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Abstract. This paper investigates semantics of framed temporal logic
programs. To this end, a projection temporal logic and its executable
subset are presented. Based on this language, a framing technique is
introduced. The semantics of a non-framed program is well interpreted
by the canonical model. However, since introducing a framing opera-
tor destroys monotonicity, a canonical model may no longer capture the
intended meaning of a program. Hence, a minimal model theory is de-
veloped. Within this model, negation by default is used to manipulate
frame operator. Further, the temporal semantics of framed programs is
captured by means of the minimal models. The existence of a minimal
model for a given framed program is also proved. An example is given
to illustrate how the semantics of framed programs can be captured.
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1 Introduction

Framing [6,3] is concerned with how the value of a variable from one state can
be carried to the next. Temporal logic offers no solution in this respect; no value
from a previous state is assumed to be carried along. Framing techniques have
been employed by conventional imperative languages for many years. However,
framing in conventional languages has been taken for granted and there is no
conscious effort to consider it explicitly. However, within a temporal logic pro-
gramming language such as Tempura [8,3], XYZ/E [11] a program is executed
over a sequence of states and the values of variables are not inherited auto-
matically. Thus, for improving the efficiency of a program and synchronizing
communication for parallel processes, we have to consider the framing tech-
niques carefully in temporal logic programming. To synchronize communication
between parallel processes in a concurrent program with the shared variable
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model, a synchronization construct, await(c) is required, similarly as in many
concurrent programming languages [10]. Defining await(c) is difficult without
some kind of framing construct since the values of variables are not inherited
automatically from one state to another. But one requires some kind of indefi-
nite stability, since it cannot be known at the point of use how long the waiting
will last. At the same time one must also allow variables to change, so that an
external process can modify the boolean parameter and it can eventually become
true.

To capture the temporal semantics of non-framed programs in Tempura,
the canonical model has been introduced to interpret programs [3]. Within this
model, the semantics of a non-framed program is well captured. However, since
introducing a framing operator destroys monotonicity, a canonical model may
no longer capture the intended meaning of a program. A program, therefore, can
have different meanings under different models. To interpret a framed program
faithfully, minimal models will be employed in this paper. Within this model,
negation by default is used to manipulate the frame operator. Furthermore, the
existence of a minimal model for a satisfiable program is proved by means of
fix-point theory.

This paper is organized as follows. In the following section, a Projection
Temporal Logic (PTL) is briefly introduced. Based on this logic, an executable
temporal logic programming language called Tempura is formalized in Section
3. Section 4 formalizes a framing technique. Section 5 presents the temporal
semantics of framed programs by means of minimal models. Finally, in Section
6, an example is given to illustrate how the minimal model can be used to capture
the meaning of a framed program. Conclusions are drawn in Section 7.

2 Projection Temporal Logic

Our underlying logic PTL is the first order temporal logic [7,10] with projection
[2,3,5]. It is an extension of ITL [8].

2.1 Syntax

Let Π be a countable set of propositions, and V be a countable set of typed
static and dynamic variables. The terms e and formulas p of the logic are given
by the following grammar:

e ::= x | u | ©e | -©e | beg(e) | end(e) | f(e1, . . . , en)

p ::= π | e1 = e2 | P (e1, . . . , en) | ¬p | p1 ∧ p2 | ∃x : p | ©p | -©p | (p1, . . . , pm) prj p

where π is a proposition, x is a dynamic variable and u is a static variable. In
f(e1, . . . , en) and P (e1, . . . , en), where f is a function and P is a predicate. It is
assumed that the types of the terms are compatible with those of the arguments
of f and P . A formula (term) is called a state formula (term) if it does not
contain any temporal operators (i.e. ©, -©, beg(.), end(.) and prj ); otherwise it
is a temporal formula (term).
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2.2 Semantics

A state s is a pair of assignments (Iv, Ip) which for each variable v ∈ V defines
s[v] = Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value
of the appropriate type or nil (undefined), whereas Ip[π] ∈ {true, false}. An
interval σ = 〈s0, s1, . . . 〉 is a non-empty (possibly infinite) sequence of states.
The length of σ, denoted by |σ|, is defined as ω if σ is infinite; otherwise it
is the number of states in σ minus one. To have a uniform notation for both
finite and infinite intervals, we will use extended integers as indices. That is,
we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω} and
extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and
for all i ∈ N0, i < ω. Moreover, we define � as ≤ −{(ω, ω)}. For 0 ≤ i, j ≤
|σ| we will use σ(i..j) to denote the subinterval 〈si, si+1, . . . , sj〉.1 It is assumed
that each static variable is assigned the same value in all the states in σ. To
define the semantics of the projection operator we need an auxiliary operator
for intervals.

