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Abstract. We present HYPROLOG, a novel integration of Prolog with
assumptions and abduction which is implemented in and partly borrows
syntax from Constraint Handling Rules (CHR) for integrity constraints.
Assumptions are a mechanism inspired by linear logic and taken over
from Assumption Grammars. The language shows a novel flexibility in
the interaction between the different paradigms, including all additional
built-in predicates and constraints solvers that may be available. As-
sumptions and abduction are especially useful for language processing,
and we can show how HYPROLOG works seamlessly together with the
grammar notation provided by the underlying Prolog system. An op-
erational semantics is given which complies with standard declarative
semantics for the “pure” sublanguages, while for the full HYPROLOG
language, it must be taken as definition. The implementation is straight-
forward and seems to provide for abduction, the most efficient of known
implementations; the price, however, is a limited use of negations. The
main difference wrt. previous implementations of abduction is that we
avoid any level of metainterpretation by having Prolog execute the de-
ductive steps directly and by treating abducibles (and assumptions as
well) as CHR constraints.

1 Introduction

Assumption-based reasoning in general, or hypothetical reasoning is defined in
[22] as a logic system in which a set of facts and a set of possible hypotheses are
given. Its instances can be assumed if they are consistent with the facts. Both
abduction (the unsound but useful assumption of B given A and given that B
implies A) and linear and intuitionistic logic inspired assumptions (special facts
that are made available as global resources within a specific scope [25]) fall into
that general category. Their formalization within, respectively, Abductive Logic
Programming [19] and Assumptive Logic Programming [14] refines this general
notion by for instance requiring in the first case consistency with a special type
of facts: integrity constraints. Both allow us to move beyond the limits of classi-
cal logic to explore “possible cause” and “what-if” scenarios. They have proved
useful for diagnosis, recognition, sophisticated human language processing prob-
lems, and many other applications. However in practice, abduction in particular
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has not been used to its full potential owing to implementation indirections.
Assumptions can be more efficiently implemented through continuation based
processors such as BinProlog, but there is no Prolog in existence which efficiently
provides both capabilities at the same time.

The present paper generalizes and improves an earlier proposal presented in
the workshop paper [12]. In this article we present a new programming language,
HYPROLOG, which augments Prolog with the following hypothetical reasoning
capabilities:

– linear, intuitionistic and timeless assumption, in the sense of [14] to which
we add the new feature of integrity constraints,

– abduction in the sense of abductive logic programming [19],
– integrity constraints that may refer to both abducibles and assumptions.

These results are significant in that they enhance Prolog’s appeal as a program-
ming language by transporting it beyond the rigid limits of classical logic and
thus making it more appropriate for human-like reasoning in general and for
AI in particular. In addition, they are portable, in the sense that programs in
any Prolog that includes CHR can simply be augmented with our code, which
provides the mentioned extensions, and efficient: the assumptive part runs only
three times slower than in Prolog versions where assumptions are hardwired, and
our abduction runs actually faster than previous implementations for programs
that involve many resolution steps. Finally, our implementation principles can
be seen as demonstration of how hypothetical reasoning can materialize in CHR
even without our system.

We first overview the necessary background on abduction, assumptions, and
CHR; then we present the new language’s syntax and exemplify its use within
both programs and grammars. We discuss implementation principles, semantic
considerations, related work and benchmarks, and finally, we provide concluding
remarks. System and sample programs are available at
http://www.ruc.dk/˜henning/hyprolog.

2 Background

2.1 Abduction

An abductive logic program [19] is usually specified as a triplet 〈P , A, IC〉 where
P is a logic program, A a set of abducible predicates that do not occur in the
head of any clause of P , and IC a set of integrity constraints assumed to be
consistent. Assume additionally that P and IC can refer to a set of built-in
predicates that have a fixed meaning identified as a theory B; a predicate in P
that is neither abducible nor built-in is called defined. We assume for simplicity
in the following that IC refers to abducible and built-in predicates only.

