Vardi, M.Y.: μ-calculus synthesis. In: Proc. 25th International
Symposium on Mathematical Foundations of Computer Science. Volume 1893 of
LNCS., Springer-Verlag (2000) 497–507

7. Kupferman, O., Madhusudan, P., Thiagarajan, P., Vardi, M.Y.: Open systems
in reactive environments: Control and synthesis. In: Proc. 11th Int. Conf. on
Concurrency Theory. Volume 1877 of LNCS., Springer-Verlag (2000) 92–107

8. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5 (1999) 245–263

9. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput.
Sci. 54 (1987) 267–276

10. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of rabin, mcnaughton
and safra. Theor. Comput. Sci. 141 (1995) 69–107



Semi-automatic Distributed Synthesis 277

11. Jurdziński, M.: Small progress measures for solving parity games. In: 17th Annual
Symposium on Theoretical Aspects of Computer Science. Volume 1770 of LNCS.,
Springer-Verlag (2000) 290–301

12. de Roever, W.P., Langmaack, H., Pnueli, A., eds.: Compositionality: The Signifi-
cant Difference. COMPOS’97. Volume 1536 of LNCS. (1998)

13. Maier, P.: A Lattice-Theoretic Framework For Circular Assume-Guarantee Rea-
soning. PhD thesis, Universität des Saarlandes, Saarbrücken (2003)



A New Graph of Classes for the Preservation

of Quantitative Temporal Constraints

Xiaoyu Mao1, Janette Cardoso2, and Robert Valette3

1 IRIT-UT1/LAAS, Toulouse, France,
2 IRIT-UT1, 21, allées de Brienne, 31042 Toulouse, France

3 LAAS-CNRS, 31077 Toulouse, France
xmao@etud.insa-toulouse.fr, jcardoso@univ-tlse1.fr, robert@laas.fr

Abstract. The objective of this paper is to present a new abstract state
space for t-time Petri nets which associates with each path in this space
a sequence effectively firable in the net. This means that this state space
has to exactly (in a quantitative way) define the set of constraints which
have to be verified by the firings. After some definitions about the Simple
Temporal Networks, the abstract states are defined as well the generation
of the abstract space. It is shown that this space does not coincide with
the two previously defined spaces (W and A) in TINA.

1 Introduction

For checking some properties of critical embedded systems such as the timeli-
ness property for correct environment interaction, it is frequently necessary to
consider specific scenarios of operations and to analyze the temporal constraints
which have to be verified by the events composing them [Ri 05].

Other properties (related for example to the fact that a state is not reach-
able) imply the exhaustive search for all the states of a system. When tem-
poral constraints exist, the states, in an infinite number, can be covered by a
finite set of state classes for bounded Petri nets. In this case, a graph of state
classes can be built in order to study the system, where nodes are state classes
and the arc from a class C to a class C′ is labeled by the transition t (lead-
ing from C to C′). Several kinds of classes have been proposed according to
the kind of properties to be proven (properties expressed in LTL or in CTL
for instance) [Me 85, Yo 98, Be 04, Ca 05]. Some approaches allow deriving the
temporal constraints associated with a given scenario, directly from the Petri
net [PR 99, Ri 01, Ri 05]. However, they cannot be used efficiently for t-time
Petri nets with strong semantics and interleaving. In order to correctly delimit
the domains of the variables attached to the firing dates in a transition firing
sequence, it is necessary, in the case of a t-time Petri net with strong semantics,
to know the transition enabling dates. This implies that, for each transition, the
date of the firing which has produced the last token is known. In consequence, it
is necessary to proceed in the context of interleaving semantics and therefore to
explicitly consider states and firing sequences (in contrast with [PR 99, Ri 01]
where the approach is based on scenarios i.e. partial orders).

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 278–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A New Graph of Classes for the Preservation 279

It is clear that it is always possible, given a firing sequence possibly derived
from a graph of classes, to obtain a set of constraints delimiting the firing dates
by considering both the Petri net and the graph of classes [Sc 04]. In this paper,
the proposed approach is to construct a graph of classes with sets of constraints
attached to its arcs, such that the constraints which have to be verified by the
firing dates for any sequence in the net, are directly derived by concatenating
the constraints attached to the arcs covered by the corresponding sequence in
the graph of classes.

2 Basic Notions

2.1 Simple Temporal Network

Definition 1 (Simple temporal network). A simple temporal network N is
composed of a finite set V of variables vi and a finite set C of binary constraints
Cij(vi, vj) defined as convex intervals [cmij , cMij ] delimiting the possible distance
between two variables vi and vj of V . Each Cij is therefore equivalent to: cmij ≤
vj − vi ≤ cMij vi, vj ∈ V.

Definition 2 (Complete network). A simple temporal network N is complete
iff a constraint Cij is associated with each pair of variables.

Definition 3 (Minimal network). A complete simple temporal network N =
(V, C) is minimal iff ∀vi, vj ∈ V and ∀c ∈ Cij (cmij ≤ c ≤ cMij), there is an
assignment of values to all the variables of V which verifies all the constraints
and such that vj − vi = c.

The Floyd-Warshall algorithm, derives a complete and minimal simple tem-
poral network from any consistent (having at least one solution) simple temporal
network [De 91, Gh 04]. After applying this algorithm, the new resulting con-
straint Cij = [dmij , dMij ] is such that dmij is the best possible lower bound, dMij

is the best possible upper bound and these bounds are actually reached for at
least one set of assignments of all the variables of V verifying all the constraints
of C.

Definition 4 (Intersection). The intersection of two simple temporal net-
works N = (V, C) and N ′ = (V ′, C′) is the simple temporal network N” =
N ∩N ′ = (V ”, C”) such that: i) V ” = V ∩V ′, ii) ∀vi, vj ∈ V ”, C”ij = Cij ∩C′ij .

The constraints are given by the intersection of the intervals. If one of these
intersections is empty, the simple temporal network N” is inconsistent in an
obvious way.

Definition 5 (Union). Let us consider two temporal networks N = (V, C) and
N ′ = (V ′, C′) such that: ∀vi, vj ∈ V ∩V ′, Cij = C′ij. The union N” = N ∪N ′ is
a simple temporal network (V ”, C”) such that: i) V ” = V ∪V ′, ii) C” = C ∪ C′.

It has to be pointed out that as for any pair of variables vi and vj belonging
both to N and N ′, the constraints Cij and C′ij are the same in N and N ′, and
the union of the sets of constraints C and C′ is always consistent.



280 X. Mao, J. Cardoso, and R. Valette

2.2 t-Time Petri Nets

Definition 6. A t-time Petri Net [Be 91, Be 04] is a 3-tuple < N , M0, I >
where:

– N =< P, T, Pre, Post > is a Petri net,
– M0 : is the initial marking,
– I : T → (Q+ ∪ 0) ∗ (Q+ ∪∞) is the static interval function.

The static interval function I associates with each transition ti a temporal
interval [ai, bi] (see figure 1) that represents the set of its possible firing dates
counting from its enabling date.

Fig. 1. Example of a t-time Petri net

Typically, for t-time Petri nets, the operational semantics includes the so-
called strong semantics which enforces the firing of one of the enabled transitions
before the earliest of all the latest firing dates for the enabled transitions. This
means that a transition cannot remain enabled without being fired after the end
of its firing interval. In this paper, it is assumed that there is no memory of
the enabling time of a transition in the past and transitions may be enabled
concurrently.

In a t-time Petri Net, the following events associated with a transition (and
the corresponding temporal variables) must be taken into account: the enabling
date, begin/end of the firing interval and firing date. The following constraints
must be verified between the variables corresponding to these events:

– the enabling date of a transition is equal (not greater) to the firing date of
the last transition which has contributed to its enabling,

– the transition firing date should be included in its firing interval I.

These relations can be expressed by simple binary constraints when the op-
erational semantics is such that only firing sequences (totally ordered) are con-
sidered (interleaving semantics). In consequence, simple temporal networks are
an adequate framework to analyze the temporal constraints generated by t-time



A New Graph of Classes for the Preservation 281

Petri nets. In the following, only two types of variables are considered: xk
i which

is the variable denoting the date of the kith firing of transition ti and yi which
denotes the upper bound of the firing interval of enabled transition ti.

3 Definition of States and State Classes

3.1 State of a t-Time Petri Net

Let us consider the execution of a firing sequence σ = t1 ; · · · ; ti ; tj ; · · · ; tn in
a t-time Petri net. A transition can be fired several times in a sequence. We
consider a firing of transition ti which is the oith firing of this transition and the
next firing in σ is the ojth firing of tj . The corresponding variables are xoi

i for ti
and xoj

j for tj .
Given a specific execution of σ, the state after the firing of ti is the obtained

marking associated with the current clock value and the firing dates of all the
transitions preceding ti in σ in order to compute the remaining firing intervals
for each enabled transition.

3.2 State Classes

A class is composed of all the states which are reachable by an execution of σ
after the firing of ti and before that of tj . The class has to allow the accurate
definition of all the constraints which have to be verified by the firing date of
transitions tj and by the following ones in σ. This means that it is necessary to
be able to derive not only the distance of xoj

j and xoi
i , but also the distance of

xoj
j with all the preceding firing dates in σ.

In order to have a finite number of classes, it is necessary to forget a part of
the past. Instead of keeping all the variables corresponding to the past transition
firings and the corresponding simple temporal network, it is possible to only keep
a fragment of it.

After having defined this fragment, the paper gives the procedure of construc-
tion of the temporal constraints which variable xoj

j must verify. These constraints
are attached to the arcs of the graph of classes under the form of a simple tempo-
ral network. Then it is proven that the fragment is sufficient, i.e. that considering
more variables and more constraints about the past events would not modify the
simple temporal networks attached to the arcs.

Definition 7. The initial state class C0 is defined by the tuple (M0, Nc0) where:

– M0 is the initial marking of the net; it is assumed that n0 transitions are
enabled by M0,

– Nc0 is the temporal network composed only of the variable x0 representing
the time origin.



282 X. Mao, J. Cardoso, and R. Valette

The time origin is the event that has enabled all n0 enabled transition at class
C0 and in a certain way, it is the beginning of the world.

Let σ be a firing sequence t1 ; · · · ; ti of a t-time Petri net, ti the last fired
transition in σ and ts(k) the transition that has enabled a transition tk.

Definition 8. The state class C, obtained after the firing of transition ti, is
defined by the pair {M, Nc} where:

– M is the current marking of the net; it is assumed that n transitions are
enabled by M ,

– Nc is the minimal and complete simple temporal network composed of the
following variables and constraints :
1. the variable xoi

i associated with the last transition firing (ti firing),
2. for each enabled transition tk from M , the variable associated with the

firing of transition ts(k) which has enabled tk, xosk
s(k) (k = 1, . . . , n),

3. the temporal constraints between these variables (minimal and complete
network).

If Cp is the class from which transition ti has been fired, C is the class obtained
by the firing of ti at date xoi

i and Nti,cp the simple temporal network delimiting
ti firing, figure 2 describes the relationships between classes and simple temporal
networks.

Fig. 2. A piece of a graph of classes

For all classes C �= C0, the representation of the past includes the last transi-
tion firing and the firing which has enabled each one of the n enabled transitions
at C. There are two cases:

– two transitions t1 and t2 have been enabled by the same transition ta, the
corresponding variables xos1

s(1) and xos2
s(2) are the same, xos1

s(1) = xos2
s(2) = xoa

a ;
– the last transition firing (represented by variable xoi

i ) is also the event that
enables a transition tj in this class (represented by variable xosk

s(k)), these
variables are the same, xoi

i = xosk
s(k).

In the sequel if a transition ti appears only once in a sequence σ (oi=1), the
corresponding variable is noted xi instead of x1

i .
For example, let us consider the t-time Petri net in figure 1, with the firing

of sequence t2; t3; t1 from initial class C0 with initial marking p1p2p3 and the
temporal network Nc0 given by x0. The class C reached by the firing of this
sequence has the marking p4p5p6. The transitions enabled by this marking are
t4 and t5. The following events must be considered in order to construct Nc:



A New Graph of Classes for the Preservation 283

– the last transition fired in the sequence is ti = t1, and the corresponding
variable is x1;

– t4 has been enabled by t1 firing, so s(4)=1, and xos4
s(4) = x1;

– t5 has been enabled by t3 firing, so s(5)=3, and xos5
s(5) = x3.

The complete definition of the temporal network Nc requires the constraint
values associated with variables x1 and x3. Nc is a fragment of the temporal
network delimiting the last transition firing (t1 in this example). The definition
of the temporal network Nt delimiting the firing of a transition t is defined in
the sequel.

3.3 The Temporal Network Delimiting the Firing of tj

In a reachable marking graph obtained from a classical Petri net (without tem-
poral information), a node corresponds to a marking and an arc between two
nodes (n1, n2) is labeled by the transition whose firing leads from n1 to n2. In
the graph of classes obtained from a t-time Petri net, an arc between two classes
must be labeled, besides the transition, by temporal information delimiting the
firing date of this transition. According to the definition of class and the corre-
sponding definition of temporal information attached to the arc, several graphs
of classes have been proposed allowing to prove different properties of a t-time
Petri net ([Be 91, Yo 98], etc). In our approach, an arc, labeled by a transition
tj , is also associated with a temporal network Ntj,i delimiting the firing date
of tj from Ci. These constraints reflect the memory of the past necessary to
characterize the future events.

Let tj be a transition among the n enabled transitions at class C = (M, Nc)
(def. 8), with Nc = (V c, Cc), and let tl, l �= j be the other n − 1 enabled
transitions at C.

Definition 9. The simple temporal network Ntj,c = (V t, Ct) delimiting the
firing of tj from class C is composed of the following variables and constraints:

1. all variables and constraints from Nc, V t = V c, Ct = Cc,
2. the variable xoj

j (firing date of tj) and the static interval I(tj) as a constraint
between xoj

j and xosj
s(j),

3. the variable yol
l corresponding to each enabled transition tl and the singleton

[dMl, dMl] (the upper bound of static interval I(tl)) as a constraint between
(xosl

s(l), y
ol
l ),

4. the constraint [0,∞[ between xoi
i and xoj

j to express the fact that tj must be
fired after ti,

5. the constraint [0,∞[ between the pairs (xoj
j , yol

l ), l �= j, to express the fact
that tj must be fired before the upper bound of the firing interval of transi-
tions tl.



284 X. Mao, J. Cardoso, and R. Valette

The minimal and complete Ntj,c is obtained after applying Floyd-Warshall
algorithm. All variables yol

l and the constraints to which they are directly con-
nected can be deleted (proved in section 3.4).

Step 1 indicates that Nc is a fragment of Ntj,c, Nc ⊆ Ntj,c. By the way,
variables xosj

s(j) and xosl
s(l) in Steps 2 and 3 respectively belong to Nc (def. 8), since

they correspond to transitions which have enabled one of n enabled transitions
in C. Step 4 is imposed by the interleaving semantics and step 5 is imposed by
the strong semantics. If the network is not consistent, it means that tj cannot
be fired before the other n− 1 transitions tl.

Let us consider the initial class C0 of the net in fig. 1, with M0 = p1p2p3 and
Nc0 : x0. Let us consider the firing of t2 (at date x2), delimited by Nt2,0. At the
beginning, Nt2,0 = Nc0 : x0 (step 1); node x2 and arc (x0, x2)=[0 0] are added
(s(2) = 0, step 2). As t1 and t3 are also enabled at C0, nodes y1 and y3 as well arcs
(x0, y1)=(x0, y3)=[3 3] are added (s(1) = s(3) = 0, step 3). Arc (x0, x2)=[0 ∞[
(i = 0, step 4) is also added, as well (x2, y1)=(x2, y3)=[0 ∞[ (step 5), leading to
Nt2,0 of fig. 3.a. After Floyd-Warshall algorithm, the obtained Nt2,0 is the one
of fig. 3.b. The final Nt2,0 is represented by the dotted arc of this figure.

Fig. 3. Temporal network Nt2,0 delimiting t2 firing from C0

It is important to remark that the simple temporal network Nc′ of the class
C′ reached after the firing of tj is also included in Ntj,c. In fact, all n′ enabled
transitions at C′ have been enabled by the firing of tj (xj ∈ Ntj,c) or the firing
of a previous transition t in the sequence leading to C (x ∈ Nc ⊆ Ntj,c).

3.4 Proofs

Proving that yol
l can be Deleted. After Floyd-Warshall execution, variables

xosl
s(l) and yol

l are redundant because the constraints connecting them are sin-
gletons. Indeed knowing the constraint connecting xs(l) (event that has enabled
transition tl) to xk is sufficient to derive the triangle in figure 4.a, because:

dmkl = dM − dmsk and dMkl = dM − dMsk (1)

Proving that the Past can be Forgotten. Let us consider the class C′
obtained from the firing of tj , characterized by the temporal network Nc′ in
fig. 4.b, with a variable xk belonging to the forgotten past. The proof that a



A New Graph of Classes for the Preservation 285

Fig. 4. Temporal network Nt illustrating the proof

part of the past can be forgotten, upon which the definition of class is based,
relies on the assumption that xk cannot restrict the constraints between xj and
the other nodes.

As underlined in section 3.3, the temporal network Ntj,c (delimiting the firing
of a transition tj from a class C) is constructed from the temporal network Nc of
the class C (obtained from the firing of a precedent transition ti in the sequence).

So, if the variables yl are not deleted in step 7 of the procedure given in
section 3.3, the obtained class C′ is composed by 3 kind of constraints: 1) between
xj and xs(j) (event that has enabled transition tj), 2) between xj and xi (the
last transition fired before tj , interleaving semantics) and 3) between xj and yl,
l �= j (strong semantics). Only y1 is represented in the figure, the other nodes yl

are identical. The constraints Ckj is initially equal to [0,∞[.
The longest path of xk towards xj thus passes necessarily by xs(j), xi or

one of nodes xs(l). Let us suppose that it is going through xs(j), so dmkj =
dmks(j) + dms(j)j and dMkj = dMks(j) + dMs(j)j . Can this constraint restricts
[dmij , dMij ], for example? (An arc (xi, xj) = [dmij , dMij ] corresponds to two
arcs (xi, xj) = dMij and (xj , xi) = −dmij = dmji.) In this case:

dmij = dmik + dmkj = dmik + dmks(j) + dms(j)j (2)

dMij = dMik + dMkj = dMik + dMks(j) + dMs(j)j (3)

As the temporal network Nc characterizing the class C is complete and minimal,
dmis(j) ≥ dmik +dmks(j) and dMis(j) ≤ dMik +dMks(j), so the lower bound of the
path going directly through xs(j) is equal or bigger than the one going through
xk (eq. 2), and the upper bound is equal or smaller than it (eq. 3).

The other cases are analogous. Let us take into account the case where the
longest path between xj and xk goes through xs(j) and the one between xk and
yl goes through xs(l). If xk can reinforce the constraint between xj and yl:

dmjl = dmjk + dmkl = dmjs(j) + dms(j)k + dmks(l) + dms(l)l (4)

dMjl = dMjk + dMkl = dMjs(j) + dMs(j)k + dMks(l) + dMs(l)l (5)

But dms(j)s(l) ≥ dms(j)k + dmks(l) and dMs(j)s(l) ≤ dMs(j)k + dMks(l) , so the
lower bound of the path (xj , xs(j), xs(l), yl) is equal or bigger than the one going
through xk, and the upper bound is equal or smaller than it.



286 X. Mao, J. Cardoso, and R. Valette

It is proved that the firing date xk do not constraint the distance between
other nodes, so it can be forgotten in the network construction.

3.5 Restricted Class

The constraints between the events of a class C are obtained from the set of
constraints having to be checked by the transition firing leading to C. Indeed,
the temporal network Nc of class C, reached from ti firing, is a fragment of the
network Nti,cp characterizing the firing date of ti (from a previous class Cp).

During the construction of a temporal network Ntj,c from the class C, some
constraint Ck,l between two nodes xk and xl can become more restricted than
its initial value in the network Nc of C. This means that transition tj can only
be fired from the states of C for which variables xk and xl verify this new,
more restricted constraint Ck,l. This defines a sub-class Crj restricted in order
to permit the firing of tj .

Let C = (M, Nc) be a class, let tj be a transition which can be fired from C
and whose firing date is delimited by the Ntj,c. If Ntj,c ∩Nc �= Nc (see definition
4) then it is necessary to define a restricted class.

Fig. 5. Restricted class Cr of class C

Definition 10. The restricted class Crj = (Mr, Ncr) of class C is defined by

– Mr = M ,
– Ncr is the network Ntj,c ∩Nc after application of Floyd-Warshall

The class Crj characterizes the states from where the transition tj is firable;
these states have been reached by the firing of ti (preceding tj in the sequence
τ = t1; ...; ti; tj) whose firing date has to be consistent with Crj (fig. 5). This
means that this date is delimited by the network Nt′i,cp

= Nti,cp ∩Ncr, which,
after a new application of Floyd-Warshall may be such that Nt′i,cp

∩Ncp �= Ncp

and require so a restricted class Ci
pr for Cp and so on.

3.6 Equivalent Classes

Definition 11. Two classes C = (M, Nc) and C′ = (M ′, Nc′), differing from
the initial class C0, with Nc = (X, C) and Nc′ = (X ′, C′) are equivalent if:



A New Graph of Classes for the Preservation 287

1. they have the same marking, M = M ′,
2. there exists a bijection τ between the elements of X and X ′ such that

– x
′ok
k = τ(xoi

i ) implies k = i (the variables are firing dates of the same
transition)

– if x′i = τ(xi) and x′j = τ(xj) then C′ij (constraint between x′i and x′j) is
equal to Cij (constraint between xi and xj)

Definition 12. A class C = (M, Nc) is equivalent to the initial class C0 =
(M0, x0) if:

1. they have the same marking, M = M0,
2. the set of variables X of Nc is a singleton, X = {xk} (no past memory).

In the above definition, the firing of transition tk leads the system back to
the initial marking M0 and enables all transitions at this marking. That is why
it is equivalent to the beginning of the world.

3.7 Graph of Classes

The graph of classes is composed by classes C = (M, Nc) (def. 7 and 8) and the
arcs connecting them. An arc (C, C′) is labeled by the transition t (leading from
C to C′) and Nti,c delimiting this firing (section 3.3). The graph generator (in
Java) can be downloaded at http://www.irit.fr/∼Janette.Cardoso/feria
as well the algorithm description (AlgoGraphC.pdf) and the manual (readme).

3.8 Sequence Characterization

The temporal network of a sequence σ = t1; ...; ti; tj ; ...; tn from a class C is
given by the union (see definition 5) of the temporal networks delimiting each
transition firing in σ: Ntσ = Nt1,c ∪ . . .Nti,ci ∪Ntj,cj ∪ . . . ∪Ntn,cn.

It must be pointed out that this expression is consistent with the union of sim-
ple temporal networks because by construction Nti,ci ∩ Cj = Cj , Ntj,cj ∩ Cj = Cj

and Nti,ci ∩Ntj,cj = Cj. This means that the constraints between variables be-
longing both to Nti,ci and Ntj,cj are equal, they are those of Cj .

A same sequence σ can be associated with more than one path in the graph
of classes. A particular case appear when σ = t1; ...; ti and the firing of last
transition ti leads to a class C and also to its restricted class Cr. It means that
Cr was created in such a way that another transition tj can be fired after ti.
Two network are obtained, N1

σ leading to C and N2
σ leading to Cr, but N1

σ ⊇ N2
σ

and so the network characterizing σ is N1
σ (see the example in section 4.2).

4 Example

4.1 Construction of the Graph of Classes

Let us consider the example of figure 1, presenting a deadlock and also infinite se-
quences. Table 1 shows the classes (marking and temporal network Nc) obtained
with the proposed approach and figure 6 represents the graph of classes.



288 X. Mao, J. Cardoso, and R. Valette

t6
t6

0

t1

1

t2

2

t3

3

t2

4

t3

5

t1

6

t3

7

t1

8

t2

9

t3

10

t4

11

t2

t2
12

t3

13

t4

14
t1

15

t5

16

t1

17

t5

18

t4

t4t4t4

t4
19

t5

t5
t5t5

t5

20

t3

t3

21

t1t1

22

t1'

23

t1'

24

t1'

25

Temporal networks Nti,k of ti from Ck

Nt1,0,(x0, x1)=[0 0], Nt2,0,(x0, x2)=[0 0]
Nt3,0,(x0, x3)=[0 0]
Nt2,1,(x0, x1)=(x0, x2)=(x1, x2)=[0 0]
Nt3,1,(x0, x1)=(x0, x3)=(x1, x3)=[0 0]
Nt1,2,(x0, x2)=[0 0],(x0, x1)=(x2, x1)=[0 3]
Nt3,2,(x0, x2)=[0 0],(x0, x3)=(x2, x3)=[0 3]
Nt1,3,(x0, x3)=(x0, x1)=(x3, x1)=[0 0]
Nt2,3,(x0, x3)=(x0, x2)=(x3, x2)=[0 0]
Nt3,4,(x0, x2)=[0 0],(x0, x3)=(x2, x3)=[0 2]
Nt4,4,(x0, x2)=[0 0],(x0, x4)=(x2, x4)=[1 2]
Nt2,5,(x0, x3)=(x0, x2)=(x3, x2)=[0 0]
Nt3,6,(x0, x1)=(x0, x3)=[0 3],(x1, x3)=[0 2]
Nt1,7,(x0, x3)=(x0, x1)=[0 3],(x3, x1)=[0 2]
Nt5,7,(x0, x3)=(x0, x5)=[0 3],(x3, x5)=[0 2]
Nt2,8,(x0, x1)=(x0, x2)=(x1, x2)=[0 0]
Nt1,9,(x0, x2)=[0 0],(x0, x1)= (x2, x1)=[0 2]
Nt5,9,(x0, x2)=[0 0],(x0, x5)=(x2, x5)=[0 2]
Nt4,10,(x2, x3)=(x3, x4)=[0 2],(x2, x4)=[1 2]
Nt5,10,(x2, x3)=(x0, x1)=(x2, x1)=[0 2]
Nt4,12,(x2, x4)=[1 2], Nt5,12,(x2, x5)=[0 2]
Nt4,13,(x1, x3)=(x3, x4)=[0 2],(x1, x4)=[1 2]
Nt5,13,(x1, x3)=(x1, x5)=(x3, x5)=[0 2]
Nt3,14,(x0, x4)=(x0, x3)=[1 3],(x4, x3)=[0 2]
Nt5,15,(x3, x1)=(x3, x5)=(x1, x5)=[0 2]
Nt1,16,(x0, x5)=(x0, x1)=(x5, x1)=[0 3]
Nt5,17,(x2, x1)=(x2, x5)=(x1, x5)=[0 2]
Nt1,18,(x0, x5)=[0 2],(x0, x1)=(x5, x1)=[0 3]
Nt6,20,(x5, x6)=[0 2] Nt6,22,(x1, x6)=[0 2]
Nt′1,2,(x0, x2)=[0 0],(x0, x1)=(x2, x1)=[0 2]

Nt4,24,(x3, x1)=[0 1],(x3, x4)=(x1, x4)=[1 2]
Nt′1,7,(x0, x3)=(x0, x1)=[0 3],(x3, x1)=[0 1]

Nt4,25,(x2, x1)=[0 1],(x2, x4)=(x1, x4)=[1 2]
Nt′1,9,(x0, x2)=[0 0],(x0, x1)=(x2, x1)=[0 1]

Fig. 6. a)Graph of classes preserving firing constraints, b) Temporal networks on arcs

Let us consider the sequence σ1 = t2; t3; t1; t4 in the graph of figure 6, leading
to a deadlock M19 = p6p7. The initial class C0 (see table 1) is defined by the
initial marking M0 = p1p2p3 and the network Nc0 composed by a unique node
x0 corresponding to an initial event creating the tokens of the initial marking.
It represents the time origin.

Considering the firing of t2 (at the date x2) from C0, the final temporal
network Nt2,0 delimiting this firing is represented by the dotted arc in fig. 3.b
(as explained in section 3.3. The network Nc2 of the new class C2, reached with
t2 firing (obtained from Nt2,0) is also represented by the dotted arc in fig. 3.b.

Transitions t1 and t3 are enabled at C2. Let us consider the firing of t3. The
network Nt3,2 delimiting t3 firing (fig. 7.a) brings the system from the class C2

to class C7. The networks Nc2 and Nc7 are represented in figure 7.a respectively
by C02 (the bold arc) and C03 (the dotted arc).

Let us consider now the firing of t1 from C7. The minimal and complete
network Nt1,7 delimiting the firing date x1 is given by fig. 7.b. The reached class
is C15 (bold dotted arc in fig. 7.b).

The firing of t4 from C15 is defined by Nt4,15 delimiting the firing date
x4(fig. 7.c). The minimal network Nt4,15 has the constraint C′31 = [0 1] (on arc
(x3, x1)), that is a reduced value in relation to that defined by Nc15 (C31 = [0 2]
or 0 ≤ x1 − x3 ≤ 2) of class C15. So, t4 can be fired after t1 only if t1 is fired
no more than [0 1] unities of time after t3. The arc (x3, x1) defines a restricted
class C24, with M24 = M15, and Nc24 given by C′31 = [0 1]. This class gathers all
the states reached from the initial state by the firing of the sequence t2 ; t3 ; t1
knowing that transition t4 can be fired.



A New Graph of Classes for the Preservation 289

Table 1. Classes preserving the constraints

Class Marking Constraints Nc Class Marking Constraints Nc

C0 p1p2p3 x0 C13 p4p5p6 0 ≤ x3 − x1 ≤ 2
C1 p2p3p4 0 ≤ x1 − x0 ≤ 0 C14 p3p7 1 ≤ x4 − x0 ≤ 3
C2 p1p3p5 0 ≤ x2 − x0 ≤ 0 C15 p4p5p6 0 ≤ x1 − x3 ≤ 2
C3 p1p2p6 0 ≤ x3 − x0 ≤ 0 C16 p1p7 0 ≤ x5 − x0 ≤ 3
C4 p3p4p5 0 ≤ x2 − x0 ≤ 0 C17 p4p5p6 0 ≤ x1 − x2 ≤ 2
C5 p2p4p6 0 ≤ x3 − x0 ≤ 0 C18 p1p7 0 ≤ x5 − x0 ≤ 2
C6 p3p4p5 0 ≤ x1 − x0 ≤ 3 C19 p6p7 x4
C7 p1p5p6 0 ≤ x3 − x0 ≤ 3 C20 p4p7 x5
C8 p2p4p6 0 ≤ x1 − x0 ≤ 0 C21 p6p7 x3
C9 p1p5p6 0 ≤ x2 − x0 ≤ 0 C22 p4p7 x1
C10 p4p5p6 0 ≤ x3 − x2 ≤ 2 C23 p3p4p5 0 ≤ x1 − x0 ≤ 2
C11 p3p7 1 ≤ x4 − x0 ≤ 2 C24 p4p5p6 0 ≤ x1 − x3 ≤ 1
C12 p4p5p6 x2 C25 p4p5p6 0 ≤ x1 − x2 ≤ 1

Fig. 7. Temporal networks a)Nt3,2, b)Nt1,7, c)Nt4,15 and d)Nt′1,7

Once the restricted class C24 was created, a new arc coming from the previous
class C7 to C24 must also be created, labeled by the temporal network delimiting
the firing of t1 (considering that transition t4 can be effectively fired). This
network is given by Nt′1,7 = Nt1,7 ∩Nc24 (fig. 7.d). As Nt3,2 ∩Nc7 = Nc24, the
backward propagation stops.

The class C15 is kept in the graph as well as the network Nt1,7 labeling the
arc (C7, C15), but there is no output arc from C15 labeled by t4. Instead only the
pair (C24, t4) is appended to the list of hanging nodes.

The firing of t6 from classes C20 and C22 leads the system to a class C with
M = M0 and Nc given by x6 (no past memory). Using definition 12, this class
is equivalent to the initial class C0.

4.2 Temporal Network of a Sequence

Let us consider the sequence σ1 = t2; t3; t1; t4 whose temporal network (fig. 8) is
obtained by the union of Nt2,0, Nt3,2, Nt′1,7 et Nt4,24. Some arcs are represented
twice in order to point out that they belong to two networks delimiting firing
dates. There is indeed only one value and one constraint. For example, as Nt′1,7∩
Nt4,24 = Nc24, the arc (x3, x1) belongs to two networks and is represented by
two doted lines.

Let us now consider the sequence σ2 = t2; t3; t1. Two paths in the class
graph and in consequence two networks are obtained: N1

σ2
= Nt2,0∪Nt3,2∪Nt1,7



290 X. Mao, J. Cardoso, and R. Valette

Fig. 8. Temporal network of the sequence σ1

(leading to C15) and N2
σ2

= Nt2,0∪Nt3,2∪Nt′1,7 (leading to C24). But N1
σ2
⊇ N2

σ2
,

so the network characterizing σ2 is given by N1
σ2

.
The figure 9 shows the temporal network Nσ3 for the sequence σ3 = t2; t3; t5;

t1; t6; t2; t3 where t2 and t3 fire twice in the sequence, and the second firings of
t2 and t3 are represented by x2

2 and x2
3 respectively in the temporal network.

Fig. 9. Temporal network of the sequence σ3

5 Related Work

Several approaches have been proposed to reduce the potentially infinite state
spaces of real time systems to finite states spaces in order to analyze such systems
[Me 85], [Be 91], [Yo 98], [Be 04]. All approaches are based on the equivalence
of state classes. A first difference with these approaches is that, in the approach
presented here, simple temporal network are used instead of geometrical region
to deal with temporal information.

[Be 91] and [Be 04] have proposed the tool Tina, with two types of graph of
classes, one is called Linear mode (W) and the other Atomic mode (A). They
allow LTL and CTL property model checking, respectively. In the W mode, a
class is given by its marking, the temporal domain of enabled transitions and the
(non redundant) constraints existing between these transitions in the past. In the
A mode, a class is given by its marking and a clock for each enabled transition
(clock(t)=0 if t is newly enabled, otherwise it takes the previous value). Some
classes in this mode correspond to a partition of the ones in W mode. Figure 10
represents both modes for the t-time Petri net of figure 1.

The objective of the A mode is different from the one presented here. In
consequence, it differentiates the states for which there is a conflict between two
transitions from the states where only one of both are firable. Let us consider
classes C15 et C24 (fig. 6 and table 1). Transition t5 can be fired from the states
of C15 (whatever t4 can or cannot be fired). But C24 (the restricted class of C15)
has been defined in order to characterize the temporal constraint that must be
verified to fire t4 and so t5 does not appear as an output of this node. Using



A New Graph of Classes for the Preservation 291

t6 0

t1

1

t2
t1

2

t3

3 t3
t4

t44

t5

t1
t5

5

t4

6

t1t3

7

t2t1

8

t2

9

t2t3

10

t5

11

t3

12

t6
0

1

t2

2

t3 t3

t3

3

t4

t4

t3 t4

t3

4

t5
t5

t1

t5

t5
t1

5

t4

6

t3

7

t2

8

9

10

t4

11

t1

12

13

t1

t1 t1

14

t1

15

t5t5

16

t3

17

18

19

20

t1

t2

t1

t5

t2

t3

t1t1

t3

a) b)

Fig. 10. Graph of classes in Tina : a) linear (W), b) atomic (A)

A mode1, Class A14 in fig. 10.b gathers up the states where there is a conflict
between t4 et t5, and A15 the ones where only t5 can be fired.

Another difference appears in the way the past is memorized. For example,
C20 and C22 correspond2 to a same class W5 in fig. 10.a. The corresponding
temporal constraint networks Nc20 = x5 and Nc22 = x1 allow to preserve the
name of the transition which has enabled t6. The memory of the past can goes
back beyond the last event. For example C13 and C10 are different even if the
last transition fired is t3. Besides x3, Nc13 has variable x1 (t1 has enabled t4)
and Nc10 has variable x2 (t2 has enabled t4). But in mode W and also A, there
is only one class (W3 and A3 respectively).

[Yo 98] is closer to our approach. There are two differences. In our approach,
when a restricted class Cr is created, the initial class C is conserved instead of
replacing it for a class that is complementary to Cr. Another difference is that
in our approach a class does not keep all the constraints in the past, but only
the ones that are necessary to characterize it, as proved in section 3.4.

6 Conclusion

The presented approach presents a graph of classes that allows obtaining the
exact temporal constraints that have to be verified by each transition firing with
respect to a given firing sequence. A state class in the graph is defined by a
marking and a temporal network; an arc between two classes is labeled by a
1 Correspondence between A and C: W2 = (A2, A10, A12), W6 = (A6, A11), W8 =

(A8, A14, A15), W10 = (A13, A17, A19), W11 = (A16, A20), W12 = A18. For i =
0, 1, 3, 4, 5, 7, 9, Wi=Ai.

2 Correspondence between W and C mode: W2=(C6, C23, C4); W3=(C13, C10);
W4=(C19, C21); W5=(C20, C22); W6=(C14, C11); W7=(C5, C3); W8=(C15, C24, C12,
C17, C25); W10=(C7, C9); W11=(C16, C18); W0=C0; W1=C1; W9=C2; W12=C3.



292 X. Mao, J. Cardoso, and R. Valette

temporal network Nti delimiting the firing date of a transition ti. The temporal
constraints verified by a firing sequence are obtained by the union of the temporal
constraints Nti attached to each arc along the corresponding path on the class
graph. This set of constraints can only be derived after some transformations and
calculations in the case of the other graphs of classes in the literature (it was not
their objective). It is important to underline another point: the very knowledge of
the temporal network associated with a firing sequence is not necessary to answer
whether or not a property is verified, but it is absolutely necessary to help the
designer to adjust the parameter values such that the property be verified.

Further research should consider the following issues: i) translate this ap-
proach to the p-time Petri nets, ii) extend the graph of classes to deal with
fuzzy time Petri nets, that associate with a transition a fuzzy interval of firing,
allowing to evaluate a possibility and necessity degree of transition firing.

References

[Be 91] B. Berthomieu, M. Diaz : Modeling and verification of time dependent systems
using Time Petri nets IEEE Trans. on Software Engineering, Vol 17, No 3
p.259-273 1991.

[Be 04] B. Berthomieu, P.O. Ribet, F. Vernadat : The tool TINA: construction of
abstract state spaces for Petri nets and time Petri nets, IJPR, Vol.42, No14,
pp.2741-2756, 15 Juillet 2004.

[Ca 05] J. Cardoso, S. Cousy, G.Juanole : Extending time Petri nets to fuzzy time
Petri nets: definition of the graph of fuzzy state class, 16th IFAC World
Congress, Juillet 2005, Prague.

[De 91] R. Dechter, I.Meiri, J. Pearl : Temporal constraint networks, Artificial Intel-
ligence, vol 49, p.61-91, 1991.

[Gh 04] M. Ghallab, D. Nau, P. Traverso : Automated Planning Theory and practice,
Morgan Kaufman, 2004 ISBN 1-55860-856-7.

[Me 85] M. Menasche : PAREDE: an automated tool for the analysis of time Petri
nets, International workshop on timed Petri nets Torino July 1985, p. 162-169

[PR 99] B. Pradin-Chézalviel, R. Valette, L.A. Künzle, Scenario duration characteri-
zation of t-timed Petri nets using linear logic, PNPM’99, 8th Int. Workshop
on Petri Nets and Performance Models, Zaragoza, Spain, pp.208-217, Sep.
6-10, 1999.

[Ri 01] N. Rivière, B. Pradin-Chézalviel, R. Valette : Reachability and temporal con-
flicts in t-time Petri nets, 9th Int. Workshop on Petri Nets and Performance
Models, IEEE PNPM’01, Aachen, Allemagne, pp.229-238, 11-14 Sep 2001.

[Ri 05] N. Rivière, H. Demmou, R. Valette, M. Medjoudj, Symbolic temporal con-
straint analysis, an approach for verifying hybrid systems, 16th IFAC, Prague,
July 2005.

[Sc 04] V. Schastai, E.A. Lima, L.A. Knzle : Sequence analysis for time Petri nets,
IFAC 7th Int. Workshop on Discrete Event Systems WODES’04, France.

[Yo 98] T. Yoneda, H. Ryuba, CTL Model checking of time Petri nets using geometric
regions, IEICE Trans. inf. & Syst., Vol E81-D, No. 3, pp.297-396, 1998.



Comparison of Different Semantics for Time

Petri Nets

B. Bérard1, F. Cassez2, S. Haddad1, Didier Lime3, and O.H. Roux2

1 LAMSADE, Paris, France
{beatrice.berard, serge.haddad}@lamsade.dauphine.fr

2 IRCCyN, Nantes, France
{Franck.Cassez, Olivier-h.Roux}@irccyn.ec-nantes.fr

3 CISS, Aalbork, Denmark
Didier@cs.aau.dk

Abstract. In this paper we study the model of Time Petri Nets (TPNs)
where a time interval is associated with the firing of a transition, but we
extend it by considering general intervals rather than closed ones. A key
feature of timed models is the memory policy, i.e. which timing informa-
tions are kept when a transition is fired. The original model selects an
intermediate semantics where the transitions disabled after consuming
the tokens, as well as the firing transition, are reinitialised. However this
semantics is not appropriate for some applications. So we consider here
two alternative semantics: the atomic and the persistent atomic ones.
First we present relevant patterns of discrete event systems which show
the interest of these semantics. Then we compare the expressiveness of
the three semantics w.r.t. weak timed bisimilarity, establishing inclusion
results in the general case. Furthermore we show that some inclusions
are strict with unrestricted intervals even when nets are bounded. Then
we focus on bounded TPNs with upper-closed intervals and we prove
that the semantics are equivalent. Finally taking into account both the
practical and the theoretical issues, we conclude that persistent atomic
semantics should be preferred.

Keywords: Time Petri Nets, Timed Bisimilarity, Expressiveness.

1 Introduction

Since their introduction, Petri nets have been successfully applied for the design
and analysis of discrete event systems. However with the development of critical
systems, time has become a significant issue for their correctness. So numerous
timed extensions have been proposed for Petri nets. These extensions can be
roughly divided into three categories w.r.t. their application field:

– Timed Petri nets [17] include a duration associated with each transition in
order to model for instance scheduling policies in production management;

– Stochastic Petri nets [2] include a probability distribution associated with
each transition in order to evaluate the transient or steady-state behaviour of
a system where duration of actions are obtained by statistical observations;

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 293–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



294 B. Bérard et al.

– Time Petri nets [15] include a time interval associated with each transition
(specifying the possible time elapsing before firing) in order to model systems
which may evolve in a non deterministic way.

The latter model has a lot of alternatives: for instance time constraints may
be associated to places [12] or to arcs [1,9], timed synchronisations may be
added [10], etc. Here we stick to the original model for which significant theoret-
ical developments [5,16,13,7] have been obtained leading to efficient verification
tools on models of large systems [6,11]. Moreover when bounded this model can
be translated into timed automata [8] which are also extensively studied with
successful applications [3].

More precisely we consider a slight extension of TPNs where any kind of
time interval can be associated with the firing of a transition instead of the
closed ones in the original definition. Our work focuses on the impact of the
memory policy on the expressiveness of the model. The memory policy specifies
which timing informations are kept when a transition is fired. The original model
selects an intermediate semantics meaning that the transitions disabled after
consuming the tokens, and the firing transition, are reinitialised. Here we propose
two alternative semantics: the atomic and the persistent atomic ones. We first
present significant examples where these semantics are more appropriate than
the original one. Then we compare the expressiveness of the three semantics
w.r.t. weak timed bisimilarity which is the standard equivalence relation used
for such comparisons. First we establish inclusion results in the general case.
Furthermore we show that some inclusions are strict with unrestricted intervals
even when nets are bounded. The key point of the previous result is the presence
of non upper-closed intervals. Then we focus on bounded TPNs with upper-closed
intervals and we establish that the semantics are equivalent. All our translations
are optimal since the size of the produced net is linear w.r.t. the size of the
emulated net.

The paper is organised as follows. Section 2 introduces the syntax and se-
mantics of TPNs, timed transition systems and timed bisimilarity. Section 3 is
devoted to the comparison between the different semantics for TPNs with general
intervals both in the bounded and the unbounded case. In section 4, we prove
that the three semantics are equivalent for bounded TPNs with upper-closed
intervals. Finally we conclude in section 5.

2 Time Petri Nets

Notations. Let Σ be a finite set (or alphabet). Σ∗ denotes the set of finite
words on Σ. If w = a1 · · · an, the length of w denoted |w|, is n. We also use
Σε = Σ ∪ {ε} with ε �∈ Σ, where ε is the empty word. BA stands for the set of
mappings from A to B. If A is finite and |A| = n, an element of BA is also a
vector in Bn. The usual operators +,−, < and = are used on vectors of An with
A = N, Q, R and are the point-wise extensions of their counterparts in A. The
set B denotes the boolean values {tt, ff} and R≥0 denotes the set of non negative
reals. A valuation ν over a set of variables X is an element of RX

≥0. For ν ∈ RX
≥0



Comparison of Different Semantics for Time Petri Nets 295

and d ∈ R≥0, ν + d denotes the valuation defined by (ν + d)(x) = ν(x) + d. 0
denotes the valuation s.t. ∀x ∈ X, ν(x) = 0.

An interval I is a Q≥0-interval of R≥0 iff its left endpoint belongs to Q≥0

and its right endpoint belongs to Q≥0 ∪ {∞}. We let I↓ = {x | ∃y ∈ I ∧ y ≥ x}
be the downward closure of I. We denote by I(Q≥0) the set of Q≥0-intervals of
R≥0.

2.1 Timed Transition Systems (TTS) and Weak Timed Bisimulation

Timed transition systems describe systems which combine discrete and contin-
uous evolutions. We present here a standard version.

Definition 1 (Timed Transition Systems). A timed transition system
(TTS) over the set of actions Σε is a tuple S = (Q, q0, Σε,−→) where:

– Q is a set of states,
– q0 ∈ Q is the initial state,
– Σε is a finite set of actions disjoint from R≥0,
– −→⊆ Q× (Σε ∪ R≥0)×Q is a set of edges. If (q, e, q′) ∈−→, we also write

q
e−−→ q′. For a transition q

d−−→ q′ with d ∈ R≥0, the value d represents a
duration.

We make the following common assumptions about TTS:

– Time-Determinism: if q
d−−→ q′ and q

d−−→ q′′ with d ∈ R≥0, then q′ = q′′,

– 0-delay: q
0−−→ q,

– Additivity: if q
d−−→ q′ and q′ d′

−−→ q′′ with d, d′ ∈ R≥0, then q
d+d′
−−−−→ q′′,

– Continuity: if q
d−−→ q′, then for every d′ and d′′ in R≥0 such that d =

d′ + d′′, there exists q′′ such that q
d′
−−→ q′′ d′′

−−−→ q′.

Due to these properties, a run ρ of length n ≥ 0 can be written as a finite
sequence of transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n

where discrete actions alternate with (possibly null) durations. We also write this
run as q

d0a0...dn−−−−−−→ q′. Untimed(ρ) is the word of Σ∗ obtained by concatenation of
labels a0, . . . , an−1 (remember that ε is the empty word). Duration(ρ) =

∑n
i=0 di.

It is well-known that the concept of weak timed bisimilarity is central among
equivalence relations between systems since, for instance, two equivalent TTS
are not distinguishable by formulas of most common timed arborescent temporal
logics.

Let S = (Q, q0, Σε,−→) be a TTS. We define the relation −→>⊆ Q× (Σ ∪
R≥0)×Q by:



296 B. Bérard et al.

– q
d−→> q′ iff there is a run ρ=q

σ−→ q′ with Untimed(ρ)=ε and Duration(ρ) =
d,

– q
a−→> q′ with a ∈ Σ iff there is a run ρ = q

σ−→ q′ with Untimed(ρ) = a and
Duration(ρ) = 0,

Definition 2 (Weak Timed Bisimilarity). Let S1 = (Q1, q
1
0 , Σε,−→1) and

S2 = (Q2, q
2
0 , Σε,−→2) be two TTS and ≈ be a binary relation over Q1 × Q2.

We write q ≈ q′ for (q, q′) ∈≈. ≈ is a weak timed bisimulation relation between
S1 and S2 if:

– q1
0 ≈ q2

0;
– if q1

a−→>1 q′1 with a ∈ Σ ∪ R≥0 and q1 ≈ q2 then ∃q2
a−→>2 q′2 such that

q′1 ≈ q′2; conversely if q2
a−→>2 q′2 with a ∈ Σ ∪ R≥0 and q1 ≈ q2 then

∃q1
a−→>1 q′1 such that q′1 ≈ q′2.

Two TTS S1 and S2 are weakly timed bisimilar if there exists a weak timed
bisimulation relation between S1 and S2. We write S1 ≈W S2 in this case.

Let C and C′ be two classes of TTS. The next definition formalises the relative
expressiveness of C and C′.

Definition 3 (Expressiveness w.r.t. Weak Timed Bisimilarity). The
class C is more expressive than C′ w.r.t. weak timed bisimilarity if for all B′ ∈ C′
there is a B ∈ C s.t. B ≈W B′. We write C′ ≤W C in this case. If moreover
there is a B ∈ C s.t. there is no B′ ∈ C′ with B ≈W B′, then C′ <W C. If both
C′ ≤W C and C ≤W C′ then C and C′ are equally expressive w.r.t. weak timed
bisimilarity, and we write C ≈W C′.

2.2 Time Petri Nets

Time Petri Nets (TPN) were introduced in [15] and extend Petri Nets with
timing constraints on the firings of transitions. In a TPN, a time interval is
associated with each transition. An implicit clock can then be associated with
each enabled transition, and gives the elapsed time since it was last enabled.
An enabled transition can be fired if its clock value belongs to the interval of
the transition. Furthermore, time cannot progress if time elapsing would result
in leaving the interval of a transition. The following definitions formalise these
principles.

Definition 4 (Labeled Time Petri Net). A Labeled Time Petri Net N is a
tuple (P, T, Σε,

•(.), (.)•, M0,Λ, I) where:

– P is a finite set of places;
– T is a finite set of transitions with P ∩ T = ∅;
– •(.) ∈ (NP )T is the backward incidence mapping; (.)• ∈ (NP )T is the for-

ward incidence mapping;
– M0 ∈ NP is the initial marking;
– Λ : T → Σε is the labeling function;
– I : T → I(Q≥0) associates with each transition a firing interval;



Comparison of Different Semantics for Time Petri Nets 297

• •

•

p1

p2t1, λ1, [1, +∞[

t2, λ2, [1, 1]

Fig. 1. An example of TPN

We also use •t (resp. t•) to denote the set of places •t = {p ∈ P | •t(p) > 0}
(resp. t• = {p ∈ P | t•(p) > 0}) as it is common in the literature1.

The net of figure 1 illustrates the graphical representation of a TPN. Each
transition is represented with its label and its interval. For instance transition
t1 has label λ1 and interval [1,∞[.

Semantics of Time Petri Nets. The semantics of TPNs is given in terms
of TTS. A marking M of a TPN is a mapping in NP and M(p) is the number
of tokens in place p. A transition t is enabled in a marking M iff M ≥ •t.
We denote by En(M) the set of enabled transitions in M . To decide whether a
transition t can be fired, we need to know for how long it has been enabled: if
this amount of time lies within the interval I(t), t can actually be fired, otherwise
it cannot. On the other hand time can progress only if the enabling duration
still belongs to the downward closure of the interval associated with an enabled
transition. Let ν ∈ (R≥0)En(M) be a valuation such that each value ν(t) is the
time elapsed since transition t was last enabled. A configuration of the TPN
N is a pair (M, ν). An admissible configuration of a TPN is a configuration
(M, ν) s.t. ∀t ∈ En(M), ν(t) ∈ I(t)↓. We let ADM(N ) be the set of admissible
markings. When defining the semantics of a TPN, three kinds of policies must
be fixed.

The choice policy concerns the choice of the next event to be fired (sched-
uled). For TPNs (and also timed automata), this choice is non deterministic
(possible alternatives use priorities, probabilities, etc.).

The service policy concerns the possibility of simultaneous instances of a
same event to occur. In the context of Petri nets, this is formalised by the
enabling degree of a transition. Here we adopt the single-server policy (at
most one instance of a firing per transition in every state). Our results could
be extended to the multiple server at the price of intricate notations.

The memory policy concerns the updating of timing informations when a
discrete step occurs. The key issue in the semantics is to define when to
reset the clock measuring the time since a transition was last enabled. This
can only happen when a transition is fired. We let ↑enabled(t′, M, t) ∈ B be
true if t′ is newly enabled by the firing of transition t from marking M , and
false otherwise.

1 Whether •t (resp. t•) stands for a vector of (NP )T or a subset of P will be unam-
biguously defined by the context.



298 B. Bérard et al.

Let M be a marking and t ∈ En(M). The firing of t leads to a new marking
M ′ = M − •t + t•. Three semantics are possible:
I: The intermediate semantics (I) considers that the firing of a transition is

performed in two steps: consuming the input tokens in •t, and then pro-
ducing output tokens in t•. The fact that a transition t′ is newly enabled
on the firing of a transition t �= t′ is determined w.r.t. the intermediate
marking M−•t. When a transition t is fired it is newly enabled whatever
the intermediate marking. We denote by ↑enabledI(t′, M, t) the newly
enabled predicate in this case. This mapping is defined by:

↑enabledI(t′, M, t) = (t′ ∈ En(M − •t + t•)

∧
(
t′ �∈ En(M − •t) ∨ (t = t′)

) (1)

A: The atomic semantics considers that the firing of a transition is obtained
by an atomic step. The corresponding mapping ↑ enabledA(t′, M, t) is
defined by:

↑enabledA(t′, M, t) = (t′ ∈ En(M−•t+t•))∧
(
t′ �∈ En(M)∨(t = t′)

)
(2)

PA: The persistent atomic semantics considers that the firing of a transition
is also obtained by an atomic step. The difference with the A semantics in
only on the value of ↑enabledA(t′, M, t) when t = t′. The fired transition
here is handled as any other one:

↑enabledPA(t′, M, t) = t′ ∈ En(M − •t + t•) ∧ (t′ �∈ En(M)) (3)

Note that we have the relation: (3) ⇒ (2) ⇒ (1) but as we shall see on
the example this does not imply any inclusion relation between the different
behaviours. We now define the semantics of a TPN, which is parameterised by
the choice of the ↑enabled predicate.

Definition 5 (Semantics of TPN). Let s ∈ {I,A,PA}. The s-semantics of
a TPN N = (P, T, Σε,

•(.), (.)•, M0,Λ, I) is a timed transition system SN =
(Q, q0, T, →) where: Q = ADM(N ), q0 = (M0,0), and −→∈ Q× (Σε∪R≥0)×Q
consists of the discrete and continuous transition relations:

– ∀(M, ν) ∈ ADM(N ), ∀t ∈ En(M) s.t. ν(t) ∈ I(t)
the discrete transition relation is defined by:

(M, ν)
Λ(t)−−−→ (M − •t + t•, ν′) where ∀t ∈ En(M − •t + t•),

ν′(t) =

{
0 if ↑enableds(t′, M, t),
ν(t) otherwise.

– ∀(M, ν) ∈ ADM(N ), ∀d ∈ R≥0, s.t. ∀t ∈ En(M), ν(t) + d ∈ I(t)↓, the con-

tinuous transition relation is defined by: (M, ν) d−−→ (M, ν + d)

We simply write (M, ν) w−→ to emphasise that a sequence of transitions w can
be fired in SN from (M, ν). If Duration(w) = 0 we say that w is an instanta-
neous firing sequence. The set of reachable markings of N is Reach(N ) = {M ∈



Comparison of Different Semantics for Time Petri Nets 299

Component Observer

p

t1, λ1, I1 t2, λ2, I2

t, λ, I

Fig. 2. A case where PA or A are more convenient than I : observation of a component

• •

•

clients

diffusion source

t, λ, [1, 1]

Fig. 3. A case where PA is more convenient than A and I : instantaneous multicast

NP | ∃(M, ν) | (M0,0) w−→ (M, ν)}. A net is bounded iff there exists an integer
B such that ∀M ∈ Reach(N ), ∀p ∈ P, M(p) ≤ B.

We illustrate the different semantics on the example of fig. 1. (M0,0) 1t1t1−−−→
is a run for the PA semantics but not for the other ones since the second firing of
t1 should imply a delay of at least 1 time unit. (M0,0) 1t1t2−−−→ is a run for the PA
and A semantics but not for the I semantics since as t1 consumes (and produces
again) the token in place p2 this should imply a delay of at least 1 time unit
before the firing of t2. (M0,0) 1t11t2−−−−→ is a run for for the I semantics but not
for the other ones since after t1 fires, t2 is not newly enabled and time cannot
elapse before it is either fired or disabled.

The intermediate semantics I, based on [4,5] is the most common one. How-
ever, we provide two significant patterns (among other ones) of discrete event
systems where the other semantics are more appropriate. Consider the net of
figure 2 which models a component whose state is checked by an observer in
order to react (by firing transition t). Let us emphasise that this modeling by
a loop is standard in the untimed context. This observation does not interfere
with the behaviour of the component using A and PA semantics while the I
semantics renitialises the delay of transitions t1 and t2.

The subnet of fig. 3 models clients waiting for some information to be produced
by a source (in 1 time unit) and then sent to every client (in a negligible time).
The two firings of t are performed at the same time only with the PA semantics.



300 B. Bérard et al.

The comparison of expressive powers of the three semantics has not been
investigated and is the topic of our work.

3 Inclusion Results for the Semantics I, A and PA

3.1 Large Inclusion Results

We now establish inclusion relations between the three semantics for TPNs.
In order to alleviate the figures, transitions are filled in black when their

firing interval is [0, 0] and we omit their label when equal to ε.

Proposition 1. Let N be a time Petri net with intermediate semantics. There
exists a TPN N with atomic semantics which is weakly timed bisimilar to N .
The size of N is linear w.r.t. the size of N . Furthermore if N is bounded then
N is bounded.

Proof. The construction is quite easy. Let T ′ ⊆ T be the subset of transitions
which have at least one input place. The set of places of N is obtained by
adding to the set of places of N a new place for each transition t from N :
P = P ∪ {pt | t ∈ T ′}. The transitions of T \ T ′ are unchanged. The transitions
T ′ of N are duplicated in N : T = T ′+ ∪ T ′− ∪ (T \ T ′) and the construction
follows Figure 4, from left to right.

We consider the equivalence relation R which contains all pairs ((M, ν),
(M, ν)) such that:

– for all p ∈ P , M(p) = M(p) + Σt∈T ′t•(p).M(pt)
– for all t ∈ T \ T ′, ν(t) = ν(t) and for all t ∈ T ′ ∩ En(M), ν(t) = ν(t−) if

t− is enabled in M and 0 otherwise. The latter case corresponds in N to a
newly enabled transition.

To prove that R is a bisimulation, we first note that, with the definition above
for markings, from any configuration (M, ν), we can reach instantaneously a
configuration (M1, ν1) such that M1(pt) = 0 for all t ∈ T ′, with the firing of a
(possibly empty) sequence of transitions in T +. Moreover, the relation between
valuations implies that (M1, ν1) is still equivalent to (M, ν).

t, Λ(t), I(t)

t−, Λ(t), I(t)

pt

t+

Fig. 4. From I to A



Comparison of Different Semantics for Time Petri Nets 301

Consider now a pair ((M, ν), (M, ν)) ∈ R.

– if (M, ν) t−→ (M ′, ν′) with t ∈ T ′, then from the remark above, we first
fire a sequence from M to empty all places pt′ , leading instantaneously to
(M1, ν1), which is equivalent to (M, ν). Then transition t− can be fired from
(M1, ν1), immediately followed by t+, leading to (M

′
, ν′), where all places

pt are empty again. Moreover, the transitions newly enabled by t+ in N are
exactly those which were newly enabled by t in N , so that (M ′, ν′)R(M

′
, ν′).

– Conversely, suppose that a transition is fired from (M, ν) in N . If the tran-
sition is some t+, then the new configuration (M1, ν1) is still equivalent to
(M, ν) (as above), thus no move at all is necessary in N .

If (M, ν) t−−→ (M
′
, ν′), then t can be fired from (M, ν) and the resulting

marking is, (M ′, ν′), equivalent to (M
′
, ν′).

– if (M, ν) d−→ (M, ν + d), for some delay d, then again we have to apply
the emptying sequence from (M, ν), to reach a configuration (M1, ν1) still
equivalent to (M, ν), where time can elapse. The relation between ν and ν1

implies that this is possible, leading to (M1, ν1 + d).

– Conversely, if (M, ν) d−→ (M, ν + d), then all places pt are empty in M , so
that the move (M, ν) d−→ (M, ν + d) is also possible in N .

The cases for a transition t ∈ T \ T ′ are straightforward. Thus R is a bisimula-
tion. Assuming that N is bounded, the boundedness of N is mainly due to the
following observation: if a place pt is unbounded in N then any input place of t
is unbounded in N . ��

Proposition 2. Let N be a time Petri net with atomic semantics. There exists
a TPN N with persistent atomic semantics which is weakly timed bisimilar to
N . The size of N is linear w.r.t. the size of N . Furthermore if N is bounded
then N is bounded.

Proof. Here again, the construction is simple. Note that the only difference be-
tween the two semantics concerns the question wether a transition t can newly
enable itself. With atomic semantics, this is the case as soon as t is enabled in
the new marking while with persistent atomic semantics, this is never possible.
In order to ensure that a transition t will be newly enabled if it is enabled in
the new marking, we add an input place En+

t and an output place En−t to the
transition, with an instantaneous loop bt leading back to En+

t , once the transi-
tion has been fired. The construction is represented in Figure 5, again from left
to right.

We consider the equivalence relation R which contains all pairs ((M, ν),
(M, ν)) such that:

– M(p) = M(p) for all places p in P , and
– for a transition t ∈ En(M), ν(t) = ν(t) if t is enabled in M and 0 otherwise.

Again the latter case corresponds in N to a newly enabled transition.



302 B. Bérard et al.

•

t, Λ(t), I(t) t, Λ(t), I(t)

En+
t

En−

t

bt

Fig. 5. From A to PA

Like in the previous proposition, the proof is mostly based on the fact that
from any configuration (M, ν), we can reach instantaneously a configuration
(M1, ν1) such that M1(En+

t ) = 1 for all t, with the firing of a (possibly empty)
sequence of transitions bt, and again (M1, ν1) still equivalent to (M, ν). Fur-
thermore the claim about boundedness is mainly due to the following invariants
M(En+

t ) + M(En−t ) = 1. ��

3.2 Strict Inclusion

The next proposition shows that the expressive power of TPNs depends on the
chosen semantics even in the bounded case.

Proposition 3. There exists a bounded TPNN with persistent atomic semantics
such that no TPN (even unbounded) with atomic semantics is bisimilar to N .

Proof. Consider the following bounded TPN with PA semantics composed by a

single transition t labeled by ε: t, ε, [0, 1[

The (observable) behaviour of this net is simply to let time elapse without
reaching 1. Suppose that there is a TPN N with atomic semantics bisimilar to
this TPN and let dmin be the minimum of the non null upper bounds occuring
in the intervals associated with the transitions of N and 0.5 (in fact any value
less than 1 would be convenient).

There must be a sequence (M0, ν0)
d0t1...tkdk−−−−−−−−→ (M, ν) with Σk

i=0di = 1 −
dmin/2 and (M, ν) bisimilar to (∅, 1− dmin/2).

From (M, ν), we fire or disable the transitions enabled at this configuration,
which leads to a new configuration (M ′, ν′) bisimilar to some (∅, 1 − δ′) with
0 < δ′ ≤ dmin/2. Now since (M ′, ν′) is bimilar to (∅, 1 − δ′) there must be a

sequence (M ′, ν′)
d′
0t′1...t′

k′d′
k′−−−−−−−−−→ with 0 < Σk′

i=0d
′
i < δ′.

Choose the first d′i > 0 and let (M∗, ν∗) be the configuration reached before
the duration d′i. Since time may elapse in this state, all enabled transitions have
a non null upper bound for their interval, hence these bounds are greater than or
equal to dmin. Since the transitions have been enabled at or after configuration

(M ′, ν′), we have ∀t, ν∗(t) ≤ dmin/2 − δ′ < dmin/2, thus (M∗, ν∗)
dmin/2−−−−−→. But

(M∗, ν∗) is bisimilar to (∅, 1− δ′) which cannot let time elapse for a duration of
dmin/2. This is a contradiction.



Comparison of Different Semantics for Time Petri Nets 303

A similar proof could be developed with any interval ]a, b[ or [a, b[ instead of
[0, 1]. ��

4 Equivalence Result for Bounded TPNs with
Upper-Closed Intervals

Due to the strict inclusion established by proposition 3, we now restrict our
study to bounded TPNs, with upper-closed intervals, i.e. with intervals [a, b],
[a,∞[, ]a, b] or ]a,∞[.

Proposition 4. Let N be a bounded TPN with upper-closed intervals and with
persistent atomic semantics. There exists a bounded TPN N with intermediate
semantics which is weakly timed bisimilar to N . The size of N is linear w.r.t.
the size of N and the logarithm of the bound.

Proof. In this case, the construction of N is more involved. Like above, we
show how to simulate a transition t equipped with interval [a, b], for a ≤ b (the
other cases are similar). We first build a time subnet for t (Figure 6 below),
to simulate time elapsing from the last time t was enabled, until reaching (and
staying inside) interval [a, b]. The token is in place startt if the transition is
enabled in the initial marking. The double arrow at the end indicates that the
place endt is both an input and an output place for the corresponding transition:
time cannot progress. Clearly this part of the construction does not apply when
the interval is not upper-closed.

Now, using the fact that the TPN is bounded, we consider its upper bound
B and we associate with each place p a complementary place p such that for
any reachable marking M , M(p) = B −M(p). Figure 7 represents a part of the
subnet (on the right) for transition t (on the left), where test1 is the beginning of
the test step for what timing updates are required by the firing of t, and Mutex
ensures that the updates are done (instantaneously) before anything else, as
explained further.

The remaining part of N is devoted to these tests and updates for the other
transitions from the original TPN, including t itself. Consider a given transi-
tion (say ti), with again two input places pi

1 and pi
2. The corresponding subnet

consists of 4 modules, one for each case, depending on wether ti can be fired
or not before and after t. For this, two additional places are associated with ti:
Eti , which contains a token if ti was enabled before the firing of t and NEti

•

startt
[a, a]

lt

int
[b − a, b − a]

ut

endt

ft

true[a,b]

Fig. 6. Time subnet for interval I(t) = [a, b] of transition t



304 B. Bérard et al.

•
· · ·· · ·

p1 p2

t, Λ(t), [a, b] t, Λ(t), [0, +∞[

p1

p2 p2

p1

true[a,b]

Mutex

test1

Fig. 7. From a transition in N to its translation in N

test1i

pi
1

pi
2Eti

test2i

pi
1

pi
2NEti

Eti
startti

Fig. 8. Testing transition ti: cases 1 and 2

its complementary place. If ti is initially enabled then Eti is initially marked
otherwise NEti is marked. This group of 4 modules has a common input place
testi and a common output place testi+1, except for the last one where all out-
going transitions are linked to Mutex. These places, not shown in the figures,
are introduced to obtain a sequential execution of the tests and updates.

Case 1: transition ti is enabled both before and after firing t. To test this case,
we use the simple module on the left of Figure 8, where Eti (test before t) and
pi
1 and pi

2 (test after t) are input and output places.

Case 2: ti is not enabled before but enabled after firing t. The module is very
similar to the previous one and is on the right of Figure 8. Note that, in this
case only, because of the PA semantics, there must be a reset on the valuation
of the transition, which explains why the initial place startti of the time module
for ti is an output place.

Case 3: ti is enabled neither before nor after firing t. To test this, we must find
an input place of ti, where the current number of tokens disable ti. Here is the
point where the boundedness hypothesis is required. In order to perform this test,
we check whether B − •ti(p) + 1 tokens can be removed from a complementary
place p.

Case 4: ti is enabled before but not after firing t. In this case, we have a module
(see Figure 10) similar to the one above, except that we must also test for all
the different configurations of the time subnet corresponding to ti, to disable the
transitions by removing the tokens.



Comparison of Different Semantics for Time Petri Nets 305

test3i,1

pi
1

NEti

test3i,2

pi
2

B − •ti(p
i
1) + 1B − •ti(p

i
2) + 1

Fig. 9. Testing transition ti: case 3

· · ·

NEti

Eti

startti

pi
1

inti

true[ai,bi]

endti

pi
2

Fig. 10. Testing transition ti: case 4 (names of transitions are omitted)

It can be seen in Figure 10 that there is a transition for each pair (p, state),
where p is an input place of ti and state may be either the place startti , the pair
of places (inti , true[ai,bi]) or the pair (endti , true[ai,bi]). Like above, an edge
from p to a transition must be labeled with B − •ti(p) + 1 (which is omitted
in the figure). Note that the number of states (here 3) depends on the kind of
intervals but is bounded by a constant. Thus this construction is still linear w.r.t.
the number of input arcs of t.

We consider the equivalence relation R containing all pairs ((M, ν), (M, ν))
such that

– M in N is obtained by projection: M(p) = M(p) for each place p ∈ P ,
– for a transition t in T enabled by M : ν(t) = 0 if the time subnet of t is

empty, ν(t) = ν(lt) if the place startt contains a token, ν(t) = a + ν(ut)



306 B. Bérard et al.

if the place int contains a token and ν(t) = b if the place endt contains a
token. Note that in both latter cases, true[a,b] also contains a token and the
transition t can be fired in N .

Also note that if M(startt) = 1 and ν(ut) = a, then by instantaneously firing
ut, transition t can also be fired. By a development similar to the previous
ones, we can show that R is a bisimulation relation. More precisely, the proof
is mainly based on emptying sequences from a configuration (M, ν) of N : it is
always possible to reach instantaneously a configuration (M1, ν1) such that the
testing subnet is empty, with (M1, ν1) still equivalent to (M, ν). The details are
omitted. ��

We conclude this section with the following table summarizing our results.

