

Lecture Notes in Computer Science 3668
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Maurizio Gabbrielli Gopal Gupta (Eds.)

Logic Programming

21st International Conference, ICLP 2005
Sitges, Spain, October 2-5, 2005
Proceedings

13

Volume Editors

Maurizio Gabbrielli
Università di Bologna
Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: gabbri@cs.unibo.it

Gopal Gupta
University of Texas at Dallas
Department of Computer Science
Richardson, TX 75083-0688, USA
E-mail: gupta@utdallas.edu

Library of Congress Control Number: 2005932757

CR Subject Classification (1998): D.1.6, I.2.3, D.3, F.3, F.4

ISSN 0302-9743
ISBN-10 3-540-29208-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29208-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11562931 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 21st International Conference on
Logic Programming which was held in Sitges (Barcelona), Spain, from October
2nd to 5th, 2005. The conference was colocated with the International Confer-
ence on Constraint Programming (CP 2005) and the following 6 post-conference
workshops:

– CICLOPS 2005: Colloquium on Implementation of Constraint and Logic
Programming Systems

– CSLP 2005: Constraint Solving and Language Processing
– WCB 2005: Constraint Based Methods for Bioinformatics
– WLPE 2005: Logic-Based Methods in Programming Environments
– MoVeLog 2005: Mobile Code Safety and Program Verification Using Com-

putational Logic Tools
– CHR 2005: Constraint Handling Rules

The conference coincided with a solar eclipse, which occurred on October 3rd
and was visible in Sitges. No conference activities were scheduled at the time of
the eclipse to allow delegates to view this extraordinary astronomical event.

Since the first conference that was held in Marseilles in 1982, ICLP has been
the premier international conference for presenting research in logic program-
ming. In this edition of the conference, extra attention was given to novel ap-
plications of logic programming and to work providing novel integrations of
different areas. Colocation with CP 2005 further reinforced these themes, as it
provided an opportunity for the exchange of ideas and cross-fertilization among
two areas which have common roots. ICLP 2005 and CP 2005 shared the invited
speakers to underscore this effort. ICLP 2005 broke new ground by holding a
doctoral consortium for the first time in the ICLP series of conference.

One hundred and four abstracts were submitted in response to the call for
papers. All but a few abstracts were followed by the submission of a full paper
1 week later. Each full paper was reviewed by at least three referees and the
Program Committee finally selected 25 contributed papers and 15 poster pa-
pers. In addition, the program included invited talks by Ian Horrocks, Francesca
Rossi, and Peter Stuckey, an industrial invited talk by Walter Wilson, a tutorial
by Vı́tor Santos Costa on “Inductive Logic Programming, Statistical Relational
Learning, and Its Applications”, a panel on “Future Logic Programming Lan-
guages” and a doctoral consortium. The seven students selected for the doctoral
consortium also presented their research as a poster in the program. The ex-
tended abstracts of the invited talks and of all the posters are also included in
these proceedings.

ICLP 2005 was organized by the Association for Logic Programming (ALP),
in collaboration with the Artificial Intelligence Research Institute of the Span-
ish Council for Scientific Research (IIIA-CSIC) and the Technical University of

VI Preface

Catalonia (UPC). Other sponsors included the Asociación Española de Inteligen-
cia Artificial (AEPIA), the University of Texas at Dallas (UTD), CoLogNET,
the University of Lleida, the Spanish Ministry of Education and Science and
Cambridge University Press.

There are many people who deserve thanks for contributing to the success
of the conference as well as to the creation of this volume. The PC members,
aided by several external referees, produced timely and accurate reviews for the
large number of submitted papers. The conference co-chairs, Pedro Meseguer
and Javier Larrosa, did a superb job in organizing the joint event, as well as in
successfully solving the many problems that were encountered. Hai-Feng Guo,
the workshop chair, Felip Manya, the publicity chair, and Enrico Pontelli, the
doctoral consortium chair, significantly contributed to the conference’s success
through their untiring efforts. Thanks to Bart Demoen for having accepted to
organize again the traditional Programming Contest. Finally, thanks to all the
authors who took an interest in ICLP 2005 and submitted papers, and to the
developers of the Easy Chair conference management system that made our job
as program co-chairs so much easier.

July 2005 Maurizio Gabbrielli and Gopal Gupta

Organization

Organizing Committee

Conference Co-chairs Pedro Meseguer (IIIA-CSIC, Spain)
Javier Larrosa (Technical University of Catalonia,

Spain)
Program Co-chairs Maurizio Gabbrielli (University of Bologna, Italy)

Gopal Gupta (University of Texas at Dallas,
USA)

Workshop Chair Hai-Feng Guo (University of Nebraska at Omaha,
USA)

Doctoral Consortium Chair Enrico Pontelli (New Mexico State University,
USA)

Publicity Chair Felip Manya (IIIA-CSIC, Spain)

Program Committee

Roberto Bagnara (University of Parma, Italy)
Maurice Bruynooghe (KU Leuven, Belgium)
Stefan Decker (Digital Enterprise Research Institute, Ireland)
Giorgio Delzanno (University of Genoa, Italy)
Thom Fruehwirth (University of Ulm, Germany)
Maurizio Gabbrielli (University of Bologna, Italy, Program Co-chair)
Gopal Gupta (University of Texas at Dallas, USA, Program Co-chair)
Patricia Hill (University of Leeds, UK)
Joxan Jaffar (University of Singapore, Singapore)
Bharat Jayaraman (SUNY Buffalo, USA)
Javier Larrosa (Technical University of Catalonia, Spain, Conference Co-chair)
Michael Leuschel (University of Dusseldorf, Germany)
Massimo Marchiori (University of Venice, Italy and W3C, MIT, USA)
Pedro Meseguer (IIIA-CSIC, Spain, Conference Co-chair)
Juan Moreno Navarro (Technical University of Madrid, Spain)
Gopalan Nadathur (University of Minnesota, USA)
Illka Niemela (Helsinki University of Technology, Finland)
Catuscia Palamidessi (INRIA, France)
Enrico Pontelli (New Mexico State University, USA)
I.V. Ramakrishnan (SUNY Stony Brook, USA)
Vitor Santos Costa (Federal University of Rio de Janeiro, Brazil)
Harald Sondergaard (University of Melbourne, Australia)
Peter Stuckey (University of Melbourne, Australia)
Frank Valencia (University of Uppsala, Sweden)

VIII Organization

External Reviewers

Marco Alberti
Etienne Payet
James Bailey
Marcello Balduccini
Nicola Stokes
Maria Garcia de la Banda
Ajay Bansal
Peter Baumgartner
Ralph Becket
Marc Bezem
Paolo Bouquet
Andrea Bracciali
Sebastian Brand
Maarten Marien
Nguyen Manh Thang
Hou Ping
Rudradeb Mitra
Daniel Cabeza
Manuel Carro
Wei-Ngan Chin
Tom Clothia
Michael Codish
Alvaro Cortes-Calabuig
Vitor Santos Costa
Stephen-John Craig
Marc Denecker
Yuxin Deng
Juergen Dix
Jin-Song Dong
Phan Minh Dung
Amy Felty
Antonio Fernandez
Michel Ferreira
Andrzej Filinski
Mario Florido
Alan M. Frisch
Marco Gavanelli
Juergen Giesl
Cinzia Di Giusto
Roberta Gori
Haifeng Guo
Gopal Gupta
James Harland

Andreas Harth
Angel Herranz
Tomi Janhunen
Michael Kifer
Andy King
Herbert Kuchen
Narayan Kumar
Jorge Lobo
Ricardo Lopes
Ruediger Lunde
Michael Maher
Ajay Mallya
Maarten Marien
Julio Mario
Kim Marriott
Viviana Mascardi
Marc Meister
Maria Chiara Meo
Fred Mesnard
Dale Miller
Roberto Montagna
Saikat Mukherjee
Susana Muñoz Hernández
George Necula
Shiri Nematollaah
Paulo Oliva
Mauricio Osorio
Sascha Ossowski
Jorge Andres Perez
Andrea Pescetti
Alessandra di Pierro
Inna Pivkina
Axel Polleres
Enrico Pontelli
Luis Omar Quesada
C.R. Ramakrishnan
Christophe Rigotti
Ricardo Rocha
Abhik Roychoudhury
Fernando Silva
Kostis Sagonas
Diptikalyan Saha
Chiaki Sakama

Organization IX

Peter Schachte
Tom Schrijvers
Luke Simon
Jan-Georg Smaus
Zoltan Somogyi
Tran Cao Son
Fausto Spoto
Martin Sulzmann
Tommi Syrjanen
Paolo Tacchella
Ana Paula Tomas
Francesca Toni
Mauricio Varea

V.N. Venkatakrishnan
Joost Vennekens
Razvan Voicu
Mark Wallace
Hui Wan
Qian Wang
David Warren
Herbert Wiklicky
Limsoon Wong
Eric Van Wyk
Guizhen Yang
Roland Yap
Enea Zaffanella

Table of Contents

OWL: A Description Logic Based Ontology Language
Ian Horrocks . 1

Preference Reasoning
Francesca Rossi . 5

The G12 Project: Mapping Solver Independent Models to Efficient
Solutions

Peter J. Stuckey, Maria Garcia de la Banda, Michael Maher,
Kim Marriott, John Slaney, Zoltan Somogyi, Mark Wallace,
Toby Walsh . 9

Use of Logic Programming for Complex Business Rules
Walter G. Wilson . 14

A Generator of Efficient Abstract Machine Implementations and Its
Application to Emulator Minimization

José F. Morales, Manuel Carro, Germán Puebla,
Manuel V. Hermenegildo . 21

On the Relation Between Answer Set and SAT Procedures (or, Between
cmodels and smodels)

Enrico Giunchiglia, Marco Maratea . 37

Towards an Integration of Answer Set and Constraint Solving
S. Baselice, P.A. Bonatti, M. Gelfond . 52

A Comparison of CLP(FD) and ASP Solutions to NP-Complete
Problems

Agostino Dovier, Andrea Formisano, Enrico Pontelli 67

Guard and Continuation Optimization for Occurrence Representations
of CHR

Jon Sneyers, Tom Schrijvers, Bart Demoen . 83

Coordination of Many Agents
Joxan Jaffar, Roland H.C. Yap, Kenny Q. Zhu . 98

Parallelizing Union-Find in Constraint Handling Rules Using
Confluence Analysis

Thom Frühwirth . 113

XII Table of Contents

An Optimised Semantic Web Query Language Implementation in Prolog
Jan Wielemaker . 128

A Distributed and Probabilistic Concurrent Constraint Programming
Language

Luca Bortolussi, Herbert Wiklicky . 143

HYPROLOG: A New Logic Programming Language with Assumptions
and Abduction

Henning Christiansen, Veronica Dahl . 159

Abduction of Linear Arithmetic Constraints
Michael J. Maher . 174

Towards Implementations for Advanced Equivalence Checking in
Answer-Set Programming

Hans Tompits, Stefan Woltran . 189

Hybrid Probabilistic Logic Programs with Non-monotonic Negation
Emad Saad, Enrico Pontelli . 204

Reducing Inductive Definitions to Propositional Satisfiability
Nikolay Pelov, Eugenia Ternovska . 221

Symbolic Support Graph: A Space Efficient Data Structure for
Incremental Tabled Evaluation

Diptikalyan Saha, C.R. Ramakrishnan . 235

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs
Ricardo Rocha, Fernando Silva, Vı́tor Santos Costa 250

Nondeterminism Analysis of Functional Logic Programs
Bernd Braßel, Michael Hanus . 265

Techniques for Scaling Up Analyses Based on Pre-interpretations
John P. Gallagher, Kim S. Henriksen, Gourinath Banda 280

Deductive Multi-valued Model Checking
Ajay Mallya . 297

Polynomial Interpretations as a Basis for Termination Analysis of Logic
Programs

Manh Thang Nguyen, Danny De Schreye . 311

Testing for Termination with Monotonicity Constraints
Michael Codish, Vitaly Lagoon, Peter J. Stuckey 326

Table of Contents XIII

A Well-Founded Semantics with Disjunction
João Alcântara, Carlos Viegas Damásio, Lúıs Moniz Pereira 341

Semantics of Framed Temporal Logic Programs
Zhenhua Duan, Xiaoxiao Yang, Maciej Koutny . 356

Practical Higher-Order Pattern Unification with On-the-Fly Raising
Gopalan Nadathur, Natalie Linnell . 371

Small Proof Witnesses for LF
Susmit Sarkar, Brigitte Pientka, Karl Crary . 387

A Type System for CHR
Emmanuel Coquery, François Fages . 402

Decision Support for Personalization on Mobile Devices
Thomas Kleemann, Alex Sinner . 404

A Generic Framework for the Analysis and Specialization of Logic
Programs

Germán Puebla, Elvira Albert, Manuel Hermenegildo 407

The Need for Ancestor Resolution When Answering Queries in Horn
Clause Logic

Oliver Ray . 410

Modeling Systems in CLP
Joxan Jaffar, Andrew E. Santosa, Răzvan Voicu 412

A Sufficient Condition for Strong Equivalence Under the Well-Founded
Semantics

Christos Nomikos, Panos Rondogiannis, William W. Wadge 414

IMPACT: Innovative Models for Prolog with Advanced Control and
Tabling

Ricardo Rocha, Ricardo Lopes, Fernando Silva, Vı́tor Santos Costa . . . 416

Using CLP to Characterise Linguistic Lattice Boundaries in a Text
Mining Process

Alexandre S. Saidi . 418

Hybridization of Genetic Algorithms and Constraint Propagation for
the BACP

Tony Lambert, Carlos Castro, Eric Monfroy, Maŕıa Cristina Riff,
Frédéric Saubion . 421

XIV Table of Contents

The MYDDAS Project: Using a Deductive Database for Traffic
Characterization

Michel Ferreira . 424

Open World Reasoning in Datalog
Gergely Lukácsy, Zsolt Nagy . 427

Optimizing Queries for Heterogeneous Information Sources
András G. Békés . 429

Denotational Semantics Using Horn Concurrent Transaction Logic
Marcus Vinicius Santos . 431

Gentra4cp: A Generic Trace Format for Constraint Programming
Ludovic Langevine, The French RNTL OADymPPaC Team 433

Analyses, Optimizations and Extensions of Constraint Handling Rules:
Ph.D. Summary

Tom Schrijvers . 435

Formalization and Verification of Interaction Protocols
Federico Chesani . 437

PS-LTL for Constraint-Based Security Protocol Analysis
Ricardo Corin, Ari Saptawijaya, Sandro Etalle . 439

Concurrent Methodologies for Global Optimization
Luca Bortolussi . 441

A Temporal Programming Language for Heterogeneous Information
Systems

Vitor Nogueira . 444

Nonmonotonic Logic Programs for the Semantic Web
Roman Schindlauer . 446

ICLP 2005 Doctoral Consortium – SiLCC Is Linear Concurrent
Constraint Programming

Rémy Haemmerlé . 448

Analysis and Optimization of CHR Programs
Jon Sneyers . 450

Author Index . 453

OWL: A Description Logic Based
Ontology Language
(Extended Abstract)

Ian Horrocks

School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Although they have a range of applications (e.g., reasoning with database
schemas and queries [1,2]), DLs are perhaps best known as the basis for ontol-
ogy languages such as OIL, DAML+OIL and OWL [3]. The decision to base
these languages on DLs was motivated by a requirement not only that key infer-
ence problems (such as class satisfiability and subsumption) be decidable, but
that “practical” decision procedures and “efficient” implemented systems also
be available.

That DLs were able to meet the above requirements was the result of exten-
sive research within the DL community over the course of the preceding 20 years
or more. This research mapped out a complex landscape of languages, exploring
a range of different language constructors, studying the effects of various com-
binations of these constructors on decidability and worst case complexity, and
devising decision procedures, the latter often being tableaux based algorithms.

At the same time, work on implementation and optimisation techniques
demonstrated that, in spite of the high worst case complexity of key inference
problems (usually at least ExpTime), highly optimised DL systems were capable
of providing practical reasoning support in the typical cases encountered in real-
istic applications [4]. With the added impetus provided by the OWL standardi-
sation effort, DL systems are now being used to provide computational services
for a rapidly expanding range of ontology tools and applications [5,6,7,8,9].

1 Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description
logics with an RDF syntax. OWL Full provides a more complete integration
with RDF, but its formal properties are less well understood, and key inference

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 I. Horrocks

problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered here.

More precisely, OWL DL is based on the SHOIQ DL [11]; it restricts the
form of number restrictions to be unqualified (see [4]), and adds a simple form of
Datatypes (often called concrete domains in DLs [12]). Following the usual DL
naming conventions, the resulting logic is called SHOIN (D), with the different
letters in the name standing for (sets of) constructors available in the language: S
stands for the basic ALC DL extended with transitive roles [10],H stands for role
hierarchies (equivalently, inclusion axioms between roles), O stands for nominals
(classes whose extension is a single individual) [13], N stands for unqualified
number restrictions and (D) stands for datatypes) [14]. OWL Lite is equivalent
to the slightly simpler SHIF(D) DL (i.e., SHOIQ without nominals, and with
only functional number restrictions).

These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [15];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [16,10,14];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [17,18,19].

Practical Reasoning Services. Most modern DL systems use tableaux algo-
rithms to test concept satisfiability. Tableaux algorithms have many advantages:
it is relatively easy to design provably sound, complete and terminating algo-
rithms; the basic technique can be extended to deal with a wide range of class
and role constructors; and, although many algorithms have a higher worst case
complexity than that of the underlying problem, they are usually quite efficient
at solving the relatively easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much too
hard to be solved by naive implementations of theoretical algorithms. Modern
DL systems, therefore, include a wide range of optimisation techniques, the use
of which has been shown to improve typical case performance by several orders
of magnitude; key techniques include lazy unfolding, absorption and dependency
directed backtracking [16,20,19,21].

2 Research Challenges

The effective use of logic based ontology languages in applications will critically
depend on the provision of efficient reasoning services to support both ontology
design and deployment. The increasing use of DL based ontologies in areas such
1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-

tions on the use of transitive properties which are required in order to maintain
decidability [10].

OWL: A Description Logic Based Ontology Language 3

as e-Science and the Semantic Web is, however, already stretching the capabil-
ities of existing DL systems, and brings with it a range of challenges for future
research.

These challenges include: improved scalability, not only with respect to the
number and complexity of classes, but also with respect to the number of in-
dividuals that can be handled; providing reasoning support for more expressive
ontology languages; and extending the range of reasoning services provided to
include, e.g., explanation [22,23], and so-called “non-standard inferences” such
as matching, approximation, and difference computations [24,25,26].

Finally, some applications will almost certainly call for ontology languages
based on larger (probably undecidable) fragments of FOL [27], or on hybrid
languages that integrate DL reasoning with other logical knowledge representa-
tion formalisms such as Datalog rules [28,29] or Answer Set Programming [30].
The development of such languages, and reasoning services to support them, ex-
tends the research challenge to the whole logic based knowledge representation
community.

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98). (1998) 2–13

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). (1998) 149–158

3. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1 (2003) 7–26

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

5. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The protégé OWL plugin: An
open development environment for semantic web applications. In Proc. of the 2004
International Semantic Web Conference (ISWC 2004). (2004) 229–243

6. Liebig, T., Noppens, O.: Ontotrack: Combining browsing and editing with reason-
ing and explaining for OWL Lite ontologies. In Proc. of the 2004 International
Semantic Web Conference (ISWC 2004). (2004) 229–243

7. Visser, U., Stuckenschmidt, H., Schuster, G., Vögele, T.: Ontologies for geographic
information processing. Computers in Geosciences (to appear)

8. Oberle, D., Sabou, M., Richards, D.: An ontology for semantic middleware: ex-
tending daml-s beyond web-services. In: Proceedings of ODBASE 2003. (2003)

9. Wroe, C., Goble, C.A., Roberts, A., Greenwood, M.: A suite of DAML+OIL
ontologies to describe bioinformatics web services and data. Int. J. of Cooperative
Information Systems (2003) Special Issue on Bioinformatics.

10. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99). (1999) 161–180

11. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). (2005) To appear.

4 I. Horrocks

12. Baader, F., Hanschke, P.: A schema for integrating concrete domains into con-
cept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91). (1991) 452–457

13. Blackburn, P., Seligman, J.: Hybrid languages. J. of Logic, Language and Infor-
mation 4 (1995) 251–272

14. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.
In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). (2001)
199–204

15. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. Information and Computation 134 (1997) 1–58

16. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4 (1994) 109–132

17. Horrocks, I.: The FaCT system. In Proc. of the 2nd Int. Conf. on Analytic Tableaux
and Related Methods (TABLEAUX’98). (1998) 307–312

18. Patel-Schneider, P.F.: DLP system description. In: Proc. of the 1998 De-
scription Logic Workshop (DL’98), CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/ (1998) 87–89

19. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). (2001) 701–705

20. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636–647

21. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J.
of Logic and Computation 9 (1999) 267–293

22. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc.
of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000). (2000)

23. Schlobach, S., Cornet, R.: Explanation of terminological reason-ing: A preliminary
report. In: Proc. of the 2003 Description Logic Workshop (DL 2003). (2003)

24. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9 (1999) 411–447

25. Küsters, R.: Non-Standard Inferences in Description Logics. Volume 2100 of Lec-
ture Notes in Artificial Intelligence. Springer Verlag (2001)

26. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description
logics. In: Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2002). (2002) 203–214

27. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A
proposal and prototype implementation. J. of Web Semantics 3 (2005) 23–40

28. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. J. of
Web Semantics 3 (2005) 41–60

29. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. of Web Semantics 3 (2005) 61–73

30. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: Proc. of the 9th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2004),
Morgan Kaufmann, Los Altos (2004) 141–151

Preference Reasoning�

Francesca Rossi

Department of Pure and Applied Mathematics, University of Padova, Italy
frossi@math.unipd.it

Abstract. Constraints and preferences are ubiquitous in real-life. Moreover,
preferences can be of many kinds: qualitative, quantitative, conditional, positive
or negative, to name a few. Our ultimate goal is to define and study formalisms
that can model problems with both constraints and many kind of preferences,
possibly defined by several agents, and to develop tools to solve such problems
efficiently.

In this paper we briefly report on recent work towards this goal.

Motivation and Main Goal. Preferences are ubiquitous in real life. In fact, most prob-
lems are over-constrained and would not be solvable if we insist that all their require-
ments are strictly met. Moreover, solvable problems have solutions with different desir-
ability. Finally, many problems are more naturally described via preferences rather than
hard statements. In some cases it could be more natural to express preferences in quan-
titative terms, while in other situations it could be better to use qualitative statements.
Moreover, preferences can be unconditional or conditional. Furthermore, in many real
life problems, constraints and preferences of various kinds may coexist.

Unfortunately, there is no single formalism which allows all the different kinds of
preferences to be specified efficiently and reasoned with effectively. For example, soft
constraints [1] are most suited for reasoning about constraints and quantitative prefer-
ences, while CP-nets [2] are most suited for representing qualitative and possibly con-
ditional preferences. Our ultimate goal is to define and study formalisms that can model
problems with both constraints and many kind of preferences, and to develop tools to
solve such problems efficiently. Moreover, we also want to be able to deal with scenar-
ios where preferences are expressed by several agents, and preference aggregation is
therefore needed to find the optimal outcomes.

Preference Modelling Frameworks: Soft Constraints and CP-Nets. Soft constraints
[1] model quantitative preferences by generalizing the traditional formalism of hard
constraints. In a soft constraint, each assignment to the variables of a constraint is an-
notated with a level of its desirability, and the desirability of a complete assignment is
computed by a combination operator applied to the local preference values. By choos-
ing a specific combination operator and an ordered set of levels of desirability, we can
select a specific class of soft constraints. Given a set of soft constraints, an ordering
is induced over the assignments of the variables of the problem, which can be partial

� This is joint work with C. Domshlak, M. S. Pini, S. Prestwich, A. Sperduti, K. B. Venable, T.
Walsh, and N. Yorke-Smith.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 5–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 F. Rossi

or total. Given two solutions, checking whether one is preferable to the other one is
easy: we compute the desirability values of the two solutions and compare them in the
preference order. However, finding an optimal solution for a soft constraint problem is
a combinatorially difficult problem.

CP-nets [2] (Conditional Preference networks) are a graphical model for compactly
representing conditional and qualitative preference relations. They exploit conditional
preferential independence by structuring a user’s possibly complex preference order-
ing with the ceteris paribus assumption. CP-nets are sets of conditional ceteris paribus
preference statements (cp-statements). For instance, the statement ”I prefer red wine to
white wine if meat is served.” asserts that, given two meals that differ only in the kind
of wine served and both containing meat, the meal with a red wine is preferable to the
meal with a white wine. Given a CP-net, an ordering is induced over the set of assign-
ments of its features. In general, such an ordering is a preorder (that is, reflexive and
transitive). Given an acyclic CP-net, finding an optimal assignment to its features can
be done in linear time. However, for cyclic CP-nets, it becomes NP-hard. Comparing
two outcomes is NP-hard as well, even when the CP-net is acyclic.

Summarizing, CP-nets and soft constraints have complementary advantages and
drawbacks. CP-nets allow one to represent conditional and qualitative preferences, but
dominance testing is expensive. On the other hand, soft constraints allow to represent
both hard constraints and quantitative preferences, and have a cheap dominance testing.

Comparing the Expressive Power of Different Formalisms. It would be very useful
to have a single formalism for representing preferences that have the good features of
both soft constraints and CP-nets. To achieve this goal, we may start by comparing their
expressive power.

We could say that a formalism B is at least as expressive than a formalism A if
from a problem expressed using A it is possible to build in polynomial time a problem
expressed using B such that the optimal solutions are the same. If we use this definition
to compare CP-nets and soft constraints, we see that hard constraints are at least as
expressive as CP-nets. In fact, given any CP-net, we can obtain in polynomial time a
set of hard constraints whose solutions are the optimal outcomes of the CP-net. On the
contrary, there are some hard constraint problems for which it is not possible to find in
polynomial time a CP-net with the same set of optimals. If instead, not only we must
maintain the set of optimals, but also the rest of the ordering over the solutions, then
CP-nets and soft or hard constraints are incomparable.

However, it is possible to approximate a CP-net ordering via soft constraints, achiev-
ing tractability of dominance testing while sacrificing precision to some degree [4]. Dif-
ferent approximations can be characterized by how much of the original ordering they
preserve, the time complexity of generating the approximation, and the time complexity
of comparing outcomes in the approximation.

Constraints and Preferences Together. Many problems have both constraints and
qualitative and/or quantitative preferences. Unfortunately, reasoning with them both is
difficult as often the most preferred outcome is not feasible, and not all feasible out-
comes are equally preferred. For example, consider a constrained CP-net, which is a
CP-net plus a set of hard constraints. This structure allows to model both qualitative
conditional preferences and hard constraints. Its optimal outcomes (called “feasible

Preference Reasoning 7

Pareto optimals” in [3]) are all the outcomes which are feasible and not dominated
in the CP-net by any other feasible outcome. It is possible to obtain all such optimal
outcomes by just solving a set of hard constraints [7]. In well defined cases, this avoids
expensive dominance testing. If we want to avoid dominance testing completely, we
can do that at the price of obtaining a superset of the feasible Pareto optimals by hard
constraint solving. The same constraint-based procedure can be used also when we add
soft constraints to a CP-net.

Learning Preferences. It is usually hard for a user to describe the correct preferences
for his real-life problem. This is especially true for soft constraints, which do not have
an intuitive graphical representation. We have shown that the use of learning techniques
can greatly help in this respect, allowing users to state preferences both on entire solu-
tions and subsets of the variables [8].

Preferences and Uncertainty. Preferences are a way to describe some kind of uncer-
tainty. However, there is also uncertainty which comes from lack of data, or from events
which are under Nature’s control. Fortunately, in the presence of both preferences and
uncertainty in the context of temporal constraints, we can reason with the same com-
plexity as if we just had preferences [11]. Many approaches to deal with uncertainty
are based on possibility theory. The handling of the coexistence of preferences and
uncertainty via possibility theory allows for a natural merging of the two notions and
leads to several promising semantics for ordering the solutions according to both their
preference and their robusteness to uncertainty [6].

Preference Aggregation: Fairness and Non-manipulability. In many situations, we
need to represent and reason about the simultaneous preferences of several agents. To
aggregate the agents’ preferences, which in general express a partial order over the
possible outcomes, we can query each agent in turn and collect together the results. We
can see this as each agent “voting” whether an outcome dominates another. We can thus
obtain different semantics by collecting these votes together in different ways [9].

Having cast our preference aggregation semantics in terms of voting, it is appro-
priate to ask if classical results about voting theory apply. For example, what about
Arrow’s theorem [5], which states the impossibility of a fair voting system? Can we
fairly combine together the preferences of the individual agents?

The definition of fairness considered by Arrow consists of the following desirable
properties:

– Unanimity: if all agents agree that A is preferable to B, then the resulting order
must agree as well.

– Independence to irrelevant alternatives: the ordering between A and B in the result
depends only on the relation between A and B given by the agents.

– Monotonicity: whenever an agent moves up the position of one outcome in her
ordering, then (all else being equal) such an outcome cannot move down in the
result.

– Absence of a dictator: a dictator is an agent such that, no matter what the others
say, will always dictate the resulting ordering among the outcomes.

8 F. Rossi

Under certain conditions, it is impossible for a preference aggregation system over
partially ordered preferences to be fair [10]. This is both disappointing and a little sur-
prising. By moving from total orders to partial orders, we expect to enrich greatly our
ability to combine preferences fairly. In fact, we can use incomparability to resolve con-
flict and thereby not contradict agents. Nevertheless, under the conditions identified, we
still do not escape the reach of Arrow’s theorem. Even if we are only interested in the
most preferred outcomes of the aggregated preferences, it is still impossible to be fair.

Of course fairness is just one of the desirable properties for preference aggrega-
tions. Other interesting properties are related to the non-manipulability of a preference
aggregation system: if an agent can vote tactically and reach its goal, then the system is
manipulable. Results for totally ordered preferences show that non-manipulability im-
plies the existence of a dictator. Unfortunately, this continues to hold also for partially
ordered preferences.

Future Work. Much work has yet to be done to achieve the desired goal of a single
formalism to model problems with both constraints and preferences of many kinds, and
to solve them efficiently. For example, we are currently considering extensions of the
soft constraint formalism to model both positive and negative preferences. Also, we are
studying the relationship between optimal solutions in preference formalisms and Nash
equilibria in game theory. Finally, we plan to study the notion of privacy in the context
of multi-agent preference aggregation.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and Optimiza-
tion. Journal of the ACM, vol. 44, n. 2, pp. 201-236, 1997.

2. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

3. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Preference-based con-
straint optimization with CP-nets. Computational Intelligence, vol. 20, pp.137-157, 2004.

4. C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning about soft constraints and
conditional preferences: complexity results and approximation techniques. Proc. IJCAI-03,
215–220. Morgan Kaufmann, 2003.

5. J. S. Kelly. Arrow Impossibility Theorems. Academic Press, 1978.
6. M. S. Pini, F. Rossi, K. B. Venable. Possibility theory for reasoning about uncertain soft

constraints. Proc. ECSQARU 2005, Barcelona, July 2005, Springer-Verlag LNAI 3571.
7. S. Prestwich, F. Rossi, K. B. Venable, T. Walsh. Constraint-based Preferential Optimization.

Proc. AAAI 2005, Morgan Kaufmann, 2005.
8. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in interactive

constraint systems. Constraints, vol.9, n. 4, 2004, Kluwer.
9. F. Rossi, K. B. Venable, and T. Walsh. mCP Nets: Representing and Reasoning with Prefer-

ences of Multiple Agents. Proc. AAAI 2004, AAAI Press, 2004.
10. F. Rossi, M. S. Pini, K. B. Venable, and T. Walsh. Aggregating preferences cannot be fair.

Proc. TARK X, Singapore, June 2005, ACM Digital Library.
11. F. Rossi, K. B. Venable, N. Yorke-Smith. Controllability of Soft Temporal Constraint Prob-

lems. Proc. CP 2004, Toronto, Springer LNCS 3258, 2004.

The G12 Project: Mapping Solver Independent
Models to Efficient Solutions

Peter J. Stuckey1, Maria Garcia de la Banda2, Michael Maher3,
Kim Marriott2, John Slaney4, Zoltan Somogyi1,

Mark Wallace2, and Toby Walsh3

1 NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, 3010 Australia
{pjs, zs}@cs.mu.oz.au

2 School of Comp. Sci. & Soft. Eng., Monash University, Australia
{mbanda, marriott, mgw}@mail.csse.monash.edu.au

3 NICTA Kensington Laboratory, University of New South Wales, 2052, Australia
{michael.maher, toby.walsh}@nicta.com.au

4 NICTA Canberra Laboratory, Canberra ACT 2601, Australia
john.slaney@nicta.com.au

Abstract. The G12 project recently started by National ICT Australia
(NICTA) is an ambitious project to develop a software platform for solv-
ing large scale industrial combinatorial optimisation problems. The core
design involves three languages: Zinc, Cadmium and Mercury (Group 12
of the periodic table). Zinc is a declarative modelling language for ex-
pressing problems, independent of any solving methodology. Cadmium
is a mapping language for mapping Zinc models to underlying solvers
and/or search strategies, including hybrid approaches. Finally, existing
Mercury will be extended as a language for building extensible and hy-
bridizable solvers. The same Zinc model, used with different Cadmium
mappings, will allow us to experiment with different complete, local, or
hybrid search approaches for the same problem. This talk will explain
the G12 global design, the final G12 objectives, and our progress so far.

1 Introduction

The G12 project aims to build a powerful and easy-to-use open source constraint
programming platform for solving large scale industrial combinatorial optimiza-
tion (LSCO) problems. The research project is split into four related threads:
building richer modelling languages, building richer solving capabilities, a richer
control language mapping the problem model to the underlying solving capabil-
ities, and a richer problem-solving environment.

The underlying implementation platform will be the Mercury system. On top
of Mercury the project will build a generic modelling language, called Zinc, and
a mapping language, called Cadmium, which takes a Zinc model and generates a
Mercury program. We also plan that Zinc and Cadmium will combine to output

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 9–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

10 P.J. Stuckey et al.

 ZINC
Declarative Modelling Language
 - Data Structures: arrays, sets,
sequences. extensible
 - Looping: forall, sum
 - Predicates and Functions
 - Reification

 CADMIUM
Search Language
 - labelling strategies
 - reflection
 - hybrid approaches

Visualization
 - Search tree
 - Active constraints
 - Constraint graph

Current Mercury

 MERCURY
Solver extensions
- solver specification
language
- specific solvers

ILOG
Solver

Express
MP

Profiling
and Trace
Information

 CADMIUM
Mapping Language
- to solvers
- solver coordination

Richer Modelling

Richer Solving

Richer Environment

Richer Mapping

Comet

G12

programs for different constraint solving systems such as ILOG Solver [6], Xpress
MP [7] and Comet [2]. A diagram showing the four threads and how they interact
with existing solvers and the current language Mercury is shown below.

2 Richer Modelling

The process of solving LSCO problems can be separated into creating the concep-
tual model, and an algorithm development process for mapping the conceptual
model to a design model. This depends upon a language for writing conceptual
models, and usually another language for writing design models.

In order to maintain clarity, flexibility, simplicity and correctness, we separate
the conceptual modelling language Zinc from the mapping language Cadmium,
which is both the design modelling language and the search language.

The best starting point for a universal conceptual modelling language is
a purely declarative modelling language. Such a language allows the modeller
to give a high-level specification of the constraint problem in terms natural
to the problem itself. In order to do so it must include data structures that
naturally arise in modelling such as arrays and sets, as well as be extensible in
order to incorporate new problem specific structures such as jobs and tasks. We
need natural constructs for specifying large constraints and large conjunctions
of constraints. In order to encapsulate common problem structure we need to be
able to specify predicates and functions in the modelling language for reuse.

The G12 Project: Mapping Solver Independent Models 11

The modeller needs to be able to specify requirements for robust, as well as
optimal, solutions. Robust solutions are less sensitive to change in parameters,
and reflect the reality that real solutions often need to be repaired when they
are put into practice. It must be possible for the modelling language to specify
the required type of robustness.

There are many challenges in the design of the Zinc language. For example,
how can we make the language suitable for both an operations researcher expe-
rienced in using restricted mathematical modelling languages such as AMPL [1],
as well as computer scientists used to the flexibility and power of full program-
ming languages. OPL [5] the closest current language to what we envisage Zinc
will be.

3 Richer Mapping

In order to make use of a conceptual model we must have some way of compiling
it, that is mapping it to a design model. One advantage of separating of the
conceptual modelling language from the design model is the ability to then
rapidly experiment with different design models for the same conceptual model.

We wish to provide transparent and flexible ways of specifying how a con-
ceptual model is mapped to a design model. Experience in developing solutions
to industrial constraint problems has shown that we will often need to use two
or more solving technologies to tackle a hard constraint problem. Various con-
straints will be treated by one solver, while other constraints will be treated by
another. Some constraints may be treated by two or more solvers. When we are
using multiple solvers we not only need to specify which constraints are sent to
each solver, and how they are mapped to that solver, but how the solvers will
interact. This must be supported by Cadmium.

G12 will not only need to provide a modelling interface to distinct solving
methods from mixed integer programming (MIP), constraint programming (CP)
and local search, but will also need to provide a modelling and mapping interface
to methods for integrating these techniques. The design models for such an
integrated scheme may involve combinations of algorithms from all three areas.
The Cadmium language in which the design models are expressed must therefore
subsume the expressive power of all the above languages. Much more is required
however, since the interaction between local search and branch-and-infer search
open a huge space of possible hybridisations.

4 Richer Solving

Constraint programming systems typically employ tree search to complement
constraint propagation. Moreover the search is depth first and alternative search
choices are only explored after backtracking to the relevant choice point. By
contrast MIP search typically explores the search tree in a best-first fashion,
which requires a multitude of open nodes to be recorded, ready for expansion at
a later time. Recently systems like Mozart [4] have incorporated the open nodes

12 P.J. Stuckey et al.

approach in CP. With G12 we shall pursue the convergence of CP and MIP
search by reducing the cost of jumping between open nodes, and maintaining
flexibility between the many different tree search strategies.

However local search techniques are playing an increasingly important role in
CP. The Comet CP system [2] supports a wide range of local search techniques,
with constraint handlers adapted to the local search paradigm. The final addition
to the arsenal of search methods offered by G12 will be population-based search
methods, such as genetic algorithms. These methods explore a whole population
of solutions concurrently, and then combine the results from the population to
focus the search on promising areas of the search space.

To date no system has enabled the user to specify the problem in terms of
an algorithm-independent conceptual model, and have the computer map this
into, say, an ant colony optimisation algorithm. The challenge for Cadmium is
to make this mapping straightforward and concise, yet precise and flexible.

Another important research direction for richer solving will be developing
algorithms for returning more robust solutions, more diverse solutions, or finding
similar solutions to previous solutions.

5 Richer Environment

The key to solving complex industrial application problems is rapid applications
development, with close end-user involvement. One of the most important factors
in application development is the quality of the development environment. To
support rapid application development, a rich solution development environment
is essential.

The first stage in developing an application is constructing a correct Zinc and
Cadmium model. This is much easier for the application programmer if solutions
are graphically realized in a way that they can readily understand. The second
and more time consuming phase is performance debugging in which we study the
behaviour of the algorithms at runtime and understand exactly what is going on.
Interaction with a running algorithm is necessary to detect its weaknesses, and
to understand and build on its strengths. To support close end-user involvement,
the problem solving behaviour must be made meaningful and transparent to the
end-user. This requires that the algorithm behaviour be mapped back onto the
problem model, so that the user can understand the behaviour in terms of the
original application.

6 Conclusion

The G12 project aims, using the separation of the conceptual model from the
design model, to provide a software framework where many, perhaps all, op-
timizations approaches can be experimented with efficiently. By allowing this
exploration we hope to get closer to the ultimate goal of simply specifying the
problem and letting the G12 system determine the best way to solve it.

The G12 Project: Mapping Solver Independent Models 13

References

1. AMPL: www.ilog.com/products/ampl/
2. Comet: www.cs.brown.edu/people/pvh/comet1.html
3. Mercury: www.cs.mu.oz.au/mercury/
4. Mozart: www.mozart-oz.org
5. OPL Studio: www.ilog.com/products/oplstudio/
6. ILOG SOLVER: www.ilog.com/products/solver/
7. Xpress MP: www.dashoptimization.com

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 14 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Use of Logic Programming for Complex Business Rules

Walter G. Wilson

Symplicity Business Logic, Inc, Cendant Corporation
wgw@symplicity.biz

Abstract. This paper describes the move from a proprietary mainframe
application to open systems application running the 360 º Fares System whose
business logic component is implemented in Prolog. It is one of the largest and
most profitable Prolog applications written. Prolog is the business-rule
component in a multi-component application that includes network, user
interface, security data access tiers. There has been no downtime, scheduled or
unscheduled, in the 360 º Fares System since June 2004.

1 Introduction

Prolog is a very powerful and economically important technology for implementing
rule engines in complex systems. The successful experience at Cendant verifies this.
A $19.8 billion Fortune 100 company, Cendant (NYSE: CD) is one of the foremost
providers of travel and real estate services in the world. The subsidiary Cendant
Travel Distribution Services (TDS) includes Galileo, a leading global distribution
services (GDS) company, serving more than 44,000 travel agencies. TDS handles
more than 206 billion airline fare quotes per year. In addition to high performance,
reliability is an essential requirement. Galileo’s GDS solutions, including its “360 º
Fares System” have dependent businesses, ranging from agencies to airlines, world-
wide, operating 24x7. The core of this system is a Prolog based rule engine for
computing airline fares.

First we try to explain the scale of the company and the magnitude of the
application. Then we briefly describe the two-layer rule architecture used in the
implementation. This includes the base fare rules (filed by airlines, for example, in an
industry standard format) and the meta-rule layer which applies governmental
constraints and general fare-calculation rules. Finally, we discuss some of the
strengths of LP for this type of application and describe some desired features.

2 Who Is Cendant

A $19.8 billion Fortune 100 company, Cendant is one of the foremost providers of
travel and real estate services in the world; one of the world’s largest hotel
franchisers, the world’s largest vacation ownership organization, and one of the
world’s largest car rental operators; the world’s largest real estate brokerage
franchiser, and the world’s largest provider of outsourced corporate employee
relocation services; and leading providers of travel information processing services
worldwide.

 Use of Logic Programming for Complex Business Rules 15

Cendant Travel Distribution Services (TDS), a subsidiary of Cendant Corporation
(NYSE:CD), is one of the world’s largest and most geographically diverse collections
of travel brands and distribution businesses. A leading global travel intermediary, the
division includes: Galileo, a leading global distribution services (GDS) company,
serving more than 44,000 travel agencies and over 60,000 hotels; hotel distribution and
services businesses (TRUST, THOR, WizCom and Neat Group); leading online travel
agencies (Orbitz, CheapTickets®, Lodging.com, HotelClub.com and RatesToGo.com);
Shepherd Systems, an airline market intelligence company; Travelwire, an international
travel technology and software company; Travel 2/Travel 4, a leading international
provider of long-haul air travel and travel product consolidator; online global corporate
travel management solutions, through Travelport and Orbitz for Business.TDS connects
the most buyers and sellers in the global travel marketplace.

Cendant TDS processes 5 billion transactions a month. Today, every one is either
partially or entirely processed on open systems. On average, the TDS Data Center
handles more than 350 million messages per day, 4051 messages per second and more
than 912 million bookings/cancellations a year as well as more than 206 billion fare
quotes per year.

Galileo’s GDS solutions, including its “360 º Fares System”, have dependent
businesses, ranging from agencies to airlines, world-wide, operating 24x7. Outages to
any of these systems have a direct impact on these users and as such must target
operations that have no scheduled or unscheduled downtime, seven days a week.
Proper operational procedures around the core Prolog application achieve this goal.

3 Architecture

A proprietary mainframe environment was previously used to host a mission critical
“fare locating service”, which became increasingly expensive and hard to maintain. The
overall goal of the company’s migration considerations was to move this key
application to a low cost, high performing, highly redundant Intel based Linux complex.

The main mission critical fares application a subcomponent of Galileo (GDS)
referred to as the 360 º Fares System. It is part of a large collection of software services
and components that have evolved to serve the travel industry. It can be considered to
be a distributed N-tier application in the usual style, with a user interface layer, an
application layer, and a data access layer. The original implementation was mainframe
based, using IBM’s TPF high-performance transaction operating system. Portions of the
TPF system dealing with processing of fare rules were migrated to the Linux/Prolog
system. A 360 º Fares System data access layer written in C takes feeds of public and
private fares and makes it available to the 360 º Fares System rules system.

The performance goal is subsecond average response time. This is much more
rigorous than internet-only access typically requires. Due to its worldwide nature, the
application must be available on a 24x7 continuous basis. This includes availability
while new rules are being added or old ones refreshed, which you would expect -- but
also during meta-rule (code) refresh. The system computes 200+ thousand million fare
quotes/year. It contains millions of fare rules, and hundreds of thousands of meta-rules.

Here is a schematic diagram of the 360 º Fares System rules system. Not shown is
the administrative GUI system written in Tcl/TK.)

16 W.G. Wilson

Each of these layers is complex. For example, the user interface layer includes
proprietary international private networks as well as web access components.

The data access layer is custom written in C. Data is stored on centralized data
stores which are network connected to the application servers. NFS is the underlying
protocol and is tuned for this environment, which is monotonic. Data is added, but not
often deleted. Each application server in the complex has two layers of caching – one
is the basic NFS file caching protocol, and the other is a custom, indexed cache for
the base data. It is updated every few minutes from an industry standard common
format and private, proprietary data that is converted to this format. Access to this
layer from the Prolog application rule server is by use of the SICStus foreign-resource
library to access custom C routines.

The business rule layer is implemented in Prolog. It has a socket connection to the
communications and user interface layer. It effectively implements the functions of
the “application server” in conventional N-tier models. Some number of Prolog
servers are started on each machine in the complex.

The remainder of this section will discuss the rule architecture.

 Use of Logic Programming for Complex Business Rules 17

The rules are formed in two layers:

• A “base” layer that stores fare rules in an industry standard rule format (binary file)
for specific fares: ATPCO and SITA – e. g.: “An infant fare for route R on carrier
C is 85% of adult fare F when accompanied by an adult using that fare and when
sold by agent A”.

• A “meta” layer that implements the rules about how these rules are applied – e. g.:
“fares must be priced using the currency of the country location of the initial
departing flight, unless the purchaser is in countries C1, C2…”; and “A single
itinerary can only enter each country in Europe N times.”

Base rules include the basic fare information for particular flight and route
combinations. This can include calculated fares. That is, simple fares such as “One
adult from A to B on Sunday on this flight has this fare”. They also provide more
complex fare rules such as “One child when accompanied by an adult using fare X
pays 50% of fare Y, if it would be available to an adult”.

The meta layer interprets these base fares filed in the industry standard format. It
also implements fare computation logic, such as how to handle minimum fare
requirements, taxes, governmental travel restrictions, currency conversions, and much
more. It also interprets Special indexes are created for these base rules as well as the
meta rules.

One interesting characteristic to note is that the system must be correct. Many
contract provisions with clients include reimbursement for wrong answers. Compare
this with other applications where the license says in effect, “not responsible for
errors, use at your own risk”!

4 Characteristics of Logic Programming-Based Rule System

Several characteristics of Logic Programs, specifically Prolog, were instrumental in
the success of the application. We point out some of them. We then describe some
additional tools that would be useful for such applications. Finally, some issues in
using Prolog are highlighted.

4.1 Characteristics

These will not be a surprise to practitioners. For those interested in finding out more
about these beneficial characteristics, I will outline a few technical aspects.

• Managed storage: also known as “garbage collection”. This may be a given to
practitioners and those programmers moving to dotNet and J2EE environments,
but is not generally to C and C++ programmers. The difference was stark since the
data access layer was written in C.

• Symbolic term processing and unification. This is hugely powerful. The creation,
analysis, search and two-way patten matching provided by symbolic term
unification saves thousands of lines of programming code. Specifically, I would
point out two specific benefits:
• Terms are structurally similar to XML. However, parsing (into internal

structures) and generation appears to be much faster because they are intrinsic to

18 W.G. Wilson

the language constructs. This means that these structures can be used like XML
for network and intersystem communication, and data storage internal to they
system, but in a more efficient fashion. Packages are available to convert to and
from XML for external communication.

• Marshalling and export of data structures are trivial, compared to C- or Java-like
languages. If a variable X is “bound” to a symbolic term (read: “a data
structure”), then a simple write(X) will traverse this structure in all its glory –
including cyclic structures!

• Table-based computation. If you are familiar with Relational databases, then you
should love Prolog. You can include relational tables and views directly in your
program. Many instances of if-then-else logic can be turned into tables directly in
the code.

• Caching: Controlled assert/retract. For practitioners, this was used as a means of
caching some of the base rules and intermediate results, or “lemmas”.

• Repeat-fail loop for cleaning stacks. Practitioners will know that there are two
choices for processing loops: repeat-fail and recursion. Repeat-fail works well in
this environment, since apart from lemmas there is no state that is kept between
transactions, and this way we are assured that data can be released.

• Term expansion. Since Prolog programs themselves are much more easily
manipulated as data than Java or C#, this came in very useful for the following:
• Debugging: trace data for programmers and intelligible output for analysts and

“business owners”.
• Instrumentation: term expansion is useful for embedding instrumentation when

code is compiled, without having it cluttering up the code when writing or
reading it.

• Data access: many predicates had large numbers of arguments, so the
implementation makes extensive use of O’Keefe’s [3] suggestions on declaring
names for arguments and referring to them by name. Term expansion converted
the references into argument locations.

• Modules. This was of course useful. It is limited in that it is a flat namespace. I
would prefer to see a hierarchical namespace like Java uses.

• Libraries. The large library of common routines was handy, particularly lists,
heaps, and so-on.

4.2 Tools That Would Be Useful in Logic -Based Complex Rule
Systems

Here are Logic Programming tools that would be useful. Some dialects and
experimental systems have some of these already.

• CLP(fares). This would be a constraint system designed to handle the specific
constraints found in fare systems. For example, one might think that we are trying
to find the minimum path between two nodes in a system so Dijkstra’s algorithm
(for example) would suffice. But the cost of an edge in the graph changes
depending on the path you take to get there (e. g., round-trip vs. one-way), who
you are (special discounts), and the path you will eventually take (minimum fare
requirements). The application successfully coded specific algorithms and search
strategies. It would be nice to let the programming system handle more of these.

Programming

 Use of Logic Programming for Complex Business Rules 19

• Composite indexing on terms (SICStus limitation). This is available in various
forms in different dialects. Having to write our own indexing rather than just
declare it is time consuming.

• CIAO-like relational data base query-string optimization. This would allow us to
more easily exploit the relational nature of Prolog and gain practitioners by
declaring certain predicates to be stored externally (in a relational data base) and
have the connections and queries optimized for that situation.

• Unfolding tools. This would be especially useful in conjunction with the RDB
declarations, and the optimization of frequent queries.

• Hierarchical (Java-like) name-spaces. Those of you interested in Semantic Web
know that namespace is important. The Prolog module name space is very flat and
bushy.

• More Logic Programmers. The availability of competent programmers in such a
“niche” language caused project development problems. More logic program
applications might help that – or vice-verse.

• An IDE that does a lot for you
• (including source debugging like AMZI Prolog)
• integrated Prolog/foreign-resource debugging (via GDB for example)
• logical variable watchers…

• decimal arithmetic (IEEE standard binary arithmetic rounding caused problems).
Yes, we wrote our own.

• SMP-safe threads. Other application servers run on threads – why not Prolog? (no
excuses – answers!).

4.3 Issues

The application is a huge, profitable success. Technically, Logic Programming is
ideal for embedding as the business rule component in a multi-tier system. The
primary issues are not technical; rather they are operational and based on perception:

• Prolog is perceived as “non-standard”, meaning not everyone else is doing it. For
comparison, .NET is non standard – or at least non Java - but has Microsoft behind
it so it became a separate standard. Being “uncommon” has real consequences in
developing large applications:
• Unavailability of LP development expertise: experienced programmers were in

short supply – the developers learned by doing.
• Managers of large software projects tend to be very risk-averse. They have little

motivation to choose the best solution. Rather, they have a lot of motivation to
choose a good-enough solution that has fewer unknowns.

• The “support team” of practitioners worldwide is not as populous as for Java or
dotNet. Web sites containing “best-practices”, shared code and experiences are
few.

• All changes must be ROI justified – the “best” solution may not be worth it, or
worth the cost of redoing the system. These real business constraints preclude large
scale experimentation.

20 W.G. Wilson

5 Conclusion

The architectural solution deployed by Cendant, which used highly redundant groups
of server/storage clusters, has allowed us to achieve huge stability improvements.
Since deployment of the solution in June 2003, we have not had a single customer
affecting outage – scheduled or unscheduled.

In addition, the high performance and low cost of the environment has presented
cost avoidance opportunities. Cendant has saved more than $100 million dollars
compared to continuing to expand on the mainframe. Functionality has increased and
time-to-market has decreased using the new application configuration.

References

1. AMZI: http://www.amzi.com
2. CIAO Prolog: http://clip.dia.fi.upm.es/Software/Ciao/
3. Cendant: www.cendant.com
4. O’Keefe, Richard. The Craft of Prolog. MIT Press. 1990
5. SICStus: http://www.sics.se/sicstus

A Generator of Efficient Abstract Machine
Implementations and Its Application

to Emulator Minimization�

José F. Morales1, Manuel Carro1, Germán Puebla1

and Manuel V. Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
jfran@clip.dia.fi.upm.es, {mcarro, german, herme}@fi.upm.es

2 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico (UNM)
herme@unm.edu

Abstract. The implementation of abstract machines involves complex
decisions regarding, e.g., data representation, opcodes, or instruction spe-
cialization levels, all of which affect the final performance of the emulator
and the size of the bytecode programs in ways that are often difficult to
foresee. Besides, studying alternatives by implementing abstract machine
variants is a time-consuming and error-prone task because of the level
of complexity and optimization of competitive implementations, which
makes them generally difficult to understand, maintain, and modify. This
also makes it hard to generate specific implementations for particular
purposes. To ameliorate those problems, we propose a systematic ap-
proach to the automatic generation of implementations of abstract ma-
chines. Different parts of their definition (e.g., the instruction set or the
internal data and bytecode representation) are kept separate and auto-
matically assembled in the generation process. Alternative versions of the
abstract machine are therefore easier to produce, and variants of their im-
plementation can be created mechanically, with specific characteristics
for a particular application if necessary. We illustrate the practicality
of the approach by reporting on an implementation of a generator of
production-quality WAMs which are specialized for executing a partic-
ular fixed (set of) program(s). The experimental results show that the
approach is effective in reducing emulator size.

1 Introduction

The use of intermediate abstract machines as a means to compile and tune
programs (specially those written in high-level languages with complex features)
requires several components. In order to execute programs written in a source
language LP , a compiler into the abstract machine language, LA, is needed.
� Work partially funded by the European Commission IST-FET programme, IST-

2001-38059 ASAP project, and by the Spanish Ministry of Science and Education,
TIC 2002-0055 CUBICO project. Manuel Hermenegildo is also supported by the
Prince of Asturias Chair in Information Science and Technology at UNM. J. Morales
is also supported by an MCYT/MEC fellowship co-financed by the European Social
Fund.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 21–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22 J.F. Morales et al.

An emulator for LA, usually written in some lower-level language LC for which
there is a compiler to native code, performs the actual execution.1 Traditional
implementations based on abstract machines start with a fixed set of abstract
machine instructions and then develop the compiler and the emulator.

One important concern when implementing such emulators is that of effi-
ciency (see [1,2,3,4,5]), which depends greatly on the complexity of LP and, of
course, on the compiler and emulator technology. As a result, emulators are very
often difficult to understand, maintain, and modify. This makes the implemen-
tation of variants of abstract machines a hard task, since both the compiler and
emulator, which are rather complex, have to be rewritten by hand for each case.
Variants of emulators have been (naturally) used to evaluate different imple-
mentation options for a language [4], often manually. Automating the creation
of these variants will, additionally, make it possible to tailor a general design to
particular applications or environments with little effort. A particularly daunting
task is to adapt existing emulators to resource-constrained tasks, such as those
found in pervasive computing. While this can clearly be done by carefully rewrit-
ing existing emulators, selecting alternative data representations, and, maybe,
adapting them to the type of expected applications, we deem that this task is
a too difficult one, especially taking into account the amount of different small
devices which are ubiquitous nowadays.

In this work we propose an approach in which, rather than being hand-
written, emulators and (back-end) compilers are automatically generated from a
high-level description of the abstract machine instruction set. This makes it pos-
sible to easily experiment with alternative abstract machines and to evaluate the
impact of different implementation decisions, since the corresponding emulator
and compiler are obtained automatically.

In order to do so, rather than considering emulators for a particular abstract
machine, we formalize emulators as parametric programs, written, for purposes
of improved expressiveness, in a syntactical extension of LC (as explained in
Example 1) that can represent directly elements of LA and which receive two
inputs: a program to be executed, written in language LA, and a description of
the abstract machine language LA in which the operational definition of each
instruction of LA is given in terms of LC . E.g., we define a generic emulator
as a procedure interpret(program,M) which takes as input a program in the
abstract machine language LA and a definition M of the abstract machine itself
and interprets the program according to M .

For the sake of maintainability and ease of manipulation, LA is to be as
close as possible to its conceptual definition. This usually affects performance
negatively, and therefore a refinement step, based on pass separation [6], a form
of staging transformations [7], is taken to convert programs written in LA into
programs written in LB, a lower-level representation for which faster interpreters
can be written in LC . By formalizing adequately the transformation from LA

to LB it is possible to do automatically:

1 Implementations of abstract machines are usually termed virtual machines. We will,
however, use the term emulator or bytecode interpreter to denote a virtual machine.
This is in line with the tradition used in the implementation of logic programming
languages.

A Generator of Efficient Abstract Machine Implementations 23

– The translation of programs from LA into LB.
– The generation of efficient emulators for programs in LB based on inter-

preters for LA.
– The generation of compilers from LP to LB based on compilers from LP to
LA.

A high-level view of the different elements we will talk about in this paper
appears in Figure 1. When the abstract machine description M is available, it
is possible (at least conceptually) to partially evaluate the procedure interpret
into an emulator for a (now fixed) M . Although this approach is attractive in
itself, it has the disadvantage that the existence of a partial evaluator of programs
written in LC is required. Depending on LC , this may or may not be feasible.

A well known result in partial evaluation [8] is that it is possible to partially
evaluate a partial evaluator w.r.t. itself and a particular program as static data.
By taking the parametric emulator as static data for the partial evaluator, we
can obtain an emulator generator (emucomp), which will produce an efficient em-
ulator when supplied with a description of an abstract machine. This approach,
known as the second Futamura projection [9], not only requires the availability
of a partial evaluator for programs in LC but also needs the partial evaluator
to be self-applicable. Somewhat surprisingly, the structure of emulator gener-
ators is often easy to understand. The approach we will follow is therefore to
write such an emulator generator directly by hand. The emulator generator we
propose has been defined in such a way that it can produce an emulator whose
code is comparable to a hand-written one when provided with a description of
an abstract machine.

The benefits of our approach are multifold. Writing an emulator generator is
clearly much more profitable than writing a particular emulator (though more
difficult to achieve for the general case) since, with no performance penalty, it
will make it possible to easily experiment with multiple variations of the origi-
nal abstract machine. For example, and as discussed later, it is straightforward
to produce reduced emulators. As an example of the application of our tech-
nique, and taking as starting point the instruction set of an existing emulator (a
production-quality implementation of a modern version of the Warren Abstract
Machine for Prolog [10,11]), we generate emulators which can be sliced with

encode int

Mdec Marg M def

input output

emucomp

prgBA
P

Pprg Aprgcomp

comp P
B

, ,,insM,encMM = < >

Compilation of programs in L Interpreter execution

Generation of interpreter

generates

P

Fig. 1. “Big Picture” view of the generation of emulators

24 J.F. Morales et al.

respect to the set of abstract machine instructions which a given application or
sets of applications are going to actually use.

2 Automatic Generation of Emulators

In this section we will develop a compiler for emulators which takes a description
of the machine and can produce emulators which are very close (and in some
cases identical) to what a skilled programmer would craft.

Our initial source language is LP , and we assume that there is a compiler
comp from LP to an LA, a symbolic representation of a lower-level language
intended to be interpreted by an emulator. We want comp to be relatively simple
and independent from the low-level details of the implementation of the final
emulator. The definition of LA will be kept separate in M so that it can be
used later (Section 2.2) in a generic emulator. Instructions in LA can, in general,
consult and modify a global state and change the control flow with (conditional)
jump/call instructions.

2.1 Scheme of a Basic Emulator

Emulators have usually a main loop implementing a fetch-execute cycle. Figure 2
portrays an example, where that cycle is performed by a tail-recursive procedure.
The reason to choose this scheme is because it allows a shorter description of
some further transformations, but note that it can be converted automatically
into a proper loop. The function:

fetchA : locatorA × programA → 〈insA, locatorA〉

returns, for a given program and program point, the instruction at that point
(of type insA, a tuple containing instruction name and arguments) and the
next location in the program, in sequential order. This abstracts away program
counters, which can be symbolic, and indirections through the program counter.
We will reuse this function, in different contexts, in the following sections.

Example 1 (LA instructions and their semantics written in LC). The left hand
side of each of the branches in the case expression of Figure 2 corresponds to one
instruction in LA. The emulator emuA is written in LC (syntactically extended

emuA(p, program) ≡
〈ins, p′〉 = fetchA(p, program)
case ins of

〈move, [r(i), r(j)]〉 : reg[j] := reg[i]; p′′ := p′

〈jump, [label(l)]〉 : p′′ := l
〈call, [label(l)]〉 : push(p′); p′′ := l
〈ret, []〉 : p′′ := pop()
〈halt, []〉 : return
otherwise : error

emuA(p′′, program)

Fig. 2. An example of simple LA-level interpreter

A Generator of Efficient Abstract Machine Implementations 25

to represent LA instructions), and the semantics of each instruction is given in
terms of LC in the right hand side of the corresponding branch. The implementa-
tion of the memory model is implicit in the right hand side of the case branches;
we assume that appropriate declarations for types and global variables exist. LA

instructions are able to move data between registers, do jumps and calls to
subroutines, and stop the execution with the halt instruction. Alternative emu-
lators can be crafted by changing the way LA instructions are implemented. This
must, of course, be done homogeneously across all the instruction definitions.

2.2 Parameterizing the Emulator

In order to make emulators parametric with respect to the abstract machine
definition, we need to settle on an emulator scheme first (Figure 3) and to make
the definition of the abstract machine precise. We will use a piecewise definition
M = (Mdef ,Marg ,Mins ,Mabsexp) of LA which is passed as a parameter to the
emulator scheme and which relates different parts of the abstract machine with
a feasible implementation thereof. The meaning of every component of M (see
also Example 2) is as follows:

Mdef . The correspondence between every instruction of LA and the code to
execute it in LC .

Marg . The correspondence between every argument for the instructions in LA

and the corresponding data in LC . Margs generalizes Marg by mapping lists
of arguments in LA into lists of arguments in LC . The definitions of Mdef
and Marg are highly dependent, and quite often updating one will require
changes in the other.

Mins . The instruction set, described as the name and the format every instruc-
tion in LA accepts, i.e., which kinds of expressions in LA can be handled
by the instruction. The format is given as a list of abstract expressions of
LA, whose definition is also included in M (see next item). For example, a
jump instruction might be able to jump to a (static) label, but not to the
address contained in a register, or a move instruction might be able to store
a number in a register but not directly in a memory location. Note that the
same instruction name can be used with different formats.

Mabsexp. An abstraction function which returns the type of an instruction
argument.

The interpreter in Figure 3 uses the definition of the semantics of LA in terms
of LC . For every instruction, arguments in LA are translated into arguments in
LC by Margs , and Mdef selects the right code for the instruction. Both Mdef and
Marg are functions which return unevaluated pieces of code, which are meant to

int1(p, program,M) ≡
〈〈name, args〉, p′〉 = fetchA(p, program)
if ¬validA(〈name, args〉,Mins , Mabsexp) then error
cont = λa → [p′′ := a]
�Mdef (p′, cont, name,Margs(args))�
int1(p′′, program,M)

Fig. 3. Parametric interpreter for LA

26 J.F. Morales et al.

Mdef (next, cont, name, args) =
case 〈name, args〉 of

〈move, [a, b]〉 → [a := b; cont(next)]
〈jump, [a]〉 → [cont(a)]
〈call, [a]〉 → [push(next); cont(a)]
〈ret, []〉 → [cont(pop())]
〈halt, []〉 → [return]

Mins =
{ 〈move, [r, r]〉

〈jump, [label]〉
〈call, [label]〉
〈ret, []〉
〈halt, []〉 }

Marg(arg) =
case arg of

r(i) → reg[i]
label(l) → l

Mabsexp(arg) =
case arg of

r() → r
label() → label
otherwise →⊥

Fig. 4. Definition of M for our example

be executed by int1 — this is marked by enclosing the function call by double
square brackets. The next program location is set by a function cont which is
handed in to Mdef as an argument. The language expressions not meant to be
evaluated but passed as data are enclosed inside square brackets. The context
should be enough to distinguish them from those used to access array elements
or to denote lists.

In order to ensure that no ill-formed instruction is executed (for example,
because a wrongly computed location tries to access instructions outside the
program scope), the function validA checks that the instruction named name
can understand the arguments args which it receives. It needs to traverse every
argument, extract its type, which defines an argument format, and check that
the instruction name can be used with arguments following that format.
Example 2 (Definitions for a trivial abstract machine in int1). In the definitions
for M in Figure 4, the higher-order argument cont is used to set the program
counter pointing to the instruction to be executed next. The instruction defini-
tions do not check operator and operand types, since that has been taken care
of by validA by checking that the type of every argument which matches those
accepted by the instruction at hand.

Instructions can in general admit several argument formats. For example,
arithmetic instructions might accept integers and floating-point numbers. That
would make Mins have several entries for some instructions. This poses no prob-
lem, as long as Mabsexp returns all abstractions for a given pattern and there
is a suitable selection rule (e.g., the most concrete applicable pattern) is used
to choose among different possibilities. For the sake of simplicity we will not
deal with that case in this paper. Multi-format instructions are helpful when
compiling weakly-typed languages, or languages with complex inheritance rules,
where types of expressions might not be completely known until runtime. If
this happens, compiling to a general case to be dynamically checked is the only
solution.

2.3 A More Specialized Intermediate Language and Its Interpreter

The symbolic nature of LA, which should be seen as an intermediate language,
makes it convenient to express instruction definitions and to associate internally

A Generator of Efficient Abstract Machine Implementations 27

properties to them, but it is not designed be directly executed. Most emulators
use a so-called bytecode representation, where many details have been settled:
operation codes for each instruction (which capture the instruction name and
argument types), size of every instruction, values of some arguments, etc. In
return bytecode interpreters are quite fast, because a great deal of the work int1
has been statically encoded, so that many overheads may be removed. In short,
the bytecode design focuses on achieving speed.

On the other hand, working right from the beginning with a low-level defi-
nition is cumbersome, because many decisions percolate through the whole lan-
guage and seemingly innocent changes can force the update of a significant part
of the bytecode definition (and, therefore, of its emulator). This is the main rea-
son to keep LA at a high level, with many details still to be filled in. It is however
possible to translate LA into a lower-level language, LB, closer to LC and eas-
ier to represent using LC data structures. That process can be instrumented so
that programs written in LA are translated into LB and interpreters for LA are
transformed in interpreters for LB using a similar encoding. Translating from
LA to LB is done by a function:

encode : LA → LB

encode accepts instructions in LA (including name and arguments) and returns
tokens in LB . The encoding function has to:

1. Assign a unique operation code (opcode) to each instruction in LA when
the precondition expressed by validA holds (a compile-time error would be
raised otherwise). This moves the overhead of checking formats from runtime
to compile-time.

2. Take the arguments of instructions in LA and translate them into LB.

encode is used to generate a compiler from LP into LB from a compiler from
LP into LA (Figure 1). As encode gives a unique opcode to every combination
of instruction name and format, it has an associated function:

decode : LB → LA

which brings bytecode instructions back to its original form.2 In order to capture
the meaning of encode / decode, we augment and update the abstract machine
definition to be M = (Mdef ,Marg ,Mins′ ,Mabsexp,Menc,Mdec) (see Figure 5 and
Example 3). Mins′ is derived from Mins by capturing the opcode assignment.
It accepts an opcode and returns the corresponding instruction in LA as a pair
〈name, format〉. Argument encoding is taken care of by a new function Menc .
Mdec is the inverse of Menc.

An interpreter int2 for LB (see Figure 6) can be derived from int1 with the
help of bytecode decoding. int2 receives an (extended) definition of M and uses
it to retrieve the original instruction 〈name, format〉 in LA corresponding to an
opcode in a bytecode program (returned by program[p], where p is a program
counter in LB). The arguments are brought from the domain of LB to the domain
of LA by Mdec, and code and argument translations defined by Mdef and Marg
can then be employed as in int1.
2 Both encode and decode may need to resolve symbols. As this is a standard practice

in compiling (which can even be delayed until link time), we will not deal with that
problem here.

28 J.F. Morales et al.

Mins′(opcode) =
case opcode of

0 → 〈move, [r, r]〉
1 → 〈jump, [label]〉
2 → 〈call, [label]〉
3 → 〈ret, []〉
4 → 〈halt, []〉

Menc(arg) =
case arg of

〈r(a)〉 → a
〈label(l)〉 → symbol(l)

Mdec(t, f) =
case 〈t, f〉 of

〈a, r〉 → r(a)
〈l, label〉 → label(l)

Fig. 5. New Parts of the Abstract Machine Definition

int2(p, prg,M) ≡
opcode = prg[p]
〈name, format〉 = Mins′(opcode)
〈args, p′〉 = decodeins(format, [p], [prg], M)
cont = λa → [int2(a, prg,M); return]
�Mdef (p′, cont, name,Margs(args)); cont(p′)�

decodeins(〈f1, . . . , fn〉, p, prg,M) =
〈〈d1, . . . , dn〉, p + 1 + n〉 where
di = Mdec([prg[p + i]], fi)

Fig. 6. Parametric interpreter for LB

We want to note that in Figure 6 the recursive call has been placed inside
the continuation code, which avoids the use of the intermediate variable p′′ used
in Figure 2 and makes it easier to apply program transformations.

Example 3 (Encoding instructions). Every combination of instruction name and
format from Example 2, Figure 4, is assigned a different opcode. Mins′ re-
trieves both the corresponding instruction name and format for every opcode. In
Figure 8, the sample LA program on the left is translated by encode into the
program LB on the right, which can be interpreted by int2 using the definitions
for M .

