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Abstract. Answer Set Programming (ASP) is a declarative paradigm for solv-
ing search problems. State-of-the-art systems for ASP include SMODELS, DLV,
CMODELS, and ASSAT.

In this paper, our goal is to study the computational properties of such systems
both from a theoretical and an experimental point of view. From the theoretical
point of view, we start our analysis with CMODELS and SMODELS. We show that
though these two systems are apparently different, they are equivalent on a sig-
nificant class of programs, called tight. By equivalent, we mean that they explore
search trees with the same branching nodes, (assuming, of course, a same branch-
ing heuristic). Given our result and that the CMODELS search engine is based on
the Davis Logemann Loveland procedure (DLL) for propositional satisfiability
(SAT), we are able to establish that many of the properties holding for DLL also
hold for CMODELS and thus for SMODELS. On the other hand, we also show that
there exist classes of non-tight programs which are exponentially hard for CMOD-
ELS, but “easy” for SMODELS. We also discuss how our results extend to other
systems.

From the experimental point of view, we analyze which combinations of rea-
soning strategies work best on which problems. In particular, we extended CMOD-
ELS in order to obtain a unique platform with a variety of reasoning strategies,
and conducted an extensive experimental analysis on “small” randomly generated
and on “large” non randomly generated programs. Considering these programs,
our results show that the reasoning strategies that work best on the small prob-
lems are completely different from the ones that are best on the large ones. These
results point out, e.g., that we can hardly expect to develop one solver with the
best performances on all the categories of problems. As a consequence, (i) de-
velopers should focus on specific classes of benchmarks, and (ii) benchmarking
should take into account whether solvers have been designed for specific classes
of programs.

1 Introduction

Answer Set Programming (ASP) is a declarative paradigm for solving search problems.
State-of-the-art systems for ASP include SMODELS, DLV, CMODELS, and ASSAT.1 Our

1 See http://www.tcs.hut.fi/Software/smodels, http://www.dbai.
tuwien.ac.at/proj/dlv, http://assat.cs.ust.hk, http://www.cs.
utexas.edu/users/tag/cmodels.html, respectively.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.tcs.hut.fi/Software/smodels
http://www.dbai.
tuwien.ac.at/proj/dlv
http://assat.cs.ust.hk
http://www.cs.
utexas.edu/users/tag/cmodels.html


38 E. Giunchiglia and M. Maratea

goal is to study the computational properties of such systems both from a theoretical
and an experimental point of view.

From the theoretical point of view, we start our analysis with CMODELS and SMOD-
ELS. Given a program Π , while SMODELS (and also DLV) is a native procedure which
directly operate on Π , CMODELS (and ASSAT) computes a set of clauses correspond-
ing to the Clark’s completion of Π , and then invoke a propositional satisfiability (SAT)
solver based on Davis Logemann Loveland procedure (DLL). We show that though
CMODELS and SMODELS are apparently different, they are equivalent on a significant
class of programs, called tight. By equivalent, we mean that they explore search trees
with the same branching nodes, (assuming, of course, a same branching heuristic).
Given our equivalence result and that CMODELS search engine is based on DLL, we
are able to establish that many of the properties holding for DLL also hold for CMOD-
ELS and thus, when considering tight programs, also for SMODELS. For instance we
show that:

1. There exist classes of tight formulas which are exponentially hard both for CMOD-
ELS and SMODELS.

2. There exist classes of non tight programs which are exponentially hard for CMOD-
ELS but very easy (i.e., solved without search) by SMODELS.

3. In SMODELS, deciding the “best” literal to branch on, is both NP-hard and co-NP
hard and in PSPACE for tight programs.

These are just a few of the many results (i) that are already known for DLL, (ii) that can
be easily shown to hold for CMODELS, and (iii) that –thanks to our equivalence result–
can be easily shown to hold also for SMODELS.

From the experimental point of view, we analyze which combinations of reasoning
strategies work best on which problems. In particular,

– we extended CMODELS in order to obtain a unique platform with various “look-
ahead” strategies (used while descending the search tree); “look-back” strategies
(used for recovering from a failure in the search tree); and “heuristic” (used for
selecting the next literal to branch on), and

– we considered various combinations of strategies, and conducted an extensive ex-
perimental analysis, on a wide variety of tight and non tight programs.

Our experimental results show that:

1. On “small” (i.e., with a few hundreds variables), randomly generated problems,
look-ahead solvers (featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back –essentially backtracking– and a heuristic based on the
information gleaned during the look-ahead phase) are best.

2. On “large” (i.e., with tens of thousands variables) problems,“look-back” solvers
(featuring a simple but efficient look-ahead –essentially unit-propagation with 2
literal watching–, a rather sophisticated look-back based on “learning” and a con-
stant time heuristic based on the information gleaned during the look-back phase),
are best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead (resp. look-back)
solver does not lead to better performances if the resulting solver is run on the small
(resp. large) problems that we considered.



