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Preface

The Automated Technology for Verification and Analysis (ATVA) international
symposium series was initiated in 2003, responding to a growing interest in
formal verification spurred by the booming IT industry, particularly hardware
design and manufacturing in East Asia. Its purpose is to promote research on
automated verification and analysis in the region by providing a forum for inter-
action between the regional and the international research/industrial communi-
ties of the field. ATVA 2005, the third of the ATVA series, was held in Taipei,
Taiwan, October 4-7, 2005. The main theme of the symposium encompasses de-
sign, complexities, tools, and applications of automated methods for verification
and analysis. The symposium was co-located and had a two-day overlap with
FORTE 2005, which was held October 2-5, 2005.

We received a total of 95 submissions from 17 countries. Each submission
was assigned to three Program Committee members, who were helped by their
subreviewers, for rigorous and fair evaluation. The final deliberation by the Pro-
gram Committee was conducted over email for a duration of about 10 days
after nearly all review reports had been collected. In the end, 33 papers were se-
lected for inclusion in the program. ATVA 2005 had three keynote speeches given
respectively by Amir Pnueli (joint with FORTE 2005), Zohar Manna, and Wolf-
gang Thomas. The main symposium was preceded by a tutorial day, consisting
of three two-hour lectures given also by the keynote speakers.

ATVA 2005 was supported by National Science Council, Ministry of Educa-
tion, and Academia Sinica of Taiwan and also by the Center for Information and
Electronics Technologies at National Taiwan University and Cadence Design Sys-
tems. Their generous sponsorships are gratefully acknowledged. We would like
to thank the Program Committee members and their subreviewers for the hard
work in evaluating the submissions and selecting the program. We thank the
keynote speakers for their extra effort in delivering the tutorials. We thank the
Steering Committee for their advice, particularly Farn Wang, who also served
as program chair of the two previous ATVA symposia and of FORTE 2005, for
providing many valuable suggestions and for being very cooperative with the
joint events of ATVA 2005 and FORTE 2005.

For administrative support, we thank the Department of Information Man-
agement and the Department of Electrical Engineering at National Taiwan Uni-
versity. In particular, we thank Mr. Yu-Fang Chen for maintaining the conference
Web site among many other administrative chores. We thank also the MyReview
team for making available a free and convenient submission system.

October 2005 Doron A. Peled and Yih-Kuen Tsay
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Ranking Abstraction as a Companion to Predicate
Abstraction*-**

Amir Pnueli'-?

! New York University, New York
amir@cs.nyu.edu
2 Weizmann Institute of Science

Abstract. Predicate abstraction has become one of the most successful method-
ologies for proving safety properties of programs. Unfortunately, it cannot be
used for verifying all liveness properties. In order to handle liveness properties,
we introduce the method of ranking abstraction. This method augments the an-
alyzed system by a “progress monitor” which observes whether a given rank-
ing function decreases or increases at any step of the program. The fact that
the ranking function ranges over a well-founded domain is expressed by a com-
passion (strong fairness) requirement, which states that a function over a well-
founded domain cannot decrease infinitely many times without also increasing
infinitely many times. In analogy to predicate abstraction which uses a predi-
cate base P = {P1,..., Py} consisting of a set of predicates, we augment the
program with a ranking core A = {d1,...,0,} consisting of several ranking
components. The augmented system is then abstracted using standard predicate
abstraction, but retaining all the compassion requirements. The abstracted aug-
mented system is then model checked for an arbitrary LTL property. The ranking
abstraction method is shown to be sound and (relatively) complete for proving all
LTL properties, including safety and liveness.

In the presented talk we focus on the strong analogy between predicate ab-
straction and ranking abstraction. Predicate abstraction can be viewed as a pro-
cess which determines the best inductive invariant which can be formed as a
boolean combination of the predicate base. In a similar way, ranking abstrac-
tion can be viewed as a search for the best well-founded global ranking function
which can be formed as a lexicographic combination of the ranking components
included in the ranking core A. In the talk, we present an algorithm for an explicit
construction of such a global ranking function. Another important element of the
predicate abstraction methodology is that of abstraction refinement by which, a
coarse abstraction can be refined by analyzing a spurious counterexample. We
show that ranking abstraction also possesses an analogous refinement process.
We discuss how a spurious counter example can lead to a refinement of either the
current predicate base or ranking core.

The talk is based on results obtained through joint research with I. Balaban,
Y. Kesten, and L.D. Zuck.

* The full version of this paper is included in the proceedings of FORTE’05.
** This research was supported in part by NSF grant CCR-0205571, ONR grant N00014-99-1-
0131, and Israel Science Foundation grant 106/02-1.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, p. 1, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Termination and Invariance Analysis of Loops

Aaron Bradley and Zohar Manna

Computer Science Department, Stanford University

Abstract. Deductive verification aims to prove deep properties about
programs. The classic Floyd-Hoare-style approach to verifying sequential
programs reduces program validity queries to first-order validity queries
via verification conditions. Proving that a program is totally correct re-
quires proving the safety aspect with invariants and the progress aspect
with invariants and ranking functions. Where do the invariants and rank-
ing functions come from?

A verifying compiler that reads program annotations enables the
programmer to write desired properties as assertions. Unfortunately, ver-
ifying a safety property requires strengthening it to an inductive asser-
tion, while proving termination requires finding ranking functions. The
strengthening process often involves writing many tedious facts, while
ranking functions are not always intuitive. In practice, programmers do
not want or are unable to invent inductive assertions and ranking func-
tions. Instead, the ideal verifying compiler strengthens the given asser-
tions with facts learned through static analysis. Invariant generators are
a class of static analyzers that automatically synthesize inductive in-
variants. Ranking function generators automatically synthesize ranking
functions, sometimes with supporting invariants. Together, they reduce
the burden on the programmer by automatically learning facts about
programs.

In this talk, we discuss our approach to invariant and ranking func-
tion generation. A constraint-based method labels program points with
parameterized expressions, which encode the shape of the desired in-
ductive assertions or ranking functions. For example, the shape of an
inductive invariant could be an inequality between affine combinations
of program variables, while the shape of a ranking function could be
an affine combination of program variables. It then generates a set of
parameterized verification conditions and solves for the parameter val-
ues that make them valid. Instantiating the parameterized expressions
with these values results in a set of inductive assertions or ranking func-
tions. We discuss recent work for analyzing termination of programs that
manipulate variables via affine expressions. We also discuss a constraint-
based analysis for programs with integer division and modulo operators.
Finally, we present experimental evidence indicating that invariant and
ranking function generation is a powerful technique for scaling deductive
verification to large programs.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, p. 2, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Some Perspectives of Infinite-State Verification

Wolfgang Thomas

RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. We report on recent progress in the study of infinite tran-
sition systems for which interesting properties (like reachability of des-
ignated states) can be checked algorithmically. Two methods for the
generation of such models are discussed: the construction from simpler
models via operations like unfolding and synchronized product, and the
internal representation of state spaces by regular sets of words or trees.

1 Introduction

The method of model-checking has developed largely in the domain of finite sys-
tem models, and its success in industrial applications is built on highly efficient
data structures for system representation. Over infinite models, the situation is
different, and for practical applications the field is still in its beginnings. Even
simple properties may be undecidable over infinite state spaces, and thus a care-
ful preparatory analysis is necessary in order to determine the possible range of
fully automatic verification.

The purpose of the present short survey is to report on some techniques
which yield classes of infinite models such that the model-checking problem is
decidable for interesting properties. Our presentation is far from complete; it
is biased towards results which were obtained in the author’s research group
and collaborations with other groups (mostly that of D. Caucal, Rennes). We
focus on system models in the form of edge-labelled transition graphs; thus a
central aspect is the investigation of structural properties of infinite graphs. An
alternative and equally fundamental approach for introducing infinite models,
which is not discussed in this paper, is to extend finite transition graphs by
infinite data structures, for example over the natural or real numbers (as in
timed systems).

Transition graphs are considered in the format G = (V, (Eg)qcx) where V is
the set of states (vertices) and where E, (for a symbol a from a finite alphabet
X)) is the set of a-labelled edges. We write E for the union of the E,. State-
properties may be introduced by subsets V,, of V', where a is from a second label
alphabet I'.

The logics we consider allow to express the reachability relation £, the reflex-
ive transitive closure of F, since reachability is the most fundamental property
arising in verification. A prominent logic of this kind is monadic second-order
logic MSO. It encompasses most standard temporal logics. On the other end,

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 3-10, 2005.
© Springer-Verlag Berlin Heidelberg 2005



4 W. Thomas

as a kind of minimal logic in this context, we consider FO(R) (”first-order logic
with reachability”), the extension of first-order logic by a relation symbol for E*.

We shall address two methods for constructing infinite transition graphs
where model-checking (with respect to MSO or FO(R)) is decidable. First we
review the effect of fundamental model constructions — namely, interpretation,
unfolding, and synchronized product — on the existence of model-checking pro-
cedures. Secondly, we discuss model-checking as based on “regular” internal rep-
resentations of infinite transition graphs, using finite automata over strings or
trees, respectively.

2 Operations on Graphs

2.1 Interpretations

Rabin’s Tree Theorem [19] states that the MSO-theory of the infinite binary
tree Ty is decidable (or in other terminology: that model-checking the binary
tree with respect to MSO-properties is decidable). We can view T as a graph
({1,2}*,51,52), where {1,2}* is the set of vertices and Sj,S2 the successor
relations with S; = {(v,vi) | v € {1,2}*}. Many other theories were shown
decidable (already in [19]) using interpretations in the tree Ts. To show that the
model-checking problem for a structure S with respect to formulas of a logic L
is decidable one proceeds as follows: One gives an MSO-description of S within
the binary tree 75, and using this one provides a translation of L-formulas ¢ into
MSO-formulas ¢’ such that S = ¢ iff T5 | ¢'. Taking L = MSO, we see that
an MSO-interpretation (i.e., a model description using MSO-formulas) preserves
decidability of model-checking with respect to MSO-formulas.

As a simple example of interpretation consider the n-ary branching tree T,
(for n > 2), with vertices in the set {1,...,n}* rather than {1,2}* as for T5. We
may represent the vertex iy ..., of T, by 1412...1%2 in Ty. It is easy to give an
MSO-definition of the range of this coding in 75 and to supply the translation
@ — ¢ as above. As a second example, consider a pushdown automaton A
with stack alphabet {1,...,k} and states qi,...,qm. Let G4 = (Va, E4) be
its configuration graph; here V4 consists of A-configurations (gj, 1 ...4,) (with
state ¢; and stack content 4; ... i,, reading ¢; as top symbol), and we restrict to
those configurations which are reachable from the initial one (say (g1,1)). The
edge relation F 4 is the one-step transition relation of A between configurations.
Choosing n = max(k, m), we can exhibit an MSO-interpretation of G4 in T),:
Just represent configuration (g;, 41 ...1,) by the vertex i, ...41j of T),. Note that
then the A-steps lead to local moves in T),, from one T),-vertex to another, e.g. in
a push step from vertex i, ...41j to a vertex i,...11705 . These moves are easily
definable in MSO, and reachability (from the initial vertex 11) as well. Due to
this interpretation, we obtain the fundamental result of Muller and Schupp ([18]):
For the configuration graph of a pushdown automaton, checking MSO-properties
is decidable.

It is known that the e-closures of the pushdown transition graphs capture
precisely those graphs which are MSO-interpretable in T5 (or equivalently in T3,);
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see Section 3 below. We do not consider here a slightly more general version of
MSO-interpretation, the “MSO-definable transduction” in the sense of Courcelle
[7]; such a transduction from S to T involves a description of S in a k-fold copy
of T rather than T itself.

2.2 Unfoldings

In the previous section we explained how to generate a model “within” a given
one, via defining formulas. A more “expansive” way of model construction is the
unfolding of a graph (V, (E, )eex) from a given vertex vy, yielding a tree T (vg) =
(V' (E.L)acx): V' consists of the vertices vgaivy ...ayv, with (v;_1,v;) € Eq,,
and E!, contains the pairs (voaivy ... a0, 006101 . .. apv.av) with (v, v) € E,.
The unfolding operation has no effect in bisimulation invariant logics, but is
highly nontrivial for MSO. Consider, for example, the singleton graph G, over
{vo} with a 1-labelled and a 2-labelled edge from vy to vg. Its unfolding is the
infinite binary tree. While checking MSO-formulas over G| is trivial, this is quite
difficult over T». A powerful result due to Courcelle and Walukiewicz [8] says: If
model-checking MSO-formulas over G is decidable and vy is an MSO-definable
vertex of G, then model-checking MSO-formulas over Tg(vg) is decidable. The
result holds also for a slightly more general construction (“tree iteration”) which
can also be applied to relational structures other than graphs (see [1,24]).

MSO-interpretations and unfoldings are two operations which preserve decid-
ability of MSO model-checking. Caucal [4] studied the structures generated by
applying both operations, alternating between unfoldings and interpretations.
(In [4] a more special type of interpretation was used; the link to MSO was
supplied by Carayol and Wéhrle in [9]; for a detailed treatment see [25].) Start-
ing with the class of finite graphs, one first obtains the regular infinite trees by
unfoldings, then a class of graphs containing all pushdown transition graphs by
interpretations, then the algebraic trees by unfoldings, and so on. The process
yields many more complicated structures, all with a decidable MSO-theory. It
is known that this “Caucal hierarchy” of graphs and trees is strict and quite
rich, but we do not really have an overview which structures belong to it. An
introduction with some examples is given in [23]. We also know of a few infinite
graphs outside the Caucal hierarchy which still have a decidable MSO-theory
(see [9]).

A related problem is to find more extensive classes of transition graphs for
which the unfolding operation also preserves decidability of model-checking, but
now for suitably chosen weaker logics than MSO. Note that MSO covers more
than reachability properties (for example, one can express the existence of global
colorings satisfying local constraints) and thus is more expressive than needed
for many practical purposes.

2.3 Products

Products of transition graphs with different synchronization constraints are ubig-
uitous in system modelling, in particular for representing distributed systems.
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While this construction causes fundamental complexity problems when the com-
ponents are finite-state (“state space explosion”), undecidability may arise over
infinite state spaces.

As an example, consider the successor structure (IN, S) over the natural num-
bers with S = {(i,7 + 1)|i € IN}, whose MSO-theory is known to be decidable
(Biichi’s Theorem; see [21]). The asynchronous product of (IN,.S) with itself is
the structure (IN x IN, E') where ((4,7), (k,1)) € E iff either i = k and [ = j + 1,
or j =1l and k = i+ 1. This is the infinite grid, where the model-checking
problem with respect to MSO-properties is undecidable (see e.g. [21]). Thus, if
product formation should preserve decidability of model-checking, then MSO is
too strong.

If products should preserve decidability of model-checking, the task is to com-
pose model-checking algorithms for the component structures to a corresponding
algorithm for the product. Such composition results have a long tradition in logic,
starting with the work of Feferman and Vaught [11] in first-order model theory.
The situation is more complicated when second-order aspects enter (as involved
in reachability properties).

Builing on the approach of [11], a preservation result on decidability of model-
checking is shown in [26] for the logic FO(R) (first-order logic with reachability).
In each component graph G; (1 < i < n), synchronizing and local actions are dis-
tinguished by a partition of the label alphabet Y;. Transitions may be executed lo-
cally via local labels, or else via a “synchronization constraint” (¢q, ..., ¢,) where
each ¢; is either a synchronizing label or . A corresponding execution leaves the
states identical in the components with entry € and involves a ¢;-transition for
each of the other components G;. We speak of a finitely synchronized product if
for each constraint (cy, ..., c,) and each ¢; # ¢, only from finitely many vertices
in G; a ¢;-labelled transition exists. This assumption applies to products of in-
finite systems where synchronization can only be realized within finite parts of
the components. In [26], the following is shown: If the graphs G1,..., G, have a
decidable model-checking problem with respect to FO(R )-specifications, then this
holds also for any finitely synchronized product of the G;.

This result is sharp in several ways. First, the assumption on finite syn-
chronization cannot be weakened. If there is just one component which shares
infinitely many synchronized transitions, the result fails. Also it is not possible
to generalize the logic in any essential way; for example, the result fails if the
reachability operator is restricted to regular sets of label sequences or if universal
path quantification enters (see [26,20]).

In all the decidability results mentioned above, very high lower bounds for
the complexity are known. One of the main tasks in the field is to single out
cases which are both practically significant and at the same time allow more
efficient procedures than those derived from the first decidability proofs.

3 Regular Presentations

Automata provide a natural framework for finite representations of infinite struc-
tures. For graphs (V| F), the idea is to represent the vertex set as a regular
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language and the edge set by some sort of “regular relation”. Since there are
many versions of finite-state transducers, there are several options for the latter;
for an introduction see e.g. [22]. One choice, leading to the “automatic struc-
tures”, is based on the “automatic” (or “synchronized rational”) relations. Here
an edge relation F is defined by an automaton which processes a given word
pair (u,v) synchronously in both components letter by letter (and one assumes
that, if necessary, a dummy letter is used to extend the shorter word to the
same length as the longer word). An automatic structure has a decidable first-
order theory (see [2]); however, already the point-to-point-reachability problem
(“Given vertices u,v, is there a path from w to v?”) may be undecidable for
an automatic structure. As an example, one can use the transition graph U of
a universal Turing machine: Its configuration space is a regular language, and
the one-step relation between configurations is clearly automatic. The halting
problem for Turing machines can be reduced to the point-to-point reachability
problem over U.

The one-step transition relation over Turing machine configurations is an in-
fix rewriting relation. Restricting to prefix rewriting, as it occurs in pushdown
transition graphs, the reachability problem becomes decidable. This follows al-
ready from classical work of Biichi [3] on his “regular canonical systems”. If for
the graph G = (V, (E,)qcx) the vertex set is presented as a regular language,
and the edge relations F, by finite prefix-rewriting systems, then G has a de-
cidable MSO-theory; this is shown by an interpretation in 75 as in Section 2.1
above. As observed by Caucal [5], the prefix-rewriting rules can even be general-
ized to the form U; — U, for regular sets Uy, Us, meaning that a prefix u; € Uy
can be replaced by any us € Us. The “prefix-recognizable” graphs arising this
way coincide with those which can be obtained from the binary tree 75 by an
MSO-interpretation (see, for example, [15]).

The idea of prefix-rewriting underlies many decidability results in infinite-
state model-checking. It can be generalized in several ways while keeping (at least
some of) the mentioned decidability properties. We present two such generaliza-
tions, the higher-order pushdown systems, and the ground tree rewriting graphs.

3.1 Higher-Order Pushdown Systems

Higher-order pushdown automata are a classical model of computation which
arises in the evaluation of higher-order recursion schemes (see [10,14]). The idea
is to generalize the stack symbols of a pushdown automaton to be again of stack
format, and so on iteratively, which yields stacks of stacks of stacks etc. If k
levels of stacks occur, we speak of a level-k pushdown automaton. For example,
in a transition of a level-2 pushdown automaton, one can access the topmost
symbol of the topmost stack, can modify the topmost stack in the usual way, or
can execute global operations on the topmost stack, by deleting it or adding a
copy of it as new topmost stack.

The configuration graphs of higher-order pushdown automata, called higher-
order pushdown graphs, are of bounded out-degree (since only finitely many
successor configurations can be reached directly from a given one). When we
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consider the e-closure, i.e. we allow e-moves and compress sequences of e-moves
into a single transition, then transition graphs of infinite degree are generated.
Surprisingly, the hierarchy of these transition graphs (for increasing level k)
coincides with the Caucal hierarchy of graphs mentioned in Section 2.2: In [9]
(and with full proof in [25]) it is shown that a graph can be generated from
finite graphs by k applications of unfolding and MSO-interpretation iff it is the
transition graph of the e-closure of a level-k pushdown automaton. Of course,
it follows that model-checking a higher-order pushdown graph with respect to
MSO-properties is decidable.

3.2 Ground Term Rewriting Graphs

The transition graphs generated by higher-order pushdown automata are still
tightly connected with infinite trees — in fact, they can be generated for a given
level k from a single tree structure via MSO-interpretations. So these graphs are
too restricted for many purposes of verification (excepting applications on the
implementation of recursion).

A more flexible kind of model is generated when the idea of prefix-rewriting is
generalized in a different direction, proceeding from word rewriting to tree rewrit-
ing (which we identify here with term rewriting). Instead of modifying the prefix
of a word by applying a prefix-rewriting rule, we may rewrite a subtree of a given
tree, precisely as it is done in ground term rewriting. A ground term rewriting
graph (GTRG) has a vertex set V which is given by a regular tree language, and
each edge relation F, is defined by a finite ground term rewriting system.

A simple example of a GTRG is the infinite grid: It is generated from the tree
f(c,d) by applying the rules ¢ — g(¢) and d — g(d), which produces the trees
f(g%(c),g%(d)) in one-to-one correspondence with the elements (i,5) of IN x IN.
Thus over GTRG’s, model-checking MSO-properties is in general undecidable.

In work of C. Loding (see [16,17]), the structural and logical properties
of GTRG’s are investigated. As it turns out, the model-checking problem over
GTRG’s is decidable for a logic which covers reachability and even recurrent
reachability. The atomic formulas of this logic refer to regular state properties
(specified by finite tree automata), and the connectives are, besides the boolean
ones, EX,, EF, and EGF (in CTL-like notation). This result is optimal in the
sense that adding universal quantification (for example, when adjoining the op-
erator AF') leads to undecidability of the model-checking problem. On the other
hand, it is possible — as for pushdown graphs — to generalize the rewriting rules
without affecting the decidability results: Instead of allowing replacement of a
single subtree by another one, one may use rules of the form 7" — T’ for regular
tree languages T, T, meaning that an occurrence of subterm ¢ € T can be re-
placed by any ¢’ € T’. More results, also connecting GTRG’s with asynchronous
products of pushdown graphs, are shown in [6].

4 Conclusion

The above-mentioned results are as yet mosaic pieces of a picture which hopefully
will grow into an esthetically pleasing and practically useful algorithmic theory
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of infinite models (which the author would call “algorithmic model theory”). It
seems that the two approaches mentioned — global model construction and local
descriptions based on automata theoretic concepts — can be developed much
further and also be combined in new ways.

There is, of course, a different approach for infinite-state model-checking,
based on the admission of infinite data structures (like counters over the natural
numbers, or addition and inequalities over the real numbers). An interesting
direction of current work aims at establishing bridges between that approach
and the results treated in the present paper. As an example, we mention the
recent paper [13] where transition graphs arising from monotonic counters are
discussed.

A dual track of research is to destillate efficient model-checking procedures
from the general decidability results mentioned above, by restricting both the
models and the logics to simple but relevant cases.
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Abstract. Recent advances in scheduling and networking have cleared
the way for efficient exploitation of large-scale distributed computing
platforms, such as computational grids and huge clusters. Such infras-
tructures hold great promise for the highly resource-demanding task of
verifying and checking large models, given that model checkers would be
designed with a high degree of scalability and flexibility in mind.

In this paper we focus on the mechanisms required to execute a high-
performance, distributed, symbolic model checker on top of a large-scale
distributed environment. We develop a hybrid algorithm for slicing the
state space and dynamically distribute the work among the worker pro-
cesses. We show that the new approach is faster, more effective, and thus
much more scalable than previous slicing algorithms. We then present a
checkpoint-restart module that has very low overhead. This module can
be used to combat failures which become probable with the size of the
computing platform. However, checkpoint-restart is even more handy for
the scheduling system: it can be used to avoid reserving large numbers
of workers, thus making the distributed computation work-efficient. Fi-
nally, we discuss for the first time the effect of reorder on the distributed
model checker and show how the distributed system performs more effi-
cient reordering than the sequential one.

We implemented our contributions on a network of 200 processors,
using a distributed scalable scheme that employs a high-performance
industrial model checker from Intel. Our results show that the system was
able to verify real-life models much larger than was previously possible.

1 Introduction

This paper presents several novel techniques to enhance distributed reachability
computation. The techniques enable effective use of a network of 100 computers
for the verification of large industrial hardware designs that could not be verified
by previously available tools.

For a long time the state explosion problem has been the showstopper of
BDD-based (symbolic) model checking [3]: The BDD structures simply can-
not squeeze into the RAM available to a single computer. SAT-based model
checking [2] can find errors in very large systems, but is limited when used for
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verification [9]. In fact, BDD-based model checking is usually superior, when ver-
ification is required. Larger systems usually have longer diameters and therefore
SAT-based bounded model checking can cover smaller parts of their state space.

In recent years, several distributed BDD-based reachability algorithms have
been introduced [8,7,6] for networks of communicating computers with dis-
tributed memory. Reachability is an important problem because model checking
of all temporal safety properties can be reduced to it [1]. Distributed reacha-
bility exploits the memory modules and the computation power of a heteroge-
neous cluster of computers, where more and more machines can be employed
on demand. The collective storage offered by the cluster RAM is utilized in a
memory- and work-efficient manner, essentially operating as a yet another layer
in the memory hierarchy.

However, if these algorithms are to be scaled for very large models that re-
quire hundreds of computers, then several enhancements are required. First, fast
and effective slicing is needed, in order to accommodate frequent splits in the
memory content of overflowed computers. Second, a checkpoint/restart mecha-
nism is needed to recover from a single computer failure and in order to better
utilize clusters of computers when memory requirements vary significantly dur-
ing computation. Finally, dynamic BDD variable reordering should be adapted
to work well with the distributed algorithm.

Our work provides solutions for all of these requirements. We developed a
hybrid algorithm for slicing very large sets quickly and effectively. The user
provides the algorithm with measures for an effective slicer, and the algorithm
searches for an adequate one. The algorithm is designed to spend as little time
as possible in finding an adequate slicer, not necessarily the best one. It starts
with a fast estimated computation. If no adequate slicer is found, it gradually
applies more precise computations. We compare our hybrid algorithm with the
fast estimating algorithm Est [5]. We show that our algorithm produces far
fewer duplications. We also compare our algorithm to the exhaustive algorithm
Exh [8], which is better than or equal to other exhaustive algorithms [4,11,10].
We show that it is faster than Exh, and, in fact, the difference in run time
increases when the size of the BDD or the size of its support increase.

We also propose a non-coordinated checkpoint /restart mechanism as part of
the distributed reachability computation. In the distributed reachability analy-
sis [8], each worker owns a subset of the state space and iteratively computes
the set of reachable states within its ownership. It may also find states owned
by others workers, which it sends to them. Likewise, it receives owned states,
found by others. The checkpoint mechanism consists of occasionally freezes by
each worker. The worker stores its configuration, including the set of states it
owns, the set of states computed so far, the iteration number, and the BDD vari-
able ordering. Restart is performed by finding a set of configurations, all taken
from the same iteration, whose ownership covers the whole state space. A set of
new free workers is then initialized with these configurations and resumes the
computation.
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The checkpoint /restart mechanism is particularly useful when running on a
non-dedicated network. Two tasks running on such a network may reach their
memory peak at the same time, thus blocking each other. It then might be
necessary to freeze one of them and enable the other to continue. When the
memory requirement of the active task decreases, the frozen one can be resumed.
In addition, when memory requirements vary significantly during computation,
an effective utilization will require clusters of varying sizes. Changing the cluster
size is done by freezing the active workers and restarting them on a different
cluster with an appropriate size.

In order to maintain effective dynamic reordering, we propose a distributed
paradigm to control the points at which dynamic variable reordering is per-
formed. In sequential computation, reorder is invoked after garbage collection, if
the BDD size exceeds a certain threshold. The distributed computation applies
the same policy. In addition, for each worker, it uses two new controlling oper-
ations: enforcing reorder when an overflow occurs; and updating the threshold
following an action that reduces the BDD size. Reorder when overflow occurs
may save unnecessary splits.

Another improvement to the BDD package enforces timeout on BDD opera-
tions that do not terminate within a reasonable time. Usually this is due to the
size of their operands. We then split the BDDs and resume the operations on
two smaller BDDs.

We demonstrated the utility of our scheme by implementing it as a large-scale
distributed engine that consists of more than 100 computers and uses a high-
performance model checker. We ran our experiments on clusters composed of
ordinary PCs. Our results show that the system can verify (apply full reachability
to) much larger models than could previously be verified. In addition, our results
show that in some cases, when the distributed algorithm needs more processes
than available, it still reaches a further step than SAT-base bounded model
checking does.

In summary, the contributions of the paper are:

— Fast and effective slicing with small memory overhead.

A checkpoint/restart mechanism.

— An enhanced BDD package: adaptive dynamic variable reorder and timeout
on BDD operations.

— Orthogonality to high-performance model checking: all features of sequential
model checking remain effective in the distributed framework.

All of the above allows the verification of large industrial components.

The rest of the paper is organized as follows. Section 2 presents a new al-
gorithm for fast and effective slicing of very large sets. Sections 3 describes
the checkpoint/restart mechanism. Finally, Section 4 presents our distributed
reachability analysis, including a paradigm for dynamic variable reordering, and
presents our experimental results on verification of large industrial designs.
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2 Hybrid Algorithm for Slicing Very Large Sets

In this section we present a new algorithm for slicing very large sets quickly and
effectively. The approach makes use of user-supplied measures of effectiveness:
the algorithm simply searches for a slicer that meets the measures. The algorithm
attempts to reduce the time spent finding a sufficiently effective slicer; it does
not necessarily search for the best one. Rather than checking all variables in the
support of the set to be sliced, as was done previously, the proposed algorithm
makes use of the abundance of good slicers in the support to pick one from a
randomly selected sample.

The algorithm gets as its input a set of states as a characteristic function
f and returns a variable v called slicer, which slices f into two subsets: f A v
and f A v. Such slicing is effective if two requirements are fulfilled. First, the
size of each of the subsets is smaller than the size of f itself: max|f/|\;||,|f/\v| < 1.

Second, the amount of duplication is not too big: The minimum

IfAvllegllfAvl < 6.
reduction factor and the maximum duplication factor d1, d2 are provided by the
user, or by the higher-level procedure calling the algorithm.

The algorithm proceeds through a sequence of three phases. In each consec-
utive phase the algorithm spends more time trying to find an effective slicer.
Once an effective slicer is found the algorithm declares success and terminates.
After three unsuccessful phases the algorithm returns the best slicer it has found
so far.

In order to test the effectiveness of a candidate slicer, the BDDs of f Av and
f A v must be built and their relative sizes measured. This consumes time and
memory. In contrast, one can estimate the sizes of the slices in a single scan of
the BDD of f without creating a new BDD [12]. Estimation is a lot faster than
precise calculation and requires far fewer resources.

In the first phase the algorithm employs the method Est [5] to search for an
effective slicer. This method initially computes an estimate of the size of f Av and
f A v, for each variable v in the support of f. Then it selects as a slicer, among
all other variables, the variable v for which the maximum estimates for f Av and
f Awv is minimal. Next, a precise calculation is used to determine whether v is an
effective slicer. If v is found to be effective, the algorithm terminates; otherwise
it proceeds to the next phase.

In the second phase, the algorithm randomly selects a subset varSet of vari-
ables out of the support of f. The varSet’s size depends on the required con-
fidence degree in finding at least one effective variable (See Subsection 2.1).
ef fectiveSet holds all the variables in varSet that were first estimated as
effective, and only those that seem to be effective are checked precisely. If
ef fectiveSet is empty, the second phase ends unsuccessfully. Otherwise, the
best slicer from ef fectiveSet is selected by Exh. We remark that the Exh pro-
cedure itself is no different than the slicing mechanisms described in [8]. Thus,
in this paper, we use it as a black box.

The third phase is similar to the second. The difference is that ef fectiveSet
now holds all the variables from varSet that slice effectively using a precise cal-
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function Hybrid(f)
1 wv=Est(f)

if ef fective(v, precise) return v
varSet=randomselect(support(f))
ef fectiveSet={v | v € varSet A ef fective(v, fast) A ef fective(v, precise)}
if ef fectiveSet # ()

return Exh(f, efectiveSet)
ef fectiveSet={v | v € varSet A ef fective(v, precise)}
if ef fectiveSet # 0

return Exh(f, efectiveSet)
return MEff (f, efectiveSet)

O W0 NOO P WN

[y

Fig. 1. Pseudo—code for the slicing algorithm Hybrid

culation. Finally, if the third phase fails and none of the variables is effective, the
most effective variable, MEff, is selected among the variables that were computed
in the third phase and this variable is returned.

Figure 1 describes the algorithm Hybrid for finding a slicer. Lines 1-2 de-
scribe the first phase, which uses the Est method to select a slicer v. If v is found
to be effective, the algorithm terminates. Lines 3-6 describe the second phase
where varSet is randomly selected from the variables in the support of f. Then
ef fectiveSet gets only the variables that are effective slicers. This computation
is done by first applying a fast estimated check and only then a precise check. The
precise check is applied only on slicers that are estimated to be effective. Finally,
the algorithm Exh is used to find the best slicer out of ef fectiveSet. Lines 7-9 de-
scribe the third phase where a precise check is applied to all variables in varSet.
If the third phase fails, the most effective slicer found so far is returned in line 10.

2.1 Size of the Randomly Selected Subset

In this section we discuss the relation between the confidence in finding at least
one effective variable and the number of samples. Lemma 1 defines this relation.

Lemma 1. [Sample size required] Let sup be the size of the support of a set.
Let ef be the number of effective slicers in the support (ef < sup). Let s be
the number of randomly selected variables(s < sup). Let pr be the confidence in

. . . \°
finding at least one effective slicer out of s samples. Then, pr > 1 — (1 — ;p) .

The proof is straightforward and is omitted for lack of space.

Our experimental results (Figures 5(a), 5(b), explained later) show that the
minimum percentage of effective slicers is 4%. Therefore, confidence in finding at
least one effective variable converges to 100% exponentially fast in the number
of samples. More importantly, it does not depend on the number of variables.
If, for example, we want 90% confidence that we will get at least one effective
variable and 5% of the variables are effective, we need only 45 samples.

2.2 Experimental Results

We compare three slicing algorithms. The new algorithm Hybrid, presented in
Figure 1; the exhaustive algorithm Exh when working on the entire set of support;
and the fast estimation Est when working on the entire set of support.
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Table 1. Benchmark suite characteristics. For each set of examples we give the BDD

size of the sets of states and the support size.

Sclicing time in seconds

Sclicing time in seconds

Set
Small 0.5 - 3 Million
Large 0.5 - 6 Million

Extra large 0.5 - 7 Million
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Fig. 2. Comparing the slicing algorithms for support size 687 - 712

3500

Exhaustive ———
Hybrid

,,,,,,,,,,,,

3000
2500
2000
1500
1000

500

0 e E s
0 1 2 3 4 5
Set size in Million BDD nodes

(a) Run time

Duplication precent

-20
-40

80

60 !
40 iy

20

Exhaustive
Hybrid
Estimated -

MLV T
1 2

0

3 4 5 6

Set size in Million BDD nodes

(b) Duplication

Fig. 3. Comparing the slicing algorithms for support size 239 - 255

We use three sets of examples, each with different support size. Each set
includes varying BDD sizes, from half a million to 7 million nodes. The charac-
teristics of the three sets are presented in Table 1.

Slicing Efficiency and Memory Overhead. We now analyze the run time
and the duplication by the different slicing algorithms. Figures 2(a), 3(a) display
the run time of the slicing algorithms. In each graph the run times of Hybrid,
and Exh algorithms can be seen in relation to the size of the set being sliced.
Figures 2(a), 3(a) show that the run time of the Exh algorithm increases
proportionally to the BDD size and increases proportionally to the support size,
while the Hybrid algorithm runs in constant time.
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Percentage of duplication is the difference between the size of the set being
sliced and the sum of the subsets, in proportion to the size of the set being sliced:

(If/\vllJ;IIf/\vl - 1) x100. Figures 2(b), 3(b) compare the percentage of duplication

obtained by the Est algorithm to that obtained by the Hybrid algorithm. In each
graph, the percentages of duplication in the Est and in the Hybrid algorithms
can be seen in relation to the size of the set being sliced. The graphs show that
when the support size increases, the slicing by the Est algorithm generates much
more duplication than Hybrid. When the size of the support is 239 - 255 variables
(Figure 3(b)), the Est algorithm has 50% duplication on average, while, while
the Hybrid algorithm creates 7 percentage of duplication on average. When the
size of the support is 687 - 712 variables (Figure 2(b)), the average percentage
of duplication by the Est algorithm is 89, while the Hybrid algorithm creates 3
percentage of duplication on average.

Figures 2(b), 3(b) compare the percentage of duplication obtained by the
Exh algorithm and the Hybrid algorithm. The percentages of duplication of the
Exh and the Hybrid algorithms are shown in relation to the size of the set
being sliced. We set the maximum duplication factor ds to be 1.2. We set the
minimum reduction factor §; to be 0.85. For all set sizes that are not too small
(larger than 100K BDD nodes), the resulting slicer creates less duplication than
the maximum duplication factor. When the set size is very small, no effective
slicer is found by any of the three phases. Thus, the final phase finds a slicer
with duplication factor of 1.5. The small memory requirement of such small sets
means that slicing them is not effective.

In some cases the percentage of duplication may be negative. This means
that the sum of the sizes of the two subsets is less than the original set size.
The Exh algorithm finds slicers with a very small percentage of duplication —
as low as 30%. In other words, the sum is 30% smaller than the original set size.
Because the Hybrid algorithm stops as soon as it finds an effective slicer, it may
miss these.

Changing the Measures of Effectiveness. Figures 4(a), 4(b) present the
effect of different values for maximum duplication factor, 120% and 105%, on
run time and on percentage of duplication. In each graph the duplications are
shown in relation to the size of the set being sliced. Figure 4(a) presents the
duplications when the maximum duplication factors are 105% and 120%. For all
set sizes, the final slicer creates duplication which is smaller than the maximum
duplication factors; hence, the duplication with 105% is less than or equal to the
duplication with 120%.

Figure 4(b) presents the run time for duplication factors 105% and 120%. In
most cases the run time of the algorithm is longer when the maximum duplication
factor is 105%. In cases when the algorithm needs to run more phases, the
run time with 105% can take up to five times longer than that with 120%.
Since the algorithm uses a random selection, different runs may terminate with
different results. Sometime the run time takes comparably longer when using
larger maximum duplication, but these are rear and caused by the randomization
of the algorithm.
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Fig. 5. Percentage of effective slicers

Percentage of Effective Slicers. The experiments presented in this section
demonstrate that for different set sizes, regardless of the BDD order, at least
4% of the variables are effective slicers. Figure 5(a) presents the percentage of
effective slicers in different sets. The percentage of effective slicers is given in
relation to the size of the set being sliced. Figure 5(a) shows, that regardless
the set size, a minimum of 4% of the slicers are effective. This means that the
confidence in finding at least one effective slicer converge to 100% exponentially
fast in the number of samples (see Section 2.1).

Figure 5(b) presents the percentage of effective slicers in a single set with
different BDD orders. This example has 242 variables in the support and the set
size is 2.4 million BDD nodes with the best order. The percentage of effective
slicers is given for each order. Figure 5(b) shows that even when we change the
BDD order, as happens in the distributed reachability algorithm, a minimum of
4% of effective slicers is maintained.

3 The Checkpoint Restart Algorithm

In this section we briefly describe the iterative BDD-based distributed algorithm
for reachability [7]. We explain how to extend this algorithm with checkpoints
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and how to exploit these checkpoints in order to restart the reachability al-
gorithm when needed, according to some scheduling policy. Finally we present
experimental results which show that the associated overhead is negligible.

The basic paradigm followed by the algorithm is to compute the set of states
which are reachable from a given set of initial states. At each iteration, starting
from the set of initial states, the set R is computed. R consists of reachable
states found so far. In addition, the set N of undeveloped states is computed.
These are states that do not belong in R and are reachable from R in a single
step, whose successors have not yet been found.

The distributed algorithm runs on a network of communicating workers with
distributed memory. A set of window functions defines for each worker the subset
of states it owns. This set is complete, meaning that it covers the whole state
space. Worker ¢d with window function W;4 computes the sets R;q and N4, both
subsets of Wq.

Three coordinators control the distributed operation: the pool manager keeps
track of the free processes; the exchange coordinator maintains the window func-
tions of the active workers, and the small coordinator joins the windows of work-
ers whose memory utilization decreases below a certain threshold.

Figure 6 describes an extension of the distributed algorithm with checkpoint-
restart capability, called reach checkpt. The pseudo—code is described for a
single worker. For brevity, we omit the worker subscript id from R;4, N;q, and
W;q. We remark that the sets R and N, and the window function W, may change
during the execution.

The algorithm uses two utility functions to transfer BDDs between a sender
and a receiver whose BDD orders may be different: bdd2msg translates a BDD
into a compact msg data and msg2bdd translates the msg data back to a BDD
after it has been transferred. We remark that the functions bdd2msg and msg2bdd
themselves are not different from the functions described in [8]. Thus, in this
paper, we use them as a black box.

The algorithm follows the same lines of the distributed reachability algorithm,
except at the end of each iteration workers sometimes store checkpoints. The
data stored in a checkpoint consists of R, N, W, the iteration number #it, and
its current BDD order bdd order (line 9). The checkpoint of a worker may be
stored on a persistent storage system, e.g., a distributed file system such as NF'S,
or simply on the private disk of a peer worker (in which case it is assumed the
peer worker does not crash when the worker does).

Recall that the basic reachability paradigm is an iterative, synchronous pro-
cess. Thus, the collection of all checkpoints from all workers at the end of an
iteration forms a consistent view of the global reachability process at that point.

If a restart is needed because of a failure, or due to rescheduling of the reach-
ability process on another distributed system, the collection of checkpoints may
set a starting point for pursuing the computation. The restart algorithm searches
for a set of checkpoints taken from the same iteration, which forms a complete
set of window functions. If an incomplete set is found, indicating that some but
not all the workers succeeded in storing checkpoints for the corresponding iter-
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function reach checkpt(R, W, N)

1 Loop until termination()

N = Image(N), split if needed

send non-owned states (N \ W) to their owners

N=NU (received states in W from others), split if needed
N=N\ R

R=RUN

Collect small(R, W, N)

if (W = () return to pool

Check point (R, W, N, #it, bdd order)

© 00 ~NOOPd WN

Fig. 6. Pseudo—code for a worker in the distributed reachability computation with
checkpoints

ation previous to the abort, then the algorithm searches for a complete set that
was stored at the end of a previous iteration. Such a set is guaranteed to exist
because the workers follow the same policy, at the end of which iteration check-
points are stored, and because a previous checkpoint is never removed before the
current global checkpoint is known to be complete (e.g., at the end of the next
iteration).

Every active worker in the restarted process is restored using its local check-
point data, and is replaced by a worker from the free pool in the new distributed
system. The new worker restores R and IV according to the BDD order bdd order
and assumes W as its window function.

3.1 Experimental Results

The resources consumed by the distributed algorithm are evaluated by consid-
ering the following two figures. The reserved size is the number of machines
carrying out the computation. These machines are either actively taking part
in the computation, or they are part of the free pool. If they are part of the
free pool, they might not be carrying out any useful computation because they
are being reserved as potential additional resources for the reachability com-
putation. The wutilized size is the number of active non-free workers that are
actually taking part in the reachability computation. Of course, at any point
during computation the utilized size is less than the reserved size.

Figure 7(a) presents the utilized size and reserved size during the distributed
reachability computation. The graph shows how the checkpointing mechanism
is used in order to reduce reserved size to a minimum. Checkpointing is used
to vary the number of workers reserved, starting from a small cluster with only
10 machines. When more than 10 machines are required, the run temporarily
halts, a cluster with more machine is reserved, the last checkpoint is moved to
new cluster, and the computation is resumed on that cluster. With the larger
cluster, the run can reach a further step, while it utilizes at least 10 machines.
This way the free pool (of idle machines) is kept small compared to the number
of reserved workers.

Yet another contribution of the checkpoint restart mechanism is in the case
of termination as a result of failure in one of the resources. In case of a fail, the
amount of wasted resources is the accumulate of reserved size in each iteration
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Fig. 7. (a) reserved size is the number of machines carrying out the computation. wti-
lized size is the number of active non-free workers. (b) Run time of image computation
and the time to store the checkpoint data.

from the first one till the iteration where the failure appeared. Furthermore, the
more machines take part in the computation, and the more iterations involved
in the computation, the higher the chance of a failure. Thus, the importance
of the checkpoint restart mechanism increases with the number of iterations to
fixpoint, and with the scale of the model checked (as indicated by the reserved
size).

Figure 7(b) compares the run time of image computation and the time it
takes to store the checkpoint data. For each set size, the graph shows the run
time required for image computation and the run time required to store the
checkpoint data. The graph shows that for all set sizes the checkpoint run time
takes less than 20 seconds. Moreover, if there is no job failure, there is almost
no overhead for storing checkpoints.

4 Distributed Reachability Analysis for Very Large
Circuites Using 100 PCs

In the previous sections two enhancements to distributed reachability analysis
were discussed. This section describes the extensions to the algorithm
reach checkpt. These extensions enable high performance distributed reach-
ability analysis for very large circuits using 100 PCs. With these extensions, the
algorithm verifies circuits that could not be verified by any other tool. Further-
more, although an overflow in the required number of workers occurs in several
cases, the distributed scheme still reaches a much further iteration than that
reached by the sequential BDD based model checker.

In order to have our distributed scheme scale out, two additional extensions
to reach checkpt are needed: distributed reorder and BDD operations timeout.
We discuss the two extensions and then give experimental results.

4.1 Distributed Dynamic Variable Reordering

The dynamic variable reorder suggested by Rudell [13] works well for the se-
quential algorithm. Here we show how to use it with our distributed approach.

Rudell’s algorithm is called by the BDD package according to the growth
in the number of BDD nodes. A dynamic reorder threshold dr th determines
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where the next threshold should be triggered. The threshold is examined after
each garbage collection cycle, and variable reordering is triggered if the number
of nodes allocated after the garbage collection is greater than dr th. After each
invocation of reorder, a new value for dr th is set according to the number of
nodes in the new order.

In the distributed scheme the BDD package uses Rudell’s algorithm in the
same way. However, since there are events such as splits and joins which affect
the size of the BDD package, the distributed algorithm also controls the value
of dr th externally. The worker forces the BDD packages to adjust the value
of dr th after splitting a worker, after which the number of nodes decreases
dramatically, and after exchanging nonowned states, after which the number of
nodes may decrease or increase.

In addition, in case of overflow during image computation, triggering reorder
may reduce the size of the BDD and thus avoid the costly splitting. Therefore,
when an overflow occurs after many micro-steps but before the image compu-
tation is completed, the worker invokes reorder and then tries to complete the
image computation. However, if the BDD package triggers reorder just before
the micro-step overflowed, the worker avoids the additional reorder since it is
unlikely to prevent the splitting.

4.2 Escape from BDD Operation Livelock Using Timeouts

BDD engines use a cache for previously executed BDD operations. When this
cache is used, the run time commonly becomes linear in the sizes of the BDD
operators, rather than exponential. Since the size of the cache cannot hold all
the BDD operations, the engine replaces old results with new ones. If the result
of a replaced BDD operation is required, it will be recalculated. Recalculation
increases the run time, and in some cases, can cause the execution of a single
BDD operation to proceed for hours.

In the distributed scheme a split can help a single worker if it got stuck on
a single BDD operation, because the size of the cache is effectively doubled as a
result of the split, and because the split reduces the BDD operation operands.
A single micro-step is stopped if it turns out to be too long and split is invoked,
just as if a memory overflow occurred. Our experiments show that cases in which
a large number of recalculations take hours can be efficiently avoided in this way.

4.3 Experimental Results

Our parallel testbed consists of 100 PC machines, each consisting of a two-way
2.4GHz Pentium 4 processors with 1GB memory. For optimal utilization of this
configuration we let two workers execute on the same machine. A fast Ethernet
connection is used for communication between the nodes. The sequential runs
use a PC machine consisting of four way 3.1GHz Pentium 4 processors with 4GB
memory.