Let σ = 〈s0, s1, . . . 〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ|. The projection of σ onto r1, . . . , rh is the interval,
σ↓(r1, . . . , rh) = 〈st1 , st2 , . . . , stl

〉, where t1, . . . , tl is obtained from r1, . . . , rh by
deleting all duplicates. For example, 〈s0, s1, s2, s3, s4〉↓(0, 0, 2, 2, 2, 3)=〈s0, s2, s3〉.

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = 〈s0, s1, . . . 〉 is an interval, i and k are non-negative integers, and j is an
integer or ω, such that i ≤ k � j ≤ |σ|. We use (σ, i, k, j) to mean that a term or
formula is interpreted over a subinterval σ(i..j) with the current state being sk.
For every term e, the evaluation of e relative to interpretation I = (σ, i, k, j) is
defined as I[e], by induction on the structure of a term, as shown in Fig. 1, where
v is a variable and e1, . . . , em are terms. The satisfaction relation for formulas
|= is defined as the least relation satisfying the following.

I[a] = sk[a] = Ik
v [a] = Ii

v[a] if a is a static variable.
I[x] = sk[x] = Ik

v [x] if x is a dynamic variable.

I[f(e1, . . . , em)] =
{

f(I[e1], . . . , I[em]) if I[eh] �= nil for all h
nil otherwise

I[©e] =
{

(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[ -©e] =
{

(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[beg(e)] = (σ, i, i, j)[e]

I[end(e)] =
{

(σ, i, j, j)[e] if j �= ω
nil otherwise

Fig. 1. Interpretation of PTL terms

1 When i > j, σ(i..j) is the empty string, and if j = ω then σ(i..j) = 〈si, si+1, . . . 〉.
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1. I |= π if sk[π] = Ik
p [π] = true.

2. I |= P (e1, . . . , em) if P (I[e1], . . . , I[em]) = true and I[eh] 
= nil, for all h.
3. I |= e = e′ if I[e] = I[e′].
4. I |= ¬p if I 
|= p.
5. I |= p ∧ q if I |= p and I |= q.
6. I |= ©p if k < j and (σ, i, k + 1, j) |= p.
7. I |= -©p if i < k and (σ, i, k − 1, j) |= p.
8. I |= ∃x : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j)

|= p and the only difference between σ and σ′ can be in the values assigned
to variable x.

9. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm � j
such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ↓(r0, . . . , rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ↓(r0, . . . , rh) for some 0 ≤ h ≤ m.

A formula p is said to be:

– satisfied by an interval σ, denoted σ |= p, if (σ, 0, 0, |σ|) |= p.
– satisfiable if σ |= p for some σ.
– valid, denoted |= p, if σ |= p for all σ.
– left end closed (lec-formula) if (σ, k, k, j) |= p ⇔ (σ, i, k, j) |= p for any

interpretation (σ, i, k, j).
– equivalent to another formula q, denoted p ≡ q, if |= �(p ↔ q).

Projection. To ensure smooth synchronization between p1, . . . , pm and q, the
previous operator is not allowed within q appearing in (p1, . . . , pm) prj q. The
projection construct is executable, and to interpret (p1, . . . , pm) prj q we need
two sequences of clocks (states) running on different time scales: one is a local
state sequence, over which p1, . . . , pm are executed, while the other is a global
state sequence over which q is executed in parallel with the sequence of pro-
cesses p1, . . . , pm. The execution proceeds as follows: First, q and p1 start at
the first global state and p1 is executed over a sequence of local states until its
termination. Then (the remaining part of) q and p2 are executed at the sec-
ond global state. Subsequently, p2 is continuously executed over a sequence of
local states until its termination, and so on. Although q and p1 start at the
same time, p1, . . . , pm and q may terminate at different time points. E.g., if
q terminates before some ph+1, then, subsequently, ph+1, . . . , pm are executed
sequentially.

2.3 Other Formulas

The derived connectives, ∨, → and ↔, as well as the logic formulas, true and
false, are defined as usual. We also use the following derived formulas:
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Simple Temporal Formulas

Prj (p1, . . . , pm) def= (p1, . . . , pm) prj empty empty def= ¬ © true⊙
p

def= ¬ -©¬p more def= ¬empty
first def= ¬ -©true skip def= len(1)⊙

p
def= empty ∨ ©p �p

def= Prj (true, p)

len(n) def=

⎧⎨
⎩

empty n = 0

©len(n − 1) n > 1
�p

def= ¬�¬p

The chop operator (;), which is a central operator in ITL [8], can be expressed
by the projection operator of PTL, as follows: p; q def= Prj (p, q). The chop star
operator (∗) of [9] can also be defined.