On the Relation Between Answer Set and SAT Procedures 39

Using the terminology in [1], our comparison is “fair” because all the reasoning strate-
gies are realized on a common platform (thus, our experimental evaluation is not bi-
ased by the differences due to the quality of the implementation) and is “significant”
because our solver implements current state-of-the-art look-ahead/look-back strategies
and heuristics.

As discussed in more details in the conclusions, our experimental results have some
important consequences both for developers and also for people interested in bench-
marking ASP systems. For instance, our results say that we can hardly expect to develop
one solver with the best performances on all the categories of problems. As a conse-
quence, (i) developers should focus on specific classes of benchmarks (e.g., on ran-
domly generated programs), and (ii) benchmarking should take into account whether
solvers have been designed for specific classes of programs: indeed, it hardly makes
sense to run a solver designed for random (resp. large, real-world) programs on large,
real-world (resp. random) programs.

The paper is structured as follows. In Section 2 we give the basic definitions. Sec-
tions 3 and 4 are devoted to the definition of the algorithms of CMODELS and SMODELS

respectively, and that are used in our formal analysis of their computational properties
(done in Section 5). Section 6 is dedicated to the experimental analysis of different
look-ahead/look-back strategies and heuristics. We end the paper in Section 7 with the
conclusions.

2 Basic Definitions

Let P be a set of atoms. If p is a an atom, p is the negation of p, and p is p. We will
also use the logical symbols ⊥ and � (standing for FALSE and TRUE respectively), and
assume that ⊥ = � and � = ⊥. Atoms, their negations, and the symbols ⊥, � form
the set of literals. If S is a set of literals, we define S = {l : l ∈ S}.

A rule is an expression of the form

p0 ← p1, . . . , pm, pm+1, . . . , pn (1)

where p0 ∈ P ∪{⊥}, and {p1, . . . , pn} ⊆ P (0 ≤ m ≤ n). If r is a rule (1), head(r) =
p0 is the head of r, and body(r) = {p1, . . . , pm, pm+1, . . . , pn} is the body of r. A
(logic) program is a finite set of rules.

Consider a program Π , and let X be a set of atoms. In order to give the definition
of an answer set we consider first the special case in which the body of each rule in Π
contains only atoms (i.e., for each rule (1) in Π , m = n). Under these assumptions, we
say that

– X is closed under Π if for every rule (1) in Π , p0 ∈ X whenever {p1, . . . , pm} ⊆
X , and that

– X is an answer set for Π if X is the smallest set closed under Π .

Now we consider the case in which Π is an arbitrary program. The reduct ΠX of
Π relative to X is the set of rules

p0 ← p1, . . . , pm
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for all rules (1) in Π such that X ∩ {pm+1, . . . , pn} = ∅. X is an answer set for Π if
X is an answer set for ΠX .

In the following, we say that a program Π is tight if there exists a function λ from
atoms to ordinals such that, for every rule (1) in Π whose head is not ⊥, λ(p0) > λ(pi)
for each i = 1, . . . , m.

3 CMODELS

CMODELS reduces the problem of answer set computation to the satisfiability prob-
lem of propositional formulas via Clark’s completion, and uses a SAT solver as search
engine. Formally, a clause is a finite set of literals different from ⊥, �, and a (proposi-
tional) formula is a finite set of clauses. An assignment is a set of literals. An assignment
S satisfies a formula Γ if S is consistent and for each clause C in Γ , C ∩ S 
= ∅. If S
satisfies Γ then we also say that S is a model of Γ and that Γ is satisfiable.

There are various versions of CMODELS (see the web page of CMODELS). Here we
consider the one proposed in [2] (called ASP-SAT in that paper), and it is represented
in Figure 1, in which

– Π is the input program; Γ is a set of clauses; S is an assignment; p and l are an
atom and a literal respectively.

– lp2sat(Π) is the set of clauses –corresponding to the Clark’s completion of Π–
formally defined below.

– s-assign(l, Γ ) returns the formula obtained from Γ by (i) deleting the clauses C ∈
Γ with l ∈ C, and (ii) deleting l from the other clauses in Γ .

– test(S, Π) returns TRUE if S ∩ P is an answer set of Π , and FALSE otherwise.
– ChooseLiteral(S) returns a literal not assigned by S. We say that a literal l is

assigned by an assignment S if {l, l} ∩ S 
= ∅. For simplicity, we assume that
ChooseLiteral(S) returns the first –according to a fixed total order ρ on P ∪ P–
literal in P ∪ P which is unassigned by S.