The distributed algorithm that we tested uses reach checkpt enhanced with
the algorithm Hybrid, as well as distributed dynamic reordering and the micro-
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steps timeout. The external model checker used by the distributed algorithm is
a high-performance industrial tool from Intel.

We conducted our experiments using examples for which the fixpoint had
never been reached before, such as the s1423 design from the ISCAS89 bench-
marks. We remark that other examples from this benchmark suite, such as
83330, s1269 and s5378, require only a single process when using Intel’s high-
performance model checker. Thus, they are not suitable as benchmarks for the
distributed system. In addition to s1423, we experimented with six large exam-
ples which are components in Intel’s designs.

The characteristics of the six test cases are given in Table 2.

Table 2. Benchmark suite characteristics. In each example we give the step in which
the memory requirements by the sequential model checker overflow and the size of the
BDD representing the set of reachable states R at that step.

Circuit #vars Overflow step Overflow | R |

H21 274 55 3,203,064
H20 276 44 3,922,742
I 147 98 8,006,120
H11 300 44 5,211,955
I3 793 46 5,557,672
I3s 439 54 7,076,762
s1423 88 14 9,705,214

The distributed reachability analysis results are given in Table 3. Four exam-
ples reached fixpoint and the verification is completed. Three examples required
more workers than were available to us at this point (we did not always have all 100
machines at our disposal), Therefore worker overflow occurred at some step, but
always at a much further step than that reached by the sequential model checker.

We next compare the results in Table 3 to the results of the high performance
industrial SAT model checker tool of Intel. The SAT model checker could not
complete the verification of any of the examples. Computing bounded model
checking with timeout of 10,000 seconds, SAT reached the bounds of 85 and 94
on I3s and I3, respectively.

Finally we compare these results to previous distributed symbolic model
checking [7] and [8]. In [8] a high performance model checker was used by the
distributed algorithm, yet s1423 reached only step 17, while the new distributed
algorithm reached step 19. Additional examples from ISCAS89 are so small that
they were completed by the sequential model checker. Other examples from 8]
were not made available to the public. In [7] a non-sophisticated model checker
was used. Therefore a relatively small example such as $3330 required 54 workers
to complete. The high performance model checker used in this work can complete
this example using a single worker.

It is especially interesting to compare Tables 2 and 3. It turns out that at the
point where the sequential algorithm overflows, the aggregate space requirement
for the distributed algorithm (given in the tables as the size of R in BDD nodes) is
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Table 3. Distributed reachability on the benchmark suite. Four examples reached
fixpoint and verification was completed. Three examples required more workers than
were available to us and therefore worker overflow occurred. The Max workers column
indicates the maximum number of active workers during the computation. The run
time when the verification is completed is given in hours. Run time is time elapsed
since the first worker starts to run until the last worker finishes the run. Two measures
are given for the iteration at which the sequential algorithm overflows: The sum of
the sizes of the BDDs representing the subsets of reachable states, and the number of
active workers at this iteration.

Circuit Fixpoint ~ Max workers Time maxitc Y, | R: | at Seq Overflow
>, | Ri | #workers

H21 85 3 23h

H20 85 9 11h

Il 139 25 70h 155M  6.6M 3
H11 98 7 28.5h 44M  1.3M 4
13 WOvVf(60) >50 472M  7.IM 5
133 WOvf(118) >150 358.8M  7.IM 4
s1423  WOvf(19) >200 208.3M  8.8M 8

smaller than the corresponding size in the sequential algorithm! This means that
the distributed algorithm is more efficient in maintaining its data structures (the
BDD which holds R,N), sometimes to a factor of two or more. This comes as a
surprise, since common wisdom tells us to expect some overhead and duplication
of work, rather than increased efficiency.

The explanation, however, is straightforward. Recall that with the distributed
scheme reorder is optimized individually at every worker, taking into account the
worker data only. In this way, BDD reordering by the distributed algorithm is
much more efficient than by the sequential algorithm because every worker finds
a better order when looking only at its data. The overall effect is an aggre-
gate reduction in the number of BDD nodes, which implies improved overall
efficiency.
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Abstract. Partitioned BDD-based algorithms have been proposed in
the literature to solve the memory explosion problem in BDD-based ver-
ification. A naive parallelization of such algorithms is often ineffective
as they have less parallelism. In this paper we present a novel parallel
reachability approach that lead to a significantly faster verification on
a Symmetric Multi-Processing architecture over the existing one-thread,
one-CPU approaches. We identify the issues and bottlenecks in paral-
lelizing BDD-based reachability algorithm. We show that in most cases
our algorithm achieves good speedup compared to the existing sequential
approaches.

1 Introduction

A common approach to formal verification of hardware is checking invariant
properties of the design. Unbounded model checking [1, 2] of invariants is usu-
ally performed by doing a reachability analysis. This approach finds all the states
reachable from the initial states and checks if the invariant is satisfied in these
reachable states. However, exhausting the state space using the reachability ap-
proach is an intractable problem. Not surprisingly, such approaches suffer from
the so-called state explosion problem for representing large state sets.

In practice, reachability analysis is typically done using Reduced Ordered
Binary Decision Diagrams (OBDDs) [3, 4]. A more compact representation of
boolean functions, Partitioned-OBDDs (POBDDs) [5] leads to further improve-
ment in reachability analysis [6]. Various improvements to BDD data structures,
variable ordering schemes, as well as the reachability algorithm itself have also
been suggested to improve capturing the total reachable state space using reach-
ability based verification. However, in practice the verification problem typically
consumes far more resources than are typically available for even small sized
problems of 100 state variables, and the gap between requirement and perfor-
mance is continually growing.

The growing prevalence of, increasingly powerful, clustered high performance
SMP (Symmetric Multi-Processing) machines appears to be an inevitable trend.
However, it is not straightforward to devise a reachability algorithm to mean-
ingfully use a very large number of processors.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 26-38, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Given the above two trends, it is important to develop efficient parallel verifi-
cation algorithms that can appropriately exploit the SMP architecture. Though
the intractability of the problem will remain, the verification time can get re-
duced by a significant factor.

In this paper, we show that the naive parallelization of the POBDD-based
reachability analysis doesn’t have good parallelism. We present a novel parallel
reachability approach that improves the parallelism. Our algorithm also im-
proves the performance of sequential POBDD based approaches drastically in
some cases. This is because, in sequential POBDD-based algorithms, the rela-
tive order in which the partitions are analyzed plays a critical role in the overall
performance. Finding an optimal schedule is a very hard problem. Therefore,
any heuristic to find a good schedule is likely to not perform well in all cases. In
a few cases, the approach can get stuck in some difficult partition and, hence,
many remaining states which otherwise could have been easily computed are not
reached at all. Our algorithm clearly obviates this scheduling problem since it
runs all partitions in parallel. Also, in a parallel shared-memory environment,
using our techniques of Farly Communication and Partial Communication, state
space traversal in some partitions can continue even while remaining partitions
are proving to be difficult.

We show that in most cases our algorithm performs much better than the
corresponding sequential run using 8 processors. Using our approach, we can lo-
cate error states significantly faster than other BDD based methods. We can also
show that our results are much better than the standard reachability algorithms
in many passing cases as well. Finally, we show that our method is more robust
than the standard sequential POBDD-based reachability algorithm as it is able
to solve various easy reachability instances which prove to be problematic for
current POBDD approaches.

2 Preliminaries

Reachability analysis is usually based on a breadth-first traversal of finite-state
machines [4, 2]. The algorithm takes as inputs the set of initial states and a
transition relation (TR) that relates the next states a system can reach from
each current state. The set of reachable states is obtained by repeatedly per-
forming image computations until a fixed point is reached [4, 2]. This is termed
as the Least Fized Point computation. Verification based on reachability can
often be improved by the use of POBDDs [7, 6, 8]. Essentially, the POBDD
based-reachability algorithm performs as many steps as possible of image com-
putation within each partition ¢ in a step of least fixed point within the partition.
When no more images can be thus computed, it synchronizes between partitions
by considering the transitions that originate in partition ¢ and lead out from
there. The term Communication refers to these cross-partition image computa-
tions that are followed by transferring the computed BDDs to other partitions.
Notice that the POBDD-based reachability algorithm performs a BFS which is
local to individual partitions, and then synchronizes to add states that result
from transitions crossing over from one partition to another. We may charac-
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terize this as a region-based BFS, where individual regions of the state space,
i.e, the partitions, are traversed independently in a breadth first manner. We
term the computation within individual partitions as a local Least Fized Point
computation or a local LFP computation in short.

Related Work

Several methods have been proposed to do parallel verification. Stern and Dill [9]
parallelize an explicit model checker. In [10], parallelized BDDs are used for
reachability analysis. Verification using parallel reachability analysis has been
studied in [11, 12, 13]. A scalable parallel reachability analysis is presented in
[12]. They perform distributed reachability using the classical BFS traversal of
the state space in a parallel environment, using distributed memory. A differ-
ent disjunctive partitioning approach based on iterative squaring is explored in
[14]. A thread-based approach has been applied to Constraint-Based Verification
in [15].

We implemented our algorithm as a multi-threaded program. We would like
to compare our algorithm with other distributed approaches. However, at the
time of submission of this paper, we didn’t have an implementation of other
distributed algorithms to compare with our approach. Therefore, we keep this
as a future work.

3 Improving Parallelism in the Reachability Analysis

The reachability analysis involves construction of a TR and the actual reacha-
bility steps using the TR. We use the standard sequential approach of building
the transition relation. We keep the parallelization of the construction of the
transition relation as a future work. In this paper we parallelize the reachability
algorithm using various heuristic improvement.

The POBDD-based algorithm given in [6] is naturally parallelizable. The lo-
cal LFP computation of each partition combined with their communication can
be processed in parallel. We have to wait for all the partitions to finish their
local LFP computation and the communication to begin transferring the com-
municated states to the appropriate partition. However, empirically we find that
this simple parallelization of the algorithm in [6] doesn’t have much parallelism.
This may be due to following reasons

High Variation of BDD Computations

The performance of the image computations inside each partition depend on the
BDD variable order. We call a partition an easy partition if the BDDs inside the
partition are compact and a hard partition otherwise. For a majority of circuits,
the complexity of the BDD computations can have significant variations between
different partitions. In such cases, all easy partitions wait for the hard partitions
to finish their image computation, which reduces the parallelism significantly.

Depth of the local LFP computation
Another reason for the reduced parallelism may be because the depth of the lo-
cal LFP computation can vary a lot between partitions. In this case the partition
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with smaller depth finish faster whereas the partitions with larger depth take
longer time. This results in many idle processors which reduces the parallelism.

In practice we find that a large number of partitions wait for a few hard
partitions. To address this issue we use following heuristics[16] to improve the
parallelism.

Early Communication: Communicate states to other partition after the least
fixed point.

Partial Communication: Initiate a partial communication in an idle proces-
Sor.

3.1 Early Communication

After a partition finishes its local LFP computation, we allow the partition to im-
mediately communicate its states to the other partitions. Each partition accepts
this communicated states asynchronously during their local LFP computation.
This would enable the easy partitions to make progress with their subsequent lo-
cal LFP computation without waiting for the hard partitions to finish. Therefore,
the early communication from easy partitions to other easy partitions enables
all such partitions to reach a fixed point. This is very difficult to achieve in se-
quential partitioned reachability analysis because such scheduling information is
difficult to obtain.

If new states are communicated during early communication, then we restart
the current image computation after adding these states. Such augmentation can
make a harder image computation significantly easier in some cases. This may
be because the states that would have been hard to compute in one partition
can be more easily computed in another partition and then communicated to
the first partition.

3.2 Partial Communication

Even after applying the above technique, we found that some partition that
have completed the local LFP on their current states were waiting for other
partitions to communicate some states, so that they can continue their local
LFP computation. This case arises when all the easy partition finish their local
LFP and need communication from a hard partition to make further progress.
To improve parallelism, the active partition initiates a communication in an idle
processor using a small subset of the state space of the hard partition. The
communication introduces new states in the easy partitions. This enables easy
partitions to make progress further with their collective least fixed point from the
communicated states. Intuitively this tries to accelerate the activity among easy
partitions. We found that communicating the full BDD to a different partition is
very hard. Therefore, we find a small subset of state space that can be expressed
with a compact BDD (High Density BDD[17]). This heuristic tries to keep all the
processors busy there by improving the parallelism. Further, this heuristic can
increase the number of early communication instances. Thus, the combined effect
of the partial communication and early communication improves the parallelism
significantly.
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Parallel-Reachability(n, TR, InitStates) {
Create n partitions for InitStates
Run in parallel for each partition i{
After every microsteps runs
ImproveParallelism(3) {
Get all the communicated states
Calculate LeastFixedPoint(Rch) in partition ¢
Compute cross-over states from i to all parts

}

} until (No new state is found in any partition);

ImproveParallelism(n: Partition Number) {
check and add all the communicated states
if new states are added
restart current image computation
request a waiting partition to initiate
partial communication procedure

Fig. 1. Parallel Reachability Algorithm

3.3 Parallel Reachability Algorithm

We present our complete parallel POBDD-based reachability algorithm as shown
in Figure 1 using the techniques discussed in last section.

We run the local LFP computation combined with the Communication in
parallel. All computation inside a partition is managed by a dedicated proces-
sor. Each processor polls for the communicated states from the other processor.
After every micro-step of the image computation, each processor calls a function
ImproveParallelism that implements two heuristics for improving parallelism.
The first heuristic is to do early communication. As a part of the first heuristic,
the function checks whether other processors have communicated some states
to the current partition. If it finds any processors, then it transfer all the com-
municated states from their corresponding partitions to the current partition.
This simple check and update subroutine performed by each processor imple-
ments the early communication heuristic. The second heuristic is to do partial
communication. As a part of this heuristic, every active processor checks for an
idle thread. If an idle processor is found, then it gives a small subset of the state
space from the current partition to the idle processor. The idle processor start
a Communication from this subset of states to the partition associated with the
idle processor.

3.4 Termination Condition

In our approach, each processor manages a partition. The processor goes back
to idle state if no new states are communicated to the partition associated with
that processor. One of the processor manages the global termination conditions.
The processor asserts a global termination flag if all the processors are idle.
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4 Engineering Issues

Our implementation of the POBDD-data structure and algorithms uses VIS-
2.0 package. The VIS-2.0 package uses CUDD [18] for the BDD operations.
We implemented our parallel reachability algorithm as a multi-threaded pro-
gram in a symmetric multi-processing (SMP) architecture. SMP systems can
be programmed using several different methods. In a multi-threaded approach,
the program divides the work across the processors by spawning multiple light-
weight threads, each executing on a different processor and performing part of
the calculation. Since all threads share the same program space, there is no need
for any explicit communication calls. However, designing a multi-threaded FV
approach using BDDs poses significant challenges.

BDD Issues in Multi-threaded Reachability: The CUDD BDD package
is designed for use in a non-thread based environment. Further, there are var-
ious optimization features in CUDD, that prevent it to function correctly in a
multi-threaded environment. It uses many global variables, which needs to be
synchronized in a multi-threaded environment. Nevertheless, fixing this problem
enables the program to behave correctly provided each thread work on their
respective BDD-managers. However, this leads to a non-deterministic behavior
in the BDD-computation.

The CUDD package uses various memory based optimization to boost its per-
formance. However, such optimizations behave non-deterministically in a multi-
threaded environment. Therefore, the produced computation trace is often non-
reproducible and the program becomes very difficult to debug. It also results in
many orders of magnitude difference in run times. Thus, the program behavior
is not predictable. However, deterministic behavior of the program is very im-
portant for the evaluation of its performance. We re-engineered all the relevant
features in the CUDD package that leads to a non-deterministic behavior. This
enables the BDD-package to be safe to run in a multi-threaded environment and
makes the program more conveniently analyzable. However, this was surprisingly
painful to implement.

In addition to the above, each thread needs to synchronize based on a de-
terministic measure before communicating to another thread. Otherwise, the
program would behave non-deterministically because of the non-determinism in
the thread scheduling. We synchronize the threads using a fixed count based on
the number of BDD conjunction operations and the number of sift operations
during variable reordering. Further, we find that the deterministic version of
the program performs as good as the non-deterministic program as described in
Section 5.2.

Performance Issues on SMP Machine: Further, the scheduling of the
threads in an SMP machine, although improved significantly over the years,
might not be optimal for our application. Each thread, in our case use sepa-
rate BDD managers for carrying out various BDD operations. Therefore, if the
system thread scheduler assigns the thread to a different processor, then the
thread would loose all its cached data and the new processor would re-fetch all
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the necessary data to carry out the BDD operations. Thus, assigning a thread
to a new processor would incur unnecessary large overhead. However, a very
simple scheduling strategy of assigning each thread to an exclusive processor
would reduce the overhead generated by the heavy cache misses significantly.
On the other hand, it is quite difficult to quantify the performance penalty due
the non-optimality of scheduling threads.

Performance Issues on Uniprocessor Machine: Furthermore, the simulated
parallel execution of the multi-threaded algorithm in a uniprocessor machine may
perform better than other sequential algorithm because of the scheduling flexi-
bility. However, the program may have large overhead due to the cache misses
because of the frequent switching of threads in one processor. We find that
reducing the frequency of switching of threads in a uniprocessor machine sig-
nificantly improve the results. Moreover, a simulated sequential approach in an
8-CPU machine, where each thread can potentially use different processor cache
improves the results further. We use explicit locks to run one thread at a time
in the 8-CPU machine. We find that the performance in this simulated case is
2-6 times faster than the corresponding uniprocessor run. Thus, the uniproces-
sor performance is significantly penalized by the cache overhead. Therefore, we
provide results from this simulated sequential approach in the 8-CPU machine
in our final table to give a good overview of the parallelism achieved. However,
the performance in any uniprocessor machine is much worse than the simulated
sequential case in an 8-CPU machine.

5 Experimental Results

We run our experiments using default cluster size of 5000, lazy sift reorder-
ing, MLP image method on a 8-way SMP Linux machine based on Intel(R)
Xeon(TM) MP CPU 2.20GHz and 8GB RAM. We run all the sequential algo-
rithms on a Linux box with Intel(R) XEON(TM) CPU 2.20GHz and 2GB RAM.
We report results only on a few VIS-verilog [19] and industrial circuits because
of limited time. In keeping with the typical timeout limits set in our in-house
verification tools, we set a timeout of 5000 seconds on all circuits. For sake of
brevity, we present our results only on those circuits where VIS requires more
than 100 seconds. Results are omitted for the circuits where all the methods
timeout. We use 8 different partitions for all POBDD-based approaches. We se-
lect the partitioning variable using the method in [6]. We use same partitioning
strategy for all partitioned approaches in order to perform a fair comparison.

5.1 Overview of Table

Table 1 shows our invariant check results on various public and industrial cir-
cuits. In Table 1, we separate the total reachability time into the transition
relation construction time and the actual reachability time. We compare the ac-
tual reachability time taken by the following approaches: the standard approach
of VIS, the simple partitioning approach and our parallel POBDD-based reach-
ability algorithms. We compare the naive parallel approach with the successive
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Table 1. Time (in sec) for Invariant Checking on a few VIS-verilog and Industrial
Circuits using 8 CPUs

Parallel (early comm +
Parallel 8 CPUs partial comm)
TR seq 8 CPUs (early Parallel Simulated

ckts time vis pobdd (naive) comm) 8 CPUs Seq

(a) Industrial Circuits

cl 36 371 T/O T/O T/O 227 286
2 12 3346 1789 1564 93 917 917
¢3 17 2540 T/O T/O  T/O 62 228
cd 11 2236 2084 1174 161 161 509

(b) Few VIS-benchmark Circuits

spprod 5 891 61 53 93 440 510

am2910 9 T/O 281 122 204 356 386

palu 3 273 4 9 8 9 9

s1269b-1 2 3635 T/O T/O 59 60 72

s1269b-5 2 2287 T/O T/O 55 55 67

blkjack-3 2 T/O 1213 470 340 70 98
(c) Simple Industrial Circuits

dl1 11 6 T/O T/O 13 13 13

d2 15 10 11 13 45 30 39

d3 12 15 21 23 100 100 130

d4 8 11 T/O T/O 39 38 60

ds 7 12 16 15 34 37 37

(T/O = Timeout of 5000 sec)

introduction of the two heuristics for communication — early communication and
partial communication. The columns in the table are arranged in the same order.
The first column is the circuit name, followed by transition relation construction
time, vis, sequential POBDDs, naive parallelization, the parallel approach with
just early communication and finally with both techniques. The final column
has two parts — 8 CPUs and Simulated Seq, which report, respectively, the to-
tal reachability time in a parallel environment using 8 CPUs and the time in a
simulated sequential approach in an 8-CPU machine. The simulated sequential
approach is discussed in section 4. Note that many of the sequential results are
better than standard POBDD-based reachability because of the partition and
communication scheduling flexibility. The details of the processor utilization are
presented in Section 5.3 using Gantt charts.

5.2 Efficiency Issues

Table 1 is composed of three different sections. Section (a) and (c), respectively
shows the results on a few hard and easy industrial circuits. Section (b) shows the
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Table 2. Time (in sec) for Invariant Checking on the Industrial Circuits using different
redundancy value in a parallel and sequential framework

redundancy [6]

0.3 0.5 0.7

Parallel seq Parallel seq Parallel seq
cl 227 288 226 286 229 292
c2 73 38 917 917 2569 2570
c3 1492 1493 62 228 1407 T/O
c4 2967 2970 161 509 158 520
d1 26 28 13 13 92 138
d2 30 40 30 39 31 39
d3 53 67 100 130 102 133
d4 29 37 38 60 38 59
d5 13 13 37 37 37 38

s1269b-1 61 73 60 72 165 183
sp prod 446 510 440 510 259 260

(T/O = Timeout of 5000 sec)

results on a few VIS-verilog benchmark circuits. As can be seen from the table,
the resulting parallel run times with all the heuristics, i.e, the last column of the
table have no timeouts. They are also clearly superior to classical partitioned-
reachability. The proposed parallel approach will all heuristics, is also usually
superior to the less sophisticated parallel techniques. The parallel approach with
only early communication, i.e the 6th column in Table 1, often works well and
have fewer timeouts compared to the naive parallel approach. Consider the cir-
cuit blkjack-3, which represents the best scenario, where the results improve with
each successive addition of the heuristics. We find that the parallel approach is
usually more robust than the sequential approaches. Note that the last column
shows the results of simulated sequential approach in an 8-CPU machine to
demonstrate the parallelism achieved. The corresponding uniprocessor results
are 2-6 times worse than the simulated sequential approach. We find that the
parallelism is very small and hope to improve it in a future work.

Scheduling is a Problem Even on Easy Functions: Consider the results
of some properties from an industrial design whose OBDDs are fairly small as
shown in Table 1 (¢). The partitioned reachability for such cases gets harder.
Both the standard sequential POBDD-based reachability and naive parallel
reachability falls in the trap of an inefficient computation. An early commu-
nication often helps in this case, as can be seen from the table. However, both
early communication and partial communication are needed to finish all the cir-
cuits. The reachability of small circuits using 8 partitions might contribute to
some overhead in the partitioned reachability approaches.

Further, we will like to comment on the relative speedup of the multi-threaded
8-CPU approach over the simulated sequential approach. This speedup is not
only proportional to the algorithm but also to the choice of partitioning variables.
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Table 3. Time (in sec) for Invariant Checking on the Industrial Circuits using the
non-deterministic and the deterministic program

Time in sec
ckts non-det det

(a) Industrial Circuits

cl T/O 227
2 962 917
c3 809 62
cd 903 161

(b) Simple Industrial Circuits

dl 13 13
d2 24 30
d3 84 100
d4 30 38
ds 13 37

(T/O = Timeout of 5000 sec)

For the same algorithm, even though the same partitioning variables may be
provided to both the approaches, depending on the splitting choices, the amount
of parallelism that is generated can vary dramatically. For example, in Table 2
it can be seen that for almost half of the entries, by varying redundancy and
balancedness, the two parameters that are calculated for evaluating partitioning
variables, the amount of parallelism that is generated can vary dramatically.
This points to the need for an approach which can dynamically evaluate different
choices in deciding the partitioning variables. Such an idea is motivated by the
strong results presented in Sahoo et al. [8], where it was shown the successful
BDD decisions can be taken if we generate different short traces of reachability
computation for each choice and then make the required decision.

Finally, we show that the deterministic version of our program doesn’t loose
the performance by a great margin to the non-deterministic version. Table 3
shows the results of Invariant checking on the industrial circuits using both the
non-deterministic and the deterministic version of our program. As we can see
from the table, the performance of non-deterministic program is very similar to
the deterministic program in the simple circuits, i.e. Table 3 (b). However, the
performance of the deterministic program is better than the non-deterministic
version in the hard circuits in Table 3 (a). Therefore, we strongly prefer the
deterministic version to the non-deterministic version.

5.3 Improving Parallelism

Consider the reachability analysis of s1269b-5 from the VIS Verilog benchmark
suite. As shown in Table 1 (b), we perform reachability analysis using 8 parti-
tions, each of which runs in a separate thread.

Figure 2 shows the Gantt charts of three parallel reachability analysis on
$1269b-5 circuit. We use the three charts to show the effect of the two heuris-
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Fig. 2. Parallel Reachability with successive addition of each heuristics

tics added successively to the reachability algorithm. Figure 2(a) shows Gantt
chart of the naive parallel reachability. Figure 2(b) shows the Gantt chart of
reachability analysis when early communication is allowed. Figure 2(b) shows
the Gantt chart of reachability analysis when both early communication and
partial communication are allowed. Each partition is represented by a vertical
broken line. The filled segment represents the cpu time for the partition to per-
form a computation. At the end of each such stage, a small cross indicates the
communication of states to other partitions. A break in the line indicates that
the corresponding processor is idle. However, in a multi-threaded uniprocessor
environment, the processor can immediately schedule another thread for execu-
tion. The total time is the reachability time on a multi-processor machine. As
we can see from the figure, more gaps are being filled with the addition of each
heuristic. This shows a clear trend of improved parallelism in each case.

6 Conclusion

Partitioning based state space traversal approaches where reachability on each
partition is processed independently appear very suited for parallelization. How-
ever, we find that a naive parallelization of such algorithms is often ineffective.
In this paper we discuss an algorithm suitable for parallel reachability on a sym-
metric multi-processing architecture. We show that in most cases our algorithm
achieves good speedup in a multi-processor shared memory environment, com-
pared to the corresponding sequential run. Further, the parallel algorithm is
significantly faster than both the standard sequential reachability algorithm as
well as the existing partitioned approaches especially when the property is er-
roneous. We have made the multi-threaded program behavior deterministic. We
found that the performance of both the non-deterministic and the deterministic
program is similar.

Our investigation, one of the first in the area of a parallel reachability al-
gorithm exploiting SMP architecture reveals that there are significant areas of
performance improvements. These include improving scheduling of threads on
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various processors, selecting window functions that can potentially enhance par-
allelism, and communication strategies between threads to decrease number of
idle CPUs.
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Dependability of Self-optimizing Systems*
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Abstract. By integrating formal specification and formal verification
into the design phase of a system development process, the correctness
of the system can be ensured to a great extent. However, it is not suffi-
cient for a self-optimizing system that needs to exchange its components
safely and consistently over time. Therefore, this paper presents a com-
prehensive verification framework to guarantee the dependability of such
a self-optimizing system at the design phase (off-line verification) as well
as at the runtime phase (on-line verification). The proposed verification
framework adopts AsmL as intermediate representation for the system
specification and on-the-fly model checking technique for alleviating the
state space explosion problem. The off and the on -line verifications are
performed at (RT-UML) model level. The properties to be checked are
expressed by RT-OCL where the underlying temporal logic is restricted
to time-annotated ACTL/LTL formulae. In particular, the on-line veri-
fication is achieved by running the on-the-fly model checking interleaved
with the execution of the checked system in a pipelined manner.

1 Introduction

Mechatronic systems represent a special class of complex cross-domain embedded
systems. The design of such systems involves a combination of design techniques
and technologies used in mechanical and electrical engineering as well as in com-
puter science. The increasing complexity, even emphasized by the system het-
erogeneity, is one of the major problems in today’s mechatronic industry (e.g.,
automotive industry). To deal with this complexity, one approach is to build
mechatronic systems in a self-reflecting, self-adapting and self-optimizing way.
In the Collaborative Research Center 614 of the German National Science Foun-
dation (DFG), entitled “Self-optimizing concepts and structures in mechanical
engineering”, we are investigating such an approach. The main focus is put on
self-optimizing applications with highly dynamic software components which are
optimized and even replaced at runtime. Moreover, the considered applications
run under real-time constraints. As failures of these technical systems usually

* This work is developed in the course of the Collaborative Research Center 614 -
Self-Optimizing Concepts and Structures in Mechanical Engineering - Paderborn
University, and is published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft (DFG).

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 39-53, 2005.
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have severe consequences, dependability is of paramount importance. This puts
new demands on verification of such complex and highly dependable systems.

For real-time systems with a dynamic task set, acceptance tests with respect
to schedulability are state of the art in RTOS. In reconfigurable and depend-
able systems the safety and consistency after component replacement has to be
checked as well. This extends the classical area of on-line acceptance testing.
Traditionally in real-time systems one tries to execute as many checking activi-
ties as possible off-line. In systems of dynamic structure this would mean that all
components that may be used in a substitution have to be checked correct (e.g.,
using conventional model checking) in an arbitrary context, i.e., in the most gen-
eral context. Of course, this very general correctness requirement would result
in highly over-dimensioned and thus inefficient components, what would be a
contradiction to the overall objective of self-optimization.

It is well known that formal methods for specifying and verifying complex
systems can offer a greater assurance of correctness than traditional simulation
and testing. In the Collaborative Research Center 614, a design technique [1]
has been presented for self-optimizing systems, which integrates formal spec-
ification (RT-UML) and formal verification (Model Checking) into the early
design phase of a system development. This paper concerns the formal verifica-
tion methodology applicable to the design technique and consequently presents a
comprehensive verification framework to ensure the safety and consistency of the
self-optimizing systems not only at the design phase but also at execution phase.
The former is named off-line verification and the latter on-line verification. The
proposed verification framework adopts AsmL as intermediate representation to
bridge the gap between the RT-UML models and the model checking tools on
the one hand, and on-the-fly model checking methods to alleviate the state space
explosion problem on the other hand. Simply speaking, both off and on -line veri-
fication are performed at model level. The properties to be checked are expressed
by RT-OCL where the underlying temporal logic is restricted to time-annotated
ACTL/LTL formulae. In particular, the on-line verification works as service of
a real-time operating system (RTOS) so that the on-the-fly model checking can
run interleaved with the execution of the checked system in a pipelined manner.

The remainder of this paper is organized as follows: section 2 outlines the
preliminaries; section 3 details the comprehensive verification framework; section
4 addresses the on-line verification mechanism; section 5 discusses the related
work; finally, section 6 ends with the conclusion.

2 Preliminaries

2.1 Real-Time UML Statechart

According to the design technique used [1], the self-optimizing systems are de-
signed with the CASE tool Fujaba! based on the modeling concepts of UML
2.0. That is, the architecture of a system is specified by a component diagram

! http://www.fujaba.de/
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Fig. 1. Part of real-time UML statechart

together with the definitions for ports and connectors; the overall behavior of
the system is specified by UML state machines with real-time extension, called
RT-UML statecharts, associated to each component, port and connector. In fact,
the whole behavior of a component C'is the parallel composition of the RT-UML
statecharts M (1 < ¢ < m), which are the refinements of the corresponding pro-
tocol state machines associated to the ports P; (1 < ¢ < m) of C, and the internal
synchronization statechart M? of C, i.e., Mo = M7 || M3 || --- || M}, || M*. It is
easy to reason that the overall behavior of the system model just is the parallel
composition of such a set of RT-UML statecharts.

As far as RT-UML statecharts are concerned, there are many different vari-
ants to extend the usual UML statechart with timing constraints in the liter-
ature. Here we introduce the RT-UML statechart presented in [2] and realized
in the Fujaba tool suite as plug-in. Simply speaking, a RT-UML statechart is
obtained by adding real-time annotations to the usual UML statechart. Without
loss of generality, Fig. 1 illustrates a typical part of a RT-UML statechart. The
state S has the time invariant tp < 5 (time units) and Sy has the time invari-
ant top < 20 and t; < 13, where to and t; are global clocks. The entry action
entryS1() of S; has the worst case execution time (wcet) w = 1 (time unit) and
the clock to is reset while entering S7, the do activity doS1() of S; has w = 2
together with period p € [2,3] and the exit action exitS1() of S; has w = 1.
Similarly, the clocks ty and 1 are reset while exiting So. The transition from S
to Ss is triggered whenever the event e is available and the guard < 2 and the
time guard 1 < ¢g are held. In the mean time, the clock ¢, is reset and the action
with w = 2 is executed. The firing of the transition has to be finished within the
time interval [1,10] and whenever the clock ¢; € [3,6]. By default, the transition
is urgent and has the priority 1.

2.2 Real-Time OCL

Real-time OCL (RT-OCL) [3] is a state-oriented temporal extension to the usual
Object Constraint Language by introducing additional bounded temporal logic
operators over the sequence of active state configurations of RT-UML state-
charts. E.g., the following invariant requires that for each instance of the class
C, at each time point of the next 20 time units, on all possible execution paths,
the states S; and Se must be subsequently entered:

context C'

inv:

sel f@Qpost[1,20] — forall(p : OclPath | p — includes(Sequence{S1, S2}))
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The introduced notations are compliant with the syntax of the OCL 2.0
Proposal and are mapped to real-time CTL (RTCTL) [4], a discrete time variant
of the Computation Tree Logic, for further application to model checking. In the
future, we’ll further extend the RT-OCL [3] to cover timed linear temporal logic.

2.3 Abstract State Machine Language

The Abstract State Machine Language (AsmL) [5] is an executable specifica-
tion language built upon the theory of Abstract State Machines (ASMs) [6],
a formal method for high-level modeling and specification that has proven its
strong modeling and specification abilities in various application domains. The
main strength of AsmL resides in its rich and expressive syntax, formally un-
derpinned by the ASM theory, which gives user the ability to create precise and
comprehensible specifications at any desired level of abstraction. Among other
things, AsmL provides a powerful type system that facilitates a wide scale of
designs ranging from pure mathematical specifications of algorithms to the com-
plex object-oriented software specifications. Besides the language features, the
AsmL comes with a tool support that allows usual validation via specification
execution as well as enhanced model-based testing. Moreover, the AsmL tool
suite provides a functionality to drive the exploration of the model state space.
This feature can be used for constructing a corresponding Kripke structure from
the given specification so that it can further serve as basis for model checking.

3 Comprehensive Verification Framework

3.1 Overview

The comprehensive verification framework in Fig. 2 illustrates our verification
mechanism for the RT-UML models designed with the Fujaba tool suite. First
of all, the RT-UML statecharts of the modeled system and the related RT-OCL
constraints are exported from the Fujaba Tool Suite in the form of the XML
documents and then translated into the corresponding AsmL models and real-
time ACTL/LTL formulae respectively at the Translation phase. Afterwards, the
Verification Engine is launched to fulfill the verification task under the assistance
of the efficient model checking tools.

To alleviate the state space explosion problem on model checking for complex
systems, we adopt on-the-fly model checking for time-annotated ACTL/LTL
formulae in our verification framework. For this purpose, the Kripke structure
of each AsmL model is derived by applying the exploration functionality to the
AsmL model and the ACTL/LTL formulae to be verified are transformed into
Biichi automata. Note that the time-annotated ACTL formulae are just RTCTL
(Real-time Computation Tree Logic) [4] formulae with only universal quantifiers
allowed and the time-annotated LTL is defined in a similar way. That is, a time
interval of the form [a,b], where a and b are Integers and a < b, is attached
to the usual temporal operators, named bounded temporal operators. E.g., the
formula AG(p — AFjg,q) specifies that p always leads to ¢ within ¢ time steps.
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However, to avoid the fairness conditions caused by the eventuality operators,
we require that the eventuality operators must be bounded ones if any. In this
way, the bounds on the eventuality operators prevents indefinite postponement.
In a word, the verification engine provides the on-the-fly model checker with
Kripke structures and Brtichi automata as shown in Fig. 2. Finally, the checking
result is reported to the Fujaba tool suite by the verification engine if necessary.
As for a negative result, a counterexample is also reported to the Fujaba tool
suite and is analyzed there to help figure out the possible problems in the system
model. Consequently, the system model is modified and then checked again. This
process is repeated until the system model does satisfy the given properties.

\ 4

Fujaba Tool Suite [€

Comprehensive
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AsmL Model | Counter
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Fig. 2. Comprehensive Verification Framework

In this verification framework, AsmL model plays essentially a role as an
intermediate representation from the perspective of model checking. As a result,
model checking can be done based on the resulting Kripke Structure derived
from the AsmL model, which makes it independent of any model checker’s input
format. Hence, our verification framework can be easily extended by binding
other model checking tools. In particular, instead of modifying the internal de-
cision algorithm of a given model checker, many advanced model checking tech-
niques, such as abstraction, compositional and incremental model checking, can
be fulfilled at verification engine level. In addition, AsmL model simulation and
model-based testing supported by the AsmL tool suite can provide a complement
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to model checking if needed. Also, using AsmL model as intermediate represen-
tation makes the updating of the RT-UML statechart and RT-OCL transparent
to model checkers and vice versa.

3.2 Translation Approach

By using the Fujaba tool suite, we can conveniently design individual RT-UML
statecharts of a given system and then export them as the corresponding XML
documents. Considering that the translation from RT-OCL to Temporal Logic
formulae is straightforward, here we mainly focus on the translation approach
to convert an RT-UML Statechart into an AsmL model, i.e., to derive AsmL
models from the above XML documents. The resulting AsmL model consists of
two AsmlL files: declaration.asml and instantiation.asml where the former
is common and the latter is special, for different RT-UML statecharts.

Therefore, the goal of translating a real-time UML statechart into an AsmL
model is to generate an instantiation.asml from the given XML document.
Then, the complete AsmL model is obtained by combining the declarations of
classes StateMachine, State, Transition and the like defined in the AsmL
file declaration.asml. That is, from the XML document, the state machine
itself, the states, the transitions and others in the state machine are derived
and instantiated as the instances of the corresponding classes StateMachine,
State, Transition and so on in instantiation.asml. E.g., state s in a state
machine is instantiated as the instance s of class State and transition ¢ as
the instance t of class Transition; the behavior of state s (transition t) is
defined as procedure Run State s() (procedure Run Transition t()), which
is associated to the instance s (the instance t) in instantiation.asml. Of
course, we also need to make the behaviors of the states and the transitions in
the state machine coherent so that the AsmL model can correctly simulate the
behavior of the state machine. Except for the timing factor, the control logic of
the RT-UML statechart is similar to that of the usual UML statechart. Note that,
in real-time state machine, since the control can stay in active states and active
transitions in the same time interval, therefore, the active states and the active
transitions may coexist in some time intervals. That is, the configuration of RT-
UML state machine consists of both active states and active transitions. As for
the timing problem, we define procedure tick() to increase the values of all the
global and local clocks in the state machine one time unit per tick. In this way, the
complete AsmL model is the combination of the special instantiation.asml
with the common declaration.asml. Due to the limited space, we just outline
the basic idea here and refer to [7] for details.

3.3 Verification Engine

The wverification engine is the pivot of the whole verification framework. The
AsmL models obtained at the translation phase are explored to acquire the
Kripke structures by invoking the AsmL exploration functionality. Note that we
implicitly assume that each component in the self-optimizing systems owns one
finite state machine. Since we adopt the on-the-fly model checking technique, the
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composition of the resulting Kripke structures can be done on-the-fly according
to the guidance of the property automaton to be checked. In this way, only a small
portion of the state space could be constructed before a counterexample were
found (if any). In fact, the Kripke structure here is represented as unit delay state
transition graph, in which “next state” is identified with “next time”. Therefore,
the timing constraints in the extended ACTL/LTL formulae can be expressed in
the usual ACTL (LTL) using the next operator. In this sense, bounded temporal
operators are just abbreviations for nested next formulae [4]. Consequently, the
construction of Biichi automata for our real-time temporal formulae can be
done in the similar way as for the usual ACTL [8] (LTL [9]). Of course, efficient
simplification techniques are suggested to reduce the size of the resulting Biichi
automata if necessary. The Biichi automata here are also represented as unit
delay state transition graph. For convenience, let M stand for the system model
and B for the property automaton to be checked. In what follows, we discuss
the on-the-fly ACTL and LTL model checking methods respectively.

We do on-the-fly ACTL model checking by checking the simulation preorder
between M and B incrementally [10]. That is, the decision problem of checking
simulation preorder is converted into the satisfiability problem for weakly nega-
tive Horn formulae [11], called NHORNSAT problem. The basic idea is to encode
the properties of the simulation relation between M and B into a type of CNF
(Conjunctive Normal Form) formula I, i.e., weakly negative Horn formula, and
then prove on-the-fly in polynomial time that the CNF formula I" is satisfiable.

Let X, 4 be a variable in I", where p and q are states in M and B respectively.
Then, the clauses in the formula I" are of the following three types:

1) Positive literal X, 4, when (p, ¢) to be in the simulation relation;

2) Negative literal X, 4, when (p, ¢) cannot be in any simulation relation;

3) Implication clause of the form X, — \/,, ., Xpq, when for (p,q) to be in
the simulation relation, one of the (p’,¢’)’s must be also in the simulation
relation. Here (p’, ¢’) belongs to the successors of (p, q).

It is easy to reason that, starting from the initial states of M and B, we
can construct the CNF formula I' by adding to I" the proper clauses derived
from the reachable pairs of states in M x B layer by layer in BFS (Breadth
First Search) order. An efficient on-the-fly algorithm is presented in [12], which
receives one Horn clause at a time and allows fast queries about the satisfiability
of the whole formula so far received. Let [ be the size of the inserted clause and
n the size of the whole formula so far received. Then, the algorithm inserts a
clause of size [ in O(l) amortized time, propagates the effect of this insertion
operation on the previous result in O(n) and decides the satisfiability of the
formula heretofore constructed in O(1). This algorithm outperforms by an order
of magnitude the best known algorithms for the same problem in [13] and [14].
Similarly, a dualization of the algorithm in [12] also gives an efficient linear time
on-the-fly solution to the NHORNSAT problem [10].

We follow the emptiness checking method in [15] for the on-the fly LTL model
checking. To do this, the property automaton B is derived from the negation
of the LTL formula to be verified. Thus, the emptiness of the intersection of
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M and B is checked on-the-fly: the states of the intersection of M and B are
computed in BFS order from initial states on demand. Let (p, ¢) be the current
state of the search, where p is a state of M and ¢ a state of B. To continue
the search, we compute the successors of the state (p, q) one at a time. Because
B is already constructed, the successors q1,q2,---,qr of ¢ have already been
computed. Let p’ be the successor of p that is calculated next. Then, a successor
(p',qi) (1 <i<k)of (p,q) exists if the propositions of p is consistent with those
of ¢;. If the intersection is not empty, a counterexample is reported directly. The
time complexity of this method is linear in the size of the product of M and B.

4 On-line Verification Mechanism

Self-optimizing systems need to adjust themselves to dynamic environments over
time by means of exchanging components. If such a dynamic adjustment is safety-
critical, the dependability problem becomes paramountly significant. Even if
we can off-line check at design phase that the current components of a self-
optimizing system really hold the required properties, however, it is still possible
that the self-optimizing system might not hold the new required properties after
some old components were replaced with some new ones at runtime. Hence, in
this section we address an on-line verification mechanism based on the on-the-
fly model checking technique mentioned in section 3.3, by which the safety and
consistency of the dynamic reconfiguration can be checked even at runtime.

4.1 Case Study

Let’s take a typical example in Fig. 3 to show how our on-line verification is
applied to the self-optimizing systems with safety-critical requirements. Suppose
a real-time application contains four components A, B, C' and D running in
parallel. Now, due to the environment change, a substitution request is passed
to a RTOS at time point ¢, that the component C' would be replaced by the
component F at the t4'th time step after ¢,.. Before the replacement is really done
at time point t, + t4, the RTOS will trigger the on-line verification mechanism
integrated into the RTOS as system service to check if the system still maintains
safe and consistent after the replacement. According to the response from the
verification service, Yes, No or Unknown, the RTOS would decide to accept or
reject the requirement for substitution.

Obviously, the substitution of the component E for the component C' will
cause the environment of each component in the system to be changed at runtime
directly (i.e., B, D and E) or indirectly (i.e., A). For component-based systems,
each component is verified correct under the given assumptions to the environ-
ment of the component. As in our case study, the environment of each component
in the system might be changed dynamically due to the runtime reconfiguration.
Does the changed environment still satisfy the required assumption? To answer
this question, traditional model checking unfortunately is not suitable any more:
on the one hand, it is difficult to predict how and when the reconfiguration will
happen; on the other hand, it is difficult to check the safety and consistency
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Fig. 3. Case study

of the reconfiguration within the limited time interval. In practice, it is unre-
alistic to check off-line all the possible cases of the reconfigurations due to the
huge time and space complexity. To our knowledge, the state of the art runtime
verification [16,17,18,19,20] is also not suitable for our needs. On the one hand,
only linear temporal logic formulae as well as trivial assertions and invariants
can be checked by tracing the program execution. On the other hand, potential
errors can be detected only when they have already happened. In fact, we hope
to predict and avoid errors after the reconfiguration. Fortunately, we can resolve
this problem by making our on-line verification cooperate in a pipelined working
manner with the self-optimizing system via the RTOS as intermediary as shown
in Fig. 4.

4.2 Pipelined Working Principle

The self-optimizing operation may cause the system to reconfigure at runtime
in many ways. We mainly concern such a case that one component is replaced
with another one. Obviously, the replacement may change the environment of
every active component in the system directly or indirectly. On the other hand,
the only constraint on the components replaceable with each other is that they
must follow the compatible protocols, i.e., the protocol of the new one must be
the same as or the refinement of the old one. Therefore, it is quite necessary to
provide an on-line verification service to make sure that such a reconfiguration
does maintain safe and consistent.

Without loss of generality, suppose that a self-optimizing system model M
contains n components Ci,Ca,---,C, (n > 2) working in parallel and is re-
quested at time point ¢, to replace one component Cy, (1 < k < n) with another
one, say, C}, at time point ¢4 relative to ¢,, denoted as M’ = M(C},/Ci)Q(t,>tq).
Accordingly, let B’ be the new property automaton to be satisfied by M’. Con-
sequently, the goal of our on-line verification is to check within the time interval
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tq starting from ¢, if M(C},/Cy)Q(t, >tq) = B'. It is easy to see that the tim-
ing constraint is the main barrier for our on-line verification. To leap over this
barrier, we adopt a pipelining technique to gain more execution time for ver-
ification. The sequence diagram Fig. 4 illustrates the cooperation between the
verification service and the real-time application. More precisely, the pipelined
working mode is done between the RTOS and the verification service and thus
transparent to the application.
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Fig. 4. Pipelined working principle

Whenever the RTOS receives a component substitution request from the ap-
plication, it will invoke the verification service to check if the substitution is legal
or not. The answer must be given within the required timing constraint, say tq,
in our example. If lucky, the verification may finish the checking task before
the timing constraint is over. Unfortunately, it might be not the case for more
complex systems. Therefore, it is quite possible that, within ¢; time units, only
the next ¢; time steps starting from the initial states are checked Yes, which
means the substitution is safe up to the coming ¢; time steps. In this case, the
RTOS does allow the application to make the substitution and execute forward
t1 time steps. During this period, the verification continues to check, say the
next to — t; time steps. Accordingly, the application can then go ahead the next
to — t1 time steps. Note that at each time point tq +¢; (i > 1) with respect
to t,, the application can report its current state, say s;, to the verification.
Based on this runtime information, the verification can locate in the system
model the corresponding state with respect to s; and thus avoid checking the
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whole state space of the system model by only checking a sufficient sub-space
reachable from this specific state mapped from s;. In this way, the computation
load of the verification can be reduced to a great extent.