2.4 A Final Emulator

The interpreter int2 in Section 2.3 still has the overhead associated with using
continuously the abstract machine definition M . However, once M is fixed, it is
possible to instantiate the parts of int2 which depend statically on M , to give
another emulator int3. This can be seen as a partial evaluation of int2 with
respect to M , i.e., int3 ≡ �spec�(int2,M). This returns an emulator written in
LC without the burden of translating instructions in LB to the level of LA in
order to access the corresponding code and argument definitions in Mdef and
Marg . Finally, and although program[p] is not known at compile time, we can

emucomp(M) =
[emuB(p, prg) ≡

case get opcode(p, prg) of
opcode1 : inscomp(opcode1, M)
. . .
opcoden : inscomp(opcoden, M)]

where opcodei ∈ domain(Mins′)

inscomp(opcode, M) =
[Mdef (p′, cont, name,Margs(args)); cont(p′)]

where
〈name, format〉 = Mins′ (opcode)
〈args, p′〉 = decodeins(format , [p], [prg],M)
cont = λa → [emuB(a, prg); return]

Fig. 7. Emulator Compiler

A Generator of Efficient Abstract Machine Implementations 29

LA program
move r(0) r(2)
move r(1) r(0)
move r(2) r(1)
halt

LB program

0 0 2 0 1 0 0 2 1 4

Fig. 8. Sample program

emuB(p, program) ≡
case program[p] of

0 : reg[program[p + 1]] := reg[program[p + 2]];
emuB(p + 3, program); return

1 : emuB(program[p + 1], program); return
2 : push(p + 2);

emuB(program[p + 1], program); return
3 : emuB(pop(), program);return
4 : return; return

Fig. 9. Generated emulator

introduce a case statement which enumerates the possible values for the opcode,
thus becoming static. This is a common technique to make partial evaluation
possible in similar cases.

Since the interpreter structure is fixed, a compiler of emulators could be
generated by specializing the partial evaluator for the case of int2, i.e.,

emucomp : M → codeC

emucomp = �spec�(spec, int2)
which is equivalent to the emulator compiler in Figure 7. It reuses the definition of
decodeins seen in the previous section. Note that, as stated before, this emulator
compiler has a regular structure, and we have opted to craft it manually, instead
of relying on a self-applicable partial evaluator for LC . This compiler emulator,
of course, does not need to be implemented in LC , and, in fact, in our particular
implementation it is written in Prolog and it generates emulators in C.

Example 4 (The generated emulator). Figure 9 depicts an emulator for our work-
ing example, obtained by specializing int2 with respect to the machine definition
in Example 3. Note the recursive call and returns at the end of every case branch
which ensure that no other code after those statements is executed. All the re-
cursive calls are tail recursions.

3 An Example Application: Minimal and Alternative
Emulators

We will illustrate our technique with two (combined) applications: generating
WAM emulators which are specialized for executing a fixed set of programs,
and using different implementations of the WAM data structures. The former
is very relevant in the context of applications meant for embedded devices and
pervasive computing. It implements an automatic specialization scheme which
starts at the Prolog level (by taking as input the programs to be executed) and,
by slicing the abstract machine definition, traverses the compilation chain until
the final specialized emulator for these programs is generated. The latter makes
it possible to easily experiment with alternative implementation decisions.

We have already introduced how a piecewise definition of an abstract machine
can allow making emulator generation automatic. In the rest of this section we
will see how this technique can be used to generate such application-specific
emulators, and we will report on a series of experiments performed around those

30 J.F. Morales et al.

ideas. We will focus, for the moment, on generating correct emulators of minimal
size, although the technique can obviously also be applied to investigating the
impact of alternative implementations on performance.

3.1 Obtaining Specialized Emulators

The objective of specializing a program with respect to some criteria is to obtain
a new program that preserves the initial semantics and is smaller or requires
fewer operations. The source and target language are typically the same; this is
expected, since specialization which operates across different translation levels
is harder. It is however highly interesting, and applicable to several cases, such
as the compilation to virtual machines and JIT compilation.

Among previous experiences which cross implementation boundaries we can
cite [12], where automatically specialized WAM instructions are used as an in-
termediate step to generate C code which outperforms compilers to native code,
and the Aquarius Prolog compiler [13] which carried analysis information along
the compilation process to generate efficient native code.

As mentioned before, simplifying automatically hand-coded emulators (in
order to speed them up or to reduce the executable size) written in LC requires
a specializer for LC programs able to understand the emulator structure. The
task can be quite difficult for efficient, complex emulators. Even in the case that
the emulator can be dealt with, there are very few information sources to use
in order to perform useful optimizations: the input data is, in principle, any
bytecode program.

One way to propagate bytecode properties about a particular program p down
to the emulator so that the specializer can do some effective optimization is by
partially evaluating the emulator w.r.t. p and specializing the resulting program.
Even if the specializer is powerful enough to work with this input, this solution
has some drawbacks. The resulting code lacks some interesting properties: it is
not as portable as the bytecode (since it is written in LC) and it is presumably
less compact than the combination emulator + bytecode. Portability can often
be sacrificed if compactness is preserved; in exchange, the resulting program
is usually self-contained and generating stand-alone applications is in principle
easier. This is not a bad scenario if there are automatic tools which can do a good
job on these tasks (i.e., the code explosion generated by the partial evaluator is
then taken care of by the specializer). Unfortunately, this is usually not the case.

An alternative approach is to express the specialization of the emulator in
terms of slicing [14,15,16]. A slicing algorithm and the properties that it focus
on, φ, of the emulator input, such as, e.g., bytecode reachable points, output
variables, etc., are defined so that only the parts of the emulator (or a conser-
vative approximation thereof) needed to maintain those properties have to be
kept by the transformation.

One problem with this approach is that the bytecode is quite low level and
the emulator too complicated to be automatically manipulated. However, our
emulator generation scheme makes this problem more tractable. In our case
LB programs are generated from a higher-level representation which can be
changed quite freely (even enriched with compiler-provided information to be
later discarded by encode) and which aims at being easily manageable rather
than efficient. It seems therefore more convenient to work at the level of LA to

A Generator of Efficient Abstract Machine Implementations 31

extract the slicing information, since it offers more simplification opportunities.
It has to be noted that transforming the LC emulator code using some LA

properties may be extremely difficult: to start with, suitable tools to work with
LC are needed, and they should be able to understand the relationship between
LB and LA elements. It is much easier to work at the level of the definition
of the abstract machine M , where LA is completely captured, and where its
relationship with LB is contained.

We therefore formulate a slicing transformation that deals directly with M
and whose result is used to generate a specialized emulator emus:

emus = emucomp(�sliceM�(M,φ))

emus can also be viewed as the result of slicing emucomp(M) (i.e., emuB) with
a particular slicing algorithm that, among other things, preserves the (loop)
structure of the emulator.3 That is, sliceM deals with the instruction set or the
instruction code definitions, and leaves complex data and control issues, quite
common in efficient emulators, untouched and under the control of emucomp.
Slicing can change all the components of the definition of M , including Mdef ,
which may cause the compiled emulator to lose or specialize instructions. Note
that when Mins is modified, the transformation affects the compiler, because the
encode function uses definitions in M .

3.2 Some Examples of Opportunities for Simplification

There is a variety of simplifications at the level of M that preserve the loop
structure. They can be expressed in terms of the previously presented technique.

Instruction Removal: Programs compiled into bytecode can be scanned and
brought back into LA using Mins′ to find the set I of instructions used in them.
M is then sliced with respect to I and a new, specialized emulator is created
as in Section 2.4. The new emulator may be leaner than the initial one since it
probably has to interpret fewer instructions.

Removing Format Support: If LA has instructions which admit arguments of dif-
ferent types (e.g., arithmetical operations which admit both integers and floating
point numbers), programs that only need support for some of the available types
can be executed in a reduced emulator. This can be achieved, again, by slicing
M with respect to the remaining instruction and argument formats.

Removing Specialized Instructions: M can define specialized instructions (for
example, for special argument values) or collapsed instructions (for often-used
instruction sequences). Those instructions are by definition redundant, but some-
times useful for the sake of performance. However, not all programs require or
benefit from them. When the compiler to LA can selectively choose whether
using or not those versions, a smaller emulator can be generated.

Obtaining the optimal set of instructions (w.r.t. some metric) for a particular
program is an interesting problem. It is however out of the scope of this paper.
3 Due to the simplicity of the interpreter scheme, this is not a hard limitation for most

emulator transformations, as long as the transformation output is another emulator.

32 J.F. Morales et al.

3.3 Experimental Evaluation

We tested the feasibility of the techniques proposed herein for the particu-
lar case of the compilation of Prolog to a WAM-based bytecode. We started
off with Ciao [17], a real, full-fledged logic programming system, featuring a
(Ciao)Prolog to WAM compiler, a complex bytecode interpreter (the
emulator) written in C, and the machinery necessary to generate multi-platform,
bytecode-based executables. We refactored the existing emulator as an abstract
machine as described in the previous sections, and we implemented an
emulator compiler which generates emulators written in C. We also implemented
a slicer for removing unused instructions from the abstract machine
definition.

Specialized emulators were built for a series of benchmark programs. For each
of them, the WAM code resulting from its compilation was scanned to collect
the set I of actually used instructions, and the general instruction set Mins was
sliced with respect to I in order to remove unused instructions. The resulting
description was used to encode the WAM code into bytecode and to generate
the specialized emulator. We have verified that, when no changes are applied to
the abstract machine description, the generated emulator and bytecode repre-
sentation are as optimized as the original ones. Orthogonally, we defined three
slightly different instruction sets and generated specialized emulators for each of
these sets and each of the benchmark programs, and we measured the resulting
size (Table 1).

Table 1. Emulator sizes for different instruction sets

Basic ivect iblt
loop bytecode loop bytecode loop bytecode

(29331) (33215) (34191)
full strip full strip full strip full strip full strip full strip

hw 28% 71% 33116 48 29% 74% 31548 48 29% 75% 31136 48
boyer 26% 46% 40198 8594 27% 50% 38606 8542 28% 52% 38168 8512
crypt 27% 58% 33922 2318 28% 62% 32306 2242 28% 63% 31842 2186
deriv 27% 56% 33606 2002 28% 59% 32022 1958 28% 61% 31606 1950
exp 28% 59% 32102 498 29% 63% 30542 478 29% 63% 30114 458
fact 28% 69% 31756 152 29% 72% 30216 152 29% 73% 29804 148
fib 28% 70% 31758 154 29% 74% 30218 154 29% 74% 29798 142
knights 27% 54% 32306 702 28% 56% 30726 662 29% 57% 30298 642
nrev 27% 65% 31866 262 28% 69% 30322 258 28% 70% 29910 254
poly 26% 48% 34682 3078 27% 52% 33098 3034 27% 53% 32664 3008
primes 27% 56% 32082 478 28% 61% 30526 462 29% 62% 30102 446
qsort 27% 58% 32334 730 28% 61% 30778 714 28% 62% 30370 714
queens11 28% 55% 32248 644 29% 59% 30696 632 29% 60% 30220 564
query 28% 59% 32816 1212 29% 63% 31256 1192 29% 64% 30840 1184
stream dyn 25% 42% 36060 2992 25% 45% 34420 2920 26% 45% 33890 2802
stream opt 26% 46% 35152 2084 26% 49% 33516 2016 26% 49% 32990 1902
stream 26% 46% 34496 1428 27% 49% 32868 1368 28% 49% 32402 1314
tak 28% 67% 31886 282 29% 70% 30334 270 29% 71% 29910 254
Average 27% 56% 27% 60% 28% 61%

A Generator of Efficient Abstract Machine Implementations 33

The benchmarks feature both symbolic and numerical computation, and they
are thus representative of several possible scenarios. The list of benchmarks in-
cludes some widely known programs which we will not describe here. Other pro-
grams, used less often as benchmarks, include hw (which prints “Hello world!”),
exp (which computes 137111 with a linear- and a logarithmic-time algorithm),
knights (chess knight tour visiting once every board cell), poly (symbolically
raise 1+x+y+z to the nth power), and query (query a database of countries, pop-
ulation, and area). Specially interesting are a set of signal processing programs,
applied in wearable computing: stream, which generates 3-D stereo audio from
mono audio, compass, and GPS signals to simulate the movement of a subject in
a virtual world; stream dyn, an improved version of stream which can use any
number of different input signals and sampling frequencies, and stream opt, an
optimized version where number of signals and sampling frequency is fixed.

It has to be noted that, although most of these benchmarks are of moderate
size, our aim in this section is precisely to show how to reduce automatically the
footprint of an otherwise large engine for these particular cases. On the other
hand, reduced size does not necessarily make them unrealistic, in the sense that
they effectively perform non-trivial tasks. As an example, stream opt processes
audio in real time and with constant memory usage using Ciao Prolog in a
200MHz GumStix (a computer the size of a chewing gum).

The whole compilation process is fairly efficient. On a Pentium M at
1400MHz, with 512MB of RAM, and running Linux 2.6.10, the compiler com-
piles itself and generates a specialized emulator in 31.6 seconds: less than 0.1
seconds to generate the code of the emulator loop itself, 11.3 seconds to compile
the compiler to bytecode (written in Prolog), and 20.3 seconds to compile all the
C code: Prolog-accessible predicates written in C (e.g., builtins and associated
glue code) and the generated emulator using gcc with optimization grade -O2.
Both the Prolog compiler and emulator generator are written in (Ciao-)Prolog.

The results of the benchmarks are in Table 1, were different instruction sets
were used. Columns under the basic label correspond to the instruction set of the
original emulator. The ivect label presents the case for an instruction set where
several compact instructions which are specialized to move register values before
calls to predicates have been added to the studied emulator. Finally, columns
below the label iblt shows results for the instruction set iblt, where specialized
WAM instructions for the arithmetic builtins have been added to the emulator.
In each of these set of columns, and for each benchmark, we studied the impact
of specialization in the emulator size (the loop columns) and bytecode size (the
bytecode columns).

The bytecode columns show two different figures: full is the bytecode size
including all libraries used by the program and the initialization code (roughly
constant for every program) automatically added by the standard compiler. The
numbers in the strip column were obtained after performing dead code elimina-
tion at the Prolog level (such as removing unused Prolog library modules and
predicates, producing specialized versions, etc. using information from analysis –
see, e.g., [18] and its references) and then generating the bytecode. This special-
ization of Prolog programs at the source and module level is done by the Ciao
preprocessor and is beyond the scope of this paper.

34 J.F. Morales et al.

The loop columns contain, right below the label, the size of the main loop
of the standard emulator with no specialization. For each benchmark we also
show the percentage of reduction achieved with bytecode generated from full or
specialized program with respect to the original, non-specialized emulator — the
higher, the more savings.

Even in the case when the emula-

Size of bytecode

S
iz

e
o

f
m

ai
n

 lo
o

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

19000

18000

17000

16000

15000

14000

13000

12000

11000

10000

9000

8000

Fig. 10. Relationship between stripped
bytecode size (x axis) and emulator size (y
axis)

tor is specialized with respect to the
full bytecode, we get a steady sav-
ings of around 27%, including library
and initialization code. We can de-
duce that this is a good approxima-
tion of the amount of reduction that
can be expected from typical
programs where no redundant code
exists. Of course, programs which use
all the available WAM instructions
can be crafted on purpose, but this
is not the general case. In our experi-
ence, not even the compiler itself uses

all the abstract machine instructions: we also generated an abstract machine spe-
cialized for it which was simpler (although only marginally) than the original
one.

The savings obtained when the emulator is generated from specialized byte-
code are more interesting. Savings range from 45% to 75%, averaging 60%. This
shows that substantial size reductions can be obtained with our technique. The
absolute sizes do not take into account ancillary pieces, such as I/O and operat-
ing system interfaces, which would be compiled or not with the main emulator
as necessary, and which are therefore subject to a similar process of selection.

It might be expected that smaller programs would result in more emulator
minimization. In general terms this is so, but with a wide variation, as can be
seen in Figure 10. Thus, predicting in advance which savings will be obtained
from a given benchmark in a precise way is not immediate.

4 Conclusions and Further Work

We have presented the design and implementation of an emulator compiler that
generates efficient code using a high-level description of the instruction set of
an abstract machine and a set of rules which define how intermediate code is
to be represented as bytecode. The approach allowed separating details of the
low-level data and code representation from the set of instructions and their se-
mantics. We were therefore able to perform, at the abstract machine description
level, transformations which affect both the bytecode format and the generated
emulator without sacrificing efficiency.

We have applied our emulator compiler to a description of the abstract ma-
chine underlying a production, high-quality, hand-written emulator. The auto-
matically generated emulator is as efficient as the original one. By using a slicer
at the level of the abstract machine definition, we were able to reduce automati-
cally its instruction set, producing a smaller, dedicated, but otherwise completely

A Generator of Efficient Abstract Machine Implementations 35

functional, emulator. By changing the definition of the code corresponding to the
instructions we were able to produce automatically emulators with substantial
internal implementation differences, but still correct and efficient.

We expect to use the emulator compiler to also perform extensive exper-
imentation with variations of abstract machine instruction sets and bytecode
representations. We are already applying it in order to generate ad-hoc emula-
tors for specific cases, such as those often found in pervasive computing. We are
also experimenting with the combination of the emulator minimization with our
automatic dead code elimination, slicing, and partial evaluation, in part at the
level of the emulator and ancillary machinery and quite fully at the level of LP

(Ciao/Prolog, in our case) in order to generate high-quality, small executables.
There is also a strong connection with [19]: the fundamental pieces of the C

code generation performed there and the code definitions for instructions in LA

are intimately related, and we have reached a single abstract machine definition
in the Ciao system which is used both to generate bytecode emulators and to
compile to C code. Also, as in [19], we are using compile-time information (such
as type, mode, and determinism information), to generate better LA code (e.g.,
generating specialized instructions or removing unnecessary instructions).

We also plan to redefine and refine the initial instruction set using information
from execution profiling in order to merge frequently contiguous instructions,
specialize them with respect to some frequently used argument value, etc. These
variations have been explored in [20] for a fixed set of benchmarks, but emulators
were hand-coded, somewhat limiting the per-application use of this approach.

References

1. Diaz, D., Codognet, P.: Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming 2001 (2001)

2. Van Roy, P.: Can Logic Programming Execute as Fast as Imperative Programming?
PhD thesis, Univ. of California Berkeley (1990) Report No. UCB/CSD 90/600.

3. Santos-Costa, V.: Optimising Bytecode Emulation for Prolog. In: International
Conference on Principles and Practice of Declarative Programming (PPDP’99).
Volume 1702 of LNCS., Springer-Verlag (1999) 261–277

4. Demoen, B., Nguyen, P.L.: So Many WAM Variations, So Little Time. In: Com-
putational Logic 2000, Springer Verlag (2000) 1240–1254

5. Van Roy, P.: 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming 19/20 (1994) 385–441

6. Hannan, J.: Staging Transformations for Abstract Machines. In: Partial Evalua-
tion and Semantics-Based Program Manipulation (PEPM), ACM SigPlan Notices
(1991)

7. Jørring, U., Scherlis, W.: Compilers and staging transformations. In: Thirteenth
ACM POPL. (1986) 86–96

8. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

9. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls 2 (1971) 45–50

10. Warren, D.: An Abstract Prolog Instruction Set. Technical Report 309, SRI Inter-
national (1983)

11. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press
(1991)

36 J.F. Morales et al.

12. Ferreira, M., Damas, L.: Multiple Specialization of WAM Code. In: Practical
Aspects of Declarative Languages. Number 1551 in LNCS, Springer (1999)

13. Van Roy, P., Despain, A.: High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine (1992) 54–68

14. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages 3 (1995) 121–189

15. Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In Danvy,
O., Glück, R., Thiemann, P., eds.: Partial Evaluation. Dagstuhl Castle, Germany,
February 1996, Springer LNCS 1110 (1996) 409–429

16. Weiser, M., ed.: Information and Software Technology: Special Issue on Program
Slicing. Volume 40. Elsevier (1999)

17. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla,
G.: The Ciao Prolog System. Reference Manual (v1.8). Technical Re-
port CLIP4/2002.1, School of Computer Science, UPM (2002) Available at
http://clip.dia.fi.upm.es/Software/Ciao/.

18. Puebla, G., Hermenegildo, M.: Abstract Specialization and its Applications. In:
Proc. of PEPM’03, ACM Press (2003) 29–43 Invited talk.

19. Morales, J., Carro, M., Hermenegildo, M.: Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In: Intnl. Symposium
on Practical Aspects of Declarative Languages. Number 3507 in LNCS, Springer
(2004) 86–103

20. Nässén, H., Carlsson, M., Sagonas, K.: Instruction Merging and Specialization in
the SICStus Prolog Virtual Machine. In: Proceedings of the 3rd ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming,
ACM Press (2001) 49–60

On the Relation Between Answer Set and SAT
Procedures

(or, Between CMODELS and SMODELS)

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova,
viale Francesco Causa, 13 — 16145 Genova, Italy

{enrico, marco}@dist.unige.it

Abstract. Answer Set Programming (ASP) is a declarative paradigm for solv-
ing search problems. State-of-the-art systems for ASP include SMODELS, DLV,
CMODELS, and ASSAT.

In this paper, our goal is to study the computational properties of such systems
both from a theoretical and an experimental point of view. From the theoretical
point of view, we start our analysis with CMODELS and SMODELS. We show that
though these two systems are apparently different, they are equivalent on a sig-
nificant class of programs, called tight. By equivalent, we mean that they explore
search trees with the same branching nodes, (assuming, of course, a same branch-
ing heuristic). Given our result and that the CMODELS search engine is based on
the Davis Logemann Loveland procedure (DLL) for propositional satisfiability
(SAT), we are able to establish that many of the properties holding for DLL also
hold for CMODELS and thus for SMODELS. On the other hand, we also show that
there exist classes of non-tight programs which are exponentially hard for CMOD-
ELS, but “easy” for SMODELS. We also discuss how our results extend to other
systems.

From the experimental point of view, we analyze which combinations of rea-
soning strategies work best on which problems. In particular, we extended CMOD-
ELS in order to obtain a unique platform with a variety of reasoning strategies,
and conducted an extensive experimental analysis on “small” randomly generated
and on “large” non randomly generated programs. Considering these programs,
our results show that the reasoning strategies that work best on the small prob-
lems are completely different from the ones that are best on the large ones. These
results point out, e.g., that we can hardly expect to develop one solver with the
best performances on all the categories of problems. As a consequence, (i) de-
velopers should focus on specific classes of benchmarks, and (ii) benchmarking
should take into account whether solvers have been designed for specific classes
of programs.

1 Introduction

Answer Set Programming (ASP) is a declarative paradigm for solving search problems.
State-of-the-art systems for ASP include SMODELS, DLV, CMODELS, and ASSAT.1 Our

1 See http://www.tcs.hut.fi/Software/smodels, http://www.dbai.
tuwien.ac.at/proj/dlv, http://assat.cs.ust.hk, http://www.cs.
utexas.edu/users/tag/cmodels.html, respectively.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 E. Giunchiglia and M. Maratea

goal is to study the computational properties of such systems both from a theoretical
and an experimental point of view.

From the theoretical point of view, we start our analysis with CMODELS and SMOD-
ELS. Given a program Π , while SMODELS (and also DLV) is a native procedure which
directly operate on Π , CMODELS (and ASSAT) computes a set of clauses correspond-
ing to the Clark’s completion of Π , and then invoke a propositional satisfiability (SAT)
solver based on Davis Logemann Loveland procedure (DLL). We show that though
CMODELS and SMODELS are apparently different, they are equivalent on a significant
class of programs, called tight. By equivalent, we mean that they explore search trees
with the same branching nodes, (assuming, of course, a same branching heuristic).
Given our equivalence result and that CMODELS search engine is based on DLL, we
are able to establish that many of the properties holding for DLL also hold for CMOD-
ELS and thus, when considering tight programs, also for SMODELS. For instance we
show that:

1. There exist classes of tight formulas which are exponentially hard both for CMOD-
ELS and SMODELS.

2. There exist classes of non tight programs which are exponentially hard for CMOD-
ELS but very easy (i.e., solved without search) by SMODELS.

3. In SMODELS, deciding the “best” literal to branch on, is both NP-hard and co-NP
hard and in PSPACE for tight programs.

These are just a few of the many results (i) that are already known for DLL, (ii) that can
be easily shown to hold for CMODELS, and (iii) that –thanks to our equivalence result–
can be easily shown to hold also for SMODELS.

From the experimental point of view, we analyze which combinations of reasoning
strategies work best on which problems. In particular,

– we extended CMODELS in order to obtain a unique platform with various “look-
ahead” strategies (used while descending the search tree); “look-back” strategies
(used for recovering from a failure in the search tree); and “heuristic” (used for
selecting the next literal to branch on), and

– we considered various combinations of strategies, and conducted an extensive ex-
perimental analysis, on a wide variety of tight and non tight programs.

Our experimental results show that:

1. On “small” (i.e., with a few hundreds variables), randomly generated problems,
look-ahead solvers (featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back –essentially backtracking– and a heuristic based on the
information gleaned during the look-ahead phase) are best.

2. On “large” (i.e., with tens of thousands variables) problems,“look-back” solvers
(featuring a simple but efficient look-ahead –essentially unit-propagation with 2
literal watching–, a rather sophisticated look-back based on “learning” and a con-
stant time heuristic based on the information gleaned during the look-back phase),
are best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead (resp. look-back)
solver does not lead to better performances if the resulting solver is run on the small
(resp. large) problems that we considered.

On the Relation Between Answer Set and SAT Procedures 39

Using the terminology in [1], our comparison is “fair” because all the reasoning strate-
gies are realized on a common platform (thus, our experimental evaluation is not bi-
ased by the differences due to the quality of the implementation) and is “significant”
because our solver implements current state-of-the-art look-ahead/look-back strategies
and heuristics.

As discussed in more details in the conclusions, our experimental results have some
important consequences both for developers and also for people interested in bench-
marking ASP systems. For instance, our results say that we can hardly expect to develop
one solver with the best performances on all the categories of problems. As a conse-
quence, (i) developers should focus on specific classes of benchmarks (e.g., on ran-
domly generated programs), and (ii) benchmarking should take into account whether
solvers have been designed for specific classes of programs: indeed, it hardly makes
sense to run a solver designed for random (resp. large, real-world) programs on large,
real-world (resp. random) programs.

The paper is structured as follows. In Section 2 we give the basic definitions. Sec-
tions 3 and 4 are devoted to the definition of the algorithms of CMODELS and SMODELS

respectively, and that are used in our formal analysis of their computational properties
(done in Section 5). Section 6 is dedicated to the experimental analysis of different
look-ahead/look-back strategies and heuristics. We end the paper in Section 7 with the
conclusions.

2 Basic Definitions

Let P be a set of atoms. If p is a an atom, p is the negation of p, and p is p. We will
also use the logical symbols⊥ and� (standing for FALSE and TRUE respectively), and
assume that ⊥ = � and � = ⊥. Atoms, their negations, and the symbols ⊥, � form
the set of literals. If S is a set of literals, we define S = {l : l ∈ S}.

A rule is an expression of the form

p0 ← p1, . . . , pm, pm+1, . . . , pn (1)

where p0 ∈ P ∪{⊥}, and {p1, . . . , pn} ⊆ P (0 ≤ m ≤ n). If r is a rule (1), head(r) =
p0 is the head of r, and body(r) = {p1, . . . , pm, pm+1, . . . , pn} is the body of r. A
(logic) program is a finite set of rules.

Consider a program Π , and let X be a set of atoms. In order to give the definition
of an answer set we consider first the special case in which the body of each rule in Π
contains only atoms (i.e., for each rule (1) in Π , m = n). Under these assumptions, we
say that

– X is closed under Π if for every rule (1) in Π , p0 ∈ X whenever {p1, . . . , pm} ⊆
X , and that

– X is an answer set for Π if X is the smallest set closed under Π .

Now we consider the case in which Π is an arbitrary program. The reduct ΠX of
Π relative to X is the set of rules

p0 ← p1, . . . , pm

40 E. Giunchiglia and M. Maratea

for all rules (1) in Π such that X ∩ {pm+1, . . . , pn} = ∅. X is an answer set for Π if
X is an answer set for ΠX .

In the following, we say that a program Π is tight if there exists a function λ from
atoms to ordinals such that, for every rule (1) in Π whose head is not⊥, λ(p0) > λ(pi)
for each i = 1, . . . ,m.

3 CMODELS

CMODELS reduces the problem of answer set computation to the satisfiability prob-
lem of propositional formulas via Clark’s completion, and uses a SAT solver as search
engine. Formally, a clause is a finite set of literals different from ⊥,�, and a (proposi-
tional) formula is a finite set of clauses. An assignment is a set of literals. An assignment
S satisfies a formula Γ if S is consistent and for each clause C in Γ , C ∩ S �= ∅. If S
satisfies Γ then we also say that S is a model of Γ and that Γ is satisfiable.

There are various versions of CMODELS (see the web page of CMODELS). Here we
consider the one proposed in [2] (called ASP-SAT in that paper), and it is represented
in Figure 1, in which

– Π is the input program; Γ is a set of clauses; S is an assignment; p and l are an
atom and a literal respectively.

– lp2sat(Π) is the set of clauses –corresponding to the Clark’s completion of Π–
formally defined below.

– s-assign(l, Γ) returns the formula obtained from Γ by (i) deleting the clauses C ∈
Γ with l ∈ C, and (ii) deleting l from the other clauses in Γ .

– test(S,Π) returns TRUE if S ∩ P is an answer set of Π , and FALSE otherwise.
– ChooseLiteral(S) returns a literal not assigned by S. We say that a literal l is

assigned by an assignment S if {l, l} ∩ S �= ∅. For simplicity, we assume that
ChooseLiteral(S) returns the first –according to a fixed total order ρ on P ∪ P–
literal in P ∪ P which is unassigned by S.

We assume that parameters are passed to a procedure by value, as in [3].

function CMODELS(Π) return DLL-REC(lp2sat(Π),∅,Π);

function DLL-REC(Γ ,S,Π)
1 〈Γ, S〉 := unit-propagate(Γ, S);
2 if (∅ ∈ Γ) return FALSE;
3 if (Γ = ∅) return test(S,Π);
4 l := ChooseLiteral(S);
5 return DLL-REC(s-assign(l, Γ)), S ∪ {l}, Π) or
6 DLL-REC(s-assign(l, Γ)), S ∪ {l}, Π);

function unit-propagate(Γ ,S)
7 if ({l} ∈ Γ) return unit-propagate(s-assign(l, Γ), S ∪ {l});
8 return 〈Γ, S〉;

Fig. 1. The algorithm of CMODELS

On the Relation Between Answer Set and SAT Procedures 41

CMODELS(Π) simply invokes DLL-REC(lp2sat(Π),∅,Π). It is easy to see that DLL-
REC(Γ ,S,Π) is a variation of the standard DLL procedure. In particular, at line 3, instead
of just returning TRUE as in the standard DLL (meaning that the input set of clauses
is satisfiable), it invokes test(S,Π) (see [2] for more details): such a modification is
needed only if the input program Π is non tight. Indeed, if Π is tight we are guaranteed
that any model of lp2sat(Π) corresponds to an answer set of Π [4], and thus SAT
solvers can be used as black-box (as it is the case for some versions of CMODELS).

In order to precisely define lp2sat(Π) we need the following definitions. If p0 is an
atom, the translation of Π relative to p0, denoted with lp2sat(Π, p0), consists of

1. for each rule r ∈ Π of the form (1) and whose head is p0, the clauses:

{p0, nr},
{nr, p1, . . . , pm, pm+1, . . . , pn},

{nr, p1}, . . . , {nr, pm}, {nr, pm+1}, . . . , {nr, pn},

where nr is a newly introduced atom, and
2. the clause {p0, nr1 , . . . , nrq} where nr1 , . . . , nrq (q ≥ 0) are the new symbols

introduced in the previous step.

The translation of Π relative to ⊥, denoted with lp2sat(Π,⊥), consists of a clause

{p1, . . . , pm, pm+1, . . . , pn},

one for each rule in Π of the form (1) with head⊥. Finally, the translation of Π , denoted
with lp2sat(Π), is ∪p∈P∪{⊥}lp2sat(Π, p).

Proposition 1. Let CMODELS be the procedure in Figure 1. For each program Π ,
CMODELS(Π) returns TRUE if Π has an answer set, and FALSE otherwise.

A few remarks are in order:

1. As we said, there are various versions of CMODELS. However, if the input program
Π is tight, all the versions are equivalent at the algorithmic level. In other words,
the presentation of CMODELS in Figure 1 can be considered as representative for
all the various versions of CMODELS, in the case of tight programs.

2. Figure 1 is indeed a simple presentation of CMODELS. CMODELS incorporates,
e.g., a pre-processing for the simplification of the input program. Analogously,
DLL-REC is based on the standard simple recursive presentation of DLL: actual
SAT solvers (including the ones used by CMODELS) feature far more sophisticated
look-ahead/look-back strategies and heuristics.

3. Given a program Π , its translation lp2sat(Π) to SAT is exactly the one used by
CMODELS (see [5]).

Considering other ASP systems, ASSAT also computes a set Γ of clauses corresponding
to the Clark’s completion of the input program Π , and then invokes a SAT solver on
Γ . Assuming that Γ is computed as lp2sat(Π), ASSAT and CMODELS have different
behavior only if Π is non tight.2

2 Unfortunately, for ASSAT the way a program Π is converted into a set of clauses is not specified
(see [6]).

42 E. Giunchiglia and M. Maratea

4 SMODELS

Given a program Π , SMODELS searches for answer sets by extending an assignment S
till either S becomes inconsistent (in which case backtracking occurs) or each atom is
assigned by S (in which case S ∩ P is an answer set). A simple, recursive presentation
of SMODELS is given in Figure 2, where

– Π is a program; S is an assignment; p is an atom; r is a rule; and l is a literal.
– p-elim(S,Π) returns the program obtained from Π by eliminating the rules r ∈ Π

such that for some literal l ∈ S, l ∈ body(r). For simplicity, when S is a singleton
{l}, we write p-elim(l, Π) for p-elim({l}, Π).

function SMODELS(Π) return SMODELS-REC(Π , {
});

function SMODELS-REC(Π ,S)
1 〈Π,S〉 := expand(Π,S);
2 if ({l, l} ⊆ S) return FALSE;
3 if ({p : p ∈ P, {p, p} ∩ S = ∅} = P) return TRUE;
4 p := ChooseLiteral(S);
5 return SMODELS-REC(p-elim(p,Π)), S ∪ {p}) or
6 SMODELS-REC(p-elim(p, Π)), S ∪ {p});

function expand(Π ,S)
7 S′ := S;
8 S := AtLeast(Π,S);
9 Π := p-elim(S, Π);

10 S := S ∪ {p : p ∈ P, p ∈ AtMost(Π∅, S)};
11 Π := p-elim(S, Π);
12 if (S = S′) return expand(Π ,S);
13 return 〈Π, S〉;

function AtLeast(Π ,S)
14 if (r ∈ Π and body(r) ⊆ S and head(r) ∈ S)

return AtLeast(p-elim(head(r), Π), S ∪ {head(r)});
15 if ({p, p} ∩ S = ∅ and ∃r ∈ Π : head(r) = p)

return AtLeast(p-elim(p, Π), S ∪ {p});
16 if (r ∈ Π and head(r) ∈ S and body(r) ⊆ S and ∃r′ ∈ Π, r′ = r : head(r′) = head(r))

return AtLeast(p-elim(body(r), Π), S ∪ body(r));
17 if (r ∈ Π and head(r) ∈ S and body(r) \ S = {l})

return AtLeast(p-elim(l, Π)), S ∪ {l});
18 return S;

function AtMost(Π ,S)
19 if (r ∈ Π and body(r) ⊆ S and head(r) ∈ S)

return AtMost(Π,S ∪ {head(r)});
20 return S;

Fig. 2. The algorithm of SMODELS

On the Relation Between Answer Set and SAT Procedures 43

– ChooseLiteral(S) is the same function used by CMODELS at line 4 in Figure 1.
Thus, our presentation of CMODELS and SMODELS incorporates the assumption
that the two systems use the same heuristic.

The computation of SMODELS-REC(Π,S) proceeds as follows (in the following,
we say that a set of atoms X extends an assignment S if S ∩ P ⊆ X and S ∩X = ∅):

– Line 1: The program Π is simplified and the assignment S is extended by the
routine expand(Π,S), explained below.

– Line 2: if S is inconsistent, no answer set extendingS exists, and FALSE is returned,
– Line 3: if each atom p ∈ P is assigned, then (i) S ∩P is an answer set of the initial

program, and (ii) TRUE is returned.
– Lines 4-6: if none of the above applies, an atom p is selected (line 4), an answer set

extending S ∪ {p} (line 5) or S ∪ {p} (line 6) is searched.

expand(Π,S) extends the assignment S generated so far by recursively invoking
AtLeast (line 8) and then AtMost (line 10) till it is no longer possible to extend S
(lines 12- 13). AtLeast encodes the following facts:

– Line 14: if there exists a rule r whose body is a subset of S, then every answer set
extending S includes the head of r.

– Line 15: if an unassigned atom p is not the head of any rule, then every answer set
extending S does not include p.

– Line 16: if there is only one rule with head p, and p ∈ S, then each answer set
extending S, also extends S ∪ body(r).

– Line 17: if there is a rule with head p and whose body contains only one literal l
which is not in S, then if p is in S, then every answer set extending S also extends
S ∪ {l}.

When no further simplification is possible, (i) the set S is returned by AtLeast(Π,S)
(line 18); (ii) the program Π is simplified accordingly (line 9); and (iii) AtMost is in-
voked with Π∅ –the reduct of Π relative to the empty set– and S as arguments (line 10).
AtMost incrementally adds to (the local copy of) S the heads of the rules in Π∅ whose
body is a subset of S (line 19). If S′ is the set returned by AtMost(Π∅, S) (i.e., if S′ is
the set returned at line 20), if an atom p does not belong to S′ then p can be safely added
to the current assignment S (line 10) (see [7] for more details). To get an intuition of
why this is the case, assume for simplicity that the head of each rule in Π is not ⊥:

1. Π∅ has a unique answer set, and
2. any answer set of Π which extends S has to be a subset of S union the answer set

of Π∅.

Proposition 2. Let SMODELS be the procedure in Figure 2. For each program Π ,
SMODELS(Π) returns TRUE if Π has an answer set, and FALSE otherwise.

The above presentation of SMODELS is a recursive reformulation of the descrip-
tion of SMODELS provided in [7], pag. 17. As for CMODELS, the actual implementa-
tion of SMODELS features more complex look-ahead/look-back strategies and heuristic.
SMODELS has been extended with clause learning in [8], and SMODELS-CC is the name
given to the resulting system.

44 E. Giunchiglia and M. Maratea

5 Relating CMODELS and SMODELS

Consider a program Π . Our goal is to prove that the computations of CMODELS and
SMODELS are tightly related if Π is tight, and that this is not necessarily the case oth-
erwise. To this end, we will compare the search trees of CMODELS and SMODELS on
Π , i.e., the search trees of SMODELS-REC(Π, {�}) and DLL-REC(lp2sat(Π), ∅, Π)
respectively. In doing this, the first problem is that the translation lp2sat introduces
additional atoms not in P . In the following we assume that both SMODELS-REC and
DLL-REC operate in the signature of the input program and formula respectively. How-
ever, we still assume that ChooseLiteral(S) returns the first literal in P ∪ P which is
unassigned by S: notice that once all the atoms in P are assigned, also the atoms intro-
duced by lp2sat will be assigned by unit-propagate in DLL-REC.

Given this, one possibility for achieving our goal would be to consider the search
trees corresponding to the assignments generated by the two procedures, and try to
prove that they are the same. However, this is not the case:

– lp2sat introduces additional atoms not in P and also these atoms get assigned, and
– The order followed by expand and unit-propagate to assign literals may differ.

However, if we do not take into account the above differences, we have that the two
procedures generate the “same” search tree. In order to formally state this result we
introduce the following definitions.

We say that a set of literals S is a branching node of SMODELS(Π) (resp. of
CMODELS(Π)) if there is a call to SMODELS-REC(Π ′, S) (resp. DLL-REC(Γ ′, S,Π)),
following the invocation of SMODELS(Π) (resp. CMODELS(Π)). If proc is
SMODELS(Π) or CMODELS(Π), we define

Branches(proc) = {S ∩ (P ∪ P) : S is a branching node of proc}.

Finally, we say that SMODELS(Π) and CMODELS(Π) are equivalent if

Branches(SMODELS(Π)) = Branches(CMODELS(Π)).

Theorem 3. Let CMODELS and SMODELS be the procedures in Figures 1 and 2 respec-
tively. For each tight program Π , CMODELS(Π) and SMODELS(Π) are equivalent.

The idea underlying the proof is that the atoms in P assigned by expand in
SMODELS-REC correspond exactly to those assigned by unit-propagate in DLL-REC,
and vice-versa. Indeed, for such result to hold, it is essential that lp2sat() is defined as
in Section 3.

Theorem 3 states a strong relation between SMODELS and CMODELS, and, ulti-
mately, between SMODELS and DLL: to a certain extent, SMODELS() and DLL(lp2sat())
are the same procedure on tight programs. Further, the results hold independently from
the specific heuristic used by SMODELS-REC and DLL-REC, as long as they are guaran-
teed to return the same literal at every point of the two search trees. Because of this, sim-
ilar results would hold if we enhance SMODELS-REC and DLL-REC with more powerful
look-ahead techniques based on expand and unit-propagate respectively. For instance,
SMODELS has been enhanced with the following check, performed before each branch:

On the Relation Between Answer Set and SAT Procedures 45

for every unassigned literal l in the program, check whether assigning l would “fail”,
i.e., if expand(p-elim(l, Π), S∪{l}) returns (as second argument) an inconsistent set of
literals. If this is the case, we can safely assign l before branching. However, if l fails,
then also branching on l would fail, and the tree generated by SMODELS-REC extended
with such “failed literal” strategy corresponds to the tree generated by SMODELS-REC

with a specific heuristic. Using the same heuristic in DLL-REC (i.e., using a similar
“failed literal” strategy based on unit-propagate) would lead to an equivalent search
tree.

The established correspondence between CMODELS and SMODELS gives us the pos-
sibility to derive lower/upper bounds and average case results for CMODELS and SMOD-
ELS. Here there are a few.

First, observe that the search tree explored by CMODELS and SMODELS when run on
a program Π , critically depends on the specific heuristic used, i.e., in our terminology
and with reference to Figures 1 and 2, by the fixed total ordering ρ on the set P ∪
P used by ChooseLiteral(S). In order to highlight the dependency from ρ, we now
write Branchesρ(SMODELS(Π)) (resp. Branchesρ(CMODELS(Π))) to indicate the set
of branching nodes of SMODELS (resp. CMODELS) when run on a programΠ , assuming
that ρ is the total order on the set P ∪ P used by ChooseLiteral(S). We are now ready
to define the complexity of SMODELS on a program Π as the smallest number in

{|Branchesρ(SMODELS(Π))| : ρ is a total order on P ∪ P}.

Analogously, the complexity of CMODELS on a program Π is the smallest number in

{|Branchesρ(CMODELS(Π))| : ρ is a total order on P ∪ P}.

Intuitively, the complexity of SMODELS (resp. CMODELS) onΠ is the minimum number
of branching nodes that SMODELS (resp. CMODELS) has to explore for solving Π .

Consider the formula PHPm
n (n ≥ 0,m ≥ 0) consisting of the clauses

{pi,1, pi,2, . . . , pi,n} (i ≤ m),
{pi,k, pj,k} (i, j ≤ m, k ≤ n, i �= j).

The formulas PHPm
n are from [9] and encode the pigeonhole principle. If n < m,

PHPm
n are unsatisfiable and it is well known that any procedure based on resolution

(like DLL) has an exponential behavior. Here we state a similar result for CMODELS and
SMODELS. First, if C is a clause {l1, . . . , ll} (l ≥ 0) we define sat2tlp(C) to be the rule
⊥ ← l1, . . . , ll. Then, if Γ is a formula, the translation of Γ , denoted with sat2tlp(Γ),
is ∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p← p′, p′ ← p}, where, for each atom p ∈ P , p′ is a new
atom associated to p. For each n, sat2tlp(PHPn

n−1) is tight and has no answer sets.

Corollary 4. The complexity of SMODELS and CMODELS on sat2tlp(PHPn
n−1) is ex-

ponential in n.

The above result can be easily proved for CMODELS starting from [9]. For SMOD-
ELS, it relies on the fact that sat2tlp(PHPn

n−1) is tight, and thus on such programs
SMODELS and CMODELS are equivalent. The pigeonhole formulas give us the op-
portunity to define a class of formulas which are exponentially hard for CMODELS

but easy for SMODELS. For each formula Γ , define sat2nlp(Γ) to be the program
∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p← p}.

46 E. Giunchiglia and M. Maratea

Corollary 5. The complexity of SMODELS and CMODELS on sat2nlp(PHPn
n−1) is 0

and exponential in n respectively.

In this case, sat2nlp(PHPn
n−1) is non tight, and SMODELS can determine the non exis-

tence of answer sets without branching mainly thanks to the procedure AtMost.3 To see
why this is the case, notice that, if Π = sat2nlp(PHPn

n−1), then

– AtLeast(Π, {�}) returns {�},
– Π∅ consists of the rules

⊥ ←; ⊥ ← pi,k, pj,k (i, j ≤ n, k ≤ n−1, i �= j); pi,k ← pi,k (i ≤ n, k ≤ n−1)

and thus AtMost(Π∅, {�}) returns {⊥,�}.
– At line 10 in Figure 2, the set S is set to S′ = P ∪ {�}, thus causing one more

recursive call to expand.
– If Π ′ = p-assign(S′, Π), AtLeast(Π ′, S′) returns the set S′ ∪ {⊥} = P ∪ {⊥,�},

and this is also the set returned by expand.
– At line 2 in Figure 2, SMODELS returns FALSE, without performing any branch.

Indeed, the above results can be easily generalized to any formulaΓ which is known
to be exponentially hard for DLL: sat2tlp(Γ) will be exponentially hard for both SMOD-
ELS and CMODELS, while sat2nlp(Γ) will be exponentially hard for CMODELS but easy
for SMODELS. We mention one more of such results, because it involves a class of pro-
grams that have been frequently used in the literature as a benchmark for ASP systems.

Define a formula Γ to be a k-cnf if each clause in Γ consists of k literals. The
random family of k-cnf formulas is a k-cnf whose clauses have been randomly selected
with uniform distribution among all the clauses C of k literals and such that, for each
two distinct literals l and l′ in C, l �= l′.

Corollary 6. Consider a random k-cnf formula Γ with n atoms and m clauses. With
probability tending to one asn tends to infinity, the complexity of SMODELS and CMOD-
ELS on sat2tlp(Γ) is exponential in n if the density d = m/n is d ≥ 0.7× 2k.

As in the case of Corollary 4, this result is easy to show for CMODELS starting from [10],
and then it follows for SMODELS from Theorem 3. Programs corresponding to random
k-cnf formulas have been used, e.g., in [11,12,8]. Also notice that since the results
in [9] and [10] hold for any proof system based on resolution, enhancing SMODELS and
CMODELS with “learning” look-back strategies does not lower the exponential com-
plexity of the procedures. Thus, the above corollaries also hold for SMODELS-CC, and
all the different versions of CMODELS. (assuming that CMODELS use a procedure based
on DLL as search engine, as it is indeed the case in practice).

Other results that have been proven for DLL can now easily be shown to hold also
for SMODELS. Define a literal l as optimal for a program Π if there exists a minimal
search tree of SMODELS(Π) whose root is labeled with l. The following result echoes
the one in [13] for DLL.

3 In the real implementation of CMODELS, rules like p ← p will be removed during the pre-
processing, and thus the implementation of CMODELS concludes that sat2nlp(PHP n

n−1) does
not have answer sets without a single branch. However, instead of p ← p, we could have con-
sidered, e.g., the two rules p ← p′, p′ ← p, (where p′ is a newly introduced atom associated
to p) and the result in the corollary would still hold.

On the Relation Between Answer Set and SAT Procedures 47

Corollary 7. In SMODELS, deciding the optimal literal to branch on, is both NP-hard
and co-NP hard, and in PSPACE for tight programs.

There are many other results in the SAT literature studying the proof-complexity
of DLL and/or resolution that are applicable also to SMODELS and CMODELS. See,
e.g., [14] for a study on the average complexity of coloring randomly generated graphs
with DLL, and [15], which derives exponential lower bounds on the running time of
DLL on random 3-SAT formulas also for densities significantly below the satisfiability
threshold d ≈ 4.23. The first result applies also to SMODELS and CMODELS when run
on a program Π being the standard tight formulation of a graph coloring problem:4

lp2sat(Π) corresponds to the SAT formulation considered in [14]. Analogously for the
second result.

6 On the Relation Between AS and SAT Solvers

Given the results established in the previous Section, we can expect that the combi-
nations of reasoning strategies that work best in SAT, should also work best in ASP,
at least when considering tight programs. We show that this is indeed the case, also on
non tight programs. We now report about an extensive experimental comparison that we
have conducted on a wide variety of programs, and using the combinations of reason-
ing strategies that, along the years, proved to be more effective in SAT. Indeed, current
state-of-the-art SAT solvers can be divided in two main categories:

– “look-ahead” solvers, featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back (essentially backtracking) and a heuristic based on the
information gleaned during the look-ahead phase. These solvers are best for dealing
with “small but relatively difficult” instances, typically random k-cnf formulas. A
solver in this category is SATZ [16].

– “look-back” solvers, featuring a simple but efficient look-ahead (essentially unit-
propagation with 2 literal watching), a rather sophisticated look-back based on “1-
UIP learning” and a constant time heuristic based on the information gleaned during
the look-back phase. These solvers are best for dealing with “large but relatively
easy” instances, typically encoding real-world problems. A solver in this category
is ZCHAFF [17].

The terminology “small but relatively difficult” and “large but relatively easy” refer to
the number of variables and are used to convey the basic intuitions about the instances.
To get a more precise idea, consider that in the SAT2003 competition, instances in
the random and industrial categories had, on average, 442 and 42703 atoms respec-
tively [18]. Given this, the reasoning strategies that we considered are:

– Look-ahead: fast unit-propagation based on 2 literal watching (denoted with “u”);
and unit-propagation+failed literal (denoted with “f”).

– Look-back: basic backtracking (denoted with “b”); and backtracking+1-UIP learn-
ing from [17] (denoted with “l”).

4 See, e.g., the formulation in http://www.tcs.hut.fi/∼ini/papers/
niemela-iclp04-tutorial.ps.gz.

48 E. Giunchiglia and M. Maratea

– Heuristic: VSIDS from [17] (denoted with “v”); unit (given an unassigned atom
p, while doing failed literal on p we count the number u(p) of unit-propagation
caused, and then we select the atom with maximum 1024u(p)×u(p)+u(p)+u(p).
This heuristic is denoted with “u”).

The above search strategies and heuristics are not novel: they have been already
presented and implemented in the literature. For example, failed literal is already incor-
porated in SMODELS, and the heuristic of SMODELS-CC is similar to VSIDS. However,
here, for the first time, all these techniques are implemented, combined and analyzed in
a common platform.

We considered 4 combinations of reasoning strategies: ulv, flv, flu and fbu, where
the first, second and third letter denote the look-ahead, look-back and heuristic respec-
tively, used in the combination. ulv is a standard look-back, “ZCHAFF”-like, solver,
similar to SMODELS-CC and CMODELS2. fbu is a look-ahead, “SATZ”-like, solver. flv
and flu have both a powerful look-ahead and look-back but different heuristic. As we
already anticipated, we can expect that ulv (resp. fbu) has good performances on “large
but relatively easy” (resp. “small but relatively difficult”) programs. By comparing flv
with ulv (resp. flu with fbu) we will see under which conditions a more powerful look-
ahead (resp. look-back) leads to better performances. Also notice that the 4 combina-
tions of reasoning strategies that we consider, are the only meaningful. Indeed, the “v”
heuristic requires learning, while the “u” heuristic requires that failed literal is enabled.

All the tests were run on a Pentium IV PC, with 2.8GHz processor, 1024MB RAM,
running Linux. The timeout has been set to 600 seconds of CPU time for random prob-
lems, and to 3600 seconds for real-world problems. In order to have our results not
biased by the differences due to the quality of the implementation, we implemented
all the reasoning strategies in CMODELS ver. 2 [2]. CMODELS ver. 2, besides being the
solver that we knew best, had the following features:

– Its front-end is LPARSE [7], a widely used grounder for logic programs.
– Its back-end solver already incorporates lazy data structures for fast unit-

propagation as well as some state-of-the-art strategies and heuristics evaluated in
the paper; and

– Can be also run on non-tight programs.

There is no other publicly available AS system having the above features, and that we
know of. In particular, SMODELS does not contain lazy data structures, and adding them
to SMODELS would basically boil down to re-implement the entire solver. Though our
analysis has been conducted using CMODELS ver. 2, thanks to the equivalence result
established in Theorem 3, analogous results are to be expected for any system based on
SMODELS and implementing the techniques that we consider.

Table 1 shows the results on “small” randomly generated programs (lines 1-3, 10-
12), and “large” non random programs (lines 4-6, 7-9, 13-15). More in details,

1. Benchmarks (1-3) are tight programs being the translation of randomly generated
3-SAT instances with a ratio of clauses to atoms as in the column “PB”. They have
been used in [11,12,8].

2. Benchmarks (4-6) and (7-9) are tight programs encoding blocks world planning
problems and 4-colorability graph problems, respectively. These benchmarks are

On the Relation Between Answer Set and SAT Procedures 49

Table 1. Performances on tight (1-9)and non-tight (10-15) problems. For each row, the best result
is in bold, and the results within a factor of 2 from the best, are underlined.

PB #VAR ulv flv flu fbu

1 4 300 0.41 0.52 0.85 0.66
2 4.5 300 TIME TIME 81.92 22.53
3 5 300 448.21 485.36 8.27 4.72

4 bw*d9 9956 1.02 5.84 2.69 2.75
5 bw*e9 12260 0.98 1.91 1.92 1.93
6 bw*e10 13482 1.29 7.51 5.03 4.95

7 p1000 14955 0.48 37.86 15.41 15.23
8 p3000 44961 8.86 369.27 144.12 142.83
9 p6000 89951 99.50 TIME 583.55 578.98

10 4 300 265.43 218.48 41.97 31.05
11 5 300 TIME TIME 136.67 99.75
12 6 300 TIME TIME 107.34 65.83

13 np60c 10742 2.83 1611.32 44.12 44.12
14 np70c 14632 4.69 TIME 97.44 97.89
15 np80c 19122 6.91 TIME 192.29 196.32

publicly available at http://www.tcs.hut.fi/Software/smodels/
tests/.

3. Benchmarks (10-12) are non tight programs, randomly generated according to the
methodology proposed in [19]. As before, the number in the column “PB” is the
ratio of clauses to atoms.

4. Benchmarks (13-15) are non tight programs encoding Hamiltonian Circuit prob-
lems on complete graphs. The encoding is from [20].

For the randomly generated programs, for each ratio, we generated 10 instances and
show the median results. In each row, #VAR represents the number of atoms in the
instance.

The first observation is that we get the results that we expected, (except for the
results on the first row, where the positive results of ulv are due to the relative simplic-
ity of the problems): on “small but relatively difficult” programs fbu is best, while on
“large but relatively easy” programs ulv is best. The second observation is that adding
failed literal (resp. learning) to ulv (resp. fbu) does not improve performances when
considering the “large” (resp. “small”) programs.

We also considered other classes of programs, both non large and non randomly
generated. For these programs, the situation of which reasoning strategy is best is less
clear, and (as it can be expected) it varies from class to class.

7 Conclusions

We studied the relation existing between SMODELS and CMODELS, and, ultimately,
between AS and SAT solvers. From a theoretical point of view, we proved that the two

50 E. Giunchiglia and M. Maratea

systems have the same behavior on tight programs. Given that CMODELS is based on
DLL, our equivalence results allow to easily derive many other interesting properties
about the two procedures, and in particular about SMODELS. We also conducted an
extensive experimental analysis showing that the combination of reasoning strategies
that are best in SAT, are also best in ASP on randomly generated or on large real world
problems.

We believe that our paper is particularly important for ASP researchers who are
interested in formally establishing the computational behavior of systems, but also for
developers and, more in general, for people involved in benchmarking ASP systems. In
particular, for developers, our theoretical results should foster the design of systems in-
corporating reasoning strategies that provably allow to easily solve problems otherwise
exponential: in SAT, this led to the development, e.g., of ZAP [21]. Further our experi-
mental results suggest that developers (in order to advance the state-of-the-art) should
focus either on randomly generated problems (and thus develop a look-ahead solver) or
on real-world problems (and thus develop a look-back solver): this already happened in
SAT. Finally, the results in this paper are particularly important also to people interested
in benchmarking systems (see the recent ASPARAGUS initiative [22]). Our theoretical
results tell us, e.g., that there exist classes of programs on which SMODELS and/or
CMODELS (but also ASSAT) are bound to be exponential. Our conclusive experimen-
tal analysis points out that it hardly makes sense to run a solver like SMODELS-CC [8]
on randomly generated programs, and, vice-versa, that it hardly makes sense to use
CMODELS with SATZ [16] as SAT solver on large problems coming from real-world
applications.

Finally, we believe that this paper is a major step in the direction of closing the gap
between SAT and ASP, as advocated by Miroslaw Truszczyński in his invited talk at the
last NMR workshop in Whistler, Canada.5

Acknowledgments

We would like to thank Nicola Leone, Vladimir Lifschitz and Mirek Truszczynski for
discussions related to the subject of this paper. This work has been partially supported
by MIUR.

References

1. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search heuristics
and optimization techniques in propositional satisfiability. In Proc. IJCAR, 2001.

2. E. Giunchiglia, M. Maratea, and Y. Lierler. SAT-based answer set programming. In Proc.
AAAI, 2004.

3. T. H. Cormen, C. E. Leiserson,R. L. Rivest and C. Stein Introduction to Algorithms. MIT
Press, 2001.

4. François Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

5 Slides available at http://cs.engr.uky.edu/∼mirek/stuff/nmr-inv.pdf.

On the Relation Between Answer Set and SAT Procedures 51

5. Yu. Babovich and V. Lifschitz. Computing Answer Sets Using Program Completion. Avail-
able at http://www.cs.utexas.edu/users/tag/cmodels/cmodels-1.ps,
2003.

6. F. Lin and Y. Zhao ASSAT: Computing answer sets of a logic program by SAT solvers. In
Proc. AAAI, 2002.

7. P. Simons. Extending and implementing the stable model semantics. PhD Thesis, 2000.
8. Jeffrey Ward and John S. Schlipf. Answer set programming with clause learning. In Proc.

LPNMR, 2004.
9. Haken. The intractability of resolution. TCS, 39:297-308, 1985.

10. V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–768,
1988.

11. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for ASP. In Proc. IJCAI,
2001.

12. P. Simons, I. Niemelä, and S. Timo. Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1–2):181–234, 2002.

13. Paolo Liberatore. On the complexity of choosing the branching literal in DPLL. Artificial
Intelligence, 116(1-2):315–326, 2000.

14. Rémi Monasson. On the analysis of backtrack procedures for the coloring of random graphs.
In Complex Networks, Lecture Notes in Physics, pages 232–251. Springer, 2004.

15. D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof complexity. In Proc.
STOC, pages 337–346, 2001.

16. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems.
In Proc. IJCAI, 1997.

17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. In Proc. DAC, 2001.

18. D. Le Berre and L. Simon. The essentials of the SAT’03 competition. In Proc. SAT, 2003.
19. Fangzhen Lin and Yuting Zhao. ASP phase transition: A study on randomly generated pro-

grams. In Proc. ICLP, 2003.
20. I. Niemelä Logic programs with stable model semantics as a constraint programming

paradigm. In Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.
21. H. Dixon, M. Ginsberg, E. Luks, and A. Parkes. Generalizing Boolean satisfiability II: The-

ory. JAIR, 22:481–534, 2004.
22. P. Borchert, C. Anger, T. Schaub, and M. Truszczynski. Towards systematic benchmarking

in answer set programming: The dagstuhl initiative. In Proc. LPNMR, 2004.

Towards an Integration of Answer Set
and Constraint Solving

S. Baselice1, P.A. Bonatti1, and M. Gelfond2

1 Università di Napoli Federico II
2 Texas Tech University

Abstract. Answer set programming (ASP for short) is a declarative problem
solving framework that has been recently attracting the attention of researchers
for its expressiveness and for its well-engineered and optimized implementations.
Still, state-of-the-art answer set solvers have huge memory requirements, because
the ground instantiation of the input program must be computed before the actual
reasoning starts. This prevents ASP to be effective on several classes of prob-
lems. In this paper we integrate answer set generation and constraint solving to
reduce the memory requirements for a class of multi-sorted logic programs with
cardinality constraints. We prove some theoretical results, introduce a provably
sound and complete algorithm, and report experimental results showing that our
approach can solve problem instances with significantly larger domains.

1 Introduction

Nonmonotonic reasoning was initially introduced for commonsense reasoning and rea-
soning about action and change [15,19,16]. It was later applied to model a variety of
combinatorial problems, where nonmonotonic logics proved to be powerful representa-
tion formalisms [5]. One of the most promising results in this respect, is a declarative
problem solving framework called answer set programming (ASP for short), with well-
engineered and optimized implementations [14,17,7]. The most popular ASP languages
are basically extensions of function-free logic programs (a.k.a. Datalog) where negation
as failure is interpreted according to the stable model semantics [9,10]. From the expres-
siveness point of view, ASP languages are able to encode efficiently and uniformly all
search problems within the first two levels of the polynomial hierarchy [13,3]. More-
over, answer set solvers are proving to be competitive with other reasoners on several
benchmarks [20], and are being used successfully as planners and plan verifiers in the
RCS/USA Advisor system [1,18], a decision support system for NASA shuttle con-
trollers (http://krlab.cs.ttu.edu/∼marcy/RCS/).

Still, state-of-the-art answer set solvers have a major limitation: they use huge
amounts of memory, because the ground instantiation of the input program must be
computed before the actual reasoning starts. This problem is mitigated to some extent
through intelligent grounding techniques that partially evaluate program rules when
possible, thereby deleting some rule instances that are surely not applicable. However,
this technique is not effective enough on some classes of programs, including several
programs for reasoning about actions and change.

In this paper we integrate answer set generation and constraint solving to reduce the
memory requirements for a class of multi-sorted logic programs with cardinality con-

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards an Integration of Answer Set and Constraint Solving 53

straints [20] whose signature can be partitioned into: (i) a set of so-called regular predi-
cates over domains whose size can be handled by a standard answer set solver; (ii) a set
of constrained predicates that can be handled by a constraint solver in a way that does
not require grounding (so larger domains can be allowed here); (iii) a set of predicates—
called mixed predicates—that create a “bridge” between the above two partitions.

Then reasoning can be implemented by having an answer set solver interact with a
constraint solver. A critical aspect is the form that the definitions of mixed predicates
may take. If they were completely general, then that part of the program would be just
as hard to reason with as unrestricted programs because mixed predicates may range
over arbitrary domains. Accordingly, the framework introduced in this paper supports
restricted definitions for mixed predicates, that can be either functions from “regular” to
“large” domains (strong semantics) or slightly weaker mappings where each combina-
tion of “regular” values must be associated to at least one vector of values from “large”
domains (weak semantics).

An integration of ASP and constraint solving has been proposed in [8]. The archi-
tecture adopted there starts with a complete grounding phase, just like standard ASP
systems, therefore it does not address the problems we are tackling here. In [8] rules
are completely general, so there seems to be no opportunity for avoiding a complete
grounding.

In the following, we study the relationships between strong and weak semantics,
and introduce an algorithm for computing the strong semantics efficiently under the
simplifying assumption that mixed predicates do not occur in the scope of negation.
Moreover, we report experimental results providing preliminary evidence that our ap-
proach can solve problem instances with significantly larger domains. In this first paper
we focus only on the comparison with a standard answer set programming approach.

The paper is organized as follows. The next section is devoted to preliminaries.
Then, in Section 3, we introduce the class of programs we deal with, and prove some of
their theoretical properties. The algorithm for reasoning on these programs is described
and proved to be correct and complete in Section 4. Section 6 reports the experiments
and Section 7 concludes the paper with a final discussion and possible directions for
future work.

2 Preliminaries

We adopt a sorted first-order language based on a given signature Σ. Letters x, y, z
range over variables, a, b, c range over constant symbols, letters f , g, h over function
symbols, and letters p, q, r over predicate symbols. Let S be a finite set of sorts.1 and
assume a sort specification is given, that is, a function sort mapping:

– each constant c onto a set sort(c) ⊆ S;
– each variable x onto a (single) sort sort(x) ∈ S;

1 Sorts are just atomic entities, basically type names. Sometimes, we shall abuse terminology
and say that a sort s contains a term t when the sort of t according to the function sort defined
below is s.

54 S. Baselice, P.A. Bonatti, and M. Gelfond

– each n-ary function symbol f onto a tuple sort(f) = 〈S1, . . . , Sn+1〉 ∈ Sn+1;
– each n-ary predicate symbol p onto a tuple sort(p) = 〈S1, . . . , Sn〉 ∈ Sn.

Note that sorts may overlap because constants may be associated to two or more sorts.

Example 1. A sort steps, modelling plan steps, may contain the integer constants in
the interval [0, 10], while a sort time, modelling time points, may contain the integer
constants in [0, 600000].

All the other terms have a unique sort. Intuitively, in sort(f), Si is the sort of the i-th
argument of f (1 ≤ i ≤ n) and Sn+1 is the sort of the output. Similarly, in sort(p), Si

is the sort of the i-th argument of predicate p (1 ≤ i ≤ n).
Terms and atoms are defined accordingly. Each variable x with sort(x) = S and

each constant c such that S ∈ sort(c) are terms of sort S. Each expression f(t1, . . . , tn)
such that sort(f) = 〈S1, . . . , Sn, S〉 and each ti is a term of sort Si is a term of sort S.
Nothing else is a term. We write t : s to state that term t has sort s.

All expressions p(t1, . . . , tn) such that sort(p) = 〈S1, . . . , Sn〉 and each ti is a term
of sort Si are atoms. Literals are either atoms (positive literals) or expressions of the
form notA where A is an atom (negative literals).

A variable substitution over {x1, . . . , xn} is a function mapping each variable xi

onto a term of sort(xi). The notions of instance and ground instantiation are defined as
usual from the above notion of (typed) substitution. The ground instantiation of a set of
expressions E will be denoted by ground(E).

Given a logic program P consisting of normal rules A ← L and constraints (or
denials)← L, where L is a collection of literals, the stable models of P [9] are defined
as follows.

We first need a notion of program reduct P I , where I is a set of ground atoms. The
reduct P I is obtained from ground(P) by removing:

– all the rules and constraints with a literal notB in their body, s.t. B ∈ I;
– all negative literals from the remaining rules and constraints.

Note that P I is a set of Horn clauses. Therefore, if P I is consistent, then it has a unique
minimal Herbrand model, that will be denoted by lm(P I).

Now I is a stable model of P if and only if I = lm(P I).
The most popular answer set frameworks are based on the above notions of program

and semantics, and extensions thereof. Answer sets are identified with stable models;
each answer set represents a possible solution to the given problem instance (programs
may have no stable models, as well as multiple stable models). One important extension
consists of cardinality constraints [20], that in their simplest version are expressions of
the form

l{A}u

where A is an atom, l and u are integers. Roughly speaking, l{A}u forces the answer
sets of the given program to contain a number n of instances of A, such that l ≤ n ≤ u
(u may be omitted in case there is no upper bound). The complete framework is more
general. It allows for cardinality constraints in rule bodies and weight constraints, that
generalize cardinality constraints and allow programmers to express preferences and

Towards an Integration of Answer Set and Constraint Solving 55

optimization criteria on problem solutions. For a general and precise definition of car-
dinality and weight constraints, the reader is referred to [20]. They are fully supported
by SMODELS.

3 Constrained Programs

The sorts of constrained programs are partitioned into regular and constrained sorts.
Intuitively, regular sorts are small enough to be handled by standard answer set solvers,
while constrained sorts are large enough to require reasoners that do not instantiate the
corresponding variables.

Variables and constants are called regular or constrained according to their sorts.
A function f is regular (resp. constrained) if all the sorts in sort(f) are regular (resp.
constrained). Function f is mixed if sort(f) comprises both regular and constrained
sorts. Predicate symbols are classified in a similar way.

In this paper we assume that the output sort of all functions is a constrained sort.
The reason is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signature Σ is partitioned into Σr, Σc and
Σm, where r, c and m stand for regular, constrained and mixed respectively.

The atoms over Σr, Σc, and Σm are referred to as r-atoms, c-atoms, and m-atoms
respectively. Similarly for literals. The parameters of an m-atom whose sorts are con-
strained (regular) will be often referred to as c-parameters (r-parameters).

We assume that c-predicates have a predefined interpretation, and that the equality
predicate is a c-predicate. The intended interpretation of c-predicates will be represented
by a set of ground atoms Mc (the set of all true ground c-atoms).

Regular predicates can be defined with normal programs, as in standard ASP. The
definitions of mixed predicates are restricted, instead. Let an atom be free if its argu-
ments are all pairwise distinct variables. For all free atoms A we write A(xr,xc) to
state that the r-variables (resp. c-variables) of A are those in xr (resp. xc). We denote
with A(a, b) the instance of A such that xr is replaced by a and xc with b.

In this paper we deal with two possible semantics of mixed predicates.2 Under the
weak semantics, for all free mixed atoms A(xr,xc) there is an implicit axiom3

∀xr∃xc.A(xr,xc) , (1)

that can be expressed by including into the program a cardinality constraint
1{A(a,xc)} for each sequence of ground arguments a of the appropriate type and
length.4

Under the strong semantics, for all free mixed atoms A(xr,xc) there is an implicit
axiom

∀xr∃!xc.A(xr,xc) , (2)

2 A more general approach is described in the final discussion.
3 Note that by our definition of term, quantification is implicitly restricted to well-typed terms.
4 In SMODELS this can be done with a single rule having a cardinality constraint in the head. A

similar remark applies to the encoding of (2). We refer the reader to [20] for more details.

56 S. Baselice, P.A. Bonatti, and M. Gelfond

that can be encoded in a similar way with a suitable set of cardinality constraints like
1{A(a,xc)}1.

Moreover, constrained programs may contain constraints that relate all kinds of
predicates (regular, constrained, and mixed).

Definition 1.

1. A regular rule (r-rule) is a rule of the form A ← B or← B where A is an r-atom
and B is a collection of r-literals.

2. A (proper) constraint is a rule of the form← B where B is a collection of arbitrary
literals, including at least one nonregular literal.

3. A constrained program, P , is the union of a set of regular rules, R(P), and a set of
constraints, C(P).

Example 2. In our running example (a planning and scheduling problem) we have two
regular sorts: step (representing plan steps) and action . We write step : 0..10 to state
that the constants c with step ∈ sort(c) are those in the integer interval [0, 10]. Analo-
gously, we may write action : a1, . . . , an to enumerate all possible actions. The regular
signature Σr contains only one relation o over action×step. Intuitively, o(A,S) means
that action A occurs at step S. The regular part R(P) contains n rules that force at least
one action to be executed at each step. For i = 1, . . . , n:

o(ai, S)← not o(a1, S), . . . , not o(ai−1, S), not o(ai+1, S), . . . , not o(an, S).

Moreover, R(P) contains a denial that forbids concurrent actions:

← o(A,S1), o(A,S2), not eq(S1, S2).

eq(X,X).

The constraint signature Σc comprises the sort time : 0..600000 with the standard
arithmetic functions: +,−, | | etc., and relations: >,≥, etc.

The mixed signature Σm comprises a relation time(S, T) associating each plan step
S to at least one time point T under the weak semantics (exactly one under the strong
semantics).

The following constraints C(P) ensure that time is assigned to steps monotonically
and that each step is associated to exactly one time point (the latter is needed only under
the weak semantics);

← time(S1, T 1), time(S2, T 2), S1 < S2, T 1 ≥ T 2.

← time(S, T 1), time(S, T 2), T 1 �= T 2.