We assume that parameters are passed to a procedure by value, as in [3].

function CMODELS(Π) return DLL-REC(lp2sat(Π),∅,Π);

function DLL-REC(Γ ,S,Π)
1 〈Γ, S〉 := unit-propagate(Γ, S);
2 if (∅ ∈ Γ ) return FALSE;
3 if (Γ = ∅) return test(S,Π);
4 l := ChooseLiteral(S);
5 return DLL-REC(s-assign(l, Γ )), S ∪ {l}, Π) or
6 DLL-REC(s-assign(l, Γ )), S ∪ {l}, Π);

function unit-propagate(Γ ,S)
7 if ({l} ∈ Γ ) return unit-propagate(s-assign(l, Γ ), S ∪ {l});
8 return 〈Γ, S〉;

Fig. 1. The algorithm of CMODELS
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CMODELS(Π) simply invokes DLL-REC(lp2sat(Π),∅,Π). It is easy to see that DLL-
REC(Γ ,S,Π) is a variation of the standard DLL procedure. In particular, at line 3, instead
of just returning TRUE as in the standard DLL (meaning that the input set of clauses
is satisfiable), it invokes test(S, Π) (see [2] for more details): such a modification is
needed only if the input program Π is non tight. Indeed, if Π is tight we are guaranteed
that any model of lp2sat(Π) corresponds to an answer set of Π [4], and thus SAT
solvers can be used as black-box (as it is the case for some versions of CMODELS).

In order to precisely define lp2sat(Π) we need the following definitions. If p0 is an
atom, the translation of Π relative to p0, denoted with lp2sat(Π, p0), consists of

1. for each rule r ∈ Π of the form (1) and whose head is p0, the clauses:

{p0, nr},
{nr, p1, . . . , pm, pm+1, . . . , pn},

{nr, p1}, . . . , {nr, pm}, {nr, pm+1}, . . . , {nr, pn},

where nr is a newly introduced atom, and
2. the clause {p0, nr1 , . . . , nrq} where nr1 , . . . , nrq (q ≥ 0) are the new symbols

introduced in the previous step.

The translation of Π relative to ⊥, denoted with lp2sat(Π, ⊥), consists of a clause

{p1, . . . , pm, pm+1, . . . , pn},

one for each rule in Π of the form (1) with head ⊥. Finally, the translation of Π , denoted
with lp2sat(Π), is ∪p∈P∪{⊥}lp2sat(Π, p).

Proposition 1. Let CMODELS be the procedure in Figure 1. For each program Π ,
CMODELS(Π) returns TRUE if Π has an answer set, and FALSE otherwise.

A few remarks are in order:

1. As we said, there are various versions of CMODELS. However, if the input program
Π is tight, all the versions are equivalent at the algorithmic level. In other words,
the presentation of CMODELS in Figure 1 can be considered as representative for
all the various versions of CMODELS, in the case of tight programs.

2. Figure 1 is indeed a simple presentation of CMODELS. CMODELS incorporates,
e.g., a pre-processing for the simplification of the input program. Analogously,
DLL-REC is based on the standard simple recursive presentation of DLL: actual
SAT solvers (including the ones used by CMODELS) feature far more sophisticated
look-ahead/look-back strategies and heuristics.

3. Given a program Π , its translation lp2sat(Π) to SAT is exactly the one used by
CMODELS (see [5]).

Considering other ASP systems, ASSAT also computes a set Γ of clauses corresponding
to the Clark’s completion of the input program Π , and then invokes a SAT solver on
Γ . Assuming that Γ is computed as lp2sat(Π), ASSAT and CMODELS have different
behavior only if Π is non tight.2

2 Unfortunately, for ASSAT the way a program Π is converted into a set of clauses is not specified
(see [6]).
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4 SMODELS

Given a program Π , SMODELS searches for answer sets by extending an assignment S
till either S becomes inconsistent (in which case backtracking occurs) or each atom is
assigned by S (in which case S ∩ P is an answer set). A simple, recursive presentation
of SMODELS is given in Figure 2, where

– Π is a program; S is an assignment; p is an atom; r is a rule; and l is a literal.
– p-elim(S, Π) returns the program obtained from Π by eliminating the rules r ∈ Π

such that for some literal l ∈ S, l ∈ body(r). For simplicity, when S is a singleton
{l}, we write p-elim(l, Π) for p-elim({l}, Π).

function SMODELS(Π) return SMODELS-REC(Π , {�});

function SMODELS-REC(Π ,S)
1 〈Π,S〉 := expand(Π,S);
2 if ({l, l} ⊆ S) return FALSE;
3 if ({p : p ∈ P, {p, p} ∩ S 	= ∅} = P ) return TRUE;
4 p := ChooseLiteral(S);
5 return SMODELS-REC(p-elim(p,Π)), S ∪ {p}) or
6 SMODELS-REC(p-elim(p, Π)), S ∪ {p});

function expand(Π ,S)
7 S′ := S;
8 S := AtLeast(Π,S);
9 Π := p-elim(S, Π);