The above process is repeated. If at some time point an error is detected,
then the verification can be terminated with the answer No to the RTOS. An-
other situation occurs when at some time point, say tq + ¢j11 (relative to ¢,),
the checking result is still positive, but the time interval t; 1 —t; is less or equal
to the pre-defined time constant ¢., which denotes the minimum time steps that
the verification must keep ahead of the application. In this case the verification
process has to stop and report Unknown to the RTOS. Note that these two
cases only mean that the errors might happen in the future, because we check
at model level and thus do not know if the errors are spurious or not. To avoid
that the errors really happen, we have to conservatively choose to reject the
substitution request and inform the application that an error might emerge in
the future. That is, an exception will be raised by the RTOS together with a
counterexample if necessary. It is possible to let the application to handle the
predicted failure in this case, because failure recovery is integrated into the self-
optimizing application itself. E.g., for a self-optimizing feedback controller, if
the optimization fails, the system would be “near” a critical region (indicated
by means of sensor data) and thus could switch into a classical control algorithm
in time, which is known to be robust enough (but not optimal or comfortable) to
make the system still keep running safely. Finally, if a sufficient sub-space that
covers this actual run of the real-time application is successfully checked, then
we can report definitely Yes to the RTOS and terminate the verification process.
From now on, the application can guarantee to execute safely and consistently
after the substitution. In fact, Fig. 4 just illustrates an ideal pipelined coopera-
tion between the application and the verification via the RTOS as intermediary
without considering any implementation details.

To make the above on-line verification feasible, the implementation of each
component in the system must conform to the corresponding model of the com-
ponent. In our design environment this is automatically achieved by using Fujaba
to generate code directly from the RT-UML model. Therefore, the implementa-
tion of a component is the refinement of the model of the component or, put it
another way, the model is the abstraction of the corresponding implementation.
Thus, an ACTL/LTL formula being true at the model level implies that it is
also true at the implementation level, while it being false at the model level does
not imply that it is also false at the implementation level. That is, our on-line
verification is conservative due to its being applied to model level. However, the
benefits of predicting and avoiding errors are gained just due to its being ap-
plied to model level. Note that we implicitly assume that the components under
consideration own finite state machines and that they have been off-line checked
correct under the given assumptions on the environments they depend on at the
design phase. In addition, the processing speed for verification is assumed to be
faster enough than that for application.
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4.3 Improved Model Checking Procedure

It is easy to see that the pipelined working principle between the verification
service and the real-time application requires that model checking must be done
on-the-fly in a top-down way as mentioned in section 3.3. However, we also need
to cooperate the on-the-fly model checking seamlessly with the application via
RTOS as intermediary in a pipelined working manner.
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Fig. 5. On-the-fly ACTL/LTL model checking

Due to the limited space, we just use Fig. 5 to intuitively demonstrates how to
improve the on-the-fly ACTL/LTL model checking as system service of an RTOS,
where “0” stands for “<”(simulation relation) for ACTL model checking and
“E=" (satisfaction relation) for LTL model checking. In order to make the on-line
verification efficient, the Kripke structures and the Biichi automata are stored in
a repository in advance. Thus, whenever a verification request from the RTOS is
received (Fig. 3), the verification service can fetch the related Kripke structures
and Biichi automata directly from the repository and then immediately start
the on-the-fly model checking. As mentioned in Section 4.2, from initial states,
only the next t; time steps may be checked Yes within the given t; time units.
Similarly, within the next t; time units, the next t; — t; time steps may be
checked Yes. This procedure is repeated until a definite answer Yes, No, or
Unknown is concluded. Note that when the on-the-fly model checking runs to
the (tq + t;)’th (: > 1) time step, it will know that the current state of the
application is s;. Therefore, model checking can locate the corresponding state
mapped from s; in the system model. For simplicity, we still use s; to denote
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its counterpart in the system model. From now on, model checking can continue
from this s; in the system model. In this way, only a part of the state space of the
system model needs to be traversed. That is, by introducing the current state
s; from the application, only a subgraph of M’ is processed in every checking
period. Therefore, in a local view, the time complexity of every checking round is
acceptable with respect to the timing constraints. Thus, this runtime ACTL/LTL
model checking is feasible in practice. We refer to [21] for details.

5 Related Work

There are two major approaches presented in the literature to translate a (real-
time) UML statechart to the input language of a model checker, e.g., SMV,
SPIN and UPPAAL. One approach is to flatten the hierarchical UML state
machines and then map the flattened statecharts into the input format of a
model checker [22,23]. The other approach is to translate each (composite) state
into an equivalent ordinary automaton (seen as process) and then use auxiliary
signals to synchronize the relevant automata (processes) [24,25]. In addition,
there is also the third approach, which translates a UML state machine via
an intermediate representation, say ASM, into the input language of a model
checker. For instance, [26] adopts XASM [27] to define the formal semantics of
the UML statechart diagram and thus model checking can be done based on the
semantic model given by XASM.

The related work to traditional (off-line) model checking is well-known and
thus omitted here. As for on-line model checking, typically, [16] presents run-
time checking for the behavioral equivalence between a component implementa-
tion and its interface specification; [17] presents runtime certified computation
whereby an algorithm not only produces a result for a given input, but also
proves that the result is correct with respect to the given input by deductive
reasoning; [18] presents monitoring-oriented programming (MOP) as a light-
weight formal method to check conformance of implementation to specification
at runtime. Similar to MOP, Temporal Rover [19] is a commercial code gener-
ator allowing programmers to insert specifications in programs via comments
and then generating executable verification code, which is compiled and linked
as part of the application under test, from the specifications. In addition, Java
PathExplorer (JPaX) [20] is a runtime verification environment for monitoring
the execution traces of a Java program.

6 Conclusion

This paper presents our ongoing work on the comprehensive verification frame-
work for the dependability of the self-optimizing systems with safety-critical
requirements. The main characteristics of our verification framework are using
AsmL as intermediate representation and using on-the-fly model checking for
both ACTL and LTL formulae. For ACTL formulae this means an on-the-fly
solution to the NHORNSAT problem, while in the case of LTL formulae, the
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emptiness checking method is applied. The verification framework provides flex-
ible mechanism to integrate other model checking tools or to extend the current
model checking method itself. In particular, the paper extends the verification
framework to provide on-line verification service for the self-optimizing systems
by introducing the pipelined cooperation between the verification and the appli-
cation via the RTOS as intermediary. To summarize, our comprehensive verifi-
cation framework is suitable not only for the off-line model checking at design
phase but also for the on-line model checking at runtime phase.
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Abstract. In this paper we present a new algorithm to counteract state
explosion when using Ezplicit State Space Exploration to verify protocol-
like systems.

We sketch the implementation of our algorithm within the Caching
Muryp verifier and give experimental results showing its effectiveness.

We show experimentally that, when memory is a scarce resource, our
algorithm improves on the time performances of Caching Mury veri-
fication algorithm, saving between 16% and 68% (45% on average) in
computation time.

1 Introduction

State Space Exploration (Reachability Analysis) is at the very heart of all algo-
rithms for automatic verification of concurrent systems.

As well known, the main obstruction to automatic verification of Finite State
Systems (FSS) is the huge amount of memory required to complete state space
exploration (state explosion).

For protocol and hybrid systems verification, Explicit State Space Explo-
ration often outperforms Symbolic (i.e. OBDD based, [4,5]) State Space Explo-
ration [1,13,8]. Since here we are mainly interested in protocol verification we
focus on explicit state space exploration. Tools based on explicit state space
exploration are, e.g., SPIN [17,23] and Muryp [11,19].

In our context, roughly speaking, two kinds of approaches have been studied
to counteract (i.e. delay) state explosion: memory saving and auziliary storage.

In a memory saving approach essentially one tries to reduce the amount of
memory needed to represent the set of visited states. Examples of the memory
saving approach are, e.g., in [30,7,18,28,26,16,12].
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In an auxiliary storage approach one tries to exploit disk storage as well as
distributed processors (network storage) to enlarge the available memory (and
CPU). Examples of this approach are, e.g., in [24,25].

1.1 Background

In [27,10,9] we presented verification algorithms exploiting statistical properties
of protocol transition graphs to save on RAM usage as well as to speed up disk
based Breadth First (BF) state space exploration. Our algorithms have been
implemented within the Mury verifier. We call CMurg (Caching Murp [6]) the
resulting verifier.

Shortly, CMury takes advantage of a statistical property of protocol transi-
tion graphs, namely the transition locality. That is, w.r.t the levels of a BF state
space exploration, state transitions tend to be between states belonging to close
levels of the transition graph. Thus, CMury replaces the hash table used in a
BF state space exploration with a cache memory (i.e. no collision detection is
done) and uses auxiliary (disk) storage for the BF queue. The rationale behind
this approach is that a cache maintains only recently visited states. Thanks to
transition locality this is sufficient, in most cases, to complete the verification
task. Our experimental results [27,9] show that, with the same amount of RAM,
CMury can verify systems more than 40% larger than those that can be handled
using a hash table based approach. On the other hand, CMury verification time
can be up to twice that of standard Murey.

Note that CMure caching techniques is not an alternative to state compres-
sion techniques (e.g. hash compaction [28,26,16,12]) or to state space reduction
techniques (e.g. symmetry and multiset reduction [7,18], partial order reduction
[22]). On the contrary, caching is intended to be used together with the available
reduction options [27,9]. The only thing that caching does is storing data in
the cache. Such data can be full states, state signatures, or anything else. This
is not relevant to the caching schema. This, of course, may be relevant for the
effectiveness of the caching schema. As long as the implemented BF search uses
a hash table to store visited states (or their signatures) CMure caching scheme
can be used. For this reason CMurp can reuse all state reduction procedures
implemented in the standard Mury verifier [27].

1.2 Goal

CMury memory saving stems from the fact the most transitions are local. On
the other hand, CMury time penalty stems from the fact the not all transitions
are local. A nonlocal transition leading to a rather old state that has been over-
written (and thus forgotten) in CMury cache may trigger revisit of large portions
of the transition graph and may even lead to nontermination because of loops
in the transition graph. The higher CMury cache collision rate (i.e. the ratio
between collisions and insertions) the higher the probability of revisiting already
visited states because of nonlocal transitions.

When the collision rate is high (i.e. close to 1) it means that we do not
have enough RAM to hold all visited states. So our only hope to decrease the
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time penalty due to revisiting in such a situation is to make a better use of the
available RAM.

Quite clearly a (large) fraction of the available RAM must be used to store
recently visited states. This is indeed what CMure already does. Here we propose
to use a (small) fraction of the available RAM to store hub states, that is states
that have an in-degree (i.e. number of incoming transitions) much greater than
the average in-degree of the set of reachable states. The rationale behind such
proposal is that many nonlocal transitions will lead to hub states. Thus avoiding
revisiting hub states (and so their successors) may be an effective way to reduce
CMurp time penalty when the collision rate is high.

Note that when the collision rate is low (close to 0) it means that we have
(almost) enough RAM to store all reachable states. In such a case CMury does
not incur any time penalty. That is, verification with CMurp takes the same
amount of time as with standard Mure [19].

Unfortunately our goal of storing hub states faces a substantial obstruction:
we do not know before hand if a state is a hub or not. Thus, to carry out our
goal we need a both time and memory effective way to select hub states among
the states visited so far. In other words, the obstruction here is not in storing
(the few) hub states, but rather in recognizing that a state seen during the visit
is indeed a hub state.

In this paper we show that protocol-like systems do have hub states and
present an effective algorithm to select hub states among the states visited so
far.

Intuitively, we use a hard to write cache L2, that is a cache in which an
insertion request is actually carried out with (a small) insertion probability p.
This means that states that are frequently seen during our visit will have a
greater chance than seldom seen states of actually making their way into L2. As
a result, statistically speaking, L2 will tend to store the hub states among the
states visited so far. Of course not all hub states will be in L2 nor all states in
L2 will be hubs. Still, we can show experimentally that L2 is an effective way to
catch hub states.

1.3 Main Results

Our main results can be summarized as follows.

In Section & we show experimentally that protocol-like systems do have hub
states. We support our claim by measuring the distribution of the in-degree
of the reachable states for the set of protocols included in the Murg verifier
distribution [19].

In Section 4 we present our algorithm to select hub states among the states
visited so far.

In Section 5 we show how an appropriate value for the insertion probability
p in L2 can be computed.

We implemented our algorithm within the CMury [6] verifier. We call
HubCMurp the resulting verifier. In Section 6 we give experimental results on
HubCMurp as compared to CMury. Our experimental results show that when
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the collision rate is high typically HubCMuryp allows between 16% and 68% (45%
on average) of saving in the verification time. Of course when the collision rate
is low HubCMurp behaves essentially as CMurp.

1.4 Related Works

A rather systematic study of statistical properties of transition graphs is pre-
sented in [21]. The author of [21] concludes that there are no hubs in transition
graphs. Note however that the definition of hub state used in [21] is different
form ours. For us a reachable state s is a hub state if its in-degree is much higher
than the average in-degree of the reachable states whereas [21] also requires the
s in-degree to be not too smaller than the number of (reachable) states.

Of course what is the right definition of hub depends on the intended ap-
plication. Anyway, because of this different definition of hub states there is no
contradiction between our results about hub existence and those in [21].

Moreover the focus of our paper is not proving or disproving hub existence
but rather finding ways to exploit the fact that there are states whose in-degree
is much higher that the average one. Finally, the issue of exploiting statistical
properties of transition graphs is not investigated in [21].

A survey on caching schemes is presented in [15]. Note however that [15]
studies Depth First (DF) search with a linked list based hash table. Caching
Mure [27,9] instead uses a BF search with an open addressing hash table. As
remarked in [15] this is a quite different scenario. In fact, CMury caching schema
works quite well [27,9] with open addressing and BF search and does not seem
to work with a DF search (SPIN like).

Note that we do not reduce the state space using our hub states. So our
approach has nothing to do with Partial Order (PO) reduction [22] techniques.
On the other hand we can exploit hub states (if any) in a PO reduced state
space.

Finally, [3], using static analysis techniques, studies the issue of which states
should be stored in order to save RAM. The results in [3] are orthogonal to ours,
note however that the two approaches can be usefully combined.

2 Background

In this section we give some basic definitions that will be useful in the following.
For our purposes, a protocol is represented as a Finite State System.

Definition 1

1. A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite
set (of states), I C S is the set of initial states, A is a finite set (of transition
labels) and R is a relation on S x A x S. R is usually called the transition
relation of S.

2. Given states s,s’ € S and a € A we say that there is a transition from s to
s’ labeled with a if and only if R(s,a,s’) holds. The set of successors of state
s (notation next(s)) is the set of states s’ such that there exists a € A such
that R(s,a,s’) holds.



58 G. Della Penna et al.

3. The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in 0 (zero) or more steps from I. Formally, Reach(S) is the

smallest set such that
1. I C Reach(S), 2. for all s € Reach(S), next(s) C Reach(S).

FIFOQueue Q; HashTable T;
bfs(FSS S) { let S=(S,[,AR);
foreach s in I {Enqueue(Q, s); Insert(T, s);} /*init*/
while (Q is not empty) { s = Dequeue(Q);
foreach s’ in next(s) { if (s’ is mnot in T) {
Insert(T, s’); Enqueue(Q, s’); }}}}

Fig. 1. Basic Breadth First Search

In the following we will always refer to a given system S = (S, I, A, R). Thus,
for example, we will write Reach for Reach(S). Also, we may speak about the
set of initial states I as well as about the transition relation R without explicitly
mentioning S.

The core of all automatic verification tools is the reachability analysis, that
is the computation of Reach given a definition of S in some language.

Since the transition relation R of a system defines a graph (transition graph),
computing Reach means visiting (exploring) the transition graph starting from
the initial states in I. This can be done, e.g., by using a Depth—First (DF) search
or a Breadth—First (BF) search. For example, Mure [19] and (the latest version
of) SPIN [23] may use a DF as well as a BF search.

In the following we will focus on BF search. The Muryp algorithm for the BF
visit is shown in Figure 1. Namely, function bfs of Figure 1 takes as input a FSS
S and performs a BF visit of S transition graph. To this end, it uses a FIFO
queue Q and a hash table T. The first maintains the BF front (i.e. the states to
be expanded), while the latter stores the visited states, so avoiding to revisit
the same states. Thus, state explosion occurs on T and Q. Finally, note that, if
T and Q fit in the available memory, bfs will surely terminate, since the set of
reachable states is finite.

3 Hub States

Inspired by [14,2,29] we call hub a reachable state which in-degree is much higher
than the average in-degree of all reachable states. Note that, as discussed in
Section 1.4, our definition of hub state is different from the one used in [21].

In this section we show experimentally that for protocol-like systems hub
states do exist. We do this by showing that all our benchmark protocols indeed
have hub states. We use as benchmark protocols all those available in the Mur¢p
verifier distribution [19]. The protocols tested cover a wide range of concurrent
software typologies such as synchronization, authentication, cache coherence,
distributed locks, etc. Thus we have a fairly representative benchmark set.
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3.1 Measuring Hub States Presence

In this section we give the basic definitions needed to understand the experi-
mental results in Section 3.2.

Definition 2. Let S = (S, I, A, R) be an FSS, and let s € S be a state. We
call in-degree of the state s the number indeg(s) of transitions leading to s. That
is: indeg(s) = |{(r,a) € Reach(S) x A | R(r,a, s)}|.

Our goal is to study the in-degree distribution in protocol-like systems. As
usual when reporting statistical results, to make distributions relative to different
systems easily comparable we replace the absolute number of states with the
fraction x of reachable states and the actual in-degree value with its fraction of
the maximum in-degree. In this way all quantities lie in the interval [0, 1].

To build the in-degree distribution we proceed in the standard way. Namely,
we divide the interval [0,1] in [ }] subintervals of length A and, for each subin-
terval k, we compute the fraction of the reachable states whose fraction of the
maximum in-degree falls in interval k. The following definition gives the formal
details.

Definition 3. Let S = (S, I, A, R) be an FSS, Minseg = max{indeg(t)|t €
Reach(S)} be the mazimum in-degree of S and A € [0, 1].

— We define function 0 : (0,1] x N — [0,1] as follows:

| {s € Reach(S) | (k — 1) AMingeg < indeg(s) < kAMingeg} |

6(A.k) = |Reach(S)|

Function 0(A, k) returns the fraction of reachable states whose in-degree is
a fraction y € ((k — 1)A,kA] of the mazimum in-degree. In other words,
O(A, k) returns the probability that a reachable state has an in-degree which
is a fraction y € ((k—1)A, kA] of the mazimum in-degree. Thus, technically
speaking, (A, k) is a probability density. Of course, for us, function (A, k)
is only interesting when k < 2.

— We define function 7 : (0,1] x [0,1] — [0,1] as follows:

s =o(a[3)

We also write Ta(x) for 7(A,x) and denote with Ta function \x.7(A,x).
That is, Ta : (0,1] — [0,1] 4s defined as Ta(z) = 7(A, x).

Note that function Ta is completely defined once we know the values TA(A),
TA(QA), ...TA(I).

3.2 Experimental Results About Hub States

To carry out our plan we modified the Mury verifier so as to compute function 7
in Definition 3. Namely, we compute T1 (Yll), ey T1 (”;1 ), T (1) while performing
state space exploration. In our experiments, we set n = 20.
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Our results are shown in Figure 2 where, for each protocol in our benchmark,
we plot 7( !, z) (y-axes) versus the fraction z of the maximum in-degree (z-axes).

The graphs in Figure 2 show that most reachable states have an in-degree
that is a rather small fraction of the maximum in-degree. However there is a
small fraction of states that have an in-degree that is close to the maximum
in-degree.
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Fig. 2. Density of probability T graphs for protocols included in the Mury distribu-

tion. The curves show the fraction of reachable states y which in-degree is a fraction x
of the max in-degree. Thus, by definition y > 0 when « = 1. Note log scale on y axes.
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4 Exploiting Hub States in State Space Exploration

In this section we present an algorithm that is able to effectively select hub
states among the states visited so far. Note that the correctness of our algo-
rithm does not depend on the results in Section 3. However such results will
help us to understand why the proposed algorithm is effective on protocol-like
systems.

Before describing our algorithm, in Figure 3 we briefly recall the CMuryp
[9] one. With respect to Figure 1, we have that in Figure 3 the queue is now
implemented on disk, and the hash table T is replaced by a cache. That is, if the
insertion of a state s’ causes a collision because of a state t already in cache
T, then t is overwritten (and thus forgotten). This implies that, if t is reached
again, it will be revisited, since it is not in our cache anymore. This means that
in general cache T may not be able to prevent nontermination of our visit. As
shown in Figure 3, to guarantee termination in CMury, the main while cycle is
guarded by the collision rate, i.e. the ratio between the number of collisions and
the number of insertions in cache T. In fact, when the collision rate becomes too
high, we are visiting over and over the same set of states. In this case we should
give up our verification task because of lack of memory.

In order to improve CMuryp time performances, we present a new two-level
caching algorithm. The rationale behind this algorithm is the one discussed in
Section 1.2.

To implement the ideas in Section 1.2 we proceed as follows. We modify the
cache based BF algorithm in Figure 3 as shown in Figures 4 and 5. Namely, we
split cache T in two parts, L1 and L2, with a split ratio 0 < p; < 1. Thus, if
M was the amount of RAM dedicated to T, then p, M is now dedicated to L1
and (1 — pp)M to L2. In our experiments, we set p, = 0.7. This is a reasonable
value, since hub states are always a very small subset of the reachable states (see
Figure 2).

The idea is to use L1 to store the recently visited states, so inheriting the
goal of T (i.e. to exploit transition locality) in CMurep, and L2 (our hard to write
cache) to store the hub states. To this end, the algorithm now stores the visited
states in L1 (function Insert in Figure 4) and, when the insertion of a state s’
causes a collision in L1 on state t, t is passed to L2 before being overwritten. If
this causes a collision also in L2 on a state r, r will be overwritten by t with
a fixed probability p ovrwrt (functions Insert L2 and prob decide in Figure
5). Of course a state is considered visited if it can be found in L1 or L2 (see
functions Insert and Lookup L2 in Figures 4 and 5, respectively).

In this way, if state t is a hub, it will have a high probability of being
eventually inserted in L2 and remaining there. In fact, since t will be reached
more often than the other states, it will be often present and overwritten in L1
and, as a result, it will attempt insertion in L2 many times. This gives t more
chances of entering L2 since it will compete more times for the insertion.

We implemented the algorithm of Figures 4 and 5 within the CMurp verifier
[6], calling HubCMury the resulting verifier.
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FIFOQueue Q; Cache T;

PR _ . #collisions on T
collision_rate = 0.0; /* insertions in T */

cbfs (FSS S) { let S=(S,1,AR);
foreach s in I {Enqueue(Q, s); Insert(T, s);}
while ((Q is not empty) and (collision_rate <= 0.9)) {
s = Dequeue(Q);
foreach s’ in next(s) if (s’ is mnot in T) {
Insert(T, s’); Enqueue(Q, s’);}}}

Fig. 3. Cache based Breadth First Search

Insert(s) {h = hash_key(s);
if (L1[h] == s) { /*cache hit (state found)*/
return true; /* report a cache hit */
} else { /* s not in L1 */
if (Lookup_L2(s)) { /* but s 4is in L2 */
return true; /* report a cache hit */
} else { /*s is neither in L1 nor in L2, insert itx*x/
if (L1[h] is empty) {L1[h] = s;
} else { /* the slot 4s full, overwrite it */
s’ = Li[h];
/* before overwriting s’, pass it to L2 */
Insert_L2(s’); Li[h] = s; }}
return false; /* report a cache miss */ }}

Fig. 4. Function Insert

Lookup_L2(s) { h = hash_key2(s);
if (L2[h] == s) return true; else return false; }

Insert_L2(s) { h = hash_key2(s);
if (L2[h] == s) return true; /* report a cache hit */
else if (L2[h] is empty) L2[h] = s;
else /* slot full, we may choose to overwrite */
if (prob_decide(p_ovrwrt)) L2[h] = s;
return false; /* report a cache miss */ }

prob_decide (p) {
return true with probability p, false otherwise;}

Fig. 5. Functions Lookup L2, Insert L2 and prob decide
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5 Tuning the Overwrite Probability

As already said in Section 4, a state that causes a collision in the L2 cache is
overwritten with a fixed probability p ovrwrt. To make L2 effective in finding
and retaining hub states, it is important to choose a suitable value of p ovrwrt.

We carried out a set of experiments to determine a reasonable value
for p ovrwrt. In particular, Figure 6 shows the collision rate as a func-
tion of the fraction of visited reachable states for values of p ovrwrt in
{107%,1073,1072,10~1,1}. When p ovrwrt < 107° the collision rate becomes
soon pretty high and the visits stops. This is because when p ovrwrt s too small
it is almost like not having L2 at all. For this reason we only plotted p ovrwrt
in the range {107%,1073,1072,1071, 1}. Note that the protocol set used in these
experiments is the same one used in Section 6 to assess performances of our
algorithm.

Figure 6 shows that when p ovrwrt is 1 there are cases in which verification
does not terminate. For example this happens for protocols mcslock1, mcslock?2
and newlists6 in Figure 6.

Note that setting p ovrwrt to 1 is equivalent two using the standard victim
cache approach in processor design [20]. However, this does not work in our
setting, since in this way the algorithm will overwrite too many states (hubs
included) thus leading to nontermination.

On the other hand if p ovrwrt is too small (namely less than 10~%) then
L2 will (almost) never be used and, all in all, we have wasted a fraction p, (see
Section 4) of our RAM.

Finally, if p ovrwrt is small enough, only states that are encountered many
times during the exploration process will make their way to L2. Summing up, in
our experiments we choose to set p ovrwrt = 1074

6 Experimental Results

We report the experimental results we obtained using HubCMury (Section 4).

We want to measure how much time and (RAM) memory we can save by
using our approach. To make the results from different protocols comparable we
proceed as follows.

First, for each protocol we determine the minimum amount of memory needed
to complete verification using the Mury verifier (namely Mury version 3.1 from
[19)).

Let M be the amount of memory and g (in [0, 1]) be the fraction of M used
for the queue (i.e. g is gPercentActive using a Murp parlance). We say that
the pair (M, g) is suitable for protocol p iff the verification of p can be completed
with memory M and queue gM. For each protocol p we determine the least M
s.t. for some g, (M, g) is suitable for p. In the following we denote with M (p)
such M.

Of course M (p) depends on the compression options one uses. Murg offers
bit compression (-b) and hash compaction (-c). However, since in our scenario
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Fig. 6. Collision rate as a function of the fraction of visited protocol states. Each
graph shows the collision rate for values of p ovrwrt in {10_4, 107%,107%,107,1}. A
missing line indicates that the verifier was unable to complete the verification with the
corresponding value of p ovruwrt.

RAM is a scarce resource, in the following we only consider the case in which both
options are enabled on all verifiers (i.e. Muryp, CMurp, HubCMuryp). Moreover,
in order to visit all reachable states, all experiments have been carried out with
deadlock detection disabled (-ndl).

Our results are in Figure 7, where we only show protocols requiring at least
10 kilobytes of RAM and a nonnegligible amount of time to complete state space
exploration. In Figure 7, column M gives the minimum amount of memory (in
kilobytes) needed to complete state space exploration and column T gives the
time (in seconds) to complete state space exploration when using memory M.
Finally, column Reach gives the number of reachable states.

Our next step is to run each protocol p with less and less memory using
both HubCMurp and CMurp. That is we run protocol p with memory limits
aM(p), a € [0,1], with the new (L1+L2) and the old (just CMurp L1) cache
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based algorithm. This approach allows us to easily compare the experimental
results obtained from different protocols.

The results obtained in such a way are in Fig. 9. Note that in these experi-
ments the value used for g (gPercentActive) is not relevant since the queue is
implemented on disk. We give the meaning of rows and columns in Fig. 9.

Column o (with a € [0,1]) gives information about the run of protocol p
with memory aM (p) (for this reason, the row heading is Mem).

Row States gives NIZ *U”;‘Z b where Np,onyp i the number of visited states using
CMurp and Npyyp is the number of visited states using HubCMurp.

Row Time gives TT’;;*’;b, where Thonup is the computation time needed by
CMurp and T}y is the computation time needed by HubCMurep.

A verifier (CMury or HubCMuryp) is stopped when its collision rate be-
comes greater than 0.99. We mark with a * superscript the data obtained when
CMurgp gives up state space exploration because its collision rate exceeds the
given threshold (0.99) and, on the contrary, HubCMurp succeeds in completing
the verification. In such cases, instead of giving a ratio, rows States and Time
display, respectively, the absolute values for the visited states and the computa-
tion time (in seconds) of HubCMury. Note that there was no case in which only
CMury completed the verification.

We are interested in the case in which the collision rate is high, since this
means that we do not have enough RAM to store all visited states. For this
reason when comparing CMury and HubCMurp performances we only consider
the results obtained from the experiments relative to the least « in which both
CMurg and HubCMurg terminate. This means that column (« - 0.01) is marked
with a % (only HubCMurep terminates). When the collision rate is low (i.e. we do
have enough memory to store most of the visited states) CMury and HubCMurp
have similar performances. This can be seen from Figure 9 by looking at the
column with the largest value of a (namely the leftmost column).

The experimental results in Figure 9 show that, with respect to CMurey,
HubCMurgp typically saves from 16% to 68% (45% on average) in computation
time. Note also that for all protocols there are cases in which, with the available
memory, only HubCMury is able to terminate.

Of course there are protocols (e.g. n peterson in Figure 9) where HubCMury
is less efficient than CMury. We conjecture that this is due to the shape of the
in-degree distribution curves in Figure 2. First, we should note that, technically
speaking, the curves in Figure 2 are density of probabilities. Now, for each proto-
col p we can compare the curve for p in Figure 2 with HubCMury performances
for p as from Figure 9. From this we see that if the curve of p is rather concen-
trated (i.e., has a small variance) then HubCMurg performs well on p (e.g., as
for protocol sci). On the other hand, if p curve has a large variance (e.g. as for
mcslock2 and n peterson) then HubCMury does not perform well on p.

We also wanted to test our approach with a large protocol that heavily loads
our machine. The results are in Fig. 8. We used protocol sci with parameter
MemorySize set to 5. As shown in [10], this protocol has 75,081,011 reachable
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Protocol Reach M T
n peterson 163298 813 273.32 Mem 0.41 0.37
adash 10466 55 62.98 States 80430178% 84045856*
cache3multi 13738 73 35.11 Time  47129* 46604*
nevlist6 13044 67 18.34 Mem 0.33 0.29
mcslockl 23644 120 16.76 States 92322597* 120543398*
meslock2 540219 2693 237.48 Time 51009% 66676*
sci 18193 94 28.17
Fig.7. Results on a SUN Sparc Fig.8. HubCMurp experimental
machine with 512M RAM results for protocol sci-31151
with parameter MemorySize = 5
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
ncslockl States 0.603 0.352 72358* 104019* 134834*
Time 0.69 0.42 3.89% 5.62% 7.36%
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
cache3multi States 0.828 0.89 0.769 0.77 66687* 87096*
Time 0.83 0.92 0.78 0.79  19.39% 25.22%
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
mcslock2 States 0.99 0.976 0.956  0.93 0.919  0.885 0.805 0.714 1164348* 1397335* 2085105*
Time 1.19 1.16 1.14 1.12 1.09 1.05 0.96 0.84 39.67* 47.92* 72.06*
Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49

newlisté States 0.697 0.296 48882* 63843*

Time 0.75 0.32 5.14%  6.69*

Mem 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49
adash States 0.87 0.873 0.421 0.584  21362* 32166*

Time 0.88 0.91 0.44 0.61 11.52*% 17.27*

Mem 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 0.39 0.38
sci States 0.914 0.799 0.833  0.797  0.693  0.818 0.626 0.305 34019*%  41096*  47845* 91666*
Time 0.95 0.8 0.84 0.8 0.69 0.86 0.64 0.32 5.28% 6.42% 7.39% 14.17*
Mem 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59
n peterson States 1.079 1.078 1.028  1.311 1.071  0.663 1.635 1.188 1.032 5588575
Time 1.2 1.2 1.14 1.46 1.18 0.73  1.82 1.32 1.14 368.17*

Fig.9. Comparison of CMurp and HubCMury experimental results on an INTEL
Pentium 3.2GHz machine with 512M RAM

states and requires 563 Megabytes of memory to be verified with standard Muryp
in 35,905 seconds.

CMury was not able to complete verification with less than 225 Megabytes,
that is 40% of the required (563MB) memory.

On the other hand, as shown in Fig. 8, HubCMury completed the verification
with about 163 MB, that is 29% of the required memory, and a time penalty
(w.r.t. standard Murp with 563MB of RAM) of 85%.

This suggests that for large protocols HubCMurep can achieve huge (about 71%
in our example above) memory savings, possibly at the expense of time. This is
better than being left with an out of memory message after hours of computation.

7 Conclusions

We presented a novel explicit verification algorithm that exploits hub states (Sec-
tion 3) to save on memory usage (Sections 4, 5). We implemented our algorithm
within the CMure verifier [6] and call HubCMury the resulting verifier.

Our experimental results (Section 6) show that, with respect to CMurp,
HubCMuryp typically saves from 16% to 68% (45% on average) in computation
time.
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Abstract. The spectacular advancement in microelectronics resulted
in the creation of new system level design languages, such as SystemC,
which put fourth new design and verification challenges. In this paper,
we present an approach verifying SystemC designs using model check-
ing and assertion based verification. Such verification is enabled through
two transformations from SystemC to AsmL (the Abstract State Ma-
chines Language) and vice-versa. The soundness of these transforma-
tions, proved using abstract interpretation, guarantees the correctness of
the model checking results and the validity of the generated assertion
monitors (to be checked by simulation). We illustrate our approach on
the SystemC/AsmL modeling and verification of the widely used Accel-
erated Graphics Port (AGP) standard. The verified AGP model can be
either refined to implement an AGP core or used to validate existent
compatible device.

1 Introduction

SystemC [18] is an object-oriented system level language for embedded systems
design and verification. It is expected to make a stronger effect in the area of
architecture, co-design and integration of hardware and software. The SystemC
library is composed of a set of classes and a simulation kernel extending C++
to enable the modeling of complex systems at a higher level of abstraction than
state-of-the-art HDLs. Nevertheless, except for small models, the verification of
SystemC designs is a serious bottleneck in the system design flow. While simu-
lation is the mostly widely used verification technique, it is unable to guarantee
the correctness of the design with respect to its specification. On the other hand,
model checking is considered as a relevant technique to cover for simulation in-
sufficiencies. Nevertheless, direct model checking of SystemC is not feasible due
to the complexity of this library. Besides, the state explosion problem led, for
complex systems, to the use of assertion based verification (ABV) where the
property under verification is turned into a monitor, checked by simulation and
evaluated using coverage metrics. The soundness of ABV relies, in particular, on
the correctness of the generation of the SystemC monitor from the property.

In order to enable the model checking of a SystemC design, we translate it
to an intermediate representation in AsmL [16]. This latter is an object-oriented
abstract state machines (ASM) [2] description language providing features to

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 69-83, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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capture the behavioral semantics of programming and modeling languages where
systems are modeled at a high level of abstraction allowing easier validation and
verification operations.

The AsmL language is integrated with Microsoft’s software development en-
vironment and integrated with the Asmlt tool [16] offering a reachability algo-
rithm, able to generate an FSM of the model that can be adapted to perform
model checking. When a state explosion happens the design properties are trans-
lated to SystemC assertion monitors and verified by simulation. This is made
possible through the embedding of the property specification language (PSL [1])
in the same formalism.

The soundness of our approach is established using abstract interpretation by
proving the correctness of both transformations: (1) from the original SystemC
design to its AsmL representation; and (2) from the PSL property, in AsmL, to
the generated monitor, in SystemC.

To illustrate our approach, we considered the AGP bus [14] that was, as far
as we know, only verified by simulation due to its complexity and very large state
space. We will show that our technique combined with the abstraction features of
AsmL allows, using an inductive proof, the model checking of a set of properties
on the bus. These properties are also translated to a SystemC monitor that can
be used as a separate Intellectual Property (IP) to validate AGP compatible
devices.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 presents our verification approach. Section 4 contains the proofs of the
transformation from SystemC to AsmL. Section 5 describes the application of
the proposed methodology for the case of an AGP bus modeled in SystemC.
Finally, Section 6 concludes the paper.

2 Related Work

Related work to ours concerns both finite-state verification and assertion based
verification. Concerning the first issue, we cite in particular the Bandera [5]
project that aims at interfacing Java code to model checking tools like SMV
[3] and SPIN [13] by applying program analysis, abstraction, and transforma-
tion techniques. In its actual status, Bandera cannot handle SystemC designs
because any analysis of a SystemC code must go through the whole simulation
environment as well as SystemC defined data-types and classes. Besides, using
SMV as an internal model checking tool is a big handicap for Bandera to handle
large state space systems. We are not aware of any related work using a sound
syntactical transformation from SystemC to Asml and vice-versa to perform
either model checking or ABV.

In [7] an approach is presented to add assertion checkers to SystemC. This
previous work is different from our methodology mainly in two aspects: (1) The
properties in [7] are restricted to the notation of property checker from Infineon
Technologies AG then translated to synthesizable SystemC instructions while we
consider any PSL property; and (2) SystemC is considered in [7] as a low level
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HDL language while in this paper we do not put any restriction on any subset
of SystemC.

In [19], [12] and [10] several approaches were proposed to verify, respectively, a
PCI bus monitor in Verilog, a PCI bus model and Look-aside interface [17] (both
in SystemC). In [19], the bus was implemented in Verilog with all the properties
embedded as part of the code which makes its modification or upgrade a very
complex task. Besides, the verified Verilog model includes only two agents (one
master and one slave), which does not allow the verification of the properties
related to the bus arbitration, for example, and radically reduces the designs
state space.

In both [12] and [10] a top-down approach was used where the verification
was integrated as part of the design process and AsmL models were first designed
and verified then translated to SystemC. In this paper, we consider a bottom-
up approach where starting from an existent AGP IP in SystemC we generate
internally the AsmL model and verify the system property at the ASM level.
Besides, the designs in [19], [10] and [17] were relatively small in comparison to
AGP, with a width of 256 for data read, data write and command queues has a
minimum of 2256%32 states. Furthermore, AGP includes a number of additional
features making its verification a non-trivial task, such as pipelining. Hence,
direct model checking of AGP properties is with no doubt impossible due to the
state-explosion problem. The verification technique proposed in this paper takes
advantage of the high level of abstraction offered by AsmL which enables both
data abstraction and proofs by induction.

3 Verification Methodology

AsmL [9] is one of the very latest languages developed for Abstract State Ma-
chines (ASM) [8]. It is supported by a tester (Asmlt) that can be used to gen-
erate FSMs and test cases. It supports object-oriented modeling at higher level
of abstraction in comparison to C++ and Java. In our verification methodology
(Figure 1) we perform the model checking of SystemC by translating the original
design to an intermediate representation that omits all the details of the Sys-
temC simulator. The target (or transformed) program is modeled in AsmL to be
cross-produced with the system properties that will be verified over the whole
system’s state space. To model the properties, we used the PSL [1] standard.
PSL properties are embedded in the design as external monitors; hence, they can
be used as stand-alone IP block(s) to validate other devices, either at the AsmL
level by model checking or at the SystemC level by assertion based verification.

3.1 Model Checking

To enable the integration of both the model and the properties at the ASM level,
we embedded the PSL semantics in AsmI. At this level, it is possible to verify
these properties using model checking. For instance, we encode the properties
evaluation in every state, which enables checking its correctness on-the-fly while
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Fig. 1. Verification Methodology

executing the FSM generation algorithm (part of the AsmL tool). An incorrect
property detection stops the reachability algorithms and outputs a sub-portion
from the complete FSM, which represents a scenario for a counter-example.

PSL properties are defined in a hierarchical way inspired from the hardware
design modular concept. For this reason we defined the embedding in a similar
structure, where all the components are defined as objects and every PSL layer
extends its lower layer using the inheritance feature of AsmL. The main layers
include the Boolean layer, the temporal layer and the verification layer [1].

We encapsulate sequences in the verification unit as an assertion, which

is embedded in the design. Given a set of Boolean items zj,xs2,...,z,, and
Y1,Y2, - - -, Ym belonging to the Boolean layer, and the sequences, S7 and S
belonging to the temporal layer, we can define: S1 = {z1,22,...,2,}, and

S2 = {v1,%2,...,ym} and then use assertions to check any PSL operation be-
tween S1 and Sy such as S} OP Sa, where OP is a PSL operator (e.g., implication
(:), or equivalence («)). The assertion is built as follows:

1. Add all the Boolean items to the sequences:
Viin1lton: Si.AddElement(x;)
Vjinltom: Sy.AddElement(y;)
2. Create the property: P := 51 OP Sy
3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P)

Each property is embedded in every state in the FSM generated by the AsmL
tool and is represented by two Boolean state variables P.,q; and Pygue (stat-
ing, respectively, if the property can be evaluated and the value of the property
in the current state). A violated property is detected once Peyq = true and
Pyaive = false. The previous condition is a filter for the FSM generation algo-
rithm stopping the generation when an error is detected. In this case, the gener-
ated portion of the state machine can be used to identify the problem through
a scenario of a counter-example. For multiple properties, the filter is set as the
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conjunction of all the conditions for the separate properties. This technique min-
imizes radically the number of state variables (the FSM size and its generation
time). A successful verification process results in the generation of the system’s
FSM (according to the configuration file constraints). This approach may seem
to be based on an ad-hoc model checking algorithm while more advanced tech-
niques and approaches have been used in tools like SMV and VIS. We believe
there are many reasons that make our approach more efficient, in particular:
(1) It is impossible to use these tools with AsmL considering the OO nature
of the language. Therefore, a translation to the language supported by the tool
(mostly a very low HDL) is mandatory. This operation will prohibit using some
advanced features AsmL offers (e.g., data abstraction, etc.)

(2) Generating the counter-example as an FSM provides a complete path of the
error starting from the entry point to the state where the error took place [6].
(3) The configuration of the FSM generation algorithm can be set by the user
in order to stress the verification only in some particular portions of the state
space (through restricting some variables to have certain range for example) [6].

3.2 Assertion Based Verification

The proposed methodology to integrate and verify PSL assertions for SystemC
designs is given in Figure 2. It consists of the following three main steps:

(1) Updating the SystemC design in order to interface it with the assertion
monitor.

(2) Generating the assertion as a C# code from its ASM description.

(3) Integrating the C# assertion in the SystemC design.

The assertion under verification is a PSL property embedded in AsmL as a
read-only separate module. In order to guarantee that we are verifying the same
property specified in AsmL as the corresponding SystemC model, we need to:
(1) prove the correctness of the transformation from AsmL to SystemC; and
(2) connect the assertion monitor correctly to the original SystemC design. The

SystemC PSL
Design Assertion
- Table of |
GCC Compiler Symbols

List of Updates

{( ASM/PSL Property | PSL Semantics,
B Generator (ASM)

Design Updater

AsmL Tool

Desi
Updated eSIin (AsmL Compiler)

[ Assertion Integrator [yt dpuiivtyhykupugyet i SR |
I

SystemC updated design containing
the assertion’s monitor

Fig. 2. Assertion Based Verification Approach
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second step requires updating the SystemC design to interface to the assertion
and integrating the assertion in the design. For instance, we validate the assertion
syntactically by generating the list of the variables involved. Then, we perform
a type check to make sure the variables are well instantiated in the SystemC
design. For instance, the signals (variables) that are used in the assertion must
be seen as external signals so that they can be input to the assertion monitor.
Hence, we modify the SystemC design to make the required variables visible to
the monitor. Once the design is updated, we add the required instantiation of
the assertion to bind it to the existing SystemC design modules. The assertion
monitor, acting as part of the design, can do the following: (1) stop the simulation
when the assertion is fired; (2) write a report about the assertion status and all
its variables; and (3) send a warning signal to other modules (if required).

4 Correctness of the SystemC/AsmL and AsmL/SystemC
Transformations

The work of Patrick and Radhia Cousot in [4] is the essence for any program
transformation using abstract interpretation. The tactical choice of using seman-
tics to link the subject program to the transformed program is very smart in the
sense that it enables proving the soundness proof of the transformation, related
to an observational semantics. The transformation from SystemC to AsmL, and
vice-versa, represents an online program transformation which corresponds to
the approach described in Section 3.9 of [4]. Figure 3 displays a projection of
that generic methodology on a SystemC subject program and an Asml trans-
formed program. The same figure can be used to perform the soundness of a
transformation and also to construct it. In both cases, we need to define the
syntax, semantics and observation functions for both AsmL and SystemC.

Subject mS ntactic Transformed
Program Pgc Transformation t Program f[P,]
Sscl sAl
Subject Program Semantic Transformed Program
Semantics Sgc[Psc] Transformation t Semantics S,[t{P4]]
!J.I:;{' ~ {t‘;’;“b
55 (SsclPscl) =a, af5(SaltPA)

Fig. 3. Online Program Transformation

4.1 SystemC Fixpoint Semantics

Syntactical Domains. SystemC has a large number of syntactical domains.
However, they are all based on the single SC Module domain. Hence, the mini-
mum representation for a general SystemC program is as a set of modules.
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Definition 1. (SystemC Module: SC Module)

A SystemC Module is a set (DMem, Ports, Chan, Mth, SC Ctr), where DMem s a set
of the module data members, Ports is a set of ports, Chan a set of SystemC Chan,
Mthis a set of methods (function) definition and SC Ctr the module constructor.

Definition 2. (SystemC Port: SC Port)

A SystemC Port is a set (IF, N, SC In, SC Out, SC InOut), where IF is a set
of the virtual methods declarations, N is the number of interfaces that may be
connected to the port, SC In is an input port (provides only a Read method),
SC Out is an output port (provides only a Write method) and SC InOut is an
input/output port (provides Read and Write methods).

In contrast to default class constructors for OO languages, the SystemC
module constructor SC Ctr contains the information about the processes and
threads that will be executed during simulation.

Definition 3. (SystemC Constructor: SC Ctr)

A SystemC Constructor is a set (Name, Init, SC Pr, SC SSt), where Name is a
string specifying the module name, Init is a default class constructor, SC Pr a
set of processes and SC SSt is a set of sensitivity statements (to set the process
sensitivity list SC SL).

Definition 4. (SystemC Process: SC Pr)

A SystemC process is a set (PMth, PTh, PCTh), where PMth is a method process
(defined as a set (Mth, SC SL) including the method and its sensitivity list), PTh is
a thread process (accepts a wait statement in comparison to the method process),
PCTh is a clocked thread process (sensitive to the clock event).

Definition 5. (SystemC Program: SC Pg)

A SystemC program is a set (Lgc Mod, SC main), where Lgo moq i a set of
SystemC modules and SC main is the main function in the program that performs
the simulator initialization and contains the modules declarations.

Fixpoint Semantics. In this section, we define the semantics of the whole
SystemC program, W [SC Pg], and the SystemC module, Mgc[m sc]. Then,
present the proofs (or proof sketches) of the soundness and completeness of
MSC[[IH SC]].

Definition 6. (Delta Delay: 64)
The SystemC' simulator considers two phases evaluate and update. The separa-
tion between these two phases is called delta delay.

Definition 7. (SystemC Environment: SC Env)

The SystemC' environment is the summation of the default C++ environment
(Env) as defined in [15] and the signal environment (Sig Store) specific to Sys-
temC: SC Store = Env + Sig Env = [Var — Addr/+ [SC Sig — (Addr,Addr)],
where Var is a set of variables, SC Sig is a set of SystemC' signals and Addr
C N is a set of addresses.
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Definition 8. (SystemC Store: SC Store)

The SystemC store is the summation of the default C++ store (Store) as defined
in [15] and the signal store (Stg Store): SC Store = Store + Sig Store =
[Addr — Val]+ [(Addr, Addr) — (Val,Val)], where Val is a set of values such
that SC Env C Val.