Given an abductive logic program 〈P , A, IC〉, we define for pairs of sets of ab-
ducibles and built-in atoms 〈A, B〉, a consistent ground instance to be a common
ground instance 〈A′, B′〉 of 〈A, B〉 so that
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– B |= B′ (the instance of built-ins is satisfied)
– B ∪ A′ |= IC (the instance of abducibles respects the integrity constraints)

For simplicity and without loss of generality, we consider only ground queries; an
abductive answer to a query Q is a pair of finite sets of abducible and of built-in
atoms 〈A, B〉 such that

– 〈A, B〉 has at least one consistent ground instance 〈A′, B′〉,
– for any such 〈A′, B′〉, we have P ∪ A′ |= Q.

Minimality and Compaction. It is often required that an abductive answer
be minimal measured in the number of abduced literals (or, alternatively, in a
subset relation or subsumption ordering). Most published abduction algorithms
try to unify a new abducible with one already produced (as to produce answers
of a minimum number of literals), and tries out different alternatives under
backtracking. This does not guarantee minimality in cases when, say, a proof
needs abducibles a and b but another may need only a. Minimal answers can
be selected by post-processing all answers found in this way. However, we argue
that this principle which we call compaction is not always obvious or desirable,
and we suggest it be optionally specified for selected abducible predicates. (If,
for example, someone’s car was stolen in Paris and his wallet in New York, it
seems over-constrained to assume by default that the thieves are the same one.)

2.2 Assumptive Logic Programming

Assumptive logic programs [14] are logic programs augmented with a) linear,
intuitionistic and timeless implications scoped over the current continuation,
and b) implicit multiple accumulators, useful in particular to make the input
and output strings invisible when a program describes a grammar (in which case
we talk of Assumption Grammars [15]). More precisely, we use the kind of linear
implications called affine implications, in which assumptions can be consumed at
most once, rather than exactly once as in linear logic. Although intuitively easy to
grasp and to use, the formal semantics of assumptions is relatively complicated,
basically proof theoretic and based on linear logic [14,15,25]. Here we use a more
recent and homogeneous syntax for assumptions introduced in [10]; we do not
consider accumulators, and we note that Assumption Grammars can be obtained
by applying the operators below within a DCG.

+h(a) Assert linear assumption for subsequent proof steps.
Linear means “can be used once”.

*h(a) Assert intuitionistic assumption for subsequent
proof steps. Intuitionistic means “can be used any
number of times”.

-h(X) Expectation: consume/apply existing int. assumption.
=+h(a), =*h(X), =-h(X) Timeless versions of the above, meaning that order of

assertion of assumptions and their application or
consumption can be arbitrary.
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A sequential expectation cannot be met by timeless assumption and vice versa,
even when they carry same name. In [15], a query cannot succeed with a state
which contains an unsatisfied expectation; for simplicity (and to comply with our
implementation), this is not enforced in HYPROLOG but can be tested explicitly
using a primitive called expections satisfied. Assumption grammars have
been used for natural language problems such as free word order, anaphora,
coordination, and for knowledge based systems and internet applications. In the
earlier work on Assumptions, only a semiformal semantics was given, and the
semantics we show below are intended to make its principles precise.

2.3 Constraint Handling Rules, CHR

CHR [17] is a declarative, rule-based language for writing constraint solvers
and is now included as an extension of several versions of Prolog. Operationally
and implementation-wise, CHR extends Prolog with a constraint store, and the
rules of a CHR program serve as rewriting rules over constraint stores. CHR
is declarative in the sense that its rules can be understood as logical formulas.
Constraint predicates must be declared as such and can then be called from a
Prolog program; see [17] for details. The following example declares a constraint
predicate a and defines a so-called propagation rule.

constraints a/1.
a(1), a(2) ==> fail.

This rule identifies a state as illegal if it contains the two indicated constraints.
As first noticed by [3], there is a clear analogy between abducibles plus integrity
constraints and CHR’s constraints plus rules.

3 HYPROLOG, Syntax and Informal Semantics

3.1 Basic HYPROLOG

A HYPROLOG program is written as a Prolog program with additional dec-
larations of assumptive and abductive predicates, the latter possibly with com-
paction. Notation for applying assumptions is shown in the previous section.
Integrity constraints are written as any sort of CHR rules with abducibles and
assumptions in the head. The following exemplifies such declarations.

abducibles a/1, b/2.
compaction a/1.
assumptions c/1.
timeless_assumption d/2.