Theorem 1. Let p, q, w be formulas, and e, e1, e2 terms, then the following for-
mulas hold:

FCH1 ©p; q≡ © (p; q) FDU1 ¬
⊙

p≡©¬p
FCH2 w ∧ (p; q)≡(w ∧ p; q) FDU2 ¬©p≡

⊙
¬p

FD3 ©(p∧q)≡©p∧©q FE1 �p≡p∨©�p
FD4 ©(p∨q)≡©p∨©q FE2 �p≡p∧

⊙
�p

FD9 (w; p∨q)≡(w; p)∨(w; q) NFE ¬first∧more ⊃ (© -©p↔ -©©p)
FD10 (p∨q; w)≡(p; w)∨(q; w) FQT 1 ©(∃x : p) ≡ ∃x : ©p
FW2

⊙
p ≡ ¬ © ¬p EQ3 ¬first∧more ⊃ (© -©e = -©©e)

FW1 ©p ≡
⊙

p∧more EQ1 more ⊃ (©e1 = ©e2 ↔ ©(e1 = e2))
FUN3 ©e1 + ©e2 = ©(e1 + e2) FST 1 p∗ ≡ empty ∨ (p; p∗) ∨ p ∧ �more

These logic laws are useful in the reduction of programs and the proofs of them
can be found in [3].

3 Temporal Logic Programming Language

The programming language we use is an executable subset of PTL. It is an ex-
tension of Tempura [8,6]. We augment Tempura with frame, new projection, and
await operators [2,3,4,5]. In addition, variables within a program can also refer
to their previous values. In the following, we first introduce the basic constructs
of Tempura. Later, we formalize the frame and await constructs.

3.1 Syntax

The basic statements of Tempura are as follows.

– Assignment: x = e
– Conjunction: p∧q

– Conditional statement: if b then p else q
def= (b→p)∧(¬b→q)

– Local variable: ∃x : p
– Next statement: ©p
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– Always statement: �p
– Sequential statement: p; q
– While statement: while b do p

def= (p∧b)∗∧�(empty → ¬b)
– Projection statement: (p1, ..., pm) prj q

– Parallel statement: p||q def= p ∧ (q; true) ∨ q ∧ (p; true)
– Termination: empty

where b is a state boolean expression consisting of propositions, variables, and
boolean connectives.

The following formulas are derived from PTL and can be used in programs.

1. Assignment Operators
Let x be a variable, u a static variable, and e an expression (term).
1) Next assignment: x o= e

def= ©x = e

2) Unit assignment: x := e
def= skip∧x o= e

The next assignment specifies the value of x to be e at the next state, while
the unit assignment assigns value e to x at the next state, the same function
as the next assignment, but, in the meantime, it specifies the length of the
interval over which the assignment takes place to be 1.

2. Termination and the Final State
1) fin(p) def= �(empty→p)
2) keep(p) def= �(¬empty→p)
3) halt(p) def= �(empty↔p)
fin(p) holds over an interval as long as p holds at the final state, whereas
keep(p) holds over an interval if p holds at every state, ignoring the final
one. halt(p) holds over an interval if and only if p holds at the final state.

3.2 Semantics of Programs

An expression e can be treated as a term and a program P can be viewed as
a formula in PTL. Therefore, the evaluation of e and the interpretation of P
can be done as in PTL. However, since the programming language is a subset
of the underlying logic, a program may have its own characteristics and may be
interpreted in a simple and manageable way.

In order to interpret temporal logic programs, we assume that a program P
contains a finite set S of variables and a finite set Φ of propositions. We interpret
propositions over B and variables over D′ = D ∪ {nil}, where nil is undefined
and D denotes all data needed by us including integers, lists, sets etc. For a
program P , there are three ways to interpret propositions contained in P , namely
canonical, complete, and partial interpretations as defined for the semantics of
logic programming language [1]. Here, we use the canonical interpretation only
on propositions. That is, in a model σ =< (I0

v , I0
p ), ... >, Ik

v is used as in the
logic but Ik

p is changed to the canonical interpretation.
A canonical interpretation on propositions is a subset Ip⊆Φ. Implicitly,

propositions not in Ip are false. Note that Ik
p in the interpretation of the logic
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framework is an assignment of a truth value in B to each proposition π∈Π at
state sk; whereas in a canonical interpretation, Ik

p is a set of propositions, each
of them has truth value true in B at sk. Clearly, the two definitions are equiva-
lent except that they refer to different sets of variables and propositions. Using
canonical interpretation is necessary for easy manipulation of minimal models.
Let σ =< (I0

v , I0
p ), ... > be a model. We denote the sequence of interpretation on

propositions of σ by σp =< I0
p , ... >. σp is said to be canonical if each Ii

p(i≥0)
is a canonical interpretation on propositions.