Moreover, one can specify a minimal duration for each action, e.g., 3 time units for a1

← o(a1, S1), time(S1, T 1), o(A2, S2), time(S2, T2), |T2− T 1| < 3 . (3)

Formally, the semantics of constrained programs is a specialization of the stable
model semantics for logic programs with weight constraints, taking into account the
intended interpretation Mc of Σc and the implicit semantics of mixed predicates.

Towards an Integration of Answer Set and Constraint Solving 57

Definition 2. A weak answer set of a constrained program P is a set of ground atoms
M = Mr ∪Mm satisfying the following conditions:

AS1 Mr is a set of r-atoms and Mm is a set of m-atoms;
AS2 R(P)Mr is consistent and Mr = lm(R(P)Mr);
AS3 each constraint (← L) ∈ ground(C(P)) contains a literal Li false in M ∪Mc;
AS4 for each free m-atom A(xr,xc), and for each vector of r-constants a of the ap-

propriate length, Mm contains at least one instance of A(a,xc).

A strong answer set of a constrained program P is a weak answer set M = Mr ∪
Mm satisfying the following additional condition:

AS5 for each free m-atom A(xr,xc), and for each vector of r-constants a of the ap-
propriate length, Mm contains at most one instance of A(a,xc).

Note that AS2 basically states that Mr is a stable model of the regular part of P .

Remark 1. We might have alternatively specified the semantics of a constrained pro-
gram P as the stable models of the program obtained by extending P with Mc and with
the cardinality constraints that encode (1) and (2). Then AS1-AS5 might have been
proved as theorems. This requires an extension of the splitting set theorem [12]. The
details have been worked out in [2] and are omitted here due to space limitations.

Theorem 1 (Strong vs. Weak semantics). Let P be a constrained program in which
m-atoms never occur in the scope of negation. For each weak answer set M of P , there
exists a strong answer set M ′ of P such that M ′ ⊆M and M \M ′ is a set of m-atoms.

Proof. Let M be a weak answer set of P . Then M = Mr ∪Mm is a set of ground
atoms and M satisfies the properties AS1, AS2, AS3, AS4.

Let K11(M), . . ., K1m1(M), . . ., Kn1(M), . . ., Knmn(M) be the subsets of M
s.t., for each 1 ≤ i ≤ n and 1 ≤ j ≤ mi, Kij(M) = {Ai(a

j
i , b) : Ai(a

j
i , b) ∈

Mm is a ground instance of Ai(a
j
i ,xc)}. Note that no Kij(M) is empty because M

satisfies the property AS4.
If there exists at least one couple (i, j) (1 ≤ i ≤ n and 1 ≤ j ≤ mi) s.t. the

set Kij(M) has cardinality greater than one, then let ma ∈ M be a ground m-atom
belonging to Kij(M). Note that, by construction, ma must belong to only one of the
sets K11(M), . . ., K1m1(M), . . ., Kn1(M), . . ., Knmn(M). Because ma is not the
unique element of Kij(M), then M ′ = M \ {ma} must satisfy the property AS4.

Moreover M ′ satisfies the property AS3. In fact, for each constraint (← L) ∈
ground(C(P)), either ma doesn’t occur in L, and then the value of each Li is the
same in M ′ than M , or ma occurs in L and so (← L) contains one more literal false
in M ′ than M because negative m-literals don’t occur in L.

Moreover M ′ and M have the same r-literals and then M ′ satisfies also the proper-
ties AS1 and AS2. Then M ′ is a weak answer set of P as M is.

By iterating the same process starting from M ′ we can obtain a set M∗ s.t. all sets
K11(M∗), . . ., K1m1(M∗), . . ., Kn1(M∗), . . ., Knmn(M∗) contain only one element.
By analogy withthe proof for M ′, M∗ is still a weak answer set of P and M \M∗ is
a set of m-atoms by construction. Note that M∗ is a strong answer set of P because it
satisfies also property AS5 by construction.

58 S. Baselice, P.A. Bonatti, and M. Gelfond

Note that the assumption on negative m-atoms is satisfied by our running example.

Corollary 1. Under the hypothesis of Theorem 1, the strong answer sets of P are the
minimal weak answer sets of P .

Corollary 2. Under the hypothesis of Theorem 1, the strong and weak skeptical seman-
tics of P (i.e., the intersection of the strong, resp. weak answer sets) coincide.

In the light of the above corollaries, we shall focus on the strong semantics, which is a
way of computing a “representative” class of answer sets.

4 Computing Strong Answer Sets

In this section we introduce a nondeterministic algorithm for computing strong answer
sets. The actual implementation used in the experiments is derived from the nondeter-
ministic algorithm by adding backtracking. The algorithm we introduce can be applied
to constrained programs where mixed predicates have only positive occurrences. More
general approaches require further work (cf. Section 7).

Our algorithm computes strong kernels, that is, compact representations of a (po-
tentially large) set of strong answer sets.

Definition 3.

1. A strong completion of a set of ground atoms I is a set I ∪ J such that:
– J is a set of ground m-atoms;
– for each free m-atom A(xr,xc) and each vector of r-constants a of the appro-

priate length, I ∪ J contains exactly one instance of A(a,xc).
2. A strong kernel of a constrained program P is a set of ground atoms K which has

at least one strong completion, and such that all the strong completions of K are
strong answer sets of P .

In general, K is the intersection of exponentially many strong answer sets of P . Since
all strong completions of K are strong answer sets, it is trivial to generate any partic-
ular answer set including K , given K itself (for each mixed atom A(a, xc) having no
instance in K , add one instance choosing xc arbitrarily).

The algorithm that integrates answer set solving and constraint solving is formu-
lated in terms of a generic answer set solver and a generic constraint solver. The for-
mer, called ASGEN, takes as input a regular program P and a set of ground literals
S. Intuitively, ASGEN is an incremental solver, and S is the previous partial attempt
at constructing an answer set for P . The solver may either fail to further extend S to
an answer set of P , or it may return a refined attempt S′. So we assume that ASGEN

enjoys of following formal properties:

1. ASGEN(P, S) returns either NULL or a consistent set S′ of ground literals.
2. If ASGEN(P, S) returns a set S′ then S ⊂ S′.
3. If ASGEN(P, S) returns a complete set S′ then S′ is an answer set of P ; here,

by complete we mean that each ground literal occurs in S′, either positively or
negatively.

Towards an Integration of Answer Set and Constraint Solving 59

4. ASGEN is nondeterministically complete, that is for each answer set S of P there
exists an integer n ≥ 0 s.t. at least one computation of ASGENn(P, ∅) returns S.

As usually, when we write ASGENn(P, ∅) we mean:

ASGEN0(P, ∅) = ∅
ASGENn(P, ∅) = ASGEN(P, ASGENn−1(P, ∅)).

Note that this formulation is compatible with virtually any strategy for interleaving the
answer set construction and constraint solving. Note also that as a special case, ASGEN

may immediately return complete sets (upon success) like SMODELS.
The only requirements on the constraint solver are that it should be sound and non-

deterministically complete for each set of c-clauses χ. In other words, all substitutions σ
returned by the constraint solver should be solutions of χ (i.e., χσ should be satisfiable),
and for each solution σ of χ, there should be a computation that returns σ.

The constraint solver is applied to a partially evaluated version of the constraints.
To specify the partial evaluation procedure we need some auxiliary notation.

For each constraint c =← B, we denote by reg(c), con(c), and mix(c), respectively,
the collections of regular, constrained and mixed literals belonging to B.

We say that a substitution γ is r-grounding iff γ replaces each r-variable with a
ground r-term and leaves the other variables unchanged.

Definition 4. The partial r-evaluation of a set of constraints C w.r.t. a set of ground
literals S, denoted by PE(C, S), is defined by

PE(C, S) = {(← mix(c), con(c))γ | c ∈ C, γ r-grounding, and reg(c)γ ⊆ S} .

Note that the members of PE(C, S) contain no r-atoms and no r-variables, because the
former have been simplified away and the latter have been replaced with r-constants.
Note also that in this process some constraints may disappear, as reg(c) may match no
literals in S. Intuitively, S is to be provided by the answer set solver.

The constraint processing algorithm applies to a normalized version of PE(C, S),
denoted by PEn(C, S), satisfying the following properties:

N1 No m-literal occurring in PEn(C, S) contains two or more occurrences of the same
variable;

Moreover, for all free m-atoms A(xr,xc),

N2 If both A(a,yc) and A(a, zc) occur in PEn(C, S), then yc = zc.
N3 If both A(a,yc) and A(b, zc) occur in PEn(C, S) and a �= b, then yc and zc have

no variables in common.

Note that condition N2 is the opposite of the classic standardization apart approach. N2
and N3 together require the vectors of c-variables to be in one-to-one correspondence
with the vectors of regular arguments. Condition N1 can be fulfilled by introducing
equations xi = xj in con(c) when needed. Condition N2 and N3 can be fulfilled by
variable renaming.

60 S. Baselice, P.A. Bonatti, and M. Gelfond

Algorithm 1
CASPSOLVER (P)
1: Inputs: P = R(P) ∪ C(P): a constrained program with no negative m-literals.
2: Outputs: either a strong kernel of P or FAIL
3: begin
4: S := ∅;
5: loop
6: S := ASGEN(R(P), S);
7: if S = NULL then
8: FAIL;
9: else

10: C := PEn(C(P), S);
11: if

∧
c∈C ¬con(c) has no solution then

12: FAIL;
13: else if S is complete then
14: choose a solution σ of

∧
c∈C ¬con(c);

15: Let M(C) be the set of mixed literals in C;
16: return S ∪ M(C)σ;
17: end

Example 3. In the running example, whenever S contains the pair o(a1, 1), o(ai, 2),
constraint (3) yields the partially evaluated constraint

← time(1, T 1), time(2, T 2), |T 2− T 1| < 3.

After normalization, and assuming this particular constraint has not been modified, for
all the atoms time(1, x) occurring in PEn(C(P), S), we have x = T 1. In this way—
roughly speaking—any solution to the constraints is forced to fulfil the property (2) of
strong semantics.

We are now ready to prove soundness and completeness for Algorithm 1.

Theorem 2. If a non-failed run of Algorithm 1 returns a set of literals K , then K is a
strong kernel of P .

Proof. Let K be a set returned by a non-failed run of Algorithm 1.
In order to prove that K is a strong kernel of P , we have to prove that for each set

of m-atoms J , if K∪J is a strong completion of K then K∪J is a strong answer set of
P . That is, we need to prove that K ∪ J satisfies the properties AS1–AS5, when K ∪ J
satisfies the properties of the definition 3 of strong completion.

If a run r of the algorithm returns a set K then K = S∪M(C)σ where S is a stable
model of R(P) and M(C)σ is a set of ground m-atoms. Then K∪J = S∪M(C)σ∪J
satisfies properties AS1 and AS2.

Suppose that K ∪ J does not satisfy property AS3. Then there exists a constraint
c = (← L) ∈ ground(C(P)) s.t. all literals Li in L are true in K ∪ J . There must
be a constraint c′ ∈ C(P) and a ground substitution γ = γrγc of c′ s.t. c = c′γ
and γr is r-grounding. Since L is true in K ∪ J , it holds that reg(c) ⊆ S and hence

Towards an Integration of Answer Set and Constraint Solving 61

← (mix(c′))γr, (con(c′))γr ∈ PE(C(P), S). Now, since con(c) = (con(c′))γ =
(con(c′))γrγc and mix(c) = (mix(c′))γ = (mix(c′))γrγc are true in K ∪ J , then
γc is not a solution of ¬(con(c′))γr . Then the solution σ of

∧
c∈C ¬con(c) choosen

at the step 14 of the algorithm cannot be factorized in σ = σ1γcσ2 (where σ1 and σ2
are possibly empty substitutions). Consequently, mix(c) = (mix(c′))γrγc cannot be
added to K at the step 16, while (mix(c′))γrσ is added to K . Moreover, by hypotheses,
K ∪J is a strong completion of K , therefore (mix(c′))γrγc cannot belong to J , either.
So mix(c) is false in K ∪ J and this is a contradiction. This proves that K ∪ J satisfies
property AS3.

By the definition of strong completion, K ∪ J satisfies also the properties AS4 and
AS5. Consequently K ∪ J is a strong answer set of P .

Theorem 3. For each strong answer set M of P there exists a run of Algorithm 1 that
returns a strong kernel K ⊆M .

Proof. By Definition 2, if M is a strong answer set of P then M = Mr ∪Mm and
M satisfies properties AS1–AS5. According to properties AS1 and AS2, Mr is a stable
model of R(P). Then, by the properties of ASGen, there exists a set of runs, RUN , of
the algorithm that execute with success the test at the step 13 on the set Mr. For each
r ∈ RUN , if r doesn’t return FAIL, then r returns a set K = Mr ∪M(C)σ that, by
the soundness of the algorithm, is a strong kernel of P .

Now, we must only prove that there always exists an r ∈ RUN that at the step
14 chooses a solution σ of

∧
c∈C ¬con(c) s.t. K ⊆ M . From M = Mr ∪Mm and

K = Mr ∪M(C)σ follows that K ⊆M iff M(C)σ ⊆Mm.
So we need to prove that there must always exists a solution σ s.t. M(C)σ ⊆Mm.

If such a substitution σ exists then σ can be nondeterministically computed by a run
r ∈ RUN .

Let Mcfree be a set of all r-grounded m-atoms of C(P). Then Mm = Mcfreeγ
where γ is a ground substitution of Mcfree such that for each A(a,x′) and A(a,x′′),
A(a,x′)γ = A(a,x′′)γ. It immediately follows that M(C) ⊆Mcfree. We can always
factorize γ in γ = σρ where σ is a ground substitution of M(C). Then M(C)σ ⊆
Mcfreeσρ, but it must also be proved that σ is a solution of

∧
c∈C ¬con(c).

Suppose that σ is not a solution of
∧

c∈C ¬con(c). Then there exists a constraint
c ∈ C s.t. (con(c))σ is true in M . Then mix(c) ∈ M(C), because c ∈ C, and
mix(c)σ ∈ Mm, because M(C) ⊆ Mcfree. By construction of C, there exists a
constraint c′ ∈ ground(C(P)) s.t. reg(c′) ⊆ S and mix(c′) = (mix(c))σ and
con(c′) = (con(c))σ. This implies that the constraint c′ is not true in M because its
body is true in M , but this is a contradiction because M is a strong answer set of P .

Then there exists a solution σ of
∧

c∈C ¬con(c) s.t. M(C)σ ⊆Mm.

5 The CASP Prototype

The CASP prototype is a simplified implementation of Algorithm 1, based on the an-
swer set solver SMODELS [17]. CASP is meant to be an exploratory prototype, built
with off-the-shelf components. While this strategy accelerated prototype deployment, it

62 S. Baselice, P.A. Bonatti, and M. Gelfond

prevented us from exploiting the potential interleaving of answer set solving and con-
straint solving, supported by Algorithm 1. In this first prototype, the answer set solver
always returns a complete answer set, so the loop in Algorithm 1 makes always one
iteration.

Let P be the input program. When P has a strong answer set, CASP returns a strong
kernel for P , plus auxiliary information useful for analyzing the behavior of the system
including the number of atoms, conjunctions, disjunctions, and variables occurring in∧

c∈C ¬con(c).
CASP consists of a script CASPSCRIPT that first runs the answer set solver on

R(P). Then for each answer set S of R(P), CASPSCRIPT calls a GNU Prolog con-
straint logic program with finite domains, that implements steps 10-16 of Algorithm 1.
In case of failure (step 12), CASPSCRIPT does not always fail; if R(P) has more stable
models, CASPSCRIPT feeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the Con-
straint Logic Programming scheme introduced by Jaffar and Lassez in 1987 [11] and
is based on the CLP(FD) framework [6]. Constraints are defined on FD variables and
solved by means of arc-consistency (AC) techniques [21]. Arc consistency is not a com-
plete inference mechanism; it ensures only that all solutions (if any) are in the current
variable domains. In general, some variable assignments over the current domains are
not solutions. Therefore, a final solution generation and checking phase is needed. In
many cases, though, the domains produced by arc consistency are tight enough to speed
up significantly the computation of solutions.

6 Experimental Results

We experimented with a few variants of the constrained program illustrated in the exam-
ples. Of course, this can only be regarded as a preliminary evaluation. Still, the example
we choose is of significant interest. Programs similar to our running example have been
used in the USA Advisor project, related to NASA missions [1,18], and for protocol
verification [4]. In both cases memory requirements happened to cause problems.

We did not insist much on the performance of the answer set solver, because there
exists a rich body of literature on experimental evaluations and benchmarking of SMOD-
ELS. We focused on the performance of the constraint solver as

∧
c∈C ¬con(c) and the

number of disjunctions occurring in it grow.
The tests have been run on a Pentium(R) M processor 1.5GHz, with 1Mb cache and

512Mb core memory.
Recall that the example has two regular sorts, action and step, and one constrained

sort time. We started by encoding the planning and scheduling problem as an SMODELS

program with weight constraints [20]. In particular, the implicit semantics of mixed
predicates has been encoded with the weight constraint

1{time(S, T) : time(T)}1 : −step(S) . (4)

This constraint says that for all steps S there exists exactly one time point T satisfying
time(S, T).

Towards an Integration of Answer Set and Constraint Solving 63

Fig. 1. Test-1 results

Sort time is the interval of integers [0 − 600000]. These values are determined by
the following requirement: scheduling should cover plans at least one week long with
the granularity of seconds.

With 2 actions and 2 steps, the front-end of SMODELS (lparse), responsible of the
ground instantiation of the program and its simplification, did not terminate within 95
minutes and was killed (the main reasoning process was never reached). On the same
program (without weight constraints, which are implicit in the strong semantics) CASP
solves up to 10 steps in about 30 seconds. If the time domain is increased to 6 mil-
lion points, then lparse crashes (probably because of exceeding memory needs), while
CASP solves up to 10 steps in less than 2 minutes.

The details of the experiment with 6 million time points are given in Figure 1.
Column step represents the corresponding regular sort, the fields atoms, var, conj, and
disj, respectively, show the number of atoms, variables, conjunctions and disjunctions
of the formula

∧
c∈C ¬con(c) fed to the constraint solver. Field attempts is related to

the number of backtracks; it counts the number of stable models of the regular part fed
into the Prolog module before the first strong kernel is found. Finally, column Smodels

Fig. 2. Test-2 results

64 S. Baselice, P.A. Bonatti, and M. Gelfond

Fig. 3. Test-3 results

reports the time needed by Smodels to compute the stable models of the regular part,
and column time shows the overall time needed to produce the first strong kernel.

The results with 600, 000 time points are reported in Figure 2. In this experiment
constraints are trivial. Basically, they only assign a minimal length to each action exe-
cution, so they are always satisfiable, for all action sequences chosen by the answer set
solver, and without any backtracking.

Now, if we make constraints more difficult by posing upper bounds on the entire
plan execution (so that constraints cannot be trivially satisfied and some backtracking
is needed), we obtain the results illustrated in Figure 3. The time needed for constraint
solving significantly increases. In future work, it will be interesting to explore different
constraint solution strategies on a wider selection of examples.

7 Conclusions

Preliminary experimental results show that the integration of answer set programming
and constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated and
solved, while one of the most powerful state-of-the-art answer set solvers cannot even
reach the main reasoning phase. Our method shares with constraint logic programming
frameworks the ability of returning answers that may be compact representations of
exponentially many distinct problem solutions, each of which can be easily extracted
from the answer.

This work can be extended along several directions. First of all we are looking for
more classes of examples of practical interest to extend our experimentation. It may be
interesting to try different front-ends (such as DLV’s) and different constraint solvers.

A second line of research concerns the interplay of the two solvers. A tighter integra-
tion of answer set generation and constraint solving may anticipate inconsistency detec-
tion, thereby improving failure handling. It would be interesting to explore dependency-
directed forms of backtracking. Such a refined system should be compared through
benchmarking to planners and schedulers based on different logics and reasoning meth-

Towards an Integration of Answer Set and Constraint Solving 65

ods (for a collection of pointers to such approaches, see http://www.aaai.org/
AITopics/html/planning.html).

We mentioned that constrained programs are basically a subclass of weight con-
straint programs. It may be possible to extend the class of weight constraints supported
by our approach, e.g., by using different bounds (e.g., mixing weak and strong seman-
tics), and by dropping the requirement that for all free m-atoms A and all vector of
r-constants a, answer sets must contain at least one instance of A(a,xc). Many of
our results can be adapted under the assumption that for all distinct weight constraints
l1{A1}u1 and l2{A2}u2 in a program, A1 and A2 are not unifiable.

Moreover, it would be nice to support negative mixed literals. Unfortunately, our
approach cannot be easily adapted; the solutions we have explored so far require blind
grounding over constrained domains, which is exactly what should be avoided.

Acknowledgments. Work partially supported by the EU working group WASP (5FP),
IST-2001-37004. The last author is supported by ARDA contract.

References

1. M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The USA-Advisor: A case study in
answer set planning. In Logic Programming and Nonmonotonic Reasoning, 6th International
Conference, LPNMR 2001, volume 2173 of Lecture Notes in Computer Science, pages 439–
442. Springer, 2001.

2. S. Baselice. Integrazione di tecniche di Answer Set Programming e Constraint Solving. Tesi
di laurea, Università degli studi di Napoli Federico II, Naples, Italy, October 2004.

3. M. Cadoli, F.M. Donini, and M. Schaerf. Is intractability of nonmonotonic reasoning a real
drawback? Artificial Intelligence, 88(1-2):215–251, 1996.

4. L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in logic pro-
gramming. ACM Trans. Comput. Logic, 2(4):542–580, 2001.

5. P. Cholewiński, V. Marek, A. Mikitiuk, and M. Truszczyński. Experimenting with nonmono-
tonic reasoning. In Proceedings of the 12th International Conference on Logic Programming,
ICLP 1995, pages 267–281. MIT Press, 1995.

6. P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic Programming,
27(3):185–226, 1996.

7. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for non-
monotonic reasoning. In Logic Programming and Nonmonotonic Reasoning, 4th Inter-
national Conference, LPNMR’97, Proceedings, volume 1265 of LNCS, pages 364–375.
Springer, 1997.

8. Omar El-Khatib, Enrico Pontelli, and Tran Cao Son. Asp-prolog: A system for reasoning
about answer set programs in prolog. In Practical Aspects of Declarative Languages, 6th
International Symposium, PADL 2004, Dallas, TX, USA, June 18-19, 2004, Proceedings,
volume 3057 of Lecture Notes in Computer Science, pages 148–162. Springer, 2004.

9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of the 5th ICLP, pages 1070–1080. MIT Press, 1988.

10. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):365–386, 1991.

11. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Pro-
gramming, 19/20:503–582, May/July 1994.

66 S. Baselice, P.A. Bonatti, and M. Gelfond

12. V. Lifschitz and H. Turner. Splitting a Logic Program. In Proceedings of the 12th Inter-
national Conference on Logic Programming, Kanagawa 1995, MIT Press Series Logic Pro-
gram, pages 581–595. MIT Press, 1995.

13. V.W. Marek and J.B. Remmel. On the expressibility of stable logic programming. In Logic
Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001,
volume 2173 of LNCS, pages 107–120. Springer, 2001.

14. W. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

15. J. McCarthy. Circumscription: a form of nonmonotonic reasoning. Artificial Intelligence,
13:27–39, 1980.

16. R. C. Moore. Semantical considerations on nonmonotonic logics. Artificial Intelligence,
25:75–94, 1985.

17. I. Niemelä and P. Simons. Smodels — an implementation of the stable model and well-
founded semantics for normal lp. In Logic Programming and Nonmonotonic Reasoning, 4th
International Conference, LPNMR’97, Proceedings, volume 1265 of LNCS, pages 421–430.
Springer, 1997.

18. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog decision
support system for the Space Shuttle. In Practical Aspects of Declarative Languages, Third
International Symposium, PADL 2001, volume 1990 of Lecture Notes in Computer Science,
pages 169–183. Springer, 2001.

19. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
20. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-

mantics. Artif. Intell., 138(1-2):181–234, 2002.
21. C. Teng, P. Van Hentenryck, and Y. Deville. A generic arc-consistency algorithm and its

specializations, June 11 1992.

A Comparison of CLP(FD) and ASP Solutions
to NP-Complete Problems

Agostino Dovier1, Andrea Formisano2, and Enrico Pontelli3

1 Univ. di Udine, Dip. di Matematica e Informatica
dovier@dimi.uniud.it

2 Univ. di L’Aquila, Dip. di Informatica
formisano@di.univaq.it

3 New Mexico State University, Dept. Computer Science
epontell@cs.nmsu.edu

Abstract. This paper presents experimental comparisons between declarative
encodings of various computationally hard problems in both Answer Set Pro-
gramming (ASP) and Constraint Logic Programming (CLP) over finite domains.
The objective is to identify how the solvers in the two domains respond to dif-
ferent problems, highlighting strengths and weaknesses of their implementations
and suggesting criteria for choosing one approach versus the other. Ultimately, the
work in this paper is expected to lay the ground for transfer of concepts between
the two domains (e.g., suggesting ways to use CLP in the execution of ASP).

1 Introduction

The objective of this work is to experimentally compare the use of two distinct logic-
based paradigms in solving computationally hard problems. The two paradigms con-
sidered are Answer Set Programming (ASP) [2] and Constraint Logic Programming
over Finite Domains (CLP(FD)) [19]. The motivation for this investigation arises from
the successful use of both paradigms in dealing with various classes of combinatorial
problems, and the need to better understand their respective strengths and weaknesses.
Ultimately, we hope this work will provide indication for integration and cooperation
between the two paradigms (e.g., along the lines of [8]).

It is well-known [17,2] that, given a propositional normal logic program P , de-
ciding whether or not it admits an answer set [11] is an NP-complete problem. As
a consequence, any NP-complete problem can be encoded as a propositional normal
logic program under answer set semantics. Answer-set solvers [22] are programs de-
signed for computing the answer sets of normal logic programs; these tools can be
seen as theorem provers, or model builders, enhanced with several built-in heuristics
to guide the exploration of the solution space. Most ASP solvers rely on variations of
the Davis-Putnam-Longeman-Loveland procedure in their computations. Such solvers
are often equipped with a front-end that transforms a collection of non-propositional
normal clauses (with limited use of function symbols) in a finite set of ground instances
of such clauses. Some solvers provide also classes of optimization statements, used to
select answer sets that maximize or minimize an objective function dependent on the
content of the answer set.

An alternative framework, frequently adopted to handle NP-complete problems, is
Constraint Logic Programming over Finite Domains [13,19]. In this context, a finite

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 67–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 A. Dovier, A. Formisano, and E. Pontelli

domain of objects (typically integers) is associated to each variable in the problem spec-
ification, and the typical constraints are literals of the forms s = t, s �= t, s < t, s ≤ t,
where s and t are arithmetic expressions. Encodings of NP-complete problems and of
search strategies are very natural and declarative in this framework. Indeed, a large lit-
erature has been developed presenting applications of CLP(FD) to a variety of search
and optimization problems [19].

In this paper, we report the outcomes of preliminary experiments aimed at compar-
ing these two declarative approaches in solving combinatorial problems. We address a
set of computationally hard problems—in particular, we mostly consider decision prob-
lems known to be NP-complete. We formalize each problem, both in CLP(FD) and in
ASP, by taking advantage of the specific features available in each logical frameworks,
attempting to encode the various problems in the most declarative possible way. In par-
ticular, we adopt a constraint-and-generate strategy for the CLP code, while in ASP
we exploit the usual generate-and-test approach. Wherever possible, we make use of
solutions to these problems that have been presented and accepted in the literature.

With this work we intend to develop a bridge between these two logic-based frame-
works, in order to emphasize the strengths of each approach and to promote cross-
fertilizations. This study also complements the system benchmarking studies, that have
recently appeared for both CLP(FD) systems [10,20] and ASP solvers [1,16,14].

2 The Experimental Framework

In this paper we report on the experimentation we conducted by using one CLP(FD)
implementation and two ASP-solvers. The CLP programs have been designed for exe-
cution by SICStus Prolog 3.11.2 (using the library clpfd)—though the code is general
enough to be used on different platforms (e.g., BProlog, ECLiPSe, GNU-Prolog) with
minor syntactic adjustment [23].The ASP programs have been designed to be processed
by lparse, the grounding preprocessor adopted by both the SModels (version 2.28) and
the CModels (version 3.03) systems [22]. The CModels system makes use of a SAT
solver to compute answer sets—in our experiments we selected the default underlying
SAT solver, namely mChaff.

We focused on well-known computationally-hard problems. Among them: Graph
k-coloring (Section 3), Hamiltonian circuit (Section 4), Schur numbers (Section 5),
protein structure prediction on a 2D lattice [3] (Section 6), planning in a block world
(Section 7), and generalized Knapsack (Section 8). Observe that, while some of the
programs have been drawn from the best proposals appeared in the literature, others
are novel solutions, developed in this project (e.g., the ASP implementation of the PF
problem and the planning implementation in CLP(FD)).

In the remaining sections of this paper, we describe the solutions to the various
problems and report the results from the experiments. All the timing results, expressed
in seconds, have been obtained by measuring only the CPU usage time needed for
computing the first solution, if any—thus, we ignore the time spent in reading the input,
as well as the time spent to ground the program, in the case of the ASP solvers. We used
the runtime option to measure the time in CLP(FD), that does not account for the time
spent for garbage collection and for system calls. All tests have been performed on a

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 69

PC (P4 processor 2.8 GHz, and 512 MB RAM memory) running Linux kernel 2.6.3.
Complete codes and results (as well as encodings of other problems) are reported in [7].

3 k-Coloring

The k-coloring problem computes the coloring of a graph using k colors. The main
source of case studies adopted in our experiments is the repository of “Graph Coloring
and its Generalizations” [24], which provides a rich collection of instances, mainly
aimed at benchmarking algorithms and approaches to graph problems. Let us describe
the two formalizations of k-coloring.

CLP(FD): In this formulation, we assume that the input graph is represented by a
single fact of the form graph([1,2,3],[[1,2],[1,3],[2,3]]), where the
first argument represents the list of nodes, while the second argument is the list of edges.
This is a possible constrain-and-generate CLP(FD)-encoding of k-coloring:

coloring(K, Output) :- graph(Nodes, Edges),
create_output(Nodes, Colors, Output), domain(Colors,1, K),
different(Edges, Output), labeling([ff], Colors).

create_output([],[],[]).
create_output([N|Nodes], [C|Colors], [N-C|Output]) :-

create_output(Nodes, Colors, Output).
different([],_).
different([[A,B]|R], Output) :- member(A-CA, Output),

member(B-CB, Output), CA #\= CB, different(R, Output).

In this program, Output is intended to be a list of pairs of variables N-C where,
for each node N we introduce a color variable C in the range 1 . . .K. The predicate
different imposes disequality constraints between variables related to adjacent
nodes. We used the ff option of labeling since it offered the best results for this
problem.

ASP: Regarding the ASP encoding of k-coloring we adopt a different representation
for graphs. Each node V is described by a fact node(V). If nodes are natural numbers,
a compact interval notation is allowed (e.g., node(1..138)). Edges are described by
facts, e.g., edge(1,36). edge(2,45). edge(138,36).

A natural ASP encoding of the k-coloring problem is:

(1) col(1..k).
(2) :- edge(X,Y), col(C), color(X,C), color(Y,C).
(3) 1 {color(X,C):col(C)} 1 :- node(X).

Rule (1) states that there are k colors (k is a constant to be initialized during the
grounding stage). The ASP-constraint (2) asserts that two adjacent nodes cannot have
the same color, while (3) states that each node has exactly one color. Note that, by
using domain restricted variables, the single ASP-constraint (2) states the property
that two adjacent nodes cannot have the same color for all edges 〈X,Y 〉. The same
property is described by the predicate different in the CLP(FD) code, but in that
case a recursive definition is required. This fact shows a common situation that will
be observed again in the following sections: ASP often permits a significantly more
compact encoding of the problem w.r.t. CLP(FD).

70 A. Dovier, A. Formisano, and E. Pontelli

Table 1. Graph k-coloring (‘–’ denotes no answer in at least 30 minutes of CPU-time— ‘?’ means
that none of the three solvers gave an answer)

Instance 3-colorability 4-colorability 5-colorability
Graph V×E SModels CModels CLP(FD) SModels CModels CLP(FD) SModels CModels CLP(FD)

1-FullIns 5 282×3247 N 1.06 0.15 0.10 N – 0.23 2.90 N – 107.78 –
4-FullIns 4 690×6650 N 0.94 0.29 0.46 N 2.20 0.35 1.98 N 10.02 0.42 –
5-FullIns 4 1085×11395 N 1.72 0.47 1.26 N 4.67 0.57 3.58 N 23.79 0.70 –
3-FullIns 5 2030×33751 N 5.92 1.23 7.24 N 21.31 1.51 13.69 N – 1.96 –
4-FullIns 5 4146×77305 N 15.11 2.69 33.44 N 69.30 3.37 42.53 N 414.93 4.19 –
3-Insertions 3 56×110 N 4.28 4.16 1281.18 Y 0.03 0.04 <0.01 Y 0.04 0.04 <0.01
4-Insertions 3 79×156 N 328.25 1772.14 – Y 0.05 0.04 <0.01 Y 0.06 0.05 <0.01
2-Insertions 4 149×541 N 1.20 0.15 2.04 ? – – – Y 0.25 0.07 0.01
4-Insertions 4 475×1795 N – 1443.33 – ? – – – Y 3.402 0.32 –
DSJR500.1 500×3555 N 0.53 0.18 0.18 N 2.78 0.21 0.18 N – 0.26 0.19
DSJC500.1 500×12458 N 2.19 0.45 0.64 N 12.30 0.57 0.76 N 6328.45 6.21 46.55
DSJR500.5 500×58862 N 25.76 1.81 2.97 N 175.63 2.26 2.98 N 971.46 2.71 3.09
DSJC500.5 500×62624 N 28.29 1.92 3.15 N 376.35 2.36 3.19 N 2707.64 2.84 3.47
flat300 20 0 300×21375 N 6.39 0.68 0.63 N 86.91 0.84 0.64 N 1555.37 1.08 0.69
flat300 26 0 300×21633 N 6.45 0.70 0.65 N 131.91 0.87 0.67 N 3711.80 1.13 0.69
flat300 28 0 300×21695 N 6.51 0.70 0.65 N 34.76 0.86 0.69 N 322.99 1.02 0.67
fpsol2.i.1 496×11654 N 2.75 0.41 0.77 N 24.98 0.52 0.77 N 205.12 0.61 0.84
fpsol2.i.2 451×8691 N 1.92 0.33 0.53 N 16.66 0.40 0.54 N 279.96 0.52 0.55
fpsol2.i.3 425×8688 N 1.91 0.32 0.5 N 16.63 0.40 0.51 N 277.91 0.49 0.51
gen200 p0.9 44 200×17910 N 5.53 0.57 0.36 N 30.87 0.70 0.36 N 306.81 0.84 0.38
gen200 p0.9 55 200×17910 N 5.54 0.57 0.36 N 39.56 0.71 0.36 N 287.14 0.85 0.38
gen400 p0.9 55 400×71820 N 38.91 2.19 2.88 N 656.07 2.68 2.89 N 4892.74 3.24 2.93
gen400 p0.9 65 400×71820 N 39.02 2.16 2.88 N 275.33 2.67 2.87 N 1563.52 3.22 2.92
wap05a 905×43081 N 11.39 1.38 2.96 N 62.81 1.73 2.96 N 949.66 2.07 2.96
wap06a 947×43571 N 11.63 1.42 3.25 N 62.70 1.75 3.24 N 1326.84 2.13 3.26
wap07a 1809×103368 N 31.98 3.28 15.14 N 191.06 4.12 15.14 N 2861.64 4.99 15.19
wap08a 1870×104176 N 32.07 3.31 16.17 N 192.54 4.15 16.22 N 3604.96 5.08 16.18

Table 2. The M -N -Queens problem (‘–’ denotes no answer in 10 min. of CPU-time)

Instance Solvability for M = N − 1 Solvability for M = N Solvability for M = N + 1

N V × E SM
od

el
s

C
M

od
el

s

C
L

P(
FD

)

ug
ra

ph
s

SM
od

el
s

C
M

od
el

s

C
L

P(
FD

)

ug
ra

ph
s

SM
od

el
s

C
M

od
el

s

C
L

P(
FD

)

ug
ra

ph
s

5 25×320 N 0.06 0.07 0.01 <0.01 Y 0.06 0.07 <0.01 <0.01 Y 0.07 0.08 <0.01 <0.01
6 36×580 N 1.00 0.11 0.01 <0.01 N 63.80 198.65 1.33 0.02 Y 0.66 0.19 <0.01 0.16
7 49×952 N 341.17 0.20 0.02 0.03 Y 1.95 0.18 <0.01 0.29 Y 0.54 14.08 0.02 0.35
8 64×1456 N – 0.42 0.16 0.89 N – – – 224.11 Y 116.50 1.28 1.04 807.22
9 81×2112 N – 0.85 1.37 106.64 ? – – – – Y – – 138.85 131.27
10 100×2940 N – 3.63 14.53 – ? – – – – ? – – – –
11 121×3960 N – 10.62 148.74 – ? – – – – ? – – – –

Results: We tested the above programs on more than one hundred instances drawn
from [24]. Such instances belong to various classes of graphs which come from dif-
ferent sources in the literature. Table 1 shows an excerpt of the results we obtained
for k-coloring with k = 3, 4, 5. The columns report the time (in seconds) using the
three systems; the first column of each result indicates whether a solution exists for the
problem instance.

A particular class of graph coloring problems listed in [24] originates from encoding
a generalized form of the N -queens problem. Graphs for the M -N -queen problems are
obtained as follows. The nodes correspond to the cells of a N × N chess-board. Two
nodes u and v are connected by an (undirected) edge if a queen in the cell u attacks the

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 71

cell v. Solving the M -N -queens problem consists of determining whether such graph
is M -colorable. In the particular case where M = N , this is equivalent to finding N
independent solutions to the classical N -queens problem. Observe that, for M < N
the graph cannot be colored. We ran a number of tests on this specific class of graphs.
Table 2 lists the results obtained for N = 5, . . . , 11 and M = N − 1, N,N + 1. For
the sake of completeness, we also experimented, on these instances, using the library
ugraphs of SICStus Prolog (a library independent from the library clpfd), where
the coloring/3 predicate is provided as a built-in feature. ugraphs is slower than
CLP(FD) for small instances, however, it finds solutions in acceptable time for some
larger instances, whereas CLP(FD) times out.

4 Hamiltonian Circuit

In this section we deal with the problem of establishing whether a directed graph ad-
mits an Hamiltonian circuit. The graph representations adopted are the same as in the
previous section, with the restriction that graph nodes are 1..N (needed to correctly
use the built-in predicate circuit of SICStus Prolog).

CLP(FD): A possible CLP(FD) encoding is the following:

hc(Path) :- graph(Nodes, Edges), length(Nodes, N),
length(Path, N), domain(Path, 1, N),
make_domains(Path, 1, Edges, N),
circuit(Path), labeling([ff], Path).

make_domains([], _, _, _).
make_domains([X|Y], Node, Edges, N) :-

findall(Z, member([Node,Z], Edges), Successors),
reduce_domains(N, Successors, X),
Node1 is Node+1, make_domains(Y, Node1, Edges, N).

reduce_domains(0, _, _) :- !.
reduce_domains(N, Successors, Var) :- N>0, member(N,Successors),

!, N1 is N-1, reduce_domains(N1, Successors, Var).
reduce_domains(N, Successors, Var) :-

Var #\= N, N1 is N-1, reduce_domains(N1, Successors, Var).

We use the built-in predicate circuit, provided by clpfd in SICStus. In the
literal circuit(List), the List is a list of domain variables or integers. The
goal circuit([X1, . . . , Xn]) constrains the variables so that the set of edges 〈1, X1〉,
〈2, X2〉, . . . , 〈n,Xn〉 is an Hamiltonian circuit. The predicatemake domains restricts
the admissible values for the variable Xi to the successors of node i in the graph.

ASP: The following program for Hamiltonian circuit comes from the ASP litera-
ture [18]:

(1) 1 {hc(X,Y) : edge(X,Y)} 1 :- node(X).
(2) 1 {hc(Z,X) : edge(Z,X)} 1 :- node(X).
(3) reachable(X) :- node(X), hc(1,X).
(4) reachable(Y) :- node(X), node(Y), reachable(X), hc(X,Y).
(5) :- not reachable(X), node(X).

72 A. Dovier, A. Formisano, and E. Pontelli

Table 3. Hamiltonian circuit (‘–’ denotes no answer within 30 minutes of CPU-time)

Instance node×edges Hamiltonian?
SModels CModels CLP(FD)

hc1 200×1250 Y 2.99 37.59 0.34
hc2 200×1250 Y 2.99 1394.15 0.34
hc3 200×1250 Y 3.03 20.06 0.32
hc4 200×1250 Y 2.98 93.10 0.34
hc5 200×1250 N 1.44 0.22 0.24
hc6 200×1250 N 1.44 0.21 0.10
hc7 200×1250 N 1.44 0.20 0.25
hc8 200×1250 N 1.44 0.20 0.26

np10c 10×90 Y 0.01 0.05 0.0
np20c 20×380 Y 0.07 0.82 0.0
np30c 30×870 Y 0.26 0.27 0.01
np40c 40×1560 Y 0.91 4.38 0.02
np50c 50×2450 Y 2.59 118.18 0.03
np60c 60×3540 Y 7.38 24.81 0.05
np70c 70×4830 Y 15.68 9.47 0.07
np80c 80×6320 Y 27.79 12.55 0.11
np90c 90×8010 Y 45.66 128.25 0.15

Instance node×edges Hamiltonian?
SModels CModels CLP(FD)

2xp30 60×316 N 0.14 0.02 0.03
2xp30.1 60×318 Y 0.18 4.61 0.02
2xp30.2 60×318 Y – 2.69 5.38
2xp30.3 60×318 Y – 2.70 5.38
2xp30.4 60×318 N – – –
4xp20 80×392 N 0.24 0.04 0.04

4xp20.1 80×395 N – 1.47 0.04
4xp20.2 80×396 Y 0.37 3.32 0.03
4xp20.3 80×396 N 0.24 2.65 –

nv70a440 70×423 Y 0.28 1.33 0.05
nv70a460 70×429 Y 0.28 3.00 0.03
nv70a480 70×460 Y 0.29 1.66 0.06
nv70a500 70×473 Y 0.29 1.73 0.03
nv70a520 70×478 Y 0.29 0.36 0.05
nv70a540 70×507 Y 0.31 4.19 0.04
nv70a560 70×516 Y 0.32 0.62 0.05
nv70a580 70×540 Y 0.32 1.00 0.04

The description of the search space is given by rules (1) and (2): for each node X,
exactly one outgoing edge (X,Y) and one incoming edge (Z,X) belong to the circuit
(represented by the predicate hc). Rules (3) and (4) define the transitive closure of
the relation hc starting from node number 1. The “test” phase is expressed by the ASP-
constraint (5), which weeds out the answer sets that do not represent solutions to the
problem. Also in this case, the ASP approach permits a more compact encoding (even
if in CLP(FD) we exploited the built-ins circuit and findall).

Results: Most of the problem instances have been taken from the benchmarks used to
compare ASP-solvers [16]. Graphs hc1–hc8 are drawn from www.cs.uky.edu/ai/

benchmark-suite/hamiltonian-cycle.html . All other graphs are chosen from
assat.cs.ust.hk/Assat-2.0/hc-2.0.html. The graphs npnc are complete di-
rected graphs with n nodes and one edge 〈u, v〉 for each pair of distinct nodes. The
graphs nvvaa are randomly generated graphs, having at most v nodes and a edges.
The instances 2xp30 (resp., 4xp20) are obtained by joining 2 (resp., 4) copies of the
graph p30 (resp., p20) plus 2 (resp., 3–4) new edges. Graphs p20 and p30 are graphs
provided in the SModels’ distribution [22]. Table 3 lists the results.

5 Schur Numbers

A set S ⊆ N is sum-free if the intersection of S and the set S + S = {x + y : x ∈
S, y ∈ S} is empty. The Schur number S(P) is the largest integer n for which the
set {1, . . . , n} can be partitioned in P sum-free sets. For instance, {1, 2, 3, 4} can be
partitioned in S1 = {1, 4} and S2 = {2, 3}. Observe that the sets S1 + S1 = {2, 5, 8}
and S2 + S2 = {4, 5, 6} are sum-free. The set {1, 2, 3, 4, 5}, instead, originates at
least 3 sum-free subsets, thus, S(2) = 4. It should be noted that, so far, only 4 Schur
numbers have been computed, i.e., S(1) = 1, S(2) = 4, S(3) = 13, and S(4) = 44.
The best known bound for S(5) is 160 ≤ S(5) ≤ 315 [21]. Here, we focus on the
decision problem: is S(P) ≥ N? Namely, we look for a function B : {1, . . . , N} −→
{1, . . . , P} such that: (∀I ∈ {1, . . . , N})(∀J ∈ {I, . . . , N})(B(I) = B(J) → B(I +
J) �= B(I)).

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 73

Table 4. Schur numbers (‘–’ denotes no answer within 30 minutes of CPU-time)

Instance is Schur(P) ≥ N?
〈P, N〉 SModels CModels CLP(FD)

〈4, 43〉 Y 0.27 0.25 0.03
〈4, 44〉 Y 0.29 3.37 0.56
〈4, 45〉 N 510.01 892.54 1204.86
〈4, 46〉 N 561.80 813.73 1340.64
〈4, 47〉 N 767.80 791.37 1473.02
〈4, 48〉 N 978.84 805.69 1565.28
〈4, 49〉 N 1258.57 679.20 1698.08
〈5, 109〉 Y – 14.05 0.13
〈5, 110〉 Y – 33.29 0.14

Instance is Schur(P) ≥ N?
〈P, N〉 SModels CModels CLP(FD)

〈5, 111〉 Y – 0.53 0.16
〈5, 112〉 Y – 0.55 0.16
〈5, 113〉 Y – 0.55 0.16
〈5, 114〉 Y – 11.75 0.16
〈5, 115〉 Y – 82.48 8.63
〈5, 116〉 Y – 60.47 8.92
〈5, 117〉 Y – 762.91 9.74
〈5, 118〉 Y – 21.84 10.19
〈5, 119〉 Y – – 66.95

CLP(FD): For doing that, in CLP (FD) we introduce a list of constrained variables
List = [B1, . . . , BN] ranging on 1..P.

schur(N,P) :- length(List,N), domain(List,1,P),List=[1,2|_],
constraints(List,N), labeling([leftmost],List).

constraints(List, N) :- recursion(List,1,1,N).
recursion(_,I,_,N):- I>N, !.
recursion(List,I,J,N):- I+J>N,!,I1 is I+1,recursion(List,I1,1,N).
recursion(List,I,J,N):- I>J,!,J1 is J+1,recursion(List,I,J1,N).
recursion(List,I,J,N):- K is I+J, J1 is J+1,

nth(I,List,BI), nth(J,List,BJ), nth(K,List,BK),
(BI #= BJ) #=> (BK #\= BI), recursion(List,I,J1,N).

Each variable Bi in List can assume values in 1..P. Its value identifies the block
of the partition i belongs to. The predicate recursion states that for all I and J,
with 1≤I≤J≤N, the numbers I, J and I+J must not be all in the same block. We
set B1 = 1 and B2 = 2 to remove some simple symmetries, for a fair comparison
w.r.t. the ASP solution that uses rules (4) and (5)—see below. We have chosen the
leftmost option of labeling.

ASP: The function B mentioned above is here implemented by a predicate
inpart(X,P) representing the fact that number X is assigned to part P :

(1) number(1..n). part(1..p).
(2) 1 { inpart(X,P) : part(P) } 1 :- number(X).
(3) :- number(X;Y), part(P), X<=Y, inpart(X,P),

inpart(Y,P), inpart(X+Y,P).
(4) :- number(X),part(P;P1),inpart(X,P),P1<P,not occupied(X,P1).
(5) occupied(X,P) :- number(X;Y), part(P), Y<X, inpart(Y,P).

Rule (2) states that inpart is a function from numbers to partitions. The ASP-
constraints (3) states that, for any X and Y , the three numbers X , Y , and X + Y
cannot belong to the same partition. The declarative formalization of the problem could
be ended here. However, it is customary to add also the constraints (4) and (5), that
remove symmetries, by selecting the free partition with the lowest index.

Results: Table 4 reports the execution times we obtained. Let us observe that, unfortu-
nately, we are still far from the best known lower bound of 160 for S(5).

74 A. Dovier, A. Formisano, and E. Pontelli

6 Protein Structure Prediction

Given a sequence S = s1 · · · sn, with si ∈ {h, p}, the 2D HP-protein structure pre-
diction problem (reduced from [3]) is the problem of finding a mapping (folding) ω :
{1, . . . , n} −→ N2 such that

(∀i ∈ [1, n− 1]})next(ω(i), ω(i + 1)) and (∀i, j ∈ [1, n])(i �= j → ω(i) �= ω(j))

and minimizing the energy:∑
1 ≤ i ≤ n − 2
i + 2 ≤ j ≤ n

Pot(si, sj) · next(ω(i), ω(j))

where Pot(si, sj) ∈ {0,−1} and Pot = −1 if and only if si = sj = h. The condition
next(〈X1, Y1〉, 〈X2, Y2〉) holds between two adjacent positions of a given lattice if and
only if |X1 − X2| + |Y1 − Y2| = 1. Without loss of generality, we set ω(1) = 〈n, n〉
and ω(2) = 〈n, n+1〉, to remove some symmetries in the solution space. To remove all
symmetries, we should require, that when the sequence turns for the first time, it turns,
e.g., to the right. For the sake of simplicity we did not add this disjunctive constraint
in the code. Instead, to reduce the solution’s space in these experiments, we further add
the heuristics constraints Xi, Yi ∈ [N −

√
N,N +

√
N].

Intuitively, we look for a self-avoiding walk that maximizes the number of con-
tacts between occurrences of objects (aminoacids) of kind h (see Figure 1). Contiguous
occurrences of h in the input sequence S contribute in the same way to the energy as-
sociated to each spatial conformation and thus they are not considered in the objective
function. Note that two objects can be in contact only if they are at an odd distance
in the sequence (odd property of the lattice). This problem is a version of the protein
structure prediction problem, whose decision problem is known to be NP-complete [4].

CLP(FD): A complete CLP(FD) encoding of this problem (based on the ideas in [3])
can be found in [7]. An extension of this code (in 3D, inside a realistic lattice, and
with a more complex energy function) has been used to predict the spatial shape of real
proteins [5]. In this case the labeling parameter chosen is ff.

ASP: As far as we know, there are no ASP formulations of this problem available in the
literature. A specific instance of the problem is represented as a set of facts, describing
the sequence of aminoacids. For instance, the protein denoted by hpphpphpph (or
simply (hpp)3h using regular expressions) is described as:

7 8 9 10 11
7

8

9

10

11

�
-1

�
-1

�
-1

�

�

� �

�

� �

�

7 8 9 10 11
7

8

9

10

11

�
-1

�

�

�

� �

�

�

�

� stands for h

� stands for p

Value: -3 Value: -1

Fig. 1. Two foldings for S = hhphhhph (n = 8). The leftmost one is minimal.

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 75

prot(1,h). prot(2,p). prot(3,p). prot(4,h). prot(5,p).
prot(6,p). prot(7,h). prot(8,p). prot(9,p). prot(10,h).

The ASP code is as follows:

(1) size(10). %%% size(N) where N is input length
(2) range(7..13). %%% [N-sqrt{N}, N+sqrt{N}]
(3) sol(1,N,N) :- size(N).
(4) sol(2,N,N+1) :- size(N).
(5) 1 { sol(I,X,Y) : range(X;Y) } 1 :- prot(I,Amino).
(6) :- prot(I1,A1), prot(I2,A2), I1 < I2,

sol(I1,X,Y), sol(I2,X,Y), range(X;Y).
(7) :- prot(I1,A1), prot(I2,A2), I2>1,

I1 == I2-1, not next(I1,I2).
(8) next(I1,I2) :- prot(I1,A1), prot(I2,A2), I1<I2,

sol(I1,X1,Y1), sol(I2,X2,Y2), range(X1;Y1;X2;Y2),
1==abs(Y1-Y2)+abs(X2-X1).

(9) energy_pair(I1,I2) :- prot(I1,h), prot(I2,h),
next(I1,I2), I1+2<I2, 1==(I2-I1) mod 2.

(10) maximize{ energy_pair(I1,I2) : prot(I1,h): prot(I2,h) }.

Rules (1) and (2), together with the predicate prot, define the domains. Rule
(5) implements the “generate” phase: it states that each aminoacid occupies exactly
one position. Rules (3) and (4) fix the positions of the two initial aminoacids (they
eliminates some symmetric solutions). The ASP-constraints (6) and (7) state that
there are no self-loops and that two contiguous aminoacids must satisfy the next prop-
erty. Rule (8) defines the next relation, also including the odd property of the lattice.
The objective function is defined by Rule (9), which determines the energy contribu-
tion of the aminoacids, and rule (10), that searches for answer sets maximizing the
energy. For the decision version of the problem, if en is the desired energy value, (10)
is replaced by

(10’) en { energy_pair(I1,I2) : prot(I1,h): prot(I2,h) }.

Results: The experimental results for the two programs are reported in Table 5. The
nature of this problem (prediction of the structure of a protein) justify us to test the sys-
tems on the optimization problem. Since CModels does not support optimization state-
ments, we can only compare the performance of SICStus and SModels. Nevertheless,
we performed a series of tests relative to the decision version of this problem, namely,

Table 5. Protein structure prediction (‘–’ denotes no answer within 30 hours of CPU-time)

Instance Optimization problem Decision problem
Input Sequence Length Min CLP(FD) SModels CLP(FD) SModels CModels

h10 10 -4 0.13 0.74 <0.01 0.53 1.01
h15 15 -8 5.50 10.61 0.05 2.29 2.73
h20 20 -12 766.22 1679.79 0.50 28.23 52.43
h25 25 -16 103962.57 – 1664.35 2169.49 2620.94

(hpp)3h 10 -4 0.10 0.51 <0.01 0.35 0.33
(hpp)5h 16 -6 0.22 22.33 0.08 16.06 15.94
(hpp)7h 22 -8 46.87 1059.86 5.52 96.45 1609.75
(hpp)9h 28 -10 14007.07 – 2815.62 2309.14 5813.23

76 A. Dovier, A. Formisano, and E. Pontelli

answering the question “can the given protein fold to reach a given energy level?”, us-
ing the energy results obtained by solving the optimization version of the problem. The
results are also reported in Table 5.

7 Planning

Planning is one of the most interesting applications of ASP. CLP(FD) has been used less
frequently to handle planning problems. A planning problem is based on the notions of
State (a representation of the world) and Actions that change the states. We focus
on solving a planning problem in the block world domain. Let us assume to have N
blocks (blocks 1, . . . , N). In the initial state, the blocks are arranged in a single stack,
in increasing order, i.e., block 1 is on the table, block 2 is on top of block 1, etc. Block
N is on top of the stack. In the goal state, there must be two stacks, composed of the
blocks with odd and even numbers, respectively. In both stacks the blocks are arranged
in increasing order, i.e., blocks 1 and 2 are on the table and blocks N − 1 and N are
on top of the respective stacks. The planning problem consists of finding a sequence of
T actions (plan) to reach the goal state, starting from the initial state. Some additional
restrictions must be met: first, in each state at most three blocks can lie on the table.
Moreover, a block x cannot be placed on top of a block y if y ≥ x.

CLP(FD): We study the encoding of block world planning problem in CLP(FD). The
code can be easily generalized as a scheme for encoding general planning problems.
The plan can be modeled as a list States of T + 1 states. Each State is a N -tuple
[B1,...,BN], where Bi=j means that block i is placed on block j. The case j=0
represents the fact that the block i lies on the table. The initial state and the final state
are represented by the lists [0, 1, 2, 3, . . . , N− 1] and [0, 0, 1, 2, . . . , N− 2].

planning(NBlocks,NTime) :- init_domains(NBlocks,NTime,States),
initial_state(States), final_state(States),
init_actions(NBlocks,NTime,Actions),
forward(Actions,States), no_rep(Actions),
action_properties(Actions,States),term_variables(Actions,Vars),
labeling([leftmost],Vars).

init_domains(NBlocks,NTime,States) :- T1 is NTime+1,
length(States,T1), init_domains(NBlocks,States).

init_domains(_,[]).
init_domains(N,[S|States]) :- length(S,N),

init_domains(N,States), domain(S,0,N), count(0,S,’#=<’,3).
initial_state([State|_]) :- increasing_list(State).
final_state(Sts) :- append(_,[[0|FS]],Sts), increasing_list(FS).
init_actions(_,0,[]) :- !.
init_actions(N,T,[[Block,To_Block]|Acts]) :- T1 is T-1,

Block#\=To_Block, Block in 1..N, To_Block in 0..N,
(Block#<To_Block #=> To_Block#=0), init_actions(N,T1,Acts).

forward([],_).
forward([[Block,To_Block]|B],[CurrState,NextState|Rest]) :-

element(Block,NextState,To_Block), is_clear(CurrState,Block),
is_clear(CurrState,To_Block), element(Block,CurrState,Old),

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 77

Table 6. Planning in blocks world (‘–’ denotes no answer in less than 3 hours)

Instance Plan SModels CModels SICStus
Blocks Length exists CLP(FD)

5 12 N 0.29 0.12 0.01
5 13 Y 0.33 0.16 0.02
6 26 N 8.64 8.31 0.32
6 27 Y 12.17 6.56 0.26
7 42 N 355.66 220.00 42.83
7 43 N 565.60 74.19 58.91
7 44 N 1126.52 169.01 80.59
7 45 N 2710.53 139.66 111.98
7 46 N 7477.13 299.01 158.03
7 47 N – 180.63 217.26
7 48 N – 209.73 299.31
7 49 N – 463.56 417.63

Instance Plan SModels CModels SICStus
Blocks Length exists CLP(FD)

7 50 N – 542.98 586.73
7 51 N – 991.56 824.61
7 52 N – 1091.54 1097.13
7 53 N – 2044.34 1509.35
7 54 Y – 431.32 1104.16
8 56 N 3308.28 4667.86 3875.05
8 57 N 4290.26 866.58 5101.24
8 58 N 5672.42 287.16 7240.92
8 59 N 7791.38 1769.51 9838.83
8 60 N 11079.03 903.10 13917.36
8 61 N 18376.59 488.78 19470.35
8 62 N 35835.76 4639.58 27030.19

Old#\=To_Block, forward(B,[NextState|Rest]).
is_clear([],_).
is_clear([A|B],X) :- (X#\=0 #=> A#\=X), is_clear(B,X).
no_rep([_]).
no_rep([[X1,_],[X2,Y2]|Rest]):- X1#\=X2, no_rep([[X2,Y2]|Rest]).
action_properties([],_).
action_properties([[Block,_To]|Rest],[Current,Next|States]) :-

inertia(1,Block,Current,Next),
action_properties(Rest,[Next|States]).

inertia(_,_,[],[]).
inertia(N,X,[A|B],[C|D]) :-

N1 is N+1, inertia(N1,X,B,D), (X#\=N #=> A#=C).
increasing_list(List) :- sequence(List,0).
sequence([],_).
sequence([N|R],N) :- M is N+1, sequence(R,M).

The code follows the usual constrain-and-generate methodology. The init_domains
predicate generates the list of the NTime states and fixes the maximum number of ob-
jects admitted on the table in each state (using the built-in constraint count). After
that, the initial and final states are initialized. The predicate init_actions specifies
that a block can be moved either to the table or to another block having a smaller num-
ber. forward states that if a block is placed on another one, then both of them must
be clear, i.e., without any block on top of them. The predicate no_rep guarantees that
two consecutive actions cannot move the same block. Finally, action_properties
forces the inertia laws (i.e., if a block is not moved, then it remains in its position).

ASP: There are several standard ways to encode a block world in ASP (e.g., [15,2]).
The code used in our experiments is reported in [7].

Results: Table 6 reports the execution times from the three systems, for different num-
ber of blocks and plan lengths.

8 Knapsack

In this section we discuss a generalization of the knapsack problem. Let us assume to
have n types of objects, and each object of type i has size wi and it costs ci. We wish to
fill a knapsack with X1 objects of type 1, X2 objects of type 2, and so on, so that:

78 A. Dovier, A. Formisano, and E. Pontelli

n∑
i=1

Xiwi ≤ max size and
n∑

i=1

Xici ≥ min profit. (1)

where max size is the capacity of the knapsack and min profit is the minimum
profit required.

CLP(FD): We represent the types of objects using two lists (containing the size and
cost of each type of object). For instance, in our tests:

objects([2,4, 8,16,32,64,128,256,512,1024],
[2,5,11,23,47,95,191,383,767,1535]).

The CLP(FD) encoding is:

knapsack(Max_Size,Min_Profit) :- objects(Weights,Costs),
length(Sizes,N), length(Vars,N), domain(Vars,0,Max_Size),
scalar_product(Sizes,Vars,#=<,Max_Size),
scalar_product(Costs,Vars,#>=,Min_Profit),
labeling([ff],Vars).

Observe that we used the built-in predicate scalar product for implementing (1).
The built-in predicate knapsack, available in SICStus Prolog, is a special case of
scalar product where the third argument is the equality constraint.

ASP: Input representation is given by facts of the form: item(Item,Weight,Cost).

item(1,2,2). item(2,4,5). item(3,8,11). item(4,16,23).
item(5,32,47). item(6,64,95). item(7,128,191). item(8,256,383).
item(9,512,767). item(10,1024,1535).

The knapsack problem can be encoded as follows:

(1) occs(0..max_size).
(2) item_occs(I,Item_Occurences,W,C) :-

item(I,W,C), occs(O), Item_Occurences = O/W.
(3) 1{in_sack(I,IO,W,C):item_occs(I,IO,W,C)}1 :- item(I,W,C).
(4) cond_cost :-

min_profit [in_sack(I,IO,W,C):item_occs(I,IO,W,C) = IO*C].
(5) :- not cond_cost.
(6) cond_weight :-

[in_sack(I,IO,W,C):item_occs(I,IO,W,C) = IO*W] max_size.
(7) :- not cond_weight.

Fact (1) fixes the domain for the occurrences of items in the knapsack. Rule (2),
instead, fixes the possible occurrences for each item in the knapsack. Rule (3) states
that, for each type of objects I, there is only one fact in_sack(I,IO,W,C) in the
answer set, representing the number of objects of type I in the knapsack. This trick is
not needed in CLP(FD), where the same effect is obtained by bounds consistency. Rules
(4)–(7) establish the constraints of minimum profit and maximum size. The two
constants max size and min profit must be provided to lparse during grounding.

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 79

Table 7. Knapsack instances (‘–’ denotes no answer within 30 minutes of CPU-time)

max size min profit Answer SICStus SModels
255 374 Y 0.02 0.04
255 375 N 0.03 3.08
511 757 Y 0.36 0.12
511 758 N 0.36 130.82
1023 1524 Y 8.81 0.49
1023 1525 N 8.75 –
2047 3059 Y 368.50 1.84
2047 3060 N 366.79 –

Results: Table 7 reports some of the results we obtained. CModels seems unable to
properly deal with this problem: for any of the instances we experimented with (except
the smallest ones, involving at most five types of objects) the corresponding process was
terminated by the operative system. The reason for this could be found by observing that
the run-time images of such processes grow very large in size (up to 4.5GB, in some
instances). We have also encoded this problem using the weight declarations, but the
presented code is faster and less sensible to size of the numbers.

9 Discussion and Conclusions

We tested the CLP(FD) and ASP codes for various combinatorial problems. In the Ta-
bles
1–7 we reported the running times (in seconds) of the solutions to these problems on
different problem instances. Let us try here to analyze these results.

First of all, from the benchmarks, it is clear that ASP provides a more compact,
and probably more declarative, encoding; in particular, the reliance on grounding and
domain-restricted variables allows ASP to avoid the use of recursion in many situations.

As far as running times are concerned, CLP(FD) definitely wins the comparison
vs. SModels. In a few cases, the running times are comparable, but in most of the
cases CLP(FD) runs significantly faster. Observe also that CModels is, in most of the
problems, faster than SModels; part of this can be justified by the fact that the programs
we are using are mostly tight [9], and by the high speed of the underlying SAT solver
used by CModels.

The comparison between CLP(FD) and CModels is more interesting. In the k-
coloring and N -M -queens cases, running times are comparable. In some of the classes
of graphs, CModels performs slightly better on all instances. More in general, whenever
the instances of a single class are considered, one of the two systems tends to always
outperform the other. This indicates that the behavior of the solver is significantly af-
fected by the nature of the specific problem instances considered (recall that each class
of graphs comes from encodings of instances of different problems [24]).

As one may expect, the bottom-up search strategy of ASP is less sensitive to the
presence of solutions w.r.t. the top down search strategy of CLP(FD). As a matter
of fact, CLP(FD) typically runs faster than CModels when a solution exists. More-
over, CLP(FD) behaves better on small graphs. For the Hamiltonian circuit problem,
CLP(FD) runs significantly faster—we believe this is due to the use of the built-in
global constraint circuit, which guarantees excellent constraint propagation. In this

80 A. Dovier, A. Formisano, and E. Pontelli

Table 8. Schematic results’ analysis. + (-) means that the formalism is (not) applicable. ++ that it
is the best when the two formalisms are applicable.

Coloring Hamilton Schur PF Planning Knapsack
CLP(FD) + ++ + + + +

ASP CModels ++ + + - + -

case, only in absence of solutions the running times are comparable—i.e., when the two
approaches are forced to traverse the complete search tree. A similar situation arises in
computing Schur numbers. When the solution exists CLP(FD) performs better. On the
other hand, whenever there is no solution, running times are favorable to CModels.

Regarding the protein folding problem, CLP(FD) solves the optimization problems
much faster than ASP. In the decision version, times are closer. Also in this case, how-
ever, the ASP code appears to be simpler and more compact than the CLP(FD) one. In
general, in designing the CLP code, the programmer cannot easily ignore knowledge
about the inference strategy implemented in the CLP engine. The fact that CLP(FD)
adopts a top-down depth-first strategy influences programmer’s choices in encoding the
algorithms.

For the planning problem, we observe that SModels runs faster than CModels for
small instances. In general, CLP(FD) performs better for small dimensions of the prob-
lem. On the other hand, when the dimension of the problem instance becomes large,
the behavior of CLP(FD) and SModels become comparable while CModels provides
the best performance. In fact, the performance of CModels does not seem to be signif-
icantly affected by the growth in the size of the problem instance, as clearly happens
for CLP(FD) and SModels. The same phenomenon can be also observed in other situa-
tions, e.g., in the Hamiltonian circuit and Schur numbers problems. In these cases, the
time spent by CModels to obtain a solution does not appear to be directly related to the
raw dimension of the problem instance. Initial experiments reveal that this phenomenon
arises even when different SAT-solvers are employed. Further studies are needed to bet-
ter understand to which extent the intrinsic structure of an instance biases CModels’
behavior, in particular the way in which CModels’ engine translates an ASP program
into a SAT-instance.

For the Knapsack problem, CModels is not applicable. CLP(FD) runs definitively
faster than SModels; furthermore, SModels becomes inapplicable for large problem
instances.

Table 9 intuitively summarizes our observations drawn from the different bench-
marks. Although these experiments are quite preliminary, they already provide some
concrete indications that can be taken into account when choosing a paradigm to tackle
a problem. We can summarize the main points as follows:

• graph-based problems have nice compact encodings in ASP and the performance
of the ASP solutions is acceptable and scalable;

• problems requiring more intense use of arithmetic and/or numbers are declaratively
and efficiently handled by CLP(FD);

• for problems with no arithmetic, the exponential growth w.r.t. the input size is less
of an issue for ASP.

A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems 81

A comparison between CLP(FD) implementations is outside the scope of this paper
(see, e.g., [10,20,6]). Nevertheless, we tested the CLP(FD) programs using B-Prolog,
ECLiPSe, and GNU Prolog [23]. As far as the running times are concerned, these ex-
periments indicated that B-Prolog and SICStus Prolog have comparable behavior, GNU
Prolog is the fastest, and ECLiPSe the slowest.

We have excluded the grounding phase from the ASP timings. In our tests it is
negligible w.r.t. the SModels/CModels running time, save for easier instances (with
running times shorter than one second). Moreover, we also tested CModels with other
SAT solvers (SIMO, RELSAT, ZCHAFF). As one can expect (see, e.g., [12]) the choice
of the SAT solver influences performance, but there is no clear winner.

In the future we plan to extend our analysis to other problems and to other constraint
solvers (e.g., ILOG) and ASP-solvers (e.g., ASSAT, aspps, DLV). In particular, we are
interested in answering the following questions:
• is it possible to formalize domain and problem characteristics to lead the choice of

which paradigm to use?
• is it possible to introduce strategies to split problem components and map them to

cooperating solvers (using the best solver for each part of the problem)?
In particular, we are interested in identifying those contexts where the ASP solvers
perform significantly better than CLP. It seems reasonable to expect this behavior, for
instance, whenever incomplete information comes into play.

Acknowledgments. We thank the anonymous referees for their patience and for their
useful suggestions; in particular for the ASP encoding of the Knapsack problem. This
work is partially supported by the GNCS2005 project on constraints and their applica-
tions and NSF grants CNS-0220590, HRD-0420407, and CNS-0454066.

References

1. C. Anger, T. Schauß, and M. Truszczyński. ASPARAGUS – the Dagstuhl Initiative. ALP
Newsletter, 17(3), 2004.

2. C. Baral. Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press, 2003.

3. P. Clote and R. Backofen. Computational Molecular Biology. Wiley & Sons, 2001.
4. P. Crescenzi et al. On the complexity of protein folding. In STOC, pages 597–603, 1998.
5. A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach to protein

structure prediction. BMC Bioinformatics, 5(186):1–12, 2004.
6. D. Diaz and P. Codognet. Design and Implementation of the GNU Prolog System. Journal

of Functional and Logic Programming 2001(6), 2001.
7. A. Dovier, A. Formisano, and E. Pontelli. A comparison of CLP(FD) and ASP solutions to

combinatorial problems. www.di.univaq.it/∼formisano/CLPASP
8. I. Elkabani, E. Pontelli, and T. C. Son. SModels with CLP and Its Applications: A Simple

and Effective Approach to Aggregates in ASP. In ICLP, 73–89, 2004.
9. E. Erdem and V. Lifschitz. Tight Logic Programs. In TPLP, 3:499-518, 2003.

10. A. J. Fernandez and P. M. Hill. A Comparative Study of 8 Constraint Programming Lan-
guages Over the Boolean and Finite Domains. Constraints, 5(3):275–301, 2000.

11. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In ICLP,
pages 1070–1080, MIT Press, 1988.

82 A. Dovier, A. Formisano, and E. Pontelli

12. E. Giunchiglia, Y. Lierler, and M. Maratea. SAT-Based Answer Set Programming. In Proc.
of AAAI’04, pages 61–66, AAAI/Mit Press, 2004.

13. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. J. of Logic Program-
ming, 19/20:503–581, 1994.

14. Y. Lierler and M. Maratea. CModels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In LPNMR, pages 346–350. Springer Verlag, 2004.

15. V. Lifschitz. Answer Set Planning. In Logic Programming and Non-monotonic Reasoning,
pages 373–374. Springer Verlag, 1999.

16. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A Logic Program By SAT Solvers.
In Proc. of AAAI’02, pages 112–117. AAAI/MIT Press, 2002.