10 S := S ∪ {p : p ∈ P, p 	∈ AtMost(Π∅, S)};
11 Π := p-elim(S, Π);
12 if (S 	= S′) return expand(Π ,S);
13 return 〈Π, S〉;

function AtLeast(Π ,S)
14 if (r ∈ Π and body(r) ⊆ S and head(r) 	∈ S)

return AtLeast(p-elim(head(r), Π), S ∪ {head(r)});
15 if ({p, p} ∩ S = ∅ and 	 ∃r ∈ Π : head(r) = p)

return AtLeast(p-elim(p, Π), S ∪ {p});
16 if (r ∈ Π and head(r) ∈ S and body(r) 	⊆ S and 	 ∃r′ ∈ Π, r′ 	= r : head(r′) = head(r))

return AtLeast(p-elim(body(r), Π), S ∪ body(r));
17 if (r ∈ Π and head(r) ∈ S and body(r) \ S = {l})

return AtLeast(p-elim(l, Π)), S ∪ {l});
18 return S;

function AtMost(Π ,S)
19 if (r ∈ Π and body(r) ⊆ S and head(r) 	∈ S)

return AtMost(Π,S ∪ {head(r)});
20 return S;

Fig. 2. The algorithm of SMODELS
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– ChooseLiteral(S) is the same function used by CMODELS at line 4 in Figure 1.
Thus, our presentation of CMODELS and SMODELS incorporates the assumption
that the two systems use the same heuristic.

The computation of SMODELS-REC(Π, S) proceeds as follows (in the following,
we say that a set of atoms X extends an assignment S if S ∩ P ⊆ X and S ∩ X = ∅):

– Line 1: The program Π is simplified and the assignment S is extended by the
routine expand(Π, S), explained below.

– Line 2: if S is inconsistent, no answer set extending S exists, and FALSE is returned,
– Line 3: if each atom p ∈ P is assigned, then (i) S ∩P is an answer set of the initial

program, and (ii) TRUE is returned.
– Lines 4-6: if none of the above applies, an atom p is selected (line 4), an answer set

extending S ∪ {p} (line 5) or S ∪ {p} (line 6) is searched.

expand(Π, S) extends the assignment S generated so far by recursively invoking
AtLeast (line 8) and then AtMost (line 10) till it is no longer possible to extend S
(lines 12- 13). AtLeast encodes the following facts:

– Line 14: if there exists a rule r whose body is a subset of S, then every answer set
extending S includes the head of r.

– Line 15: if an unassigned atom p is not the head of any rule, then every answer set
extending S does not include p.

– Line 16: if there is only one rule with head p, and p ∈ S, then each answer set
extending S, also extends S ∪ body(r).

– Line 17: if there is a rule with head p and whose body contains only one literal l
which is not in S, then if p is in S, then every answer set extending S also extends
S ∪ {l}.

When no further simplification is possible, (i) the set S is returned by AtLeast(Π, S)
(line 18); (ii) the program Π is simplified accordingly (line 9); and (iii) AtMost is in-
voked with Π∅ –the reduct of Π relative to the empty set– and S as arguments (line 10).
AtMost incrementally adds to (the local copy of) S the heads of the rules in Π∅ whose
body is a subset of S (line 19). If S′ is the set returned by AtMost(Π∅, S) (i.e., if S′ is
the set returned at line 20), if an atom p does not belong to S′ then p can be safely added
to the current assignment S (line 10) (see [7] for more details). To get an intuition of
why this is the case, assume for simplicity that the head of each rule in Π is not ⊥:

1. Π∅ has a unique answer set, and
2. any answer set of Π which extends S has to be a subset of S union the answer set

of Π∅.

Proposition 2. Let SMODELS be the procedure in Figure 2. For each program Π ,
SMODELS(Π) returns TRUE if Π has an answer set, and FALSE otherwise.

The above presentation of SMODELS is a recursive reformulation of the descrip-
tion of SMODELS provided in [7], pag. 17. As for CMODELS, the actual implementa-
tion of SMODELS features more complex look-ahead/look-back strategies and heuristic.
SMODELS has been extended with clause learning in [8], and SMODELS-CC is the name
given to the resulting system.
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5 Relating CMODELS and SMODELS

Consider a program Π . Our goal is to prove that the computations of CMODELS and
SMODELS are tightly related if Π is tight, and that this is not necessarily the case oth-
erwise. To this end, we will compare the search trees of CMODELS and SMODELS on
Π , i.e., the search trees of SMODELS-REC(Π, {�}) and DLL-REC(lp2sat(Π), ∅, Π)
respectively. In doing this, the first problem is that the translation lp2sat introduces
additional atoms not in P . In the following we assume that both SMODELS-REC and
DLL-REC operate in the signature of the input program and formula respectively. How-
ever, we still assume that ChooseLiteral(S) returns the first literal in P ∪ P which is
unassigned by S: notice that once all the atoms in P are assigned, also the atoms intro-
duced by lp2sat will be assigned by unit-propagate in DLL-REC.