If there exists a model σ with σp being a canonical interpretation sequence on
propositions andσ|=P as in the logic, then programP is said to be satisfiable under
the canonical interpretation on propositions, denoted by σ|=cP ; and σp is said to
be a canonical interpretation sequence (on propositions) of program P . If for all σ
with σp being a canonical interpretation sequence, σ|=P , then program P is said
to be valid under the canonical interpretation on propositions, denoted by |=cP .

Note that the definition of the canonical interpretation of program P is in-
dependent of its syntax in the sense that the definition does not refer to the
structure of the program. So the definition can be extended so that it can be
applied to non-deterministic programs and temporal formulas.

Example 1. For the propositional formula, P1: ¬A↔©B, which can be treated
as a non-deterministic program, we have Φ = {A, B}, and P1 has the following
canonical interpretation sequences of length 2, < φ, {B} >, < φ, {A, B} >, <
{B}, {B} >, < {B}, {A, B} >, < {A}, φ >, < {A}, {A} >, < {A, B}, φ >, and
< {A, B}, {A} >.

P1 is satisfiable but not valid under the canonical interpretation on propositions
because a canonical interpretation sequence, < φ, φ >, does not satisfy it.

Note that a program P can be satisfied by several different canonical models
on propositions so program P has, possibly, different meanings under different
models. Therefore, it is important to choose a model which satisfies the intended
meaning of a program P , and this is the topic of Section 5.

Since the canonical model is basically equivalent to the basic model except
that the latter acts on the fixed set V of variables and the fixed set Π of proposi-
tions, whereas the former acts on the set of variables and the set of propositions
within a concrete program. ∃x : p(x) can be renamed as a formula p(y) (or
p[y/x]) with a free variable y by renaming x as y.

Lemma 2. Let p(y) be a renamed formula of ∃x : p(x). Then, ∃x : p(x) is
satisfiable if and only if p(y) is satisfiable. Furthermore, any model of p(y) is a
model of ∃x : p(x).

4 Framing

In this section, we first define some new assignments which are required by
framing, then we define frame operators; and finally, we present a minimal model-
based approach for framing.
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Suppose S = {x1, ..., xn}(S⊂V ) is a set of state variables within a program
P . Note that variables bound by quantifiers can always be given distinct names
by renaming them as necessary.

Definition 1. ( new assignments )

(1) xi⇐e
def= xi = e∧pi (0≤i≤n, e 
= nil)

(2) xi o=+ e
def= ©xi = e∧©pi

(3) xi :=+ e
def= xi o=+ e∧skip

where pi is an atomic proposition associated with state variable xi (0≤i≤n) and
cannot be used for other purposes.

The meanings of these assignment operators are similar to those presented in
Section 3, but they render some propositions true besides assigning some values
to variables in the same unit of time. It is now time to define the assignment
flag

af(xi)
def= pi

where proposition pi associated with variable xi is the same as in Definition 1,
and cannot be used for other purposes. As expected, whenever xi⇐b is encoun-
tered, pi is set to be true, hence af(xi) is true whereas if no assignment to xi

takes place, pi is unspecified. In this case, we will use a minimal model to force
it to be false.

Armed with the assignment flag, we can define state frame and interval frame
operators. Intuitively, when a variable is framed at a state, its value remains
unchanged if no assignment is encountered at that state. A variable is framed
over an interval if it is framed at every state over the interval.

Definition 2. (looking back framing)

(1) lbf(xk) def= ¬af(xk)→∃b : ( -©xk = b∧xk = b)
(2) frame(xk) def= �(more→©lbf(xk))
(3) frame(x1, ..., xn) def= frame(x1)∧...∧frame(xn)

We interpret programs using minimal models. Let σ =< s0, ... > be an
interval, and si = (Ii

v , Ii
p); Ii

v is defined as in Section 2.2 and Ii
p is the canoni-

cal interpretation defined as in Section 3.2 but the sequence of interpretations
on propositions of σ, σp =< I0

p , ..., >, is required to be a minimal canonical
sequence, as defined in the next section. Armed with framing operator, the syn-
chronized communication construct await(c) can be defined as follows:

Definition 3. await(c) def= frame(Vc)∧halt(c) whereVc represents all dynamic
variables contained in c.