17. V. W. Marek and M. Truszczyński. Autoepistemic Logic. JACM, 38(3):588–619, 1991.
18. V. W. Marek and M. Truszczyński. Stable models and an alternative logic programming

paradigm. The Logic Programming Paradigm, 375–398. Springer, 1999.
19. K. Marriott and P. J. Stuckey. Programming with Constraints. MIT Press, 1998.
20. M. Wallace, J. Schimpf, K. Shen, and W. Harvey. On Benchmarking Constraint Logic Pro-

gramming Platforms. Constraints, 9(1):5–34, 2004.
21. E. W. Weisstein. Schur Number. From MathWorld–A Wolfram Web Resource.

mathworld.wolfram.com/SchurNumber.html.
22. Web references for some ASP solvers. ASSAT: assat.cs.ust.hk.

CCalc: www.cs.utexas.edu/users/tag/cc. CModels: www.cs.utexas.edu/
users/tag/cmodels. DeReS and aspps: www.cs.uky.edu/ai.
DLV: www.dbai.tuwien.ac.at/proj/dlv. SModels: www.tcs.hut.fi/
Software/smodels.

23. Web references for some CLP(FD) implementations. SICStus Prolog: www.sics.
se/isl/sicstuswww/site/index.html. B-Prolog: www.probp.com.
ECLiPSe: www.icparc.ic.ac.uk/eclipse. GNU Prolog: pauillac.inria.
fr/∼diaz/gnu-prolog.

24. Web site of COLOR02/03/04: Graph Coloring and its Applications:
http://mat.gsia.cmu.edu/COLORING03.

Guard and Continuation Optimization for
Occurrence Representations of CHR

Jon Sneyers�, Tom Schrijvers��, and Bart Demoen

Dept. of Computer Science, K.U.Leuven, Belgium
{jon, toms, bmd}@cs.kuleuven.ac.be

Abstract. Constraint Handling Rules (CHR) is a high-level rule-based
language extension, commonly embedded in Prolog. We introduce a
new occurrence representation of CHR programs, and a new operational
semantics for occurrence representations, equivalent to the widely im-
plemented refined operational semantics. The occurrence representation
allows in a natural way to express guard and continuation optimiza-
tions, which remove redundant guards and eliminate redundant code for
subsumed occurrences. These optimizations allow CHR programmers to
write self-documented rules with a clear logical reading. We show correct-
ness of both optimizations, present an implementation in the K.U.Leuven
CHR compiler, and discuss speedup measurements.

1 Introduction

Constraint Handling Rules (CHR) is a high-level multi-headed rule-based pro-
gramming language extension originally designed for writing constraint solvers.
We assume that the reader is familiar with CHR, referring to [5,4] for an overview
Our optimizations are formulated independent of host language, but the imple-
mentation and examples described in this paper are in Prolog.

The original theoretical operational semantics for CHR (ωt), defined in [5],
is nondeterministic since it does not specify the order in which rules are tried.
However, all recent implementations use a more specific operational semantics,
called the refined operational semantics (ωr) [4]. In ωr, the rules are tried in tex-
tual order. In practice, CHR programmers use the ωr semantics. Their programs
possibly are non-terminating or produce unintended results under ωt semantics.

The dilemma CHR programmers face is the following: either they make sure
their programs are valid under ωt semantics, or they write programs that be-
have correctly only under ωr semantics. Sticking to ωt semantics results in more
declarative code with a clear logical reading. Using ωr semantics can result in
more efficient code and allows easier implementation of programming idioms like
key lookup. However, source code readability decreases significantly since rules
not necessarily contain all preconditions for applying it: preconditions that are
implicitly entailed by the rule order are often omitted by the programmer.
� This work was partly supported by project G.0144.03 funded by F.W.O.-Vlaanderen.

�� Research Assistant of the Research Foundation - Flanders (F.W.O.-Vlaanderen).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 83–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 J. Sneyers, T. Schrijvers, and B. Demoen

In this paper, we propose compiler optimizations that are a major step to-
wards allowing CHR programmers to write more readable and declarative pro-
grams without sacrificing efficiency. They automatically remove redundant guard
conditions, on the occurrence level. This paper extends [11,13], which introduced
guard simplification, a special case of guard optimization for rules.

The optimizations presented here are mainly based on reasoning about the
guards of the CHR rules. This work is orthogonal to other optimization tech-
niques, and they can be combined effortlessly, as we have done in the K.U.Leuven
CHR compiler [8].

The next section intuitively describes the optimizations by discussing some
examples. Section 3 introduces a new operational semantics for occurrence rep-
resentations of CHR programs, equivalent to the refined operational semantics.
Then, in Section 4, the new guard and continuation optimizations are defined
formally, and their correctness is showed w.r.t. this new semantics. Section 5
briefly discusses an implementation of the optimizations in the K.U.Leuven CHR
system, and the speedups we have measured. Finally, we conclude in Section 6.

2 Motivating Examples

Example 1 (guard optimization).

pos @ sign(P,S) <=> P > 0 | S = positive.
zero @ sign(Z,S) <=> Z =:= 0 | S = zero.
neg @ sign(N,S) <=> N < 0 | S = negative.

If the third rule, neg, is tried, we know pos and zero did not fire, because
otherwise, the sign/2 constraint would have been removed. Because the first
rule, pos, did not fire, its guard must have failed, so we know that N ≤ 0. From
the failing of the second rule, zero, we can derive N �= 0. Now we can combine
these results to get N < 0, which trivially entails the guard of the third rule.
Hence this guard will always succeed, and we can safely remove it. This results
in slightly more efficient generated code, and — maybe more importantly —
it might also be useful for other analyses. In this example, guard optimization
reveals that all sign/2 constraints are removed after the third rule, allowing the
never-stored analysis [10] to detect that sign/2 is never-stored. ��

Example 2 (types and modes).

sum([],S) <=> S = 0.
sum([X|Xs],S) <=> sum(Xs,T), S is X + T.

We consider head matchings to be an implicit part of the guard: the last rule
can be written as “sum(A,S) <=> A = [X|Xs] | sum(Xs,T), S is X + T.”.
Guard optimization can be much more effective if the types (and modes) of
constraint arguments are known. If we know the first argument of constraint
sum/2 is an instantiated list, these two simplification rules cover all possible
cases and thus the constraint is never-stored. In [9], optional mode declarations

Guard and Continuation Optimization for Occurrence Representations 85

were introduced to specify the mode of constraint arguments: ground (+) or
unknown (?). Inspired by the Mercury type system [14], we have added optional
type declarations to define types and specify the type of constraint arguments.
For the above example, the CHR programmer would add:

:- chr_type list(T) ---> [] ; [T | list(T)].
:- constraints sum(+list(int), ?int).

The first line is a recursive and generic type definition for lists of type T, where
T can be instantiated with built-in types like int, float, the general type any,
or a user-defined type. The constraint declaration on the second line includes
mode and type information. Using this knowledge, we can rewrite the last rule
to “sum(A,S) <=> true | A = [X|Xs], sum(Xs,S2), S is X + S2.”, keep-
ing its behavior intact while again helping never-stored analysis. ��

Note that it is often crucial to provide type and mode information to get the
optimization results presented in this paper.

Example 3 (occurrence subsumption).

(a) a(X,A,B), a(X,C,D) <=> A < B, C < D | Body.
(b) b(X,Y,Z), b(Y,Z,X), b(Z,X,Y) <=> Body.
(c) c(X,Y,Z), c(Y,Z,X), c(Z,X,Y) <=> (p(X); p(Y)) | Body.
(d) d(A,B), d(B,C) <=> A \== C | Body.

d(A,B), d(B,C) <=> Body.

In examples (a) to (d) above, underlined occurrences are subsumed by earlier
occurrences: the head constraints and guard are symmetric. Because a constraint
is removed by a rule application the subsumed occurrences are redundant. The
underlined occurrences are derived to be passive, meaning they can be skipped
in the execution of the program. In the occurrence representation (introduced in
the next section) we can express this by setting the guard for these occurrences
to fail.

A strong occurrence subsumption analysis takes away the need for CHR
programmers to write pragma passive declarations to improve efficiency, since
the compiler automatically adds such declarations. As a result, the CHR source
code contains less non-declarative operational pragmas, improving compactness
and readability. ��

Examples 1 and 2 may seem trivial, and similar optimizations have been
proposed in the context of Prolog, but example 3 is very specific for CHR. They
are all covered by the optimizations introduced in Section 4.

3 Semantics for Occurrence Representations

We will use [H |T] to denote a list where the first element is H and remaining
elements are T ; ++ for list concatenation and � or [] for the empty list; � for
multiset union, � for multiset intersection, and � for multiset subset. We will

86 J. Sneyers, T. Schrijvers, and B. Demoen

sometimes abuse notation by implicitly converting between lists and multisets,
sets and multisets, and lists and conjunctions (where the conjunction is evaluated
in the same order as the order of the list elements). We use vars(E) to denote
the variables of a syntactic expression E.

3.1 CHR Programs

CHR constraint symbols are drawn from the set of predicate symbols, denoted by
a functor/arity pair. CHR constraints are atoms constructed from these symbols.
To improve readability, we will often omit the arguments of CHR constraints.
Constraints are either CHR constraints or built-in constraints in some constraint
domain D. The former are manipulated by the CHR execution mechanism while
the latter are handled by the underlying constraint solver of the host language.
We will assume this underlying solver supports at least equality, true and fail.

Definition 1 (CHR program). A CHR program P is a list of CHR rules Ri

of the form Hk
i \ Hr

i ⇐⇒ gi | Bi where Hk
i and Hr

i (kept/removed heads) are
lists of CHR constraints (Hi = Hk

i ++ Hr
i �= �); gi (guard) is a list of built-in

constraints; Bi (body) is a list of constraints.

If Hk
i is empty, then the rule Ri is a simplification rule. If Hr

i is empty, then
Ri is a propagation rule. Otherwise it is a simpagation rule. The guard and body
of a rule are often treated as conjunctions. We assume all arguments of the CHR
constraints in Hi to be unique variables, making any head matchings explicit in
the guard. This head normalization procedure is explained in [3].

Note that built-in constraints used in the guard are always ask -constraints
when variables occurring in the head are involved. For example, the rule p(X)
<=> X = foo | B is identical to the rule p(X) <=> X == foo | B. In other
words, guards cannot modify variable bindings of constraint arguments.

3.2 Occurrence Representation

Most CHR compilers generate one block of host-language code (e.g. one Prolog
clause) for every occurrence of a constraint in the head of a rule. Therefore
it makes sense to represent a CHR program on the occurrence-level instead of
the rule-level. This occurrence representation corresponds more closely to the
generated code of current compilers. Its finer granularity allows the formulation
of more powerful optimizations.

The head constraint occurrences are numbered from top to bottom and from
left to right (but first the removed constraints, then the kept constraints). The
i-th occurrence of a constraint c is denoted as c : i, the number of the rule in
which it occurs as rnum(c : i). We will write Occ = Occk ∪ Occr for the set of
all occurrences of a given CHR program, where Occk are occurrences from the
kept heads Hk

i and Occr are occurrences from the removed heads Hr
i .

Definition 2 (Occurrence representation). An occurrence representation
O = (g, b, pr, pk, ns, nf) of a CHR program P is a 6-tuple of functions:

Guard and Continuation Optimization for Occurrence Representations 87

– g maps occurrences to lists of built-in constraints;
– b maps occurrences to lists of any constraints;
– pr (pk) map occurrences to subsets of Occr (Occk);
– ns and nf map occurrences to occurrences.

We say g returns the guard for an occurrence, b returns the body, pr returns
the removed partner constraint occurrences and pk returns the kept partner con-
straint occurrences, ns returns the success continuation occurrence and nf re-
turns the fail continuation occurrence. For an occurrence o ∈ Occ, we will write
p(o) to denote pk(o) ++ pr(o) and h(o) to denote [o|p(o)].

3.3 The ωo Semantics for Occurrence Representations

In this section we will introduce the call-based refined operational semantics for
occurrence representations, referred to as ωo semantics. It is a variant of the
call-based refined operational semantics ωc [10], formulated in terms of occur-
rence representations. The ωc semantics is an equivalent variant of the refined
operational semantics ωr [4]. The difference between these two semantics lies in
their formulation. The transition system of ωr linearizes the dynamic call-graph
of CHR constraints into the execution stack of its execution states. However, in
ωc (and ωo), constraints are treated as procedure calls: each newly added active
constraint searches for possible matching rules in order, until all matching rules
have been executed or the constraint is deleted from the store. As with a pro-
cedure, when a matching rule fires, other CHR constraints may be executed as
subcomputations and, when they finish, the execution returns to finding rules
for the current active constraint. The latter semantics are much closer to the
procedure-based target languages of current CHR compilers, like Prolog and
HAL. This makes the ωc (and ωo) semantics much more suitable for reasoning
about optimizations.

Execution State of ωo. An identified CHR constraint c#i is a CHR constraint
c associated with some unique integer i. This number serves to differentiate
among copies of the same constraint. An occurrenced identified CHR constraint
c : j#i is an identified CHR constraint associated with an integer j, indicating
that only matches with occurrence c : j should be considered (in other work, the
notation c#i : j is used). We introduce functions ξ(c#i : j) = ξ(c#i) = ξ(c) = c
and id(c#i : j) = id(c#i) = i, and extend them to lists, sets and multisets of
(identified) CHR constraints in the obvious manner.

The execution state of the ωo semantics is identical to the execution state
of the ωc semantics: it is a tuple 〈G,A, S,B, T 〉n where G, A, S, B, T and n,
represent the goal, call stack, CHR store, built-in store, propagation history and
next free identifier respectively. We use σi to denote execution states.

The goal G is a list of CHR constraints and built-in constraints. The ex-
ecution stack A is a list of identified CHR constraints, with a strict ordering
where the top-most constraint is called active. The CHR constraint store S is a
multiset of identified CHR constraints. The built-in constraint store B is a con-
junction of built-in constraints that have been passed to the underlying solver.

88 J. Sneyers, T. Schrijvers, and B. Demoen

The propagation history T is a set of lists, each recording the identities of the
CHR constraints which fired a rule, and the number of the rule itself. This is
necessary to prevent trivial non-termination for propagation rules: a propaga-
tion rule is allowed to fire on a set of constraints only once. Finally, the next
free identifier n represents the next integer which can be used to identify a CHR
constraint. Given an initial goal G, the initial state is 〈G,�, ∅, ∅, ∅〉1.

Definition 3 (Matching conditions). Given an occurrence representation O.
For every occurrence o ∈ Occ and multisets S, K and R of CHR constraints
(possibly identified and/or occurrenced), we define the following two conditions:

satkr(o, S) � g(o) ∧
(
ξ(h(o)) � ξ(S)

)
sath(o,K,R) � g(o) ∧

(
ξ(pk(o)) = ξ(K)

)
∧
(
ξ(pr(o)) = ξ(R)

)
If S is the CHR store and the built-in store entails satkr(o, S), then the rule

of occurrence o can be applied. The condition sath(o,K,R) is used when we
need to distinguish between the kept and removed partner constraints. Note
that satkr(o, S)⇔ ∃K,R

(
sath(o,K,R) ∧ ξ(K �R � {o}) � ξ(S)

)
.

Transition Rules of ωo. Execution proceeds by exhaustively applying transi-
tions to the initial execution state until the built-in solver state is unsatisfiable
or no transitions are applicable. We denote transitions from state σ0 to σ1 with
σ0 �N σ1 where N is the (shorthand) name of the transition. We define �∗ to
be the reflexive transitive closure of �.

We define solutionsV (B) to be the set of all substitutions (unordered assign-
ments to all variables of V) satisfying B. We say a set of variables I ⊆ V is
independent for c w.r.t. B iff solutionsI(B) = solutionsI(B∧c) = Y and X1 and
X2 exist such that X1 × Y = solutionsV (B) and X2 × Y = solutionsV (B ∧ c)
where × denotes the Cartesian product of two sets (ignoring order). We define
affected varsB(c) � vars(B ∧ c) \ I, where I a maximal independent (for c w.r.t.
B) subset of vars(B ∧ c). Intuitively, when adding a built-in constraint c to the
built-in store B, we have to trigger at least the CHR constraints containing one
or more affected variables (variables from affected varsB(c)).

The possible transitions are defined in Figure 1. The actual definition of the
solve function will depend on the built-in solver. The lower bound of the ωc se-
mantics is a subset of the lower bound defined here. However, for the Herbrand
solver (the built-in solver of Prolog), this lower bound corresponds to current
implementations: it boils down to triggering the constraints containing a vari-
able that is touched (instantiated or bound to another variable) by adding c.
For other host languages, it might not be feasible (or worth the overhead) to
implement this lower bound. The new lower bound for Solve is closer to current
implementations, and avoids references to guards. Because of this change, ωo

semantics may demand more constraints to be triggered (without causing any
additional rule applications). However, the lower bound of ωc is much harder
to compute, possibly causing more overhead than what is gained by avoiding
redundant constraint triggering.

Guard and Continuation Optimization for Occurrence Representations 89

1. Solve: 〈c, A, S, B, T 〉n �So 〈�, A, S′, B′, T ′〉n′

where c is a built-in constraint. If D |= ¬∃̄∅c ∧ B, then S′ � S, B′ � c ∧ B, T ′ � T ,
n′ � n. Otherwise (D |= ∃̄∅c∧B), there is a series of transitions 〈S1, A, S, c∧B, T 〉n �∗

〈�, A, S′, B′, T ′〉n′ , where the triggered constraints S1 � solve(S, B, c) are a subset of
S such that L ⊆ S1 ⊆ U , where
• Lower bound : L � {x ∈ S | vars(x) ∩ affected varsB(c) 	= ∅}
• Upper bound : U � {x ∈ S | vars(x) 	⊆ fixed(B)} where fixed(B) is the set of vari-
ables fixed by B (v ∈ fixed(B) if D |= ∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v) for arbitrary
renaming ρ). Hence, ground constraints are not triggered.

2a. Activate: 〈c, A, S, B, T 〉n �A 〈c : 1#n, A, {c#n} � S, B, T 〉(n+1)

where c is a (non-identified) CHR constraint.

2b. Reactivate: 〈c#i, A, S, B, T 〉n �R 〈c : 1#i, A, S, B, T 〉n

where c#i is a CHR constraint in the store (back in the queue through Solve).

3. Drop: 〈c : j#i, A, S, B, T 〉n �Dp 〈�, A, S, B, T 〉n where c : j 	∈ Occ.

4. Simplify: 〈o#i, A, H ∪ S, B, T 〉n �Si 〈�, A, S′, B′, T ′〉n′

where o = c : j ∈ Occr and H = Pk ∪ Pl ∪ {c#i), and

〈θ(b(o)), A, Pk ∪ S, θ ∧ B, T ∪ {h}〉n �
∗ 〈�, A, S

′
, B

′
, T

′〉n′

where θ is a matching substitution such that D |= B → ∃̄Hθ(sath(o, Pk, Pr)). Fur-
thermore, h � (id(H), rnum(o)) 	∈ T . If no such matching substitution exists then
〈o#i, A, S, B, T 〉n �¬Si 〈nf (o)#i, A, S, B, T 〉n

5. Propagate: 〈o#i, A, {c#i} ∪ S, B, T 〉n �Pr 〈G, A, Sk, Bk, Tk〉nk

where o = c : j ∈ Occk. Let S0 � {c#i} ∪ S, B0 � B, T0 � T, n0 � n.
Now assume, for 1 ≤ l ≤ k and k ≥ 0, there is a series of transitions

〈Cl, [o#i|A], Sl−1 \ P
l
r, Bl−1, Tl−1 ∪ {hl}〉nl−1 �

∗ 〈�, [o#i|A], Sl, Bl, Tl〉nl

where H = {c#i} ∪P l
k ∪P l

r ⊆ Sl−1 and hl = (id(H), rnum(o)) 	∈ Tl−1, and a matching
substitution θl exists such that D |= Bl−1 → ∃̄Hθl(sath(o, P l

k, P l
r)) and Cl = θl(b(o)),

where θl renames apart all variables only appearing in g(o) and b(o) (separately for
each l). Furthermore, for k + 1 no such transition is possible. The resulting goal G is
G � � if D |= ∃̄∅(¬Bk) (i.e. failure occurred), G � nf (o)#i if k = 0 (i.e. the rule
was not applied; in this case we annotate the transition with ¬Pr instead of Pr) and
otherwise (k ≥ 1) G � ns(o)#i.

6. Goal: 〈[c|C], A, S, B, T 〉n �G 〈G, A, S′, B′, T ′〉n′ where [c|C] is a list of built-in and
CHR constraints, 〈c, A, S, B, T 〉n �∗ 〈�, A, S′, B′, T ′〉n′ , and G � � if D |= ¬∃̄∅B

′

(i.e. calling c caused failure), otherwise G � C.

Fig. 1. Transition rules of ωo

The transitions in Figure 1 are a formulation of the ωc semantics in terms of
occurrences, except for the Solve transition. In the following, we will consider the
original definitions of ωc semantics [10] and ωr semantics [4], where the definition
for Solve has been replaced by the one described above. We will use ωo�−→O to

90 J. Sneyers, T. Schrijvers, and B. Demoen

denote �∗ under ωo semantics for an occurrence representation O, and ωc�−→P

(ωr�−→P) to denote �∗ under ωc (ωr) semantics for a CHR program P .

3.4 Properties of ωo Semantics

Definition 4 (Refined Occurrence Representation). The refined occur-
rence representation Oref(P) = (g, b, pr, pk, ns, nf) for a CHR program P (nota-
tion as in definition 1) is defined as follows: for every occurrence c : i ∈ Occ:

g(c : i) = grnum(c:i) b(c : i) = Brnum(c:i)
pr(c : i) = Hr

rnum(c:i) \ {c : i} pk(c : i) = Hk
rnum(c:i) \ {c : i}

ns(c : i) = nf (c : i) = c : (i + 1).

Theorem 1 (ωr is equivalent to ωo for Oref). For any CHR program P :
〈G,�, ∅, ∅, ∅〉1

ωo�−→Oref (P) 〈�,�, S,B, T 〉n ⇔ 〈G, ∅, ∅, ∅〉1
ωr�−→P 〈�, S,B, T 〉n

Proof. For a refined occurrence representation Oref(P), the definition of ωo tran-
sitions corresponds trivially to the definition of ωc transitions. In [2], a proof is
given for the equivalence of ωc and ωr semantics. Hence, P under ωr and Oref(P)
under ωo are equivalent. ��

Note that pragma passive constructions can be expressed using occurrence
representations: if occurrence o is declared to be passive, it suffices to modify the
continuation functions: all occurrences with (fail/success) continuation o should
get a new (fail/success) continuation nf (o). If o is the first occurrence of some
constraint, this approach will not prevent o from becoming active. An alternative
way to express pragma passive is by replacing the guard of o by fail.

4 Guard and Continuation Optimizations

In this section, we will present optimizations that simplify the guard function
and the continuation functions of (originally refined) occurrence representations,
improving efficiency without affecting the behavior of the resulting program.

Definition 5 (Condition Simplification). Given a condition g which is a
conjunction of built-in constraints g = g1 ∧ g2 ∧ . . . ∧ gn and a condition D, we
define simpl(g,D) = g′ = g′1 ∧ g′2 ∧ . . . ∧ g′n, where

g′i �

⎧⎨
⎩
fail if D |= D ∧

∧
j<i gj → ¬gi

true if D |= D ∧
∧

j<i gj → giandD �|= D ∧
∧

j<i gj → ¬gi

gi otherwise.

In other words, simpl(g,D) returns the result of removing parts of g that are
entailed by D and earlier parts of g. For example:

simpl(X > 3 ∧ Y < 1 ∧X > 2, X ≤ 3 ∨ Y < 0) = X > 3 ∧ true ∧ true

The following implication is obviously satisfied:

D |= D → (g ↔ simpl(g,D))

Guard and Continuation Optimization for Occurrence Representations 91

Definition 6 (Earlier occurrences condition). For every occurrence o ∈
Occ and multiset S, we define the following condition:

EOC(o, S) � ξ(h(o)) � ξ(S) ∧
∧{

¬θ(satkr(o′, S)) | o′ ≺ o ∧ ξ(θ(o′)) ∈ ξ(h(o))
}

where c : i ≺ c : j iff i < j and (pr(c : i) �= ∅∨ c : i ∈ Occr), and d : i ≺ c : j (for
d �= c) iff rnum(d : i) < rnum(c : j) and (pr(d : i) �= ∅ ∨ d : i ∈ Occr).

This is a conjunction of negated matching conditions, for all possible match-
ing substitutions θ and earlier occurrences o′. Intuitively, if S is (a subset of)
the constraint store, the EOC(o, S) condition expresses that no earlier rules were
applicable that would have removed a partner-constraint of o. Note that dif-
ferent matching substitutions θ must be considered for a previous occurrence
o′ = c : i if the head constraints h(o′) contain at least two other occurrences of
the constraint c or at least two occurrences of another constraint.

If mode or type information is available, it can be added to the EOC(o, S)
conjunction without affecting the following results, as long as this information
is correct at any given point in any derivation. For example, the EOC condition
for the second occurrence of sum/2 in Example 2 from Section 2 could be the
following (the last part is derived from type information) :

EOC(sum(A, B), S)=sum(A, B)∈ξ(S)∧¬
(
A=[]∧sum(A,B)∈ξ(S)

)
∧
(
A=[]∨A=[|]

)
4.1 Optimizations

Definition 7 (Guard optimization). Given an occurrence representation
O = (g, b, pr, pk, ns, nf). Optimizing the guard of occurrence o results in an oc-
currence representation G(O, o) = (g′, b, pr, pk, ns, nf), where ∀o′ �= o : g′(o′) =
g(o′) and g′(o) = simpl(g(o),EOC(o, h(o))).

Let us illustrate this definition by considering the following example:

X in1 A:B <=> A>B | fail.
X in2 A:B <=> A =:= B | X is A.
X in3 A:B, X in4 C:D <=> A<B, C<D | X in max(A,C):min(B,D).

Computing EOC(X in3 A:B, h(X in3 A:B)), we get ¬(A > B) ∧ ¬(A =:= B) ∧
¬(C > D) ∧ ¬(C =:= D). Optimizing the guard of the third occurrence of in/2
results in the empty guard true, because both A<B and C<D are entailed by the
above EOC condition. The (partial) entailment checker we have implemented is
strong enough to discover such entailed conditions.

Now consider the EOC condition for occurrence in4: EOC(X in4 C : D, S) =
¬(C > D) ∧ ¬(C =:= D) ∧ ¬(C < D) ∧ . . . = fail. Because anything is entailed by
fail, the guard of the fourth occurrence is optimized to fail. This means we can
skip this always-failing occurrence. Note that if we would have used the optimized
guard for the third occurrence, we would get an EOC condition containing ¬true.
The following continuation optimizations modify the continuation functions to
skip occurrences like in4.

92 J. Sneyers, T. Schrijvers, and B. Demoen

Definition 8 (Failure Continuation optimization). Given an occurrence
representation O = (g, b, pr, pk, ns, nf). Optimizing the failure continuation of
occurrence o results in an occurrence representation Cf (O, o) = (g, b, pr, pk,
ns, n

′
f), where ∀o′ �= o : n′

f(o′) = nf (o′), and n′
f (o) = nf (nf (o)) if

D |= EOC(nf (o), h(nf (o))) ∧ ¬∃θ satkr(o, θ(h(nf (o)))) → ¬g(nf (o))

(otherwise n′
f (o) = nf (o)).

In the above example, optimizing the failure continuation of in3 results in
n′

f (in3) = in5. Note that in5 may be a non-existent occurrence.

Definition 9 (Success Continuation optimization). Given an occurrence
representation O = (g, b, pr, pk, ns, nf). Optimizing the success continuation of
occurrence o results in an occurrence representation Cs(O, o) =
(g, b, pr, pk, n

′
s, nf), where ∀o′ �= o : n′

s(o
′)=ns(o′), and n′

s(o)=nf (ns(o)) if

D |= EOC(ns(o), h(ns(o))) ∧ g(o) → ¬θ(g(ns(o)))

where ξ(o) = ξ(θ(ns(o))); otherwise n′
s(o) = ns(o).

Consider the following example:

fib1(0,M) ==> M = 1.
fib2(1,M) ==> M = 1.
fib3(N,M) ==> N > 1 | fib(N-1,M1),fib(N-2,M2),M is M1 + M2.

Optimizing the success continuation of fibi (for i ∈ {1, 2}) results in
n′

s(fibi) = fib4. Note that it is not meaningful to optimize the success con-
tinuation of an occurrence that is removed by applying its rule.

Note that the definitions of these optimizations crucially depend on entail-
ments. This may be problematic because of the undecidability (in general) and
complexity properties of testing entailment. We have implemented an incomplete
entailment checker, which exhaustively propagates conditions entailed from the
left hand side until the right hand side is found. Its worst-case time complexity
is quite bad, but this seems not to be a problem in practice: in most CHR pro-
grams, constraints are defined by a small number of rules, so the EOC condition
in the left hand side of the entailment is often small.

4.2 Correctness

Because of limited space, we will only present some results, without proof. The
proofs are given in [12]. First we introduce the auxiliary notion of EOC-satisfying
occurrence representations. Intuitively, such representations have increasing con-
tinuation functions and at any point in a derivation, the EOC condition for the
active constraint is entailed by the built-in store.

Definition 10 (EOC-satisfying). An EOC-satisfying occurrence representa-
tion O = (g, b, pr, pk, ns, nf) is an occurrence representation where

Guard and Continuation Optimization for Occurrence Representations 93

– ∀ c : i ∈ Occ : nf (c : i) = c : j and ns(c : i) = c : k where j > i and k > i ;
– If a derivation reaches an execution state σk = 〈c : j#i, A,H � S,B, T 〉n,

and ξ(H) = ξ(θ(h(c : j))), then D |= B → EOC(c : j,H).

Intuitively it should be clear that the refined occurrence representations from
definition 4 have this property.

Lemma 1. Refined occurrence representations are EOC-satisfying.

We can show that for EOC-satisfying occurrence representations, the opti-
mizations preserve applicability of ωo transitions and EOC-satisfiability.

Lemma 2. Any EOC-satisfying occurrence representation O is operationally
equivalent w.r.t. ωo semantics (in the strong sense: exactly the same transitions
are applicable to any execution state in a derivation) to G(O, o), Cs(O, o) and
Cf (O, o), for every occurrence o.

Lemma 3. If an occurrence representation O is EOC-satisfying, then G(O, o),
Cs(O, o) and Cf (O, o) are also EOC-satisfying (for every occurrence o).

Combining these results, we get the following correctness result:

Theorem 2 (Correctness). Repeated application of G, Cs and Cf to a refined
occurrence representation O results in an occurrence representation O′ which is
operationally equivalent to O w.r.t. ωo semantics.

5 Implementation and Experimental Evaluation

We have implemented the optimizations in the K.U.Leuven CHR compiler [8],
which can be found in recent releases of SWI-Prolog [15]. In our implementation,
replacing parts of a rule guard by true is called guard simplification (see [13]),
while replacing part of an occurrence guard by fail is called occurrence sub-
sumption, and it basically causes the occurrence to be declared passive. Guard
simplification is a special case of guard optimization, and occurrence subsump-
tion corresponds to failure continuation optimization. Figure 2 illustrates the
effect of the optimizations on a small example.

Experimental Results. To get an idea of the efficiency gain obtained by our
optimizations, we have measured the performance of several CHR benchmarks,
both with and without the optimizations. All benchmarks were performed with
SWI-Prolog [15] version 5.5.2, on a Pentium 4 (1.7 GHz) GNU/Linux machine
with a low load. We have measured similar results [11] in hProlog [1].

Figure 3 gives an overview of our results. The first column indicates the
benchmark name and the parameters that were used. These benchmarks are
available at [7]. The second column indicates whether the optimizations were en-
abled, where “type” means “yes and additional type information was provided”.
Mode declarations were provided for all programs, which allows a speedup factor

94 J. Sneyers, T. Schrijvers, and B. Demoen

:- op(700,xfx,in).

:- constraints
in(?int,+interval).

:- chr_type
interval ---> int:int.

X in A:B <=>
A > B |
fail.

X in A:B <=>
A =:= B |
X is A.

X in A:B, X in C:D <=>
A < B, C < D |
X in min(A,C):max(B,D).

(a) Example CHR program.

X in I :-
’in/2__0’(X,I,_).

’in/2__0’(_,A:B,Z) :-
A > B, !,
remove_constraint(Z),
fail.

’in/2__0’(X,A:B,Z) :-
A =:= B, !,
remove_constraint(Z),
X is A.

’in/2__0’(X,A:B,Z) :-
A < B,
find_partner(in(Y,I)),
Y == X,
I = C:D, C < D, !,
remove_constraint(Z),
X in min(A,C):max(B,D).

’in/2__0’(X,C:D,Z) :-
C < D,
find_partner(in(Y,I)),
Y == X,
I = A:B, A < B, !,
remove_constraint(Z),
X in min(A,C):max(B,D).

’in/2__0’(X,I,Z) :-
insert_constraint(Z)

(b) Not optimized.

X in I :-
’in/2__0’(X,I,_).

’in/2__0’(_,A:B,Z) :-
A > B, !,
remove_constraint(Z),
fail.

’in/2__0’(X,A:B,Z) :-
A =:= B, !,
remove_constraint(Z),
X is A.

’in/2__0’(X,J,Z) :-

find_partner(in(Y,I)),
Y == X,
!,
remove_constraint(Z),
J = A:B, I = C:D,
X in min(A,C):max(B,D).

’in/2__0’(X,I,Z) :-
insert_constraint(Z)

(c) Optimized.

Fig. 2. Comparing generated code. Note that the redundant clause for the fourth oc-
currence of in/2 and the redundant guard of the last rule are removed in (c).

Benchmark Optimize # clauses # lines Runtime (%)

sum no 3 10 5.03 (100)
(10000,500) type 2 6 4.49 (89)

nrev no 6 20 13.97 (100)
(30,50000) type 4 11 8.44 (60)
dfsearch no 4 16 37.58 (100)
(16,500) yes 4 15 31.63 (84)

type 3 11 29.97 (80)
bool chain no 180 2861 12.8 (100)

(200) yes 147 2463 7.0 (55)
fib no 10 154 11.2 (100)

(22) yes 9 125 8.5 (76)
leq no 18 218 14.1 (100)
(60) yes 13 162 11.7 (83)

Fig. 3. Benchmark results

Guard and Continuation Optimization for Occurrence Representations 95

of two to three [13] in these cases. We have measured the additional speedups on
top of the speedups we get from using mode information. The next two columns
show the size of the generated Prolog code, not including constraint-store re-
lated auxiliary predicates. The last column shows the runtime in seconds and a
percentage comparing it to the non-optimized version.

We compared the sum, nrev and dfsearch benchmarks to a native Prolog
version of the program. The native Prolog version turned out to be almost iden-
tical to the generated code for the CHR program, the only difference being some
redundant cuts (!/0) in the latter. We could not measure any difference in run-
time. There is no straightforward way to make a native Prolog version of the
bool chain, fib and leq benchmarks, since they crucially depend on storing
constraints.

Overall, for these benchmarks, doing guard simplification and occurrence
subsumption — combined with never-stored analysis and use of mode informa-
tion to remove redundant variable triggering code — results in cleaner and more
efficient code which is much closer to what a Prolog programmer would write.
As a result, a major performance improvement is observed in these benchmarks.

Writing Auxiliary Predicates in Prolog. CHR programs that implement
deterministic algorithms (like the first three benchmarks) have a relatively low
performance when compiled naively using the general schema, compared to na-
tive Prolog versions. For that reason, CHR programmers usually write such al-
gorithms as auxiliary predicates in Prolog instead of formulating them as CHR
constraints. Such mixed-language programs often use inelegant constructs, like
rules of the form foo(X) \ getFoo(Y) <=> Y = X, to read information from
the constraint store in the host-language parts when this information is needed.
By implementing these parts as multi-headed CHR rules, the need for ‘host-
language interface’ constraints like getFoo/1 is drastically reduced. Thanks to
our new optimizations and other analyses, the programmer can now implement
the entire program in CHR, relying on the compiler to generate efficient code.

6 Conclusion

We have described new guard and continuation optimizations. We have defined
them formally and showed their correctness, implemented them in K.U.Leuven
CHR compiler and evaluated them experimentally. Guard optimization encour-
ages CHR programmers to include all preconditions for rule application in the
rule guards, since redundant tests are compiled out. Continuation optimization
dramatically reduces the need for pragma passive directives. Hence, the opti-
mizations allow writing CHR programs that are more declarative, readable and
self-documenting, without sacrificing efficiency.

Our new optimizations contribute to the state-of-the-art level of performance
of code generated by the K.U.Leuven CHR compiler. Guard optimization reduces
the overhead of testing redundant guard conditions, while continuation optimiza-
tion reduces the overhead of trying rules that are not applicable. Furthermore,

96 J. Sneyers, T. Schrijvers, and B. Demoen

our optimization helps other analyses (like the never-stored analysis) to reduce
constraint store related overhead. Earlier work introduced mode declarations
used for hash tabling and other optimizations. We have added type declarations
for CHR programs. Using both mode and type information we have realized
further optimization of the generated code.

Related Work. The idea of continuation optimization was originally intro-
duced in [6]. Guard optimization originates from [11,13], where a weaker op-
timization called guard simplification was introduced. Guard simplification is
basically guard optimization for every occurrence in a rule, which is weaker than
guard optimization in the case of multi-headed rules.

Future Work. It would be interesting to implement a stronger version of
simpl(g,D) (Definition 5, page 90) by replacing an expensive condition gj by
a cheaper condition g′j, as long as D |= D ∧

∧
k<j gk → (gj ↔ g′j). For example,

consider the following program:

p(X) <=> X >= 0, g(X) | ...
p(X) <=> X < 0, \+ g(X) | ...
p(X) <=> g(X) | ...

If g/1 is a predicate that takes a very long time to evaluate, we could change the
guard of the last rule to X<0, because ¬(X >= 0 ∧ g(X)) ∧ ¬(X < 0 ∧ ¬g(X))
entails g(X)↔ X < 0.

Our current knowledge base for entailment checking is limited to the most
common Prolog built-ins. To be able to recognize more redundant guards, one
could extend this knowledge base, add support for additional declarations that
would be added to the knowledge base during the program analysis, and even
analyze the host-language implementation of user-defined predicates used in
guards, inferring extensions to the knowledge base automatically.

When the “earlier occurrences condition” is large, compilation time may
become an issue. We intend to improve the scalability of our implementation,
although it does not present an immediate problem.

The information entailed by the failure and success of guards seems also use-
ful in other program analyses and transformations. One application is program
specialization: the code for executing a constraint is specialized for a partic-
ular call from an occurrence body. This may lead to the elimination of more
redundant guards (and even redundant rules) for the specialized case.

Finally we would like to integrate our optimizations into the bootstrapped
CHR compiler which is currently being developed by Christian Holzbaur et al.

References

1. Bart Demoen. hProlog home page. http://www.cs.kuleuven.ac.be/˜bmd/hProlog.
2. Gregory Duck, Tom Schrijvers, and Peter Stuckey. Abstract Interpretation for Con-

straint Handling Rules. Report CW 391, K.U.Leuven, Department of Computer
Science, Leuven, Belgium, September 2004.

Guard and Continuation Optimization for Occurrence Representations 97

3. Gregory Duck, Peter Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
Extending Arbitrary Solvers with Constraint Handling Rules. In D. Miller, edi-
tor, Proceedings of the 5th International Conference on Principles and Practice of
Declarative Programming (PPDP’03). ACM Press, 2003.

4. Gregory Duck, Peter Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
The Refined Operational Semantics of Constraint Handling Rules. In Proceedings
of the 20th Intl. Conference on Logic Programming (ICLP’04), September 2004.

5. Thom Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey
and K. Marriot, editors, Special Issue on Constraint Logic Programming, Journal
of Logic Programming, volume 37 (1–3), October 1998.

6. Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter Stuckey, and Gregory Duck.
Optimizing compilation of Constraint Handling Rules in HAL. In Special Issue of
Theory and Practice of Logic Programming on CHR, 2005. To appear.

7. Tom Schrijvers. CHR benchmarks and programs. Available at the K.U.Leuven
CHR home page at http://www.cs.kuleuven.ac.be/˜toms/Research/CHR/.

8. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation
and application. In T. Frühwirth and M. Meister, editors, First Workshop on
Constraint Handling Rules: Selected Contributions, number 2004-01, 2004.

9. Tom Schrijvers and Thom Früwirth. Implementing and Analysing Union-Find in
CHR. Technical Report CW 389, K.U.Leuven, Dept. Computer Science, July 2004.

10. Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for
Constraint Handling Rules. In Proceedings of the 7th Intl. Conference on Principles
and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, July 2005.

11. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Simplification in CHR
programs. Technical Report CW 396, K.U.Leuven, Dept. CS, November 2004.

12. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and Continuation Op-
timization for Occurrence Representations of CHR. Technical Report CW 420,
K.U.Leuven, Dept. CS, July 2005.

13. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Simplification in CHR
programs. In Proceedings of the 19th Workshop on (Constraint) Logic Programming
(W(C)LP’05), Ulm, Germany, February 2005.

14. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an efficient
purely declarative logic programming language. In Proceedings of the 18th Aus-
tralian Computer Science Conference, pages 499–512, Glenelg, Australia, 1995.

15. Jan Wielemaker. SWI-Prolog home page. http://www.swi-prolog.org.

Coordination of Many Agents

Joxan Jaffar, Roland H.C. Yap, and Kenny Q. Zhu

School of Computing, National University of Singapore,
Republic of Singapore

{joxan, ryap, kzhu}@comp.nus.edu.sg

Abstract. This paper presents a reactive programming and triggering framework
for the coordination of a large number of distributed agents with shared knowl-
edge. At the heart of this framework is a highly structured shared store in the
form of a constraint logic program (CLP), which is used as a knowledge base
and being reacted to by agents through the use of “reactors”. The biggest chal-
lenge arising from such a reactive programming framework using CLP is to de-
velop a trigger mechanism that allows efficient “wakeup” of blocked reactors.
This paper addresses the architecture of this open framework, and discusses a
general methodology for doing triggering of logic conditions using views and
abstractions.

1 Introduction

In online applications such as an automated marketplace, many agents with shared
knowledge need to interact and synchronize with each other by reacting to some condi-
tions. The agents block when the condition they are waiting for is not satisfied and
unblock when the condition becomes true some time later. Because the number of
agents participating in these activities is very large, and the blocking conditions may
be very complex, existing technologies such as blackboard architectures [10] and active
databases [15] are inadequate.

This paper introduces a shared-store programming framework for interacting dis-
tributed agents which combines the power of Constraint Logic Program (CLP) [8] and
the triggering of complex conditions.

The framework allows agents to react to their environments taking into account
complex conditions, and allows for coordination with each other through a structured
shared store, the knowledge base, represented by a CLP. The distributed agents inter-
act with the shared CLP store via embedded program fragments called reactors pro-
grammed in a simple stylized concurrent language. The key features of this language
include the use of CLP goals as guards and the use of committed choice. CLP goals as
guards give a unique way of handling reactivity in distributed programs which leverages
CLP’s power of declarative semantics, databases and complex views.

Since reactors may block on complex logical conditions and there are many of them,
the key technical challenge is how to identify efficiently a set of reactors, among all the
blocked reactors, that need to be checked for “wakeup” given a state change to the
CLP store, e.g. update of a base predicate. We call this process triggering. This is more

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 98–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Coordination of Many Agents 99

difficult than determining when a guard becomes entailed in Concurrent Constraint Pro-
gramming (CCP) [12] as the CLP program itself can change and the test is not simply
entailment.

The idea behind efficient triggering is to exploit a notion of locality. To explain a
simple form of locality, consider the popular online chat client, MSN messenger. While
there may be millions of users logged on at the same time, every user typically only
has a small contact list. When a user logs on (which can be viewed as a state change),
it is easy to exhaustively search the vicinity of this user (in this case, her contact list)
to find out which contacts are online and notify (trigger) those people. However, there
are more complex forms of locality for which no such efficient algorithms are readily
at hand. For example, a marketplace has frequent and diverse updates; an individual
trader, however, is typically interested in a small fraction of these. Given an update, it
is difficult to identify the few interested traders.

In this paper, we deal with more complex forms of locality. We employ a general
assumption that any single state change in the CLP is unlikely to affect a large portion
of the blocked reactor, therefore it pays to design an index structure for the reactor
conditions so that triggering can be done efficiently as a search in the index. To facilitate
the indexing of complex conditions, the trigger framework exploits the semantics of
CLP views in abstracting complex views to simple ones. It is also possible to develop
analysis tools with CLP technology to verify the correctness of such abstraction.

Since this framework is completely open, in the sense that any agents can interact
with the system at any time, and CLP goals are used in reactive conditions, we call
this framework Open Constraint Programming or OCP. It is also an open system in the
sense that the agents are language neutral. We argue that open, reactive, and concur-
rent systems with powerful modeling capabilities are useful for distributed coordinated
applications such as those in E-commerce.

This paper addresses the design of the architecture and the reactor language, and
focuses in particular on a triggering framework and methodology which are essential
for managing large number of reactors. The main contribution of this paper is two-fold:

– the use of CLP as a knowledge base and for reactivity in an open programming
framework; and

– a general triggering framework for re-enabling a small set of reactors, among a
large number of blocked ones.

1.1 Related Work

The OCP framework is related to shared-memory concurrent languages such as CCP
[12] and blackboard architectures [10]. In the CCP framework (including GHC [14]
and Oz [13]), processes communicate by interacting with a set of shared variables in
a store on which they can either post (“tell”) or test (“ask”) for the presence of some
constraint. These languages also use committed choice for non-determinism. However,
the constraint store is monotonic in CCP, whereas in OCP, the store is a knowledge base
and can be non-monotonic. Just as in a database or blackboards, the store needs to be
non-monotonic as it is meant to be stateful.

Blackboard languages such as Linda [7] and ActorSpace [1] use a set of tuples or
actors as medium of communication and synchronization. OCP can be thought of as

100 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

generalizing Linda’s tuple space, to use more powerful constructs and going from a
structured shared memory store to richer store which uses CLP. By doing so, the prim-
itive operations on the store can utilize complex reasoning to express how the agents
interact and synchronize. OCP is also related to active databases [15] because the ECA
rules can be treated as the special case of a basic kind of OCP reactors. Triggering is
required in both active databases and OCP, though the active database has a much sim-
pler trigger paradigm, which is on simple events such as insertion/deletion to the base
tables. In particular, active databases do not address our problem of minimizing the cost
of triggering.

Another class of reactive languages are the synchronous languages such as Esterel
[2], Lustre [3] and SIGNAL [6]. These languages are designed for reactive systems
in which reaction is instantaneous. These synchronous systems are also deterministic,
while CCP and OCP are non-deterministic.

In what follows, we will discuss the architecture of OCP, which includes the reactor
programming language and motivating examples, the triggering mechanism which is
critical for the efficient implementation of a runtime system, and finally a description
of an initial prototype system with some experimental results.

2 Architecture

In the basic OCP framework (Fig. 1), every software agent consists of a program written
in a suitably convenient language. Small program fragments, which we call reactors,
written in an OCP reactor language, are embedded in the agent program. This is similar
to how one can embed SQL in a host program. When the agent wants to execute a
reactor, this reactor is submitted to the OCP runtime system, in a similar fashion to a
remote procedure call.

The purpose of the reactor is to perform some actions to the shared CLP store or
knowledge base. In the rest of this paper, we will use the notationΔ to refer to the shared
CLP store (this suggests it is stateful). The action may be guarded by some conditions
defined in the reactor as well as other logic defined in Δ. We expect that some part of
the requirements for the condition may be expressed in the submitted reactor and the
rest of it could be reasoning expressed in the knowledge base itself. We use a rather

 R

R

R

R

Agent Program

CLP

Agent Program

Agent Program

B
lo

ck
ed

 r
ea

ct
or

s

Blocked

OCP Runtime System

Reactor

Re−enabledReactor

Reactor

Fig. 1. The basic model of OCP

Coordination of Many Agents 101

general form of the condition which is any CLP goal expressed in the language of the
knowledge base. A typical action may be to update or delete some data in the store and
the condition could be some consistency condition, e.g. ensure minimum balance in a
bank account. The action can only be performed if the knowledge base Δ is consistent
with the guard. When that is not the case, the reactor blocks until some change in Δ
makes the condition true, we say the reactor is re-enabled and can be executed as long
as the condition is true. One can express concurrent alternatives in a reactor, committed
choice is used to control the non-determinism arising from the alternatives. As a reactor
behaves like a remote procedure call from the agent program, it only returns when the
submitted reactor has completely finished executing its reactor program.

Since the knowledge base Δ is non-monotonic, we can think of it as consisting of
some static predicates which do not change and some dynamic predicates which can be
changed by a reactor. In this paper, we consider dynamic predicates to be ground facts,
which we call base predicates.

2.1 Syntax and Semantics

We now give the inductive definition of a simple reactor language as follows. Let r be
a reactor, then

r ::=
δ atomic update to Δ

| r1; r2 sequence
| r1 || r2 choice
| commit commit the enclosing choice
| c⇒ δ guarded actions

The reactors are intended to be embedded in agent programs. The sequence con-
struct is self-explanatory, and we just focus on atomic update, choice/commit and
guarded action. We define the operational semantics of these constructs using the re-

actor transition relations r, Δ
δ−→ Δ′, r′, where δ is an atomic action that changes the

store from Δ to Δ′, and r progresses to r′.

– An atomic update is an action that consists of one or more of the following sub-
actions in an atomic sequence: an insertion, a deletion or an update to a base pred-
icate. Often the sequence is coded in a CLP goal to be executed atomically by the
runtime system. While, in principle, these operations can be used on any predicate
in Δ, in this architecture, we restrict the atomic updates to only base predicates.
The rule for atomic update is

δ,Δ
δ−→ δ(Δ)

– The choice construct provides a form of early-committed non-determinism. The
semantics of choice is that both branches execute concurrently until one of them
makes an update to Δ or issues a commit. At that time, the other choice branch is
aborted with no effect on Δ. The commit operation can be thought of as a special
atomic update to Δ which has no effect, like a noop. Let ε denote an action that
does not change the store, such a read; and let u denote an update that changes the
store or a commit, the rules for the choice construct are

102 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

r2, Δ
ε−→ Δ, r′2

r1 || r2, Δ ε−→ Δ, r1 || r′2

r2, Δ
u−→ Δ′, r′2

r1 || r2, Δ u−→ Δ′, r′2

r2, Δ
u−→ Δ′

r1 || r2, Δ u−→ Δ′

– Guarded actions are used for synchronization or for ensuring consistency condi-
tions. c is called a blocking condition or simply a condition. A guarded atomic
update, c ⇒ δ, blocks until condition c is true, i.e. Δ |= c, and then atomically
performs the update δ. In particular, c is any CLP goal defined over Δ which is
evaluated by the CLP system. Variables in condition c are in the same scope as
the action and can be used to bind variables in the action. The rule for guarded
actions is

δ,Δ
δ−→ Δ′

c⇒ δ,Δ
δ−→ Δ′

if Δ |= c

2.2 A Motivating Example

We use the following example of shipping marketplace as a motivating example for
OCP throughout this paper. The agents interacting with the marketplace are clients who
want to ship cargo and transportation companies which offer cargo ships of various
load capacity and sailing schedules. The knowledge base is a CLP program which con-
tains static facts of a distance table (map) among cities, and dynamic facts about the
availability of the vessels, such as the following.

map(seoul, shanghai, 4668).
vessel(’star’, hongkong, shanghai, 20000, 0.012, 15, 18).

The map predicate records the distance between two cities, e.g. the distance between
Seoul and Shanghai is 4668 km. The vessel predicate specifies a vessel named “star”,
which is scheduled to go from Hong Kong to Shanghai, with a load capacity of 20000
tons, and a shipping price of 1.2 cent per ton per km. It will depart at time 15 and arrive
at time 18. The departure and arrival time along with the distance table implies travel
speed of the vessel. We assume that the unit price for shipping is roughly proportional
to the speed of travel.

A client wants to ship cargo from place A to B, either directly or via some other
transit points, by a certain deadline and within budget. Constraints are on the load ca-
pacity of the vessel and the feasibility of arrival/departure times. The reactivity arises
because it may not be possible to ship the cargo given the existing state of the store,
however, changes to the store may make the request feasible. Clients will update the
capacity as they are committed to a particular vessel.

The relation (and a knowledge base) deliverable is used to specify blocking
conditions c of the clients’ reactors. It returns Dep and Arr as the departure and arrival
times for tracking, and a list of vessel identifiers.

%base case for one segment
deliverable(A, B, Weight, Budget, Deadline, Dep, Arr, [ID]):-

Budget>0, Weight>0,
LoadCap>=Weight, Weight*Dist*Price<=Budget, Arr<=Deadline,

Coordination of Many Agents 103

map(A, B, Dist),
vessel(ID, A, B, LoadCap, Price, Dep, Arr).

%base case for two segments: A-C and C-B
deliverable(A, B,Weight,Budget,Deadline,Dep, Arr, [ID1, ID2]):-

Budget>0, Weight>0,
LoadCap1>=Weight, LoadCap2>=Weight,
Weight*(Dist1*Price1+Dist2*Price)<=Budget,
Arr1<=Dep2, Arr2<=Deadline,
map(A, C, Dist1), map(C, B, Dist2),
vessel(ID1, A, C, LoadCap1, Price1, Dep1, Arr1),
vessel(ID2, C, B, LoadCap2, Price2, Dep2, Arr2).

%recursive case: A...C-D...B
deliverable(A, B, Weight, Budget, Deadline, Dep, Arr, L):-

LoadCap>=Weight, Weight*Dist*Price<Budget, Dep2>=Arr1,
map(C, D, Dist),
deliverable(A, C, Weight, Budget1, Dep1, Dep, _, L1),
vessel(ID, C, D, LoadCap, Price, Dep1, Arr1),
deliverable(D, B, Weight, Budget-Budget1-Weight*Dist*Price,

Deadline, Dep2, Arr, L2),
L=concat(L1, ID, L2).

There is more than one way to define deliverable. Here, we choose to define
base cases of one segment and two segments, and then a recursive rule that consists
of a path from A to C, a segment C to D and another path from D to B. The reason
for this set-up is to have more efficient triggering which will become clear in the next
section. When the deliverable condition is satisfied, the cargo can be shipped and
the do ship action will update the corresponding capacities along the route.

A client who wants to ship a cargo weighing 100 tons from Singapore to Seoul by
time 25 and with maximum $5000, can submit the following reactor to the OCP system:

deliverable(singapore, seoul, 100, 5000, 25, D, A, IDs) ⇒
do ship(singapore, seoul, 100, IDs)

From the above example, we argue that there exists a large class of applications like
the shipping marketplace where the use of a CLP program as a knowledge base and for
reactivity is not only elegant but, we believe, also essential. The recursion and constraint
solving capability of a CLP offers an extremely concise but expressive way to specify
general logical rules, such as deliverable, to be used by many different reactors
from different agents with their own instantiations or possible additional constraints.

2.3 The Runtime System

This section describes the design of the runtime system architecture. Central to the
system design is the notion of triggering. A trigger model determines which blocked
reactors to fire given an update δ to the knowledge base Δ. When a reactor is fired, it
is re-enabled and starts execution by re-evaluating the blocking condition which failed
earlier, and if it succeeds, proceeds to executing the action.

104 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

Blocked List

Index
Structure

Output Queue

Input Queue

Return

Invoke New reactors

Done reactors Update

Query

W
ak

eu
p

lis
t

B
lo

ck
ed

re
ac

to
rs

Woken reactors

Program
CLP

R
ec

ep
tio

n

U
ni

t

T
ri

gg
er

U
ni

t

Fig. 2. The registry

To manage the execution, blocking and wakeup of the reactors, the runtime system
employs a registry that wraps around the CLP system and the blocked reactors. The
registry is composed of the following elements (see Figure 2):

1. a CLP program loaded in a CLP system;
2. a receptionist that handles the I/O of reactors; and
3. a trigger unit for triggering blocked reactors.

The dark arrows in the figure represent the flow of reactors in the system. A reactor
is executed against the CLP store once it enters the registry. The blocking conditions
and the actions in the reactors are implemented as CLP goals which are executed by
a CLP system. If the blocking condition is satisfied, the action is executed, probably
updates the CLP and exits the system; otherwise, the reactor is blocked in the blocked
list, until the condition becomes true in the future.

We suggest that this architecture is extremely versatile because CLP can integrate
databases with logic programs, constraints and concurrency. At one end of the spectrum,
a CLP program can be reduced to just ground facts which is similar to Linda. At the
other end, it can be a full-fledged knowledge base complete with a reasoning system
and constraint solvers.

3 Triggering

The problem of triggering is present in many applications and scenarios. Consider the
popular online application MSN messenger. One of its features is when a user Jane logs
in, all her contacts who are currently online must be notified, or triggered. As we know,
MSN messenger has millions of users online at any time, certainly we don’t want to
test every online user to see if he or she is a friend of Jane. In this particular case, a
simple hash-based triggering can be used as any user’s contact list is typically small, in
fact, bounded. But in general, the problem of determining just which agents are to be
triggered by an often-occurring event is intractable.

In this section, we discuss the triggering problem for OCP, and present a methodol-
ogy for dealing with it.

Coordination of Many Agents 105

3.1 Views and Blocking Conditions

The basic problem can be defined as follows: given an update δ to a base predicate of
the CLP knowledge base, and given a set of blocked conditions C which are currently
false, efficiently return a subset of C which become true as a result of the update.

To facilitate discussion below, let us first define:

Definition 1 (View). A view is simply a rule defining a distinguished set of non-base
predicates. It has the general form:

p(X̃0):-q1(X̃1), q2(X̃2), . . . , qn(X̃n), Ψ(X̃0, · · · , X̃n). (1)

where p is not a base predicate. We say that this view is basic if the qi, 1 ≤ i ≤ n, are
all base predicates. Otherwise, we say that the view is composite.

Note that not all CLP predicates provide views. Views are essentially interface pred-
icates for the agents to interact with the CLP program. The blocking conditions of re-
actors are defined based on views.

Definition 2 (Blocking Condition). A blocking condition c is of the form:

p(X̃), Ψ(X̃),

where p is a view on variables X̃ , and Ψ(X̃) is a constraint. We say a blocking condition
is basic (composite) if the view it refers to is basic (composite).

Typically, Ψ(X̃) specifies a value or a range for some of the variables in X̃ , such as
c ::= p(X,Y), X = 5, 0 ≤ Y ≤ 5.

Definition 3 (Induced View). Let p be a view of the form p(X̃):-Body. Let c be a
blocking condition p(X̃), Ψ(X̃). The view of p induced by c is the rule

p(X̃):-Body, Ψ(X̃).

To determine if a blocking condition c on a view p is enabled by an update δ is in
general an undecidable problem. Naively, one can execute c as a goal against the newly
updated CLP knowledge base. This is tantamount to testing if the induced view of c has
any solutions.

Running induced views is, unfortunately, unacceptable if c is a composite condition
that depends on complex views whose resolution is very expensive, e.g. when recursive
joins are involved. Preferably, we could discover some constraints, from the definitions
of both c and δ, which could answer this question directly. This is clearly more desir-
able, and this optimization represents our first objective.

However, if the total number of blocked reactors is very large, even this optimization
is insufficient, because having to consider every blocking condition is prohibitively ex-
pensive (recall the MSN example). We therefore seek to build an index for the blocked
conditions so that large number of conditions can be excluded from an update without
testing any one of them. Constructing this index thus becomes our second optimization
objective.

In what follows, we will first show how to index basic blocking conditions by a
spatial index structure called the RC-tree. We then show how to reduce composite views
to basic ones so that the RC-tree can be used.

106 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

3.2 The RC-Tree

This section considers the problem of indexing multi-dimensional geometrical objects.
There is a wealth of publications in the the area of spatial databases [5] and compu-
tational geometry [11]. However, these spatial indexes, especially those used for geo-
graphic information systems applications, assume little or no overlapping among the
objects, and when the objects are large, static segmentation is used to reduce large ob-
jects to many small rectangles, which increases the space and insertion cost. In addition,
they index the Minimum Bounding Rectangles (MBRs) of the original objects, rather
than the objects themselves. The original shapes of the objects are thus lost and not
made use of in such approximation.

We propose a new spatial index structure, called RC-tree, which is better suited for
indexing dynamic, overlapping regions. RC-tree is a clipping-based spatial index which
combines some features of the kd-tree and the R+-tree. Every intermediate node of a
RC-tree is a hyper-plane that partitions the space assigned to this node. The space is
thus divided into two sub-spaces. All objects entirely contained in the left half-space
will be stored in the left sub-tree at the node; and all objects contained in the right half-
space go into the right sub-tree. If an object intersects the hyperplane, it is clipped and
the two resulting clipped objects go into respective subtrees where they belong. The
root node is assigned the entire space.

The novelty of the RC-tree is that instead of indexing MBRs of the objects, it in-
dexes the actual shape of the objects, and dynamically clips the objects on demand
when there is need to discriminate a number of them. This enables the RC-tree to index
objects of large extension and with heavy overlapping.

RC-tree’s dynamic clipping can be seen as doing the segmentation dynamically and
on demand. A very important technique used in the RC-tree is domain reduction which
dynamically updates the MBRs of clipped objects such that insertion and search costs
as well as space requirements are reduced. In the left part of Fig. 3, domain reduction
strategy creates a tree with only two items (“L1” and “L2”) in the leaves. In the right
part of the figure, the other tree, which is similar to the R+-tree, has four items (denoted

d1

d2 d3

L1 L2

d1d1

d3

d2

d3

d2

L

L2

L1

d1

d2 d3

L LL L

RC−Tree Other Binary Clipping Based Tree

Fig. 3. Advantage of clipping and domain reduction in insertion

Coordination of Many Agents 107

by “L”). In addition, during the insertion, the RC-tree clips object “L” and inserts the
two sub-objects “L1” and “L2” into the tree while the other strategy inserts four times.

We have conducted a range of traditional and synthetic benchmarks on the RC-tree,
and have observed an amortized log(n) insertion time, amortized log(n) point query
time, where n is the number of objects to be indexed. Our experiments also show that
RC-tree performs much better in query performance than other R-tree variants and the
quad-tree.

3.3 Basic Views

The RC-tree can be used to efficiently index multi-dimensional shapes and to search
using a query of the same dimensionality.
Let Ψ(X̃) be a constraint and q a base predicate. Then the basic condition q(X̃), Ψ(X̃)

can be treated as a geometrical shape in an RC-tree for X̃ . Accordingly, the update on
q(X̃) where X̃ has been grounded can be treated as a query to that RC-tree. Therefore,
reactor conditions on a single base predicate can be indexed and triggered using the
RC-tree in a straightforward manner.

Consider an example of such a basic blocking condition:

vessel(_,A,B,C,P,_,_), A=beijing, B=taipei, C>=500, P<=0.02.

One can construct a 4-dimensional shape on (A,B,C, P) such that

(A =′ beijing′) ∧ (B =′ taipei′) ∧ (C ≥ 500) ∧ (P ≤ 0.02)

and index shapes like this in a 4-d RC-tree on variables (A, B, C, P). When a new vessel
becomes available or an existing vessel changes, variables (A,B,C, P) get updated
simultaneously. The ground values (A,B,C, P) can then be used as a point query to
the RC-tree index. For example, an update of

vessel(’dragon’, beijing, taipei, 10000, 0.015, 23, 40)

is one of such updates that would enable the above blocking condition.
Another type of basic condition is of the form p(X̃0), Ψ(X̃0), where p is a basic

view, which means

p(X̃0):-q1(X̃1), . . . , qn(X̃n), Ψ0(X̃0, · · · , X̃n),

where q1 through qn are all base predicates. Of course, one can immediately replace
p(X̃0), Ψ(X̃0) by

q1(X̃1), . . . , qn(X̃n), Ψ ′(X̃0, · · · , X̃n),

where
Ψ ′(X̃0, · · · , X̃n) = Ψ0(X̃0, · · · , X̃n) ∧ Ψ(X̃0).

For example,

c ::= q1(X), q2(Y), X + Y = 10, X ≥ 0, X ≤ 5.

The condition c can be formulated as a shape in the (X , Y) space, and an RC-tree can
be built for shapes in the (X , Y) space. The problem is, updates are only on q1/1

108 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

and q2/1 separately, which means either X or Y is updated at a time, but not both.
Therefore, we cannot construct a complete query of (X , Y), but instead we have either
(x, *) or (*, y), where * denotes unknown values. There are two possible ways to solve
this problem. The first and the “default” method is to construct a range query using a
wildcard for the variable that is not instantiated. For example, if q1(5) is written to
the CLP, a query (5, *), which is essentially an infinite range query to the RC-tree, can
be produced to query the index tree. This method is applicable but not always effective.
Suppose the blocked conditions are all binary constraints on X and Y , and there is no
bound on X , then (5, *) will not be able to discriminate any shapes in the index, and
hence all conditions will be triggered.

The second way is to instantiate or constrain some of the unknown variables at the
time when an update occurs. This is possible if there exists in the CLP a constraint or
functional relationship between the value of the known variable (X) and the value of
unknown (Y). For example, if the following rule exists in the CLP:

q2(Y):- q1(X), Y = 2*X+1.

Then given X = 5, the system can infer by the above rule that Y = 11, and thus
produce a complete query (5, 11).

Alternatively, if there exists a constraint between X and Y such as,

q2(Y):- q1(X), Y<=X.

then a finite range query can be produced: ((5, Y) : Y ≤ 5), which is more specific
and effective than querying with (5, ∗).

We conclude this subsection with a few comments on the issues of aggregation and
materialization. Aggregation is a concept that originates from the relational databases.
An aggregate is a function of some tuples in the same relation. Common aggregation
functions such as min, max, average can be computed incrementally and are included in
some versions of CLP as system predicates or as meta-level predicates. In the shipping
example, the prices and speeds of vessels vary over time, but their ranges can be defined
as aggregates of the vessel predicate using the min/max functions.

When a blocking condition contains a view that uses aggregation, how do we deal
with it? One way to handle aggregation is to materialize the value of aggregates if
they are not changed often, such as price ranges of all vessels. Once the aggregate
values are materialized, they can be treated as constants and used in the basic views.
However, when the aggregate value does change later, the views constructed based on
the materialized values must be updated. This may involve deleting of the corresponding
shape from the index, reconstructing it and then re-inserting it into the index.

3.4 Composite Views

Having shown how to index and query basic conditions in the last section, this section
considers a methodology to reduce composite conditions to basic conditions so that
they can be handled like in Section 3.3.

The essence of our method is to translate the definition of the composite view p at
hand into a basic view. There are two ways, which can be repeatedly interleaved, to
progress towards this.

Coordination of Many Agents 109

The first and obvious way is to perform an unfolding of the definition of p. Clearly
unfolding alone cannot, in general, obtain a basic view, because of recursion.

The alternative way, which represents the main contribution of this section, is to
replace the remaining non-base predicates in the definition by an abstraction, that is,
a sequence of other predicates and constraints, in such a way the resulting definition
of p is at least as general as the original definition. Though this step is seemingly
difficult, it may be the case in applications that the abstraction is in fact evident from the
domain. We shall demonstrate this below; meanwhile, we shall call this methodology
an application-based abstraction.

For example, for a view p(X̃) whose recursive definition refers to a base predicate
q, it is possible to unfold p(X̃) a number of times such that q is exposed along with
some subgoals of p:

p(X̃):-p(X̃ ′), q1(X̃1), p(X̃ ′), Ψ(X̃1).

Now if one can replace the two p(X̃ ′)’s with a constraint and combine it with Ψ(X̃1)
to obtain:

p′(X̃):-q1(X̃1), Ψ ′(X̃)

Then p′(X̃) is an abstraction of the recursive view p(X̃).
We now give a more concrete example of abstracting the view deliverable in

the shipping example of Sec 2.2. We shall however simplify the relation vessel/7 to
three arguments: source, destination and cost. We further assume that the value of cost,
for each (source,destination) pair, is precisely the distance between them according to
map/3. We also simplify deliverable/8 to three arguments: source, destination
and budget. Fig. 4 shows the simplified definition of deliverable.

By inspecting the third rule of deliverable, one can see that deliverable
is the transitive closure of vessel and thus the cost of a direct vessel from point
A to C and from D to B is no bigger than cost of the transitive closure. In other
words, given map(A, C, Co1) and map(D, B, Co3), Co1 ≤ Cost1 and Co3
≤ Cost3, where Cost1 and Cost3 are defined in Fig. 4. We illustrate this scenario in
Fig. 5, where the dark arrow refers to an actual vessel, the light arrows refer to straight
distances (map), and the dashed arrows are the transitive closure of vessels (deliver-
able). Therefore we can abstract deliverable to a basic view abs deliverable
as follows.

deliverable(A, B, Budget):-
vessel(A, B, Cost),
0<Cost<=Budget.

deliverable(A, B, Budget):-
vessel(A, C, Cost1),
vessel(C, B, Cost2),
0<Cost1+Cost2<=Budget.

deliverable(A, B, Budget):-
deliverable(A, C, Cost1),
vessel(C, D, Cost2),
deliverable(D, B, Cost3),
Cost1+Cost2+Cost3<=Budget.

Fig. 4. Simplified deliverable

C

B

A D

Co
st
3

Co
3

Co1

Cost1

Budget

Cost2

Fig. 5. Abstraction of deliverable

110 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

abs_deliverable(A, B, Budget):-
Co1+Cost2+Co3<=Budget,
map(A, C, Co1), vessel(C, D, Cost2), map(D, B, Co3).

The above abstraction captures the intuition that if a new vessel segment (from C to
D) is too far away from both the source (A) and destination (B) of a reactor, then this
reactor should be excluded from triggering. In other words, we are exploiting “locality”
of the source and destination in this example.

We summarize our methodology of abstraction as follows.

– it reduces composite views to basic views so that direct indexing can be done on
the basic conditions;

– it provides a conservative estimate of the original view, ie. the set of facts satisfying
the abstraction is a superset of that of the original view. Thus an update that does
not trigger an abstracted condition does not trigger the original blocking condition.
In other words, exclusion of reactors by abstraction is safe.

It is, of course, undecidable in general to replace a composite view with an equivalent
one, while trivial to replace it with an abstraction. The challenge is to find a useful
abstraction. While it is not possible to characterize this condition formally, we suggest
that if the application intuitively satisfies the condition that an individual reactor is not
likely to be triggered by an average update, then it is likely that a desired abstraction
can be discovered without great effort. We have tried to indicate this with the example
above.

4 Implementation and Evaluation

We have implemented a prototype OCP system. Rather than using a tailor-made CLP
system, our prototype for simplicity integrates the CLP(R) system [9] with a server
registry explained in Section 2.3 that manages a collection of reactors especially to
handle triggering and communicates with external agents. The multi-threaded registry
was implemented in C++. The OCP registry and the CLP(R) system communicate
through Unix message queues.

Agents are written using the language Python which is a relatively rich and exten-
sible scripting language. A special Python reactor library handles the submission of
reactors to the OCP system.

4.1 Trigger Efficiency

To evaluate the effectiveness of triggering using RC-tree, we conduct the following ex-
periments on a Pentium 4 2.4GHz PC running Linux 2.4.20. We implement the shipping
marketplace example in Section 2.2 for transporting cargo between a set of 7 Asian and
6 North American cities. The distance matrix among these cities is approximated by the
flight distances between them [4].