Let Rg € P(SC EnvxSC Store) be a set of initial states, pci be the entry point
of the main function and —C: (SC EnvxSC Store)x(SC EnvxSC Store) be a
transition relation.

Definition 9. (Whole SystemC Program Semantics: W SC Pg)
Let SC Pg = (Lgc Mods SC main) be a SystemC program. Then, the semantics
of SC Pg, W SC Pg € P(SC EnuxSC Store) — P(7T (SC Enux SC Store)) is:
WSC Pg(Ro) = Ifp §AX. (Ro) U {po = ... pn — Prs1| Pus1 €

(SC Enux SC Store) A {po — ... pn}

€EX A pp— Pn+1}

Both definitions of the semantics of process declaration (Pg [SC Pr]) and
SystemC module constructor (Pcy, [SC Ctr]) are given in [11]. In contrast to
the semantics definition of an OO object in [15], a SystemC method can be
activated either by the default context or by the SystemC simulator through
the sensitivity list of the process. A complete definition of the semantics of
a SystemC module object (QOgc[o sc]) through the definition of a transition
function nextgc(o)=next(c) nextsig(cr), including both parts C++ related
and SystemC specific functions, can be found in [11].

Definition 10. (SystemC Module Semantics: Mgcm sc))
Let m sc = (DMem, Ports, Chan, Mth, SC Ctr) be a SystemC module, then its
semantics Mgom sc) € P(T (X)) is:
Mgom se={0gco sc(vse, Ssc) | 0 sc is an instance of m sc, v sc € D 1in,
s sc € SC Store}

Theorem 1. (SystemC Module semantics in fizpoint) ! Let
Gee(S)= AT. {Sp(v,s) | (v,s) € S} U {oo % ... "5 o, L o

0o LU on €T, nextse(o,) 3 (0o/,1')}

Then Mgcm sc(vse, Ssc) = Ufp mg Gsc{ Din X Store)

The last step in the SystemC fixpoint semantics is to relate the module
semantics to the whole SystemC program semantics. Hence, we consider an up-
dated version of the function abstract ( ) as defined in [15]. The new function is
upgraded to support the SystemC simulation semantics, environment and store.
The complete definitions of @ SC° can be found in [11].

Theorem 2. (Soundness of Mgom sc) Let Msc be a whole SystemC' program
and let msc € Msc. Then:

Y Ry € SC Envx SC Store.V 7 € T (SC Enux SC Store). 1 € WSC Pg(Ry) : 37’
€ Mscmsc . a SC°({r}) = {7}

! The proofs of the theorems presented in this paper are available in [11].
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Theorem 3. (Completeness of Mgc ) Let msc be a SystemC module. Then
VT € T(Z)T € Mgemse -
3SCPe (Lge _pg>. dpg € SC Enux SC Store. 3 ogc instance of msc.
37" € T(SC Enux SC Store). " € WpoA a SC°({7'}) = {7}

4.2 AsmL Fixpoint Semantics
Syntactical Domains.

Definition 11. (AsmL Class: AS C)

An AsmL class is a set (AS DMem, AS Mth, AS Ctr), where AS DMem is a set of
the module data members, AS Mth a set of methods (functions) definition and
AS Ctr is the module constructor.

One of the important features that we are going to use in AsmL corresponds
to the methods pre-conditions (Boolean proposition verified before the execution
of the method).

Definition 12. (AsmL Method: AS Mth)

An AsmL method is a set (AS M, AS Pre, AS Pos, AS Cst), where AS M is the
method’s core, AS Pre is a set of pre-conditions, AS Pos is a set of post-conditions
and AS Cst is a set of constraints.

Note that AS Pre, AS Pos and AS Cst share the same structure. They are
differentiated in the methods by using a specific keyword for each of them (e.g.,
require for pre-conditions).

Definition 13. (AsmL Program: AS Pg)
An AsmL Program is a set (Lpg ¢, INIT), where Lyg ¢ is a set of AsmL classes
and INIT is the main function in the program.

Fixpoint Semantics. Similar to the notion of delta delay (64) of SystemC,
AsmL considers two phases: evaluate and update. The program will be always
running in the evaluate mode except if an update is requested. There are two
types of updates, total and partial.

Definition 14. (AsmL Environment: AS Env)

The AsmL Environment is a modified OO environment AS Env = [Var — Addr,
Addr], where Var is a set of variables and Addr C N is as set of addresses (two
addresses store the current and new values of v € Var).

Definition 15. (AsmL Store: AS Store)
The AsmlL store is AS Store = [(Addr, Addr) — (Val,Val)], where Val is a set
of values such that AS Env C Val.

The whole AsmL program semantics (Wags [AS Pg]), method semantics
(Mys [. ]) and object semantics (Qas[o AS]) through the definition of a tran-
sition function nextag(o) can be found in [11]. The AsmL class constructor can
be defined according to the Definition 3.8 in [15].
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Definition 16. (AsmL Class Semantics: Casc as)

Let ¢ as = (as dmem, as mth, as ctr) be an AsmL class, then its semantics
Casc as) € P(T(X)) is: Cosc as= {Qys0 as(v as,s as) | o as is an instance
of c as, v as € D in, s as € SC Store}

Theorem 4. (AsmL Class semantics in fizpoint) Let

Hoo(S)= NT. {Sp(v,s) | (v,s) €8} U {oo%..."5" o, L o

Lo
0o lo, | fngt on €T, neztgs(on) > (o/,1')}

Then Casc as(Vas, Sas) = Ufp Q% H,s( Dy X Store)

The function « AS® is an updated version of the function abstract («°) defined
in [15]. The complete definition of o AS® is given in [11].

Theorem 5. (Soundness of Cagc as) Let Pas be a whole AsmL program and
let cas € Cas. Then ¥ Ry € AS Enux AS Store. ¥V 7 € T (AS Enux AS Store).
T € WAS Pg(Ry) : 37" € Cagcas . a A ({r}) = {7}

Theorem 6. (Completeness of Cag) Let cas be a AsmL class. Then

VreT(X). 7€ Cscese : 3 AS P e (Lyg Pg>‘ dpg € AS Enux AS Store. 3
oas instance of cas. 37 € T (AS Enux AS Store). 7/ € Wpq
ANaASP{T'}) ={r}

4.3 Program Transformation

The equivalence in behavior, with respect to an observation «,, between the
source SystemC program and the target AsmL program is required to ensure
the soundness of any verification result at the AsmL level. Our objective is to
define a relation between the SystemC processes active for certain delta cycle
and the set of methods allowed to be executed in the AsmL model. Hence, we will
map every thread (method, sensitivity list) in the SystemC design to a method
(method core, pre-conditions) in the AsmL model.

The SystemC observation function needs to see all the active processes at
the beginning of a delta-cycle by checking for the end of the update phase.
Definition 17. (SystemC observation function: a5 )

Let SC Pg= (Lg¢ Mod, SC main) be a SystemC program, the observation function
asC € P(SC Envx SC Store) — P(T (SC Enux SC Store)) is

aS€sc Pg(Ry) =Ufp FAX. Ry U {fo — ... pn| Vp; € (SC Envux

SC Store) 3 {pi — ...pi.} € X A
pt,— pi A{ mscinMgc | Jo sce

Msc. o sc(p), () # {e} } =0}

In the previous definition, oS¢ is only tracing the initial states of a simulation

cycle. For instance, the third condition ensures that the list of process ready to
run is empty. Similarly, we define an observation function o for an AsmL
program.



An Approach for the Verification of SystemC Designs Using AsmL 79
Definition 18. (AsmL observation function: a2¥)
Let AS Pg= (Lyg ¢, INIT) be an AsmL program, the observation function a’®
€ P(AS Enux AS Store) — P(7T (AS Envx AS Store)) is
aS 48 Pg(Ry) =Ifp AX. (Ro) U {fo — ... pin| ¥p; € (SC Envx
AS Store) 3 {py — ... pl,} €X A
ptn— pi AN{masinCas | Jo as €
Cas- 0 as(p,()) #{e} } =0}
Next, we define the notion of equivalence between the two observations. Al-
though, SystemC and AsmL have different environment and store structures, it
is possible to ensure that they contain the same information.

Definition 19. (Equivalence w.r.t. ay: =q,)
Let SC Pg be a SystemC program, V sc a set of its variables, AS Pg be an AsmL
program and Dout as a set of its output variables.
prog sc =,, prog as if
VRSC set of initial states of SC Pg. VRS set of initial states of AS Pg.
Vp e {po— ... = pn} € a5°sC Pg(RS).
3pe{po— ... = pn} € ar54S Pg(Ry®) |V vsc € V sc. 3vas € V as |
if vsc € SC Sig then p(vsc) = (v1i1,v12) A p(vas) = (vi1,v12)
if vsc € AS DMem then p(vsc) = vl1 A p(vas) =(vli,vll)

The observation function ensures that the AsmL program is mimicking the
evaluate and update phases (same length n of the p sets). The first if condition
takes care of the SystemC signals while the second one concerns basic C++
variables.

Theorem 7. (Existence of transformed AsmL program w.r.t. afc) Let SC Pg be
a whole SystemC program, SC Din a set of inputs and SC Dout a set of outputs.
Then 3 AS Pg, an AsmL program, such that SC Pg =,, AS Pg

Theorem 8. (Ezistence of transformed SystemC program w.r.t. o)) Let AS Pg
be a whole AsmL program, AS Din a set of inputs and AS Dout a set of outputs.
Then 3 SC Pg, a SystemC' program, such that AS Pg =, SC Pg

Theorem 9. (Soundness of the transformations) Let SC Pg be a whole SystemC
program and let AS Pg be a whole AsmL program. Then

SC Pg =,, AS Pg:

Y Prop(V sc,p) | p € a5°SC Pg.

SC Pg - Prop(V sc,p)

: AS Pg = Prop(V as,p) | p € a254S Pg.

where: Prop is a program’s property, V sc is a set of variables of the SystemC
program, V as are their corresponding variables in the AsmL program.

5 Application: AGP Bus Verification

5.1 Bus Description

AGP (Accelerated Graphics Port) [14] was introduced to meet consumer demand
for high-resolution 3D graphics in home computers. New software programs (es-
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pecially games) require more and more video bandwidth for fancy textures, high
frame rate animations, etc. It has the advantage of allowing large amounts of
graphics data to be transferred directly between the computer’s main memory
and the AGP video card. The AGP bus is designed strictly for video processing
and does not have to share available bandwidth with other connected devices.
Both AGP bus transactions and PCI bus transactions may be run over the AGP
interface. An AGP master (graphics) device may transfer data to the system
memory using either AGP transactions or PCI transactions. The corelogic can
access the AGP master device only with PCI transactions. Traffic on the AGP
interface may consist of a mixture of interleaved AGP and PCI transactions. In
addition to the PCI features, AGP includes:

(1) Direct Memory Execute (DME) that gives AGP chips the capability to access
the main memory directly for complex operations of texture mapping.

(2) Pipelining and sideband addressing of directly accessing texture maps in
system memory.

(3) Multiple requests for data during a bus or memory access.

(4) A dedicated non-shared bandwidth with other devices.

5.2 Model Checking

In order to verify the bus properties, we first used a direct model checking
approach by considering a set of properties to verify all the possible transactions
scenarios. These cover two main classes: (1) PCI transactions and (2) AGP
transactions including both modes DMA and execute. We succeeded to prove
the first class of properties with a direct approach while we failed to prove the
second set due to state explosion. Therefore, we introduce a proof by induction.
Performing the verification of the whole model failed to complete due to a state
explosion problem. The main reason for that is the huge size of the read, write
and commands queues (each of width 256) present in both the AGP device and
the corelogic. By reducing the queues width to three, however, we succeeded to
verify all the properties. For more general verification, we defined an induction
based approach taking advantage from the abstract data types of AsmlL.

We define DRQ: Device Read Queue, DWQ: Device Write Queue, DReQ:
Device Request Queue, C'RQ: Controller Read Queue, CWQ: Controller Write
Queue and C' ReQ: Controller Request Queue. The maximum width of the queues
is @.Wd. The number of packets in each queue is X X@Q.Np (where XX €
{DR, DW, DReq, CR, CW, CReq}). P is the list of properties under

verification.

— Step 1: Verify P = true, V DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np,
CWQ.Np, CReQ.Np € [0,1].
— Step 2:
e Hypothesis: Consider N e N/ 0< N < Q.Wd
Vo € {DRQ.Np,DWQ.Np,DReQ.Np,CRQ.Np, CWQ.Np, CReQ.Np},
xz < N : P is true.
e Prove: Vo € {DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np, CWQ.Np,
CReQ.Np}, x < N +1: P is true.
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5.3 Experimental Results?

Model Checking. The CPU time used for the generation of the model checking
for queues widths in {1,2,3,6} is given in Table 1. The first three rows are required
to ensure the correctness of the initialization conditions. The fourth row, queue
width equal to six, is given to illustrate the effect of the numbers of states
and transitions increase exponentially as function of the queue size. This clearly
illustrates the impossibility of generating the complete FSM for a width of 256. In
Table 2.(a) every row corresponds to the proof of a particular queue. Generally,
the CPU time, Nodes and number of transitions is close to the case when the
queue width is equal to three (see Table 1). Table 2.(b) presents the verification
information for the PCI mode which is optional for AGP. A direct proof for this
case was possible thanks to the relative simplicity of the PCI, which does not
include any queue structure.

Table 1. Validity of Initialization Conditions

Queue CPU  Number of FSM
width Time (s) Nodes Transitions
1 5.78 34 37
2 30.89 173 193
3 105.20 504 563
6 1758.78 4325 5223

Table 2. Model Checking Results

(a) AGP Mode (b) PCI Mode
Proof for ~ CPU Number of FSM Number of CPU  Number of FSM
the Queue Time (s) Nodes Trans. Masters Slaves Time (s) Nodes Transitions
DRQ 341.01 1156 1304 1 1 2.31 20 25

DWQ 34525 1294 1325
DRe@  347.78 1302 1346
CRQ 457.89 1503 1425
CW@Q  462.07 1653 1433
CRe@  487.01 1859 1481

2.94 39 53
26.01 236 341
26.84 293 449
101.38 658 1117
574.18 1881 3153

W NN W
N W N~ N

Assertion Based Verification. We have been able to verify all the AGP
bus structure by model checking. However, when the model checking fails, it
is possible to use the properties as assertion monitors that can be checked by
simulation on the original SystemC model. Using the syntactical transformation
defined in [11], we generate the SystemC modules corresponding to the PSL
properties. Then, we update the design and integrate the properties as read-only
monitors to the global system. We illustrate in Table 3 the simulation statistics

2 All experiments presented in this section were conducted on a platform consisting
of a 2.4 GHz Pentium IV and 512 MB of RAM (PC2700).
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Table 3. Simulation Results

Number of Average Execution
Masters Slaves Time per Clock Cycle (10™%s)
1 1 29.321
3 1 32.221
2 2 33.889
2 3 36.568
3 2 38.005
3 3 41.287

of running the new model (combining the original design and the integrated PSL
properties) with a random input. The AGP controller can be seen as a slave or
a master according to the transaction. The other masters and slaves are just
PCI compatible devices. The CPU time confirms the high speed of the SystemC
model simulation, which is a direct result from the C++ implementation of the
library. Note that the set of assertion monitors including all the properties can
be considered as a stand-alone verification IP that can be used to validate other
AGP compatible devices either modeled in SystemC or even in Verilog or VHDL.

6 Conclusions

In previous work [10] we introduced a top-down approach similar to the pre-
sented in this paper where the verification was integrated as part of the design
process and AsmL models were first designed and verified then translated to
SystemC. In this paper, we consider a bottom-up approach where starting from
an existent SystemC design we generate internally a model in AsmL, an Object-
Oriented language used to model systems, and verify the system property at the
ASM level. We defined a sound syntactical transformation between SystemC
and AsmL to enable model checking at the ASM level. Both the model and its
PSL properties were defined in AsmL and checked using a reachability algorithm
available in the AsmL tool. We proposed also to translate the same properties
used for model checking back to SystemC in order to serve for assertion based
verification of the original SystemC design or to serve as a stand-alone verifica-
tion IP block. We illustrated our approach on the verification of an AGP bus,
where we performed a proof by induction to tackle the state explosion problem.
Finally, we believe that our approach is an important step towards enabling
an efficient formal and semi-formal verification of SystemC. Our future work
concerns enhancing the ABV coverage using the FSM generated AsmL models.
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Abstract. A critical challenge in workflow analysis and design is the
verification of workflow models, considering commercial workflow systems
merely provide a simulation tool for validating workflow models through trial
and error. As a result, the current workflow technology does not guarantee that
workflow models do not fail or will behave in a manner expected by the
modeler. While a couple of verification methods have been reported in the
recent literature, how to verify cyclic workflow models remains an open
research question. In this paper, we propose a novel integrated approach of
hierarchical decomposition and verification of cyclic workflows. This result is
significant since it helps close the research gap that other known workflow
verification methods fail to deal with cyclic workflow models.

1 Introduction

The recent surge in corporate e-business engineering has resulted in the automation of
thousands of business processes by means of workflow management systems
(WEMS), both within and across corporate boundaries ([5], [7], [9], [14], [24], [26]).
WIMS enable the design, analysis, optimization, and execution of business processes.
The basic WEMS functions include the separation between the business process logic
and business applications, management of relationships among process participants,
integration of internal and external process resources, and monitoring and control of
process performances ([19], [28]).

Workflow models must be correctly defined before being deployed in a workflow
management system to avoid any costly maintenance delays due to runtime errors in the
process model ([18], [23]). Therefore, it is essential to verify the workflow model before
its deployment. Despite the importance of workflow verification, few commercial
workflow systems provide formal verification tools. This lack of verification support
can be attributed to the fact that most of the more than 250 commercially available
WIMS use a vendor-specific ad-hoc modeling techniques [5] without a theoretical
framework for the representation, analysis, and manipulation of workflow systems [8].
Although some of them allow the simulation of processes under through trial and error,
they usually do not support formal workflow analyses. While process simulation can

* The first author’s work was supported in part by the 2004 Inje University research grant.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 84—98, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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provide useful insight about the process behavior, it does not address questions about
the interrelationships among process components [8].

There are two research approaches to ensure control flow correctness in workflow
models — build it correctly, or check it completely [25]. The former ([13], [17]),
relying on strict rules in composing the model, may not model certain processes due
to syntactical restrictions [17] and may not be very suitable for practical
implementation in the industry [25]. The latter, like Petri nets ([1], [4], [6], [21], [27])
or the graph-theoretic techniques ([8], [12], [20], [23]), on the contrary, appeals more
by allowing the user tremendous flexibility in expressing process requirements and
confronts significant challenges at the same time [25].

The Petri-nets-based workflow verification depends on the formalism of Petri nets,
which has yet to be adopted by commercial WfMS. The majority of business
processes in previous research have been restricted to acyclic (i.e. loop-free) free-
choice nets, a special class of Petri nets that enjoys the added advantage that
soundness can be verified in polynomial time [1]. Additionally, establishing
soundness in a free-choice net implies that the net is free from deadlock, and is also
alive, i.e., no dead tasks [2]. However, the modeling of exceptions or precedence
partially destroys the free-choiceness of the equivalent Petri net mapping. Moreover,
modeling iteration necessitates the presence of loops in the control flow model, a
problem that is yet to be satisfactorily addressed [25]. Graph reduction ([20], [23]) or
block-wise abstraction [12] has been proposed to identify structural conflicts in
workflow graphs, but both approaches are limited to acyclic models [3]. In summary,
there is a critical need for workflow verification techniques applicable to generic
graph-based workflow models.

In this paper, we propose an integrated and iterative approach of workflow
abstraction and verification of control flows represented in directed graphs. By
workflow abstraction, we refer to the identification of reducible blocks in a given
workflow model. A reducible block refers to a subset of nodes and associated links in
a workflow model that can potentially be abstracted into a ‘block activity’ node. By
workflow verification, we refer to the detection of potential structural conflicts such as
deadlocks and lack of synchronizations. Our approach of integrating workflow
abstraction and workflow verification in the same analysis is unique and has a number
of important features:

e  Our method applies verification to each block structure, which is much easier to
comprehend and verify individually than the whole workflow model in general.
This decomposition feature has not been seen in any existing workflow
verification method. In each iteration, our method identifies a reducible block,
verifies any structural conflicts in the block, and abstracts it into a block activity.
This simplifies the workflow graph and makes it easier to analyze.

e We also introduce several pattern-based verification rules that can save
verification effort if a block or the simplified whole model, after abstractions,
matches certain patterns specified by those rules.

e Our method handles cyclic workflow models, even for nested structures, by
partitioning the given model into acyclic subgraphs, such enabling our method to
handle only acyclic subflows one by one when verifying a workflow block.



86 Y. Choi and J.L. Zhao

The rest of the paper is organized as follows. In Section 2, we present the
preliminary concepts such as the directed graph representation and summarizes on the
partitioning of a cyclic workflow graph into acyclic subgraphs. In Section 3, we
extend the concept of reducible blocks to the analysis of cyclic workflow models and
present the associated theorems. Section 4 delineates the unified framework for
process abstraction and verification. Section 5 discusses our contributions, related
work, and future research.

2 Partitioning a Cyclic Workflow Graph into Acyclic Graphs

2.1 Directed Workflow Graphs

A workflow graph is a directed graph WG = (N, T) with a set of nodes N and a set of
edges (i, j) € T, where i, j € N. Each edge, called as a transition, links two nodes and
represents the execution order of nodes. A node is classified into task and coordinator.
A task, represented by a rectangle, stands for the work to be done. A coordinator,
represented by a circle, is a point of path choice or merge of paths. Nodes are
classified into sequence, AND-split, AND-join, XOR-split, and XOR-join (Fig. 1).
Start and End nodes indicate the beginning and the end of workflow, respectively

T RE Q¢ BE

sequence  AND-split AND-join XOR-split XOR-join Start End

Fig. 1. Classification of nodes in workflow graphs

11: Ask amount $ 13: Ask account 2 i
adjustment adjustment H
Adjustment

Adjustment H
required 4 i

required

10: Prepare cheques H
for ANZ Bank 6 o

15: Update accounts

database

Fig. 2. (a) An example cyclic workflow graph; and (b) the normalized graph
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Fig. 2(a) illustrates an example workflow with cycles, with two feedback paths
added to an example found in [23]. We make a simplifying assumption on the
workflow graph that a node cannot be a join and split at the same time, since such a
node can be converted into a join node and a split node with a transition between
them.

2.2 Structural Conflicts in Workflow Graphs

In this paper, we focus on the verification of three types of structural conflicts,
deadlock, lack of synchronization, and livelock as illustrated in Fig. 3 ([1], [16], [23]).
Deadlock refers to a situation in which a workflow instance gets into a stalemate such
that no further activity can be executed. This happens when only some partial subset
of the join paths to an AND-Join is executed, the AND-Join node k will wait forever
and block the continuation of the process (Fig. 3a). Lack of synchronization refers to a
situation in which the concurrent flows are joined by an XOR-Join, resulting in
unintentional multiple executions of activities following the node k (Fig. 3b). Livelock
refers to a situation in which certain loop(s) of tasks are continuously performed, and
there is no execution path leading to termination or cannot terminate properly (Fig.
3c). Note that a livelock is associated with cyclic structures. Other types of structural
conflicts such as dangling nodes are relatively easy to detect by examining the
reachability of nodes.

(a) deadlock (b) Lack of synchronization (c) Livelock

Fig. 3. Types of structural conflicts

2.3 Partitioning into the Acyclic Subgraphs

Cycles in workflow models are needed for purposes of rework and information
feedback, but makes it difficult to analyze. Choi [11] introduced a novel method to
partition a cyclic workflow graph into acyclic subgraphs. The proposed algorithm first
identifies and temporarily cuts off those transitions, called feedback join transitions,
which complete each corresponding simple cycle [15] from the given model. The set
of nodes that can reach the End node in the temporarily resulting acyclic graph is
called as the O-th order Feedback Nodes, denoted by FN’. Note that the subgraph
spanned by the nodes in FN’, called as the main flow or the 0-th order Feedback Flow
from Start to End and denoted by FF’(Start, End), is acyclic. The algorithm also
identifies the set of nodes in FN’ that have a transition toward or from any node not
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contained in FN’, the O-th order Feedback Splits, denoted by FS°, and the 0-th order
Feedback Joins, denoted by FJ°, respectively. The other subgraph spanned by the
nodes in FSO, FJ’ , and those not contained in FN’is further partitioned into several
smaller subgraphs, each composing a smaller workflow graph starting from fs € FS’
and ending at fj € FJ’. If all these derived subgraphs are acyclic, the algorithm stops.
Unless, the algorithm proceeds to any cyclic subgraph FF'*(fs, i)' in similar way,
recursively. By this way, the algorithm classifies all the nodes in the given model into
FN" and derives all acyclic subgraphs of FF'(fs, fj), where the feedback order n is
increased by 1 for each recursive call.

R ! R{18 ) X [20p{21]
o .,

FN° I

e‘%ﬁ,o @G

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20

(b) Normalized graph

Fig. 4. Normalization of a workflow graph with nested cycles

Fig. 2(b) shows the normalized graph of Fig. 2(a), with nodes rearranged by its
rank shown to the left. The nodes are classified into FN’ and FN' , and FJ’= {1},
FS°= { 7,8 }. Fig. 4 shows another example with nested cycles. After first iteration,
the algorithm derives three acyclic subgraphs and one cyclic subgraph of FF'* (15,
1), which is partitioned into two additional acyclic subgraphs after the first recursive
call, resulting total five acyclic subgraphs. Table 1 summarizes the results.

A workflow with an AND- feedback join node fj will deadlock at fj. A workflow
with an AND- feedback split node fs will potentially result in an infinite loop or
multiple instances [11]. While partitioning a cyclic workflow graph, we can identify
those structural anomalies without any additional computation. The verification phase
of our integrated method, to be described in Section 4, deals with workflow models
that contain only XOR- feedback splits and XOR- feedback joins.

S FF'(fs, fj) represents the main acyclic subgraph partitioned from the cyclic FF'*(fs, fj).
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Table 1. Summary of partitioning

Case Target graph Classified nodes Derived subgraphs
Workflow FI=1{1): FF’ (0, 20)
of WG(N,T) - _ ’ _ 0_ FF/ (77 1)
Fig. 2 V-FN’= {11,13},FJ’= {1},FS$= {7,8 }. FF' (8. 1)
0
FI={1,7,19 }; pht 5?02%
Workflow | WG(N,T) |V —FN’= {11, 16, 17,18, 19, 20, 21, 22, 23, 24 }, FF'(13.7)
0_ 0_ >

pr4 FJ’= (1,7}, FS’= { 10, 13, 15}. FF'™ (15, 1)
e FF™ (15, 1) FN'={ 11,16, 17,18,19, 20, 21, 22, 24 }, FF'(15,1)

’ FJ'=(19),FS8'={22};FN'={23}. FF’ (22,19)

3 Identification and Abstraction of Reducible Block Structures

Our workflow abstraction and verification method utilizes the concept of inline
blocks. An inline block is a subset of nodes and transitions among those nodes that
satisfies the blocked transition property [29]. According to the Workflow
Management Coalition, the blocked transition property states that any inward
transition to the inline block can only occur to the start node of the block and that any
outward transition from the inline block can only occur at the end node of the block.
In order to handle cyclic workflows, this property needs to be extended as described
later in this section. An inline block is reducible to a block activity node or may be
modeled as a sub-process of the original process definition. This helps in managing a
large-scale model, including verification of structural conflicts, being represented as a
hierarchy of simple smaller models. Identifying inline blocks manually from a
complex workflow [2] is a difficult task even for an experienced process designer.
Next, we extend the blocked transition property in the presence of cyclic workflows,
leading to extended inline blocks.

3.1 Candidates of Inline Blocks with Cycles

Our method first configures potential inline blocks with one of the Split nodes (except
Feedback Splits) or Feedback Joins as the block start node, called the source; and one
of the Join nodes (except Feedback Joins) or Feedback Splits as the block end node,
called the sink. Those potential inline blocks are referred to as candidate blocks
because they may or may not satisfy the blocked transition property. Although the
source or the sink can be a sequential node, we focus on candidate blocks with split
and join nodes as the border nodes that can be easily extended without further
verification effort by adding sequential nodes at the borders. This way of composing
candidate blocks can reduce computational cost significantly by focusing on the core
candidate blocks. Further, deadlock and lack of synchronization problems occur due
to the incompatibility of split and join nodes, as described in section 2. This is
another reason we focus on candidate blocks with split and join nodes as the border
nodes. As candidate block is a fundamental concept of our method, we define it
formally.
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Definition 1. For any node i € FN", let Fwd (i) denote the set of nodes in FN" that
can be reached from i by the transitions in T. Let Bwd (i) denote the set of nodes in
FN" that can reach to i by the transitions in 7.

Definition 2. Let CBy, (0; x) denote a subgraph spanned by the set of nodes {c;, K} U
(Fwd(0) N Bwd(x)), where 0 € FN" and x€ Fwd(0). Let CBr (0, k) denote Uy ;
FF™*(fs, fj) where fs € FS", fj € FJ', and fs, fj € CBy (o, ®. Finally, let
Candidate Block be CB (o0, k) = CBy (6, ¥ U CBp (0, ).

For convenience, the set of nodes that spans the candidate block CB (o; x) will be
also denoted as CB (o, x), without confusion. For example, CB (1, 7) = CBy, (1, 7) U
CB-(1,7)={1,2,3,5,7yu {1,7, 11} ={1,2,3,5,7, 11} for the workflow of Fig.
2. The number of candidate blocks will grow as the number of split nodes and that of
join nodes in the workflow model increase. We will also show that given a candidate
block that violates the blocked transition property, we may exclude additional
candidate blocks from further analysis to enhance computational efficiency.

3.2 Blocked Transition Property for Cyclic Workflows

The statements on the blocked transition property by WEMC [29], i.e., no disallowed
inward and outward transitions should exist, assures that a block is an independent
unit of tasks that can be separated as a subprocess. To assure this property for cyclic
workflow models, all the tasks in a cycle should be kept together in the same block.
Therefore, the blocked transition property should be imposed with additional
constraints for cyclic workflows. More formally, we have the following four
constraints for an inline block. If a candidate block CB (o, x), with o, x € FN",
satisfies these four constraints, we say that CB (o, x) is an inline block.

pred(i) c CB (0, ), Vie CB (0, ¥) and iZ0; (D)
succ(i) cCB (0, ¥,V ie CB (0, ) and iZK 2)
ie CB (0, 0, V(i,o0)e FJT, 3)
ie CB (0, 0, V(ki)e FST, 4

where pred(i) = {j 1 (j, i) € T }, succ (i)={j 1 (i, j)e T }, and FJT (or FST) are the
sets of feedback join (or split) transitions, respectively. Note that constraints (3) and
(4) are applied to only cyclic workflow process models, as explained above.

3.3 Composing an Inline Block by Node Splitting

In case violations of the above four constrains happen only at the source or the sink,
of more than two associated links, we can compose an inline block by splitting the
source or the sink. Fig. 5 shows the cases of composing an inline block by splitting
the source o; the sink x; or both of them of CB (0, x). The transition from node A or
the transition to node B, where A, B ¢ CB (0, k), does not violate the blocked
transition property for the resulting inline block of CB (o, x), CB (o, k), or CB (o,
K, respectively. Figures 5(a) and 5(b) are for the cases when conditions (1) or (2) are
violated, and Fig. 5(c) is for the cases when conditions (3) or (4) are violated, at the
sink or at the source, respectively. The newly added o”and x”in Fig. 5(b) are null
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activities of no tasks to perform. Note that it is not necessary the source ¢ and sink x
are of same node type and is worth for splitting only at the source or at the sink.
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Fig. 5. Composing an inline block by splitting the source or the sink

3.4 Exclusion of Additional Candidate Blocks from Evaluation

When a candidate block CB (o, x) does not satisfy blocked transition property,
additional candidate blocks CB (o, k) or CB (o, k) should be excluded from the
evaluation. This will reduce the computational efforts significantly, particularly when
the number of split and join nodes are large and/or the given workflow model is more
unstructured [12]. The following two theorems are given for this purpose.

Theorem 1. If there exists an inward transition toward CB (o; k), where o, k€ FN",
from an outside node i € FN" to an inside node j # o, this inward transition violation
also exists toward CB (o, &), for any ¥" € Fwd(k). Consequently, candidate block
CB (o, k) is not an inline block.

Proof: The given supposition of (i, j) € T withi ¢ CB (o, x) and i € FN", je CB (o,
x) and j # ¢ implies that i ¢ Fwd(0), unless i € CB (0, ), and subsequently i ¢ CB
(0, k). Further, with x” € Fwd(k), it is clear that j € Bwd(x”) and subsequently j&
CB (0, «’). Therefore, it is certain that transition (i, j) also violates condition (5) for
CB (o, ) and CB (o, ) could never be an inline block. Y

For CB (6, 14) in Fig. 2, as an example, violation of condition (1) by transition (10,
14) results in the exclusion of CB (6, 17) and CB (6, 18) from further analysis.

Theorem 2. If there exists an outward transition from an inside node i # x to an
outside node j € FN", this outward transition violation also exists for CB (o, ), for
any o’ Bwd(i). Consequently, candidate block CB (o, k) is not an inline block.

Proof: The given supposition of (i, j) € T withie CB (0, ¥) and i# x j ¢ CB (0, K
and j € FN" implies that j ¢ Bwd(k), unless j € CB (0, x), and subsequently j ¢ CB
(0% x). Further, with 6" € Bwd(i), it is clear that i € Fwd(0o’), and subsequently ie
CB (0, k). Therefore, it is certain that transition (i, j) also violates condition (7) for
CB (0] x) and CB (0, k) could never be an inline block. A
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For CB (6, 14) in Fig. 2, as an example, violation of condition (2) by transition (6,
8) results in the exclusion of CB (3, 14) and CB (1, 14) from further analysis.

4 An Unified Framework of Abstraction and Verification

In this section, we integrate the two related aspects, workflow abstraction and
workflow verification, into a unified framework. Our method conducts verification
and abstraction iteratively based on inline blocks, starting with the simplest one and
extending to larger ones. At each iteration, the algorithm searches for an inline block
that satisfies the blocked transition property. We then check the inline block for
structural conflicts. Whatever the verification result is, this inline block structure will
be replaced with a single abstract node, i.e., block activity node, marked with the
verification result. This simplifies the structure of the workflow graph and
subsequently the evaluation of other larger inline blocks containing the already
condensed ones. The algorithm then proceeds to abstract further inline blocks and
verify all the structural conflicts in the given workflow model.

4.1 Decomposed Verification by Inline Blocks and Acyclic Partitioning

We apply the decomposed approach by verifying each inline block in the workflow
model. Further, verification of structural conflicts for any reducible block CB(¢c; x),
with 6, k€ FN", will be handled by verifying CBy, (6, &) and each FF"™"*(fs, fj),
where fs € FS", fj € FJ", and fs, fj € CBy (o &), that is each feedback flow
originated from and merged into CBy, (o; k). Theorem 3 below argues the correctness
of this approach formally.

Theorem 3. If there exist no structural conflicts in both CBy, (o, k) and CBr. (o, k),
then there exist no structural conflict in the integrated model CB (o, ).

Proof: 1t is clear that additional deadlock conflict will not be caused by combining
each FF™"*(fs, fj) ¢ CBg (0, K) to CBy; (0, K), through XOR- coordinators. After
early stage verification explained at the end of subsection 2.3, each FF"**(fs, fj)
splits from an XOR feedback split f5, merges at an XOR feedback join fj, and does not
cross another feedback flow by an AND-split or an AND-join. Therefore, there is no
chance that any additional Lack of Synchronization conflict would be caused in CB
(o, &) by adding any FF"*"*(fs, fj) c CB ¢ (0, k) to CBy (0, ). Y

To be described in detail next section, our method iteratively composes candidate
blocks from the simplest one to more complex ones by utilizing the rank of nodes in
selecting the source and the sink. Whatever the verification result, our method
abstracts out each reducible block into a new block activity node. In this way with
partitioned verification approach, we only need to verify condensed feedback flows,
with any previously abstracted block activity nodes, which are all acyclic as well as
CBy; (o, k). That is the block-wise decomposition and feedback-partitioning method
enables the verification of whole workflow process with the verification of only
acyclic structures in each inline block.
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4.2 Verification with Block Instance Flows

Each FF"'(fs, fj) or CBy; (0, K¥) composing the CB (o; &), after prior abstractions of
contained blocks, is a smaller acyclic workflow. To verify any of them, we can adopt
any verification method previously proposed, such as the graph reduction techniques
by Lin et al. [20] or Petri-net-based approach [1], with some conversion effort if
necessary. We introduced an instance-flow-based method that verifies structural
conflicts by examining the instance flows of each partitioned acyclic structure of an
inline block in [12]. An instance flow is the instantiation of certain paths in the
workflow model and the resulting graph is called an instance graph. Fig. 6 (b), (d)
and (e) are three instance flows for the acyclic block CB (1, 11) represented in Fig. 6
(a). Instance flows of Fig. 6 (d) and (e) are derived by instantiating XOR-split node 5
from Fig. 6 (c). Note that acyclic block instance flows to be handled in our method are
much simpler, in general, than the instance flows of the whole model, which even
may not be defined for the cyclic workflow models. .

(d) )

Fig. 6. Derivation of three instance flows (b, d, e) of an acyclic block structure represented
in (a)

Two types of structural conflicts, deadlock and lack of synchronization, are
identified using the two identification rules below. Note that a livelock occurs due to
inadequate connection of feedback flows, which should have been detected and
corrected earlier as described at the end of subsection 2.3.

Deadlock identification rule: A deadlock can be identified in an instance flow graph
when the number of instantiated paths leading to an AND-Join is less than the total
number of join paths in the original workflow model.

LOS identification rule: A lack of synchronization can be identified in an instance
flow graph when the number of instantiated paths leading to an XOR-Join is more
than one.

For the instance graph in Fig. 6(d), it can be identified that a ‘deadlock’ conflict
occurs at node 10. Consequently, it is concluded that the inline block CB (1, 11) will
incur a deadlock conflict at node 10 for the instance flow of nodes {1, 3, 5, 6, 8, 9, 10,
11}. Note that every structural conflict is detected with the exact location and the
instance flow where it happens.
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4.3 Verification with Pattern Rules

To further improve verification efficiency, we have created several verification rules.
If an inline block (or any acyclic structure of the block) or the whole model after
abstractions matches certain patterns specified by these rules, there will be no need of
further verification effort..

Verification rule 1: <Sequential Flow> If every node is on a sequential path, no
structural conflict occurs in this flow.

Verification rule 2: <Single split and single join> When the source is the only split
and the sink is the only join in the inline block, the given inline block is free from
structural conflicts if the split and join are of same control type, i.e. either ‘AND’ or
"XOR’. Otherwise, a structural conflict occurs at the join node due to incompatibility
of the split and the join, as explained in Section 2.

Verification rule 3: <All splits and joins of the same type> If all split and join nodes
are of the same type in an inline block, there will be no structural conflict in the block.
Note that although Rule 3 is similar to Rule 2, they are not the same. Rule 3 applies
to inline blocks with multiple splits or joins while Rule 2 applies only to inline blocks
with a single split and a single join. Rule 2 can be used to conclude the existence of
conflicts, but Rule 3 cannot.

Verification rule 4: <Direct transition from source to sink of distinct type> If there is
a direct transition from the source to the sink of different type, structural conflict
occurs.

Verification rule 5: <Non-matching splits or joins> When there are some splits (or
joins) of certain type and no joins (or splits) for that type in an inline block, structural
conflict also occurs in the block.

Although the verification rules above can be applied to any verification algorithm,
these rules become more powerful with our block-based decomposed approach, which
handles much simpler structure than the whole workflow model. Consecutive
abstractions will further simplify other inline blocks containing those structures, thus
increasing the chance of applying the above verification rules.

4.4 Unified Algorithm with an Illustrative Example

A block chart of the unified algorithm of abstraction and verification is given in Fig.
7. The algorithm starts with the simplest CB (o; k), with o as one of the candidate
sources of maximum rank and x as one of the candidate sinks, i.e. Fwd(o), of
minimum rank. At the next iteration, new candidate block is selected by fetching new
sink x”of the next higher rank, from Fwd(o), with the same source o of the current
candidate block; when all candidate blocks with o as source are evaluated or
excluded, The algorithm fetches new source ¢”of the next lower rank from the stack
of candidate sources and proceeds forward.

An inline block that does not contain any other inline block is referred to as a I*-
order inline block, and an inline block that contains at least one first-order (and no
higher order) inline block is called a 2"-order inline block. Similarly, an n"-order
inline block is the one that contains at least one (n-1)"-order (and no higher order)
inline block.
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| Identity FS, Fu, FN and (s, ) |
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Fig. 7. llustration of the unified algorithm

25

(a) All blocks indicated in the normalized graph

Rank of Source Candidate Blocks Violation for a block Excluded blocks
source sinks” checked or verification result | or new block activity node
16 19 22,24 | (19,22) | Mo conflict ge)“h by Rule | Apstracted into #19/22”
14 16 22,24 (16, 24) No conflict (by Rule 2) Abstracted into “16/24”
Violates condition (3);
(7, 10) No conflict after splitting Abstracted into “7/10”
6 7 10, 13, 15 node 7 (each by Rule 1)
(7, 13) No conflict i(;ach by Rule Abstracted into “7/13”
2 2 6,10, 13, 15 (2,6) No conflict (by Rule 2) Abstracted into “2/6”
1 1 6,10,13,15| (1,15) No conflict i&;ach by Rule Abstracted into “1/15”

Y Underlined numbers represent the candidate sinks ignored by prior abstractions
(b) Summary of abstraction and verification process
Fig. 8. Abstraction and verification for the workflow with nested cycles in Fig. 4

Fig. 8 shows the abstraction and verification process for the workflow graph
with nested cycles of Fig. 4 to be partitioned as shown in Table 1.
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The algorithm starts with the simplest candidate block CB (19, 22) that satisfies
the blocked transition property. Since CBy, (19, 22) and FF*(22, 19) = CBy (19, 22)
are free from structural conflicts by Rule 1, CB (22, 19) is found to be free from
structural conflicts and reduced into a new I*-order block activity node “19/22”. At
the next iteration, CB (16, 24), which is acyclic with the just abstracted block activity
node “19/22”, is found to be free from structural conflicts by Rule 2 and reduced into
a new 2"-order block activity node “16/24”. For the next candidate block CB (7, 10),
the inward transition from node 13 ¢ CB (7, 10) to the source, i.e. node 7, is the only
violation for the blocked transition property, The algorithm splits node 7 and builds
new candidate block CB (7’, 10), to be abstracted into a new I*-order block activity
node “7’/10” marked with no conflict. In similar way, next candidate block CB (7,
13), containing abstract node “7°/10” is reduced into a new 2"_order abstract node
“7/13” marked with no conflict, and so on. In this way, the unified algorithm
identifies and abstracts three /*-order inline block, two 2"_order inline block, and
one 3“-order inline block “1/15”, verifies all of them by verification rules, and
concludes there is no structural conflict in the given workflow. Fig. 8(a) shows all
blocks, marked with the resulting block activity nodes, in the normalized graph, and
Fig. 8(b) summarizes the abstraction and verification process.

4.5 Comments on Complexity

The computational complexity of our method can be estimated in 3 phases:
partitioning into acyclic subflows; identifying and abstracting inline blocks; and
verification of inline blocks. Partitioning phase has the complexity of O(qriTl) <
O(INI- IT7), letting g be the maximum feedback order and r be the average number of
subgraphs that need to be further partitioned after identifying FN", n < g [I1].
Identifying and reducing inline blocks will have the complexity of O(c-n-f), which is
less than O(IN 21T ), letting ¢ be the number of candidate blocks checked, n be the
average number of nodes in candidate block, and ¢ be the average number incoming
and outgoing transitions of a node in the given workflow. Exclusion of candidate
blocks by two Theorems or by prior abstracted blocks will contribute to reduce this
complexity. Block decomposition and feedback partitioning reduces the complexity of
verification stage as a matter of n, not of IN| found in the other approaches, such as
O((INI+ITI)2-IN|2) even limited to acyclic models ([3], [20]). As noted above, this
complexity is related with the control flow structure of the given workflow graph,
such as the number of inline blocks. Simplified models with prior abstractions and
introduction of simple pattern-based verification rules will further reduce this
complexity.

S Concluding Remarks

Our integrated algorithm of abstraction and verification is decomposition-oriented and
can deal with workflows with nested feedback structures. Our verification algorithm
can discover potential structural conflicts by analyzing each acyclic structure of
blocks further simplified with prior abstractions and do not require prior recognition
of complex process patterns whereas the graph reduction technique [23] relies on.
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Our work is related to three main studies in workflow verification, namely the
graph reduction approach ([20], [23]), the Petri nets approach ([1], [4], [6], [27]), and
the logic-based approach ([10], [22]). While the block-based decomposition-oriented
approach we proposed in this paper has unique strengths compared with these existing
approaches such as the ability to deal with cycles, the use of activity-based models,
and the ability to do blockwise decomposition. Furthermore, our work unifies process
abstraction and verification while other verification techniques focus mainly on
process verification.

We plan to extend our research in two directions. First, we will expand our
algorithm to handle OR-nodes, which can be done by extending the lower-level
algorithms without changing the overall procedure. Although the Workflow
Management Coalition (WfMC) standard does not yet contain OR-nodes, some
researchers have proposed the explicit support of OR-nodes in workflow systems [6].
Second, we plan to integrate a prototype system we have developed with a full-
fledged workflow system to test its scalability and usability in the presence of
complex workflow patterns.
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Abstract. We present a novel approach to the automatic verification
and falsification of LTL requirements of non-linear discrete-time hybrid
systems. The verification tool uses an interval-based constraint solver
for non-linear robust constraints to compute incrementally refined ab-
stractions. Although the problem is in general undecidable, we prove
termination of abstraction refinement based verification and falsification
of such properties for the class of robust non-linear hybrid systems, thus
significantly extending previous semi-decidability results. We argue, that
safety critical control applications are robust hybrid systems. We give
first results on the application of this approach to a variant of an aircraft
collision avoidance protocol.

1 Introduction

This paper significantly extends previous semi-decidability results for LTL veri-
fication of non-linear discrete time hybrid systems. Even though this problem is
in general undecidable (by reduction from 2 counter machines), we show, that
by exploiting the natural property of robustness of real-life hybrid systems, an
abstraction-refinement based approach—employing both approximations from
above and below—is guaranteed to terminate, either establishing the truth of
the requirement, or exhibiting a concrete counterexample, even for non-linear
hybrid systems. In contrast, results from Frinzle [8,9]—also based on robust-
ness arguments—only handle polynomial flows (in a dense time setting). It also
improves over other approaches to hybrid systems verification [6, 16, 1, 15] in that
termination is guaranteed even for a very rich class of models.

The presented approach primarily targets safety critical control applications,
such as collision avoidance systems, where designs must guarantee separation
of traffic agents by safety margins even in the presence of noise and (bounded)
inaccuracies of sensors and actuators. Intuitively, for such applications, small
variances in measurements or small deviations of actuator settings may not lead
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to a violation of safety margins between traffic agents. We will give a formal
definition of this intuitive concept of robustness, which will be instrumental
in establishing termination. The approach will be illustrated by an air traffic
conflict resolution example [10], where aircraft follow circular trajectories along
opposite directions, leading to a non-linear hybrid system.

As mathematical model we use discrete time hybrid automata, which in each
time step of fixed duration update a set of real-valued variables as determined
by assignments occurring as transition labels, allowing possibly non-linear arith-
metic expressions. This subsumes the capability to describe the evolvement of
plant variables by difference equations. Transition guards can be non-linear arith-
metic constraints. Steps of the automata are assumed to take a fixed time-period
(also called cycle-time), intuitively corresponding to the sampling period of the
control unit, and determine the new mode and new outputs (corresponding to
actuators) based on the sampled inputs (sensors). We allow arbitrary first-order
LTL formulas as requirements. Atoms are arithmetic constraints over the vari-
ables of the hybrid automaton, thus allowing to both express response time
requirements (such as “when crash sensor is activated, the airbag will be ignited
within 3 cycles” ), stability properties such as ”"the aircraft will be maintained at
preselected height”, as well as safety properties (such as “the distance between
two aircraft will always be greater than 10 km”).