(Bounded) TPNs I semantics A semantics PA semantics
general intervals

I semantics ≤W <W
A semantics <W

Bounded TPNs I semantics A semantics PA semantics
upper-closed intervals

I semantics ≈W ≈W

5 Conclusion

Since the introduction of TPNs, numerous works have lead to verification algo-
rithms, tool development and applications to real-time systems. In this paper,
we investigated some questions relative to the expressiveness of three different
semantics for TPNs. First, we presented some standard patterns of discrete event
systems where the original semantics (i.e. the intermediate one) is not the most
appropriate, thus showing that atomic and persistent atomics semantics could
be interesting alternatives.

Then we undertook a theoretical analysis of the three semantics w.r.t. weak
timed bisimilarity. We established a hierarchy between these semantics and
proved that the PA semantics is strictly more expressive than the two other
ones. Since the last result is due to non upper-closed intervals and is still valid
for bounded nets, we focused our study on bounded nets with upper-closed in-
tervals. In this last case, the three semantics are equivalent.

However, even in the restricted case we feel that PA semantics should be
preferred to the other ones since the emulation of the other semantics by the PA
semantics is natural whereas the reverse emulation is rather involved and yields a
TPN whose readability is doubtful. Furthermore most verification techniques are
based on the class graph construction which applies with the same complexity
for these three semantics.



Comparison of Different Semantics for Time Petri Nets 307

References

1. P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In ICATPN’01, volume
2075 of LNCS, pages 53–72. Springer-Verlag, june 2001.

2. M. Ajmone Marsan and G. Balbo and G. Conte and S. Donatelli and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons, 1994, ISBN: 0-471-93059-8.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
B, 126:183–235, 1994.

4. T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical Computer
Science, 243(1–2):409–447, 2000.

5. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,
March 1991.

6. Bernard Berthomieu and Pierre-Olivier Ribet and François Vernadat. The tool
TINA - Construction of Abstract State Spaces for Petri Nets and Time Petri Nets
International Journal of Production Research, Vol.42, N◦14, pp.2741-2756, 2004.

7. B. Berthomieu and F. Vernadat. State class constructions for branching analysis
of time Petri nets. In TACAS’2003, volume 2619 of LNCS, pages 442–457, 2003.

8. Franck Cassez and Olivier H. Roux. Structural Translation of Time Petri Nets into
Timed Automata. In Michael Huth, editor, Workshop on Automated Verification
of Critical Systems (AVoCS’04), Electronic Notes in Computer Science. Elsevier,
August 2004.

9. D. de Frutos Escrig, V. Valero Ruiz, and O. Marroqúın Alonso. Decidability of
properties of timed-arc Petri nets. In ICATPN’00, Aarhus, Denmark, volume 1825
of LNCS, pages 187–206, june 2000.

10. M. Diaz and P. Senac. Time stream Petri nets: a model for timed multimedia
information. In ATPN’94, volume 815 of LNCS, pages 219–238, 1994.

11. G. Gardey, D. Lime, and O. (H.) Roux. Roméo: A tool for Time
Petri Nets Analysis, 2003. The tool can be freely downloaded from
www.irccyn.ec-nantes.fr/irccyn/d/fr/equipes/TempsReel/logs.

12. W. Khansa, J.P. Denat, and S. Collart-Dutilleul. P-Time Petri Nets for manufac-
turing systems. In WODES’96, Scotland, pages 94–102, 1996.

13. J. Lilius. Efficient state space search for time Petri nets. Electronic Notes in
Theoretical Computer Science, volume 18, 1999.

14. D. Lime and O. H. Roux. State class timed automaton of a time Petri net. In
PNPM’03. IEEE Computer Society, September 2003.

15. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, CA, 1974.

16. L. Popova. On time Petri nets. Journal Information Processing and Cybernetics,
EIK, 27(4):227–244, 1991.

17. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974.



 

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 308 – 322, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Introducing Dynamic Properties with Past Temporal 
Operators in the B Refinement 

Mouna Saad and Leila Jemni Ben Ayed 

Faculté des Sciences de TUNIS, 
Département des Sciences de l’Informatique  
Fax. 0021671706698 – Tel. 00216706317 

mouna.saad@fst.rnu.tn, Leila.jemni@fsegt.rnu.tn  

Abstract. We are interested in specifying and verifying dynamic properties of 
reactive systems with the B method extended with propositional linear temporal 
logic PLTL. Commonly, specification of dynamic properties is done with pure 
future fragment of PLTL. However, the introduction of past operators enables 
the production of more natural formulation of a wide class of dynamic 
properties. In this paper, we show how the past fragment of PLTL, as well as 
the future fragment is preserved by the B refinement, and we present patterns of 
reformulation and the corresponding sufficient conditions to verify dynamic 
properties including past time operators by means of cooperation of theorem 
proving and model checking. 

1 Introduction 

To deal with reactive systems, Abrial [1] has proposed a variant of the B method: The 
B event based method [2]. It provides rigorous development formalism for reactive 
systems but its limitation relates to the type of properties concerned to express 
because only the invariants are considered which describes safety. Due to the fact that 
most properties of reactive systems are dynamic (liveness and temporal properties), 
several works have been interested in extending the B method [1] in order to express 
and verify such properties. For instance, in [3], Abrial and  Mussat proposed an 
extension of the B method [2] to allow the description of dynamic properties with 
dynamic invariant and some modalities in the shape of linear temporal logic 
formulae(LTL) [18]. However, to verify such properties by means of theorem 
proving, the user must exhibit two decreasing functions, a variant and a loop 
invariant. These two functions are crucial to the automatisation of the proof strategy, 
but they aren’t directly the concern of the specification, and in addition, they are quite 
difficult.  

Another solution is to specify the dynamic properties with PLTL [15], and to use 
model checking technique for their verification. This solution offers the advantage of 
a possible and entire automatisation without requiring variant and loop invariant. 
Furthermore, its main inconveniences are related to its limitation to finite state 
systems in addition to the combinatorial explosion of the number of states to be 
checked. Two techniques have been proposed to avoid these drawbacks. The first one 
is modularity [11] [12], it uses the notion of refinement induced by the B method to 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 309 

 

model check properties in a modular way. The refinement of an abstract model by a 
concrete one induces the split of the concrete graph into subgraphs, and then the 
property is verified separately on each subgraph. The modular verification of a 
temporal property P consists, first, in computing the set of modules from abstract 
transition system, then verifying on each module if P is satisfied or not using the 
model checking technique, and finally, concluding under some conditions that P is 
satisfied if all the modules satisfy P. The second technique is reformulation [7, 8], it is 
based on refinement to use jointly proof and model checking. And because of most 
PLTL properties are preserved by refinement [8], the preservation of an abstract 
property P1 that holds on an abstract system S1 is used for proving that a property P2 
which refines P1 holds on the system S2 which refines the system S1. The abstract 
property P1 expressed in PLTL is verified with model checking technique because the 
abstract transition system S1 has a small number of states. Then, after refinement, the 
reformulated property P2 is verified with proof of some sufficient conditions 
associated to the reformulation pattern which is a couple of temporal operators of the 
abstract formula P1 and the refined formula P2. The temporal operators used in 
reformulation technique are limited to future tense operators and reformulation 
patterns proposed in [7] are couples of temporal operators ##’ with #,#’∈{Ο,U, }. 

Our contribution in this paper consists in extending the reformulation technique 
developed for pure future PLTL with past temporal operators. It is well known that 
past time modalities do not increase expressiveness of PLTL [9]. This is why past 
operators have been viewed to be unnecessary for some time. However, many 
interesting dynamic properties are naturally formulated in a way that is not limited to 
the future evolution, but may refer to events in the past [13] and new results proved 
that LTL with past operators can be exponentially more succinct [14],[16]. For 
instance, to express that a grant may only occur if some request has been issued, we 
could write  (grant request), this property is not straightforward to express with 
future operators, but it may have a complicated equivalent pure future formula which 
is ¬ grant∨(¬grant) U request, expressing either there is no grant at all or there is 
no grant until the first request, when using translating methods [10].  

Past temporal operators are being devoted increasing interest in requirement 
engineering and formal verification which could be automatic thanks to the NuSMV 
model checker [4], [17], [6]. 

To extend the reformulation technique to the past fragment of PLTL, firstly, we 
prove that temporal properties using PLTL past temporal operators are preserved by 
the B Refinement. Secondly, we propose some reformulation patterns to reformulate 
properties and we generate their sufficient conditions. The verification is then based 
on the verification with model checking technique of the abstract property and the 
verification with theorem proving technique of the sufficient conditions related to the 
past reformulation patterns used to reformulate properties. This paper is structured as 
follows. Section 2 recalls the steps of reformulation and some basic definitions. In 
section 3, we introduce the syntax and semantics of past temporal operators of PLTL, 
and we highlight the preservation of formulae of PLTL using past temporal operators 
by The B Refinement. In section 4, we give the past reformulation patterns that we 
have generated, we state reformulation patterns theorems and we give some proof. 
Finally we illustrate our approach through the example of robot cell. 



310 M. Saad and L. Jemni Ben Ayed 

 

2 Reformulation  

Several works have been interested in extending the B method [1] in order to express 
and verify dynamic properties. Darlot and al [8] propose to specify the dynamic 
properties with PLTL, and to use model checking technique for their verification.  
This solution presents inconveniences related to its limitation to finite state systems in 
addition to the combinatorial explosion of the number of states to be checked.  
Reformulation [7] has been proposed to avoid these drawbacks. It is based on 
refinement to use jointly proof and model checking. And because of most PLTL 
properties are preserved by refinement [8], the preservation of an abstract property P1 
that holds on an abstract system S1 is used for proving that a property P2 which refines 
P1 (by reformulation) holds on the system S2 which refines the system S1. The abstract 
property P1 expressed in PLTL is verified with model checking technique because the 
abstract transition system S1 has a small number of states. Then, after refinement, the 
reformulated property P2 is verified with proof of some sufficient conditions 
associated to the reformulation pattern which is a couple of temporal operators of the 
abstract formula P1 and the refined formula P2. The temporal operators used in 
reformulation technique are limited to future tense operators and reformulation 
patterns proposed in [7] are couples of temporal operators ##’ with #,#’∈{Ο,U, }. 

     In this section we give, at first, the steps of reformulation, then we give a set of 
basic definitions and a theorem [7]. We express the semantic of each B event system 
by a transition system. We will use, in the following, s,s0,s1,s2,… which denotes states 
and V which is a  set of  variables {x1,…,xn} of type Dom(xi). 

2.1   How to Reformulate Properties [7]  

The B Refinement introduces some new details in the specification of abstract 
systems to get refined systems. Each PLTL property expressed on an abstract B event 
system should also be re expressed on the refined system. This process, similar to 
refinement of event systems, is called Reformulation when it concerns temporal 
properties. Each property is reformulated using a reformulation pattern which is a 
couple of temporal operators ##’ of the abstract property P1: (p1 #q1) and a 
reformulated property P2 : (p2 #’q2) with #,#’ ∈{O, , U}.  

2.2   Reformulation Steps 

The diagram in (Fig.1) shows different steps of the reformulation extended with past 
temporal operators. It consists on verifying that if a property P1 holds on an abstract 
system TS1, a property P2 which refines P1 (by reformulation) holds on the system 
TS2 which refines the system S1. Then P1 is verified at each refinement step. 

1. The abstract property φ1 is checked with model checker (as NuSMV) because 
the abstract system generally has a reduced number of states so there is no 
combinatorial explosion of  states number. 

2. The abstract system TS1 is refined by the system TS2. The refinement is proved 
either with proof or model checking. 

 
 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 311 

 

Abstract 
System TS1 

Refined 
System TS2 

Reformula- 
tion Refinement

Proof or 
Model 

Checking 
 

Proof

Reformulated 
property 

2 

Abstract 
property 1 

Model 
Checking 

3. φ1 is reformulated into φ2, using one of the reformulation patterns. 
4. φ2 is verified by proof of the sufficient conditions corresponding to the used 

pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Reformulation technique 

 
In the following we give some basic definitions.  

Definition1. Atomic propositions. The set APv 
def

= {ap, ap0, ap1,…}is the set of 
atomic propositions over the set of variables V where ap is a formula xi=dj, with xi 
∈V and dj∈Dom(xi). 

 
Definition 2. State proposition. The set of state propositions over the set of variables 

V, written SPv 
def

= {sp,sp1,…}, is defined by:   
sp::= ap | sp∨ sp| ¬ sp, where ap ∈APv. 
 

Definition 3. Transition system. A labeled transition system, with set of variables V 
of a finite domain, is a 5-tuple TS = (Q,Q0,L,T,l) where: 

-Q is a set of states; 
-Q0 is set of initial states (Q0⊆Q) ; 
-L={a,a1,…} is a set of transition labels which we call actions; 
-T∈P(QxLxQ) is the transition relation; 
-l : Q P(SPv) is a function which associates  to  each state  s∈Q  a decoration 
l(s) in the shape of  state proposition giving the value of each variable as 
conjunctions  

n

i 1=
∧

(xi=dj), dj ∈ Dom(xi). 
 

We note s1 ⎯→⎯a s2 the transition (s1,a,s2). 
 
 



312 M. Saad and L. Jemni Ben Ayed 

 

Definition 4. A state satisfies a state proposition. Let TS1= (Q,Q0,L,T,l) be a 
transition system over V. A state s∈Q satisfies a state proposition sp∈ SPv (or sp 
holds on s, written s  sp), iff l(s)  sp. 

 
Definition 5. Path of transition system TS. Let us consider σ=s0,s1,… a sequence of 
states in TS=(Q,Q0,L,T,l). σ is a path of TS iff  ∀i.(i  0 ∃a.(a∈L 

∧(si ⎯→⎯a si+1∈T))). 
σ(i) (written also (σ,i) in proof) designate the state si of the path σ and Σ(TS) 

designate the set of paths of TS. 
 

Definition 6. Glued states, relation μ. Let I1,2 be the gluing invariant of transitions 
systems TS1 and TS2. The state s2∈Q2 is glued to s1∈Q1 with I1,2, noted down s2μs1, 
iff (l2(s2)∧I1,2)  l1(s1). 

 
Definition 7. States refinement relation  [7] . Let TS1=(Q1,Q01,L1,T1,l1) and 
TS2=(Q2,Q02,L2,T2,l2) be two transition systems. Let a∈L1. We consider the new 
transitions introduced by refinement process (those whose label is in L2\ L1) as being 
non observable and they are called τ- transitions. 

The relation  ⊆ Q2xQ1 is the greatest binary relation included in μ  and satisfying 
the following conditions: 

1.Strict transition refinement:(s2 s1∧s2 ⎯→⎯a s’2∈T2) ∃s’1.(s1 ⎯→⎯a s’1∧s’2  s’1).                  

2. τ-Transitions refine skip: (s2 s1 ∧ s2 ⎯→⎯τ s’2∈T2)  s’2  s1. 
3. Non introduction of deadlocks: (s2  s1 ∧ s2 →/ 2 )  (s1 →/ 1).   

 (We note s →/ i when ∀s’, s”.( s’ ⎯→⎯a s”) ∈Ti  s≠s’) 
4.Nonτ-divergence:∀σ2,k.(σ2∈ (TS2)∧k 0     

                               ∃a,k’.(a∈L1∧k’ k∧(σ2,k’-1) ⎯→⎯a (σ2,k’)∈T2)). 
5. Preservation of the non determinism: 

(s1 ⎯→⎯a s’1∧s2 s1) ∃s’2,s’’2,s’’1.(s’2 s1∧s’2 ⎯→⎯a
2s’’2∈T2∧s1 ⎯→⎯a s’’1∈T1∧ 

s’’2 s’’1) 

Each portion of path that contains τ-transitions must end by a transition labeled 
from L1. That means that the new events should not take the control for ever in order 
to avoid the live locks. Besides that, τ-transitions shouldn’t introduce deadlocks. 

 
Definition 8. Refinement of TS [7]. The transition system TS1=(Q1,Q01,L1,T1,l1) is 
refined by the transition system TS2=(Q2,Q02,L2,T2,l2) (writtenTS1 ⊆ρTS2), iff  
∀s2..(s2∈Q02  ∃s1 (s1∈Q01∧ s2 s1)). 

 
Definition 9. Paths Refinement. Let TS1 and TS2 be two transition systems, 
TS1⊆TS2, and σ1 and σ2 some respective paths of Σ(TS1) and Σ(TS2). σ1 is refined by 
σ2 (written σ1⊆ρ σ2) iff : ∀ i.(σ2(i) ∈Q2  ∃j.( σ1(j) ∈Q1∧ σ2(i)  σ1(j))). 

 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 313 

 

Lemma 1. Existence of an abstract path [7]: Let TS1 and TS2 be two transition 
systems such that TS1⊆ρTS2, then ∀ s2.( s2∈Q2  ∃s1.( s1∈Q1∧ s2  s1)). 

3 Refinement Preservation of PLTL Past Temporal Formulae  

We present in this section semantics of past temporal operators, then we define the 
preservation validity of past temporal formulae and finally we prove their 
preservation by refinement.  

3.1   Semantics of Past Temporal Operators (Definition 10) 

Let σ be a sequence of execution, and φ ,ψ two PLTL formulae. We define the PLTL 
past  temporal operators at a state i  0 of σ (written (σ,i) or σ(i)) as follows: We 
denote by (σ,i) φ  the satisfaction of the formula φ  in the state i of the sequence σ.  

(σ,i)  φ     iff   i >0 ∧ (σ,i-1)  φ                           (previous) 
(σ,i)  φ Sψ   iff   ∃j.(j  i ∧ (σ,j)  ψ  and ∀k.(i  k>j  (σ,k)  φ))       (Since) 
(σ,i)        φ  iff   ∀j.(j  i ∧ (σ,j)  φ)                      (Always in the past) 
(σ,i)   φ   iff   ∃j.(j  i ∧ (σ,j)  φ)                 (Eventually in the past) 

3.2   Preservation 

We will show, in this section, how temporal properties are preserved through the 
refinement process. In fact, we will define the validity of past PLTL properties 
through the refinement process in order to reason with the abstract variables of 
abstract systems at refined levels. 

 
Validity of state proposition through the gluing invariant [7]  (Definition 11). 
 Let TS1 and TS2 be two transition systems where TS1 ((TS2 and I1,2 their gluing 
invariant. Let sp1 be a state proposition expressed with variables of TS1, and s2(Q2. 
s2 satisfies sp1 through I1,2 written  ((s2,I1,2) c sp1)) iff l2(s2) ∧ I1,2  sp1. 

 

Validity of PLTL past temporal formulae by preservation (Definition 12).  Let σ2 
be an execution path of TS2 which refines TS1 and I1,2 their gluing invariant. Let 
φ and ψ be two temporal formulae expressing TS1 properties. Past temporal formulae 
which are satisfied by preservation by σ2 (written ((σ2,j),I1,2) p φ) , are defined as 
following: 

((σ2,j),I1,2) p sp,   iff ((σ2,j),I1,2) c sp and sp∈SPv 
((σ2,j),I1,2) p¬ φ,   iff , it isn’t true that ((σ2,j),I1,2) p φ, 
((σ2,j),I1,2) p φ∨ψ, iff  ((σ2,j),I1,2) p φ, or ((σ2,j),I1,2) pψ 
((σ2,j),I1,2) p φ,  iff ∃ j’(0 j’< j∧((σ2,j’),I1,2) pφ) 
((σ2,j),I1,2) p φ Sψ, iff ∃ j’.(0 j’  j∧((σ2,j’),I1,2) pψ  
                                   ∧ ∀j”.(j  j”>j’ ((σ2,j”),I1,2) pφ)) 
((σ2,j),I1,2) p        φ, iff ∃j’(0 j’  j∧ ((σ2,j’), I1,2) p φ) 
 



314 M. Saad and L. Jemni Ben Ayed 

 

Satisfaction of PLTL past properties by TS (Definition 13). Given a PLTL past 
property φ, we say φ holds on TS (TS  φ ) iff ∀σ (σ∈ (TS)  σ  φ). 

 
Refinement preservation of PLTL past formulae that hold on a path (Lemma 2).  
Let φ be a PLTL past formula and σ1 and σ2 two paths of transition systems TS1 and 
TS2, where TS1 ⊆ρ TS2 and I1,2 the gluing invariant of the transition systems, then 
∀j,k(j 0 ∧ k 0  (σ2,k)  (σ1,j) ∧ (σ1,j) φ   ((σ2,k), I1,2) pφ). 

Asserting that if a formula φ holds on a state of the sequence σ1, given that σ2 

refines σ1, then φ modulo I1,2 holds on a state of the sequence σ2. 
 

Proof: Consider the path σ2 of TS2 which refines a path σ1 of TS1, a, a’,…,a(n) 
transition labels of TS1 and τ the label of new transitions introduced by refinement, τ 
∈ L2\L1.  

We will carry the proof inductively on the syntactic structure of formulae defined 
as: ψ,φ ::= φ | φ Sψ, recall that this syntax is a basic set that allows to express PLTL 
past temporal formulae. 

Let us prove that a φ formula is preserved by refinement if φ is preserved. 

1. Let us consider a path σ1=(σ1,j-1) ⎯→⎯a (σ1,j)∧(σ1,j)  φ,: σ2 refines σ1, so:  
  

 

1st case: (σ2,k-1) ⎯→⎯a  (σ2,k) ∈ T2 : 
then (σ2,k-1)  (σ1,j-1), in addition 
(σ1,j)  φ, that way (σ1,j-1)  φ, and we 
have as hypothesis that φ is preserved  so 
((σ2,k-1),I1,2) p φ. 
According to the first refinement clause, 

(σ2,k-1) (σ1,j-1)∧(σ2,k-1)) ⎯→⎯a (σ2,k) 

∃S’1.((σ1,j-1) ⎯→⎯a S’1∈T1 

       ∧ (σ2,k) S’1) 
so, S’1=(σ1,j)  
(according to φ (definition 10))  
and (σ2,k) (σ1,j), 
and we know that ((σ2,k-1),I1,2) pφ,  
so, ((σ2,k),I1,2) p φ  according to 
definition 12. 
 

 

2nd case: (σ2,k’-1) ⎯→⎯τ  (σ2,k’)∈ T2 
According to the clause 4 of 
refinement, we have a non τ-
divergence, then ∃a, k so that 

(a∈L1∧k>k’∧(σ2,k’) ⎯→⎯τ (σ2,k’+1) 

… ⎯→⎯τ (σ2,k-1) ⎯→⎯a  (σ2,k )) 
According to the second clause of 
refinement we have: (σ2,k-1)  (σ1,j-1). 
Then (σ2,k-1) (σ1,j-1)  

and (σ2,k-1) ⎯→⎯a (σ2,k ),   
according to the clause 1 of refinement:  

(σ1,j-1) ⎯→⎯a (σ1,j)∈T1 

and (σ2,k) (σ1,j),  
we also know that (σ1,j-1) φ  and that 
φ is preserved by refinement so,  
((σ2,k-1),I1,2) p φ. 
so, ((σ2, k),I1,2) p φ. 

 
 
As conclusion, φ  is preserved by refinement. 

 
2. Let us prove that φ Sψ formula is preserved by refinement, if φ  and ψ are 
preserved. 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 315 

 

    We know that (hypothesis) (σ1,j)  φ Sψ   which means that :   
 

(∃ j’’. (j’’  j∧(σ1,j’’) ψ                  (a) 
∧ (∀ j’.(j j’>j’’   (σ1,j’) φ ))      (b). 

 
   

 

1st case: Let σ’2=(σ2,k’’) ⎯→⎯a … 

⎯⎯→⎯
)( na   (σ2,k).  

σ’2 refines a finite part of the path σ’1 
and the states of the paths σ’1 and σ’2 
are glued with . We deduce that there 
a sequence of a-labeled transitions 
a’,…,a(n)∈ L1 of σ1,  so that we have 
this finite path part :  

σ’1=(σ1,j’’) ⎯→⎯a … ⎯⎯→⎯
)( na (σ1,j). 

(a): σ’2⊆  σ’1 so (σ2,k’’)  (σ1,j’’) 
We have (σ1,j’’) ψ, and we know that 
(hypothesis) ψ is preserved by 
refinement, then ((σ2,k’’),I1,2) pψ. 
(b): σ’2⊆  σ’1 so (σ2,k’)  (σ1,j’) ∀j’, 
k’.(k’’<k’  k ∧j’’<j’  j) 
We know that (σ1,j’)  φ, and that φ is 
preserved by refinement, then 
((σ2,k’),I1,2) pφ 
so we have ((σ2,k),I1,2) p φ Sψ. 

 

2nd case: Let σ’2=(σ2,k’’’) ⎯→⎯τ
 … 

⎯→⎯a
(σ2,k’’)… ⎯⎯→⎯

)( na
(σ2,k).  

σ’2 refines a finite part of the path σ’1 
and the states of σ’1 and σ’2 are glued 
with . We deduce that it exists a 
sequence of transitions of σ1 having as 
labels a, a’,…,a(n)∈ L1, so that  we have 
the following finite part of path: 

σ’1=(σ1,j’’) ⎯→⎯a … ⎯⎯→⎯
)( na (σ1,j). 

(a): σ’2⊆  σ’1 then (σ2,k’’’)  (σ1,j’’) and 
we know that (σ1,j’’)  ψ, and that ψ is 
preserved by refinement, so 
((σ2,k’’’),I1,2) p ψ.  

We have (σ2,k’’’) ⎯→⎯τ
(σ2,k’’’+1)… 

⎯→⎯τ
(σ2,k’’),  

and according to the second clause of 
refinement we have (σ2,k’’)  (σ1,j’’),  
We also know (hypothesis) that  
(σ1, j’’) ψ and that ψ is preserved by 
refinement, so ((σ2,k’’), I1,2) pψ). 
(b): The same proof as 1st case (b) 
of φ Sψ. 

 
 
     As conclusion, ((σ2,k),I1,2) p φSψ. 

 
We give now, the theorem of preservation of a PLTL formula by refinement which 

is a generalization of the preservation of PLTL formulae on a path. In fact this 
theorem is stated in [7], and we have used Lemma 2 to extend it with past fragment of 
PLTL. 

 
Preservation of PLTL formula by refinement (Theorem 3). Let φ  be a PLTL 
formula, TS1 and TS2 two transition systems and I1,2 their gluing invariant, 

if TS1⊆   TS2 and TS1 φ  then (TS2, I1,2) pφ. 



316 M. Saad and L. Jemni Ben Ayed 

 

4 Reformulation Patterns and Their Sufficient Conditions 

In this section we give the theorem of sufficient conditions, then we state the 
reformulation patterns and their sets of sufficient conditions. For lack of space, we 
prove only some theorems.  

All the reformulation patterns concerns temporal formulae in the shape of 
φ’1= (p1 φ1) reformulated into φ’2= (p2 φ2), with p1 and p2 two state propositions 
and φ1 and φ2 two PLTL formulae expressed respectively with variables of TS1 and 
TS2. 

4.1   How Is the Preservation of PLTL Past Temporal Properties by Refinement  
        Used? 

Whenever an abstract property over the abstract system is proved correct and if this 
property is preserved by the refinement, it will remain correct over all the refined 
levels of the system. So when the property is verified once over the abstract system 
we don not need to verify it again if the system is refined. However, as we saw in 
definition 7, The B Refinement allows the introduction of new events, and then, the 
set of variables of the abstract level and the refined levels are not the same. But 
luckily, the variables of the abstract and the refined levels are linked together by the 
gluing invariant. This way an abstract property was proved to be satisfied by 
preservation on the refined levels (theorem 3). We will see how this result, added to 
some other sufficient conditions, makes the verification of refined (or reformulated) 
properties easier on refined systems. 

4.2   What’s a Past Reformulation Pattern? 

A past reformulation pattern is a couple of temporal operators ##’ of the abstract 
property P1: (p1 #q1) and a reformulated property P2: (p2 #’q2) with #,#’∈{ , 
S, } (definition10). The choice of the Reformulation pattern depends on the semantic 
required from the refinement. We have defined five patterns which are: S, , , 
SS, S . 

4.3   What Are Sufficient Conditions and How Do We Use Them?  

We have proved that the past temporal formulae of PLTL, as well as pure future 
formulae, are preserved by The B Refinement (section 3). So when a property is 
proved to be correct on one level “I” it remains correct on the next refined level “j”, 
we just have to link variables of level “I” to ones of level “j” with a gluing invariant 
Ii,j. However, we also know that The B Refinement allows the introduction of new 
events, so the preservation of the temporal properties is not sufficient to prove 
reformulated properties due to the new details introduced. We have to verify by proof 
some other conditions in addition to preservation. These conditions are some 
sufficient conditions in the shape of simple propositional logical formulae which 
verification is automatic with theorem prover [7]. The sufficient conditions of each 
past reformulation pattern that we have established are given in the following 
theorems (5,6,7,8 and 9). 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 317 

 

Theorem 4. Sufficient conditions [7].  Let TS1 and TS2 be two transition systems 
where TS1 ⊆ρTS2 and I1,2 their gluing invariant. Let p1, p2 be two state propositions, 
φ1, φ2 PLTL formulae expressed with respective variables of TS1 and TS2. Let 
φ’1= (p1 φ1) and φ’2=  (p2 φ2). If TS1  φ’1 , p2 ∧ I1,2  p1 and The sufficient 
conditions  CSφ(φ1,φ2) are satisfied , 
then TS2  φ’2. 

 
The set of conditions CSφ(φ1,φ2).  We call CSφ(φ1,φ2) the set of conditions of the 
reformulation patterns used when refining φ1 into φ2, it states that if a state of the 
refined system satisfies φ1 by preservation then this state satisfies the reformulated 
property φ2. 

∀σ2,j.(σ2∈ (TS2) ∧ j  0  (((σ2,j) , I1,2) p φ1  (σ2,j) φ2)) where φ1 et φ2 are 
expressed with future temporal operators and the past temporal operators « S » and  
« »  (definition 10 ). 

∀σ2,j.(σ2∈ (TS2) ∧ j > 0  (((σ2,j) , I1,2) p φ1  (σ2,j) φ2)) in the case that the 
past temporal operator used in φ1 or φ2 is « »( the reformulation pattern is containing 
« » (definition 10)). 

We will make explicit, in the following theorems, the set of conditions 
corresponding to each past reformulation pattern. The set CSφ and the formula 
p2∧I1,2  p1 are called sufficient conditions. 

 
Theorem 5. The pattern S. Let φ1, φ2 be two PLTL formulae that hold 
respectively on TS1 and TS2. φ1= (p1  q1)  and  φ2= (p2  r2Sq2). If TS1 φ1, 
TS1⊆ TS2, I1,2 their gluing invariant, p2 ∧ I1,2  p1,  p1 ∧ I1,2  r2 and q1∧I1,2  q2 
then TS2  φ2. 

  
Proof: We have to prove that ∀ σ,j.(σ∈ (TS2) ∧ j>0  (σ,j)  r2Sq2), in other words, 
we must prove that the set of conditions CSφ( q1,r2Sq2)={p1∧I1,2  r2, q1∧I1,2  q2} 
states that ∀σ,j.(σ∈ (TS2)∧j>0  (((σ,j),I1,2) p q1  (σ,j) r2Sq2)), in order to use 
of the theorem of sufficient conditions.  

∀ σ,j.(σ∈ (TS2) ∧ j>0  (σ,j)  r2Sq2) means that (according to the semantic of 
Since): ∀σ,j.(σ∈ (TS2)∧j>0 ∃j’’. (j’’  j∧(σ,j’’) q2         (a)   

∧∀ j’.(j j’>j’’   (σ,j’) r2 )))                                             (b) 

Let us prove, first, that∀σ, j.(σ∈ (TS2) ∧ j>0  ∃ j’’. (j’’  j∧(σ,j’’) q2)). 
We know that: ∀ σ, j.(σ∈ (TS2) ∧ j>0  ((σ,j),I1,2) p q1) (hypothesis: theorem 3) 
This means, according to the semantic of the satisfaction by preservation of the 
operator , that ∀σ, j.(σ∈ (TS2)∧j>0 ∃ j’’.(j’’<j∧((σ,j’’),I1,2) p q1))    
This is equivalent, according to the definition of p , to 
∀σ,j.(σ∈ (TS2)∧j>0 ∃ j’’.(j’’< j∧ l2((σ,j’’)) ∧I1,2  q1)) 
which implies when adding I1,2 on the right of the implication: 
∀ σ, j.(σ∈ (TS2) ∧ j>0 ∃ j’’. (j’’< j∧ l2((σ,j’’)) ∧ I1,2  q1 ∧ I1,2)) 
We know too, according to the hypotheses, that q1∧I1,2  q2, so, given that the 
implication is transitive, we have: 



318 M. Saad and L. Jemni Ben Ayed 

 

∀σ, j.(σ∈ (TS2)∧j>0 ∃ j’’. (j’’< j∧l2((σ,j’’))∧I1,2  q2)) 
which implies that (because I1,2 isn’t needed to establish q2): 
∀ σ, j.(σ∈ (TS2) ∧ j>0 ∃ j’’. (j’’< j∧ (σ,j’’)  q2)) 

    Let us prove, now, the maintaining part (b). 
    We know that transitions between j and j’+1 are τ-transitions. According to the 
clause 2 of refinement, we deduce that the states (σ,j’+1)…(σ,j) refine a state (σ1,k) 
of the abstract system where (σ1,k) p1, which implies that the states (σ,j’+1)…(σ,j) 
satisfy p1 by gluing : 
∀σ,j.(σ∈ (TS2)∧j>0 ∃ j’. (j’  j∧(σ,j’) q2∧∀ j’’.(j j’’>j’  l2((σ,j’’))∧I1,2 p1 ))) 
So we have, when adding I1,2 on the right of the implication, 
∀σ,j.(σ∈ (TS2)∧j>0 ∃j’.(j’ j∧(σ,j’) q2∧∀j’’.(j j’’>j’ l2((σ,j’’))∧I1,2 p1∧I1,2)))        
but we have also p1∧I1,2  r2, so the formula becomes 
∀ σ,j.(σ∈ (TS2) ∧ j>0 ∃ j’. (j’  j∧(σ,j’) q2∧∀ j’’.(j j’’>j’  l2((σ,j’’))∧I1,2 r2))) 
and because  I1,2 is not needed to establish r2, we have 
∀ σ,j.(σ∈ (TS2) ∧ j>0 ∃ j’. (j’  j∧(σ,j’) q2 ∧ ∀ j’’.(j j’’>j’  (σ,j’’) r2 ))). 
 
Theorem 6. The pattern . Let φ1, φ2 be two PLTL formulae that hold 
respectively on TS1 and TS2. φ1= (p1 q1) and φ2= (p2 q2). If TS1 φ1, 
TS1⊆ TS2, I1,2 their gluing invariant, p2∧I1,2  p1, and q1∧I1,2  q2 then TS2  φ2. 

 
Theorem 7. The pattern . Let φ1, φ2 be two PLTL formulae that hold 
respectively on  TS1 and TS2. φ1= (p1 q1) and  φ2= (p2 q2). If TS1 φ1, 
TS1⊆ TS2, I1,2 their gluing invariant,  p2∧I1,2  p1, and q1∧I1,2  q2 then TS2  φ2. 

 
Theorem 8. The pattern SS. Let φ1, φ2 be two PLTL formulae that hold respectively 
on TS1 and TS2. φ1= (p1 r1Sq1) and φ2= (p2  r2Sq2). If TS1  φ1, TS1⊆ TS2, I1,2 
their gluing invariant, p2 ∧ I1,2  p1, r1 ∧ I1,2  r2 and q1∧I1,2  q2 then TS2  φ2. 

 
Proof: Let us prove that the set of conditions CSφ(r1Sq1, r2Sq2)={r1∧I1,2 r2, q1∧I1,2  
q2} states that ∀σ,j.(σ∈ (TS2) ∧ j 0  (((σ,j),I1,2) pr1Sq1  (σ,j) r2Sq2)) in order to 
use theorem 4. 
    According to the semantic of the satisfaction by preservation of the “since” 
operator we have ∀ σ, j.(σ∈ (TS2) ∧ j 0  ((σ,j),I1,2) p r1Sq1) 
This means that ∀ σ,j.(σ∈ (TS2) ∧ j 0 ∃ j’. (j’  j∧((σ,j’ ),I1,2) p q1     
 ∧ ∀ j’’.(j  j’’>j’  (σ,j’’),I1,2) p r1 ))) 
and we know also, that q1 and r1 are state propositions, so 
∀σ,j.(σ∈ (TS2)∧j 0 ∃j’.(j’  j∧((σ,j’ ),I1,2) cq1∧∀j’’.(j j’’>j’ ((σ,j’’),I1,2) c r1))) 
this implies that  ∀ σ,j.(σ∈ (TS2)∧ j 0 ∃ j’.(j’  j∧(l2((σ,j’))∧I1,2)  q1     
∧ ∀ j’’.(j j’’>j’  (l2((σ,j’’))∧I1,2) r1 ))) 
Adding I1,2 on the right of the implication, we obtain  
∀σ,j.(σ∈ (TS2)∧j 0 ∃j’.(j’ j∧(l2((σ,j’))∧I1,2) q1∧I1,2∧∀j’’.(j j’’>j’ (l2((σ,j’’))∧
I1,2)  r1∧I1,2 ))) 
and we have, according to CSφ (r1Sq1,r2Sq2): r1∧I1,2 r2 and  q1∧I1,2  q2. 

 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 319 

 

LEDi 

CDi

ADi 

REDi

    So, using the implication transitivity, the expression becomes  
∀σ,j.(σ∈ (TS2)∧j 0 ∃j’.(j’ j∧(l2((σ,j’))∧I1,2) q2 

 ∧∀j’’.(j j’’>j’ (l2((σ,j’’))∧I1,2) r2)))     
    We can omit I1,2 from the left of the implication (because it is not  needed to 
establish q2 and r2):∀σ,j.(σ∈ (TS2)∧j 0 ∃ j’. (j’  j∧l2((σ,j’ )) q2 

                             ∧∀ j’’.(j j’’>j’   l2((σ,j’’)) r2 ))) 
we have ,then, the semantic of “Since” operator  
∀σ,j.(σ∈ (TS2)∧j 0 ((σ,j)  r2Sq2)). 

Theorem 9. The pattern S . Let φ1, φ2 be two PLTL formulae that hold 
respectively on TS1 and TS2. φ1= (p1  r1Sq1) and  φ2= (p2 q2). If TS1 φ1, 
TS1⊆ TS2, I1,2 their gluing invariant,  p2∧I1,2  p1  and q1∧I1,2  q2 then TS2  φ2. 

5 Example 

We will present in this section the example of the robot cell used in [1] and adopted in 
[7] and [5]. 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Robot cell system 

The robot cell (Fig .2) has to move some parts from the arrival device (ADi) to one 
of the exit devices called LEDi (left exit device) and REDi (right exit device) by 
means of a carrier device (CDi). The carrier device (CDi) can move horizontally, 
vertically and can pivot. It has two states, free (f) and busy (b).  

Here, we show an abstract specification as well as a refined one called first 
refinement. We express the specification using B event system syntax. The variables 
corresponding to the abstract level are annoted with “1”, whereas the variables 
corresponding to the refined level are a\nnoted with “2”.  

We give now, the theorem of preservation of a PLTL formula by refinement which 
is a generalization of the preservation of PLTL formulae on a path. In fact this 
theorem is stated in [7], and we have used Lemma 2 to extend it with past fragment of 
PLTL[12]. 

Abstract specification: In this level, we observe only the carrier device state. There 
are two events: 

• Load: The carrier device takes a part then it becomes busy. 
• Unload: The carrier device drops a part then it becomes free. 



320 M. Saad and L. Jemni Ben Ayed 

 

MACHINE ROBOT1 

SETS DEVICE_STATE= {f, b} 
VARIABLES CD1 

INVARIANT CD1 ∈ DEVICE_STATE 
INTIALIZATION CD1:=f 
EVENTS 
Load = SELECT CD1=f THEN CD1=b END; 
Unload = SELECT CD1=b THEN CD1=f END; 
END 

    The dynamic property that holds on this abstract model states that if the carrier 
device is busy, then, it was free at the previous state. It is expressed with the 
following past temporal formula : ( CD1=b  CD1=f) (1). 

Refined specification: In this level we consider left and right exit devices. The 
variable of the abstract and the refined level are linked together with the gluing 

invariant I1,2
def

= CD2=CD1.  
    We observe two new events: 

• Levac: which sets the left exit device free. 
• Revac: which sets the right exit device free. 

 
MACHINE ROBOT2 REFINES ROBOT1 
VARIABLES LED2, RED2, CD2  
INVARIANT LED2 ∈ DEVICE_STATE ∧LED2 ∈ DEVICE_STATE∧ 
CD2=CD1 

INTIALIZATION LED2:=f  RED2:=f CD2:=f 
EVENTS 
/*Old Events*/ 
Load = SELECT CD2=f THEN CD2=b END; 
Unload = SELECT (LED2=f∨RED2=f)∧CD2=b  
THEN IF LED2=b THEN RED2:=b 
                           ELSE IF RED2=b THEN LED2:=b 
                                      ELSE CHOICE LED2:=b 
                                      OR RED2:=b END 
                           END 
           END 
                            CD2:=f  
END; 
/*New Events*/ 
Levac = SELECT LED2=b THEN LED2:=f END; 
Revac = SELECT RED2=b THEN RED2:=f END;  
END  

This dynamic property expressed in (1) may be reformulated to hold on the refined 
level as follows: ( CD2=b  CD2=f)(2) and it means that if the carrier device is 
busy, then,  it was free at a previous state. 

    The reformulation of (1) into (2) follows the pattern    , so we have:                                    

p1 ≡ CD1 = b, q1 ≡ CD1 = f, p2 ≡ CD2 = b, q2 ≡ CD2 = f. 

The sufficient conditions corresponding to this pattern is:{p2∧I1,2 p1, q1∧I1,2  q2}. 

• p2 ∧ I1,2  p1 : p2 ≡ CD2 = b and I1,2
def

=  CD2 = CD1 , so p1 = CD1 = b. 

• q1∧ I1,2  q2 :q1 ≡ CD1 = f and I1,2 
def

=  CD2 = CD1 , so q2 = CD2 = f. 

Then the reformulated property is verified in the refinement level. 



 Introducing Dynamic Properties with Past Temporal Operators in the B Refinement 321 

 

6 Conclusion and Perspectives 

In this paper, we have extended the B method with PLTL past fragment as it was done 
with PLTL future fragment, and we have adapted the reformulation technique in order 
to verify the dynamic properties including past temporal operators. We have proved 
that temporal properties using PLTL past temporal operators are preserved by the B 
Refinement and we have generated some reformulation patterns and their sufficient 
conditions. 

This extension allows us to formulate more natural properties that are not 
straightforward to express with future temporal operators and verify these properties 
over the refinement process. We have illustrated the extension results over an 
example of Robot cell system.  

 We propose as perspective to study another class of sufficient conditions that 
introduces the guards of events and may remedy the failure of proof based on 
sufficient conditions we have stated when it occurs. Another alternative is to study the 
extension of the modularity with past temporal operators. 

References 

1. Abrial, J.R.: The B Book. Cambridge University Press (1996). 
2. Abrial, J.R.: Extending B without changing it (for developing distributed systems). In : 

Henri Habrias, editeur, Proc. of the 1-st Conference on the B method, Putting into Practice 
Methods and Tools for Information System Design, Nantes, France (1996) 169-190  

3. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. Second Conference on the 
B method. Lecture Note in Computer Science, Vol. 1393, Springer-Verlag, (1998) 83-128. 

4. Benedetti, M., Cimatti, A.: Bounded Model Checking for Past LTL. TACAS (2003) 18-33. 
5. Bellegarde, F., Darlot, C., Julliand, J., Kouchnarenko, O.: Reformulation : a way to 

combine dynamic properties and B refinement. FME 2001 ("Formal Methods Europe"), 
Lecture Notes in Computer Sciences, Vol. 2021. Springer Verlag, Berlin, Germany, (2001) 
2-19. 

6. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: 17MV: a new Symbolic Model 
Verifier. In N. Halbwachs and D. Peled, editors. Eleventh Conference on Computer-Aided 
Verification (CAV’99). Lecture Notes in Computer Science, Vol. 1633. Springer Verlag, 
Trento Italy (1999) 495–499  

7. Darlot, C. : Reformulation et Vérification de propriétés temporelles dans le cadre du 
raffinement de systèmes d’événements, Phd thesis, Université de Franche – Comté , (2002) 

8. Darlot, C., Julliand, J., Kouchnarenko, O.: Refinement Preserves PLTL Properties. ZB 
2003 – Turku.  

9. Emerson, E. A., Temporel and modal logic. Handbook of Theoretical computer science, 
Vol. B. Elsevier Science Publisher. B.V., (1990). 

10. Gabbay, D., The declarative past and imperative future. In H. Barringer, editor, 
Proceedings of the Colloquium on Temporal Logic and Specifications. Lecture Notes in  
Computer Science, Vol : 398. Springer-Verlag, (1989) 409-448 

11. Julliand, J., Masson, P.-A., Mountassir, M.: Modular verification of dynamic properties for 
reactive systems. In Proc. of the 1-st Int. Workshop on Integrated Formal Methods 
(IFM'99). Springer Verlag, York, UK (1999) 89-108 



322 M. Saad and L. Jemni Ben Ayed 

 

12. Julliand, J., Masson, P.-A., Mountassir, H.: Vérification par model Checking modulaire 
des propriétés dynamiques introduites en B. TSI, Vol 20- n°7 (2001) 

13. Lichtenstein, O., Pnueli, A., Zuck, L., The glory of the past. In R. Parikh, editor, 
Proceedings of the Conference on Logic of Programs. Lecture Note in Computer Science, 
Vol. 193. Springer Verlag, Brooklyn, NY (1985) 196-218 

14. Laroussinie, F., Markey, N., Schnoebelen, Ph.: Temporal Logic with Forgettable Past. 17th 
Annual IEEE Symposium on Logic in Computer Science (LICS'02), Soc.Press, 
Copenhagen, Denmark (2002) 383-392 

15. Manna, Z., Pnuelli, A.: The Temporal Logic of Reactive and Concurrent Systems 
Specification. Springer Verlag (1992)  

16. Markey, N.: Past is for free: on the complexity of verifying linear temporal properties with 
past. In Proc. 9th Int. Workshop on Expressiveness in Concurrenc (EXPRESS'2002), Brno, 
Czech Republic. Electronic Notes in Theorie of Computer Science, Vol . 68. 2. Elsevier 
Science  (2002) 

17. http://17mv.irst.itc.it 
18. Pnueli , A. : The temporal semantics of concurrent programs. Theoretical Computer 

Science, Vol 13 (1981) 45-60 
19. Saad, M., Jemni Ben Ayed, L.: A way to Introduce Dynamic Properties with Past 

Temporal Operators in the B Refinement, accepted as poster in the international 
ACM/IEEE conference MEMOCODE 2004. 



Approximate Reachability for Dead Code

Elimination in Esterel�

Olivier Tardieu and Stephen A. Edwards

Department of Computer Science, Columbia University, New York
{tardieu,sedwards}@cs.columbia.edu

Abstract. Esterel is an imperative synchronous programming language
for the design of reactive systems. Esterel� extends Esterel with a non-
instantaneous jump instruction (compatible with concurrency, preemp-
tion, etc.) so as to enable powerful source-to-source program transfor-
mations, amenable to formal verification. In this work, we propose an
approximate reachability algorithm for Esterel� and use its output to
remove dead code. We prove the correctness of our techniques.

1 Introduction

Esterel [1,2,3] is a synchronous parallel programming language. Its syntax is
imperative, fit for the design of reactive systems where discrete control aspects
prevail. Sophisticated controllers may be described using sequential and paral-
lel compositions of behaviors, suspension and preemption mechanisms, condi-
tionals, loops, and synchronization through instantly broadcast signals. Both
software [4,5] and hardware [6,7] synthesis are supported.

In this paper, we present an efficient, conservative reachability computation
for Esterel� and use its output to direct a dead code elimination procedure.
Esterel� [8,9,10] extends the language with a non-instantaneous jump statement
that enables many compilation steps to be performed at the source level, making
them easier to share across back ends.

We apply our dead code elimination procedure to cleaning up the output
of structural transformations in optimizing compilers. Although in theory such
transformations can be carefully engineered to avoid introducing dead code,
doing so is generally very difficult. Instead, creating and proving a dead code
elimination procedure for Esterel� as we do here frees us from this concern, and
is a necessary first step toward a verified optimizing compiler. Previous attempts
at the mathematical proof of an Esterel compiler [11,12] have been limited to
simple, inefficient compilers.

Because the only known precise reachability algorithms for Esterel or Esterel�

are exponential [13,14,15], we take a cheap, conservative approach that is, how-
ever, accurate enough to clean up most machine-generated code.

Source-level reachability analysis for Esterel is both challenging and reward-
ing. For example, Esterel’s concurrent exception-handling mechanism demands
any reachability algorithm track the relative priorities of exceptions, but this

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



324 O. Tardieu and S.A. Edwards

is fairly easy to do because the needed information is explicit in the program
source. The addition of the unstructured jump instruction to Esterel� further
complicates an already complex issue.

Surprisingly, not every piece of code in an Esterel program that is never
executed can be removed. In fact, the execution of an Esterel program relies
on some preliminary probing, called causality analysis. As a result, a piece of
code is truly irrelevant if and only if it is not only never executed but also never
probed. Because of this distinction, previous work on dead code elimination for
concurrent but not synchronous languages is largely irrelevant for Esterel.

Several such causality analyses have been proposed for Esterel by means of
various formal semantics. For instance, in the so-called logical causality of the log-
ical semantics [16], “present S then nothing end” and “nothing” are equiv-
alent (strongly bisimilar). But, in the causality analysis of the constructive se-
mantics [3], they are not, as the test may lead to a deadlock. However, with
a maximal causality analysis [17], they would again be equivalent. In general,
removing apparently useless code may turn a correct program w.r.t. the logical
semantics into an incorrect one (cf. Section 2.3), or an incorrect program w.r.t.
the constructive semantics into a correct one (by removing deadlock conditions).

Here, we take a conservative approach and build our analyses from an ab-
stract semantics for Esterel� that safely approximates the logical, constructive,
and deterministic semantics [18] of the language by simply ignoring signals. The
correctness proofs for the dead code elimination, which we obtain for a particular
choice of concrete semantics—a logical semantics—can be easily adapted to the
other semantics. This also makes the analysis very efficient.

In Section 2, we describe the Esterel� language and its concrete and abstract
semantics. In Section 3 we start with single-step reachability, which answers
whether state s can be reached starting from state s0 in one step of execution of
the program p, and then apply a fixed-point iteration to answer whether state
s can ever be reached during the execution of p (thus going beyond a purely
structural analysis). Finally, in Section 4, we show how to match reachable states
to the source code in order to eliminate dead code. We conclude in Section 5.

2 Esterel�

We consider Berry’s kernel Esterel language [3] extended with the gotopause
instruction of Tardieu [8]. We describe its syntax and main semantic features in
Section 2.1 and provide a formal semantics for it in Section 2.2, from which we
derive an abstract semantics in Section 2.3 that we use for reachability analysis.

2.1 Syntax and Intuitive Semantics

Fig. 1 is the grammar of our language. Non-terminals p and q denote programs,
S signal names, 
 positive integer labels, and d positive integer exit levels.

We denote Lp the set of labels of the pause instructions in p. Our defini-
tions of the “present,” “;,” and “||” constructs insist these labels are pairwise
distinct. In contrast, labels in gotopause instructions are unconstrained.



Approximate Reachability for Dead Code Elimination in Esterel� 325

p, q ::= nothing Do nothing; terminate instantly
�:pause Suspend the execution for one instant
gotopause � Instantly branch to “�:pause”, which

suspends the execution for one instant
signal S in p end Declare signal S in p and execute p
emit S Emit signal S and terminate instantly
present S then p else q end Execute p if S is present; q otherwise
p ; q Execute p followed by q if/when p terminates
p || q Execute p in parallel with q
loop p end Repeat p forever
try p end Execute p, catching exits in p
exit d Exit d enclosing “try . . . end” blocks

Fig. 1. Syntax of Esterel�. In statements where both p and q appear, they must contain
unique pause labels, i.e., Lp ∩ Lq = ∅.

The infix “;” operator binds tighter than “||”. Brackets ([ and ]) may be
used to group statements in arbitrary ways. In a present statement, then or
else branches may be omitted. For example, “present S then p end” is short-
hand for “present S then p else nothing end”. Similarly, we may omit the
label “
:” of the instruction “
:pause” in a program if there is no matching
“gotopause 
” in this program.

Instants and reactions. An Esterel� program runs in steps called reactions in
response to the ticks of a global clock. Each reaction takes one instant. Prim-
itive constructs execute in the same instant except the pause and gotopause
instructions. When the clock ticks, a reaction occurs, which computes the output
signals and the new state of the program from the input signals and the current
state of the program. It may either finish the execution instantly or delay part
of it until the next instant because it reached at least one pause or gotopause
instruction. In this case, the execution is resumed in the next tick of the clock
from the locations of the pause instructions reached in the previous instant.

The program “emit A ; pause ; emit B ; emit C ; pause ; emit D”
emits signal A in the first instant of its execution, then emits B and C in the second
instant, finally emits D and terminates in the third instant. It takes three instants
to complete, i.e., proceeds by three reactions. To the environment, signals B and
C appear simultaneously since their emissions occur in the same instant.

Synchronous concurrency and preemption. One reaction of the parallel compo-
sition “p || q” is made of exactly one reaction of each non-terminated branch,
until all branches terminate.

In sequential code, the “exit d” instruction jumps to the end of d enclosing
“try . . . end” blocks. When “exit d” executes in a group of parallel branches,
it also terminates all the other branches. In Fig. 2a, A and D are emitted in the
first instant, then B, E, and G in the second and final one. Neither C nor F is
emitted. However, “exit 1” in the first branch does not prevent E from being
emitted in the second one. This is weak preemption.



326 O. Tardieu and S.A. Edwards

try

emit A ; pause ; emit B ; exit 1 ; emit C

||

emit D ; pause ; emit E ; pause ; emit F

end ;

emit G

try

try

try

exit 1 || exit 2

end ; emit A

end ; emit B

end
(a) (b)

Fig. 2. Concurrency and Preemption: Two Examples

When groups of statements running in parallel execute multiple exit in-
structions, priority is given to the branch with the highest exit level, i.e., the
exit level of a group of parallel branches is the maximum executed level. Thus,
the program in Fig. 2b only emits B.

Loops. The program “loop emit S ; pause end” emits S in each instant and
never terminates. Combining loop, try, and exit constructs can produce loops
that terminate after a finite number of iterations. Loop bodies may not be in-
stantaneous [19]. For instance, “loop emit S end” is illegal since it suggests an
unbounded amount of work in a reaction.

Signals. The instruction “signal S in p end” declares the local signal S in p.
The free signals of a program are said to be interface signals for this program.

In an instant, a signal S is emitted if and only if one or more “emit S”
statements are executed that instant. The status of S is either present or absent.
A local signal is present iff it is emitted. An interface signal is present iff it is
emitted or provided by the environment. If S is present in an instant then all
“present S then p else q end” statements executed in this instant execute their
then branches in that instant, otherwise they all execute their else branches.

The presence of a signal is therefore not persistent. For example, in program
“signal S in emit S ; pause ; present S then emit O end end,” signal
S is emitted and thus present in the first instant of execution only, therefore O
is not emitted by this statement, as S is absent at the time of the test.

Interface signals can interact with local signals. For example, in
signal S in
present S then emit O end || present I then emit S end

end,
signal I is present iff it is provided by the environment. Signal S is emitted, thus
present, iff I is present. Signal O is emitted iff S is present. As a result, O is
present iff I or O is provided by the environment. Only I and O may be observed
by the environment as S cannot escape its scope of definition.

The instantaneous broadcast and instantaneous feedback implied by the sig-
nal coherence law, i.e., a local signal is present iff emitted, raise correctness issues.
Broadly, there are three issues, as illustrated by the following examples:

1. In “signal S in present S then emit S end end,” S could be absent or
present. Such non-deterministic programs are illegal.



Approximate Reachability for Dead Code Elimination in Esterel� 327

2. In “signal S in present S else emit S end end,” S can neither be ab-
sent nor present. This program is illegal because it is non-reactive: it has no
possible behavior.

3. Finally, signals can be self-reinforcing. Signal S can only be present in the pro-
gram “signal S in present S then emit S else emit S end end” for
instance. This program is said to be logically correct, being both reactive and
deterministic. However, it is not causal (for the constructive causality of the
constructive semantics), since the status of S has to be guessed before being
confirmed. In summary, this program is legal w.r.t. a logical semantics, but
not w.r.t. the constructive semantics.

Strengthening the signal coherence law to precisely define the semantics of
such intricate examples is the central concern in choosing a causality analysis for
Esterel. In this work, as mentioned before, we do not want to commit ourselves
to a particular set of choices. As a result, we shall not only formalize a concrete
semantics for the language (making such choices), but also an abstract semantics
that conservatively approximates many possible concrete semantics.

Jumps. The gotopause instruction permits jumps in Esterel. The execution of
the code following the target pause starts exactly one instant after the code
preceding the gotopause instruction terminates. It makes it possible to specify
state machines in a natural way and allows loops to be expressed differently. For
instance, “1:pause ; emit S ; gotopause 1” emits S in each instant of execu-
tion starting from the second one. In fact, “loop emit S ; pause end” can be
expanded into “try exit 1 ; 1:pause end ; emit S ; gotopause 1” using
the pattern “try exit 1 ; . . . end” to avoid a startup delay.

Just as “exit d” in “exit d || pause” has priority over the pause instruc-
tion, it preempts the jump in “exit d || gotopause 
”.

We make no assumptions about the label in a gotopause instruction. A
“gotopause 
” instruction may have no target if the program contains no corre-
sponding “
:pause” instruction. In such a case, the completion of the execution
is delayed by one instant, but nothing takes place in its last instant. For example,
the execution of “gotopause 1; emit S” takes two instants; S is not emitted
in the second instant of execution.

Concurrent gotopause instructions may target arbitrary pause locations.
In “[gotopause 1 || gotopause 2] ; [1:pause ; . . . || 2:pause ; . . . ]”
for instance, this is fine: in the second instant, the execution is resumed from
the locations of the two pause instructions in parallel. In contrast, in the pro-
gram “[gotopause 1 || gotopause 2] ; 1:pause ; . . . ; 2:pause ; . . . ,”
resuming the execution from two locations in a sequence does not make sense.
We say that this last program is not well formed, which we formalized earlier [10].

In this paper however, we have no need for such a correctness criterion. We
decide that, in the last example and in similar cases, the execution will non-
deterministically restart from either pause location. Importantly, giving such a
peculiar semantics to non-well-formed programs (which are illegal anyway) does
not make the analysis of well-formed program more costly or less precise, but
simplifies the formalism.



328 O. Tardieu and S.A. Edwards

nothing
∅, 0−−→
E

∅ (nothing)

�:pause
∅, 1−−→
E

{l} (pause)

S ∈ E

emit S
{S}, 0−−−−→

E
∅ (emit)

� ∈ L0

�:pause/L0
∅, 0−−→
E

∅ (resume)

gotopause �
∅, 1−−→
E

{l} (goto)

exit d
∅, d+1−−−−→

E
∅ (exit)

p\X O, k−−−→
E

L

try p end\X O, ↓k−−−→
E

L
(try)

p\X O, k−−−→
E

L k �= 0

loop p end\X O, k−−−→
E

L
(no-loop)

p\X O, 0−−−→
E

∅ q
O′, k−−−−→

E
L

p ; q\X O∪O′ , k−−−−−−→
E

L

(seq)

p\X O, k−−−→
E

L k �= 0

p ; q\X O, k−−−→
E

L
(seq-left)

q/L0
O, k−−−→

E
L

p ; q/L0
O, k−−−→

E
L

(seq-right)

p\X O, k−−−−−→
E∪{S}

L S ∈ O

signal S in p end\X O\{S}, k−−−−−−→
E

L
(signal+)

p\X O, k−−−−−→
E\{S}

L

signal S in p end\X O, k−−−→
E

L
(signal−)

S ∈ E p
O, k−−−→

E
L

present S then p else q end
O, k−−−→

E
L

(present)

S /∈ E q
O, k−−−→

E
L

present S then p else q end
O, k−−−→

E
L

(absent)

p/L0
O, k−−−→

E
L

present S then p else q end/L0
O, k−−−→

E
L

(present-left)

q/L0
O, k−−−→

E
L

present S then p else q end/L0
O, k−−−→

E
L

(present-right)

p/L0
O, 0−−−→

E
∅ p

O′, k−−−−→
E

L k �= 0

loop p end/L0
O∪O′ , k−−−−−−→

E
L

(loop)

p/L0
O, k−−−→

E
L L0 ∩ Lq = ∅

p || q/L0
O, k−−−→

E
L

(par-left)

q/L0
O, k−−−→

E
L L0 ∩ Lp = ∅

p || q/L0
O, k−−−→

E
L

(par-right)

p\X O, k−−−→
E

L q\X O′, l−−−→
E

L′ m = max(k, l)

p || q\X O∪O′, m−−−−−−→
E

{
L ∪ L′ if m = 1

∅ if m �= 1

(par)

Fig. 3. Logical State Semantics

2.2 Logical State Semantics

In Fig. 3, we specify the logical state semantics of Esterel� as a set of facts and
deduction rules in a structural operational style [20]. Reactions of a program p
are expressed via two kinds of labeled transitions:

p
O, k−−→
E

L for the first instant of execution

p/L0
O, k−−→
E

L for subsequent instants of execution, L0 being the set of
pause locations (labels) the execution is resumed from.

corresponding to two classes of program states [7]: a unique initial state, simply
written p; and many intermediate states, written p/L0 for L0 ⊆ IN. We denote
Sp the set of all states of p and p\X a state of p of either class.

The set O lists the interface signals emitted by the reaction. The set E
lists the interface signals assumed present at the time of the reaction. The set
L ⊆ L(p) lists the labels of the pause and gotopause instructions reached by
the reaction. The completion code k ∈ IN encodes the status of the execution:



Approximate Reachability for Dead Code Elimination in Esterel� 329

– k = 0 if the execution completes normally. L is empty.
– k = 1 if the reaction does not complete the execution of p. L is not empty.
– k = 2, 3, . . . if the execution terminates because of an exit instruction and
k − 1 enclosing “try . . . end” blocks must be exited. L is empty.

Technically, it is easier not to require L0 in p/L0 to be a subset of L(p).
Nevertheless, we can identify the states p/L0 and p/L1 if L0 ∩ Lp = L1 ∩ Lp,
thus only consider 2|Lp| intermediate states for the program p, thanks to:

Lemma 1. p/L0
O, k−−→
E

L iff p/(L0 ∩ Lp)
O, k−−→
E

L.

Proof. This and the following lemmas are established by induction on the struc-
ture of a program, or the structure of a proof tree of a reaction. For lack of space,
we shall not include the proofs in the paper.

Rule (exit) defines the completion code of “exit d” as d+ 1. In rule (try), if
k is the completion code of p, then the completion code of “try p end” is:

↓k =

⎧⎨
⎩

0 if k = 0 or k = 2 (normal termination or caught exception)
1 if k = 1 (non-terminated execution)
k − 1 if k > 2 (uncaught exception)

Rule (no-loop) applies when the control does not reach the end of the loop;
otherwise rule (loop) does.

Rule (par) applies when a parallel statement is first reached—its execution
starts—or restarted from both branches. Rules (par-left) and (par-right) apply
when the parallel statement is resumed from one branch only, that is to say when
the execution of the other branch has already completed.

As announced, if a state points to several locations in a sequence, the execu-
tion is non-deterministically resumed from one of them. For instance, respectively
by rule (seq) and rule (seq-right),

1:pause ; 2:pause/{1, 2} ∅, 1−−→
∅

{2} and 1:pause ; 2:pause/{1, 2} ∅, 0−−→
∅

∅.
Rule (present) applies when a “present S” statement is reached with S

present. Rule (absent) applies instead if S is absent. Rules (present-left) and
(present-right) specify how the execution of the present statement is resumed
(non-deterministically from either branch if both L0 ∩Lp �= ∅ and L0 ∩Lq �= ∅).

Rules (emit), (signal+), and (signal−) enforce the signal coherence law. We
shall not discuss it further as we now abstract signals in this formal semantics.

2.3 Abstract Semantics

In “signal S in present S then emit S else emit S end end,” S must be
present. Therefore, “else emit S” is never executed. However, removing the
else branch changes the behavior of the program, since S may be both absent
and present in “signal S in present S then emit S end end”. Because of
signals, never executed code is not necessarily dead. Therefore, we choose to



330 O. Tardieu and S.A. Edwards

nothing
0−→ ∅ (nothing)

emit S
0−→ ∅ (emit)

�:pause
1−→ {l} (pause)

� ∈ L0

�:pause/L0
0−→ ∅ (resume)

gotopause �
1−→ {l} (goto)

exit d
d+1−−→ ∅ (exit)

p\X k−→ L

try p end\X ↓k−→ L
(try)

p\X 0−→ ∅ q
k−→ L

p ; q\X k−→ L
(seq)

p\X k−→ L k �= 0

p ; q\X k−→ L
(seq-left)

q/L0
k−→ L

p ; q/L0
k−→ L

(seq-right)

p\X k−→ L

signal S in p end\X k−→ L
(signal)

p\X k−→ L

present S then p else q end\X k−→ L
(then)

q\X k−→ L

present S then p else q end\X k−→ L
(else)

p/L0
0−→ ∅ p

k−→ L k �= 0

loop p end/L0
k−→ L

(loop)

p\X k−→ L k �= 0

loop p end\X k−→ L
(no-loop)

p\X k−→ L q\X l−→ L′ m = max(k, l)

p || q\X m−→
{

L ∪ L′ if m = 1

∅ if m �= 1

(par)

p/L0
k−→ L L0 ∩ Lq = ∅

p || q/L0
k−→ L

(par-left)

q/L0
k−→ L L0 ∩ Lp = ∅

p || q/L0
k−→ L

(par-right)

Fig. 4. Abstract Semantics

first abstract signals in the concrete semantics, then define dead code w.r.t. the
resulting abstract semantics.

The abstract semantics is easily derived from the logical state semantics by
making abstraction of signals. Its rules are gathered in Fig. 4. Rules (present) and
(present-left) are merged into a unique (then) rule, (absent) and (present-right)
into (else), and (signal+) and (signal−) into (signal).

It safely approximates the concrete semantics, i.e., preserves its reactions:

Lemma 2. If p\X O, k−−→
E

L then p\X k−→ L.

Importantly, the abstract semantics also safely approximates other semantics
such as the constructive semantics of Berry [3], dedicated to hardware synthesis.

3 Reachability Analysis

We say that a state p/L is reachable in the execution of p iff it may result of
a chain of reactions starting from p. Exact reachability analysis is in general
intractable, even w.r.t. the abstract semantics, as the number of states of a
program may be exponential in its size. As a result, we choose to approximate
the reachable states by means of reachable labels.

In “present S then 1:pause else 2:pause || 3:pause end” for exam-
ple, we shall aim at computing the set of reachable labels R = {1, 2, 3} rather
than the more precise set of reachable states S = {p/{1}, p/{2, 3}, p/∅}. Of
course, we want R to contain all the labels in S, i.e.,

⊔
S =

⋃
p/Li∈S{Li}, while



Approximate Reachability for Dead Code Elimination in Esterel� 331

s(nothing) = {0} s(emit S) = {0}
s(gotopause �) = {1�} s(�:pause) = {1�}

s(signal S in p end) = s(p) s(try p end) = ↓s(p)
s(present S then p else q end) = s(p) ∪ s(q) s(exit d) = {d+1}

s(loop p end) = s(p) \ {0} s(p || q) = max(s(p), s(q))

s(p ; q) =

{
s(p) if 0 /∈ s(p)

(s(p) \ {0}) ∪ s(q) if 0 ∈ s(p)

Fig. 5. Instantaneous Reachability from the Initial State

being as small as possible. In other words, we shall only consider sets of states
of the form {p/L}L⊆R for R ⊆ IN.

While this choice leads to a less precise reachability analysis, it especially
makes sense in the context of dead code elimination. In any case, the input of
the dead code elimination algorithm (cf. Section 4) will be the list of alive pause
instructions, that is to say R rather than S.

In Section 3.1, we first consider instantaneous reachability, i.e., reachability
through a single reaction. We conclude for chains of reactions in Section 3.2.

3.1 Instantaneous Reachability

By definition,

– the intermediate state p/L is instantly reachable from p\X iff ∃k : p\X k→ L;
– the label 
 is instantly reachable from p\X iff ∃k,∃L : p\X k−→ L ∧ 
 ∈ L.

We write p\X ⇒ p/L in the first case, p\X ⇒ 
 in the second. Importantly,

Lemma 3. If p/L0 ⇒ 
 then ∃
0 ∈ L0 : p/{
0} ⇒ 
.

Lemma 4. If L0 ⊆ R and p/L0 ⇒ p/L then L ⊆
⋃

�0∈R {
 ∈ Lp : p/{
0} ⇒ 
}.
Therefore, it makes sense to approximate a family S = (p/Li)i∈I of intermediate
states by the set of labels that appear in these states R =

⊔
S =

⋃
i∈I{Li}:

–
⊔
{p/L ∈ Sp : p ⇒ p/L} = {
 ∈ Lp : p ⇒ 
}

–
⊔(⋃

p/L0∈S {p/L ∈ Sp : p/L0 ⇒ p/L}
)
⊆
⋃

�0∈
⊔

S {
 ∈ Lp : p/{
0} ⇒ 
}

The set of labels instantly reachable from a family S of intermediate states
can be safely approximated by the set of labels instantly reachable from the
family of states S′ = (p/{
0})�0∈

⊔
S , with the following trade-off:

– Because we replace the family S with up to 2|L(p)| states, by the family S′

of at most |L(p)| states, the cost of the computation improves exponentially.
– Loss of precision may occur if S �= S′. For instance, if p is the program

“try 1:pause ; exit 1 || 2:pause ; 3:pause end,” then the only in-
stantly reachable state is p/{1, 2}. Because we approximate this state with
the set of states {p/∅, p/{1}, p/{2}, p/{1, 2}}, we end up computing that la-
bel 3 may be reachable in the execution of p (being instantly reachable from
p/{2}), although it cannot be reached from p/{1, 2}.