We identify two types of reactor blocking conditions and two types of vessel up-
dates: intra-continental, inter-continental. For instance, a reactor waiting to ship a cargo

Coordination of Many Agents 111

Table 1. Hit rate and average trigger time

reactors(intra) reactors(inter) reactors(mixed)

vessels(intra) 10.176% 37.743% 23.964%
(12.6ms) (13.2ms) (12.9ms)

vessels(inter) 0% 33.893% 16.937%
(8.7ms) (13.1ms) (12.7ms)

vessels(mixed) 4.364% 33.694% 19.025%
(12.4ms) (13.2ms) (12.8ms)

from an Asian city to an American city is inter-continental, whereas a reactor waiting
to ship within two Asian cities is an intra-continental reactor. Similar definition applies
to the available vessels. We thus created three sets of reactors (1000 reactors in each
set): intra-continental only, inter-continental only, and mixed; and similarly three sets
of vessel updates (1000 updates in each set): intra-continental only, inter-continental
only, and mixed. We use the abstraction in Section 3.4 for triggering the reactors. We
did 9 experiments, corresponding to the 9 possible combinations of sets of reactors and
updates. The experimental results are given in Table 1. The first number in each data
cell is the average percentage of reactors being triggered out of 1000 blocked reactors
in each scenario. The second number in parentheses is the time for the triggering mech-
anism to determine which reactors to be fired with a sequence of 1000 vessel updates.
All times are measured in milliseconds.

From Table 1, we see that for intra-continental reactors, the best case for triggering
excludes all reactors from wakeup (intra-column, row 2). This is intuitive because long-
haul voyages are more expensive and take longer and thus do not affect short range
shipping needs. For inter-continental reactors, triggering excludes about two thirds of
the reactors. This is simply because for inter-continental reactors, the budgets are larger
and deadlines are later, and thus short range vessels are more likely to affect these re-
actors. The experimental results demonstrate that indexing and abstraction are effective
optimizations: (a) the triggering mechanism is effective in avoiding the wakeup of a
substantial number of blocked reactors; and (b) the triggering mechanism is itself rela-
tively fast.

5 Concluding Remarks

This paper has presented a new distributed programming framework which allows dis-
tributed program agents to react to a CLP program like a shared common store. Agents
modify the CLP program through the use of reactors which are guarded on logic condi-
tions with respect to the CLP. The key challenge is then how to efficiently manage these
reactors to allow blocking and wake-up. We detailed a triggering framework which in-
corporates a novel spatial index structure to solve this problem.

Some of the future work includes the development of an automatic verification tool
for application-based abstraction used in the triggering, and the classification of various
kinds of advanced views as well as abstraction recommendations for these classes. We
are also enhancing OCP with a more generalized version of committed choice in which
commit can happen anywhere in the choice branch.

112 J. Jaffar, R.H.C. Yap, and K.Q. Zhu

References

1. G. Agha and C. J. Callsen. Actorspace: an open distributed programming paradigm. In ACM
PPoPP, 23–32. 1993.

2. G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

3. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for pro-
gramming synchronous systems. In ACM POPL, 178–188. 1987.

4. Distances between 325 cities in the world. http://www.etn.nl/distanc4.htm.
5. V. Gaede. Multidimensional access methods. ACM Computing Survey, 30(2):170–231, 1998.
6. T. Gautier and P. L. Guernic. SIGNAL: A declarative language for synchronous program-

ming of real-time systems. In FPCA, pages 257–277. Springer, 1987.
7. D. Gelernter. Generative communication in Linda. In ACM TOPLAS, 7(1):80–112, 1985.
8. J. Jaffar and J.-L. Lassez. Constraint logic programming. In ACM POPL, 111–119, 1987.
9. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and system.

In ACM TOPLAS, 14(3):339–395, 1992.
10. H. P. Nii. Blackboard Systems. Addison Wesley, 1989.
11. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
12. V. A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
13. G. Smolka. The Oz programming model. In Computer Science Today, pages 324–343.

Springer, 1995.
14. K. Ueda. Guarded horn clauses. In 4th Logic Programming ’85, LNCS 221, 168–179, 1986.
15. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database

Processing. Morgan Kaufmann Publishers, Inc., 1996.

Parallelizing Union-Find in Constraint Handling
Rules Using Confluence Analysis

Thom Frühwirth

Faculty of Computer Science, University of Ulm, Germany
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. Constraint Handling Rules is a logical concurrent committed-
choice rule-based language. Recently it was shown that the classical union-
find algorithm can be implemented in CHR with optimal time complexity.
Here we investigate if a parallel implementation of this algorithm is also
possible in CHR. The problem is hard for several reasons:

- Up to now, no parallel computation model for CHR was defined.
- Tarjan’s optimal union-find is known to be hard to parallelize.
- The parallel code should be as close as possible to the sequential one.

It turns out that confluence analysis of the sequential implementation
gives almost all the information needed to parallelize the union-find al-
gorithm under a rather general parallel computation model for CHR.

1 Introduction

Constraint Handling Rules (CHR) [7] is a concurrent committed-choice con-
straint logic programming language consisting of guarded rules that transform
multi-sets of constraints (atomic formulae) until a fixpoint is reached.

CHR was initially developed for writing constraint solvers, but is more and
more used as a general-purpose programming language. Recent applications of
CHR range from type systems and time tabling to ray tracing and cancer diag-
nosis [2,15]. In these applications, conjunctions of constraints are best regarded
as interacting collections of concurrent agents or processes.

So far, there have been several operational semantics for CHR (standard,
refined and compositional), but none of them explicitely addresses parallelism.
We develop a general parallel execution model for CHR relying on a monotonicity
property (applicable rules cannot become in-applicable during a computation).
Analogous concurrency constructions were suggested for other (constraint) logic
programming languages, e.g. [12].

The clean semantics of CHR facilitates non-trivial program analysis and
transformation. In particular, confluence analysis is an issue in CHR, since rule
application is committed-choice, it is never undone (unlike Prolog). Confluence
aks the question if a program produces the same result no matter which of the
applicable rules are applied in which order. It turns out that this property fa-
cilitates the parallel execution of a CHR program. Since there is a decidable,
sufficient and necessary criterion for confluence [3] that returns the problematic

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 T. Frühwirth

cases of rules applications that rule out each other, we can use this analysis
to construct a parallel program from a sequential one. Of course, some crucial
insights in the nature of the algorithm to be implemented are still necessary. As
a side-effect of our work, we implemented a practical confluence checker.

We will apply this methodology of parallization to the classical union-find
(also: disjoint set union) algorithm of Tarjan [17]. This essential algorithm effi-
ciently solves the problem of maintaining a collection of disjoint sets under the
operation of union [9]. It is the basis for many graph algorithms and for dealing
with equality, e.g. in unification algorithms. We have chosen union-find, because
it was recently shown that it is possible to implement it with optimal time com-
plexity in CHR [13,14,16], something that is not known to be possible in other
pure logic programming languages. The bad news is that union-find is inherently
sequential in most parts, and therefore hard to parallelize. Its worst case time
performance can actually get worse upon parallelization if the sequential algo-
rithm is used as a basis [4]. Often, other data structures and algorithms are used
for the parallel union-find problem [10].

So this is our challenge: Can we come up with an optimal parallel union-find
algorithm that is close to the sequential one? Can confluence analysis help? This
paper gives a preliminary answer tending towards positive.

Outline of the Paper. In the next two sections, we introduce union-find algo-
rithms and CHR. In Section 4 we introduce a parallel execution model for CHR.
In the next section we give a sequential CHR program for the basic union-find
algorithm. Section 6 uses confluence analysis to parallize this implementation.
The next two sections carry this approach over to optimized union-find. At the
end of Section 8, correctness of the parallel version is argued by simulating the
sequential one and vice versa. Section 9 concludes with future work.

2 The Union-Find Algorithm

The union-find algorithm maintains disjoint sets under union. Each set is rep-
resented by a rooted tree, whose nodes are the elements of the set. The root is
called the representative of the set. The representative may change when the tree
is updated by a union operation. With the algorithm come three operations:

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree by repeatedly

going to the parent node of the current node until the root is reached. Return
the root as representative.

– union(X,Y): to join the two trees, find the representatives of X and Y (they
are roots). Then link them by making one point to the other.

The basic algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two inde-
pendent optimizations that keep the tree shallow and balanced, one can achieve
logarithmic worst-case and quasi-constant (i.e. almost constant) amortized run-
ning time per operation.

Parallelizing Union-Find in Constraint Handling Rules 115

The first optimization is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimization is union-by-rank. It keeps the tree shallow by point-
ing the root of the smaller tree to the root of the larger tree. Rank refers to an
upper bound of the tree depth (tree height). If the two trees have the same rank,
either direction of pointing is chosen but the rank is increased by one. With this
optimization, the height of the tree can be bound by log(N). Thus the worst
case time complexity for a single find or union operation is O(log(N)).

Parallelization can worsen the performance of optimized union-find, because
the find operation is inherently sequential and parallel tree updates can counter-
act the effects of path compression and union-by-rank [4] so that deep trees
(with long paths) are generated. In order to achieve logarithmic worst case time
complexity per operation, one has to restrict the parallelism, use special auxiliary
data and operations [4] or has to rely on different special-purpose data structures
and algorithms altogether [10,5].

3 Constraint Handling Rules (CHR)

In this section we give an overview of syntax and semantics for Constraint Han-
dling Rules (CHR) [7,8].

Syntax of CHR. We use two disjoint sets of predicate symbols for two different
kinds of constraints: built-in (pre-defined) constraint symbols which are solved
by a given constraint solver, and CHR (user-defined) constraint symbols which
are defined by the rules in a CHR program. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B,
Propagation rule: Name @ H ⇒ C B,
Simpagation rule: Name @ H \H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H , H ′ is a
non-empty comma-separated conjunction of CHR constraints, the guard C is a
conjunction of built-in constraints, and the body B is a goal. A goal (query, prob-
lem) is a conjunction of built-in and CHR constraints. A trivial guard expression
“true |” can be omitted from a rule.

Simpagation rules abbreviate simplification rules of the form

Name @ H ∧H ′ ⇔ C H ∧B.

Standard Operational Semantics of CHR. The operational semantics of
CHR is given by a transition system (Fig. 1) . States are goals, i.e. conjunctions
of built-in and CHR constraints. In the figure, all upper case letters are meta-
variables that stand for conjunctions of constraints. CT is the constraint theory
for the built-in constraints. Gbi denotes the built-in constraints of G, which is
the remainder of the state/goal.

116 T. Frühwirth

Simplify

If (H ⇔ C B) is a fresh variant of a rule with variables x̄
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧ G) �→ (B ∧ G ∧ H=H ′ ∧ C)

Propagate

If (H ⇒ C B) is a fresh variant of a rule with variables x̄
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧ G) �→ (H ′ ∧ B ∧ G ∧ H=H ′ ∧ C)

Fig. 1. Computation Steps of Constraint Handling Rules

CHR rules are applied exhaustively, until a fixed-point is reached, to the
initial state. A simplification rule H ⇔ C B replaces instances of the CHR
constraints H by B provided the guard C holds. A propagation rule H ⇒ C B
instead adds B to H . If new constraints arrive, rule applications are restarted.

A rule is applicable, if its head constraints are matched by constraints in the
current goal one-by-one and if, under this matching, the guard of the rule is
implied by the built-in constraints in the goal. Any of the applicable rules can
be applied, and the application cannot be undone, it is committed-choice (in
contrast to Prolog).

When a simplification rule is applied, the matched constraints in the current
goal are replaced by the body of the rule. When a propagation rule is applied,
the body of the rule is added to the goal without removing any constraints.
When a simpagation rule is applied, all constraints to the right of the backslash
are replaced by the body of the rule.

To avoid trivial non-termination, a CHR propagation rule is never applied a
second time to the same constraints. A final state is one where either no compu-
tation step is possible anymore or where the built-in constraints are inconsistent.

The refined operational semantics [6] specializes the CHR standard semantics
as given here to the one that is usally implemented: Similar to Prolog, constraints
in a state are evaluated depth-first from left to right and rules are applied in
textual program order. (The refined semantics thus rules out some computations
that are possible in the standard semantics.)

4 Parallelism for CHR

Intuitively, we expect that in a parallel execution of a CHR program, rules can
be applied to separate parts of the problem in parallel without interference. We
will interpret conjunction as parallel operator and we will use an interleaving
semantics for parallelism in CHR. It means that a parallel computation step can
be performed by a sequence of sequential computation steps. A similar approach
was taken for other concurrent constraint/logic languages, e.g. [11,12].

To avoid the technicalities of special cases, we relax the operational semantics
of CHR with regard to final states. We allow a finite, bounded number of addi-
tional computation steps from inconsistent states (they will stay inconsistent).

Parallelizing Union-Find in Constraint Handling Rules 117

We now define two notions of parallelism, weak and strong (Fig. 2). (In
the figures, A,B,C,D and E are conjunctions of arbitrary constraints.) Such
straightforward interleaving semantics for parallelism are not possible for imper-
ative languages, where computations may give raise to conflicting (over-)writes.
However, it is possible for many (constraint) logic programming languages, due
to the monotonicity (or stability) property (left of Fig. 3): Adding constraints to a
state cannot inhibit the applicability of a rule. Monotonicity of CHR was proven
in [3]. The property also implies that constraints can be processed incrementally
in CHR, giving rise to an online algorithm behavior.

We can now justify weak parallelism by a consequence of monotonicity which
we call trivial confluence (right of Fig. 3), because independent of the interme-
diate state, we will arrive at the same successor state.

If A �→ B
and C �→ D
then A ∧ C �→ B ∧ D

If A ∧ E �→ B ∧ E
and C ∧ E �→ D ∧ E
then A ∧ E ∧ C �→ B ∧ E ∧ D

Fig. 2. Weak Parallelism of CHR Strong Parallelism of CHR

If A �→ B
then A ∧ C �→ B ∧ C

If A �→ B
and C �→ D
then A ∧ C �→ S �→ B ∧ D
(S is either A ∧ D or B ∧ C)

Fig. 3. Monotonicity of CHR Trivial Confluence of CHR

The definition of strong parallelism (right of Fig. 2) shows that there is more
potential for parallelism in CHR than working on separate parts of the problem.
Constraints in E may be necessary for rule application, but since both rules
do not alter these constraints, we can still apply them in parallel. With strong
parallelism, rules may work on common constraints at the same time if they
do not change them. (With weak parallelism, we would need two copies of the
constraints E.) Clearly all built-in constraints are common. Propagation rules
only add CHR constraints, so any CHR constraints they match can be common.
Simpagation rules do not remove some of the constraints they match, so these
can be common as well. We will assume strong parallelism in the rest of the
paper.

We assume for now that rule applications (hence, computation steps) are
instantaneous, i.e. the removal and addition of constraints caused by the ap-
plication of a rule is an atomic action. With this requirement, a rule can still
take arbitrary time to check its applicability to constraints in (a snapshot of)
the current state. When a rule is to apply, it will first flag the constraints it
matched. If some are not there anymore, the rule application simply is not done
and flags are reset.

118 T. Frühwirth

5 Implementing Basic Union-Find in CHR

The CHR program ufd basic (in concrete ASCII syntax) implements the op-
erations and data structures of the basic union-find algorithm optimizations as
CHR constraints [16].

ufd basic

make @ make(A) <=> root(A).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

The constraints make/1, union/2, find/2 and link/2 define the operations.
The find operation is implemented as a relation find/2 whose second argument
returns the result. link/2 is an auxiliary operation for performing union of two
roots. The tree (data) constraints root/1 and ~>/2 (“points to”) represent the
tree data structure. This program is operationally equivalent for allowed queries
to implementations in imperative languages under the refined sequential CHR
semantics [16]. An allowed query is - as usual for union-find - a sequence of make,
find and union operations. The second argument of a find is a new variable.
Nodes are typically constants. Each node is introduced by one make.

Now we discuss parallel execution of the above rules for allowed queries. We
can accomodate different find operations on the same node, since the tree con-
straints are not altered by a find. The link rule replaces root(B) by B~>A. Since
rule application is instantaneous and atomic in our model, there will always be a
tree constraint for each node that has been introduced. So if one of the processes
performing an operation fails, it can do no harm to the overall computation,
since each rule defines exactly one operation. Actually, the operations make,
union and find can always proceed at their own speed. The link operation ob-
viously has to wait for the result of the find operations. Moreover, when we are
about to apply the link rule, another link operation may remove one of the
roots that we need for linking. The next section explains how we can detect
and avoid such problematic situations using confluence analysis and additional
rules.

6 Confluence for Parallelism

We already have used trivial confluence to justify our model of parallelism. But
the relationship is deeper. The interleaving semantics of a parallel execution

Parallelizing Union-Find in Constraint Handling Rules 119

can be given as the semantics of all its possible interleavings, i.e. sequential ex-
ecutions that lead to the same resulting state. For analysis, we then have to
consider all possible sequential execution orders. These different orders of con-
straints in a goal may mean that different rules are applied. Confluence tells
us that no matter which of the applicable rules we apply, we always can reach
the same resulting state. In other words, a particular parallel execution cannot
go “astray”, resulting in a different state (that may well correspond to a dead-
lock). We will see that such deadlocks actually can occur in the basic union-find
algorithm.

Confluence Analysis in CHR. Before we discuss confluence of the union-
find algorithm, we introduce the basic idea behind confluence analysis. The pa-
pers [1,3] give a decidable, sufficient and necessary condition for confluence for
terminating CHR programs.

For checking confluence, one takes two rules (not necessarily different) from
the program. The heads of the rules are overlapped by equating at least one
head constraint from one rule with one from the other rule. For each overlap, we
consider the two states resulting from applying one or the other rule. These two
states form a so-called critical pair. One tries to join the states in the critical
pair by finding two computations starting from the states that reach a common
state. If the critical pair is not joinable, we have found a counterexample for
confluence of the program.

6.1 Confluence of Basic Sequential Union-Find for Parallelization

A detailed confluence analysis of the sequential union-find algorithms in CHR
is in [13,14]. Union-find is not confluent under the standard sequential opera-
tional semantics. The relative order of find and union (link) operations mat-
ters for the outcome of find. This behavior is inherent in the union-find algo-
rithm due to its update of the tree structure and the resulting changes of the
representatives.

But non-confluence can also be caused by incompatible tree constraints such
as root(A), A~>B (that can be shown not to occur when computing with allowed
queries), and due to competing link operations for the same roots (that cannot
occur in the left-to-right execution order of the refined semantics, but in parallel
execution). A deadlock means that an operation cannot finish. In the last case,
link operations deadlock, and the restoration of confluence by adding proper
rules can avoid or break these deadlocks.

Since there is a combinatorial explosion in the number of critical pairs with
program size, it is important to filter out “trivial” non-joinable critical pairs that
either stem from overlaps that are not possible for allowed queries or that we
would like to consider equivalent for our purposes. For union-find, the former
means e.g. to detect incompatible tree constraints, the latter means to regard
tree constraints that describe the same sets as equivalent. We revised the con-
fluence checker of [13] so that it performs the necessary additional checks before
and normalization after computation of a critical pair. These program-specific
filters are encoded as Prolog or CHR rules, e.g. check, root(A,), A~> <=>

120 T. Frühwirth

fail. The confluence checker and its results for the union-find programs of this
paper are available at www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

union-find/.
For the union-find implementation ufd basic, there are 8 non-joinable crit-

ical pairs [13,14]. Three non-joinable critical pairs, between the pairs of rules
findNode-findNode, findNode-findRoot, and linkEq-link, feature incompat-
ible tree constraints. We avoid the remaining non-trivial critical pairs by modi-
fying the given program.

The critical pair between find and link reveals that the relative order of
find and link operations matters for the outcome of the find.

find(B,A),root(B),root(C),link(C,B)
findRoot link

root(C),B~>C,A=B root(C),B~>C,A=C

The first line gives an overlap of the two rules mentioned in the second line.
The third line gives the critical pair, i.e. the two final states reachable when the
corresponding rule from the second line is applied to the overlap.

The last four non-joinable critical pairs come from overlapping the link with
itself. They feature pending competing links. Two link operations have at least
one tree node in common. So when one link is performed, at least one node in
the other link operation is not a root anymore, and so this link operation will
deadlock, for example:

root(A),root(B),link(B,A),link(A,B)
link link

root(B),A~>B,link(A,B) root(A),link(B,A),B~>A

Insight #1. To handle these non-confluences, we first concentrate on the crit-
ical pair between findRoot and link. We replace the culprit built-in equality
constraint =/2 by our own new CHR constraint found/2, that we can tailor to
our needs. In the findRoot rule, X=A becomes found(A,X). It holds the result of
the find operation in the first argument. Now we can add a rule for found (given
below) that joins the corresponding critical pair. (The rule mimics findNode so
that the found constraint keeps track of the updates of the tree.)

find(B,A),root(B),root(C),link(C,B)
findRoot link

root(C),B~>C,found(C,A)

The link rules are modified by replacing instances of link(A,B) in the head of
a rule by the proper instances of link(X,Y), found(A,X), found(B,Y). The
resulting program is ufd basic1. Also the critical pairs of the link rules can
be joined now, because found can update itself so that its result argument is a
root.

Parallelizing Union-Find in Constraint Handling Rules 121

ufd basic1

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot1 @ root(A) \ find(A,X) <=> found(A,X).

found @ A ~> B \ found(A,X) <=> found(B,X).

linkEq1 @ link(X,Y), found(A,X), found(A,Y) <=> true.
link1 @ link(X,Y), found(A,X), found(B,Y),

root(A), root(B) <=> B ~> A, root(A).

Confluence of Basic Parallel Union-Find. The
confluence analysis lead us to a revised, parallel ver-
sion ufd basic1 of the basic algorithm. There are
now many more non-joinable critical pairs, because
the introduction of the found constraints gives rise
to many possible overlaps for the link rules. All
the critical pairs are trivial, because they either can-
not occur for allowed queries or they feature differ-
ent tree constraints that represent the same set of
nodes.

findNode findNode 1
findNode findRoot 1
linkEq linkEq 6
link linkEq 13
link link 65
found link 2
found found 1

Number of crit. pairs
between pairs of rules

7 Optimized Union-Find

The CHR program ufd rank from [16] implements the optimized classical union-
find algorithm, derived from the basic version by adding path compression for
find and union-by-rank [17].

ufd rank

make @ make(A) <=> root(A,0).
union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.
findRoot @ root(A,_) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.
linkLeft @ link(A,B), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).
linkRight @ link(B,A), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

122 T. Frühwirth

When compared to the basic version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. (The
first two rules, make and union, will stay the same for all remaining programs
in this paper, they are therefore omitted from now on.)

The rule findNode has been extended for immediate path compression: the
logical variable X serves as a place holder for the result of the find operation. The
link rule has been split into two rules linkLeft and linkRight to reflect the
optimization of union-by-rank: The smaller ranked tree is added to the larger
ranked tree without changing its rank. When the ranks are the same, either tree
is chosen (both rules are applicable) and the rank is incremented.

Confluence. The non-joinable critical pairs are in principle analogous to the
ones discussed for ufd basic in Section 6, but their numbers significantly in-
crease due to the optimizations of path compression and union-by-rank that
complicate the rules for the find and link operations. The confluence checker
found 73 non-joinable critical pairs [13,14]. The number of critical pairs is dom-
inated by those 68 of the link rules.

Unlike the basic versions, in the optimized algorithm, two findNode rule
applications on the same node will interact, because one will compress, and then
the other cannot proceed until the first find operation has finished:

find(B,A),B~>C,find(B,D)
findNode findNode

find(A,D),find(C,A),B~>D find(D,A),find(C,D),B~>A

The critical pairs for the find rules tell us that parallel finds have to wait for
the result of path compression from one of the finds. In the worst case, if that
find process fails, other finds will deadlock (which was not the case in the basic
version of the algorithm). As a remedy we introduce an explicit compression
operation that runs in parallel to the other operations.

8 Optimal Union-Find Parallelized

We first introduce found into the program of optimal union-find as for the basic
algorithm.

Insight #2. We make compression explicit by a new operation compr/2. We
modify the findNode rule to call compr(A,X) instead of immediately producing a
tree data constraint that points to a yet free variable. As a consequence, the rule
for explicit compression should take the found root node and the corresponding
tree constraint to be compressed and replace it by the compressed tree constraint
that points to the root. We should not forget to add compression also for found.
The result are the following tentative rules.

findNode1?@ A ~> B \ find(A,X) <=> find(B,X), compr(A,X).
found1? @ A ~> B \ found(A,X) <=> found(B,X), compr(A,X).
compress? @ root(C,_),found(C,X) \ A ~> B,compr(A,X) <=>A ~> C.

Parallelizing Union-Find in Constraint Handling Rules 123

Compression is performed in parallel to the main part of the algorithm that
performs the find and link operations. But since both linking and compression
update the tree data structure, we may expect interferences. These are revealed
by our confluence analysis. First of all, linking takes away found, so compression
deadlocks after linking. We may compress to a root different from what has been
used for linking. We may compress too early and thus too little: Consider parallel
unions on different new nodes: all find and compress operations can immediately
finish, because they are on roots. No compression is performed. But linking is
sequentialized because roots change. found constraints handle these changes,
but again no compression is performed.

ufd foundc compr

findNode1 @ A ~> B \ find(A,X) <=> find(B,X), compr(A,X).
findRoot1 @ root(A,_) \ find(A,X) <=> found(A,X).

found1 @ A ~> B \ found(A,X) <=> found(B,X), compr(A,X).

compress @ foundc(C,X) \ A ~> B, compr(A,X) <=> A ~> C.

linkEq1c @ found(A,X), found(A,Y), link(X,Y) <=>
foundc(A,X), foundc(A,Y).

linkLeft1c @ found(A,X), found(B,Y), link(X,Y),
root(A,N), root(B,M) <=> N>=M |
foundc(A,X), foundc(B,Y),
B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight1c @ found(A,X), found(B,Y), link(Y,X),
root(A,N), root(B,M) <=> N>=M |
foundc(A,X), foundc(B,Y),
B ~> A, N1 is max(N,M+1), root(A,N1).

The real problem is the interference between different compressions along the
same sub-path, because roots change and because compression destroys paths.
An old compress performed after a new one on the same node may “undo” the
new compression, the overall result may be worse than without compression.
Competing compressions may destroy the tree, even lead to cycles in the tree.
These problems are well-known in the literature, different solutions have been
proposed like comparing certain counters for nodes or time-stamps, or using
a different compression technique like path halving [4]. We prefer a solution
that does not introduce additional auxiliary operations or data and that is as
close as possible to the original sequential optimal code. We do not want to
be “too clever”1. This will also make it easier to verify the correctness of the
implementation.

1 Actually, we tried, investigated many variants, but confluence analysis usually re-
vealed one of the problems mentioned here.

124 T. Frühwirth

Insight #3. Our solution is to compress the nodes of a path to the root that
was used for linking. So compression is performed after the corresponding linking
operation. We do not think that this sequentiality is a disadvantage given the
fact that before linking the roots of the tree may frequently change due to other
link operations.

In the program ufd foundc compr, the rule compress now uses its own found
named foundc. The program will leave the foundc constraints in the store.
They represent the result of a find computation. If necessary, the foundc con-
straints can be garbage collected, when their second variable does not occur in
any other constraint. Alternatively, their removal can be accommodated by keep-
ing a counter on how often foundc will be used in path compression. When the
counter is zero, the foundc constraint is removed.

8.1 Confluence of Parallelized Optimal Union-Find

The confluence analysis of this program finds several hundred non-joinable crit-
ical pairs, of the same nature as for the parallel basic version. The table shows
that almost all critical pairs are between the rules for the link operations. 35
of them are joinable modulo equivalence of the nodes in the trees that are pro-
duced. All but one of the remaining critical pairs can be shown not to occur for
allowed queries.

findNode1 findNode1 1
findNode1 findRoot1 1
findRoot1 findRoot1 1
found1 found1 1
found1 linkEq1c 2
found1 linkLeft1c 2
found1 linkRight1c 2
compress findNode1 1
compress found1 1
compress compress 3

linkEq1c linkEq1c 18
linkEq1c linkLeft1c 39
linkEq1c linkRight1c 39
linkLeft1c linkLeft1c 191
linkLeft1c linkRight1c 193
linkRight1c linkRight1c 191

In the only non-trivial critical pair of the compress rule with itself, competing
compressions may produce different trees, but the nodes are the same as the
nodes A, B, C and D must be on the same path. In particular, trees are not
destroyed and compression always improves the tree.

foundc(C,X),compr(A,X), A~>B, foundc(D,Y),compr(A,Y)
compress compress

foundc(C,X),foundc(D,Y),A~>D foundc(C,X),foundc(D,Y),A~>C

8.2 Correctness

We show that the new parallel CHR implementation and the optimal sequen-
tial implementation which was proven correct [16] simulate each other - to some

Parallelizing Union-Find in Constraint Handling Rules 125

extent - by mapping computations between the two. We use the refined opera-
tional semantics of CHR for the sequential computations as in [13,14,16]2 and
our proposed parallel semantics for CHR for the parallel computations.

We map states (constraints) and computation steps (rule applications). The
mapping is inspired by the program transformation that we have performed to
arrive at the parallel program: first, introduction of found that behaves like
find until it is involved in a link (then it behaves like built-in equality), and
second, replacement of implicit immediate path compression by an explicit one
with compr that relies on foundc (which behaves like built-in equality) that is
produced by linking.

In principle, the rule applications of parallel ufd foundc compr, i.e.
make,union,findNode1,findRoot1,linkEq1c,linkLeft1c,linkRight1c,
are mapped into the rule applications of sequential optimal ufd rank, i.e.
make,union,findNode, findRoot, linkEq, linkLeft, linkRight,
and vice versa. (The rules make and union are identical in both programs, there
is no need to further discuss them.)

Sequential to Parallel. The mapping from a sequential to a parallel execu-
tion is as follows. Under the refined semantics, the sequential program for each
union will do the two find operations and then the linking. A find operation
is a sequence of findNode rule applications followed by a single application
of findRoot. In the mapping, immediate path compression by rule findNode
is replaced by explicit path compression with compr constraints. The built-
in equality constraints produced by findRoot in the sequential computation
are replaced by found constraints until they are involved in a link operation.
From then on, the equalities are replaced by foundc. Immediately after linking,
we have to insert applications of the compress rule into the resulting parallel
computation, so that compression is actually performed (removing all compr
constraints).

Parallel to Sequential. Due to the interleaving semantics we have introduced
for parallel CHR, any parallel computation can be described by a set of se-
quential computations involving the same rules and same result. Given such a
sequentialized parallel computation, the following partial mapping will give us a
computation of the sequential program.

By intended construction, not every execution of the parallel program can be
mapped into one of the sequential program. Consider the critical pair for com-
peting compressions (Subsect. 8.1): Since compression is immediate and implicit,
only one of the computations can be simulated by the sequential program.

If we rule out these competing compressions (i.e. find or found constraints
operating on the same nodes concurrently), parallel executions can be simulated
by the sequential program: We map constraints A~>B,compr(A,X) into A~>X to
achieve immediate compression. As a consequence, the compress rule applica-
tions become obsolete, because they do not change any constraints under the
mapping.

2 The correctness and optimality of the code was proven under the refined semantics.

126 T. Frühwirth

We also map found into find constraints and thus applications of the rule
found1 into applications of findNode. Under the mapping, applications of the rule
findRoot1 do not change constraints, they are therefore removed. Just before a
link rule is applied, we insert two rule applications of the rule findRoot that apply
to the two involved find constraints that come from mapping found. Finally, we
map foundc constraints into built-in equalities. The result of the transformation is
a correct computation of the sequential implementation of the optimal union-find
algorithm in the standard semantics. Hence we claim that our parallel program
for union-find is correct for computations without competing compressions.

9 Conclusion

In this exploratory paper, we introduced a parallel execution model for CHR.
We parallelized basic and optimal sequential versions of the classical union-find
algorithm with the help of confluence analysis and three insights. The resulting
code is close to the original one and promises to be as efficient, even though it
is acknowledged in the literature that this is hard to achieve due to the inherent
sequential nature of the algorithm when it comes to tree updates.

The URL www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/
union-find contains a list of programs, confluence checkers and results of con-
fluence analysis used for this paper.

It was beyond the scope of the paper to give a time complexity analysis, but
let us speculate shortly on the topic. We showed that each rule application in one
program corresponds to a rule application in the other program, with exception
of the compress rule applications that only occur in the parallel program. But
their number is bounded by the number of findNode rule applications. Hence
if rule applications cost the same in sequential and parallel CHR, the optimal
worst-case time complexity is preserved. Since find operations can run in parallel
(but not linking), we can expect a reduction in latency for simultaneous queries
and updates.

The preliminary, exemplary findings in this paper can just be the starting
point for a number of challenging research topics:

– parallel union-find correctness and time complexity analysis,
– parallel model for CHR, its implementation and empirical evaluation,
– more practical confluence analysis, including automatic detection of critical

pairs that cannot occur for allowed queries,
– development of a confluence-based parallelization methodology and its ap-

plication to other CHR programs, in particular constraint solvers.

As pointed out by a reviewer, our confluence-based parallelization could also be
used to convert a program using the refined semantics to a program using the
standard semantics (where parallelization is straightforward).

Acknowledgements. We would like to thank Marc Meister and Tom Schrijvers
for helpful discussions. We also thank the referees that provided us with detailed
comments.

Parallelizing Union-Find in Constraint Handling Rules 127

References

1. S. Abdennadher. Operational Semantics and Confluence of Constraint Propagation
Rules. In Third International Conference on Principles and Practice of Constraint
Programming, CP97, LNCS 1330. Springer, 1997.

2. S. Abdennadher, T. Frühwirth, and C. H. (Eds.). Special Issue on Constraint
Handling Rules, Journal of Theory and Practice of Logic Programming (TPLP).
Cambridge University Press, to appear 2005.

3. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and Semantics of Con-
straint Simplification Rules. Constraints Journal, 4(2), 1999.

4. R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-find prob-
lem. In STOC ’91: Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 370–380. ACM Press, Revision of November 1994.

5. M. J. Atallah, M. T. Goodrich, and S. R. Kosaraju. Parallel algorithms for evalu-
ating sequences of set-manipulation operations. J. ACM, 41(6):1049–1088, 1994.

6. G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The Refined Op-
erational Semantics of Constraint Handling Rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
2004.

7. T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming, pages 95–138,
October 1998.

8. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

9. Z. Galil and G. F. Italiano. Data Structures and Algorithms for Disjoint Set Union
Problems. ACM Comp. Surveys, 23(3):319ff, 1991.

10. M. C. Pinotti, V. A. Crupi, and S. K. Das. A parallel solution to the extended
set union problem with unlimited backtracking. In IPPS ’96: Proceedings of the
10th International Parallel Processing Symposium, pages 182–186, Washington,
DC, USA, 1996. IEEE Computer Society.

11. V. A. Saraswat and M. Rinard. Concurrent constraint programming. In POPL
’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 232–245, New York, NY, USA, 1990. ACM Press.

12. V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of
concurrent constraint programming. In POPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
333–352, New York, NY, USA, 1991. ACM Press.

13. T. Schrijvers and T. Frühwirth. Union-Find in CHR. Technical Report CW389,
Department of Computer Science, K.U.Leuven, Belgium, July 2004.

14. T. Schrijvers and T. Frühwirth. Analysing the CHR Implementation of Union-
Find. In 19th Workshop on (Constraint) Logic Programming (W(C)LP 2005).
Ulmer Informatik-Berichte 2005-01, University of Ulm, Germany, February 2005.

15. T. Schrijvers and T. Frühwirth. CHR Website, www.cs.kuleuven.ac.be/∼dtai/
projects/CHR/, May 2005.

16. T. Schrijvers and T. Frühwirth. Optimal Union-Find in Constraint Handling
Rules, Programming Pearl. Journal of Theory and Practice of Logic Programming
(TPLP), to appear.

17. R. E. Tarjan and J. van Leeuwen. Worst-case Analysis of Set Union Algorithms.
J. ACM, 31(2):245–281, 1984.

An Optimised Semantic Web Query Language
Implementation in Prolog

Jan Wielemaker

Human Computer Studies (HCS), University of Amsterdam,
Kruislaan 419, 1098 VA Amsterdam, The Netherlands

wielemak@science.uva.nl

Abstract. The Semantic Web is a rapidly growing research area aiming
at the exchange of semantic information over the World Wide Web. The
Semantic Web is built on top of RDF, an XML-based exchange language
representing a triple-based data model. Higher languages such as the
description logic based OWL language family are defined on top of RDF.
Making inferences over triple collections is a promising application area
for Prolog.

In this article we study query translation and optimization in the con-
text of the SeRQL RDF query language. Queries are translated to Prolog
goals, which are optimised by reordering literals. We study the domain
specific issues of this general problem. Conjunctions are often large, but
the danger of poor performance of the optimiser can be avoided by exploit-
ing the nature of the triple store. We discuss the optimisation algorithms
as well as the information required from the low level storage engine.

1 Introduction

The Semantic Web [1] initiative provides a common focus for Ontology Engi-
neering and Artificial Intelligence based on a simple uniform triple based data
model. Prolog is an obvious candidate language for managing graphs of triples.

Semantic Web languages, such as RDF [2] RDFS and OWL, [4] define which
new triples can be deduced from the current triple set (i.e. are entailed by the
triples under the language). In this paper we study our implementation of the
SeRQL [3] query language in Prolog. SeRQL provides a declarative search spec-
ification for a sub-graph in the deductive closure under a specified Semantic
Web language of an RDF triple set. The specification can be augmented with
conditions to match literal text, do numerical comparison, etc.

The original implementation of the SeRQL language is provided by Sesame
[3], a Java based client/server system. Sesame realises entailment reasoning by
computing the complete deductive closure under the currently activated Seman-
tic Web language and storing this either in memory or in an external database.
I.e. Sesame uses pure forward reasoning.

We identified several problems using the Sesame implementation. Sesame
stores both the explicitely provided triples and the triples that can be derived
from them given de semantics of a specified Semantic Web language (e.g. ‘RDFS’)

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 128–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimised Semantic Web Query Language Implementation in Prolog 129

in one database. This implies that changing the language to (for example) ‘OWL-
DL’ requires deleting the derived triples and computing the deductive closure for
the new language. Also, where the full deductive closure for RDFS is still fairly
small, it explodes for more expressive languages like OWL. Sesame is sensitive
to the order in which path expressions are formulated in the query, which is con-
sidered undesirable for a declarative query language. Finally, Sesame is written
in Java an we feel much more comfortable using Prolog for manipulating RDF
graphs to prototype new inferencing strategies.

To overcome the above mentioned problems we realised a server hosting mul-
tiple reasoning engines realised as Prolog modules. Queries can be formulated
in the SeRQL language and both queries and results are exchanged through the
language independent Sesame HTTP based client/server protocol. We extend
the basic storage and query system described in [18] with SeRQL over HTTP
and a query optimiser.

Naive translation of a SeRQL query to a Prolog program is straightforward.
Being a declarative query language however, authors of SeRQL queries should
and do not pay attention to efficient ordering of the path expressions in the
query and therefore naive translations often produces inefficient programs. This
problem as well as our solution is very similar to what is described by Struyf
and Blockeel in [16] for Prolog programs generated by an ILP [11] system. We
compare our work in detail with Struyf in Sect. 11.

In Sect. 2 and Sect. 3 we describe the already available software components
and introduce RDF. Section 4 to Sect. 9 discuss native translation of SeRQL to
Prolog and optimizing the naive translation through reordering of literals.

2 Available Components and Targets

Sesame1 and its query language SeRQL is one of the leading implementations
of semantic web RDF storage and query systems [9]. Sesame consists of two
Java based components. The server is a Java servlet providing HTTP access to
manage the RDF store and run queries on it. The client provides a Java API to
the HTTP server.

The SWI-Prolog2 SemWeb package [18] is a library for loading and saving
triples using the W3C RDF/XML standard format and making them avail-
able for querying through the Prolog predicate rdf/3. After several cycles
we realised the memory-based triple-store as a foreign language extension to
SWI-Prolog. Using foreign language (C) we optimised the data representation
and indexing for RDF triples, dealing with upto 40 million triples on 32-bit
hardware or virtually unlimited on 64-bit hardware. The SWI-Prolog HTTP
client/server packagehttp://www.swi-prolog.org/packages/http.html provides a
multi-threaded [17] HTTP server and client library.

By reimplementing the Sesame architecture in Prolog we make our high per-
formance triple-store available to the Java world. The options are illustrated
1 http://www.openrdf.org
2 http://www.swi-prolog.org

130 J. Wielemaker

Prolog
Client

Java
Client

Prolog
Server

Java
Server

Prolog SeRQL

Sesame

HTTP

Fig. 1. With two client/server systems sharing the same HTTP API we have created
four options for cooperation

in Fig. 1. In our project we needed access from Java applications to the Pro-
log server. Other people are interested in fetching sub-graphs from huge Sesame
hosted triple sets stored in an external database to Prolog for further processing.

3 RDF Graphs and SeRQL Queries Graphs

In this section we briefly introduce RDF graphs and SeRQL queries. The RDF
data model is a set of triples of the format <Subject Predicate Object>. The
model knows about two data types:3 resources and literals. Resources are Uni-
versal Resource Identifiers (URI), in our toolkit represented by Prolog atoms.
Representing resources using atoms exploits the common representation of atoms
in Prolog implementations as a unique handle to a string. This representa-
tion avoids duplication of the string and allows for efficient equality testing,
the only operation defined on resources. Literals are represented by the term
literal(atom), where atom represents the textual literal.

A triple informally states Subject has an attribute named Predicate with value
Object. Both Subject and Predicate are resources, Object is either a resource or
a literal. As a resource appearing as Object can also appear as Subject or even
Predicate, a set of triples form a graph. A simple RDF graph is shown in Fig. 2.

RDF triples are naturally expressed using the predicate rdf/3 with the obvi-
ous arguments rdf(Subject, Predicate, Object). Finding a subgraph with certain
properties is now easily expressed as a Prolog conjunction, for example

reports_by_person(Report, Name) :-
rdf(Author, ’http://www.example.org/terms/fullName’, literal(Name)),
rdf(Report, ’http://www.example.org/terms/author’, Author).

SeRQL is a language with a syntax inspired in SQL, useful to represent target
subgraphs as a set of edges, possibly augmented with conditions. An example is
given in Fig. 3.

3 Actually literals can be typed using a subset of the XML Schema primitive type
hierarchy.

An Optimised Semantic Web Query Language Implementation in Prolog 131

http://www.w3.org/TR/rdf-syntax-grammar

http://purl.org/net/dajobe Dave Beckett

RDF/XML Syntax Specification (Revised)

http://www.example.org/terms/editor

http://www.example.org/terms/homePage http://www.example.org/terms/fullName

http://purl.org/dc/elements/1.1/title

Fig. 2. A simple RDF graph. Ellipses are resources. Rectangles are literal values.
Arrows point from Subject to Object and are labeled with the Predicate.

4 Compiling SeRQL Queries

The SWI-Prolog SeRQL implementation translates a SeRQL query into a Prolog
goal, where edges on the target subgraph are represented as calls to rdf(Subject,
Predicate, Object) and the WHERE clause is represented using natural Prolog
conjunction and disjunction of predicates provided in the SeRQL runtime sup-
port module. The compiler is realised by a DCG parser, followed by a second
pass resolving SeRQL namespace declarations and introducing variables. We il-
lustrate this translation using an example from the SeRQL examples.4 First we
present the query in Fig. 3.

SELECT Painter, FName
FROM {Painter} <rdf:type> {<cult:Painter>};

<cult:first_name> {FName}
WHERE FName like "P*"
USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

Fig. 3. Example SeRQL query asking for all resources of type cult:Painter whose
name starts with P

Below is the naive translation represented as a Prolog clause and modified
for better readability using the variable names from the SeRQL query. To solve
the query, this clause is executed in the context of an entailment module as
illustrated in Fig. 4. An entailment module is a Prolog module providing a pure
implementation of the predicate rdf/3 that can generate as well as test all
triples that can be derived from the actual triple store using the Semantic Web
language the module defines. This implies the predicate can be called with any
instantiation pattern, will bind all arguments and produce all alternatives that
follow from the entailment rules on backtracking. If rdf/3 satisfies these criteria,
any naive translation of the SeRQL query is a valid Prolog program to solve the
query. Primitive conditions from the WHERE clause are mapped to predicates
4 http://www.openrdf.org/sesame/serql/serql-examples.html

132 J. Wielemaker

HTTP Server SeRQL Parser Optimiser

RDF Entailment RDFS Entailment

Triple store

rdf/3

rdf/3

rdf/3

rdf/3

SeRQL Goal

Fig. 4. Architecture, illustrating the role of entailment modules. These modules provide
a pure implementation of rdf/3 for the given Semantic Web language.

defined in the SeRQL runtime module which is imported into the entailment
module. As the translation of the WHERE clause always follows the translation
of the path expression all variables have been instantiated.

q(row(Painter, FName)) :-
rdf(Painter,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,
’http://www.icom.com/schema.rdf#Painter’),

rdf(Painter,
’http://www.icom.com/schema.rdf#first_name’,
FName),

serql_compare(like, FName, ’P*’).

SeRQL path expressions between square brackets ([. . .]) are optional. They bind
variables if they can be matched, but they do not change the core of the matched
graph. Such path expressions are translated using the SWI-Prolog soft-cut con-
trol structure represented by *->,5 for example, the SeRQL statement

SELECT Artist, FName
FROM {Artist} <rdf:type> {<cult:Artist>};

[<cult:first_name> {FName}]
USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

is translated into the code below. Note that this prolog code generates all avail-
able first names, leaving FName unbound if no first name can be found. The
final true is the translation of the omitted WHERE clause.

q(row(Artist, FName)) :-
rdf(Artist,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,
’http://www.icom.com/schema.rdf#Artist’),

(rdf(Artist, ’http://www.icom.com/schema.rdf#first_name’, FName)
*-> true
; true
),
true.

5 Some Prolog dialects (e.g. SICStus) call this construct if/3.

An Optimised Semantic Web Query Language Implementation in Prolog 133

5 The Ordering Problem

Given the purely logical definition of rdf/3, conjunctions of these goals can be
placed in any order without influencing the result-set. Literals resulting from the
WHERE clause are side-effect free boolean tests that can be executed as soon
as the arguments have been instantiated. Note that Gooley [8] distinguishes 4
types of equivalence under optimization: reflexive, set, tree and inequivalence.
We demand set equivalence, returning the same set of results where we do not
care about ordering or duplicates.

To study the ordering problem in more detail we will consider the follow-
ing example query on WordNet [10]. The query looks for words that can be
interpreted in at least two different lexical categories.

SELECT DISTINCT L
FROM {S1} <wns:wordForm> {L},

{S2} <wns:wordForm> {L},
{S1} <rdf:type> {C1},
{S2} <rdf:type> {C2},
{C1} <serql:directSubClassOf> {<wns:LexicalConcept>},
{C2} <serql:directSubClassOf> {<wns:LexicalConcept>}

WHERE not C1 = C2
USING NAMESPACE

wns = <!http://www.cogsci.princeton.edu/~wn/schema/>

WordNet is organised in synsets, an abstract entity roughly described by the
associated wordForms. Synsets are RDFS instances of one of the subclasses of
LexicalConcept. We are looking for a wordForm belonging to two synsets of a
different subtype of LexicalConcept. Figure 5 illustrates a query result and gives
some relevant metrics on WordNet.

To illustrate the need for optimisation as well as to provide material for fur-
ther discussion we give two translations of this query. Figure 6 shows the direct
translation, which requires 3.58 seconds CPU time on an AMD 1600+ processor
as well as an alternative which requires 8,305 CPU seconds to execute, a slow-
down of 2,320 times. Note that this translation could be the direct translation
of another SeRQL query with the same semantics.

LexicalConcept

Noun Verb

Synset 23 Synset 42

"sneeze"

WordNet metrics
Distinct wordForms 123,497
Distinct synsets 99,642
wordForm triples 174,002
Subclasses of LexicalConcept 4

Fig. 5. According to WordNet, the word “sneeze” can be interpreted as a noun as well
as a verb. The tabel to the right gives some metrics of WordNet.

134 J. Wielemaker

s1(L) :-
rdf(S1, wns:wordForm, L), rdf(S2, wns:wordForm, L),
rdf(S1, rdf:type, C1), rdf(S2, rdf:type, C2),
rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
C1 \== C2.

s2(L) :-
rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
C1 \== C2,
rdf(S1, rdf:type, C1), rdf(S2, rdf:type, C2),
rdf(S1, wns:wordForm, L), rdf(S2, wns:wordForm, L).

Fig. 6. Two translations for our query on WordNet. The first executes in 3.58 seconds,
the second in 8,305.

Before we start discussing the alternatives for optimising the execution we
explain why the execution times of these equivalent programs differs. Suppose
we have a conjunction of completely independent literals A,B,C, where inde-
pendent means no variables are shared between the members of the conjunction.
If b() denotes the number of solutions for a literal, the total solution space is
b(A) × b(B) × b(C) and therefore independent from the order. If we take the
number of visited states rather than the solution space as a measure the formula
becomes

b(A) + b(A)× b(B) + b(A)× b(B)× b(C)

This measure is proportional to the number of logical inferences executed
by Prolog and a good measure for the expected execution time [6]. It suggests
to place literals with the smallest number of alternatives first, but as the last
component is normally dominant the difference is not large and certainly cannot
explain the difference between the two translations shown in Fig. 6. In fact the
second is ordered on the branching factor without considering dependencies.

To understand this difference we must look at the dependencies, expressed
by shared variables. Executing an rdf/3 literal causes all its arguments to be
grounded, restricting the number of alternatives for rdf/3 literals sharing the
grounded variables. What is really important is how much the set of alternatives
of a literal is reduced by executing another literal before it. The order of s1/1
in Fig. 6 executes the most unbound literal first (174,002 solutions), but wins
because after the execution of this literal not much further branching is left.

6 Estimating the Complexity

The first step towards optimising is having an estimate of the complexity of a
particular translation. We use the number of visited nodes in the search-tree
as an estimate for the execution time, ignoring the (small) differences in time

An Optimised Semantic Web Query Language Implementation in Prolog 135

required to execute the different rdf/3 literals. Our estimate is based on two
pieces of information extracted from the low-level database we have realised in
the C language.

Estimated number of solutions for an rdf/3 call. For each rdf/3 goal for
which zero or more of the arguments have a known value and the remaining
arguments are known to be unbound we can easily estimate the complexity.
If no arguments are known this estimate is the total number of triples in the
database, a number that is easily incrementally maintained by the database
manipulation routines. If all arguments are known the literal is a boolean
test, whose solution set we estimate as 0.5 (see Boolean tests below). In all
other cases we compute the indexing and return the length of the hash-chain
for the computed index. Assuming a well distributed hash-function this is a
reasonable estimate for the number of solutions the goal will provide, while
the information can be maintained incrementally by the database primitives.

Estimating the branching factor of predicates. Execution of literals
binds variables, but unfortunately we do not know with what value(s).
Observing queries however we see that for many literals we do know the
predicate (2nd argument of rdf/3) at query time, leaving two interesting
cases: subject bound to unknown value and object unbound and the other
way around. We deal with those by defining subject branch factor (sbf)
resp. object branch factor (obf):

sbf(P) =
triples(P)

distinctSubjects(P)
This figure is not cheaply maintained on incremental basis and therefore
computed. The result is cached with the predicate and only recomputed if
the number of triples on the predicate has changed considerably.

Boolean tests. Boolean tests resulting from the WHERE clause cannot cause
branching. They can succeed or fail and their branching factor is estimated
as 0.5, giving preference to locations early in the conjunction. This number
may be wrong but, as we explained in Sect. 5, reordering of independent
members of the conjunction only has marginal impact on the execution time
of the query. If not all arguments to the test are sufficiently instantiated com-
putation of the branching factor fails, causing the conjunction permutation
generator to generate a new alternative.

The total complexity of a conjunction is now easily expressed as the summed
sizes of the search spaces after executing 1, 2, . . . n steps of the conjunction.
The branching factor for each step is deduced using symbolic execution of the
conjunction, replacing each variable in a literal with a Skolem instance. Skolem
instantiation is performed using SWI-Prolog attributed variables [5].

7 Optimising the Conjunction

With a good and quick to compute metric for the complexity of a particular
order, the optimisation problem is reduced to a generate-and-test problem. A

136 J. Wielemaker

conjunction of N members can be ordered in N ! different ways. As we have seen
actual examples of N nearing 40, naive permutation is not an option. We do not
have to search the entire space however as the order of sub-conjunctions that do
not share any variables can be established independently, after which they can
be ordered on the estimated number of solutions.

Initially, for most conjunctions all literals are related. After having executed a
few literals, the grounded variables often break the remaining literals in multiple
independent groups that can be optimised separately. The algorithm is show in
Fig. 7.

order(conj)
{ make_subgraphs(conj, subconjs);
if (count(subconjs) > 1)
{ maplist(order, subconjs, ordered_subs);

sort_by_complexity(ordered_subs, sorted);

return join_subgraphs(sorted);
} else
{ first = select(conj, rest); (*)

skolem_bind(first);
make_subgraphs(rest, subconjs);
maplist(order, subconjs, ordered_subs);
sort_by_complexity(ordered_subs, sorted);

return first + join_subgraphs(sorted);
}

}

Fig. 7. Generating permutations of a conjunction. Note that select(), marked (*), is
non-deterministic.

Combining this generator with the complexity estimate of Sect. 6 and select-
ing the best completes the order selection process. As the permutation algorithm
only returns results from reordering independent subgraphs and it selects the
best one by sorting the independent subgraphs on their branching, the returned
order is guaranteed to be optimal if the complexity estimate is perfect. In other
words, the maximum performance difference between the optimal order and the
computed order is the error of our estimation function.

8 Optional Path Expressions and Control Structures

As explained in Sect. 4, SeRQL optional path expressions are compiled into
(Goal *-> true ; true), where Goal is the result of compiling the path expres-
sion. We must handle Goal as well as other goals appearing in Prolog control
structures resulting from compiling the WHERE clause as a unit. If such units

An Optimised Semantic Web Query Language Implementation in Prolog 137

are conjunctions they are subject to recursive invocation of our ordering algo-
rithm. Please do note that the ordering and complexity of a conjunction depends
on the variables that are already instantiated when the conjunction is entered.
Conjunctions in control structures must therefore be ordered and have their com-
plexity determined as part of estimating the complexity of the outer conjunction,
as illustrated by the following simplified Prolog code fragment:

complexity((Goal0 *-> true ; true),
(Goal *-> true ; true), Complexity) :-

optimise(Goal0, Goal),
complexity(Goal, Complexity).

Optional path expressions do not change the result set of the obligatory part of
the query. It can only produce more variable bindings. Therefore we can simplify
the optimisation process of a conjunction by first splitting it into its obligatory
and optional part and then optimise the obligatory part followed by the optional
part:

optimise(Goal0, Goal) :-
split_optional(Goal0, Obligatory0, Optional0),
optimise(Obligatory0, Obligatory),
skolem_bind(Obligatory),
optimise(Optional0, Optional),
Goal = (Obligatory, Optional).

9 Solving Independent Path Expressions

As we have seen in Sect. 7, the number of distinctive permutations is much
smaller than the number of possible permutations of a goal due to the fact that
after executing a few literals the remainder of the query breaks down into inde-
pendent subgraphs. Independent subgraphs can be solved independently and the
total result is simply the Cartesian product of all partial results. This approach
has several advantages:

– The complexity of solving two independent goals A and B separately is
b(A) + b(B) rather than b(A) + b(A)× b(B).

– If any of the independent goals has no solutions we can abort the whole
query and report it has no solutions.

– The subgoals can be solved in parallel.
– The result-set can be expressed as the Cartesian product of partial results,

requiring much less communication between server and client.
– It eliminates the need for the ‘sort by complexity’ step in Fig. 7.

This optimisation can be performed after the reordering. It simply does
symbolic evaluation and Skolem instantiation of the conjunction statement-by-
statement and splits the remainder into subgraphs. If conjunction is represented
as a list, the simplified Prolog code fragment below suffices.

138 J. Wielemaker

cartesian(Conjunction, Carhesian) :-
append(Before, After, Conjunction),
skolem_bind(Before),
make_subgraphs(After, SubGraphs),
SubGraphs = [_,_|_], !, % demand at least two
append(Before, serql_carthesian(SubGraphs), Carhesian).

cartesian(Conjunction, Conjunction).

This optimisation can be performed recursively on the created independent sub-
graphs as well as on conjunctions inside control structures.

10 Results

The total code size of the server is approximately 6,700 lines (including com-
ments, but excluding the 25-line GPL file headers). Major categories are show
in Tab. 1. We think it is not realistic to compare this to the 86,000 lines of Java
code spread over 439 files that make up Sesame. Although both systems share
considerable functionality, they differ too much in functionality and what parts
are reused from the respective libraries to make a detailed comparison feasible.

Table 1. Size of the various components, counted in lines. RDF/XML I/O is only a
wrapper around the SWI-Prolog RDF library.

Category lines
HTTP server actions 2,521
Entailment modules (3) 281
Result I/O (HTML, RDF/XML, Turtle) 1,307
SeRQL runtime library 192
SeRQL parser and naive compiler 874
Optimiser 878
Miscellaneous 647

We have evaluated our optimiser on two domains, the already mentioned
WordNet and an RDF database about cultural relations in Spain with real-life
queries on this database. Measurements have been executed on a dual AMD
2600+ machine running SuSE Linux and SWI-Prolog 5.5.15.

We have tested our optimiser on artificial as well as real-life SeRQL queries.
In all observed cases the optimisation time is only a modest fraction of the
execution time of the optimal order as well as generally shorter than the time
required to parse the query.

First we study the example of Fig. 6. Our optimiser converts either translation
into the goal shown in Fig. 8. The code for s1/1 was handcrafted by us and can
be considered an educated guess for best performance. The result of the optimiser
came as a surprise, but actual testing proved the code of Fig. 8 is 1.7 times faster
than the code of s1/1 and indeed the fastest possible. The optimiser requires
only 90ms, or just 4.3% of the execution time for the optimal solution.

An Optimised Semantic Web Query Language Implementation in Prolog 139

q(L) :-
rdf(S1, rdf:type, C1),
rdf(S1, wns:wordForm, L),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(S2, rdf:type, C2),
rdf(S2, wns:wordForm, L),
C1 \== C2,
rdf(C1, rdfs:subClassOf, wns:LexicalConcept))

Fig. 8. Optimised WordNet query

The second test-set consisted of three queries on a database of 97,431 triples
coming from a real project carried out at Isoco6 These queries were selected
because Sesame [3] could not answer them (2 out of 3) or performed poorly. Later
examination revealed these queries consisted of multiple largely independent
sub-queries, turning the result in a huge Cartesian product. Splitting them into
multiple queries turned them into manageable queries for Sesame. Exploiting the
analysis of independent path expressions described in Sect. 9, our server does
not need this rewrite. The results are shown in Tab. 2. We could only verify the
result of the 2nd query against Sesame, which returns the same 3,826 solutions
in 132.72 seconds.

Table 2. Results on complex queries. The engine has been modified slightly to return
the Cartesian product as a description instead of expanding it as the expansion does
not fit in memory.

time (ms) complexity time (s)
Id Edges optimise initial final speedup total solutions
1 38 10ms 1.4e16 1.4e10 1e6 2.48s 79,778,496
2 30 10ms 2e13 1.3e5 1.7e8 0.51s 3,826
3 29 10ms 1.4315 5.1e7 2.7e7 11.7s 266,251,076

11 Related Work

Using logic for Semantic Web processing has been explored by various research
groups. See for example [12] which exploits Denotational Semantics to provide
a structured mapping from language to semantics. Most of these approaches
concentrate on correctness, while we concentrate on engineering issues and
performance.

Much work has been done on optimising Prolog queries as well as database
joins by reordering. We specifically refer to the work of Struyf and Blockeel [16]
because it is recent and both the problem and solution are closely related. They
describe the generation of programs through ILP [11]. The ILP system itself

6 www.isoco.com

140 J. Wielemaker

does not consider ordering for optimal execution performance, which is similar
to compiling declarative SeRQL statements not producing optimal programs. In
ILP, the generated program must be used to test a large number of positive and
negative examples. Optimising the program before running is often worthwhile.

The described ILP problem differs in some places. First of all, for ILP one
only has to prove that a certain program, given a certain input succeeds or fails,
i.e. goals are ground. This implies they can use the cut to separate independent
parts of the conjunction (section 4.2 of [16]). As we have non-ground goals and
are interested in all distinct results we cannot use cuts but instead use the Carte-
sian product approach described in Sect. 9. Second, Struyf and Blockeel claim
complexity of generate-and-test (order N !) is not a problem with the observed
conjunctions with a maximum length of 6. We have seen conjunctions with 40 lit-
erals. We introduce breaking the conjunctions dynamically in independent parts
(Sect. 7) can deal with this issue. Finally, the uniform nature of our data gave
us the opportunity to build the required estimates for non-determinism into the
low-level data structures and maintain them at low cost (Sect. 6).

12 Discussion

Sofar, we have been using Prolog in the Semantic Web domain for reasoning
for annotation [13]. This reasoning was not based on formal Semantic Web lan-
guages, but using ad-hoc defined schemas. With our SeRQL implementation
we have proven that we can deal completely and efficiently with RDFS. We
have proven that SWI-Prolog, supporting threading, attributed variables and
equipped with extensive libraries for graphics, XML, RDF triple store and HTTP
is a suitable tool for building a variety of Semantic Web applications, covering
both interactive and network server applications.

As the Semantic Web evolves with more powerful formal languages such as
OWL and SWRL7, it becomes unlikely we can compile these easily to efficient
Prolog programs. TRIPLE [15] is an example of an F-logic based RDF query
language realised in XSB Prolog [7]. We believe extensions to Prolog that facil-
itate more declarative behaviour will prove necessary to deal with the Semantic
Web. Both XSB’s tabling and constraint logic programming, notably CHR [14]
are promising extensions.

13 Conclusions

We have employed Prolog for storing and querying Semantic Web data. In [18] we
have demonstrated the performance and scalability of the storage module for use
in Prolog. In this paper we have demonstrated the feasibility realising an efficient
implementation of the declarative SeRQL RDF query language in Prolog. The
resulting system can easily be expanded with new entailment reasoners and can
be accessed from both Prolog and Java through the common HTTP interface.
7 http://www.daml.org/2003/11/swrl

An Optimised Semantic Web Query Language Implementation in Prolog 141

The provided algorithm for optimising the matching process of SeRQL
queries reaches optimal results if the complexity estimate is perfect. The worse
case complexity of ordering a conjunction is poor, but for tested artificial and
real-life queries the optimisation time is shorter than the time needed to execute
the optimised query. For trivial queries this is not the case, but here the response
time is dictated by the HTTP protocol overhead and parsing the SeRQL query.

The SeRQL server is available under the SWI-Prolog LGPL/GPL license
from http://www.swi-prolog.org/packages/SeRQL.

Acknowledgements

We would like to thank Oscar Corcho for providing real-life data and queries.
This research has been carried out as part of the HOPS project8, IST-2002-
507967. Jeen Broekstra provided useful explanations on SeRQL.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web. Scientific
American, 284(5):34–43, May 2001.

2. D. Brickley and R. V. Guha (Eds). Resource description framework (RDF) schema
specification 1.0. W3C Recommendation, March 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

3. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In I. Horrocks and
J. Hendler, editors, Proceedings of the First Internation Semantic Web Conference,
number 2342 in Lecture Notes in Computer Science, pages 54–68. Springer Verlag,
July 2002.

4. Mike Dean, Guus Schreiber, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL
web ontology language reference. Working draft, W3C, March 2003.

5. Bart Demoen. Dynamic attributes, their hProlog implementation, and a first eval-
uation. Report CW 350, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

6. Carlos Escalante. A simple model of prolog’s performance: extensional predicates.
In CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced
Studies on Collaborative research, pages 1119–1132. IBM Press, 1993.

7. Juliana Freire, David S. Warren, Konstantinos Sagonas, Prasad Rao, and Terrance
Swift. XSB: A system for efficiently computing well-founded semantics. In Proceed-
ings of LPNMR 97, pages 430–440, Berlin, Germany, jan 1997. Springer Verlag.
LNCS 1265.

8. Markian M. Googley and Benjamin W. WAH. Efficient reordering of PROLOG
programs. IEEE Transactions on Knowledge and Data Engineering, pages 470–482,
1989.

8 http://www.hops-fp6.org

142 J. Wielemaker

9. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison
of rdf query languages. In Proceedings of the Third International Semantic Web
Conference, Hi roshima, Japan, 2004., NOV 2004.

10. G. Miller. WordNet: A lexical database for english. Comm. ACM, 38(11), Novem-
ber 1995.

11. S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and Method.
Journal of Logic Programming, 19-20:629–679, 1994.

12. Kunal Patel and Gopal Gupta. Semantic processing of the semantic web. Lecture
Notes in Computer Science, 2870:80–95, January 2003.

13. Guus Schreiber, Barbara Dubbeldam, Jan Wielemaker, and Bob Wielinga.
Ontology-based photo annotation. IEEE Intelligent Systems, may/june 2001.

14. Tom Schrijvers and Bart Demoen. The K.U. Leuven CHR system: implementation
and application. In Thom Frühwirth and Marc Meister, editors, First Workshop
on Constraint Handling Rules: Selected Contributions, pages 430–440, 2004. ISSN
0939-5091.

15. Michael Sintek and Stefan Decker. TRIPLE — A query, inference, and trans-
formation language for the Semantic Web. Lecture Notes in Computer Science,
2342:364–, 2002.

16. J. Struyf and H. Blockeel. Query optimization in inductive logic programming by
reordering literals. In T. Horváth and A. Yamamoto, editors, Proceedings of the
13th International Conference on Inductive Logic Programming, volume 2835 of
Lecture Notes in Artificial Intelligence, pages 329–346. Springer-Verlag, 2003.

17. Jan Wielemaker. Native preemptive threads in SWI-Prolog. In Catuscia
Palamidessi, editor, Practical Aspects of Declarative Languages, pages 331–345,
Berlin, Germany, december 2003. Springer Verlag. LNCS 2916.

18. Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-based infrastructure
for RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.

A Distributed and Probabilistic Concurrent Constraint
Programming Language

Luca Bortolussi1 and Herbert Wiklicky2

1 Dep. of Maths and Computer Science, University of Udine, Udine, Italy
bortolussi@dimi.uniud.it

2 Dep. of Computing, Imperial College, London, UK
herbert@doc.ic.ac.uk

Abstract. We present a version of the CCP paradigm, which is both distributed
and probabilistic. We consider networks with a fixed number of nodes, each of
them possessing a local and independent constraint store. While locally the com-
putations evolve asynchronously, following the usual rules of (probabilistic) CCP,
the communications among different nodes are synchronous. There are channels,
and through them different objects can be exchanged: constraints, agents and
channel themselves. In addition, all this activities are embedded in a probabilis-
tic scheme based on a discrete model of time, both locally and globally. Finally
we enhance the language with the capability of performing an automatic remote
synchronization of variables belonging to different constraint stores.

1 Introduction

In this paper we present a probabilistic and distributed version of Concurrent Constraint
Programming (CCP). This version integrates CCP [17] in a network framework which
resembles KLAIM [3], but which has also some features of π-calculus [14]. In addition,
the language is provided with a probabilistic semantic.

Concurrent Constraint Programming was introduced in [17], and it is based on a
computational paradigm founded on constraints. In particular, the usual Von Neumann’s
store is replaced by a store that contains constraints on the variables into play. Com-
putations evolve monotonically: constraints can only be added in the store, but never
removed. The idea behind this approach is to attach to variables not a single value, but
rather an interval of possible values, which is refined as long as new information, in
the form of constraints, is available. An important feature about this language is that it
allows a concurrent reasoning about problems which naturally involve constraints, like
optimization problems. In a CCP program, different agents can run in parallel, and the
communication between them is performed through shared variables in the constraint
store. In particular, agents can either tell a constraint in the constraint store, or they
can ask if a particular relation is satisfied by the current configuration of the system.
Constraint system are recalled in Section 3.

In this work we extend CCP in two directions: following [5], we provide it with
a probabilistic semantic and we introduce the possibility of distributing programs in a
network of computing machines. There are several reasons for having at disposal a prob-
abilistic and distributed version of CCP. First of all, distributed randomized algorithms

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 143–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 L. Bortolussi and H. Wiklicky

are getting more and more popular. In fact, several languages have been proposed to
describe them, like [11] and [15]. In particular, a lot of efforts are put in developing dis-
tributed metaheuristics for combinatorial optimization algorithms (cf. [16] and [13]),
which involve an objective function to optimize and constraints on the variables into
play. These features are naturally described in a constraint-based framework, like the
one offered by CCP, while in other languages their description could be cumbersome.
Therefore, extending CCP with both probabilistic and distributed features makes possi-
ble a fast prototyping of these algorithms, and also permits to perform some reasoning
on them.

The extension of CCP in a distributed setting presents some obstacles. The main
problem is essentially related to the way communication occurs in CCP. In fact, pro-
cesses interact by posting constraints on global shared variables, and therefore commu-
nication modifies globally the system. But this form of communication is very unsuit-
able in a distributed environment: here we need a clear distinction between the evolution
of the computation at the local level (the nodes of the network), and the global inter-
actions of the single nodes. Hence there’s the necessity of providing CCP with new
primitives taking into account this distinction between the global level and the local
one. Approaches in this direction can be found in [9,8,1,12,20], and we discuss them in
more detail in Section 2.

Our main idea is to cast CCP into a KLAIM-like description of the network (cf. [3]).
The KLAIM language is a distributed version of the LINDA paradigm, with the peculiar
characteristic that it presents a clear distinction between the local level and the network
level. The basic distributed components are nodes, which are then combined together to
form a network. The topology of the network is encoded in the environment functions,
which assign to each locality variable the address of a particular node. In the language
presented, we define the basic distributed entity as a node, and then we compose nodes
together to form a network. In each node the computation evolves (locally) according to
the CCP paradigm: we have several agents which interact with ask and tell primitives.
Moreover, each node has its own constraint store. While composing together nodes, we
have to model properly the “union” of the local constraint store, and we do this via
a direct product construction (cf. Section 3). This means that constraint stores located
at different nodes are completely independent, hence the local actions performed in a
node cannot interfere with the computations going on in other localities. The choice of
the direct product, in particular, is suitable for the application of probabilistic abstract
interpretation techniques [6] to perform a statical analysis of programs, like in [7]. The
main problem we have to face, however, relates to the flow of information between dif-
ferent nodes. In fact, in CCP information can be exchanged only using global shared
variables. But all our variables are local, and CCP offers no solution to transfer infor-
mation between local and independent variables. In fact, the first, naive, idea of letting
an agent tell constraints to other constraint stores is not going to work, due to variable
name clashing. In addition, even if the name conflicts can be solved in some way, an
agent will still be unable to match pieces of information located in different parts of the
network.

Therefore, to let nodes exchange information, we must define new primitives. Fol-
lowing the approach in [9] and [1], we define a synchronous message-based

A Distributed and Probabilistic CCP Language 145

communication which resembles the π-calculus paradigm: there are channels and mes-
sages flowing along them.

We pinpoint that the mechanisms presented up to now create a neat distinction be-
tween the local level, consisting of nodes and of computations localized in them, and
the global level, related to the network, its topology, its dynamics. This distinction al-
lows us to model separately the evolution of the single nodes and of the network, thus
simplifying the task of adding probabilities to the system. In detail, we decide to use a
discrete time both for local and global dynamics (which means probabilistic scheduling
policies), but we impose an asynchronous local communication versus a synchronous
global one. The price of this distinction is an increased complexity both in the descrip-
tion of the configurations and in the transition rules.