Given this, one possibility for achieving our goal would be to consider the search
trees corresponding to the assignments generated by the two procedures, and try to
prove that they are the same. However, this is not the case:

– lp2sat introduces additional atoms not in P and also these atoms get assigned, and
– The order followed by expand and unit-propagate to assign literals may differ.

However, if we do not take into account the above differences, we have that the two
procedures generate the “same” search tree. In order to formally state this result we
introduce the following definitions.

We say that a set of literals S is a branching node of SMODELS(Π) (resp. of
CMODELS(Π)) if there is a call to SMODELS-REC(Π ′, S) (resp. DLL-REC(Γ ′, S, Π)),
following the invocation of SMODELS(Π) (resp. CMODELS(Π)). If proc is
SMODELS(Π) or CMODELS(Π), we define

Branches(proc) = {S ∩ (P ∪ P ) : S is a branching node of proc}.

Finally, we say that SMODELS(Π) and CMODELS(Π) are equivalent if

Branches(SMODELS(Π)) = Branches(CMODELS(Π)).

Theorem 3. Let CMODELS and SMODELS be the procedures in Figures 1 and 2 respec-
tively. For each tight program Π , CMODELS(Π) and SMODELS(Π) are equivalent.

The idea underlying the proof is that the atoms in P assigned by expand in
SMODELS-REC correspond exactly to those assigned by unit-propagate in DLL-REC,
and vice-versa. Indeed, for such result to hold, it is essential that lp2sat() is defined as
in Section 3.

Theorem 3 states a strong relation between SMODELS and CMODELS, and, ulti-
mately, between SMODELS and DLL: to a certain extent, SMODELS() and DLL(lp2sat())
are the same procedure on tight programs. Further, the results hold independently from
the specific heuristic used by SMODELS-REC and DLL-REC, as long as they are guaran-
teed to return the same literal at every point of the two search trees. Because of this, sim-
ilar results would hold if we enhance SMODELS-REC and DLL-REC with more powerful
look-ahead techniques based on expand and unit-propagate respectively. For instance,
SMODELS has been enhanced with the following check, performed before each branch:
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for every unassigned literal l in the program, check whether assigning l would “fail”,
i.e., if expand(p-elim(l, Π), S ∪{l}) returns (as second argument) an inconsistent set of
literals. If this is the case, we can safely assign l before branching. However, if l fails,
then also branching on l would fail, and the tree generated by SMODELS-REC extended
with such “failed literal” strategy corresponds to the tree generated by SMODELS-REC

with a specific heuristic. Using the same heuristic in DLL-REC (i.e., using a similar
“failed literal” strategy based on unit-propagate) would lead to an equivalent search
tree.

The established correspondence between CMODELS and SMODELS gives us the pos-
sibility to derive lower/upper bounds and average case results for CMODELS and SMOD-
ELS. Here there are a few.

First, observe that the search tree explored by CMODELS and SMODELS when run on
a program Π , critically depends on the specific heuristic used, i.e., in our terminology
and with reference to Figures 1 and 2, by the fixed total ordering ρ on the set P ∪
P used by ChooseLiteral(S). In order to highlight the dependency from ρ, we now
write Branchesρ(SMODELS(Π)) (resp. Branchesρ(CMODELS(Π))) to indicate the set
of branching nodes of SMODELS (resp. CMODELS) when run on a program Π , assuming
that ρ is the total order on the set P ∪ P used by ChooseLiteral(S). We are now ready
to define the complexity of SMODELS on a program Π as the smallest number in

{|Branchesρ(SMODELS(Π))| : ρ is a total order on P ∪ P}.

Analogously, the complexity of CMODELS on a program Π is the smallest number in

{|Branchesρ(CMODELS(Π))| : ρ is a total order on P ∪ P}.

Intuitively, the complexity of SMODELS (resp. CMODELS) on Π is the minimum number
of branching nodes that SMODELS (resp. CMODELS) has to explore for solving Π .

Consider the formula PHPm
n (n ≥ 0, m ≥ 0) consisting of the clauses

{pi,1, pi,2, . . . , pi,n} (i ≤ m),
{pi,k, pj,k} (i, j ≤ m, k ≤ n, i 
= j).