5 Minimal Model

5.1 The Minimal Satisfaction Relation

In this section, we discuss semantics of framed programs. As before, let V denote
the set of all variables. A dynamic variable x ∈ V is said to be framed in a
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program p if frame(x) or lbf(x) is contained in p. A program p is said to be
framed if p contains at least one framed variable. In general, a framed program is
non-deterministic under the canonical model. Consequently, a framed program
can inductively be defined, as follows

– For any variable x ∈ V and any well-formed expression e, x = e, x ⇐ e, and
empty are framed programs.

– lbf(x), and frame(x) are framed programs.
– If p, q, p1, ..., pm are framed programs, then so are the followings:

©p, �p, p ∧ q, p; q, if b then p else q, while b do p, p‖q, (p1, ..., pm) prj q,
and ∃x : p.

Fact 1.
EQFR xi = ei ≡ pxi ∧ xi = ei ∨ ¬pxi ∧ xi = ei

LBF lbf(xi) ≡ pxi ∨ ¬pxi ∧ xi = -©xi

Proof:

EQFR is obviously true. We only prove LBF.

lbf(xi) ≡ ¬afxi → ∃b : -©xi = b ∧ xi = b
≡ ¬pxi → ∃b : -©xi = b ∧ xi = b
≡ ¬pxi → -©xi = a ∧ xi = a Lemma 2
≡ ¬pxi → xi = -©xi (
= nil)
≡ pxi ∨ ¬pxi ∧ xi = -©xi

By EQFR and LBF, when we reduce a framed program p, whenever xi = ei

occurs in p, it is replaced by pxi ∧ xi = ei ∨ ¬pxi ∧ xi = ei; whereas whenever
lbf(xi) occurs in p, it is replaced by pxi ∨ ¬pxi ∧ xi = -©xi. Then we can reduce
p under the canonical model as usual.

A framed program p can be a non-deterministic program. There may be
several models satisfying the program under the canonical models.

Example 2.

frame(x) ∧ x = 1 ∧ len(1)
≡ �(more → ©lbf(x)) ∧ x = 1 ∧ ©(empty)
≡ (more → ©lbf(x)) ∧

⊙
�(more → ©lbf(x)) ∧ x = 1 ∧ more ∧ ©(empty)

≡ ©lbf(x) ∧ ©�(more → ©lbf(x)) ∧ x = 1 ∧ ©(empty)
≡ (px ∧ x = 1 ∨ ¬px ∧ x = 1) ∧ ©(lbf(x) ∧ empty)

Thus,
pc ≡ px ∧ x = 1 ∨ ¬px ∧ x = 1

pf ≡ lbf(x) ∧ empty
≡ (px ∨ ¬px ∧ x = 1) ∧ empty
≡ px ∧ empty ∨ ¬px ∧ x = 1 ∧ empty



Semantics of Framed Temporal Logic Programs 365

Hence, four models given below can satisfy the program.

σ1 =< ({px}, {x : 1}), ({px}, φ) >, σ2 =< ({px}, {x : 1}), (φ, {x : 1}) >

σ3 =< (φ, {x : 1}), ({px}, φ) >, σ4 =< (φ, {x : 1}), (φ, {x : 1}) >

As seen, a framed program can have a number of canonical models. Thus,
a problem we have to face is how to choose a model to satisfy the intended
meaning of a program. We interpret framed programs using minimal models.

Definition 4. Let p be a framed program, and Σp = {σ|σ |=c p}. Let σp =<
I0
p , I1

p , ... >, σ1, σ2 ∈ Σp. We define

– σ1p � σ2p iff Ii
1p ⊆ Ii

2p and |σ1| = |σ2| for all i, 0 ≤ i ≤ |σ1|
– σ1 � σ2 iff σ1p � σ2p

– σ1 � σ2 iff σ1 � σ2 and σ2 
� σ1

Example 3.

< (φ, {x : 1}) >=< (φ, {x : 1}) >, < ({px}, φ) >�< (φ, {x : 1}) >

Definition 5. (the minimal satisfaction relation)
Let p be a program, and (σ, i, k, j) be an interpretation. Then the minimal sat-
isfaction relation |=m is defined as

(σ, i, k, j) |=m p iff (σ, i, k, j) |=c p and there is no σ′ such that σ′ � σ and
(σ′, i, k, j) |=c p.

A program p is satisfied by a model σ under relation |=m, denoted by σ|=mp,
if (σ, 0, 0, |σ|) |=m p. A model σ is a minimal model of program p if σ |=m p.