332 O. Tardieu and S.A. Edwards

dR(nothing) = ∅ dR(emit S) = ∅
dR(gotopause �)

dR(exit d)

=

=

∅
∅ dR(�:pause) =

{
∅ if � /∈ R

{0} if � ∈ R

dR(signal S in p end) = dR(p) dR(try p end) = ↓dR(p)
dR(present S then p else q end) = dR(p) ∪ dR(q) dR(p || q) = dR(p) ∪ dR(q)

dR(loop p end) =

{
dR(p) if 0 /∈ dR(p)

(dR(p) ∪ s(p)) \ {0} if 0 ∈ dR(p)

dR(p ; q) =

{
dR(p) ∪ dR(q) if 0 /∈ dR(p)

(dR(p) \ {0}) ∪ s(q) ∪ dR(q) if 0 ∈ dR(p)

Fig. 6. Instantaneous Reachability from Intermediate States

Qualified completion codes. Denoting by “1�” a completion code 1 due to a
pause or gotopause of label 
, we obtain the set of qualified completion codes
K = {0, 10, 11, . . . , 2, 3, . . .}. Formally, K is (IN \ {1})∪

⋃
�∈IN{1�}. Thanks to K,

we shall compute feasible completion codes and reachable labels simultaneously.
To recover regular completion codes from qualified completion codes, we

define the projection k �→ k̂ from K to IN so that ∀k ∈ IN \ {1} : k̂ = k and
∀
 ∈ IN : 1̂� = 1.

We equip K with the preorder “≤” such that k ≤ l in K iff k̂ ≤ l̂ in IN. If
K,K ′ ⊆ K then max(K,K ′) is {k ∈ K : ∃k′ ∈ K ′, k′ ≤ k} ∪ {k′ ∈ K ′ : ∃k ∈
K, k ≤ k′}. For instance, max({0, 14, 4, 6}, {11, 13, 3, 4}) = {11, 13, 14, 3, 4, 6}.

Finally, for 
 ∈ IN, we define ↓1� = 1�.
We now compute the labels instantly reachable from p, then the labels in-

stantly reachable from the set of states {p/L}L⊆R given the set of labels R ⊆ IN.

Initial state. Previously [19], we formalized a static analysis that computes the
possible completion codes of reactions of the program p for a similar abstract
semantics. We now extend this analysis so as to deal with gotopause instructions
and obtain the labels instantly reachable from p at the same time.

Let E be the set of all Esterel� programs and P(K) be the powerset of K.
In Fig. 5, we specify the analysis function s : E → P(K) that overapproximates
the set of qualified completion codes reachable from the initial state. It is easily
derived from the rules of the abstract semantics for initial states. For instance,
s(present S then exit 7 end || 3:pause || gotopause 4) = {13, 14, 8}.

Lemma 5. ∃L ⊆ Lp : p k−→ L iff k̂ ∈ s(p). Moreover, p ⇒ 
 iff 1� ∈ s(p).

Hence, the set of labels instantly reachable from p is:

Lemma 6.
⊔
{p/L ∈ Sp : p ⇒ p/L} = {
 ∈ Lp : 1� ∈ s(p)}.

Intermediate states. For R ⊆ IN, we define dR : E → P(K) in Fig. 6 by now
considering the rules applicable to intermediate states. Intuitively, dR(p) is meant
to be the set of possible qualified completion codes of reactions of p/{
0} for

0 ∈ R. If p is “1:pause ; 2:pause || 3:pause ; 4:pause ; exit 6” for
instance, then d{1}(p) = {12}, d{3,4}(p) = {14, 7}, d{1,2,3,4}(p) = {0, 12, 14, 7}.



Approximate Reachability for Dead Code Elimination in Esterel� 333

Lemma 7. ∃L ⊆ Lp : p/{
0} k−→ L iff k̂ ∈ d{�0}(p). Moreover, p/{
0} ⇒ 
 iff
1� ∈ d{�0}(p).

Lemma 8. For all R, R′, p : dR∪R′(p) = dR(p) ∪ dR′ (p).

Hence, the set of labels instantly reachable from the states {p/L0}L0⊆R is:

Lemma 9.
⊔(⋃

L0⊆R {p/L ∈ Sp : p/L0 ⇒ p/L}
)

= {
 ∈ Lp : 1� ∈ dR(p)}.

In Lemmas 6 and 9, we obtain equalities. Thus, this reachability analysis is
exact w.r.t. the abstract semantics and for set of states of the form {p/L}L⊆R.

3.2 Fixed Point

We define Δp : L0 �→ {
 ∈ Lp : 1� ∈ s(p) ∪ dL0(p)}. This function is monotonic
over the complete lattice P(Lp), therefore [21] it has a least fixed point Rp. We
already know that if p ⇒ L then L ⊆ Δp(∅) and if p/L0 ⇒ L then L ⊆ Δp(L0).
Therefore, Rp overapproximates the labels reachable in the execution of p, thus
the reachable states.

Theorem 1. If p ⇒ L0, p/L0 ⇒ L1, ..., p/Ln−1 ⇒ Ln then Ln ⊆ Rp.

4 Dead Code Elimination

Checking program equivalence at the abstract level does not make sense since, for
instance, “nothing” and “emit S” behave the same in the abstract semantics.
For R ⊆ IN, we say that the programs p and q are:

– initially equivalent iff ∀E,O, k, L : p
O, k−−→
E

L ⇔ q
O, k−−→
E

L, and

– R-equivalent iff ∀L0 ⊆ R, ∀E,O, k, L : p/L0
O, k−−→
E

L ⇔ q/L0
O, k−−→
E

L.

As with the definition of instantaneous reachability, these definitions give
us the ability to derive program equivalence (a property of executions) from
instantaneous equivalence properties (properties of reactions).

Lemma 10. If p and q are initially equivalent and Rp-equivalent then they are
strongly bisimilar, that is to say behave the same in all contexts [22].

Defining dead (unreachable) code can be managed at the abstract level. In the
previous section, we defined instantly reachable labels, i.e., instantly reachable
pause instructions. In fact, thanks to the structural definitions of s and dR, we
can extend the idea of instantaneous reachability to blocks of code:

– q in p is not instantly reachable, iff the computation of s(p) does not involve
the computation of s(q).

– q in p is not R-reachable, iff dR(q) is empty and the computation of dR(p)
does not involve the computation of s(q).



334 O. Tardieu and S.A. Edwards

Intuitively, q is not instantly reachable in p iff it is in sequence after a block
of code r that cannot terminate instantly, that is to say 0 /∈ s(r). Moreover, q is
not R-reachable in p iff q does not contain any pause instruction with a label in
R and q is not in sequence after a block of code that can terminate instantly if
restarted from some pause instruction with a label in R.

In the sequel, we shall simplify programs so as to eliminate unreachable
code while preserving program equivalence. Although our equivalence proofs
depend on the semantics for which we define program equivalence, since our
transformations only involve unreachable code, which we define at the abstract
level, we claim that similar equivalence results hold for other concrete semantics,
provided they share the same abstraction.

Simplifying “try p || exit 1 ; q end” so as to preserve initial equiva-
lence and R-equivalence for some set R requires to simplify p in the same way.
Importantly, in Esterel�, q cannot be simply discarded because it can be reached
through gotopause instructions. However, because of “exit 1,” preserving R-
equivalence for q is good enough. In other words, if p is “emit S ; . . . ” then
“emit S” must be preserved. But, if q is, then “emit S” can be discarded.

To start with, we define the functions {sdR}R⊆IN that gather the possible
completion codes of the behaviors of the program p we want to reproduce:

sdR : IB×E → K
(0, p) �→ dR(p)
(1, p) �→ dR(p) ∪ s(p)

The Boolean b is 0 if only the behaviors of intermediates states (with labels
in R) are relevant; b is 1 if, in addition, the initial behaviors of p are relevant.

In Fig. 7, we formalize code elimination as a family of R-equivalence-preser-
ving functions {rR : IB × E → E}R⊆IN, which also preserve initial equivalence,
if called with a Boolean parameter equal to 1. These functions are designed to
delete as much code as possible while preserving the required equivalences.

As with the definition of dR before, the structural definition of rR makes
sure that rR is recursively applied to each block of the initial program, since
any statement, whatever its position, can potentially be reached through jumps
in Esterel�. However, not all statements can be reached “from the left,” that is
to say are in sequence after a statement that may terminate. The value of the
Boolean parameter b in recursive calls is computed accordingly.

The simplifications implemented by rR are the following:

– All emit, exit, and gotopause instructions are preserved iff left-reachable.
– A pause instruction is preserved if its label is in R or if it is left-reachable.
– The “try . . . end” construct in “try p end” is preserved if the correspond-

ing exception may occur. If removed, exception levels have to be adjusted
accordingly: ↘p is obtained by decrementing all exit levels in p greater than
the number of enclosing “try . . . end” constructs in p, while replacing all
exit instructions targeting the removed construct by nothing. For instance,
rR(1, try exit 1 || exit 2 end) = rR(1, nothing || exit 1).



Approximate Reachability for Dead Code Elimination in Esterel� 335

rR(b, nothing) = nothing

rR(b, emit S) =

{
nothing if b = 0

emit S if b = 1

rR(b, �:pause) =

{
nothing if (� /∈ R) ∧ (b = 0)

�:pause if (� ∈ R) ∨ (b = 1)

rR(b, gotopause �) =

{
nothing if b = 0

gotopause � if b = 1

rR(b, exit d) =

{
nothing if b = 0

exit d if b = 1

rR(b, try p end) =

{
rR(b,↘p) if 2 /∈ sdR(b, p)

try rR(b, p) end if 2 ∈ sdR(b, p)

rR(b, p ; q) =

{
rR(b, p) ; rR(0, q) if 0 /∈ sdR(b, p)

rR(b, p) ; rR(1, q) if 0 ∈ sdR(b, p)

rR(b, signal S in p end) =

{
rR(b, p) if S does not occur in rR(b, p)

signal S in rR(b, p) end if S occurs in rR(b, p)

rR(b, present S then p
else q end)

=

{
rR(0, p ; try exit 1 ; ↗q end) if b = 0

present S then rR(1, p) else rR(1, q) end if b = 1

rR(b, loop p end) =

{
rR(b, p) if 0 /∈ sdR(b, p)

loop rR(1, p) end if 0 ∈ sdR(b, p)

rR(b, p || q) = rR(b, p) || rR(b, q)

Fig. 7. Dead Code Elimination

– Depending on the possible termination of p in “p ; q,” q is rewritten so
as to preserve initial equivalence or not. Moreover, if p or q end up being
nothing after simplification, it can be discarded as well as the “;” operator.
We define: p; nothing = p, nothing; q = q, p; q = p; q otherwise.

– Signal declarations are deleted if possible.
– A left-reachable “present S then p else q end” test is recursively simplified.

A non-left-reachable test is first replaced by “p ; try exit 1 ; ↗q end” to
remove the test itself while preserving the branches, then simplified. Excep-
tion levels in q have to be adjusted:↗q is obtained by incrementing exit levels
greater than the number of enclosing “try . . . end” constructs in q. For exam-
ple, rR(0, present S then 1:pause ; emit O else 2:pause ; exit 3 end) is
equal to rR(0, 1:pause ; emit O; try exit 1; 2:pause ; exit 4 end).

– A loop construct is deleted if its body never terminates. If it may terminate
then initial equivalence must be preserved for the body, whatever b.

– The branches of a parallel are recursively rewritten. The parallel itself may
be deleted if a branch reduces to nothing, hence the || operator.

We establish initial equivalence and R-equivalence by structural induction:

Lemma 11. Whatever R, p
O, k−−→
E

L ⇔ rR(1, p)
O, k−−→
E

L.

Lemma 12. Whatever b, if L0 ⊆ R then p/L0
O, k−−→
E

L ⇔ rR(b, p)/L0
O, k−−→
E

L.



336 O. Tardieu and S.A. Edwards

loop

try

present I then

1:pause;

exit 1

end;

2:pause;

emit O

end

end

loop
expansion

=⇒

try

exit 1;

try

present I then

1:pause ; exit 1

end;

2:pause ; emit O

end

end;

try

present I then

gotopause 1 ; exit 1

end;

gotopause 2 ; emit O

end

dead code
elimination

=⇒

try

exit 1;

try

1:pause;

exit 1;

2:pause;

emit O

end

end;

present I then

gotopause 1

end;

gotopause 2

Fig. 8. Example

Theorem 2. p and rRp(1, p) behave the same (are strongly bisimilar).

This dead code elimination procedure is far from complete because of the
approximations involved, yet it is already powerful, in particular w.r.t. machine-
generated code. For instance, applying it after loop expansion [8] produces com-
pact code, as illustrated in Fig. 8. While the expansion makes two copies of the
loop body, the final code only contains one copy of “present I” and “emit O”.

loop p end

loop
expansion

=⇒ try exit 1 ; ↗ p end ; p[
:pause �→ gotopause 
]

5 Conclusions

We have specified a static reachability analysis and an algorithm for dead code
elimination in Esterel� programs. While we designed the reachability analysis
with dead code elimination in mind, it can be used independently.

By abstracting signals from the analysis, we ensure it is applicable for many
different semantics of the language. In addition, it makes it possible to safely
dismantle states into their elementary components (locations of pause instruc-
tions), thus dramatically cutting the cost of the required fixed-point computa-
tion. Our analysis is exact and optimal with respect to this approximation.

In fact, apart from a single fixed-point computation, both the analysis and
the transformation are obtained from structural traversals of the program source,
resulting in simple correctness proofs.

We would like to extend this work in two directions. First, adopting either
the logical or the constructive semantics of Esterel�, we shall consider synchro-
nizations through signals, in addition to synchronizations through exceptions
that we already take into account. Second, we plan to formalize and check our
correctness proofs using a theorem prover, paving the way for embedding this
work in a certified compiler for Esterel�.



Approximate Reachability for Dead Code Elimination in Esterel� 337

References

1. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152

2. Boussinot, F., de Simone, R.: The Esterel language. Another Look at Real Time
Programming, Proceedings of the IEEE, Special Issue 79 (1991) 1293–1304

3. Berry, G.: The constructive semantics of pure Esterel, draft version 3. http://www-
sop.inria.fr/esterel.org/ (1999)

4. Closse, E., Poize, M., Pulou, J., Vernier, P., Weil, D.: Saxo-rt: Interpreting Esterel
semantic on a sequential execution structure. In: SLAP’02. Volume 65 of Electronic
Notes in Theoretical Computer Science., Elsevier (2002)

5. Edwards, S.A., Kapadia, V., Halas, M.: Compiling Esterel into static discrete-event
code. In: SLAP’04. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

6. Berry, G.: Esterel on hardware. Philosophical Transactions of the Royal Society
of London, Series A 19(2) (1992) 87–152

7. Mignard, F.: Compilation du langage Esterel en systèmes d’équations booléennes.
PhD thesis, Ecole des Mines de Paris (1994)

8. Tardieu, O.: Goto and concurrency: Introducing safe jumps in Esterel. In: SLAP’04.
Electronic Notes in Theoretical Computer Science, Elsevier (2004)

9. Tardieu, O., de Simone, R.: Curing schizophrenia by program rewriting in Esterel.
In: MEMOCODE’04. (2004)

10. Tardieu, O.: Loops in Esterel: from operational semantics to formally specified
compilers. PhD thesis, Ecole des Mines de Paris (2004)

11. Schneider, K.: A verified hardware synthesis of Esterel programs. In: DIPES’00.
(2001) 205–214

12. Schneider, K., Brandt, J., Schüele, T.: A verified compiler for synchronous pro-
grams with local declarations. In: SLAP’04. Electronic Notes in Theoretical Com-
puter Science, Elsevier (2004)

13. Malik, S.: Analysis of cyclic combinational circuits. In: ICCAD’93. (1993) 618–625
14. Shiple, T., Berry, G., Touati, H.: Constructive analysis of cyclic circuits. In: Proc.

International Design and Testing Conf (ITDC), Paris. (1996)
15. Namjoshi, K.S., Kurshan, R.P.: Efficient analysis of cyclic definitions. In: CAV’99.

(1999) 394–405
16. Berry, G.: The semantics of pure Esterel. In Broy, M., ed.: Program Design Calculi.

Volume 118 of Series F: Computer and System Sciences., NATO ASI Series (1993)
361–409

17. Schneider, K., Brandt, J., Schüele, T., Tuerk, T.: Maximal causality analysis. In:
ACSD’05. (2005)

18. Tardieu, O.: A deterministic logical semantics for Esterel. In: SOS Workshop’04.
Electronic Notes in Theoretical Computer Science, Elsevier (2004)

19. Tardieu, O., de Simone, R.: Instantaneous termination in pure Esterel. In: SAS’03.
Volume 2694 of Lecture Notes in Computer Science., Springer (2003) 91–108

20. Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University, Denmark (1981)

21. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5 (1955) 285–309

22. Park, D.: Concurrency and automata on infinite sequences. In: 5th GI Conference.
Volume 104 of Lecture Notes in Computer Science., Springer (1981)



Synthesis of Interface Automata

Purandar Bhaduri

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,

Guwahati 781039, India
pbhaduri@iitg.ernet.in

Abstract. We investigate the problem of synthesising an interface au-
tomaton R such that P ‖ R 	 Q, for given deterministic interface au-
tomata P and Q. We show that a solution exists iff P and Q⊥ are com-
patible, and the most general solution is given by (P ‖ Q⊥)⊥, where P⊥

is the automaton P with inputs and outputs interchanged. We also char-
acterise solutions in terms of winning input strategies in the automaton
(P ⊗ Q⊥)⊥, and the most general solution in terms of the most permis-
sive winning strategy. We apply the synthesis problem for interfaces to
the problem of synthesising converters for mismatched protocols.

1 Introduction

Interfaces play a central role in component based design and verification of sys-
tems. In this paper we study the problem of synthesising an interface R, which
composed with a known interface P is a refinement of an interface Q. This is a
central problem in component based top-down design of a system. The interface
Q is an abstract interface, a high level specification of the component under
development. The interface P is a known part of the implementation and we are
required to find the most general (i.e., abstract) solution R satisfying the rela-
tion P ‖ R � Q. Here P ‖ Q is the composition of P and Q, and P � Q denotes
‘P is a refinement of Q’. This problem has wide ranging applications from logic
synthesis to the design of discrete controllers, and has been studied previously in
[20, 21], where the composition is either the synchronous or parallel composition
of languages, and refinement is inclusion. We study the problem in the setting
of interface automata [6], where composition and refinement of interfaces are
respectively the composition of interface automata and alternating refinement
relations[2].

Interface automata are like ordinary automata, except for the distinction be-
tween input and output actions. The input actions of an interface automaton
P are controlled by its environment. Therefore an input action labelling a tran-
sition is an input assumption (or constraint on P ’s environment). Dually, an
output action of P is under P ’s control, and represents an an output guarantee
of P . Note that unlike I/O automata [12], interface automata are not required to
be input enabled. If an input action a is not enabled at a state s, it is an assump-
tion on the automaton’s environment that it will not provide a as an input in
state s.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 338–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Synthesis of Interface Automata 339

When two interfaces P and Q are composed, the combined interface may
contain incompatible states: states where one interface can generate an output
that is not a legal input for the other. In the combined interface it is the en-
vironment’s responsibility to ensure that such a state is unreachable [6]. This
can be formalised as a two person game [6] which has the same flavour as the
controller synthesis problem of Ramadge and Wonham [17]; in our setting the
role of the controller is played by the environment. More formally, we follow
de Alfaro [7] in modelling an interface as a game between two players, Output
and Input. Player Output represents the system and its moves represent the
outputs generated by the system. Player Input represents the environment; its
moves represent the inputs the system receives from its environment. In general,
the set of available moves of each player depends on the current state of the
combined system. The interface is well-formed if the Input player has a winning
strategy in the game, where the winning condition is to avoid all incompatible
states. Clearly, the game aspect is relevant only when defining the composition
of two interfaces.

Refinement of interfaces corresponds to weakening assumptions and strength-
ening guarantees. An interface P refines Q only if P can be used in any envi-
ronment where Q can be. The usual notion of refinement is simulation or trace
containment [12]. For interface automata, a more appropriate notion is that of
alternating simulation [2], which is contravariant on inputs and covariant on out-
puts: if P � Q (P refines Q), P accepts more inputs (weaker input assumptions)
and provides fewer outputs (stronger output guarantees). Thus alternating re-
finement preserves compatibility: if P and Q are compatible (i.e., P ‖ Q is
well-formed) and P ′ � P , then so are P ′ and Q.

In this paper we show that a solution to P ‖ R � Q for R exists for deter-
ministic interface automata iff P and Q⊥ are compatible, and the most abstract
(under alternating refinement) solution is given by (P ‖ Q⊥)⊥. Further, such an
R can be constructed from the most permissive winning strategy for player Input
in the combined game (P ⊗Q⊥)⊥. Here P⊥ is the game P with the moves of the
players Input and and Output interchanged, and P ⊗ Q is the combined game
obtained from P and Q by synchronising on shared actions and interleaving the
rest. We say a strategy π is more permissive than π′ when, at every position in
the game, the set of moves allowed by π includes those allowed by π′. The most
permissive winning strategy is one that is least restrictive. This result ties up the
relation between composition, refinement, synthesis and winning strategies, and
should be seen as one more step towards a “uniform framework for the study
of control, verification, component-based design, and implementation of open
systems”, based on games [7].

Note that the notation P⊥ is borrowed from linear logic [8], where games play
an important semantic role [3]. Using the notation of linear logic, the solution R
to the synthesis problem can be written as (P⊗Q⊥)⊥ = P⊥�Q = P � Q, where
⊗, � and � are respectively, the linear logic connectives ‘With’, ‘Par’ and linear
implication. In our setting, the ⊗ connective of linear logic is parallel composition
‖. The striking similarity of this solution with the language equation posed in



340 P. Bhaduri

[20, 21] is intriguing. In their framework, the largest solution of the language
equation P •R ⊆ Q for R is the language P •Q where P •Q is the synchronous
(or parallel) composition of languages P and Q, and P is the complement of P .
Clearly, there is a formal correspondence between P •Q and our P ‖ Q, between
P and our P⊥, and between language inclusion and alternating simulation.

We should also mention the formal resemblance of our work with Abramsky’s
Semantics of Interaction [1], based on the game semantics of linear logic. In par-
ticular, the strategy called Application (or Modus Ponens) in [1] is the solution
to our synthesis problem in a different setting. The solution R = P � Q sug-
gests that the problem of synthesis can be seen as the construction of a suitable
morphism in an appropriate category of interface automata, along the lines of
[13, 18]. However, we do not pursue this thread in this paper.

As a practical application we show how to apply interface synthesis to the pro-
tocol conversion problem for mismatched network protocols. The heterogeneity
of existing networks often results in incompatible protocols trying to commu-
nicate with each other. The protocol conversion problem is, given two network
protocols P1 and P2 which are mismatched, to come up with a converter C which
mediates between the two protocols, such that the combined system conforms
to an overall specification S. We show that a converter C, if it exists, can be
obtained as the solution to P ‖ C � S, where P = P1 ‖ P2 is the composition of
the two protocols.

The controller synthesis problem and its solution as a winning strategy in
a game has a long history, going back to Büchi and Landwebers’ solution of
Church’s problem [4]. More recent applications of the idea in the synthesis of
open systems occur in [13, 14, 16]. The control of discrete event systems [17]
and the synthesis of converters for mismatched protocols [15] can be seen as
applications of the same general principle. The present work extends the principle
to the composition and refinement of interfaces.

2 Interface Automata

In this section we define interface automata and their composition and refine-
ment. We follow the game formulation presented in [7]. Throughout this work
we consider only deterministic interface automata.

Definition 1. An interface automaton P is a tuple (SP , S
0
P ,AI

P ,AO
P , Γ

I
P , Γ

O
P ,

δP ) where:

– SP is a finite set of states.
– S0

P ⊆ SP is the set of initial states, which has at most one element, denoted
s0P .

– AI
P and AO

P are disjoint sets of input and output actions. The set AP =
AI

P ∪ AO
P is the set of all actions.

– Γ I
P : SP → 2A

I
P is a map assigning to each state s ∈ SP a set (possibly

empty) of input moves. Similarly, ΓO
P : SP → 2A

O
P assigns to each state



Synthesis of Interface Automata 341

s ∈ SP a set (again, possibly empty) of output moves. The input and output
moves at a state s correspond to actions that can be accepted and generated
at s respectively. Denote by ΓP (s) = Γ I

P (s) ∪ ΓO
P (s) the set of all actions at

s.
– δP : SP×AP → SP is a transition function associating a target state δP (s, a)

with each state s ∈ SP and action a ∈ AP . Note that the value δP (s, a) makes
sense only when a ∈ ΓP (s). When a /∈ ΓP (s), the value can be arbitrary.

The interface automaton P is said to be empty when its set of initial states
S0

P is empty. Empty interface automata arise when incompatible automata are
composed.

Definition 2. An input strategy for P is a map πI : S+
P → 2A

I
P satisfying

πI(σs) ⊆ Γ I
P (s) for all s ∈ SP and σ ∈ S∗P . An output strategy πO : S+

P → 2A
O
P

is defined similarly. The set of input and output strategies of P are denoted by
ΠI

P and ΠO
P respectively.

An input and output strategy jointly determine a set of traces in S+
P as

follows. At each step, if the input strategy proposes a set BI of actions, and the
output strategy proposes a set BO of actions, an action from BI ∪ BO is chosen
nondeterministically.

Definition 3. Given a state s ∈ SP , and input strategy πI and an output strat-
egy πO, the set Outcomes(s,πI ,πO) ⊆ S+

P of resulting plays is defined inductively
as follows:

– s ∈ OutcomesP (s,πI ,πO);
– if σt ∈ Outcomes(s,πI ,πO) for σ ∈ S+

P and t ∈ SP , then for all a ∈ πI(σt)∪
πO(σt) the sequence σtδP (s, a) ∈ OutcomesP (s,πI ,πO).

A state s ∈ SP is said to be reachable in P , if there is a sequence of states
s0, s1, . . . , sn with s0 ∈ S0

P , sn = s, and for all 0 ≤ k < n there is ak ∈ ΓP (sk)
such that δP (sk, ak) = sk+1. Reach(P ) denotes the set of reachable states of P

The refinement of interface automata is known as alternating simulation, the
right notion of simulation between games [2]. Intuitively, an alternating simu-
lation ρ ⊆ SP × SQ from P to Q is a relation for which (s, t) ∈ ρ implies all
input moves from t can be simulated by s and all output moves from s can be
simulated by t.

Definition 4. An alternating simulation ρ from P to Q is a relation ρ ⊆ SP ×
SQ such that, for all (s, t) ∈ ρ and all a ∈ Γ I

Q(t)∪ΓO
P (s), the following conditions

are satisfied:

1. Γ I
Q(t) ⊆ Γ I

P (s);
2. ΓO

P (s) ⊆ ΓO
Q (t);

3. (δP (s, a), δQ(t, a)) ∈ ρ.

Refinement between interface automata is defined as the existence of an al-
ternating simulation between the initial states.



342 P. Bhaduri

Definition 5. An interface automaton P refines an interface automaton Q,
written P � Q, if the following conditions are satisfied:

1. AI
Q ⊆ AI

P ;
2. AO

P ⊆ AO
Q;

3. there is an alternating simulation ρ from P to Q, such that (s0, t0) ∈ ρ for
some s0 ∈ S0

P and t0 ∈ S0
Q.

We now define the parallel composition P ‖ Q of interface automata P and
Q in a series of steps.

Definition 6. P and Q are composable if AO
P ∩ AO

Q = ∅.

We first define the product automaton P ⊗ Q of two composable interface
automata P and Q, by synchronising their shared actions and interleaving all
others. The set of shared actions of P and Q is defined by Shared(P,Q) =
AP ∩ AQ.

Definition 7. The product P ⊗Q of two composable interface automata P and
Q is defined by

– SP⊗Q = SP × SQ;
– S0

P⊗Q = S0
P × S0

Q;
– AI

P⊗Q = (AI
P ∪AI

Q)\Comm(P,Q) where Comm(P,Q) = (AO
P ∩AI

Q)∪ (AI
P ∩

AO
Q) is the set of communication actions, a subset of Shared(P,Q);

– AO
P⊗Q = AO

P ∪AO
Q;

– Γ I
P⊗Q((s, t)) = (Γ I

P (s)\AO
Q) ∪ (Γ I

Q(t))\AO
P ) for all (s, t) ∈ SP × SQ;

– ΓO
P⊗Q((s, t)) = ΓO

P (s) ∪ ΓO
Q (t), for all (s, t) ∈ SP × SQ;

– for all a ∈ AP⊗Q,

δP⊗Q((s, t), a) =

⎧⎨
⎩

(δP (s, a), δQ(t, a)) if a ∈ AP ∩ AQ

(δP (s, a), t) if a ∈ AP \AQ

(s, δQ(t, a)) if a ∈ AQ\AP

Since interface automata need not be input enabled, there may be reachable
states in P ⊗ Q where a communication action can be output by one of the
automaton but cannot be accepted as input by the other. These states are called
locally incompatible.

Definition 8. The set Incomp(P,Q) of locally incompatible states of P and Q
consists of all pairs (s, t) ∈ SP ×SQ for which one of the following two conditions
hold:

1. ∃a ∈ Comm(P,Q) such that a ∈ ΓO
P (s) but a /∈ Γ I

Q(t),
2. ∃a ∈ Comm(P,Q) such that a ∈ ΓO

Q (t) but a /∈ Γ I
P (s).



Synthesis of Interface Automata 343

A local incompatibility can be avoided if there is a helpful environment,
which by providing the right sequence of inputs can steer the automaton away
from such an undesirable state. The states from which Input can prevent the
product P ⊗Q from reaching a state in Incomp(P,Q) are called compatible. In
other words, the compatible states are those from which Input has a winning
strategy. The calculation of winning strategy in such safety games, if one exists,
by using the controllable predecessors of a set of states U and iterative refinement
is standard [19].

Definition 9. A state s ∈ SP⊗Q is compatible if there is an input strategy πI ∈
ΠI

P⊗Q such that, for all output strategies πO ∈ ΠO
P⊗Q, all σ ∈ OutcomesP⊗Q

(s,πI ,πO) and all incompatible states w ∈ Incomp(P,Q), the state w does not
appear in the sequence σ.

The composition P ‖ Q is obtained by restricting P ⊗ Q to the states that
can be reached from the initial state under an input strategy that avoids all
locally incompatible states. We call these states backward compatible. These are
the states that are reachable from the initial state of P ⊗ Q by visiting only
compatible states. Note that in [7] backward compatible states are called usably
reachable states.

Definition 10. A state s ∈ SP⊗Q is backward compatible in P ⊗Q if there is
an input strategy πI ∈ ΠI

P⊗Q such that:

– for all initial states s0 ∈ S0
P⊗Q, all output strategies πO ∈ ΠO

P⊗Q, all out-
comes σ ∈ OutcomesP⊗Q(s0,πI ,πO) and all w ∈ Incomp(P,Q), w does not
occur in σ;

– there is an initial state s0 ∈ S0
P⊗Q, an output strategy πO ∈ ΠO

P⊗Q, and an
outcome σ ∈ OutcomesP⊗Q(s0,πI ,πO) such that s ∈ σ.

Definition 11. The composition P ‖ Q of two interface automata P and Q,
with T the set of backward compatible states of the product P ⊗Q, is an interface
automaton defined by:

– SP‖Q = T
– S0

P‖Q = S0
P⊗Q ∩ T

– AI
P‖Q = AI

P⊗Q

– AO
P‖Q = AO

P⊗Q

– Γ I
P‖Q(s) = {a ∈ Γ I

P⊗Q(s) | δP⊗Q(s, a) ∈ T } for all s ∈ T

– ΓO
P‖Q(s) = ΓO

P⊗Q(s) for all s ∈ T

– for all s ∈ T , a ∈ ΓP‖Q(s),

δP‖Q(s, a) =
{
δP⊗Q(s, a) if δP⊗Q(s, a) ∈ T
arbitrary otherwise

Definition 12. P and Q are said to be compatible if their composition is non-
empty i.e., s0P‖Q �= ∅. This is equivalent to s0P⊗Q ∈ T , where T is the set of
backward compatible states of P ⊗Q.



344 P. Bhaduri

Notation. We write ReachO(P ) to denote the set of states of P that are reachable
from the initial state s0P by following only output actions.

We use the following lemma in our proof of Theorems 1 and 2 in Section 3.
Since the best input strategy to avoid locally incompatible states is simply to
generate no inputs to P ⊗Q at any state, the set of compatible states in P ⊗Q is
simply the set of states from which P ⊗Q cannot reach a state in Incomp(P,Q)
by a sequence of output actions.

Lemma 1. P and Q are compatible iff the states in ReachO(P ⊗Q) are locally
compatible, i.e., ReachO(P ⊗Q) ∩ Incomp(P,Q) = ∅.

Proof. Suppose P and Q are compatible. Then s0P⊗Q is a backward compatible
state in P ⊗Q. This implies there is an input strategy πI for P ⊗Q which avoids
all locally incompatible states starting from s0P⊗Q, no matter what the output
strategy is. Now Output can always force P⊗Q to enter any state in ReachO(P⊗
Q). In other words, an output strategy πO exists for which every state s in
ReachO(P⊗Q) appears in some sequence in OutcomesP⊗Q(s0P⊗Q,π

I ,πO). Since
s0P⊗Q is a backward compatible in P ⊗ Q, it follows that ReachO(P ⊗ Q) ∩
Incomp(P,Q) = ∅. Conversely, suppose the states in ReachO(P ⊗Q) are locally
compatible. This implies that any state in Incomp(P,Q) can be reached, if at
all, by following a sequence of actions which includes at least one input action.
Then the input strategy which disables all such input actions avoids all locally
incompatible states and so s0P⊗Q is backward compatible. ��

3 Synthesis of Interface Automata

Our goal is to find the most general solution R to P ‖ R � Q when it exists, and
characterise the conditions under which it exists. By a most general solution we
mean, a solution U , such that for any solution V , it is the case that V � U . In this
section we prove our main result, viz., the most general solution to P ‖ R � Q is
give by R = (P ‖ Q⊥)⊥ and a solution exists iff P and Q⊥ are compatible. Here
P⊥ is the same as P , except all the input actions in P become output actions
in P⊥ and similarly the output actions of P are the input actions of P⊥.

Example 1. Figure 1 presents three examples to illustrate the synthesis idea
with given interface automata P and Q. The construction of Q⊥, P ‖ Q⊥ and
R = (P ‖ Q⊥)⊥ are shown in each case.

1. In Figure 1(a), the input actions are AI
P = AI

Q = {a, c}, and the output
actions are AO

P = AO
Q = {b, d}. Note that in P ‖ Q⊥, the transition labelled

c? does not appear, as it is a shared action, and has to be present in both
P and Q⊥ to appear in their product. Note also, how b appears as an input
action in the result (P ‖ Q⊥)⊥.

2. In Figure 1(b), the action sets are AI
P = {a}, AO

P = {b}, AI
Q = {a, c}

and AO
Q = {b, d}. In this case, the solution is essentially identical with Q,



Synthesis of Interface Automata 345

(b)

�
�

�
�

�
� �
� �

�
�

�
�
�

�
�
�

�

�
� �
� �

�
� �
� �

�
� �
� �

�
� �
� �

�
�

�

�
� �

�
� �

�
� �

�
� �

�

�

�

�
�


�

		�

�

�

�

�

�

�

�

�
�


�

		�

�

�
�


�

		�

�

�
�


�

		�

�

�
�


�

		�

�

�

�

�
�


		� �
�


		� �
�


		� �
�


		�

Q Q⊥ P ‖ Q⊥

P ‖ Q⊥

P ‖ Q⊥

(P ‖ Q⊥)⊥

P

P

Q

Q

Q⊥

Q⊥

P

(P ‖ Q⊥)⊥

(P ‖ Q⊥)⊥

a?

b! b?

a!a!

b!

c?

d!

a?

b!

a?

b?

a?

b! b!

a? c?

d! b?

a! c!

d? b!

a! c!

d? b?

a? c?

d!

b?a!b!a?b!a?b?a!
a?

(a)

(c)

�

Fig. 1. Interface Automata Synthesis Examples

except for the polarity of action b. Note that there is already an alternating
simulation between P and Q. The input transition labelled b? appears in
R because we assume AO

P ⊆ AO
R: in some sense, R can be thought of as a

controller for P , and hence should be allowed to use all the output actions
of P as input, in addition to driving the input actions of P . Note that if we
changed the the input action set of P to be AI

P = AI
Q = {a, c}, then there

would be no solution R, because P and Q⊥ would not be compatible: in the
initial state, Q⊥ is ready to output a c, but P is not ready to accept it as
input, even though c is a communication action between the two.

3. In Figure 1(c), the action sets are AI
P = {a}, AO

P = ∅, AI
Q = {b} and

AO
Q = {a}. In this example, an input of P appears as an output of Q. The

result (P ‖ Q⊥)⊥ adds the input b and also converts a from an input to an
output. In this case, R is identical to Q.

Note. Throughout this section we make the weak assumption that AI
P ⊆ AI

Q ∪
AO

Q. This is to ensure that an environment E for which Q ‖ E is a closed system
(i.e., has no inputs) will also make (P ‖ R) ‖ E a closed system. So any inputs
to P will be provided by an output from the environment of Q or from R. In the
latter case, such an input of P will be an output of Q. Further, we assume that
the solution R satisfies AO

P ⊆ AI
R. This is to allow R to use the output actions

of P as inputs in carrying out its control objectives. It is clear that any solution
R will satisfy AO

R ⊆ AO
Q\AO

P , and for the most general solution the two sets will
be equal.



346 P. Bhaduri

Notation. We write p
a−→ p′ if a ∈ ΓP (p) and δ(p, a) = p′ for states p, p′ and

action a in an interface automaton P . We call p a−→ p′ an input transition if a
is an input action of P . An output transition is defined similarly.

First we prove a result about compatibility that is used in Theorem 1 below.

Lemma 2. If P and Q⊥ are compatible, then P and (P ‖ Q⊥)⊥ are compatible.

Proof. Suppose P and Q⊥ are compatible, but P and (P ‖ Q⊥)⊥ are not.
By Lemma 1, this means there exists a state (p, (p′, q)) ∈ ReachO(P ⊗ (P ‖
Q⊥)⊥) which is in Incomp(P, (P ‖ Q⊥)⊥). Since the interface automata we
consider are deterministic, it must be the case that p = p′. This implies that
there exists an a ∈ Comm(P, (P ‖ Q⊥)⊥) such that either (a) a ∈ ΓO

P (p) and
a /∈ Γ I

(P‖Q⊥)⊥(p, q) = ΓO
(P‖Q⊥)(p, q) = ΓO

P (p) ∪ Γ I
Q(q), which is impossible, or

(b) a /∈ Γ I
P (p) and a ∈ ΓO

(P‖Q⊥)⊥(p, q) which implies (p, q) a−→ (p′, q′) is an

input transition in P ‖ Q⊥ and p
a−→ p′ is not an input transition in P . This

is possible only if a ∈ AO
Q but a /∈ AI

P , which contradicts our assumption that
a ∈ Comm(P, (P ‖ Q⊥)⊥). ��

Theorem 1. A solution R to P ‖ R � Q exists iff P and Q⊥ are compatible.

Proof. (If) Suppose P and Q⊥ are compatible. By Lemma 2 so are P and
(P ‖ Q⊥)⊥. Take R = (P ‖ Q⊥)⊥. We show that there exists an alternat-
ing simulation ρ between P ‖ R and Q. Define the relation ρ = {((p, (p, q)), q) |
(p, (p, q)) is a state in P ‖ R}. Since (s0P , s

0
Q) is the initial state of R,

(s0P , (s
0
P , s

0
Q)) is the initial state of P ‖ R, and hence ((s0P , (s

0
P , s

0
Q)), s0Q) is

in ρ. Now suppose ((p, (p, q)), q) ∈ ρ and q
a−→ q is an input transition in Q.

It follows that q
a−→ q′ is an output transition in Q⊥. Therefore, p a−→ p′ is

an input transition in P for some p′, since (p, q), being in P ‖ Q⊥, is backward
compatible in P⊗Q⊥. Hence (p, q) a−→ (p′, q′) is an output transition in P ‖ Q⊥,
and so an input transition in (P ‖ Q⊥)⊥, whence (p, (p, q)) a−→ (p′, (p′, q′) is an
input transition in P ‖ (P ‖ Q⊥)⊥ and by definition of ρ, ((p′, (p′, q′)), q′)
is again in ρ. Similarly for the output side, suppose ((p, (p, q)), q) ∈ ρ and
(p, (p, q)) a−→ (p′, (p′′, q′)) is an output transition in P ‖ (P ‖ Q⊥)⊥. Since
we consider only deterministic automata, p′ = p′′. Also, it must be the case that
a ∈ Comm(P, (P ‖ Q⊥)⊥), because an output action of P is an output action
of P ‖ Q⊥, and therefore an input action of (P ‖ Q⊥)⊥. Suppose p

a−→ p′ is
an output transition in P , and because P and Q⊥ are compatible, and (p, q)
is backward compatible in P ⊗ Q⊥, q a−→ q′ is an input transition in Q⊥, and
hence an output transition in Q. On the other hand, if p a−→ p′ is an input
transition in P , then since (p, (p, q)) a−→ (p′, (p′, q′)) is an output transition in
P ‖ (P ‖ Q⊥)⊥, (p, q) a−→ (p′, q′) is an output transition in (P ‖ Q⊥)⊥, and
therefore an input transition in (P ‖ Q⊥). From the assumption that AI

P ⊆ AI
Q

and by the definition of the product P ⊗Q⊥ it follows that q a−→ q′ is an input
transition of Q⊥, and hence an output transition of Q. By the definition of ρ,
((p′, (p′, q′)), q′) ∈ ρ, hence ρ is an alternating simulation as required.



Synthesis of Interface Automata 347

(Only if) We show the contrapositive. Suppose P and Q⊥ are not compat-
ible. Then, by Lemma 1, there exists a state (p, q) ∈ ReachO(P,Q) which is
incompatible, i.e., there is an a such that either (a) a ∈ ΓO

P (p) and a /∈ ΓO
Q (q)

or (b) a /∈ Γ I
P (p) and a ∈ Γ I

Q(q). Both possibilities rule out the existence of an
alternating simulation between P ‖ R and Q for any R.

��

Theorem 2. When the condition stated in Theorem 1 is satisfied, the most
general solution to P ‖ R � Q is R = (P ‖ Q⊥)⊥.

Proof. In the proof of Theorem 1 (If part) we have already shown that R = (P ‖
Q⊥)⊥ is a solution. Suppose U is any solution to P ‖ R � Q. We construct an
alternating simulation ν from U to (P ‖ Q)⊥ as follows. By assumption, there
exists an alternating simulation ρ from P ‖ U and Q. Define ν = {(u, (p, q)) |
((p, u), q) ∈ ρ}. Clearly (s0U , (s

0
P , s

0
Q)) ∈ ν, since ((s0P , s

0
U ), s0Q) ∈ ρ. Now suppose

(u, (p, q)) ∈ ν and u
a−→ u′ is an output transition in U . This implies p

a−→ p′

is an input transition in P for some p′, since by assumption ((p, u), q) ∈ ρ and
therefore (p, u) is backward compatible in P ⊗U . Hence, (p, u) a−→ (p′, u′) is an
output transition in P ‖ U . It follows that q

a−→ q′ is an output transition in
Q for some q′, with ((p′, u′), q′) ∈ ρ, which is equivalent to q

a−→ q′ is an input
transition in Q⊥. Therefore, (p, q) a−→ (p′, q′) is an input transition in P ‖ Q⊥,
since (p, q) is backward compatible in P ⊗ Q⊥ by assumption. It follows that
(p, q) a−→ (p′, q′) is an output transition in (P ‖ Q⊥)⊥ and (u′, ((p′, q′)) ∈ ν as
required. Next suppose (u, (p, q)) ∈ ν and (p, q) a−→ (p′, q′) is an input transition
in (P ‖ Q⊥)⊥, which is the same as (p, q) a−→ (p′, q′) is an output transition in
P ‖ Q⊥. This implies that either (a) p

a−→ p′ is an input transition in P and
q

a−→ q′ is an input transition in Q or (b) p a−→ p′ is an output transition in P

and q
a−→ q′ is an output transition in Q. For the first case, by the existence of

the alternating simulation ρ, (p, u) a−→ (p′, u′) is an input transition in P ‖ U
for some state u′ in U with ((p′, u′), q′) ∈ ρ and hence (u′, (p′, q′)) ∈ ν. For the
second case, u a−→ u′ is an input transition in U for some u′, since (p, u) is
backward compatible in P ⊗ U . Further (u′, (p′, q′)) ∈ ν, since ((p′, u′), q′) ∈ ρ,
and the conclusion follows. ��

4 Winning Strategies and Synthesis

We now characterise the most general solution to P ‖ R � Q in terms of winning
strategies. Specifically, we show that the most general solution corresponds to
the most permissive winning strategy for Input in P ⊗ (P ‖ Q⊥)⊥.

First we define winning strategies for Input and Output in games correspond-
ing to the product P ⊗Q of two interface automata P and Q. We also define a
natural partial order %I on input strategies, such that σI

P %I τI
P if the strategy

τI
P generates more inputs than σI

P at every state of P . A similar order %O is
defined on output strategies. Since the orders are lattices, the most permissive



348 P. Bhaduri

strategy exists, as is given by the lattice join. We then show that the parallel
composition P ‖ Q can be extracted from the most permissive winning strategy
for Input.

Definition 13. Let P and Q be composable interface automata. A winning in-
put strategy for P ⊗Q is an input strategy πI such that for all output strategies
πO, all initial states s0 ∈ S0

P⊗Q, all σ ∈ OutcomesP⊗Q(s0,πI ,πO), and all
incompatible states w ∈ Incomp(P,Q), the state w does not appear in the se-
quence σ. The definition of a winning output strategy is symmetric, where the
winning condition is that a state in Incomp(P,Q) must be reached in every run
σ ∈ OutcomesP⊗Q(s0,πI ,πO).

We now define the order % on strategies. The idea is that an input strategy
is higher in the order if it accepts more inputs. Dually an output strategy is
higher in the order if it generates more outputs.

Definition 14. The binary relation %I on input strategies for P is defined by
πI

0 % πI
1 iff πI

0(σ) ⊆ πI
1(σ) for all σ ∈ S+

P . When πI
0 % πI

1 , we say πI
1 is more

permissive than πI
0 . Similarly, for output strategies, πO

0 %O πO
1 iff πO

0 (σ) ⊆
πO

1 (σ) for all σ ∈ S+
P .

Clearly, the relations %I and %O are lattices, with top elements πI
T (σs) =

Γ I
P (s) and πO

T (σs) = ΓO
P (s), and join and meet given by pointwise union and

intersection. Note that the bottom elements are the empty strategies, which are
allowed by the definition of strategies.

Corollary 1. If there is a winning strategy for either player in a game then
there is a most permissive winning strategy for that player.

Proof. Simply take the join of the set of all winning strategies for the player. ��

Next we show how to extract an interface automaton πI(P ⊗ Q) from an
input strategy πI for the game P ⊗ Q, by cutting down some of its states and
transitions.

Definition 15. The interface automaton πI(P ⊗Q) defined by input strategy
πI for the game P ⊗Q is defined as follows. Its set of input and output actions
are the same as those of P ⊗Q. The set SπI(P⊗Q) contains those states of P ⊗Q

that are reached in some sequence in OutcomesP⊗Q(s0P⊗Q,π
I ,πO

T ), where πO
T

is the top output strategy in the lattice of strategies (the one that produces the
most output). The input moves of πI(P ⊗ Q) are defined by Γ I(s) = {a | a ∈
Γ I

P⊗Q such that a ∈ πI(σs) for some σ ∈ S+
πI(P⊗Q)

}. The input transitions of
πI(P ⊗ Q) are defined by δ(s, a) = δP⊗Q(s, a) when a ∈ Γ I(s) and an arbi-
trary element of SπI(P⊗Q) otherwise. The output moves and transitions are the
straightforward restrictions of the output moves and transitions of P ⊗Q to the
set of states SπI(P⊗Q).



Synthesis of Interface Automata 349

The following proposition states that the parallel composition P ‖ Q of
interface automata P and Q is the interface automaton πI

w(P ⊗ Q) defined by
input strategy πI

w for the game P ⊗Q, where πI
w is the most permissive winning

input strategy, if one exists.

Proposition 1. For composable interface automata P and Q, P ‖ Q can be
obtained as πI

w(P ⊗Q) where πI
w is the most permissive winning input strategy

for P ⊗Q. If no winning input strategy exists then P and Q are incompatible.

Proof. By Definition 13, if no winning input strategy exists, there exists an
output strategy πO such that an incompatible state appears in some sequence
σ ∈ OutcomesP⊗Q(s0P⊗Q,π

I ,πO), for all input strategies πI . From Definition 10,
this implies that the set T of backward compatible states is empty, and hence by
Definition 11 the composition P ‖ Q is empty. Suppose there is a winning input
strategy for P ⊗ Q. We show that the set of states SπI

w(P⊗Q) is identical with
the backward compatible states T of P ⊗ Q, where πI

w is the most permissive
winning input strategy for P ⊗Q. Suppose s ∈ SπI

w(P⊗Q). Since πI
w is a winning

strategy, s satisfies the first clause in Definition 10 of backward compatibility.
By Definition 15, s is reached in some play in OutcomesP⊗Q(s0P⊗Q,π

I
w,π

O)
and therefore s satisfies the second clause as well. Now suppose s is a backward
compatible state of P⊗Q. By Definition 10 there exists a winning input strategy
πI and some output strategy πO for P ⊗ Q, for which s appears in some play
σ ∈ OutcomesP⊗Q(s0P⊗Q,π

I ,πO). It follows that s appears in some play in
OutcomesP⊗Q(s0P⊗Q,π

I
w,π

O), and by Definition 15, s is in SπI
w(P⊗Q). ��

Next we characterise solutions to P ‖ R � Q in terms of winning strategies
for Input in (P ⊗Q⊥)⊥, and show that the most general solution arises from the
most permissive strategy.

Theorem 3. A solution to P ‖ R � Q exists iff a winning input strategy π
exists for (P ⊗ Q⊥)⊥. The most general solution to P ‖ R � Q is given by
πI

w((P ⊗Q⊥)⊥), where πI
w is the most permissive winning input strategy.

Proof. From Theorems 1 and 2 it follows that a solution exists iff P and Q⊥ are
compatible, and in such a case R = (P ‖ Q⊥)⊥ is the most general solution. By
Proposition 1, (P ‖ Q⊥)⊥ = πI

w((P ⊗ Q⊥)⊥) where πI
w is the most permissive

winning strategy for (P ⊗Q⊥)⊥. ��

5 Application: Network Protocol Conversion

In this section we describe an application of interface synthesis to the protocol
conversion problem. In today’s world global communication over heterogeneous
networks of computers can often lead to protocol mismatches between com-
municating entities. The lack of a uniform global standard for communication
protocols entails that protocol converters have to be built for mediating between
incompatible protocols [5, 11]. We illustrate the use of interface synthesis to the
protocol conversion problem through an example adapted from [10].



350 P. Bhaduri

(b) Nonsequenced Receiver

snd? data0!

data1! snd? rcv!

ack0? ack!ack1! data?

(a) Alternating Bit Sender

Fig. 2. Two mismatched protocols

||

data0!,data1!

data!

ack0!,ack1!

ack!

snd!

rcv!

Fig. 3. Specification of Converter

Consider the two interface shown in Figure 2 representing two incompatible
protocols. Figure 2(a) is a simplified version of a sender using the Alternating Bit
Protocol (ABP), while the one in Figure 2(b) is a receiver using the Nonsequenced
Protocol (NS). The ABP sender accepts data from the user (a higher level proto-
col) using the input action snd? and transmits it with label 0 using output action
data0!. After receiving an acknowledgement with the correct label 0 via the input
action ack0?, the sender is ready to accept the next piece of data from the user and
transmit itwith label 1.Theprotocol performs in a loop, alternating labels between
0 and 1. In this simplified version we ignore retransmissions due to timeouts and
receipt of acknowledgements with wrong labels.

The NS receiver in Figure 2(b) is much simpler, which on receiving a data
packet via input action data?, delivers it to the user via the output action rcv!,
and sends an acknowledgement to the sender via ack!. Since the NS receiver
does not use any labels for the data and acknowledgement packets there is a
protocol mismatch between ABP and NS.

When we want the two protocols above to work together without causing
any inconsistency by using a converter, we need to specify what the converter
is allowed and not allowed to do. This idea was proposed in [15] in the setting
of synchronous hardware-like protocols. We require that the system as a whole
(the two protocols along with the converter) satisfies the interface described by
Figure 3. This specification interface is obtained as the parallel composition of
two interfaces. The one on the left specifies that the converter can send data
packets and acknowledgements to the NS receiver and ABP sender, only after



Synthesis of Interface Automata 351

data1?

data!

ack? data!

ack1! ack0?

ack?data0?

Fig. 4. Converter for the two protocols

receiving a data packet or acknowledgement from the other protocol. No data or
acknowledgement can be sent speculatively, nor can packets be lost or duplicated.
The interface on the right specifies the overall behaviour that the user expects
from the system: the snd and rcv events will alternate strictly in any system
run. Note that every action in Figure 3 is of type output.

The correct converter for the two protocols is shown is Figure 4. The converter
can be obtained be as follows. Let P be the parallel composition of the two
protocols which need conversion. Since we assume the two sets of actions to
be disjoint, the composition is always well defined. The specification S for the
converter relates the two actions sets by specifying temporal ordering of actions.
For instance, in our example, the specification dictates that a data action can
only follow a corresponding data0 or data1 action. The converter C is then
the (most general) solution to P ‖ C � S. Intuitively, the goal of the converter
is to meet the specification, while satisfying the input assumptions of the two
protocols. Moreover, the converter can control only the inputs to the protocols
and not their outputs.

6 Conclusion

We have pointed out the connection between the most general solution to P ‖
R � Q and language equation solving [20, 21], protocol converter synthesis [5]
and the semantics of interaction [1] in Section 1. This suggests an underlying
algebraic framework for interface automata that is yet to be explored. Such
a framework would have axioms and rules for combining interface automata
using composition, alternating refinement and ( )⊥. This will simplify the kind
of proofs we have presented in Section 3 and Section 4.

Tabuada [18] has shown the connection between control synthesis and the
existence of certain alternating simulations and bisimulations between the spec-
ification and the system to be controlled. This was carried out using the span of
open maps of Joyal et al [9]. It would be illuminating to see whether our synthesis
problem can be cast in the same framework. To do this, we need to characterise
the composition operation P ‖ Q from the product P ×Q in a suitable category
of interface automata. Note that it is in the definition of composition that the
interface automata formalism differs from the ones considered in [18].



352 P. Bhaduri

In summary, our work should be seen as a first step towards a unified theory of
component interfaces and their synthesis, with wide ranging applications across
diverse domains.

Acknowledgements. We thank David Benson, Paddy Krishnan, Prahlad Sam-
path and S. Ramesh for their discussions and critical comments on earlier drafts
of the paper.

References

1. S. Abramsky. Semantics of interaction: an introduction to game semantics. In
Proceedings of the 1996 CLiCS Summer School, pages 1–31. Cambridge University
Press, 1997.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement
relations. In CONCUR 98: Concurrency Theory, Lecture Notes in Computer Sci-
ence 1466, pages 163–178. Springer-Verlag, 1998.

3. Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic, 56:183–220, 1992. Special Volume dedicated to the memory of John Myhill.

4. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

5. K. L. Calvert and S. S. Lam. Formal methods for protocol conversion. IEEE
Journal Selected Areas in Communications, 8(1):127–142, January 1990.

6. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering, pages 109–120. ACM
Press, 2001.

7. Luca de Alfaro. Game models for open systems. In Proceedings of the International
Symposium on Verification (Theory in Practice), volume 2772 of Lecture Notes in
Computer Science. Springer-Verlag, 2003.

8. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

9. André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, June 1996.

10. Ratnesh Kumar, Sudhir Nelvagal, and Steven I. Marcus. A discrete event systems
approach for protocol conversion. Discrete Event Dynamic Systems, 7(3):295–315,
June 1997.

11. S. S. Lam. Protocol conversion. IEEE Transactions on Software Engineering,
14(3):353–362, March 1988.

12. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, 10–12 August 1987.

13. P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event systems via
morphisms. In CONCUR ’98: Concurrency Theory, 9th International Conference,
volume 1466 of Lecture Notes in Computer Science, pages 18–33. Springer-Verlag,
1998.

14. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete con-
trollers for timed systems (an extended abstract). In 12th Annual Symposium on
Theoretical Aspects of Computer Science, volume 900 of Lecture Notes in Computer
Science, pages 229–242, Munich, Germany, 2–4 March 1995. Springer.



Synthesis of Interface Automata 353

15. Roberto Passerone, Luca de Alfaro, T.A. Henzinger, and Alberto L. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: Two faces of the
same coin. In ICCAD ’02: Proceedings of the International Conference on Com-
puter Aided Design, pages 132–140. ACM, 2002.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89.
Proceedings of the sixteenth annual ACM symposium on Principles of programming
languages, January 11–13, 1989, Austin, TX, pages 179–190, New York, NY, USA,
1989. ACM Press.

17. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE; Special issue on Dynamics of Discrete Event Systems,
77, 1:81–98, 1989.

18. Paulo Tabuada. Open maps, alternating simulations and control synthesis. In
CONCUR ’04, number 3170 in Lecture Notes in Computer Science, pages 466–
480. Springer-Verlag, 2004.

19. Wolfgang Thomas. On the synthesis of strategies in infinite games. In 12th An-
nual Symposium on Theoretical Aspects of Computer Science, volume 900 of Lec-
ture Notes in Computer Science, pages 1–13, Munich, Germany, 2–4 March 1995.
Springer.

20. Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex Petrenko, and Alberto
Sangiovanni-Vincentelli. Solution of parallel language equations for logic synthe-
sis. In Proceedings of the 2001 International Conference on Computer-Aided Design
(ICCAD-01), pages 103–111, Los Alamitos, CA, November 4–8 2001. IEEE Com-
puter Society.

21. Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex Petrenko, and Alberto
Sangiovanni-Vincentelli. Solution of synchronous language equations for logic syn-
thesis. In Proceedings of the 4th Conference on Computer-Aided Technologies in
Applied Mathematics, pages 132–137, September 2002.



Multi-valued Model Checking Games

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel
{sharonsh, orna}@cs.technion.ac.il

Abstract. This work extends the game-based framework of μ-calculus model
checking to the multi-valued setting. In multi-valued model checking a formula is
interpreted over a Kripke structure defined over a lattice. The value of the formula
is also an element of the lattice. We define a new game for this problem and derive
from it a direct model checking algorithm that handles the multi-valued structure
without any reduction. We investigate the properties of the new game, both inde-
pendently, and in comparison to the automata-based approach. We show that the
usual resemblance between the two approaches does not hold in the multi-valued
setting and show how it can be regained by changing the nature of the game.

1 Introduction

Model checking [8] is a successful approach for verifying whether a system model M
satisfies a specification ϕ, written as a temporal logic formula. In multi-valued model
checking the system is defined over a lattice L. Both the labelling of states and the
transitions of the system are interpreted as elements from the lattice. The meaning of a
formula in the model is then also given by an element of the lattice.

Multi-valued model checking has many important applications within the verifica-
tion framework. For example, 3-valued model checking, where the logic is based on the
lattice L3 (see Fig. 1), has been used to reason about abstract structures or structures
with partial information [2,24,13]. In this context the value U is used to model uncer-
tainty, with the meaning that the value can either be - or ⊥. Recently, [1] has used a
6-valued logic as an extension of this approach for falsification of properties. Another
useful lattice is the lattice L2,2, with the values -⊥ and ⊥- representing disagreement
(see Fig. 1). Model checking using this lattice (or its generalizations) has been used to
handle inconsistent views of a system [11,17]. Temporal logic query checking [5,3,15]
can also be reduced to multi-valued model checking, where the elements of the lattice
are sets of propositional formulas.

One way of handling the multi-valued model checking problem is the reduction ap-
proach, where the problem is reduced to several traditional 2-valued problems
[12,17,18,14,4] or 3-valued problems [19].

As opposed to the reduction approach, the direct approach checks the property on
the multi-valued structure directly. It thus has the advantage of a more “on-the-fly”
nature. Furthermore, a direct model checker can provide auxiliary information that ex-
plains its result. Such information can help analyzing the result. For example, in [24,13]
the result of a direct model checking is used to suggest refinement of a 3-valued abstract
structure. The same information cannot be retrieved from the model checking of two 2-
valued structures [23].

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 354–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Multi-valued Model Checking Games 355

⊥
�

⊥

�
U

⊥

�
�⊥ ⊥�

⊥

�

U2

U1

L2 L3 L2,2 L4

Fig. 1. Examples of Lattices

Several direct model checking algorithms for various multi-valued logics have been
suggested in the literature. [2,24,13] studied the 3-valued case of CTL ([2,24]) and
the μ-calculus ([13]). In [6] the logic LTL was considered over finite linear orders.
The general multi-valued version of CTL was handled in [7]. Finally, an almost direct
automata-based algorithm for the multi-valued μ-calculus was suggested in [4]. Their
approach handled the multi-valued labelling directly, but still used a reduction to handle
multi-valued transitions.

In this paper we suggest a fully direct model checking for the multi-valued μ-
calculus, where both the multi-valued labelling and the multi-valued transitions are
handled directly. The μ-calculus [20] is a powerful formalism for expressing proper-
ties of transition systems using fixpoint operators. It contains, for example, both CTL
and LTL as its fragments. Our approach refers to its multi-valued semantics based on
any finite distributive DeMorgan lattice.

We base our algorithm on the game-theoretic approach [25] and thus gain all of
its advantages [24,13]. In the traditional game-based approach to model checking two
players, the verifier (called ∃loise) and the refuter (called ∀belard), try to win a game.
A formula ϕ is true in a model M iff the verifier has a winning strategy, meaning that
the verifier can win any play, no matter what the refuter does.

We adapt this approach for the multi-valued case. In particular, we now talk about
the value of the game. It turns out that in the multi-valued case there does not necessarily
exist a best strategy for ∃loise. Instead, strategies may be incomparable and the value
of the game is determined by their combination.

We suggest two definitions of a multi-valued game for the μ-calculus and prove their
correctness. The proof turns out to be interesting in itself, as it uses similar techniques to
those used in the reduction approach of [4]. This is in spite of the fact that our approach
handles the multi-valued structure directly and uses no reductions.

When comparing our definitions to the work of [4], a surprising property is revealed.
The direct algorithm of [4] is based on automata [21]. Usually, the game-based and the
automata-based approaches to model checking have a strong resemblance [22]. Yet, in
the multi-valued setting we find that our definition of the game is different in essence
from the automata-based approach of [4]. We discuss this difference and suggest an
alternative multi-valued game that regains the similarity to automata. More importantly,
our resulting framework in fact generalizes the work of [4], as it handles directly not
only the multi-valued labelling, but also the multi-valued transitions.

The game-based approach to model checking was already generalized to the 3-
valued case [24,13]. However, it turns out that handling a general lattice, where there



356 S. Shoham and O. Grumberg

is more than one intermediate value and the elements are only partially ordered, is
substantially more complex (see Section 7).

The rest of the paper is organized as follows. In Section 2 we give some background
on lattice theory, multi-valued μ-calculus and model checking games. In Section 3 we
provide our main definition of the multi-valued model checking game and prove its
correctness. A model checking algorithm, based on the game, is then described in Sec-
tion 4. In Section 5 we suggest an alternative definition for the game. We then discuss
the relation to the automata-theoretic approach, which yields another definition of a
multi-valued game, in Section 6. Finally, we compare the general multi-valued game to
the much simpler 3-valued case in Section 7.

2 Preliminaries

Lattices. A lattice is a partially ordered set (L,≤) where for each finite subset of
elements there exists a unique greatest lower bound (glb) and least upper bound (lub).
The glb is also called meet and is denoted by x ∧ y or

∧
A (for x, y ∈ L, A ⊆ L). The

lub is also called join and is denoted x ∨ y or
∨
A (see Fig. 1 for examples).

Throughout this paper we refer to finite distributive DeMorgan lattices. Every finite
lattice is complete, meaning that it has a greatest element, called top, denoted -, and
a least element, called bottom, denoted ⊥. In a distributive lattice x ∧ (y ∨ z) = (x ∧
y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all lattice elements x, y, z. In
a DeMorgan lattice every element x ∈ L has a unique complement ¬x ∈ L such that
¬¬x = x, DeMorgan’s laws hold, and x ≤ y implies ¬y ≤ ¬x 1.

A join-irreducible element x of a distributive lattice L is an element �= ⊥ s.t. x =
y ∨ z implies x = y or x = z for every y, z ∈ L. We denote the set of join-irreducible
elements of L by J (L). For example⊥- ∈ J (L2,2), but - �∈ J (L2,2) (see Fig. 1).

μ-calculus [20]. LetP be a finite set of atomic propositions and V a set of propositional
variables. We consider the logic μ-calculus in negation normal form, defined as follows:
ϕ ::= q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P and Z ∈ V . Let Lμ denote the set of closed formulas generated by the
above grammar, where the fixpoint quantifiers μ and ν are variable binders. We write
η for either μ or ν. We assume that formulas are well-named, i.e. no variable is bound
more than once in any formula. Thus, every variable Z identifies a unique subformula
fp(Z) = ηZ.ψ of ϕ, where the set Sub(ϕ) of subformulas of ϕ is defined as usual.

Semantics. The concrete semantics of a μ-calculus formula is given with respect to
a Kripke structure. A (finite) Kripke structure is a tuple M = (S,R,Θ), where S is
a finite set of states, R ⊆ S × S is a transition relation, which must be total, and
Θ : S → 2P is a labelling function [8].

In this work we consider the multi-valued μ-calculus [4], where formulas are in-
terpreted with respect to a Kripke structure defined over a lattice (also called χKripke
structure). In a Kripke structure over a lattice L, both the labelling and the transition
relation have a multi-valued nature: Θ maps a state to a mapping from P to elements of

1 Since we refer to temporal logic in negation normal form, negation can be defined arbitrarily.
We chose to refer to DeMorgan lattices since they are most commonly used in this context.



Multi-valued Model Checking Games 357

s 
 ϕ0 ∨ ϕ1

s 
 ϕi
∃ : i ∈ {0, 1} s 
 ηZ.ϕ

s 
 Z
∃/∀ s 
 ♦ϕ

t 
 ϕ
∃ : R(s, t) �= ⊥

s 
 ϕ0 ∧ ϕ1

s 
 ϕi
∀ : i ∈ {0, 1} s 
 Z

s 
 ϕ
∃/∀ : if fp(Z) = ηZ.ϕ

s 
 �ϕ

t 
 ϕ
∀ : R(s, t) �= ⊥

Fig. 2. The 2-valued model checking game rules for Lμ

L, that is Θ : S → (P → L). Furthermore, R maps pairs of states to lattice elements,
that is R : S × S → L (see Example 1). The totality requirement ofR is now given by
the requirement that for each s ∈ S there exists some state s′ ∈ S with R(s, s′) �= ⊥.

The semantics [[ϕ]]Mρ of a Lμ formula ϕ w.r.t. a Kripke structure M = (S,R,Θ)
over a lattice L and an environment ρ : V → (S → L), where ρ explains the meaning
of free variables in ϕ, is a mapping from S to L.

We assumeM to be fixed and do not mention it explicitly anymore. With ρ[Z �→ g]
we denote the environment that maps Z to g and agrees with ρ on all other arguments.
Later, when only closed formulas are considered, we will also drop the environment
from the semantic brackets. In the following definition f is an element of (S → L) →
(S → L), defined by λg.[[ϕ]]ρ[Z �→g] and νf , μf stand for the greatest and least fixpoints
of f , which exist according to [26], since the functions in S → L form a complete lattice
under pointwise ordering and the functional f is monotone w.r.t. this ordering.

[[q]]ρ := λs.Θ(s)(q)
[[¬q]]ρ := λs.¬Θ(s)(q)
[[ϕ1 ∨ ϕ2]]ρ := λs.[[ϕ1]]ρ ∨ [[ϕ2]]ρ
[[ϕ1 ∧ ϕ2]]ρ := λs.[[ϕ1]]ρ ∧ [[ϕ2]]ρ

[[Z]]ρ := ρ(Z)
[[μZ.ϕ]]ρ := μf

[[νZ.ϕ]]ρ := νf

[[♦ϕ]]ρ := λs.
∨
{R(s, s′) ∧ [[ϕ]]ρ(s

′) | R(s, s′) �= ⊥}
[[�ϕ]]ρ := λs.

∧
{¬R(s, s′) ∨ [[ϕ]]ρ(s

′) | R(s, s′) �= ⊥}

Given ϕ, (M, s) and L, computing the value of [[ϕ]]M(s) is called the multi-valued
model checking problem. A regular Kripke structure M can be viewed as a Kripke
structure over lattice L2 (see Fig. 1), by referring to the set of transitions and the set of
atomic propositions that label a state by their characteristic functions. In this case we
write (M, s) |= ϕ for [[ϕ]]M(s) = - and (M, s) �|= ϕ for [[ϕ]]M(s) = ⊥.