The formulas PHPm
n are from [9] and encode the pigeonhole principle. If n < m,

PHPm
n are unsatisfiable and it is well known that any procedure based on resolution

(like DLL) has an exponential behavior. Here we state a similar result for CMODELS and
SMODELS. First, if C is a clause {l1, . . . , ll} (l ≥ 0) we define sat2tlp(C) to be the rule
⊥ ← l1, . . . , ll. Then, if Γ is a formula, the translation of Γ , denoted with sat2tlp(Γ ),
is ∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p ← p′, p′ ← p}, where, for each atom p ∈ P , p′ is a new
atom associated to p. For each n, sat2tlp(PHPn

n−1) is tight and has no answer sets.

Corollary 4. The complexity of SMODELS and CMODELS on sat2tlp(PHPn
n−1) is ex-

ponential in n.

The above result can be easily proved for CMODELS starting from [9]. For SMOD-
ELS, it relies on the fact that sat2tlp(PHPn

n−1) is tight, and thus on such programs
SMODELS and CMODELS are equivalent. The pigeonhole formulas give us the op-
portunity to define a class of formulas which are exponentially hard for CMODELS

but easy for SMODELS. For each formula Γ , define sat2nlp(Γ ) to be the program
∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p ← p}.
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Corollary 5. The complexity of SMODELS and CMODELS on sat2nlp(PHPn
n−1) is 0

and exponential in n respectively.

In this case, sat2nlp(PHPn
n−1) is non tight, and SMODELS can determine the non exis-

tence of answer sets without branching mainly thanks to the procedure AtMost.3 To see
why this is the case, notice that, if Π = sat2nlp(PHPn

n−1), then

– AtLeast(Π, {�}) returns {�},
– Π∅ consists of the rules

⊥ ←; ⊥ ← pi,k, pj,k (i, j ≤ n, k ≤ n−1, i 
= j); pi,k ← pi,k (i ≤ n, k ≤ n−1)

and thus AtMost(Π∅, {�}) returns {⊥, �}.
– At line 10 in Figure 2, the set S is set to S′ = P ∪ {�}, thus causing one more

recursive call to expand.
– If Π ′ = p-assign(S′, Π), AtLeast(Π ′, S′) returns the set S′ ∪ {⊥} = P ∪ {⊥, �},

and this is also the set returned by expand.
– At line 2 in Figure 2, SMODELS returns FALSE, without performing any branch.

Indeed, the above results can be easily generalized to any formula Γ which is known
to be exponentially hard for DLL: sat2tlp(Γ ) will be exponentially hard for both SMOD-
ELS and CMODELS, while sat2nlp(Γ ) will be exponentially hard for CMODELS but easy
for SMODELS. We mention one more of such results, because it involves a class of pro-
grams that have been frequently used in the literature as a benchmark for ASP systems.

Define a formula Γ to be a k-cnf if each clause in Γ consists of k literals. The
random family of k-cnf formulas is a k-cnf whose clauses have been randomly selected
with uniform distribution among all the clauses C of k literals and such that, for each
two distinct literals l and l′ in C, l 
= l′.

Corollary 6. Consider a random k-cnf formula Γ with n atoms and m clauses. With
probability tending to one as n tends to infinity, the complexity of SMODELS and CMOD-
ELS on sat2tlp(Γ ) is exponential in n if the density d = m/n is d ≥ 0.7 × 2k.

As in the case of Corollary 4, this result is easy to show for CMODELS starting from [10],
and then it follows for SMODELS from Theorem 3. Programs corresponding to random
k-cnf formulas have been used, e.g., in [11,12,8]. Also notice that since the results
in [9] and [10] hold for any proof system based on resolution, enhancing SMODELS and
CMODELS with “learning” look-back strategies does not lower the exponential com-
plexity of the procedures. Thus, the above corollaries also hold for SMODELS-CC, and
all the different versions of CMODELS. (assuming that CMODELS use a procedure based
on DLL as search engine, as it is indeed the case in practice).

Other results that have been proven for DLL can now easily be shown to hold also
for SMODELS. Define a literal l as optimal for a program Π if there exists a minimal
search tree of SMODELS(Π) whose root is labeled with l. The following result echoes
the one in [13] for DLL.

3 In the real implementation of CMODELS, rules like p ← p will be removed during the pre-
processing, and thus the implementation of CMODELS concludes that sat2nlp(PHP n

n−1) does
not have answer sets without a single branch. However, instead of p ← p, we could have con-
sidered, e.g., the two rules p ← p′, p′ ← p, (where p′ is a newly introduced atom associated
to p) and the result in the corollary would still hold.
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Corollary 7. In SMODELS, deciding the optimal literal to branch on, is both NP-hard
and co-NP hard, and in PSPACE for tight programs.