The decision to base our analysis on discrete time models of hybrid systems is
motivated from an application perspective. Industrial design flows for embedded
control software typically entail a transition from continuous time models in early
analysis addressing control law design, to discrete time models in modeling tools
such as Scade™, ASCET™, or TargetLink™!, as a basis for subsequent auto-
code generation. Current industrial practice relies on informal verification of
this design step, typically by simulation. For example, if design engineers have
decided to implement a certain control law as a periodic task with periodicity
0, then simulation would be used to ”verify” that stability of the controller is
maintained in spite of the now limited observability of the plant at the chosen
sampling rate 6. The methods of this paper replace this informal validation step.
They allow to formally prove that—even under the limited discrete time visibility
of the plant—LTL requirements, and thus both stability properties as well as
safety requirements, are guaranteed by the controller.

To our knowledge, the previous work on abstraction (and refinement) for
hybrid systems consider a continuous time model. Because of this, a direct com-
parison of the employed algorithms is not possible. We can, nevertheless, observe
some differences w.r.t. the way they compute the abstraction.

While, for example, also tools such as Hypertech [10] and Checkmate [5]
do support analysis of non-linear systems, with Checkmate offering the highly
optimized flow-pipe representation technique, none of these can guarantee ter-
mination for proving temporal properties of hybrid systems. We also note the
potential unsafeness of the Checkmate approach in the construction of the ab-

! Scade is a trademark of Esterel Technologies, France, ASCET is a trademark of
ETAS GmbH, Germany, TargetLink is a trademark of dSpace GmbH, Germany.
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stract transition relation due to rounding errors — in contrast, our constraint
solver guarantees, that rounding errors are conservatively over-approximated in
refinement steps. The high potential of interval-based evaluation methods for
hybrid system verification has already been demonstrated for chemical plant ap-
plications [16] for a more restricted logic, and without termination guarantees.

There are mechanisms for approximating non-linear continuous-time hybrid
systems by rectangular automata arbitrarily closely [11]. However, the approx-
imation has to be done manually, and even verifying only rectangular safety
properties on the resulting approximation is still an undecidable problem.

Due to the page limit, we could not include all proofs and formalizations,
and had to be selective on the included references.

The paper is organized as follows: Section 2 elaborates the notion of robust
hybrid systems, leading to a new notion of robust satisfaction and robust falsifica-
tion of LTL properties; Section 3 shows how to approximate robust satisfaction
from above and robust falsification from below by exact satisfaction/falsification
on finite approximations, and proves, that for any property that is robustly sat-
isfied (falsified) by a (non-linear) robust hybrid system, one can find a finite
approximation that establishes this fact; Section 4 casts this into a terminating
abstraction refinement algorithm and illustrates its power by application to a
non-linear collision avoidance example; and Section 5 concludes the paper.

2 Robust Hybrid Systems

The authors have substantial experience in analyzing industrial control unit
designs for automotive [2—...] and avionics applications [3—...]. Based on this,
we derive the following observations:

— For any sensor inputs, a combination of filtering, plausibility checking and
voting will be used to derive what is often called wvalidated inputs.

— This preprocessing will in particular guarantee a minimal separation between
values assumed by validated inputs, in the following sense: assume, that
v < 5 appears as guard of a transition, then altering the guard to v <5+«
for some e smaller than a sensor-dependent constant does not change the
mode-switching behavior of the system.

— To take into account noise on actuators and un-modeled disturbances, the
controller will enforce a safety margin, separating all legal undisturbed runs
from forbidden plant regions by some minimal application dependent con-
stant (catering for noise and disturbances). To this end, deviations induced
by disturbances and noise on actuators are detected using closed-loop con-
trol, and correcting actions to avoid forbidden states are designed to cater
for this difference between ideal and measured trajectories.

Designers hence solve the task to guarantee a safety property ¢ even in the
presence of noise on sensors and actuators and un-modeled disturbances. This
entails, that the classical notion of satisfiability is in fact too weak. What is called
for, is a notion of robust satisfiability, which guarantees ¢ even in the presence
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of small bounded uncertainties. In the remainder of this section, we will derive
a formal definition of such a notion of robust satisfiability.

For formally modeling discrete time hybrid systems we assume a finite set
{m1,...,m,} of modes, and a finite set X = {x1,...,xx} of real-valued vari-
ables (in the formal development, we do not further distinguish between sensors,
variables, and actuators). We use constraints to specify the transition relation,
with primed variables describing the successor mode, respectively constraints on
new valuations of variables. We also explicate the predicates observable on the
hybrid system, which define the atomic predicates to be used in first-order LTL
requirement specifications on our systems.

Definition 1

— An arithmetic expression over a set of variables V is a term (in the predicate-
logical sense) over these variables with function symbols in {+, X, ", sin, cos,
exp}.

— An atomic arithmetic state space constraint over a set of variables V is of
the form e r ¢, where e is an arithmetic expression over V., r € {#,=,<,>
, <, >} is a relational operator, and ¢ is a real-valued constant.

— A mode constraint over a set of variables Mode is of the form mode = m;,
where mode € Mode.

— A state space constraint over a set of variables V and a set of variables
Mode is a Boolean combination of atomic arithmetic state space constraints
over V' and mode constraints over M ode.

— A transition constraint over V and Mode is a state-space constraint over
VUV’ and Mode U Mode', where the primed sets denote the set of primed
variables of the corresponding unprimed sets.

Definition 2 (discrete time hybrid system). A discrete time hybrid system
S is a tuple S = (1,79, m1, ..., Tk, 8) where

— 7 is a disjunction of transition constraints over X and {mode} of the form
mode = m A guard A mode’ = m' A transitions where
e qguard is a conjunction of atomic arithmetic state space constraints over
X,
e transitions is a conjunction of atomic arithmetic state space constraints
over X U X',
— mo is a state space constraint over X and {mode}, restricting the initial
valuation, and
— T1,..., T are additional state space constraints over X and {mode}, over
which we will later form LTL queries (the observed propositions),
— 0 is the sampling rate in time units, a positive real number.

Discrete time hybrid systems are sufficiently expressive to express both plant dy-
namics as well as (possibly hybrid) controllers. Time is modeled implicitly, in that
each step corresponds to a fixed unit delay 6, as motivated in the introduction.
Our example is a discretized variant of an aircraft collision avoidance pro-
tocol [10] exhibiting non-linear dynamics. Two aircraft, flying in a straight line



Guaranteed Termination in the Verification of LTL Properties 103

A Yy
/ Unsafe region
~.
~. e
A N > 4 8 g

Initial region

Aircraft two

Fig. 1. Air traffic control protocol

and orthogonal trajectories at the same altitude, initiate a collision avoidance
maneuver when the distance between them reaches 8 miles. Both aircraft turn
90 degrees to the right and start a semi-circle trajectory to the left, as shown
in Fig. 1, with fixed angular velocities. The linear velocity is also fixed and
the same for both aircraft. After completing the semi-circle, they resume their
original trajectories.

We want to assure that their distance never becomes smaller than 4 miles.
Let the angular velocity of aircraft one be 0.95 rad/s and that of aircraft two
be 1 rad/s (note that, since they have equal linear velocity, they will follow
trajectories with different radius). The relative position of aircraft two (z,y)
(i.e., the plant dynamics), illustrated in Fig. 1, is given by the constraint below,

ff=f+6x(005) A2/ =x+86*(y—1+cos(f)) Ay =y+8x*(sin(f) —x)

where f is the angle between the vector speed of aircraft two relative to the
vector speed of aircraft one, ¢ is the sampling period of the controller in seconds,
which determines the three difference equations; and the initial region is f =
157 A 22 4+9y?> =64 A x>0 A y <0, which models an initial distance of 8
miles, restricted to the cases where the intersection of the trajectories lies ahead
of both aircraft.

Definition 3

— A valuation o is a mapping X U {mode} — IR U {my,...,m,} assigning a
real value to each variable in X and a mode to the variable mode. We denote
the set of all valuations by X.

— We denote by [x] the set of all valuations satisfying a state space constraint
m, and similarly by [7] the set of pairs of valuations {(o,0’) satisfying the
transition constraint T, where primed (resp. unprimed) variables are inter-
preted over o’ (resp. o).

— Given a set I', we call a tuple (—,Qo,Q1,...,Qk), with —C I' x I', and

Qo, ..., Qr CI', an (extended) transition system over I’

— Given a hybrid system (1, 7o, 71, . . . , T, 0) we denote by [(T, 70, 71, ..., Tk, 6)]
the transition system ([7], [mo], - .-, [m&]) over X.

— A run of a system (7,7, 71,...,7Tk,0) is @ mapping 0 : N — X such that

for allt € IN, (6(¢),0(t + 1)) € [7].
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We use first-order LTL formulas such as G = & > 10 to formalize require-
ments on discrete time hybrid systems. Still, the results of this paper hold for
any temporal logic using only universal path quantifiers, such as ACTL*. Since
steps have a defined duration, real-time constraints can be expressed using the
next-time operator. As atoms we allow the observed propositions 7, . .., 7. We
employ standard syntax and semantics of LTL as can be found in various text-
books [7]—the needed adaption to our definition of extended transition system
is a trivial exercise. Especially we write T' = ¢ to signify that the extended
transition system 7' satisfies (.

Note that we do not treat the state space constraint my that specifies the
initial states special in any way (e.g., by allowing only runs that start in an
initial state). Instead, we encode initial states into the queries by using LTL
formulae of the form 7wy — ¢ (i.e., =7y V ).

Robustness of a hybrid system S is defined relative to a temporal specification
p: it requires, that the validity of ¢ does not depend on small perturbations
of S’s transition relation. The formal definition is based on a metric between
arithmetic constraints [13]. For S to be robust wrt. ¢ requires the existence of
a bound e, such that if ¢ holds in S, then it must also hold in any S’ whose
transition predicate has distance at most ¢ from the transition predicate of S.
Intuitively, this entails that avoiding forbidden plant states may not depend on
small inaccuracies of sensors or actuators. Indeed, controller designs in which
changing a guard of the form e r ¢ to e r (¢£¢) (mirroring sensor inaccuracy) or
changing an actuator setting from a’ = e to an assignment @’ = e £+ & (modeling
a small error in actuator settings) causes forbidden states to be reached would
not be acceptable (and not “robust”, under our formal definition).

We now define these concepts more formally;

Definition 4

— The distance between two valuations o1, 09 is defined by d(o1,02) =
e 00, if o1(mode) # aa(mode), and
e sup{d(oi(x),02(x)) | x € X}, where d(a,b) = |a — b|, otherwise.
The distance between two atomic arithmetic constraints e r ¢ and e’ v’ ¢ (we
assume that all arithmetic constraints have been brought into this form) is
defined by d(e r c,e’ 7' /) =00, ife £ e orr#1', and d(c, ), otherwise.
The distance between two mode constraints mode = m; and mode = m; is
oo if m; #my; and 0, otherwise.
The distance between two constraints ¢, ¢' is defined by d(¢, d") =
e 00, if ¢ and ¢ have a different Boolean structure or do not have mode
constraints at the same places, and
e the mazimum of the distance between two corresponding atomic (arith-
metic or mode) constraints, otherwise.

The key definition of this paper, reported below, captures our intuition that
safety properties should be guaranteed even under disturbances, as long as these
are bounded by some e. To this end, we define a non-standard semantics of
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discrete time hybrid systems that allows transitions that miss the original tran-
sition predicate only by a slight margin below some ¢. For a safety property to
be robustly satisfied, there must exist a degree of perturbation € > 0 such that
the safety property is true in all e-perturbed systems.

Definition 5. A set P is an e-perturbed solution set of a constraint ¢ iff

— for every x € P, there is a constraint ¢* with d(¢,¢*) < € and an x* with
d(xz,x*) < e such that z* |= ¢*, and

— for every x &€ P, there is a constraint ¢* with d(¢,¢*) < e and an x* with
d(xz,x*) < e such that x* [ ¢*.

Definition 6. A transition system (—,Qo,Q1,...,Qk) is an e-perturbed man-
ifestation of a hybrid system (7,7, 71, ..., 7k) iff — is an e-perturbed solution
set of T, and for each i € {0,...,k}, Q; is an e-perturbed solution of ;.

From now on let S be a hybrid system of the form (7, 7o, 71,. .., 7k, d).

Definition 7. An LTL formula ¢ is satisfied by S with robustness ¢ (S |- )
iff for all e-perturbed manifestations T of S, T = ¢. An LTL formula ¢ is
robustly satisfied by S (S| @) iff there is an € > 0 such that S =¢ ¢.

For example, a system that starts in state x = 0 and evolves according to
the transition constraint ' = =z, satisfies the LTL formula G-z > 1, but does
not robustly satisfy it, because any transition constraint of the form z’ = = + ¢,
with € > 0, will eventually violate the constraint -z > 1.

Definition 8. An LTL formula ¢ is falsified by S with robustness ¢ iff for all e-
perturbed manifestations T of S, T = p. An LTL formula ¢ is robustly falsified
by S iff there is an € > 0 such that ¢ is falsified by S with robustness €.

For example, a system that starts in a state fulfilling 0 < x < 1, and evolves
according to the transition constraint x < 2/ Az’ < x + 1/10 robustly falsifies
the LTL formula G—x > 10.

3 Effective Construction of Finite Abstractions with
Bounded Imprecision

Our approach follows the abstraction refinement paradigm. In contrast to previ-
ous approaches, we are able to prove termination of the refinement loop. In this
section we introduce the key instrument—a bound on the degree of imprecision
introduced by abstraction. By proving that incremental refinements make the
degree of imprecision converge to zero, any desired degree of precision can be
reached. We also show in this section, that such abstractions can be efficiently
computed even for non-linear hybrid systems, using interval arithmetic. Section
4 puts all pieces together in defining an algorithm for proving robust first-order
LTL properties and proving its termination.
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From now on, we fix a discrete time hybrid system S = (7, 7o, 71, ..., 7, 6),
and a LTL requirement ¢ on S over the atoms mg, ..., 7. For the rest of the
development, it will be convenient to assume, that negations occur only in lit-
erals, and that all atoms appear under the scope of a negation (this can eas-
ily be achieved by adapting the relational operators in arithmetic constraints).
This allows us to over-approximate the behavior of a hybrid system by over-
approximating the observed propositions 7, . .., 7, in the same direction as the
transition relation 7, allowing more uniformity in the algorithms and proofs.
So, by over-approximating the solution set of my and 7; in a query of the form
G(—my V F—m1), we under-approximate the literals =7y and —ry.

It is easy to prove that the e-perturbed solution sets of a constraint have a
maximal and a minimal element wrt. the partial order C. This holds for every
constraint defining a hybrid system, and so we denote the transition system
given by the resulting maximal elements by [S]_, and the transition system give
by the resulting minimal elements by [[S]]E.

For checking satisfiability /falsification with a certain robustness ¢ it suffices
to check it on the maximal perturbed system [S]_/the minimal perturbed sys-
tem [[S]]E:

Lemma 1. S = ¢ iff [S], = ¢, S e ¢ iff [[S]]E = .

However, it is as hard to check LTL formulae against the maximal/minimal
perturbed system as against the original, unperturbed system.

Hence we use abstractions that approximate the behavior of the original
system, and then we measure the approximation error introduced by these ab-
stractions. For this we formalize the intuition that one system can show all the
behavior of another system. Here we use a notion of simulation that is slightly
different from the usual one in the literature which allows a uniform treatment
of the initial state predicate and the other (explicitly defined) observables of the
system.

Definition 9. Let T be a transition system over I' of the form (—,Qo,..., Q)
and let T" be a transition system of the form (—',Qq, ..., Q%) over I''. Then a
relation H C I' x I'” is a (uniform) simulation relation iff

— foreveryi € {0,...,k}, forall s, s" such that H(s,s'), s € Q; implies s’ € Q,
and
— for all s, sy with s — s1 there are s', s§ with s’ — s}, H(s,s") and H(s1,s}).

If there is such a simulation relation then we say that T simulates T (T" = T,
)

Analogously to classical simulation (c.f., e.g. Clarke et. al. [7—chapter 11]),
we have:

Lemma 2. For every transition system T and T', for every LTL formula o, if
T T’ then T' = ¢ implies T = .
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So, for showing satisfiability we will try to construct transition systems that
simulate the original system, and for falsification transition systems that are
simulated by the original system.

We start with the problem of showing satisfiability. Here we use predicate
abstraction, tuned to our application domain of hybrid systems. In this frame-
work, the abstract state space is given by a finite set of first-order predicates
P, which jointly cover the concrete state space, that is for all ¢ in X there is a
p € P such that o € [p]. Different approaches for finding P have been discussed
in the literature. For example, an initial set of predicates can be derived from
transition guards and atomic formulas in the specification logic [4]; or a certain
class of predicates, such as convex polyhedra [5], or hyper-rectangles [15] can
be used.

For a given set of predicates P, we construct an abstraction ap(S) (tightest
abstraction) simulating [S]. It is a transition system whose transition relation
is the set of all (p,p’) for which there is a pair (o,0’) € [r] such that o = p
and o’ = p’. The set of initial states, and the observed propositions are defined
canonically as the set of all p for which there is a o € [m;] such that o = p. It
is obvious that the satisfaction relation EC X' x P defines a simulation relation
between the concrete infinite state transition system [S] and ap(S), hence for
all first-order LTL formulas ¢, ap(S) = ¢ implies S |= ¢.

Note that here the abstract transition relation also might contain self-loops,
that is transitions from a predicate to itself.

We now introduce the notion of the diameter of predicate abstraction to later
measure the degree of imprecision introduced by an abstraction.

Definition 10. The diameter diam(p) of a predicate p € P is defined as the
supremum of {d(o,0*) | o € [p],o* € [p]}. The diameter diam(P) of a predicate
abstraction over P is defined as the mazimal diameter of a predicate in P.

To bound the degree of imprecision of abstraction we will ensure that for
every € > 0 the abstraction eventually only represents a e-perturbation of S.
Hence, the query will eventually be proven on the abstraction. Here we will
measure the perturbations against the original system not from the abstraction
directly, but from the following system represented by the abstraction:

Definition 11. A transition system (—, Qo, Q1, ..., Q) over a set of predicates
P represents the transition system

7(4)3 Q07 ) Qk) = (7(4))37(@0)37(@1)3 s aV(Qk))a

where (R) = U, r[p]-

Tt is not hard to prove that, using = (i.e., | with switched arguments) as
a simulation relation, for every transition system T over P, «(T) simulates T
Hence any query ¢ that is satisfied by v(T) is also satisfied by 7', and in particular
v(ap(S)) = ¢ implies that model checking the abstraction will succeed, that is

ap(S) - o.
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So we are left with the task of showing that v(ap(S)) will be sufficiently close
to [S]. Here we use the result that the distance between the tightest abstraction
of S over predicates P and S itself is bounded by the diameter of P.

Theorem 1. [S];,,,(p) simulates y(ap(S)).

We do not include the proof since it can be adapted from the proof of
Theorem 2 below. To sum up, an abstraction ap(S) only introduces bounded
perturbations since it can be sandwiched between the exact system [S] and
its perturbed version [S],;,,,(p) due to the simulation result [S] < ap(S) =

Y(ap(S)) 2 [Slaiam(p)-

The tightest abstraction can be constructed effectively, if we do not allow
the transcendental function symbols sin, cos, exp in our constraints. For this we
decide satisfiability of p(z1,...,zx) AT(z1,... &k, 27, ..., 2)) Ap(a], ..., x)) for
defining the abstract transition relation, respectively pAm; for determining the set
of initial states and observed propositions. However, due to the huge complexity
of the corresponding decision procedure, this approach is not viable in practice.

Consider thus a predicate abstraction of S, where each predicate p is a hyper-
rectangle, or box, of the form /\z‘e{l,...,k} ¢y < ; < ¢ y. Assume furthermore,
that the state space is bounded by a box By. In this case the computational
effort in constructing the abstract transition relation can be drastically reduced
by using interval arithmetic based tests instead of full decision procedures (the
cost of a single test reduces from non-elementary in the number of variables
to linear in the expression size). Moreover, this does not restrict the allowed
function symbols to addition and multiplication. In this approach, transitions
from box p to box p’ are only added, if they cannot be excluded by interval
arithmetic. We thus further abstract from the concrete transition behavior.

More specifically, we evaluate terms over boxes by extending all function sym-
bols f to corresponding functions f! over intervals. For example, the arithmetic
expression zy + 1 for a box that restricts « to [—1, 1], and y to [1, 2], evaluates to
[—-1,1][1,2] +1 [1,1] = [-2,2] + [1,1] = [~1, 3]. Given an arithmetic expression
e and a box B we denote by I(e)(B) the interval evaluation of e over B.

The properties of interval evaluation of terms have been widely studied [12].
Here we use a version that is extended to constraints. Using the Booleans {F, T'}
with the order F < T one can form Boolean intervals, which allows us to extend
relations and connectives to intervals in a similar way as above. Hence we can
evaluate Boolean combinations of equalities and inequalities over intervals. The
formalization of this is a trivial exercise. For example, the evaluation of the
constraint 2z > 0Vx —2 > 0 over a box restricting x to [1, 3] yields [2, 2][1, 3] >!
[030] \/I [133] - [2’2} ZI [030] = [2’6} ZI [030] \/I [71’1} > [an} = [TvT] \/I
[F,T] = [T, T]. One can easily incorporate mode constraints by employing
mode/box pairs (m, B) and evaluating a constraint of the form mode = m; to
[T, T] iff m = m,; and to [F,F], otherwise.

Whenever such an evaluation yields an interval [F, F] we know that the corre-
sponding constraint cannot hold. So we get a conservatively over-approximated
satisfaction relation = such that B =1 ¢ iff T € I(¢)(B) (so B 1 ¢ tells us
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that ¢ cannot be satisfied by an element of B, whereas B =1 ¢ does not tell us
anything since in the case when I(¢)(B) = {F, T}, T might be spurious due to
over-approximation).

From Lipschitz continuity of interval evaluation [12-Theorem 2.1.1], it is easy
to derive the following convergence result for interval evaluation of terms:

Lemma 3. For every arithmetic expression e with function symbols in the set
{+,*,", exp, sin, cos}, denoting a function [e] and box B there is a function E :
R" — IR" such that lim, .o E(z) = 0, and for every box B’ with [B'] C [B],
for ally € I(e)(B'), there is an x € [B'] such that d([e](x),y) < E(diam(B’)).

Now we can bound the approximation of interval satisfaction on constraints:

Lemma 4. For every constraint ¢, mode m and box B there is a function E :
RT — R* with lim,_ E(x) = 0, such that for every box B' with [B'] C [B],
(m,B"Y 1 ¢ implies that there is a ¢* with d(¢,¢*) < E(diam(B’)) and an
x € [B'] such that (m,x) = ¢*.

Proof. Let ¢, m, and B be arbitrary but fixed. Let us first assume that ¢ is
an atomic arithmetic constraint of the form e > ¢. Choose E as provided
by Lemma 3, let B’ be arbitrary, but fixed, and assume B’ =7 e > ¢. In the
case when I(¢)(B’) = {T}, the rest is trivial. In the case when I(¢)(B’') =
{F, T}, ¢ € I(e)(B’) and we can choose y = ¢ in Lemma 3, which provides
a corresponding x € [B'] such that d([e](z),c) < E(diam(B’)). This implies
[e](z) > c—E(diam(B’)). Choosing ¢* as e > ¢— E(diam(B")) clearly d(¢, ¢*) <
E(diam(B')) and (m,z) | ¢*.

The case of other atomic constraints with different relation symbols are simi-
lar, and the case of mode constraints is trivial. In the case where ¢ is non-atomic
we can choose E as the maximum of the E’s of its atomic sub-constraints and
choose ¢* by taking for each atomic constraint the corresponding constraint con-
structed above. O

Note that in practice—in order to ensure efficiency—interval arithmetic is
usually implemented using floating point arithmetic. In that case, all the nec-
essary operations are rounded outwards. So, differently from other methods, we
preserve correctness also under the presence of rounding. Still, it might be neces-
sary to increase the precision during computation in order to ensure convergence.
However, experience has shown that this case does not arise in practice except
for specifically constructed examples.

Now, by using the over-approximated satisfiability |=; we get another ab-
straction ah,(S) for a given set of boxes P. Since |=; over-approximates =, also
ah(S) 2 ap(S), and hence y(ah(S)) 2 v(ap(S)). Still, we can bound the
over-approximation introduced by interval abstraction:

Theorem 2. There is a function E : RT — IR with lim, o E(x) = 0, such
that given a set of bozes P, [S]p(giam(py simulates v(ah(9)).

Proof. Let ak(S) be of the form (—,Q1,...,Qx). Let E; be the function given
by Lemma 4 for the transition constraint 7 of S and the box By bounding
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the state space, and Er,,..., E;, be the functions given by Lemma 4 for the
state space constraints mq,...,m of S and the bound of the state space By.
Let E(z) = max{z, E7(z), Er,(z),. .., Er,(z)}. We prove that [S]5i0m(p)) 2

y(ah(9)), with D interpreted element-wise.

— For an arbitrary, but fixed ¢ € {0, ..., k}, for proving that every element o of
~v(Q;) is in the corresponding element of [S]]E(diam(P)), we prove that it is an
element of an E(diam(P))-perturbed solution set of the corresponding state
space constraint ;. Observe that, by Definition 11, there is a corresponding
element p of @; such that ¢ = p. By definition of interval abstraction,
p =1 ™. So, by Lemma 4, there is a 7 with d(m;, 7)) < E, (diam(P)), and
o* with ¢* = w}. Since diam(p) < diam(P), also d(o,0*) < diam(P). So,
by Definition 5, every element o of v(m;) satisfies the transition constraint
up to E(diam(P)).

— For proving that every element (o,0’) of v(—) is in the corresponding
element of [S]]E(diam(P)), we have to prove that it is an element of an
E(diam(P))-perturbed solution set of the transition constraint 7. Observe
that by Definition 11 there is a corresponding transition (p,p’) in — such
that o = p, and ¢’ |= p’. By definition of interval abstraction, (p,p’) E1 7.
So, by Lemma 4, there is a constraint 7* with d(r,7*) < E,(diam(P)), and
(0%, 0") with (o*,0’") | 7*. Since diam(p) < diam(P) and diam(p') <
diam(P), also d(o,0*) < diam(P) and d(o’,0"") < diam(P). So, by Defini-
tion 5, every element (o,0”) of v(—) satisfies the transition constraint up to
E(diam(P)). |

We have thus shown how to construct a finite abstraction of non-linear dis-
crete time hybrid systems that simulates the original system and whose precision
can be arbitrarily increased. In the next section, we will use these results in the
development of an algorithm for proving robust satisfaction of LTL formulas of
discrete time hybrid systems.

Now we also construct a finite abstraction that under-approximates the orig-
inal system, that is, that is simulated by it. For this choose a sample point s(p)
for every predicate p € P. Then let ap be the transition system whose transition
relation is the set of all (s(p), s(p’)) such that p,p’ € P, and (s(p), s(p)) E T,

and for which for every i € {0,...,k}, the i-th observed proposition contains
the set of all s(p) such that p € P, s(p) = m;. Then we have:

Theorem 3. [S]]dmm(m < ap(S) 2 [9]

Proof. Assume that [[S]]diam(P) has the form (—,Qo,Q1,-..,Qk), and ap(S)

has the form (—/, Q(, @1, - .., Q}). Proving ap(S) < [S] is easy, using the iden-
tity simulation relation. For proving ﬂS]]dmm P) = ap(S) we use the simulation

relation H = {(x, s(p)) | p € P,z = p}:

— Let ¢ € {0,...,k} be arbitrary, but fixed. Let « € @;. Due to the definition of

15T diam(p) W know that for all constraints 7} with d(m;, 7)) < diam(P) and
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x* with d(z,2*) < diam(P), z* |= 7f. We have to prove that for all 2’ with
H(z,2'), 2 is in the corresponding element @} of ap(S). By definition of H
this means to prove that for all p with p € P and « = p, s(p) € Q. Clearly
this holds since the distance between x and s(p) is smaller than diam(P),
and hence s(p) = m;, that is, s(p) € Q).

— Let z,z1 be such that * — z1. Due to the definition of [[S]]dmm(P) we

know that for all constraints 7* with d(r,7*) < diam(P) and z*, 2} with
d(xz,xz*) < diam(P) and d(z1,2}) < diam(P), (x*,z7) = 7*. Let 2’ be such
that H(z,z'), and 2} such that H(x,x}). We prove that 2’ —' z}. By defi-
nition of H this means to prove that for all p, p; with p,p; € P, z = p, and
x1 | p1 we have that s(p) —' s(p1). Clearly this holds since the distance
between x and s(p) is smaller than diam(P), and the distance between z;
and s(p1) is smaller than diam(P), and hence (s(p),s(p1)) = 7, that is,

s(p) =" s(p1)- O

Hence, instead of falsifying an LTL formula against the original system S we
can check it against ap(S). Moreover, by letting the diameter of P go to zero,
this check will eventually succeed for robust systems.

4 Proving Robust Satisfaction and Falsification

Now assume as given a temporal specification ¢ € LT L, with the arithmetic
atoms II = {my, ..., m, } occurring negatively. Since the aim of the current paper
is to establish the overall approach, we only give a basic algorithm for abstrac-
tion refinement, which can be significantly improved according to the directions
outlined below. The key result of this section is, that the abstraction refinement
algorithm is guaranteed to terminate, if ¢ is robustly satisfied by S.

The basic algorithm creates a sequence of finer and finer partitions Py, Py, .. ..
If at a certain iteration m, ap (S) falsifies ¢, we terminate with the result that
 is robustly falsified in S. If af;m satisfies ¢, we terminate with the result that ¢
is robustly satisfied by S. Here we start with Py = {By} as the initial partition,
and refine a given partition by splitting the largest box in P, along the biggest
side-length to obtain P,,1.

The following main result opens a new line of attack to the verification of
non-linear hybrid systems.

Theorem 4. The basic algorithm is guaranteed to terminate with definite an-
swer if S robustly satisfies @ or ¢ is robustly falsified by S.

Proof. The abstraction refinement procedure ensures that the diameter of the
abstraction goes to zero. If S robustly satisfies ¢, the fact that v(ap, (S)) sim-

ulates af;m(S) due to Theorem 2, and transitivity of simulation implies that

afgm (S) is simulated by [S], with e going to zero as m goes to infinity. Let r > 0

be such that [S],. = ¢ which is ensured by robustness. Thus, there is an m,
from which on € will be smaller than r. Then ap,, (S) = ¢ and the algorithm
succeeds. The case where ¢ is robustly falsified in S is similar. O
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Note that this theorem also includes robust progress properties. In that case,
the algorithm will eventually remove all unnecessary transitions in the abstrac-
tion that lead from a predicate to itself.

Clearly, further work is needed, to make this algorithm practically efficient.
Still—in order to evaluate its efficiency potential—we have implemented it, with
small improvements similar to the continuous time case [15], and based on the
constraint propagation engine of RSOLVER [14]. Already in this basic form, the
algorithm yields promising results for realistic examples.

For our example, for 6 = 0.6, our interval arithmetic prototype computes
in about 20 seconds an abstraction having only 100 boxes, whose safety can be
easily checked with a finite state model checker like NuSMV. This proves the
safety of the discretized version of the problem, demonstrating that a safety
margin of the planes is maintained.

The base algorithm is compatible with many of the optimization techniques
for abstraction refinement. Promising directions for optimization currently under
investigation in the large scale collaborative research project AVACS include:

Initial Partitioning: We refine By to approximately discriminate all guards
and arithmetic constraints in I7, over-approximating their shapes by boxes. This
approach is already realized as part of another research activity for verification
of hybrid systems based on predicate abstraction techniques [4].

Counterexample guided abstraction refinement: We incrementally analyze
counterexample fragments for concretization [6]. We do so, by applying the
constraint propagation based solver for non-linear constraints [14] to the cor-
responding first-order formula. If the constraint is unsolvable, we dismiss the
counterexample fragment as spurious by encoding the corresponding informa-
tion into an automata representation of the abstraction.

Local search for counter-examples: Instead of just testing samples in the
abstract states for counter-examples, we use local search (based on a Newton-
like method) to find samples that form counter-examples.

5 Conclusion

This paper opens a novel line of attack to the verification of non-linear hy-
brid systems. We have argued for the naturalness of the notion of robust sat-
isfaction, and demonstrated how to construct a series of increasingly more ac-
curate abstractions, guaranteed to converge to a sufficiently precise model to
prove temporal specifications of hybrid systems in a rich specification logic
with first-order arithmetic constraints, able to express real-time requirements.
Though we have chosen LTL as the temporal framework in this paper, the
development only exploits safeness of the constructed abstractions; it is well
known [7], that also ACTL* properties are preserved under the performed ab-
stractions.

We see this paper hence as a promising starting point in exploiting the usage
of interval-based constraint solving techniques for the verification of non-linear
hybrid systems.
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Abstract. In this paper, we describe a computation platform called
ReachLab, which enables automatic analysis of embedded software sys-
tems that interact with continuous environment. Algorithms are used to
specify how the state space of the system model should be explored in
order to perform analysis. In ReachLab, both system models and analy-
sis algorithm models are specified in the same framework using Hybrid
System Analysis and Design Language (HADL), which is a meta-model
based language. The platform allows the models of algorithms to be con-
structed hierarchically and promotes their reuse in constructing more
complex algorithms. Moreover, the platform is designed in such a way
that the concerns of design and implementation of analysis algorithms
are separated. On one hand, the models of analysis algorithms are ab-
stract and therefore the design of algorithms can be made independent
of implementation details. On the other hand, translators are provided
to automatically generate implementations from the models for comput-
ing analysis results based on computation kernels. Multiple computation
kernels, which are based on specific computation tools such as d/dt and
the Level Set toolbox, are supported and can be chosen to enable hybrid
state space exploration. An example is provided to illustrate the design
and implementation process in ReachLab.

1 Introduction

Embedded software systems are becoming an integral and ubiquitous part of
modern society. They are often used in safety critical tasks such as in airplanes
and nuclear reactors. Typically, they consist of one or more discrete software
components performing computation on a real-time operating system (RTOS)
to control the continuous environment. Fig. 1 shows a typical embedded software
system, in which the continuous state of plant is controlled by software control
tasks. The control task and the plant exchange information of continuous state
x and input u via sensors and actuators. In a very simple case, the sensor can
be a periodic sampler, while the actuator can be a zero order hold.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 114-128, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A typical embedded software system

To ensure high confidence in these systems, rigorous analysis is required be-
fore deployment. However, it is often infeasible to perform analysis on the actual
system due to its scale and complexity. Model based approach has been ad-
vocated for design and analysis of these complex systems in order to produce
confidence in the design and reduce development costs. In this approach, repre-
sentative models of the system are judiciously used to predict its behavior and
analyze various properties. Hybrid automaton [1,2, 13] has been used to model
and analyze embedded systems in which discrete and continuous components
are tightly coupled.

In order to automate the analysis of hybrid automata, algorithmic approach
has been developed. Algorithmic approach can be classified into two categories:
reductionist methods and symbolic methods [3]. The former reduces the infinite
hybrid (discrete and continuous) state space to an equivalent finite bisimula-
tion and then explores the resulting finite quotient space, while the latter per-
forms direct exploration of this infinite state space. Even though the reductionist
method based algorithms are guaranteed to terminate, the classes of systems to
which they can be applied are very limited. Therefore, symbolic method based
algorithms are generally used. Various computation tools with vastly different
implementations have been developed for symbolic method based analysis. For
example, d/dt [5] computes reachable sets by approximating reachable states
based on numerical integration and polyhedral approximation; whereas the Level
Set toolbox [4], which applies the level set methods [14], computes the evolu-
tion of a continuous set by solving the associated partial differential equation on
grid structure. Due to these implementation differences in computation method,
data structure as well as analysis purpose, designing new analysis algorithms by
using or modifying existing tools becomes infeasible or inefficient. Furthermore,
designing a common interchange format [8] for these tools is difficult.

In order to resolve the analysis problem, the computation platform called
ReachLab is designed to enable (i) separating the concern of algorithm design
for analysis of hybrid automaton model from any specific computation imple-
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mentation; (ii) separating the design of algorithm from specific hybrid automa-
ton model so that the same algorithm can be reused for other system models.
ReachLab is developed based on the Model Integrated Computing (MIC) [6, 7]
approach.

MIC approach is based on models and automatic generation of useful arti-
facts. In this approach, models are used not only to design and represent the
system, but also to synthesize and implement the system using a modeling lan-
guage tailored to the needs of a particular domain. These modeling languages,
termed as Domain Specific Modeling Languages (DSML), have necessary con-
structs to allow the capture of useful information of a system as model particular
to that domain. One can perform system analysis on this model. When this mod-
eling capability is augmented with the capability of model transformation, even
automated synthesis of other design models, and generation of executable system
can be performed [7].

Based on MIC approach, the domain specific modeling language for analyzing
hybrid systems called Hybrid System Analysis and Design Language (HADL)
is introduced. Specified by meta-models, it provides a rich library comprising of
abstractions of entities and operations commonly found in the symbolic method
based computation tools, so that it enables effective design of symbolic method
based analysis algorithm for systems modeled as hybrid automata. Then, we will
focus more on ReachLab which utilizes this language to design system models
and corresponding analysis algorithms, and provides various model translators to
implement the models using the facilities provided by Generic Modeling Environ-
ment (GME) [9], which provides an end-end solution for building and deploying
MIC applications. By keeping the implementation of computation method of
computation tools, and enriching them with additional features such as support
for comprehensive data structures implemented by existing functions provided
in these tools, various computation kernels have been supported by ReachLab,
such as d/dt kernel and Level Set kernel. Model translators are used to automati-
cally generate model implementations for these computation kernels. Fig.2 shows

Metaprogramming Application

Environment Application

Interface Euwlutian Evuolution Domain
T

ReachLab
Environment

HADL

Meta-Level

Translation ——

Model
translation

Abstraction

Computation
Kernels

Fig. 2. Design of the ReachLab platform using the MIC multigraph architecture
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how MIC approach is applied to encapsulate HADL and automate the design
and implementation process based on the MIC multigraph architecture [10].

This architecture has three model development stages, namely meta-model,
domain specific models and the executable artifacts. The first level is the meta-
programming interface, which is used to define the meta-model of HADL. This
meta-model is based on abstract entities found in the symbolic method based
computation kernels and is later implemented as the domain specific modeling
language, HADL, using the meta-translation facility provided by GME. Model-
Integrated Program Synthesis (MIPS) environment [11] is the second level and
provides tools to build and modify system models and the analysis algorithms
using HADL in a graphical manner. This level also supports construction of
model translators. The last level is the different applications (implementations)
that can be generated by translators from these models. Environment evolution
refers to modification of HADL meta-model to update features. The models of
algorithms can also be refined to evolve the analysis application.

The remainder of this paper is organized as follows: Section 2 gives an in-
troduction to HADL. Section 3 presents the architecture of ReachLab and the
details about ReachLab construction, including the model translation process.
An example is provided to illustrate the design and implementation process in
ReachLab in Section 4. Finally, we conclude our work with the future goals for
this platform.

2 Introduction to HADL

HADL is a language that enables the design and analysis of hybrid automata.
For this design and analysis purpose, HADL is used to specify models of hybrid
automata and corresponding analysis algorithm models. In [13], the mathemati-
cal definition of a hybrid automaton is given as a collection H = (@, X, f, I, E,G)
where Q = {q1,...,qn} is a set of discrete modes; X C R" is the continuous state
space; f 1 @ — (X — R™) assigns each discrete mode a Lipschitz continuous
vector field on X; I : Q — 2% assigns each ¢ € Q an invariant; £ C Q x @ is a col-
lection of discrete transitions; G : E — 2% assigns each e = (¢q,¢') € E a guard.
The analysis algorithm model specified in HADL is hierarchical in nature, and
complex algorithms can be composed from existing algorithms by using them
as subroutines. Data variables used in analysis algorithms are strong-typed, and
currently, only global scoping is supported. However, in the future, it will allow
local scoping as well.

HADL has been formalized as a five tuple of concrete syntax (C'), abstract
syntax (A), semantic domain (.5), semantic mapping (Mg) and syntactic map-
ping (Mc) [16]:

L=<C/A S Mg,Mc > .

Concrete syntax (C) defines the graphical notation used to specify the models.
Abstract syntax (A) specifies all the syntactical elements of the language, as
well as the integrity constraints. Semantic domains (S) is defined by formalism
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which provides meaning to a correct sentence in the language. The mapping
Mg : A — S relates every element of abstract syntax to a specific meaning
in the semantic domain. Model translators are used for this semantic mapping.
The mapping M¢ : A — C assigns a notational construct to every elements of
abstract syntax.

Advocated by the MIC approach, HADL is formalized by meta-models. It is
designed to enable the use of multiple aspects [7, 9] to help decompose any anal-
ysis application designed in HADL into three separate components — data (data
aspect), the system model (system aspect) and algorithm model (programming
aspect). Hence, the abstract syntax of HADL can be written as a three tuple

A =< Ldata> Lsystema L;m“ogram >

The semantic domain S of HADL is any chosen supported computation ker-
nel. Model translators can be used to provide the semantic mapping Mg
Laata X Leystem X Lprogram — S. Hence, a translator is required for each se-
mantic domain.

Aspart of the HADL’s abstract syntax, integrity constraints can be checked by
using Object Constraint Language (OCL) [18], which guarantees the correctness
of designed models. The other part of the abstract syntax, the syntactical elements
in these three aspects, provide basic notions and constructs to specify hybrid au-
tomaton models, analysis algorithms as well as the data variables used in these
algorithms. To be specific, these elements are comprehensively listed in Table 1.

HADL has been provided with precise mathematical semantics, which are
generic and not dependent on implementation details. For example, the discrete

Table 1. HADL Language Syntactical Elements

Aspect Model of Syntactical Elements

Data Data Primitive data types: integer, float, Boolean;
Data structure: multi-dimensional list.

System Hybrid Discrete mode, associated with invariant;

automaton Discrete transition, associated with guard and reset;
Continuous set and initial continuous set;
Analysis set, as a specialization of continuous set;
Computation parameters.

Control  Routine, hierarchical in nature;

flow Looping: “while” loop;
Branching: “if-then-else”;

Operators Primitive data operations: +, —, x;
Logical operations: equal, less than, and, or, not;

Programming Multi-dimensional list operations: new, delete, append, ele-

ment;
Reachable set operations: discrete successor and predecessor,
(constraint) continuous successor and predecessor in a single
step (in bounded time), reset, projection, visualization;
Boolean set operations: intersection, union, complement.
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successor operation in HADL, denoted as Postg, is defined as Postq(q;) = {q €
Q | Je € E s.t. e = (¢;,q)}. This operation specifies the collection of reachable
discrete states of the hybrid automaton in a single discrete transition. Simi-
larly, the constraint continuous successor operation in a single step At, notated
as cPostcay, is defined as cPostcai(qi, P, Xy) = {x € X | 3t € [0,At],Ty €
P st x=¢(t,y) ANVz € [0,t],6(z,y) € I(¢) N Xy} where P is the initial con-
tinuous set, $¢(t,y) = f(ai, (t,y)), and Xy = {z € X | ¢(z) < 0} defines the
constraint continuous set. This operation specifies the collection of reachable con-
tinuous state set of the hybrid automaton in a single time step At. By using such
reachability operations and algorithmic approach, many properties of a hybrid
automaton can be revealed, such as safety or liveness. However, it is known that
computation of exact or even approximate continuous successor sets is a difficult
problem due to representing continuous sets and computing the evolution of the
sets. Existing computation kernels adopt different methods to approximate it.
For example, kernels like Level Set kernel and d/dt kernel are tailored to their
own analysis needs and computation capacities so that the implementations of
these reachable set operations as well as Boolean set operations (such as union
and intersection) are quite different. HADL is defined based on the mathemati-
cal definitions of these operations and HADL is designed to ensure there exists
a correspondence between the semantics of these kernels and the semantics of
HADL. Therefore, one can use the semantics of HADL to anchor the semantics
of these kernels, which is referred to as semantic anchoring in [17]. Because of
this feature, we can design analysis algorithms by using the mathematical se-
mantics of these operations instead of considering the detailed implementation.
Furthermore, HADL enriches the functions of its computation kernels by pro-
viding constructs and operations more than these computation kernels, such as
multi-dimensional list and its corresponding operations. These constructs and
operations will be mapped to a collection of entities in the computation kernel
rather than a direct mapping.

The advantage of using this language is that (i) algorithms are designed in-
dependently from implementation and hence can be used with any supported
computation kernel; (ii) analysis algorithms can be reused for different sys-
tems; (iil) more complex algorithms can be constructed by using other existing
algorithms.

3 Construction of ReachLab

In this section, the architecture of ReachLab is introduced and the construction
issues related to model traversal and semantic mapping are presented.

3.1 ReachLab Architecture

By utilizing the language defined by HADL, a computation platform called
ReachLab has been developed, and its architecture, as shown in Fig.3, is designed
to separate the concerns of algorithm design from implementation details. The
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Fig. 3. The three-layer ReachLab architecture

MIPS environment of ReachLab, facilitated by GME, provides support to build
graphical algorithm and system models. Different graphical model entities and
components are connected according to the rules specified by HADL meta-model.
Therefore, models can be designed in ReachLab graphically according to HADL
specification. Besides model design, the other key process is the use of translators
to automatically translate the models into executable artifacts. This translation
process requires mapping of the abstract entities into concrete implementations
for the target domain of a computation kernel. In [7], the translation process has
been summarized as a graph transformation: (i) Creation of “input graph” : The
models with different interconnected components are implicitly represented by
a graph structure. (i) Model traversal and Semantic mapping : The translation
process requires creation of a “target graph” (data structure for the executable
artifact) from an “input graph”. This requires the translator to traverse various
objects in the “input graph”, recognize their patterns and calculate attributes
of output objects in the “target graph” using semantic mapping. The “target
graph” corresponds to the data structure required to represent the output form
of the executable artifacts.(iii) Printing the product : In this step, the translator
serializes the “target graph” to generate executable artifacts pertaining to the
related domain.

In ReachLab, the traversal process uses the data structures provided by GME
to store the “input graph” along with necessary information. These data struc-
tures are very generic and remain the same for different translators. However,
the data structures used to store the “target graph” vary due to implementation
differences among different computation kernels.

In the next subsection, we will explain in detail how model traversal is done
to fulfill model translation process.

3.2 Model Traversal

Translators need to perform the traversal of all three aspects in order to under-
stand the patterns and collect all useful information. This traversal process is
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Fig. 4. (a) The components of a routine are interconnected as a DAG. Routines may
be hierarchical leading to a hierarchical graph; (b) The decision enclosure is sub-graph
starting from a decision block and ending at its corresponding joint-node.

based on graph search techniques such as depth first search [12]. The complete
process can be broken down into four sub-tasks reviewed below.

Traversal of Data Aspect: All the data are defined in one single data folder
as a list. Translator traverses this list in a linear fashion to collect all useful
information about the data elements.

Traversal of System Aspect: The hybrid automaton model specified in the
system aspect can be understood as a graph, in which the discrete modes are
vertices and the discrete transitions of hybrid automaton are the edges. The
translators traverse this graph by using depth first search starting from the
initial discrete state to collect all useful information.