Model Checking Games. The 2-valued model checking game ΓM(s0, ϕ0) on a (reg-
ular) Kripke structure M = (S,R,Θ) with s0 ∈ S and a formula ϕ0 ∈ Lμ is played
by players ∃loise (the prover) and ∀belard (the refuter) in order to determine the truth
value of ϕ0 in s0, cf. [25]. Configurations are elements of C ⊆ S × Sub(ϕ0), and writ-
ten t � ψ. Each play of ΓM(s0, ϕ0) is a maximal sequence of configurations that starts
with s0 � ϕ0. The game rules are presented in Fig. 2. Each rule is marked by ∃ / ∀ to
indicate which player makes the move. A rule is applied when the player is in configura-
tion Ci, which is of the form of the upper part of the rule. Ci+1 is then the configuration
in the lower part of the rule. The rules shown in the first and third columns present a
choice which the player can make. Since no choice is possible when applying the rules
in the second column, both players can apply them. If no rule can be applied the play
terminates. This happens in terminal configurations of the form t � p or t � ¬p.



358 S. Shoham and O. Grumberg

Winning Criteria: Player ∃ wins a play C0, C1, . . . iff
1. the play terminates in t � q with Θ(t)(q) = - or t � ¬q with Θ(t)(q) = ⊥, or
2. the outermost variable that occurs infinitely often is of type ν.

Player ∀ wins a play C0, C1 . . . iff
3. the play terminates in t � q with Θ(t)(q) = ⊥ or t � ¬q with Θ(t)(q) = -, or
4. the outermost variable that occurs infinitely often is of type μ.

A (memoryless) strategy for player Q is a partial function σ : C → C, such that
its domain is the set of configurations where player Q moves. Player Q plays a game
according to a strategy σ if all his choices agree with σ. A strategy for player Q is called
a winning strategy if player Q wins every play where he plays according to this strategy.

We have the following relation between the game and the semantics.

Theorem 1. [25] For a regular Kripke structure M = (S,R,Θ), s ∈ S, and ϕ ∈ Lμ:

(a) [[ϕ]]M(s) = - iff Player ∃ has a winning strategy for ΓM(s, ϕ),
(b) [[ϕ]]M(s) = ⊥ iff Player ∀ has a winning strategy for ΓM(s, ϕ)

3 A Multi-valued Game for the μ-Calculus

In this section we investigate the multi-valued model checking problem from the game-
theoretic point of view. For the rest of the section let M be a Kripke structure over
lattice L, s0 a state in M and ϕ0 a μ-calculus formula. We suggest a multi-valued
model checking game, Γm

M(s0, ϕ0), for evaluating ϕ0 in state s0 of M.
The new game is still played by two players, ∃loise and ∀belard, and the moves of

the players are defined as in the 2-valued game (see Fig. 2). In particular, in the rules of
the third column the players can make a move along any transition whose value is not
⊥. However, the concept of winning needs to be adapted. In fact, to capture the multi-
valued nature of the problem, we no longer talk about winning a play versus losing it.
Instead, we now associate with each play a value which is an element from the lattice.

In our definitions we take the point of view of ∃loise (we could dually describe the
game from the point of view of ∀belard)). Intuitively, we think of the value of a play as
a measure for how close ∃loise is to winning; Winning of ∃loise in the 2-valued case
now corresponds to the top value. Winning of ∀belard corresponds to the bottom value,
but more values are possible. In these terms, the goal of the players is no longer to win
the play. Instead, the goal of ∃loise is to maximize the resulting value, whereas the goal
of ∀belard is to minimize this value.

Notation. We refer to the configurations of Γm
M(s0, ϕ0) as nodes in a game graph,

divided to ∨-nodes, where ∃loise plays, versus ∧-nodes, where ∀belard plays. Moves
between configurations are edges in the graph. Each edge (move) has a value from the
lattice: moves that use a transition of the model get its value. The rest get the - value.
We abuse the notation of the transition relation and denote the value of an edge from n
to n′ by R(n, n′). We refer to edges with values �= -,⊥ as indefinite edges.

Example 1. Consider the Kripke structure M of Fig. 3 over lattice L, s.t. x, y, z, w ∈
L. The labels of the transitions define their values. Unlabelled transitions have value
-. The states labelling denotes that Θ(s0)(r) = z, Θ(s0)(h) = w and Θ(s1)(q) =
Θ(s2)(q) = -, where q, r, h are atomic propositions. Fig. 3 also shows the game-graph
of Γm

M(s0, ϕ0), where ϕ0 = ♦q∧ (r∨h). Again, the edges are labelled by their values.



Multi-valued Model Checking Games 359

r : z
h : w

x y

s0

s1 s2q : � q : � x y∨ ∨

∧
n0

n1 n2

n3 n4 n5 n6

s0 
 ϕ0

s0 
 ♦q s0 
 r ∨ h

s1 
 q : � s2 
 q : � s0 
 r : z s0 
 h : w

M Γ m
M(s0, ϕ0) for ϕ0 = ♦q ∧ (r ∨ h)

Fig. 3. Example of a Multi-Valued Game

3.1 Plays and Their Values

A play in Γm
M(s0, ϕ0) is defined as before. To understand how we determine the value of

a multi-valued play, consider again a 2-valued play. As explained above, if the winner is
∃loise, then in the multi-valued context we view its value as -. Similarly, if the winner
is ∀belard, then we view the value as⊥. However, in the multi-valued case we have two
extensions, which introduce more values. First, the terminal nodes (t � q, t � ¬q) are
no longer classified as winning or losing, but they have a value which results from the
value of q in the state t. This affects the values of finite plays.

Furthermore, the moves are also multi-valued, due to the multi-valued nature of the
model’s transitions. The value that a player gains in the play also depends on the values
of the transitions that were used. Intuitively, one can think of the moves of ∃loise as
attempts at proving the formula and the moves of ∀belard as attempts at refuting it. In
this context, the use of indefinite edges in the multi-valued case is interpreted as a weak
attempt at proving or refuting (depending on the player).

Recall that we think of the value of the play as a measure for how close ∃loise
is to winning. Therefore, when evaluating a play we take the point of view of ∃loise.
Conceptually, we first give the play a base value, while ignoring the values of edges
used. We then update the resulting value based on the edges.

Definition 1. For a terminal node n = t � q, we define val(n) to be Θ(t)(q). For
n = t � ¬q we define val(n) to be ¬Θ(t)(q).

Definition 2. For a play p in the game, we define its base value, base(p), as follows. If p
is finite, base(p) = val(n), where n is the terminal node in which p ends. If p is infinite,
then base(p) = - if p is won by ∃loise in the 2-valued game. Otherwise base(p) = ⊥.

We update the base value by taking into consideration the values of the edges used
by both players in the play. Intuitively, when ∃loise plays, she tries to show an evidence
for truth. For her evidence to be “convincing”, she needs to both continue to a position
which is good for her, and also use an edge with a high value (which corresponds in
a way to high certainty). Consequently, the value of the play is given by the glb of the
value of the edge and the value of the rest of the play. On the other hand, when ∀belard
plays, he tries to refute. When looking at the situation from the point of view of ∃loise,
she succeeds in her goal better if ∀belard either reaches a position that is good for her,
or if he uses an edge of low value (alternatively: high negated value), in which case the



360 S. Shoham and O. Grumberg

certainty of his refutation is low. Therefore, the value of the play in this case is given
by the lub of the negation of the value of the edge and the value of the rest of the play.
This intuition leads to a bottom-up computation of the value of a play.

Definition 3. Let p = n0, n1, . . . , nk be a finite prefix of a play, and let x ∈ L be
a base value. We define update(p, x) by reverse induction. Initially, valk = x. Given
vali, we define vali−1 depending on the player that made the move from ni−1 to ni. If
it is ∃loise, then vali−1 = R(ni−1, ni) ∧ vali. If the player is ∀belard, then vali−1 =
¬R(ni−1, ni) ∨ vali. Finally, we let update(p, x) = val0.

Note that edges with value - do not change the base value since - ∧ x = x and
¬- ∨ x = x for all x ∈ L (since in a DeMorgan lattice ¬- = ⊥).

Definition 3 is directly applicable to defining the value of a finite play by taking x
to be the base of p. Unfortunately, it is not suitable for infinite plays.

To handle infinite plays, we use the following key observations. We say that a prefix
pi of a play p is total if for each player, the set of values of edges used by the player
in pi is equal to the set of values used by the same player in p. Since the underlying
lattice is finite, the set of values of edges used in the play by each player is finite. Thus,
there always exists a finite total prefix of the (possibly infinite) play. Furthermore, it
turns out that computing the value of the play by considering only such a (finite) prefix
is sufficient, in the following sense. We define the value val(pi) of a prefix pi of a play
p similarly to the definition of the value of a finite play, except that the base value is set
to the base value of the entire play p. That is, val(pi) = update(pi, base(p)). We now
have the property that the value of any total prefix of p is the same.

Lemma 1. Let pi, pj be two finite total prefixes of a play p. Then val(pi) = val(pj).

In other words, the play has a limit value. This property is surprising since the se-
quence of values of increasingly longer prefixes is not necessarily monotonic. Lemma 1
also implies that any finite total prefix of the play is a good representative for computing
this value. We therefore define the value of a play as follows.

Definition 4. For a play p, val(p) = update(pi, base(p)), where pi is the minimal
total prefix of p.

Example 2. Consider again the game described in Fig. 3. Terminal nodes in the game-
graph are labelled by their values. One possible play in the game is < n0, n1, n3 >. Its
value is ¬- ∨ (x ∧ -) = x. Another example is the play < n0, n2, n5 > whose value
is ¬- ∨ (- ∧ z) = z. More plays exist.

3.2 Strategies and Their Values

As always, to relate the game to model checking, we need to talk about strategies, rather
than a single play. In the 2-valued game we talked about winning strategies and we were
guaranteed that exactly one player had one. In the multi-valued case, we no longer talk
about winning. Instead, we talk about the gain of each player in the game. We therefore
need to replace the notion of winning strategies by strategies for gaining a value.

Consider again the 2-valued game. A winning strategy for ∃loise in the 2-valued
game guarantees that every play, where ∃loise plays by the strategy is winning for



Multi-valued Model Checking Games 361

∃loise (or has value -). On the other hand, a non-winning strategy for ∃loise is such
that there exists a play where ∃loise plays by the strategy, but the play is winning for
∀belard (has value ⊥). Thus, we can say that a winning strategy for ∃loise ensures the
value -, whereas a non-winning strategy ensures only ⊥ (as it ensures a value ≥ ⊥,
but not better than that). Furthermore, each strategy is either winning for ∃loise or non-
winning. Thus, strategies are comparable, and there always exists a best strategy. The
best strategy is a winning strategy if one exists, or a non-winning one otherwise.

When we move to the general multi-valued case, a strategy for ∃loise is defined as
usual. However, unlike the usual case, here plays can have many values, which may
be incomparable to one another. Given a strategy σ∃ for ∃loise, the value that will be
achieved in practice depends on the choices of ∀belard. We want the value of σ∃ to be a
lower bound on the set of all possible values that can be achieved in plays where ∃loise
plays by σ∃, with the meaning that the strategy ensures a value which is greater or
equal than its value. We choose the greatest possible lower bound, which characterizes
the strategy as precisely as possible.

Definition 5. For a strategy σ∃ for ∃loise, val(σ∃) =
∧
{val(p) | p is a play by σ∃}.

This definition implies that ∃loise can always achieve a value ≥ val(σ∃) in any play
where she plays by the strategy σ∃. Note that since val(σ∃) is given by the glb of
possibly incomparable values, it is possible that there does not exist a play with value
val(σ∃) by this strategy. Still, the strategy cannot ensure a strictly better (higher) value.

Similarly to the phenomenon of several values achieved by a single strategy, it may
be the case that ∃loise has several different strategies, with incomparable values. ∃loise
chooses which strategy to use. We therefore define the value that she achieves in the
game to be the least upper bound on the values of all her strategies. It implies that
∀belard cannot enforce any value which is strictly lower than the value of the game.

Definition 6. Let Γm
M(s0, ϕ0) be a multi-valued game. Then

val(Γm
M(s0, ϕ0)) =

∨
{α | ∃loise has a strategy σ∃ with value val(σ∃) = α}.

Note that in the general case, ∃loise does not necessarily have a best strategy that
achieves the lub. However, if the lattice has a total order then such a best strategy exists.

Example 3. In the game of Fig. 3 ∃loise has two possible moves from n1 and n2 (the
nodes where she moves). She thus has four possible (memoryless) strategies – one
for each combination. Consider for example the strategy σ1 in which ∃loise always
proceeds to the left successor. The choice in n0 is of ∀belard, therefore there are two
possible plays by this strategy:< n0, n1, n3 > (when ∀belard chooses the left successor
of n0) and < n0, n2, n5 > (when ∀belard chooses the right successor of n0) whose
values are x and z respectively (see Example 2). Since the choice between the plays is
of ∀belard, the value of the strategy is the glb of their values. That is, val(σ1) = x ∧ z.
This means that by σ1, ∃loise can only ensure a value which is ≥ x∧ z, where possibly
x ∧ z is strictly smaller than both x and z (see for example ⊥- and -⊥ in L2,2).

Similarly, we get val(σ2) = x ∧ w, val(σ3) = y ∧ z and val(σ4) = y ∧ w. Since
∃loise chooses which strategy to use, the value of the game is then val(Γm

M(s0, ϕ0)) =
val(σ1) ∨ val(σ2) ∨ val(σ3) ∨ val(σ4) = (x∧ z)∨ (x∧w) ∨ (y ∧ z)∨ (y ∧w). If all



362 S. Shoham and O. Grumberg

the latter values are incomparable, then ∃loise does not have a unique best strategy. By
distributivity, val(Γm

M(s0, ϕ0)) = (x∧(z∨w))∨(y∧(z∨w)) = (x∨y)∧(z∨w). An
inspection of the model shows that this is the value of [[ϕ0]]

M(s0), which demonstrates
the correctness of the game (see Theorem 2 in the following section).

Remark 1. One can think of the value of the game in the regular 2-valued case (from
the point of view of ∃loise), as defined by the following formula

∃σ∃∀σ∀ : val(outcome(σ∃,σ∀)) = -
where σ∀ denotes a strategy for ∀belard and outcome(σ∃,σ∀) is the unique play defined
by the combination of σ∃ and σ∀. This formula describes the condition for a game to be
won by ∃loise: it requires that ∃loise has a winning strategy σ∃, meaning that for each
possible strategy σ∀ of ∀belard, the resulting play is winning for ∃loise (has value -).

Similarly, in the multi-valued case, the definition of val(σ∃) can be rephrased as
val(σ∃) =

∧
σ∀{val(outcome(σ∃,σ∀))}. This makes

val(Γm
M(s0, ϕ0)) =

∨
σ∃

{
∧
σ∀

{val(outcome(σ∃,σ∀))}}

That is, we replace the ∃ and ∀ quantifiers by the lub and glb operators respectively,
since there are no longer best strategies for ∃loise and ∀belard. A similar phenomenon
happens when considering probabilistic games [10], where it is possible that the limit
probability in which ∃loise wins is 1, but there is no strategy that achieves probability 1.
Instead, for every probability, as close to 1 as we want, there is a strategy that achieves it.
There also, the ∃ and ∀ quantifiers are replaced by supremum and infimum respectively.

3.3 Correctness

Theorem 2. Let M be a Kripke structure over lattice L, s0 a state in M and ϕ0 a
μ-calculus formula. Then val(Γm

M(s0, ϕ0)) = [[ϕ0]]
M(s0).

To prove Theorem 2 we first give an alternative definition for val(Γm
M(s0, ϕ0)), which

mainly results from Birkhoff representation theorem for finite distributive lattices.

Lemma 2. val(Γm
M(s0, ϕ0)) =

∨
{α | ∃loise has a strategy σ∃ with val(σ∃) ≥ α}

=
∨
{α ∈ J (L) | ∃loise has a strategy σ∃ with val(σ∃) ≥ α}

We now use similar techniques to those used in the reduction approach of [4]. There,
the multi-valued model checking problem is reduced to several 2-valued model check-
ing problems. First, to avoid a technical problem with negated atomic propositions,
the formula is transformed to a formula with no negation symbols, by replacing each
negated proposition ¬q by a new atomic proposition q′. The labelling function Θ of M
is extended to Θ′ by setting Θ′(s)(q′) = ¬Θ(s)(q). Then, the Kripke structureM over
L is reduced to several Kripke Modal Transition Systems (KMTSs).

Definition 7. [16] A Kripke Modal Transition System (KMTS) is a tuple M̃ = (S̃, R+,
R−, Θ̃) with a must transition relation R+ ⊆ S × S and a may transition relation
R− ⊆ S × S. The labelling is given by Θ̃ : S̃ → (P → L3).



Multi-valued Model Checking Games 363

Specifically, given an element α ∈ J (L), a reduced KMTS Mα is defined by setting

Θα(s)(q) = Θ(s)(q) ≥ α

R+
α (s, s′) = R(s, s′) ≥ α

R−α (s, s′) = (¬R(s, s′)) �≥ α

Note that in this definition of the KMTS Mα the value of Θα(s)(q) is in fact defined
over L2. The formula is then interpreted over the KMTS Mα w.r.t. a 2-valued seman-
tics, with the main difference being that

[[♦ϕ]]Mα

ρ := λs.
∨
{R+

α (s, s′) ∧ [[ϕ]]Mα

ρ (s′) | all s′}
[[�ϕ]]Mα

ρ := λs.
∧
{¬R−α (s, s′) ∨ [[ϕ]]Mα

ρ (s′) | all s′}

It then holds that (Mα, s0) |= ϕ0 ⇔ α ≤ [[ϕ0]]
M(s0) [4], and the following is implied.

Lemma 3. [4] [[ϕ0]]
M(s0) =

∨
{α ∈ J (L) | (Mα, s0) |= ϕ0}.

Now, to prove the correctness of our multi-valued game we combine Lemmas 2
and 3 with the following lemma. Together they imply val(Γm

M(s0, ϕ0)) = [[ϕ0]]
M(s0).

Lemma 4.
∨
{α ∈ J (L) | ∃loise has a strategy σ∃ with val(σ∃) ≥ α} =

∨
{α ∈

J (L) | (Mα, s0) |= ϕ0}.

Proof. We refer to the 2-valued game for KMTSs, defined in [23]. This game is similar
to the 2-valued game for Kripke structures. The difference is that ∃loise uses only must-
transitions, whereas ∀belard uses may-transitions. The winning conditions are as before,
with the exception that a player can get stuck (if R+ or R− is not total), in which case
he loses. Theorem 1 holds for this case as well. In our case this means that ∃loise has a
winning strategy in the 2-valued game over Mα iff (Mα, s0) |= ϕ0.

To prove Lemma 4 we show a 1-1 correspondence between strategies of ∃loise with
value ≥ α in the multi-valued game over M and winning strategies for ∃loise in the
2-valued game overMα, for α ∈ J (L). We use the following property of a distributive
lattice L. If α ∈ J (L) and y, z ∈ L, then α ≤ y ∨ z iff α ≤ y or α ≤ z [9].

Let σ be a strategy for ∃loise with val(σ) ≥ α. We show that the same strategy is
winning in the 2-valued game. Consider a play played by σ in the 2-valued case. We
show that ∃loise wins it. We know that in the multi-valued game its value is ≥ α.

First, if the play is infinite (in the 2-valued case) then the value y of each edge used
by ∀belard is such that ¬y �≥ α (otherwise it does not exist as a may-edge). Thus for
the value of the play to be ≥ α, its base value has to be -. This is because only edges
of ∀belard can increase the value and by the previous property they cannot increase a
base value of ⊥ to be ≥ α, since α is join-irreducible. Since the base value is -, we
conclude that the play fulfills the winning criteria of ∃loise in the 2-valued game.

If the play is finite (in the 2-valued case), we first rule out the possibility that ∃loise
is stuck. If ∃loise is stuck it means that the strategy defines for her to use an edge
with value y �≥ α (that does not exist as a must-edge in the 2-valued case). The same
reasoning as before shows that for the value of the play to be ≥ α, there had to be
an earlier edge of ∀belard with value y s.t. ¬y ≥ α, but such an edge does not exist
as a may-edge in the 2-valued play, which leads to contradiction. Thus, either ∀belard
gets stuck, in which case ∃loise wins, or the play ends in a terminal node of the form



364 S. Shoham and O. Grumberg

n = s � q. In the latter case, we again conclude by the same reasons that val(n) ≥ α,
thus Θ(s)(q) ≥ α and in the KMTS Mα this implies Θα(s)(q) = - and ∃loise wins.

For the other direction, let σ be a winning strategy for ∃loise in the 2-valued game.
Once again, we show that the same strategy has a value ≥ α in the multi-valued game,
with the exception that if σ does not define a move from some configuration, we extend
it arbitrarily. To prove that val(σ) ≥ α we show that the value of every play where
∃loise plays by (the extended) σ in the multi-valued game has value ≥ α.

Consider such a play. First, if the same play exists in the 2-valued game, then it is
winning for ∃loise, making its base value -. Furthermore, all the edges used by ∃loise
are must-edges, with values ≥ α. Since only edges of ∃loise can decrease the value of
the play, this ensures that the value of the play is ≥ α.

If the play does not exist in the 2-valued game, it means that one of two possibilities
occurred. The first is that ∀belard used an edge that does not exist as a may-edge in the
2-valued game, meaning that its value y fulfills ¬y ≥ α. But this immediately increases
the value of the suffix of the play from that point to be ≥ α. By the same reasons as
before the prefix of the play does not decrease the value below α, and thus it remains
≥ α. The second possibility is that ∃loise used an edge that does not exist in the 2-
valued game. This could only happen if the play reached a configuration where σ was
extended. This means that originally, in the 2-valued game, this configuration was not
reachable by σ. But this implies that in order to reach it ∀belard made a move that was
not possible in the 2-valued game, and we return to the first possibility. ��

4 Solving the Multi-valued Game

In this section we discuss how to solve the multi-valued model checking game. Given
a game Γm

M(s0, ϕ0) our purpose is to compute its value. By Theorem 2 this gives us
the result of the multi-valued model checking problem for M, s0 and ϕ0. Since the
game is defined directly on the multi-valued Kripke structure, we get a direct model
checking algorithm for the multi-valued problem, that has all the advantages of the
game-theoretic approach [24,13].

As usual, we solve the game by processing the game-graph and evaluating each
node in it. The difference as opposed to the 2-valued case is that we need to propagate
values from the lattice. We demonstrate this change for the alternation-free fragment of
the μ-calculus, where no nesting of fixpoints is allowed.

We partition the game graph to Maximal Strongly Connected Components (MSCCs)
and determine a (total) order on them, reflected by their numbers: Q1, . . . ,Qk. The
order fulfills the rule that if i < j then there are no edges from Qi to Qj . Such an order
exists because the MSCCs of the game-graph form a directed acyclic graph (DAG).

The components are handled bottom-up. Consider a single Qi. We label each node
n ∈ Qi with a value, denoted res(n), as follows. For a terminal node n, res(n) =
val(n). For an ∨-node n we set res(n) to be

∨
{R(n, n′) ∧ res(n′) | R(n, n′) �= ⊥}.

Similarly, if n is an ∧-node then res(n) =
∧
{¬R(n, n′) ∨ res(n′) | R(n, n′) �= ⊥}.

To handle Qi’s that form a non-trivial MSCC, we use the following observation:
when dealing with the alternation-free μ-calculus, an infinite play has exactly one vari-
able that occurs infinitely often [25]. Therefore, if Qi is a non-trivial MSCC then it



Multi-valued Model Checking Games 365

contains exactly one fixpoint variable Z . In this case we first label the nodes in Qi

with temporary values, temp(n), that are updated iteratively. For nodes of the form
nw = t � Z we initialize temp(nw) to - if Z is of type ν, or to ⊥ if Z is of type
μ (the rest remain uninitialized). We then apply the previous rules until the temporary
values do not change anymore. Finally, we set res(n) = temp(n) for every node n in
Qi. Intuitively, this algorithm imitates the iterative computation of the fixpoint.

Several optimizations can be made on this computation. For example, consider an
∨-node n with a successor n′ for which res(n′) is already computed. Furthermore,
suppose that the values of edges leading to the rest of the successors of n have values
≤ R(n, n′) ∧ res(n′). This means that the rest of the successors cannot increase the
result of the lub over all successors of n and we can immediately set res(n) to be
R(n, n′)∧res(n′), regardless of whether or not the rest of its successors were handled.
Such optimizations can spare us the need to process big subgraphs.

Theorem 3. Let M be a Kripke structure over L. Then for every state s0 in M and
every closed μ-calculus formula ϕ0, we have that val(Γm

M(s0, ϕ0)) = res(s0 � ϕ0).
We conclude that [[ϕ0]]

M0(s0) = res(s0 � ϕ0).

5 Avoiding Multi-valued Edges in the Game

Recall that the multi-valued edges used in the game posed a problem when we wanted to
define the value of an infinite play. Our treatment of such plays relied on the finite nature
of the lattice. In this section we suggest a different way of overcoming the problem. The
new definition makes the value of a play much simpler to define.

The idea is to split each move along a multi-valued transition (of the model) into
two moves: first the player who is supposed to play chooses a transition. Then, the
opponent chooses whether he wants to examine the value of the transition or to continue
in the play. If he chooses the value of the transition, the play ends with this value. This
means that there are no longer multi-valued edges in the game. We only have multi-
valued terminal nodes. That is, we reduce the multi-valued edges into more multi-valued
terminal nodes. We emphasize that the reduction is performed in the game level, rather
than the model level. The underlying Kripke structure still has multi-valued transitions.

Formally, given a Kripke structure M over lattice L, a state s0 and a μ-calculus
formula ϕ0, we define Γ d

M(s0, ϕ0) (where d stands for definite edges) as follows. The
configurations of the game are as before, with additional configurations of the form
(s, t) � ♦ϕ, (s, t) � �ϕ, (s, t) � - and (s, t) � ⊥ that act as intermediate config-
urations for the new rules. The rules are given by Fig. 2, where the rules in the third
column are replaced by the rules in Fig. 4.

For example, in a configuration of the form s � ♦ϕ, ∃loise chooses, as usual, a
transition that is supposed to show evidence for ♦ϕ. Since it is a move of ∃loise, we
have the meaning of the lub of all possibilities. However, the next move is a move of
∀belard, with the meaning of the glb between the two options. This means that for each
possibility of ∃loise we examine the glb of both the value of the transition and the value
of the rest of the play. Configurations of the form s � �ϕ are handled dually.

Configurations of the form (s, t) � - and (s, t) � ⊥ are (new) terminal configura-
tions. A configuration of the form (s, t) � - is reached when ∀belard challenges the



366 S. Shoham and O. Grumberg

s 
 ♦ϕ

(s, t) 
 ♦ϕ
∃ : R(s, t) �= ⊥ (s, t) 
 ♦ϕ

(s, t) 
 � ∀ (s, t) 
 ♦ϕ

t 
 ϕ
∀

s 
 �ϕ

(s, t) 
 �ϕ
∀ : R(s, t) �= ⊥ (s, t) 
 �ϕ

(s, t) 
 ⊥ ∃ (s, t) 
 �ϕ

t 
 ϕ
∃

Fig. 4. New rules for Γ d
M(s0, ϕ0)

transition that ∃loise chose from s � ♦ϕ. It expresses the fact that we are interested in
the value of R(s, t) that determines the certainty in which ∃loise tries to prove the ex-
istential property. Dually, a configuration of the form (s, t) � ⊥ is reached when ∃loise
challenges the transition that ∀belard chose from s � �ϕ. In this case, we are interested
in the value of ¬R(s, t), since from the point of view of ∃loise, her chances of proving
are better as the value of R(s, t) used by ∀belard for refutation is lower (alternatively:
¬R(s, t) is higher). Following this intuition, we add the following definition.

Definition 8. For a terminal node n = (s, t) � -, we define val(n) to be R(s, t). For
n = (s, t) � ⊥ we define val(n) to be ¬R(s, t).

Since there are no longer multi-valued edges in the game, the value of a play is
now determined to be the base value, as defined earlier (see Definition 2) – no update is
needed. The rest of the definitions of strategies, their values and the value of the game
remain unchanged. Theorem 4 ensures that the correctness of the game is maintained.

Theorem 4. Let M be a Kripke structure over lattice L, with a state s0 and let ϕ0 be
a μ-calculus formula. Then val(Γ d

M(s0, ϕ0)) = val(Γm
M(s0, ϕ0)).

6 Discussion: Games Versus Automata

In this paper we have investigated the multi-valued model checking problem from
the game-theoretic point of view. In [4] the same problem was considered from the
automata-theoretic point of view. There, model checking is performed by checking the
nonemptiness of an automaton that represents the product of the model and the checked
formula. In this section we discuss the essential difference between the two approaches
in the multi-valued case.

It is well-known that the game-based and the automata-based approaches are closely
related in the 2-valued setting: an accepting run corresponds to a winning strategy for
∃loise and vice versa [22]. Surprisingly, the same relation does not hold anymore in the
multi-valued case. More specifically, in [4] extended alternating automata (EAAs) were
used as the basis for model checking. To capture the multi-valued nature they referred to
the value of an accepting run. They showed that there always exists an accepting run of
the EAA with a maximal value. This maximal value defines the value of the emptiness of
the automaton. In the multi-valued game, on the other hand, it is not necessarily the case
that there exists a strategy of ∃loise with a maximal value. This clearly demonstrates
the discrepancy between automata and games in the multi-valued setting.

It is possible to regain the relation to the automata-theoretic approach by defin-
ing the game differently. The alternative game is still played over the same game-
graph, but the moves are different. Initially, ∃loise makes a statement with respect to



Multi-valued Model Checking Games 367

the value of the initial node n0, denoted bet(n0). In each node she proceeds by as-
sociating (possibly a subset) of its successors with a value in a consistent way based
on the type of the node: in an ∨-node n the values have to fulfill the rule bet(n) =∨
{R(n, n′) ∧ bet(n′) | R(n, n′) �= ⊥}. In an ∧-node the values have to fulfill the rule

bet(n) =
∧
{¬R(n, n′) ∨ bet(n′) | R(n, n′) �= ⊥}. Once a bet is made on the value of

a node it cannot be changed. The role of ∀belard is then to choose one successor n′ for
which ∃loise needs to continue and prove the value bet(n′). Intuitively, ∀belard will try
to choose a successor for which the value is incorrect.

In this definition we return to talking about winning versus losing. Intuitively, ∃loise
wins if she manages to proceed without contradictions. Formally, if ∃loise is stuck
(meaning she cannot associate the successors of a node with values by the above rules)
then ∀belard wins. If the play ends in a terminal node of the form s � q or s � ¬q, then
∃loise wins iff the value she gave the node matches its real value (Θ(s)(q) or ¬Θ(s)(q)
resp.). In an infinite play the winner is determined by the 2-valued winning conditions.

Note that here ∃loise moves in both types of nodes, which changes the basic nature
of the game. However, we now have the desired property that the game is equivalent
to the definition used in the context of EAA. It now holds that an accepting run of the
automaton with value α corresponds to a winning strategy for ∃loise with an initial bet
of value α, and vice versa. Thus, there exists a maximum value for which ∃loise has a
winning strategy and this value is the multi-valued model checking result.

Our definition of the game is in fact more general than the automaton used in [4] as
it handles the multi-valued transitions of the Kripke structure directly.

7 Comparison to the 3-Valued Game

One of the most useful applications of multi-valued model checking is the 3-valued
case. In [24,13] the regular model checking game has been generalized to a 3-valued
game over a KMTS (see Definition 7). A KMTSM can be viewed as a Kripke structure
over lattice L3 by giving the must transitions in R+ value -, the may transitions in
R− \R+ value U and the rest value ⊥. In this section we compare the game of [13] to
our general multi-valued game Γm

M(s, ϕ) and point out the main differences that make
the 3-valued game much simpler.

When considering the 3-valued case, it is possible to give the indefinite value U an
intuitive meaning of a tie. We can thus still talk about the notion of winning in a way that
corresponds to the three possible values {-, U,⊥} in the logic (see L3 in Fig. 1) [13].
This is unlike the multi-valued case where we need to talk about the general notion of
a value of a play or a game. The correspondence between the value of the game and the
formula is then given by a variant of Theorem 1, with an additional possibility [13]:

(c) [[ϕ]]M(s) = U iff no player has a winning strategy for ΓM(s, ϕ)

Another major difference arises from the fact that the lattice L3 has a total order,
meaning that all values are comparable. As a result, in the 3-valued case a strategy
has a precise value (rather than a lower bound) and the same holds for the game. That
is, strategies are comparable and there always exists a best strategy (either winning or
non-winning) that determines the value of the game.



368 S. Shoham and O. Grumberg

The combination of these differences results in another interesting property of the
3-valued game. As in the general multi-valued case, the result of the play in the 3-valued
case also depends on the values of the edges that were used. However, in [13] this effect
is captured by a consistency requirement that says that in order to win, the winner has
to use only must edges (with value-). The surprising part is that the opponent can use
either type. Recall that in the general multi-valued case, on the other hand, we need to
consider not only the edges that one player uses, but also those used by the opponent.

This results from the fact that in the 3-valued case only one intermediate result is
possible. Furthermore, because of the total order on the elements of the lattice, a value
cannot be achieved by a combination of values that are all different from it. Thus the
values of the edges that the opponent uses in the 3-valued game cannot improve the
result for the other player beyond a tie (or U ). They are therefore irrelevant when we
determine a winner in the play – recall that in the 3-valued case we are interested in
the winner of the play. This is no longer the case in the multi-valued case, where we
are interested in the (more general notion of a) value that each player achieves and this
value can be achieved by a combination of several values, possibly incomparable ones.

References

1. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In CAV, 2005.
2. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal

logics. In Computer Aided Verification, pages 274–287, 1999.
3. G. Bruns and P. Godefroid. Temporal logic query checking. In LICS. IEEE, 2001.
4. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP, 2004.
5. W. Chan. Temporal-logic queries. In CAV, volume 1855 of LNCS, pages 450–463, 2000.
6. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems

with fine-grained abstractions using spin. In SPIN Workshop, volume 2057 of LNCS, 2001.
7. M. Chechik, B. Devereux, A. Gurfinkel, and S. Easterbrook. Multi-valued symbolic model-

checking. Technical Report CSRG-448, University of Toronto, April 2002.
8. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.
9. B.A. Davey and H.A. Priestly. Introduction to Lattices and Order. Cambrifge University

Press, 1990.
10. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In STOC’01.
11. S.M. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsistent

viewpoints. In ICSE, pages 411–420, 2001.
12. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In CAV, volume 2404 of LNCS, pages 137–150, 2002.
13. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the μ-calculus. In

VMCAI, 2005.
14. A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model checking.

In CONCUR, pages 263–277, 2003.
15. A. Gurfinkel, B. Devereux, and M. Chechik. Model exploration with temporal logic query

checking. In FSE, pages 139–148. ACM, 2002.
16. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for three-

valued program analysis. In ESOP, volume 2028, pages 155–169, 2001.
17. M. Huth and S. Pradhan. Lifting assertion and consistency checkers from single to multiple

viewpoints. Technical Report 2002/11, Dept. of Computing, Imperial College, 2002.



Multi-valued Model Checking Games 369

18. B. Konikowska and W. Penczek. Reducing model checking from multi-valued CTL* to
CTL*. In CONCUR, volume 2421 of LNCS, 2002.

19. B. Konikowska and W. Penczek. Model checking multi-valued modal mu-calculus: Revis-
ited. In Proc. of CS&P’04, 2004.

20. D. Kozen. Results on the propositional μ-calculus. TCS, 27, 1983.
21. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-

time model checking. Journal of the ACM (JACM), 47(2):312–360, 2000.
22. M. Leucker. Model checking games for the alternation free mu-calculus and alternating

automata. In LPAR, 1999.
23. S. Shoham. A game-based framework for CTL counterexamples and abstraction-refinement.

Master’s thesis, Dept. of Computer Science, Technion - Israel Institute of Technology, 2003.
24. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-

valued abstraction-refinement. In CAV, volume 2725 of LNCS, pages 275–287, 2003.
25. C. Stirling. Local model checking games. In CONCUR, volume 962 of LNCS, 1995.
26. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific J.Math., 5, 1955.



Model Checking Prioritized Timed Automata

Shang-Wei Lin, Pao-Ann Hsiung, Chun-Hsian Huang, and Yean-Ru Chen

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

hpa@computer.org

Abstract. Priorities are often used to resolve conflicts in timed systems. How-
ever, priorities are not directly supported by state-of-art model checkers. Often,
a designer has to either abstract the priorities leading to a high degree of non-
determinism or model the priorities using existing primitives. In this work, it is
shown how prioritized timed automata can make modelling prioritized timed sys-
tems easier through the support for priority specification and model checking. The
verification of prioritized timed automata requires a subtraction operation to be
performed on two clock zones, represented by DBMs, for which we propose an
algorithm to generate the minimal number of zones partitioned. After the appli-
cation of a series of DBM subtraction operations, the number of zones generated
become large. We thus propose an algorithm to reduce the final number of zones
partitioned by merging some of them. A typical bus arbitration example is used to
illustrate the benefits of the proposed algorithms. Due to the support for prioriti-
zation and zone reduction, we observe that there is a 50% reduction in the number
of modes and 44% reduction in the number of transitions.

Keywords: Prioritized timed automata, DBM subtraction, zone merging, zone
reduction.

1 Introduction

Concurrency results in conflicts when resources are shared such as two or more process-
es trying to use the same processor or the same peripheral device in real-time embedded
systems. To resolve such conflicts, scheduling, synchronization, and arbitration are some
well-known solutions that have been popularly used in operating systems and in hardware
designs. A common artifact of these solutions is the prioritization of contending parties.
A low priority process is allowed to execute only when all processes with higher priorities
are disabled.

System models used for design and verification such as timed automata, statecharts,
and others allow non-determinisms which arise out of concurrency, interleaving, and in-
formation hiding. However, non-determinisms often result in unmanageably large state-
spaces. Prioritization of transitions not only models real systems more accurately but
also removes non-determinisms and thus reduces the size of state-spaces. Several model-
ing frameworks have been proposed for modeling and designing systems with priorities.
However, their verification techniques are still very limited. All the above mentioned
reasons have motivated us to model check timed systems with priorities.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 370–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Model Checking Prioritized Timed Automata 371

The target model for prioritization in this work will be timed automata (TA) [4],
because it is widely used in most model checkers for real-time systems such as SGM
[15,22], RED [21], UPPAAL [6], and Kronos [23]. In model checking timed automata
with priorities, a subtraction operation between two clock zones, represented by Differ-
ence Bound Matrices (DBMs), is required. We have proposed an algorithm to perform
the subtraction operation on two DBMs [14]. This algorithm generates the minimal num-
ber of zones partitioned. If there are multiple priorities in timed automata, a series of
DBM subtraction operations are needed. After a series of DBM subtraction operations,
the final number of zones partitioned may become very large resulting in a significant
increase in state-space sizes. In this work, we propose another DBM subtraction opera-
tion that also generates the minimal number of zones partitioned. For handling the large
number of zones generated after a series of DBM subtraction, we also propose a DBM
merging algorithm to reduce the final number of zones partitioned by merging some of
the zones.

The remaining portion is organized as follows. Section 2 describes previous work
related to priority modeling and verification. Basic definitions used in our work are given
in Section 3. Section 4 will formulate the solutions for solving the above described issues
in prioritizing timed automata and then verifying them. Section 5 gives an example. The
article is concluded and future research directions are given in Section 6.

2 Related Work

Several work of Joseph Sifakis [1,2,13,20,19] have focused on modeling timed sys-
tems with priorities. A solid theoretical basis has been laid by these work for modeling
schedulers based on priorities. Several well-known scheduling methods such FIFO, rate-
monotonic, earliest deadline first, least laxity first, priority ceiling protocol were modeled
by priority rules. Deadlock-free controllers were also synthesized to meet safety prop-
erties expressed as priority rules [13]. A real-time process with arrival time, execution
time, and period or deadline was formally modeled using different time urgencies such
as delayable (must transit before the transition condition expires) and eager (must tran-
sit as soon as the transition condition holds) [2]. The compositionality of priorities was
handled by priority choice operators [19]. In spite of these solid work on modeling and
synthesis of schedulers for timed systems with priorities, little has been investigated on
the verification of such systems.

Priorities have also been added to other modeling formalisms such as the work on
a priority language for Timed CSP [16], in which some operators were refined into
biased ones and several algebraic laws were given. Actions in process algebra have
been prioritized by Cleaveland and Hennessy [11]. A prioritized version of ACP was
proposed by Baeten et al. [5]. Camilleri proposed a prioritized version of CCS [17]
with a left biased choice operator [8]. Priorities have not received as much focus in the
model checking field as that in process algebra. The work here is an initial step in the
verification direction. Some background on the model checking paradigm is given in the
rest of this Section.

Model checking [9,10,18] is a technique for verifying finite state concurrent sys-
tems. One benefit of this restriction is that verification can be performed automatically.



372 S.-W. Lin et al.

The procedure normally uses an exhaustive search of the state space of a system to
determine if some specification is true or not. Given sufficient resources, the procedure
will always terminate with a yes/no answer. Moreover, it can be implemented by algo-
rithms with reasonable efficiency, which can be run on moderate-sized machines. The
process of model checking includes three parts: modeling, specification, and verification.
Modeling is to convert a design into a formalism accepted by a model checking tool.
Before verification, specification, which is usually given in some logical formalism, is
necessary to state the properties that the design must satisfy. The verification is com-
pletely automated. However, in practice it often involves human assistance. One such
manual activity is the analysis of the verification results. In case of a negative result, the
user is often provided with an error trace. This can be used as a counterexample for the
checked property and can help the designer in tracking down where the error occurred.
In this case, analyzing the error trace may require a modification to the system and a
re-application of the model checking algorithm.

When model checking is applied to real-time system verification, the model checker
verifies if a system modeled by a set of concurrent Timed Automata (TA) satisfies a set
of user-given specification properties expressed in the Timed Computation Tree Logic
(TCTL). TA [3,4] is a timed extension of the conventionalautomata, which was proposed
by Alur, Courcoubetis, and Dill in 1990 . TCTL [3] is a timed extension of the temporal
logic called Computation Tree Logic (CTL) [9].

Our model checking procedures for prioritized timed automata are implemented
in the State-Graph Manipulators (SGM) model checker [15,22], which is a high-level
compositional model checker for real-time systems. Now, with the enhancement of
prioritizations, SGM can also be used to model check real-time embedded systems such
as System-on-Chip (SoC) architectures.

3 Preliminaries

Definition 1. Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η over C and D is defined as: η := false | x ∼ c | x − y ∼ c | d ∼ c |
η1 ∧ η2 | ¬β3, where x, y ∈ C, ∼ ∈ {≤, <, =,≥, >}, c ∈ N , the set of non-negative
integers, d ∈ D, η1, η2 are mode predicates, and β3 is a discrete variable constraint. A
mode predicate η can be expressed as a conjunction of a clock constraint ζ and a Boolean
condition β on the discrete variables, that is, η = ζ ∧ β. ��

Let B(C, D) be the set of all mode predicates over C and D. We extend the con-
ventional definition of TA by prioritizing some of the transitions in a TA, as defined in
Definition 2.

Definition 2. Prioritized Timed Automaton
A Prioritized Timed Automaton (PTA) is a tuple Ai = (Mi, m

0
i , Ci, Di, Li,χi, Ti, λi,

τi,πi, ρi) such that:

– Mi is a finite set of modes,
– m0

i ∈ M is the initial mode,



Model Checking Prioritized Timed Automata 373

– Ci is a set of clock variables,
– Di is a set of discrete variables,
– Li is a set of synchronization labels, and ε ∈ Li is a special label that represents

asynchronous behavior (i.e. no need of synchronization),
– χi : Mi �→ B(Ci, Di) is an invariance function that labels each mode with a

condition true in that mode,
– Ti ⊆ Mi ×Mi is a set of transitions,
– λi : Ti �→ Li associates a synchronization label with a transition,
– τi : Ti �→ B(Ci, Di) defines the transition triggering conditions,
– πi : Ti �→ N associates an integer priority with a transition, where a larger positive

value implies higher priority and a zero value implies no prioritization, and
– ρi : Ti �→ 2Ci∪(Di×N ) is an assignment function that maps each transition to a

set of assignments such as resetting some clock variables and setting some discrete
variables to specific integer values. ��

A system state space is represented by a system state graph as defined in Definition
3.

Definition 3. Prioritized System State Graph
Given a systemSwith n components modelled by PTAAi=(Mi, m

0
i , Ci, Di, Li,χi, Ti,

λi, τi,πi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph represented by
A1 × . . .×An = AS = (M, m0, C, D, L,χ, T, λ, τ,π, ρ), where:

– M = M1×M2× . . .×Mn is a finite set of system modes, m = m1.m2. . . . .mn ∈
M ,

– m0 = m0
1.m

0
2. . . . .m

0
n ∈ M is the initial system mode,

– C =
⋃

i Ci is the union of all sets of clock variables in the system,
– D =

⋃
i Di is the union of all sets of discrete variables in the system,

– L =
⋃

i Li is the union of all sets of synchronization labels in the system,
– χ : M �→ B(

⋃
i Ci,

⋃
i Di), χ(m) = ∧iχi(mi), where m = m1.m2. . . . .mn ∈

M .
– T ⊆ M×M is a set of system transitions which consists of two types of transitions:

• Asynchronous transitions: ∃i, 1 ≤ i ≤ n, ei ∈ Ti such that ei = e ∈ T
• Synchronized transitions: ∃i, j, 1 ≤ i �= j ≤ n, ei ∈ Ti, ej ∈ Tj such that

λi(ei) = (l, in), λj(ej) = (l, out), l ∈ Li ∩ Lj �= ∅, e ∈ T is synchronization
of ei and ej with conjuncted triggering conditions and union of all transitions
assignments (defined later in this definition)

– λ : T �→ L associates a synchronization label with a transition, which represents
a blocking signal that was synchronized, except for ε ∈ L, ε is a special label that
represents asynchronous behavior (i.e. no need of synchronization),

– τ : T �→ B(
⋃

i Ci,
⋃

i Di), τ(e) = τi(ei) for an asynchronous transition and
τ(e) = τi(ei) ∧ τj(ej) for a synchronous transition,

– π : T �→ N , where π(e) = πi(ei) for an asynchronous transition and π(e) =
max{πi(ei),πj(ej)} for a synchronous transition, and

– ρ : T �→ 2 i Ci∪( i Di×N ), ρ(e) = ρi(ei) for an asynchronous transition and
ρ(e) = ρi(ei) ∪ ρj(ej) for a synchronous transition. �



374 S.-W. Lin et al.

In a mode predicate, there are Boolean and clock constraints. In most model checkers,
the Boolean constraints are represented by Binary Decision Diagrams (BDD) [7] pro-
posed by Bryant and the clock constraints are represented by Difference Bound Matrices
(DBM) [12] proposed by Dill.

4 Model Checking Real-Time Embedded Systems

Our target problem is to model and verify real-time embedded systems with priority. A
set of prioritized timed automata is used to model such a system and model checking
is used to verify if the prioritized system state graph, obtained by merging the set of
PTA, satisfies user-given TCTL properties. In this section, we will propose solutions
to the issues that were introduced in Section 1. A precise definition of the semantics
of prioritized timed automata will be given in Section 4.1. A major extension to the
conventional semantics involves the negation of clock zones and its implementation
using DBMs, which will be covered in Section 4.2.

4.1 Semantics of Prioritized Timed Automata

The syntax of priorities was given as non-negative integers associated with transitions
such that a larger positive value implied higher priority, as defined in Definition 2.
Besides an integer priority, a transition t ∈ Ti also has a triggering condition τi(t) ∈
B(Ci, Di), which, being a mode predicate (Definition 1), can be segregated into two
parts, namely a clock constraint (or clock zone) ζ(t) and a Boolean condition β(t)
such that τi(t) = ζ(t) ∧ β(t). Prioritization semantics require the negation of transition
triggering conditions because a transition t can be executed only if all transitions t′ with
priorities higher than that of t cannot be executed, that is, they are disabled or their
triggering conditions τi(t′) do not hold. In other words, transition t can fire only when
the following condition holds.

τi(t) ∧

⎛
⎝ ∧

πi(t′)>πi(t)

¬τi(t′)

⎞
⎠ , (1)

where transitions t and t′ all originate from the same source mode.
Given a triggering condition τi(t) = ζ(t) ∧ β(t), its negation is defined as follows.

¬τi(t) = ζ(t) ∨ ¬β(t)
ζ(t) = x ∼′ c, if ζ(t) = x ∼ c,

= x− y ∼ c, if ζ(t) = x− y ∼ c,

= ζ1 ∧ ζ2, if ζ(t) = ζ1 ∧ ζ2,
¬β(t) = d ∼′ c, if β(t) = d ∼ c

= ¬β1 ∨ ¬β2, if β(t) = β1 ∧ β2,
= β1, if β(t) = ¬β1,

(2)

where x, y ∈ Ci, d ∈ Di, c ∈ N , ∼′ ∈ {>,≥, �=,≤, <} corresponding respectively to
∼ ∈ {≤, <, =, >,≥}, ζ1, ζ2 are clock constraints, and β1,β2 are Boolean conditions
on discrete variables in Di.



Model Checking Prioritized Timed Automata 375

In the above definition for negation of a triggering condition in B(Ci, Di), the result
of negation no longer belongs to the set B(Ci, Di), that is, the set of mode predicates is
not closed under the negation operator. This is because all clock constraints, also called
clock zones, in B(Ci, Di) are n-dimensional convex polyhedra for a system with n
clocks. However, the result of negation may not be convex. This non-closure of negation
has adverse effects on model checking because all operators on transition triggers and
mode invariants need to guarantee closure so that the timed automata can be composed
into state-graphs for model checking. Closure is also required to guarantee termination
of the composition procedures for timed automata.

Conventional operators on clock zones such as intersection, time elapse, and reset all
guarantee closure as their results are still clock zones (convex polyhedra). Nevertheless,
the possibly non-convex polyhedron generated by negation can be converted into a set of
convex polyhedra. In Section 4.2, we propose an algorithm for the optimal partitioning
of non-convex polyhedra so that priorities can be modeled and verified for real-time
embedded systems. Here, optimality means the least number of convex polyhedra is
generated.

Returning to the condition for execution of a low priority transition t given in Equa-
tion (1), it can be expressed now more precisely as the following.

βi(t) ∧ ζi(t) ∧

⎡
⎣
⎛
⎝ ∧

πi(t′)>πi(t)

¬βi(t′)

⎞
⎠ ∨

⎛
⎝ ∧

πi(t′)>πi(t)

ζi(t′)

⎞
⎠
⎤
⎦ (3)

4.2 Optimal DBM Subtraction Algorithm

A clock zone is a clock constraint consisting of conjunctions of x ∼ c and x − y ∼ c,
where x, y are clock variables in Ci and c ∈ N . A clock zone is also restricted to be a
convex polyhedron. It is often implemented as a Difference Bound Matrix (DBM) [12],
which is defined as follows.

Definition 4. Difference Bound Matrix (DBM)
Given a clock zone z that represents clock constraints on n clocks in Ci = {x1, x2, . . . ,
xn}, it can be implemented as a (n + 1) × (n + 1) matrix D, where the element
D(i, j) =∼ c,∼∈ {<,≤}, c ∈ N , represents the constraint xi−xj ∼ c, 0 ≤ i, j ≤ n.
It is assumed x0 = 0. ��

Geometrically, a clock zone over n clocks is an n-dimensional convex polyhedron.
In the model checking of timed automata, three operations on clock zones are required,
namely intersection, time elapse, and reset. The set of clock zones is closed under these
three operations.

Definition 5. Unbounded and Bounded Element in DBM
Given a DBM D on n clocks, an element D(i, j) of D is unbounded if D(i, j) =′′< ∞′′,
where i �= j; otherwise we call D(i, j) bounded, where i �= j. ��

Definition 6. Unrestricted DBM
Given a DBM D on n clocks, we call D unrestricted, if it satisfies the following: D(i, j)
is unbounded for all 0 ≤ i, j ≤ n. ��



376 S.-W. Lin et al.

Definition 7. Complement Clock Constraint
Given a clock constraint c1 = x− y ∼ c (or x ∼ c), the Complement Clock Constraint
c1 of c1 is defined as : c1 = x − y ∼′ c (or x ∼′ c), where x, y ∈ C, c ∈ N , ∼′
∈ {≤, <, �=,≥, >} corresponding respectively to ∼∈ {>,≥, =, <,≤}. We can call
that c1 and c1 are complement or c1 is complement to c1. ��

Definition 8. Reduced DBM
Given a DBM D on n clocks representing a clock zone z, D is reduced if D has the
minimal number of bounded elements in all of the DBMs representing the same clock
zone z. ��

In the verification of real-time embedded systems with priority, we need to subtract
the clock zone representing the time a higher priority transition is enabled (trigger satis-
fied) from the clock zone representing the time a lower priority transition is enabled. We
will call this the subtraction operator. In Section 4.1, for a given clock zone ζ, Equations
(1, 2, 3) defined the negation of clock zones ζ . Using this negation, given two clock
zones z1 and z2, we can calculate their difference as follows.

z1 − z2 = z1 ∩ z2 (4)

where ∩ is the intersection operator between two zones.
As mentioned before in Section 4.1, z2 may not be a clock zone anymore as it may

not be convex. We propose an algorithm here so that we can partition the possibly non-
convex polyhedron z2 into a set of convex polyhedra. For ease of illustration, we will
focus on the 2-dimensional case. It can be easily extended to n-dimensional zones, for
any n > 2.

The optimal DBM subtraction algorithm, with O(n4) complexity for n clocks, is
given in Algorithm 1 and described as follows. Given two clock zones represented by
DBM z1 and z2, we can obtain the difference z1 − z2 by the following steps.

– Find zintersect = z1 ∩ z2 (Step 2)
– Reduce zintersect to obtain a DBM with minimal bounded elements so as to generate

the minimal number of partitions (zones). (Step 3)
– Let zremain record the remainder unpartitioned zone, which is initially assigned as
z1 (Step 4)

– For each non-diagonal and bounded element in the DBM zintersect, we obtain a
corresponding complement zone by reversing the relational operator. (Steps 5–7)

– For each complement zone, we find its intersection with zremain, denoted as ztmp,
which is a zone. (Step 8)

– If ztmp is not NULL, it means that we have subtracted a zone from zremain. Then
ztmp is included into the set Z . (Step 10)

– After that, we have to recompute the remainder zone zremain. (Step 11–13)

We can prove that a minimal number of partitions (zones) are generated after sub-
traction. Before we prove this, we give Theorem 1 as follows.

Theorem 1. Given two DBMs namely z1 and z2, and zintersect = z1∩z2, if the reduced
DBM of zintersect has m unbounded elements, then z1 − z2 will generate at least m
zones(DBMs).



Model Checking Prioritized Timed Automata 377

input : DBM: z1, z2

output: DBM*: Z //set of DBMs
DBM*: zintersect, ztmp, zremain

zintersect ← z2 ∩ z1;
REDUCE(zintersect);
zremain ← z1;
for each zintersect(i, j) and i �= j and zintersect(i, j) is bounded do

INIT(ztmp); //set ztmp unrestricted
ztmp(i, j) ←∼′ c; //zintersect(i, j) = ′′ ∼ c′′,∼′ ∈ {>,≥} for ∼ ∈ {≤, <},

respectively
ztmp ← ztmp ∩ zremain

if ztmp �= NULL then
Z ← Z ∪ {ztmp}
INIT(ztmp); //set ztmp unrestricted
ztmp(i, j) ←∼ c; //zintersect(i, j) = ′′ ∼ c′′

zremain ← zremain ∩ ztmp;
end

end
return Z

Algorithm 1: DBM Subtraction z1 − z2

Proof. Let S = {S1, S2, ..., Sn} be the set of DBMs generated by z1 − z2, and | S |
is n. Let {c1, c2, ..., cm} be the m clock constraints corresponding to the m unbounded
elements of zintersect. Let {c1, c2, ..., cm} be the m complement clock constraints with
respect to {c1, c2, ..., cm}. Because we want to subtract zintersect from z1, therefore
ci ∈ Sj , where 1 ≤ i ≤ m, for some j ∈ {1, 2, ..., n}. Given every two element cp and
cq ∈ {c1, c2, ..., cm}, cp and cq will not belong to the same Sj for some j ∈ {1, 2, ..., n},
otherwise Sj will not be a zone (if so, Sj will not be a convex). So, n ≥ m, that is,
z1 − z2 will generate at least m zones (DBMs).

Theorem 2. The number of zones generated by the DBM subtraction algorithm is min-
imal.

Proof. Let z1 and z2 are two DBMs, and we want to do z1−z2. Let zintersect = z1∩z2.
Let m be the number of bounded elements of the reduced DBM of zintersect. By Theorem
1, we know that the number of zones generated by z1 − z2 is at least m. By Algorithm
1, we use each bound element of the reduced DBM of zintersect ⇒ the number of zones
generated by Algorithm 1 is at most m. So, Algorithm 1 generates the minimal number
of zones of z1 − z2.

Consider the example shown in Figure 1, we want to subtract the smaller zone from
the bigger zone. Figure 2 shows the snap shots of Algorithm 1 operating on this example.

4.3 DBM Merging Algorithm

From Theorem 1 and Theorem 2, we know that we can obtain the minimal number of
zones using Algorithm 1 when we want to subtract z2 from z1. Algorithm 1 operating on



378 S.-W. Lin et al.

Fig. 1. An Example of DBM Subtraction

Fig. 2. Steps of DBM Subtraction

two zones is optimal, but if we want to do z1 − z2 − z3, the number of zones generated
may not be optimal. In other words, there may exist more than two zones which can be
merged into a zone in the zone set after z1 − z2 − z3.

In order to obtain the less number of zones after a series of zone subtraction opera-
tions, we propose an algorithm, which can help to determine whether given two zones
z1 and z2 are mergeable. If not, the algorithm will return an unrestricted DBM. If yes,
the algorithm will return a DBM representing z1 ∪ z2. Note that all zones in the zone
set S, after a series of subtraction operations, are disjoint. The input zones, say z1 and
z2, of the algorithm have one restriction, which is that, z1 cannot intersect with z2. The
DBM merging algorithm given in Algorithm 2 has O(n3) complexity and is described
as follows. Given two clock zones represented by DBM z1 and z2 on n clocks, we can
obtain the DBM z generated by merging z1 and z2 by the following steps.



Model Checking Prioritized Timed Automata 379

– Reduce z1 and z2 (Steps 5–6)
– Set z unrestricted (Step 7)
– See if z1 and z2 are mergeable. If z1 and z2 are mergeable, then there exists a

clock constraint z1(i, j), whose complement constraint is z2(j, i), for some i, j ∈
{1, 2, ..., n}. If there is no z1(i, j), whose complement constraint is the same as
z2(i, j) for some i, j ∈ {1, 2, ..., n}, then z1 and z2 are not mergeable and the
algorithm terminates. If yes, z1 and z2 are possibly mergeable. (Steps 8–17)

– If a pair of complement constraints is found in Steps 8–17 when i = m and j = n,
then z(i, j) will be set as z2(i, j) and z(j, i) will be set as z1(j, i). (Step 11–14)

– Besides the complement constraints found in Steps 8-17, if every corresponding
bounded element pair (z1(i, j), z2(i, j)) is equal for all i, j ∈ {1, 2, ..., n}, then
z1 and z2 are mergeable; otherwise, z1 and z2 are not mergeable. If z1 and z2 are
mergeable,we can obtain z(i, j) from bounded z1(i, j) or z2(i, j). (Step 22–38)

After illustrating how Algorithm 2 works on two zones, we will now show how to use
Algorithm 2 to merge several zones generated by a series of zone subtraction operations
on a zone. Theorem 3 tells us that given a zone set Z = {z1, z2, ..., zn}, which consists
of n clock zones, if (z1 ∪ z2 ∪ ... ∪ zn) is a zone, then there exist two zones zi and zj

which are mergeable for some i, j ∈ {1, 2, ..., n}, that is, there exists a merge sequence
merging two zones at a time, which can merge {z1, z2, ..., zn} into Z .

We propose an algorithm which helps to merge a zone set Z = {z1, z2, ..., zn} into
another zone set Z ′ = {z′1, z′2, ..., z′m}, for m ≤ n. This algorithm uses Algorithm 2 as
a subroutine. The DBM set merging algorithm is given in Algorithm 3 and described as
follows.

– Set Z ′ an empty set (Step 1)
– Merge zi ∈ Z with each other zone zj , i �= j , i, j ∈ {1, 2, ..., n} and modify zi

into the output zone of DBM-Merge(zi, zj). (Step 3–9)
– Add zi to Z ′ (Step 10)
– Do the above steps iteratively until every zi has been considered. (Step 2–11)

Theorem 3. Given a zone set Z = {z1, z2, ..., zn} and | Z |= n. If no pair of zones zi,
zj ∈ Z is mergeable, then (z1 ∪ z2 ∪ ... ∪ zn) is not a zone.

Proof. Let us prove this using a contradiction. We assume that (z1 ∪ z2 ∪ ... ∪
zn) is a zone. Thus there must exist a zone zi ∈ Z , such that (z1∪ z2∪ . . .∪ zi−1∪ zi+1

∪ ...∪zn) is a zone for some i ∈ {1, 2, ..., n}, and of course zi and (z1∪z2∪ ...∪zi−1∪
zi+1 ∪ ...∪ zn) are mergeable. Otherwise,(z1∪ z2 ∪ ...∪ zn) will not be a zone. Use the
above property iteratively, we can obtain a zone Z ′ which consists of only two subzones
zp and zq, such that Z ′ = zp ∪ zq for some p, q ∈ {1, 2, ..., n}, that is, zp and zq are
mergeable. This contradicts the fact that no pair of zones zi and zj ∈ Z is mergeable.

5 Application Example

In this section, we give a real example of bus arbitration. In a bus system, there are
several masters and one arbiter attached to the bus. All masters on the bus will re-
quest the bus to do some data transfers, but the bus can only serve one master at a



380 S.-W. Lin et al.

input : DBM: z1, z2 //z1 does not interset with z2

output: DBM: z //the DBM generated by merging z1 and z2;If z1 and z2 cannot be
merged, z will be unrestricted

bool : mergable1

int : m, n;2

unMergable ← TRUE;3

m ← n ← 0;4

REDUCE(z1);5

REDUCE(z2);6

INIT(z) //set z unrestricted7

for each z1(i, j) and i �= j do8

if z1(i, j) is complement to z2(j, i) then9

unMergable ← FALSE;10

m ← i;11

n ← j;12

z(i, j) ← z2(i, j);13

z(j, i) ← z1(j, i)14

break;15

end16

end17

if unMergable = TRUE then18

return z;19

end20

else21

for each z1(i, j) and i �= j and i �= m, n and j �= m, n do22

if z1(i, j) =′′< ∞′′ and z2(i, j) �=′′< ∞′′ then23

z(i, j) ← z2(i, j);24

end25

else if z1(i, j) �=′′< ∞′′ and z2(i, j) =′′< ∞′′ then26

z(i, j) ← z1(i, j);27

end28

else if z1(i, j) �=′′< ∞′′ and z2(i, j) �=′′< ∞′′ then29

if z1(i, j) = z2(i, j) then30

z(i, j) ← z1(i, j);31

end32

else33

unMergable ← TRUE;34

break;35

end36

end37

end38

if unMergable = TRUE then39

INIT(z); //set z unrestricted40

end41

end42

return z43

Algorithm 2: DBM Merging (z1, z2)



Model Checking Prioritized Timed Automata 381

input : DBM: Z //Z = {z1, z2, ..., zn}
output: DBM: Z′ //Z′ = {z′

1, z
′
2, ..., z

′
m}

Z′ ← Ø1

for each zi ∈ Z do2

for each zj ∈ Z and zj �= zi do3

ztmp = DBM-Merge(zi, zj);4

if ztmp �= unrestricted DBM then5

zi ← ztmp;6

Z = Z − {zj};7

end8

end9

Z′ = Z′ ∪ {zi};10

end11

return Z12

Algorithm 3: DBM Set Merging (Z)

time. In order to resolve conflicts, masters will usually be prioritized. When requests
from masters arrive at the same time, the arbiter will decide which master can use the
bus according the priorities of the masters. In our example, there are three masters
and one arbiter attached to the bus system. The masters are modelled as in Figure 3.

Each of the three masters, namely Master A, Master B, and Master C, will request
the bus when it wants to transfer data on the bus by entering the “requesting” state. It will
stay in the “requesting” state until the arbiter grants its request. The priorities of Master
A, Master B, and Master C are respectively 5, 3, and 2 where a higher value implies a
higher priority.

idle

requesting

processing

requestA := 1 

grantA = 1 

idle

requesting

processing

requestB := 1 

grantB = 1 

idle

requesting

processing

requestC := 1 

grantC = 1 

Fig. 3. PTA Model for Masters



382 S.-W. Lin et al.

idle

grant

requestB = 1 [
1 <= x <= 3 

3 <= y <= 4] / grantB := 1

requestC = 1 [
2 <= x <= 4
2 <= y <= 5

x-y <= 1
y-x <=2

] / grantC := 1

requestA = 1 [
3 <= x <=6
3 <= y <= 6

x-y <= 1
y-x <= 1] / grantA := 1

Fig. 4. PTA Model for Arbiter

Table 1. Prioritized Timed Automata of Arbiter

PTA #Modes #Trans
Without DBM Merging 2 7
With DBM Merging 2 5

Table 2. Verifying Bus-Arbitration Example (the whole state graph) With and Without DBM
Merging

System State Graph #Modes #Trans Mem (MB) Time (sec)
Without DBM Merging 3,088 12,596 2.96 6.78
With DBM Merging 1,524 7,232 1.08 3.54
(reduction) (50%) (44%) (64%) (48%)

The arbiter is modelled as in Figure 4. If there is any request from the masters, it will
decide which master can use the bus according their priorities and trigger conditions,
and then enter the ”grant” state.

The proposed DBM subtraction and merging algorithms were all implemented into
the State Graph Manipulators (SGM) model checker [15,22] and applied to the bus
arbitration example. Tables 1 and 2 show comparisons between applying and not applying
the proposed DBM merging algorithm, for the arbiter alone and for the whole system
graph, respectively. From Table 1, we can see that the arbiter PTA model illustrated in Fig.
4, which had 2 modes and 4 transitions, was transformed into a larger PTA model having 7
transitions when merging is not applied and having 5 transitions when merging is applied.
This shows that merging significantly reduces the set of zones partitioned through a series
of DBM subtraction. Further, it also shows that if priority is not supported, the user would
have to model a larger PTA model. This increase in model size becomes significant with
application complexity and will thus be a tedious task for a normal user. The burden of
performing this tedious task is thus alleviated by our proposed methods.

The requirement for or the benefits of DBM merging after a series of DBM sub-
traction can be clearly observed from Table 2, which shows that there is a significant



Model Checking Prioritized Timed Automata 383

reduction in the number of modes (50%) and transitions (44%) after applying DBM
merging. The computing resources are also reduced by a factor of 64% and 48% for
memory space and CPU time, respectively.

6 Conclusions and Future work

In this work, we have proposed Prioritized Timed Automata to model timed systems with
multiple priorities. We have also developed the semantics of Prioritized Timed Automata
for model checking. Three algorithms were proposed for DBM subtraction and merging.
The DBM subtraction algorithm generates the minimal number of partitioned zones.
After a series of DBM subtraction operations, the number of zones partitioned may be
mergeable. The DBM merging algorithm helps to reduce the final number of partitioned
zones. The proposed algorithm when applied to a simple bus arbiter showed significant
reductions in model size and computing resources. Future work will include reduction in
the complexities of the proposed algorithms and their application to larger applications.

References

1. K. Altisen, G. Gössler, and J. Sifakis. A methodology for the construction of scheduled
systems. In Proceedings of the 6th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT), Lecture Notes in Computer Science, volume
1926, pages 106–120. Springer Verlag, September 2000.

2. K. Altisen, G. Gössler, and J. Sifakis. Scheduler modeling based on the controller synthesis
paradigm. Real-Time Systems, 23:55–84, 2002.

3. R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for real-time systems. In Pro-
ceedings of the 5th Annual Symposium on Logic in Computer Science, pages 414–425. IEEE
Computer Society Press, 1990.

4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

5. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an interrupt
mechanism in process algebra. Technical Report CS-R8503, Centre for Mathematics and
Computer Science, Amsterdam, The Netherlands, 1985.

6. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL: a tool suite for
automatic verification of real-time systems. In Proceedings of Workshop on Verification and
Control of Hybrid Systems III, number 1066 in Lecture Notes in Computer Science, pages
232–243. Springer–Verlag, Oct 1996.

7. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

8. J. Camilleri. Introducing a priority operators to ccs. Technical Report 157, Cambridge, 1989.
9. E.M. Clarke and E.A. Emerson. Design and sythesis of synchronization skeletons using

branching time temporal logic. In Proceedings of the Logics of Programs Workshop, volume
131 of LNCS, pages 52–71. Springer Verlag, 1981.

10. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
11. R. Cleaveland and M. Hennessy. Priorities in process algebra. In Proceedings of the 3rd

Symposium on Logic in Computer Science, Edinburgh, 1988.
12. David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In

Proceedings of Workshop on Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pages 197–212. Springer-Verlag, 1989.



384 S.-W. Lin et al.

13. G. Gössler and J. Sifakis. Priority systems. In Proceedings of the 2nd International Sympo-
sium on Formal Methods for Components and Objects (FMCO), Lecture Notes in Computer
Science, volume 3188, pages 314–329. Springer Verlag, November 2003.

14. P.-A. Hsiung and S.-W. Lin. Model checking timed systems with priorities. In Proceedings
of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA, Hong-Kong, China). IEEE Computer Society Press, August 2005.
(accepted for publication).

15. P.-A. Hsiung and F. Wang. A state-graph manipulator tool for real-time system specification
and verification. In Proceedings of the 5th International Conference on Real-Time Computing
Systems and Applications (RTCSA), October 1998.

16. G. Lowe. Probabilities and Priorities in Timed CSP. PhD thesis, St. Hugh’s College, Uni-
versity of Oxford, Hilary Term, 1993.

17. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
18. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In

Proceedings of the International Symposium on Programming, volume 137 of LNCS, pages
337–351. Springer Verlag, 1982.

19. J. Sifakis. The compositional specification of timed systems. In Proceedings of the 11th
International Conference on Computer-Aided Verification (CAV), Lecture Notes in Computer
Science, volume 1633, pages 2–7. Springer Verlag, July 1999.

20. J. Sifakis. Modeling real-time systems — challenges and work directions. In Proceedings of
the 1st International Workshop on Embedded Software (EMSOFT), Lecture Notes in Computer
Science, volume 2211, pages 373–389. Springer Verlag, October 2001.

21. F. Wang. RED: Model-checker for timed automata with clock-restriction diagram. In Pro-
ceedings of the Workshop on Real-Time Tools, August 2001. Technical Report 2001-014,
ISSN 1404-3203, Department of Information Technology, Uppsala University.

22. F. Wang and P.-A. Hsiung. Efficient and user-friendly verification. IEEE Transactions on
Computers, 51(1):61–83, January 2002.

23. S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software
Tools for Technology Transfer, 1(1/2):123–133, October 1997.



An MTBDD-Based Implementation of Forward

Reachability for Probabilistic Timed Automata

Fuzhi Wang and Marta Kwiatkowska

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom

{F.Wang, M.Z.Kwiatkowska}@cs.bham.ac.uk

Abstract. Multi-Terminal Binary Decision Diagrams (MTBDDs) have
been successfully applied in symbolic model checking of probabilistic
systems. In this paper we propose an encoding method for Probabilistic
Timed Automata (PTA) based on MTBDDs. The timing information is
encoded via placeholders stored in the MTBDDs that are independent of
how the timing information is represented. Using the Colorado University
Decision Diagrams (CUDD) package, an experimental model checker is
implemented, which supports probabilistic reachability model checking
via the forward algorithm. We use Difference Bound Matrices (DBMs)
and Difference Decision Diagrams (DDDs) for representing timing infor-
mation and present experimental results on three case studies. Our key
contribution is a general placeholder encoding method for Probabilis-
tic Timed Automata and an experimental MTBDD-based model checker
which has been partly integrated with PRISM. This is the first symbolic
implementation of the forward probabilistic reachability algorithm.

1 Introduction

Binary Decision Diagrams (BDDs) [7] are the main data structure used in sym-
bolic model model checking. Their success relies on the ability of BDD-like data
structures to compactly represent both sets of states and the transition relation
between these states. BDDs, however, cannot represent quantitative information.
Recently, Multi-Terminal Decision Diagrams (MTBDDs) [8] have been success-
fully applied in the verification of probabilistic systems [10,12], and various ex-
tensions, Difference Decision Diagrams (DDDs) [17], Clock Difference Diagrams
(CDDs) [2] and Clock-Restriction Diagram (CRDs) [20], have been proposed
for use in symbolic verification of real-time systems. However, no symbolic data
structure exists for the verification of probabilistic real-time systems modelled as
Probabilistic Timed Automata (PTA) [14], which contain both real-time clocks
and probabilistic information. Probabilistic timed automata are a natural model
for randomised distributed algorithms that use timing delays, and a number of
models of such algorithms have been developed. The subclass of probabilistic
timed automata with digital clocks [13] can be modelled and verified directly
using the PRISM model checker [1]. For PTAs that do not comply with this
restriction, currently two, non-symbolic, methods are supported: via the for-
ward exploration algorithm of [14] using the KRONOS to PRISM connection

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 385–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



386 F. Wang and M. Kwiatkowska

[9], or forward/backward using the experimental implementation of [16]. Both
these methods are based on a translation into the textual modelling language of
PRISM, and are therefore rather involved.

In this paper, we investigate a fully symbolic implementation of model check-
ing for probabilistic timed automata. We propose an MTBDD-based placeholder
encoding method for representing probabilistic timed automata which is inde-
pendent of the data structure used to represent timing information. The advan-
tage of our proposal is that the method is general: firstly, other data struc-
tures for representing timing information could also be integrated with this
encoding method; secondly, both forward and backward analysis can be sup-
ported. The main difficulty for the fully symbolic approach is that the state
space is not known in advance, since the states are extracted dynamically via
forward/backward exploration, in contrast to symbolic model checking for prob-
abilistic systems where the size of the state space can be deduced from the
syntactic model description. Using the CUDD package [19] an experimental tool
has been implemented and partly integrated within PRISM. We report on the
performance of our implementation of the forward probabilistic reachability al-
gorithm on three case studies. This is the first fully symbolic implementation of
the forward probabilistic reachability for probabilistic timed automata originally
proposed in [14].

Related Work. The most commonly used data structure for representing timing
information in real-time verification tools [6,3] is Difference Bound Matrices
(DBMs) [4]. A number of BDD-like data structures, e.g. CDDs [2], DDDs [17]
and CRDs [20], have been proposed for use in verifying real-time systems, but
not yet extended to the probabilistic case. MTBDDs have been successfully
applied in model checking of probabilistic systems, and also probabilistic timed
automata and timed systems with digital clocks [12], but not in the case of the full
class of PTAs. Recently, MTBDDs have also been applied to real-time systems
[18]. Although the approach in [18] uses a single data structure (MTBDDs) to
represent both timing and discrete information in order to leverage well-known
techniques for BDDs or MTBDDs, it involves SAT-based analysis.

There are two, non-symbolic, methods for dense-time probabilistic timed
automata: via the forward exploration algorithm implemented in [9], or for-
ward/backward using the experimental implementation of [16]. The forward
method is not guaranteed to produce exact reachability probabilities [14], but
only requires simple operations; on the other hand, backward analysis can pro-
duce exact probabilities but at a cost of higher computational complexity. The
method of [9], which combines KRONOS [6] and PRISM [1] to verify the IEEE-
1394 Root Contention Protocol, requires three steps: firstly, a set of states reach-
able from the source state before the deadline is calculated using KRONOS [6];
secondly, the result is translated into a PRISM model description which is input
into PRISM and, finally, probabilistic analysis is performed. This method is not
efficient because it can generate large files that have to be parsed by PRISM.
Our experimental implementation of [16] suffers from the same problem, as it
performs a translation into the PRISM modelling language. In this paper we



An MTBDD-Based Implementation of Forward Reachability 387

propose a general MTBDD-based encoding scheme that can deal with both
forward and backward analysis in a single step, thus avoiding the expensive
translation at the level of text.

2 The Symbolic Encoding Method

2.1 Syntax of Probabilistic Timed Automata

Let R be the time domain of the non-negative reals and N the natural numbers.
We assume a given finite set X of clocks, variables x ∈ X that take values from
the time domain R. A point ν ∈ RX is referred to as a clock valuation, with
0 ∈ RX the valuation that assigns 0 to all clocks in X . We use ν[X := d]
to denote the clock valuation obtained from ν by resetting all of the clocks in
X ⊆ X to d, where d is a natural number or zero with the value of the remaining
clocks unaffected.

A zone of X , written ζ, is a subset of the valuation space RX described by
a conjunction of constraints. Formally, for a given set of clocks X , a zone ζ is
defined by the following syntax:

ζ ::= x ∼ c
∣∣ x− y ∼ c

∣∣ ¬ζ
∣∣ ζ ∧ ζ

where x, y ∈ X , c ∈ N and ∼∈ {≤, <,>,≥}.
The set of zones of X is denoted by Zones(X ) for a given set of clocks X .
Below we review the definition of probabilistic timed automata [14].

Definition 1. A probabilistic timed automaton (PTA) is a tuple = (L,X ,L,
inv, prob) where:

– L is a finite set of locations;
– the function inv : L→ Zones(X ) is the invariant condition;
– the finite set prob ⊆ L × Zones(X )×Dist(2X×L) is the probabilistic edge

relation;
– L : L → 2AP is a labelling function assigning atomic propositions to loca-

tions.

A state of a probabilistic timed automaton is a pair (l, ν) where l ∈ L and
ν ∈ RX are such that ν % inv(l). The invariant condition describes the set
of admissible states. Transitions are probabilistic edges (l, g, p) ∈ prob where
l is the source location, g is the enabling guard and p the probability distri-
bution on target locations, together with the set of clocks to be reset as the
edge is taken. It is more convenient to treat an edge of a PTA as a tuple
(n, l, inv(l), l′, inv(l′), g,X, p) where n is the non-deterministic choice between
simultaneously enabled distributions, coded as a natural number, such that
(l, g, p) ∈ prob and p(X, l′) > 0. Such a tuple contains sufficient information
for making a transition, and will be directly used in our encoding method.



388 F. Wang and M. Kwiatkowska

2.2 Multi-Terminal Binary Decision Diagrams (MTBDDs)

MTBDDs [8] are an extension of BDDs [7] which allow one to represent func-
tions over Boolean vectors that can take any value, not just 0 or 1. In other
words, BDDs can have only two terminals, while MTBDDs can have more than
two terminals. An MTBDD is a Directed Acyclic Graph (DAG) whose vertices,
as for BDDs, are called nodes. There are two kinds of nodes in an MTBDD,
non-terminal and terminal. Like in a BDD, a non-terminal node is labelled with
a single variable and each non-terminal node has exactly two children. However,
unlike BDDs, the terminal node which has no children is labelled by a real num-
ber. MTBDDs can be reduced to the canonical form by imposing an ordering of
the variables. However, similarly to BDDs, the size of the MTBDDs is extremely
sensitive to the ordering of its variables.

Probabilistic systems, for example, Markov Decision Processes (MDPs) that
are induced from PTAs, are described in terms of probability matrices, and their
analysis involves numerical computation such as solving a linear equation sys-
tem or (as is the case with MDPs) a linear programming problem. MTBDDs
can represent both probability vectors and matrices, and can therefore serve
as a symbolic representation for probabilistic systems. Given a real-valued vec-
tor of length 2n, an MTBDD encoding can be obtained by mapping to reals
from vector’s indices which are encoded into n Boolean variables. As far as nu-
merical computation is concerned, MTBDDs support methods for implementing
standard matrix operations, such as scalar multiplication, matrix addition and
matrix multiplication.

2.3 Representations for Zones

DBMs. Difference Bound Matrices (DBMs) are data structures that can effi-
ciently represent sets of adjacent regions (convex union of adjacent regions which
is also called a zone). Non-convex zones are represented as lists of DBMs. A DBM
is a square matrix whose elements represent bounds on the difference between
two clock values. For a set of n clocks {x1, . . . , xn}, and by using a special clock
x0 whose value is always zero, the constraints over these clocks can be encoded
as a (n+1)∗ (n+1) square matrix D whose indices range over the interval [0..n]
and whose elements belong to N∞ × {<,≤}, where N∞ = N ∨ {0,∞}.
DDDs. Difference Decision Diagrams (DDDs) are designed for representing both
convex and non-convex unions of zones, which are called Difference Constraint
Expressions (DCE) in DDDs. DDDs are a BDD-like data-structure. Like a BDD,
a difference decision diagram is also a DAG whose vertex set contains two ter-
minals 0 and 1, and a set of non-terminal vertices, each with two children. A
non-terminal vertex v corresponds to an integer- or real-valued difference con-
straint between two clocks. A path in a DDD is a finite sequence of edges, and it
corresponds to a conjunction of difference constraints that is called a Difference
Constraint System (DCS) in DDD. In contrast to BDDs, the same pair of clocks
can appear more than once along a path in a DDD. A DCS corresponds to a
DBM. DDDs contain DBMs as a special case. A path that ends with true or



An MTBDD-Based Implementation of Forward Reachability 389

false is called a 1-path or 0-path respectively. A path p is feasible if and only if
the corresponding DCS has a solution. If the Difference Constraint System has
no solution, the path is infeasible. Unlike in BDDs, both 0- and 1-paths can be
feasible or infeasible because the difference constraints can interact with each
other along the path.

2.4 Encoding Probabilistic Timed Transitions

MTBDDs have been successfully applied for symbolic model checking of untimed
probabilistic systems [1,12], and specifically Markov Decision Processes (MDPs)
which arise as the representation of the PTAs. The method relies on encoding sets
of states as BDDs and the (probabilistic) transition relation between these states
using MTBDDs, which can be done compactly if there is sufficient regularity in
the model. For finite untimed probabilistic systems the potential state space is
known in advance of constructing the symbolic representation of the model, as it
can be deduced from the syntactic model description. This fact is exploited when
formulating heuristics that determine BDD variable ordering, a good choice of
which is essential to guarantee a compact model representation. The difficulty
with model checking of PTAs is that the size of the state space is unknown
beforehand, and states (location-zone pairs) are generated dynamically through
the process of exploration of the zone graph using timed predecessor or successor
operations. The resulting symbolic representation has to be amenable to such
dynamic manipulation of the state space which has the potential to destroy
regularity. Although, if using the region graph, the size of the state space of a
PTA can be established in advance of the model construction, such an approach
is impractical due to the region graph being exponential in the number of clocks
and the maximal constant appearing in the model.

In this sectionwepropose an encodingmethod for probabilistic timed automata
based on MTBDDs. Below we describe how to encode the states and probabilistic
edges . In this paper we focus on application of our method to forward probabilistic
reachability analysis. However, it is also suitable for backward analysis.

Firstly, let us consider how to encode the state space. Each state in the state
space has the form of (l, ζ) where l ∈ L is the discrete part and ζ ∈ Zones(X )
is the zone. Our method is to use a Boolean vector to encode the discrete part
of the pair and a separate Boolean vector for the zone part. The basic idea
behind the Boolean encoding is that 2n elements of a finite set could be encoded
using n bits. For the discrete part, which is finite, the Boolean vector is further
divided into several groups according the structure of the system, for example,
the number of subcomponents and values of the non-clock variables following
well-known heuristics established in [10,11].

The number of zones, unfortunately, could be infinite when forward analysis is
used. The technique in [4] guarantees the termination of the forward reachability
search, which means that a finite set of zones could be obtained. Since the set of
zones is finite, informally, we use a one-to-one function to assign a unique index
to each zone and similar logarithmic encoding is applied. The invariant and the
guard appearing in the probabilistic transition are also zones, so a unique index



390 F. Wang and M. Kwiatkowska

value is assigned to each of them. In this paper we use a simple method for
allocating indices; later, we discuss how this can be improved.

Next, let us consider the probabilistic transition relation. Each probabilistic
edge has the form of the tuple (n, l, inv(l), l′, inv(l′), g,X, p), where n is (the
encoding of) the non-deterministic choice, l and inv(l) are the current loca-
tion and its invariant, l′ and inv(l′) are the next location and its invariant, g
is the guard, X is the set of clocks to be reset and p is the probability value.
The probability value is natively supported by MTBDDs. The number of non-
deterministic choices in each state is finite and bounded. The maximum number
of non-deterministic choices for all states is determined through parallel compo-
sition, and can therefore be encoded using the logarithmic encoding. It remains
to encode the set X of clocks to be reset. There are a number of issues to consider
when encoding the clock reset operation in the transition relation:

– Recall that each clock x ∈ X could be set to different values and not simply
zero. If we encode each reset in the transition, this means we need two sets
of Boolean BDD variables for it: one for the clock and the other for the value
that the clock should be set to.

– The total number of clocks to be reset appearing in the transition could vary.

Thus, we opt for a simple approach: a Boolean vector is reserved in the transition
for assigning a unique index value to each distinct set X and each set X is
explicitly stored as a list.

Below we summarise the main issues that have to be addressed when applying
our encoding method:

– Unlike in the case of non-probabilistic timed systems, in which the on-the-fly
technique [5] could be applied to make search algorithms finish as early as
possible, the forward probabilistic reachability search has to construct the
whole reachable zone graph in order to obtain the probability value.

– The size of the state space and transitions between these states of the gen-
erated probabilistic system is uncertain before the forward/backward algo-
rithm, which dynamically generates these states, terminates.

As a result,we cannotfix the size of thevector ofBooleanvariables needed to encode
the zone part in advance. Instead, we pre-allocate the vector based on an estimate.

2.5 Implementation

Our proposed forward probabilistic reachability algorithm is given in Figure
1 in terms of MTBDD-based pseudo-code. Below we described the BDD and
MTBDD operations needed for the algorithm. In the following, we assume M is
an MTBDD, and x, y, z are the Boolean vectors which correspond to the MTBDD
variables for row, column and non-deterministic choice in an MDP matrix.

– Operations × and + are the MTBDD operations over the reals.
– Operations ∨, ∧ and \ are the BDD operations (and, or and difference)

on sets.



An MTBDD-Based Implementation of Forward Reachability 391

– Function Threshold(M, >, 0) returns the BDD by replacing each terminal
node with 1 if and only if its value is greater than 0.

– Function ThereExists(x,M) returns the MTBDD by deleting the nodes
containing the Boolean vector x.

– Function ReplaceVars(M, y, x)) returns the MTBDD by replacing the
Boolean vector y with x.

The algorithm in Figure 1 is an MTBDD-based implementation of the algo-
rithm of [14] with respect to our encoding. The algorithm ModelCheckingPTA
accepts three parameters: the probabilistic transition relation PSPTA, which is an
MTBDD-encoded representation of the syntax of the original probabilistic timed
automaton, the initial set of states φinit and the set of target states φtarget. Lines
1-4 deal with the initialisation: line 1 initialises the generated set of probabilistic
transitions with the empty set, and lines 2-3 assign the initial set to both the
front set and the reachable set. Lines 5-21 generate the finite-state graph, the
edges of which are obtained in lines 8-11 by iterating timed and discrete suc-
cessor operations. Each generated edge has the form of a tuple (n, l, l′, ζ, ζ′, p),
where n is the encoding of non-deterministic choice, (l, ζ) corresponds to cur-
rent symbolic state, (l′, ζ′) is the next symbolic state in the generated transition,
and p is the probability value. Line 6 constructs a temporary MTBDD with the
information necessary for the timed and discrete successor operations by re-
stricting to the front set: each path of the temporary MTBDD has the form of
a tuple (n, l, ζ, inv(l), l′, inv(l′), g,X, p), where l and l′ are the current and next
locations, inv(l) and inv(l′) are the invariants associated with current and next
location respectively, ζ is the current zone associated with current location, g is
the guard, X is the set of clocks to be reset and p is the probability. Lines 12-19
extract the reachable states from the generated probabilistic transition set and
check whether the fixed point is reached. Line 20 adds the set of newly gener-
ated edges to the old one. Finally, in line 22, model checking is performed on
the resulting finite-state probabilistic system to obtain the maximum probabil-
ity of reaching the set of target locations. Lines 9.1-9.3 give the MTBDD-based
pseudo-code of the construction of a single probabilistic edge of the generated
MDP. Line 9.1 obtains the next zone by using standard zone successor opera-
tion. Line 9.2 uses the technique in [4] to obtain the unique normal form of the
next zone and adds it to the list of zones if it is a new one, and otherwise it
returns the unique index to it in the list. Line 9.3 constructs and returns the
probabilistic edge of the generated MDP.

Remark. For the forward reachability search, each zone obtained is convex, and
can be stored as a single DBM. (A convex zone in DDDs can only have one
path; this is also true for CRDs or CDDs.) The operation Normalise(ζ, k) (k-
Normalization defined in [4]) to obtain the normal form of a zone ζ, where k is
the maximal constant appearing in the model or the specification, is necessary
to guarantee the termination of the forward reachability search. For DDDs, the
zone can be first transformed into a DBM on which the k-Normalization can be
applied, and then transformed back into a DDD. The case of CRDs and CDDs
can be handled in a similar way.



392 F. Wang and M. Kwiatkowska

ModelCheckingPTA(PSPTA, φinit, φtarget)

1. PSMDP := ∅
2. φfrontset := φinit

3. φreach := φinit

4. done := false
5. while (done = false)
6. TmpPS := φfrontset × PSPTA

7. T := ∅
8. for each non-zero path ofTmpPS

9.1. ζ′ = ZoneSuccessor(l, inv(l), ζ, l′, inv(l′), g,X)
9.2. ζ′ = AddZone(Normalise(ζ′, k))
9.3. tr = n × l × ζ × l′ × ζ′ × p
10. T := T + tr
11. endfor
12. T01 := Threshold(T, >, 0)
13. φtmp := ThereExists(z, T01)
14. φtmp := ThereExists(x, φtmp)
15. φtmp := ReplaceVars(φtmp, y, x))
16. φreach′ := φreach ∨ φtmp

17. if (φreach = φ′
reach) then done := true

18. φfrontset := φreach′ \ φreach

19. φreach := φreach′

20. PSMDP := PSMDP + T
21. endwhile
22. return MaxProbReach(φinit, φreach, PSMDP )

Fig. 1. The MTBDD version of the ModelCheckingPTA algorithm

2.6 Backward Adaption

In this paper, we only present the application of our encoding method to forward
analysis. However, it it also suitable for backward analysis. What is needed
is a replacement of lines 9.1-9.3 with the corresponding backward step, and
initialisation with the target set instead of the initial set.

3 Experimental Results

3.1 Tool Overview

Using the Colorado University Decision Diagrams (CUDD) package, a symbolic
model checker has been implemented which supports forward probabilistic reach-
ability model checking via the algorithm originally presented in [14]. This is the
first symbolic implementation of the forward reachability algorithm.

Our tool takes as input a description of a system written in a probabilis-
tic variant of the guarded commands language with real-time clocks (currently,
the PRISM input language does not support real-time clocks). It first parses
the PTA model from this description into an MTBDD, and then computes the



An MTBDD-Based Implementation of Forward Reachability 393

set of probabilistically reachable states which comprise the model, which is an
MDP over location-zone pairs [14]. The tool then performs model checking over
this MDP in the standard way, and calculates the probability of reaching the
target set to determine whether the specification is satisfied. In this tool, the
model construction and reachability analysis are implemented using MTBDDs
to represent both the discrete part of the state and the placeholder, reserved
in the Boolean vector of the BDD variables, that represents the zone. The tool
supports two kinds of representation of timing information: DBMs and DDDs.

The transition relation of the PTA model is encoded within MTBDDs. Un-
like untimed probabilistic model checking, the MDP model is dynamically con-
structed via forward searching which involves timing operations, for example,
the timed successor. The generated MDP differs from the original PTA in that
it represents the dynamic behaviour of the PTA, which is computed via forward
exploration and dynamically filled using the placeholders reserved in the BDD
vector. Although the tool currently supports only forward analysis and two kinds
of representation for timing information, our encoding method is general: firstly,
other data structures for representing timing information could be integrated;
secondly, backward reachability analysis is also suitable for this encoding.

3.2 Case Studies

We present experimental results based on three case studies: the IEEE 1394
FireWire root contention protocol, the IEEE 802.3 CSMA/CD (Carrier Sense,
Multiple Access with Collision Detection) protocol and Milner’s scheduler. The
models for FireWire and CSMA/CD are the same as those used in [16]. The
model for Milner’s scheduler is that used in [17] with only one clock.

In the tables, “-” denotes that the data is not available. We omit the probabil-
ity values since they all agree with those calculated previously by other methods.

The results obtained from verifying the abstract and the full models of
Firewire root contention protocol [15] are shown in Table 1 and Table 2.

Table 1. Verification of the abstract model Ip
1 with wire delay set to 360 ns

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
2000 64 0.26 0.14 0.01 0.06 0.01 0.07 0.01
2500 88 0.30 0.20 0.02 0.07 0.01 0.09 0.01
3000 88 0.28 0.20 0.02 0.08 0.01 0.09 0.01
3500 124 0.38 0.34 0.02 0.18 0.01 0.11 0.01
4000 162 0.41 0.61 0.02 0.20 0.01 0.13 0.01
4500 159 0.43 0.59 0.02 0.26 0.01 0.13 0.01
5000 208 0.51 0.96 0.026 0.29 0.01 0.16 0.01
5500 244 0.56 1.42 0.03 0.38 0.02 0.19 0.02
6000 253 0.58 1.42 0.03 0.42 0.02 0.19 0.02
7000 348 0.70 3.07 0.04 0.83 0.02 0.28 0.02
8000 438 0.80 4.67 0.05 0.98 0.03 0.35 0.03
9000 506 0.91 6.29 0.05 1.32 0.03 0.40 0.03

10000 609 1.12 10.34 0.06 1.85 0.04 0.56 0.04
20000 2124 3.20 117.37 0.13 17.77 0.19 0.56 0.04
30000 4546 10.87 615.42 0.30 76.80 0.39 2.29 0.18
40000 7851 27.20 1846.90 1.55 225.35 0.65 7.43 0.39
50000 12094 58.37 5017.27 2.77 534.15 1.00 18.54 0.65
60000 17231 103.09 - - 1082.36 1.63 36.72 1.00
70000 23305 170.43 - - 2492.07 2.42 66.43 1.65
80000 30251 273.99 - - 4217.03 3.09 182.13 3.08
90000 38151 427.81 - - 6753.72 3.95 276.52 3.97



394 F. Wang and M. Kwiatkowska

Table 2. Verification of the full model Implp with wire delay set to 360 ns

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
2000 951 6.42 9.26 0.04 25.87 0.05 7.44 0.05
2500 1415 9.89 32.47 0.09 56.66 0.10 11.71 0.10
3000 1425 9.99 32.45 0.09 57.13 0.12 11.79 0.11
3500 2092 14.79 87.48 0.14 122.52 0.19 17.59 0.20
4000 2803 19.94 186.22 0.18 219.03 0.23 24.03 0.23
4500 2799 20.53 196.01 0.21 217.41 0.24 24.84 0.24
5000 3725 27.50 375.07 0.25 385.72 0.27 34.49 0.27
5500 4432 33.02 543.03 0.33 542.73 0.39 41.79 0.39
6000 4675 35.29 697.63 0.37 609.45 0.49 44.81 0.51
7000 6545 51.25 1403.52 0.52 1180.10 0.61 66.24 0.60
8000 8437 67.95 2523.33 0.71 1966.27 0.85 90.17 0.84
9000 9879 82.23 3925.66 0.86 2694.23 0.86 110.52 0.87

10000 11988 143.79 - - 4662.95 1.47 135.65 1.39
20000 44335 543.16 - - - - 947.65 5.37
30000 96592 1693.48 - - - - 3607.68 12.42
40000 168514 4135.01 - - - - 10112.92 22.84
50000 261131 - - - - - 23297.78 35.03
60000 373429 - - - - - 45553.48 54.89
70000 - - - - - - - -
80000 - - - - - - - -
90000 - - - - - - - -

Table 3. Verification of the full CSMA/CD model (max, backoff=1)

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
1000 6404 26.89 - - 47.17 0.00 34.84 0.00
1200 9034 43.94 - - 945.28 0.00 56.55 0.00
1400 11771 66.47 - - 1611.72 0.01 82.79 0.01
1600 15329 100.45 - - 2752.01 0.00 125.33 0.01
1800 19453 148.20 11021.07 0.79 4452.55 1.22 183.39 1.22
2000 23468 204.11 - - 6517.29 2.76 255.06 2.66
2200 28516 281.92 - - 9667.14 5.60 351.47 5.48
2400 34023 381.79 - - - - 476.85 9.59
2600 39970 503.00 - - - - 631.94 14.45
2800 45654 628.90 - - - - 804.11 20.52
3000 52561 811.40 - - - - 1028.94 27.25

The property verified is the minimum probability that, from the initial state,
a leader (root) is chosen before the deadline is reached. Table 5 and Table 6
show the memory consumption. Table 3 and Table 4 include results for the
CSMA/CD protocol when computing the maximum and minimum probability
of both stations correctly delivering their packets by the deadline D. Table 7
and Table 8 show the memory consumption. Table 9 shows the result of veri-
fying Milner’s scheduler when computing the maximum probability of any two
cyclers being in the critical section at the same time.

To evaluate our encoding method, we also implemented an explicit version of
the data structure which stores explicitly the discrete part of the symbolic states.

Performance. In tables [1- 4], the term “Explicit” refers to the explicit version
and “MTBDD/DDD” refers to the version which uses MTBDDs for encoding
the discrete part and DDDs for timing information; “MTBDD/DBM” refers to
the version which differs from the “MTBDD/DDD” by using DBMs instead of
DDDs. However, in order to model check certain properties, the explicit version
involves two steps: first, it generates the reachable states, and next it represents
those as a model in the PRISM input language, which is then passed to PRISM to
finish the verification process. On the other hand, in the “MTBDD/DDD” and



An MTBDD-Based Implementation of Forward Reachability 395

Table 4. Verification of the full CSMA/CD model (min, backoff=1)

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
1000 6408 26.86 934.96 0.26 471.32 0.32 34.53 0.32
1200 9038 44.14 2103.15 0.33 944.00 0.42 56.82 0.41
1400 11775 66.08 3567.70 0.41 1609.68 0.51 83.00 0.49
1600 15333 100.83 6106.86 0.51 2746.67 0.60 124.82 0.59
1800 19453 147.69 - - - - 182.64 1.94
2000 23468 202.60 - - - - 253.95 2.55
2200 28516 280.17 - - - - 349.63 3.32
2400 34023 382.47 - - - - 474.25 4.08
2600 39970 503.26 - - - - 631.54 5.19
2800 45654 632.84 - - - - 799.57 6.42
3000 52561 814.99 - - - - 1027.52 7.68

Table 5. Memory consumption of the abstract model Ip
1 with wire delay set to 360 ns

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (Discrete) DDD DBM

Peak Estimated
2000 218 255 49.52 5.47 1.27
2500 289 324 77.66 6.89 1.55
3000 289 325 91.38 7.85 1.69
3500 364 364 136.94 9.49 2.07
4000 481 503 220.61 12.47 2.64
4500 474 486 253.15 13.51 2.81
5000 580 552 356.84 16.02 3.34
5500 680 625 476.98 18.76 3.90
6000 701 656 555.90 20.40 4.22
7000 905 833 942.16 26.91 5.48
8000 1087 986 1365.55 32.54 6.61
9000 1219 1075 1951.06 39.29 7.88

10000 1401 1290 2759.18 46.87 9.42
20000 3143 2893 30232.26 157.91 31.18
30000 5171 4823 136341.71 336.74 66.27
40000 6892 7003 402995.33 579.55 113.98
50000 8980 8897 225775.35 890.07 174.97
60000 10792 11085 497021.90 1268.42 249.26
70000 12938 13557 666931.81 1712.98 336.59
80000 14810 18637 229405.34 2222.45 436.61
90000 - 18679 397636.89 2799.86 550.05

“MTBDD/DBM” versions, as they have already been partly integrated with
PRISM, the overall checking process does not go through the PRISM input
language: the tool constructs the target MDP models in MTBDDs and directly
calls functions provided by PRISM.

Here we only consider the algorithm performance and the number of states
obtained from the experiments. The leftmost column of these tables gives the
different deadlines. The second column shows the number of symbolic states
generated via the forward construction. The column “S.F.C.” refers to the sym-
bolic forward and construction. The column “M.C.” refers to the computation
time for model checking the given properties against the MDP model encoded as
an MTBDD. The unit for all columns “Time” is seconds. Notice that there are
three columns under the “Explicit” version: the first column represents the time
taken to generate the reachable states and translate the model to the PRISM
input language, while the second refers to model construction time by PRISM
via explicit encoding.

The times for model checking are nearly same for the three versions. We
comment on the time spent on constructing MDP models encoded as MTBDDs
via forward analysis. Compared to the explicit implementation, the symbolic
encoding version based on DBMs has a significant advantage: the time spent on



396 F. Wang and M. Kwiatkowska

Table 6. Memory consumption of the full model Implp with wire delay set to 360 ns

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
2000 1719 2489 46343.66 324.46 143.75
2500 2556 3616 93414.54 492.84 207.75
3000 2585 3718 94993.58 502.61 210.25
3500 3384 4927 184895.18 728.27 299.50
4000 4610 5834 318451.16 977.65 398.75
4500 4476 5735 322968.19 991.48 397.75
5000 5291 6695 546041.32 1311.11 525.25
5500 6003 8181 800000+ 1559.77 623.50
6000 6404 8220 800000+ 1653.37 657.75
7000 8449 10377 800000+ 2317.22 916.25
8000 9818 11865 800000+ 2983.175 1179.25
9000 11856 13735 800000+ 3519.195 1381.75

10000 - 15484 - - 1673.50
20000 - 35157 - - 6201.75
30000 - 56374 - - 13534.50
40000 - 76978 - - 23638.00
50000 - 99116 - - 36661.75
60000 - 123220 - - 52459.25
70000 - - - - -
80000 - - - - -
90000 - - - - -

Table 7. Memory consumption of the full model CSMA (max, backoff=1)

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
1000 - 10752 577832.75 1099.57 399.71
1200 - 13434 800000+ 1558.76 564.45
1400 - 15968 800000+ 2039.87 737.11
1600 - 19426 800000+ 2667.49 962.01
1800 16697 22903 800000+ 3397.76 1223.73
2000 19276 25962 800000+ 4108.15 1478.71
2200 22260 30181 800000+ 5005.77 1800.20
2400 - 33949 - - 2151.37
2600 - 38187 - - 2530.37
2800 - 41611 - - 2894.82
3000 - 45527 - - 3337.11

generating the MDP models is no longer a problem, since it took 110 seconds to
perform both the forward construction and to generate the MDP in MTBDDs
for the full model Implp with deadline 9000 ns, whilst it took 3925 seconds to
generate the MDP model alone with the same deadline with the explicit version.

For the abstract model, the DDD-based version performs as well as the DBM-
based one. However, for the full model Implp, it is slower due to a large number
of intermediate DDD nodes being generated, which forces the DDD run-time
library to invoke garbage collection. The main reason is that DDDs have no
canonical property.

Memory. With regard to memory usage, we need to consider two kinds of usage
for each symbolic state: the memory for the discrete part and the zone part. In
tables [5- 8], the unit for all columns under “Mem.” is in kilo-Bytes and the unit
for all columns under “Nodes” is the number of the nodes in the MTBDD where
each node occupies 20 bytes.

Compared with the explicit version, both symbolic versions use more nodes.
However, the chief contributor to the growth in the size of our symbolic data
structures seems to be the fact that we do not exploit regularity in the zone



An MTBDD-Based Implementation of Forward Reachability 397

Table 8. Memory consumption of the full model CSMA (min, backoff=1)

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
1000 7466 10868 578877.20 1100.67 400.10
1200 9753 13492 800000+ 1559.85 564.84
1400 11383 16036 800000+ 2040.96 737.50
1600 14227 19638 800000+ 2668.59 962.40
1800 16714 23130 800000+ 3397.76 1223.73
2000 19694 26331 - - 1478.71
2200 - 30381 - - 1800.20
2400 - 34271 - - 2151.37
2600 - 38092 - - 2530.37
2800 - 41681 - - 2894.82
3000 - 45374 - - 3337.11

representation because this first implementation allocates unique indices to zones
in an arbitrary order which are then stored in the placeholders. The results of [9]
show that such regularity exists and we have adapted this method and obtained
preliminary results which will appear in the first author’s coming thesis.

We note that the symbolic versions are performing the generation of the
state space dynamically at the same time as calculating the encoding, while
the explicit version does not start to encode the MTBDD until the whole state
space is generated. We compare the memory usage on the zone part because
those for the discrete part are the same for both symbolic versions. The memory
consumption for DBMs is that actually used. For DDDs, we cannot give the
actual memory consumption, and instead give both the estimated and peak
time memory consumption. The column “Estimated” refers to an estimation of
the memory consumption of all zones based on DDDs when reaching the fixed
point. The column “Peak” refers to the highest value of memory consumption
by DDDs when reaching the fixed point. The DBM-based representation uses
less memory than the DDD-based representation. In practice, as shown in Table
6, the estimation of memory consumption for zones in DDDs is around 3-5 times
as many as those in DBMs. However, compared with those by DBMs, the peak
memory consumption of DDDs is huge, since DDDs use 1000 times more memory
than DBMs for the full model Implp with deadline 5000 ns. 800000+ means
garbage collection occurred (DDD run-time library configuration with 800M).
We note, however, that since non-convex zones arise in backward exploration it
is difficult to predict how the representations will behave in the latter case.

Scalability. In Table 9, the column “Prod. const.” is the time spent on parallel
composition to build the product model and the column “Encoding” the time
on encoding the product model into MTBDDs. In the case study of Milner’s

Table 9. Verification of the Milner’s scheduler with only one clock

N Symbolic/Time Prob.
Nodes Prod. const. Encoding S.F.C

(Discrete)
4 1890 0.21 0.11 0.27 0.00
5 2981 0.35 0.30 0.63 0.00
6 4345 0.93 0.79 1.76 0.00
7 5989 3.50 2.42 5.22 0.00
8 7925 19.02 7.16 15.02 0.00
9 26276 113.56 19.18 40.14 0.00
10 143762 591.91 50.41 103.50 0.00
11 - - - - -



398 F. Wang and M. Kwiatkowska

scheduler, which shows the scalability of our method and generates only five
zones in total after the application of the forward algorithm, the result is not as
good as those obtained with DDDs [17]. This is partly because the experimen-
tal nature of our implementation not only involves zone search but probability
computation as well, and partly because the parallel composition of components
is constructed explicitly and does not utilise the Kronecker approach [10] imple-
mented in PRISM which is based on good heuristics for BDD variable ordering
that can yield compact MTBDDs.

4 Conclusion

We have proposed an MTBDD-based placeholder encoding method for model
checking of probabilistic timed automata and implemented an experimental tool
using the CUDD package. The timing information is represented as either DBMs
or DDDs. Our method allows one to use other data structures, for example,
CRDs [20] or CDDs [2], for representing the timing information.

Future work will address the efficiency of the symbolic implementation pre-
sented in this paper, and in particular exploiting regularity in the zone graph,
implementing Kronecker-based parallel composition of probabilistic timed au-
tomata, and augmenting PRISM with real-time clocks.

Acknowledgements. We would like to thank the authors of the DDD library for
letting us use their DDD implementation. We would also like to thank Gethin
Norman and David Parker for helpful discussion.

References

1. PRISM WebSite. http://www.cs.bham.ac.uk/∼dxp/prism/.
2. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed

reachability analysis using clock difference diagrams. In Proc. CAV ’99, pages
341–353, London, UK, 1999. Springer-Verlag.

3. J. Bengtsson, W. Griffioen, K. Kristoffersen, K. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Automated verification of an audio-control protocol using UPPAAL.
Journal of Logic and Algebric Programming, 52(3):163–181, 2002.

4. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In 4th
Advanced Course on Petri Nets, volume 3098 of LNCS, pages 87–124. Springer,
2004.

5. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proc. 18TH IEEE Real-Time Systems Symposium, pages
25–34, Los Alamitos, 1997. IEEE CS Press.

6. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A model-checking tool for real-time systems. In Proc. CAV ’98, pages 546–550,
London, UK, 1998. Springer-Verlag.

7. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., C-35(8):677–691, Aug. 1986.



An MTBDD-Based Implementation of Forward Reachability 399

8. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-
terminal binary decision diagrams: An efficient data structure for matrix represen-
tation. In Proc. IWLS’93, pages 1–15, 1993. Also available in Formal Methods in
System Design, 10(2/3):149–169, 1997.

9. C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. In Proc. 7th FMICS’02,
volume 66.2 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

10. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the Kro-
necker representation. In Proc. 6th TACAS’00, volume 1785 of LNCS, pages 395–
410. Springer, 2000.

11. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the
use of MTBDDs for performability analysis and verification of stochastic systems.
Journal of Logic and Algebraic Programming, 56(1-2):23–67, 2003.

12. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. In Proc. 8th TACAS’02, volume 2280 of
LNCS, pages 52–66. Springer, 2002.

13. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of
probabilistic timed automata using digital clocks. In Proc. FORMATS’03, volume
2791 of LNCS, pages 105–120. Springer-Verlag, 2003.

14. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

15. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
deadline properties in the IEEE 1394 FireWire root contention protocol. Special
Issue of Formal Aspects of Computing, 14:295–318, 2003.

16. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model check-
ing for probabilistic timed automata. In Joint Conference on FORMATS and
FTRTFT, volume 3253 of LNCS, pages 293–308. Springer, 2004.

17. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model
checking of timed systems using difference decision diagrams. In Workshop on
Symbolic Model Checking, volume 23, The IT University of Copenhagen, Denmark,
June 1999.

18. S. A. Seshia and R. E. Bryant. A boolean approach to unbounded, fully symbolic
model checking of timed automata. Technical Report CMU-CS-03-117, Carnegie
Mellon University, 2003.

19. F. Somenzi. CUDD: CU Decision Diagram Package Release, 1998.
20. F. Wang. Efficient verification of timed automata with BDD-like data-structures.

In Verification, model checking, and abstract interpretation, volume 2575 of LNCS,
pages 189–205. Springer, 2003.



An EFSM-Based Intrusion Detection System for

Ad Hoc Networks

Jean-Marie Orset, Baptiste Alcalde, and Ana Cavalli

Institut National des Télécommunications, GET-INT, Evry, France
{jean-marie.orset, baptiste.alcalde, ana.cavalli}@int-evry.fr

Abstract. Mobile ad hoc networks offer very interesting perspectives in
wireless communications due to their easy deployment and their grow-
ing performances. However, due to their inherent characteristics of open
medium, very dynamic topology, lack of infrastructure and lack of cen-
tralized management authority, MANET present serious vulnerabilities
to security attacks. In this paper, we propose an intrusion detection
scheme based on extended finite state machines (EFSM). We provide a
formal specification of the correct behavior of the routing protocol and
by the means of a backward checking algorithm, detect run-time viola-
tions of the implementation. We choose the standard proactive routing
protocol OLSR as a case study and show that our approach allows to
detect several kinds of attacks as well as conformance anomalies.

1 Introduction

In the recent years, one could assist to a spectacular growth in the use of wire-
less equipments. The number of mobile devices such as PDAs, mobile phones,
laptops, is also tremendously increasing. To ensure the connectivity between all
these devices, ad hoc networks appear to be a promising solution. An ad hoc
network is a collection of wireless mobile nodes which communicate together
without the assistance of any fixed nor central infrastructure. Thus, participants
must cooperate by acting as routers and forward messages to other nodes that
are not within the same radio range. MANET can be used in scenarios where no
infrastructure exists, or where the existing infrastructure does not meet appli-
cation requirements for different reasons such as security, cost or quality. They
also open new fields of applications in the domain of networking like battlefield
operations, sensor networks, emergency rescues or roaming networking.

Beside their enticing capabilities, ad hoc networks suffer from a great weak-
ness: due to their characteristics, they are much more vulnerable than wired
networks. Indeed, they rely on a open medium and have a very dynamically
changing topology. They trust others participants, can not rely on a fixed in-
frastructure to monitor the activity, to distribute keys or to manage security
policies. As a result, MANET are vulnerable to many kinds of attacks like pas-
sive eavesdropping, usurpation, routing disruption or denials of service (DoS).
Recently, many schemes have been proposed to secure the routing process in
MANET. Most of them are preventive: they rely on cryptographic mechanisms

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 400–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 401

for example, to authenticate participants within the network. Although they
present interesting potentials, they are often inspired by the techniques used in
traditional networks and are also not always well adapted to MANET (problem
to exchange keys, high resource consumption, etc...). Furthermore, they only
deal with limited aspects of the protocols. Thus, they do not allow to cope with
all threats (e.g. corrupted node revealing the key, wrong messages flooding, non
participation, etc...). Cryptographic mechanisms may help to identify the origi-
nators of an attack but if the attack is not detected, they remain useless. That
is why one not only needs to prevent attacks but also to detect the incorrect
behaviors in real time, in order to offer the network the opportunity to react
efficiently. This is the role of an intrusion detection system (IDS).

Many intrusion detection schemes have been proposed in wired networks.
However, the totally distributed context of MANET obliges to work out new
approaches. In addition, experience shows that protocols are often subjects to
design flaws which could further be exploited by an attacker to compromise the
network. The contribution we bring in this paper is the definition and application
of a specification-based approach (EFSM) to detect as well the anomalies in the
implementation of the protocol as attacks against the routing operation. We
chose the proactive ad hoc routing protocol OLSR as a case study. We thus
manually abstract a correct behavior of an OLSR node according to the RFC
[4]. Then, an algorithm analyzes all the messages exchanged locally by the nodes
and test the conformance to the specification in real time. By the following,
attacks are assimilated to violations of the specification. We illustrate that our
approach allows to detect several kinds of attacks, without requiring to maintain
an heavy scenario base on each nodes.

The remainder of the paper is organized as follows: section 2 describes related
works on security and intrusion detection in ad hoc networks. section 3 presents
the OLSR protocol as well as an overview of different attacks against ad hoc
routing protocols. section 4 detailed our specification based approach and the
passive testing algorithm used to perform the validation. Examples of application
are described in section 3. Finally, we present the future work and conclude the
paper in section 6.

2 Related Work

2.1 Cryptographic Schemes

In the recent years, most of the propositions to secure the routing process in
MANET make use of cryptographic mechanisms. In [5] for example, the authors
proposed the use of asymmetric cryptography to secure on-demandad hoc network
routing protocols. However, nodes in an ad hoc network may not have sufficient
resources to verify asymmetric signatures. Thus, an attacker can trivially flood a
victim with packets containing invalid signatures. Although those packets will be
discarded, the verification will be prohibitively expensive for the victim.

As for the OLSR protocol, the main contribution comes from [1]. The authors
proposed to rely on asymmetric cryptography to authenticate the originators of



402 J.-M. Orset, B. Alcalde, and A. Cavalli

messages but also on timestamp to verify their freshness and counter replay
attacks. In addition to the preceding drawbacks, there remains the problem of
key certification. Since there is no fixed infrastructure in MANET, nodes can
not rely on any certification authority to validate or revoke certificates.

The problem of these approaches is that even if the schemes are efficient and
correctly implemented, they do not allow to cope with compromised nodes, nor
authenticated nodes which deflect the normal operation of the routing process.
Moreover, the secure protocol may itself contains flaws which could be further
exploited by an attacker.

That is why many people propose to use intrusion detection schemes, as a
complementary protection, to detect all malicious behaviors.

2.2 IDS in Ad Hoc Networks

One of the first worth proposals to develop IDS capabilities for MANET was
described in [8]. This paper presented a set of rules that identify several well
known attacks on MANET. Then, they developed a cluster-based detection ap-
proach in which a node is chosen to perform detection functions for all nodes
within a cluster. Although interesting, the cluster based concept induces some
security problems which need to be addressed.

One of the main drawback of all statistical based IDS is the high rate of false
alarms. To circumvent that problem, others people choose to rely on specification
based approaches to reduce the error margin in the detection of attacks.

2.3 Specification Based IDS

Some researchers [7] proposed recently a solution based on an FSM-based spec-
ification to detect vulnerabilities in the AODV protocol. They used an FSM to
specify an AODV correct behavior and distributed networks monitor to detect
run-time violations on the specification. In addition to the fact that FSMs consti-
tute a too limited tool to manage the complexity of an ad hoc routing protocol,
some of the assumptions are too strong so that security aspects of the architec-
ture are not clearly addressed. Finally, in [3], the authors propose to extend the
preceding solution on several aspects. Firstly, they rely on EFSA to specify the
behavior of the AODV protocol. Then, they propose to use specification-based
and statistical approaches complementarily, in order to detect attacks that do
not directly violate the specification.

3 Attacks in Ad Hoc Networks

3.1 The Optimized Link State Routing Protocol

The OLSR protocol is a link-state proactive protocol, based on the Open Shortest
Path First (OSPF) protocol and designed specifically for mobile ad-hoc networks.
OLSR manages to diffuse routing information through an efficient flooding tech-
nique. The key innovation of this protocol is the concept of Multi Point Relays



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 403

(MPRs). A node’s multipoint relay is a subset of its neighbors whose combined
radio range covers all nodes two hops away. In order for a node to determine its
minimum multipoint relay set based on its two-hop topology, periodic broadcasts
are required. Similar to conventional link-state protocols the link information up-
dates are propagated throughout the network. However in OLSR, when a node
has to forward a link update it only forwards it to its MPR set of nodes. Finally,
the distribution of topological information is realized with the use of periodic
topology control messages and as a result, each node knowing a partial graph of
the topology of the network that is further used to calculate the optimal routes.
OLSR is mostly preferred when the ad hoc network consists of a large number of
nodes and has a high density. One of the main advantages of the OLSR protocol
is that it does not make any assumption concerning the underlying link layer,
allowing it to be used in a variety of configurations.

3.2 Vulnerabilities

Currently, OLSR does not specify any special security measures. As a proactive
routing protocol, OLSR makes a target for various attacks. In OLSR, each node
is injecting topological information into the network through the transmission of
HELLO messages and, for some nodes, TC messages. If some nodes (malicious
or malfunctioning) inject invalid control traffic, network integrity may be com-
promised. Here are examples of situations that may occur due to lack of data
integrity functionality.

Identity usurpation. By sending false HELLO messages, a node may pretend
to be another node. Then, the target node identifies the originator address as
from one of its neighbor. This may result in creating conflicting routes to the
node with the corresponding address, errors in the routing tables, link loss, etc...

Insertion of false control messages. A node broadcasts a wrong HELLO
message claiming symmetrical links to non-neighbor nodes or to non-present
nodes. As a consequence, the node may be selected as an MPR and the traffic
between other nodes will be routed by itself. It can then discards all the traffic
or just the control messages (Hello, TC ) to disturb the routing operation.

Alteration of control messages. A node may listen to the TC messages from
neighbors, add non existing nodes with symmetrical connectivity and replay the
packet by spoofing the originator. Then, the target node is designed as an MPR
whereas it is unable to reach the nodes. In the same manner, a node may also
include non-existing links (i.e. links to non-neighbor nodes) in a TC message.
That may yield routing loops and conflicting routes in the network.

Another alteration attack which has a great impact consists for an attacker,
to forward a TC message with a sequence number increased from x to x + i. By
the following, the receiver will stop to analyze and forwards packets from the
originator with sequence number lower than x + i.



404 J.-M. Orset, B. Alcalde, and A. Cavalli

As we can see, OLSR present several serious vulnerabilities which could lead
to paralyze the communications within the network. All the cited attacks hi-
jack the normal operation of the protocol and can not always be prevented by
classic authentication schemes. Indeed, such schemes only allow to verify the
origin of messages but not their relevance. By formally specifying the normal
operation of OLSR, we are able to detect many anomalies and intrusions on
the protocol since each one will be detected in real-time, as a violation of the
specification. Moreover, it is very difficult in MANET to establish a clear differ-
ence between a malicious behavior and normal operations in some circumstances
(battery sparing, presence of obstacles, very dynamic topology, etc...). By using
a formal specification, we allow to decrease consequently the margin of error in
the detection of attackers.

4 Description of the IDS

4.1 Motivation and Assumptions

Intrusion detection techniques used in traditional (wired) networks can not be
applied directly to ad hoc networks. In wired architectures, the monitoring is
generally realized on routers or hubs. In ad hoc networks, there is no infras-
tructure nor single management entity, making it difficult to perform any kind
of centralized management or control. Hence, the intrusion detection has to be
distributed to all nodes within the network. We also achieve the distribution of
the intrusion detection mechanism by implementing a Local Intrusion Detection
System (LIDS) on each node. A potential drawback of this approach could re-
side in the difficulty to correlate the traces of the different nodes. Indeed, if one
states that every node is an omnipotent observer that can see and monitor all
the traffic inside the network, one has to rely on strong assumptions such as
a global synchronization of nodes (to order the different traces) and a strong
authentication mechanism to ensure the integrity of the traces exchanged by
the different nodes. However in our approach, such complex mechanisms are not
required since one only needs to analyse the informations exchanged between
nodes of the same neighborhood. Indeed, the use of MPR relays in OLSR allows
to divide the network in different subsets. Thus, each node only needs to know
the messages locally, inside the MPR sets.

Considering the specification, our algorithm allows to detect errors in an ex-
haustive manner. Thus, we are able to detect violations which correspond to
conformance errors as well as violations which directly result from a security
attack. To characterize more precisely the real nature of the detected violation
(attack or error in the implementation itself) one may use a complementary in-
trusion detection scheme based on attack signatures. Accordingly, each time an
anomaly is raised, an algorithm is applied to check if this corresponds to the
pattern of any well-known attack. In that case, our approach is similar to misuse
detection schemes since it allows to efficiently detect instances of known attacks.
On the other hand, if the anomaly does not corresponds to any attack pattern,
it may either imply that one identified a new attack, either that one raised an



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 405

error in the implementation itself, what anyhow characterizes a potential flaw
in the routing protocol. Afterward, this analysis has to be performed by an ex-
pert of this domain or by a dedicated algorithm. This is out of the scope of
this paper.

What is important to keep in mind is that our approach allows to detect
truly innovative errors, compared to signature based schemes which are only
able to detect well known attacks. Another significant advantage is that there is
no false positive since one only considers the normal behavior described in the
specification. Thus, whatever the anomaly the algorithm raised, one can always
be sure it corresponds to a potential flaw.

4.2 Extended Finite State Machine

We chose to rely on the EFSM formalism because it suits very well to the analysis
of flows and allows to put constraints on the variables of the transitions.

Definition 1. An Extended Finite State Machine M is a 6-tuple M = < S, s0,
I, O, &x, T > where S is a finite set of states, s0 is the initial state, I is a finite set
of input symbols (eventually with parameters), O is a finite set of output symbols
(eventually with parameters), &x is a vector denoting a finite set of variables, and
T is a finite set of transitions. A transition t is a 6-tuple t =< si, sf , i, o, P, A >
where si and sf are the initial and final state of the transition, i and o are the
input and the output, P is the predicate (a boolean expression), and A is the
ordered set (sequence) of actions.

We manually derived the EFSM directly from the IETF specification [4]. The
verification process consists to map the traces of I/O events (messages received
and sent) recorded on each node, with the specification. To compare the traces
with the EFSM, we chose an approach based on backward tracking [2].

Another consequent advantage brought by the backward testing approach
is that it allows to consider that the traces can start at any moment of the
implementation execution, not only the initial state.

Given a trace from the implementation, our algorithm will detect three types
of errors:

– the output errors: when the output of a transition in the implementation
differs from the output of the corresponding transition in the specification.

– the transfer errors: when the ending state of a transition in the imple-
mentation differs from the ending state of the corresponding transition in
the specification.

– the mixed errors: a mix between the two errors defined above.

4.3 Overview of the Backward Checking Approach

The Backward Checking algorithm is an approach of passive testing on EFSMs
derived from the testing by determination of variables intervals. We consider
that we have a system under test on which we place an observation point. We



406 J.-M. Orset, B. Alcalde, and A. Cavalli

suppose that this observation point records the event traces respecting their
causal order. We assume that finding the order of these events is a well studied
and resolved problem.

The Backward Checking algorithm (cf. [2]) is composed of two main phases.
First, it follows a given event trace backward to find the possible initial config-
urations at the beginning of the trace.

Secondly, it starts from these configurations and explore backward, every possible
path of the specification with help of pruning operation and a transition choice
strategy, to reduce as much as possible the search.

Fig. 1. Overview of Backward Checking

In the trace. During the first phase, if an inconsistency is detected it means
that the event trace is not correct and that an error has been detected. If at
the end of the event trace analysis no inconsistency has been found, it means
the studied trace is possible with the obtained initial configuration. Then, the
second phase is launched, i.e. the exploration of the past of this trace.

In the past of the trace. In the second phase, we try to confirm the intervals
in which the variables are defined according to the initial configurations. The
algorithm finishes with a positive answer (trace is valid) at the first confirmed
configuration, i.e. the first configuration in which every determinant variables
has been confirmed, or with a negative answer (invalid trace) if every branch of
the exploration tree leads to an inconsistency. One can say that this algorithm
is optimal in the way that it will be fast to say that there is no error, but slower
to say that there is one. This fact is coherent with reality because we suppose
that an error in an event trace is an exceptional behavior.

The different branches of the exploration tree are the possible successions of
transitions, taken in a backward manner from the initial configurations resulting
from the first phase.

4.4 OLSR Extended Finite State Machine

For the sake of simplicity, we decided not to specify all the functionalities of
OLSR. For example, we consider that each node has only one interface and also



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 407

that it can only claims one link to a same node. Since OLSR is a link state routing
protocol, we decided to model the behavior of every node according to its state
and its connectivity with its neighbors. Indeed, OLSR makes difference between
links depending if they are asymmetric or bidirectional and also between nodes,
depending if they are normal nodes or multipoint relays - what implies they
have a priori, a better connectivity. Our EFSM only represents the interactions
between two nodes. This implies there is a unique EFSM for each link between
two nodes. We reuse the notation of [3], i.e. we use the abbreviation obs and
cur to specify respectively the destination and the local node (obs stands for
observed node and cur for current node). The events which correspond to a
received packet are noted with a ’?’ while those with a ’ !’ relate sent packets.
The typical notation is also ”address - type of event - type of message - fields”.

Fig. 2. OLSR Extended Finite State Machine (see Appendix for details)

The goal of the first transition is to initialize all the timers and variables.
OLSR is a proactive protocol, so it needs to periodically send control messages
though the network to keep the link states updated. This is represented on the
figure by the timers HelloTimer and UpdateTimer which respectively time the
Hello message sending and the the link state updating. Normally, a node should
update its link state as soon as it receives a Hello message. However, we needed
two timers here, to specify the behavior of a node when he receives no message
(its connectivity may decrease). Thus, in the Initial state, the node uses the first
timer to perform its neighbor discovery. Since it has none actually, it sends an
empty Hello. It remains in the same state if it has received no message after the
specified second timeout.



408 J.-M. Orset, B. Alcalde, and A. Cavalli

By receiving a message from another participant, the node immediately goes
on the second state Asymmetrical, which means it has heard another node but
can not yet claim a symmetrical link with it. We also record the address of
the heard node in a list of asymmetrical neighbors to further verify if one can
rightfully pass in the next state. From that state, a node may:

- receive no message and return in the preceding
state after the timeout

- receive another Hello message from the same
node and remain in that state

- receive an Hello message from a node

If the sending node has recorded it as an asymmetrical one (use of the con-
stant ASYM ), one can pass in the Symmetrical state. But this is only plausible
if the current node previously sent an empty Hello message, what can be ver-
ified by the mean of the variable SentHello, which must be set to true. This
precaution allows to avoid that malicious nodes claim non-existent links. The
sending node could also have directly recorded it as a symmetrical neighbor (use
of constant SYM ). In that case, that node must have been recorded previously
in the asymmetrical list(AsymList).

Once it reaches the symmetrical state a node has to advertise its neighbors.
Hence, it may:

– send a Hello message to claim a symmetrical link with the observed node
– advertise that it chose the observed node as one of its MPR nodes (by using

the constant MPR)
– send data to one of its MPR, to be forwarded
– receive Topology Control messages (only if the sender has been previously

chosen as a MPR)

As for the receiving, if the node only receives empty Hello after a certain
time (it is not seen anymore), it goes back in the asymmetrical state, since it
can still listen nodes. If it is claimed by the observed node as an asymmetrical
or a symmetrical node, it stays in its state. Finally, the node can be chosen as a
MPR (the constant MPR is used). If so, it records the address of the sender in
its MPR selectors list (MprSelList).

When a node finally reaches the MPR state, he has to keep on advertising
periodically its MPR selectors. From now, it has also the responsibility to forward
data from selectors. To do that, it just has to ensure that the message really
comes from one of its MPR selectors, what can be easily verified by examining
the list MprSelList. The second function of MPR nodes is to generate the link
state messages. The representation we choose allows easily to verify that this
kind of message can only be sent by an MPR node, as specified in [4]. Finally,
depending on the received messages, the node will eventually reach another state.
If it keeps on being claimed as a MPR node by the same neighbor, it stays in
that state. If it is claimed only as a symmetrical node, it will become again a
simple symmetrical neighbor, regarding the sender. As for the preceding state,



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 409

if it receives message in which it can find its own address, it goes back to the
asymmetrical state. Finally, if after the timer expires it has not received any
message, it goes back to the initial state. In both cases, the lists are flushed and
the timer are reset.

One has to note that there is an EFSM for each connection between two
participants. Thus, a node could be in the MPR state regarding one node and
be in a SYM or ASYM state with relation to another one.

5 Detecting Attacks

To test the effectiveness of our approach, we applied our violation detection
algorithm to the traces corresponding to the two attacks described in section 3.

5.1 Hello Message Insertion

Let us recall that in this scheme, an attacker advertised a non-existent symmetri-
cal link to its neighbors, thus perturbing their routing table calculation process.
According to our notation (see Appendix), the corresponding trace is also:

HelloTimerOut / cur!Hello()
UpdateTimerOut
obs?Hello()
UpdateTimer
obs?Hello(cur) with cur=SYM

Here is how our algorithm proceeds to verify the trace: starting from the last
event, it determines which could be the corresponding transitions. By examin-
ing the different possible transitions, one observes that this event can match
the transitions 8, 15 and 17, which respectively start from the states A, S and
M. These are the only transitions which correspond to the reception of a Hello
message claiming a symmetrical link. Here, we have also three state possibilities
with the following parameters:

State: A; Parameters: cur=SYM, obs∈AsymList
State: S; Parameters: cur=SYM
State: M; Parameters: cur=SYM, obs∈MprList

At that time, the algorithm shifts on the preceding event (UpdateTimer)
and searches within the EFSM, all the transitions containing that event, which
can lead to the states A, S or M. By looking into the list of all transitions,
one can immediately verify that there is none which satisfy the requirements.
The algorithm also raises a transfer error violation, that reveals the trace does
not corresponds to the specification. From this anomaly, one may bring out two
conclusions. Either we consider the implementation is correct and thus, there is
a security attack in the network, either one considers that the implementation
needs to be validated and we also exhibit a conformance error.



410 J.-M. Orset, B. Alcalde, and A. Cavalli

5.2 MPR Usurpation

Let us now consider the second attack in which an attacker sends Topology
Control messages without having been elected as a MPR. A corresponding trace
would have the pattern:

cur!Hello(obs) with obs=MPR
cur!Hello(obs) with obs=SYM
obs!TC(cur) with cur=MPRSEL

This is an example of trace where a node keeps on claiming to be a MPR
node after having been demoted as a simple symmetrical one. The current node
elects the observed one as a MPR (and may perform some transitions). Then,
it demotes the observed node (after having recalculated its routing table for
example) but keeps on receiving TC messages from it.

The process is then the same than for the previous attack. The algorithm
searched for a transition which corresponds to the emission of a TC message
with the variable ’cur ’ set to ’MPRSEL’. It appears that this event match the
transition 14. This transition leads to state with the predicate obs∈MprList. So
now, the algorithm shifts to the previous event (cur!Hello(obs) with obs=SYM )
and searches backward all the transitions that contained it, which also reach
the state A. By checking all the possible transitions in the EFSM, it appears
that only the transition 11 matches. Nevertheless, the transition 11 has, as an
effect, to remove the address of the observed node from the MprList of the
current node. That is in total opposition with the predicate of the transition
14. The algorithm also raises this time, an output error and discloses a new
anomaly. Again, it can result from a dysfunction in the observed node or a willful
security attack.

Note that this scheme is quite similar to the case where a node falsely ad-
vertises symmetrical links through the TC messages. Both anomalies will be
identically detected.

Thus, it appears that our approach allows to detect several kinds of typical
attacks on the OLSR protocol. These attacks are not taken into account in the
original specification of the protocol and could constitute a serious risk if one is
not able to detect them.

6 Conclusions and Further Work

We proposed a specification based approach that rely on the use of extended
finite state machines to detect attacks on the OLSR protocol. The use of EFSM
makes possible to analyze in depth, the messages exchanged between nodes. We
applied a backward checking algorithm to detect violations on the specification.
This approach brings a significant benefit on the quickness of the verification
process, what is crucial in the context of run-time verification. We then, applied
our algorithm to detect flaws on the OLSR protocol and showed that it makes
it possible do detect several kinds of anomalies.



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 411

We plan to integrate this approach and this algorithm in a complete IDS in-
frastructure. We also envisage to use in a complementary way, a signature anal-
ysis tool to detect attacks that can not yet be easily detected by a specification-
based approach(e.g. DoS. attacks).

References

1. Cédric Adjih, Thomas Clausen, Philippe Jacquet, Anis Laouiti, Paul Mühlethaler,
and Daniele Raffo. Securing the olsr protocol. In Proceedings of IFIP Med-Hoc-Ned,
pages 125–134, 2003.

2. B. Alcalde, A. Cavalli, D. Chen, D. Khuu, and D. Lee. Network protocol system
passive testing for fault management - a backward checking approach. In Formal
Techniques for Networks and Distributed Systems - FORTE 2004, pages 150–166,
Madrid, Spain, september 27-30 2004. Springer.

3. Yi an Huang and Wenke Lee. Attack analysis and detection for ad hoc routing
protocols. In Proceedings of the 7th International Symposium on Recent Advances
in Intrusion Detection (RAID’04), 2004.

4. Thomas Clausen and Phillipe Jacquet. IETF RFC 3626: Optimized Link State
Routing Protocol (OLSR). The Internet Society http://www.ietf.org/rfc/

rfc3626.txt, 2003.
5. B. Dahill, B. Levine, E. Royer, and C. Shields. A secure routing protocol for ad hoc

networks, 2001.
6. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-demand

routing protocol for ad hoc networks. In Proceedings of the Eighth Annual Inter-
national Conference on Mobile Computing and Networking MobiCom 2002, pages
12–23, 2002.

7. Chin-Yang Tseng, Poornima Balasubramanyam, Calvin Ko, Rattapon Limprasitti-
porn, Jeff Rowe, and Karl Levitt. A specification-based intrusion detection system
for aodv. In SASN ’03: Proceedings of the 1st ACM workshop on Security of ad hoc
and sensor networks, pages 125–134, New York, NY, USA, 2003. ACM Press.

8. Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection techniques
for mobile wireless networks. Wirel. Netw., 9(5):545–556, 2003.

Appendix

Here are the different transitions corresponding to the EFSM of the figure 4.4.
P are used to denote predicates while A stand for actions. Uppercase variables
denote constants and are used to specify the nature of a node depending if it is
asymmetrical, symmetrical, a MPR node or a MPR selector.

1. A: reset SentHello, HelloTimer, UpdateTimer, TcTimer; clear AsymList,
MprSelList, MprList

2. HelloTimerOut / cur!Hello()
A: set SentHello=true; set HelloTimer



412 J.-M. Orset, B. Alcalde, and A. Cavalli

3. UpdateTimerOut
A: reset UpdateTimer ; set SentHello=false

4. obs?Hello()
A: reset UpdateTimer ; Add(obs,AsymList)

5. UpdateTimerOut
A: reset UpdateTimer; Remove(obs,AsymList)

6. HelloTimerOut / cur!Hello(obs)
A: set obs=ASYM; reset HelloTimer

7. obs?Hello()
A: reset UpdateTimer

8. obs?Hello(cur)
P: (cur=ASYM AND SentHello=true) OR (cur=SYM AND obs∈AsymList)
A: reset UpdateTimer

9. obs?Hello()
A: reset UpdateTimer; reset SentHello; remove (obs,MprList)

10. UpdateTimerOut
A: reset UpdateTimer; Remove(obs,AsymList); reset SentHello;

remove(obs,MprList)

11. HelloTimerOut / cur!Hello(obs)
A: set obs=SYM; reset HelloTimer; remove(obs,MprList)

12. HelloTimerOut / cur!Hello(obs)
A: set obs=MPR; reset HelloTimer; add(obs,MprList)

13. cur!Data()
P: obs∈MprList

14. obs?TC(cur)
P: cur=MPRSEL AND obs∈MprList

15. obs?Hello(cur)
P: cur=SYM OR cur=ASYM
A: reset UpdateTimer

16. obs?Hello(cur)
P: cur=MPR
A: Add(obs,MprSelList); reset UpdateTimer; reset TcTimer



An EFSM-Based Intrusion Detection System for Ad Hoc Networks 413

17. obs?Hello(cur)
P: cur=SYM OR cur=ASYM
A: reset UpdateTimer; Remove(obs,MprSelList)

18. HelloTimerOut / cur!Hello(obs)
A: set obs=MPRSEL; reset HelloTimer

19. TcTimerOut / cur!TC(obs=MPRSEL)
A: reset TcTimer

20. obs?Data() / cur!Data()
P: obs∈MprSelList

21. obs?Hello(cur)
P: obs∈MprSelList AND cur=MPR
A: reset UpdateTimer

22. obs?Hello()
A: reset UpdateTimer; clear MprSelList

23. UpdateTimerOut
A: reset updateTimer; clear AsymList; clear MprSelList; reset SentHello



Modeling and Verification of a

Telecommunication Application Using Live
Sequence Charts and the Play-Engine Tool�

Pierre Combes1, David Harel2, and Hillel Kugler3

1 France Telecom Research and Development, Paris, France
Pierre.Combes@francetelecom.com

2 The Weizmann Institute of Science, Rehovot, Israel
dharel@weizmann.ac.il

3 New York University, New York, NY, USA
kugler@cs.nyu.edu

Abstract. We apply the language of live sequence charts (LSCs) and
the Play-Engine tool to a real-world complex telecommunication service.
The service, called Depannage, allows a user to make a phone call and
ask for help from a doctor, the fire brigade, a car maintenance service,
etc. This kind of service is built on top of an embedded platform, us-
ing both new and existing service components. The complexity of such
applications stems from their distributed architecture, the various time
constraints they entail, and the fact the underlying systems are rapidly
evolving, introducing new components, protocols and associated hard-
ware constraints, all of which must be taken into account. We present
the results of our work on the specification, animation and formal veri-
fication of the Depannage service, and draw some initial conclusions as
to an appropriate methodology for using a scenario-based approach in
the telecommunication domain. The complete specification of the De-
pannage application in LSCs and some animations showing simulation
and verification results are made available as supplementary material. 1

1 Introduction

The challenging complexity of telecommunication systems, together with a high
demand for rapid deployment, encourages development of innovative techniques
in order to design and deploy new applications in a quick and secure manner [2].
In the telecommunication domain, components play a crucial role. The majority
of these components is embedded in a large and complex architecture which
involves hard and soft real-time constraints and requirements. Moreover, non-
functional requirements, in particular time dependent properties, also play an
important role. A telecommunication application is always built from a set of

� This research was supported by the European Commission project OMEGA (IST-
2001-33522).