There are many other results in the SAT literature studying the proof-complexity
of DLL and/or resolution that are applicable also to SMODELS and CMODELS. See,
e.g., [14] for a study on the average complexity of coloring randomly generated graphs
with DLL, and [15], which derives exponential lower bounds on the running time of
DLL on random 3-SAT formulas also for densities significantly below the satisfiability
threshold d ≈ 4.23. The first result applies also to SMODELS and CMODELS when run
on a program Π being the standard tight formulation of a graph coloring problem:4

lp2sat(Π) corresponds to the SAT formulation considered in [14]. Analogously for the
second result.

6 On the Relation Between AS and SAT Solvers

Given the results established in the previous Section, we can expect that the combi-
nations of reasoning strategies that work best in SAT, should also work best in ASP,
at least when considering tight programs. We show that this is indeed the case, also on
non tight programs. We now report about an extensive experimental comparison that we
have conducted on a wide variety of programs, and using the combinations of reason-
ing strategies that, along the years, proved to be more effective in SAT. Indeed, current
state-of-the-art SAT solvers can be divided in two main categories:

– “look-ahead” solvers, featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back (essentially backtracking) and a heuristic based on the
information gleaned during the look-ahead phase. These solvers are best for dealing
with “small but relatively difficult” instances, typically random k-cnf formulas. A
solver in this category is SATZ [16].

– “look-back” solvers, featuring a simple but efficient look-ahead (essentially unit-
propagation with 2 literal watching), a rather sophisticated look-back based on “1-
UIP learning” and a constant time heuristic based on the information gleaned during
the look-back phase. These solvers are best for dealing with “large but relatively
easy” instances, typically encoding real-world problems. A solver in this category
is ZCHAFF [17].

The terminology “small but relatively difficult” and “large but relatively easy” refer to
the number of variables and are used to convey the basic intuitions about the instances.
To get a more precise idea, consider that in the SAT2003 competition, instances in
the random and industrial categories had, on average, 442 and 42703 atoms respec-
tively [18]. Given this, the reasoning strategies that we considered are:

– Look-ahead: fast unit-propagation based on 2 literal watching (denoted with “u”);
and unit-propagation+failed literal (denoted with “f”).

– Look-back: basic backtracking (denoted with “b”); and backtracking+1-UIP learn-
ing from [17] (denoted with “l”).

4 See, e.g., the formulation in http://www.tcs.hut.fi/∼ini/papers/
niemela-iclp04-tutorial.ps.gz.

http://www.tcs.hut.fi/~ini/papers/
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– Heuristic: VSIDS from [17] (denoted with “v”); unit (given an unassigned atom
p, while doing failed literal on p we count the number u(p) of unit-propagation
caused, and then we select the atom with maximum 1024u(p)×u(p)+u(p)+u(p).
This heuristic is denoted with “u”).

The above search strategies and heuristics are not novel: they have been already
presented and implemented in the literature. For example, failed literal is already incor-
porated in SMODELS, and the heuristic of SMODELS-CC is similar to VSIDS. However,
here, for the first time, all these techniques are implemented, combined and analyzed in
a common platform.

We considered 4 combinations of reasoning strategies: ulv, flv, flu and fbu, where
the first, second and third letter denote the look-ahead, look-back and heuristic respec-
tively, used in the combination. ulv is a standard look-back, “ZCHAFF”-like, solver,
similar to SMODELS-CC and CMODELS2. fbu is a look-ahead, “SATZ”-like, solver. flv
and flu have both a powerful look-ahead and look-back but different heuristic. As we
already anticipated, we can expect that ulv (resp. fbu) has good performances on “large
but relatively easy” (resp. “small but relatively difficult”) programs. By comparing flv
with ulv (resp. flu with fbu) we will see under which conditions a more powerful look-
ahead (resp. look-back) leads to better performances. Also notice that the 4 combina-
tions of reasoning strategies that we consider, are the only meaningful. Indeed, the “v”
heuristic requires learning, while the “u” heuristic requires that failed literal is enabled.

All the tests were run on a Pentium IV PC, with 2.8GHz processor, 1024MB RAM,
running Linux. The timeout has been set to 600 seconds of CPU time for random prob-
lems, and to 3600 seconds for real-world problems. In order to have our results not
biased by the differences due to the quality of the implementation, we implemented
all the reasoning strategies in CMODELS ver. 2 [2]. CMODELS ver. 2, besides being the
solver that we knew best, had the following features:

– Its front-end is LPARSE [7], a widely used grounder for logic programs.
– Its back-end solver already incorporates lazy data structures for fast unit-

propagation as well as some state-of-the-art strategies and heuristics evaluated in
the paper; and

– Can be also run on non-tight programs.

There is no other publicly available AS system having the above features, and that we
know of. In particular, SMODELS does not contain lazy data structures, and adding them
to SMODELS would basically boil down to re-implement the entire solver. Though our
analysis has been conducted using CMODELS ver. 2, thanks to the equivalence result
established in Theorem 3, analogous results are to be expected for any system based on
SMODELS and implementing the techniques that we consider.