Traversal of Control Flow of Algorithms: The traversal of programming
aspect is more complex. Every algorithm has a root routine which is the entry
point to the algorithm. Routines can be hierarchical and may contain other sub-
routines as shown in Fig.4(a). The control flow inside each routine routes from
a “start” to an “end” . However, there might be other exit routes from a rou-
tine through “break-exit”, which is used in the same way as the break in many
programming languages. For example, the constraint continuous successor set
operation in bounded time 7', denoted as cPostcy, can be implemented by iter-
ating T'/ At times by calling cPostc ¢, which is previously defined. Therefore, the
routine to implement cPostcr can use the routine of cPostcay as its sub-routine.
The language also provides a specialization of routine called while routine for
implementation of looping constructs such as do-while which is traversed in the
same manner as a routine. The control flow inside a routine is sequential, how-
ever it can have multiple branches due to decision blocks. Cycles in the control
flow are disallowed to demote the use of sudden jumps such as “goto”. There-
fore, the control flow inside each routine is a directed acyclic graph (DAG) [12]
with its directed edges depicting the route of control flow and each node depict-
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Table 2. Decision-Enclosure Algorithm

Input:
DecisionBlock = the starting node of the enclosure
Initialization:
InitPath := DecisionBlock
Paths := {InitPath}
Start:
While true do
For each path in Paths do
Fringe := the tail of path
Succ := successor nodes of F'ringe
If Succ # ¢ then
Add Swucc|0] to the fringe of path
Succ := Suce — Succ|0]
For each s in Succ do
path’ = path
Add s to the fringe of path’
Add path’ to Paths
End For
If s € Suce s.t. Vp € Paths,s € p then
Return s as the joint-node
End If
End If
End For
End While

ing a block of algorithm. Since routines can contain other routines, the overall
control flow of the complete algorithm is a hierarchical DAG. The translators
traverse the graph structure of algorithms in a depth-first search manner to ex-
tract information. In each routine, the traversal starts from “start” block and
follows the directed edges. If any of the traversed entity is hierarchical, transla-
tors will traverse its subcomponents in a depth-first manner. Decision blocks are
used inside routines to design a logical branching in the control flow sequence.
For each of these blocks, the branching starts from itself, and finally merges at
a joint-node. The sub-graph enclosed by the decision block and the joint-node
in the DAG is called a decision-enclosure. This is illustrated by Fig. 4(b). The
traversal algorithm has to recognize the “if true” and “if false” part of each
decision block so that they can be mapped to the corresponding decision logic
in the implementation. This requires knowledge of its decision-enclosure. Table
2 gives an algorithm based on breadth first search technique for determining
decision-enclosure of each decision block. This algorithm has a complexity of
O(n?), where n is the number of blocks in the DAG.

The key of this algorithm is to find the joint-node, and since a joint-node is
where all branches from the decision block merge, by using breath-first search
and keeping all branching paths from the decision block, the first block that
belongs to every recorded branching paths is the joint-node.
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Traversal of Operators: Operators are used for data manipulation. Every as-
signment expression forms a tree structure, with the left-hand-side data variable
as the root of the tree. All data variables on the right-hand-size of the expression
correspond to the leaves of this tree, and operators on the right-hand-side cor-
respond to the internal nodes of the tree. The expression itself can be restored
to reverse-polish notation by post-order traverse.

The operators have different semantic meanings depending on the input data
types. And since HADL is “strong-typed”, the data types of the tree leaves,
which are predefined, will finally determine the input data type of the operator
connected to the root data. Therefore, it is important to propagate the data
type information from leaves to the root in a post-order manner [12].

3.3 Semantic Mapping

Since the semantics of a computation kernel are anchored to the semantics of
HADL, we can find a corresponding implementation for HADL constructs in the
computation kernel. These constructs include sequential programming features,
boolean operations on state sets, as well as the reachable set operations. However,
in some cases, the operations, such as data structure manipulation operations,
are not directly supported by the computation kernel and have to be specifically
added to the computation kernel as new functions. The process of associating
the HADL constructs to its implementation in computation kernel is akin to
providing a meaning to them and is therefore referred to as semantic mapping.

We will illustrate some of the aspects of the semantic mapping process by
using the example of Level Set kernel. Level Set kernel has been implemented
as Matlab functions. It supports all the basic data types in HADL except the
multi-dimensional list structure, which we have to specifically implement along
with the relevant operations in Matlab. The hybrid system specific data types
such as discrete mode and continuous set are mapped to Matlab struct and mesh
on analysis space, respectively. This mesh is an internal structure used by Level
Set kernel. The control flow inside a routine is mapped to the sequential flow of
logical commands inside a function. We use “if-else-end” statement in Matlab to
implement branching and “while-end” statement in Matlab to implement loop-
ing. Boolean operations on state sets and reachable set operations are mapped to
their corresponding implementation in Level Set kernel. However, for some of the
operations defined in HADL, there are no straight-forward mappings, therefore
we have to write specialized functions for them by using operations provided by
the kernel.

4 Design and Implementation Process in ReachLab

In this section, we will illustrate the design and implementation process for
analysis algorithms in ReachLab by designing a forward reachability analysis
algorithm for the embedded software system shown in Fig.5(a).

Depending on the current state of the plant, it determines input v € {01, 02}.
By considering the direct interaction between the control task and the plant, we
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Fig.5. (a) An embedded software system. The plant on the bottom has four running
modes with different continuous dynamics, controlled by the software control task
J1; (b) Hybrid automaton model for the control task and plant. It has four discrete
modes corresponding to the four running modes of the plant, and one continuous state
T = [m1,m2]T c R?.

can model the system as a hybrid automaton as shown in Fig.5(b). Multiple
tasks which share common resource with the control task, the scheduler and the
interface elements such as sampler and the zero order hold can be modeled by a
more complex hybrid automaton.

It has been shown in [15] that this system is stable in the sense of Lyapunov.
Starting from anywhere in the continuous state space, the continuous state of the
automaton moves toward the origin in a flower-like trajectory. For this system, we
are interested in computing forward reachable set using symbolic methods based
algorithms, in order to verify that starting from certain initial state, whether or
not the system can eventually enter some desired set.

Table 3 gives the specification of a generic forward reachability algorithm for
hybrid automaton. It uses the concepts of both discrete and continuous successor
set and finds the reachable set starting from a given initial set. This algorithm
unfolds the hybrid automaton into a tree like structure and explores it by using
breadth first search. Termination of this algorithm is guaranteed because of the
limit M on the depth of this tree. The data structure Reach is used to store
the reachable set. It can be noted that this specification does not delve into the
actual implementation method of reachable set operations. However, the process
of semantic mapping will relate those operations to a specific implementation
method based on the concerned computation kernel. This algorithm can be used
to verify if the system would ever execute into some desired state. In order
to perform verification, the algorithm systematically explore the hybrid state
space and check if the forward reachable set overlaps with the desired set. The
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Table 3. Algorithm for computing forward reachable set

Input:
HA, Qs,Xs, QF,XF, XB, where
Qs is list of initial discrete modes, Xg is list of initial continuous sets, QF is
list of final discrete modes, X is list of final continuous sets, and Xpg is bad set.
Constant:
T as time limit for cPostrc, M as search depth limit
Initialization:
Reach = Xg, List = {}, Successors = {}, R = ¢, Queue = Qs
Depth =1,i=0,7 =0
Start:
While =Empty(Queue) do
List = PopAll Queue
For i = 1: Size(List) do
R = cPoster(List(i), Reach(i))
Successors = Postd(List(1))
For j =1 : (Size(Successors) do
IfRN GuardList(i),Successors(j) 7& ¢ Then
Push Successors(j) — Queue
Append RN GuardList(i),Successors(j) — Reach
End If
End For
End For
Depth = Depth + 1
If Depth > M Then
Stop
End If
Pop first Size(List) elements of Reach
End While

main concern with this type of algorithms is termination. But if we perform the
computation in an Fulerian framework (one in which the underlying coordinate
system is fixed) within a bounded continuous state space, the algorithms will
terminate due to the fact that the partition of state space has finite number of
representative elements.

4.1 Design Steps

To analyze the safety property of the hybrid automaton model in Fig.5(b) by
using the forward reachability algorithm, we need to design its hybrid automata
model in the system aspect and design the algorithm in the programming aspect.
The data used in both of the system model and the algorithm are defined in the
data aspect. The entire process can be summarized into three steps:

1. Obtaining system model and algorithm specification:
Fig.5(b) and Table 3 provide the hybrid automaton and analysis algorithm
specifications for this example.
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Fig. 6. Hybrid automaton model for the corresponding plant in the system aspect,
forward reachability analysis algorithm model in the programming aspect, and data
used in the data aspect of ReachLab

2. Design phase:

— Design of the system model: A hybrid automaton is drawn in the system

aspect with discrete transitions connecting discrete modes, as in Fig.6.

— Design of the analysis algorithm: The analysis algorithm, which is hi-

erarchical in nature, is modeled in the programming aspect by using
ReachLab library elements. Fig.6 also gives part of the algorithm model
for the algorithm given in Table 3, and the data required by both the
hybrid automaton and the algorithm model.

— Specification of computation parameters: Input parameters to the algo-

rithm and the computation kernels have to be specified before transla-
tion, such as the bounded time (T') for cPost.r operator, the analysis
region, and how the analysis region is partitioned into finite number of
representative elements.

3. Implementation phase:

Translators are used to convert the designed models into implementation for
a certain computation kernel. For this example, we translate the system and
algorithm model into the d/dt implementation. Fig.7 shows the computa-

Mede q Mode g,

Mode g,

- mmw

Fig. 7. The reachable set computed by using d/dt kernel. The white box is the initial
set, [-2.5,-1.5]x[-0.5, 0.5]. Each sub-figure denotes the reachable set in the corresponding
discrete mode. Eventually, the reachable set will reach the origin. The analysis region
is [—3, 3] x [—3, 3], the size of a representative elements in each dimension is 0.001, and
the bounded time T is 5 seconds. Time taken for execution: 180 minutes on Pentium
IV 2.59 GHz machine with 2 GB RAM.
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tion result. This result can be used to examine system behaviors, such as
approaching the origin while evolving. It can also be used to verify system
stability properties by testing intersection between the reachable set and the
desired set.

5 Conclusion

In this paper, we presented the computation platform called ReachLab for en-
abling automatic analysis of embedded software systems modeled as hybrid au-
tomata. It implements the meta-model based language HADL whose abstract en-
tities allow users to model their algorithms and the system in an implementation
independent manner. These models are then translated to implementations for
different computation kernels. Translation is performed by using model traversal
and sematic mapping. Currently, d/dt kernel and Level Set kernel are supported
by ReachLab. In the future, we will expand this platform to other computation
kernels for more effective and efficient computation. In order to model networked
hybrid automata, shared variable could be introduced to ReachLab for specify-
ing communication protocols between hybrid automata. We are also interested
in expanding the capabilities of HADL to capture a larger class of embedded
software systems so that more sophisticated system features can be described.
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Abstract. A preparation of the consistent task schedule is significant for the
proper functioning of reminder systems. Two problems have to be solved
thereby: avoiding temporal task overlapping; preventing task generation with an
unlimited task execution time. Each task consists of complex activities combin-
ing temporally linked actions. The article introduces a method for formal de-
scription of such activities. To limit the execution time of the activities, defini-
tions of timer transitions were included in the action specification. The
expiration of the timer causes a transition to a specified action. The fact that the
actual timer depends on the actions performed before complicates the analysis.
A timed automaton can be built for each complex activity based on the intro-
duced description. This automaton is applied to quantitative and qualitative
analysis of temporal aspects of the activities. The article presents an algorithm
for calculating the duration limits of the activities and for detecting the unlim-
ited activities.

1 Introduction

Automated distributed reminder systems with mobile components are growing in im-
portance in the modern world of aging population [1]. Such systems can be applied
for care for patients with memory deficits and for support of treatment of the chronic
patients [2]. The systems can find a possible application in the corporate work.

A reminder system is intended to prompt a person to perform the scheduled tasks at
the appointed time. Thereby, the significant aspect is the task scheduling [1] because
the majority of people cannot perform several tasks simultaneously and the tasks can
hinder each other. Thus, the temporal overlapping of the tasks has to be avoided, if it
is possible [3].

The Mobile Memory Aid System MEMOS! [4] is specially developed to assist pa-
tients with memory deficits by task execution. It is also intended to support caregivers
by task generation and execution control. The idea is to furnish each patient with a
mobile device (PDA with GPRS [5] modem) connected to the central server via Inter-
net. This allows to remotely set the tasks. The mobile device downloads the tasks

' MEMOS is supported by the German Ministry of Education and Research (BMB+F). The au-
thor takes the responsibility for the content of this publication.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 129143, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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from the server, requests the patient to perform a task and retrieves the result of its
execution, providing feedback to the caregivers.

The complex tasks are split into some autonomous uninterruptible parts - subtasks -
called decks defining an organized structure of temporal linked actions to achieve
sub-goals of a task. Each deck describes a “complex activity”. It consists of cards:
each card represents a single interaction with the patient. The card describes a single
step/action within the task execution and offers the patient the possibility to react, e.g.
to confirm or reject the step. Each offered reaction specifies a reference to another
card that can belong to another deck of the task. Fig.1. shows an example of a task for
medicine taking.

- Choose new start time
r'?ase tag‘ﬁ ASp'r,'?”! 8 } automatically and
s it possible now? postpone the task
I Later LS‘ —————————— =]
Choose new start time |
| Yes || cancel | and postpone the task |
| al.
i H |
f“ g H
Please confirm ¢ |_> Your task will be : |
with OK Q canceled. @ |
the Aspirin taking.I |
Deck
|_ok || Back |limed | Ok ]| Back }H
L L

S

A 4 . A\ 4
[ Stop the task ] :-)[ Alarm ]

Fig. 1. Simplified description of task for medicine taking

The mobile component handles decks as independent jobs: each reference to an-
other deck terminates presentation of current deck and returns the control to the main
program with request to start presentation of the referred deck.

The server of the system stores the tasks and manages the task schedule. To avoid
temporal conflicts, the overlapping of the tasks (between decks, further the term
“task™ is applied to refer decks because they are handled as the independent tasks) has
to be detected and reported to the caregivers in order to solve them. To detect task
overlapping, the duration of the tasks has to be calculated. Another problem to solve
is generation of correct task descriptions because mistakes in the task can confuse the
patients: e.g. they can lead to infinite repetition of some steps.

This article proposes the method for formal description of such tasks and intro-
duces an algorithm for the qualitative and quantitative analysis of the task description.
The algorithm is based on the application of timed automata [6] to the task analysis.
The proposed formal description is applied as the basis for construction of the neces-
sary timed automata.

First, the special features of the introduced task model required by the specific of
system application and task design issues will be discussed. Further, the method for
formal description is introduced. After that, the method for construction of the 2-level
timed automaton is proposed. The original algorithm for determination of clock con-
straints for transitions is introduced for the automaton. The qualitative characteristics
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of these constrains allow to draw conclusions about the maximal and minimal task du-
ration, task termination in finite time and reachability of particular actions.

2 Task Model

Each task describes a complex human activity. Description of the complex activity
consists of descriptions of particular actions. The description of an action consists of
an instruction to perform the action and a list of possible reactions such as confirma
tion, rejection or transitions to alternative actions: they are presented to a user as con”
trol elements, e.g. as buttons. The actions are connected together according the speci-
fied reactions: the choice of a particular reaction causes the transition to the
corresponding action description. The user can cause only the events that are specified
by the action description (DI1).

The actions may form cycles to provide ability of return to a description of a previ-
ous action if an alternative action is not suitable. Duration of the activities has to be
limited in order to handle user inactivity and to make possible execution of other
scheduled tasks.

To limit duration of the actions, a local timer is assigned to each action. An addi-
tional task range timer (further the global timer) is introduced to limit duration of the
action cycles. Specification of the action descriptions contains the specification of
routines for handling of timer events. These routines (further the global or local timer
handler) specify transition targets: task stop or the action descriptions that are shown
after timer event. The start of presentation of each action description causes reset of
the local timer and can cause reset of the global timer with simultaneous updating of
the transition targets for the timer events. Expiration of the timers causes the transi-
tion to the action pointed to by the corresponding event handler. After expiration of a
timer, no events are to be expected until the timer will be reset. In order to simplify
design of the task description and the task generation at the runtime, each value for
the global timer in its definitions is counted from the moment of the task start (D12),
not from the moment of the timer setting. It allows controlling task duration by the
repeated visiting of the action description with a definition of the global timer better.

As mentioned above, the objects of the analysis of such complex activities are:

¢ Quantitative aspect: The task overlapping has to be avoided in order to produce
the consistent task schedule. For it, durations for the scheduled tasks have to be
calculated. Based on the calculated durations and specified start times, the task
overlapping can be detected and the detected conflicts can be solved, if possible.

¢ Qualitative aspect: Each task has to be executed in the finite time. The loops
without temporal limitation in a task description can lead to infinite repetition of
actions. Thereby, the object of qualitative analysis is to detect the tasks, whose
execution time can be infinite.

To start the analysis, the task description should be formalised. The complex activ-
ity without time aspects can be described as an automaton, where the states present
the actions and the transitions present the handlers of the events caused by user reac-
tions.



132

A. Voinikonis

The automaton for complex activity is a tuple:

A°=(Z,S,S% F,E)

where

% - an alphabet of the events caused by user input,

S - aset of the states, each of them corresponds to the single action,

S%-  a set of start states, S’  S,?

F- asetofendstates, Fc S, F= {s°} consists of single state, that corresponds
to the stop of the task. The state s® has not any exit transitions,

E - asetof the transitions E ¢ X x S\F x S. Each transition e;; = (o, s;, Sj) consists

of a source state s;, a target state s; and corresponds to an event 6 € X. The
transition e;; is entry transition for state s; and is exit transition for state s;.

To handle the temporal aspects, the system of temporal transitions 7 ¢ is defined
over the automaton A°. A problem arises by definition of the global timer handlers:
the timer initiated at the start of a particular action remains valid for all following ac-
tions until it will be reset or expires.

Furthermore, the current global timer handler for some states that can be reached
by several different paths depends on the path to these states because these paths can
contain the different specifications of global timer handlers.

System with temporal transitions is a tuple:

T°=(4%C, M, ¢ T)

where

C-

a set of decreasing timers, e.g. as in [7], which run monotonically down to 0
and stop at 0, C ={ x5, x© }, where
C"= { x"} corresponds to the local timer and
C%= { x%} corresponds to the global timer,
a set of cells, M ={ m", m“}, where
M"= { m" } contains the transition target for the local timer and
M® = { m} contains the transition target for the global timer,
an entry guard function for setting of the temporal transitions,
g€ c SExCxRxMxS,e=¢"Uze% where:
R — the set of real numbers;
g" c S\F x C"x R x M" x S - an entry guard function for setting of the local
temporal transition, so that:
1.Vs; € SF>3zee"
2. If exists a value z; = (s;, x", tij, m", sj) € ", the transition in the state s;
causes:
e setting of a transition pointer corresponding to expiration of the local
timer m":= ;
e reset of the local timer x":= t;

2 Transfer of the control to the task can be considered as transitions from a single start state, but
they are irrelevant for the analysis. However, the analysis can be performed successively
for each s € S” due to this condition.
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g c S\F x C% x R x MY x S - an entry guard function for setting of the
global temporal transition, so that:
1. €% can contain some elements;
2. If exists a value z; = (s;, XG, tij, mG, s) € &Y the transition in the state s;
causes:
e setting of a transition pointer corresponding to expiration of the
global timer m%:= s
e reset of the global timer according formula:

05 if tlJ - Leurrent < 03

tij - tcurrents if tij - tcurrent > 0,

according design issue DI2 all values for the global timer are defined from
the moment of the task start, where teqen i the time elapsed from the task
start,

T- asetof temporal transitions, T = C x M, T = {(x% m%), (x*, m")} specifies
that the transition to the state pointed to by content of a cell m takes place at
expiration of a timer X.

The definition of 7 © can be hardly applied for analysis directly, but is very useful
as the base for further construction of the required timed automaton.

3 Construction of the Timed Automaton

A timed automaton is built on the base of T ° for further analysis that is carried out for
each start state s, € S° repeatedly. The idea is to build for each start state s, € S%a
2-level timed automaton (further the second level timed automaton or CTA%) on the
base of the defined system of temporal transitions T °, whose locations are timed
automata too (further the first level timed automata or TA").

First, the clocks of the timed automata can take each value from R®*=R U { @ },
where value ® shows that the clock is stopped and R is the set of real numbers.

The CTA® is defined as a tuple:

CTAS — (2", L", LOH, F", E", Cn)

where
3" s an alphabet of events, 2"=3'U { gt },2' =2 U { It },
It is event corresponding expiration of the local timer,
gt is event corresponding expiration of the global timer,
L" s a set of locations, each of them is 74",
L% s a set of start locations,
F"  is a set of end locations,
C" s aset of clocks that increase strictly monotonically e.g. as in [6, 8],
C={ x5, x"", x5}, x"", x" correspond to the timers x", x® € C of T ° re-
spectively, x™" is a system clock that is set to 0 at the start of CTAS,
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E" is a set of transitions E" < L"x L" x S x X" xQ"x®(C"),
element from S of 4° applied to mark the source state of a transition,
Q"c Pow(C"x R), Q"= {{(x",r)|xe {x*, x™}, reR}} is entry guard
function that sets the clock x" € C" on value r € R®,
@(C") is a set of clock constrains &" defined inductively by

d" = true| false | x >c|c> x|x=c|8" A & |8V &,
where x is a clock in C" and c is a parameterised constant in R.
. v TA" - first

T~ - System s level time

with temporal eur automaton

transitions ’

——3 Eventofuserinput (o)
— = P Definition for local timer ( It)

» Definition for global timer ( g7 )

Fig. 2. Construction of the required timed automaton on the base of the defined system with the
temporal transitions. The system with the temporal transitions is shown left; the built 2-level
timed automaton is shown right. The 74", and TA"; present the scopes of the global timers;

TAS ., corresponds to the start state; TASS corresponds to the target state for the transitions of
the global timers; 74" presents the end state.

Each state of CTA% is a timed automaton TA" that is defined as a tuple:

where

ZV

L
LOv
F
Q

EY

TA"=(,L,L" F,E, C)

is an alphabet of events, 2'=X U { It },

It is event corresponding expiration of the local timer,
is a set of locations L' « S defined below,

is a set of start locations,

is a set of end locations,

is a set of clocks that increases strictly monotonically, C' = { x""},
x™" corresponds to the timer x“ € C of T°,

is a set of transitions E'c L' x L'x £' x Q( C' ) x ®( C"),
Q(C) = {(x"",0), (x"", ®)} is entry guard function that stops the clock x""

if's; = s° or sets the clock x™"

on 0 otherwise,

@( C") is a set of clock constrains &' defined by
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§u=c> x"[x"=c
where c is a constant in R.

Further, the set of locations for the first level automata is refined. First, the set of
successors for a state s; € S is defined as follows:

succ(si) = { sj| 3 (o, si, s)) e EV I (s;, x5, tij, m", Sj) € g .

The set contains also the elements referred by the entry guard function for setting
of local temporal transitions in T °. Because this clock is reset by entry of each state
s; € S\F, the transition corresponding to the local timer may be handled just as the
transitions corresponding to the events of user input.

The elements of the timed automata are built on the base of T ¢ as in example
shown on the Fig. 2. The second level timed automaton obtains the locations:

e for the current start state,

e for the end state,

o for each state where is defined the entry guard function for setting of a global
temporal transition,

o for each state that is used as the transition target by definition of the entry guard
functions for setting of a global temporal transition.

These states are the start states for the corresponding first level timed automata.
Thus, one TA" is built as a location for CTA® for each element from the set S"  S:

S"= {Scur} U {Se} U {Si | 3(Si, XG: tija mGs SJ) € SG} U {S_ll 3(Si, XG: tija mGs SJ) € SG}s
L"={ TA% | L" = {s;} As;e S"}.
The set of the start locations L™ of CTAS consists of the TA" built on the base of

the current start state s, the set of end locations F" of CTA® consists of the 74" built
on the base of s°:

LO" = { TAFi | LO'i = { Scur }}9
F"={ TA™ | L” is a set of start locations of 74", L” = { s°}, TA"™ e L"},
TA™ =2, {s°}, {s°}, {s°}, @, C).

The location set of each first level timed automaton 74", are the set L'; = Succ*(si)
consisting of the states that are reachable from the start state s; € S"\F of this automa-
ton and another entry guard functions for setting of global temporal transitions are not
defined for these states. The end state s° does not belong to any TA"; except T4™ .
Thus, such a set presents the reachable region where the global timer will be not reset.
It is defined recursively by:

Succ'(s;) = {si}U{s;j | sj € succ(si)/\sy € Succ*(si)/\—\fl(sj, xY, Eims mY, s,) € €9 Nsj#s°}.

Thereby, the set of start location for TA", is the set L, = {s; }. Further, s; is applied
to designate the start location of for TA";. The set of end locations F'; for TA"; is the
subset of states L'; that have a transition to the state s or to some state for that the en-
try guard function for setting of the global temporal transition is defined:
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F'i= {sc|sc € L' A3 's; € succ(si) A ((3(s;, XG, tim, mG, Sm) € SG/\Sj # 5 )Vsj =) }.
The set of transitions E' for TA"; are defined as follows:

e The TA", obtains a transition for each corresponding transition from 4°, if source
and target states of this transition belong to L'. The clock constraint for such
transitions is x"" < ti; - the edge may be passed until the local timer expires.

e The TA"; obtains also a transition, if entry guard function for setting of the local
timer defines the temporal transition and its source and target states belong to
L';. The clock constraint for such transitions is x"" = tij - the transition may be
passed at expiration of the local timer.

Lu_

E'= {(sk, s;, It, (x™", g(s;)), x "=1t;) | sk € L'\ s; e LYA 3 sk,xL,tk-,mL, S; esL,
dl ] J ] J dl

It e Z’} U {(Sk, Sms O, (XL", g(Sj)), XL"<tkj) ‘ Sk € L'i/\ Sj € L'i/\ E'(G, Sk » Sm) € E,
(ska XL) tkja mL, SJ) € SL, [oNS 2},

Ln

where

if' s; ,
glsy) =
0, otherwise.
The set of transitions E" for CTA® is defined as follows (the clock constraints will
be defined later):

e The CTA® obtains a transition for each corresponding edge from A°, if source
and target states of this edge belong to different 74" and entry guard function
for setting of the global timer is defined for the target state or target state is s°
(w1).

e The CTAS obtains also a transition:

= if entry guard function for setting of the local timer defines the temporal
transition, and the target state of this transition has a definition of entry
guard function for setting of the global timer or target state is s° (y,) and

= if source and target states of this transition belong to different 74"

e The CTA® obtains transitions for each definition of a temporal transition for the
global timer (v3).

E"=(TA", TA";, s, o, {(x"", g(TAFJ))(XG" f(TA tin, X"}, 8"1) [y } U
{(TA", TA;, sy, It, {(x™", g(TA ))(XG” f(TA;, o, x>}, 8"1) [ w2} U
{(TA", TAF , 8 81, (X", g(TAT),(x%", f(TAF, tin, X))}, 8"2) [ w3 }

where

®, if TA"; = TA™,
g(TA") =
0, otherwise;

x>, if iy > x>\ 3(s;, x° Jn, m°, s,) € &%, L"= {s;},
f(TA" 0, x>") = tins lftm < xS"/\ a(sj, tin, MY, 5,) € € ,LO' = {s;},
®, lf_El (S_ls Jns H] Sn) € 8G’ Lo'j = {Sj};
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note that no transitions with ¢ € Z' exist to the locations of CTA® without the
global timer excepts T4 according the construction method of CTA®,

yi1=3(0, s, ) € EAsce L Asje LO'J- Asi# si/A (s, xY, tin, m°, Sn) € el 0 €ex;
vo= 3(sk x5, tis m", sj) € e"NAs e LA sj € LO'J- N sp # s/
A 3, xG, tin, mG, Sy) € sG, It e
y3=3(s;, x5, tij, m°, sj) € gSAs e LA sj € LO'J-, gt e
3", = xI= tij, (Si, xY, tij, m°, sj) € el

Explanation for the term s; # s; is that no transitions for CTA® has to be added if a
start location is referred by transitions with ¢ € X' from its corresponding TA". How-
ever, if a transition for global timer points to its definition state, the corresponding
transition should be added to CTAS.

It remains to calculate the clock constraints for the transitions of the first level
timed automata and for the transitions of the second level automaton.

4 Determination of the Clock Constraints

To determine the clock constraints for CTA® with respect to x*", the minimal and
maximal passing times of each exit transition of TA"; have to be calculated first for
each TA";. The minimal and maximal passing times are defined recursively as fol-
lows:

e mmi tminmisxs_tmaxmi
\ e' lnnl tmlnnI7XS tmaxm
0 t o
e £y MINE™ i, t™ ) < X*" A
/\ XSHS f(8'ij1 MAX(tmaxmi1 tmaxni))

Fig. 3. Calculation of the maximal and minimal exit times for exit transition e' *" j of the loca-

tion I'; based on the maximal and minimal entry times and maximal stay time for this location.
The stay time limited by the expiration of the local timer is taken into account by the clock con-
straint 8';

The idea is to define a passing time (minimal or maximal) for each exit transition
based on corresponding reachability times of its source location defined to each entry
transition of this location (Fig. 3.). If some reachability times are not defined, they
have to be defined first and stored for further use. The operation has to be applied re-
cursively until the start location of this automaton is reached. If some passed locations
are reached again during execution - the automaton contains a cycle. Maximal passing
time for this transition is not limited. That is applied for the qualitative analysis: CTA"
for the complex activities has not to contain such automata with the undefined transi-
tion for the global timer that has to limit the cycle passing. The algorithm can be writ-
ten in general as follows:
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function Calculate
if start location of the automaton is reached
calculate maximal and minimal exit times for the current exit transition
based on maximal and minimal parameterised entry times.
return defined values.
for the current exit transition
calculate the possible maximal and minimal passing times
counted from task start
based on maximal and minimal entry times of its source location and
on maximal stay time for this location (ref. Fig. 3)
with respect to a possible limitation
if the passing times is undefined for some entry transitions of this location
for each of these transitions
apply function Calculate recursively,
/* the entry transition will be handled as the exit transition
by the next call of the function Calculate thereby.*/
termination: after termination the parameterised maximal and minimal passing
times of exit transitions of a first level automaton are defined

The algorithm for definition of the clock constraints by calculation of the passing
times for the exit transitions of the first level automata with ¢ € ' in CTA® with re-
spect to the system clock x> and parameterised minimal and maximal entry times
(T™"; parameter for minimal entry time for TA"; T™; parameter for maximal entry
time for TA";) is shown on the listing 1. The clock constraints for these transitions de-
pend on the internal structure of the first level automata in contrast to the transitions
with o = gt. Fig. 4. illustrates the program run for T4"; built in example of Fig.2.

TA',

Ao
(§)] .1-\
G

-
-
-

Fig. 4. Recursive calculation of entry times for the first level timed automaton TA";. Calcula-
tion for the transition e";, will be stopped at the location s, because the times for entry transi-
tions of this location are already calculated.

for each TA, e L\ F"
T™" parameter for minimal entry time for T4

T™ parameter for maximal entry time for T4,
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for eacheW(TAﬂ,THﬂ,m,GPU,SH),€W§EﬂG e
t™ minimal stay time for T4 for s,
t ™ maximal stay time for TA' for s
create Results
create Passed Locations
define pseudo-transitione' corresponding toe"-
e'kj: ( Sks Sj O, -+ » 8'1(), c el
Min Max Time mmt :=
calc Min Max Time (Results, Passed Locations,e')

t™y := mmt.min t™ := mmt.max
if 3 (Si, XG, tij) mG, Sj) € SG, Si€ Lo'i

8"1 .= Tmlni +1 mmikSXSn A Xvangaxi +1 maxik A ti>Tmmi +1 mmik A XS"< tij
else

if mmt.max=c

error "“Infinite unlimited path.”
else

6”] t= Tmini +t minik < Xs" N XS" < Tmaxi +t maXik .

function calc Min Max Time (Results, Passed Locations,e')
/* e has form(sy, Sj, O ... , O'j) */
if result fore'in Results
/* no repeated calculation */
return Min Max Time fore'
Min Max Time mmt:
mmt . min = oo,
mmt . max = ()
if start states;of TAﬂis reached: s;= sy
if exists a cycle: 3 (s;, si, Gj,...) € B, 05 €
mmt.max := o

/* it can be walked infinitely */
else

mmt .max:= t,
/*8"j fore has form X = ty or XM < tig */
mmt.min := 0
store mmt in Results
return mmt.
for each e'lk = ( S15 Sks Olks «-- » 5'1k), e’lk €eE 'j of TAFi
if exists a cycle: s, in Passed Locations or s = sy

mmt.max: =« /[/* it can be walked infinitely */
else

add sy to Passed Locations

Min Max Time ret := calc_Min Max Time (
Results, Passed_Locations, e'y)

remove sy from Passed Locations

ret.max := ret.maxtty,
/*8"'ghas form XM = tj or X" < tig */
if Oyj = It

ret.min := ret.min-+ fy,
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/*8"jhas form XM= tig */
if mmt.min > ret.min

mmt.min := ret.min
if mmt.max < ret.max
mmt.max := ret.max

store mmt in Results
return mmt.

Listing. 1. Algorithm for definition of clock constraints for exit transitions with ¢ € X' for the
first level timed automata

It remains to define the values of parameters T T™X for 8", and the clock con-
straints 3", for the transitions with & = gt with respect to x>". The algorithm is built
on the similar strategy as before; it is shown on the listing 2. If some transitions can-
not be passed, the minimal and maximal passing times for such transitions are set to
-1. It can occur if e.g. a minimal passing time for a transition with ¢ € X' exceeds the
value of the global timers for a corresponding TA" (a transition with ¢ € 3' is impass-
able) or if a maximal passing time for the transition with ¢ € X' is less than the value
of the global timers for a corresponding TA" (a transition with 6 = gt is impassable).

for eachse S’
build CTA®
create Results
create Passed Locations
calculate clock constraints /* according Listing 1 */
for each transition with target location
TA™: "= (TA", TA" 5, ...,8"), 0 € 2" "€ E"
Min Max Time mmt :=
calc Global Times (Results, Passed Locations, €")
store returned Min Max pair
if all entry transitions unreachable
error “"Task can not terminate.”.
find least minimum and greatest maximum
among stored pairs with exception of
unreachable transitions and store in mmt
mmt contains now the maximal and minimal duration of
current CTA®
find least minimum and greatest maximum among CTA®
that defines the maximal and minimal duration of T°.

function calc Global Times (Results, Passed Locations, €")
/* e" has form (TAFj, TAFj, Gijy «e- 5 o" ij)> G jj ex" */
if Results contains result for e¢"
/* no repeated calculation */
return Min Max Time fore"
Min Max Time mmt, ret
if start state of CTA% is reached: TA", e L™
if exists a cycle: 3(TA", TA", gt,...) €E" V
V (3 (TA", TAY, o4,..) € E"A
ANTAY in Passed_Locations,cy € X")
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error “Cycle found.”
mmt := define Constraints(0,0, ")
store mmt in Results
return mmt.
if state without entry transitions is reached
transition unreachable: mmt.min:= -1, mmt.max:= -1
store mmt in Results
return mmt.
for each e"yi: (TA , TA", G i, ..., 8" i), €' mi € E"
if exists a cycle:
THﬂnin Passed Locations orTHﬂn=THﬂ
error "Cycle found.”
add TA" to Passed Locations
Min Max Time ret := calc_Global Times (
Results, Passed Locations,€"y)
remove TA"; from Passed Locations
store returned Min Max pair
if all entry transitions unreachable
all exit transitions unreachable too:
mmt.min = -1, mmt.max = -1
store mmt in Results
return mmt.
find least minimum and greatest maximum
among returned pairs with exception of
unreachable transitions and store in ret
mmt := define Constraints( ret.min, ret.max, e")
store mmt in Results
return mmt.

function define Constraints( min, max, e")
/* e" has form (TAFi, TAFj, Gijy «e+ 5 o" ij)a Cij € "o/
Min Max Time mmt
if 3 (TAFi, TA", gt,., 8" € E"and (s;, x%, ty, m©, s) € el
if Gj = gt
if max + MAXj (F ‘i, t maxik )3 <ty
transition unreachable:

mmt.min := -1, mmt.max := -1
else
mmt.min :=t;, mmt.max := MAX (tj, max)
/* 6"2 1=t SXS" A Xs”S MAX (t“ 5 max) */
else
/* 6"1 = min+ tmmijSXS" A\ XS"ST, maxij+ max /\ ti1>min+ tmmij N XS"<ti] */

if t) < min + tmmij

transition unreachable:
mmt.min := -1, mmt.max := -1
else _
min + t mmij ,
MIN (til , max + t maxij)

mmt . min
mmt . max

3 The function chooses the maximal passing time through the corresponding first level automa-
ton calculated earlier.
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/* 8"1:= min + tmmij SXS"/\XS"S MIN(til, max + tmaxij) */
else
mmt.min := min + t™, mmt.max := max +t"™
. i S S
/* 8" :=min + t™ < X"AX"< max + t™ */

return mmt.

Listing. 2. Algorithm for definition of the clock constraints for the transitions of the second
level timed automaton

Thus, the least minimal and greatest maximal passing times of the transitions,
whose target is the TA™, calculated for all start states in S” characterises the maximal
and minimal duration of the complex activity T °. The objects of the qualitative analy-
sis are also reached by application of the described algorithm: if the 74" cannot be
reached or reachability time is infinitely or an error is reported, the corresponding task
must not be accepted by system.

Finally, complexity of the algorithm should be estimated. Each transition will be
passed only once because the calculation results are stored for each passed transition
and will be reused if they are required; complexity of the result search is O(1). The
upper limit for the number of TA" is 2 x |¢°| + 2 according the method of construction
of TA". The number of transitions in each 74" does not exceed [E| + |¢"|; the number
of transitions in CTA® does not exceed [E| + |¢"] + || (propagation of the transitions
to TA™ can be neglected). Therefore, the number of the passed transitions during cal-
culation can be estimated as |S”| x (( 2 x [€%] + 2) x ([E| + ") + (|E| + [€"[+[°|)). Thus,
the complexity of the algorithm can be estimated as O(|S°| x |9| x (|[E| + [¥])) because
|S°| <<|[E| + [¢"] and [¢°| << [E| + [¢"].

The algorithm was implemented in Java. The test runs have demonstrated a good
agreement between manually and automatically calculated values for the applied
tasks.

5 Summary

The proposed method for the analysis of the reminder tasks allows to define the dura-
tion limits of the task execution. Thereby, the tasks with an unlimited execution time
can be detected. The pursuance of analysis allows preparing the consistent task
schedule: temporal task overlapping can be avoided; generation of the tasks with the
unlimited execution time can be prevented. The approach to construction of the 2-
level timed automata allows handling dependency of the actual timer definition on the
actions performed before. The article introduces also the efficient algorithm for the
analysis.
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Abstract. Testing is the mainstream of verification techniques used for
real-time systems in the industry because it allows the engineers to di-
rectly observe how their system implementations react to various test
cases. In this paper, we investigate how to use symbolic techniques to
automatically generate test cases for real-time systems. Especially, our
test cases have two annotations that can be useful in the construction of
powerful test cases. First, events in our test cases are labeled with sym-
bolic timing constraints which can either be conveniently used in picking
event occurrence times or be used for choosing boundary timing values
in domain analysis. Second, our test cases are annotated with region-
related coverage estimations which support high precision in detecting
some timing bugs. Finally, we have implemented our ideas with BDD-like
data-structures which could lead to performance advantage for testing
complex embedded systems.

1 Introduction

Nowadays, as the verification cost has grown to over 50 percent of the total devel-
opment budget in most industrial projects for complex embedded systems, the
ability to control the verification process has become the major factor in the com-
petitiveness of most high-tech companies. Of the many verification techniques,
testing [14, 3] has been the mainstream in the software industry over the last
few decades. The major reason is that testing is directly applied to the software
engineers’ major product, i.e., programs, which the software engineers feel most
comfortable with. In contrast, other verification techniques, like simulation [5]
and formal verifications [2, 6], usually work on artefacts, like virtual models and
mathematical logics, which do not fuse easily with the existing development cy-
cles in many companies. However, the complexity of new-generation embedded
systems has driven the cost of testing to bigger and bigger proportions in their
development budgets. But even having spent huge money on testing, people still
found that they usually did not have time and resources to run enough test cases
for the confidence in their products. One way to overcome the challenges of ver-
ification in the industry without disrupting the existing development cycles is

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 144-158, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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to use formal verification techniques to enhance the quality of test case gener-
ation. In this work, we investigate how to use symbolic techniques for flexible
automatic test cases generation for real-time systems.

Implement

Conformance test
System Under Test (—

Specification
of the system

Symbolic state space TTCN with
. coverage
exploration procedure

Environment

model

Ll

Framework

Fig. 1. Framework of conformance testing

In fig 1, we show our framework of conformance testing [17] for embedded
systems. Both the SUT (System under test) and the environment are specified as
communicating timed automata (CTA) [23,24]. We apply a symbolic state space
exploration procedure to generate symbolic trace-trees annotated with coverage
estimations. Every symbolic trace from the root to a leaf in the symbolic trace-
tree is mapped to a test case. The test cases are then fed to the SUT to check
whether the SUT’s behavior conforms with the specification. The generated test
cases are sequences of input events and expected output events. Specifically, our
test cases have the following two annotations.

o Flexible timing-constraints of all the events. The constraints annotated with
the input/output events are specified as Boolean combinations of event oc-
currence time differences. The constraints can be conveniently used in both
picking the input event occurrence times and checking the correctness of
the output event occurrence times of the SUT. Test cases with specific input
event occurrence times may hardly give development teams strong confidence
in the correctness of the timing behaviors of their SUT. Usually, engineers
would like to efficiently check how their SUT behaves with respect to the
extreme cases of data-values. Thus our annotations of flexible constraints of
input events can thus be used as a basis for domain and boundary analysis
of input/output event occurrence times.

e Region-related coverage estimations. In the before, people suggested to use
coverage metrics for untimed systems, like transition coverage, to measure
the progress of testing real-time systems [4,20]. However, there can be special
timing bugs that could escape testing with such metrics. A general character-
istic of such timing bugs can be illustrated with the simple CTA in figure 2.
The periods of the first and the second processes are 3 and 5 respectively.
Thus the global period of the whole system is 15. At the 5th time unit,
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V\:ZO; V\:ZO;
=3 y=25

x = 0; y = 0;

Fig. 2. An example that exposes the imprecision of the transition coverage metric

the transition coverage has already reached 100% and implies that no more
test cases are needed. However, if a bug can only happen in the 14’th time
unit, specified with z = 2 A y = 4, then apparently the transition coverage
metric will not have the precision to help us detecting the bug. Our test
cases are all annotated with region-related coverage estimations [23] and can
be shown precise enough to detect such timing bugs. We have employed
two such coverage metrics, one roughly corresponding to dense-time state
coverage while the other to dense-time branch coverage.

We have implemented the ideas in this article with symbolic techniques and
BDD-like data-structures, which have been proven more efficient than DBM [8]
against several benchmarks [25]. We have developed a technique to combine an
iteration of abstract forward analysis with an iteration of backward analysis.
This technique helps us focusing on the test cases related to the reachability of
risk conditions. Our experiment data corroborates this claim since the technique
leads to smaller test plans' in the experiment. We have also experimented to use
abstraction techniques to control the sizes of the test plans. Abstraction tech-
niques may remove some state information, make the state-equivalence relation
coarser, and in turn generate fewer test cases to guarantee coverage.

The rest of this paper is structured as follows. We review related work in
section 2. We review the basic building blocks of this work, including the formal
specification language CTA, the symbolic state space exploration procedure, and
the symbolic state coverage estimation techniques in section 3. Then, we present
techniques to extract test cases from symbolic traces in section 4. We report our
implementation and experiment in section 5. Finally, we present the conclusion
and discuss the future work in section 6.

2 Related Work

To automatically generate test cases, we need a formal specification of the SUT
and then a mechanical procedure to read in the formal specification and generate
the test cases. For testing real-time systems, people have used the popular timed
automata (TA) [1] and its variations as the formal specification languages. Peo-
ple have also adapted the existing test-case generation algorithms for untimed
algorithms. The idea is to discretize the state space before applying the untimed
test case generation algorithms. In [15], the discretization is achieved through

L A test plan can be viewed as a sequence of the test cases.
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digital clock automata. In [21], Springintveld et al. discretized timed automata
into finite grid automata and then applied untimed test case generation algo-
rithm. Both of these methods encounter the state explosion problem even with
small systems since they partition the state space with fine granularity.

Hessel et al. [10] used the fastest diagnostic trace facility of the UPPAAL [19],
a model checker for real-time systems with DBM-technology [8], to generate time
optimal test cases. Test cases can be selected through manually formulated test
purposes or automatically from three coverage metrics: edge coverage, location
coverage, definition-use pair coverage. The test cases are annotated specific time-
delay values between events. The timing constraints are preserved from symbolic
traces to test cases through summations of specific time-delay values between
events. In this work, we deduce flexible timing constraints on event occurrence
times instead of specific time-delay values. Such flexibility could support domain
and boundary analysis in the latter stage of test case generation.

Nielsen et al. [18] proposed a method to generate test cases for real-time
systems, specified as event-recording automata, in which every event has a cor-
responding clock to record the elapsed time since its last occurrence. No internal
events are permitted. The state space is partitioned, according to the trigger-
ing conditions on the transitions, for constructing an equivalence-class graph.
Then symbolic techniques are used to construct the reachability graph out of
the equivalence-class graph. Finally, test cases are generated to cover all equiv-
alence classes.

3 Review of the Basic Technology

In this section, we review some of the basic technology, on which we build this
work. In section 3.1, we give the definition of our specification language, CTA. In
section 3.2, we review the basic symbolic techniques to explore the dense state
space. In section 3.3, we then review the three coverage metrics implemented in
our test case generation algorithm. Finally, in section 3.4, we review the symbolic
state space exploration procedure.

3.1 CTA as a Specification Language

A communicating timed automaton (CTA) is a set of process timed automata
(PTA), equipped with a finite set of clocks (with nonnegative real-values) and
synchronization channels. A PTA is structured as a directed graph whose nodes
are modes (control locations) and whose arcs are transitions. The modes are
labeled with invariance conditions while the transitions are labeled with trig-
gering conditions and a set of clocks to be reset during the transitions. The
invariance conditions and triggering conditions are Boolean combinations of in-
equalities comparing clocks with integers. At any moment, each PTA can stay
in only one mode (or control location). In its operation, one of the transitions
can be triggered when the corresponding triggering condition is satisfied and its
input/output events are synchronized. Upon being triggered, the PTA instan-
taneously transits from one mode to another and resets some clocks to zero. In
between transitions, all clocks increase their readings at a uniform rate.
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Fig. 3. Specification of a bus-contending protocol

In figure 3, we draw two PTAs for specifying a bus-contending protocol. One
is for the bus and the other one is for the adaptor. The circles represent modes
while the arcs represent transitions, which may be labeled with synchronization
symbols (e.g., !begin, 7end, ...), triggering conditions (e.g., x < 52), and as-
signments (e.g., x := 0;). For convenience, we have labeled the transitions with
numbers. In the system, an adaptor process may synchronize through channel
begin with the bus to start sending signal on the bus. While one adaptor is
using the bus, the second one may also synchronize through channel begin to
start placing message on the bus and corrupting the bus contents. When this
happens, the bus then signals bus collision (cd) to all the adaptors.

In the following, we give a brief definition of CTA. For detailed definition,
please refer to [23,24]. For convenience, given a set @ of modes and a set X of
clocks, we use B(Q, X) as the set of all Boolean conjunctions of inequalities of
the forms mode, = q and z — 2’ ~ ¢, where mode,, is a special auxiliary variable
to record the current mode of process p, ¢ € Q, z, 2’ € X U {0}, ‘~’ is one of
<, <, and c is an integer constant. R is the set of nonnegative real numbers.