1 http://cs.nyu.edu/∼kugler/Depannage/

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 414–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Modeling and Verification of a Telecommunication Application 415

embedded service components, and in the emerging architecture a challenge is
providing a ubiquitous environment for telecommunication users. This means
that the telecommunication applications should be provided in several contexts
with a high level of quality of service, and always in a comprehensive way to the
end-users. Nowadays, due to openness of the telecommunication architecture, a
multiplicity of services and service features could be provided by several teams
or companies, and must be dynamically added and updated. The consistent
use of components and service features is becoming more critical in order to
ensure that undesired behaviors do not occur [11]. The time seems ripe to go
from ad-hoc techniques for component composition toward more integrated and
formal ones. Such techniques should be based on the use of formal languages for
design and verification. The languages and design models should be readable in
order to facilitate the communication between telecommunication engineers and
specialists in formal verification. A comprehensive animation tool is also very
important in order to enhance the understanding of the model, and in order
to show verification results to engineers and clients [4]. A proposed approach
should enable quick and secure telecommunication service creation, answering
questions like how to build an architecture based on a set of components (reused
or/and shared by several services) in such a way that we can guarantee providing
complete applications respecting quality of service and safety requirements.

2 Live Sequence Charts and the Play-Engine

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for spec-
ifying scenario-based requirements is that of message sequence charts (MSCs),
adopted long ago by the ITU [15], or its UML variant, sequence diagrams [14].
Sequence charts (whether MSCs or their UML variant) possess a rather weak
partial-order semantics that does not make it possible to capture many kinds
of behavioral requirements of a system. To address this, while remaining within
the general spirit of scenario-based visual formalisms, a broad extension of MSCs
has been proposed, called live sequence charts (LSCs) [6]. Among other things,
LSCs distinguish between behaviors that must happen in the system (univer-
sal) from those that may happen (existential). A universal chart contains a
prechart, which specifies the scenario which, if successfully executed, forces the
system to satisfy the scenario given in the actual chart body. Existential charts
specify sample interactions between the system and its environment, and must
be satisfied by at least one system run. They thus do not force the applica-
tion to behave in a certain way in all cases, but rather state that there is at
least one set of circumstances under which a certain behavior occurs. The dis-
tinction between mandatory (hot) and provisional (cold) applies also to other
LSC constructs, e.g., conditions and locations, thus creating a rich and power-
ful language, which among many other things can express forbidden behavior
(“anti-scenarios”).



416 P. Combes, D. Harel, and H. Kugler

In [9,10] a methodology for specifying and validating requirements, termed
the “play-in/play-out approach”, is described, as well as a supporting tool called
the Play-Engine. According to this approach, requirements are captured by the
user playing in scenarios using a graphical interface of the system to be developed
or using an object model diagram. The user “plays” the GUI by clicking buttons,
rotating knobs and sending messages (calling functions) to objects in an intuitive
manner. By similarly playing the GUI, the user describes the desired reactions
of the system and the conditions that may, must or may not hold. As this is
being done, the supporting tool, the Play-Engine, constructs a formal version
of the requirements in the form of LSCs. Note that it is not always necessary
to spend much time designing a fancy graphical interface. In many cases, it is
enough to use a standard object model diagram. The Play-Engine tool, supports
class diagrams and allows to work with internal objects that are not reflected in
the GUI.

Play-out is a complementary idea to play-in, which, rather surprisingly, makes
it possible to execute the requirements directly. In play-out, the user simply plays
the GUI application as he/she would have done when executing a system model,
or the final system implementation, but limiting him/herself to “end-user” and
external environment actions only. While doing this, the Play-Engine keeps track
of the actions and causes other actions and events to occur as dictated by the
universal charts in the specification. Here too, the engine interacts with the GUI
application and uses it to reflect the system state at any given moment. This pro-
cess of the user operating the GUI application and the Play-Engine causing it to
react according to the specification has the effect of working with an executable
model, but with no intra-object model having to be built or synthesized.

Smart play-out [7] is a powerful technique for executing scenario-based re-
quirements using verification methods. It can be used for driving the execution
of the system, or for checking if a given existential chart can be satisfied without
violating any of the universal charts. Smart play-out is integrated in the Play-
Engine tool and allows developers to apply formal verification methods at early
design stages in a user-friendly manner.

3 Components and System Architecture

3.1 The Telecommunication Application

We apply LSCs and the Play-Engine to a telecommunication service called De-
pannage, provided by France Telecom. The Depannage service allows a user to
make a phone call and ask for the help of a doctor, fire brigade, car maintenance,
etc. The service invocation software first asks for authentication of the calling
user, and then searches for the calling location. Once the calling location is found,
the software searches in a data base for numbers of potential service providers
corresponding to the Depannage society members in the vicinity of the caller.
Once various numbers are found, the service tries to connect the caller to one of
the potential called numbers (in a sequential or parallel way). In any case the
caller should be connected to a secretary or to a vocal box. In parallel a second



Modeling and Verification of a Telecommunication Application 417

logic will make periodic location requests to the Depannage society members in
order to record their latest locations in the data base. The Depannage service
is implemented as a layered application consisting of several components. Each
layer or component is described by a group of scenarios; the connection between
layers is very clean and precise. The objects in each layer communicate only
among themselves and with the objects in the adjacent layers. This architecture
enables applying methodological approaches to break down the complexity of
the system.

3.2 Components and Composites

A telecommunication system is based on a set of components — reusable software
units specified by their interfaces. The specification of these interfaces should be
given by the signatures of the required and provided methods and signals, and
by the description of the dynamic behaviors. Components should be reusable,
thus they should be specified independently of any embedding system.

Fig. 1. The architecture of the Depannage application

A composite structure will be specified as a white box by the set of embedded
components and the connections between these components [14]. Such structural
design could use hierarchical composition. The top-level of the composite struc-
ture will correspond to the complete system provided to the client, in our case
the telecommunication service Depannage.

Fig. 1 shows a partial view of the complete application (using UML compos-
ite structure diagram), the main components involved and the communication
between these components using ports and connectors.



418 P. Combes, D. Harel, and H. Kugler

4 Overall View of a Design Methodology Based on
Verification

A classical problem in telecommunication is that of “feature interaction” [11].
Telecommunication infrastructure and applications are in a continuous evolution,
new services and service features are developed and deployed in the network
along with existing ones. They are developed by several teams in parallel, in order
to satisfy new customer requirements. The feature interaction problem occurs
when the introduction of a new service (feature) causes the new system to violate
an existing service requirement. This is a critical problem in telecommunication
— involving significant loss of time and money during testing and operation
phases. It can be properly solved only by identifying the problems during the
design and modeling phases.

To address these issues we present a methodology that supports an incre-
mental paradigm for specifying and developing telecommunication applications.
First, we describe a high level specification of the service and component be-
havior, including the behavior of the communication between these components.
This description includes timed constraints. Then the consistency of this high
level specification is validated, and testing is performed with respect to end-to-
end requirements. The analysis is performed initially by simulation and anima-
tion methods. In a second step, smart play-out is used in order to formally verify
some of the requirements.

5 High Level Specification

The wish to specify components in a reusable way requires that the component
specification should be done independently of any embedding architecture. Such
specification should correspond in a universal LSC to an abstract view of the
component, describing how the component will react to events coming from its
provided ports and how (and when) this component will act on its required ports
(execution flows).

For the system — i.e., the complete application — the specification should
be enhanced by universal LSCs describing the communications between these
components. Such LSCs could include time constraints and delays on the com-
munication. The end-to-end requirements are expressed by existential LSCs and
will be validated during the simulation/animation of the model.

In this paper, we will focus our presentation on the Search component, the
Users component and the communication between these components. A detailed
description of the entire model is available online at [5].

5.1 Search Component

This component has two ports, SearchService for communicating with the ap-
plication that will use it and SearchApi in order to communicate with platform
components and indirectly with the users and the environment.



Modeling and Verification of a Telecommunication Application 419

Fig. 2. First LSC for Search Component - Concrete

Fig. 3. First LSC for Search Component - Symbolic

The universal chart Search1Exact, appearing in Fig. 2, requires that when-
ever SearchSer1 sends the EstablishSearch method to Search1, as specified
in the prechart, the Search1 port sets the value of Tset to TRUE and then sends
the LegDest(3) method to SearchApi1.

In order to specify this requirement in a generic way, so it will hold for all
other instantiations of the classes SearchService, Search and SearchApi, we
use symbolic instances [12] as shown in the chart Search1 in Fig. 3. Whenever
an instance of class SearchService sends the EstablishSearch method to an
instance of class Search, the Search instance sets the value of Tset to TRUE
and then sends the LegDest(3) method to a searchApi instance which has an
ID that is identical to the ID of the Search instance. This is done by storing
the Search ID using an assignment to variable X7, and in the ellipse above the



420 P. Combes, D. Harel, and H. Kugler

Fig. 4. Second LSC for Search Component

SearchApi instance specifying the binding condition .ID = x7, meaning that
an instance of class SearchApi with ID equal to the value stored in X7 will be
bound to this chart, and then later the LegDest(3) method will be sent to it.

The universal chart Search2, appearing in Fig. 4 specifies a behavioral re-
quirement that is relevant when the SearchApi gets information on the
LegCallReturn and forwards it to the Search port. The prechart of Fig. 4 con-
tains a scenario and not a single message as in Fig. 3. The chart will be activated
if an instance of class Search sends the LegDest(3) method to a searchApi in-
stance, and this searchApi instance sends the LegCallReturn message back to
the Search instance.

Another LSC feature introduced in Fig. 4 is the If-Then-Else construct used
to specify conditional behavior. In the main chart, if the parameter of
LegCallReturn is FALSE (the parameter is stored in variable X337) then Search
sends LegDest(2) to the SearchApi instance and sets the value of Tset to TRUE.
Otherwise, the other part of the subchart is taken, which involves a nested If-
Then-Else construct. Here we branch according to the time that has elapsed
since the LegDest(3) message was sent. If this time is less than 1 time unit



Modeling and Verification of a Telecommunication Application 421

Fig. 5. The Mobile Phone

Search sends LegDest(2) and sets the value of Tset to TRUE as before. This
corresponds to a situation in the system where a very quick answer by the
mobile phone means that we will be connected to its vocal box, a situation
which should be avoided in the Depannage service. If the time that has elapsed
since the LegDest(3) message was sent is greater than or equal to 1 time unit
the message EstablishSearchReturn(TRUE, Mobile) is sent to the appropriate
SearchService instance, corresponding to continuing the process of connecting
to the mobile phone.

5.2 The Users

We model only a simple view of the user behavior, focusing for a fixed phone on
three possible states, corresponding to user actions : busy, answer with a delay,
or noanswer. The specification of a mobile phone, shown in Fig. 5 introduces an
additional state quickanswer. In reality, if a mobile phone is reachable but in
a disconnected state, the communication will quickly be connected to the vocal



422 P. Combes, D. Harel, and H. Kugler

box of the phone. This behavior should be taken into account carefully while
designing the service. Some service logics should not connect the calling party
to a vocal box. In the Depannage service we want to be connected to a person
which is available or to a secretary or in the worst case to the vocal box of the
depannage company, but not to the vocal box of the mobile phone of one of the
Depannage service providers.

5.3 The Communication View

Developing a new telecommunication application is performed by taking existing
components (each such component is already specified by a set of LSCs), and
connecting them together. In our methodology this assembly of components is
also done by specifying universal LSCs defining the connection between com-
ponents. Following the architecture diagram, these LSCs will specify the com-
munications between components. Such LSCs for connector behaviors may be
simple or complex, depending on time constraints and delays, on the parallelism
of thread execution, and the fact that, in the system architecture, a component
port could be connected to several other component ports (for example the port
ApiES of the component ApiCall in Fig. 1).

To specify the communication between two components following an architec-
tural diagram, we have to construct two LSCs for each event. Consider the con-
nection between the components Depannage and Search. We have to express that
the event EstablishSearch required by the component Depannage and provided
by the component Search should go through the port DepannageSearch of the
component Depannage and the port SearchService of the component Search.
This is described in the charts DepToSearch1 and DepToSearch2 in Fig. 6(a),(b).
Similar LSCs are also specified for the return event EstablishSearchReturn in
Fig. 7(a),(b).

Fig. 6. Connectors between components Depannage and Search



Modeling and Verification of a Telecommunication Application 423

Fig. 7. Connectors between components Search and Depannage

Fig. 8. Connectors between components Depannage and Location

The connection between the components Depannage and Location is de-
scribed in Figs. 8, 9. In these LSCs we also introduce time delay on the communi-
cation. The LSC DepToLoc1 of Fig. 8 specifies that the method SearchLocation
will take between 1 and 2 time units. The method SearchLocation is an asyn-
chronous method, designated by the open arrow, in contrast to the closed arrows
for synchronous methods. This time constraint is specified by storing the time
in variable x452 immediately after sending SearchLocation and adding the two
hot conditions requiring Time > x452 + 1 and Time <= x452 + 2. A similar
requirement that the method SearchLocationReturn will take between 1 and
2 time units is specified in Fig. 9.



424 P. Combes, D. Harel, and H. Kugler

Fig. 9. Connectors between components Location and Depannage

In some of the cases, describing the connection between components using
LSCs is quite straightforward, as shown in the examples above. We propose
that in the future such LSCs could be derived automatically by the tool using
appropriate annotations on the architecture diagram.

6 Simulation Using Play-Out

Play-out allows a convenient way to debug requirements at an early stage and
to detect problems in the design. For this purpose we can use anti-scenarios,
behavioral requirements that are forbidden in the system. Consider the chart
NoQuickAnswer2 in Fig. 10. It specifies that whenever SinglePhone3 makes a
quick answer by sending the self message UserAction(quickAnswer) and after
that DepSearch1 sends the message EstablishSearch Return(True, Mobile)
to Depannage1, then the condition FALSE specified in the main chart must hold
— which can never occur — implying that this sequence of messages specified in
the prechart corresponding to a connection to the vocal box of a mobile phone
must never occur.

In play-out mode, if this chart participates in the execution, the prechart will
be traced and if it is completed the user will get a message that the system has
aborted due to the violation of a hot condition, as shown in Fig. 11. In this case
the violation was caused by a time delay in the APICall which is triggered by
setting the property CondTime of this object to TRUE. In general, once a violation
is detected it indicates a problem in the specification or the design of the service
and should be looked into carefully to identify and fix the cause of the violation.



Modeling and Verification of a Telecommunication Application 425

Fig. 10. A forbidden scenario - No connection to the vocal box of a mobile phone

Fig. 11. Violation of a forbidden scenario during play-out

7 Verification Using Smart Play-Out

Smart play-out [7] uses verification methods, mainly model-checking, to execute
and analyze LSCs. There are various modes in which smart play-out can work. In
one of the modes smart play-out functions as an enhanced play-out mechanism,
helping the execution to avoid deadlocks and violations. Thus, in this mode smart
play-out utilizes verification techniques to run programs, rather than to verify
them. In another mode, smart play-out is given an existential chart and asked
if it can be satisfied without violating any of the universal charts. If it manages
to satisfy the existential chart the satisfying run is played out, providing full
information on the execution and reflecting the behavior in the GUI.

In the Depannage application we mainly used existential charts for specifying
scenarios that should not occur, and then asked smart play-out if they can be



426 P. Combes, D. Harel, and H. Kugler

Fig. 12. An existential chart implying connection to the vocal box of a mobile phone

Fig. 13. A new feature of forwarding calls

satisfied. If the existential chart was satisfied, this means we have discovered an
error in our specification model, and the execution can provide insights on what
went wrong. A cleaner way would have been to specify these scenarios as anti-
scenarios, as shown in Fig. 10. An enhancement to smart play-out is currently
being developed to support this work-flow.

Consider the existential chart shown in Fig. 12. It describes a scenario that
implies a user (on Phone1) being connected to the vocal box of a mobile phone
(Phone3), an undesired behavior since then the user does not get a personal
response to his request as is desired for the Depannage service. Smart play-
out proves given the universal charts in the model that this scenario cannot be
satisfied.

We then added a new feature to our telecommunication model, forwarding
calls, shown in Fig. 13, applied smart play-out, and it found a way to satisfy
the chart of Fig. 12. The interaction of the new feature of the forwarding calls



Modeling and Verification of a Telecommunication Application 427

Fig. 14. Timing Requirements

allowed an erroneous situation in which a user is connected to a vocal box. A
short animation of this behavior is shown in [5].

The current version of smart play-out is still restricted in terms of the lan-
guage features it supports. Thus to use it some restrictions should be made on
the model: no symbolic-instances, and only one parameter for each signal. We
are currently working on lifting these restrictions. We have also abstracted and
simplified the model to avoid the well known state-explosion problem. In a simi-
lar manner we have verified also timed properties of the application, as specified
in Fig. 14. The entire model and the reduced versions are all available in [5].

8 Related Work and Future Directions

Scenario-based specification is very helpful in early stages of development [1],
and is used widely by engineers. A considerable amount of experience has been
gained from it being integrated into the MSC ITU standard [13] and the UML
[14]. The latest versions of the UML recognized the importance of scenario-based
requirements, and UML 2.0 sequence diagrams have been significantly enhanced
in expressive capabilities, inspired in part by the LSCs of [6]. In [8], we report
on the methodological experience gained by using LSCs and the Play-Engine in
several industrial case studies. (We briefly mention the Depannage application
too.)

Performance requirements — the number of requests that a system can man-
age — are very important in telecommunication applications but are not consid-
ered in this work. Simulation techniques based on queuing theory can be used for
such performance evaluation. These techniques are, in many tools, based on the
description of dynamic behavior as execution flows between components and ma-
chines. Thus, LSCs seem to be a suitable language for integrating performance
evaluation and formal verification [3].



428 P. Combes, D. Harel, and H. Kugler

References

1. R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence charts.
Software Concepts and Tools, 17(2):70–77, 1996.

2. R. Castanet, A. Cavalli, P. Combes, P. Laurencot, M. MacKaya, A. Mederreg,
W. Monin, and F. Zaidi. A multi-service and multi-protocol validation platform-
experimentation results. In TestCom, volume 2978 of Lect. Notes in Comp. Sci.,
pages 17–32. Springer-Verlag, 2004.

3. P. Combes, F. Dubois, W. Monin, and D. Vincent. Looking for better integration
of design and performance engineering. In R. Reed, editor, SDL Forum, volume
2708 of Lect. Notes in Comp. Sci., pages 1–17. Springer-Verlag, 2003.

4. P. Combes, F. Dubois, and B. Renard. An Open Animation Tool: Application
to Telecommunications Systems. Computer Networks, 40(5):599–620, December
2002.

5. P. Combes, D. Harel, and H. Kugler. Supplementary material on the depannage
application. http://cs.nyu.edu/∼kugler/Depannage/.

6. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45–80, 2001. Preliminary version appeared in
Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99).

7. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proc. 4th Intl. Conference on Formal Methods in Computer-Aided
Design (FMCAD’02), Portland, Oregon, volume 2517 of Lect. Notes in Comp. Sci.,
pages 378–398, 2002. Also available as Tech. Report MCS02-08, The Weizmann
Institute of Science.

8. D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Resulting
from Experience Using LSCs and the Play-In/Play-Out Approach. In Proc. Sce-
narios: Models, Algorithms and Tools, volume 3466 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2005.

9. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

10. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM), 2(2):82–107,
2003.

11. L. Logrippo and D. Amyot. Feature Interactions in Telecommunications and Soft-
ware Systems VII. IOS Press, 2003.

12. R. Marelly, D. Harel, and H. Kugler. Multiple instances and symbolic variables
in executable sequence charts. In Proc. 17th Ann. ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’02), pages 83–100,
Seattle, WA, 2002.

13. ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.
14. UML. Documentation of the unified modeling language (UML). Available from

the Object Management Group (OMG), http://www.omg.org.
15. Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,

Geneva, 1996.



Formal Construction and Verification of Home

Service Robots: A Case Study

Moonzoo Kim and Kyo Chul Kang

CSE Dept. Pohang University of Science and Technology,
Pohang, South Korea

{moonzoo,kck}@postech.ac.kr

Abstract. Home service robots have attracted much attentions to an-
ticipate improved quality of human life. Considering that malfunctions
of home service robots can directly threat the safety of human users, the
assurance of robot’s safe operation is a crucial prerequisite for the wide
deployment of home service robots. Current practice of robot develop-
ment, however, often fails to satisfy this requirement. Robot developers
tend to concentrate on technical components only and fail to consider
how these components will integrate to create the service. This practice
frequently causes feature interaction problems. Furthermore, reactive na-
ture of the robot applications adds to further complexity. Traditional
testing is unsuccessful with this setting due to the difficulty of testing
embedded systems and uncertainty caused by sensor devices. These situ-
ations make formal construction and verification essential to ensure safe
operation of home service robots.

In this paper, we present our experience of formally constructing and
verifying the core of Samsung Home Robot (SHR) with the use of Esterel.
First, we reverse-engineered SHR to identify and analyze the core of
SHR. Then, we re-implemented the core part in Esterel and verified SHR
to satisfy safety properties regarding stopping behaviors through model
checking. Through the verification, we detected and solved a feature
interaction problem which caused the robot to ignore a stop command.

1 Introduction

With the advances of robotics, computer science, and other related areas, home
service robots have received a strong academic and industrial attention. It is be-
cause home service robots can increase a quality of human life in a wide range of
application areas. Thus, those leading companies such as Sony [3], Honda [2], and
Samsung have invested a great deal of efforts in developing home service robots.
Home service robots utilize various technology-intensive components such as vi-
sion recognizer, speech processors, and actuators to offer services. Thus, robot
applications should coordinate these components in harmony. Robot developers,
however, tend to focus on technical components at an early stage of product
development without any consideration of how they will integrate these com-
ponents to provide services. In addition, these components are developed by

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 429–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



430 M. Kim and K.C. Kang

separated teams, which makes integration of these components more difficult.
As a result, robot products often suffer from feature interaction problems [9,17].
Furthermore, reactive nature of home service robots adds further complexity to
robot applications. Therefore, it is a highly challenging task to develop robot
applications satisfying stringent temporal and safety requirements.

Due to high complexity of robot applications, testing and debugging often
takes more than a half of total development time but still fails to provide sat-
isfying result. Thus, the necessity of formal validation and verification (V&V)
has been recognized in robotics areas [11,18]. Also, robot domain specific V&V
frameworks such as ORCAAD [7] and MAESTRO [8] have been developed. In
robot industry, however, a practice of applying formal methods is not very pop-
ular because robot industry does not have enough field experiences with formal
methods yet. In addition, the gap between a formal model and a real implemen-
tation discourages developers from adopting formal methods as well. Therefore,
we need to apply a unified formal framework supporting both construction and
verification of robots. Furthermore, for practicality, we should aim to apply for-
mal methods to the core of relatively a small size with an acceptable development
overhead, rather than to the whole applications [12].

In this paper, we describe our experience of formally constructing and veri-
fying Samsung Home Robot (SHR) with Samsung Advanced Institute of Tech-
nology (SAIT). First, we reverse-engineered SHR application that SAIT had
developed. Based on the extracted architectural information, we re-engineered
SHR application while identifying the core of the application. Then, we re-
implemented the core in Esterel [6] and verified that SHR satisfied safety prop-
erties regarding stopping behaviors through model checking. Through the veri-
fication, we detected and solved a feature interaction problem which caused the
robot not to stop when a user commanded the robot to stop. 1

Section 2 describes background of SHR. Section 3 overviews the Esterel
framework. Section 4 illustrates the previous SHR application and re-engineered
one. Section 5 shows the verification results about stopping behaviors of SHR.
Finally, Section 6 concludes with the summary of this paper.

2 Background of SHR100

Sect. 2.1 gives an overview of the SHR project and Sect. 2.2 explains the services
which SHR provides. Sect. 2.3 describes statistics on the SHR application code.

2.1 SHR Project

We have developed three versions of SHR - SHR00, SHR50, and SHR100. The
development of SHR00 started in 2002 by four separate teams of SAIT consisting
1 We used the Esterel framework for this project mainly because we can verify an

Esterel program by model checking and generate a C code from the verified Esterel
program. This unified framework is suitable for industrial projects, which require a
reliable working code as a final result with minimal overhead.



Formal Construction and Verification of Home Service Robots 431

of thirteen people working on speech recognition, vision recognition, simultane-
ous localization and mapping (SLAM), and actuator control. SHR50 as well as
SHR00, however, often experienced unstable behaviors such as missing user’s
commands and showed stuttered movement even though each part worked suc-
cessfully before the integration (this kind of failure is not uncommon in robotics
field [9]). After ten months into the new development of SHR100, for higher reli-
ability, SAIT requested POSTECH to re-engineer SHR100 supporting “call and
come” and “user following” services (see Sect. 2.2). With this request, POSTECH
re-engineered an existing implementation for six months. The overview of the
SHR100 components is illustrated in Fig. 1.

Fig. 1. HW Components of SHR100

2.2 Services of SHR100

Some of the primary services of SHR100 are described as follows.

– Call and Come (CC)
There are two commands: namely “come” and “stop”. Once a “come” com-
mand is recognized, the robot tries to detect the direction of sound source by
comparing the strength of sound captured via microphones. Then, the robot
rotates to the direction of sound source and tries to recognize user’s face by
analyzing images captured through the front camera. If the caller’s face is
detected, the robot moves forward until it reaches within one meter from
the user. A “Stop” command makes the robot stop. CC is preemptible, i.e.,
while CC is executed, newly recognized command makes the robot ignore
the previous command and allow to proceed the new one.

– User Following (UF)
This service is triggered right after CC is completed. Once UF is triggered,
the robot constantly checks vision data and data from the structured light
sensor which is used to locate the user. The robot tracks down the user
within the distance of one meter range. If the robot misses a user, the robot



432 M. Kim and K.C. Kang

notifies the user by speaking “I lost you” and UF ends. Similar to CC, UF
is a preemptible service.

– Tele-presence (TP)
A remote user can control a robot by using a PDA. In addition, the robot
can send images obtained from the front camera to the PDA for surveillance
purpose through a home server.

– Security Monitoring (SM)
The robot patrols around a house using the map generated by SLAM com-
ponent for surveillance. When accidents are detected, the robot reports to
the user.

2.3 SHR100 Application Statistics

The rough statistic summary of the SHR100 application is described in Table 1.
Some parts of the application (mostly controller parts) were given to POSTECH
as source code in C/C++ while other parts (mostly recognition algorithms and
device drivers) were given as binary libraries.

Table 1. Statistics on the SHR100 application

Components # of files Size

Call and come 29 4000 lines

User following 43 9000 lines

Others 43 3600 lines

Libraries 39 38 MB

3 The Esterel Framework

In this section, we briefly describe the Esterel language and its toolset.

3.1 The Esterel Language

Esterel [6] is a language for programming reactive systems that wait for a set
of inputs, and react to these inputs by computing and producing outputs. Since
Esterel is based on the “synchrony hypothesis”, every reaction to a set of inputs
should be instantaneous. In practice, this means that a system should react to
input signals before input signals of the next cycle arrive. Synchrony hypothesis
considerably simplifies the specifications of reactive systems. Furthermore, many
application areas satisfy this hypothesis.

A program written in Esterel specifies the components (called modules) run-
ning in parallel. Modules communicate with each other and the outside world
through input/output signals, which are broadcasted and may carry values of
arbitrary types. Thus, the interaction between components can be clearly de-
scribed. Furthermore, Esterel provides reactive/preemptive operators which are



Formal Construction and Verification of Home Service Robots 433

useful for developing robot applications. An Esterel program has its semantics
as a finite state Mealy machine whose transitions are labeled with pairs of input
and output signals (see Fig 6).

3.2 The Esterel Toolset

Esterel toolset consists of the following three components. 2

– Esterel compiler esterel
– graphical simulator xes
– model checker xeve

esterel compiles an Esterel program into various formats including the C
language. Using esterel, once a developer has proved the correctness of an Es-
terel program through model checking, one can generate correct C code without
a manual conversion. This WYPIWYE (What You Prove Is What You Ex-
ecute) principle is a strong advantage of Esterel over other formal modeling
languages. In addition, an Esterel program can be seamlessly integrated with
existing C/C++ codes through well-defined APIs. Furthermore, generated C
code is platform neutral so that a developer can port an Esterel program into
different OS/HW platforms (e.g. Linux or VxWorks) without a difficulty.

xes supports interactive simulation as well as guided simulation. With a
given Esterel program, a user can execute the program by symbolically selecting
input signals to emit and advancing its ticks (time instants). xes is also used to
examine the execution trace of a counter example generated from xeve.

xeve minimizes and analyzes a finite state machine generated from an Esterel
program. Basic verification process of xeve is to check the presence of output
signals with given configuration of input signals by model checking. A simple
property such as “if a user does not give a command to a robot, the robot must
not move” (see Sect. 5.2) can be checked in this way. More complex property
can be checked by building an observer module which emits a violation signal
when the property is violated (see Sect. 5.3). [15] proved that safety properties
described in temporal logic could be translated into observer modules in Esterel.

4 Re-engineering of SHR100

In this section, we describe both previous SHR100 implementation (Sect. 4.1)
and re-engineered SHR100 implementation (Sect. 4.2).

4.1 Previous SHR100 Implementation

SHR100 was implemented in a service-oriented way because each service feature
such as CC and UF, had been developed separately. Consequently, operations
2 A commercial Esterel studio [1] provides an integrated development environment

including a visual language editor.



434 M. Kim and K.C. Kang

Fig. 2. Previous architecture of SHR100 regarding the CC service

of a service were dispersed among components, which does not clarify compo-
nent architecture design. In addition, there existed redundant computational
components because some computational components (e.g. vision) were used by
different services. Therefore, developers experienced difficulty in identifying the
interactions among the components of its original implementation, which often
caused feature interaction problems. In order to improve reliability, we needed
to clarify the previous SHR100 architecture first. Otherwise, it would be difficult
to identify and analyze the core. Also, re-writing the core of SHR100 in Esterel
would be messy because the new core should cooperate with existing C/C++
components.

Fig. 2 illustrates the recovery of a conceptual architecture from the object
relationship diagram of CC through abstraction. The left part of Fig. 2 describes
CC service unit and its constituent operational units. Using functional cohesion
as a criterion, we classified operational units into three categories - sensor (in-
put), controller (coordination), and actuator (output). Then, we identified five
operational units -“Face Detection”, “Clap Recognition”, “SL Sensing”, “CC
Command Controller”, and “Actuator”. After a data flow analysis, these units
are configured into the conceptual architecture depicted in the right part of
Fig. 2. We found out that “CC Command Controller” unit, which consists of
CCallComeDlg and CPlanner classes, serves as the core of CC service by re-
ceiving data from the sensor units and making decisions to the actuator unit.
Also, we found that the core was executed fast enough to satisfy the synchrony
hypothesis required by the Esterel framework (see Sect. 3.1).



Formal Construction and Verification of Home Service Robots 435

Through the re-engineering process, several bugs in the original implemen-
tation were found. For example, a main control function of the CC service is
void CCallComeDlg ::processState() as in Fig. 3. processState() is called
periodically once in every 100 milliseconds. Given a command, CC executes the
command through multiple sequential steps. Each step is represented by a corre-
sponding case statement block and is identified by the value of m order declared
at line 2. At the end of each case statement block, m order is updated to deter-
mine the next step. After one step is executed, processState() is terminated
and is called again after 100 milliseconds. If a new command is given between
these two adjacent invocations, a previous command is ignored and the new
command is processed.

01:class CCallComeDlg {

02: int m_order;

03: ...

04: void processState() {

05: ...

06: switch(m_order) {

07: case 0: STOP();

08: m_order++;

09: break;

10: case 1: ROTATE();

11: m_order++;

12: break;

13: case 2: static int nCount = 0;

14: if (abs(m_befO-curO)==0) nCount++;

15: else nCount = 0;

16: if (nCount > 2) m_order++;

17: break;

18: ...

19: case 9: CC_DONE();

20: m_order = -1;

21: break;

22:} } }

Fig. 3. A main control procedure for the CC service in C++

This pattern of reactive programming is a straight-forward way to allow
preemption in C++, and is found frequently in robot applications. This pattern
of reactive programming is, however, error-prone. For example, at line 16, nCount
is used to test twice whether SHR100 stops its rotation or not. However, testing
may happen only once because nCount is declared as a static local variable at
line 13 and can be greater than two all the time without re-initialization. This
error decreases the accuracy of user recognition due to blurred images captured
while the robot does not stop its rotation completely. As a number of possible
cases increase by adding more features, the complexity of C/C++ code increases



436 M. Kim and K.C. Kang

rapidly so that developers can hardly manage and debug the program. Note that
Esterel prevents such errors by handling a preemptive event e with preemption
operator every e do statements end every (see line 11 to line 24 in Fig. 5).

4.2 New SHR100 Implementation

The architecture model in Fig. 2 is not adequate for multiple services; it does not
provide the coordination of multiple service controllers (e.g. CC controller and
UF controller) to handle interaction among services. Furthermore, the complex-
ity of interactions among services grows exponentially within the previous archi-
tecture due to spaghetti-like communications among the components. Therefore,
based on the extracted conceptual architectures, we re-designed the architecture
of SHR100 concerning with handling issues such as priorities among services or
global system modes (for more details on the re-engineering process of SHR100,
see [14]). We separated control plane containing control components from data
plane containing computational components. Firstly, we could easily identify
four separate control components (CC, UF, TP, and SM) which specify their
own behaviors for corresponding services. In addition, we defined Mode Man-
ager to control global behaviors (e.g. initialization and interaction policy) of
the robot by receiving all up-stream events from the computational components
and managing control components. Each of these control components was im-
plemented as a separate Esterel module. 3 Secondly, after data flow analysis,
we could come up with five computational components - SLAM, Navigation,
User Interface, Vision Manager, and Audio Manager. Fig. 4 describes the new
software architecture.

Fig. 4. New SHR100 architecture

3 The size of the Esterel program is around 200 lines. A generated C code from the
Esterel program is around 1700 lines. Memory usage and execution speed of the new
implementation does not show observable difference from the previous one.



Formal Construction and Verification of Home Service Robots 437

Fig. 5 is a skeleton of the re-implemented CC service in Esterel. A module
control plane (line 1 to line 5) represents a whole control application including
the Mode Manager mm, the CC service cc, the UF service uf, and so on (see line
4). Communication among those modules is implemented by using input/output
signals declared at line 2 and line 3 (note that the output signals in Fig. 5 invoke
the C functions of the same names shown in Fig. 3). COME CMD and STOP CMD
are input signals corresponding to the “come” and “stop” commands. A “come”
command is handled from line 14 to line 18 and a “stop” command is handled
from line 19 to line 21. A task of rotating SHR100 toward the user and detecting
the user is implemented as a submodule rot det and is executed at line 16.

01:module control_plane: % Control software

02: input COME_CMD, STOP_CMD, ...

03: output STOP, ROTATE, GO, CC_DONE, UF_DONE,...

04: run mm || run cc || run uf || run tp || run sm ...

05:end module

06:

07:module cc: % Call and Come service

08: input COME_CMD, STOP_CMD;

09: output STOP,ROTATE,GO,CC_DONE,...

10: signal Reset in

11: every immediate [COME_CMD or STOP_CMD] do

12: weak abort

13: present

14: case COME_CMD do % come command

15: emit STOP; pause;

16: run rot_det;

17: ...

18: emit CC_DONE;pause;

19: case STOP_CMD do % stop command

20: emit STOP;

21: emit CC_DONE;pause;

22: end present;

23: when Reset;

24: end every

25: end signal

26:end module

27:...

Fig. 5. Skeleton Esterel code for the CC service

As we have seen, the new implementation defines components concretely
using modules/submodules. In addition to this, the new implementation makes
interaction visible among the components by using explicit communication mech-
anisms such as input/output signals. These features assign responsibility for the
behaviors to these components clearly and it helps to analyze feature interaction
problems.



438 M. Kim and K.C. Kang

5 Formal Verification of SHR100 Movement

There are various safety properties to assure SHR100’s correct operation. In this
project, we concentrate on the most critical safety properties, which are about
movements that may cause crash with any obstacles (e.g. furniture or users).
There can be many causes for collision such as obstacle recognition failure, HW
failure to signal actuator, etc. We focused on, however, discrete SW controller
which we re-wrote in Esterel. Stopping behavior of SHR100 is the first target
to verify. Considering that SHR100 can move upto 2 m/s (=7.2 km/h), these
properties should be checked carefully for user’s safety.

In this section, we describe safety properties P1, P2, and P3 regarding stop-
ping behavior of SHR100. We describe the most primitive safety property P1

first, then incrementally refine P1 into P2 and P3. Sect. 5.1 describes verification
preliminary for SHR100. Sect. 5.2 and Sect. 5.3 illustrate verification of SHR100
running the CC service only. Sect. 5.4 describes verification of SHR100 running
CC and UF concurrently. Sect. 5.5 summarizes the verification results. 4

5.1 Verification Preliminary for SHR100

We used the xeve model checker [4] to verify safety properties. First, xeve per-
forms bisimulation minimization on FSM which is generated from an Esterel
program. Then, a user selects input signals as “always present”, “always ab-
sent”, or “having any value”. In addition, a user can specify exclusion relation
among input signals (e.g. COME CMD and STOP CMD cannot present at the same
time). Finally, the user selects an output signal to check if it can be emitted with
given configuration of input signals. Simple properties (e.g. P1 in Sect. 5.2) can
be checked easily in this way. More complex properties (e.g. P2 in Sect. 5.3 and
P3 in Sect. 5.4) can be checked by building an observer which emits a violation
signal when given properties are violated.

Basically, safety properties on stopping behavior can be described using
bounded-response formula [5] in temporal logic [16]

�(Cstop → ♦dstop)

where Cstop and stop stand for STOP CMD and STOP signals in the Esterel imple-
mentation. The actual safety properties for robot application, however, are more
complex. First, when STOP is emitted, GO or ROTATE must not be emitted without
any new command. In other words, we also need to check signals nullifying STOP
such as GO and ROTATE. In addition, we have to check whether output signals
are emitted arbitrarily regardless of input signals. For example, if a user does
not give a command to the robot, the robot must not move at all. We could
describe a safety property in temporal logic and then translate the property
into an Esterel observer following the guideline of [15]. This generates, however,
a unnecessarily complex observer. Thus, we developed an observer directly in
Esterel without describing and translating a temporal logic property.
4 Preliminary verification results are from [13].



Formal Construction and Verification of Home Service Robots 439

5.2 Verification of the CC Service Without an Observer

First, we checked the CC service without other services. Consider the following
property P1.

P1 : If a user does not give a command to the robot, the robot must not
move.

Although P1 looks obvious, this requirement is important to ensure a safe op-
eration of the robot. Violation of P1 may lead the robot to move autonomously
without a user’s command and as a result, it can cause damage to house appli-
ances or accidently hurt a man. Furthermore, guaranteeing satisfaction of P1 is
a difficult task without model checking because a developer has to find out all
the possible test cases [10].

There are only two output signals to make the robot move - GO and ROTATE.
We checked if the CC service satisfied P1 by setting COME CMD and STOP CMD
as “always absent” and selecting GO as an output signal to check. Then, xeve
showed that GO is never emitted by the robot. In the same way, xeve showed
that ROTATE is never emitted, either. Thus, we concluded that the CC service
satisfied P1.

Slightly refined property P ′1 can be described as follows.

P ′1 : If a user does not give a “come” command, but may give a “stop”
command to the robot, the robot does not move.

We can verify that the CC service satisfies P ′1 too.
Using a FSM visualization tool atg, we could explore the FSM of the new

SHR100 implementation written in Esterel. This FSM exploration helps under-
stand global behavior of SHR100. For example, Fig. 6 depicts the behavior of
the CC service. Each transition is labeled with a pair of input/output signals. A
present input signal has a prefix ? and an input signal which is not present has a
prefix #. A present output signal has a prefix !. An initial state (a doubly circled
state at the top left corner) of the CC service has only two outgoing transitions.

– a self transition α :#CM.#ST + #CM.?ST.!STOP.!CC DONE 5

– a transition β (going to a lower state) :?CM.!STOP

The first half of α transition (#CM.#ST) indicates that SHR100 does not move
without any command, which corresponds to the verification result on P1. The
second half of α transition means that “stop” commands alone do not make the
robot move, which corresponds to the verification result on P ′1. Once a “come”
command is given, SHR100 takes β transition and traverses the FSM.

5 To increase readability of Fig. 6, we use shorthand notations CM and ST for COME CMD

and STOP CMD respectively.



440 M. Kim and K.C. Kang

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET

!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET

!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP
tautautautautautautautautautautautautautautautautau

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP
?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

tautautautautautautautautautautautautautautautautau

!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO
?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

Fig. 6. A FSM for the CC service

5.3 Verification of the CC Service Using an Observer

Consider the property P2 as below.

P2 : If a user gives a “stop” command, the robot stops and does not move
without any new command.

To verify P2, we built an observer as in Fig. 7. We incorporated observer with
the cc module in parallel. observer emits STOP VIOLATION at line 9 and line
13 if P2 is violated. If a “stop” command is given (line 5) and the robot stops
immediately (line 6), then observer keeps its watch if the robot rotates or moves
forward (line 7 to line 11) unless any new command is given by the user. We
verified that STOP VIOLATION is never emitted.

5.4 Verification of the Concurrent CC and UF Services

We checked if the control software which consists of the CC and UF services
satisfied P1 and P ′1. We showed that the control software satisfied P1, but sur-
prisingly not P ′1. The verification result on P ′1 claimed that ROTATE and GO could
be possibly emitted when COME CMD was absent and STOP CMD might be given.
In general, verification result from xeve is sound but not complete because a
FSM is generated from an Esterel program without evaluating expressions. 6

Therefore, a user has to check whether a violation is a real one or a false alarm.
6 xeve ignores external C functions as well because the expressions containing return

values of external C functions are ignored anyway.



Formal Construction and Verification of Home Service Robots 441

01:module observer: % Observer for detecting safety violation

02: input STOP_CMD, COME_CMD, ROTATE, STOP, GO;

03: output STOP_VIOLATION;

04: weak abort

05: every immediate STOP_CMD do

06: present STOP then

07: loop

08: present [ROTATE or GO]

09: then emit STOP_VIOLATION;

10: end present;pause;

11: end loop;

12: end present

13: emit STOP_VIOLATION;

14: end every

15: when COME_CMD;

16:end module

Fig. 7. An observer for detecting violation of P2

Through simulations displaying interactions between the CC and UF com-
ponents, we could figure out that UF made the robot rotate and move forward
when a “stop” command was given; the violation was a real one. This viola-
tion occurred because UF was triggered by CC DONE which was emitted by CC
when a “come” command or a “stop” command was successfully processed (see
Sect. 2.2 and line 18/line 21 of Fig. 5). UF should have been triggered only after
a “come” command was processed, not after a “stop” command was processed.
Thus, we refined CC DONE into CC COME DONE and CC STOP DONE. Then, we mod-
ified the UF implementation so that only CC COME DONE could invoke UF. After
this modification, the concurrent CC and UF services satisfied P ′1.

SAIT had not find this feature interaction problem previously. During UF
service, SHR100 does not move unless it succeeds to detect the user. While
the user was testing SHR100, he did not intend to be detected by the robot
when he gave a “stop” command because he expected the robot to stop, not to
start UF service. Thus, the user was usually outside the vision area of SHR100
when he gave a “stop” command. In addition, due to uncertainty of the vision
recognizer (e.g. low accuracy in a dark room or with strong light), SHR100 often
misses the user. When the robot fails to detect the user, it should report to the
user by synthetic voice. It happened, however, that voice synthesis sometimes
did not work when running with other components. Therefore, without thorough
testing, SAIT simply thought that SHR100 stopped accordingly to a given “stop”
command and missed the problem.

We checked if P2 was satisfied by the revised control software running CC
and UF concurrently. We used observer in Fig. 7 without modification and
verified that the control software satisfied P2.



442 M. Kim and K.C. Kang

Furthermore, we refined P2 into P3 by adding a real-time constraint.

P3 : If a user gives a “stop” command, the robot stops within one second
and does not move without any new command.

P3 is more general than P2 because the robot may not stop immediately with a
given “stop” command but within one second due to an urgent situation such as
collision avoidance. Temporal property can be encoded in an observer by using
the fact that the CC service is invoked every 100 milliseconds (see Sect. 4.2). We
verified that the CC and UF services satisfied P3 after modifying the observer
to check this temporal property.

5.5 Experimental Results of the Verification

We used a WindowsXP machine with Pentium IV 2.8C and 1GB memory for
the verification. Verification of each property of P1, P

′
1, P2, and P3 generated

around 100 states and took less than ten seconds and 128 MB memory, which
was not burdensome to developers. Notice that what we had verified here was
a real implementation, not an abstract model. We replaced the legacy C/C++
implementation of control software loaded on SHR100 with the Esterel program.
After replacing the control software, SHR100 operated successfully with high
reliability obtained by formal V&V.

As we have seen through Sect. 5.2 to Sect. 5.4, defining safety properties
takes considerable effort. We believe, however, that such effort can reduce an
overall development and its field operation costs by increasing the reliability of
applications.

6 Conclusion

We have reported our experience of formally developing and verifying a home
service robot SHR100. Our task to develop a robot with high reliability was
a challenging target due to its own reactive nature and its complexity caused
by coordinating diverse components together. The gist of our approach is to re-
engineer a robot application to formally develop and verify the core for increased
reliability. Through the re-engineering process, we found and fixed several sub-
tle bugs which would be uncovered otherwise. In addition, we could demonstate
that formal V&V was useful to identify feature interaction problems which were
hard to detect through traditional testing. Furthermore, the new SHR100 im-
plementation re-written in Esterel became compact and easy to analyze due to
its clear component definitions and explicit communication mechanisms.

References

1. Esterel technology. http://www.esterel-technologies.com.
2. Honda asimo home page. http://asimo.honda.com/.



Formal Construction and Verification of Home Service Robots 443

3. Sony qrio home page. http://www.sony.net/SonyInfo/QRIO/top nf.html.
4. A.Bouali. Xeve: an esterel verification environment. Technical report, INRIA,

2000.
5. R. Alur and T. Henzinger. Time for logic. ACM SIGACT News, 22(3), 1991.
6. G. Berry. The foundations of esterel. Proof, Language and Interaction: Essays in

Honour of Robin Milner, 2000.
7. J. Borrelly, E. Coste-Maniére, B. Espiau, K. Kapellos, R. Pissard-Gibollet, D. Si-

mon, and N. Turro. The orccad architecture. International Journal of Robotics
Research, 17(4):338–359, 1998.

8. E. Coste-Maniére and N. Turro. The maestro language and its environment :
Specification, validation and control of robotic missions. Proceedings of the 10th
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997.

9. A. C. Domı́nguez-Brito, D. Hernández-Sosa, J. Isern-González, and J. Cabrera-
Gámez. Integrating robotics software. IEEE International Conference on Robotics
and Automation, 2004.

10. E.M.Clarke, O.Grumberg, and D.A.Peled. Model Checking. MIT Press, January
2000.

11. B. Espiau, K. Kapellos, and M. Jourdan. Formal verification in robotics: Why and
how? International Symposium on Robotics Research, Oct 1995.

12. G.H. Holzmann and M.H. Smith. Automating software feature verification. Bell
Labs Technical Journal, 5(2):72–87, 2000.

13. M. Kim, K. Kang, and H. Lee. Formal verification of robot movements - a case
study on home service robot shr100. International Conference on Robotics and
Automation, 2005.

14. M. Kim, J. Lee, K. Kang, Y. Hong, and S. Bang. Re-engineering software architec-
ture of home service robots: A case study. International Conference on Software
Engineering, 2005.

15. L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety property verifi-
cation of Esterel programs and applications to telecommunications software. In
P. Wolper, editor, Proceedings of the 7th International Conference On Computer
Aided Verification, pages 127–140, Liege, Belgium, 1995.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1992.

17. R.T. Pack, D. Mitchell Wilkes, and K. Kawamura. A software architecture for
integrated service robot development. IEEE Internationall Conference on Systems,
Man and Cybernetics, 1997.

18. L.E. Pinzon, H.-M. Hanisch, M.A. Jafari, and T. Boucher. A comparative study of
synthesis methods for discrete event controllers. Formal Methods in System Design,
15(2):123–267, 1999.



Model Checking Real Time Java

Using Java PathFinder

Gary Lindstrom1, Peter C. Mehlitz2, and Willem Visser2

1 University of Utah
2 NASA Ames Research Center

Abstract. The Real Time Specification for Java (RTSJ) is an augmen-
tation of Java for real time applications of various degrees of hardness.
The central features of RTSJ are real time threads; user defined sched-
ulers; asynchronous events, handlers, and control transfers; a priority
inheritance based default scheduler; non-heap memory areas such as im-
mortal and scoped, and non-heap real time threads whose execution is
not impeded by garbage collection. The Robust Software Systems group
at NASA Ames Research Center has Java PathFinder (JPF) under
development, a Java model checker. JPF at its core is a state exploring
JVM which can examine alternative paths in a Java program (e.g., via
backtracking) by trying all nondeterministic choices, including thread
scheduling order. This paper describes our implementation of an RTSJ
profile (subset) in JPF, including requirements, design decisions, and
current implementation status. Two examples are analyzed: jobs on a
multiprogramming operating system, and a complex resource contention
example involving autonomous vehicles crossing an intersection. The util-
ity of JPF in finding logic and timing errors is illustrated, and the re-
maining challenges in supporting all of RTSJ are assessed.

1 Overview

The possibility of using Real Time Specification for Java (RTSJ) [fJEG] soft-
ware on future missions is under consideration at NASA, for all the familiar
reasons: standardized (i.e., platform independent) semantics, a rich and vigorous
marketplace of implementations and tools, and the overall software engineering
advantages of Java as a type safe object-oriented programming language. RTSJ
is not based on any Java core language extensions; rather, all its capabilities
are conveyed by new classes with special semantics, albeit with some refine-
ment of semantics for existing Java classes. This design decision in effect strikes
a bargain: less run time predictability, in exchange for language stability. An
alternative choice might have been to enhance the declarative content of the
language in the interest of stronger compile time program validation, as was
done for example with exceptions in Java.

The dual consequence of this design decision is inadequacy of static analysis
for RTSJ software verification and validation, and a corresponding vital need
for techniques performing dynamic analysis, e.g., model checking. In particular,

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 444–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Model Checking Real Time Java Using Java PathFinder 445

many of the dynamic features of RTSJ are beyond the scope of current worst-case
execution time (WCET) analysis techniques. While RTSJ programmers can in
principle restrict themselves to an RTSJ subset amendable to WCET analysis,
this would significantly reduce the appeal and advantages of using RTSJ over
existing real time languages. We report here on an application of the Java
PathFinder model checker (JPF) [VHB+03, JPFa] to RTSJ programs, focusing
on the latter’s dynamic, time quantified behavior, with the goal of developing
a tool capable of validating RTSJ applications, ideally to the level of mission
deployability. Our approach emphasizes the central issue of temporal correctness
(e.g., threads meeting deadlines) under nondeterministic choices; correctness of
memory usages and asynchronous control flow are reserved for future work. Thus
we are focusing on classical correctness issues in real time software, rather than
issues related to specialized JVM behavior.

Our approach uses discrete event simulation (DES) as a basis for modeling
time. Real time threads are modeled as ordinary Java threads, constrained to
run one at a time, i.e., as coroutine’s. Their interactions, e.g., through CPU
scheduling, are modeled by resource contention techniques familiar to DES pro-
gramming (a summary of DES concepts is given in §3). This permits execution
of programs within our RTSJ profile on any Java implementation.

However, two important capabilities are provided by analyzing (running)
RTSJ programs under JPF: (a) execution cost logging at the bytecode level, and
(b) alternative execution path exploration via nondeterministic choice selection.
Point (a) permits closing an important causality loop impossible on an ordinary
JVM:

thread execution cost → deadline misses → miss events →
event handlers → additional thread execution cost

Analyzing such loops is a critical requirement in the validation and verifica-
tion of complex RTSJ applications, and is well beyond the capability of current
static analyzers.

2 RTSJ Under JPF: Requirements and Objectives

The first question is clearly what does it mean to model check an RTSJ program?
The starting point is to view the RTSJ program as just another Java program
(albeit with a class library with special semantics), and simply execute it using
the model checking vigilance of JPF. This is fine, except that this presumes the
availability of an RTSJ enabled JVM within JPF, which we do not have.

Unlike a simple Java program, in which the notion of time generally plays
an insignificant role, time in RTSJ programs plays a major correctness role, e.g.,
in quantifying real time deadlines. Moreover, an RTSJ program (the embedded
program) must be exercised within an implementation of its environment (the
embedding program). In our view, specifying, constructing and verifying such
environments are often tasks of difficulty equal to or greater than that of the



446 G. Lindstrom, P.C. Mehlitz, and W. Visser

embedded system. An example is a flight control system, where a fully accurate
embedding system must model all the dynamics of the aircraft, as is done in a
flight simulator. Hence ensuring that embedding code is correct is as important
(or more so) than ensuring that the embedded code is correct.

We adopted the following goals for model checking RTSJ under JPF:

1. Make no changes to the JPF implementation – clearly, a major software
engineering win if achievable.

2. Implement the embedding code in Java, and model check the entire combined
system – a major validation win if possible.

3. Deal with time through DES modeling – a familiar and well understood
technology.

4. Implement all RTSJ thread interactions (e.g., priority based scheduling with
priority inversion avoidance via priority inheritance) through resource con-
tention techniques traditional to DES.

5. Exploit the run time cost accounting capabilities of JPF to detect deadline
misses by real time threads, and to take appropriate actions, e.g., invoking
overrun handlers in the embedded code.

6. Finally, utilize the path coverage capabilities of JPF to locate bugs involving
nondeterminacy and race conditions, notably nondeterministic choice points
in the embedding code providing greater test coverage.

3 Step 1: RTSJ in a Simulation Environment

The first step in model checking RTSJ is to implement a profile of RTSJ as a set
of conventional Java classes. This we have done to a first level of realism – several
features have yet to be implemented, as discussed in §10. The classes in our im-
plementation include RealtimeThread, PriorityScheduler, AsyncEvent, AsyncEven-
tHandler, OneShotTimer, PeriodicTimer and RelativeTime.

The fundamental concepts of DES (as developed in the Simula system of the
1970’s [BDMN73]) can be summarized as follows:

– Individual processes (the traditional terminology – henceforth we will use
thread) are conceptually concurrent, but in fact execute in an interleaved
fashion as coroutines, as mentioned above.

– A thread may be executing, activated, or passivated.
• An executing thread is the one currently running as a coroutine;
• An activated thread is not executing, but is scheduled to do so in the

future at a time indicated its event notice on the simulation’s event list.
• A passivated thread is neither executing nor active; such threads are typ-

ically waiting for some condition to become true, such as being granted
a resource.

– Scheduling operations on threads include activate (schedule), passivate, and
hold, which is a compound operation comprising activation at a later sched-
uled time time, and passivation.



Model Checking Real Time Java Using Java PathFinder 447

– The main thread controls the overall simulation by repeatedly dequeueing
from the event list the event notice with the earliest event time, advancing
the simulation clock to the time in that event notice, and notifying the
associated thread to run – until the event list becomes empty, or a global
shutdown operation is invoked.

Since RealtimeThread’s are constrained to run as coroutines, the JVM sched-
uler has only one scheduling choice possible, and DES event based scheduling is
used in an outboard manner to orchestrate thread interleaving. As mentioned in
§2, all RealtimeThread interactions are achieved by contention for Resource ob-
jects, e.g., a CPU. The upshot is that no changes are necessary to the schedulers
of the underlying JVM or JPF to implement scheduling policies such as prior-
ity inheritance with FIFO ordering within priorities, as required by the default
RTSJ scheduler. Since Java’s real time clock is replaced by the simulation clock,
all RTSJ executions in this implementation are deterministic (repeatable), even
if they use pseudo random methods to draw numbers from probability distri-
butions (assuming fixed seeds) or offer the option of pseudo randomly selecting
orders of events scheduled at identical times.

Fig. 1. RTSJ architecture under JPF

4 Step 2: Combining RTSJ and JPF

Embedded code written in our RTSJ profile, together with its embedding test
code using DES facilities including simulated time, comprise an ordinary Java
program that can be run under any Java implementation (without accurate run
time modeling, however). The next step is to run the combined program under
JPF, with the following additional benefits:

– Nondeterministic state exploration, including all orderings of equal priority
events scheduled for the same instant, and choice points in the embedding
code, and

– Cost accounting, with overrun detection and invocation of appropriate han-
dlers, as described below.



448 G. Lindstrom, P.C. Mehlitz, and W. Visser

Our adaptation of JPF is being done in two stages. The first stage exploits
two customization features already available in JPF: its JVM listener interface
[JPFb], and its Model Java Interface (MJI) [JPFc] (both features are utilized in
the Control Program box in Fig. 1).

JVM listener interface: Logging run time (albeit idealized) for Java code un-
der JPF can be done using JPF’s JVM listener interface, which invokes control
program listener methods on various occurrences, including the execution of each
byte code instruction. We use a very simple accounting technique here, whereby
each byte code is assigned a fixed run time in a look up table. By this technique
the execution time (summed byte code costs) from the start to the end of a
RealtimeThread can be accumulated. Similarly, this interface is used to detect
execution path backtracking by the JPF JVM, so that path specific accounting
data structures can be correspondingly backtracked.

Model Java interface: The MJI interface permits Java code executing under
JPF’s specialized JVM to access the underlying JVM for access to native facili-
ties. This turns out to be crucial in arranging that run time cost logging, which
executes outside the JPF JVM, is accessible to the RTSJ application code, which
executes within the JPF JVM. For example, suppose an AsyncEventHandler in-
vocation has a run time in excess of its stipulated limit, as observed through an
MJI native method. This can trigger the invocation of an overrun event handler,
which must execute within the JPF JVM.

The second and more difficult stage of adapting JPF for RTSJ concerns fea-
tures that must be implemented by JVM modifications. These features, which
include non-heap memory areas and non-heap real time threads, as well as asyn-
chronous control transfers, are discussed in §7.1.

5 Scheduling Policies

We now give more details on our control of scheduling by means of resource con-
tention policies. We illustrate our approach by discussion of five representative
policies: FIFO, priority, priority inheritance, priority ceiling, and preemption.
The first two are naive policies inviting priority inversion; the third is obliga-
tory in RTSJ’s default scheduler; the fourth is an explicit option, and the RTSJ
specification is silent on the fifth.

1) FIFO: This simplistic policy guarantees fairness, but ignores thread
priority.

2) Priority: Here threads waiting for a resource are selected by (fixed) priority
first, and then by FIFO within equal priorities. This policy, as well as FIFO
above, provides no defense against priority inversion.

3) Priority inheritance (PI): This well known policy works by increasing the
priority of the thread possessing a PI resource to equal the maximum priority
of any thread waiting for that resource (its dynamic priority). There are two
perhaps unobvious consequences of this policy:



Model Checking Real Time Java Using Java PathFinder 449

1. Since a thread may possess multiple resources, its dynamic priority is based
on the maximum priority of any thread waiting for any of the resources it
possesses, and

2. The priorities involved are of course dynamic priorities, so an attempted
seize of a resource held by a thread waiting for another resource can cause
cascaded priority inheritance effects (and conversely for release’s).

4) Priority ceiling (PC): A PC resource has a fixed priority (its ceiling pri-
ority) which is used to temporarily elevate the priority of any thread possessing
it. If a thread has a dynamic priority greater than the resource’s ceiling priority,
an attempt to seize the resource causes a PriorityCeilingException to be thrown
(the absence of which is an important verification condition).

5) Preemption: A resource managed under this policy does not change a
thread’s priority when seized. A thread seizing a resource of this kind only waits
if the resource is currently held, and the thread’s priority is less than or equal to
the priority of the thread holding the resource. If the thread’s priority is greater
that that of the thread holding the resource, it steals the resource.

Modeling the first four policies is straightforward DES programming. Pre-
emption is a bit trickier, because possession periods (e.g., modeling computa-
tional activity by a thread using a CPU resource) can be prematurely ended when
the resource is stolen by a higher priority thread. This can be implemented by
wrapping such hold method calls in loops that sum actual hold times, and re-
exert hold invocations until the stipulated hold time is attained. All five policy
implementations easily generalize to multiprocessing systems by managing pools
of CPU resources.

6 Applications

We now discuss application of our RTSJ implementation in JPF to two example
programs. The first is a simple model of a multiprogramming operating system
(OS), while the second is a complex resource contention example involving au-
tonomous cars crossing an intersection. The utility of JPF in finding logic and
timing errors in each is illustrated.

6.1 Multiprogramming Operating System

This example models a simple multiprogramming computer system, where jobs
(as RealtimeThread’s) contend for a CPU, which is a resource of one of the five
types discussed in §5. Of these, preemption is the most interesting, because
(i) it guarantees absence of priority inversion, (ii) it is pervasive in modern
operating systems, (iii) its behavior on realistic job mixes defies static analysis,
and consequently (iv) real time OS’s typically do not employ it, despite the
appeal of (i).

A fixed job mix was analyzed using our RTSJ implementation in JFP, using
CPU’s of each of our five resource types. The results are given in Fig. 2. In



450 G. Lindstrom, P.C. Mehlitz, and W. Visser

CPU Job1 (6) Job2 (5) Job3 (4) Job4 (3) Time

FIFO 3681 / 72% / 6.0 3780 / 73% / 5.0 3879 / 74% / 4.0 3979 / 74% / 3.0 3979

Priority 1891 / 46% / 6.0 1990 / 49% / 5.0 3880 / 74% / 4.0 3979 / 74% / 3.0 3979

PC (6) 1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.5 3979 / 74% / 3.7 3979

PI 1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.0 3979 / 74% / 3.2 3979

Preempt 1004 / 0% / 6.0 2008 / 49% / 5.0 3012 / 66% / 4.0 4015 / 74% / 3.0 4015

Fig. 2. Multiprogramming results, by resource type. The parenthesized number in for
each job indicates its priority. Columns for each job indicate its duration in simulated
milliseconds, followed by its percentage wait time and average priority. Time is the
completion time of the entire job mix, in simulated milliseconds.

this scenario, there are four jobs that are identical in behavior (10 compute /
wait cycles), with identical wait times between cycles. They are all started at
time zero. This simple stress test keeps the CPU 99% busy independent of its
resource type (the simulation ends after the last job terminates). The following
observations can be made of the results in Fig. 2:

– The FIFO CPU gives the most fair service to the four jobs – because it
ignores priority.

– The Priority, Priority Ceiling, and Priority Inheritance CPUs deliver identi-
cal service, because the priority of a job only affects its competitive position
when more than one job is waiting for the CPU, which does not occur in this
simple scenario (an example of priority improving service is given in §6.2).

– Jobs under the Preemptable CPU finish strictly according to priority. How-
ever, the overall completion time is slightly longer, due to the additional
scheduling overhead.

When run under JPF with nondeterminism turned on, there are 4! = 24
choices for activation order at time zero for the four jobs (the statistically rare
case of events scheduled at exactly the same time does not occur after simulation
start). Priority inversion was detected in all 24 paths under FIFO and Priority
CPUs, and on no paths under Priority Ceiling (6), Priority Inheritance, and
Preemptable CPUs.

6.2 Intersection Crossing

The example in §6.1 emphasizes the effect of role of resource types in thread
scheduling. Our second application is a more complex example, illustrating more
advanced features of our RTSJ implementation in JPF. This models autonomous
cars transiting an intersection, where the cars (real time threads) can drive
straight through, turn right, or turn left. Cars are given priorities chosen from
1 to 8.

The intersection is modeled by four sectors (NW, NE, SW, SE), each of
which is a resource. For a car driving north, turning right requires possession



Model Checking Real Time Java Using Java PathFinder 451

Sector type Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L)

FIFO 33 / 0% 183 / 18% 49 / 21%

Priority 33 / 0% 183 / 18% 49 / 21%

PC(8) 25 / 0% 63 / 40% 45 / 15%

PI 30 / 0% 180 / 16% 46 / 17%

Fig. 3. Intersection results using four sector resource types. (5/N/S) indicates that Car
0 has priority 5, is heading north, and going straight, etc. Car 0 and Car 1 start at
time 0; Car 2 has a start delay of 5 seconds. The figures in each column are completion
time in seconds, and percentage wait time.

of sector SE; driving straight requires SE and NE (granted simultaneously, to
avoid deadlock; SE is released half way through), and turning left involves (i)
seizing SE and NE together; (ii) releasing SE, (iii) seizing NW, (iv) releasing NE
and NW. The net effect is a model of an uncontrolled intersection of two lane
roads, where cars follow the common conventions that a car can drive straight
through if the car on its left (if any) is not driving straight through or turning
left, the car on its right (if any) is not driving either straight, left or right, and
the opposing car (if any) is not turning left.

These rules are complex but deadlock free, which as been confirmed (for
specific scenarios) by exhaustive search using JPF on initial event scheduling
orders. By comparison, deadlocks caused by the naive policy of seizing all of SE,
NE, and NW for a northbound car making a left turn (and correspondingly for
cars heading in other directions) were quickly located by JPF.

Car speed is governed by car priority, in the following manner. The time
required by a car to transit a sector is t = 100 sec/p, where p is the car’s
priority. At the extremes, p = 1 yields a sector transit time of 100 seconds, and
p = 8 yields 12.5 seconds. Experiments were run using four resource types for
sectors: FIFO, priority, priority ceiling 8, and priority inheritance. There are
ready intuitions for each of these cases: FIFO is round robin, priority is fastest
vehicle first, priority ceiling is a minimum sector speed, and priority inheritance
is when one sees an ambulance rapidly approaching, and speeds up accordingly.
The preemption case is physically impossible!

Sample results are shown in Fig. 3. Note that all cars benefit from higher
priority under priority ceiling, and marginally so under priority inheritance.

The utility of run time cost logging under JPF was demonstrated by giving
each car a maximum lifetime (its release deadline in RTSJ’s vocabulary). If the
deadline is set uniformly at 75 seconds, under priority inheritance the RTSJ miss
handler for Car 1 is invoked, but not for Cars 0 or Car 2.

The above analysis can be accomplished under both native Java and JPF,
since it is based solely on simulated time. By contrast, analysis of miss handler
behavior in RTSJ programs can only be exercised under JPF, where a listener
method in our control program records each byte code execution in the subject
program. To demonstrate this capability, an onboard computer was postulated
for each car (its autonomous controller), and a cycle soaker method was invoked



452 G. Lindstrom, P.C. Mehlitz, and W. Visser

during passage through each sector (arbitrarily set at 100,000 double divides,
with 100 nanosecond cost per byte code; a total of 1,400,024 DDIV’s are ob-
served in the deterministic case). If a cost limit of 350 milliseconds is imposed,
under priority inheritance Car 0 terminates without handler invocation, Car 2
terminates with cost overrun handler invocation, and Car 1 terminates with both
handlers invoked.

7 Critique of JPF

This application breaks new ground for Java PathFinder in its focus on quan-
tified time as a program correctness issue. Much as been learned about its flex-
ibility in supporting this new and unanticipated correctness dimension, as well
as the limits of our approach that implements RTSJ without making any modi-
fications to JPF.

7.1 Features Not Easily Implemented Under This Approach

In §4 we indicated two areas pose more difficult challenges, which we believe can
only be implemented by JVM modification:

– ScopedMemoryArea’s and NoHeapRealtimeThread’s, which deal with non
garbage collected MemoryArea’s, and

– Asynchronous transfers of control (ATC), e.g., threads that implement the
Interruptible interface and methods that throw AsynchronouslyInterruptedEx-
ception.

While it may be possible in principle to implement at least the first these
features using per-bytecode analysis in a JPF listener method, the overhead of
this approach is likely to be prohibitive.

7.2 Opportunities for Application of Other JPF Features

This project thus far has used only basic Java PathFinder features. Several
advanced features of JPF offer attractive opportunities for increased utility in
verifying RTSJ programs.

Heuristic search: The default program path exploration strategy is depth
first search, using backtracking. Other strategies, such as bounded breadth-first
search, can selectively search longer paths due to elimination of the backtrack
stack [GV04]. Several criteria for preferring paths in RTSJ programs with higher
error potential are evident, such as favoring states with threads whose extrapo-
lated completion time is beyond their stipulated deadlines.

State abstraction: By default JPF saves all previously encountered program
states and performs precise equality checks to detect re-encountered states. This
policy has several consequences, including (i) significant space overhead, and (ii)
inability to recognize states that insignificantly vary from previously seen states.



Model Checking Real Time Java Using Java PathFinder 453

In particular, the extremely fine representation of time in RTSJ (to nanosec-
ond precision), exacerbates (ii). To illustrate, consider state abstraction meth-
ods focusing on the core data structure of our system, the scheduled event list.
Opportunities for abstraction here include fuzz on scheduled event times, e.g.,
equality to resolution of say 100 nanoseconds, or even ignoring event times al-
together, and considering two event lists to be equal if they reference the same
real time threads positioned at the same execution point (say, method and byte
code address).

Symbolic execution: JPF interfaces to a constraint system that can solve
equations involving linear inequalities [SKV03]. This presents the possibility of
asserting constraints on scheduled event times.

– For example, it could be asserted that event e1 should run at time t0 + t(e2),
where t(e) is the scheduled time of an event e, and t(e2) is not yet known,
i.e., is symbolic. When t(e2) becomes bound, e1 would be scheduled at a
concrete time.

– Now suppose two scheduled events e1 and e2 have symbolic event times t(e1)
and t(e2), and the event list is otherwise empty. We then have two options to
pursue nondeterministically: (a) e1 runs next, t(e1) ≤ t(e2) is asserted, and
the simulation clock is set (symbolically) to t(e1), or (b) symmetrically, e2
runs next, t(e2) ≤ t(e1) is asserted, and the simulation clock is set to t(e2).