The first declaration introduces abducible predicates a/1, b/2 as well as a /1,
b /2 that represent their negation; compaction is defined for a/1 (as described
above). The declaration of c/1 makes available assumptions and expectations of
forms ’+c’/1, ’-c’/1, ’*c’/1 (the system reads, say, +c(5) as ’+c’(5)).
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3.2 HYPROLOG’s Grammatical Counterpart

DCGs [21], included in most Prolog systems and compiled into Prolog when a
source file is loaded, are also available in HYPROLOG, adequately augmented
with abduction and assumptions as well. The following example has been
adapted from [10,15] and shows two applications of assumptions: for resolving
pronoun references and for a simple coordination problem. In a sentence “Peter
likes her” the pronoun is expected to stand for a female character who has been
mentioned earlier in the discourse. The following rule defines how the mention of
a proper name produces an (intuitionistic) assumption that makes the individual
available for future reference, as many times as needed.

assumptions acting/1.

np(X,Gender) --> name(X,Gender), {*acting(X,Gender)}

Let’s suppose we have the following rules for sentences and sequences of sen-
tences.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_).
sentences((S1,S2)) --> sentence(S1),sentences(S2).
sentences(nil) --> [].

The following rules define how a pronoun can appear in a sentence with its
meaning given by the consumption of an assumption made.

np(X,Gender) --> {-acting(X,Gender)}, pronoun(Gender).
pronoun(fem) --> [her].

The following query and answers show the grammar’s behaviour.

?- phrase(sentences(S), [peter,likes,martha, mary,hates,her]).
S = (s(peter,like,martha),s(mary,hate,mary),nil) ? ;
S = (s(peter,like,martha),s(mary,hate,martha),nil) ? ;
no

The second answer expresses the interpretation we would expect, and the first
one is an undesired consequence of the specification so far; we show below how
it can be suppressed.

The discourse “Peter likes and Mary hates Martha” contains two coordinat-
ing sentences in the sense that the first incomplete one takes its object from the
second one. This can be described by having an incomplete sentence put forward
a timeless expectation that may be satisfied by a later assumption produced by
a complete sentence; the following two grammar rules are sufficient.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_), {=*obj(B)}.
sentence(s(A,V,B)) --> np(A,_), verb(V), [and], {=-obj(B)}.
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3.3 Mixing Abduction and Assumptions

Abduction and assumptions can be mixed freely, which is handy for a better
solution to the pronoun resolution problem above. We modify the grammar
rule for sentences such that semantic interpretation is made abductively, i.e.,
the sentence can be told honestly provided the semantic context contains the
necessary facts.

abducibles s/3.
sentence --> np(A,_), verb(V), np(B,_), {s(A,V,B)}.
s(X,hate,X) ==> fail.

With this modification, the analysis of “Peter likes Martha, Mary hates her”
gives only one solution. This grammar is interesting as it shows how different
layers of analysis can assist each other: semantic knowledge about the hating rela-
tion is applied for guiding pronoun resolution. This example illustrates a general
approach to discourse analysis called Meaning-in-Context, described in [13].

3.4 Negation

Compared with other abductive systems, the use of negation is quite limited and
restricted to a simple form of explicit negation [7]. When an abducible, say a/1,
is declared, an additional predicate a /1 representing ¬a is introduced together
with an integrity constraint (hidden from the user) a(X), a (X) ==> fail.

Although useful for many applications, this implementation covers only one
part of negation: “you cannot have P and ¬P at the same time”; the condition
that “either you have P or ¬P” cannot be expressed in a straightforward way.

If a program clause includes an application of negation-as-failure that refers
to abducibles directly or indirectly, we inherit the dubious semantics of Prolog. So
if a/1 has been declared as abducible, with definition p(X):-a(X), a call \+p(Z)
(where Z is a currently uninstantiated variable) may succeed if the abduction of
a(Z) triggers a failure producing integrity constraint.