In this language there are three basic objects that can be communicated along the
network: constraints, channel names and agents. To communicate constraints, however,
we must tackle the problem of variable name conflicts between different nodes. This
is achieved by “abstracting” a constraint with respect to a subset of its free variables
(hiding all the others), thus creating a kind of template, whose (template) variables
can be replaced by suitable ones specified by the receiver. We give more details in
Section 4.1. Channels can be exchanged in a way that resembles closely the π-calculus.
Their communication allows to reconfigure the topology of the network, by changing
the communication links. In addition, new channel names can be created dynamically,
providing a form of private communication. The third object that can be communicated
are agents. As for the case of constraints, we need to abstract them in order to avoid
variables clashes. Therefore, (some of) the free variables of a transmitted agent are
replaced by suitable ones belonging to the receiving node. In addition, an agent that
migrates can carry with itself some information about (part of) its free variables.

Another feature that may be needed in a distributed CCP is the possibility of syn-
chronizing variables belonging to different constraint stores. This would allow for an
automatic information flow between different nodes, and would greatly simplify the
writing of programs. This linking of variables is realized by adding information about
linked variables directly in the configuration of the system, at the network level. We
refer to Section 6 for further details.

We want to remark the important fact that the language not only is distributed, but it
also evolves following probabilistic rules, meaning that every form of non-determinism
is solved probabilistically. As already said, this feature allows for an easy description
of distributed randomized algorithms and especially, due to the constraint-based frame-
work, parallel stochastic optimization algorithms. In addition, the different primitives
for local and global communication make possible to model such algorithms in different
ways, permitting a rapid comparison between them.

The paper is organized as follows: in Section 2 we present some related work. In
Section 3 we recall the concept of constraint system, while in Section 4 we introduce the
syntax of the language. In Sections 4.1 and 4.2 we spend some words on constraint and
agent abstractions, and we discuss some issues related with communication channels.
The Structural Operational Semantics is introduced and discussed in detail in Section 5,
while Section 6 deal with the linking mechanisms. Finally in Section 7 we draw the final
conclusions.

146 L. Bortolussi and H. Wiklicky

2 Related Work

In this Section we discuss briefly some related work. In particular, CCP has been ex-
tended both in the probabilistic setting and in the distributed one. As far as we know,
there is no extension covering both aspects together.

Probabilistic CCP (pCCP) has been introduced in [5] to declaratively model ran-
domized algorithms. It is now a quite well established language, with its own opera-
tional [5] and denotational [4] semantic. There is also a probabilistic version of abstract
interpretation [6] that can be used to perform some static analysis of pCCP programs.

On the other hand, there has been a lot of work also for devising a distributed version
of CCP. This is not an easy task, due to the fact that communication in CCP proceeds by
posting constraints acting on global variables. To tackle this problem, different forms
of communication between agents have been added. In [9], Réty proposes a π-calculus
approach to model the communication between agents located in different nodes. In par-
ticular, new instructions for exchanging messages are introduced, even if there is still a
single, global, constraint store, and the independence among variables is imposed as a
further condition in the definition of the agents. In addition, the concepts of constraint
abstraction and linking are defined. In [1], De Boer et alt. present a similar approach,
with global communication performed via message passing and local communication
performed in CCP style. They also introduce a concept of independent local stores, even
if the global configuration of a network is taken to be the least upper bound of the local
constraint stores (cf. Section 3). In [12] a different type of synchronous communication
is discussed, based on a redefinition of the semantics of ask and tell primitives: a con-
straint is told only if there in an agent asking for it. Also this version makes use of a
single global constraint store.

Our approach towards distribution shares some features with the previous
approaches, but we impose a strict independence between local constraint stores, such
that the interaction between localized variables must always be made explicit. This di-
vision creates a clear distinction between the local and the global level, at the price of
introducing more instructions and a more complex representation of the configuration
of the system. This increased complexity, however, allows a clear modelling the prob-
abilistic evolution of the system, by distinguishing between local and global time. In
addition, this separation can be exploited in the context of probabilistic abstract inter-
pretation [6], in particular in the static analysis of distributed networks, as done by Di
Pierro et alt. in [7]. Finally, having a concept of computational site at disposal, we can
define easily mobility of agents.

Regarding the migration of CCP agents, work has been done by Palamidessi et alt.
in [8], where CCP is enriched by a hierarchical network structure and agents can move
from one node to another one (bringing with them their subagents). Our network struc-
ture, instead, is simpler (there is no hierarchical organization), as we focused mainly on
the communication issues.

3 Background and Preliminaries

Computations in CCP are performed through a monotonic update of the so called con-
straint store, which is usually modeled as a constraint system. We follow here a well

A Distributed and Probabilistic CCP Language 147

established approach (cf. [18] or [2]), which represents a constraint system as a com-
plete algebraic lattice, where the ordering " is given by the inverse of the entailment
relation #. Usually, such a constraint system is derived from a first-order language to-
gether with an interpretation, where constraints are formulas of the language, and a
constraint c entails a constraint d, c # d, if every valutation satisfying c satisfies also
d. In this case we write d " c. Clearly, in every real implementation the predicate #
must be decidable. In addition, to model hiding and parameter passing, the previous lat-
tice is enriched with a cylindric algebraic structure (cf. [10]), i.e. with cylindrification
operators and diagonal elements.

Formally, a constraint system C = (Con,Con0, V ar,",�, true, false,∃x, dxy)
is a complete algebraic lattice where Con is the set of constraints, ordered by ",
Con0 is the set of finite elements, � is the least upper bound (lub) operation, V ar
is the set of variables, true and false are respectively the bottom and the top element,
{∃x | x ∈ V ar} are the cylindrification operators and {dxy | x, y ∈ V ar} are the
diagonal elements.

In our distributed version of CCP, we assign an independent constraint store to each
node composing the network: if we have m nodes in our system, then we have m con-
straint systems C1, . . . , Cm. Therefore, we can model a global configuration of the net-
work by the direct product C1 × . . . × Cm.This product, where all the operations are
performed elementwise, is still a cylindric algebra. The proof of this fact is straightfor-
ward, and follows from more general results in [10]. A fundamental property of this
construction is that the variables are independent between different constraint stores.

4 Syntax

The distributed network is basically composed by a set of nodes, linked between them
by communication channels. Every node contains CCP-based processes, while the CCP
syntax is enriched with communication mechanisms at the network level.

We need several different syntactic objects:

1. physical localities, or sites, which are the addresses of the nodes of the network, and
are taken from a set S. Every node must have a distinct address, and we can assume
S to be countable and indexed by the natural numbers (i.e. S = {s1, . . . , sn, . . .}).
We will impose, however, a restriction on the actual number of nodes that can be
used in a program, i.e. we will assume that they are finite. Often we refer to a node
with address sj simply as node j;

2. channel names and channel variables. Channels specify the topology of the net-
work, and they are communication routes between nodes. Channel names are taken
from the set L, and are indicated by Greek letters α, β, and so on. Channel vari-
ables are taken from the set V arL, and are indicated by underlined Greek letters,
like α, β;

3. environments. They are functions which associate to each channel a probability
distributions over S. Formally, they are indicated by �, and � : L → D(S), where
D(S) is the set of probability distributions over S. Therefore, environments specify
how transmissions are performed through shared channels. We comment more on
this fact in Section 5.

148 L. Bortolussi and H. Wiklicky

A node in the network is defined as:

n ::= s ::p� P,

where P is the current agent that runs on this node, s is the address of the node, taken
from S, � is the environment associated to node n and p is a probability associated
to n. This is the probability with which node n is chosen for execution by the global
scheduler.

A network N is defined as a parallel composition of a finite number of nodes:

N ::= ‖m
i=1 ni.

To have a probability distribution over the network, the probabilities associated to each
node should sum up to one. However, we omit this request, as we are going to deal with
normalization structurally, i.e. via a congruence relation (cf. next Section). Moreover,
the scheduling probabilities are fixed, and cannot change during the execution of the
program.

We note that posing an upper bound on the number of nodes which compose a
network is not a real limitation, as we can choose this number very high, with possibly
many inactive nodes at the beginning of the computation which can be populated by
processes in the future.

In Table 1 we describe the syntax of an agent. It is composed by a declaration of
procedures and by an initial goal.

Table 1. Syntax of pDCCP

Program = Decl.A

D = ε | Decl.Decl | p(−→x) : −A

A = 0 | tell(c).A | ∃xA | p(−→x) |∑k
i=1 qi : ask(ci).Ai | |ki=1 qi : Ai |

outc(λ−→x c)@α.A | inc(−→y)@α.A | outloc(β)@α.A | inloc(β)@α.A | new(β).A |
outA(λ−→x A,−→x0)@α.A | inA(−→y)@α.A (−→x0 ⊆ −→x ⊆ fv(A))

The declaration section is standard, and we ask that fv(A) ⊆ −→x , for all declara-
tions of the form p(−→x) : −A. The first 6 instructions of agent syntax are also standard
and they are taken from the probabilistic version of CCP (cf. [5]). The remarkable facts
are the probabilistic choice operator (thus non-determinism is replaced by probabilistic
choice), and the probabilistic version of the parallel operator. The probability distri-
bution associated to it introduces priorities in the local scheduler, and thus may bias
the interleaving of processes. In both these instructions, qi represents the probability
associated either to the branch i or to the parallel agent i.

The out and in instructions are the primitives for communication. They appear in
three different forms, as there are three different objects that we want to send over chan-
nels, i.e. constraint (abstractions), channel names and agent (abstractions). Constraint
and agent abstractions are indicated respectively with λ−→x c and λ−→x A; cf. below for an

A Distributed and Probabilistic CCP Language 149

explanation. Finally, the new instruction creates new channel names, in order to dynam-
ically reconfigure the topology of the network.

All global communication instructions are of the form out(·)@α or in(·)@α, where
α can be both a channel name or a channel variable. Clearly, actual communications
can be performed only on real channels, not on channel variables. Therefore, we must
impose that all channel variables are bounded, i.e. they appear in the scope of an inloc
or a new instruction. We write A[β/β] to indicate that the channel variable β has been
replaced by the channel name β.

4.1 Constraint and Agent Abstractions

The independence of variables among different constraint stores poses some problems
in the communications performed between nodes. In particular, if a process at node i
wants to communicate a constraint c, then we have the problem that variables in c are
related to the constraint store Ci. If c is sent to another node, say j, then we must specify
which variables of Cj it refers to. This choice can be performed by the receiving process
at node j. However, to perform this renaming, we have to abstract the variables present
in c, in order to create a kind of constraint template, where the new variables can be put.
We follow the approach introduced in [9], making use of constraint abstractions.

A constraint abstraction is a couple (−→x , c), where−→x ⊆ fv(c), and will be denoted
by λ−→x c. The variables −→x are the template variables, and all other free variables of c
are hidden (that is to say, c is projected over −→x). We can define the projection operator
Π−→x c = ∃fv(c)\−→x c, i.e. we hide all the variables except the ones in −→x . Then, if −→y
is a vector of variables of the same length of −→x , the application of −→y to λ−→x c is the
constraint (Π−→x c)[−→y /−→x].

The independence among variables creates an analogous problem if we want to
move entire agents along the network. Therefore, we need to define also an abstract ver-
sion of agents. Given an agent A and a subset −→x of its free variables fv(A), an agent
abstraction is a couple (A,−→x), denoted by λ−→x A. The variables −→x are “templates”
that must be substituted by variables −→y belonging to the constraint store of the receiv-
ing node. All the free variables of A different from −→x , instead, must be hidden, and
consequently we define a projection operator also for agents: Π−→x (A) = ∃fv(A)\−→x A.

4.2 Communication Channels

The communication we have at the global level is synchronous and message-based. The
exchange of information between nodes in performed through communication channels
shared among them. These channels, however, cannot be represented by the usual vari-
ables (as in [9]), because constraint stores are totally independent. Therefore, we need
to define a new syntactical category of objects, with their own properties (as in [1]).
Channels will be denoted by names, identified by Greek letters α, β, and so on, all be-
longing to the set L. Each channel name identifies a unique channel, i.e. an idealized
mean or link which represents communication bridges between different nodes of the
network. To allow a dynamical reconfiguration of the topology of the network, we have
also channel variables (indicated by α, β ∈ V arL), which can be substituted, during the
execution of the program, by a channel name. Because of the fact that communications

150 L. Bortolussi and H. Wiklicky

can only happen in channels, we must ask that each channel variable present in an agent
is bounded, i.e. it appears under the scope of an inloc or new instruction. We suppose
that the set of channel’s names is infinite.

Channels introduce a form of non-determinism in the network communications. In
fact, a channel α can be shared by several nodes, and at some time of the execution of
the program, we can have a process that wants to send a message along α and a bunch of
agents which may be able to receive it. This non-determinism is solved probabilistically
by the environment �, which is a function assigning to each channel name a probabil-
ity distribution over nodes (or better, over node’s addresses). Note, however, that the
requirement that each node has an a-priori defined probability distribution assigned to
each channel name is too strong. To relax this condition, we can proceed as follows: we
define a global environment �N , which assigns to every channel the uniform probability
over nodes. Then we allow the environments �′i assigned to nodes to be partial functions
from L to D(S). The “real” environment �i associated to a node is �i = �N • �′i, where
• means that �′i is extended by �N , wherever it is undefined. In particular, we ask that
the environment of every node is undefined for channels created by the instruction new.

We observe that the fact having probability distributions attached to channels let
us define “unidirectional” communications, i.e. channels where the communication can
happen in just one sense. In fact, consider a channel α shared between nodes i and j,
such that �i(α)(sj) > 0 and �j(α)(si) = 0: node j can only receive messages from
node i along α, but can never send something to i (�(α)(s) > 0 is a condition in
communication rules, cf. Section 5).

5 Operational Semantics

The operational semantic of the language is given by a congruence relation between
agents, and by a transition relation between configurations, labeled with probabilities.
As for the syntax, both these objects have two versions, one local and one global.

A configuration of the system at one particular node will be an element of P × C,
where P is the space of processes and C is the constraint store associated to the node.
Therefore, it is a couple 〈A, c〉, with A ∈ P and c ∈ C. Consequently, a configura-
tion of the network will be of the form s1 ::p1

�1
〈A1, c1〉 ‖ . . . ‖ sm ::pm

�m
〈Am, cm〉,

which can be written also s1
p1
〈A1, c1〉�1

‖ . . . ‖ sm
pm
〈Am, cm〉�m

, or equivalently as
〈A1, . . . , Am, c1, . . . , cm〉. That is to say, a global configuration will be a point of
P1 × . . . × Pm × C1 × . . . × Cm, where Pi and Ci indicate respectively the space
of processes and the constraint store of node i.

The congruence relation is twofold. One relation regards agents, and it splits them
into an equivalence class. The other relation, instead, regards network configurations.
They are both defined in Table 2.

Rules (CR1) and (CR2) simply state that the order of a sum and of a parallel com-
position is immaterial. In fact, we ask that two agents are congruent if one is obtained
by the other simply permuting the composing terms. (CR3) and (CR4) deal with nor-
malization issues. In fact, a basic requirement of probabilistic declarative languages is
that the values associated to the choice or parallel operator are positive and add up to
one, i.e. they are a probability distribution. This implies, for instance, that, whenever an

A Distributed and Probabilistic CCP Language 151

agent is added or removed from a parallel composition, we have to go through a process
of renormalization of the associated probabilities. Instead of doing this explicitly, we
define the normalization in the congruence relation: two sums or two parallel compo-
sitions, different just in the numerical weights, are congruent if they are equal after a
normalization of the coefficients. In practice, the congruence class of every choice or
parallel agent, with associated vector of weights −→q , contains all processes which co-
efficients are positive multiples of −→q . We always choose as representative of this class
the unique agent for which −→q is a p.d.

(CR5), instead, states that adding a null agent to a parallel composition does not
modify the program. Note that adding or removing a null agents modifies the vector of
coefficients. However, we do not need to renormalize it, as this is done automatically by
rule (CR4). Rules (CR6), (CR7) and (CR8) simply state the basic properties of the hid-
ing operator. Finally, rule (CR9) affirms the the order of parallel composition of nodes
in a network is irrelevant, while rule (CR10) implements the automatic normalization
trick also at the network level. We observe also that the algebraic laws associated to
a constraint system (cf. [2]) induce an implicit congruence relation over the constraint
store at each node.

The main ingredient of the SOS is the labeled transition relation (LTR). There are
two of such relations, one for the local evolutions and one for the network’s one. Both
are labeled by a real number in [0, 1], representing the probability associated to each
transition. Local transitions are stated in Table 3, while in Table 4 the global transition
system is described. Formally, the local transition relation is indicated by−→ and it is a
subset ofP×C×[0, 1]×P×C, while the global transition relation is represented by =⇒,
and it is a subset ofP1×. . .×Pm×C1×. . .×Cm×[0, 1]×P1×. . .×Pm×C1×. . .×Cm.

Before entering into a detailed description of each transition rule, we must explain
a general trick in the notation. Suppose at some point of the computation the current
agent is a probabilistic choice. Generally, not all ask guards will be entailed, so we have
to renormalize the probability distribution (p.d.) over the entailed branches. Formally,

if the current configuration of the node is
〈∑

i=1,...,k qi : ask(ci).Ai, d
〉

, we define the

Table 2. Congruence relation

(CR1)
∑k

i=1 qi : ask(ci).Ai ≡ ∑k
i=1 qπ(i) : ask(cπ(i)).Aπ(i), for all permutations π

(CR2) |ki=1 qi : Ai ≡ |ki=1 qπ(i) : Aπ(i), for all permutations π

(CR3)
∑k

i=1 qi : ask(ci).Ai ≡ ∑k
i=1 q̃i : ask(ci).Ai where q̃j = qj∑k

i=1 qi

(CR4) |ki=1 qi : Ai ≡ |ki=1 q̃i : Ai where q̃j = qj∑k
i=1 qi

(CR5) q1 : 0 | q2 : A2 | . . . | qk : Ak ≡ q2 : A2 | . . . | qk : Ak,

(CR6) ∃x∃yA ≡ ∃y∃xA

(CR7) ∃xA ≡ ∃yA[y/x] if y is not free in A

(CR8) ∃xA ≡ A if x is not free in A

(CR9) ‖i∈S
si
pi
〈Ai, ci〉�i

≡ ‖i∈S
sπ(i)
pπ(i)

〈
Aπ(i), cπ(i)

〉
�π(i)

∀π permutation of S

(CR10) ‖i∈S
si
pi
〈Ai, ci〉�i

≡ ‖i∈S
si
p̃i
〈Ai, ci〉�i

where p̃j = pj∑
k∈S pk

152 L. Bortolussi and H. Wiklicky

subset Active ⊂ {1, . . . , k} as Active = {i|d # ci}, and then, if j ∈ Active, its
normalized probability is q̃j = qj/

∑
i∈Active qi. Similar considerations apply also to

the local and global parallel constructs. In general, we adopt the notational convention
that, if q is a probability distribution associated to an instruction, then q̃ is the same
probability distribution normalized over active components.

The transition rules that are sketched out in Table 3 resemble closely the one pre-
sented for pCCP in [5]. Rule (LR1) models the tell operation. This operation adds the
constraint c to the store, and always succeeds with probability one. (LR2) deals with the
probabilistic choice, and the probability associated to the transition is the normalized
probability over active guards (cf. above). Rule (LR3) regards parallel composition of
local agents. It states that, if a local transition can happen with probability p, then the
same action can happen in a parallel composition, with probability pq̃j , where q̃j is the
scheduling probability normalized among active agents. Rules (LR4) and (LR5) are the
usual rules for modelling the action of the hiding operator and the parameter passing
(for a discussion of the operator Δx

yA = ∃dxy
y A see [2]). Actually, the delta operator

defined here links vector of variables and not single variables, but it is a straightfor-

ward generalization: Δ
−→y
−→x = Δyk

xk
· · ·Δy1

x1
, if |−→x | = |−→y | = k. Rule (LR6) is the only

outsider, as it gives the semantics of the new instruction, which deals with dynamic
reconfiguration of the network connections. In particular, its effect is that of creating a
fresh channel name βnew and binding the channel variable β to it. Note that, accord-
ing to the convention of Section 4.2, all environments associate a uniform p.d. to new
channel names.

Table 4 contains the definition of the transition relation at the network level. Rule
(GR1) links the local transition and the global ones. It says that, whenever a local action
can be performed in node i with probability p, then a global transition of the network
can be performed with a probability p multiplied by p̃i, i.e. by the probability that the
global scheduler chooses node i for execution, normalized among active nodes. Clearly
a node is active if and only if it can perform a transition, be it a local update or a global
communication.

Rules (GR2) to (GR4) concern the global communication between nodes of the
network.

Table 3. Labeled transition system at the local level

(LR1) 〈tell(c).A, d〉 −→1 〈A, d � c〉
(LR2)

〈∑k
i=1 qi : ask(ci).Ai, d

〉
−→q̃j 〈Aj , d〉 if d � cj

(LR3)
〈A, d〉 −→p 〈A′, d′〉〈

q1 : A |ki=2 qi : Bi, d
〉 −→p·q̃1

〈
q1 : A′ |ki=2 qi : Bi, d

′〉
(LR4)

〈A, d � ∃xc〉 −→p 〈B, d′〉〈∃d
xA, c
〉 −→p

〈
∃d′

x B, c � ∃d′
x

〉
(LR5) 〈p(−→y), c〉 −→1

〈
Δ
−→y−→x A, c

〉
if p(−→x) : −A ∈ Decl

(LR6)
〈
new(β).A, d

〉 −→1
〈
A[βnew/β], d

〉
, where βnew is fresh.

A Distributed and Probabilistic CCP Language 153

Rule (GR2) gives the semantics of the in and out instructions devoted to send con-
straints abstractions among the network. This communication is synchronous, therefore
we need a process at one node, i say, willing to communicate a constraint (abstraction)
λ−→x c over a channel α, and an agent at another node, say j, ready to receive a commu-
nication along the same channel. In addition, the length of the template vector −→x must
coincide with the length of the vector−→y specified by the receiver. If these conditions are
satisfied, then the communication is performed and the constraint store at node j is up-
dated by adding to it (Π−→x c)[−→y /−→x]. The probability associated to this transition is the
product of the (normalized) probability of choosing node i multiplied by the normalized
probability that the transmission along channel α reaches node j, and not another node
with an active process waiting for a communication along α, with a matching template.
This is the probability assigned to the channel by the environment �i. Observe that the
premise of rule (GR2) asks explicitly for �i(α)(sj) > 0, so transmissions cannot be
directed towards nodes sk with �i(α)(sk) = 0. In addition, the above probabilities are
also multiplied by q̃1, which is the local parallel probability of the in agent, normalized
between the other locally parallel agents capable of receiving the same transmission
along α.

Communication of channel names is performed synchronously by the outloc(β)@α
and inloc(β)@α instructions, which semantics is presented in rule (GR3). When the
transmission happens, the sent channel name is received and bound to the the channel
variable specified in the inloc instruction. The probability and preconditions associated
to this transition are the same as in rule (GR2).

The last objects that can be moved along the network are agent abstractions. In ad-
dition to sending agents, we can also transmit the current status of some of their free
variables. In particular, if −→x is the vector of template variables of an agent abstraction

Table 4. Labeled transition system at the network level

(GR1)
〈A, d〉 −→p 〈A′, d′〉

si
pi
〈A, d〉�i

‖ N =⇒p·p̃i
si
pi
〈A′, d′〉�i

‖ N

(GR2)

|−→x | = |−→y | and �i(α)(sj) > 0
si
pi
〈outc(λ−→x c)@α.Ai, di〉�i

‖ sj
pj

〈
q1 : inc(−→y)@α.Aj | A′

j , dj

〉
�j

‖ N =⇒q̃1p̃i·�̃i(α)(sj)

si
pi
〈Ai, di〉�i

‖ sj
pj

〈
q1 : Aj | A′

j , dj �
(
(Π−→x c)[−→y /−→x]

)〉
�j

‖ N

(GR3)

�i(α)(sj) > 0
si
pi
〈outloc(β)@α.Ai, di〉�i

‖ sj
pj

〈
q1 : inloc(β)@α.Aj | A′

j , dj

〉
�j

‖ N =⇒q̃1p̃i·�̃i(α)(sj)

si
pi
〈Ai, di〉�i

‖ sj
pj

〈
q1 : Aj [β/β] | A′

j , dj

〉
�j

‖ N

(GR4)

|−→x | = |−→y | and �i(α)(sj) > 0
si
pi
〈outA(λ−→x A,−→x0)@α.Ai, di〉�i

‖ sj
pj

〈
q1 : inA(−→y)@α.Aj | A′

j , dj

〉
�j

‖ N =⇒q̃1p̃i·�̃i(α)(sj)

si
pi
〈Ai, di〉�i

‖ sj
pj

〈
1
2q1 : Aj | 1

2q1 : (Π−→x A)[−→y /−→x] | A′
j , dj �

(
(Π−→x0

di)[−→y0/−→x0]
)〉

�j

‖ N

where −→y0 ⊆ −→y correspond to −→x0 ⊆ −→x

154 L. Bortolussi and H. Wiklicky

λ−→x A, then we can choose a subsequence −→x0 ⊆ −→x and carry the information about −→x0
together with the agent. To move an agent from node i to node j, we need to specify
which variables −→y of the constraint store of node j will be substituted to the template
variables −→x . Note that the subsequence −→x0 of −→x determines a subsequence −→y0 of −→y ,
where the information carried about −→x0 will be stored. Rule (GR4) specifies the tran-
sition associated with agent migration. Communication can be performed between two
active outA and inA instructions, and is realized by adding in parallel at the receiving
node the agent (Π−→x A)[−→y /−→x]. The information about −→x0 is added by posting to the
constraint store of the receiving node the constraint (Π−→x0

di)[−→y0/−→x0]. The preconditions
and the probability associated to the transition are the same as (GR2) and (GR3). While
putting the agent λ−→x A in parallel with other agents, we have to assign to it the proba-
bility for the local parallel operator. This is done by splitting in two the probability of
the agent that performed the inA instruction. In rule (GR4) this is realized by giving
probability 0.5 to this agent and probability 0.5 to the newly added one. Composition-
ality of local parallelism and the automatic renormalization induced by the congruence
relation assure that we end up with a coherent probability distribution in node j.

Computational Paths and Observables. A configuration of the network is a point in the
space P1× . . .×Pm×C1× . . .×Cm, and we indicate it as (−→P ,−→c). The SOS defines a
labeled transition relation between configurations of the network, where (−→P1,−→c1) =⇒p

(−→P2,−→c2) means that we can go from (−→P1,−→c1) to (−→P2,−→c2) in one step with probability p.
Given a path (−→P1,−→c1) =⇒p1 (−→P2,−→c2) =⇒p2 . . . =⇒pn (−−−→Pn+1,−−→cn+1), its probability p
is the product of the probabilities of the single transitions, p =

∏n
i=1 pi.

The ∗-closure of this relation is defined in the usual way: (−→Pa,−→ca) =⇒∗
p (−→Pb,−→cb)

means that we can reach configuration (−→Pb,−→cb) from (−→Pa,−→ca) in one or more steps.
However, particular care must be put in defining the probability p associated to it. In
fact, in general we can have more than one path from (−→Pa,−→ca) to (−→Pb,−→cb), each one with
its own probability. Therefore, the probability p will be the sum of the probabilities of
all paths leading from (−→Pa,−→ca) to (−→Pb,−→cb).

A computation of the system is successful if it reaches a state where the vector of
agents to be executed is −→0 = (0, . . . ,0) , i.e. when computations in every node have
stopped correctly.

The observables we define hereafter correspond to the input / output behaviour of
the system. Given the vector of declarations

−→
D , the observable O−→

D
((−→A,−→c)) for an

initial configuration (−→A,−→c) is a probability distribution over C1× . . .×Cm, defined as

O−→
D

((−→A,−→c)) =
{
(−→d , p) | (−→A,−→c) =⇒∗

p (−→0 ,
−→
d)
}
.

For finite computations this notion of an observable is quite straight forward and
results in a probability distribution over all possible outcomes. In the case of infinite,
i.e. non-terminating, computations some probabilities could be “lost” which leads to
observables corresponding so-called sub-probability distributions over the finite out-
comes. One could also define a more complicated measure theoretic structure on the
set of all computational paths based on so-called cylindric sets, see e.g. [19], but for
the sake of simplicity we will, for the time being, avoid a further investigation of these
possibilities.

A Distributed and Probabilistic CCP Language 155

6 Linking Variables

Each node in the network possesses its own constraint store, with an independent vari-
able set. Therefore, the updating of information in each constraint store evolves inde-
pendently, a part from the fact that constraint abstractions can be actively communicated
between agents. But sometimes a more efficient and pervasive way of transmitting in-
formation may be necessary. In particular, we may want to link variables −→x and −→y
belonging to different constraint stores, in such a way that whenever a variable xk ∈ −→x
is updated (its domain is restricted by the presence of a new constraint in the constraint
store), then the corresponding variable yi ∈ −→y is updated with the same information.
Note that this linking of variables is unidirectional, i.e. the information flows from −→x
to −→y , and therefore constraints can be posted on −→y without affecting−→x .

This mechanism, which is already present in [9], seems unavoidable if one wants
to synchronize the information present in different constraint stores, and enhance the
features of the language. However, we proceed in a different way than Réty. In fact,
in [9] variables are linked by means of an auxiliary agent that is put in parallel with the
existing ones. However, this approach has some drawbacks: the link agent can generate
infinite spurious computations, by broadcasting the same constraint forever, and more-
over there is an uncontrollable delay between the update of linking variables and the
update of linked variables. While the first problem can be somewhat limited by asking
for weak fairness, the second seems much more troublesome, especially if one want to
reason about the effects of outdated information in computations.

To circumvent this problems, we lift the information about linking from the agent
level to the configuration of the network. In detail, we define the set
L = {(−→x ,−→y , i, j) | −→x ⊂ V ari,−→y ⊂ V arj , |−→x | = |−→y |}, which contains all possible
couples of variables that can be linked together. In particular, if (−→x ,−→y , i, j) ∈ L, then
the flow of information goes from −→x to −→y . Then, at each configuration of the network
P1×. . .×Pm×C1×. . .×Cm we associate a subset L ⊂ L. Therefore, a network configu-
ration is now expressed by an element of the set P1× . . .×Pm×C1× . . .×Cm×℘(L).
The set L contains all the couple of currently linked variables, and can change dy-
namically during the execution of a program, both by adding or removing elements
from it.

In Table 5 we present both the syntax and the rules for dealing with the linking
mechanism. The syntax of the language is extended by three instructions, which cover
the possibility of adding or removing dynamically some links during the execution. The
creation of a link between variables involves two agents located at two different nodes,
one of them publishing some of its variables, which are going to receive information,
and the other linking some of its variables with the published ones. This bidirectional
communication is implemented via the instructions inlink(−→x)@α and outlink(−→y)@α,
and their functioning mechanism is depicted in rule (GR5). This rule works similarly to
(GR2) and (GR3) for what regards the preconditions and the probability of transitions,
while the establishment of a link is modeled by adding the tuple (−→x ,−→y , i, j) to L.

Links can also be removed by the instruction removelink(−→y). This instruction can
be called by an agent which has previously published (one or more times) the variables
−→y . Its effect is described in rule (GR6): it removes all links publishing information to
all variables−→y . Note that subvectors of −→y can still remain linked.

156 L. Bortolussi and H. Wiklicky

Table 5. Syntax and rules for linking variables

A = inlink(−→x)@α | outlink(−→y)@α
removelink(−→y)

(GR5)

�i(α)(sj) > 0, |−→x | = |−→y |(
si
pi
〈outlink(−→y)@α.Ai, di〉�i

‖ sj
pj

〈
q1 : inlink(−→y)@α.Aj | A′

j , dj

〉
�j

‖ N, L
)

=⇒q̃1p̃i·�̃i(α)(sj)

(
si
pi
〈Ai, di〉�i

‖ sj
pj

〈
q1 : Aj | A′

j , dj

〉
�j

‖ N, L ∪ {(−→x ,−→y , i, j)}
)

(GR6)

(
si
pi
〈removelink(−→y).Ai, di〉�i

‖ N, L
)

=⇒p̃i(
si
pi
〈Ai, di〉�i

‖ N, L \ {(−→x ,−→y , j, i) | −→x ⊂ V arj}
)

(GR7)

si
pi
〈Ai, di〉�i

‖ N =⇒p
si
pi
〈A′

i, d
′
i〉�i

‖ N, and di �= d′
i(

si ::pi
�i

〈Ai, di〉 ‖j=1,...,m j �=i
sj
pj 〈Aj , dj〉�j

, L
)

=⇒p(
si
pi
〈A′

i, d
′
i〉�i

‖m
j=1,j �=i

sj
pj

〈
Aj , dj � (

⊔−→x ,−→y :(−→x ,−→y ,i,j)∈L
(Π−→x d′

i[−→y /−→x])
〉

�j

, L
)

The last rule of Table 5 deal with the actual transmission of information between
linked variables. It states that, if the network, without any linking, can perform a transi-
tion with a probability p, and this transition modifies the content of the constraint store
at a node (say i), then the linked network will automatically broadcast the information
to all variables linked to some variable of node i. This transmission is an high level
activity of the network, and it requires a global knowledge of the configuration of the
network. In addition, it is performed simultaneously with the local evolution of node
i. This can be justified by thinking that the broadcasting action is performed by the
global scheduler before letting any other node evolve. Otherwise we can imagine that
the linked variables represent some form of shared memory, in such a way that one pro-
cess can write and another process can read it. Anyway, it would probably be better to
allow some form of controlled delay for this transmission. In this way, we can model in
a more physically sound way the flow of information among the network: the more two
nodes are far away, the longer the delay in receiving the information. Introducing de-
lays, however, requires a modification of the semantics of the system. In particular, we
must modify the concept of configuration: storing the actual state of the computation is
no more sufficient, as now the system must have a form of (limited) memory of its past
history. Therefore, one needs to remember, for instance, the last n states of the system,
if n − 1 is the maximum delay occurring in a linking action. Note that the notions of
computational path and input / output observables of the system can be extended in a
straightforward way to include linking instructions.

7 Conclusions and Future Work

In this paper we extended the CCP computational paradigm with both distributed and
probabilistic features. The resulting language is composed by two structural levels: one

A Distributed and Probabilistic CCP Language 157

local and one global. The local entities are nodes, possessing their own constrain store,
where the computation evolves according to a probabilistic version of CCP rules [5]. At
this local level time is discrete and communications are asynchronous. These nodes are
then connected in a global network, and they can exchange information through com-
munication channels. Communication at this level is synchronous and performed in a
π-calculus style. Three different objects can be exchanged in the network: constraint ab-
stractions, channels and agent abstractions. Moreover, also the evolution of the network
proceeds following probabilistic rules, and the time is discrete also at this level. Finally,
the topology of the network is extended with a mechanism for remote synchronization
of variables belonging to different constraint stores.

This language can be used for modelling distributed optimization algorithm, like
simulated annealing, genetic algorithms and similar ones. Its declarative nature makes
these programs very simple to write, while its stochastic nature makes possible to derive
some properties of the optimization process just by looking at its semantics (or, more
realistically, at some suitable abstraction of it). We have also wrote a metainterpreter in
prolog for a subset of the language, and we are extending it to the full featured one.

In the future, we plan to extend the language by adding more features at the net-
work level. In particular, we want to introduce networks of dynamic size, where the
scheduling probabilities can change during time. In addition, we plan to develop also a
continuous time version of the language, where scheduling probabilities among nodes
are substituted by exponential rates. Finally, we want to provide the language with a de-
notational semantic, following the approach of [4], ad then use probabilistic abstraction
techniques [6] to perform some kind of static analysis [7].

References

1. F.S. de Boer, R.M. van Eijk, W. van der Hoek, and J-J.Ch. Meyer. Failure semantics for the
exchange of information in multi-agent systems. In Proceedings of CONCUR 2000, 1998.

2. F.S. de Boer, A. Di Pierro, and C. Palamidessi. Nondeterminism and infinite computations
in constraint programming. Theoretical Computer Science, 151(1), 1995.

3. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents interaction
and mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

4. A. Di Pierro and H. Wiklicky. A banach space based semantics for probabilistic concurrent
constraint programming. In Proceedings of CATS’98, 1998.

5. A. Di Pierro and H. Wiklicky. An operational semantics for probabilistic concurrent con-
straint programming. In Proceedings of IEEE Computer Society International Conference
on Computer Languages, 1998.

6. A. Di Pierro and H. Wiklicky. Probabilistic abstract interpretation and statistical testing.
In H. Hermanns and R. Segala, editors, Lecture Notes in Computer Science 2399. Springer
Verlag, 2002.

7. A. Di Pierro, H. Wiklicky, and C. Hankin. Quantitative static analysis of distributed systems.
Journal of Functional Programming, To appear.

8. D. Gilbert and C. Palamidessi. Concurrent constraint programming with process mobility.
In Proceedings of CL 2000, 2000.

9. Rety. J. H. Distributed concurrent constraint programming. Fundamentae Informaticae,
34(3):323–346, 1998.

10. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras, Part I. North-Holland, Amsterdam,
1971.

158 L. Bortolussi and H. Wiklicky

11. O. M. Herescu and C. Palamidessi. Probabilistic asynchronous π-calculus. In J. Tiuryn,
editor, Proceedings of FOSSACS 2000, Lecture Notes in Computer Science, pages 146–160.
Springer Verlag, 2000.

12. Brim L., Gilbert D., Jacquet J., and Kretinsky M. Multi-agent systems as concurrent con-
straint processes. In Proceedings of SOFSEM 2001, 2001.

13. M. Milano and A. Roli. Magma: A multiagent architecture for metaheuristics. IEEE Trans.
on Systems, Man and Cybernetics - Part B, 34(2), 2004.

14. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Springer Verlag, 1994.
15. C. Priami. Stochastic π-calculus. Computer Journal, 38(7):578–589, 1995.
16. M. Resende, P. Pardalos, and S. Duni Ekşiog̃lu. Parallel metaheuristics for combinatorial

optimization. In R. Correa et al., editors, Models for Parallel and Distributed Computation -
Theory, Algorithmic Techniques and Applications, pages 179–206. Kluwer Academic, 2002.

17. V. A. Saraswat. Concurrent Constraint Programming. MIT press, 1993.
18. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations of concurrent con-

straint programming. In Proceedings of POPL, 1991.
19. Paul C. Shields. The Ergodic Theory of Discrete Sample Paths, volume 13 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 1996.
20. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mobile objects in

distributed oz. ACM Transactions on Programming Languages and Systems, 19(5):804–851,
1997.

HYPROLOG: A New Logic Programming
Language with Assumptions and Abduction

Henning Christiansen1 and Veronica Dahl2

1 Roskilde University, Computer Science Dept., Roskilde, Denmark
2 Dept. of Computer Science, Simon Fraser University Burnaby, B.C., Canada

henning@ruc.dk, veronica@cs.sfu.ca

Abstract. We present HYPROLOG, a novel integration of Prolog with
assumptions and abduction which is implemented in and partly borrows
syntax from Constraint Handling Rules (CHR) for integrity constraints.
Assumptions are a mechanism inspired by linear logic and taken over
from Assumption Grammars. The language shows a novel flexibility in
the interaction between the different paradigms, including all additional
built-in predicates and constraints solvers that may be available. As-
sumptions and abduction are especially useful for language processing,
and we can show how HYPROLOG works seamlessly together with the
grammar notation provided by the underlying Prolog system. An op-
erational semantics is given which complies with standard declarative
semantics for the “pure” sublanguages, while for the full HYPROLOG
language, it must be taken as definition. The implementation is straight-
forward and seems to provide for abduction, the most efficient of known
implementations; the price, however, is a limited use of negations. The
main difference wrt. previous implementations of abduction is that we
avoid any level of metainterpretation by having Prolog execute the de-
ductive steps directly and by treating abducibles (and assumptions as
well) as CHR constraints.

1 Introduction

Assumption-based reasoning in general, or hypothetical reasoning is defined in
[22] as a logic system in which a set of facts and a set of possible hypotheses are
given. Its instances can be assumed if they are consistent with the facts. Both
abduction (the unsound but useful assumption of B given A and given that B
implies A) and linear and intuitionistic logic inspired assumptions (special facts
that are made available as global resources within a specific scope [25]) fall into
that general category. Their formalization within, respectively, Abductive Logic
Programming [19] and Assumptive Logic Programming [14] refines this general
notion by for instance requiring in the first case consistency with a special type
of facts: integrity constraints. Both allow us to move beyond the limits of classi-
cal logic to explore “possible cause” and “what-if” scenarios. They have proved
useful for diagnosis, recognition, sophisticated human language processing prob-
lems, and many other applications. However in practice, abduction in particular

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 159–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 H. Christiansen and V. Dahl

has not been used to its full potential owing to implementation indirections.
Assumptions can be more efficiently implemented through continuation based
processors such as BinProlog, but there is no Prolog in existence which efficiently
provides both capabilities at the same time.

The present paper generalizes and improves an earlier proposal presented in
the workshop paper [12]. In this article we present a new programming language,
HYPROLOG, which augments Prolog with the following hypothetical reasoning
capabilities:

– linear, intuitionistic and timeless assumption, in the sense of [14] to which
we add the new feature of integrity constraints,

– abduction in the sense of abductive logic programming [19],
– integrity constraints that may refer to both abducibles and assumptions.

These results are significant in that they enhance Prolog’s appeal as a program-
ming language by transporting it beyond the rigid limits of classical logic and
thus making it more appropriate for human-like reasoning in general and for
AI in particular. In addition, they are portable, in the sense that programs in
any Prolog that includes CHR can simply be augmented with our code, which
provides the mentioned extensions, and efficient: the assumptive part runs only
three times slower than in Prolog versions where assumptions are hardwired, and
our abduction runs actually faster than previous implementations for programs
that involve many resolution steps. Finally, our implementation principles can
be seen as demonstration of how hypothetical reasoning can materialize in CHR
even without our system.

We first overview the necessary background on abduction, assumptions, and
CHR; then we present the new language’s syntax and exemplify its use within
both programs and grammars. We discuss implementation principles, semantic
considerations, related work and benchmarks, and finally, we provide concluding
remarks. System and sample programs are available at
http://www.ruc.dk/˜henning/hyprolog.

2 Background

2.1 Abduction

An abductive logic program [19] is usually specified as a triplet 〈P ,A, IC〉 where
P is a logic program, A a set of abducible predicates that do not occur in the
head of any clause of P , and IC a set of integrity constraints assumed to be
consistent. Assume additionally that P and IC can refer to a set of built-in
predicates that have a fixed meaning identified as a theory B; a predicate in P
that is neither abducible nor built-in is called defined. We assume for simplicity
in the following that IC refers to abducible and built-in predicates only.

Given an abductive logic program 〈P ,A, IC〉, we define for pairs of sets of ab-
ducibles and built-in atoms 〈A,B〉, a consistent ground instance to be a common
ground instance 〈A′, B′〉 of 〈A,B〉 so that

HYPROLOG: A New Logic Programming Language 161

– B |= B′ (the instance of built-ins is satisfied)
– B ∪A′ |= IC (the instance of abducibles respects the integrity constraints)

For simplicity and without loss of generality, we consider only ground queries; an
abductive answer to a query Q is a pair of finite sets of abducible and of built-in
atoms 〈A,B〉 such that

– 〈A,B〉 has at least one consistent ground instance 〈A′, B′〉,
– for any such 〈A′, B′〉, we have P ∪A′ |= Q.

Minimality and Compaction. It is often required that an abductive answer
be minimal measured in the number of abduced literals (or, alternatively, in a
subset relation or subsumption ordering). Most published abduction algorithms
try to unify a new abducible with one already produced (as to produce answers
of a minimum number of literals), and tries out different alternatives under
backtracking. This does not guarantee minimality in cases when, say, a proof
needs abducibles a and b but another may need only a. Minimal answers can
be selected by post-processing all answers found in this way. However, we argue
that this principle which we call compaction is not always obvious or desirable,
and we suggest it be optionally specified for selected abducible predicates. (If,
for example, someone’s car was stolen in Paris and his wallet in New York, it
seems over-constrained to assume by default that the thieves are the same one.)

2.2 Assumptive Logic Programming

Assumptive logic programs [14] are logic programs augmented with a) linear,
intuitionistic and timeless implications scoped over the current continuation,
and b) implicit multiple accumulators, useful in particular to make the input
and output strings invisible when a program describes a grammar (in which case
we talk of Assumption Grammars [15]). More precisely, we use the kind of linear
implications called affine implications, in which assumptions can be consumed at
most once, rather than exactly once as in linear logic. Although intuitively easy to
grasp and to use, the formal semantics of assumptions is relatively complicated,
basically proof theoretic and based on linear logic [14,15,25]. Here we use a more
recent and homogeneous syntax for assumptions introduced in [10]; we do not
consider accumulators, and we note that Assumption Grammars can be obtained
by applying the operators below within a DCG.

+h(a) Assert linear assumption for subsequent proof steps.
Linear means “can be used once”.

*h(a) Assert intuitionistic assumption for subsequent
proof steps. Intuitionistic means “can be used any
number of times”.

-h(X) Expectation: consume/apply existing int. assumption.
=+h(a), =*h(X), =-h(X) Timeless versions of the above, meaning that order of

assertion of assumptions and their application or
consumption can be arbitrary.

162 H. Christiansen and V. Dahl

A sequential expectation cannot be met by timeless assumption and vice versa,
even when they carry same name. In [15], a query cannot succeed with a state
which contains an unsatisfied expectation; for simplicity (and to comply with our
implementation), this is not enforced in HYPROLOG but can be tested explicitly
using a primitive called expections satisfied. Assumption grammars have
been used for natural language problems such as free word order, anaphora,
coordination, and for knowledge based systems and internet applications. In the
earlier work on Assumptions, only a semiformal semantics was given, and the
semantics we show below are intended to make its principles precise.

2.3 Constraint Handling Rules, CHR

CHR [17] is a declarative, rule-based language for writing constraint solvers
and is now included as an extension of several versions of Prolog. Operationally
and implementation-wise, CHR extends Prolog with a constraint store, and the
rules of a CHR program serve as rewriting rules over constraint stores. CHR
is declarative in the sense that its rules can be understood as logical formulas.
Constraint predicates must be declared as such and can then be called from a
Prolog program; see [17] for details. The following example declares a constraint
predicate a and defines a so-called propagation rule.

constraints a/1.
a(1), a(2) ==> fail.

This rule identifies a state as illegal if it contains the two indicated constraints.
As first noticed by [3], there is a clear analogy between abducibles plus integrity
constraints and CHR’s constraints plus rules.

3 HYPROLOG, Syntax and Informal Semantics

3.1 Basic HYPROLOG

A HYPROLOG program is written as a Prolog program with additional dec-
larations of assumptive and abductive predicates, the latter possibly with com-
paction. Notation for applying assumptions is shown in the previous section.
Integrity constraints are written as any sort of CHR rules with abducibles and
assumptions in the head. The following exemplifies such declarations.

abducibles a/1, b/2.
compaction a/1.
assumptions c/1.
timeless_assumption d/2.

The first declaration introduces abducible predicates a/1, b/2 as well as a /1,
b /2 that represent their negation; compaction is defined for a/1 (as described
above). The declaration of c/1 makes available assumptions and expectations of
forms ’+c’/1, ’-c’/1, ’*c’/1 (the system reads, say, +c(5) as ’+c’(5)).

HYPROLOG: A New Logic Programming Language 163

3.2 HYPROLOG’s Grammatical Counterpart

DCGs [21], included in most Prolog systems and compiled into Prolog when a
source file is loaded, are also available in HYPROLOG, adequately augmented
with abduction and assumptions as well. The following example has been
adapted from [10,15] and shows two applications of assumptions: for resolving
pronoun references and for a simple coordination problem. In a sentence “Peter
likes her” the pronoun is expected to stand for a female character who has been
mentioned earlier in the discourse. The following rule defines how the mention of
a proper name produces an (intuitionistic) assumption that makes the individual
available for future reference, as many times as needed.

assumptions acting/1.

np(X,Gender) --> name(X,Gender), {*acting(X,Gender)}

Let’s suppose we have the following rules for sentences and sequences of sen-
tences.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_).
sentences((S1,S2)) --> sentence(S1),sentences(S2).
sentences(nil) --> [].

The following rules define how a pronoun can appear in a sentence with its
meaning given by the consumption of an assumption made.

np(X,Gender) --> {-acting(X,Gender)}, pronoun(Gender).
pronoun(fem) --> [her].

The following query and answers show the grammar’s behaviour.

?- phrase(sentences(S), [peter,likes,martha, mary,hates,her]).
S = (s(peter,like,martha),s(mary,hate,mary),nil) ? ;
S = (s(peter,like,martha),s(mary,hate,martha),nil) ? ;
no

The second answer expresses the interpretation we would expect, and the first
one is an undesired consequence of the specification so far; we show below how
it can be suppressed.

The discourse “Peter likes and Mary hates Martha” contains two coordinat-
ing sentences in the sense that the first incomplete one takes its object from the
second one. This can be described by having an incomplete sentence put forward
a timeless expectation that may be satisfied by a later assumption produced by
a complete sentence; the following two grammar rules are sufficient.

sentence(s(A,V,B)) --> np(A,_), verb(V), np(B,_), {=*obj(B)}.
sentence(s(A,V,B)) --> np(A,_), verb(V), [and], {=-obj(B)}.

164 H. Christiansen and V. Dahl

3.3 Mixing Abduction and Assumptions

Abduction and assumptions can be mixed freely, which is handy for a better
solution to the pronoun resolution problem above. We modify the grammar
rule for sentences such that semantic interpretation is made abductively, i.e.,
the sentence can be told honestly provided the semantic context contains the
necessary facts.

abducibles s/3.
sentence --> np(A,_), verb(V), np(B,_), {s(A,V,B)}.
s(X,hate,X) ==> fail.

With this modification, the analysis of “Peter likes Martha, Mary hates her”
gives only one solution. This grammar is interesting as it shows how different
layers of analysis can assist each other: semantic knowledge about the hating rela-
tion is applied for guiding pronoun resolution. This example illustrates a general
approach to discourse analysis called Meaning-in-Context, described in [13].

3.4 Negation

Compared with other abductive systems, the use of negation is quite limited and
restricted to a simple form of explicit negation [7]. When an abducible, say a/1,
is declared, an additional predicate a /1 representing ¬a is introduced together
with an integrity constraint (hidden from the user) a(X), a (X) ==> fail.

Although useful for many applications, this implementation covers only one
part of negation: “you cannot have P and ¬P at the same time”; the condition
that “either you have P or ¬P” cannot be expressed in a straightforward way.

If a program clause includes an application of negation-as-failure that refers
to abducibles directly or indirectly, we inherit the dubious semantics of Prolog. So
if a/1 has been declared as abducible, with definition p(X):-a(X), a call \+p(Z)
(where Z is a currently uninstantiated variable) may succeed if the abduction of
a(Z) triggers a failure producing integrity constraint.

4 Semantic Considerations

Like Prolog, CHR has a declarative semantics plus a procedural one, and for
a substantial subset of the language, the two are in agreement. Each rule of a
CHR program can be understood as a logical formula:

Propagation rule Simplification rule
CHR rule: H==>G|B H<=>G|B
Logical meaning: ∀x̄

(
(∃ȳG) → (H → ∃z̄B)

)
∀x̄
(
(∃ȳG) → (H ↔ ∃z̄B)

)
where x̄ refers to the variables in H , ȳ to those in G not overlapping with x̄,
and z̄ to those in B not overlapping with x̄; for simplicity it is assumed that ȳ
and z̄ do not overlap. Ignoring the problems with Prolog’s negation as failure,
we can say that the meaning (e.g., a model-based semantics) of a program that

HYPROLOG: A New Logic Programming Language 165

combines Prolog and CHR is given by formulas as above plus a reading of the
Prolog part as a completed definition.

However, as has been debated recently [16], the statements that can be made
by using this semantics for CHR are often too weak to express the (implemented)
meaning of even simple and intuitively clear programs. Even the classical, pro-
cedural semantics with nondeterminism in selection steps [2] is not sufficient; as
noted by [16], even example programs in the reference manual of CHR depend
on the implemented semantics, and this motivated [16] to describe a so-called
refined procedural semantics.

The part of HYPROLOG without assumptions is an instance of abductive
logic programs and conforms with the standard semantics given in section 2.1;
this is independent of whether the logically redundant compaction principle is
applied. However, as we use CHR for integrity constraints, the discussion above
goes for this subset of HYPROLOG as well.

Assumptions, on the other hand, inherit the procedural flavour of linear logic,
and a correct semantics for HYPROLOG without abduction, and even without
integrity constraints, needs to reflect a left-to right execution of the clause bod-
ies. In other words, the comma cannot be understood as conjunction but as a
sequential operator that pushes a perhaps modified state forward.

Interestingly, [5] has proposed recently a semantics of CHR formulated in
terms of linear logic, and a very interesting next step could be to generalize this
for HYPROLOG. This may perhaps provide a more straightforward characteri-
zation of the assumption part of HYPROLOG, as assumptions can be mapped
to their natural counterpart in linear logic. This possibility has not been inves-
tigated yet.

4.1 A Continuation Semantics for HYPROLOG

Here we specify the CHR engine and its constraint stores as an abstract data
type (whose detailed specification can be found in [16]). For simplicity we assume
only one built-in which can be used in clause bodies, “=” with the meaning of
equality (unification). What may be allowed in bodies of integrity constraints
is abstracted away. By a constraint, we mean an abducible atom, an atom of
a built-in predicate, an assumption, or a timeless expectation; let Con refer to
the set of all such. We assume a given HYPROLOG program of clauses C� and
integrity constraints IC.

Let Store be a sort for all possible constraint stores whose internal structure
is not specified and which is equipped with the following operations; Sub refers
to the domain of substitutions; mgu is used to denote a most general unifier of
two atoms. When relevant, a substitution σ can also be understood as a set of
equations {x = t | xσ evaluates to t}. The following operations are assumed:

– ∈: Con× Store→ {true, false}.
– \ : Con × Store → Store representing the removal of a constraint from the

store.
– Accommodate : Con∗ × Store → Store × Subst corresponding to the CHR

engine’s behaviour given IC when one or more constraints are called from

166 H. Christiansen and V. Dahl

a clause; whatever recursion takes place inside Accommodate is not speci-
fied; the output substitution represents possible side-effects that affect the
remaining query. The function is partial, undefined meaning failure or loop.

– ∅ : Store which is the initial store.
Notice that the definitions allow Accommodate to take also a substitution as its
first argument. This reflects the property that the unification of variables may
trigger CHR rules to apply. This abstract data type is assumed to be sound
in the sense that, whenever Accommodate(A,S) = 〈S′, σ〉, we have that IC |=
∀x̄((A ∧ S) ↔ ∃z̄(S′ ∧ σ)) where here a store is identified with the set of all
constraints in it (given by ∈); x̄ are the variables in A ∧ S and z̄ any remaining
variables in S′∧σ. For simplicity, let us ignore the risk of loops and also claim it
complete meaning that Accommodate(A,S) is defined whenever IC |= ∃x̄(A∧S).
In case no integrity constraints are involved, the constraint store serves as a
passive container for abducibles and assumptions.

A query is a sequence of atoms; ε is the empty query; concatenation and
construction of sequences are indicated by a dot, and for readability the comma
of the clause syntax is taken as dot. A state is a pair of a query and store. A final
state is of the form 〈ε, S〉. A derivation for Q is produced from a finite number
of derivation steps (below), starting from 〈Q, ∅〉, and it is successful if it ends in
a final state. The derivation relation � is defined by the following rules.
1. 〈A · Q,S〉 � 〈(B · Q)σσ′, S′〉 if there is a program clause which has a vari-

ant H:-B with fresh variables, σ = mgu(H,A) and Accommodate(σ, S) =
〈σ′, S′〉.

2. 〈s = t · Q,S〉 � 〈Qσσ′, S′〉 whenever mgu(s, t) = σ and Accommodate
(σ, S) = 〈σ′, S′〉.

3. 〈Ab · Q,S〉 � 〈Qσσ′, S′〉 whenever Ab is a compacting abducible and there
is some A ∈ S with mgu(A,Ab) = σ and Accommodate(σ, S) = 〈σ′, S′〉

4. 〈Ab · Q,S〉 � 〈Qσ, S′〉 whenever Ab is an abducible and Accommodate
(Ab, S) = 〈σ, S′〉.

5. 〈-A ·Q,S〉� 〈Qσσ′, S′〉 whenever, either
– there is a +A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S \
{+A′}) = 〈S′, σ′〉, or

– there is a *A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S) =
〈S′, σ′〉.

6. 〈As ·Q,S〉� 〈Qσ, S′〉 where Accommodate(As, S) = 〈S′, σ〉, As of form +A
or *A.

7. 〈=-A ·Q,S〉� 〈Qσσ′, S′〉 whenever, either
– there is an =+A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S \
{=+A′}) = 〈S′, σ′〉,

– there is an =*A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S) =
〈S′, σ′〉, or

– Accommodate(=-A,S) = 〈S′, σ′〉 and σ = ∅.
8. 〈=+A ·Q,S〉� 〈Qσσ′, S′〉 where

– there is an =-A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S \
{=-A′}) = 〈S′, σ′〉, or

– Accommodate(=+A,S) = 〈S′, σ′〉 and σ = ∅.

HYPROLOG: A New Logic Programming Language 167

9. 〈=*A ·Q,S〉� 〈Q′σσ′, S′〉 where
– there is an =-A′ ∈ S with mgu(A,A′) = σ and Accommodate(σ, S \
{=-A′}) = 〈S′, σ′〉, and Q′ is one of =*A ·Q or Q, or

– Accommodate(=*A,S) = 〈S′, σ′〉, σ = ∅, and Q′ = Q.

We notice that step 1 defines an operational semantics for the pure Prolog subset
of HYPROLOG, 1–2 for pure Prolog with built-in equality, and 1–4 (or, alter-
natively, 1–2 plus 4) for abductive logic programs (with CHRs as ICs and no
interesting negation); these operational semantics are straightforward to prove
sound and complete with respect to the respective declarative semantics. Step 1
plus 5–9 provides a formal semantics for Assumptive Logic Programs which has
been lacking in earlier references.

In the lack of a truly declarative semantics (first-order or otherwise) for as-
sumptions, we need to take 1–9 as the semantic definition for the full HYPRO-
LOG language.

Finally, we notice that the actually implemented HYPROLOG system inher-
its the detailed procedural semantics of Prolog (trying rules in textual order)
and of CHR (cf. the refined semantics [16]), both of which were abstracted away
above. Being hosted in a realistic version of Prolog which includes a realistic
version of CHR, all other low and high level features of these languages are
available, including Prolog’s negation as failure (with the usual caveats) and
large collections of constraint solvers and built-in predicates.

5 Implementation

Our implementation uses SICStus Prolog [23] and its CHR library; we refer to
the proper sections of the referenced manual for a detailed description of the
facilities that we use. The principles shown can also be used for implementing
various kinds of hypothetical reasoning in Prolog through CHR.

5.1 Implementing Abduction

The implementation in Prolog with CHR is simple: abducibles are viewed as
constraints in the sense of CHR: the logic program is executed by the Prolog
system; whenever an abducible is called it is added automatically by CHR to
the constraint store and CHR will activate integrity constraints whenever rele-
vant. The complete hand-coded implementation of an abducible predicate a/1
is provided by the following three lines.

:- use_module(library(chr)).
handler abduction.
constraints a/1.

Compaction for a/1 is implemented by a single CHR rule; the following provides
a correct implementation.

168 H. Christiansen and V. Dahl

a(X), b(Y) ==> true | (X=Y ; dif(X,Y)).

(The implementation of HYPROLOG applies a slightly optimized version using
low-level facilities of CHR.) When a HYPROLOG program is read from file,
declarations as shown in section 3.1 are translated into CHR as shown here.

The correctness is inherited from the correctness properties of the underlying
Prolog plus CHR systems. For any program without occurs-check problems,
the implementation produces correct abductive answers as defined above; if the
program (including integrity constraints) does not loop, we also have that the
total set of answers produced is complete.

Notice that the approach can interact with an arbitrary constraint solver by
considering its constraints as built-ins (applied in bodies of clauses and integrity
constraints). Possible soundness and completeness of such a combination will
mirror the properties of the applied constraint solver.

5.2 Implementing Assumptions

Assumptions and expectation operators are implemented in CHR in a way sim-
ilar to abduction, but need extra care for scoping and matching of expectations
with assumptions. Each operator for each declared assumption (say ’-c’/1 is
implemented by one single-headed CHR rule that employs the constraint store
as container in a straightforward procedural way, optimized using the low-level
primitive findall constraints and remove constraints; see the HYPRO-
LOG website for details.

6 Examples and Benchmarks

Suppose we need to schedule the printing jobs of three printers. At any time,
the status of each printer is represented by an assumption +printer(name,
ready-time).

Further, assume that all printers are covered by the same undersized electrical
fuse that will melt down in case all three printers are running at the same time.
Such situations is prevented by the following integrity constraint; assumptions
have been extended with starting time for the most recent job and the guard
refers to an auxiliary predicate that holds if and only if all three indicated time
intervals have a point in common.

+printer(lexon2000,S1,F1), +printer(epsmark1993,S2,F2),
+printer(pewhack2004,S3,F3) ==>

overlapping((S1,F1),(S2,F2),(S3,F3)) | fail.

We have compared the efficiency of our first implementation of assumptions [12]
with the one hardwired into BinProlog for our HYPROLOG print scheduler
program (whose complete version can be found in (website URL) for 10 printers
and 50 print jobs. The BinProlog version was about 5 times faster. Our present
implementation, with specialized predicates for each type of assumption, gave a
speedup of 40 percent, or now only 3 times slower than BinProlog.

HYPROLOG: A New Logic Programming Language 169

For abduction, we have compared our system’s performance with that of
the A-system [20]. The mentioned reference reports a test of an abductive n-
queens program that runs very fast in A-system, considerably faster that in our
system. However, an inspection of the example shows that the A-system for
this program produces quickly one set of constraints which is then solved by a
specialized finite-domain solver. It is difficult to translate this example into our
system due to the mentioned limitations for negation, which made the program
degenerate into a naive generate-and-test algorithm.

In theory, our approach should be superior for programs that involve many
resolution steps, and to verify this, we constructed an example updating a
database view involving complex joins. The query (update request) in the test
is w(monkey) where the view is defined as w(F):- pp(A,B,C,D), qq(C,D,E,F),
rr(A,E,F). Each of pp, qq, rr provides a link to either a database predicate
or an abducible. Integrity constraints express suitable key constraints and the
database predicates contains 100, 99, 99 tuples selected carefully so that an im-
mense collection of combinations needs to be tried out before a solution is found.
The example is directly translatable between the two systems, and our program
in Prolog plus CHR run through the optimizing SICStus Prolog compiler solves
the problem in 3 ms (three) whereas A-system spends 6250 ms for the same job;
the tests were performed on a 400 MHz Macintosh G4 Powerbook; the programs
are available at the HYPROLOG website.

7 Conclusions and Related Work

We have presented HYPROLOG, a new logic programming language which di-
rectly and efficiently integrates abducibles and assumptions into Prolog itself,
through simply extending it with a few lines of CHR code.

This provides an optimal combination, in which such programs can be written
and executed directly, with only a small extra overhead involved when needed.
In contrast, known metainterpreter based implementations of abduction incur
heavy computational overhead (for instance, [18,20] has the overhead of alter-
nating abductive steps with resolution steps, the latter also simulated by metain-
terpretation). An important advantage over other known abduction systems is
that the full collection of Prolog’s built-in facilities (logical as well as impure)
are available, including all available libraries and constraint solvers.

We have also described a methodology for implementing HYPROLOG that
obtains an execution speed comparable to that of traditional Prolog programs.

The component of a HYPROLOG program that corresponds to a logic pro-
gram is executed directly as a Prolog program, and its integrity constraints di-
rectly as CHR rules. This means that HYPROLOG programs can be run through
existing optimizing compilers for Prolog and CHR. It is interesting to point out
that integrity constraints are automatically coroutined by virtue of CHR rules.

There are existing, efficient implementations of Assumptive Logic Programs
but the present work extends the paradigm with integrity constraints and the
option to combine with abduction in a common framework.

170 H. Christiansen and V. Dahl

The price paid for this efficiency and flexibility is a limitation on the use of
negation. Yet even with this restriction, many useful examples are made possible.

Some examples in the literature of abduction involving Event Calculus do not
work in our approach but others, such as [24] on robot planning seem possible
(this example has been implemented in CHR in an early experiment, but not
tested in the present framework). Experiences with HYPROLOG and earlier
experiments with similar techniques in CHR indicate a spectrum of interesting
programs, and the fact that the paradigm can immediately be combined with
any other constraint solvers available in the Prolog version at hand substantiates
this viewpoint.

The first observation of the similarity between CHR and abductive logic pro-
gramming was made by [3] showing that abducible predicates can be represented
as constraints in CHR’s sense and integrity constraints as rules in CHR. The ref-
erenced work describes a translation of a class of abductive logic programs with
limited use of negation (similar to the present paper) into CHR∨ [4] which is an
extension to CHR with disjunctions in rule bodies; the main difference is that [3]
also translates the logic program component into CHR∨ so that the efficiency of
having Prolog do the resolution steps is lost. CHR based abduction for language
processing is applied in the CHRG system [10,9] which is based on bottom-up
parsing in CHR.

A proposal for emulating abductive logic programming with assumptions was
made in [14]. While less efficient than the present proposal, it allowed the same
(abducible) predicate to be either proved normally, if this was possible, or ab-
duced if not. It also put the ability to examine unconsumed assumptions to use
in combining for instance defeasible reasoning with abductive logic program-
ming, and in suggesting novel extensions such as conditional abductive logic
programming—this latter, by abducing not only predicates, but also clauses.

Abduction by means of CHR has been applied by [11] for natural language
grammars with automatic error detection and correction.

As we have noticed, negation is the more complicated part to which we have
no solution; [6] sketches an extension of [3]’s method intended for a full use of
negation-as-failure in program clauses and integrity constraints; as for [3], no
integration with Prolog is provided. Unfortunately, it has not been possible to
reconstruct the code from the description in [6] in order to test the method and
there appears to be inherent looping problems.

The Demo system described in [8] seems to be the first application of CHR
to abduction and similar problems, in the shape of a general metainterpreter for
logic programs which is reversible in the sense that it can generate programs
to make specified goals provable; this property provided by a constraint solver
written in CHR for semantic primitives. In terms of efficiency this system is by
no means comparable to what is described in the present paper.

The simultaneous availability of abduction and assumptions facilitates sub-
tler reasoning by making it possible to clearly separate the generation of hypothe-
ses from their confirmation, within a dynamic process where different strategies
can be flexibly implemented.

HYPROLOG: A New Logic Programming Language 171

A recent CHR-based system that extends abductive reasoning with the abil-
ity to confirm or disconfirm abduced facts (or events, since this system special-
izes to event-based programming) [1] requires a complex architecture to achieve
similar results to ours. This system’s hypotheses are, as in our own system, rep-
resented by abducibles, but their confirmation or disconfirmation is managed
by a specialized proof procedure which can be tuned to be skeptical (i.e, to
disconfirm at the end of a computation all hypotheses that remain consistent
but have not specifically been confirmed) or credulous (i.e., to confirm all of
those).

In HYPROLOG we also represent hypotheses as abduced facts, but their
(dis)confirmation proceeds within Prolog’s normal proof procedure, and can be
done either dynamically, or in a postprocessing stage which can interpret the un-
consumed assumptions in a variety of ways, ranging from credulous to skeptical,
as needed by the particular application.

Acknowledgements. The authors want to thank Michael Cheng for experi-
mentation with an early version of the methods and for helpful discussions, and
Dulce Aguilar-Solis for help with benchmark testing. This work was supported by
the CONTROL project, funded by the Danish Natural Science Research Coun-
cil; we also gratefully acknowledge support from Canada’s NSERC Discovery
Grant program.

References

1. M.Alberti, F.Chesani, M.Gavanelli, E.Lamma, P.Mello, and P.Torroni. The CHR-
based Implementation of a System for Generation and Confirmation of Hy-
potheses. In 19th Workshop on (Constraint) Logic Programming Wolf, A.,
Frühwirth, Th., and Meister, M., (eds.). Ulmer Informatik-Berichte 2005-01, Uni-
versity of Ulm. pp. 111–122. Available at http://www.informatik.uni-ulm.de/epin-
data/user/11541.218,UIB 2005-01.pdf

2. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In G. Smolka, editor, Principles and Practice of Constraint Programming -
CP97, volume 1330 of Lecture Notes in Computer Science, pages 252–266. Springer,
1997.

3. Abdennadher, S. and Christiansen, H., An Experimental CLP Platform for In-
tegrity Constraints and Abduction. In: Proc. of FQAS2000, Flexible Query An-
swering Systems, Larsen, H.L., Kacprzyk, J., Zadrozny, S., Andreasen, T., and
Christiansen, H. (Eds.) pp. 141–152, Advances in Soft Computing series, Physica-
Verlag (Springer), 2000.

4. Abdennadher, S. and Schütz, H. CHR∨: A flexible query language. In: Proc.
FQAS’98, Flexible Query Answering Systems, Andreasen, T., Christiansen, H.,
and Larsen, H.L. (Eds.) Lecture Notes in Artificial Intelligence 1495, pp. 1–14,
Springer, 1998.

5. Betz, H. and Frühwirth, T. A linear logic semantics for Constraint Handling
Rules. In: Proc. CP 2005, Eleventh International Conference on Principles and
Practice of Constraint Programming. Lecture Notes in Computer Science. To
appear, 2005.

172 H. Christiansen and V. Dahl

6. Badea, L. and Tilivea D. Abductive Partial Order Planning with Dependent Flu-
ents. In: KI 2001: Advances in Artificial Intelligence, Joint German/Austrian Con-
ference on AI, Baader, F., Brewka, G., Eiter, T., (eds.) Lecture Notes in Artificial
Intelligence 2174 p. 63-77, Springer, 2001.

7. Chan, D., Constructive negation based on the database completion, Proc. of Fifth
International Conference and Symposium on Logic Programming, (eds. Kowalski,
Bowen), pp. 111–125, MIT Press, 1988.

8. Christiansen, H. Automated reasoning with a constraint-based metainterpreter,
Journal of Logic Programming, Vol 37(1–3) Oct–Dec, pp. 213–253, 1998.

9. Christiansen, H., Abductive Language Interpretation as Bottom-up Deduction. In:
Natural Language Understanding and Logic Programming, Proceedings of the 2002
workshop, ed. Wintner, S., Datalogiske Skrifter vol. 92, Roskilde University, Comp.
Sci. Dept., pp. 33–47, 2002.

10. Christiansen, H., CHR grammars. To appear in International Journal on Theory
and Practice of Logic Programming, special issue on Constraint Handling Rules,
2005.

11. Christiansen, H., and Dahl, V., Logic Grammars for Diagnosis and Repair. Inter-
national Journal on Artificial Intelligence Tools, Vol. 2, no. 3 (2003), pp. 227–248.

12. H. Christiansen and V. Dahl. Assumptions and abduction in Prolog. In S. Muñoz-
Hernández, J. M. Gómez-Perez, and P. Hofstedt, editors, Proceedings of WLPE
2004: 14th Workshop on Logic Programming Environments and MultiCPL 2004:
Third Workshop on Multiparadigm Constraint Programming Languages Workshop
Proceedings, pages 87–101, 2004.