The relations ≡m and ≈m can be defined similarly to the relations ≡ and ≈.
p ≡m q iff for all σ, all k, 0 ≤ k � |σ|, (σ, 0, k, |σ|) |=m p ⇔ (σ, 0, k, |σ|) |=m q.
p ≈m q iff for all σ, σ |=m p ⇔ σ |=m q. The relations ≡m and ≈m are
also equivalence relations over the set of programs. That is, they are reflexive,
symmetric and transitive.

Note that the definition of the minimal model of a program p is also indepen-
dent of its syntax in the sense that the definition does not refer to the structure
of the program, and can be applied to temporal formulas.

Example 4. The program p in Example 2 has only one minimal model σ4 = (<
φ, {x : 1}), (φ, {x : 1}) >. The formula P1 in Example 1 has only two minimal
models, namely, < φ, {B} > and < {A}, φ >.

The intended meaning of a program p is captured by its minimal model. For
instance, if p is x1⇐1∧frame(x1)∧len(1) then under the minimal model, x1 = 1
defined at both state s0 and s1, this is the intended meaning of p. However, within
only the canonical model, px1 is unspecified at state s1, so it could be true at s1.
This causes x1 to be unspecified at state s1. Therefore, x1 could be any value
from its domain.
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5.2 Normal Form

Definition 6. A framed program q is in normal form if

q
def=

k∨
i=1

qei ∧ empty ∨
h∨

j=1

qcj ∧©qfj (5.1)

where k, h ≥ 0 (k + h ≥ 1) and

– for all 1 ≤ j ≤ h, ©qfj are lec-formulas and qfj are programs.
– qcj (j ≤ h) and qei (i ≤ k) are true or all state formulas of the form:

(x1 = e1) ∧ ... ∧ (xl = el) ∧ ṗx1 ∧ ... ∧ ṗxm

where ei ∈ D (1 ≤ i ≤ l) and ṗx denotes px or ¬px and l ≥ 0 and m ≥ 0 and
k + h ≥ 1. Notice that, qcj1 
≡ qcj2 if j1 
= j2, otherwise they can be merged
into one by taking the common factor.

In some circumstances, we simply write qe ∧ empty instead of
k∨

i=1
qei ∧ empty.

Also, we call conjuncts, qei ∧ empty, qcj ∧ ©qfj , basic products; the former is
called terminal product whereas the latter is called future products. Further, we
call qei, qcj present components, ©qfj future components of basic products.

Theorem 3. If p is a framed program, then there is a program q as defined in
(5.1) such that

p ≡ q

Theorem 4. Let q ≡
k∨

i=1
qei ∧ empty ∨

h∨
j=1

qcj ∧ ©qfj be the normal form of a

framed program q. If px and x = e′, where e′ 
= e (e′, e ∈ D), are not contained
in qei (1 ≤ i ≤ k) and qcj (1 ≤ j ≤ h), then

(px ∨ ¬px ∧ x = e) ∧ q ≡m ¬px ∧ x = e ∧ q

The proofs of the above two theorems can be found in [3]. Armed with
the normal form, a program q can be decomposed to a so called Normal Form
Graph(NFG) as follows:

Initially, the root (denoted by a small double circle) of the Graph is labelled
by program q, each basic product in the normal form of q becomes a son of q.
With the terminal product, the edge labelled by present component qe and a
terminal vertex (a small black dot) labelled by ε without appearing of empty;
and with the future product, the edge labelled by qcj and the next vertex (a
small circle) labelled by next component qfj . Then, qfj can further be reduced
to a sub-graph of q and so on. If two vertices are identical, we merge them into
one. It is clear that if q has only finite models, its NFG is also finite. A normal
form graph is shown in Fig.2(a). Note that a sup-script of a present component
denotes the reduction level on a path in NFG.
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q
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q
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I
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p

I0
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I
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I
1,(1)
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I
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I1
p

I1

Ik
I

k+1,(1)
p

Ik+1
p

I
k+1,(2)
p

Ik+1

(a) (b)

q11
c2

Fig. 2. NFG

5.3 Existence Theorems of Minimal Models

In this section, we investigate the existence of minimal models of a satisfiable
framed program. Two theorems are proved. The first is the one with suffi-
ciency conditions whereas the second is the one with necessity and sufficiency
conditions.

Theorem 5. Let p be a satisfiable framed program (which may be non-
terminating, and/or non-deterministic). If, (1) p has at least one finite model
or (2) p has finitely many models, then p has at least one minimal model on
propositions.

The proof of the theorem can be found in [3] and is omitted here.

Theorem 6. Let p be a satisfiable framed program (which can be
non-terminating, and/or non-deterministic), then p has at least one minimal
model on propositions.