Definition 1. process timed automata (PTA) A PTA A is given as a tuple
(X,E,Q,I,u,T,\, 7,m). X istheset of clocks. E is the set of synchronization chan-
nels. @ is the set of modes. I € B(Q, X) is the initial condition. x : Q — B((, X)
defines the invariance condition of each mode. T' C Q) x @ is the set of transitions.
A (E xT) +— Z defines the message sent and received at each process transi-
tion. When A(e,t) < 0, it means that process transition ¢ receives | (e, t)| events
through channel e. When A(e, t) > 0, it means that process transition ¢ sends (e, t)
events through channel e. 7 : 7'+ B(, X) and 7 : T + 2% respectively define
the triggering condition and the clock set to reset of each transition. |

Definition 2. communicating timed automata (CTA) A CTA of m pro-

cesses is a tuple (E, Ay, A, ..., Ay), where E is the set of synchronization chan-
nels and for each 1 < p < m, A, = (X,,, E,Qp, Ip, tip, Tp, N\p, Tp, Tp) is the PTA
for process p. |

A waluation of a set is a mapping from the set to another set. Given an
n € B(Q,X) and a valuation v of X, we say v satisfies , in symbols v = n, iff
7 is evaluated true when the variables in 7 are interpreted according to v.
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Definition 3. states Suppose we are given a CTA C = (E, A1, As, ..., Ap)
such that for each 1 <p < m, A, = (X,,, E, Qp, Ip, fip, Tp, Ap, Tp, Tp). A state v
of C is a valuation of |, <, (Xp U {mode, }) such that

e v(mode,) € @, is the mode of process p in v; and
o for each x € U <y <,, Xp, v(z) € R such that v = A . ,, Hp(v(modey)).

For any t € R*, v+t is a state identical to v except that for every clock
reX, (v+it)(z)=v(x)+t. |

A global transitions @ of a CTA is a mapping from process indices p, 1 < p <
m, to T, U{L}, where L means no transition (i.e., a process does not participate
in a global transition). A legitimate global transition has to be synchronized,
that is, each output event from a process is received by exactly one unique
corresponding process with a matching input event. Formally speaking, in a
global transition @, for each channel e, the number of output events must match
that of input events. Or in arithmetic, Ve € Elegpgm;qs(p);u_ Ae, P(p)) = 0.
Moreover, to be compatible with the popular interleaving semantics, we require
that two synchronized global transitions are not allowed to occur at the same
time. In the following, whenever we say “global transition”, we actually mean
“legitimate global transition” for briefness.

s
We define the transition relation < of a CTA as follows. ¢ is either a time-
delay t or a global transition @. Given two states v and v/, we say that v — v/

iffu’:y+tfort€7€+.Wesaythatz/&z/ iff

oV ': /\lgpgm;d"(p);él TP(@(p))a and
e v is identical to v/ except that for all 1 < p < m and P(p) #1,
(v(mode,), V' (mode,)) = P(p) and v/ (x) = 0 if © € 7, (P(p)).

3.2 Symbolic Trace Computation

Since we assume that time is continuous in a CTA (i.e., the domain of the clocks
is positive real numbers), there are infinitely many states. In order to analyze a
CTA, we use zones to represent state-space. A zone z is a state-space described
by a set of constraints in either of the following two forms.

e mode, = ¢p, for some 1 < p <m and g, € Q).
e x — 1’ ~ ¢ for clock differences, where & and 2’ are clocks or 0, ‘~’€ {<, <,
=,>,>}, and c is an integer.

Many model-checkers for CTAs have been built on the symbolic manipulation
procedures of zones [19,22,26]. Our symbolic trace computation is also based
on a well-discussed symbolic procedure, called post(), to compute a symbolic
post-condition of a zone after a global transition and time-progress [12]. Given
a zone z and a global transition @,

®
post(z,®) = {V'|lv — V/ S vez andt € RT}.
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Note that the result of the post-condition procedure can also be represented as
a zone. For briefness, we use z — 2’ to denote 2/ = post(z,®) and a symbolic

. & @ ®,
trace can be described as zg — 21 = ... =3 zn,.

RIS
: mode; = idle A mode; = wait A modez = wait

21 : mode; = active A modes; = wait A modez = transmit A x1 = x3

z9 : mode; = collision A modes = transmit A modesz = transmitA
x1 <26 A Ax2 <261 =12 AN23 <DH2ANx3 —2x1 <263 — T2 <26

z3 : mode; = idle Amodey = retry Amodes = retry Azo < 52 Ax3 < 52 Ax2 = x3

z4 : mode; = active A mode; = wait A modes = transmitA
x1 <B2ANx2 <B2ANx3<B2Ax1 —22<0AxZ1=23AN2x3—22<0

P1(1) =1,81(2) =L,81(3) =6
Bo(1) = 4,85(2) = 6,P2(3) =L
P3(1) = 5,d3(2) = 11, P3(3) = 11
By(1) = 1,84(2) =L, B4(3) = 12

Fig. 4. A symbolic trace of the bus-contending protocol

In figure 4, we show a symbolic trace of the bus-contending protocol (in
figure 3) and the related derivation. There are three PTAs, A; for the bus while
As, Ag for the adaptors. For briefness, + = 2’ is a shorthand for z — 2/ <
0Nz’ —x <0 and x ~ cis a shorthand for x — 0 ~ ¢, where x and x’ are clocks
or 0. The initial zone zg describes that the bus process is in the idle mode
and the two adaptor processes are in the wait mode. With global transition
@1, Az synchronizes through channel begin with A; to start sending signal on
the bus. At zone z1, 1 = x3 since both 27 and x3 are reset at @;. If A5 also
starts sending signal with &, before A3 can be sure of the total access to the
bus in 52 time units, a collision happens at global transition @3 and bumps
all transmitting adaptors to the retry mode. In the retry mode, A3 tries to
retransmit signals with global transition @4 in 52 time units. Similarly, z; = zo,
To = x3, and x1 = 3 are true respectively at zones zo, 23, and z4. At 29, 1 < 26
since mode; = collision and pj(collision) is 21 < 26. For the same reason,
T2 < 52 and x3 < 52 are true at zs.

3.3 Coverage Estimation

In the following, we briefly discuss three coverage metrics, ACM, RCM, and
TCM. For more details, readers can refer to [24].

Arc coverage metric (ACM). This is a straightforward adaptation from the
FSM (finite-state machine) arc coverage [4,20] of VLSI simulation and testing.
Conceptually, we transform a circuit to an FSM and measure the set of executed
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transitions. The same definition of FSM arc coverage can be readily copied for
the test case analysis of CTAs. That is, we can also use the global transitions of
CTAs to estimate coverage in ACM.

Region coverage metric (RCM). Another extreme that can also be adapted
from VLSI verification technology is the wisited-state coverage metric, which
measures the reachable states in FSM. The states are discrete and countable
in VLSI’s models while they are dense and uncountable in CTAs. Instead of
measuring the reachable states directly, region-equivalence relation [1] can be
used to partition the dense-time state-space into finite set of equivalent states,
and we measure the reachable regions in RCM. We use the symbolic procedure
in [24] to estimate the number of regions in a zone.

Triggering-condition coverage metric (TCM). The third coverage metric
is called triggering-condition coverage metric (TCM), which is a hybrid measure
composed of ACM and RCM. Unlike ACM, in which a global transition is covered
once it is executed, we take the triggering conditions into account. When a
global transition is executed, we use TCM to estimate the regions that have
been covered in the triggering condition of the corresponding global transitions.

3.4 Symbolic State Space Exploration Procedure

From each zone, there could be many successor zones. Thus the symbolic traces
constructed in section 3.2 constitute a directed graph of zones. The following
symbolic procedure returns a traversing tree of the directed graph for a given
CTA and risk condition.

Symbolic trace tree(C,n) /* Cis a CTA with [ = 21 V...V z,; 7 is the risk
condition. */ {
let Vi={z1,...,2n}; F :=0;
while (true) {
select a zone z C V A abstract(—m) and a global transition ¢

such that post(z,P) # false and post(z,P) € V; (a)
if there is no such a z, return (V| F);
z' := abstract(post(z,P)); V=V U{'}; F:=FU{(z,2)}; (b)

}
}

The zone z and the global transition @ are fed to post() to compute the next-
step state space after transition and time-progress in statement (b). The while
loop continues until the generated symbolic traces have covered all reachable
state space up to the risk condition. There are two features of this procedure.

e In statement (a), we allow for the flexibility of various traversing strategies in
choosing z and @. With different strategies, the procedure generates different
trace-trees. The leaves of a traversing tree generated from this procedure
represent those zones which either have already been traversed (and recorded
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in V) or are contained in the risk conditions. Typical traversing orders are
depth-first traversing, breadth-first traversing, etc.

e In statement (b), we may use abstraction techniques through procedure
abstract() to simplify the representation of V. This abstraction option cer-
tainly may over-approximate the state-space representations. Abstraction
techniques have been used widely to make state-space analysis and test-case
generation feasible with practical resource assumptions. Typical abstraction
techniques include convex-hull approximation [13] and discretization [7].

4 Test Case Generation

We now use the building blocks in subsections 3.2, 3.3, and 3.4 to design our test
case generation procedure. In the framework of conformance testing, we inject
the inputs to an SUT and observe if the outputs of the SUT conform with our
expectation. Given a CTA that specifies a system and its environment and a
risk condition, we can use procedure Symbolic trace tree() in subsection 3.4
to construct a trace-tree of the CTA. In this section, we show how to step by step
extract a test case from a symbolic trace of a CTA with coverage information.
Each test case consists of (1) the input events and the expected output events,
and (2) the timing constraints between events. This is done in three steps.

1. The symbolic trace should be strengthened by stronger constraints such that
the symbolic trace corresponds to true computations of the CTA.

2. The events of the trace and their timing constraints are extracted. Since our
CTAs allow for internal events, we need a projection procedure to eliminate
the internal events while preserving the interval timing information.

3. Finally, assuming a certain order of the test cases generated in the 2nd step,
we calculate the (region-related) coverage estimation of each steps in each
test case.

We present the three steps in subsections 4.1, 4.2, and 4.3 respectively.

4.1 Backward Analysis

Now, we present the first step. A symbolic trace zg 2 21 230 zn is computed
forwardly with procedure post() so that every state v/ € 2; has a preceding
state v € z;_1. If we want to map each symbolic trace to a test case, we want
to make sure that the reverse is also true. However, the reverse is not true. For
example, a state v satisfying v(mode;) = activeAr(modey) = waitAv(modes) =
transmit A v(z1) = 26 A v(zz) = 26 A v(xy) = 26 is in z;. But it can not
reach zo through @, since the triggering condition of P5(1) is not satisfied at
v. If we extract a test case from the symbolic trace with states that breaks the
execution of the symbolic trace, we may generate an invalid test case that the
implementations are not supposed to pass.

In order to exclude the states that can not reach z,, we need a procedure

t @
pre(z,®) = {v|lv — vV — V' V" € z,and t € R} to compute the pre-condition
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so that every state v € pre(z,®) has a succeeding state v € z. Like post(), the
result of pre() can be represented as a zone. In the following, based on pre(),
we present procedure Backward Prune that prunes redundant states that break
the execution of a symbolic trace.

T @,
Backward Prune(zg — 21 —5 ... = 2,) {
for (2], := zn,i:=mn;1 > 0;i:=4— 1) z]_; := z;_1 Apre(z,D,;);
" ;P By Py g
return z), = 2] = ... =3 20;

}

Intuitively, the procedure computes the pre-conditions iteratively and back-
wardly from z, through @,,®,_1,...,®1. In short, we backwardly propagate

the pre-conditions from z, to zg. As a result, all states in the restricted sym-

. ® ® ®, : S :
bolic trace 2, — 2§ — ... =3 2/, can reach 2, (i.e., z,,) in this symbolic trace.

When we apply Backward Prune() to the trace in figure 4, we get a restricted

: P P ?, . . : .
symbolic trace z, — 2z; = ... =3 z}. This restricted symbolic trace differs from

the original symbolic trace in z] and z;. 2] have extra constraints, 1 < 26 and
r3 < 26, that is the pre-conditions of z5.

4.2 Projection from Traces to Test Cases

From each symbolic trace, we can construct the following trace constraint, which

is a pair (K, ©) and contains enough information to generate a test case. Given
By B,

a symbolic trace zg 2y 21 = ... =2 2z, (K, 0) is defined as follows.

e K is asequence @yP; ... D, of global transitions, where @ is an initial global
transition that resets all clocks to zero.

e O is a set of inequalities, which specify the timing constraints between global
transitions in K. Let t; denote the variable that records the time when @;
is executed. Then ¢; — ¢; is the time duration between ¢ and ¢’. Given an
index i and a clock z, K[i,z] = j such that j < ¢ and z is reset in @, but
not in @;41,...,9P;. © consists of the following inequalities.

® txlia] — tK[ia] ™ C if ¥’ —x ~ cis a constraint in z;;

oty —lgj_1,4) ~ ¢ if & —0~cisaconstraint in z;_1;

® lgfi—1,2] — tir ~ ¢, if 0 —x ~cisa constraint in 21,
where 0 <47 <mnand 0 <4 <n.

We now want to extract the test-case-related information from trace con-
straints like (K, ©). This can be done by removing all global transitions which
are not related to the interactions among processes. In K, a global transition
is caused by either an internal action or an interaction between the environ-
ment processes and the system processes. Here the environment processes refer
the PTAs that model the environment, while the system processes refer to the
PTAs that specify the behavior of the system. A global transition is internal if it
does not involve both environment processes and system processes. For blackbox
testing (and hence conformance testing), test cases only check the interaction
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between the SUT and the environment. So our projection step eliminates those
global transitions that represent only internal actions from K. Since some global
transitions are to be eliminated, all the timing constraints with reference to the
eliminated global transitions also have to be eliminated from ©. Suppose the
global transitions in K that are not internal are @;,,®;,,...,®;,. Conceptually,
the elimination can be carried out with Fourier-Motzkin elimination [12] that
projects © to the space of dimensions tg, ,...,ts, . The following procedure
Project() realizes this elimination process.

Project(®oPy...P,,0) {
= Pg; O :=0; j = 1;
for (i:=1;i<myi:=i+1)
if @; is internal, ©' := Fourier-Motzkin-elimination(®’,ts,);
else { g?; = @i;/j = j+1 1}
return (@@ ... 9%, 0');

}

Take the restricted symbolic trace in section 4.1 as an example, its trace
constraint is (@0@1@2¢3¢4, {tg —11 < 26,t3—1t2 < 26,t3—t1 < 52,t4—13 < 52})
Assume that we want to generate test cases for a network adaptor. We use A
and As as environment processes while Az as the system process. Project()
eliminates @, and its time variable t5 from the trace constraint since they are
internal to the environment processes.

After we have generated a trace constraint (K, ©) from Project(), we can
further map all global transitions in K to test statements in sequence. Here we
use the TTCN [14] test language to explain the mapping. Assume there is a
system clock called Time. There are two TTCN commands, START (to start the
ticking of a clock from zero) and READTIMER() (to read the current reading of a
clock). Given a trace constraint (PoP; ... Py, O), first we start clock Time with
statement “START Time” at time tg. Then iteratively for each 1 < i <mn,

1. print out the input and output events of @;;

2. print out “READTIMER Time(t;)” to record the occurrence time of @;; and

3. print out all timing constraints in @ of the form x; —x; ~ cand z; —z; ~ ¢,
with j < 4, to check if any timing constraints are violated.

For example, to continue with the restricted symbolic trace in section 4.1, we
get the following test case in TTCN format.

START Time

?begin

READTIMER Time(¢;)
Icollision
READTIMER Time(t3)
[ts — t1 < 52]
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?begin
READTIMER Time(t4)
[ty — t3 < 52]

The test case checks if an adaptor retries the transmission within 52 time
unit after a bus collision is detected.

4.3 Coverage Annotations of Test Cases

We have presented how to extract a test case from a symbolic trace. Now, we
combine all the components to present our algorithm to generate test cases with
coverage annotations. The algorithm is as follows.

Test case generation(C,n) /* C is a CTA; 7 is the risk condition. */ {
Let (V, F) := Symbolic trace tree(C,n); Coverage := 0;
While there is still an unchosen trace in (V, F') {

Dy 2 P
Choose a trace zg — 21 — ... — Zm

from (V, F') that has not been chosen before;
Let Coverage := the new coverage estimation considering zo;
For (i:=0;i <msi:=i+1) {
Coverage := the new coverage estimation considering z; and @;;
Annotate both z; and @; in the trace with Coverage;
}
Eliminate the internal global transitions form the trace
to generate a test case with the coverage annotations;

First, we construct trace-tree with procedure Symbolic trace tree() in sub-
section 3.4. Then, we enumerate symbolic traces in the symbolic trace-tree to
generate test cases. Here, we specifically leave the flexibility to allow for various
policies in generating the test plans in using the test cases in particular orders.
The coverage estimation annotated on the test cases are computed according to
a chosen test plan.

In our implementation, we adopt the test plan that orders the test cases
according to the depth-first ordering of the leaves of their corresponding symbolic
traces. This approach has the following advantage in black-box testing. It tends
to generate long test cases which could save us time in restarting the SUT. In
contrast, if we use several short test cases to reach the same coverage as a long
one, then we need to restart the SUT for each of the short ones.

5 Experiment

We have implemented our ideas in RED [22,23,25], a model-checker /simulator
for CTAs and linear hybrid systems. RED adopts BDD-like data-structures,
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Table 1. Experiment result of the generated test cases

Specification Trace-tree Exploration Generation Steps # test cases

strategies  time(s) time(s)
Audio All 2.21 6.73 131 40
Risk 1.2 0.99 89 37
Abstraction 1.94 6.62 122 37
L2CAP All >3hr Not available
Risk >3hr
Abstraction 13.56 229.07 169 127

CRD (Clock-Restriction Diagrams) for CTAs and HRD (Hybrid-Restriction Di-
agrams) for linear hybrid systems. We have experimented with two benchmarks,
the Philips audio protocol [11,16] and the Bluetooth L2CAP [9,24].

In table 1, we show the performance data, which was collected on a Pentium
4 3.2G machine running Mandrake 10. We have implemented the following three
strategies to generate the trace-trees.

e All: With this strategy, we generate traces to cover the whole reachable
state-space.

e Risk: We only generate traces that are related to the reachability of a risk
test property. Specifically, we use an abstract backward reachability pro-
cedure from the risk conditions to compute an approximation of the state
space which are backward reachable from a risk state. Then when we do
the trace-tree construction, we refine our exploration in this approximation.
This makes sure that our test cases, generated from the trace-tree, are highly
related to the reachability of the risk condition [24]. The test property used
for the Philips audio protocol is that the receiver enters the “ERROR” state.
The one for the L2CAP is that the master stays in the “OPEN” state, but
the slave enters the “W4 L2CA DISCONNECT RSP” state.

o Abstraction: We adopt the Game-Abstraction technique [23] to simplify the
zone representations in the trace exploration. This strategy may sometimes
reduce the time for a symbolic trace exploration.

“Exploration time” and “Steps” are the time spent in symbolic trace exploration
and the number of calls to post() in symbolic trace exploration. “Generation
time” is the time spent in test case generation and “# test cases” is the number of
generated test cases. For the audio specification, we have explored less symbolic
states and generated less test cases when strategies Risk and Abstraction are
adopted. For L2CAP specification, it takes more than three hours in symbolic
trace exploration when strategies All and Risk are adopted. This is due to the
sheer size of the CTA for the L2CAP specification. But with strategy Abstraction,
we have effectively generated test cases for the L2CAP.

We have also collected coverage data in running our test cases. Due to page-
limit, we only show two of the charts. Figure 5 shows the cumulative coverage
estimations for the Philips audio protocol SUT with strategy All. After we have
executed the first 4 test cases, we get about 60% coverage in TCM. The ACM
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and TCM coverage estimations reach 100% before all test cases are applied to the
Philips audio SUT. This is because ACM and TCM are both based on covered
transitions and could be less precise in discerning bugs related to dense-time
behaviors. Figure 6 shows the estimations for the L2CAP SUT with strategy
Abstract. The same pattern as in figure 5 is observed. That is, after the first few
test cases, we already have a quite high coverage in both TCM and ACM.

On the other hand, the RCM estimations grow much slower than TCM and
ACM estimations. This implies that RCM usually have better precision in dis-
cerning bugs related to dense-time behaviors. However, for large-scale systems,
when the number of global transitions is already pushing the limit of state of
the art, ACM and TCM may still offer basic confidence check of the SUT.

6 Conclusion

In this paper, we investigate how to use symbolic techniques to automatically
generate test cases for real-time systems. The test cases are annotated with
symbolic timing constraints and coverage estimations. Our framework does leave
the pace for future work. Especially, the design of various test plans, abstraction
techniques, and traversing orders to construct the trace-trees. It will be very
interesting to see how the flexibility left in the framework can accommodate
various techniques for the test case generation in real-world projects.
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Selective Search in Bounded Model Checking
of Reachability Properties*
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Abstract. Bounded Model Checking (BMC) encodes a model checking
problem in the propositional logic. Diagnosing the resulting formula to
be satisfiable provides a counterexample. While surprisingly efficient for
many complex systems, in general BMC still fails to be complete and is
a method of falsification rather then validation. The major obstacle is
satisfiability testing (SAT). The paper introduces a selective search to
the standard DLL SAT algorithm, allowing to profit from several opti-
mization techniques proposed for non-symbolic methods. Partial-order
reductions are shown as an example of selective search. Preliminary ex-
perimental results confirm that the selective search can significantly im-
prove the effectiveness of BMC.

1 Introduction

The general idea of BMC is to encode in the propositional logic a model checking
problem. Because models can be huge, usually the search takes into account only
a part of the whole state space, increasing the range of search if the evaluated
fragment was proved not to contain any counterexample or returning the found
one. The practical realization of the method is possible thanks to developing
efficient SAT-testing algorithms (solvers).

Many algorithms reducing the state space searched were invented for explicit-
state model checking. One of the most successful optimization approaches is a
selective search — constructing a reduced model preserving the properties of the
full one. The reduction consists in restricting the transition relation, exploring
only a subset of system transitions enabled in a state. A natural question is
whether this techniques could be applied to logic-based symbolic verification.
The formulation of the optimization problem is different in this case. Symbolic
representation and relevant operations deal with sets of states, so it must be
guaranteed that the reduction is correct with respect to all the system states.
There is no direct access to processed states (no notion of a searched state nor
a search stack) and determining states described by symbolic formulas may be
costly.
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In this paper the problem of efficient SAT testing in BMC reachability check-
ing is examined. The general idea consists in supplying the solver with additional
information characterizing the structure of a tested formula. When a general ap-
proach sees a solver as a ”black box”, we loose generality with hope of improving
the efficiency. [Str00] introduces a simple strategy of free variable decision — a
step towards DFS symbolic search. Our original contribution extends it to the
full DFS search (Alg. SAT-DFS-2), and finally parametrizes it with a selective
search method (Alg. SAT-POR). The reduction is obtained by assigning subfor-
mulas of a formula encoding an instance of BMC with information about depth
on the symbolic path and actions they encode, and using this information by the
modified solver. Partial order reductions are chosen as a selective search realiza-
tion, which is possible thanks to enforcing the DFS search order. Preliminary
results show that the selective search can significantly improve the efficiency
particularly in the case of unsatisfiable formulas, and justify the future research
on efficient implementing the presented ideas.

Related Work. BMC was introduced in [BCCZ99] and is a subject of intensive
research. [BCCT03] offers good introduction and discussion of related research.
Despite many optimizations, in most cases BMC remains incomplete.

Partial order reductions constitute a group of optimization methods reducing
the size of the state space to be searched by model checking algorithms. The
most important groups of methods are the stubborn set, the ample set and the
persistent set approaches [CGMP99]. All the above-mentioned methods were
proposed in the context of DFS exploration. There were however attempts to
change the search algorithm to BFS, which allows for applying symbolic model
checking methods [ABHT97].

2 Preliminaries

2.1 Propositional Logic

Let PV be a set of propositional variables. F is a set of propositional formulas,
and for a € F, we denote by PV(«) the set of propositional variables in a. An
assignment A is a function assigning to every variable a logical value of 1 or
0. This function is extended to formulas. A formula is satisfiable iff there is an
assignment for which it is assigned with 1. For a variable v, v and —w are literals.
A clause is a disjunction of literals, and a formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses.

Satisfiability-preserving conversion to CNF. The majority of SAT algo-
rithms work with CNF formulas. The efficient transformation [PG86] is usually
used to test satisfiability: given a formula v € F, it produces a satisfiability-
preserving CNF formula toC'N F(7y) of polynomial length, over the set of propo-
sitional variables extending the propositional variables PV(v) with fresh vari-
ables from the set PVY C PV (la € PVY represents a subformula o of v,
p € PV is denoted by [, for simplicity of notation, but we do not introduce a
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new literal). Let us define a function properClauses : F — 2¢ assigning to every
non-propositional subformula of v a set of clauses (we show the case of propo-
sitional variables and conjunction, the remaining ones can be found in [PG86]):

true for v € PV,

(o Valy) A(lgV=ly) A(ly vV —olg V—lg) for v =a A B,
(1)

Let PVC(Q) denote the literals introduced by the translation of o. The function

toCNF : F — 29 is defined as follows:

true for v € PV,

toCN F(a) A properClauses(y) for v = —a,

toCN F(a) A toCNF () A properClauses(7)

for Y=o Nﬂa and ~€ {\/a/\a g a<:>}

properClauses(y) = {

toCNF(v) = (2)

For any assignment A of toCNF(«), for every subformula a of ¢, if
A(toCNF(a)) = 1, then we have A(f8) = A(lg) for every subformula 8 of «
(in particular, A(a) = A(ly)). @ € F is satisfiable iff the formula toCN F(a) Al,
is satisfiable.

Davis-Loveland-Logemann (DLL) SAT algorithm
The DLL algorithm forms the basis input: x =

for most modern SAT solvers. Prac- toCNF(p) Al
tically efficient implementations ap- ded.uce();
peared about three decades after in- while {rue do

d=d+1;
if decide() =
ALL-ASSIGNED
then

return A;

venting the theoretical framework,
providing clever solutions of key op-
erations: variable decision (VD),
Boolean constraint propagation
(BCP) and conflict-based learn- .
ing (CBL). It is based on a DFS if deduce() =

search through the space of as- CONFLICT then

signments, taking advantage of ad- (d’ c) =
Lo . diagnose();
vanced optimization and implemen- .

. . if d =0 then
tation techniques. Alg. 1 presents return {:
the generic SAT(). The formula ¢ - '
to be checked is given in the CNF erise( ); .
form. Below the main parts of the X =xAa
algorithm are briefly explained: Algorithm 1. SAT(y)

(VD) The search is driven by assigning a logical value to a free variable
chosen by decide() (when no free variables, ALL-ASSIGNED is returned). Many
heuristics were proposed to this aim. The decision level is the number of decided
variables in the current assignment.

(BCP) BCP efficiently propagates every assigned variable, in order to iden-
tify unit clauses, i.e., the clauses of one unassigned literal only and the other



162 M. Szreter

literals evaluating to 0. Obviously, a clause composed of one unassigned literal
is unit. An unassigned literal in a unit clause must be assigned 1 in order for the
formula to be satisfied. If for some variable, BCP implies both logical values of
0 and 1, a conflict is detected.

(CBL) CBL on the basis of a conflict assignment produces a learned clause
(added to the working set of clauses), which excludes partial assignments which
imply the current conflict. diagnose() identifies a partial assignment responsible
for the conflict, returns a learned clause and computes the decision level to
which the search backtracks. erase(d) unassigns the variables assigned at the
levels greater than d.

The above procedures are repeated until either a satisfying assignment is
found or a conflict occurs at the level 0 (not dependent on any decision). Imple-
mentation details can be found in [MMZ"01].

2.2 Models of Systems

A Kripke structure is a triple K = (S, s°, —), where S is a set of states, s € S -
an initial state , and —C S x X x S is a labeled transition relation for same
fixed set X' of actions. Elements of — are called transitions. Given a set of
propositional variables PV, a model for a Kripke structure K is a pair M =
(K,V), where V : S — 2PV is a labeling function. We call V (s) the valuation
of the state s € S.

Some actions of the modeled system can be not relevant from the point of
view of tested properties. a € X' is a label of invisible transition, if for each pair
of states s, s’ such that s — s’, we have V(s) = V(s'). We say that e €— is
enabled in s € S if 35’ € S s.t. e = s — &, and by enabled(s) C X we denote
the set of actions labeling transitions enabled in s. A path in K is a (finite or
infinite) sequence m = s — s3 — ..., where sg,s1,... € S. We use the
standard notions related to paths. A state s € S is reachable, if there is a path
in the model from s° to s. The set of all reachable states of C is denoted by
Reach.

A set of structures can be used to model a concurrent system, with every
structure modeling a process. These structures can be composed into a global
(product) structure by a standard multi-synchronization approach: the transi-
tions that do not correspond to a shared action are interleaved, whereas the
transitions labeled with a shared action are synchronized. Also the valuation
function is extended, with disjoint sets of labels in components. The detailed
definition is given in [PWZ02] (for more general case of timed automata).

2.3 Bounded Model Checking of Reachability Properties

Let M = (K,V) be a (possibly product) model of a system, and let ¢ € F
over the set of propositions labeling states of IC be a reachability property. For
v € PV(p) and a state s, we say that v is satisfied in s iff v € V(). This notion
naturally extends to Boolean connectives. A reachability property ¢ is true in
M iff 3s € Reachy such that ¢ holds in s.
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Let denote by d(M) the length of the longest loop-free path in M starting
from the initial state. Formally, let 7’ be a maximal path © = sq, ..., s, with
so = s and s; # s; for i # j. Then d(M) = m. It is obvious that a state s is
reachable in M iff it is reachable on a k-path for k < d(M). BMC reachability
testing is based on this fact. A sequence w[l],..., w[n| of PV variables is a state
vector, and a function 0 : S — {1,0}9 uniquely assigns a Boolean encoding over
g = [log2(|S])] bits to every state. Let wo, ..., wy be a symbolic k-path of state
vectors representing all the k-paths in M.

The formula I5(w) encodes a state s over w, that is is satisfied in an as-
signment A iff A(w) = 6(s). The formula T(w,a,w’) encodes the transition
a € X: it is satisfied in an assignment A iff A(w) = 6(s), A(w') = 6(5)
and s - s’. — is encoded by a disjunction of encoded actions over X:
T(w,w') =V,cx T(w,a,w') . The symbolic path representing all the k-paths in
M beginning in s° is encoded by pathy = I, (W) /\/\fz_o1 T(w;,wit+1). Concern-
ing the property to be verified, expressed by a formula ¢ € F, the propositional
formula [p](wy) encodes over the vector wy the set of states of M in which ¢
is true. For the implementations of Is(w), T'(w,w’) and [¢](w), see [PWZ02].

The formula ¢y represents a symbolic k-path, with the property ¢ satisfied
in the final state: ¢ = pathy A [@](W) .

Lemma 1. The formula i is satisfiable iff there is a k-path m = sg, ..., Sk in
M, with sg = s° and ¢ is satisfied in sy.

BMC encodes @y, for k iteratively increased from 1 to d(M) and tests for satis-
fiability. If this formula is satisfied, the property ¢ holds in the system, and the
algorithm stops, otherwise the property is diagnosed to not hold in the system
if the diameter is reached. The important problem of detecting the latter fact is
not discussed in this paper.

3 Selective Search in BMC

In this section the main ideas of the paper are presented. First, we introduce
functions describing the structure of the formula ¢y. Secondly, SAT() (Alg. 1)
is extended to SAT-DFS-1 (partial DFS, [Str00]), SAT-DFS-2 (full DFS) and
finally to SAT-POR using a selective search. The idea of selective search is that
when checking the property in the state s of a model M = ((S,s",—),V) of
a concurrent system, instead of exploring all the transitions corresponding to
enabled(s), a subset ample(s) C enabled(s) suffices to determine whether the
property holds.

3.1 Assigning the Structure Information to ¢y

Depth on search path. We assign a depth on the symbolic k-path to the
subformulas of ¢y, as well as to the clauses and variables of toC N F(¢y):
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o subformulas of ¢, The partial function depth : F — 2N assigns to every
subformula « of ¢} depths® on the symbolic path encoded by o

depth(a) = {k | a is a subformula of [p](wy)} U
{i| o is a subformula of T'(w;_1,w;), for a ¢ w;_1} U

{0 | for the remaining subformulas of y}.

The last case includes the formulas I (wyg), /\i:o1 T(wi,wit1)?, pathy and
pathi A [p](wy) Notice that each subformula of ¢ may have at most two depths
assigned (because ¢y, is defined over vectors w; as propositional variables, a sub-
formula can encode at most both postcondition of some action and precondition
of another action at some depth); moreover, depth(v) = {i} for each v € w;.

o clauses of toCNF(¢r) In toCNF(a) (p. 161) we applied the function
properClauses assigning to every subformula of « a set of clauses. Because every
clause of toC N F(«) is generated by exactly one formula, we can also define the
function properClauses™ : C — F.

We define the partial function depth® : C' — 2V assigning to a clause of
toCN F () depths of the formula which generated this clause:

depth® (c) = depth(properClauses 1 (c))

A partial function depth clauses : N — 2¢ returns the clauses associated with a
depth: depth clauses(i) = {c € toCNF () | i € depth®(c)}.

o variables of toC'N F'(ir,) The function depth assigns depth on the symbolic
path to the variables of PV(pr) = Ug<;< Wi (these variables are subformulas

of ¢1). Now we extend depth() to the literals of PV (pp):

depth(l) = {d | (3¢ € toCNF(g)) | € ¢ and d € depth®(c)}

A function CNF vars : N — 2PV associates with each depth the clause vari-
ables occurring in the clauses of this depth. Formally CNF vars(i) = {v €
PVY | (3¢ € C) ¢ € depth clauses(i) and v € ¢}. A function depth vars :
N — 2PV<(ew) gives the variables associated with a depth: depth vars(i) =
w; UCNF vars(i).

Encoded actions of a depth in the path. Given a depth on the search
path, we define functions assigning to subformulas, clauses and variables actions
encoded by these, in way analogous as we did for depths:

o subformulas of ¢ The partial function action : F x N — 2% assigns the
encoded actions to the subformulas of ¢y:

action(f,i) ={a | B is a subformula of T'(w;_1,a,w;)} for 1 <i<k (3)

! The notion of depth should not be confused with the decision level (Alg. SAT())
representing the number of decision variables in the current assignment (see p. 161).
2 But not the formulas T(Wi, Wit1).
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Notice that for variables v € w;, action(v,i) = X, because for every a € Act,
the formula T(w;, a, w; 1) is defined over both w; and w;41.

o clauses of toCNF(px) We define a function action® : C x N — 2¥ as
follows:
“

action® (c,i) = action(properClauses™*(c), )

A partial function action clauses : X x N — 2¢ returns the clauses encoding an
action a at the depth i: action clauses(a,i) = {c € C | a € action®(c,i)}.

o variables of toCNF () State variables of ¢ have actions already as-
signed, because are subformulas of ¢;. We extend the function action to the
literals of PV (py):

action(l,i) = {a | (3¢ € toCNF(py)) | € ¢ and a € action®(c,i)}

A function action vars : PVC xN — 2% assigns actions to variables. Formally for
v e PVY, action vars(v,i) = {a € ¥ | (3¢ € O) action®(c,i) = a and v € ¢}.

3.2 SAT Algorithms Using Formula Structure Information

Now we present algorithms extending SAT() (Alg. 1) by making use of the
structure information concerning ;. We give general ideas with only preliminary
implementation techniques, so there is much space for improvements.

SAT-DFS-1: variable decision. [Str00] discusses many changes to the gen-
eral SAT algorithm. A step towards DFS by changing the order of free variable
selection proved to be successful. The standard procedure decide() can result in
stepwise construction of the fragments of the path, which may lead to a con-
flict because these parts do not respect the transition relation. So decide() is
changed: a variable currD € [0, k] represents the smallest depth on the symbolic
path such that for 0 < ¢ < currD, every variable from the set depth var(i) is
assigned. The correct value of currD is maintained: increased after assigning the
last variable of the current depth and decreased after backtracking, if necessary.
The modified procedure decide df s() chooses an unassigned variable from the set
depth vars(currD). It suffices to decide only state variables of Weyrrpt1, the
remaining ones are implied.> The experimental results given in Sect. 5 confirm
the claim of [Str00] that SAT-DFS-1 alone improves the overall performance.
For us, however, it is a prerequisite for application of a selective search.

SAT-DFS-2: postponing deduction. SAT-DFS-1 implements a partial DF'S,
because is restricted to VS. In Fig. 1 it is depicted a fragment of a symbolic path
..., W1, Wa, W3, .... Braces at the left side represent the depths assigned to sub-
formulas. Gray fragments depict subformulas already assigned. Fig. a) shows

3 Notice that the depth assignments of the variables of depth vars(0) are determined
by the encoding of the initial state, so there is no variable decision on this depth.
When there is no free variable of Weyrrp41, currD is incremented.
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that (assuming currD = 1) deducing clauses of currD > 1 may lead to as-
signments which must be withdrawn when there will be no assignment of wo
consistent with the transition relation. SAT-DFS-2 (Alg. 2) extends SAT-DFS-1
by restricting deduction to clauses of depth® (currD) and performing postponed
deductions after increasing currD. Our solution is to stepwise extend the search
to clauses and variables encoding consecutive depths. In Fig. b), having assigned
the depth 1, the search proceeds at the depth 2. After completing it (Fig. c)), the
postponed deduction is performed in order to assign the variables and clauses
of the depth 3 induced by assigned variables of lower depths (notice that some
variables may already be assigned, namely those encoding two depths).

Fig.1. a) deduce() not restricted to currD, b) deduce() restricted to currD = 2,
c) postponed deduction after increasing currD to 3

¢ deduction restricted to the current depth — deduce dfs(). A clause
c € toONF(py) is taken into account by BCP iff currD € depth®(c). Learned
clauses are never ignored. Notice that no depths are assigned to learned clauses
and to literals on the basis of learned clauses.

An assignment stack is a data structure used by the solver: it contains vectors
of variables assigned at all the levels; first element is a decision variable for every
level with the exception of level 0 where all variables are implied by unit clauses.
In SAT(), the stack grows only at the current level. The consequence of the
above deduction scheme is that it can grow at all decision levels when performing
postponed deductions. This is shown in Fig. 2 for an example system®. The path
depth 1 is completed after deciding the variables vy, vy and vs (these decision
variables imply further assignments, possibly conflicts happen and are resolved).
The subformulas of depths 2 and 3 are uniquely determined by decision variables
of the depths 0 and 1, possibly because some learned clauses were added earlier.

For the use in backtracking, we maintain the information how are depths
and levels related in the current assignment: first, a function init Depth : N — N
assigns to each level the value of currD when the level was initiated. Secondly,
for every initiated depth we maintain the size of the search stack at all levels:
the function né gives the number of assigned variables for the level ¢ when the
depth j was initiated.

4 Notice that all the variables of the depth 0 are implied without a decision, because
the initial state s°, uniquely determines assignments of wo variables.
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o postponed deduction — PostponedDeduction(). As soon as currD is
incremented, it is checked whether some clauses of the new depth are unit or
conflicting. This is done by re-assigning already assigned variables beginning
from the decision level 0, so that each implied variable is assigned at the depth
of this implication. If a clause is found to be unit, the implied variable is assigned
at the maximal search level of literals in the clause. For example, if the clause
(v1 Vg Vug) is unit because vy is assigned at the level 1 and v is assigned at the
level 2, vs is implied at the level 2 — when re-assigning vy, the unit implication
waits for vo to be re-assigned.

decision
. . level: :path depth: 0,1 2 3
o conflict analysis — P o
- . A1 L 3
diagnose dfs(). If during the post- 0 [TT11] [
poned deduction a conflict occurs
. . . . 1 T
when re-assigning a variable assigned n2 s
.. 1 vl
at the decision level n smaller than MLTT T ,‘ - [ T[]
L. initDepth(1) =0
the current decision level, we set the , 2/
o . . . 1 n
decision level to n (erasing variables ] ‘ [ initDepth(2) =0

assigned at depths bigger than n,
that is executing erase dfs(n + 1)). i = nd

Moreover it can happen that con- 3 LT[ TT] nitDepth(3)=0
flicting implied literals (v and -w

for some variable v) are assigned at —
different decision levels. In such a

case, we perform the conflict analysis
on the higher level. path depths. Variables assigned at

Fig.2. Assignment stack with
currD € {2,3} are shown in gray.

o backtracking — erase df s(). When returning to the level i, we reduce the
path depth to ¢ = initDepth(i), unassigning all the variables assigned at levels
greater than i, and for every level j < i, variables assigned after nJ. We reduce
the number of conflicts in this way, because variables corresponding to depths
greater than ¢ are removed from the assignment stack.

For example in Fig. 2, assume that a conflict occurs at the level 3 for
currD = 3, and the search returns to the level 2. The path depth is reduced to
initDepth(2) = 0 and the variables assigned at levels 0, 1 and 2 corresponding
to depths 2 and 3 can be withdrawn (in gray in the figure), resulting in smaller
numbers of conflicts.

SAT-POR: selective search. SAT-POR (Alg. 3) extends SAT-DFS-2 by
processing only variables and clauses of ¢}, relevant not because of the basis of
depth, but also the encoded actions, with subset of relevant actions chosen by
the selective search.

o selective search — CalculateSelected(). The selective search is in-
troduced: after incrementing currD, the assignments current assignment A
of Weurrp—1 determines the global system state scurrp—1 (i€ Scurrp—1 =
0~ Y (A(Weurrp—1)). Below we describe how the search is reduced to formulas
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encoding the actions from the reduced set selected(currD) C X, choosen by the
selective search selected(currD) = ample(Scurrp—1)- °

o deduction restricted to selected actions of the current depth —
deduce por(). The aim is not to consider clauses and variables encoding only
ignored actions. Thus BCP considers a clause ¢l iff either

— action(cl, currD) N selected(currD) # B (clause encodes some selected ac-
tions), or

— action(cl, currD) = § (clause does not encode actions at all - it may encode
the reachability property ¢ or disjunction of formulas encoding actions).

Learned clauses are treated in the same way as in deduce df s().

input: x = toCNF(pr) Aly,
deduce por();
while {rue do
d =d+1;
if decide dfs() =
ALL-ASSIGNED then
if currD =k then

input: x = toCNF(pr) Aly,
deduce df s();
while true do

d=d+1;

if decide dfs() =

ALL-ASSIGNED then return A;
if currD =k then currD = currD + 1;
return A; CalculateSelected();
currD = currD + 1; RestrictT();
PostponedDeduction(); PostponedDeduction();

if deduce dfs() =
CONFLICT then

(d’ cl) =

diagnose df s();

if d =0 then return

0;
currD = erase df s(d);
X =XAc

if deduce por() =
CONFLICT then

(d’ cl) =

diagnose por();

if d =0 then return

0;
currD = erase df s(d);
X=XANa;

Algorithm 2. Alg. SAT(¢y)
implementing BMC-DFS-2

Algorithm 3. Alg. SAT (py) im-
plementing DFS-POR

o variable decision — decide dfs(). In order to comply with the general
reduction rule no variables encoding only ignored actions should be decided.
The simplest solution is to choose only variables of Wey--p (the same as in
SAT-DFS-2).

o restricting transition relation — RestrictT (). Assume that the depth
currD = 1 is completed and currD = i + 1 is to be explored. In order to
restrict the search to selected actions the formula T'(w;, w; 1) is substituted with

® Notice that a reduction is obtained even without applying the selective search,
namely disabled actions are ignored: selected(currD) = enabled(ScurrD—1).
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Trea(Wi, Wit1) = \/aESelected(i) T(w;,a,wit1). We remove from the working set
X the clauses of toCNF (T (w;, w;+1)) and add ones of toCNF (Tyeq(Wi, Wit1)),
we also add the clause (I7,_,(w, w.;.))- The above clauses are removed when
backtracking to the depth i. Removing and adding clauses is a costly operation
and a more advanced solution should be applied.

o conflict analysis — diagnose por(). SAT-DFS-2 worked with all the vari-
ables and clauses, changing the order of exploration. SAT-POR chooses relevant
variables and clauses depending on the current assignment. The consequence
is that the conflict analysis must be extended, because some decision variables
although not present in a learned clause, may implicate the resolved conflict
(states on the path and ample set selection depend on them). We applied the
very simple solution: substituted a search-based learned clause generation al-
gorithm with returning disjunction of all the decision variables negated with
respect to their assignment. In this way the learned clause is always associated
with sets of actions selected when the conflict occurred.

4 Partial Order Reductions

So far we used an abstract notion of a selective search. Now we apply the well
known approach of partial order reductions.

In the interleaving semantics the executed actions are interleaved in all possi-
ble ways. The method consists in constructing a reduced state graph, potentially
smaller than the full state graph. Usually algorithms choosing ample sets are
characterized conditions which must be fulfilled in order to preserve the required
class of properties. For preserving reachability, the following conditions suffice:
[CGMP99]

— CO (Emptiness): ample(s) = 0 iff enabled(s) = 0.

— C1 (Faithful decomposition): for every path starting from the state s,
a transition that is dependent on some transition in ample(s) cannot be
executed before a transition from ample(s).

— C2 (Cycle closing): for every cycle in the reduced state space there is at
least one fully expanded node.

— C3 (Visibility): if ample(s) contains a visible transition, then the state s
is fully expanded, that is ample(s) = enabled(s).

Combining BMC and POR. Let ¢; encode the BMC problem introduced
above and be tested by SAT-POR. Because the search for a satisfying assignment

is performed in DFS mode, the current assignment of vectors wo, ..., WeyrrD
always determines a path s, ..., Scurrp Of the model. In CalculateSelected(),
C2 is checked on the path sq,...,Scurrp While the remaining conditions are

calculated with respect to Scyrrp.
Concerining invisible actions, we restrict the notion of invisibility only to
propositions occurring in the reachability property.
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5 Experimental Results

The DLL algorithm outlined in Alg. 1 has been implemented in many solvers.
We implemented the described algorithms into ZChaff. Verics [NNP*04] BMC
module was extended in order to provide necessary information. Our experi-
ments were performed on a Linux machine with 600 MHz clock and 256 MB
memory. The following parameters are given: n is the number of processes, k
- path length, and L1, Lo denote the number of local transitions added to the
model sequentially to the local transitions, in order to show how increasing the
effectiveness of the selective search influences the effectiveness of the BMC al-
gorithm. M L is maximal search level, and ND, NI, NC and NL are numbers
of variable decisions, implications, learned clauses added and literals in learned
clauses, respectively.

5.1 Mutual Exclusion Benchmark (Table 1)

The system consists of n 4+ 1 automata modeling n processes P; and a shared
variable X coordinating exclusive access to the critical resource (Fig. 3).

enterl

Can®

idlel enterl

enter2

crity
Processl Shared Variable

Fig. 3. Simplified Fischer’s mutual exclusion (left), Dining Philosophers (right)

The following reduction is applied: if a local transition is enabled, it is choosen
as a singleton ample set. CO is trivially satisfied. C1 holds, because every local
action is the only one locally enabled in a component state, and it cannot prevent
from executing any other action. C2 holds because every cycle in the reduced
space involves a state where for all processes no local action is enabled, thus all
actions enter are in the ample set. C3 holds because processes enter end exit
their critical sections by synchronous transitions.

Property describing unreachable states. Our simple mutex system is cor-
rect, as it guarantees that no pair of processes is in their critical sections. In states
violating this property the following formula is satisfied: ¢! = \/1§i,j§n,i;£j crit; A
crit;.

Property describing reachable states. The formula ¢? = crit; represents
global states in which P; is in its critical section. In the full model, the state in
which ? holds, is reachable with two transitions, namely P, performs try and
enter. In the reduced model, the state is reachable by n + 1 transitions, because
the reduction first chooses the try in all the processes and only then enter
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becomes selected. DFS-POR is slower than the other algorithms, but for the
same instances of ¢y less operations are executed. In the satisfying assignment
found by DFS-POR, 467 of 1282 variables remain free.