13. Christiansen, H., Dahl, V., Meaning in Context, In: Proc. Fifth International and
Interdisciplinary Conference on Modeling and Using Context (CONTEXT-05).
Dey, A.K., Kokinov, B.N., Leake, D.B., and Turner R.M. (Eds.) Lecture Notes
in Artificial Inteligence vol. 3554, pp. 97–111, 2005.

14. Dahl, V., and Tarau, P. Assumptive Logic Programming. Argentine Symposium on
Artificial Intelligence (ASAI) 2004, September 20-21, Cordoba, Argentina, 2004.

15. Dahl, V., Tarau, P., and Li, R., Assumption grammars for processing natural lan-
guage. Proc. Fourteenth International Conference on Logic Programming. Naish,
L. (ed.), pp. 256–270, MIT Press, 1997.

16. G. J. Duck, P. J. Stuckey, M. J. G. de la Banda, and C. Holzbaur. Compiling ask
constraints. In B. Demoen and V. Lifschitz, editors, ICLP, volume 3132 of Lecture
Notes in Computer Science, pages 90–104. Springer, 2004.

17. Frühwirth, T.W., Theory and Practice of Constraint Handling Rules, Journal of
Logic Programming, Vol. 37(1–3), pp. 95–138, 1998.

18. Kakas, A.C., Michael, A., and Mourlas, C. ACLP: Abductive Constraint Logic
Programming, The Journal of Logic Programming, vol 44, pp. 129–177, 2000.

19. Kakas, A.C., Kowalski, R.A., and Toni, F. The role of abduction in logic program-
ming, Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5,
Gabbay, D.M, Hogger, C.J., Robinson, J.A., (eds.), Oxford University Press, pp.
235–324, 1998.

20. Kakas, A.C., Van Nuffelen, B., and Denecker, M. A-System: Problem Solving
through Abduction. IJCAI 2001: Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, Nebel, B. (ed.), Morgan-Kaufmann,
pp. 591–596, 2001.

21. Pereira, F.C.N., and Warren, D.H.D., Definite clause grammars for language anal-
ysis. A survey of the formalism and a comparison with augmented transition gram-
mars. Artificial Intelligence 10, no. 3–4, pp. 165–176, 1980.

HYPROLOG: A New Logic Programming Language 173

22. Poole, D., Mackworth, A., and Goebel, R. Computational Intelligence, Oxford Uni-
versity Press, 1998.

23. SICStus Prolog user’s manual. Version 3.12, SICS, Swedish Institute of Computer
Science, 2005. Most recent version available at http://www.sics.se/isl.

24. Shanahan, M., Reinventing Shakey. Logic-Based Artificial Intelligence, Minker, J.
(ed). Kluwer Academic, pp. 233–253, 1999.

25. Tarau, P., Dahl, V., and Fall, A. Backtrackable State with Linear Affine Implica-
tion and Assumption Grammars. In: Concurrency and parallelism, Programming,
Networking, and Security, Jaffar, J. and Yap, R. (eds.). Lecture Notes in Computer
Science 1179, Springer Verlag, pp. 53–64, 1996.

Abduction of Linear Arithmetic Constraints

Michael J. Maher

National ICT Australia, Sydney, Australia
Michael.Maher@nicta.com.au

Abstract. Abduction is usually carried out on partially-defined predicates. In
this paper we investigate abduction applied to fully-defined predicates, specifi-
cally linear arithmetic constraints over the real numbers. Abduction in this con-
text has application to query answering using views and type inference, and po-
tential relevance to analysis of concurrent/constraint/logic programs. We show
that only rarely do abduction problems over linear arithmetic constraints have
unique most general answers. We characterize the cases where most general an-
swers exist. In general there may be infinitely many maximally general answers,
or even answers that are not represented by maximally general answers. We take
steps towards representing such answers finitely.

1 Introduction

Abduction is the inference rule that derives, from B and C, A such that A,B # C.
It was considered by Peirce [11] to be – along with deduction and induction – one of
the fundamental forms of reasoning. Mostly, abduction has been addressed in a setting
of partially determined predicates or propositions. Constraint abduction [10] refers to
abduction in a setting where A, B and C come from a set of pre-defined, completely-
defined relations (constraints, in the sense of constraint logic programming [4]) and A,
the answer, ensures A ∧B → C.

Traditional forms of abduction differ from constraint abduction in that they address
predicates that are incompletely defined by some properties. Abductive logic program-
ming [5] and abductive constraint logic programming (ACLP) [6] differ further from
constraint abduction in that the inference relation # is not material implication. Fur-
thermore, constraints are used in ACLP only in support of the abduction of predicates;
constraints alone are not abduced from.

It is usual in works on abduction to require that A is consistent with B, that is, that
A is not stronger than ¬B. However, if B ∧ C is unsatisfiable then, for any answer A,
A ∧B is unsatisfiable. (This because if (A ∧B)→ C then (A ∧B)→ (B ∧ C).)

Thus we can divide the simple problem into two cases:

– B ∧C is unsatisfiable
In this case the answers are exactly those constraints stronger than ¬B.

– B ∧C is satisfiable
In this case we are only interested in answers A that are consistent with B, that is,
constraints that are not stronger than ¬B. Notice that this implies that the strength-
ening of an answer A might not be an answer

In this paper we focus on the latter case.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 174–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Abduction of Linear Arithmetic Constraints 175

Clearly, determining whether such a problem has an answer is trivial: we can simply
choose A to be equivalent to C. Instead, we will address the issue of characterizing all
answers and/or finitely representing them. In particular, we will seek to identify when
a single answer can represent all answers. In this paper we will address linear arith-
metic constraints. In a companion paper [10], equational constraints over the Herbrand
universe are addressed. It turns out that different kinds of constraints require different
techniques to characterize the answers.

In the next section we outline some applications of constraint abduction. Then, fol-
lowing some brief background on constraints, constraint abduction is formally defined.
In Section 5 an abstract notion of rank is introduced and several properties are estab-
lished of constraint domains that support such a notion. These properties are used in
characterizing answers to constraint abduction problems on linear arithmetic equalities
in Section 6. Section 7 addresses the same issue for linear arithmetic inequalities but
the development is more complicated, partly because this constraint domain does not
support a rank.

2 Applications of Constraint Abduction

We outline situations in type inference and query answering with views where con-
straint abduction is needed. Constraint abduction is also important for analysis of logic
programs [1,3,7], although that work focuses on finite, artificially constructed domains.

2.1 Type Inference

Type systems have developed in two different but compatible directions. Though these
developments have addressed functional languages, they will be exemplified here in a
logic language. Work on index types [17] and “practical” dependent types [15] intro-
duces extra parameters to types which provide a refinement of the types and a conse-
quent ability to assert type-checkable statements about functions/predicates.

For example, the type of the append predicate might be

append(list(α, m), list(α, n), list(α, m+n))

which asserts, in addition to the parametric polymorphism of append, that the length
of the third argument is the sum of the lengths of the first two arguments. Here the type
list(α, n) is defined by

list(α, n) is [] where n = 0
or [α | list(α, m)] where n = m+1

where the length of a list is implicitly defined as part of the type. In this case, every
occurrence of append gives rise to an equation x1 + x2 = x3 over integer variables
when type-checking.

Work on guarded recursive types [16] presents the opportunity to refine types in a
different way. These can allow different rules in the definition of a predicate to be typed
differently, based on differing patterns in the head.

176 M.J. Maher

For example, given the type definition

type both(α) is i(α) where α = int
or b(α) where α = bool

which expresses a discriminated union type, we can define

p(i(X), Y) :- Y = X + 1.
p(b(X), Y) :- Y = true.

When attempting to infer the acceptable types for X and Y , the rules of p generate
expressions tX = int → tY = int and tX = bool → tY = bool where tX and tY are
variables representing the type of X and Y respectively.

In general, such refined types lead to similar implication constraint expressions [12].
Principal types associate a single parameterized type to each type variable, perhaps un-
der some restrictions (such as those coming from type classses), such that other ac-
ceptable types are instances of the principal type. An algorithm is given in [13] for
computing principal types, where they exist, in a guarded recursive type system. Prin-
cipal types correspond to most general answers of constraint abduction problems over
FT , and abduction of such constraints was investigated in [10].

For the program above, p has a principal type

p(both(α), α)

which can be inferred as the answer tX = tY of the joint constraint abduction problem
involving both implication constraint expressions.

The use of both these refinements of types leads for a need to handle expressions
of the form C1 → C2, where the Ci are constraints involving both equations on type
expressions and other constraints on index type variables. In particular, linear arith-
metic constraints are useful to express relations on sizes of data structures. Although
we might expect to solve such constraints with an integer constraint solver, solving the
constraints over the reals has a lower complexity and experience suggests that solving
the constraints over the reals is sufficient [15]. Since we would like to assign a single
principal type to each expression, it turns out that we are looking for a most general
answer to the constraint abduction problem involving C1 and C2.

2.2 Query Answering

In database systems we sometimes want to answer a query as much as possible using
previously defined relations. In a distributed database, this can limit the copying of
large relations from one site to another. In data integration via a mediated schema, this
provides a way to coherently query data from autonomous data sources. In both cases,
previously defined relations are formulated as views – queries over the base relations –
and the problem is to (partially) answer an input query, using the available views. We
can allow pre-defined relations (constraints) in queries and views. In particular, for this
paper, these are linear arithmetic constraints. See [2] for a more thorough and detailed
survey of work on query answering using views than can be presented here.

Abduction of Linear Arithmetic Constraints 177

If we have an input query

Q(x̃) : −P1(x̃, ỹ), . . . , Pn(x̃, ỹ), C(x̃, ỹ)

and views
Vi(ũ) : −Pi1(ũ, ṽ), . . . , Piki(ũ, ṽ), Bi(ũ, ṽ)

then we are looking for a query

Q′(x̃) : −V ′
i (x̃, w̃), . . . , V ′

m(x̃, w̃), A(x̃, w̃)

such that the relation Q′ is a subrelation of Q, independent of the data in the base
relations. Here P refers to a base relation, V to a view, and A, B, and C to constraints.
Given the use of views V ′

1 , . . . , V
′
m, and some extra conditions on either these views

or the constraint domain, A is required to satisfy A ∧
∧m

i=1 Bi → C to ensure that
Q′ is a subrelation of Q. That is, A must be an answer to the constraint abduction
problem involving

∧m
i=1 Bi and C. Obviously, a finite representation of such answers

is important to the computation of the subrelation Q′.

3 Constraints

The syntax and semantics of constraints are defined by a constraint domain. Given a
signature Σ, and a set of variables V ars (which we assume is infinite), a constraint
domain is a pair (D,L) where D is a Σ-structure and L (the language of constraints) is
a set of Σ-formulas closed under conjunction and renaming of free variables. WhenD is
the real numbers andL is all conjunctions of linear equalities (respectively, inequalities)
then these constraint domains will be denoted %LinEqn (resp. %LinIneq). We will also
discuss constraint domains QLinEqn and QLinIneq, where D is the rational numbers,
and ZLinEqn and ZLinIneq , where D is the integers. For linear constraints, constraint
domains based on % or Q are elementarily equivalent, so all results for % extend to Q.
We use FT to denote the constraint domain of equations over finite terms.

For most of the results of this paper we assume that constraint languages are gen-
erated, by conjunction and variable renaming, from a set of primitive constraints. Thus
a constraint can be viewed as a set of primitive constraints, and every subset of a con-
straint is a constraint. We say that such constraint languages are generated from primi-
tive constraints. This is certainly true of the constraint languages of the two constraints
domains that are the main focus of this paper: %LinEqn and %LinIneq . For these con-
straint domains we also have the property that the constraint language is closed under
existential quantification: ∀c ∈ L ∀x ∈ V ars ∃c′ ∈ L D |= c′ ↔ ∃x c. As a conse-
quence, it will suffice to consider answers A such that vars(A) ⊆ vars(B)∪vars(C).
(In contrast, this does not hold for FT [10].) We will write ∃̃ to express the existential
closure of a formula, and sometimes use a comma to express conjunction.

We say C is more general than C′ (or, equivalently, C′ is stronger than C or, C′ is
more specific than C) if C′ → C. Two constraints C and C′ are equivalent if C → C′

and C′ → C.
The constraints modulo equivalence form a partially ordered set, where C1 ≤ C2 iff

C1 → C2. The poset has top element true and bottom element false. Any pair of con-
straints C1 and C2 has a greatest lower bound defined by C1 ∧C2, as a consequence of

178 M.J. Maher

the assumption that L is closed under conjunction. On the other hand, the existence of a
least upper bound C1�C2 for any pair of constraints depends on the constraint domain.

4 Constraint Abduction

We can now formally define the simple constraint abduction problem.

Definition 1. The Simple Constraint Abduction (SCA) Problem is as follows:
Given a constraint domain (D,L), and given two constraints B,C ∈ L such that

D |= ∃̃ B ∧C, for what constraints A ∈ L does

D |= (A ∧B) → C

and
D |= ∃̃ (A ∧B)

An instance of the problem has a fixed constraint domain and fixed constraints B
and C.

Throughout this paper, A, B and C refer to the constraints in a simple constraint
abduction problem. We omit reference to the constraint domain when it is clear from
the context and, for example, simply write A∧B → C. In an abuse of terminology, we
often will refer to an instance as a SCA problem.

There are two classes of problem instances where the SCA problem is easy. If B ↔
true then C is an answer. If B → C then true is an answer. We refer to these instances
as trivial.

Of all the answers, we are most interested in the maximally general answers, that is,
constraints A such that (A ∧B) → C and for every A′, if A→ A′ and (A′ ∧B)→ C
then A′ → A. (That is, there is no answer strictly more general than A.)

Under some circumstances, the maximally general answers represent all answers.

Definition 2 (Abductive Ascending Chain Property). A problem has the Abductive
Ascending Chain (AAC) property if whenever all constraints Ai in a chain satisfy
(Ai ∧B) → C, the least upper bound of the chain exists and is an answer.

If this is true for every problem in a constraint domain (D,L) then we say (D,L)
has the Abductive Ascending Chain property.

Some constraint domains – such as FT , various finite domains, and %LinEqn – do
not have infinite ascending chains. Thus these constraint domains vacuously have the
Abductive Ascending Chain property.

If a constraint domain has the AAC property then all answers are represented by the
maximally general answers.

Proposition 1. If a problem has the Abductive Ascending Chain property then all an-
swers can be obtained, modulo equivalence, as a conjunction of a maximally general
answer and another constraint.

Thus, under the AAC property assumption, A is an answer iff for some maximally
general answer A′, A→ A′ and A ∧B is satisfiable.

Abduction of Linear Arithmetic Constraints 179

Of particular interest are the problem instances in which one constraint represents
all answers. In such cases there is a compact representation of the answers to the prob-
lem. An answer A to a SCA problem is a most general answer if, for every answer A′

of the problem, A′ → A. Clearly a most general answer is unique up to equivalence of
constraints. The main focus of this paper is on characterizing SCA problems that have
a most general answer.

It is often convenient to eliminate unnecessary primitive constraints from a con-
straint, to simplify reasoning. A primitive constraint a in A is redundant in A if (A −
a) → a1. A is redundancy-free if there is no redundant constraint in A. A constraint a
in A is redundant in A with respect to B if (A− a)∧B → a. A is redundancy-free wrt
B if there is no constraint in A that is redundant wrt B.

A core of a constraint C wrt another constraint B is a subset C′ of C such that
(B∧C′)↔ (B∧C), and C′ is redundancy-free wrt B. A core can be obtained from C
by repeatedly deleting constraints that are redundant wrt B until there are no redundant
constraints remaining.

In general, there is not a unique core.

Example 1. Consider the constraint domain %LinEqn. Let B be x + y = 0 and let C
be 2x − y = 0, 3x + y = 0. Then each of the constraints in C is redundant wrt B, but
not simultaneously. Thus each constraint in C is a core of C wrt B. Notice that the two
cores are not equivalent.

Nevertheless, the replacement of C by a core does not alter the simple abduction
problem.

Proposition 2. Let A, B and C be constraints and let C′ be a core of C wrt B. Then
A ∧B → C iff A ∧B → C′

Obviously, a core of C wrt B is an answer for the corresponding SCA problem.
Although a core of C wrt B might seem to be a good candidate for a maximally general
answer, and perhaps even a most general answer, it is not always maximally general.

Example 2. Consider the constraint domainFT . Let B be x=a and let C be f(x, y)=
f(a, b). Then C is the core of C wrt B, but C is not a maximally general answer. This
problem has a most general answer y = b.

Even if the use of a core C′ of C wrt B does not immediately result in a maximally
general answer, it does simplify the SCA problem by eliminating some irrelevant con-
straints. We can simplify further by reducing B to a core B′ wrt C′. In this case we
have (B′∧C′)↔ (B∧C) but the simplification does not preserve answers to the SCA
problem.

Example 3. Consider the constraint domain %LinEqn. Let B be x + y ≥ 0, and C be
x ≥ 0 ∧ y ≥ 0. Then C′, the core of C wrt B, is the same as C and B′, the core of B
wrt C′, is true. However, let A be x− y = 0. Clearly A ∧B → C but A ∧B′ �→ C′.

However, it is not difficult to show that any answer to the SCA problem formed by
B′ and C′ is also an answer to the problem formed by B and C.

1 If A is a constraint that, when considered as a set of primitive constraints, contains a then we
write A − a to denote the conjunction of all primitive constraints in A except a.

180 M.J. Maher

We say a constraint A is equivalent to C modulo B if (A ∧ B) ↔ (B ∧ C). Most
general answers A have this property. Clearly, any core of C wrt B is equivalent to C
modulo B. We might expect that such constraints are maximally general answers, but
consider the following example. Let B be y = d and C be u = v. Two answers are
u = v and y = d ∧ u = v, and both are equivalent to C modulo B, but clearly the
second is not a maximally general answer.

This example is representative of how constraints equivalent to C modulo B might
not be maximal. However the property of being equivalent to C modulo B is a kind of
upper limit on answers to a SCA problem:

Proposition 3. Suppose A is equivalent to C modulo B and A′ is an answer more
general than A. Then A′ is equivalent to C modulo B.

Thus if the problem has the Abductive Ascending Chain Property then every con-
straint equivalent to C modulo B is stronger than (or equivalent to) a maximally gen-
eral answer equivalent to C modulo B.

Clearly many maximally general answers are equivalent to C modulo B. However,
not all maximally general answers have this property. In particular, it can depend on the
constraint domain.

Example 4. Consider a SCA problem over FT where B is y = a and C is x = h(u).
Apart from C, this SCA problem has the maximally general answer A: x = h(y) ∧
u = a. (Notice that A �→ C; for example, in a context where y = b.) Although A is
maximally general it results in A ∧B being strictly stronger than B ∧ C.

We say an answer A is fully maximal if A is a maximally general answer and A∧B is
maximally general among all expressionsA′∧B where A′ is an answer. Equivalently,A
is fully maximal if A is a maximally general answer and A is equivalent to C modulo B.
The answer A of Example 4 is not fully maximal. In [10], fully maximal answers were
proposed as a way to handle the proliferation of maximally general answers over FT .

5 Constraint Domains with Rank

It is difficult to establish further properties of constraint abduction without introducing
conditions on the constraint domain. We now consider constraint domains that support
a weak notion of rank in the following sense.

It is convenient in the following definition to simultaneously view constraints as
conjunctions of primitive constraints and as sets of primitive constraints.

Definition 3. Consider a constraint domain D in which the constraints are generated
from primitive constraints. Let rank be a function mapping constraints to a totally or-
dered set. Let X , Y and Z range over constraints, that is, conjunctions (sets) of primi-
tive constraints. Consider the following axioms:

1. if X → Y then rank(X) ≥ rank(Y)
2. if X → Y and rank(X) = rank(Y) then X ↔ Y
3. if X → Y and rank(X) > rank(Y) then there exists Z ⊂ X such that X → Z ,

Z → Y , and rank(X) > rank(Z) ≥ rank(Y)

Abduction of Linear Arithmetic Constraints 181

We say a constraint domain supports a rank if a function rank satisfying these axioms
can be defined.

It is well-known that %LinEqn supports a rank. Notice that we do not need to require
the integers – not even a well-ordered set – as the co-domain of the rank function.
Although there are many abstract formulations of dimension, an abstract formulation of
rank seems to have been missing.

All constraint domains that support a rank have the Abductive Ascending Chain
property. As a result, maximal general answers represent all answers.

Proposition 4. Suppose a constraint domain D supports a rank. Then D has no infi-
nite strictly increasing sequence. Consequently, D has the Abductive Ascending Chain
property.

When a constraint domain supports a rank there is a close relationship between
maximally general answers and constraints equivalent to C modulo B. As a result,
there is no distinction between maximally general answers and fully maximal answers
when the constraint domain supports a rank.

Proposition 5. Consider a constraint domainD that supports a rank, and a SCA prob-
lem over D. Every maximally general answer is also a fully maximal answer.

Under some further conditions the converse statement also holds.

Proposition 6. Suppose a constraint domain D supports a rank that satisfies

rank(C1 ∧ C2) ≤ rank(C1) + rank(C2)

for all constraints C1 and C2.
Consider a SCA problem over D.
If A is equivalent to C modulo B and rank(A ∧ B) = rank(A) + rank(B) then A

is a maximally general answer of the problem.

A notion of rank for FT was identified in [9] as the number of equations in the
solved form of a constraint. Unfortunately, that definition fails to satisfy the third axiom.
Thus the results of this section do not apply to FT . There is a detailed analysis of
constraint abduction over that constraint domain in [10].

6 Real Linear Equations

The constraint domain %LinEqn consists of linear equations over the real numbers.
Any equalities can be expressed by two inequalities. The solved form of %LinEqn is a
conjunction of equations of the form x̃ = t̃(ỹ) where x̃ ∩ ỹ = ∅. A solved form also
represents a substitution that replace each xi by ti(ỹ). The solved form is essentially
the same as achieved by Gauss-Jordan elimination.

In this section we assume that the rank of a constraint A is defined in the tradi-
tional way: the number of independent equations in A or, equivalently, the number of

182 M.J. Maher

non-trivial equations in the solved form of A. It is straightforward to see that the ax-
ioms for rank specified in Definition 3 are satisfied by this definition. Furthermore,
rank(A ∧ B) ≤ rank(A) + rank(B) for any constraints A and B in %LinEqn. Thus
the propositions of the previous section apply to %LinEqn. The rank of a constraint is
closely related to redundancy, since the rank is the number of independent equations.
There are some further relationships that are relevant to this paper.

Lemma 1. Suppose A and B are redundancy-free. Then the following are equivalent:

– rank(A ∧B) = rank(A) + rank(B)
– A is redundancy-free wrt B
– B is redundancy-free wrt A.

By Proposition 4, in %LinEqn the maximally general answers represent all answers.
However there may be infinitely many maximally general answers.

Example 5. Let B be y = x and C be y = −x. Let Am be y = mx for any constant m.
Then Am is a maximally general answer for m �= 1. There is similar behavior at higher
dimensions.

Intuitively, B and C define intersecting, inequivalent hyperplanes. Any rotation of
C about its intersection with B (except for B itself) is an answer.

As an immediate consequence of this observation we must look to characterize
the maximally general answers rather than compute them individually. Fortunately, in
%LinEqn we can do this.

Theorem 1. Consider the SCA problem over %LinEqn.
A is a maximally general answer of the problem iff A is equivalent to C modulo B

and rank(A ∧B) = rank(A) + rank(B).

In %LinEqn a SCA problem has a most general answer only in trivial cases.

Theorem 2. Consider the SCA problem over %LinEqn.
There is a most general answer of the problem iff B ↔ true or B → C.

Notice that, if it exists, the most general answer is a core of C wrt B.
As a corollary to the proof of the above theorem we have a 1-∞ law for the number

of maximally general answers of a SCA problem over %LinEqn.

Corollary 1. Every SCA problem over %LinEqn either has a most general answer or
has infinitely many maximally general answers.

7 Real Linear Inequalities

The constraint domain %LinIneq consists of linear inequalities over the real numbers.
It will be convenient to write all inequalities in the form t ≤ 0 where t is a linear

expression containing at most one occurrence of each variable, and one constant. All
linear inequalities can be placed in this form.

Abduction of Linear Arithmetic Constraints 183

A linear combination of inequalities Ci (or ti ≤ 0), i = 1, . . . is an inequality∑
i αiti + (−δ) ≤ 0, where the αi are constants and δ is a non-negative constant, and

may be written
∑

i αiCi + (−δ ≤ 0). In a non-negative (positive) linear combination
all αi’s are non-negative (respectively, positive).

If c is a single inequality t ≤ 0 then c= denotes the corresponding equality t = 0.
An implicit equality in a set of inequalitiesC is a non-tautologous inequality c in C such
that C → c=. Geometrically, an equation defines a hyperplane, and the hyperplane of
c= is said to be the supporting hyperplane of c (it is the boundary of the half-space
defined by c). We say a constraint is full dimensional if it has no implicit equalities.

Two classes of techniques are used to prove the results in this section. The first is an
algebraic approach to the duality of linear programming, based on linear combinations
of inequalities, which allows us to address implicit equalities using the characterization
of [8]. The second is the use of convexity, density, and topological characterizations of
boundaries in the construction of answers. Unfortunately, space constraints prevent the
presentation of proofs.

7.1 Abduction

It is substantially more difficult to address, for %LinIneq , the issues addressed in the
previous section for %LinEqn. One problem is that %LinIneq does not support a rank.

Example 6. Let X be x ≥ 0, y ≥ 0, x + y ≤ 5 and Y be x ≥ 0, y ≥ 0, x + y ≤ 6,
so that X → Y . By axioms 1 and 2, if there is a rank, rank(X) > rank(Y). However
there is no Z ⊂ X such that Z → Y . Thus the third axiom cannot be satisfied. Hence
%LinIneq does not support a rank.

A second problem is that, unlike many other constraint domains, the AAC property
fails for %LinIneq , so that the maximally general answers may not represent all answers
of a SCA problem.

Proposition 7. The constraint domain %LinIneq does not have the Abductive Ascend-
ing Chains Property.

Proof. It is sufficient to exhibit one SCA problem with an ascending chain of answers
where the least upper bound is not an answer. Let B be −1 ≤ x, x ≤ 0, 0 ≤ y, y ≤ 2
and C be 0 ≤ x, x ≤ 1, 0 ≤ y, y ≤ 1. The second constraint in B is an implicit equality
in B ∧ C. Note that B ∧ C defines the line segment x = 0, 0 ≤ y, y ≤ 1.

Let Ak be x ≥ 0, x ≥ k(y−1), where k is a rational number. Then Ak is an answer,
for 0 < k < ∞, and within that range for k, if s < t then At → As. The least upper
bound of {Ak | k > 0} is A0. However, A0 is not an answer. Consequently, this SCA
problem does not have a maximally general answer.

Intuitively, for smaller and smaller values of k > 0, Ak defines a larger and larger
proportion of the half-plane x ≥ 0. Furthermore, the boundary of each Ak passes only
through the point y = 1, when x = 0, and ensures B ∧ Ak is equivalent to B ∧ C.
However the least upper bound does not have this property: B ∧ A0 defines the line
segment x = 0, 0 ≤ y, y ≤ 2, and this does not imply y ≤ 1 in C.

184 M.J. Maher

In addition to the trivial cases, %LinIneq has another case where the existence of a
most general answer is obvious. If B and C only involve a single variable x, say, then
the problem is one-dimensional and the constraints are simply bounds on x. In this case
there is always a most general answer. For the remainder of this section we implicitly
assume that the problem is not one-dimensional in this way.

7.2 Abduction Without Implicit Equalities

The presence or absence of implicit equalities is a major factor in the existence of
most general answers. This is, perhaps, already apparent from considering %LinEqn.
We begin by establishing some properties that hold when implicit equalities are absent
from B.

Lemma 2. Consider the constraint domain %LinIneq . Suppose A ∧B is consistent, A
is redundancy-free wrt B, A→ A′, and A′ ∧B → A.

If no B0 ∈ B is an implicit equality in A ∧B, then A′ ↔ A.

The lemma has a useful corollary.

Corollary 2. Consider a SCA problem over the constraint domain %LinIneq where no
constraint in B is an implicit equality of B ∧ C.

If A is equivalent to C modulo B and A is redundancy-free wrt B then A is a
maximally general answer and a fully maximal answer for the SCA problem.

In particular, any core C′ of C wrt B is a maximally general answer and a fully
maximal answer. If the SCA problem has a most general answer, then C′ is the most
general answer.

The hypothesis that B has no implicit equalities in B ∧ C is necessary, as the fol-
lowing example demonstrates.

Example 7. Let B be −1 ≤ x, x ≤ 0, 0 ≤ y, y ≤ 1 and C be 0 ≤ x, x ≤ 1,−1 ≤
y, y ≤ 0. The second and third constraints in B are implicit equalities in B ∧ C.

Let Ak be y ≤ kx where k > 0 is a constant. Then, for each k, Ak is a maximally
general answer. To see this note that any more general constraint A′ would have the
form y ≤ kx+ c where c > 0 is a constant. But then x = 0, y = min(c, 1) is a solution
of A′ ∧B, but not of C. Thus A′ is not an answer.

Hence the SCA problem does not have a most general answer and, indeed, has
infinitely many maximally general answers.

As we saw in Proposition 7, for some SCA problems over%LinIneq not all answers
are represented by maximally general answers. Nevertheless, we now turn our attention
to characterizing the instances of SCA over %LinIneq that have most general answers.
This is substantially more complicated than for %LinEqn and we will need several lem-
mas to develop different parts of the characterization.

Lemma 3. Let C′ be a core of C wrt B. Suppose C′ �→ B and no inequality in B is an
implicit equality in B ∧C′.

If some C0 ∈ C′ is an implicit equality in B ∧ C′, then there is no most general
answer for the SCA problem.

Abduction of Linear Arithmetic Constraints 185

The following example illustrates this lemma.

Example 8. Let B be x ≥ y and let C be y ≥ 0, y ≤ 0. Then the SCA problem satisfies
the conditions of the Lemma 3. The proof of the lemma constructs the answer A as
y ≥ 0, x ≤ 0. Then A ∧ B is satisfied only by x = 0, y = 0. Clearly A �→ C since
x = −1, y = 1 satisfies A, but not C. Similarly, C �→ A since x = 1, y = 0 satisfies C,
but not A. Furthermore, there is no constraint A′ that is more general than both A and
C and is an answer to the SCA problem: the least upper bound of A and C is y ≥ 0,
but this is not an answer.

We say two inequalities, C1 and C2 oppose each other if their corresponding hy-
perplanes are parallel C1 �→ C2, C2 �→ C1, and C1 ∧ C2 is satisfiable. Thus C1 ∧ C2
defines a polytope with two non-intersecting faces (or a single hyperplane if the bound-
aries of C1 and C2 coincide). The polytope is bounded in the direction perpendicular to
the hyperplanes, but unbounded in every other orthogonal direction.

Lemma 4. Let C′ be a core of C wrt B and let B′ be a core of B wrt C′. Suppose the
SCA problem is non-trivial, B ∧ C is full-dimensional, and C′ �→ B.

Then there is a most general answer for the SCA problem iff B′ and C′ each consists
of a single inequality, and they oppose each other.

Example 9. If B is x + y ≥ 2 and C is x + y ≤ 4 then the most general answer to this
SCA problem is C. However, if B is x + y ≥ 2, x ≥ 0 and C is x + y ≤ 4 then C is a
maximally general answer, but it is not more general than the answer y ≥ −2x+ 4 and
hence, by Corollary 2, there is no most general answer.

We say that a constraint B touches a constraint C if C → B and, for some B0 ∈ B,
B=

0 ∧ C is satisfiable. This describes a situation where the polyhedron of B encloses
the polyhedron of C but (at least) one facet of B makes glancing contact (i.e., touches)
the boundary of C.

Lemma 5. Let C′ be a core of C wrt B. Suppose C′ → B and no inequality of B is an
implicit equality of B ∧C. Then

the SCA problem has a most general answer iff B does not touch C′

Example 10. Let B be y ≤ x + 1 and let C be x ≥ 0, y ≤ 1. C is a core of C wrt B.
ThenB touchesC at the point x = 0, y = 1. There is an answer y ≤ −x+1, y ≥ −x+1
that is not less general than C. Thus this SCA problem does not have a most general
answer.

In the proof of Lemma 5 an answer is constructed that is something like
y ≤ −x + 1, y ≥ −x + 1,−1 ≤ x, x ≤ 0.

We can now characterize when most general answers exist, under the assumption
that B does not participate in any implicit equalities in B ∧ C.

Theorem 3. Consider an SCA problem over %LinIneq . Let C′ be a core of C wrt B
and let B′ be a core of B wrt C′. Suppose no inequality of B is an implicit equality of
B ∧ C.

The problem has a most general answer iff and only if one of the following condi-
tions is satisfied:

186 M.J. Maher

– the problem is trivial,
– the problem is one-dimensional,
– C′ → B and B does not touch C′

– C′ �→ B, and B′ and C′ are single opposing inequalities

7.3 Abduction with Implicit Equalities

The previous section characterized the availability of a most general answer when B
contains no implicit equalities. We now establish some lemmas addressing the issue in
the presence of implicit equalities. If C contains both an inequality that is an implicit
equality in B ∧ C and one that is not then there is no most general answer.

Lemma 6. Consider a SCA problem. Let C′ be a core of C wrt B and suppose it
contains both an implicit equality C0 of B ∧ C and an inequality C1 that is not an
implicit equality. Then this SCA problem does not have a most general answer.

The next result is in some sense an extension of Lemma 4, since it corresponds to
the case where the two opposing inequalities have the same supporting hyperplane.

Lemma 7. Suppose B and C are full-dimensional, but B ∧ C is one smaller in
dimension.

This SCA problem has a most general answer iff a core C′ of C wrt B is a single
inequality.

Except for the trivial case, if B has implicit equalities in B then there is no most
general answer.

Lemma 8. Suppose there is a non-tautological equation e such that B → e.
Then the SCA problem has a most general answer iff B → C.

Informally, this result holds because if e is t = 0 then any constraint s ≤ 0 in a core
C′ of C wrt B could be replaced by s + t ≤ 0, giving a different answer.

Although we cannot use a most general answer to represent all answers in this case,
a simple observation allows us to reduce this problem to a simpler one.

Lemma 9. Suppose B has implicit equalities and we write them as explicit equations
θ̂ in solved form. Then A ∧B → C iff Aθ ∧Bθ → Cθ

Thus we can extract all the implicit equalities from B, which can be done with
standard techniques, and apply them as a substitution. The answers of the SCA problem
on Bθ and Cθ are answers to the original problem and, furthermore, constraints that are
equivalent to such an answer, modulo θ̂, are also answers to the original problem, and
these are the only answers. Here θ is the substitution corresponding to solved form θ̂.

However the substitution θ does not simplify the problem into a form addressed in
the previous subsection because B might have an implicit equality in B ∧C that is not
an implicit equality in B. For example, if B is x ≤ y and C is y ≤ z, z ≤ x then B ∧C
implies x = y. Thus we need a stronger reduction.

Lemma 10. Suppose B ∧C has implicit equations θ̂. Then A∧B → C iff A∧B → θ̂
and Aθ ∧Bθ → Cθ.

Abduction of Linear Arithmetic Constraints 187

This still does not directly simplify the problem to the cases of the previous sub-
section because inequalities in B might be implicit equalities in θ̂. That is, for some
B0 ∈ B, it might be that θ̂ → B=

0 . Nevertheless, it shows that the problem of rep-
resenting answers for SCA problems can be broken down into two specialized parts:
abduction from implicit equalities, and abduction in a full-dimensional context.

We can now characterize when a SCA problem has a most general answer. It is
apparent that the presence of implicit equalities in B precludes most general answers,
except in the case addressed in Lemma 7.

Theorem 4. Consider an SCA problem over %LinIneq . Let C′ be a core of C wrt B
and let B′ be a core of B wrt C′.

The problem has a most general answer if and only if one of the following conditions
is satisfied:

– the problem is trivial,
– the problem is one-dimensional,
– no inequality of B is an implicit equality of B ∧ C, C′ → B and B does not

touch C′

– no inequality of B is an implicit equality of B ∧ C, C′ �→ B, and B′ and C′ are
single opposing inequalities

– B is full-dimensional, B ∧ C is one dimension less, and C′ consists of a single
inequality

In [7] it was shown that a constraint language with primitive constraints of the form
ax + by ⊗ 0 where a, b ∈ {−1, 0, 1}, ⊗ ∈ {<,≤} has the property that every SCA
problem has a most general answer. However, as several of our examples suggest, a
slightly richer language loses this property.

8 Discussion

Only simple constraint abduction has been addressed in this paper, although the appli-
cations discussed earlier require extensions to this basic idea. Query answering requires
that A be restricted to variables in the query Q′, while type inference requires the simul-
taneous solution of several SCA problems. The relationship between these extensions
and SCA problems is addressed in [10]. In particular, using Proposition 6 of [10] and
quantifier elimination we can determine whether a SCA problem can be solved under a
given variable restriction. For %LinEqn and %LinIneq the quantifier elimination is rela-
tively straightforward. Maximally general answers for the variable restricted abduction
problem are simply those maximally general answers for the SCA problem that satisfy
the variable restriction. Simultaneous solution of SCA problems can be reduced to so-
lution of the individual SCA problems when the AAC property holds. However, this
leaves the problem unaddressed for constraint domains like %LinIneq .

While the results of this paper are also valid for linear constraints over the ratio-
nal numbers, they do not necessarily extend to the integers. However, it is easy to see
that the example showing %LinIneq does not have the AAC property also applies to
ZLinIneq . This is an indication that characterizing SCA problems with most general
answers over this domain will be no easier than for %LinIneq .

188 M.J. Maher

Acknowledgement. I thank an anonymous referee for careful reading of an earlier draft.

References

1. R. Giacobazzi, Abductive analysis of modular logic programs, Journal of Logic and Compu-
tation 8(4):457-484, 1998.

2. A.Y. Halevy, Answering queries using views: A survey, VLDB J. 10(4): 270–294, 2001.
3. J. M. Howe, A. King, & L. Lu, Analysing Logic Programs by Reasoning Backwards in: M.

Bruynooghe and K.-K. Lau (Eds), Program Development in Computational Logic, LNCS
3049, 152–188. 2004.

4. J. Jaffar & M.J. Maher, Constraint Logic Programming: A Survey, Journal of Logic Pro-
gramming 19 & 20, 503–581, 1994.

5. A.C. Kakas, R.A. Kowalski, F. Toni, Abductive Logic Programming, J. Logic and Computa-
tion 2(6): 719–770, 1992.

6. A.C. Kakas, A. Michael, C. Mourlas, ACLP: Abductive Constraint Logic Programming, J.
Logic Programming 44(1-3): 129–177, 2000.

7. A. King, & L. Lu, Forward versus Backward Verification of Logic Programs, Proc. ICLP,
315–330, 2003.

8. J-L. Lassez & M.J. Maher, On Fourier’s Algorithm for Linear Arithmetic Constraints, Jour-
nal of Automated Reasoning 9, 373–379, 1992.

9. J-L. Lassez, M.J. Maher & K.G. Marriott, Unification Revisited, in: Foundations of Deduc-
tive Databases and Logic Programming, J. Minker (Ed), Morgan Kaufmann, 587–625, 1988.

10. M.J. Maher, Herbrand Constraint Abduction, Proc. LICS, 397–406, 2005.
11. C.S. Peirce, Collected Papers of Charles Saunders Peirce, C. Hartshorne & P. Weiss (Eds),

Belknap Press of Harvard University Press, 1965.
12. V. Simonet & F. Pottier, Constraint-based type inference with guarded

algebraic data types, submitted for publication, 2004. Available at
pauillac.inria.fr/˜fpottier/biblio/pottier.html

13. P.J. Stuckey, M. Sulzmann & J. Wazny, Existentially Quantified Type Classes, draft paper,
2004.

14. J. Wang, M. Maher & R. Topor, Rewriting Unions of General Conjunctive Queries Using
Views, Proc. Conf. on Extending Database Technology, LNCS 2287, 52–69, 2002.

15. H. Xi, Dependent Types in Practical Programming, Ph.D. thesis, Carnegie-Mellon Univer-
sity, 1998.

16. H. Xi, C. Chen & G. Chen, Guarded recursive datatype constructors, Proc. POPL, 224–235,
2003.

17. C. Zenger, Indizierte Typen, Ph.D. thesis, Universität Karlsruhe, 1999.

Towards Implementations for Advanced Equivalence
Checking in Answer-Set Programming�

Hans Tompits and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{tompits, stefan}@kr.tuwien.ac.at

Abstract. In recent work, a general framework for specifying program corre-
spondences under the answer-set semantics has been defined. The framework al-
lows to define different notions of equivalence, including the well-known notions
of strong and uniform equivalence, as well as refined equivalence notions based
on the projection of answer sets, where not all parts of an answer set are of rel-
evance (like, e.g., removal of auxiliary letters). In the general case, deciding the
correspondence of two programs lies on the fourth level of the polynomial hierar-
chy and therefore this task can (presumably) not be efficiently reduced to answer-
set programming. In this paper, we describe an approach to compute program
correspondences in this general framework by means of linear-time constructible
reductions to quantified propositional logic. We can thus use extant solvers for
the latter language as back-end inference engines for computing program corre-
spondence problems. We also describe how our translations provide a method to
construct counterexamples in case a program correspondence does not hold.

1 Introduction

Answer-set programming (ASP) is widely recognised as a fruitful paradigm for declar-
ative knowledge representation and reasoning. It is based on the idea that problems are
encoded in terms of theories of some suitable language, associated with a declarative
semantics, such that the solutions of the given problems are determined by the models
of the corresponding theories. Among the different instances of the ASP paradigm, the
class of nonmonotonic logic programs under the answer-set semantics [14], with which
we are concerned with in this paper, represents the canonical and, due to the availability
of efficient answer-set solvers, like DLV [18], Smodels [26], and ASSAT [22], arguably
most widely used ASP approach.

An important issue for the further deployment of ASP is to provide methods and
tools for engineering ASP solutions. This includes techniques for the simplification and
(offline) optimisation of programs, tools for supporting the user with debugging or ver-
ification features, and methods for modular programming. Crucial for all these issues
are mechanisms for determining the equivalence of (parts of) logic programs.

In previous work [13], a general framework for specifying correspondences between
logic programs under the answer-set semantics has been introduced. In this framework,

� This work was partially supported by the Austrian Science Fund (FWF) under grant P18019,
and by the European Commission via projects FET-2001-37004 WASP, IST-2001-33570 IN-
FOMIX, and IST-2001-33123 CologNeT.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 189–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 H. Tompits and S. Woltran

the correspondence of two programs is determined in terms of a class C of context
programs and a comparison relation ρ such that correspondence between two programs
P and Q holds iff the answer sets of P ∪ R and Q ∪ R satisfy ρ, for any program
R ∈ C. The framework includes as special cases the well-known notions of strong
equivalence [20], uniform equivalence [10], and relativised notions thereof [28], as well
as the practicably important case of program comparison under projected answer sets.
In the latter setting, not a whole answer set of a program is of interest, but only its
intersection on a subset of all letters; this includes, in particular, removal of auxiliary
letters in computation.

For the case of propositional disjunctive logic programs, correspondence check-
ing in the above framework under projected answer sets is surprisingly hard, viz. ΠP

4 -
complete in general [13], i.e., lying on the fourth level of the polynomial hierarchy.
Hence, this task can (presumably) not be efficiently reduced to propositional answer-
set programming. Such an approach (used, e.g., by Oikarinen and Janhunen [23] for
ordinary equivalence) reduces equivalence checking to problems like program consis-
tency such that equivalence holds iff the resultant program possesses no answer set.
Taking the results of Eiter et al. [9] into account, a compact reduction as such cannot
even be obtained by using non-ground programs as long as we restrict the arities of
predicates to a fixed constant. This indicates that advanced equivalence tests in answer-
set programming cannot be straightforwardly solved using ASP systems themselves.

In this paper, we describe an approach to compute program correspondences in the
framework of Eiter et al. [13] by means of efficient reductions to quantified propo-
sitional logic. The latter is an extension of classical propositional logic characterised
by the condition that its sentences, usually referred to as quantified Boolean formulas
(QBFs), are permitted to contain quantifications over atomic formulas. More specifi-
cally, our reductions enjoy the following properties:

1. a solution correspondence under projected answer sets between two given logic
programs holds iff the associated QBF is valid in quantified propositional logic,

2. the reduction is constructible in linear time and space, and
3. determining the validity of the resultant QBFs under the translations is not compu-

tationally harder than checking the original correspondence problem.

Besides the reduction of correspondence problems, we also describe how our transla-
tions provide a method to construct counterexamples in case a program correspondence
does not hold.

The rationale to consider a reduction approach to QBFs is twofold: On the one
hand, complexity results about quantified propositional logic imply that decision prob-
lems from the polynomial hierarchy can be efficiently represented in terms of QBFs,
and, on the other hand, several practicably efficient solvers for quantified propositional
logic are currently available (like, e.g., the solvers QuBE [15] and semprop [19]; for
others, cf. [17,16]). Hence, tools of the latter kind can be used as back-end inference
engines to compute the correspondence problems under consideration. We note that a
similar reduction approach to QBFs has been successfully applied in diverse fields like
nonmonotonic reasoning [6,5,12], paraconsistent reasoning [3,1,2], planning [25], and
automated deduction [7].

Towards Implementations for Advanced Equivalence Checking in ASP 191

2 Preliminaries

We deal with propositional disjunctive logic programs, which are finite sets of rules of
form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

with n≥m≥ l≥ 0, and where all ai are propositional atoms from a universe U and
not denotes default negation. We call a rule of the above form a fact if l = 1 and
m = n = 0, and a constraint if l = 0. If all atoms occurring in a program P are from a
given set A ⊆ U of atoms, we say that P is a program over A. The set of all programs
over A is denoted by PA.

Let I be an interpretation, i.e., a set of atoms, and P a program. Following Gelfond
and Lifschitz [14], I is an answer set of P iff it is a minimal model of the reduct P I ,
resulting from P by (i) deleting all rules containing default negated atoms not a such
that a ∈ I and (ii) deleting all default negated atoms in the remaining rules. The set of
all answer sets of P is denoted by AS(P). We also write I |= P to indicate that each
rule in P is true under I (in the sense of classical logic).

Under the answer-set semantics, two programs P and Q are regarded as (ordinarily)
equivalent iff AS(P) = AS(Q). The more restrictive form of strong equivalence [20]
has recently been generalised as follows [28]: Let P,Q be programs over U , and let
A ⊆ U . Then, P and Q are strongly equivalent relative to A iff, for any R ∈ PA

AS(P ∪ R) = AS(Q ∪ R). If A = U , strong equivalence relative to A reduces to
strong equivalence; if A = ∅, we obtain ordinary equivalence.

We use the following notation: For an interpretation I and a set S of interpretations
(resp., pairs of interpretations), we write S|I = {Y ∩ I | Y ∈ S} (resp., S|I =
{(X ∩ I, Y ∩ I) | (X,Y) ∈ S}). If S = {s}, we usually write s|I instead of S|I .

For any A ⊆ U , a pair (X,Y) of interpretations, where Y ⊆ U , is an A-SE-
interpretation (over U) iff either X = Y or X ⊂ Y |A. (X,Y) is an A-SE-model of
a program P iff (i) Y |= P , (ii) for all Y ′ ⊂ Y with Y ′|A = Y |A, Y ′ �|= PY , and
(iii) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′|A = X such that X ′ |= PY

holds. A pair (X,Y) is total iff X = Y , and non-total otherwise. The set of all A-SE-
models of P is denoted by SEA(P).

For A = U , the notion of an A-SE-interpretation (resp., A-SE-model) coincides
with the notion of an SE-interpretation (resp., SE-model) as defined by Turner [27], and
we write SE (P) instead of SEU (P). Thus, (X,Y) ∈ SE (P) iff X ⊆ Y , Y |= P , and
X |= P Y .

Proposition 1 ([28]). Two programs P and Q are strongly equivalent relative to A iff
SEA(P) = SEA(Q).

Example 1. Consider the following two programs, P and Q:

P = P0 ∪ {c ∨ d← a; c ∨ d← b},
Q = P0 ∪ {c ∨ d← a, b; d← b,not c; c← a,not d},

for P0 = {a← c; b← c; a← d; b← d; ← not c,not d}.

192 H. Tompits and S. Woltran

They have the following SE-models:1

SE (P) = {(∅, abc), (∅, abd), (∅, abcd), (abcd, abcd),
(abc, abcd), (abd, abcd), (abc, abc), (abd, abd)},

SE (Q) = SE (P) ∪ {(b, abc), (a, abd), (b, abcd), (a, abcd)}.

Hence, P and Q are not strongly equivalent. On the other hand,AS(P) = AS(Q) = ∅,
i.e., P and Q are (ordinarily) equivalent. Moreover, P and Q are strongly equivalent
relative to A precisely if A ∩ {a, b} = ∅. For A = {a, b}, we get

SEA(P) = {(∅, abc), (∅, abd), (abc, abc), (abd, abd)},
SEA(Q) = SEA(P) ∪ {(b, abc), (a, abd)}.

Thus, P and Q are not strongly equivalent relative to A = {a, b}. For instance, adding
a fact a← yieldsAS(P ∪ {a←}) = {abc, abd}, while AS(Q ∪ {a←}) = {abc}. �

A set S of SE-interpretations is complete iff, for each (X,Y) ∈ S, also (Y, Y) ∈ S
as well as (X,Z) ∈ S, for any Z such that Y ⊆ Z and (Z,Z) ∈ S. It can be shown
that, for any program P , the set SE (P) of all SE-models of P is always complete. Con-
versely, any complete set S of SE-interpretations can be represented by some program
P . As a general result, taking also a restricted alphabet A into account, the following
result holds:

Proposition 2 ([13]). Let S be a complete set of SE-interpretations, and let A be a set
of atoms. Then, there exists a program PS,A ∈ PA such that SE (PS,A)|A = S|A.

One possibility to obtain PS,A from S is as follows:

1. for each Y ⊆ A with (Y, Y) /∈ S|A, add rules ⊥ ← Y,not (A \ Y), and
2. for each X ⊂ Y with (X,Y) /∈ S|A and (Y, Y) ∈ S|A, add rules∨

p∈(Y \X) p← X, not (A \ Y).

3 Correspondence Checking

In order to deal with differing notions of program equivalence in a uniform manner,
taking in particular strong equivalence and its relativised version, as well as equivalence
notions based on the projection of answer sets into account, Eiter et al. [13] introduced
a general framework for specifying differing notions of equivalence. In this framework,
one parameterises, on the one hand, the class of programs used to be added to the
programs under consideration, and, on the other hand, the relation that has to hold
between the collection of answer sets of the extended programs.

Definition 1. A correspondence frame, or simply frame, F , is a triple (U , C, ρ), where
(i) U is a set of atoms, called the universe of F , (ii) C ⊆ PU , called the context of F ,
and (iii) ρ ⊆ 22U × 22U

.
For every program P,Q ∈ PU , P and Q areF -corresponding, in symbols P (F Q,

iff, for all R ∈ C, (AS(P ∪R),AS(Q ∪R)) ∈ ρ.

1 We write abc instead of {a, b, c}, a instead of {a}, etc.

Towards Implementations for Advanced Equivalence Checking in ASP 193

It is quite obvious that the equivalence notions presented in the previous section
are special cases of F -correspondence. Indeed, for any universe U and any A ⊆ U ,
strong equivalence relative to A coincides with (U ,PA,=)-correspondence, and ordi-
nary equivalence coincides with (U , {∅},=)-correspondence.

Following Eiter et al. [13], we are mainly concerned with correspondence frames of
form (U ,PA,⊆B) and (U ,PA,=B), where A,B ⊆ U are sets of atoms, and ⊆B and
=B are projections of the standard subset and set-equality relation, respectively, defined
as follows: for any set S,S′ of interpretations, S ⊆B S′ iff S|B ⊆ S′|B , and S =B S′

iff S|B = S′|B .
A correspondence problem, Π, (over U) is a quadruple (P,Q, C, ρ), where P,Q ∈

PU and (U , C, ρ) is a frame. We say that Π holds iff P ((U ,C,ρ) Q holds. For a cor-
respondence problem Π = (P,Q, C, ρ) over U , we usually leave U implicit, assuming
that it consists of all atoms occurring in P , Q, and C. We call Π an equivalence problem
if ρ is given by =B, and an inclusion problem if ρ is given by ⊆B , for some B ⊆ U .
Note that (P,Q, C,=B) holds iff (P,Q, C,⊆B) and (Q,P, C,⊆B) jointly hold.

For inclusion problems, we define the concept of a counterexample, which is easily
extended to equivalence problems.

Definition 2. A pair (Y,R), where Y is an interpretation and R ∈ C, is a counterex-
ample for (P,Q, C,⊆B) iff (i) Y ∈ AS(P ∪ R) and (ii) Z /∈ AS(Q ∪ R), for each Z
with Z =B Y .

Example 2. We have already seen that for P , Q from Example 1, (P,Q,PA,⊆U) does
not hold for A = {a, b} and U = {a, b, c, d}. What happens if we restrict the com-
parison of answer sets from U to A, i.e., does (P,Q,PA,⊆A) hold? Note that, e.g.,
AS(P ∪ {a ←})|A = AS(Q ∪ {a ←})|A = {ab}. Hence, the counterexample
(abc, {a ←}) from Example 1 is no longer a counterexample for (P,Q,PA,⊆A). As
we shall see below, there still exist counterexamples for this problem, but these are more
involving. �

As shown by Eiter et al. [13], inclusion problems with projection may possess only
counterexamples which are exponential in the size of the compared programs. Hence,
instead of guessing concrete programs and checking whether they are counterexamples
for a given inclusion problem, Eiter et al. provide a semantical structure, called spoiler,
which operates on the compared programs alone, together with the notion of a partial
spoiler.

Definition 3. Let Π = (P,Q,PA,⊆B) be an inclusion problem, Y an interpretation,
and S ⊆ SEA(Q) ∩ {(X,Z) | Z =A∪B Y } a complete set of A-SE-interpretations.
The pair (Y,S) is a spoiler for Π iff

1. (Y, Y) ∈ SEA(P),
2. each (Z,Z) ∈ SEA(Q) such that Z =A∪B Y is also in S,
3. for each (Z,Z) ∈ S, some non-total (X,Z) ∈ S exists, and
4. for each non-total (X,Z) ∈ S, (X,Y) /∈ SEA(P).

For a spoiler (Y,S), the interpretation Y is referred to as a partial spoiler for Π.

194 H. Tompits and S. Woltran

Intuitively, in a spoiler (Y,S) for (P,Q,PA,⊆B), the interpretation Y is an answer
set of P ∪R but not of Q∪R, where R is a program which is semantically given by S.

We collect and rephrase the main results from [13].

Proposition 3. Let Π = (P,Q,PA,⊆B) be an inclusion problem. Then, Π holds iff
there exists no spoiler for Π.

As an immediate consequence, we obtain that a correspondence problem Π holds iff
there exists no partial spoiler for Π. Moreover, we are able to connect spoilers to coun-
terexamples using the generic programs PS,A, as introduced in Section 2.

Proposition 4. If (Y,S) is a spoiler for an inclusion problem Π = (P,Q,PA,⊆B),
then (Y, PS,A) is a counterexample for Π.

Example 3. For P and Q from Example 1 and A = {a, b}, the pairs (Y1,S) and
(Y2,S) are the only spoilers for (P,Q,PA,⊆A), where Y1 = {abc} and Y2 = {abd}
are the partial spoilers for (P,Q,PA,⊆A), and S = {(a, abd), (b, abc), (abc, abc),
(abd, abd)}. Invoking our program construction, we obtain PS,A = {⊥ ← a,not b;
⊥ ← b,not a; ⊥ ← not a,not b; a ∨ b ←}. One can verify that both Y1 and Y2 are
contained inAS(P1 ∪PS,A), while no interpretation Z with Z =A Y1 is an answer set
of Q ∪ PS,A. �

Finally, we recall the computational complexity of checking whether an equivalence
or inclusion problem holds. As shown by Eiter et al. [13], deciding (P,Q,PA,=B) is
of a significantly higher complexity compared to more restricted notions of equiva-
lence, like strong equivalence (which is coNP-complete) or ordinary equivalence and
relativised strong equivalence (which both are ΠP

2 -complete).

Proposition 5 ([13]). Given programs P , Q, sets of atoms A, B, and ρ ∈ {⊆B,=B},
deciding whether a correspondence problem (P,Q,PA, ρ) holds is ΠP

4 -complete.

4 Reductions

In this section, we provide two approaches to map inclusion problems into quantified
Boolean formulas. By combining the reduction for a problem (P,Q,PA,⊆B) with that
of (Q,P,PA,⊆B), we straightforwardly obtain a method to check whether an equiva-
lence problem (P,Q,PA,=B) holds. We start with a brief recapitulation of the basic
facts about the quantified version of propositional logic.

4.1 Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic in which
formulas are permitted to contain quantifications over propositional variables. More for-
mally, formulas of quantified propositional logic are built from atomic formulas using
the primitive sentential connectives ¬ and ∧, the logical constant �, and unary oper-
ators of form ∀p (where p is some atom), called universal quantifiers. The operators
∨, →, and ↔, as well as the symbol ⊥, are defined from the primitive ones, ¬, ∧,
and �, as usual. Furthermore, similar to first-order logic, ∃p is defined as the operator

Towards Implementations for Advanced Equivalence Checking in ASP 195

¬∀p¬, referred to as an existential quantifier. Formulas of this language are also called
quantified Boolean formulas (QBFs) and we denote them by Greek upper-case letters.

An occurrence of an atom p is free in a QBF Φ if it does not occur in the scope of
a quantifier Qp, Q ∈ {∃, ∀}. In what follows, we tacitly assume that every subformula
QpΦ of a QBF contains a free occurrence of p in Φ, and for two different subformulas
QpΦ, Qq Ψ of a QBF we require p �= q. Moreover, given a finite set P of atoms, QP Ψ
stands for any QBF Qp1Qp2 . . .QpnΨ such that the variables p1, . . . , pn are pairwise
distinct and P = {p1, . . . , pn}.

Towards the definition of the semantics of QBFs, we introduce the following nota-
tion: For an atom p (resp., a set P of atoms) and a set I of atoms, Φ[p/I] (resp., Φ[P/I])
denotes the QBF resulting from Φ by replacing each free occurrence of p (resp., each
p ∈ P) in Φ by � if p ∈ I and by ⊥ otherwise.

For an interpretation I and a QBF Φ, the relation I |= Φ is inductively defined as
follows:

1. I |= �,
2. I |= p iff p ∈ I ,
3. I |= ¬Φ iff I �|= Φ,
4. I |= Φ1 ∧ Φ2 iff I |= Φ1 and I |= Φ2, and
5. I |= ∀p Φ iff I |= Φ[p/{p}] and I |= Φ[p/∅].

From these conditions, corresponding ones for ⊥, ∨, →, ↔, and ∃p, for any p,
follow in the usual way.

A QBF Φ is true under I iff I |= Φ, otherwise Φ is false under I . A QBF is valid
iff it is true under any interpretation. Note that a closed QBF, i.e., a QBF without free
variable occurrences, is either true under any I or false under any I .

A QBF Φ is said to be in prenex normal form iff it is closed and of the form

QnPn . . .Q1P1 φ, (2)

where n ≥ 0, φ is a propositional formula, Qi ∈ {∃, ∀} such that Qi �= Qi+1 for
1 ≤ i ≤ n− 1, (P1, . . . , Pn) is a partition of the propositional variables occurring in φ,
and Pi �= ∅, for each 1 ≤ i ≤ n. We call a QBF of the form (2) an (n,Qn)-QBF.

Without going into details, we mention that any closed QBF Φ is easily transformed
into an equivalent QBF in prenex normal form such that each quantifier occurrence from
the original QBF corresponds to a quantifier occurrence in the prenex normal form. Let
us call such a QBF the prenex normal form of Φ. Similar as in first-order logic, however,
there are different ways how to obtain an equivalent prenex QBF (cf. [8] for more details
on this issue).

The following property is essential:

Proposition 6. For every k ≥ 0, deciding the truth of a given (k,∃)-QBF (resp., (k,∀)-
QBF) is ΣP

k -complete (resp., ΠP
k -complete).

Hence, any decision problem D in ΣP
k (resp., ΠP

k) can be mapped in polynomial
time to a (k,∃)-QBF (resp., (k,∀)-QBF) Φ such thatD holds iff Φ is valid. In particular,
Proposition 5 implies thus that any correspondence problem (P,Q,PA, ρ), for ρ ∈
{⊆B,=B}, can be reduced in polynomial time to a (4, ∀)-QBF. In what follows, we
construct two such mappings which are actually constructible in linear space and time.

196 H. Tompits and S. Woltran

4.2 Encodings

For our encodings, we use the following building blocks. The idea hereby is to use sets
of globally new atoms in order to refer to different assignments of the atoms from the
compared program within a single formula. More formally, given an indexed set V of
atoms, we assume (pairwise) disjoint copies Vi = {vi | v ∈ V }, for every i ≥ 1.
Furthermore, we introduce the following abbreviations:

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj),
2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi), and
3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is clearly equivalent to
∧

v∈V (vi ↔ vj).

Proposition 7. Let I be an interpretation, and A,X, Y ⊆ V such that, for some i, j,
I|Vi = Xi and I|Vj = Yj . Then,

1. X |A ⊆ Y |A iff I |= (Ai ≤ Aj),
2. X |A ⊂ Y |A iff I |= (Ai < Aj), and
3. X |A = Y |A iff I |= (Ai = Aj).

In accordance to the above renaming of atoms, we use subscripts as a general renaming
schema for formulas and rules. That is, for each i ≥ 1, αi expresses the result of
replacing each occurrence of an atom p in α by pi, where α is any formula or rule.
Furthermore, for a rule r of form (1), we define H(r) = a1 ∨ · · · ∨ al, B+(r) =
al+1 ∧ · · · ∧ am, and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with �. Finally, for a program P , we define Pi,j =∧

r∈P

(
(B+(ri) ∧B−(rj)) → H(ri)

)
.

Proposition 8. Let P be a program over atoms V , I an interpretation, and X,Y ⊆ V
such that, for some i, j, I|Vi = Xi and I|Vj = Yj . Then, X |= PY iff I |= Pi,j .

Intuitively, this allows to refer to the reduct of P (in case that i �= j) and to the
classical formula associated to P (in case that i = j) simultaneously.

The central characterisation towards our encodings, given next, replaces the concept
of an A-SE-model in Definition 3 by tests over program reducts.

Proposition 9. An interpretation Y is a partial spoiler for (P,Q,PA,⊆B) iff

(a) Y |= P ,
(b) for each Y ′ ⊂ Y with Y ′ =A Y , Y ′ �|= PY , and
(c) for each Z =A∪B Y , Z |= Q implies the existence of an X ⊂ Z such that X |= QZ

and, if X ⊂ Z|A = Y |A, then, for each X ′ ⊆ Y with X ′ =A X , X ′ �|= PY .

Definition 4. Let P,Q be programs over V and let A,B ⊆ V . Furthermore, consider
Π = (P,Q,PA,⊆B). Then,

SΠ(V1) := P1,1 ∧ S1(P,A) ∧ ∀V3
(
S2(Q,A,B) → S3(P,Q,A)

)
, where

S1(P,A) := ∀V2
(
((A2 = A1) ∧ (V2 < V1))→ ¬P2,1

)
,

S2(Q,A,B) :=
(
(A ∪B)3 = (A ∪B)1

)
∧Q3,3, and

S3(P,Q,A) := ∃V4
(
(V4 < V3) ∧Q4,3 ∧

(
(A4 < A1)→

∀V5
(
((A5 = A4) ∧ (V5 ≤ V1))→ ¬P5,1

)))
.

Towards Implementations for Advanced Equivalence Checking in ASP 197

Lemma 1. Let P and Q be programs over V , and let A,B, Y ⊆ V . Then, Y is a
partial spoiler for Π = (P,Q,PA,⊆B) iff Y1 |= SΠ(V1).

We do not give a formal proof here, but just provide the following explanations.
The subformula P1,1 ∧ S1(P,A) of SΠ(V1) takes care of Conditions (a) and (b) from
Proposition 9; we use atoms V1 to refer to Y , and atoms V2 to refer to the Y ′ therein.
Note that (A2 = A1) ∧ (V2 < V1) thus guarantees that we take only those Y ′ for
testing Y ′ |= PY into account, where Y ′ ⊂ Y and Y ′ =A Y . The next subformula,
S2(Q,A,B), “returns” all Z (via assignments to V3) such that Z =A∪B Y and Z |= Q.
Finally, for each such Z , S3(P,Q,A) has to be true. On account of (V4 < V3), we let
the assignments to V4 (which refer to the X in Item (c) of Proposition 9) be a proper
subset of those to V3, i.e., we require X ⊂ Z . Then we test whether X |= QZ via Q4,3,
as follows from Proposition 8, and in case that X |A ⊂ Y |A (checked via A4 < A3),
the remaining formula encodes the test whether for all X ′ (assignments to V5) with
X ′ =A X and X ′ ⊆ Y , X ′ �|= PY , i.e., P5,1 is false under the current assignment to
V1 and V5.

In what follows, we give a more compact encoding, which in particular reduces the
number of universal quantifications. The idea is to save on the fixed assignments as,
e.g., in S2(Q,A,B) where we have (A ∪ B)3 = (A ∪ B)1. That is, in S2(Q,A,B),
we implicitly ignore all assignments to V3 where atoms from A or B have different
truth values as those in V1. Therefore, it makes sense to consider only atoms from
V3 \ (A3 ∪B3) and using A1 ∪B1 instead of A3 ∪B3 in Q3,3.

This calls for a more subtle renaming schema for programs, however. Let V be a set
of indexed atoms, and let r be a rule. Then, rVi,k results from r by replacing each atom
x in r by xi, providing xi ∈ V , and by xk otherwise. For a program P , we define

PV
i,j,k :=

∧
r∈P

(
(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)

)
.

Moreover, for every i ≥ 1, every set V of atoms, and every set C, V C
i := (V \ C)i.

Definition 5. Let P,Q be programs over V and A,B ⊆ V . Furthermore, let Π =
(P,Q,PA,⊆B) be an inclusion problem and V = V1 ∪ V A

2 ∪ V A∪B
3 ∪ V4 ∪ V A

5 . Then,

T Π(V1) := P1,1 ∧ T 1(P,A,V) ∧ ∀V A∪B
3
(
QV

3,1,1 → T 3(P,Q,A,V)
)
, where

T 1(P,A,V) := ∀V A
2
(
(V A

2 < V A
1) → ¬PV

2,1,1
)

and

T 3(P,Q,A,V) := ∃V4
((
V4 < ((A∪B)1 ∪ V A∪B

3)
)
∧QV

4,3,1 ∧
(
(A4 < A1)→

∀V A
5 ((V A

5 ≤ V A
1) → ¬PV

5,1,4)
))
.

Note that the subformula V4 < ((A∪B)1 ∪ V A∪B
3) in T 3(P,Q,A,V) denotes((

(A ∪B)4 ≤ (A ∪B)1
)
∧ (V4 ≤ V1)

)
∧ ¬
((

(A ∪B)1 ≤ (A ∪B)4)
)
∧ (V1 ≤ V4)

)
.

Also note that, compared to our first encoding SΠ(V1), we do not have a pendant to
subformula S2 here, which reduces simply to QV

3,1,1 due to the new renaming schema.

Lemma 2. Let P,Q be programs over V , and let A,B, Y ⊆ V . Then, Y is a partial
spoiler for Π = (P,Q,PA,⊆B) iff Y1 |= T Π(V1).

198 H. Tompits and S. Woltran

Example 4. Consider the two programs P = {a ∨ b ← c} and Q = {a ← c,not b},
A = {a}, and B = {b}. The encodings for the problem Π = (P,Q,PA,⊆B) are as
follows:

SΠ(V1) = (c1 → a1 ∨ b1) ∧ S1(P,A) ∧
∀a3b3c3(S2(Q,A,B) → S3(P,Q,A)),

S1(P,A) = ∀a2b2c2
(
(a2 ↔ a1) ∧ ({b2, c2} < {b1, c1})→ ¬(c2 → a2 ∨ b2)

)
,

S2(Q,A,B) = (a3 ↔ a1) ∧ (b3 ↔ b1) ∧ (c3 ∧ ¬b3 → a3),
S3(P,Q,A) = ∃a4b4c4

(
({a4, b4, c4} < {a3, b3, c3}) ∧ (c4 ∧ ¬b3 → a4) ∧
(({a4} < {a1})→ ∀a5b5c5((a5 ↔ a4) ∧
({a5, b5, c5} ≤ {a1, b1, c1})→ ¬(c5 → a5 ∨ b5)))

)
;

T Π(V1) = (c1 → a1 ∨ b1) ∧ T 1(P,A,V) ∧
∀c3
(
(c3 ∧ ¬b1 → a1)→ T 3(P,Q,A,V)

)
,

T 1(P,A,V) = ∀b2c2(({b2, c2} < {b1, c1})→ ¬(c2 → a1 ∨ b2),
T 3(P,Q,A,V) = ∃a4b4c4

(
({a4, b4, c4} < {a1, b1, c3}) ∧ (c4 ∧ ¬b1 → a4) ∧
(({a4} < {a1})→ ∀b5c5(({b5, c5} ≤ {b1, c1})→
¬(c5 → a4 ∨ b5)))

)
.

As mentioned before, the optimised encoding T Π(·) saves “fixed assignments”, like
(a2 ↔ a1), which occur in SΠ(·), by employing the advanced renaming schema in
such a way that, instead of atom a2, atom a1 is used in the encoding. One effect of this
refinement is the decrease of universally quantified atoms. �

Theorem 1. For any inclusion problem Π = (P,Q,PA,⊆B), the following statements
are equivalent: (i) Π holds; (ii) ¬∃V1SΠ(V1) is valid; and (iii) ¬∃V1T Π(V1) is valid.

Corollary 1. Let Π = (P,Q,PA,=B) be an equivalence problem. Then, for Π′ =
(P,Q,PA,⊆B) and Π′′ = (Q,P,PA,⊆B), the following statements are equivalent:
(i) Π holds; (ii) ¬∃V1SΠ′(V1) ∧ ¬∃V1SΠ′′(V1) is valid; and (iii) ¬∃V1T Π′(V1) ∧
¬∃V1T Π′′(V1) is valid.

4.3 Applicability and Adequacy of the Encodings

In order to employ off-the-shelves QBF-solvers for deciding answer-set correspon-
dence, we have to transform above encodings into prenex normal form. The propo-
sitional part of these prenex QBFs additionally has to be reduced to CNF, which can be
accomplished by usual techniques. We thus focus here just on possible prenex normal
forms of our encodings.

Recall that there are several ways to transform a QBF into prenex normal form. For
our encodings, the situation is as follows. Take, e.g., the existential closure of SΠ(V1),
given by ∃V1SΠ(V1): for this closed QBF, different prenex forms can be obtained, e.g.,

∃V1∀(V2 ∪ V3)∃V4∀V5 φ or ∃V1∀V3∃V4∀(V5 ∪ V2)φ,

Towards Implementations for Advanced Equivalence Checking in ASP 199

where φ represents the so-called propositional skeleton of the QBF SΠ(V1) (cf. [8]),
which, roughly speaking, results from SΠ(V1) by deleting all quantifiers. For later pur-
poses, we use in the following the second variant, and define Sp

Π := ∃V1∀V3∃V4∀(V5∪
V2)φ. Likewise, we use T p

Π := ∃V1∀V A∪B
3 ∃V4∀(V A

5 ∪ V A
2)ψ as a prenex form for

∃V1T Π(V1), where ψ is the propositional skeleton of T Π(V1).