Proof:
In order to distinguish operations between sequences and sets, we denote a
finite canonical interpretation sequence (I0

p , ..., Ik
p ) by Ik, and its correspond-

ing coded set {(0, I0
p), ..., (k, Ik

p )} by Ik. Thus, for an arbitrary canonical in-
terpretation sequence I = (I0

p , ..., Ih
p ) (h ∈ N0), its corresponding coded set is

I = {(0, I0
p), ..., (h, Ih

p )}.
For convenience, we need to add extra information to the NFG of a program p.

First, the label of each edge, i.e, present component in the normal form of p, e.g.
pej or pci is changed to corresponding canonical interpretation on propositions Ih

p

for some h ≥ 0 ((h − 1)th edge from root on a path) ignoring program variables.
For instance, if pci ≡ p1∧x1 = 1∧p2∧p3∧x3 = 2, then Ih

p = {p1, p2, p3}. Second,
a node is given an extra label Ik. The initial node is labelled by I−1 = {(−1, φ)}.
With a node Ik ((k−2)th node from root), to find out the next edge with minimal
canonical interpretation, we define a function e − min as follows.
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e − min(Ik) = min{I
k+1,(1)
p , ..., I

k+1,(h)
p } = I

k+1,(i)
p (Ik+1

p for short), if I
k+1,(i)
p

⊂ I
k+1,(j)
p or I

k+1,(i)
p is not comparable with I

k+1,(j)
p , for ∀j, i 
= j, 0 ≤ i, j ≤ h

where I
k+1,(1)
p , ..., I

k+1,(h)
p are all canonical interpretations associated with edges

departing from node Ik.
By Theorem 3, a framed program p can be reduced to its normal form. Since

p is satisfiable, so p has at least one canonical model. Thus, we can construct its
NFG as shown in Fig.2(b). Based on NFG, we can construct a calculus T on a
canonical interpretation coded set I, T (I) is defined as:

T (I) = {(n, In
p )|∃In−1 ⊆ I, In

p = e − min(In−1), n ≥ 0}

e − min(In−1) is a function returning the minimal interpretation among all
canonical interpretations associated with edges departing from node In−1.

Initially I−1={(−1, ∅)}, then we repeatedly apply calculus T to sets I−1, I0, ...
Thus, we got,
I0 = T (I−1) = {(0, I0

p)} , I1 = T (I0) = {(0, I0
p), (1, I1

p )}, I2 = T (I1) = T 2(I0) =
{(0, I0

p), (1, I1
p ), (2, I2

p )},..., In = T (In−1) = T n(I0) = {(0, I0
p), (1, I1

p ), ..., (n, In
p )}.

Thus, I0 ⊆ I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . . . It is readily to see that T is monotonic.

Let I =
∞⋃

n=0
In, In stands for the prefix of minimal interpretation sequence I.

We now prove the following conclusions.
1. I is a canonical interpretation sequence of p.
We first prove T (I) = I.
(1) T (I) ⊆ I. For ∀(n + 1, In+1

p ) ∈ T (I), by definition, ∃In, In ⊆ I, In+1
p =

e − min(In), so (n + 1, In+1
p ) ∈ T (In), i.e. (n + 1, In+1

p ) ∈ In+1. Since In+1 ⊆ I,
we have (n + 1, In+1

p ) ∈ I. Hence T (I) ⊆ I.

(2) I ⊆ T (I). That is to prove
∞⋃

n=0
In ⊆ T (I). First, we prove ∀n, n ∈ N, In ⊆

T (I). Suppose (n, In
p ) ∈ In, then (n, In

p ) ∈ T (In−1). Since In−1 ⊆ I, by defini-
tion, In

p = e − min(In−1) , so (n, In
p ) ∈ T (I), hence In ⊆ T (I). In addition, for

all i ∈ N , if (i, Ii
p) ∈

∞⋃
n=0

In, then ∃n ∈ N such that (i, Ii
p) ∈ In. Since In ⊆ T (I),

so (i, Ii
p) ∈ T (I),

∞⋃
n=0

In ⊆ T (I), therefore I ⊆ T (I).

By the above, we have T (I) = I. Thus, I is a fix-point of T and I is a canonical
interpretation sequence of program p.

2. Let M = {σ|σ |=c p} and σ ∈ M , σp = I. Then σ is a minimal model of p.
Suppose ∃σ′ ∈ M, σ′ � σ. We prove σ = σ′ by induction on In

p = I
′n
p .

(1) Since σ′ � σ, so σ
′

p � σp, i.e. I
′i
p ⊆ Ii

p for all i, 0 ≤ i ≤ |σ|. Thus I
′0
p ⊆ I0

p ,
by definition of T , I0

p ⊆ I
′0
p , therefore I0

p = I
′0
p .