Exploring the model’s diameter. In order to consider a reachability property
true only in the last state of every path of model depth we have modified the
system by cutting cycles (dashed line) and adding an additional state s4 so that
the action idle leads from the state s3 to s4. The proposition final is true in sy
and the property ¢® = /\?=1 final; expresses that all the processes reach their
final states. This state is reachable by a path of the length equal to the diameter
and is on top of all the "diamonds” formed by independent actions - so we can
relax C3 and choose a visible transition leave to ample sets.

Table 1. Time bold—formula SAT, numbers in exp notation rounded

SAT DFS-SAT-1 DFS-POR
k ML/ND NI NC/NL  time ML/ND NI  NC/NL time ML/ND NI NC/NL time

@', n =4, L1/Ly =0/0,d(M) = 16

2 8/50 3068 33/367 0.004 9/15 1632 15/166 0.002 0/0 135 0/0 0.006
4 15/541 63059 356/5618 0.065 19/101 14573 102/1671 0.012 0/0 213 0/0 0.013
8 28/7730 1.8e6 6697/3.3e6 5.07 39/558 1.4e5 545/1le4d 0.13 3/8 1791 5/9 0.12
12 32/5.5e4 1.7e7 4.9e5/4.6e6 129 59/1106 5e5 1084/2.2e4 0.57 6/37 7088 25/85 0.83
16 39/3.6e5 1.3e8 3.4e5/ 4.8e7 1987 79/1644 1.1e6 1604/3.5e4 1.58 9/153 28548 105/549 5.171
@'yn =3, L1/Ly =2/0,d(M) =18

17 46/1.6e4 5.4e6 12499/7.6e5 16.62 67/955 6.7e5 922/2.1e4 0.85 4/25 8105 16/36 1.3

18 52/3.5e4 1.3e7 2.9e4/2.5e6 63 71/1027 7.7e5 990/2.3e4 1 4/25 8422 16/36 1.49
!, n =3, L1/Ly =2/2,d(M) = 24

22 > 300 87/2095 2.3e6 2025/6.0e4 4.06 4/25 11022 16/36 2.5
24 > 300 95/2316 2.9e6 2257/6.9e4 5.24 4/25 1.5e4 16/286 4.77
2, mn=3,L1/Ly=0/0

2 5/9 311 1/5 0.001 2/3 315 2/16 0.001 0/1 72 0/0 0.02
3 0/2 100 0/0  0.06
4 0/4 164 0/0  0.13

@3, n=4, L1/Ly =0/0,d(M) =16
15 38/8.1ed 3.0e7 T7.3e4/9.2¢6 255 54/1325 9.2e5 1160/3.6e4 1.15 9/231 27201 65/414 3.83
16 38/468 48029 164/2096 0.05 48/49 3071 0/0 0.01 9/12 1125 3/20 0.11

5.2 Dining Philosophers Benchmark (Table 2)

The benchmark models n (n > 2) philosophers Ph; sitting around a table (Fig.
3), with n forks F; lying between them. The actions ¢; and b; model taking and
laying back the i-th fork, respectively. The reduction consists in choosing a single
enabled local action to an ample set or taking all enabled actions. The reduction
conditions hold with the same explanation as in the previous example, because
the structures of systems are similar (processes with local actions form cycles).

Property describing unreachable states. The unreachable property ¢* =
\/ZL:1 eats; N\ eats(i11) mod n 15 satisfied in states where a pair of neighbour
philosophers eats simultaneously.

An interesting phenomenon can be seen for n = 4,L;/Ls = 2/0. For k <
12, only local transitions of philosophers are selected to singleton ample sets.
DFS-POR profits on it, as no variable decision occurs and the unsatisfiability is
diagnosed without adding learned clauses.
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Property describing reachable states. ¢° = Vicij<n.izj €alsi A eats; is
satisfied when a pair of philosophers eats simultaneously. Provided that they are
not neighbours, this does not violate the mutual exclusion.

Exploring the model’s diameter. Similar to the case of mutual exclusion, we
examine a reachability property satisfied only by path of the full model depth.
The system is modified by cutting the cycle in P; (dashed line) and adding s3
so that the action b; leads from ss to s3. The proposition final is true in s3 and
the property ¢% = /\ZL:1 final; expresses that all the philosophers reach their
final states.

Table 2. Time in bold-formula SAT, numbers in exp notation rounded

SAT DFS-SAT-1 DFS-POR
k ML/ND NI NC/NL  time ML/ND NI NC/NL  time ML/ND NI NC/NL time
@t n =4, L1/Ly =0/0,d(M) =12
11 43/1.2e4 4.6e6 6.5e4/6.1e5 13.175 96/731 2.7e5 565/1.0ed 0.27 22/231 3.4e4 321/3384 4.68
12 51/1.6e4 6.8¢6 1.4e4/9.5e5 21.8 105/811 3.1e5 634/1.2e4 0.345 27/789 7.6e4 789/9931 10.9

@t n =4, L1/Ly =2/0,d(M) = 20

4 15/276 2.3e4 112/993 0.02 41/160 2.1e4 110/1883 0.02 0/0 344 0/0 0.02
12 52/9354 3.4e6 6919/3.8e5 8.2 129/2524 1.5e6 2116/6.1e4 2.43 0/0 883 0/0 0.11
13 57/1.0e4 4.3e6 7870/4.6e5 10.6 140/2886 2.0e6 2454/7.3e4 3.4 4/6 3779 6/12 0.51
20 97/6.3e4 3.4e7 5.2e4/6.0e6 165 217/5423 7.6e6 4771/1.6e5 17 20/260 3.2e4 260/2647 8.2
@t n=4,L1/Ly =2/2,d(M) = 28

26 >2000 283/1.8e4 3.5e7 1.6e4/7.3e5 109.5 20/218 5.9e4 218/2077 18.8
27 >2000 294/1.9e4 4.0e7 1.7e4/7.8e5 124.8 22/362 1.0e5 362/3734 35.11
28 >2000 305/2.1e4 4.4e7 1.8e4/8.3e5 139.1 24/890 2.7e5 890/9338 98.8

@5, n=4,L1/Ly =0/0

2 6/36 2991 25/145 0.005 15/25 2471 18/168 0.002 0/0 171 0/0 0.
4 15/80 6040 31/216 0.007 33/43 2130 13/100 0.003 0/0 276 0/0 0.
6 3/3 607 1/3 0o
% n=4,L1/Ly =0/0, d(M) = 12

11 42/8695 3.3e6 7318/4.0e5 7.74 45/637 2.8e5 483/11696 0.28 14/533 6.3e4 210/1136 9.35
12 46/727 3.4e4 104/986 0.04 45/46 2543 O/O 0.009 7/11 1211 4/20 0.16

% n =4, L1/Ly =2/0, d(M) = 20

15 58/4.1e4 2.5e7 3.7e4/4.3e6 120 96/3263 2.7e¢6 2788/1.1e5 4.74 9/42 8506 22/95 1.3
19 >500 98/3629 5.4e7 3208/1.2e5 9.42 13/611 1.leb 254/1523 23.4
20 78/2106 2.4e5 563/7479 0.33 90/91 5503 0/0 0.025 9/13 1957 4/24 0.38

6 Conclusions and Future Work

For almost all examined unsatisfiable formulas DFS-POR reduces the number of
implications, decided variables and conflicts in the case of unsatisfiable formulas
comparing to SAT and SAT-DFS-1. The differences are often significant. The
running time is better comparing to SAT and in some cases better comparing
to SAT-DFS-1. It can be observed that the effectiveness of SAT-POR depends
on the scale of reduction provided by the selective search. Moreover, the solver
implementation is highly optimized and the presented ideas also require ad-
vanced optimizations — mainly restricting the transition relation and performing
postponed implications. The preliminary results justify further work. Not only
can the time usage be significantly reduced, but also the algorithm efficiency
parameters (e.g. number of blocking clauses) can be improved.

For satisfiable formulas SAT and SAT-DFS-1 perform better - in particular,
find counterexamples on shorter paths. Our approach is aimed at improving the
overall effectiveness of BMC, where testing unsatisfiable formulas is the major
bottleneck.
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Future Work. A natural question is whether can the presented approach be
used for richer specification languages. While extending it to LTL seems to be
possible (only one symbolic path is encoded), it is doubtful in the case of ACTL —
more than one symbolic paths are encoded and partial order reductions are less
effective.

A couple of possible research directions can be proposed based on the con-
nection we made between the problem and its propositional formula encoding. It
is worth considering other selective search algorithms (sleep sets, stubborn sets,
symmetry reductions).
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Abstract. A major technique to address state explosion problem in
model checking is abstraction. Predicate abstraction has been applied
successfully to large software and now to hardware descriptions, such as
Verilog. This paper evaluates the state-of-the-art constraint logic pro-
gramming (CLP) techniques to improve the performance of predication
abstraction of hardware designs, and compared it with the SAT-based
predicate abstraction techniques. With CLP based techniques, we can
model various constraints, such as bit, bit-vector and integer, in a uni-
form framework; we can also model the word-level constraints without
flatting them into bit-level constraints as SAT-based method does. With
these advantages, the computation of abstraction system can be more
efficient than SAT-based techniques. We have implemented this method,
and the experimental results have shown the promising improvements on
the performance of predicate abstraction of hardware designs.

1 Introduction

Formal verification techniques are widely applied in the hardware design indus-
try. Among the techniques, model checking [1], is the widely used one. However,
model checking suffers from state explosion problem. Therefore, abstraction tech-
niques, which can reduce the state space, have become one of the most important
techniques for successfully applying formal methods in software and hardware
verification. Abstraction techniques reduce the state space by mapping the set
of states of the actual, concrete system to an abstract, and smaller, set of states
in a way that preserves the relevant behaviors of the system. In the software
domain, the most successful abstraction technique for large systems is predicate
abstraction [2]. In the hardware domain, the mostly used localization reduction
is a special case of predicate abstraction.

Traditionally, predicate abstraction is computed using a theorem prover such
as Simplify [3] or Zapato [4]. The typical techniques and applications can be
found in [2], [5], [6], [7], and there are some typical tools such as SLAM 8],
BLAST [9] and Magic [10].

* This work is supported by the National Science Foundation of China (NSFC) under
grant No. 60403048 and 60303013.

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 174-186, 2005.
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In hardware domain, the SAT based abstraction method is first proposed
n [11]. Then, [12] proposed SAT-based predicate abstraction techniques, and
applied it to the verification of ANSI-C programs. The main idea is to form
a SAT equation containing all the predicates, a basic block, and two symbolic
variables for each predicate, one variable for the state before the execution of the
basic block, and one variable for the state after its execution. The SAT solver is
then used to obtain all satisfying assignments in terms of the symbolic variables.
In [13], the method has been applied for word-level predicate abstraction and
verifying RTL Verilog.The technique has also been applied to SpecC [14], which
is a concurrent version of ANSI-C used for hardware design.

However, there are some limitations when using theorem prover and SAT
for predicate abstraction. Firstly, theorem prover based method has to call the
theorem prover many times during abstraction, which will make the abstrac-
tion process inefficient. Secondly, theorem provers model the variables using
unbounded integer numbers. Overflow or bit-wise operators are not modeled.
However, hardware description languages like Verilog provide an extensive set of
bit-wise operators. Thirdly, although SAT based method can only call the SAT
solver one time during abstraction, it has to flatten the word-level constraints
into bit-level constraints to model word-level variables and operations, which
will lose most word-level information and the runtime of this process typically
grows exponentially in the number of predicates.

In this paper, following the work of [13], we focus on applying constraint logic
programming (CLP) [15] to predication abstraction of RTL Verilog descriptions,
especially using CLP to solving the abstraction computation constraints obtained
from circuit model and predicates. First, we build the formal model of the cir-
cuit using decision diagrams (DD) models [16] extracted from Verilog descriptions.
Then following the method proposed in [13], we convert the abstraction compu-
tation formula into CLP constrains and apply CLP solver to solve them.

The advantage of CLP-based method is: Firstly, it can model bit, bit-vector
and bounded integer in a uniform framework, and can support various arith-
metic and logic operations. Secondly, the word-level constraints are solved with
word-level information and without flattening them into bit-level constraints.
With these advantages, we can compute the abstraction model of concrete RTL
Verilog designs very quickly. Experimental results have shown that the runtime
of abstraction process grows linearly in the number of predicates. Finally, CLP
combines the expressiveness of logic programming and the constraints solving
techniques, our method bridges the gap between EDA research and the research
progress in constraint satisfaction problem and artificial intelligence area.

The rest of the paper is organized as follows. In section 2, we formalize the
semantics of the subset of Verilog that we handle and introduce how to model
Verilog descriptions using DD models. Techniques for building formal models
from DD model for Verilog descriptions are described in Section 3. In Section
4, we briefly introduce the SAT-based predicate abstraction with the help of an
example. Techniques for translating word-level abstraction constraints into CLP
constraints are given in Section 5. We report experimental results in section 6.
Finally, we conclude the paper in section 7.
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2  Verilog Modeling

The Verilog subset supported in this paper is the same as that used in [13]:
synthesizable Verilog with one single clock clk. We assume the clock is only used
within either posedge or negedge event guards, but not both. We also assume
that every variable is assigned values only at one place in the description.

Here, we first give the definition of DD model according to [16] with minor
modification.

Definition 1. In the general case, a DD that represents function y=F(X) is
a directed, non-cyclic graph G,=(M, I', X) with set of nodes M, single root
node mg €M, and relation I" in M, where I"(m)C M denotes the set of successor
nodes of m. Non-terminal nodes m for I"(m)#() have variables z; €X as labels.
Terminal nodes m for I'(m)=0 have variables z;, functional sub-expressions of
F(X), or constants as labels. Let z(m) be the label of node m. In graph G, for
all non-terminal nodes m for which I"(m)#£(, a one-to-one correspondence exists
between the values of label variable z(m) and the successors, my € I"(m) of m.

Definition 2. Let m® € I'(m) denote the successor of m that corresponds to
value z(m)=0 and m' € I"(m) denote the successor that corresponds to value
z(m)=1. We call an output edge from m to m¢, e€0, I, activated when label
variable z(m) has value e. A path in DD model is activated if all the edges
forming this path are activated. A DD model is activated to the value 0 (or 1) if
there exists an activated path that includes both the root node and the terminal
node labeled by the constant 0 (or 1).

Definition 3. A DD model G, with nodes labeled by variables z1, z2, , =,
represents function y=f(z)=f(x1, x2, , x, ), if for each pattern X, the DD model
will be activated to the value m! that equals .

Definition 4. A collection of DD models G(S)=G, represents a digital system
S=(F, N), if for each function y=f(z) included in F, there exists a DD model
Gy. G(S)=G, is called the DD model of digital system S.

According to the above definitions, we can build DD model for each variable
or signal in the designs. The root node of the DD model is the variable or signal it
is built for, while the terminal nodes are the expressions assigned to the variable
or signal. The non-terminal nodes are the control conditions and statements
that guard these assignments, which include if, case and loop statements, etc.
For our convenience, we do some preprocessing before building DD model, such
as translating case statement into a series of ifelse statements.

Figure 1 gives a Verilog design example which was cited from [13], and the
corresponding DD models for the variables used in it. The example and the
DD models will be used in the follows descriptions. In the DD models showed
in Figure 1, the ellipse nodes correspond to the assignment statements in the
Verilog description, the rectangle nodes correspond to the condition statements,
and the most-left circle node is the root of the DD model. Readers can refer to [17]
for the detailed algorithm for extraction of DD model from Verilog description.
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module main(clk);
input clk;
reg [7:0] x, y;

initial x = 1;
initial y = 0;

always @ (posedge clk) begin
y<=X;
if (x<100) x <=y +x;

end

endmodule

®—> x <100 E . Nix

T Ny + x

Fig. 1. Verilog example and the corresponding DD models

3 Formal Semantics of Verilog

We use the following formalism to model the concrete circuit: A transition system
T=(S, I,R) consists of a set of states S, a set of initial states ICS, and a transition
relation R, which relates a current state s€S to a next-state s’€S.

For different Verilog language constructions, we can build the formal model
using different methods based on the corresponding DD models.

3.1 Continuous Assignment

The variable of wire type in Verilog can only be assigned by only one continuous
assignment. Let w; be the wire that is assigned by the #-th continuous assignment,
and e; the value that is assigned. If A denotes the semantics of continuous
assignment, we have A:=/\ (w;=e;). The formula can be obtained by traversal

the DD model for w;.

3.2 Initial and Always Statements

The statements in the initial blocks define the initial values of states, while
the statements in the clock events guarded always blocks define the transition
function (next state function) of the states. For the always blocks that do not
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be guarded by clock events, they define combinational circuits, which will not
generate state latches. We can examine the trigger events for each always block
to distinguish sequential and combinational logics. When extracting DD models
for variables and signals from RTL Verilog descriptions, we can distinguish the
two cases by attaching tags on the root nodes. For example, for the DD models
in Figure 1, the tag “I” attached to the root node means that this assignment
is initial values, while tag “S” means that this assignment is in clock event
guarded always block. Similarly, the tag “C” not appeared in the example means
assignment in combinational always block.

3.3 Finite State Machines Representation

The notion we used here is mainly cited from [13] with minor modification. Let
V denote the set of variables, as given in the Verilog file. Let LCR denote the
set of state variables. The set of states S of the state machine is then defined
to be: S:={0, 1}|L|. For a state s€S, we denote the value of an expression e in
that particular state by s(e). The set of variables that are not state variables is
denoted by C: C :=V - L.

We define the notion of a process state to define the semantics of the state-
ments in the initial and always blocks. A process state ¢ is a mapping from the
variables r€ V into a pair of expressions. We denote the first member of the pair
by ¢.(r) and the second member of the pair by ¢¢(r). The expression ¢.(r) is
called the current value, while ¢¢(r) is called the final value of r. The two dif-
fer in order to distinguish non-blocking assignments from blocking assignments.
Non-blocking assignments only update the final value, but not the current value,
while blocking assignments update both. For an expression e, ¢.(r) denotes the
evaluation of e in the current state ¢, i.e., all variables v that are found in e are
replaced by ¢.(v).

We can also distinguish non-blocking and blocking assignments by attaching
tags on the terminal nodes. For example, the tag “N:” denotes non-blocking
assignments, while tag “B:” denotes blocking assignments. With these tags, we
can generate FSM models by traversal DD models.

Initial States: The assignments in initial blocks are used to assign initial val-
ues before execution. For these initial values, we can build formal models as
I::{3€S|T/E\Ls(r):q§§(r)}. For the example showed in Figure 1, the model for

the initial values is z=1Ay=0.

Variable Assignments: From the root node of the DD model to the terminal
nodes, when a condition node is encountered, an expression of the form “c?¢f’,
where c is the condition expression, ¢ and f denote the expression to be assigned
when the condition is evaluated to be true or false, respectively. When a terminal
node is encountered, the assignment expression is used directly. The detailed DD
model traversal algorithm can be found in [17]. The special case to be considered
is to distinguish non-blocking and blocking assignment. For the example showed
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in Figure 1, the expression generated for the z”and y’ (we will explain in “Next
States Relations”) is shown as follows:

y' =g (1)

' = ((z <100)?(z + y) : z) (2)

Next States Relations: First we can examine the tag of root node of each
DD model to distinguish variables and signals belong to set L to form the states
space from those used in combinational circuits. For the variables and signals
used in combinational circuits, we need the new value of each one to equal to the
value after assignments. Then the formal model for the combinational circuits is

defined as C:= é\cs(v):s(qbg(v)).

For the variables and signals in set L, besides generating assignments formula
as discussed above, we also need the assignment formula to build the model of
transition relations.

The transition relation R(s, s’) is defined under the constraints that for each
variable v€ L, we require that the next state value of v—denoted v*—is the final
value of v after the execution of assignments. By adding constraints for combi-
national circuits and continuous assignments, we can get the transition function
as follows:

R(s,s") = N\ s'(0) = s(@5()) A N '(0) = s(65 () A s(A) 3)

veL vel

For example, for the design showed in Figure 1, the transition relation is
defined as follows:

R(z,y,2sy") == (@' = (¢ <100)?(z +y) : 2)) A (y = ). (4)

4 Predicate Abstraction

The predicate abstraction method is the same as the method proposed in [13].
We briefly introduce the method with some modification.

In predicate abstraction [2], the variables of the concrete program are re-
placed by Boolean variables that correspond to a predicate on the- + variables
in the concrete program. These predicates are functions that map a concrete
state r€S into a Boolean value. Let B={m1, 7o, ..., m,} be the set of predicates
over the given program. When applying all predicates to a specific concrete state,
one obtains a vector of Boolean values, which represents an abstract state b. The
abstract model can make a transition from an abstract state b to b’ iff there is
a transition from r to r’ in the concrete model and 7 is abstracted to b and 7’/
is abstracted to &’. A symbolic variable b; is associated with each predicate ;.
If the concrete machine makes a transition from state r to state 7/, then the
abstract machine makes a transition from state b to b/, where &’=pi;(r’). Finally,
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let f denote the abstract machine, and R denote the abstract transition relation
of T, then R is defined as follows:

k
= {(b,0")|3r, " : /\b,-:m( YA R(r,7") /\b’—m (5)
i=1

For the example showed in Figure 1, the transition relation is

R(z,y,2',¢) = (@' = ((z <100)?(z +y) : 2)) A (¢ = ) (6)

Suppose we want to prove that the concrete system (Verilog program) showed
in Figure 1 satisfies AG(x<100). In order to perform predicate abstraction we
need a set of predicates. For our example, we take {2<200, <100, z+y<200}
as the set of predicates. We associate symbolic variables by, ba, b3 with each
predicate, respectively. Then the following equation will be generated:

(01 & (z < 200)) A (b & (x < 100)) A (bs < (x +y < 200))
AR(z,y,2",y')
Ay & (7' < 200)) A (by & (2" < 100)) A (b & (2 +1 < 200)) (7)
The equation for the initial state is:
(b1 & (x < 200)) A (b & (2 < 100))
Abs < (x+y <200)A(z=1)A(y=0) (8)

Most tools using predicate abstraction for verification use general-purpose
theorem provers such as Simplify [4] to compute the abstraction. This approach
suffers from the fact that errors caused by bit-vector overflow may remain un-
detected. Furthermore, bit-vector operators are usually treated by means of un-
interpreted functions. Thus, properties that rely on these bit-vector operators
cannot be verified. However, we expect that Verilog designs typically use an
abundance of bit-vector operators, and that the property of interest will depend
on these operations. [13] proposed to use SAT solver to compute abstraction.
However, in this method, the word-level abstraction computation formula needs
to be flattened into bit-level one, which will generate large bulk of constraints.
Especially when the division and multiplication are used in the formula, a divi-
sion or multiplication circuits will be generated to model these operations. Also,
flatten the word-level formula into bit-level will lose most functional information
related to word-level structure. Here, we propose to use CLP to compute the
abstraction system of RTL Verilog descriptions. This method can support all
Verilog bounded integer and bit-vector operators. The CLP constraints gener-
ated can be very small. Finally, the bit, bit-vector and various arithmetic and
logic operations can be solved under a uniform framework.

5 CLP Constraints Generation

We use GNU Prolog [18] as the constraints solver. For the abstraction formula
generated in last section, we first translate them into CLP constraints, and then
solve them.
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To translate the Verilog expressions into constraint equations according to
GNU Prolog format, it is necessary to consider separately the case of bits, bit
vectors and integers, because these three types belong to different domains, and
are solved in different ways.

Arithmetic operators: The arithmetic operators include addition, subtrac-
tion, (scalar) multiplication, division, shift left (right), extraction and concate-
nation, etc. The translation method must take the modulo semantics of Verilog
operators into consideration during operation.

Logic operator: For bit operators and logic compare operators, the translation
is straightforward, which only substitutes the bit-vector operators with the cor-
responding CLP predicates. However, for some bit-vector bit-wise operators, we
must model them with modulo semantics in CLP constrains without violating
their original semantics.

Bit: GNU Prolog provides various operations for bit. In this case, for each
expression involves bit type, a single GNU Prolog equation is produced. The
domain of all constraint variables used in the equations is defined as the Boolean
domain {0, 1}.

Bit-vector: If at least one variable involved in a constraint equation is a bit
vector, the situation is more complex. There are two ways that the bit vectors
involved in expression:

— Entire: The bit vector involves in computation as an entire variables. In
this case, if there are integer variables in equation, then the bit-vector will
be considered as an integer variable too. Otherwise, if there are other bit-
vectors in equation, then the bit-vector will be decomposed into bits and
generate constraints for the decomposed bits. For example, if two 4-bit bit-
vectors are involved in expression “V1==V2” then the constraint equations
generated for this express is shown as following. Vi j represents each bit in
bit-vector, where i€{1, 2} indicating the bit-vector variable, and je{1, 2, 3}
indicating the bit location in each bit-vector.

V1i0=V20

Vili=V21

V12=V22

V13=V23
2% V13+4+22%V124+2'%V114+V10=V1
22xV23+4+225V2242'%V214+V20=V2 9)

— Bit Selection: Bit selection means a portion of a bit-vector is involved in
expression. In this case, besides generating constraints for the expression,
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we will also generate constraints for the selected bits. For example, the con-
straint equations generated for expression “V[1:0]=2’b00” are as following,
where V is a 4-bit bit vector variable.

V1=0
V0=0
BV 34+22xV 24215V 14V 0=V (10)

Integer: GNU Prolog provides various operations for integer variables. The
domain of each integer is also required to be defined.

GNU Prolog provides supports for most of the arithmetic and logical oper-
ations used in Verilog. The only thing need to be considered is the operations
taken on bit-vector and bounded integer. When concern expressions with these
variables or signals, we need to take care of the overflow problem. In GNU Pro-
log, we can solve this problem by using the rem operation built in GNU Prolog.
Let the expression we try to translate is of the form “a op b’, where a and b are
variables of bit-vector or bounded integer type, assume the width of a and b is
n, op is arithmetic operations such as addition etc. Then the translated results
is of the form “(a op b) rem 2™7.

Although the CLP constraints generation method introduced above may also
flatten the word-level constraints to bit-level when involving bit-vector signals,
we need not flat them into bit ones in most situations.

In general, the abstraction computation formula is a conjunction of a set of
equivalent formula. For each equivalent formula in the conjunction formula, we
generate a temporal variable for it and then conjunct all the generated temporal
variables. Finally, we set the value of the conjunction of the temporal variables to
constant 1. By solving the generated CLP constraints with the findall predicate
of GNU Prolog, we can get all the state transitions for the abstraction system.

Z #=(X+Y) rem 256,

Templ #<=> ((#\B1) #V (X #< 200)) #/\ (B1 #V (X #>= 200)),

Temp?2 #<=> ((#\B2) #V (X #< 100)) #/\ (B2 #V (X #>= 100)),

Temp3 #<=> ((#\B3) #V (Z #< 200)) #/\ (B3 #V (Z #>= 200)),

Y_Bar #= X,

(X #< 100) #==> (X_Bar #=7), (X #>= 100) #==> (X_Bar #= X),

Z_Bar #= (X_Bar + Y_Bar) rem 256,

Temp4 #<=> ((#\B1_Bar) #V (X_Bar #< 200)) #/\ (B1_Bar #V (X_Bar #>= 200)),
Temp5 #<=> ((#\B2_Bar) #V (X_Bar #< 100)) #/\ (B2_Bar #V (X_Bar #>= 100)),
Temp6 #<=> ((#\B3_Bar) #V (Z_Bar #< 200)) #/\ (B3_Bar #V (Z_Bar #>= 200)),

Out #<=> Temp1 #/\ Temp2 #\ Temp3 #/\ Temp4 #/\ Temp5 #/\ Temp6,

For the example formula generated in last section, the generated CLP con-
straints according to formula (7) are shown as below. The semantics of the CLP
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symbols can be known from their syntax. The second line, third line and forth
line is the constraint generated for the first, second and third equivalence for-
mula of formula (7), respectively. The first line shows the usage of the rem GNU
Prolog operation to implement the modulo semantics of 24y and a new variable
7 is generated to be used in following constraints. The X Bar and Y Bar is used
to represent the variable z’ and y’ of formula (7) respectively, Z Bar is used to
represent the value of Z in next state. By defining these new variables, lines 5-7
are constraints for the transition relation. The following 4 lines are constraints
for the last three equivalence formulas of the formula (7). In above code segment,
the last line is the constraint for the entire formula (7) in conjunction form. By
forcing the Out to be 1 and solving the generated constraints, we can get the
abstraction state transitions.

For the example showed in Figure 1, we can get transition diagrams just the
same as in [13], which is shown in Figure 2. We can also get the initial state by
solving the initial state computation constraints generated similar to the above
process. For the example in Figure 1, we can compute the initial state—“111".

Fig. 2. State transition diagrams for the example

The abstract transition relations and initial states are converted to SMV
program, and the property is verified on the abstraction system. For the above
example, the property to be verified is AG(b2).

6 Implementation and Experimental Results

Based on the system implemented in [18], we have implemented the RTL Ver-
ilog CLP-based predicate abstraction prototype system. In order to compare
our method with SAT-based method, we follow the method proposed in [12] to
translate abstraction computation formula into SAT instance. First we build the
circuit model for the abstraction formula, and then synthesis the circuit into
BLIF format using VIS [19] system. Finally, we use the modified BLIF2CNF
[20] program to convert BLIF into CNF format, which is the acceptable input
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format for most SAT solver. To use the SAT solver to compute all the satisfiable
assignments for the generated CNF, we use zChaff [21] as the SAT solver, and
modified it according to the algorithm proposed in [22].

Table 1 shows the characteristics of benchmarks used in our experiment.
The 8051 Controller and Viper are publicly available designs. The Decoder is
the instruction decoder unit of a 32-bit microprocessor implemented by our-
selves. SMU and DCU is the data cache unit and stack manage unit of PicoJava
microprocessor [23], respectively.

Table 1. Benchmark Characteristics

Benchmark Lines of Code Inputs Signals
8051 Controller (8051) 350 18 59
Viper Microprocessor(Viper) 400 24 57
Decoder 2092 14 94
SMU 1467 30 217
DCU 3979 43 385

According to the properties to be verified, we manually extract the predi-
cates to be used for abstraction. Then the abstraction computation formula and
its corresponding CLP constraints and SAT constraints are generated automati-
cally. We compared the performance of CLP based and SAT based method. The
experimental configuration is a Windows 2000 PC with AMD Athlon XP 1.8
GHz CPU and 256MB memory.

Table 2. Circuit statistics

CLP Based Method SAT Based Method

Benchmark Predicates Line of Constraints Time (Sec.) Literals Time (Sec.)
8051 Controller (8051) 23 239 10.10 13972 58
Viper Microprocessor (Viper) 25 247 12.34 24719 204
Decoder 25 253 15.47 17527 177
SMU 39 372 23.73 35836 361
DCU 24 255 17.49 21075 236

The experimental results are shown in Table 1. In Table 1, the “Predicates”
column shows the predicates used to compute the abstraction system, the “Line
of Constraints” column shows the lines of generated CLP constraints, while
“Literals” shows the generated SAT literals for the abstraction computation
formula. The two “Time” columns under “CLP based method” and “SAT based
method” shows the time used to solving the converted constraints, respectively.
All times are reported in second.

We can conclude from Table 1 that CLP based abstraction computation can
gain promising performance improvements than SAT based method. Although
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the inefficient implementation of the algorithm proposed in [22] may influence the
performance of SAT based method, we believe that the distinct characteristic
such as word level modeling and constraints solving capability of CLP based
method make it more efficient than SAT based method.

7 Conclusion

In this paper, we proposed to use CLP as the abstraction computation engine for
predicate abstraction of RTL Verilog, and the experimental results showed the
promising improvements of abstraction computation by our proposed method.
In the future, we will intensively research on CLP based predicate abstraction
method, such as CLP based abstraction and refinement techniques, unsat core
extraction for CLP based method. We will also make our CLP based abstraction
system to be more practical.
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Abstract. Object-based systems present particular challenges for state space ex-
ploration. Objects can be dynamically created and discarded, and can be refer-
enced via object identifiers. Consistent relabelling of object identifiers in a state
leads to a state that is superficially different but behaviourally equivalent to the
original. Similarly, object-based systems can include garbage which has no ef-
fect on subsequent behaviour but which results in unnecessary differentiation of
states. Both of these factors can lead to state space explosion.

This paper considers state space exploration for object-based systems based on
the Petri Net formalism. It addresses the above issues by using both equivalence
reduction and the sweep-line technique. Experimental results are presented for a
simple case study of a communication protocol.

1 Introduction

Object-oriented technology has been widely adopted for the modelling and develop-
ment of software systems, thus motivating the development of formal analysis tech-
niques suitable for verifying such systems. The object-oriented paradigm views a sys-
tem as composed of autonomous entities which cooperate by exchanging messages, i.e.
a concurrent system. In this paper, we focus on object-based rather than object-oriented
systems. According to the classification in [26], this means that we do not consider in-
heritance and dynamic binding, but we do support the notion of autonomous objects
whose state and behaviour are defined by classes, which can be dynamically created
and destroyed, and which are referenced by object identifiers (or oids).

A common form of analysis applied to concurrent systems is that of state space
exploration [25]. Thus, model checking generates the reachable states (or at least rep-
resentatives of those states) and then evaluates the desired properties over those states.
This approach has a number of advantages (as detailed in [25]), including simplicity,
no requirement for specialised domain knowledge, and a high degree of automation.
The main disadvantage is the ever-present threat of state space explosion — where the
number of states is simply too large to be explored with the available computer memory.
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In an object-based system, the use of oids leads to state space explosion. The state
of a system consists of a set of objects, each with a unique oid. Objects refer to each
other via these oids. The oids can be memory addresses, or integers, or some other
form of reference. The particular oid value associated with each object is immaterial —
any consistent relabelling of the oids leads to an equivalent state. Essentially, the two
states are representations of the same object graph, where the nodes are the objects
and the arcs are the references between objects. Isomorphic graphs should be treated as
equivalent. In order to perform state space exploration for such object-based systems,
it will be necessary to store only one representative from each set of such equivalent
states. This requires some form of equivalence reduction [20,13] or the use of a graph
isomorphism algorithm.

An added complication for object-based systems is the approach adopted to destroy-
ing or discarding objects. One approach (as in C and C++ [24]) is to require explicit de-
struction, thus assuming that the designer knows when an object is no longer required.
This approach can lead to dangling references or memory leaks, which are difficult to
identify and remedy. Another approach (as in Java [8]) is to use garbage collection to
remove objects which are no longer reachable from a root object. This approach elimi-
nates the possibility of dangling references and memory leaks but at the cost of run-time
overheads. Any retention of non-accessible objects in the state will lead to distinctions
between states which are otherwise equivalent (modulo garbage collection).

In this paper, we examine the state space exploration of object-based systems with
garbage collection. We capture object behaviour within the Petri Net formalism [22]
which has a well-defined semantics, and has been widely used in the modelling and
analysis of concurrent systems [23]. While it is not common for Petri Nets to support the
dynamic creation and destruction of subnet instances, we adopt a formalism suitable for
modelling both mobile and object-oriented systems [19]. The main contributions of the
paper consist of the algorithms and experimental results for the state space exploration
of such systems. We extend an existing canonicalisation algorithm [9] to cater for Petri
Nets and combine it with the sweep-line technique [6,15] with mutual benefits to both.

The paper is organised as follows: Section 2 considers the background and related
work. Section 3 presents a case study of a confirmed protocol for establishing connec-
tions over a faulty link. Section 4 considers the algorithms for state space exploration
while Section 5 presents the experimental results for the analysis of the case study.
Section 6 contains the conclusions.

2 Background

There have been a number of proposals for extending Petri Net formalisms to incor-
porate object-oriented capabilities [1], but very few support any form of automated
analysis and, to the best of our knowledge, only one [5] supports state space explo-
ration. The work on CO-OPN [3] incorporates algebraic specification of data types and
supports verification via theorem proving. The work on Co-Operative Objects [2] con-
centrates on modelling and prototyping, and does not support analysis. The formalism
of Object-Based Petri Nets [18] restricts the use of references so that garbage collection
is not required. Two approaches are built on object-oriented programming languages
which means that they have difficulties in providing a complete formal semantics. The
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tool Renew [16] is built on the Java language and provides open access to its facilities,
but does not support state space exploration. Of particular interest is PNtalk [5] which
is built on the language SmallTalk and does consider equivalence-reduced state spaces.
However, the published papers do not include the specific algorithms and provide only
sparse experimental results (from a prototype implementation).

In this paper, we adopt the formalism of [19], which was designed to model mobile
and object-based systems. It has a clearly defined notion of garbage, based on causal de-
pendence. It captures a folded version of Object-Based Petri Nets [17] where each token
and each transition firing mode includes the oid of the associated object. This represen-
tation is particularly convenient for mapping OBPNs into Hierarchical Coloured Petri
Nets (HCPNs) [11], which can then be analysed in the tool Design/CPN [12].

The approach we adopt for the canonicalisation of each state is similar to that em-
ployed in the context of dSPIN (a Dynamic Extension of SPIN) [10,9]. As [9] observes,
earlier approaches to symmetry reduction considered systems composed of a fixed num-
ber of active components (processors), variables of a special symmetry-preserving data
type, and specification symmetries. More sophisticated techniques along these lines
continue to emerge [14]. However, these approaches to symmetry reduction do not con-
sider garbage collection and it is attractive to adopt an algorithm which combines both
canonicalisation and garbage collection.

The Iosif approach [9] essentially implements a mark-and-sweep algorithm for
garbage collection. The first phase starts from the root object and follows references
to all reachable objects, marking them on the way. A subsequent sweep phase examines
all objects and discards as garbage those which were not marked. At the same time
as marking the reachable objects, losif collects a relabelling map, i.e. a mapping from
existing object identifiers to new ones. During the sweep phase, the relabelling map is
applied to the retained objects. The losif approach is not adequate for Petri Nets where
places hold an unordered collection of objects. The order of processing affects the so-
called relabelling map which in turn affects canonicalisation. We address this issue by
extending equivalence reduction and combining it with the sweepline method.

3 Case Study

We illustrate our approach with a simple case study of a typical protocol for the con-
firmed establishment and discarding of connections. As noted above, the case study is
presented as a folded version of an object system [17], which can be represented as a
Hierarchical Coloured Petri Net (HCPN) [11] and which is then amenable to analysis
by the Design/CPN tool [12].

For those unfamiliar with the HCPN formalism, we start by considering the com-
ponents of the system. In this protocol, the lifecycle of a sender is given by the page
(or subnet) shown in Fig. 1. A net consists of places, transitions and arcs, together with
annotations of these. The places are depicted as ovals and can hold a multiset of tokens
of some type, which can consist of arbitrarily complex data values. This marking de-
termines the state of the system. In Fig. 1, the italic annotation adjacent to each place
indicates the type of resident tokens, and the non-italic annotation indicates the initial
marking (or state). Thus, the place Senderldle holds tokens of type SenderFree, and is
initialised to hold the two tokens (2,e) and (3,e).
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Fig. 1. Subnet for the Sender processes

The transitions are depicted as rectangles, and determine the possible changes of
state. The incident arcs indicate how the transitions affect the places and are annotated
with the multisets of tokens which are added to or removed from the adjacent places.
The precise effect of a transition is determined by a firing mode (or binding), which
determines the values of variables in the arc annotations. A transition paired with a
binding is called a binding element. A transition can also be annotated with a guard (in
brackets) which constrains the possible firing modes or bindings. In Fig. 1 a binding for
transition SendOpenReq will specify values for the variables s, r, sm, rm, p.

In Design/CPN, data types are declared in a variant of Standard ML [12]. For the
sender processes, an excerpt of the relevant data type declarations is given in Fig. 2.
Object identifiers (the type OID) are defined to be a subrange of the integers. Aliases
are defined to indicate the usage of oids — Sender o0id is used in a sender descriptor to
specify the oid for the associated instance, while Sender ref is used as a reference to a
sender instance. The type SenderConn2 is a product involving references to a sender, a
sender connection manager and a connection. Variables are also declared for binding to
values of particular type, e.g. the variable s will be used to refer to a sender.

The state of each sender is indicated by having a token in one of the places SenderI-
dle, Opening, Communicating, Closing (see Fig. 1), which reflects the stage reached in
the lifecycle. Initially, sender processes have a token in place Senderldle — the token
(2,e) for the sender process with oid 2 and (3,e) for the process with oid 3. A sender
progresses round its lifecycle by firing the transitions SendOpenReq, RecvOpenCnf,
SendCloseReq, RecvCloseCnf, each of which uses the variable s to ensure that match-
ing tokens for a given sender are consumed and generated.
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color NoColor = with e declare ms;

(*+ Basic object identifier types =)

val minOID = 10; (* Min unused OID x)
val maxOID = 12; (* Max unused OID x)
color OID = int with 0..max0ID; (* Use zero for no value =)

color FreeOID = int with minOID..maxOID declare ms;

(+ Aliases for object identifiers - name determines role =)
color Sender_oid = 0OID declare same;

color Sender_ref = OID declare same;

color SenderConnMger_oid = OID declare same;

color SenderConnMger_ref = OID declare same;

color ConnPhase = with openReq openCnf | closeReq \ closeCnf;

(x Descriptors + tokens for different classes of objects x)

color Sender_descr = product Sender_oid * SenderConnMger_ref * ConnPhase;
color SenderFree = product Sender_ref * NoColor;

color SenderConn2 = product Sender_ref * SenderConnMger_ref x Conn_ref;
color HostPair = product SenderConnMger_ref x Sender_ref » Recver_ref;
color SenderMgerConn = product SenderConnMger_ref * Sender_ref x Conn_ref;

(* Variable declarations =)
var s : Sender_ref;

var r : Recver_ref;

var sm : SenderConnMger_ref;
var p : ConnPhase;

Fig. 2. Excerpt of type definitions relevant to sender processes

In addition to the basic lifecycle described above, the transitions access a place
Sender which holds tokens which are descriptors for each of the senders. Also they
access places OpenReq, OpenCnf, CloseReq, CloseCnf which are annotated by the
symbol P to indicate that they are port places and consequently provide an interface
to external components. Thus a sender can move from idle to opening by sending a re-
quest via port place OpenReq. The sender can progress from opening to communicating
on receipt of a matching confirmation (via port place OpenCnf). The steps in closing the
connection are analogous. Finally, we note that transition SendOpenReq also accesses
a place Recver which holds the descriptors for the receivers. The sole purpose of this is
so that the sender can choose a communication partner for the protocol. The lifecycle
of a receiver process is largely the dual of that of the sender — it responds to requests
for connection establishment and release rather than initiating them.

A Hierarchical Coloured Petri Net (HCPN) allows a system to be modelled as a
number of communicating subnets. For the protocol we are studying, the top-level net
is shown in Fig. 3. Here, the large rectangles are annotated with a tag HS to indicate
that they are hierarchical constructs, and specifically substitution transitions. Such a
transition is substituted by a subnet and the detailed annotation (not shown in the figure)
indicates which subnet is being instantiated and how the neighbouring socket places of
the substitution transitions are fused with the port places of the subnet. In our example,
these port assignments can be deduced by the naming. Thus, port node OpenReq of
Fig. 1 is fused with socket node OpenReq of Fig. 3.

On the left of the Fig. 3 is a substitution transition which instantiates the SenderEn-
tity subnet for the sender processes from Fig. 1. The senders make requests to the sender
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Fig. 3. Top-level net for the object-based protocol model

connection manager and the receivers respond to requests from the receiver connection
manager (given by the substitution transitions titled SenderConnEntity, RecverEntity
and RecverConnEntity respectively). In our model, we have two sender processes which
share the one sender connection manager, and two receiver processes that share the one
receiver connection manager. It would be simple to increase the number of each.
Connection establishment and release is confirmed — it is a four stage process in-
volving request, indication, response and confirm primitives. For connection establish-
ment, these primitives are captured by places OpenReq, Openlnd, OpenResp, OpenCnf,
and similarly places CloseReq, Closelnd, CloseResp, CloseCnf are used for releasing
connections. The passing of primitives from sender to connection manager and vice
versa is error free, while message loss is possible between the connection managers.
The sender connection manager is modeled by the page titled SenderConnEntity
shown in Fig. 4. On the left are the port places for interacting with the senders, while
on the right are port places for interacting with the network channels. Most transitions
access the descriptor for the sender connection manager with a side condition to the
place SenderConnMger. (Exceptions are the transitions HandleOpenReq and Handle-
CloseReq since the sender connection manager is already indicated in the request.)
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Fig. 4. Subnet for the Sender Connection Manager

An open request (arriving in place OpenConnReq) can be accepted (by firing the
transition HandleOpenReq) if there is an available oid for the connection (in the place
Free). Connections have local significance — they have identifiers for the local connec-
tion, the sender manager, the sender and receiver, the receiver-side connection (when
known). They also record the phase reached (i.e. requested or confirmed). Once a
sender-side connection indicates that a request has been made, the transition XmitOpen-
Req is enabled to send a message requesting the connection. It can fire repeatedly as
long as the sender connection manager is in this state, thus providing a mechanism to
overcome potential message loss (by the faulty network channel). In order to avoid an
unbounded number of messages in the channel and hence an infinite state space, the
place MaxToNet has a number of tokens indicating the maximum number of messages
that can be in transit (in this case one).

Once an open confirmation has been processed (by firing transition
HandleOpenCnf), the state of the sender-side connection is modified to OpenCnf and
thus the transmission of open request messages will be disabled. A similar process han-
dles close requests.

4 State Space Exploration Algorithms

In the context of HCPNGs, a state space can be defined as a graph (V, E') where V is a
set of vertices corresponding to states and including the initial state M. E is a set of
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1: Nodes = {canon(Mo)}

2: Ares=10

3: Unprocessed = {canon(My)}

4: while Unprocessed # () do

5:  select M € Unprocessed

6:  Unprocessed «— Unprocessed \ {M}

7. forall (¢,b) € BE s.t. M[(t,b))M' do

8: if canon(M’) ¢ Nodes then

9: Unprocessed = Unprocessed U {canon(M')}
10: Nodes = Nodes U {canon(M')}
11: end if
12: Arcs = Arces U {(M, (t,b), canon(M'))}
13:  end for

14: end while
Fig. 5. Algorithm to generate a canonicalised state space for a Petri Net

(labelled) edges corresponding to the occurrence of transitions — (M, (¢,b), M) is in
F if transition ¢ with binding b is enabled in state M/ and the occurrence of the binding
element (1,b) in M7 leads to Ms. This is commonly written M;[(t, b)) M.

An algorithm for state space exploration for Petri Nets is given in Fig. 5. The algo-
rithm maintains a set Unprocessed of as-yet unexplored states. At each iteration of the
while loop, an element of Unprocessed is removed and examined for enabled binding
elements. If any are found, the relevant arcs are added to the graph and newly reached
markings are added both to the graph and set Unprocessed, provided they are not al-
ready present. The above algorithms stores canonicalised versions of the markings in
the state space — if the function canon is the identity function, then the algorithm
reduces to the basic algorithm for state space exploration for Petri Nets.

The need for canonicalisation can be demonstrated with the stylised excerpt from
the state space of our protocol case study as in Fig. 6. The states are (partially) labelled
with the state of the two sender processes (s; and s3) and the state of the sender connec-
tion manager (sm). The arcs are labelled with the relevant transition together with an
indication of the binding of the transition. Thus, the arc between states 1 and 2 indicates
that transition SendOpenReq occurs with a binding to indicate (among other things) that
this is for sender process s1. On the left is a sequence of states where sender s; requests
an open connection first and is allocated c;, followed by sender sy which is allocated
c2. On the right is a sequence of states where the senders request the connections in a
different order, and are consequently allocated different connections. States 8 and 9 are
equivalent since they can be obtained from each other by a consistent relabelling of the
object identifiers and the behaviour observable from each will be equivalent.

The number of states can increase significantly depending on the regime adopted
for allocating identifiers. In the state space of Fig. 6, the occurrence of transition Han-
dleO