4 Semantic Considerations

Like Prolog, CHR has a declarative semantics plus a procedural one, and for
a substantial subset of the language, the two are in agreement. Each rule of a
CHR program can be understood as a logical formula:

Propagation rule Simplification rule
CHR rule: H==>G|B H<=>G|B
Logical meaning: ∀x̄

(
(∃ȳG) → (H → ∃z̄B)

)
∀x̄

(
(∃ȳG) → (H ↔ ∃z̄B)

)

where x̄ refers to the variables in H , ȳ to those in G not overlapping with x̄,
and z̄ to those in B not overlapping with x̄; for simplicity it is assumed that ȳ
and z̄ do not overlap. Ignoring the problems with Prolog’s negation as failure,
we can say that the meaning (e.g., a model-based semantics) of a program that
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combines Prolog and CHR is given by formulas as above plus a reading of the
Prolog part as a completed definition.

However, as has been debated recently [16], the statements that can be made
by using this semantics for CHR are often too weak to express the (implemented)
meaning of even simple and intuitively clear programs. Even the classical, pro-
cedural semantics with nondeterminism in selection steps [2] is not sufficient; as
noted by [16], even example programs in the reference manual of CHR depend
on the implemented semantics, and this motivated [16] to describe a so-called
refined procedural semantics.

The part of HYPROLOG without assumptions is an instance of abductive
logic programs and conforms with the standard semantics given in section 2.1;
this is independent of whether the logically redundant compaction principle is
applied. However, as we use CHR for integrity constraints, the discussion above
goes for this subset of HYPROLOG as well.

Assumptions, on the other hand, inherit the procedural flavour of linear logic,
and a correct semantics for HYPROLOG without abduction, and even without
integrity constraints, needs to reflect a left-to right execution of the clause bod-
ies. In other words, the comma cannot be understood as conjunction but as a
sequential operator that pushes a perhaps modified state forward.

Interestingly, [5] has proposed recently a semantics of CHR formulated in
terms of linear logic, and a very interesting next step could be to generalize this
for HYPROLOG. This may perhaps provide a more straightforward characteri-
zation of the assumption part of HYPROLOG, as assumptions can be mapped
to their natural counterpart in linear logic. This possibility has not been inves-
tigated yet.

4.1 A Continuation Semantics for HYPROLOG

Here we specify the CHR engine and its constraint stores as an abstract data
type (whose detailed specification can be found in [16]). For simplicity we assume
only one built-in which can be used in clause bodies, “=” with the meaning of
equality (unification). What may be allowed in bodies of integrity constraints
is abstracted away. By a constraint, we mean an abducible atom, an atom of
a built-in predicate, an assumption, or a timeless expectation; let Con refer to
the set of all such. We assume a given HYPROLOG program of clauses C� and
integrity constraints IC.

Let Store be a sort for all possible constraint stores whose internal structure
is not specified and which is equipped with the following operations; Sub refers
to the domain of substitutions; mgu is used to denote a most general unifier of
two atoms. When relevant, a substitution σ can also be understood as a set of
equations {x = t | xσ evaluates to t}. The following operations are assumed:

– ∈: Con × Store → {true, false}.
– \ : Con × Store → Store representing the removal of a constraint from the

store.
– Accommodate : Con∗ × Store → Store × Subst corresponding to the CHR

engine’s behaviour given IC when one or more constraints are called from



166 H. Christiansen and V. Dahl

a clause; whatever recursion takes place inside Accommodate is not speci-
fied; the output substitution represents possible side-effects that affect the
remaining query. The function is partial, undefined meaning failure or loop.

– ∅ : Store which is the initial store.
Notice that the definitions allow Accommodate to take also a substitution as its
first argument. This reflects the property that the unification of variables may
trigger CHR rules to apply. This abstract data type is assumed to be sound
in the sense that, whenever Accommodate(A, S) = 〈S′, σ〉, we have that IC |=
∀x̄((A ∧ S) ↔ ∃z̄(S′ ∧ σ)) where here a store is identified with the set of all
constraints in it (given by ∈); x̄ are the variables in A ∧ S and z̄ any remaining
variables in S′ ∧σ. For simplicity, let us ignore the risk of loops and also claim it
complete meaning that Accommodate(A, S) is defined whenever IC |= ∃x̄(A∧S).
In case no integrity constraints are involved, the constraint store serves as a
passive container for abducibles and assumptions.