(2) Suppose for n ≤ k (0 ≤ k ≤ |σ|), Ih
p = I

′h
p (0 ≤ h ≤ k). Let n = k + 1.

Since I
′k+1
p ⊆ Ik+1

p , on the other hand, by definition of T , Ik+1
p ⊆ I

′k+1
p , so

Ik+1
p = I

′k+1
p . Therefore σ = σ′.

In conclusion, σ is a minimal model of program p.
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6 Example

In this section, an example is given to show how to apply the minimal model
to interpret a framed program. Let p ≡ frame(x)∧x = 1∧if px then y ◦=
1 else y ◦=+ 2 ∧len(1). The following is a complete reduction process of program
p. The sup-scripts of components denote the reduction levels and positions.

p ≡ frame(x)∧x = 1∧if px then y ◦= 1 else y ◦=+ 2 ∧len(1)
≡ �(more → ©lbf(x)) ∧ x = 1 ∧(px∧ y ◦= 1 ∨ ¬px∧ y ◦=+ 2)∧

©(empty) definition 2
≡ (more → ©lbf(x))∧

⊙
�(more → ©lbf(x))∧x = 1 ∧

(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2∧ © (empty)∧more FE2
≡ ©lbf(x)∧ © �(more → ©lbf(x))∧x = 1 ∧

(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2)∧ © (empty) FW1
≡ x = 1∧ © (lbf(x)∧empty)∧(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2)
≡ x = 1∧ © (lbf(x)∧empty)∧px∧y◦= 1∨

x = 1∧ © (lbf(x)∧empty)∧¬px∧y ◦=+ 2
≡ x = 1∧ © (lbf(x)∧empty)∧px∧ © y = 1∨

x = 1∧ © (lbf(x)∧empty)∧¬px∧ © y ⇐ 2 Next assignment,def1(3)
≡ x=1∧px∧© (lbf(x)∧y=1∧empty) ∨ x=1∧¬px∧© (lbf(x)∧y⇐ 2∧empty)

The last formula shows that p is in a well-reduced (i.e. normal) form p
0(1)
c ∧ ©

p
0(1)
f ∨p

0(2)
c ∧©p

0(2)
f at state s0. Then p

0(1)
f and p

0(2)
f are continuously re-reduced

as follows:

p
0(1)
c ≡ x = 1∧px

p
0(1)
f ≡ lbf(x)∧y = 1∧empty

≡ (px ∨ ¬px∧x = 1)∧(py∧y = 1 ∨ ¬py∧y = 1)∧empty fact1
≡m ¬px∧x = 1∧¬py∧y = 1∧empty theorem4

p
0(2)
c ≡ x = 1∧¬px

p
0(2)
f ≡ lbf(x)∧y ⇐ 2∧empty

≡ (px ∨ ¬px∧x = 1)∧y ⇐ 2∧empty fact 1,LBF
≡m ¬px∧x = 1∧py∧y = 2∧empty theorem4, def1(1)

Finally, p
0(1)
f is reduced to the form pe(1) ≡ p

1(1)
c ∧empty, p

0(2)
f is reduced to

the form pe(2) ≡ p
1(2)
c ∧empty,which indicate that the reduction process of p are

successfully completed. Where

p
1(1)
c ≡ ¬px∧x = 1∧¬py∧y = 1, p

1(1)
f ≡ empty

p
1(2)
c ≡ ¬px∧x = 1∧py∧y = 2, p

1(2)
f ≡ empty

Hence, six models given below can satisfy the program.

σ1 =< ({px}, {x : 1}), ({px}, {y : 1}) >, σ2 =< ({px}, {x : 1}), ({px, py}, {y : 1}) >

σ3 =< ({px}, {x : 1}), ({py}, {x : 1, y : 1}) >,σ4 =< (φ, {x : 1}), ({px, py}, {y : 2}) >

σ5 =< ({px}, {x : 1}), (φ, {x : 1, y : 1}) >, σ6 =< (φ, {x : 1}), ({py}, {x : 1, y : 2}) >
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However, only two minimal models, σ5 and σ6, can capture the meaning of
program p. This example also shows us that a framed program might have more
than one minimal models.

7 Conclusion

This paper presented a framing technique based on an explicit frame operator.
A framed program is interpreted by a minimal model. An interpreter was also
developed using SICSTUS Prolog for the Framed Tempura. The interpreter em-
ployed the framing technique we presented in this paper. It is a workable and
useful technique. Because of the space limitation, we cannot introduce the inter-
preter and the reduction technique in this paper. It will be discussed elsewhere.
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