Fault driven automatic test case generation: The execution driven symbolic
constraint refinement technique just sketched can be the basis for finding neces-
sary and sufficient conditions that lead to specific faults [VPK04]. For example,
suppose the real time code is modeling the performance of an aircraft pre-landing
checklist. There have been published accident scenarios where a mandatory air-
craft response, e.g., completion of landing gear deployment, did not occur in time
to ensure the safety of the next step in the checklist, and the pilot under time
pressure (the ground is approaching) inappropriately proceeded [Deg04]. Condi-
tions revealing such flaws in real time checklist procedures might be determined
by symbolic execution in this manner.

8 Performance

We now present performance figures for our RTSJ profile implementation in
JPF. All performance figures are taken from executions in the Eclipse Java IDE
with a heap size of one gigabyte on a Pentium 2 laptop with 768MB of RAM.

Our system can be run in five modes: native Java with deterministic or
pseudo random choice selection, or JPF with deterministic, pseudo random, or
nondeterministic choice selection. We have tested our system in all five modes
on the applications presented in §6. Run time figures for the multiprocessing
operating system example in § 6.1 under deterministic mode are 120ms for native
Java vs. 6,257ms under JPF (the pseudo random mode numbers are analogous).
These absolute numbers are not important; instead, their relative magnitudes are
more informative. Two observations emerge: (a) the native Java implementation



454 G. Lindstrom, P.C. Mehlitz, and W. Visser

is quite fast, and (b) the JPF implementation is slower by a factor of about 50
– but it must be remembered that under JPF an interpretive JVM (written in
Java) is being employed, cost logging presents a linear execution time overhead,
and state saving is performed to support exploration of alternative execution
paths (not exploited in the deterministic and pseudo random cases).

CPU type Run time

FIFO 79.4 sec

Priority 80.9 sec

PC(6) 91.6 sec

PI 99.6 sec

Preemptable 106.2 sec

Fig. 4. Run times for the multiprogramming example under JPF nondeterministic
search (backtracking over 24 paths)

To illustrate the cost of JPF state exploration, the CPU example was run
under nondeterminism, exploring the 4! = 24 choices for activation order at time
zero for the four jobs discussed in § 6.1 Results are shown in Fig. 4.

9 Related Work

Model checking of timed automata representations has become very popular
([BLR05]; see [BY04] for a good overview) for the analysis of real time systems.
Our approach differs in that we are analyzing systems with complex transitions
but simple explicit timing information, whereas in the timed automata approach
is typically applied to analyze systems with complex timing, but simple tran-
sitions (e.g., between abstract states in given time intervals). By contrast we
are performing genuine program execution (not abstracted, or symbolic). The
notion of applying timed automata style reasoning is appealing, but represents
a major new line of research, due to the complex transitions in our program
executions, e.g. memory allocation, exception handling, etc.). Our emphasis at
present is checking program safety properties including scheduling errors such
as priority inversion, as well as classic Java errors such as uncaught exceptions
and assertion violations.

It has been reported that more than 3000 people have used the RTSJ refer-
ence implementation or a commercial RTSJ-compliant JVM to create applica-
tion prototypes [Loc04]. Tools are available to benchmark RTSJ implementations
[CS02].

Model checking is a vigorously evolving research area. Bandera [Ban], Bogor
[DHHR05], and the work of Bart Jacobs et al. on JavaCard verification [JMR04]
are examples of model checking applied to Java programs. A closely related
area is run time verification of Java systems [KKLS01]. Capability for dealing



Model Checking Real Time Java Using Java PathFinder 455

with time in model checkers has also been evolving rapidly, often through mon-
itoring of event sequences with respect to assertions in linear time logic (LTL)
[Hav]. RTSJ itself is drawing critical and insightful analysis, such as the work
on Ravenscar [Bur, Wel04].

Finally, the advent of the Java Platform Debugger Architecture (JPDA) of-
fers the potential of greatly improved flexibility and performance for our dual
JVM implementation strategy. However, major research issues are presented by
implementing state saving and backtracking under this approach. Moreover, the
challenges of implementing the RTSJ features missing in our system, e.g., mem-
ory varieties and ATC, would still be present — unless an RTSJ compliant JVM
could be obtained that supports JDPA, which seems unlikely.

10 Status and Continuing Work

Our implementation of RTSJ within a DES environment is operational, including
RealtimeThread’s, AsyncEvent’s and AsyncEventHandler’s, cost overrun handlers,
binding of external happenings to events, simulated and real time Clock’s, and
various timers, e.g., OneShotTimer and PeriodicTimer, and PhysicalMemoryArea’s.
API documentation including designation of individual classes and methods not
implemented is publicly available [Lin]. Continuing work includes:

1. Maximizing the RTSJ profile we can implement without JVM modification,
2. Development of a more realistic, calibrated execution cost model, taking into

account effects of garbage collection, JIT compilation, class loading, etc.,
3. Development of more challenging test cases, with assessment of the scalabil-

ity of RTSJ under JPF,
4. Extending JPF’s JVM (written Java) to include the remaining crucial RTSJ

features summarized in § 7.1 (probably using Ravenscar’s profile as a guide),
and

5. Perhaps most importantly, exploiting advanced JPF features to increase the
scale of RTSJ systems that can be analyzed, through techniques as discussed
in § 7.2.

Acknowledgements

Michael R. Lowry conceived this project and is providing the resources. The
critical comments of Robert E. Filman are gratefully acknowledged.

References

[Ban] http://bandera.projects.cis.ksu.edu/.
[BDMN73] G. M. Birtwistle, O.-J. Dahl, B Myhrhaug, and K. Nygaard. Simula

BEGIN. Auerbach/Studentliteratur, Philadelphia, 1973.
[BLR05] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal

scheduling using priced timed automata. ACM SIGMETRICS Perfor-
mance Evaluation Review, 32(4):34–40, March 2005.



456 G. Lindstrom, P.C. Mehlitz, and W. Visser

[Bur] Alan Burns. The Ravenscar profile. http://polaris.dit.upm.es/~ork/
documents/RP spec.pdf.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In W. Reisig and G. Rozenberg, editors, Lecture Notes on
Concurrency and Petri Nets. Springer-Verlag, 2004. LNCS 3098.

[CS02] Angelo Corsaro and Douglas C. Schmidt. Evaluating Real-Time Java
features and performance for real-time embedded systems. In Proc. 8th
Real-Time and Embedded Technology and Applications Symposium. IEEE
Computer Society, September 24-27, 2002.

[Deg04] Asaf Degani. Taming HAL: Designing Interfaces Beyond 2001. Palgrave
Macmillan, 2004.

[DHHR05] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby. Build-
ing your own model checker using the Bogor extensible model checking
framework. In In Proc. 17th Conference on Computer-Aided Verification
(CAV 2005), 2005.

[fJEG] The Real-Time for JavaTM Expert Group. https://rtsj.dev.java.net.
[GV04] A. Groce and W. Visser. Heuristics for model checking Java programs.

International Journal on Software Tools for Technology Transfer, 2004.
[Hav] Klaus Havelund. Eagle Flier, a rule-based runtime verification framework.

http://yangtze.cs.uiuc.edu/~ksen/eagle/.
[JMR04] B. Jacobs, C. Marche, and N. Rauch. Formal verification of a commercial

smart card applet with multiple tools. In C. Rattray, S. Maharaj, and
C. Shankland, editors, Algebraic Methodology and Software Technology
(AMAST’04), pages 21–22. Springer LNCS 3116 2004.

[JPFa] http://javapathfinder.sourceforge.net/.
[JPFb] http://ase.arc.nasa.gov/jpf/Listeners.html.
[JPFc] MJI – the Model Java Interface, http://ase.arc.nasa.gov/jpf/MJI.html.
[KKLS01] Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-

MaC: a run-time assurance tool for Java. In First International Workshop
on Run-time Verification. Paris, France, July 23, 2001. Electronic Notes
in Theoretical Computer Science, vol. 55 No. 2.

[Lin] Gary Lindstrom. RTSJ-JPF API. http://www.cs.utah.edu/~gary/RTSJ/
doc/.

[Loc04] C. Douglass Locke. Real-Time Java moving into the mainstream. RTC
Journal, January 2004.

[SKV03] C. S. Parareanu S. Khurshid and W. Visser. Generalized symbolic exe-
cution for model checking and testing. In Proceedings of TACAS, April
2003.

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering Journal, 10(2), April 2003.

[VPK04] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input
generation with Java PathFinder. In Proceedings of ISSTA, July 2004.

[Wel04] Andy Wellings. Concurrent and Real-Time Programming in Java. John
Wiley & Sons, Ltd., Chichester, West Sussex, England, 2004.



Using Parametric Automata for the Verification

of the Stop-and-Wait Class of Protocols�

Guy Edward Gallasch and Jonathan Billington

Computer Systems Engineering Centre, University of South Australia,
Mawson Lakes Campus, SA 5095, Australia
guy.gallasch@postgrads.unisa.edu.au

jonathan.billington@unisa.edu.au

Abstract. The Stop-and-Wait protocol (SWP) has two (unbounded)
parameters: the maximum sequence number (MaxSeqNo) and the maxi-
mum number of retransmissions (MaxRetrans). Our aim is to verify this
protocol for all possible values of these parameters. Model checking such
a system requires considering an infinite family of state spaces (reacha-
bility graphs). We firstly show that the size of these state spaces is linear
in MaxSeqNo and quartic in MaxRetrans. This leads us to develop a sym-
bolic representation for the reachability graphs which can be viewed as a
symbolic Finite State Automaton (FSA). We apply automata reduction
techniques directly to the symbolic FSA to obtain a language equivalent
FSA representing the sequences of externally visible events. This FSA is
independent of the parameters. We confirm that this is language equiva-
lent to the Stop-and-Wait service of alternating send and receive events.
The results are significant as we have: 1. a novel algebraic representation
of the infinite set of reachability graphs and their related FSAs of our
SWP model; and 2. verified conformance of the SWP to its service, for
all values of the unbounded MaxSeqNo parameter.

Keywords: Stop and Wait Protocols, Symbolic Reachability Graphs,
Symbolic Automata, Coloured Petri Nets, Language Equivalence, Para-
metric Verification.

1 Introduction

Stop-and-Wait is an elementary form of flow control [22,23] used by communica-
tion protocols to prevent buffer overflow in the receiver. After sending a message,
the sender must stop and wait for an acknowledgement from the receiver before
it can send the next message. When the Stop-and-Wait Protocol (SWP) oper-
ates over noisy channels, acknowledgements are also used for transmission error
recovery. In this case, a checksum is used to detect transmission errors in the
message or acknowledgement. If an error is detected, the message (or acknowl-
edgement) is discarded. A timeout/retransmission scheme, such as Automatic
� Partially supported by Australian Research Council (ARC) Discovery Grant

DP0559927 and Linkage International Grant LX04544639, and the French-
Australian Science and Technology programme FR040062.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 457–473, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



458 G.E. Gallasch and J. Billington

Repeat ReQuest [23], is used to recover from this loss. Sequence numbers are
used to detect (and then discard) duplicates of previous messages.

The Stop-and-Wait mechanism forms the basis of many practical data trans-
fer protocols, such as the Internet’s Transmission Control Protocol (TCP) [21].
An understanding of how these mechanisms work and how they may fail is essen-
tial for the verification of more complex protocols like TCP. These protocols have
a number of parameters, such as the maximum sequence number (MaxSeqNo)
or the maximum number of retransmissions (MaxRetrans). The value of these
parameters may vary depending on the application (e.g. TCP has a 32 bit se-
quence number, whereas others may use a 3 bit sequence number). It is thus of
interest to verify these protocols for all values of these parameters.

Petri nets have proven to be a suitable formal method for protocol verifica-
tion [4, 5, 13, 14, 16, 17, 20, 27]. A Coloured Petri net (CPN) [15, 18] model of the
SWP, parameterised by MaxSeqNo and MaxRetrans, was developed and anal-
ysed in [6, 7, 8] following the protocol verification methodology presented in [8].
Because the model parameters are unbounded there is an infinite set of CPN
models to verify. One of the properties of interest is conformance of the SWP
to the Stop-and-Wait service of alternating send and receive events using lan-
guage equivalence. However, using our methodology, we were only able to verify
conformance using automated language analysis [11] for small parameter values
due to the state explosion problem [25]. Thus we were motivated to find a way
to verify the SWP for any finite (but unbounded) value of the parameters.

Related work on parametric verification considers only the MaxRetrans pa-
rameter. Abdulla et al [1] consider a single infinite OG, rather than an infinite set
of finite OGs, for unbounded retransmissions, with MaxSeqNo = 1, correspond-
ing to the Alternating Bit Protocol (ABP). It also analyses a variant of the ABP
called the Bounded Retransmission Protocol, modelled with a nondeterministic
value of MaxRetrans (subtly different from modelling an explicit parameter value
as we do). A restricted class of regular expressions is used in TReX (Tool for
Reachability Analysis of Complex Systems) [24] to represent the content of the
unbounded lossy ordered channels and trace equivalence [25] is used to verify
the protocols against their respective services. Another tool for symbolic analysis
is FAST (Fast Acceleration of Symbolic Transition Systems) [10]. Systems are
represented using automata extended with unbounded integer variables (counter
systems) [2]. The symbolic results obtained using TReX and our initial inves-
tigations modelling the SWP using FAST [9] were successful when MaxRetrans
was a parameter, but were only successful for small values of MaxSeqNo. In [26] a
variant of the ABP using limited retransmission (with an arbitrary MaxRetrans)
and operating over channels with a capacity of one message only, was verified us-
ing Valmari’s Chaos-Free-Failures-Divergences (CFFD) equivalence. In contrast,
our model operates over unbounded lossy ordered channels (similar to [1]), ex-
plicitly considers any maximum sequence number (not just the alternating bit)
and uses language equivalence.

In this paper we obtain a symbolic expression for the infinite set of OGs over
the MaxSeqNo parameter. On identifying final states, this expression becomes



Using Parametric Automata for the Verification of the Stop-and-Wait Class 459

a symbolic Finite State Automaton (FSA). This FSA embodies the protocol
language (the set of all sequences of user-observable events called service prim-
itives) for each value of MaxSeqNo. We verify that the SWP conforms to the
Stop-and-Wait service for all values of this parameter, by applying automata re-
duction techniques directly to the symbolic FSA and comparing the result with
the service language of alternating send and receive events.

The contribution of this paper is threefold. Firstly, we present formulae for
the size of the symbolic OG, in terms of our two parameters. Secondly, we derive
an algebraic expression that represents the family of OGs of the SWP CPN
model for any MaxSeqNo > 0, for the base case of MaxRetrans = 0, and prove
it correct by induction. Thirdly, in this case, we verify that the SWP conforms
to its service of alternating send and receive events for any MaxSeqNo > 0 by
applying FSA reduction techniques directly to the corresponding symbolic FSA.
These results extend our work [7, 8] and complement the symbolic verification
work in [1] and [9] by verifying the SWP for every value of MaxSeqNo > 0 (with
MaxRetrans = 0.) The authors are not aware of any previous attempts to verify
a parameterised model of the class of Stop-and-Wait protocols by obtaining
an explicit algebraic representation for the family of OGs over the MaxSeqNo
parameter. A more detailed description of this work can be found in [12].

The rest of this paper is organised as follows. Section 2 presents our para-
metric Stop-and-Wait CPN model. Formulae for the size of the symbolic OG
are given in Section 3 which then derives the symbolic OG for the case when
MaxRetrans = 0. In Section 4 we obtain the symbolic FSA (representing an infi-
nite family of protocol languages) directly from the symbolic OG. By applying
reduction techniques we obtain the corresponding minimal deterministic FSA,
and verify the SWP against its service for all values of MaxSeqNo. Conclusions
and future work are presented in Section 5. Familiarity with basic CPN concepts
and terminology is assumed. For a thorough introduction to CPNs the reader is
referred to [15, 18].

2 The Stop-and-Wait Protocol CPN Model

The SWP is modelled using Coloured Petri nets [15, 18] as shown in Figs. 1
and 2. The two parameters MaxRetrans and MaxSeqNo can be seen at the top of
Fig. 2. The model is divided into three parts: Sender, Network and Receiver.

The Sender comprises three places and four transitions. Place sender state
models the two states of the sender (ready or waiting for an acknowledgement)
and is given an initial marking of s ready. The send seq no place stores the sender
sequence number and the retrans counter place records the number of retransmis-
sions of an unacknowledged message. Transition send mess writes the sequence
number (as the message) to the message channel and changes the sender state to
wait ack. Message content is not modelled as it does not influence the operation
of the protocol. Retransmission of the currently unacknowledged message is mod-
elled by transition timeout retrans. The guard ensures that retransmission can
only occur at most MaxRetrans times (rc < MaxRetrans). Transition receive ack



460 G.E. Gallasch and J. Billington

receiver_state

Receiver

r_ready

send_mess receive_mess

receive_ack

[rn = NextSeq(sn)]

send_ack

send_seq_no

Seq

0

mess_channel

MessList

[]

ack_channel

MessList

[]

mess_loss

ack_loss

timeout_retrans

[rc < MaxRetrans]

retrans_counter

RetransCounter

0

sender_state

Sender

s_ready

receive_dup_ack

[rn <> NextSeq(sn)]

Sender Network Receiver

recv_seq_no

Seq

0

sn

queue^^[sn] sn::queue r_ready

if(sn = rn)
then NextSeq(rn)
else rn

r_ready

queue^^[sn]

rc rc+1

rc

0

wait_ack

s_ready

wait_ack

rn::queue

queue

rn::queue queue^^[rn]

sn

NextSeq(sn)

rn::queue

sn

sn

queue

queue

sn::queue

queue

queuequeue

queue

queue

s_ready

wait_ack

rn

rnrn

process

process

Fig. 1. A CPN of the Stop-and-Wait Protocol operating over an in-order medium

val MaxRetrans = 0;

val MaxSeqNo = 1;

color Sender = with s_ready | wait_ack;

color Receiver = with r_ready | process;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

color MessList = list Message;

var sn,rn : Seq;

var rc : RetransCounter;

var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 2. Declarations of the CPN shown in Fig. 1

processes expected acknowledgements by returning the sender to the ready state,
resetting the retransmission counter and incrementing (modulo MaxSeqNo+1)
the sender sequence number. Duplicate acknowledgements are discarded by the
receive dup ack transition.

The network is modelled as an in-order bidirectional channel. The channel
places mess channel and ack channel contain single lists and all arcs incident on
these places have inscriptions written to manipulate these lists as FIFO queues.



Using Parametric Automata for the Verification of the Stop-and-Wait Class 461

(The operator ˆˆ concatenates two lists while :: concatenates an element to the
head of a list.) Transitions mess loss and ack loss model loss, both in the network
(buffer overflow in a router) and by discarding messages and acknowledgements
with transmission errors (checksum failures).

The receiver has two states (r ready, process) modelled by the token in re-
ceiver state (initially r ready). The recv seq no place stores the sequence number
of the next expected message (initially 0). When an expected message is received
(transition receive mess with sn=rn) the receiver sequence number is incremented
using modulo arithmetic (NextSeq), otherwise the message is discarded as a du-
plicate and the receiver sequence number remains unchanged (sn �=rn). Once an
acknowledgement is sent containing the receiver sequence number (transition
send ack) the receiver returns to the ready state.

3 An Algebraic Formula for the Infinite Set of SWP
CPN OGs

From empirical data gathered from examination of the OG of the SWP CPN
for small parameter values, we derive a formula for the number of nodes and
arcs in the OG over both parameters. Based on the intuition gained from this
examination of the OG for small values of MaxSeqNo, we then derive an algebraic
formula for the OG when MaxRetrans = 0 and prove it to be correct.

3.1 Size of the Occurrence Graph

Evidence of a regular structure to the occurrence graphs comes in the form of the
size of the OGs. OGs have been generated for a large range of parameter values
(1 ≤ MaxSeqNo ≤ 1023 and 0 ≤ MaxRetrans ≤ 4) and the results reported in [7].
Due to length considerations we do not reproduce these results here. However
we discovered that the number of nodes and arcs in the OGs is factorable in the
two parameters. The number of nodes and arcs grows linearly with MaxSeqNo
for a fixed MaxRetrans and quartically in MaxRetrans for a fixed MaxSeqNo.
For example, the number of nodes and arcs grows by 6 for each increment of
MaxSeqNo when MaxRetrans = 0. We have established formulas for the size of
the OG in the two parameters using standard techniques for fitting polynomials
to data.

Conjecture 1. For the Stop-and-Wait CPN of Figs. 1 and 2, the number of nodes
in the occurrence graph is given by

|V | = ((MaxSeqNo + 1)/3)(MaxRetrans4 + 13MaxRetrans3+

41MaxRetrans2 + 47MaxRetrans + 18)

and the number of arcs is given by



462 G.E. Gallasch and J. Billington

|A| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6(MaxSeqNo + 1) for MaxRetrans = 0,
((MaxSeqNo + 1)/6)(10MaxRetrans4

+ 115MaxRetrans3 + 266MaxRetrans2

+ 167MaxRetrans + 24)

for MaxRetrans > 0.

3.2 An Algebraic Formula for the OG

Figure 3 (a) shows the occurrence graph of our SWP CPN for the base case
of MaxRetrans=0 and MaxSeqNo=1. Each state is annotated with an integer
pair representing the sender sequence number and receiver sequence number
in that state. Each arc is labelled with a description of the corresponding ac-
tion from the model. The main loop represents the behaviour of the SWP
when no messages or acknowledgements are lost. As there are no retransmis-
sions the dead markings arise when either a message or an acknowledgement
is lost.

Figure 3 (b) shows the OG when MaxSeqNo=2. The regular structure of the
OGs begins to emerge. For each sequence number, there are 6 markings gener-
ated that can be partitioned into two sets of three. The first set of three contains
markings where the sender and receiver sequence numbers are identical. The sec-
ond set of three contains markings where the receiver sequence number is one
greater (modulo MaxSeqNo+1) than the sender sequence number. This pattern
continues for the OGs generated when MaxSeqNo=3,4 etc.

Based on this intuition, let us now formally define the parametric OG of our
SWP CPN with MaxRetrans = 0, based on definitions in [16].

Definition 1. For n ∈ N+ (the positive integers), CPNn is defined as the Stop-
and-Wait Protocol CPN of Figs. 1 and 2 with MaxSeqNo=n and MaxRetrans=0.
The occurrence graph of CPNn, with initial marking M0 and a set of binding
elements BE, is a labelled directed graph OGn = (Vn, An) where

1. Vn = [M0〉 is the set of reachable markings of CPNn; and
2. An = {(M, b,M ′) ∈ Vn × BE × Vn | M [b〉M ′} is the set of labelled directed

arcs, where M [b〉M ′ denotes that the marking of CPNn changes from M to
M ′ on the occurrence of binding element b ∈ BE.

Let V n
(ssn,rsn) ⊂ Vn denote the subset of nodes in OGn with sender sequence

number ssn = M(send seq no) (the value of the token in place send seq no)
and receiver sequence number rsn = M(recv seq no). We refer to ‘the message
with sequence number i’ as ‘message i’ for brevity. For each message sent with
sequence number i ∈ {0, 1, . . . , n} we have a set of 6 markings comprising V n

(i,i)∪
V n

(i,i⊕n1), where ⊕n is modulo (n + 1) addition. The 3 nodes in V n
(i,i) represent:

1. the sender has received an acknowledgement (or it is the initial marking) and
message i is ready to be sent; 2. message i has been sent; and 3. message i has
been lost. The 3 nodes in V n

(i,i⊕n1) represent: 1. message i has been received; 2. the



Using Parametric Automata for the Verification of the Stop-and-Wait Class 463

1

2

4

3

5

7

6

8

10

9

11 12

mess_loss

mess_loss

ack_loss

ack_loss

send_mess 0

send_mess 1

recv_mess 0

recv_mess 1

send_ack 1

send_ack 0

recv_ack 1

recv_ack 0

(0,0)

(0,0) (0,0)

(0,1)

(0,1) (0,1)

(1,1)

(1,1) (1,1)

(1,0)

(1,0) (1,0)

(a) MaxSeqNo=1

1

2

4

3

5

7

6

8

10

9

11 12

mess_loss

mess_loss

ack_loss

ack_loss

send_mess 0

send_mess 1

recv_mess 0

recv_mess 1

send_ack 1

send_ack 2

recv_ack 1

recv_ack 0

13

14 15

16

17 18ack_loss

mess_loss

recv_ack 2

send_mess 2

recv_mess 2

send_ack 0

(0,0)

(0,0) (0,0)

(0,1)

(0,1) (0,1)

(1,1)

(1,1) (1,1)

(1,2)

(1,2) (1,2)

(2,2)

(2,2) (2,2)

(2,0)

(2,0) (2,0)

(b) MaxSeqNo=2

Fig. 3. The OGs of our SWP CPN when MaxSeqNo=1 and 2

acknowledgement for this message has been sent; and 3. the acknowledgement
for this message has been lost. We define this formally for 0 ≤ i ≤ n:

V n
(i,i) = {M ∈ Vn|M(recv seq no) = M(send seq no) = i}, and

V n
(i,i⊕n1) = {M ∈ Vn|(M(recv seq no) = M(send seq no)⊕n 1 = i⊕n 1)}

These markings are given in Tables 1 and 2. The first column shows the
marking name. The subscript of a marking (ssn, rsn) is the sender and receiver
sequence number for that marking and the superscripts correspond to the maxi-
mum sequence number (n) and the ‘type’ of marking just described. The
remaining columns of these tables show the markings of each place in the SWP
CPN of Fig. 1. Note that retrans counter always has a value of 0 (one ‘0’ token)



464 G.E. Gallasch and J. Billington

Table 1. V n
(i,i) for 0 ≤ i ≤ n

Node sender state send seq no mess ch. ack ch. receiver state recv seq no

M
(n,1)
(i,i) s ready i [] [] r ready i

M
(n,2)
(i,i) wait ack i [i] [] r ready i

M
(n,3)

(i,i)
wait ack i [] [] r ready i

Table 2. V n
(i,i⊕n1) for 0 ≤ i ≤ n

Node sender state send seq no mess ch. ack ch. receiver state recv seq no

M
(n,1)

(i,i⊕n1) wait ack i [] [] process i ⊕n 1

M
(n,2)
(i,i⊕n1) wait ack i [] [i ⊕n 1] r ready i ⊕n 1

M
(n,3)
(i,i⊕n1) wait ack i [] [] r ready i ⊕n 1

and is thus omitted from the tables, and that transitions receive dup ack and
timeout retrans are never enabled when MaxRetrans=0.

A similar partitioning of the arcs is defined. Let An
(ssn,rsn) ⊂ An denote the

subset of arcs in OGn in which the source node of the arc has the sender sequence
number ssn and receiver sequence number rsn. As before, rsn = ssn or ssn⊕n 1.
For 0 ≤ i ≤ n we define:

An
(i,i) = {(M, b,M ′) ∈ An|M(recv seq no) = M(send seq no) = i}, and

An
(i,i⊕n1) = {(M, b,M ′) ∈ An|(M(recv seq no) = M(send seq no)⊕n 1 = i⊕n 1)}

Partitioning the arcs in this way means that An
(ssn,rsn) contains all the outgoing

arcs of the nodes in the corresponding set V n
(ssn,rsn), for a given ssn and rsn.

The arcs in An
(i,i) represent: 1. sending message i; 2. losing message i; and 3.

receiving message i. The arcs in An
(i,i⊕n1) represent: 1. sending an acknowledge-

ment i⊕n 1; 2. loss of this acknowledgement; and 3. receiving this acknowledge-
ment. These arcs are given in Tables 3 and 4. The subscripts and superscripts
have the same meaning as for the nodes. The binding element refers to the
transition of the CPN model that occurs, with the specific binding of values to
variables for that transition.

Next we state the theorem for our parametric OG.

Theorem 1. For n ∈ N+, OGn = (Vn, An) where

Vn =
⋃

0≤i≤n

(V n
(i,i) ∪ V n

(i,i⊕n1)), An =
⋃

0≤i≤n

(An
(i,i) ∪An

(i,i⊕n1))

Proof. We prove Theorem 1 by induction over MaxSeqNo (n). The proof draws
inspiration from [19] for recursively defining a service OG. We prove the induc-
tion step in two parts. Firstly we prove that all but the last 3 nodes in OGk



Using Parametric Automata for the Verification of the Stop-and-Wait Class 465

Table 3. An
(i,i) for 0 ≤ i ≤ n

Name Source node Binding Element Dest. Node

a
(n,1)
(i,i) M

(n,1)
(i,i) send mess<sn=i, queue=[]> M

(n,2)
(i,i)

a
(n,2)
(i,i) M

(n,2)
(i,i) mess loss<sn=i, queue=[]> M

(n,3)
(i,i)

a
(n,3)

(i,i)
M

(n,2)

(i,i)
receive mess<sn=i, rn=i, queue=[]> M

(n,1)

(i,i⊕n1)

Table 4. An
(i,i⊕n1) for 0 ≤ i ≤ n

Name Source node Binding Element Dest. Node

a
(n,1)

(i,i⊕n1)
M

(n,1)

(i,i⊕n1)
send ack<rn=i⊕n1, queue=[]> M

(n,2)

(i,i⊕n1)

a
(n,2)
(i,i⊕n1) M

(n,2)
(i,i⊕n1) ack loss<rn=i⊕n1, queue=[]> M

(n,3)
(i,i⊕n1)

a
(n,3)

(i,i⊕n1) M
(n,2)

(i,i⊕n1) receive ack<sn=i, rn=i⊕n1, rc=0, queue=[]> M
(n,1)

(i⊕n1,i⊕n1)

(V k
(k,0)) are identical to the nodes in OGk+1, and similarly for the arcs. Then,

using reachability analysis, we generate the last 9 nodes and 10 arcs of OGk+1.
Basis. We assume that Design/CPN can correctly generate the OG of CPN1.
The generated OG matches that defined in Tables 1 to 4 for n=1.
Induction. We assume Theorem 1 is true for n=k and then prove it holds for
n=k+1. The following lemma states that the behaviour of the CPN is unchanged
for n=k and n=k + 1 up to the point where sequence numbers wrap.

Lemma 1. For CPNk and OGk as given in Definition 1, the subgraph of OGk

corresponding to (Vk \ V k
(k,0), Ak \ (Ak

(k,0) ∪ {a
(k,3)
(k,k)})) is invariant on increasing

MaxSeqNo from k to k+1, where V k
(k,0) and Ak

(k,0) are defined in Tables 2 and 4

respectively by substituting i=k, and a
(k,3)
(k,k) is the third arc in Table 3 with i=k.

Proof. By examining the CPN model, the only way the value of MaxSeqNo af-
fects the model is through the NextSeq function. Further, an increase in MaxSe-
qNo only affects behaviour at the point at which sequence numbers wrap, i.e. in
CPNk, NextSeq(k) = 0, but in CPNk+1, NextSeq(k) = k + 1.

Because NextSeq behaves identically up to the point where wrapping occurs in
OGk, we conclude that the behaviour of the CPN, (thus the OG) is unchanged
for all values of sender and receiver sequence number up to the point where
wrapping occurs, i.e. for the subset of nodes

⋃
0≤i<k(V k

(i,i)∪V k
(i,i+1))∪V k

(k,k) ⊆ Vk.

The arc a(k,3)
(k,k) where receive mess occurs from M

(k,2)
(k,k) ∈ V k

(k,k) causes the receiver
sequence number to wrap to 0, so the markings in V k

(k,0) are no longer reachable
when n is increased from k to k + 1. The subset of arcs that remains unaffected
is given by

⋃
0≤i<k(Ak

(i,i) ∪Ak
(i,i+1))∪Ak

(k,k) \ {a
(k,3)
(k,k)} ⊆ Ak. The remaining arcs

(Ak
(k,0)∪{a

(k,3)
(k,k)}) can no longer occur as either their source or destination nodes

(or both) are no longer reachable when MaxSeqNo equals k + 1. ��



466 G.E. Gallasch and J. Billington

We have determined that the set of nodes Vk \V k
(k,0) from OGk is unaffected

by an increase in MaxSeqNo to k+1. This implies V k+1
(i,i) = V k

(i,i) for 0 ≤ i ≤ k and

V k+1
(i,i+1) = V k

(i,i+1) for 0 ≤ i ≤ k−1. Similarly for arcs, we know that Ak+1
(i,i) = Ak

(i,i)

and Ak+1
(i,i+1) = Ak

(i,i+1) for 0 ≤ i ≤ k − 1 but Ak+1
(k,k) �= Ak

(k,k) solely because the

destination node of a(k,3)
(k,k) ∈ Ak

(k,k) is not reachable in OGk+1. When invoking
the induction step we can assume that the nodes and arcs remaining invariant
in Vk+1 and Ak+1 are correct. Having determined the subset of nodes and arcs
in OGk that are the same in OGk+1 we now determine the set of additional
reachable markings and arcs:

Lemma 2. The set of additional reachable markings of CPNk+1 with respect to
CPNk is given by V k+1

(k,k+1) ∪ V k+1
(k+1,k+1) ∪ V k+1

(k+1,0).

Lemma 3. The set of additional arcs in OGk+1 with respect to OGk is given
by Ak+1

(k,k+1) ∪Ak+1
(k+1,k+1) ∪Ak+1

(k+1,0) ∪ {a
(k+1,3)
(k,k) }.

Proof. From Lemma 1, the behaviour of CPNk+1 is the same as CPNk up until
the point where sequence numbers wrap. The occurrence of receive mess<sn=k,
rn=k, queue=[]> in M

(k+1,2)
(k,k) leads to a new marking, M (k+1,1)

(k,k+1) in which the re-

ceiver sequence number is k+1 (not 0). The only transition enabled in M
(k+1,1)
(k,k+1)

is send ack with binding <rn=k+1, queue=[]>. Occurrence of this leads to the
marking M

(k+1,2)
(k,k+1) . From here, either the acknowledgement just sent may be lost

through occurrence of ack loss<rn=k+1, queue=[]> leading to the dead mark-
ing M

(k+1,3)
(k,k+1) , or the acknowledgement will be received and the sender sequence

number incremented through occurrence of receive ack<sn=k, rn=k+1, rc=0,
queue=[]>, leading to the marking M

(k+1,1)
(k+1,k+1).

From M
(k+1,1)
(k+1,k+1) the only possible action is send mess<sn=k+1, queue=[]>

leading to M
(k+1,2)
(k+1,k+1). Transitions mess loss and receive mess are enabled in this

marking. Occurrence of mess loss<sn=k+1, queue=[]> leads to the dead mark-
ing M

(k+1,3)
(k+1,k+1). Occurrence of receive mess<sn=k+1, rn=k+1, queue=[]> leads

to marking M
(k+1,1)
(k+1,0) . From this marking the only possible action is

send ack< rn=0, queue=[]> leading to the marking M
(k+1,2)
(k+1,0) . The acknowl-

edgement just sent may be lost (ack loss<rn=0, queue=[]>) leading to the
dead marking M

(k+1,3)
(k+1,0) , or the acknowledgement may be received by the sender

(receive ack<sn =k+1, rn=0, rc=0, queue=[]>) leading back to the initial mark-
ing, M (k+1,1)

(0,0) .
From Tables 1 and 2 defining the sets of nodes, the 9 nodes generated above

correspond to V k+1
(k,k+1) ∪ V k+1

(k+1,k+1) ∪ V k+1
(k+1,0), obtained by substituting k and

k+1 for i in Table 2 and k+1 for i in Table 1. The 10 new arcs correspond to
Ak+1

(k,k+1) ∪Ak+1
(k+1,k+1) ∪Ak+1

(k+1,0) ∪ {a
(k+1,3)
(k,k) }, obtained in a similar way. ��



Using Parametric Automata for the Verification of the Stop-and-Wait Class 467

From Lemmas 1, 2 and 3 it follows that Vk+1 =
⋃

0≤i≤k+1(V
k+1
(i,i) ∪ V k+1

(i,i⊕n1))

and Ak+1 =
⋃

0≤i≤k+1(A
k+1
(i,i) ∪ Ak+1

(i,i⊕n1)). Thus the induction holds and the
theorem is proved. ��

4 An Algebraic Formula for the Protocol Language

In this paper we are interested in checking conformance to the SWP service.
The service is not concerned with internal protocol actions (acknowledgements,
retransmissions, sequence numbers) so we define the service primitives of the
Stop-and-Wait service as SP = {send, receive}. We define the SWP service lan-
guage over a lossy medium as (send, receive)∗ send† where a† represents 0 or 1
occurrences of a. This indicates that the last send may not be followed by a
receive if the last message that was sent is lost, i.e. the system will halt.

The protocol language comprises all sequences of service primitives exhibited
by the protocol. Obtaining an expression for the protocol language from the
symbolic OG of Theorem 1 will enable us to verify symbolically the conformance
of the SWP to its service for all values of MaxSeqNo > 0. We state this in the
following theorem, which is proved in the following subsections. For a more
detailed version of the proof, please see [12].

Theorem 2. The Stop-and-Wait protocol, as specified by CPNn in Definition 1,
conforms to the Stop-and-Wait service of alternating send and receive events, i.e.
(send, receive)∗ send†, for all values of MaxSeqNo > 0.

4.1 Mapping from the Algebraic OG to an Algebraic FSA

By interpreting the OG as a symbolic Finite State Automaton (FSA) and rela-
belling binding elements as either service primitives or epsilon (empty) moves,
we show how standard algorithms [3] for the reduction of (non-symbolic) FSAs
can be applied to the symbolic FSA to obtain the minimal deterministic FSA
which embodies the protocol language (of send and receive events).

Any finite OG can be interpreted as a FSA simply by defining a set of halt
states and an initial state. In our case, we also want to relabel the arcs from
binding elements to service primitives, or ε. We begin by defining the necessary
mappings to relabel the markings with integers and relabel the arcs with service
primitives (or ε):

Definition 2. Let I : [M0〉 → N+ be an injection, mapping from the reachable
markings of CPNn with initial marking M0 into the set of positive integers.
Let Prim : BE′n → SP ∪ {ε} be a mapping from the set of binding elements of
CPNn to either a service primitive name or to ε, where

– BE′n ⊆ BEn is the set of binding elements that occur in CPNn; and
– SP = {send, receive}.



468 G.E. Gallasch and J. Billington

To relabel markings M
(n,t)
(i,j) in OGn with an integer we define the injection

I as I(M (n,t)
(i,j) ) = 6i + t when j = i and 3(2i + 1) + t when j = i ⊕n 1, where

1 ≤ t ≤ 3 corresponds to the ‘types’ of markings described in Section 3 and
0 ≤ i ≤ n. We do not simplify the node label 3(2i+ 1) + t to 6i+ (3 + t) as the
type t of the marking would no longer be readily evident from the node label.

The mapping Prim maps all occurrences of send mess to the primitive send
and only those occurrences of receive mess corresponding to acceptance of a
new message (sn = rn) to the primitive receive. All other transition occurrences,
including occurrences of receive mess corresponding to detection and discarding
of a duplicate (sn �= rn), are mapped to ε.

We define the initial state of the FSA as the equivalent initial marking of
the CPN, i.e. I(M0) = I(M (n,1)

(0,0) ) = 1. As we have an arbitrary number of
messages to send, we define a legitimate halt state as any state in which 0
or more messages have been sent and successfully acknowledged, so that both
the sender and receiver are in their ready states and there are no messages
or acknowledgements in the channel. These states correspond to the markings
I(M (n,1)

(i,i) ) for all 0 ≤ i ≤ n. We also include the dead markings of OGn in the set

of halt states, i.e. I(M (n,3)
(i,i) ) and I(M (n,3)

(i,i⊕n1)) for all 0 ≤ i ≤ n as they represent
expected halt states of the protocol when operating over a lossy medium.

We are now ready to define the algebraic FSA associated with OGn:

Definition 3. The FSA associated with OGn of CPNn, with initial marking
M0, is FSAOGn = (V n

FSA, SP,A
n
FSA, v0, F

n
FSA) where

– V n
FSA = {I(M)|M ∈ Vn} is the set of nodes;

– SP = {send, receive} is the set of service primitive names of interest (the
alphabet of the FSA);

– An
FSA = {I(M), P rim(b), I(M ′)|(M, b,M ′) ∈ An} is the set of transitions

labelled by service primitives or epsilons for internal events (the transition
relation of the FSA);

– v0 = I(M0) = I(M (n,1)
(0,0) ) = 1 is the initial state of the FSA as defined above,

corresponding to the initial marking of CPNn; and
– Fn

FSA ⊆ V n
FSA is the set of final states defined above as⋃

0≤i≤n{I(M
(n,1)
(i,i) ), I(M (n,3)

(i,i) ), I(M (n,3)
(i,i⊕n1))}.

Table 5 summarises FSAOGn obtained by applying the mappings from Defini-
tion 2 to the algebraic expressions for the OG. Figure 4 gives a graphical represen-
tation of Table 5. Note that the relabelling of arcs has led to nondeterminism.

4.2 Removing Empty Cycles

The first step in determinising a FSA using standard algorithms [3] is the removal
of empty cycles. In our case, there are no empty cycles:

Proposition 1. FSAOGn , given by Table 5, contains no empty cycles.



Using Parametric Automata for the Verification of the Stop-and-Wait Class 469

Table 5. FSAOGn where 0 ≤ i ≤ n

Source node Arc Label Dest. node Dest. = Halt?

6i + 1 send 6i + 2 false

6i + 2 ε 6i + 3 true

6i + 2 receive 3(2i + 1) + 1 false

3(2i + 1) + 1 ε 3(2i + 1) + 2 false

3(2i + 1) + 2 ε 3(2i + 1) + 3 true

3(2i + 1) + 2 ε 6(i ⊕n 1) + 1 true

6i + 3

3(2i + 1) + 33(2i + 1) + 2

6i + 2
ε

ε

3(2i + 1) + 1

ε

ε

receive

send

6i + 1

6(i ⊕n 1) + 1

Fig. 4. The fragment of FSAOGn corresponding to any given i, 0 ≤ i ≤ n

Proof. There is only one cycle in FSAOGn and it is not an empty cycle. This
can be verified if we evaluate the source and destination nodes of all arcs for all
values 0 ≤ i ≤ n. For any given value of i, the graphical representation given
by Fig. 4 contains no cycles. The last node in the ith segment becomes the first
node in the (i⊕n 1)th segment. For all values of i up to n− 1, no arcs lead back
to previously seen nodes. However, the last node in the nth segment (i.e. when
i = n) is node (6(n ⊕n 1) + 1) = 1, the initial node. Therefore the only arc to
return to an already seen node (and thus close a cycle) is the last arc in the nth

segment, thus there is only one cycle. This cycle contains non-ε primitives (one
send and receive for each segment) and thus it is not an empty cycle. ��

4.3 Removing Empty Moves

The next step is removal of empty moves from the algebraic FSA. Removing the
empty moves to deadlocked nodes of type t = 3 (nodes 6i+ 3 and 3(2i+ 1) + 3,
0 ≤ i ≤ n) involves deleting the arcs leading to these nodes and flagging the



470 G.E. Gallasch and J. Billington

Table 6. FSAOGn after removal of ε moves and deletion of inaccessible states, where
rows 2 and 3 are evaluated for 0 ≤ i ≤ n

Source node Arc Label Dest. node Dest. = Halt?

1 send 2 true

6i + 2 receive 3(2i + 1) + 1 true

3(2i + 1) + 1 send 6(i ⊕n 1) + 2 true

source nodes of these arcs (nodes 6i + 2 and 3(2i + 1) + 2) as halt states. This
causes the nodes 6i+ 3 and 3(2i+ 1)+ 3 to become inaccessible. Removal of the
remaining empty moves between nodes 3(2i+1)+1, 3(2i+1)+2 and 6(i⊕n1)+1
is done in a similar way, resulting in the nodes 3(2i + 1) + 2 and 6(i ⊕n 1) + 1
becoming inaccessible from the initial state (except for the initial state itself,
6(n⊕n 1)+1 = 1). Table 6 shows the symbolic FSA after removal of all ε-moves
and deletion of all inaccessible states.

4.4 Determinisation and Minimisation

After the removal of empty moves, the algebraicFSA given by Table 6 is once again
deterministic, which can be proved by inspection as all nodes accept exactly one
service primitive and have exactly one successor. However the FSA is not minimal.

To obtain a minimal representation [3] we begin by partitioning the states
into two subsets, based on halt-state status. Both subsets are further divided if
states within each subset are distinguishable [3] based on the input symbols that
they accept. The process of refining the partitioning of states continues until no
more refinements can be made.

From Table 6 it can be seen that all states are halt states, so we begin with
all states placed in the same subset, i.e. {1, 6i + 2, 3(2i + 1) + 1 | 0 ≤ i ≤ n}.
States are now divided based on the input symbols they accept, either send
or receive, giving us the two subsets {1, 3(2i + 1) + 1 | 0 ≤ i ≤ n} and
{6i + 2 | 0 ≤ i ≤ n}. These subsets cannot be further refined, as all states
in the first subset accept send leading to a state from the second subset, and
vice versa for the states in the second subset accepting receive. To construct the
minimum FSA we choose the representative ‘1’ to represent the first subset in
the minimal FSA and the representative ‘2’ (when i = 0) to represent the sec-
ond subset. Both are halt states and ‘1’ is the initial state. send and receive arcs
are defined accordingly. The resulting minimised deterministic FSA is given in
Table 7.

Table 7. The minimised deterministic FSAOGn representing the protocol language of
CPNn

Source node Arc Label Dest. node Dest. = Halt?

1 send 2 true

2 receive 1 true



Using Parametric Automata for the Verification of the Stop-and-Wait Class 471

This minimised deterministic FSA represents the protocol language for all val-
ues of MaxSeqNo. We have gone from an algebraic representation of an infinite
number of FSAs to a single minimised deterministic representation. Because both
states are halt states this FSA verifies that the SWP does indeed satisfy the Stop-
and-Wait service of (send, receive)∗send†, for all values of MaxSeqNo, and thus The-
orem 2 is proved.

5 Conclusions and Future Work

We have proved a theorem which gives an algebraic expression for the infinite
family of OGs of a parameterised CPN model of the class of Stop-and-Wait
protocols, for the simplest case when there are no retransmissions. Additionally,
we have presented for the first time, formulas for the size of the OG as a function
of MaxRetrans and MaxSeqNo. Both the number of nodes and the number of
arcs are linear in MaxSeqNo and quartic in MaxRetrans. From the algebraic
expression we have obtained a symbolic FSA representing the protocol language.
We demonstrated how to apply (non-symbolic) reduction techniques directly to
the symbolic FSA to obtain a simple automaton for the protocol language and
confirmed that it is language equivalent to the Stop-and-Wait service. We believe
this is the first time such a result has been obtained by directly constructing an
algebraic expression for the family of occurrence graphs of a CPN model of the
class of Stop-and-Wait protocols. This is important as it eliminates reachability
analyses for each value of the (unbounded) parameter and provides a general
result.

The results in this paper extend those in [8] to any value of MaxSeqNo
(MaxRetrans = 0) rather than just the small values of the parameters that could
be handled by automatic tools [11]. The next step is to generalise this result for
any value of MaxRetrans.

Our ultimate goal is to use these symbolic expressions representing an infinite
set of occurrence graphs for more complete protocol verification. For example,
deadlocked states can be identified from Tables 3 and 4 as those that never
appear as source nodes (the states superscripted by the type ‘3’) caused by
message or acknowledgement loss. Further, from Tables 1 and 2 we can determine
upper bounds on the channel content by examining the length of the queues (the
message and acknowledgement channels are bounded by 1).

In the future, we would like to prove properties of the Stop-and-Wait class of
protocols over reordering channels, corresponding to their use over the Internet.
Establishing an algebraic expression for the occurrence graphs over both parame-
ters and following the sameprocedure usedhere for theMaxSeqNoparameter seems
promising and is the subject of current investigations. We would then like to use
this result to verify such properties as absence of deadlocks and the stop and wait
service, and to determine channel bounds for arbitrary parameter values.

Acknowledgement. The authors are grateful to their colleague, Lin Liu, for
her inspiration for the proof of Theorem 1 and technical discussions regarding
the symbolic minimisation procedure.



472 G.E. Gallasch and J. Billington

References

1. P. Aziz Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using
Forward Reachability Analysis for Verification of Lossy Channel Systems. Formal
Methods in System Design, 25(1):39–65, 2004.

2. S. Bardin, A. Finkel, and J. Leroux. FASTer Acceleration of Counter Automata
in Practice. In Proceedings of TACAS’2004, volume 2988 of Lecture Notes in
Computer Science, pages 576–590. Springer, 2004.

3. W.A. Barrett and J.D. Couch. Compiler Construction: Theory and Practice. Sci-
ence Research Associates, 1979.

4. J. Billington. Formal specification of protocols: Protocol Engineering. In Ency-
clopedia of Microcomputers, volume 7, pages 299–314. Marcel Dekker, New York,
1991.

5. J. Billington, M. Diaz, and G. Rozenberg, editors. Application of Petri Nets to
Communication Networks, volume 1605 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

6. J. Billington and G. E. Gallasch. How Stop and Wait Protocols Can Fail Over The
Internet. In Proceedings of FORTE’03, volume 2767 of Lecture Notes in Computer
Science, pages 209–223. Springer-Verlag, 2003. (invited paper).

7. J. Billington and G. E. Gallasch. An Investigation of the Properties of Stop-
and-Wait Protocols over Channels which can Re-order messages. Technical Re-
port CSEC-15, Computer Systems Engineering Centre Report Series, University
of South Australia, May 2004.

8. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to
Protocol Verification. In Lectures on Concurrency and Petri Nets, Advances in
Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 210–290.
Springer-Verlag, 2004.

9. J. Billington, G.E. Gallasch, and L. Petrucci. Transforming Coloured Petri Nets
to Counter Systems for Parametric Verification: A Stop-and-Wait Protocol Case
Study. In Proceedings of 2nd International Workshop on Model-Based Methodolo-
gies for Pervasive and Embedded Software (MOMPES’05), Rennes, France, TUCS
General Publication, No. 39, pages 37–55, May 2005.

10. FAST - Fast Acceleration of Symbolic Transition systems.
http://www.lsv.ens-cachan.fr/fast/.

11. FSM Library, AT&T Research Labs. http://www.research.att.com/sw/tools/

fsm/.
12. G. E. Gallasch and J. Billington. Towards the Parametric Verification of the Class

of Stop-and-Wait Protocols over Ordered Channels. Technical Report CSEC-21,
Computer Systems Engineering Centre Report Series, University of South Aus-
tralia, March 2005, revised June 2005.

13. S. Gordon. Verification of the WAP Transaction Layer using Coloured Petri Nets.
PhD thesis, Institute for Telecommunications Research and Computer Systems
Engineering Centre, School of Electrical and Information Engineering, University
of South Australia, Adelaide, Australia, November 2001.

14. B. Han. Formal Specification of the TCP Service and Verification of TCP Connec-
tion Management. PhD thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide,
Australia, December 2004.

15. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Vol. 1, Basic Concepts. Springer-Verlag, 2nd edition, 1997.



Using Parametric Automata for the Verification of the Stop-and-Wait Class 473

16. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Vol. 2, Analysis Methods. Springer-Verlag, 2nd edition, 1997.

17. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Vol. 3, Practical Use. Springer-Verlag, 1997.

18. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

19. L. Liu and J. Billington. Tackling the Infinite State Space of a Multimedia Con-
trol Protocol Service Specification. In Proceedings of ICATPN’02, volume 2360 of
Lecture Notes in Computer Science, pages 273–293. Springer-Verlag, 2002.

20. C. Ouyang. Formal Specification and Verification of the Internet Open Trading
Protocol using Coloured Petri Nets. PhD thesis, Computer Systems Engineering
Centre, School of Electrical and Information Engineering, University of South Aus-
tralia, Adelaide, Australia, June 2004.

21. J. Postel. Transmission Control Protocol. RFC 793, September 1981.
22. W. Stallings. Data and Computer Communications. Prentice Hall, 6th edition,

2000.
23. A. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2003.
24. The TReX Tool. http://www.liafa.jussieu.fr/~sighirea/trex/.
25. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Ba-

sic Models, volume 1491 of Lecture Notes in Computer Science, pages 429–528.
Springer-Verlag, 1998.

26. A. Valmari and I. Kokkarinen. Unbounded Verification Results by Finite-State
Compositional Techniques: 10any States and Beyond. In Proceedings of Interna-
tional Conference on Application of Concurrency to System Design, pages 75–85.
IEEE Computer Society, March 1998.

27. M. E. Villapol. Modelling and Analysis of the Resource Reservation Protocol. PhD
thesis, Institute for Telecommunications Research and Computer Systems Engi-
neering Centre, School of Electrical and Information Engineering, University of
South Australia, Adelaide, Australia, November 2003.



Flat Acceleration in Symbolic Model Checking�

Sébastien Bardin1, Alain Finkel1, Jérôme Leroux2, and Philippe Schnoebelen1

1 LSV: ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

{bardin, finkel, phs}@lsv.ens-cachan.fr
2 IRISA, Vertecs project, INRIA,

Campus de Beaulieu, 35042 Rennes Cedex, France
jleroux@irisa.fr

Abstract. Symbolic model checking provides partially effective verification pro-
cedures that can handle systems with an infinite state space. So-called “acceleration
techniques” enhance the convergence of fixpoint computations by computing the
transitive closure of some transitions. In this paper we develop a new framework
for symbolic model checking with accelerations. We also propose and analyze
new symbolic algorithms using accelerations to compute reachability sets.

Keywords: verification of infinite-state systems, symbolic model checking, ac-
celeration.

1 Introduction

Context. The development of model checking techniques [19] for infinite-state sys-
tems is now an active field of research. These techniques allow considering models like
pushdown systems [13], channel systems [1,14], counter systems [8,31,38], and many
other versatile families of models. Such models are very expressive and often lead to
undecidable verification problems. This did not deter several research teams from de-
veloping powerful innovative model checkers for infinite-state systems. For example,
tools for checking reachability properties of counter systems are ALV [6], BRAIN [37],
LASH [33], TREX [3], and our own FAST [8]. For infinite-state systems, model check-
ing must be “symbolic” since one manipulates (symbolic representations of) potentially
infinite sets of configurations. The most popular symbolic representations are based
on regular languages: these are quite expressive and automata-theoretical data struc-
tures provide efficient algorithms performing set-theoretical operations as well as pre-
and post-image computations. With these ingredients, it becomes possible to launch a
fixpoint computation for forward or backward reachability sets, as exemplified in [32].

The problem of convergence. When dealing with infinite-state systems, a naive fixpoint
computation procedure for reachability sets, in the style of Procedure 1 (section 3.2),
has very little chance to terminate: convergence in a finite number of steps can only
occur if the system under study is uniformly bounded (see section 3.2). To make fixpoint

� This work was supported by the ACI Sécurité & Informatique (project Persée) funded by the
French Ministry of Research.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 474–488, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Flat Acceleration in Symbolic Model Checking 475

computations converge more frequently, so-called “acceleration techniques” have been
developed. These techniques can compute subsets of the reachability set that are not uni-
formly bounded. This can be done, for example, by replacing a control loop “x:=x+1;
y:=y-1” by its transitive closure “k:=random int(); x:=x+k; y:=y-k”. Cur-
rently, many different acceleration techniques for different families of systems ex-
ist [1,2,12,14,26,38]. Some of them have been implemented [3,8,33] and promising
case-studies have been reported [1,2,3,8,9]. Acceleration shares some similarities with
the widening techniques used in abstract interpretation [22] but also exhibits some
clear differences: acceleration aims at exact computation for some given control struc-
tures, while widening mostly ignores control structures and usually trades exactness
for termination.

A field in need of foundations. The existing acceleration results usually amount to
a (sometimes difficult) theorem stating that the transitive closure of an action, or of a
sequence of actions, can be effectively computed. The difficulty of these results usually
lies in finding the precise conditions on the action and on the set of initial states that
yield effectiveness. How to use acceleration results is not really known: the theorems
and algorithms for computing reachability sets with acceleration methods do not exist in
general! With some tools, e.g., LASH, the user has to choose which loops to accelerate and
how to mix the outcomes with more standard symbolic computation; in other cases, e.g.,
with TREX, some default strategy is implemented outside of any theoretical framework
and without discussions about its efficiency or completeness.

Our contributions. (1) We propose the first theoretical framework for symbolic model
checking with acceleration. We distinguish three natural levels for accelerations ( “loop”,
“flat”, and “global”), depending on which sequences of transitions can be computed:
transitive closure of cycles (resp. of length 1) for flat (resp. loop) acceleration; or any
regular set of sequences for global acceleration. These levels can account for most
acceleration results on specific systems (pushdown systems, channel systems, counter
systems, . . . ). For each level we give a symbolic algorithm with acceleration computing
reachability sets and we characterize the conditions necessary for its termination.

Flat acceleration is the most interesting level. As a matter of fact, loop acceleration
is not sufficient for many of the example systems we have analyzed with our tool FAST.
Furthermore, the majority of existing acceleration results stated at the loop acceleration
level may be extended to the level of flat acceleration. At the other end of the spectrum,
global acceleration is always sufficient but it occurs very rarely in practice and is es-
sentially restricted to particular subclasses (e.g., pushdown systems, reversal-bounded
counter systems [31] or particular subclasses of Petri nets).

(2) We develop new concepts for the algorithmic study of flat acceleration. The
notions of flattenings and of flattable systems provide the required bridge between flat
acceleration and the effective computation of the reachability set.

We propose new symbolic procedures and analyze them rigorously. We show Proce-
dure REACH2 terminates iff it is applied to a flattable (rather than flat) system, which is
the first completeness result on symbolic model checking with acceleration. We remark
that most of the case studies we analyzed in earlier works with FAST are flattable but
not flat, underlining the relevance of this concept.



476 S. Bardin et al.

(3) Procedure REACH2 is schematic and it can be specialized in several ways. We
propose one such specialization, REACH3, geared towards the efficient search of all
flattenings of a nonflat system, without compromising completeness.

It appears that a key issue with REACH3 is the reduction of the number of circuits the
procedure has to consider. FAST implements specific algorithms for counter systems that
reduce exponentially the number of considered circuits and we show how to generalize
these ideas to other families of systems. It is these algorithms that make FAST succeed
in verifying several examples (see section 6) for which tools like LASH and ALV, based
on similar technology but restricted heuristics, do not terminate. More generally, the
comparisons in section 6 suggest that flat acceleration greatly enhances termination of
symbolic reachability set computation, and is fully justified in practice.

Outline. We define the systems under study in section 2, and the symbolic frameworks
in section 3. Section 4 introduces the three levels of accelerations and defines flattable
systems. Section 5 provides our procedure for flattable systems, and gives several algo-
rithmic and/or heuristic refinements. Section 6 compares several existing tools through
the new framework. All omitted proofs can be found in the full version of this paper.

2 Systems and Interpretations

Notations. A (binary) relation r on some set X is any subset of X×X . We write x r x′

when (x, x′) ∈ r and denote by r(x) the set {x′ ∈ X | x r x′}. For Y ⊆ X , r(Y ) is⋃
x∈Y r(x). Given r1, r2 ⊆ X × X , the compound relation r1 • r2 contains all pairs

(x, z) s.t. x r1 y and y r2 z for some y ∈ X . Note that, in r1 • r2, relation r1 is applied
first. For i ∈ N, ri is defined inductively by r0 = IdX and ri+1 = r • ri, where IdX is
the identity on X . r∗ =

⋃
i∈N

ri is the reflexive and transitive closure of r.

Here, a system is a finite state control graph extended with a finite number of variables
that range over arbitrary domains and are modified by actions when a transition is fired.
Specific families of systems have been widely studied (see section 2.1). Formally:

Definition 2.1 (Uninterpreted system). An uninterpreted system S is a tuple S =
(Q, Σ, T ), where Q is a finite set of locations, Σ is a (possibly infinite) set of formulae
called actions, T ⊆ Q×Σ ×Q is a finite set of transitions.

Given a uninterpreted system S = (Q, Σ, T ), the source, target and action mappings
α : T → Q, β : T → Q and l : T → Σ are defined as follows: for any transition
t = (q,σ, q′) ∈ T , α(t) = q,β(t) = q′, l(t) = σ.

Definition 2.2 (Interpretation). Given a (possibly infinite) set of formulae Σ and a set
D, an interpretation I of Σ, shortly an interpretation, is a tuple I = (Σ, D, �·�) such
that �·� : Σ → 2D×D maps formulae to relations on D.

Definition 2.3 (System). An interpreted system S (shortly a system) is a pair (S, I) of
an uninterpreted system S = (Q, Σ, T ) and an interpretation I = (Σ, D, �·�) of Σ,
shortly written S = (Q, Σ, T, D, �·�).

Fig. 1 displays S0, a simple uninterpreted system, in graphical notation.



Flat Acceleration in Symbolic Model Checking 477

q1 q2

x:=x + 1 /∗ a1 ∗/

x �= y? y:=y + x /∗ a2∗/

y:=y + 2;
x:=x− 1
/∗ a3 ∗/

Fig. 1. S0, a simple uninterpreted system

In this example the actions may
be assignments that can be guarded
by Boolean expressions, but we will
not specify it more precisely. A pos-
sible interpretation for a1 ,a2 and a3

(the actions appearing in S0) assumes
that the domain D is Z{x,y}, or equiv-
alently Z2, i.e., we decide that x and
y range over integers. We then interpret the actions in the obvious way. For example
�a2� = {((x, y), (x′, y′)) | x �= y ∧ y′ = y + x ∧ x′ = x}. This turns S0 into an
interpreted system S0.

Behaviour. The set of configurations CS of S is Q × D, and each transition t ∈ T is

interpreted as a relation
t−→⊆ CS × CS defined by: (q, x) t−→ (q′, x′) if q = α(t), q′ =

β(t) and (x, x′) ∈ �l(t)�. This definition extends to sequences π ∈ T ∗ of transitions. Let

ε denote the empty word. Then
ε−→= IdCS and

t·π−→= t−→ • π−→. We also define
L−→ for any

language L ⊆ T ∗ by
L−→=

⋃
π∈L

π−→. Similarly �·� is extended to any language L ⊆ Σ∗.
In the following we omit the S subscript whenever this causes no ambiguities.

Reachability problems. We are interested in checking safety properties, which can be
expressed in terms of reachability using standard techniques. For any X ⊆ CS and

any L ⊆ T ∗, we define postS(L, X) = {x′ ∈ CS | ∃x ∈ X ; (x, x′) ∈ L−→}. The set
post(T, X) of all configurations reachable in one step from X is denoted by post(X).
The set post(T ∗, X) of all configurations reachable from X is the reachability set of X ,
denoted by post∗(X).

In practice, we usually ask whether post∗(X0) ⊆ P , for X0 a set of initial con-
figurations, and P a set of “safe” configurations. We focus here on the reachability set
computation which is the key issue. Since post∗(X0) is not recursive in general, the best
we can hope for are partially correct procedures, with no guarantees of termination, but
that are efficient on interesting subclasses of systems, and in practical case-studies.

Backward computation. One may also rely on backward reachability and check if, for
a set P of “bad” configurations, pre∗(P ) ∩ X0 is empty (with obvious definition for
pre). Since, for our level of abstraction, adaptation to backward computation is straight-
forward, we consider only forward computation. However it is worth remembering that,
depending on the case at hand, one of the approaches may be more adapted than the
other. Along the paper specific results for backward computation are pointed out.

Transition relation computation. A third approach is to compute the reachability re-

lation
T∗
−→ once and for all (e.g., [21,25]). Then post∗(X0) =T∗

−→ (X0). Our framework
extends smoothly in this direction but, since it requires additional notations, we postpone
this until the full version of this work.



478 S. Bardin et al.

2.1 Families of Systems

Definition 2.4 (Family of systems). Given an interpretation I = (Σ, D, �·�), the family
of systems built on I (shortly the family of systems) denoted by F(I) is the class of all
systems S = (Q, Σ, T, D, �·�) using I to interpret actions.

Well known models can be obtained by instantiating Definition 2.4:
Minsky machines: are obtained by defining D = NVar where Var = {x1, x2, . . .} is
a set of variables, and Σ as the set of increments “xi:=xi + 1”, guarded decrements
“xi > 0? xi:=xi − 1” and 0-tests “xi = 0?“ with the obvious interpretation.
Counter systems [18,34]: are obtained by considering the same domain, or a variant
D = ZVar , and all actions definable in Presburger arithmetic. Many restrictions exist,
e.g., linear systems where actions are linear transformations with guards expressed in
Presburger [26,38], reversal-counter systems [31], many extensions of VASS (or Petri
nets) and so on.
Pushdown systems: the domain is D = Γ ∗, the set of all words on some stack alphabet
Γ . Actions add or remove letters on or from the top of the stack.
Channel systems [17]: consider the domain is D = (Γ ∗)C where C is a set of fifo
channels, and Γ is some alphabet of messages. Actions add messages at one end of the
channels and consume them at the other end.
Timed automata [5]: consider the domain D = RVar

+ . Here some actions are guarded
by simple linear (in)equalities and they can only reset clocks. Other actions, left implicit
in the standard presentation, account for time elapsing.
Hybrid systems [4]: extend timed automata in that the real-valued variables do not
increase uniformly when time elapses. Rather they each increase according to their own
rate (as given by the current location).

3 A Symbolic Framework for Symbolic Model Checking

In practice model checking procedures use symbolic representations (called here regions)
to manipulate sets of configurations. The definition below follows directly from ideas
expressed for example in [15,32,22].1

Definition 3.1 (Symbolic framework). A symbolic framework is a tuple SF = (Σ, D,
�·�1 , L, �·�2) where I = (Σ, D, �·�1) is an interpretation, L is a set of formulae called
regions, �·�2 : L → 2D is a region concretization, and such that there exists a decidable
relation % and recursive functions �, POST satisfying:

1. there exists an element⊥∈ L such that �⊥�2 = ∅,
2. % ⊆ L× L is such that for all x1, x2 ∈ L, x1 % x2 iff �x1�2 ⊆ �x2�2,
3. � : L× L → L is such that ∀x1, x2 ∈ L, �x1 � x2�2 = �x1�2 ∪ �x2�2,
4. POST : Σ × L → L is such that ∀a ∈ Σ, ∀x ∈ L, �POST(a, x)�2 = �a�1 (�x�2).

1 Some weakened versions of the symbolic framework are sometimes considered. A weak
inclusion ensures only that x1 � x2 implies �x1� ⊆ �x2� while a weak union satisfies
�x1� ∪ �x2� ⊆ �x1 � x2� (typical widening in abstract interpretation [22]). In the following,
we do not consider weakened framework.



Flat Acceleration in Symbolic Model Checking 479

Notation. Usually given an interpretation I = (Σ, D, �·�1) and a set of regions L, �·�2
is understood. Thus in the following, we write �·� for both �·�1 and �·�2, and we denote
symbolic frameworks as SF = (I, L). In the rest of the paper, we fix an arbitrary sym-
bolic framework SF = (I, L). When referring to a system S, if nothing is specified we
assume that S ∈ F(I).

Well-known symbolic frameworks for some of the families listed in section 2.1 are:

Regular languages: have been used for representing sets of configurations of push-
down systems [13], distributed protocols over rings of arbitrary size [32], and chan-
nel systems [36]. Restricted sets of regular languages are sometimes used for better
algorithmic efficiency: languages closed by the subword relation [1] or closed by semi-
commutations [16].

(finite union of) Convex polyhedra [4]: are conjunctions of linear inequalities defining
subsets of RVar

+ , relevant in the analysis of hybrid systems.

Number Decision Diagrams [18,26]: are automata recognizing subsets of ZVar and
have been used in the analysis of counter systems.

Real Vector Automata [11]: are Büchi automata recognizing subsets of RVar
+ and have

been used in the analysis of linear hybrid systems.
Difference Bounds Matrices [5]: are a canonical representations for convex subsets
of RVar

+ defined by simple diagonal and orthogonal constraints that appear in timed
automata.
Covering Sharing Trees [24]: are a compact representation for upward-closed subsets
of NVar . These sets appear naturally in the backward analysis of broadcast protocols [26]
and several monotonic extensions of Petri nets.

Given a system S with a set of locations Q, and X ⊆ CS , post∗(X) is of the form⋃
q∈Q{q} × Dq where the Dq are subsets of D. Assuming an implicit ordering on

locations q1, . . . , q|Q|, we work on tuples of regions in L|Q|. We extend �·� to L|Q| by�
(x1, . . . , x|Q|)

�
=
⋃|Q|

i=1{qi} × �xi�. Extensions of % and � are component-based.
POST is extended into POST : T × L → L by: POST((qi, a, qj), (x1, . . . , x|Q|)) is
equal to (x′1, . . . , x′|Q|) such that x′p = ⊥ if p �= j, POST(a, xi) otherwise. POST is then

extended to sequence of transition in the obvious way. We define POST : L|Q| → L|Q|

by POST(x) =
⊔

t∈T POST(t, x).

3.1 Limits of the Symbolic Approach

A subset of configurations X ⊆ CS is L-definable if there exists x ∈ L|Q| such that
�x� = X . Obviously, computing post∗(X) using regions is feasible only if post∗(X) is
L-definable and the question “is post∗(�x�) L-definable?” is undecidable in general.

Furthermore, L-definability of post∗(X) is not a sufficient condition for its com-
putability. We say below that post∗ (or any other function) is effectively L-definable if
there exists a recursive function g : L|Q| → L|Q| such that ∀x ∈ L|Q|, post∗(�x�) =
�g(x)�. (We often abuse terminology and write that “post∗(�x�)”, instead of post∗, “is
effectively L-definable”). It can well be the case that post∗(�x�) is L-definable but not



480 S. Bardin et al.

effectively so (e.g., the family of lossy channel systems and the framework defined by
simple regular expressions).

3.2 Standard Symbolic Model Checking Procedure

REACH1 (Procedure 1) is the standard symbolic procedure for reachability sets. It is only
guaranteed to terminate on L-uniformly bounded systems.

procedure REACH1(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0

2: while POST(x) �� x do
3: x ← POST(x) � x

4: end while
5: return x

Procedure 1: Standard symbolic model checking algorithm (forward version)

Definition 3.2 (L-uniformly bounded). A system S is L-uniformly bounded if for all
x ∈ L|Q|, there exists nx ∈ N such that, for all c1 ∈ Q × �x� and c2 ∈ Q × D, if
c2 ∈ post∗({c1}) then c2 ∈

⋃
i≤nx

posti({c1}).