A query is a sequence of atoms; ε is the empty query; concatenation and
construction of sequences are indicated by a dot, and for readability the comma
of the clause syntax is taken as dot. A state is a pair of a query and store. A final
state is of the form 〈ε, S〉. A derivation for Q is produced from a finite number
of derivation steps (below), starting from 〈Q, ∅〉, and it is successful if it ends in
a final state. The derivation relation � is defined by the following rules.
1. 〈A · Q, S〉 � 〈(B · Q)σσ′, S′〉 if there is a program clause which has a vari-

ant H:-B with fresh variables, σ = mgu(H, A) and Accommodate(σ, S) =
〈σ′, S′〉.

2. 〈s = t · Q, S〉 � 〈Qσσ′, S′〉 whenever mgu(s, t) = σ and Accommodate
(σ, S) = 〈σ′, S′〉.

3. 〈Ab · Q, S〉 � 〈Qσσ′, S′〉 whenever Ab is a compacting abducible and there
is some A ∈ S with mgu(A, Ab) = σ and Accommodate(σ, S) = 〈σ′, S′〉

4. 〈Ab · Q, S〉 � 〈Qσ, S′〉 whenever Ab is an abducible and Accommodate
(Ab, S) = 〈σ, S′〉.

5. 〈-A · Q, S〉 � 〈Qσσ′, S′〉 whenever, either
– there is a +A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S \

{+A′}) = 〈S′, σ′〉, or
– there is a *A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S) =

〈S′, σ′〉.
6. 〈As · Q, S〉 � 〈Qσ, S′〉 where Accommodate(As, S) = 〈S′, σ〉, As of form +A

or *A.
7. 〈=-A · Q, S〉 � 〈Qσσ′, S′〉 whenever, either

– there is an =+A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S \
{=+A′}) = 〈S′, σ′〉,

– there is an =*A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S) =
〈S′, σ′〉, or

– Accommodate(=-A, S) = 〈S′, σ′〉 and σ = ∅.
8. 〈=+A · Q, S〉 � 〈Qσσ′, S′〉 where

– there is an =-A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S \
{=-A′}) = 〈S′, σ′〉, or

– Accommodate(=+A, S) = 〈S′, σ′〉 and σ = ∅.
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9. 〈=*A · Q, S〉 � 〈Q′σσ′, S′〉 where
– there is an =-A′ ∈ S with mgu(A, A′) = σ and Accommodate(σ, S \

{=-A′}) = 〈S′, σ′〉, and Q′ is one of =*A · Q or Q, or
– Accommodate(=*A, S) = 〈S′, σ′〉, σ = ∅, and Q′ = Q.

We notice that step 1 defines an operational semantics for the pure Prolog subset
of HYPROLOG, 1–2 for pure Prolog with built-in equality, and 1–4 (or, alter-
natively, 1–2 plus 4) for abductive logic programs (with CHRs as ICs and no
interesting negation); these operational semantics are straightforward to prove
sound and complete with respect to the respective declarative semantics. Step 1
plus 5–9 provides a formal semantics for Assumptive Logic Programs which has
been lacking in earlier references.

In the lack of a truly declarative semantics (first-order or otherwise) for as-
sumptions, we need to take 1–9 as the semantic definition for the full HYPRO-
LOG language.

Finally, we notice that the actually implemented HYPROLOG system inher-
its the detailed procedural semantics of Prolog (trying rules in textual order)
and of CHR (cf. the refined semantics [16]), both of which were abstracted away
above. Being hosted in a realistic version of Prolog which includes a realistic
version of CHR, all other low and high level features of these languages are
available, including Prolog’s negation as failure (with the usual caveats) and
large collections of constraint solvers and built-in predicates.

5 Implementation

Our implementation uses SICStus Prolog [23] and its CHR library; we refer to
the proper sections of the referenced manual for a detailed description of the
facilities that we use. The principles shown can also be used for implementing
various kinds of hypothetical reasoning in Prolog through CHR.

5.1 Implementing Abduction

The implementation in Prolog with CHR is simple: abducibles are viewed as
constraints in the sense of CHR: the logic program is executed by the Prolog
system; whenever an abducible is called it is added automatically by CHR to
the constraint store and CHR will activate integrity constraints whenever rele-
vant. The complete hand-coded implementation of an abducible predicate a/1
is provided by the following three lines.

:- use_module(library(chr)).
handler abduction.
constraints a/1.