Table 1 shows the results on “small” randomly generated programs (lines 1-3, 10-
12), and “large” non random programs (lines 4-6, 7-9, 13-15). More in details,

1. Benchmarks (1-3) are tight programs being the translation of randomly generated
3-SAT instances with a ratio of clauses to atoms as in the column “PB”. They have
been used in [11,12,8].

2. Benchmarks (4-6) and (7-9) are tight programs encoding blocks world planning
problems and 4-colorability graph problems, respectively. These benchmarks are
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Table 1. Performances on tight (1-9)and non-tight (10-15) problems. For each row, the best result
is in bold, and the results within a factor of 2 from the best, are underlined.

PB #VAR ulv flv flu fbu

1 4 300 0.41 0.52 0.85 0.66
2 4.5 300 TIME TIME 81.92 22.53
3 5 300 448.21 485.36 8.27 4.72

4 bw*d9 9956 1.02 5.84 2.69 2.75
5 bw*e9 12260 0.98 1.91 1.92 1.93
6 bw*e10 13482 1.29 7.51 5.03 4.95

7 p1000 14955 0.48 37.86 15.41 15.23
8 p3000 44961 8.86 369.27 144.12 142.83
9 p6000 89951 99.50 TIME 583.55 578.98

10 4 300 265.43 218.48 41.97 31.05
11 5 300 TIME TIME 136.67 99.75
12 6 300 TIME TIME 107.34 65.83

13 np60c 10742 2.83 1611.32 44.12 44.12
14 np70c 14632 4.69 TIME 97.44 97.89
15 np80c 19122 6.91 TIME 192.29 196.32

publicly available at http://www.tcs.hut.fi/Software/smodels/
tests/.

3. Benchmarks (10-12) are non tight programs, randomly generated according to the
methodology proposed in [19]. As before, the number in the column “PB” is the
ratio of clauses to atoms.

4. Benchmarks (13-15) are non tight programs encoding Hamiltonian Circuit prob-
lems on complete graphs. The encoding is from [20].

For the randomly generated programs, for each ratio, we generated 10 instances and
show the median results. In each row, #VAR represents the number of atoms in the
instance.

The first observation is that we get the results that we expected, (except for the
results on the first row, where the positive results of ulv are due to the relative simplic-
ity of the problems): on “small but relatively difficult” programs fbu is best, while on
“large but relatively easy” programs ulv is best. The second observation is that adding
failed literal (resp. learning) to ulv (resp. fbu) does not improve performances when
considering the “large” (resp. “small”) programs.

We also considered other classes of programs, both non large and non randomly
generated. For these programs, the situation of which reasoning strategy is best is less
clear, and (as it can be expected) it varies from class to class.

7 Conclusions

We studied the relation existing between SMODELS and CMODELS, and, ultimately,
between AS and SAT solvers. From a theoretical point of view, we proved that the two

http://www.tcs.hut.fi/Software/smodels/
tests/
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systems have the same behavior on tight programs. Given that CMODELS is based on
DLL, our equivalence results allow to easily derive many other interesting properties
about the two procedures, and in particular about SMODELS. We also conducted an
extensive experimental analysis showing that the combination of reasoning strategies
that are best in SAT, are also best in ASP on randomly generated or on large real world
problems.

We believe that our paper is particularly important for ASP researchers who are
interested in formally establishing the computational behavior of systems, but also for
developers and, more in general, for people involved in benchmarking ASP systems. In
particular, for developers, our theoretical results should foster the design of systems in-
corporating reasoning strategies that provably allow to easily solve problems otherwise
exponential: in SAT, this led to the development, e.g., of ZAP [21]. Further our experi-
mental results suggest that developers (in order to advance the state-of-the-art) should
focus either on randomly generated problems (and thus develop a look-ahead solver) or
on real-world problems (and thus develop a look-back solver): this already happened in
SAT. Finally, the results in this paper are particularly important also to people interested
in benchmarking systems (see the recent ASPARAGUS initiative [22]). Our theoretical
results tell us, e.g., that there exist classes of programs on which SMODELS and/or
CMODELS (but also ASSAT) are bound to be exponential. Our conclusive experimen-
tal analysis points out that it hardly makes sense to run a solver like SMODELS-CC [8]
on randomly generated programs, and, vice-versa, that it hardly makes sense to use
CMODELS with SATZ [16] as SAT solver on large problems coming from real-world
applications.

Finally, we believe that this paper is a major step in the direction of closing the gap
between SAT and ASP, as advocated by Miroslaw Truszczyński in his invited talk at the
last NMR workshop in Whistler, Canada.5
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