Theorem 3.3. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH1 terminates, �REACH1(x0)� = post∗(�x0�) (partial correctness);
2. REACH1 terminates on any input iff S is L-uniformly bounded (termination).

Remark 3.4. Termination for L-uniformly bounded systems does not hold if% or � are
weak.

In practice systems are rarely L-uniformly bounded and Procedure 1 seldom termi-
nates. A notable exception are the well-structured transition systems with upward-closed
sets as regions [28,27]. They are L-backward uniformly bounded so that a backward
version of Procedure 1 always terminates.

4 Flat Acceleration for Flattable Systems

4.1 Acceleration Techniques

In order to improve the convergence of the previous procedure, acceleration techniques
consist in computing the transitive closure of some transitions.

Definition 4.1 (Acceleration). A symbolic framework SF = (I, L) supports

1. loop acceleration if there exists a recursive function POST STAR : Σ × L → L s.t.
∀a ∈ Σ, ∀x ∈ L, �POST STAR(a, x)� = �a∗� (�x�);



Flat Acceleration in Symbolic Model Checking 481

2. flat acceleration if there exists a recursive function POST STAR : Σ∗ × L → L s.t.
∀π ∈ Σ∗, ∀x ∈ L, �POST STAR(π, x)� = �π∗� (�x�);

3. global acceleration if there exists a recursive function POST STAR : RegExp(Σ) ×
L → L s.t. for any regular expression e over Σ, for any x ∈ L , �POST STAR(e, x)�
= �e� (�x�).

We often write that “S”, rather than (I, L), “supports loop acceleration, or flat, . . . ”
Consider S0 from Fig. 1 and let A ⊆ D. Loop acceleration only concerns action a3,

and comes down to computing �a∗3� (A) = {(x′, y′) ∈ Z2|∃(x, y) ∈ A; ∃k ∈ N; x′ =
x − k ∧ y′ = y + 2 · k}. Flat acceleration requires computability of �(a1 · a2)∗� (A),
�(a1 · a3 · a2)∗� (A), �(a1 · a3 · a3 · a2)∗� (A), �(a3 · a2 · a1)∗� (A) and so on. Global
acceleration requires the computation of more complex interleaving of actions, like
�(a1 · a∗3 · a2)∗� (A).

Definition 4.1 applies to symbolic frameworks and hence uses sequences of actions.
However, in practice, POST STAR is used with sequences of transitions. Let us illustrate
this in the case of flat acceleration: Consider a sequence π = (q1, a1, q2) · (q3, a2, q4) ·
(q5, a3, q6) of transitions. There are two cases. If the sequence is invalid (i.e., q2 �= q3

or q4 �= q5) then the associated relation is empty and POST STAR(π, (q, x)) is (q, x).
If the sequence is valid, then the sequence is equivalent to (q1, a1 · a2 · a3, q6). If the
sequence is not a cycle (q1 �= q6) it can be fired at most once and POST STAR(π, (q1, x))
is (q6, POST(a1 · a2 · a3, x)) + (q1, x). If the sequence is a cycle (i.e., q1 = q6) then
POST STAR(π, (q, x)) is (q1, POST STAR(a1 · a2 · a3, x)) if q = q1, and (q, x) other-
wise. Finally POST STAR is extended to L|Q| in the obvious way. The extension for
global acceleration considers the intersections of the regular language e with the regular
languages of transitions from a location q to another location q′.

Example 4.2. Loop acceleration. Minsky machines support loop acceleration in frame-
works where formulae in L define upward-closed sets or semi-linear sets. But upward-
closed sets (for example) are not expressive enough to support flat acceleration.
Flat acceleration. Counter systems (with finite monoid) equipped with Presburger for-
mulae supports flat acceleration [26, theorem 2]. Other examples are channel systems
with cqdd [14, theorem 5.1], non-counting channel systems with slre [27, theorem 5.2]
or qdd[12, theorem 6], lossy channel systems with sre [1, corollary 6.5]. Restricted
counter systems used by TREX equipped with arithmetics almost supports flat acceler-
ation [2, lemma 5.1]: their POST STAR is not recursive.
Global acceleration. Reversal-counter systems [31], 2-dim VASS [34], lossy VASS
and other subclasses of VASS with Presburger formulae [35], pushdown systems with
regular languages or semi-commutative rewriting systems with APC languages [16],
support global acceleration.

Obviously “global⇒ flat ⇒ loop”. Loop acceleration is often easy to obtain, but rarely
sufficient in fixpoint computations. Flat acceleration is more flexible, but often requires
good compositional properties of Σ and more complex methods for POST STAR. Global
acceleration is a very strong property that ensures post∗ is effectively L-definable.
Clearly most interesting families of systems do not support global acceleration since
they are Turing powerful. Then for our purpose, flat acceleration is likely to be the best
compromise. The rest of the paper will focus on flat acceleration.



482 S. Bardin et al.

4.2 Restricted Linear Regular Expressions

Flat acceleration allows to compute the effect of more general expressions than iterations
of sequences of actions. Given an alphabet A, a restricted linear regular expression (rlre)
over A is a regular expression ρ of the form u∗1 . . .u

∗
n where, for all i, ui ∈ A∗. This is

closely related to semi-linear regular expressions [27,30].

Proposition 4.3. Let S support flat acceleration. Then for any rlre ρ over T and for any
x0 ∈ L|Q|, post(ρ, �x0�) is effectively L-definable.

4.3 Flat Systems and Flattenings

q1 q2
t3

t1 t2In general, flat acceleration does not ensure computabil-
ity of the reachability set. However it does in some cases,
for example with “flat” systems, that have no nested
loops. Consider the system on the right: its reachability
set can be computed by iterating first t1, then firing t3, and finally iterating t2.

Definition 4.4 (Flat system [20,27,30]). An uninterpreted system S = (Σ,Q, T ) is flat
if for any location q, there exists at most one elementary cycle containing q. A system
S = (Σ,Q, T, D, �·�) is flat if S = (Σ,Q, T ) is flat.

In Fig. 1, S0 is not flat because its two elementary cycles both visit q2.

Proposition 4.5. If S is a flat system supporting flat acceleration, then post∗S(�x�) is
effectively L-definable.

Not all systems of interest are flat, and a possible method for dealing with a non-flat
system S is to find an equivalent flat system, called a flattening of S.

Definition 4.6 (Flattening). A systemS′ = (Q′, Σ, T ′, D, �·�) is a flattening of a system
S = (Q, Σ, T, D, �·�) if (1) S′ is flat, and (2) there exists a mapping z : Q′ → Q, called
folding, such that ∀(q′1, w, q′2) ∈ T ′, (z(q′1), w, z(q′2)) ∈ T .

Flattening is a form of partial unfolding. The following figure shows a system (left) and
one of its flattenings (right).

q1 q2

t3

t4

t2t1
q′1 q′2 q′′1

q′′2q′′′1q′′′2

t3 t4

t3

t4t3

t4t1

t1

t2

Assume S′ is a flattening of some S. The z folding extends to configurations of S′ by
z((q′, x)) = (z(q′), x). Extension of z to X ⊆ CS′ is defined by:

z
( ⋃

q′∈Q′
{q′} ×Dq′

)
=

⋃
q∈Q

{q} ×
( ⋃

q′∈z−1(q)

Dq′
)
.

This gives an effective extension of z to L-definable subsets of CS′ . Given X ′ ⊆ CS′ ,
Definition 4.6 ensures that z(post∗S′(X ′)) ⊆ post∗S(z(X ′)) and that for any language
L ⊆ T ∗, z(postS′(L, �x′�)) = postS(z(L), z(�x′�)).



Flat Acceleration in Symbolic Model Checking 483

Definition 4.7 (L-flattable). A system S = (Q, Σ, T, D, �·�) is L-flattable iff for any
x ∈ L|Q|, there exists a flattening S′ = (Q′, Σ, T ′, D, �·�) of S and a x′ ∈ L|Q

′| such
that z(�x′�) = �x� and z(post∗S′(�x′�)) = post∗S(z(�x′�)).

Prop. 4.5 extends to flattable systems:

Theorem 4.8. If S is a L-flattable system supporting flat acceleration, then post∗S(�x�)
is effectively L-definable.

A natural question is whether L-flattable systems are common or rare. It appears
that many systems with L-definable reachability sets are flattable. For example 2-dim
VASS [34], timed automata [21], k-reversal counter machines, lossy VASS and other sub-
classes of VASS [35] and all L-uniformly bounded systems (see section 3) are L-flattable.
Clearly, there is no equivalence in general: lossy channel systems haveL-definable reach-
ability sets but are not flattable. Interesting open questions are whether well-known
subclasses with L-definable reachability sets (like Presburger definable VASS) are L-
flattable or not.

We conclude by noting that L-flattability is undecidable in general, even when re-
stricting to 2-counter systems:

Theorem 4.9. Assuming the symbolic framework of 2-counter systems and Presburger
formulae, the question of whether a 2-counter system S is L-flattable is undecidable.

5 Computing Reachability Set Using Flat Acceleration

The previous characterization leads to a complete procedure for flattable systems: (1)
enumerate all flattenings S′ of S; (2) for each S′, compute its reachability set X ; (3)
check whether z(X) is closed by post in S.

However flattenings are not easy to handle and this motivates the following alternative
characterization based on rlre’s.

Theorem 5.1. A system S = (Q, Σ, T, D, �·�) is L-flattable iff for all x ∈ L|Q|, there
exists a rlre ρ over T such that post∗(�x�) = post(ρ, �x�).
Hence reachability set computation for flattable systems reduces to exploring the set of
rlre over T , which can be achieved by increasing a sequence of rlre: see Procedure 2.
Observe that REACH2 must choose “fairly”. Here this means that, in a nonterminating
execution of the procedure, each w ∈ T ∗ is selected infinitely often. Many simple
schemes ensuring such a fair choice are possible.

Theorem 5.2. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH2 terminates, �REACH2(x0)� = post∗(�x0�) (partial correctness);
2. REACH2 terminates on any input iff S is L-flattable (termination).

Remark 5.3. Termination for L-flattable systems does not hold if the symbolic frame-
work provides only a weak inclusion (or if POST STAR returns an over-approximation).



484 S. Bardin et al.

procedure REACH2(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0

2: while POST(x) �� x do
3: Choose fairly w ∈ T ∗

4: x ← POST STAR(w, x)
5: end while
6: return x

Procedure 2: Computing reachability sets with flat acceleration

5.1 Faster Enumeration of Flattenings

A major practical issue with REACH2 is to implement Choose so that we converge
quickly to the fixpoint. For this purpose the following heuristic proved very efficient
in FAST: one picks a bound k ∈ N and restricts Choose to sequences w ∈ T≤k,
i.e., of length at most k. This method, called k-flattable, is eventually stopped by
a Watchdog if it does not terminate. Then k is incremented and k-flattable is
launched again.

This leads to Procedure REACH3 below. For “fairness” we require that Watchdog
fires infinitely often, but only after Choose picked each w ∈ T≤k at least once.

procedure REACH3(x0)
parameter: S
input: x0 ∈ L|Q|

1: x ← x0 ; k ← 0
2: k ← k + 1
3: start
4: while POST(x) �� x do /* k-flattable */
5: Choose fairly w ∈ T≤k

6: x ← POST STAR(w, x)
7: end while /* end k-flattable */
8: with
9: when Watchdog stops goto 2

10: return x

Procedure 3: Flat acceleration and circuit length increasing

Theorem 5.4. Given a symbolic framework SF = (I, L) and a system S ∈ F(I)
1. when REACH3 terminates, �REACH3(x0)� = post∗(�x0�) (partial correctness);
2. REACH3 terminates for any input iff S is L-flattable (termination).

Technical issues. When implementing REACH3 one faces (at least) two practical prob-
lems. First the size 2 of the region x computed so far may be explosive. Then Watchdog

2 Each set of regions has its own natural measure for size, depending on data structures and
implementation.



Flat Acceleration in Symbolic Model Checking 485

needs some criterion. Below we describe the implementation choices made in FAST on
these two issues, believing that these solutions may adapt to other domains. Let us point
out that these choices do not respect exactly the specification for REACH3 since fairness
is not ensured, and FAST should be improved in this way.
Choose: In general there is no direct relationship between the size of a region x and the
“size” of its concretization �x�. Intermediate regions may be much larger than the final
region for post∗(�x0�). To avoid such large regions, Choose selects a next w ∈ T≤k

such that |POST STAR(w, x)| < |x|. If there is no such w then the size of the current x
is allowed to increase and the next w is picked. In practice, this enumeration works well
(while a cyclic enumeration of T≤k almost always runs out of memory).
Watchdog: FAST’s criterion is simply a fixed (but user-modifiable) limit on the number
of iterations in k-flattable for any given value of k. This cannot be fair but it works
well in practice since, once a k large enough is considered, the fixpoint is usually found
within a few iterations.

5.2 Reduction of the Number of Cycles

A remaining issue in REACH3 is that the cardinal of T≤k grows exponentially with k.
We introduce the notion of reduction to compact the number of relevant transitions.

Definition 5.5 (k-Reduction). Given an interpretation I = (Σ, D, �·�), a k-reduction r
maps each system S = (Q, Σ, T, D, �·�) ∈ F(I) to a system S′ = (Q, Σ, T ′, D, �·�) ∈
F(I) such that: (1) ∀t′ ∈ T ′, t′−→⊆T∗

−→, (2) ∀w ∈ T≤k, ∃ρ ∈ rlre(T ′). w∗
−→⊆ ρ−→, (3)

|T ′| ≤ |T≤k|.

Hence a k-reduction replaces T by a new set T ′ that can stand for T≤k but is smaller. In
particular, if S is L-flattable, then r(S) is too, and they both have the same reachability
set. Obvious (and naive) k-reductions are the removals of identity loops. More useful
generic reductions are conjugation reduction: only keep one sequence of transitions
among each conjugacy class (e.g., keep t1 · t2 · t3 but remove t2 · t3 · t1 and t3 · t1 · t2) and

commuting reduction: if t1 and t2 commute, i.e., if
t1t2−→=t2t1−→, then remove both t1 · t2

and t2 · t1 (works since
(t1·t2)∗−−−−→=

t∗1t∗2−→).

Proposition 5.6. Conjugation reduction and commuting reduction are k-reductions.

Conjugation reduction satisfies |T ′| = O( |T
k|

k ).

Beyond these generic reductions, it is worth developing reductions dedicated to a
specific interpretation. For linear counter systems with a finite monoid, [26] presents a
reduction where |T ′| remains polynomial in k (while |T≤k| is exponential). This appears
to be a key reason for FAST’s performances.

k |Vk| |T ′| |T ′′|
1 7 7 7
2 36 21 16
3 156 56 28
4 578 126 47
5 1890 252 86

Here are reduction results for the swimming pool protocol (a
VASS with 7 transitions and 6 variables studied in [29]). Computing
the reachability set requires considering cycles of length k = 4. In
the table Vk ⊆ T≤k is the set of valid sequences in T≤k. T ′ (resp.
T ′′) is from the system after the reduction of [26] (resp. further
combined with commuting reduction).



486 S. Bardin et al.

6 Conclusion: Flat Acceleration in Practice

6.1 Tools Comparison

ALV FAST LASH TREX
system full linear restricted
regions Presburger formula arith.

undec. �
acceleration no flat loop ≈ flat
termination UB F 1F kF (oracle �)

Our framework is useful when compar-
ing ALV, FAST, LASH and TREX, four
symbolic model checkers that can per-
form reachability analysis on counter
systems (see section 2.1). We restrict
this comparison to the exact forward
computation of post∗(�x0�). ALV [6]
handles full counter systems. Regions are Presburger formulae. The heuristic used is
similar to REACH1. Both FAST [8] and LASH [33] handle linear counter systems with
Presburger formulae: flat acceleration is supported for functions whose monoid is finite,
but while FAST really takes advantage of full flat acceleration (Procedure REACH3), the
heuristics in LASH are restricted to loop acceleration (Procedure REACH2 where w is
chosen in T≤1 instead of T ∗). TREX [3] handles restricted counter systems. Regions
are arithmetic formulae (hence% is not recursive). A partially recursive flat acceleration
procedure is available. The heuristic is REACH2 restricted to T≤k for a user-defined
k. See [23] for an in-depth comparison of FAST and TREX. UB, F and kF stands for
L-uniformly bounded, L-flattable and L-flattable with length k (UB ⊆ 1F ⊆ kF ⊆ F).

System ALV LASH FAST k
TTP no yes yes 1
prod/cons (2) no yes yes 1
prod/cons (N) no no yes 2
lift control, N no no yes 2
train no no yes 2
consistency no no yes 3
CSM, N no no yes 2
swimming pool no no yes 4
PNCSA no no no ?
IncDec no no no ?
BigJAVA no no no ?

Procedure comparison on case studies. The following
table compares how ALV, FAST and LASH behave in
practice. “Yes” means termination within 1200 seconds
on a Pentium III 933 MHz with 512 Mb. k is the length of
cycles FAST considered in Procedure REACH3. All case
studies are infinite-state systems, taken from FAST’s web
site [8]. Experimental results show strong relationship
with the acceleration framework: flat acceleration (FAST)
has the better termination results, loop acceleration (k =
1) is not always sufficient, while simple iteration (ALV) is not sufficient on these complex
examples (results are consistent with [10]). These experiments clearly suggest that flat
acceleration greatly enhances termination and is fully justified in practice, at least
for counter systems.

6.2 Tool Design

The flat acceleration framework provides guidelines for designing new techniques and
tools. FAST supports completely this framework. Complex case studies have been con-
ducted [8,9]. The following table shows performances of FAST on a significant pool of
counter systems collected on the web sites of tools like ALV, BABYLON [7], BRAIN,
LASH and TREX, and ranging from tricky academic puzzles (swimming pool) to com-
plex industrial protocols (TTP). (More examples are given in the full version of this
paper.) They all are infinite-state and are thus beyond the scope of traditional model
checking techniques and tools. Furthermore, most of these systems also go beyond



Flat Acceleration in Symbolic Model Checking 487

System var |T | sec. Mb k

CSM 13 13 45.57 6.31 2
FMS 22 20 157.48 8.02 2
Multipoll 17 20 22.96 5.13 1
Kanban 16 16 10.43 6.54 1
swimming pool 9 6 111 29.06 4
last i.-first s. 17 10 1.89 2.74 1
PC Java(2) 18 14 13.27 3.81 1
PC Java(N) 18 14 723.27 12.46 2
Central server 13 8 20.82 6.83 2
Consistency 12 8 275 7.35 3
M.E.S.I. 4 4 0.42 2.44 1
M.O.E.S.I. 4 5 0.56 2.49 1

System var |T | sec. Mb k

Synapse 3 3 0.30 2.23 1
Illinois 4 6 0.97 2.64 1
Berkeley 4 3 0.49 2.75 1
Firefly 4 8 0.86 2.59 1
Dragon 5 8 1.42 2.72 1
Futurebus+ 9 10 2.19 3.38 1
lift - N 4 5 4.56 2.90 3
barber m4 8 12 1.92 2.68 1
ticket 2i 6 6 0.88 2.54 1
ticket 3i 8 9 3.77 3.08 1
TTP 10 17 1186.24 73.24 1

VASS or Petri nets, so that methods like covering trees or backward computation do not
apply. The results are for forward computation of the reachability set, on an Intel Pen-
tium 933 Mhz with 512 Mb. Comparing them with other complex case studies analyzed
with ALV, LASH, and TREX [3,6,10,33] confirms that flat acceleration is a powerful
technique for handling infinite-state systems.

References

1. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems. FMSD, 25(1):39–65, 2004.

2. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric reasoning
about counter and clock systems. In Proc. CAV’00, LNCS 1855, pages 419–434, 2000.

3. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability analysis of
complex systems. In Proc. CAV’01, LNCS 2102, pages 368–372, 2001.

4. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, Pei-Hsin Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. TCS, 138(1):3–34,
1995.

5. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
6. ALV. www.cs.ucsb.edu/˜bultan/composite/.
7. BABYLON. www.ulb.ac.be/di/ssd/lvbegin/CST/.
8. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Symbolic

Transition systems. In Proc. CAV’03, LNCS 2725, pages 118–121, 2003
9. S. Bardin, A. Finkel and J. Leroux. FASTer acceleration of counter automata. In Proc.

TACAS’04, LNCS 2988, pages 576–590, 2004.
10. C. Bartzis and T. Bultan. Widening arithmetic automata. In Proc. CAV’04, LNCS 3114, pages

321–333, 2004.
11. B. Boigelot, L. Bronne, and S. Rassart. Improved reachability analysis method for strongly

linear hybrid systems. In Proc. CAV’97, LNCS 1254, pages 167–178, 1997.
12. B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In Proc. SAS’97,

LNCS 1302, pages 172–186, 1997.
13. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and P. Wolper. An

efficient automata approach to some problems on context-free grammars. IPL, 74(5–6):221–
227, 2000.



488 S. Bardin et al.

14. A Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems with
nonregular sets of configurations. TCS, 221(1–2):211–250, 1999.

15. A. Bouajjani, B. Jonsson, M. Nilsson and T. Touili. Regular Model Checking. Proc. CAV’00,
LNCS 1855, pages 403–418, 2000.

16. A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algorithmic verification.
In Proc. LICS’01, pages 399–408, 2001.

17. D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323–342,
1983.

18. T. Bultan, R. Gerber, and W. Pugh. Symbolic model-checking of infinite state systems using
Presburger arithmetic. In Proc. CAV’97, LNCS 1254, pages 400–411, 1997.

19. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
20. H. Comon and Y. Jurski. Multiple counters automata, safety analysis, and Presburger arith-

metic. In Proc. CAV’98, LNCS 1427, pages 268–279, 1998.
21. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Proc. CON-

CUR’99, LNCS 1664, pages 242–257, 1999.
22. P. Cousot. Abstract interpretation. ACM Comp. Surv., 28(2):324–328, 1996.
23. Ch. Darlot, A. Finkel, and L. Van Begin. About Fast and TReX accelerations. In Proc.

AVoCS’04, ENTCS 128(6), pages 87–103, 2005.
24. G. Delzanno, J.-F. Raskin, and L. Van Begin. Covering sharing trees: a compact data structure

for parameterized verification. JSTTT, 5(2–3):268–297, 2004.
25. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.

Fund. Informaticae, 31(1):13–25, 1997.
26. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broadcast

protocols. In Proc. FSTTCS’02, LNCS 2556, pages 145–156, 2002.
27. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition systems: Appli-

cation to FIFO automata. Inf. & Comp., 181(1):1–31, 2003.
28. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! TCS, 256(1–

2):63–92, 2001.
29. L. Fribourg and H. Olsén. Proving Safety Properties of Infinite State Systems by Compilation

into Presburger Arithmetic, In Proc. CONCUR’97, LNCS 1243, pages 213–227, 1997.
30. L. Fribourg. Petri nets, flat languages and linear arithmetic. In M. Alpuente, editor, Proc.

WFLP’00, pages 344–365, 2000.
31. O. H. Ibarra, Jianwen Su, Zhe Dang, T. Bultan, and R. A. Kemmerer. Counter machines and

verification problems. TCS, 289(1):165–189, 2002.
32. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with

rich assertional languages. TCS, 256(1–2):93–112, 2001.
33. LASH. www.montefiore.ulg.ac.be/˜boigelot/research/lash/.
34. J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems with states. In

Proc. CONCUR’04, LNCS 3170, pages 402–416, 2004.
35. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc. ATVA’05, this

volume.
36. J. K. Pachl. Protocol description and analysis based on a state transition model with channel

expressions. In Proc. PSTV ’87, pages 207–219, 1987.
37. T. Rybina and A. Voronkov. Brain: Backward reachability analysis with integers. In Proc.

AMAST’02, LNCS 2422, pages 489–494, 2002.
38. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc.

CAV’98, LNCS 1427, pages 88–97, 1998.



Flat Counter Automata Almost Everywhere!�

Jérôme Leroux1 and Grégoire Sutre2

1 IRISA, Vertecs Project, Campus de Beaulieu, Rennes, France
jleroux@irisa.fr

2 LaBRI, CNRS UMR 5800, Domaine Universitaire, Talence, France
sutre@labri.fr

Abstract. This paper argues that flatness appears as a central notion in the veri-
fication of counter automata. A counter automaton is called flat when its control
graph can be “replaced”, equivalently w.r.t. reachability, by another one with no
nested loops. From a practical view point, we show that flatness is a necessary
and sufficient condition for termination of accelerated symbolic model check-
ing, a generic semi-algorithmic technique implemented in successful tools like
FAST, LASH or TREX. From a theoretical view point, we prove that many known
semilinear subclasses of counter automata are flat: reversal bounded counter ma-
chines, lossy vector addition systems with states, reversible Petri nets, persis-
tent and conflict-free Petri nets, etc. Hence, for these subclasses, the semilinear
reachability set can be computed using a uniform accelerated symbolic procedure
(whereas previous algorithms were specifically designed for each subclass).

1 Introduction

Petri nets and counter automata are widely used formalisms to model concurrent dis-
tributed systems. Basically, a counter automaton is a finite-state automaton extended
with counters that hold nonnegative integer values. Operations on counters can be de-
fined by formulas in Presburger arithmetic. As the counters are unbounded, counter
automata are naturally infinite-state systems.

Various formalisms have been proposed to model desired properties on systems. In
this work, we only consider safety properties: these properties (of the original system)
may often be expressed by reachability properties on the model.

Reachability properties are algorithmically checkable for finite-state systems (and
efficient implementations exist). However, the situation is more complex for infinite-
state systems: the reachability problem is undecidable even for restricted classes of
systems, such as Minsky machines [Min67].

Dedicated algorithms for counter automata. Many specialized algorithms have been
designed to solve verification problems for various classes of counter automata. The
reachability problem for Petri nets has been proved decidable [May84, Kos82]. The bi-
nary reachability relation is effectively semilinear for reversible Petri nets [Tai68] and for
BPP-nets [Esp97], and the reachability set post∗ is effectively semilinear for cyclic Petri

� This work was supported by the French Ministry of Research (Project PERSÉE of the ACI
Sécurité et Informatique).

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 489–503, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



490 J. Leroux and G. Sutre

q1 q2

l1 :

{
x′ = x − 1
y′ = y + 1

l2 :

{
x′ = x + 1
y′ = y − 1

t1 :

{
x = x′ = 0
y′ = y + 1

t2 :

{
y = y′ = 0
x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

Fig. 1. A non-flat counter automaton

nets [AK77], for persistent Petri nets [LR78, May81] and for regular Petri nets [VVN81].
The reachability setspost∗ and pre∗ are effectively semilinear for reversal-bounded coun-
ter machines [Iba78], for lossy VASS [BM99] and for 2-dimensional VASS [HP79]. It
was later shown that post∗ / pre∗ are still effectively semilinear for various extensions of
2-dim VASS [FS00b, FS00a]. However, these methods suffer from serious drawbacks:
(1) they cannot be easily extended or combined, (2) from an implementation perspec-
tive, a dedicated tool would be needed for each specialized algorithm, and (3) in practice,
counter automata rarely belong entirely to one of these semilinear classes. Thus, generic
symbolic model-checking techniques for general (undecidable) classes have been re-
cently developped and implemented.

Accelerated symbolic model-checking. Verification of reachability properties usually
proceeds through an iterative fixpoint computation of the forward reachability set post∗

(resp. backward reachability set pre∗), starting from the initial states (resp. from the er-
ror states). When the state space is infinite, finite symbolic representations for sets of
states are required. To help termination of this fixpoint computation, so-called accel-
eration techniques (or meta-transitions) are applied [BW94, BGWW97, BH99, FIS03,
FL02]. Basically, acceleration consists in computing in one step the effect of iterating
a given loop (of the control flow graph). Accelerated symbolic model checkers such as
LASH [Las], TREX [ABS01], and FAST [BFLP03] implement this approach.

Even though it behaves well in practice, accelerated symbolic model-checking is
only a semi-algorithm: it does not provide any guarantee of termination. For instance,
iteration of loops is not sufficient to compute the whole semilinear reachability set of the
counter automata depicted in figure 1, with initial state (q1, (0, 0)) (see Examples 2.4
and 4.5). Thus, we would like to combine the best of both approaches, by integrating,
for each known semilinear class, the dedicated algorithm’s technology into improved
acceleration techniques that would ensure termination of the generic accelerated semi-
algorithm for this class. A first step towards this objective consists in characterizing the
classes for which the generic accelerated semi-algorithm fials to terminate.

Our contribution. In this work, we investigate termination of accelerated symbolic
model-checking for known semilinear classes of counter automata. A natural notion in



Flat Counter Automata Almost Everywhere! 491

this framework is flatness [FO97, CJ98]: a counter automaton S is called flat1 when its
control graph can be “replaced”, equivalently w.r.t. reachability, by another one with
no nested loops. We show that (global) flatness is a necessary and sufficient condition
for termination of (binary) reachability set computations by acceleration-based semi-
algorithms. In particular, we get that accelerated symbolic model checkers terminate on
a given system iff this system is flat (and a suitable search strategy is used).

We then turn our attention to the analysis of flatness for known semilinear classes
of counter automata. We show that most of the known semilinear classes of counter
automata (in particular the ones cited above) are flat. Our main technical contributions
are the proofs of flatness for the following classes: reversal-bounded counter machines,
reversible Petri nets and conflict-free Petri nets. In particular, we obtain that the bi-
nary reachability relation is effectively semilinear of conflict-free Petri nets. We also
show that cyclic Petri nets, persistent Petri nets, regular Petri nets and Lossy / Inserting
counter machines are flat, and we recall that BPP-nets and 2-dim VASS are flat. As flat-
ness implies effective semilinearity of the forward / binary reachability set, our results
give new “uniform” proofs that these classes are semilinear. In particular, we obtain a
simpler semilinearity proofs for reversal-bounded counter machines and reversible Petri
nets.

It is also remarkable that accelerated symbolic model checkers designed to anal-
yse counter automata, such as LASH and FAST, terminate on all these classes. From a
practical viewpoint, our approach has several benefits: (1) we can apply a generic algo-
rithm, which was designed for a much larger class of (undecidable) systems, and (2) the
— forward, backward and binary — reachability sets can be computed using the same
generic algorithm.

Outline. The paper is organized as follows. Section 2 presents general counter au-
tomata. We introduce the notion of flatness in Section 3 and we show that flatness is
a necessary and sufficient condition for termination of accelerated symbolic model-
checking. In the last two sections, we show that many known semilinear restricted
classes of counter automata are flat: Section 4 deals with classes of counter machines,
and Section 5 deals with classes of Petri nets.

Proofs. Some proofs had to be omitted due to space constraints. A self-contained long
version of this paper (with detailed proofs for all results) can be obtained from the
authors.

2 General Counter Automata

This section is devoted to the presentation of general counter automata. We will consider
in section 4 a more effective subclass of counter automa based on guarded commands.
We first give basic definitions and notations that will be used throughout the paper.

1 Our notion of flatness is actually more general than in [CJ98]: there, a system is called flat
when it contains no nested loops.



492 J. Leroux and G. Sutre

2.1 Numbers, Vectors, Relations

Let Z (resp. N, Z−, Q, Q+) denotes the set of integers (resp. nonnegative integers,
nonpositive integers, rational numbers, nonnegative rational numbers). We denote by
≤ the usual total order on Q. Given k, l ∈ N, we write [k .. l] (resp. [k ..∞[) for the
interval of integers {i ∈ N / k ≤ i ≤ l} (resp. {i ∈ N / k ≤ i}). We write |X | the
cardinal of any finite set X .

Given a set X and n ∈ N, we write Xn for the set of n-dim vectors x of elements in
X . For any index i ∈ [1 .. n], we denote by x[i] the ith component of an n-dim vector x.

We now focus on n-dim vectors of (integer or rational) numbers. We write 0 for the
all zero vector: 0[i] = 0 for all i ∈ [1 .. n]. We also denote by ≤ the usual partial order
on Qn, defined by x ≤ y if for all i ∈ [1 .. n] we have x[i] ≤ y[i].

Operations on n-dim vectors are componentwise extensions of their scalar counter-
part (e.g. for x, x′ ∈ Qn, x + x′ is the vector y ∈ Qn defined by y[i] = x[i] + x′[i] for all
i ∈ [1 .. n]). For α ∈ Q and x ∈ Qn, α x is the vector y ∈ Qn defined by y[i] = α x[i]
for all i ∈ [1 .. n].

These operations are classically extended on sets of n-dim vectors (e.g. for P, P ′ ⊆
Qn, P + P ′ = {p + p′ / p ∈ P, p′ ∈ P ′}). Moreover, in an operation involving sets of
n-dim vectors, we shortly write x for the singleton {x} (e.g. for P ⊆ Qn and x ∈ Qn,
we write x + P for {x}+ P ).

A binary relation R on some set X is any subset of X×X . We shortly write xRx′

whenever (x, x′) ∈ R. Given a set Y , we denote by R[Y ] the relational image of Y
by R, defined by R[Y ] = {x ∈ X / ∃y ∈ Y, y R x}. The inverse of a binary relation
R on X is the binary relation R−1 on X defined by xR−1 x′ iff x′Rx. We say R is
symmetric if R = R−1. Given two binary relations R1, R2 on X , the composed binary
relation R1 · R2 on X is defined by x (R1 · R2)x′ if we have xR1 y and y R2 x

′ for
some y ∈ X . We denote by R∗ the reflexive and transitive closure of R. The identity
relation on X is the binary relation IdX = {(x, x) / x ∈ X}. In the rest of the paper,
we will only consider binary relations, and they will shortly be called relations.

2.2 Presburger Arithmetic and Semilinear Sets

Presburger arithmetic (the first order additive theory over the integers 〈Z,+,≤〉) is a
decidable logic used in a large range of applications. As described in [Lat04], this logic
is central in many areas including integer programming problems, compiler optimiza-
tion techniques, program analysis tools and model-checking.

Presburger-definable subsets of Zn may also be represented in terms of semilinear
sets [GS66]. For any subset P ⊆ Zn, we denote by P ∗ the set of all (finite) linear
combinations of vectors in P :

P ∗ =
{∑k

i=0 ci pi / k, c0, . . . , ck ∈ N and p0, . . . , pk ∈ P
}

A subset S ⊆ Zn is said to be a linear set if S = (x + P ∗) for some x ∈ Zn and for
some finite subset P ⊆ Zn ; moreover x is called the basis and vectors in P are called



Flat Counter Automata Almost Everywhere! 493

periods. A semilinear set is any finite union of linear sets. Let us recall that semilinear
sets are precisely the subsets of Zn that are definable in Presburger arithmetic [GS66].

Observe that any finite non empty set Q can be “encoded” using a bijection η from
Q to [1 .. |Q|]. Thus, these semilinearity notions and Presburger-definability notions
naturally carry2 over subsets of Q× Zn and over relations on Q× Zn.

2.3 Counter Automata

Definition 2.1. A n-dim counter automaton S (counter automaton for short), is defined
as a tuple S = (Q, T, α,β, (Gt)t∈T ), where Q is a finite non empty set of locations, T
is a finite non empty set of transitions, α : T → Q and β : T → Q are the source and
target mappings, and (Gt)t∈T is a family of binary relations on Nn called flow guards.

An n-dim counter automaton is basically a finite graph whose edges are labeled by
relations over n-dim vector of integers. Each component i ∈ [1 .. n] corresponds to a
counter ranging over N. Operationally, control flows from one location to another along
transitions, and counters simultaneously change values according to the transition’s flow
guard.

Formally, let S = (Q, T, α,β, (Gt)t∈T ) be a n-dim counter automaton. The set of
configuration CS of S is Q×Nn, and the semantics of each transition t ∈ T is given by
the action reachability relation RS(t) over CS defined by:

(q, x) RS(t) (q′, x′) if q = α(t) and q′ = β(t) and x Gt x′

Definition 2.2. An initialized n-dim counter automaton (S, I) is a tuple such that S is
an n-dim counter automaton and I ⊆ CS.

We write T+ for the set of all non empty words t0 · · · tk with ti ∈ T , and ε denotes
the empty word. The set T+∪{ε} of all words π over T is denoted by T ∗. For any word
π ∈ T ∗ and for any t ∈ T , we let |π|t denote the number of occurences of t in π. Flow
guards and transition reachability relations are naturally extended to words:{

Gε = IdNn

Gπ·t = Gπ ·Gt

{
RS(ε) = IdCS

RS(π · t) = RS(π) · RS(t)

A language over T is any subset L of T ∗. We also extend flow guards and reach-
ability relations to languages : GL =

⋃
π∈L Gπ and RS(L) =

⋃
π∈LRS(π). For any

language L ⊆ T ∗ and for any set of configurations I ⊆ CS, we respectively denote by
postS(L, I) and by preS(L, I) the set of successor configurations (RS(L))[I] and the
set of predecessor configurations (RS(L))−1[I].

Definition 2.3. Given a counter automaton S, the one-step reachability relation of S is
the relationRS(T ), shortly written RS. The global reachability relation of S is the rela-
tion RS(T ∗), shortly written R∗S. Given a subset I ⊆ CS, the sets postS(T ∗, I), shortly
written post∗S(I), and preS(T ∗, I), shortly written pre∗S(I), are respectively called the
forward reachability set of (S, I) and the backward reachability set of (S, I).

2 Obviously, the extension of these notions does not depend on the “encoding” η.



494 J. Leroux and G. Sutre

Remark that the global reachability relation is the reflexive and transitive closure of
the one-step reachability relation. A reachability subrelation is any relation R ⊆ R∗S.
For the reader familiar with transition systems, the operational semantics of S can be
viewed as the infinite-state transition system (CS,RS).

The inverse counter automaton S−1 of a counter automaton S is obtained from S by
replacing the flow guardsGt with their inverseG−1

t . As preS(L, I) = postS−1(L, I) for
every L ⊆ T ∗ and I ⊆ CS, we restrict our attention (without loss of generality) to the
global reachability relation and the forward reachability set (shortly called reachability
set from now on).

Consider two locations q and q′ in a system S. A word π ∈ T ∗ is called a path from
q to q′ if either (1) π = ε and q = q′, or (2) π = t0 · · · tk with k ∈ N and satisfies:
q = α(t0), q′ = β(tk) and β(ti−1) = α(ti) for every i ∈ [1 .. k]. A path from q to q is
called a loop on q, or shortly a loop. We denote by ΠS(q, q′) the set of all paths from
q to q′ in S. The set

⋃
q,q′∈Q ΠS(q, q′) of all paths in S is written ΠS. A trace of an

initialized counter automaton (S, I) is any word π ∈ T ∗ such that post(π, I) �= ∅. Note
that every trace is a path, but the converse is not true.

Notation. In the following, we will simply write R (resp. post, Π , C) instead of RS

(resp. postS, ΠS, CS), when the underlying counter automaton is unambiguous. We will

also sometimes write → (resp.
σ−→,

L−→,
∗−→) instead of R (resp. R(σ), R(L), R∗).

Example 2.4. Consider the 2-dim counter automaton E depicted in figure 1. Counters
are denoted by x and y and flow guards are given by predicates over x, y, x′, and y′

(with an implicit conjonction between equalities). Intuitively, the loop l1 on location
q1 transfers the contents of the first counter into the second counter, while the loop l2

on location q2 does the converse. Intermediate locations along (q1, (1, 2))
l1t1l42t2l1−−−−−−→

(q1, (4, 1)) are also depicted above. This counter automaton exhibits a simple global
reachability relation, since it is readily seen that (q1, (x, y))

∗−→ (q1, (x′, y′)) if and only
if: (x′+y′)−(x+y) is even, and x′+y′ = x+y implies x′ ≤ x. Relation (q2, (x, y))

∗−→
(q2, (x′, y′)) is similar, and thus we obtain, by composition with relations RE(t1) and
RE(t2), that E has a semilinear global reachability relation. ��

3 Flatness as a Criterion for Acceleration Completeness

We now investigate termination of accelerated symbolic reachability computations on
counter automata. An important concept used in this paper is that of semilinear path
scheme (SLPS) [LS04].

Definition 3.1. [LS04] A linear path scheme (LPS for short) for a counter automaton S

is any language ρ ⊆ ΠS of the form ρ = σ0θ
∗
1σ1 · · · θ∗kσk where σ0, θ1,σ1, . . . , θk,σk

are words. A semilinear regular path scheme (SLPS for short) is any finite union of LPS.

Definition 3.2. A counter automaton S (resp. initialized counter automaton (S, I)) is
called globally flat (resp. flat) if there exists an SLPS ρ for S satisfying R∗ = R(ρ)
(resp. post∗(I) = post(ρ, I)).



Flat Counter Automata Almost Everywhere! 495

This flatness condition may seem to be a very restrictive property. However, we will
later prove that most of the known semilinear classes of counter automata are in fact
flat. The following lemma follows from Lemma 4.1 in [LS04], and it will be crucial
to prove flatness for several classes of counter automata. Observe that this lemma is
not a (direct) consequence of Parikh’s Theorem, since we require the SLPS ρ to be
a subset of the considered regular language L. Recall that, assuming a linear order
T = {t1, . . . , tm} on T , the Parikh map Ψ is the total mapping from T ∗ to Nm defined
by Ψ(π) = (|π|t1 , . . . , |π|tm).

Lemma 3.3. Given a counter automaton S, for any regular language L ⊆ Π , there
exists an SLPS ρ ⊆ L such that Ψ(ρ) = Ψ(L).

Accelerated symbolic model-checking consists in the usual iterative fixpoint com-
putation, accelerated with the computation of (the effect of) some loops. In order to
cope with the many variants, we analyze termination for generic versions of these ac-
celerated reachability computations. Thus, the semi-algorithms presented below cannot
be directly implemented. Effectivity issues will be discussed in Remark 3.5.

Semi-Algorithm Accel-R∗(S)

Input:
A counter automaton S.
Output:
The global reachability relation R∗

S .

let R ← IdCS

repeat forever
select one of the following tasks:

• ifR(T ) · R ⊆ R return R
• select π ∈ T ∗ and R′, R′′ ⊆ R
let R ← R ∪ (R′ · R(π∗) · R′′)

• select t ∈ T and R′, R′′ ⊆ R
let R ← R ∪ (R′ · R(t) · R′′)

Semi-Algorithm Accel-post∗(S, I)

Input:
An initialized counter automaton (S, I).
Output:
The reachability set post∗S(I).

letX ← I
repeat forever
select one of the following tasks:

• if post(T, X) ⊆ X returnX
• select π ∈ T ∗ and X ′ ⊆ X
let X ← X ∪ post(π∗, X ′)

• select t ∈ T and X ′ ⊆ X
let X ← X ∪ post(t, X ′)

Theorem 3.4. Given any counter automaton S and any subset I ⊆ CS, we have:

i) for every terminating execution of Accel-R∗(S) (resp. Accel-post∗(S, I)), the re-
turned value ret satisfies: ret = R∗S (resp. ret = post∗S(I)).

ii) there exists a terminating execution of Accel-R∗(S) (resp. Accel-post∗(S, I)) iff
S is globally flat (resp. (S, I) is flat).

Remark 3.5. In order to implement these two semi-algorithms, a symbolic representa-
tion for sets of (pairs of) configurations is required. Semilinear sets are usually used
since (1) they are expressive enough to express most practical flow guards, and (2)
they enjoy nice decidability and closure properties. Moreover, effective acceleration
results [FL02, CJ98, Boi03] can be used in order to perform the second task of the
algorithm (for some classes of semilinear flow guards).

Remark 3.6. Model-checkers FAST, LASH and TREX implement “deterministic refine-
ments” of the semi-algorithms Accel-post∗ and Accel-R∗. FAST takes as input an
initialized counter automaton in the form of a finite-linear system, where flow guards



496 J. Leroux and G. Sutre

are given by partial integral affine transformations with semilinear definition domains.
The heuristics implemented in FAST ensure termination for all flat finite-linear sys-
tem [FL02].

4 Flat Counter Machines

In the remaining of this paper, we focus on a restricted class of counter automata,
called counter machines, where flow guards are restricted semilinear relations given
by guarded commands. Counter machines form a fairly large class of counter automata,
as it contains for instance Petri nets and Minsky machines. We will show, in this section
and in the next section, that many known semilinear subclasses of counter machines are
flat.

First, we introduce some new notations that will be used subsequently. Recall that
a minimal element of a subset X ⊆ Qn is any m ∈ X such that for every x ∈ X , if
x ≤ m then x = m. We denote by Min(X) the set of minimal elements of X . It is well
known that any subset of Nn has finitely many minimal elements [Dic13].

For every i ∈ [1 .. n], we denote ei the ith basis vector of Nn defined by: ei[j] = 1
if j = i and ei[j] = 0 otherwise. The set {=,≥}n will be considered as an alphabet,
and every symbol # ∈ {=,≥}n will also denote the partial order on Qn defined by:
x# y if x[i] #[i] y[i] for all i ∈ [1 .. n].

4.1 Counter Machines

Flow guards of counter machines belong to a basic subclass of semilinear relations,
called guarded commands, which we now present. An n-dim guarded command is any
relation over Nn that may be written as {(x, x′) ∈ N2n / x# μ and x′ = x + δ} for
some # ∈ {=,≥}n, μ ∈ Nn, and δ ∈ Zn such that μ + δ ≥ 0.

Remark 4.1. The class of n-dim guarded commands is the closure under composition
of three kinds of basic relations:

– increment of a counter i ∈ [1 .. n] : {(x, x′) ∈ N2n / x′ = x + ei}
– decrement of a counter i ∈ [1 .. n] : {(x, x′) ∈ N2n / x′ = x− ei}
– 0-test of a counter i ∈ [1 .. n] : {(x, x′) ∈ N2n / x[i] = 0 and x′ = x}

Definition 4.2. An n-dim counter machine (counter machine for short) is an 8-tuple
S = (Q, T, α,β, (Gt)t∈T ,#,μ, δ), where (Q, T, α,β, (Gt)t∈T ) is a counter automa-
ton, and where # : T → {=,≥}n, μ : T → Nn and δ : T → Zn are three transition
labelings satisfying: μ(t)+δ(t) ≥ 0 and Gt = {(x, x′) / x#(t)μ(t) and x′ = x+δ(t)}
for every t ∈ T .

Transition labelings #, μ and δ will be called condition labeling, min labeling and
displacement labeling respectively. We extend the displacement labeling δ to words in
the obvious way: δ(ε) = 0 and δ(π · t) = δ(π) + δ(t).



Flat Counter Automata Almost Everywhere! 497

When #(t) ∈ {≥}n for every transition t ∈ T , we say that the counter machine S

is test-free. The class of test-free counter machines is equivalent to the class of vector
addition systems with states [HP79].

Obviously, any counter machine may be viewed as a counter automaton. In the fol-
lowing, we will identify a counter machine with its corresponding counter automaton.
Observe that for any configurations (q, x) and (q′, x′) of a counter machine S, and for
any word π ∈ T ∗, we have: (q, x) π−→ (q′, x′) implies x′ = x + δ(π).

The following acceleration theorem for counter machines, which was actually proved
for larger classes of counter automata, shows that the reachability subrelation “along”
any SLPS is effectively semilinear. As a direct consequence of this theorem (see for
instance [LS04]), we obtain that flatness (resp. global flatness) implies effective semi-
linearity of the reachability set (resp. of the global reachability relation).

Theorem 4.3 ([CJ98, FL02, Boi03]). For any SLPS ρ in a counter machine S, the
reachability subrelationRS(ρ) is effectively semilinear.

Corollary 4.4. The global reachability relation R∗S (resp. reachability set post∗S(I))
of any globally flat counter machine S (resp. flat initialized counter machine (S, I)) is
effectively semilinear.

Our example counter automaton E, which actually is a counter machine, shows that
the converse of this corollary does not hold (see also Remark 4.11).

Example 4.5. Recall that the counter automaton E introduced in Example 2.4 has a
semilinear global reachability relation. In particular the reachability set post∗E(I) is
semilinear for any semilinear set I ⊆ CE. However, (E, (q1, (0, 0))) is not flat. Intu-
itively, any loop θ ∈ T ∗ is either in l∗1 , l∗2 , l∗1 t1 T

∗ t2 l∗1 , or in l∗2 t2 T
∗ t1 l∗2 . In each case,

we can verify that postE(θ∗, I) is finite for any finite I ⊆ CE. An induction over the
length of an SLPS ρ, proves that postE(θ∗, I) is finite for any finite I ⊆ CE and for
any SLPS ρ. As the reachability set post∗E({(q1, (0, 0))}) = {(q1, (x, y)) / x + y ∈
2 N}∪ {(q2, (x, y)) / x+ y− 1 ∈ 2 N} is infinite we deduce that (E, (q1, (0, 0))) is not
flat.

Remark 4.6. Unfortunately, flatness is undecidable for counter machines. Indeed, the
boundedness problem (is post∗S({(q, x0)}) finite?), which is known to be undecidable
for 2-dim counter machines, is reducible to the flatness problem as follows: (1) if (S, I)
is flat, then we can compute a semilinear description post∗S(I) and decide whether
post∗S(I) is finite ; (2) if (S, I) is not flat, then post∗S({(q, x0)}) is necessarily infinite.

4.2 Reversal-Bounded Counter Machines

We focus in this subsection on reversal-bounded counter machines. Intuitively, an ini-
tialized counter machine (S, I) will be called reversal-bounded when there exists r ∈ N

such that every counter in every run of S from I makes at most r reversals (alternations
between nondecreasing and nonincreasing modes) [Iba78]. The definition will be made
precise with the use letter morphisms.



498 J. Leroux and G. Sutre

Consider a finite set T of transitions and a displacement labeling δ : T → Zn. For
every i ∈ [1 .. n], we define the morphism ϕδ

i : T ∗ → {+,−}∗ by: ϕδ
i (t) = + if

δ(t)[i] > 0, ϕδ
i (t) = − if δ(t)[i] < 0, and ϕδ

i (t) = ε if δ(t)[i] = 0.

Definition 4.7. An initialized counter machine (S, I), with transition set T and dis-
placement labeling δ, is called reversal-bounded if there exists r ∈ N such that ϕδ

i (π) ∈
({+}∗ ∪ {−}∗)r for every i ∈ [1 .. n] and every trace π of S from I . A counter machine
S is called globally reversal-bounded if (S, CS) is reversal-bounded.

Recall that the global reachability relation (resp. reachability set) of any reversal-
bounded counter machine (resp. initialized counter machine) is effectively semilin-
ear [Iba78]. We show that these two classes are flat. Note that these results do not
follow from the effective semilinearity proof given in [Iba78] which uses Parikh’s The-
orem and manipulations on semilinear sets.

Proposition 4.8. Every reversal-bounded initialized counter machine is flat. Every glob-
ally reversal-bounded counter machine is globally flat.

4.3 Lossy/Inserting Counter Machines

Let us now focus on lossy/inserting counter machines. An n-dim counter machine will
be called lossy (resp. inserting) when for every location q and for every counter i ∈
[1 .. n], there is a loop3 on q whose flow guard is the decrement (resp. increment) of
counter i. Formally:

Definition 4.9. A counter machine S, with location set Q and transition set T , is called
lossy (resp. inserting) if for every q ∈ Q and for every i ∈ [1 .. n], there exists a loop π
on q such that Gπ = {(x, x′) ∈ N2n / x′ = x− ei} (resp. Gπ = {(x, x′) ∈ N2n / x′ =
x + ei}).

Observe that the inverse of any lossy (resp. inserting) counter machine is an insert-
ing (resp. lossy) counter machine. The reachability set of any initialized lossy (resp.
inserting) counter machine is obviously semilinear since it is downward (resp. upward)
closed (w.r.t. the usual partial order on configurations of counter automata). Moreover,
it is effectively semilinear for any initialized lossy test-free counter machine and for any
initialized inserting counter machine [BM99]. We show that these two classes are flat.

Proposition 4.10. Every initialized lossy test-free counter machine is flat. Every ini-
tialized inserting counter machine is flat.

The previous proposition cannot be extended to global flatness, since there exists
a 3-dim lossy test-free counter machine having a non semilinear (and hence non flat)
global reachability relation [LS04]. Moreover, the test-freeness condition cannot be re-
laxed for lossy counter machines, since the semilinear reachability set is not in general
constructible for initialized lossy counter machines [DJS99, BM99]. The following re-
mark shows that the test-freeness condition cannot be removed even in dimension 2.

3 We use an explicit representation of losses and insertions. Our flatness results given in Propo-
sition 4.10 also hold when losses and insertions are “hardcoded” in the semantics.



Flat Counter Automata Almost Everywhere! 499

Remark 4.11. Recall that every initialized 2-dim lossy counter machine has an effec-
tively semilinear reachability set [FS00a]. Still, there are initialized 2-dim lossy counter
machines that are not flat. Consider for instance our example counter machine
(E, {(q1, (1, 0))}), which is not flat according to Example 2.4, augmented with loss
loops on each location: the resulting 2-dim lossy counter machine obviously remains
non flat.

4.4 Test-Free 2-Dim Counter Machines

We briefly recall in this section known results on test-free 2-dim counter machines. The
reachability set of any initialized test-free 2-dim counter machine is effectively semi-
linear [HP79]. Moreover, the global reachability relation is also effectively semilinear
for this class [LS04]. The proof of this second result actually used flatness-based proof
techniques:

Proposition 4.12 ([LS04]). Every test-free 2-dim counter machine is globally flat.

5 Flat Petri Nets

We now restrict our attention to a well-known and extensively studied subclass of
counter machines: Petri nets. Usually, a Petri net is given by a directed graph whose
nodes are either places or transitions. We give an equivalent definition in terms of
counter machines.

Definition 5.1. An n-dim Petri net (Petri net for short) is any test-free n-dim counter
machine whose location set is a singleton.

As the set Q of locations in a Petri net is a singleton, we unambiguously denote any
configuration (q, x) by x.

5.1 Cyclic and Reversible Petri Nets

We focus in this subsection on two subclasses of Petri nets: cyclic Petri nets [AK77]
and reversible Petri nets [Tai68]. Intuitively, an initialized Petri net will be called cyclic
if its reachability set is a strongly connected component ; and a Petri net will be called
reversible if every transition has an inverse.

Definition 5.2. An initialized Petri net (S, I) is called cyclic if I ⊆ post∗(X) for every
X ⊆ post∗(I). A Petri net S is called globally cyclic if (S, x0) is cyclic for every
x0 ∈ CS.

Definition 5.3. A Petri net with transition set T is called reversible if for every t ∈ T ,
there exists t′ ∈ T such that R(t′) = R(t)−1.

Observe that a Petri net is globally cyclic iff its global reachability relation is sym-
metric iff for every transition t, there exists a path π such that R(π) = R(t)−1. Thus,
every reversible Petri net is globally cyclic. It is well-known that the global reachability
relation (resp. reachability set) of any reversible Petri net (resp. cyclic initialized Petri
net) is effectively semilinear [AK77, Tai68, BF97]. We show that these three classes are
flat.



500 J. Leroux and G. Sutre

Proposition 5.4. Every cyclic initialized Petri net is flat. Every globally cyclic Petri net
is globally flat.

Remark 5.5. Recall that global flatness implies effective semilinearity of the global
reachability relation. Hence, combined with the short proof given in [Hir94] that ev-
ery congruence on Nn is semilinear, the previous proposition gives an easy proof of
effective semilinearity of R∗ for reversible petri nets. The first proof (and only proof,
to our knowledge) of this result is presented in [Tai68] and it is very difficult to read.

5.2 Regular Petri Nets

We now turn our attention to the class of regular Petri nets [VVN81]. Recall that the
trace set of an initialized Petri net (S, I) is the set of all paths π ∈ T ∗ such that
post(π, I) �= ∅.

Definition 5.6. An initialized Petri net is called regular if its trace set is a regular lan-
guage.

A singly-initialized Petri net is any initialized Petri net (S, I) where I is a single-
ton. It follows from Parikh’s Theorem that the reachability set of any regular singly-
initialized Petri net is effectively semilinear [VVN81]. We deduce from Lemma 3.3,
which is a variant of Parikh’s Theorem, that this class is actually flat.

Proposition 5.7. Every regular singly-initialized Petri net is flat.

5.3 Persistent and Conflict-Free Petri Nets

Persistent and Conflict-free Petri nets are among the first subclasses of Petri nets intro-
duced in the literature. Intuitively, a Petri net is conflict-free if every “enabled” transi-
tion remains enabled until it is taken. For persistent Petri nets, this condition only has
to hold for reachable configurations.

Definition 5.8. An initialized Petri net (S, I) is called persistent if for any transitions

t1, t2 with t1 �= t2, and for any x, x1, x2 ∈ post∗S(I) such that x t1−→ x1 and x t2−→ x2,

there exists x′ ∈ post∗S(I) such that x t1t2−−→ x′.

Definition 5.9. A Petri net S is called conflict-free if (S, CS) is persistent.

Semilinearity of the reachability set for singly-initialized persistent Petri nets was
first proved in [LR78] in a non-constructive way, and a constructive proof was later
presented in [May81]. It turns out that flatness, and hence effective semilinearity, can
actually be deduced from the first proof. Let us first recall two lemmas from [LR78]: a
weaker version of Lemma 3.1 and Lemma 4.3.

Lemma 5.10. Given any singly-initialized persistent Petri net (S, {x0}), for any two
traces σ1 and σ2 with Ψ(σ1) ≤ Ψ(σ2), there exists a path σ′ such that σ1 σ′ is a trace
and Ψ(σ2) = Ψ(σ1) + Ψ(σ′).



Flat Counter Automata Almost Everywhere! 501

Lemma 5.11. For any singly-initialized persistent Petri net (S, {x0}), there exists a
finite set F of paths π ∈ T+ with δ(π) ≥ 0 such that for every x0

∗−→ x ∗−→ x′, if x ≤ x′

then there exists π1, . . . ,πk ∈ F such that x π1···πk−−−−→ x′.

Following the proof given in [LR78] that singly-initialized persistent Petri nets have
semilinear reachability sets, we deduce the following theorem.

Theorem 5.12. Every semilinearly-initialized persistent Petri net is flat.

Corollary 5.13. Every conflict-free Petri net is globally flat.

Remark 5.14. Recall that global flatness implies effective semilinearity of the global
reachability relation. Hence, the we obtain that the global reachability relation is effec-
tively semilinear for conflict-free Petri nets.

5.4 BPP-Nets

We briefly recall in this section known results on BPP-nets. An n-dim Petri net, with
transition set T and min labeling μ, is called a BPP-net if for every t ∈ T , μ(t) = ei

for some i ∈ [1 .. n].
Let us recall that the global reachability relation is effectively semilinear for BPP-

nets [Esp97, FO97]. The proof of this result given in [FO97] actually uses flatness-based
proof techniques:

Proposition 5.15 ([FO97]). Every BPP-net is globally flat.

References

[ABS01] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability
analysis of complex systems. In Proc. 13th Int. Conf. Computer Aided Verification
(CAV’2001), Paris, France, July 2001, volume 2102 of Lecture Notes in Computer
Science, pages 368–372. Springer, 2001.

[AK77] T. Araki and T. Kasami. Decidable problems on the strong connectivity of Petri
net reachability sets. Theoretical Computer Science, 4(1):99–119, 1977.

[BF97] Z. Bouziane and A. Finkel. Cyclic petri net reachability sets are semi-linear ef-
fectively constructible. In Proc. 2nd Int. Workshop on Verification of Infinite State
Systems (INFINITY’97), Bologna, Italy, July 1997, volume 9 of Electronic Notes
in Theor. Comp. Sci. Elsevier, 1997.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In Proc. 15th Int. Conf. Computer Aided Verifica-
tion (CAV’2003), Boulder, CO, USA, July 2003, volume 2725 of Lecture Notes in
Computer Science, pages 118–121. Springer, 2003.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In
Proc. Static Analysis 4th Int. Symp. (SAS’97), Paris, France, Sep. 1997, volume
1302 of Lecture Notes in Computer Science, pages 172–186. Springer, 1997.

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theoretical Computer Science,
221(1–2):211–250, 1999.



502 J. Leroux and G. Sutre

[BM99] A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Proc.
16th Ann. Symp. Theoretical Aspects of Computer Science (STACS’99), Trier, Ger-
many, Mar. 1999, volume 1563 of Lecture Notes in Computer Science, pages 323–
333. Springer, 1999.

[Boi03] B. Boigelot. On iterating linear transformations over recognizable sets of integers.
Theoretical Computer Science, 309(2):413–468, 2003.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. 6th
Int. Conf. Computer Aided Verification (CAV’94), Stanford, CA, USA, June 1994,
volume 818 of Lecture Notes in Computer Science, pages 55–67. Springer, 1994.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-
burger arithmetic. In Proc. 10th Int. Conf. Computer Aided Verification (CAV’98),
Vancouver, BC, Canada, June-July 1998, volume 1427 of Lecture Notes in Com-
puter Science, pages 268–279. Springer, 1998.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
r distinct prime factors. Amer. Journal Math., 35:413–422, 1913.

[DJS99] C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T nets.
In Proc. 26th Int. Coll. Automata, Languages, and Programming (ICALP’99),
Prague, Czech Republic, July 1999, volume 1644 of Lecture Notes in Computer
Science, pages 301–310. Springer, 1999.

[Esp97] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae, 31(1):13–25, 1997.

[FIS03] A. Finkel, S. P. Iyer, and G. Sutre. Well-abstracted transition systems: Application
to FIFO automata. Information and Computation, 181(1):1–31, 2003.

[FL02] A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications
to broadcast protocols. In Proc. 22nd Conf. Found. of Software Technology and
Theor. Comp. Sci. (FST&TCS’2002), Kanpur, India, Dec. 2002, volume 2556 of
Lecture Notes in Computer Science, pages 145–156. Springer, 2002.

[FO97] L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-
points of Datalog programs with Z-counters. Constraints, 2(3/4):305–335, 1997.

[FS00a] A. Finkel and G. Sutre. An algorithm constructing the semilinear post∗ for
2-dim reset/transfer vass. In Proc. 25th Int. Symp. Math. Found. Comp. Sci.
(MFCS’2000), Bratislava, Slovakia, Aug. 2000, volume 1893 of Lecture Notes
in Computer Science, pages 353–362. Springer, 2000.

[FS00b] A. Finkel and G. Sutre. Decidability of reachability problems for classes of two
counters automata. In Proc. 17th Ann. Symp. Theoretical Aspects of Computer
Science (STACS’2000), Lille, France, Feb. 2000, volume 1770 of Lecture Notes in
Computer Science, pages 346–357. Springer, 2000.

[GS66] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages.
Pacific J. Math., 16(2):285–296, 1966.

[Hir94] Y. Hirshfeld. Congruences in commutative semigroups. Research report ECS-
LFCS-94-291, Laboratory for Foundations of Computer Science, University of
Edinburgh, UK, 1994.

[HP79] J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8(2):135–159, 1979.

[Iba78] O.H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM, 25(1):116–133, 1978.

[Kos82] S. R. Kosaraju. Decidability of reachability in vector addition systems. In Proc.
14th ACM Symp. Theory of Computing (STOC’82), San Francisco, CA, May 1982,
pages 267–281, 1982.

[Las] LASH homepage. http://www.montefiore.ulg.ac.be/~boigelot/
research/lash/.



Flat Counter Automata Almost Everywhere! 503

[Lat04] L. Latour. From automata to formulas: Convex integer polyhedra. In Proc. 19th
Annual IEEE Symposium on Logic in Computer Science (LICS’04), Turku, Fin-
land July 2004, pages 120–129. IEEE Comp. Soc. Press, 2004.

[LR78] L.H. Landweber and E.L. Robertson. Properties of conflict-free and persistent
petri nets. Journal of the ACM, 25(3):352–364, 1978.

[LS04] J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems
with states. In Proc. 15th Int. Conf. Concurrency Theory (CONCUR’04), London,
UK, Aug.-Sep. 2004, volume 3170 of Lecture Notes in Computer Science, pages
402–416. Springer, 2004.

[May81] E. W. Mayr. Persistence of vector replacement systems is decidable. Acta Infor-
matica, 15:309–318, 1981.

[May84] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J.
Comput., 13(3):441–460, 1984.

[Min67] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, London,
1 edition, 1967.

[Tai68] M.A. Taiclin. Algorithmic problems for commutative semigroups. Soviet Math.
Doklady, 9(1):201–204, 1968.

[VVN81] R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Com-
puter and System Sciences, 23(3):299–325, 1981.



Author Index

Alcalde, Baptiste 400

Bardin, Sébastien 474
Bérard, B. 293
Bhaduri, Purandar 338
Billington, Jonathan 457
Bradley, Aaron 2

Cardoso, Janette 278
Cassez, F. 293
Cavalli, Ana 400
Chen, Yean-Ru 370
Choi, Yongsun 84
Combes, Pierre 414

Damm, Werner 99
Della Penna, Giuseppe 54
Demri, Stéphane 248
Dill, David 26
Dubey, A. 114

Edwards, Stephen A. 323
Evangelista, S. 202

Finkbeiner, Bernd 263
Finkel, Alain 474
Fix, Limor 11

Gallasch, Guy Edward 457
Grumberg, Orna 11, 354
Guo, Yang 174

Habibi, Ali 69
Haddad, S. 202, 293
Harel, David 414
Heyman, Amnon 11
Heyman, Tamir 11
Hsiung, Pao-Ann 370
Huang, Chun-Hsian 370
Huang, Geng-Dian 144

Intrigila, Benedetto 54
Iyer, Subramanian 26

Jain, Jawahar 26
Jemni Ben Ayed, Leila 308

Kang, Kyo Chul 429
Kardos, M. 39
Kim, Moonzoo 429
Koo, T.J. 114
Kristensen, Lars M. 187
Kugler, Hillel 414
Kwiatkowska, Marta 385

Lakos, Charles A. 187
Leroux, Jérôme 474, 489
Li, SiKun 174
Li, Tun 174
Lime, Didier 293
Lin, Shang-Wei 370
Lindstrom, Gary 444
Liu, GongJie 174

Manna, Zohar 2
Mao, Xiaoyu 278
Mehlitz, Peter C. 444
Melatti, Igor 54
Mishra, B. 217
Mysore, V. 217

Nowak, David 248

Oberthür, S. 39
Orset, Jean-Marie 400

Piazza, C. 217
Pinto, Guilherme 99
Pnueli, Amir 1
Pradat-Peyre, J.-F. 202

Rammig, F.J. 39
Ratschan, Stefan 99
Roux, O.H. 293

Saad, Mouna 308
Sahoo, Debashis 26
Schewe, Sven 263
Schnoebelen, Philippe 474
Schuster, Assaf 11



506 Author Index

Seki, Hiroyuki 234

Shoham, Sharon 354

Su, H. 114

Sutre, Grégoire 489

Szreter, Maciej 159

Tahar, Sofiène 69

Takata, Yoshiaki 234

Tardieu, Olivier 323

Thomas, Wolfgang 3

Tronci, Enrico 54

Valette, Robert 278
Visser, Willem 444
Voinikonis, Andrei 129

Wang, Farn 144
Wang, Fuzhi 385
Wu, X. 114

Yagi, Isao 234

Zhao, J. Leon 84
Zhao, Y. 39


	Frontmatter
	Keynote Speeches
	Ranking Abstraction as a Companion to Predicate Abstraction
	Termination and Invariance Analysis of Loops
	Some Perspectives of Infinite-State Verification

	Model Checking
	Verifying Very Large Industrial Circuits Using 100 Processes and Beyond
	A New Reachability Algorithm for Symmetric Multi-processor Architecture
	Comprehensive Verification Framework for Dependability of Self-optimizing Systems
	Exploiting Hub States in Automatic Verification

	Combined Methods
	An Approach for the Verification of SystemC Designs Using AsmL
	Decomposition-Based Verification of Cyclic Workflows

	Timed, Embedded, and Hybrid Systems (I)
	Guaranteed Termination in the Verification of LTL Properties of Non-linear Robust Discrete Time Hybrid Systems
	Computation Platform for Automatic Analysis of Embedded Software Systems Using Model Based Approach
	Quantitative and Qualitative Analysis of Temporal Aspects of Complex Activities
	Automatic Test Case Generation with Region-Related Coverage Annotations for Real-Time Systems

	Abstraction and Reduction Techniques
	Selective Search in Bounded Model Checking of Reachability Properties
	Predicate Abstraction of RTL Verilog Descriptions Using Constraint Logic Programming
	State Space Exploration of Object-Based Systems Using Equivalence Reduction and the Sweepline Method
	Syntactical Colored Petri Nets Reductions

	Decidability and Complexity
	Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology
	A Static Analysis Using Tree Automata for XML Access Control
	Reasoning About Transfinite Sequences
	Semi-automatic Distributed Synthesis

	Established Formalisms and Standards
	A New Graph of Classes for the Preservation of Quantitative Temporal Constraints
	Comparison of Different Semantics for Time Petri Nets
	Introducing Dynamic Properties with Past Temporal Operators in the B Refinement
	Approximate Reachability for Dead Code Elimination in Esterel<Superscript> $\star$ </Superscript>

	Compositional Verification and Games
	Synthesis of Interface Automata
	Multi-valued Model Checking Games

	Timed, Embedded, and Hybrid Systems (II)
	Model Checking Prioritized Timed Automata
	An MTBDD-Based Implementation of Forward Reachability for Probabilistic Timed Automata

	Protocols Analysis, Case Studies, and Tools
	An EFSM-Based Intrusion Detection System for Ad Hoc Networks
	Modeling and Verification of a Telecommunication Application Using Live Sequence Charts and the Play-Engine Tool
	Formal Construction and Verification of Home Service Robots: A Case Study
	Model Checking Real Time Java Using Java PathFinder

	Infinite-State and Parameterized Systems
	Using Parametric Automata for the Verification of the Stop-and-Wait Class of Protocols
	Flat Acceleration in Symbolic Model Checking
	Flat Counter Automata Almost Everywhere!

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