Compaction for a/1 is implemented by a single CHR rule; the following provides
a correct implementation.
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a(X), b(Y) ==> true | (X=Y ; dif(X,Y)).

(The implementation of HYPROLOG applies a slightly optimized version using
low-level facilities of CHR.) When a HYPROLOG program is read from file,
declarations as shown in section 3.1 are translated into CHR as shown here.

The correctness is inherited from the correctness properties of the underlying
Prolog plus CHR systems. For any program without occurs-check problems,
the implementation produces correct abductive answers as defined above; if the
program (including integrity constraints) does not loop, we also have that the
total set of answers produced is complete.

Notice that the approach can interact with an arbitrary constraint solver by
considering its constraints as built-ins (applied in bodies of clauses and integrity
constraints). Possible soundness and completeness of such a combination will
mirror the properties of the applied constraint solver.

5.2 Implementing Assumptions

Assumptions and expectation operators are implemented in CHR in a way sim-
ilar to abduction, but need extra care for scoping and matching of expectations
with assumptions. Each operator for each declared assumption (say ’-c’/1 is
implemented by one single-headed CHR rule that employs the constraint store
as container in a straightforward procedural way, optimized using the low-level
primitive findall constraints and remove constraints; see the HYPRO-
LOG website for details.

6 Examples and Benchmarks

Suppose we need to schedule the printing jobs of three printers. At any time,
the status of each printer is represented by an assumption +printer( name,
ready-time).

Further, assume that all printers are covered by the same undersized electrical
fuse that will melt down in case all three printers are running at the same time.
Such situations is prevented by the following integrity constraint; assumptions
have been extended with starting time for the most recent job and the guard
refers to an auxiliary predicate that holds if and only if all three indicated time
intervals have a point in common.

+printer(lexon2000,S1,F1), +printer(epsmark1993,S2,F2),
+printer(pewhack2004,S3,F3) ==>

overlapping((S1,F1),(S2,F2),(S3,F3)) | fail.

We have compared the efficiency of our first implementation of assumptions [12]
with the one hardwired into BinProlog for our HYPROLOG print scheduler
program (whose complete version can be found in (website URL) for 10 printers
and 50 print jobs. The BinProlog version was about 5 times faster. Our present
implementation, with specialized predicates for each type of assumption, gave a
speedup of 40 percent, or now only 3 times slower than BinProlog.



HYPROLOG: A New Logic Programming Language 169

For abduction, we have compared our system’s performance with that of
the A-system [20]. The mentioned reference reports a test of an abductive n-
queens program that runs very fast in A-system, considerably faster that in our
system. However, an inspection of the example shows that the A-system for
this program produces quickly one set of constraints which is then solved by a
specialized finite-domain solver. It is difficult to translate this example into our
system due to the mentioned limitations for negation, which made the program
degenerate into a naive generate-and-test algorithm.

In theory, our approach should be superior for programs that involve many
resolution steps, and to verify this, we constructed an example updating a
database view involving complex joins. The query (update request) in the test
is w(monkey) where the view is defined as w(F):- pp(A,B,C,D), qq(C,D,E,F),
rr(A,E,F). Each of pp, qq, rr provides a link to either a database predicate
or an abducible. Integrity constraints express suitable key constraints and the
database predicates contains 100, 99, 99 tuples selected carefully so that an im-
mense collection of combinations needs to be tried out before a solution is found.
The example is directly translatable between the two systems, and our program
in Prolog plus CHR run through the optimizing SICStus Prolog compiler solves
the problem in 3 ms (three) whereas A-system spends 6250 ms for the same job;
the tests were performed on a 400 MHz Macintosh G4 Powerbook; the programs
are available at the HYPROLOG website.

7 Conclusions and Related Work

We have presented HYPROLOG, a new logic programming language which di-
rectly and efficiently integrates abducibles and assumptions into Prolog itself,
through simply extending it with a few lines of CHR code.

This provides an optimal combination, in which such programs can be written
and executed directly, with only a small extra overhead involved when needed.
In contrast, known metainterpreter based implementations of abduction incur
heavy computational overhead (for instance, [18,20] has the overhead of alter-
nating abductive steps with resolution steps, the latter also simulated by metain-
terpretation). An important advantage over other known abduction systems is
that the full collection of Prolog’s built-in facilities (logical as well as impure)
are available, including all available libraries and constraint solvers.

We have also described a methodology for implementing HYPROLOG that
obtains an execution speed comparable to that of traditional Prolog programs.

The component of a HYPROLOG program that corresponds to a logic pro-
gram is executed directly as a Prolog program, and its integrity constraints di-
rectly as CHR rules. This means that HYPROLOG programs can be run through
existing optimizing compilers for Prolog and CHR. It is interesting to point out
that integrity constraints are automatically coroutined by virtue of CHR rules.

There are existing, efficient implementations of Assumptive Logic Programs
but the present work extends the paradigm with integrity constraints and the
option to combine with abduction in a common framework.
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The price paid for this efficiency and flexibility is a limitation on the use of
negation. Yet even with this restriction, many useful examples are made possible.

Some examples in the literature of abduction involving Event Calculus do not
work in our approach but others, such as [24] on robot planning seem possible
(this example has been implemented in CHR in an early experiment, but not
tested in the present framework). Experiences with HYPROLOG and earlier
experiments with similar techniques in CHR indicate a spectrum of interesting
programs, and the fact that the paradigm can immediately be combined with
any other constraint solvers available in the Prolog version at hand substantiates
this viewpoint.

The first observation of the similarity between CHR and abductive logic pro-
gramming was made by [3] showing that abducible predicates can be represented
as constraints in CHR’s sense and integrity constraints as rules in CHR. The ref-
erenced work describes a translation of a class of abductive logic programs with
limited use of negation (similar to the present paper) into CHR∨ [4] which is an
extension to CHR with disjunctions in rule bodies; the main difference is that [3]
also translates the logic program component into CHR∨ so that the efficiency of
having Prolog do the resolution steps is lost. CHR based abduction for language
processing is applied in the CHRG system [10,9] which is based on bottom-up
parsing in CHR.

A proposal for emulating abductive logic programming with assumptions was
made in [14]. While less efficient than the present proposal, it allowed the same
(abducible) predicate to be either proved normally, if this was possible, or ab-
duced if not. It also put the ability to examine unconsumed assumptions to use
in combining for instance defeasible reasoning with abductive logic program-
ming, and in suggesting novel extensions such as conditional abductive logic
programming—this latter, by abducing not only predicates, but also clauses.

Abduction by means of CHR has been applied by [11] for natural language
grammars with automatic error detection and correction.

As we have noticed, negation is the more complicated part to which we have
no solution; [6] sketches an extension of [3]’s method intended for a full use of
negation-as-failure in program clauses and integrity constraints; as for [3], no
integration with Prolog is provided. Unfortunately, it has not been possible to
reconstruct the code from the description in [6] in order to test the method and
there appears to be inherent looping problems.

The Demo system described in [8] seems to be the first application of CHR
to abduction and similar problems, in the shape of a general metainterpreter for
logic programs which is reversible in the sense that it can generate programs
to make specified goals provable; this property provided by a constraint solver
written in CHR for semantic primitives. In terms of efficiency this system is by
no means comparable to what is described in the present paper.

The simultaneous availability of abduction and assumptions facilitates sub-
tler reasoning by making it possible to clearly separate the generation of hypothe-
ses from their confirmation, within a dynamic process where different strategies
can be flexibly implemented.
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A recent CHR-based system that extends abductive reasoning with the abil-
ity to confirm or disconfirm abduced facts (or events, since this system special-
izes to event-based programming) [1] requires a complex architecture to achieve
similar results to ours. This system’s hypotheses are, as in our own system, rep-
resented by abducibles, but their confirmation or disconfirmation is managed
by a specialized proof procedure which can be tuned to be skeptical (i.e, to
disconfirm at the end of a computation all hypotheses that remain consistent
but have not specifically been confirmed) or credulous (i.e., to confirm all of
those).

In HYPROLOG we also represent hypotheses as abduced facts, but their
(dis)confirmation proceeds within Prolog’s normal proof procedure, and can be
done either dynamically, or in a postprocessing stage which can interpret the un-
consumed assumptions in a variety of ways, ranging from credulous to skeptical,
as needed by the particular application.
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