Theorem 2. For any inclusion problem Π = (P,Q,PA,⊆B), the following statements
are equivalent: (i) Π holds; (ii) ¬Sp

Π is valid; (iii) ¬T p
Π is valid.

These prenex forms also give evidence that our encodings are adequate in a certain
theoretical sense: Following [3], given decision problems D ⊆ L and D′ ⊆ L′ in
languages L and L′, respectively, we call an encoding f : L → L′ adequate iff, for
each s ∈ L, (i) s ∈ D iff f(s) ∈ D′, (ii) f(s) is constructible in polynomial time from
s, and (iii) deciding whether f(s) ∈ D′ is not computationally harder than deciding
whether s ∈ D.

Now, both ¬Sp
Π and ¬T p

Π obviously satisfy these conditions, for every inclusion
problem Π. Indeed, by the above theorem, we have that Π holds iff ¬Sp

Π is valid.
Moreover, ¬Sp

Π is computable in polynomial time (indeed, in linear time) in the size
of Π (as easily verified from the definitions). Finally, ¬Sp

Π can be transformed into a
(4, ∀)-QBF in polynomial time. Hence, Proposition 6 implies that determining the truth
of ¬Sp

Π is thus in the same complexity class (viz. ΠP
4) as the encoded problem. All

these properties hold for ¬T p
Π as well. This proves the adequacy of our encodings.

5 Obtaining Counterexamples

In this section, we provide a theoretical basis how to use our encodings to obtain coun-
terexamples for an inclusion problem (P,Q,PA,⊆B). To this end, we use the concept
of policies for prenex QBFs, along the lines of Coste-Marquis et al. [4].

Definition 6. The set P (k,Q, Xk, . . . , X1) of policies for a (k,Q)-QBF of the form
QkXk . . .Q1X1φ is inductively defined as follows:

1. P (0,Q) = {λ},
2. P (k,∃, Xk, . . . , X1) = {(I, π) | I ⊆ Xk, π ∈ P (k − 1, ∀, Xk−1, . . . , X1)}, and
3. P (k,∀, Xk, . . . , X1) = {π | π : 2Xk → P (k − 1, ∃, Xk−1, . . . , X1)},

where λ represents the empty policy.

Note that policies for (k,∃)-QBFs are pairs (I, π), where I is an interpretation over
atoms from the outermost group of quantifiers and π is a policy itself, whereas poli-
cies for (k,∀)-QBFs are functions assigning to each interpretation over atoms from the
outermost group of quantifiers a policy.

Definition 7. A (k,Q)-QBF Φ = QkXk . . .Q1X1φ is satisfied by a policy π (for Φ) iff
one the following conditions applies (inductively):

1. k = 0, π = λ, and φ is true,
2. k > 0, Q = ∃, π = (I, π′), and ∀Xk−1 . . .Q1X1φ[Xk/I] is satisfied by π′,
3. k > 0, Q = ∀, and for any I ⊆ Xk, ∃Xk−1 . . .Q1X1φ[Xk/I] is satisfied by π(I).

Denote by SP(Φ) the set of satisfying policies for a prenex QBF Φ.

200 H. Tompits and S. Woltran

Proposition 10. A prenex QBF Φ is valid iff SP(Φ) �= ∅.

Example 5. Consider φ = (p→ q) ∧ (q → p) and the following QBFs:2

Φ1 = ∃pq φ, Φ2 = ∀pq φ, Φ3 = ∃p ∀q φ, and Φ4 = ∀p ∃q φ.

The set of policies for Φ1 is given by {(I, λ) | I ⊆ {p, q}}, i.e., the satisfying policies
for Φ1 are in a one-to-one correspondence to the models of φ, and are given by (∅, λ)
and ({p, q}, λ). For Φ2, the only policy is the function π assigning to each I ⊆ {p, q}
the empty policy λ. Note that π is not satisfying Φ2 since, for instance, with I = {p},
we get π(I) = λ, but φ[{p, q}/I] = (� → ⊥)∧(⊥ → �) is not true. For Φ3, we get as
policies π1 = ({p};π′) and π2 = (∅;π′), where π′ is defined as π′({q}) = π′(∅) = λ.
It can be shown that neither π1 nor π2 satisfy Φ3, by similar arguments as for the case
of Φ2. Finally, Φ4 yields four policies, given as follows:

π(p) = (q, λ), π(∅) = (q, λ); π′(p) = (q, λ), π′(∅) = (∅, λ);
π′′(p) = (∅, λ), π′′(∅) = (q, λ); π′′′(p) = (∅, λ), π′′′(∅) = (∅, λ).

One can verify that π′ is the only satisfying policy for Φ4. �

We now use the concept of policies to obtain the counterexamples from the satis-
fying policies of our encodings. Note that, in the definition below, we make use of our
renaming schema as used in the encodings; e.g., Z3 = {z3 | z ∈ Z}.

Definition 8. Let Π = (P,Q,PA,⊆B) be an inclusion problem. Furthermore, let Sp
Π

and T p
Π be as in Subsection 4.3 and Ω ∈ {S,T }. Then,

σ(Ω,Π) := {(Y,ΣΩ,Y,π) | (Y1, π) ∈ SP(Ωp
Π)},

where

ΣS,Y,π := {(X,Z), (Z,Z) | Z =A∪B Y, (Z,Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for some π′} and

ΣT ,Y,π := {(X,Y +̇Z), (Y +̇Z, Y +̇Z) | (Y +̇Z, Y +̇Z) ∈ SEA(Q),
π(Z3) = (X4, π

′), for some π′},

and Y +̇Z stands for Y |A∪B ∪ Z .

These two projections, σ(S, ·) and σ(T , ·), on the satisfying policies for our two
encodings are actually identical. Hence, our final two results in this section apply to
both encodings.

Theorem 3. Let Π = (P,Q,PA,⊆B) be an inclusion problem and Ω ∈ {S,T }. Then,
each (Y,Σ) ∈ σ(Ω,Π) is a spoiler for Π.

In view of the construction of Proposition 2, we can thus construct counterexamples
directly from the satisfying policies of our encodings.

2 In what follows, we sometimes omit brackets “{” and “}” for ease of notation.

Towards Implementations for Advanced Equivalence Checking in ASP 201

Corollary 2. Let Π = (P,Q,PA,⊆B) be an inclusion problem and Ω ∈ {S,T }.
Then, each (Y,Σ) ∈ σ(Ω,Π) induces a counterexample (Y, PΣ,A) for Π.

From Proposition 10 and Theorem 2, in turn, we obtain that in case no satisfying
policy for our encodings exists, the considered inclusion problem holds, and therefore
does not possess any counterexample.

6 Special Cases

Finally, we analyse our encodings in the light of special instantiations of correspon-
dence problems and give pointers to related work.

In what follows, for every equivalence problem Π = (P,Q,PA,=B), let Π′ =
(P,Q,PA,⊆B) and Π′′ = (Q,P,PA,⊆B) be the associated inclusion problems (see
also Corollary 1).

In case of strong equivalence [20], i.e., for problems of form Π = (P,Q,PA,=A)
with A = U , the encodings T Π′(V1) and T Π′′(V1), as defined in Definition 5, can be
drastically simplified since V A

2 = V A
3 = V A

5 = ∅. In particular, T Π′(V1) is equivalent
to

P1,1 ∧
(
Q1,1 → ∃V4

(
(V4 < V1) ∧Q4,1 ∧ ¬P4,1

))
.

Note that the composed encoding for deciding strong equivalence, i.e., the closed QBF
¬∃V1T Π′(V1) ∧ ¬∃V1T Π′′(V1), amounts to a propositional unsatisfiability test, wit-
nessing the coNP-completeness complexity for checking strong equivalence [24]. One
can show that the reductions due to Pearce et al. [24] and Lin [21] for testing strong
equivalence in terms of propositional logic are simple variants thereof.

For strong equivalence relative to a set A of atoms [28], i.e., for Π being of form
(P,Q,PA,=B) with B = U but with arbitraryA, our encodings T Π′(V1) and T Π′′(V1)
can still be simplified since V A∪B

3 = ∅. Indeed, T p
Π′ and T p

Π′′ are then (2, ∃)-QBFs,
reflecting the complexity of strong equivalence relative to A, which is on the second
level of the polynomial hierarchy [28].

Next, we address the case of bounded relativised strong equivalence, as investigated
by Eiter et al. [11]. This notion applies to problems of form Π = (P,Q,PA,=), where
the cardinality of (U \ A), i.e., the number of atoms missing in A, is bounded by a
constant. Hereby, the sets V A

2 and V A
5 , which build the only universal quantifiers in the

encoding T Π′ (V1) for relativised strong equivalence, are sets of a fixed size. Hence,
we can eliminate these quantifiers according to the semantics and still get an adequate
encoding for this particular notion of equivalence. Consequently, bounded relativised
strong equivalence can be checked with a polynomial unsatisfiability test, once again
reflecting the coNP-complexity of this problem [11].

Finally, we address the case of ordinary equivalence, i.e., considering problems of
form Π = (P,Q,PA,=) with A = ∅, which is well known to be ΠP

2 -complete [23].
Here, the encoding SΠ′(V1) from Definition 4 can be simplified as follows:

P1,1 ∧ ∀V2
(
(V2 < V1)→ ¬P2,1

)
∧
(
Q1,1 → ∃V4((V4 < V1) ∧Q4,1)

)
.

One can observe that this encoding is related to encodings for computing stable models
via QBFs, as discussed by Egly et al. [6] and Pearce et al. [24]. Indeed, taking the two

202 H. Tompits and S. Woltran

main conjuncts from SΠ′(V1), Φ = P1,1∧∀V2
(
(V2 < V1)→ ¬P2,1

)
and Ψ = Q1,1 →

∃V4
(
(V4 < V1) ∧ Q4,1)

)
, we get, for any assignment Y1 ⊆ V1, Y1 |= Φ iff Y is an

answer set of P , and Y1 |= Ψ iff Y is not an answer set of Q. Note that once more
the encodings reflect the inherent complexity of the reduced equivalence checking task,
viz. the ΠP

2 -completeness for ordinary equivalence in this case.

7 Conclusion

In this paper, we discussed a novel decision procedure for advanced program com-
parison in answer-set programming (ASP) via encodings into quantified propositional
logic. This approach was motivated by the high computational complexity we have to
face for this task, making a direct realisation via ASP hard to accomplish. Furthermore,
we showed how to obtain counterexamples from policies, which satisfy these encod-
ings, and discussed special instances of the considered correspondence problems. Since
currently practicably efficient solvers for quantified propositional logic are available,
they can be used as back-end inference engines to compute the correspondence prob-
lems under consideration using the proposed encodings. Moreover, since these corre-
spondence problems are one of the few natural problems lying above the second level
of the polynomial hierarchy, yet still part of the polynomial hierarchy, we believe that
our encodings also provide valuable benchmarks for evaluating QBF-solvers, for which
there is currently a lack of structured problems with more than one quantifier alternation
(see [17,16]).

References

1. O. Arieli. Paraconsistent Preferential Reasoning by Signed Quantified Boolean Formulae. In
Proc. ECAI’04, pages 773–777. IOS Press, 2004.

2. O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Classical
Entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

3. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning
via Quantified Propositional Logic. In Inconsistency Tolerance, volume 3300 of LNCS, pages
84–118. Springer, 2005.

4. S. Coste-Marquis, H. Fargier, J. Lang, D. Le Berre, and P. Marquis. Func-
tion Problems for Quantified Boolean Formulas. Technical Report 2003-15-R, In-
stitut de Recherche en Informatique de Toulouse (IRIT), 2003. Available at
http://www.cril.univ-artois.fr/asqbf/pub/files/qbfeng7.pdf.

5. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief
Change Scenarios. Journal of Logic and Computation, 14(6):801–826, 2004.

6. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. In Proc. AAAI’00, pages 417–422. AAAI Press/MIT Press,
2000.

7. U. Egly, R. Pichler, and S. Woltran. On Deciding Subsumption Problems. Annals of Mathe-
matics and Artificial Intelligence, 43(1–4):255–294, 2005.

8. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-
ing Strategies for Quantified Boolean Formulas. In Proc. SAT’03, Selected Revised Papers,
volume 2919 of LNCS, pages 214–228. Springer, 2004.

Towards Implementations for Advanced Equivalence Checking in ASP 203

9. T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran. Complexity of Answer Set Checking
and Bounded Predicate Arities for Non-ground Answer Set Programming. In Proc. KR’04,
pages 377–387. AAAI Press, 2004.

10. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In Proc. ICLP’03, number 2916 in LNCS, pages 224–238. Springer, 2003.

11. T. Eiter, M. Fink, and S. Woltran. Semantical Characterizations and Complexity of Equiv-
alences in Answer Set Programming. Technical Report INFSYS RR-1843-05-01, Institut
für Informationssysteme, Technische Universität Wien, Austria, 2005. To appear in ACM
Transactions on Computational Logic.

12. T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal Nonmonotonic Logics Revisited:
Efficient Encodings for the Basic Reasoning Tasks. In Proc. TABLEAUX’02, volume 2381
of LNCS, pages 100–114. Springer, 2002.

13. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Program-
ming. In Proc. IJCAI’05, 2005.

14. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 9:365–385, 1991.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic
Satisfiability. Artificial Intelligence, 145:99–120, 2003.

16. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation, 2004. Available at http://www.qbflib.org/.

17. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF Arena: the SAT’03 Eval-
uation of QBF Solvers. In Proc. SAT’03, Selected Revised Papers, volume 2919 of LNCS,
pages 468–485. Springer, 2004.

18. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. Technical Report cs.AI/0211004,
arXiv.org. To appear in ACM Transactions on Computational Logic.

19. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formu-
las. In Proc. TABLEAUX’02, volume 2381 of LNCS, pages 160–175. Springer, 2002.

20. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

21. F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. In Proc. KR’02, pages 170–176. Morgan Kaufmann, 2002.

22. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. AAAI’02, pages 112–117. AAAI Press / MIT Press, 2002.

23. E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. In Proc. LPNMR’04, volume 2923 of LNCS, pages 180–193. Springer, 2004.

24. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs
with Nested Expressions. In Proc. EPIA’01, volume 2258 of LNCS, pages 306–320. Springer,
2001.

25. J. Rintanen. Constructing Conditional Plans by a Theorem Prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

26. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138:181–234, 2002.

27. H. Turner. Strong Equivalence Made Easy: Nested Expressions and Weight Constraints.
Theory and Practice of Logic Programming, 3(4-5):602–622, 2003.

28. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. In Proc. JELIA’04, volume 3229 of LNCS, pages 161–173. Springer, 2004.

Hybrid Probabilistic Logic Programs
with Non-monotonic Negation

Emad Saad and Enrico Pontelli

Department of Computer Science, New Mexico State University
{emsaad, epontell}@cs.nmsu.edu

Abstract. In [22], a new Hybrid Probabilistic Logic Programs frame-
work has been proposed, and a new semantics has been developed to
enable encoding and reasoning about real-world applications. In this pa-
per, the language of Hybrid Probabilistic Logic Programs framework of
[22] is extended to allow non-monotonic negation, and two alternative
semantics are defined: stable probabilistic model semantics and prob-
abilistic well-founded semantics. Stable probabilistic model semantics
and probabilistic well-founded semantics generalize stable model seman-
tics and well-founded semantics of traditional normal logic programs,
and they reduce to the semantics of original Hybrid Probabilistic Logic
programs framework of [22] for programs without negation. It is the
first time that two different semantics for Hybrid Probabilistic Pro-
grams with non-monotonic negation as well as their relationships are
described. This development provides a foundational ground for devel-
oping computational methods for computing the proposed semantics.
Furthermore, it makes it clearer how to characterize non-monotonic nega-
tion in probabilistic logic programming frameworks for commonsense
reasoning.

1 Introduction

Hybrid Probabilistic Programs (HPP) [5] is a probabilistic logic programming
framework that enables the user to explicitly encode his/her knowledge about the
type of dependencies existing between the probabilistic events being described
by the programs. HPP generalizes the probabilistic annotated logic programming
framework, originally proposed in [18] and further extended in [19]. Since the
aim of probabilistic logic programming in general, and of the HPP framework
in particular, is to allow reasoning and decision making under probabilistic and
statistical knowledge, a generalization and a new semantics for HPP have been
defined in [22]. The idea in [22] comes upon observing that commonsense reason-
ing about probabilities relies on how likely (probable) are the various events to
occur, rather than how precise our knowledge about these probabilities is. The
generalization includes adding the ability to encode the user’s knowledge about
how to combine the probabilities of the same event derived from different rules in
HPP. In addition, the new semantics, intuitively, captures the probabilistic rea-
soning according to how likely are the various events to occur, by employing the

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 204–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 205

truth order instead of the knowledge order [5]. It was shown that the modified
HPP framework is more suitable for reasoning and decision making tasks, in-
cluding those arising from probabilistic planning. In addition, it was shown that
the new HPP framework subsumes Lakshmanan and Sadri’s [11] probabilistic
implication-based framework as well as it is a natural extension of classical logic
programming.

It is known that non-monotonic negation is vital to capture the principles
of commonsense reasoning [1]. Moreover, it is important to provide the abil-
ity to derive negative conclusions in the absence of positive information [20].
Therefore, it is essential to extend the different probabilistic logic programming
frameworks to deal with non-monotonic negation. In this view, the probabilistic
logic programming framework in [19] was extended in [20] to allow this impor-
tant feature by developing a semantics based on a notion of stable models [7].
However, the stable model semantics extension in [20] is computationally ex-
pensive [15], since at every fixpoint iteration an exponential number of linear
programs, each having an exponential number of variables, needs to be solved
[15]. The main reason for this computational complexity arises from the fact
that [20] allows annotated conjunctions and disjunctions to appear as heads of
the rules. Also, it is worth noting that knowledge order was used in defining
the stable model semantics in [20] as well as a fixed assumption (ignorance) is
postulated among the dependencies of the various events encoded by the logic
programs.

In [13,14], a well-founded like semantics [8] extension to the probabilistic logic
programming framework of [11] was introduced along with well-founded like se-
mantics [8] extension to various non-probabilistic logic programming frameworks
with uncertainty [12]. Although the notion of non-monotonic negation in [20]
is more natural and closer to the classical notion of non-monotonic negation,
the notion of non-monotonic negation in [13,14] is closer to classical negation
(since Prob(¬A) = 1 − Prob(A)). An alternating fixpoint semantics [8] was in-
troduced in [13] to describe the well-founded like semantics. It must be noted
that no declarative account was given for the well-founded semantics [9] of the
probabilistic logic programming in [13,14], due to the way non-monotonic nega-
tion is interpreted, which has an operational nature. This interpretation of non-
monotonic negation makes it less natural to define stable model like semantics
[7] and well-founded like semantics [9]. In [14], a framework to approximate the
well-founded semantics for [12], including the probabilistic logic programming
framework of [11], was described. The approximate well-founded semantics is
based on the idea that uncertainty values are assigned as approximations to
atoms of the Herbrand base, in the form of intervals, where the certainty val-
ues of the atoms lie within these intervals. However, it is not clear how the
approximate well-founded semantics extension [14] works for the probabilistic
logic programming framework of [11], where probabilities are originally repre-
sented as intervals. To this end, it seems that it is not feasible to define a natural
notion of non-monotonic negation as well as stable model semantics [7] extension
for the probabilistic logic programming framework in [11].

206 E. Saad and E. Pontelli

In this paper, we extend the language of Hybrid Probabilistic Logic Pro-
grams of [22], which allows multiple modes of probabilistic combinations and
employs the truth order, to support non-monotonic negation, by considering
only annotated atoms as heads of rules. This is to avoid the computational com-
plexity inherited from allowing annotated conjunctions or disjunctions to appear
as heads of rules. In [22], we have shown that it is possible to develop an algo-
rithm to compute the least fixpoint of HPP without negation and with only
annotated atoms as heads of rules in worst-case time complexity O(n2), where
n is the size of a program. In addition, we define two alternative semantics for
the extended language; the stable probabilistic model semantics and the proba-
bilistic well-founded semantics and study their relationships. We show that the
stable probabilistic model semantics and the probabilistic well-founded seman-
tics generalize the stable model semantics [7] and the well-founded semantics
[9] for normal logic programs, and they reduce to the semantics of HPP [22] in
the absence of non-monotonic negation. An important result is that the rela-
tionship between the stable probabilistic model semantics and the probabilistic
well-founded semantics preserves the relationship between the stable model se-
mantics and the well-founded semantics for normal logic programs [9].

Another reason why these proposed semantics are interesting is that they pro-
vide a foundational ground for building algorithms and systems for computing
the meaning of HPP with non-monotonic negation based on the stable proba-
bilistic model semantics and the probabilistic well-founded semantics. The fact
that these proposed semantics naturally generalize their classical counterparts
suggests that efficient algorithms and implementations can be developed by ex-
tending the existing efficient algorithms and implementations developed for the
stable models and the well-founded semantics for normal logic programs, such
as SMODELS [17]. To show this point, an algorithm for computing the least
fixpoint for HPP is described in [22], that extends Dowling-Gallier algorithm for
computing the satisfiability of a set of Horn formulae [6], which is the ground
base for developing the various auxiliary functions in SMODELS (preliminary
design of these algorithms has been presented in [21]).

2 Hybrid Probabilistic Programs

In the following subsections, we present the syntax of the proposed Hybrid Prob-
abilistic Programs with non-monotonic negation. We also review the basic syn-
tax, as presented in [5,22], and the semantics, as described in [22], of Hybrid
Probabilistic Programs without negation.

2.1 Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in [0, 1]. In the context of HPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions or disjunctions of atoms) as intervals in C[0, 1]. Let [a1, b1], [a2, b2] ∈
C[0, 1]. Then the truth order asserts that [a1, b1] ≤t [a2, b2] iff a1 ≤ a2 and
b1 ≤ b2. The knowledge order states that [a1, b1] ≤k [a2, b2] iff [a2, b2] ⊆ [a1, b1].

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 207

The set C[0, 1] and the relation ≤t form a complete lattice. In particular, the
join (⊕t) operation is defined as [a1, b1]⊕t [a2, b2] = [max{a1, a2},max{b1, b2}]
and the meet (⊗t) is defined as [a1, b1] ⊗t [a2, b2] = [min{a1, a2},min{b1, b2}]
w.r.t. ≤t. The type of dependency among the primitive events within a com-
pound event is described by probabilistic strategies, which are explicitly se-
lected by the user. We call ρ, a pair of functions 〈c,md〉, a probabilistic strat-
egy (p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic com-
position function, which is commutative, associative, monotonic w.r.t. ≤t, and
meets the following separation criteria: there are two functions c1, c2 such that
c([a1, b1], [a2, b2]) = [c1(a1, a2), c2(b1, b2)]. Whereas, md : C[0, 1] → C[0, 1] is
the maximal interval function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range of a primitive event, A,
from the probability range of a compound event that contains A. The compo-
sition function c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For convenience, given a
multiset of probability intervals M = {{[a1, b1], . . . , [an, bn]}}, we use cM to de-
note c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn])) . . .). According to the type
of combination among events, p-strategies are classified into conjunctive
p-strategies and disjunctive p-strategies. Conjunctive (disjunctive) p-strategies
are employed to compose events belonging to a conjunctive (disjunctive) formula
(please see [5,22] for the formal definitions).

2.2 Language Syntax

In this subsection, we describe the syntax of Hybrid Probabilistic Programs and
define a syntax for Hybrid Probabilistic Programs with non-monotonic nega-
tion. Let L be an arbitrary first-order language with finitely many predicate
symbols, constants, and infinitely many variables. Function symbols are disal-
lowed. In addition, let S = Sconj∪Sdisj be an arbitrary set of p-strategies, where
Sconj (Sdisj) is the set of all conjunctive (disjunctive) p-strategies in S. The
Herbrand base of L is denoted by BL. An annotation denotes a probability in-
terval and it is represented by [α1, α2], where α1, α2 are called annotation items.
An annotation item is either a constant in [0, 1], a variable (annotation vari-
able) ranging over [0, 1], or f(α1, . . . , αn) (called annotation function) where
f is a representation of a computable total function f : ([0, 1])n → [0, 1] and
α1, . . . , αn are annotation items. The building blocks of the language of HPP
are hybrid basic formulae. Let us consider a collection of atoms A1, . . . , An, a
conjunctive p-strategy ρ, and a disjunctive p-strategy ρ′. Then A1 ∧ρ . . . ∧ρ An

and A1 ∨ρ′ . . . ∨ρ′ An are called hybrid basic formulae, and bfS(BL) is the set
of all ground hybrid basic formulae formed using distinct atoms from BL and
p-strategies from S. An annotated hybrid basic formula is an expression of the
form F : μ where F is a hybrid basic formula and μ is an annotation. A hybrid lit-
eral is an annotated hybrid basic formula F : μ (positive annotated hybrid basic
formula or positive hybrid literal) or the negation of an annotated hybrid basic
formula not (F : μ) (negative annotated hybrid basic formula or negative hybrid
literal).

208 E. Saad and E. Pontelli

Definition 1 (Rules). A normal hybrid probabilistic rule (nh-rule) is an ex-
pression of the form

A : μ← F1 : μ1, . . . , Fn : μn, not (G1 : μn+1), . . . , not (Gm : μn+m)
where A is an atom, F1, . . . , Fn, G1, . . . , Gm are hybrid basic formulae, and μ, μi

(1 ≤ i ≤ m + n) are annotations.
A hybrid probabilistic rule (h-rule) is a nh-rule where m = 0—i.e., there are

no negative hybrid literals.

The intuitive meaning of a nh-rule, in Definition 1, is that, if for each Fi : μi,
the probability interval of Fi is at least μi and for each not (Gj : μj), it is not
provable that the probability interval of Gj is at least μj , then the probability
interval of A is μ.

Definition 2 (Programs). A normal hybrid probabilistic program over S (nh-
program) is a pair P = 〈R, τ〉, where R is a finite set of nh-rules with p-strategies
from S, and τ is a mapping τ : BL → Sdisj. A hybrid probabilistic program (h-
program) is a nh-program where all the rules are h-rules.

The mapping τ in the above definition associates to each atomic hybrid basic for-
mula A a disjunctive p-strategy that will be employed to combine the probability
intervals obtained from different rules having A in their heads. A nh-program
is ground if no variables appear in any of its rules. The following is a typical
nh-program.

Example 1. Consider an insurance company which determines the premium cat-
egories, by calculating the risk factor according to a genetic test for cancer and
the family history for this disease. Assume that customers who have a family
history of the disease have a probability of developing cancer with at least 92%.
The insurance company will assign high premiums to the customers who have
family history of the disease and tested positive as long as their risk conditions
are unchanged. Risk conditions can be changed by taking specific medications.
This situation can be represented by the following nh-rules:

risk(X) : [0.9, 1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
not changeRisk(X)[0.8, 1]

risk(X) : [0, 0.1] ← (test(X) ∧pc history(X)) : [0.60, 0.75],
changeRisk(X) : [0.8, 1]

changeRisk(X) : [0.9, 1] ← medicine(X,Med) : [0.65, 1]
highPremium(X) : [1, 1] ← risk(X) : [0.9, 1]
lowPremium(X) : [1, 1] ← risk(X) : [0, 0.1]
test(sam) : [0.92, 1] ←
history(sam) : [0.95, 1] ←
medicine(sam,medication) : [0.98, 1]←

and the mapping τ assigns ncd to risk(sam) and an arbitrary disjunctive p-
strategy [5,22] to the other hybrid basic formulae. The ncd denotes the disjunc-
tive negative correlation p-strategy, which is defined as: cncd([a1, b1], [a2, b2]) =
[min(1, a1 + a2),min(1, b1 + b2)]. The first nh-rule asserts that the risk factor

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 209

is at least 90% whenever the cancer genetic test for a customer is positive
and that customer has a family history of cancer with probability between
60% and 75%, and it is not provable that his risk conditions have changed
with probability at least 80%. Observe that test and history events are con-
joined according to the positive correlation p-strategy (denoted by ∧pc) where
cpcc([a1, b1], [a2, b2]) = [min(a1, a2),min(b1, b2)]. The second rule says that the
risk factor is at most 10% whenever the customer risk conditions are changed,
even though the person tested positive and have a family history of the disease
with probability between 60% and 75%. The third nh-rule describes the change
of the risk conditions of a customer with probability at least 90% if a medication
for the disease becomes available with probability at least 65%. The fourth and
fifth nh-rules assert that definite high premium and low premium are considered
whenever the probability of risk factors are at least 90% and at most 10% re-
spectively. The last three nh-rules represent the facts available about a specific
customer named sam.

2.3 Satisfaction and Models

In this subsection, we review the declarative semantics and the fixpoint semantics
of h-programs [22] and we generalize the notions of interpretations, models, and
satisfaction to deal with nh-programs. The notion of a probabilistic model (p-
model) is based on hybrid formula functions.

Definition 3. A hybrid formula function is a mapping h : bfS(BL) → C[0, 1]
that satisfies the following conditions:
• Commutativity: h(G1 ∗ρ G2) = h(G2 ∗ρ G1), ∗ ∈ {∧,∨}, ρ ∈ S

• Composition: cρ(h(G1), h(G2)) ≤t h(G1 ∗ρ G2), ∗ ∈ {∧,∨}, ρ ∈ S

• Decomposition. For any hybrid basic formula F , ρ ∈ S, and G ∈ bfS(BL):
mdρ(h(F ∗ρ G)) ≤t h(F).

The notion of truth order can be extended to hybrid formula functions. Given
hybrid formula functions h1 and h2, we say (h1 ≤t h2) ⇔ (∀F ∈ bfS(BL) :
h1(F) ≤t h2(F)). The set of all hybrid formula functions, HFF , and the truth
order ≤t form a complete lattice. The meet ⊗t and the join ⊕t operations are
defined respectively as: for all F ∈ bfS(BL), (h1⊗th2)(F) = h1(F)⊗t h2(F) and
(h1 ⊕t h2)(F) = h1(F)⊕t h2(F).

Definition 4 (Probabilistic Interpretation). A total (partial) probabilistic
interpretation of a nh-program P is a total (partial) hybrid formula function.

Before defining the notion of satisfaction for nh-programs, we introduce the fol-
lowing notations. Let h be a probabilistic interpretation, then dom(h) ⊆ bfS(BL)
denotes the domain of h (dom(h) � bfS(BL) if h is a partial probabilistic inter-
pretation). We use negdom(h) to denote the set {F |F ∈ dom(h), h(F) = [0, 0]}.
We also define posdom(h) = dom(h)\negdom(h).

Definition 5 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground nh-
program, h be a probabilistic interpretation, and r ≡ A : μ ← F1 : μ1, . . . , Fn :
μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R. Then

210 E. Saad and E. Pontelli

• h satisfies Fi : μi (denoted by h |= Fi : μi) iff Fi ∈ dom(h) and μi ≤t h(Fi).
• h satisfies not (Gj : βj) (denoted by h |= not (Gj : βj)) iff Gj ∈ dom(h)
and βj �t h(Gj).
• h satisfies Body ≡ F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm)
(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Fi : μi and ∀(1 ≤ j ≤ m), h |=
not (Gj : βj).
• h satisfies A : μ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every nh-rule in R and for every atomic formula
A ∈ dom(h), cτ(A){{μ|A : μ← Body ∈ R and h |= Body}} ≤t h(A).

Definition 6 (Models). Let P be a nh-program. A total probabilistic model of
P (p-model) is a total probabilistic interpretation of P that satisfies P . A partial
probabilistic model of P is a partial probabilistic interpretation of P that can be
extended to a total probabilistic model of P .

Proposition 1. Let P be an h-program. hP = ⊗t{h|h is a p-model of P } is
the least p-model of P .

Associated with each h-program P , is an operator, TP , called the fixpoint oper-
ator, which maps total probabilistic interpretations to total probabilistic inter-
pretations.

Definition 7. Let P = 〈R, τ〉 be a ground h-program and h be a total probabilis-
tic interpretation. The fixpoint operator TP is a mapping TP : HFF → HFF
which is defined as follows:

1. if A is an atom, TP (h)(A) = cτ(A) MA where MA = {{μ|A : μ ← Body ∈ R
such that h |= Body}} and MA �= ∅ . If MA = ∅, then TP (h)(A) = [0, 0]

2. TP (h)(G1 ∧ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where (G1 ∧ρ G2) ∈ bfS(BL)
3. TP (h)(G1∨ρ′G2) = cρ′(TP (h)(G1), TP (h)(G2)) where (G1∨ρ′G2) ∈ bfS(BL).

Proposition 2. Let P be an h-program. Then, hP = lfp(TP).

3 Probabilistic Well-Founded Semantics

In this section we define the probabilistic well-founded semantics for nh-
programs. We start by defining the notion of probabilistic unfounded set and
the immediate consequence operator of nh-programs with respect to a given
probabilistic interpretation. Then the probabilistic well-founded semantics is de-
fined inductively in terms of these two operators, which are natural extensions of
their classical counterparts used in the well-founded semantics for normal logic
programs [9].

Definition 8. Let P be a nh-program, HP be the set of all partial probabilis-
tic interpretations of P , and h1, h2 ∈ HP . We define the following partial or-
der (≤w) on HP : h1 ≤w h2 iff posdom(h1) ⊆ posdom(h2), negdom(h1) ⊆
negdom(h2), and ∀ F ∈ dom(h1), h1(F) ≤t h2(F).

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 211

Definition 9. Let h1 and h2 be two partial probabilistic interpretations. The
meet ⊗w and join ⊕w operation corresponding to the partial order ≤w are defined
respectively as:
• (h1 ⊗w h2)(F) = h1(F)⊗t h2(F) for all
F ∈ ((posdom(h1) ∩ posdom(h2)) ∪ (negdom(h1) ∩ negdom(h2))), otherwise,
undefined.
• (h1 ⊕w h2)(F) = h1(F)⊕t h2(F) for all
F ∈ ((posdom(h1) ∩ posdom(h2)) ∪ (negdom(h1) ∩ negdom(h2))),
(h1 ⊕w h2)(F) = h1(F) for all
F ∈ ((posdom(h1) \ posdom(h2)) ∪ (negdom(h1) \ negdom(h2))), and
(h1 ⊕w h2)(F) = h2(F) for all
F ∈ ((posdom(h2) \ posdom(h1)) ∪ (negdom(h2) \ negdom(h1))), otherwise,
undefined.

Note that, the pair 〈HP ,≤w〉 does not form a lattice. In fact, if h1, h2 ∈ HP

are probabilistic interpretations and h1 �w h2, then lub{h1, h2} may not exist.
Consider BL = {a, b, c, d}, h1(a) = h1(b) = [0, 0], h1(c) = h1(d) = [1, 1], and
h2(a) = [0, 0], h2(b) = h2(c) = h2(d) = [1, 1]. Then, according to the definition of
≤w, lub{h1, h2} must assign [0, 0] to a, b and assign [1, 1] to b, c and d which does
not exist. However, 〈HP ,≤w〉 is a complete partial order (cpo), i.e., a partial order
in which the limit of each increasing chain exists. This is sufficient to allow the
inductive construction of well-founded probabilistic models. The bottom element
in this partial order is the partial probabilistic interpretation Φ whose domain is
the empty set, and its top element is the total probabilistic interpretation which
assigns [1, 1] to each element in bfS(BL). We say that a nh-program globally
satisfies F : ν (not (G : β)) if the nh-program as a whole provides evidence for
satisfying F : ν (not (G : β)).

Definition 10 (Global Satisfaction). Let P be a nh-program and F : ν
(not(G : β)) be a positive (negative) hybrid literal. We say that F : ν (not(G : β))
is globally satisfied by P if every minimal probabilistic interpretation that sat-
isfies P also satisfies F : ν (not (G : β)).

Definition 11 (Probabilistic Unfounded Sets). Let P = 〈R, τ〉 be a ground
nh-program, h ∈ HP , and U ⊆ bfS(BL) such that for each non-atomic F =
A1 ∨ρ′ . . . ∨ρ′ An ∈ U , all its constituent atoms belong to U and for each non-
atomic F = A1 ∧ρ . . . ∧ρ An ∈ U at least one Ai ∈ U and the others are defined
in h. U is called a Probabilistic Unfounded Set of P w.r.t. h if for each atomic
A ∈ U we have that for each nh-rule r in R whose head is A : μ, at least one of
the following conditions holds:
• there exist some positive hybrid literal F : ν in the body of r such that
F ∈ U ;
• h does not satisfy some hybrid literal F : ν or not (G : β) in the body of r
and P does not globally satisfy F : ν.

We consider h, in the above definition, to be what we already know about the
intended probabilistic model of P . The idea is that the probabilistic unfounded

212 E. Saad and E. Pontelli

set corresponds to the set of negative conclusions of the nh-program P . There-
fore, if a hybrid basic formula F is in a probabilistic unfounded set of P , then F
should be assigned the probability interval [0, 0] (representing absolute falsity)
by the total or partial probabilistic model of P . The condition “P does not glob-
ally satisfies F : ν” in the above definition is not required in the case of negative
hybrid literals (not (G : β)). The reason is that if not (G : β) is not satisfied
by h, then not (G : β) is not going to be satisfied by any h ≤w h′. Instead,
for positive literals F : ν we need to enforce the additional condition, used to
guarantee that even by accumulating more knowledge, the probability interval
assigned to F will not cover ν.

Definition 12 (Greatest Unfounded Set). Let P be a ground nh-program
and h be a partial probabilistic interpretation. The greatest probabilistic un-
founded set UP (h) of P w.r.t. h is the union of all probabilistic unfounded sets
of P w.r.t. h.

Definition 13 (The Immediate Consequence Operator KP). Let P =
〈R, τ〉 be a ground nh-program and h ∈ HP . The immediate consequence operator
KP is the mapping KP : HP → HP defined as follows:

1. For each atom A we have that KP (h)(A) = cτ(A) MA, where MA �= ∅
contains the probability intervals μ obtained from the nh-rules A : μ ←
Body ∈ R, such that h satisfies Body, and for each negative hybrid literal
not (Gj : βj) in Body we have that P globally satisfies not (Gj : βj).

2. KP (h)(G1 ∧ρ G2) = cρ(KP (h)(G1),KP (h)(G2)) where (G1 ∧ρ G2) contains
only atoms from dom(KP (h))).

3. KP (h)(G1∨ρ′ G2) = cρ′(KP (h)(G1),KP (h)(G2)) where (G1∨ρ′ G2) contains
atoms from (dom(h) ∪ dom(KP (h))) and at least one atom from
dom(KP (h))).

Intuitively, KP (h) corresponds to the set of positive conclusions of P with re-
spect to the probabilistic interpretation h, where for each F defined in KP (h),
KP (h)(F) �= [0, 0]. The condition “P globally satisfies not (Gj : βj)” in (1) is
not restrictive in the case of positive hybrid literals Fi : μi. The reason is that
if Fi : μi is satisfied by h, then Fi : μi is going to be satisfied by any h ≤w h′.
However, this is not the case with the negative hybrid literals not (Gj : βj).
This is because if not (Gj : βj) in the body of a nh-rule is satisfied by h,
then it might be not satisfied by some h ≤w h′. Therefore, to guarantee that
not (Gj : βj) is satisfied by h or by any h ≤w h′, the condition in (1) is imposed.
Since for any F defined in KP (h), KP (h)(F) �= [0, 0], thanks to the properties
of the conjunctive and disjunctive p-strategies (see [5,22] for more details), the
condition “(G1 ∧ρ G2) contains only atoms from dom(KP (h))” in (2) and the
condition “(G1∨ρ′ G2) contains atoms from (dom(h)∪dom(KP (h))) and at least
one atom from dom(KP (h))” in (3) are imposed to determine KP (h)(G1 ∧ρ G2)
and KP (h)(G1 ∨ρ′ G2) respectively. This is because, for any [a, b] �= [0, 0] and
any conjunctive p-strategy ρ, cρ([a, b], [0, 0]) = [0, 0]. Then it must be that
KP (h)(G1) �= [0, 0] and KP (h)(G2) �= [0, 0] for KP (h)(G1 ∧ρ G2) �= [0, 0].

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 213

However, for KP (h)(G1 ∨ρ′ G2) �= [0, 0], it suffices that KP (h)(G1) �= [0, 0]
or KP (h)(G2) �= [0, 0]. Let us proceed with the definition of the probabilis-
tic well-founded operator and the construction of the well-founded probabilistic
models.

Definition 14. Let P be a nh-program, h be a partial probabilistic interpreta-
tion, KP (h) be the immediate consequence operator, and UP (h) be the greatest
probabilistic unfounded set of P w.r.t. h. Then, WP is the mapping WP : HP →
HP such that
• WP (h)(F) = KP (h)(F) for all F ∈ dom(KP (h)), and
• WP (h)(F) = [0, 0] for all F ∈ UP (h).

Lemma 1. 1The operators WP and KP are monotonic w.r.t. ≤w, and UP is
monotonic w.r.t. ⊆.

Definition 15. The partial probabilistic interpretations hα and h∞ are defined
recursively as follows:

1. h0 = Φ where Φ is a partial probabilistic interpretation with an empty
domain.

2. hα = WP (hα−1) where α is the successor ordinal of α− 1.
3. hα = ⊕w{hβ | β < α and α is a limit ordinal}.
4. h∞ = ⊕w{hα | α is an ordinal}

Definition 16. Let P be a nh-program. h∞ = lfp(WP) is the well-founded
(partial or total) probabilistic model of P .

Example 2. Let us consider the nh-program P = 〈R, τ〉 from Example 1. It can
be easily seen that P has a total well-founded probabilistic model h where

h(risk(sam)) = [0, 0.1] h(changeRisk(sam)) = [0.9, 1]
h(highP remium(sam)) = [0, 0] h(lowP remium(sam)) = [1, 1]
h(test(sam)) = [0.92, 1] h(history(sam)) = [0.95, 1]
h(medicine(sam,medication))= [0.98, 1] h(test(sam)∧pc history(sam))= [0.92, 1]

.
Example 3. Consider the following nh-program P = 〈R, τ〉 where R is

a : [0.89, 0.91]← not (b : [0.3, 0.4])
b : [0.55, 0.60] ← not (a : [0.7, 0.75])
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ← not (e : [0.1, 0.3])

and τ(a) = τ(b) = τ(c) = τ(d) = π where π is any arbitrary disjunctive p-
strategy. This nh-program has a well-founded partial probabilistic model that
assigns [0.2, 0.3] to c, [0.1, 0.2] to d, and [0, 0] to e. This is because h1 = WP (Φ)
assigns [0, 0] to e since KP (Φ) = Φ and UP (Φ) = {e}. h2 = WP (h1) assigns
[0.1, 0.2] to d and [0, 0] to e since KP (h1) assigns [0.1, 0.2] to d and UP (h1) = {e}.
1 The proofs are omitted due to lack of space. All proofs can be found at

http://www.cs.nmsu.edu/TechReports/2005/006.pdf

214 E. Saad and E. Pontelli

h3 = WP (h2) assigns [0.1, 0.2] to d, [0.2, 0.3] to c, and [0, 0] to e since KP (h2)
assigns [0.1, 0.2] to d and [0.2, 0.3] to c, and UP (h2) = {e}. h3 = WP (h2) is the
least fixpoint since h3 = WP (h2) = h4 = WP (h3).

Example 4. Consider the following nh-program P = 〈R, τ〉 where R is

a : [0.4, 0.7] ← not (b : [0.5, 0.75])
b : [0.5, 0.9] ← not (a : [0.35, 0.6])
r : [0.25, 60] ← a : [0.4, 0.65]
r : [0.3, 0.65]← b : [0.5, 0.8]

and τ(a) = τ(b) = τ(r) = π. The well-founded p-model of P is Φ. This is because
WP (Φ) = Φ since KP (Φ) = Φ and UP (Φ) = ∅.

Theorem 1. Every h-program P has a well-founded total probabilistic model h
iff h is the least p-model of P .

Let us show that the probabilistic well-founded semantics generalizes the
well-founded semantics of normal logic programs. A normal logic program P
can be represented as a nh-program P ′ = 〈R, τ〉 where each normal rule

a← b1, . . . , bn, not c1, . . . , not cm ∈ P

can be encoded, in R, as a nh-rule of the form

a : [1, 1]← b1 : [1, 1], . . . , bn : [1, 1], not (c1 : [1, 1]), . . . , not (cm : [1, 1])

where a, b1, . . . , bn, c1, . . . , cm are atomic hybrid basic formulae and [1, 1] rep-
resents the truth value true. τ is any arbitrary assignment of disjunctive p-
strategies. We call the class of nh-programs that consists only of nh-rules of the
above form as NHPP1.

Proposition 3. Let P be a normal logic program. Then, I is a well-founded
partial or total model for P iff h is a well-founded partial or total probabilistic
model for P ′ where h(a) = [1, 1] iff a ∈ I and h(b) = [0, 0] iff not b ∈ I.

4 Stable Probabilistic Model Semantics

In this section we introduce the notion of stable probabilistic models (sp-models),
which extends the notion of stable models for classical logic programming [7].
The semantics is defined in two steps. First, we guess a p-model h for a certain
nh-program P , then we define the notion of the probabilistic reduct of P with
respect to h—which is an h-program. Second, we determine whether h is a stable
p-model for P or not by employing the fixpoint operator of the probabilistic
reduct to verify whether h is its least p-model. All probabilistic interpretations
and models that we consider in this section are total. It must be noted that every
h-program has a unique least (total) p-model [22].

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 215

Definition 17 (Probabilistic Reduct). Let P = 〈R, τ〉 be a ground nh-
program and h be a probabilistic interpretation. The probabilistic reduct P h of P
w.r.t. h is P h = 〈Rh, τ〉 where:

Rh =

⎧⎨
⎩A : μ ← F1 : μ1, . . . , Fn : μn

A : μ ← F1 : μ1, . . . , Fn : μn,
not (G1 : β1), . . . , not (Gm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Gj)

⎫⎬
⎭

The probabilistic reduct P h is an h-program. For any not (Gj : βj) in the body
of r ∈ R with βj �t h(Gj) is simply satisfied by h, and not (Gj : βj) is removed
from the body of r. If βj ≤t h(Gj) then the body of r is not satisfied and r is
trivially ignored.

Definition 18 (Stable Probabilistic Model). A probabilistic interpretation
h is a stable p-model of a nh-program P if h is the least p-model of P h.

Example 5. It is easy to verify that the only stable p-model of the program in
Example 1 is given by:

h(risk(sam)) = [0, 0.1] h(changeRisk(sam)) = [0.9, 1]
h(highP remium(sam)) = [0, 0] h(lowP remium(sam)) = [1, 1]
h(test(sam)) = [0.92, 1] h(history(sam)) = [0.95, 1]
h(medicine(sam,medication))= [0.98, 1] h(test(sam)∧pc history(sam))= [0.92, 1]

Example 6. The nh-program in Example 3 has two stable p-models h1 and h2
where h1(a) = [0.89, 0.91], h1(b) = [0, 0], h1(c) = [0.2, 0.3], h1(d) = [0.1, 0.2],
h1(e) = [0, 0] and h2(a) = [0, 0], h2(b) = [0.55, 0.60], h2(c) = [0.2, 0.3], h2(d) =
[0.1, 0.2], h2(e) = [0, 0]. Since, for example, h1 can be verified as a stable p-model
because the probabilistic reduct of P w.r.t. h1 contains the h-rules:

a : [0.89, 0.91]←
c : [0.2, 0.3] ← d : [0.1, 0.15]
d : [0.1, 0.2] ←

and lfp(TP h1) = h1.

Example 7. The nh-program in Example 4 has two stable p-models h1 and
h2 where h1(a) = [0.4, 0.7], h1(b) = [0, 0], h1(r) = [0.25, 0.60] and h2(a) =
[0, 0], h2(b) = [0.5, 0.9],
h2(r) = [0.3, 0.65]. Since, for example, h2 can be verified as a stable p-model
because the probabilistic reduct of P w.r.t. h2 contains the h-rules:

b : [0.5, 0.9] ←
r : [0.25, 0.60]← a : [0.4, 0.65]
r : [0.3, 0.65] ← b : [0.5, 0.8]

and lfp(TP h2) = h2.

Theorem 2. Every h-program P has a unique stable p-model h iff h is the least
p-model of P .

The following result shows that the stable p-model semantics generalizes the
stable model semantics for classical logic programming [7].

216 E. Saad and E. Pontelli

Proposition 4. Let P be a normal logic program. Then S′ is a stable model
of P iff h is a stable p-model of P ′ ∈ NHPP1 that corresponds to P where
h(a) = [1, 1] iff a ∈ S′ and h(b) = [0, 0] iff b ∈ BL \ S′.

In the rest of this section we define the immediate consequence operator of
nh-programs and study its relationship to the stable p-model semantics.

Definition 19. Let P = 〈R, τ〉 be a ground nh-program and h ∈ HFF . The
immediate consequence operator T ′

P is a mapping T ′
P : HFF → HFF defined

as follows:

1. T ′
P (h)(A) = cτ(A) M

′
A where

M ′
A =
{{

μ
A :μ←F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm :βm)∈R and

∀(1 ≤ i ≤ n), μi ≤t h(Fi) and ∀(1 ≤ j ≤ m), βj �t h(Gj)

}}

and M ′
A �= ∅. T ′

P (h)(A) = [0, 0] if M ′
A = ∅.

2. T ′
P (h)(G1 ∧ρ G2) = cρ(T ′

P (h)(G1), T ′
P (h)(G2)) where (G1 ∧ρ G2) ∈ bfS(BL).

3. T ′
P (h)(G1∨ρ′G2) = cρ′(T ′

P (h)(G1), T ′
P (h)(G2)) where (G1∨ρ′G2) ∈ bfS(BL).

It is easy to see that T ′
P extends TP to handle h-rules with negative hybrid literals

and, hence, T ′
P = TP for any h-program P . The operator T ′

P is not monotonic
w.r.t. ≤t. This can be seen in the following example.

Example 8. Consider the nh-program: a : [0.2, 0.3] ← not (b : [0.6, 0.8]). Let h1
be a probabilistic interpretation that assigns [0, 0] to b and [0, 0] to a. In addition,
let h2 be a probabilistic interpretation that assigns [0.65, 0.9] to b and [0, 0] to
a. Hence, h1 ≤t h2. But T ′

P (h1)(a) = [0.2, 0.3] and T ′
P (h2)(a) = [0, 0]. Thus,

T ′
P (h1) �t T

′
P (h2)

Theorem 3. Let P be a nh-program and h be a stable p-model of P . Then h is
a minimal fixpoint of T ′

P .

It is worth noting that not every minimal fixpoint of T ′
P is a stable p-model of

P . Consider the following nh-program P .

Example 9. Let P = 〈R, τ〉 where τ is arbitrary and R

a : [0.7, 0.8] ← not (a : [0.1, 0.17])
a : [0.1, 0.33]← b : [0.6, 0.8]
b : [1, 1] ← a : [0.1, 0.24]

It is easy to verify that the probabilistic interpretation h(a) = [0.1, 0.33] and
h(b) = [1, 1] is a minimal fixpoint of T ′

P . However, P h contains a : [0.1, 0.33]← b :
[0.6, 0.8] and b : [1, 1]← a : [0.1, 0.24] where lfp(TP h)(a) = lfp(TP h)(b) = [0, 0].
Hence, h is not a stable p-model for P .

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 217

5 Stable P-Model Semantics and Probabilistic
Well-Founded Semantics Relationships

There is a close relationship between the well-founded probabilistic models and
the stable probabilistic models. In this section we study this relationship. For a
given nh-program P , the following results show that for every total p-model h
of P , h is a stable p-model of P if and only if it is a fixpoint of the probabilistic
well-founded operator WP . However, well-founded total probabilistic models are
unique stable probabilistic models.

Theorem 4. Let P be a nh-program and h be a total p-model of P . Then h is
stable p-model of P iff h is a fixpoint of WP .

Corollary 1. Let P be a nh-program and h be a well-founded total p-model of
P . Then h is the unique stable p-model of P .

The following result shows that the well-founded probabilistic model approxi-
mates the stable p-models of a nh-program, since the well-founded partial p-
model of a nh-program P is contained (with respect to the partial order ≤w) in
every stable p-model of P .

Corollary 2. Let P be a nh-program and h be a well-founded partial p-model of
P . Then for every stable p-model g of P , h ≤w g.

6 Related Work

A stable model semantics extension to the probabilistic logic programming in
[18,19] was presented in [20]. The notion of non-monotonic negation presented
in [20] is closer to our definition of non-monotonic negation. The main difference
with respect to [20] is that we employ the truth order instead of the knowledge
order as well as our framework allows reasoning with different modes of proba-
bilistic combinations. However, [20] is limited to a single mode of probabilistic
combination. Moreover, the stable model semantics in [20] is computationally
expensive, due to annotated conjunctions or disjunctions are allowed as heads
of rules. On the other hand, we allow only annotated atoms as heads of rules,
rather than annotated conjunctions or disjunctions as in [20], to avoid the high
computational complexity of the semantics [15]. Another important difference
between our framework and [20] is that we do not allow hybrid basic formulae
with annotation [0, 0] to appear neither in the heads nor in the bodies of the
rules (this is an extension to our framework that we will consider in the future
according to the open world assumption), however, [18,19,20,5] does, although
these semantics as well as ours are based on the closed world assumption. The
reason is that having a hybrid basic formula, A, in a nh-program with the an-
notation [0, 0], i.e., A : [0, 0], means that A is absolutely false. This A : [0, 0]
corresponds to classical negation ¬A, which in turn requires a different treat-
ment when defining the semantics of the programs.

218 E. Saad and E. Pontelli

A probabilistic semantics, based on the possible world semantics, for disjunc-
tive logic programs with non-monotonic negation has been presented in [16]. The
semantics of [16] is based on multi-valued logic and a stable model semantics has
been described. In addition to programs in [16] are disjunctive logic programs,
probabilities are treated as a lattice of truth values, where the probability of the
conjunction Prob(A ∧B) = min(Prob(A), P rob(B)) and the probability of the
disjunction Prob(A ∨ B) = max(Prob(A), P rob(B)). This is considered a fixed
mode of combination. Whereas, in our framework conjunctions and disjunctions
are treated differently according to the type of dependency between events. In
[2], a new methodology to probabilistic reasoning was presented under the pos-
sible world semantics by employing answer set programming for classical logic
programming. Answer set programming in [2] is exploited to emulate the possi-
ble world semantics. However, [2] assumes independence of probabilities which
is a fixed mode of probabilistic combination.

Our probabilistic well-founded semantics introduced in this paper differs from
the well-founded semantics presented in [13,14] in various ways. The notion of
non-monotonic negation in [13,14] is closer to the classical negation. In addition,
our probabilistic well-founded semantics is based on the declarative well-founded
semantics for normal logic programs [9], however, the well-founded semantics in
[13,14] is based on the alternating fixpoint semantics [8]. A stable model seman-
tics and well-founded semantics (based on alternating fixpoint semantics) have
also been presented in [23]. However, the certainty values that are reasoned about
are non-probabilistic values. In addition, no annotated conjunctions or disjunc-
tions are allowed in the body of rules [23]. Furthermore, in [4], the semantics of
[23] has been extended to allow classical negation as well as non-monotonic nega-
tion by proposing alternating fixpoint like semantics. A generalization of HPP of
[5] was proposed in [3] by providing a more general semantical characterization
in which HPP fits. However, [3] does not allow non-monotonic negation in defin-
ing its semantics. In addition, it relies on a complex translation process which
is exponential in the size of HPP.

7 Conclusions and Future Work

We presented an extension of the language of hybrid probabilistic programs
framework [22], called normal hybrid probabilistic programs, to cope with non-
monotonic negation. The extension is a necessary requirement in many real-
world applications (e.g., planning with incomplete and uncertain knowledge). We
developed a semantical characterization of the extended framework, which relies
on a probabilistic generalization of the well-founded semantics and stable model
semantics, originally developed for normal logic programs. We showed that the
probabilistic well-founded semantics and the stable probabilistic model semantics
naturally generalize the well-founded semantics and the stable model semantics
for classical logic programming. Furthermore, we showed that they naturally
extend the semantics for HPP (without negation) proposed in [22]. Moreover,
we showed that the relationship between the probabilistic well-founded semantics

Hybrid Probabilistic Logic Programs with Non-monotonic Negation 219

and the stable probabilistic model semantics preserves the relationship between
the well-founded semantics and the stable model semantics for normal logic
programs.

A topic of future research is to extend the language of normal hybrid prob-
abilistic programs to allow classical negation and disjunctions of annotated
atomic formulae in the heads of nh-rules. We plan to develop an alternating
fixpoint semantics for the language of nh-programs and analytically study its
relationship to the probabilistic well-founded semantics proposed in this paper.
In addition, we intend to investigate the computational aspects of the stable
probabilistic model semantics and the probabilistic well-founded semantics—by
developing algorithms and implementations for computing these semantics. The
algorithms and implementations we will develop will be based on appropriate
extensions of the existing techniques for computing the stable model seman-
tics and the well-founded semantics for normal logic programs, e.g., SMODELS
[17].

References

1. K.R. Apt and R.N. Bol. Logic programming and negation:a survey. Journal of logic
programming, 19/20:9-71, 1994.

2. C. Baral et al. Probabilistic reasoning with answer sets. In 7th International
Conference on Logic Programming and Nonmonotonic Reasoning, Springer Verlag,
2004.

3. C.V. Damasio and L. Moniz Pereira. Hybrid probabilistic logic programs as resid-
uated logic programs. JELIA, 2000.

4. C.V. Damasio et al. Coherent well-founded annotated logic programs. LPNMR,
Springer, 1999.

5. A. Dekhtyar and V.S. Subrahmanian. Hybrid probabilistic program. Journal of
Logic Programming, 43(3): 187-250, 2000.

6. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 1(3): 267-284, 1984.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
ICSLP, 1988, MIT Press.

8. A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences, 47(1):185-221, 1993.

9. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620-650, 1991.

10. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335–367, 1992.

11. L.V.S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive databases.
Journal of Theory and Practice of Logic Programming, 1(1):5-42, January 2001.

12. L.V.S. Lakshmanan and N. Shiri. A parametric approach to deductive databases
with uncertainty. IEEE TKDE, 13(4):554–570, 2001.

13. Y. Loyer and U. Straccia. The well-founded semantics in normal logic programs
with uncertainty. FLOPS, 2002, Springer Verlag.

14. Y. Loyer and U. Straccia. The approximate well-founded semantics for logic pro-
grams with uncertainty. In 28th International Symposium on Mathematical Foun-
dations of Computer Science, 2003.

220 E. Saad and E. Pontelli

15. T. Lukasiewicz. Probabilistic logic programming. In 13th European Conference on
Artificial Intelligence, 388–392, 1998.

16. T. Lukasiewicz. Many-valued disjunctive logic programs with probabilistic seman-
tics. LPNMR, 1999.

17. I. Niemela and P. Simons. Efficient implementation of the well-founded and sta-
ble model semantics. In Joint International Conference and Symposium on Logic
Programming, 289-303, 1996.

18. R.T. Ng and V.S. Subrahmanian. Probabilistic logic programming. Information
& Computation, 101(2), 1992.

19. R.T. Ng and V.S. Subrahmanian. A semantical framework for supporting subjec-
tive and conditional probabilities in deductive databases. ARJ, 10(2), 1993.

20. R.T. Ng and V.S. Subrahmanian. Stable semantics for probabilistic deductive
databases. Information & Computation, 110(1), 1994.

21. E. Saad. Hybrid probabilistic programs with non-monotonic negation: semantics
and algorithms. Ph.D. thesis, New Mexico State University, May 2005.

22. E. Saad and E. Pontelli. Towards a more practical hybrid probabilistic logic pro-
gramming framework.In Practical Aspects of Declarative Languages. Springer Ver-
lag, 2005.

23. V.S. Subrahmanian. Amalgamating knowledge bases. ACM TDS, 19(2):291–331,
1994.

Reducing Inductive Definitions to Propositional
Satisfiability

Nikolay Pelov and Eugenia Ternovska

School of Computing Science, Simon Fraser University,
Vancouver, Canada

Abstract. The FO(ID) logic is an extension of classical first-order logic
with a uniform representation of various forms of inductive definitions.
The definitions are represented as sets of rules and they are interpreted
by two-valued well-founded models. For a large class of combinatorial
and search problems, knowledge representation in FO(ID) offers a vi-
able alternative to the paradigm of Answer Set Programming. The main
reasons are that (i) the logic is an extension of classical logic and (ii)
the semantics of the language is based on well-understood principles of
mathematical induction.

In this paper, we define a reduction from the propositional fragment
of FO(ID) to SAT. The reduction is based on a novel characterization
of two-valued well-founded models using a set of inequality constraints
on level mappings associated with the atoms. We also show how the
reduction to SAT can be adapted for logic programs under the stable
model semantics. Our experiments show that when using a state of the
art SAT solver both reductions are competitive with other answer set
programming systems — both direct implementations and SAT based.

1 Introduction

Definitions, and inductive definitions in particular, are common in human rea-
soning [3]. Examples of inductive definitions include the definitions of the set of
well-formed formulas and the satisfaction relation |= in logic. An example of an
inductive definition from common-sense reasoning concerns reasoning about ac-
tions. There, a description of the initial situation represents the base case, and
causal laws specifying direct and indirect effects of action, represent inductive
cases [6, 7, 21, 22]. Inductive definitions can be monotone (e.g. the definition of
a well-formed formula) or non-monotone (e.g. the definition of |= and many def-
initions in common-sense reasoning). Both monotone and non-monotone induc-
tion are formalized in a natural way in the logic FO(ID) which is an extension of
first-order logic (FO) with (non-monotone) inductive definitions (ID) [4, 6]. The
semantics of FO(ID) is a combination of the semantics of first-order logic and the
well-founded semantics of logic programming. The usefulness of FO(ID) in knowl-
edge representation has been demonstrated in several applications. The authors
of [5] show that the situation calculus can be formalized as a (non-monotone) iter-
ated inductive definition in the well-ordered set of situations. The resulting formal-
ism provides a very general solution to the ramification problem. Another natural
application of FO(ID) is to data integration in database theory [24].

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 221–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 N. Pelov and E. Ternovska

Recently, the FO(ID) logic has been used as the underlying logic of a declar-
ative constraint programming framework [17]. The approach is formalized as a
model expansion problem, which is based on the classical notion of expansion of
a structure by new relations. A parameterized version of this problem captures
precisely NP search problems.

The FO(ID) logic is similar [16] to the framework of Answer Set Programming
(ASP) [1]. It can be argued that the representation of many problems in FO(ID)
is more intuitive than the representation in logic programming under the answer
set semantics. To a large extent this is due to the fact that FO(ID) is an extension
of classical logic which is well-understood and widely used. Another reason is
that the use of recursion is limited only to concepts where it is really needed and
predicates which are defined recursively are interpreted as inductive definitions.
On the other hand, recursion (very often over negation) is used much more
frequently in ASP, for example for defining the set of possible solutions. So, for
someone who is not familiar with the knowledge representation methodology of
ASP, this is often confusing. Although recent extensions of the language, for
example with choice rules [20], alleviate the problem to some extent, the basic
critique remains.

Despite its attractive properties, no full-featured implementation of FO(ID)
exists. Mariën, Gilis and Denecker [16] define a reduction from FO(ID) to ASP,
however only total definitions are supported1. In this paper, we discuss an imple-
mentation of the propositional fragment of FO(ID) called PC(ID), which stands
for propositional calculus with inductive definitions. Our approach is to define a
reduction from the satisfiability problem of PC(ID) to propositional satisfiability
(SAT). Since part of a PC(ID) theory is already a set of propositional formulas,
the main challenge is the translation of inductive definitions.

The use of SAT solvers has already been shown to be successful for imple-
menting ASP systems [12, 13, 14]. The approach which is typically used is to
compute the Clark’s completion of the program and call a SAT solver to return a
model. Then, the model is verified if it is stable and, if it is not, a special type of
formulas, called loop formulas, are added to the theory to eliminate the model.
This approach works quite well in practice, although for some problems there
may be an exponential number of loop formulas. There are also several “off-line”
reductions to SAT [2, 11, 13, 15] but their performance is not yet well studied.

An important property of the reductions to SAT, called faithfulness, refers
to the case where there is a one-to-one correspondence between the models of
the original theory and its reduction. The reductions of Lin and Zhao [13] and
Janhunen [11] are faithful while those of Ben-Eliyahu and Dechter [2] and Linke,
Tompits and Woltran [15] are not. Faithful reductions are useful when one is
interested to compute or to count all solutions of a problem. However, faith-
ful reductions are normally larger than non-faithful ones. What influence this
difference has on the speed of SAT solvers is still unknown. We are unaware
of any comparison on the performance of faithful and non-faithful reductions

1 A definition D is total if it has a two-valued well-founded model for every interpre-
tation of the open predicates of D.

Reducing Inductive Definitions to Propositional Satisfiability 223

and the experiments in this paper are a first step in this direction. The reduc-
tion of PC(ID) to SAT which we define is non-faithful. The main reason is that
the difference between the size of a faithful and non-faithful reduction for the
well-founded semantics is much greater than the difference between faithful and
non-faithful reductions for the stable semantics. The main difficulty comes from
the computation of greatest unfounded sets.

The reduction from PC(ID) to SAT is based on a novel characterization
of two-valued well-founded models by a set of inequality constraints on level
mappings associated with the atoms in the theory. The level mapping of an
atom a is related to the step of the well-founded operator WP at which the
truth value of a is derived. The reduction is very similar to the one by Ben-
Eliyahu and Dechter [2] for head-cycle free disjunctive logic programs under the
stable model semantics. Besides the difference in the language and semantics,
the other main difference between the two reductions is that we use a binary
encoding of level mappings as in [11] while [2] uses a unary encoding.

The paper is organized as follows. We start by recalling in Section 2 some
preliminaries from logic programming. In Section 3 we recall the syntax and
semantics of the logics FO(ID) and PC(ID). In Section 4 we develop the the-
oretical foundation of the reduction by characterizing well-founded models by
certain types of level mappings. The reduction itself is defined in Section 5 and in
Section 6 we evaluate its performance and compare it with other ASP systems.

2 Preliminaries

Let At be a set of atoms. A literal is an atom a ∈ At or its negation ¬ a. A rule
is an expression of the form

a← l1 ∧ . . . ∧ ln (1)

where a ∈ At and li are literals over At. For a rule r of the form (1) we denote
hd(r) = a and body(r) = {l1, . . . , ln}. The set of positive literals in the body
of r is denoted with pos(r) and the set of negative literals with neg(r). A logic
program is a finite set of rules. A definite rule is a rule without negative literals
in the body and a definite program is a program consisting only of definite rules.

With th(P) we denote the set of formulas obtained by replacing “←” with
“⊂” in every rule in P . The only-if part for a logic program P , denoted with
only if(P), is defined as the set of formulas a ⊃ B1 ∨ . . . ∨ Bn for every atom
a ∈ At where a← B1, . . . , a← Bn are all the rules with a in the head. If the body
Bi of some rule for a is empty then Bi is understood as the constant t. Finally,
the completion of a program P is defined as comp(P) = th(P) ∪ only if(P).

The dependency graph GP of a logic program P is a signed directed graph
defined as follows. The atoms of At form the vertices of GP . For every rule r ∈ P
there is an edge from hd(r) to b for every positive literal b ∈ pos(r) and there is
an edge from hd(r) to b labeled with “-” for every negative literal ¬ b ∈ neg(r).
We say that an atom a depends negatively on itself if GP contains a (directed)
cycle containing a and an edge labeled with “-”. A strongly connected component

224 N. Pelov and E. Ternovska

(SCC) is a maximal set of atoms A such that there is a directed path in GP for
every pair of atoms in A. The set of all strongly connected components of GP is
denoted with SCC(P) and the SCC to which an atom a belongs with SCC(a).
For a strongly connected component S ∈ SCC(P) we denote with PS the sub-
program of P which is restricted only to rules with atoms in S in the head.

An interpretation I is a function I : At → {f , t}. Frequently, we identify
an interpretation with the set of atoms which are assigned the value t. The
complement I of an interpretation I is taken with respect to At, i.e., I = At \ I.
A three-valued interpretation is a consistent set of literals Ĩ. We denote the subset
of positive literals of Ĩ with Ĩ+ and the subset of negative literals with Ĩ−. For
a set of literals L, we denote with ¬L the set which consists of all literals from
L with reversed polarity.

The program reduct P I [10] of a program P with respect to an interpretation
I is a program obtained from P by:

– deleting all rules which have a negative literal not satisfied by I;
– deleting all negative literals from the remaining rules.

The program reduct P I is a definite logic program and it has a unique least
model, denoted with lm(P I). An interpretation I is a stable model of P if I =
lm(P I).

Next, we recall the definition of the well-founded semantics [23].

Definition 1 (Unfounded Set). Let P be a logic program and let Ĩ be a three-
valued interpretation. We say that a set of atoms A ⊆ At is an unfounded set
(of P) with respect to Ĩ if each atom a ∈ A satisfies the following condition. For
each rule r ∈ P such that hd(r) = a one of the following holds:

1. ¬li ∈ Ĩ for some literal li ∈ body(r);
2. some positive literal in body(r) occurs in A, i.e., pos(r) ∩A �= ∅.

Taking the union of any collection of unfounded sets is also an unfounded
set. So, for any given three-valued interpretation Ĩ, a program P has a greatest
unfounded set with respect to Ĩ , denoted with UP (Ĩ). Next we define the following
three-valued operators:

TP (Ĩ) = {hd(r) : r ∈ P and body(r) ⊆ Ĩ}
WP (Ĩ) = TP (Ĩ) ∪ ¬UP (Ĩ)

The WP operator is monotone in the sense that if Ĩ1 ⊆ Ĩ2 then WP (Ĩ1) ⊆
WP (Ĩ2). By a well-known result of Tarski, follows that WP has a least fixpoint
denoted with lfp(WP). The well-founded model of a logic program P is defined
as lfp(WP) and denoted with WF (P). The least fixpoint of the WP operator can
also be computed constructively by the following iteration of the WP operator:

W 0
P = ∅

W i+1
P = WP (W i

P) for i ∈ N

Reducing Inductive Definitions to Propositional Satisfiability 225

Proposition 1. There exists a natural number n that Wn
P = Wn+1

P = lfp(WP).

The least natural number n which satisfies the conditions of the above propo-
sition, i.e., Wn

P = lfp(WP), is called the closure number of WP . The stage of a
literal l ∈WF (P), denoted with |l|WP , is defined as the least number i ∈ N such
that l ∈ W i

P .

3 Propositional Calculus with Inductive Definitions

An FO(ID) theory is a pair 〈D,A〉 where D is a set of definitions and A is a set
of FO sentences2. A definition D ∈ D is a set of rules of the form ∀x(p(t) ← ϕ)
where p(t) is an atom and ϕ is a FO formula. The set of predicates which appear
in the heads of the rules in a definition D are defined by D and denoted with
def(D). All other predicate symbols in D are called open and their set is denoted
with open(D).

The propositional fragment of FO(ID) is denoted with PC(ID) and stands
for propositional calculus with inductive definitions. For simplicity, we assume
that a definition is a propositional logic program, i.e., the body of every rule is
a conjunction of literals and every sentence in A is a propositional clause.

The semantics of FO(ID) and PC(ID) is defined as a combination of classical
first-order semantics for the set of FO sentences and two-valued well-founded
semantics for the definitions.

Definition 2. An interpretation I is a model of a PC(ID) theory 〈D,A〉 if:

1. for every definition D ∈ D, I is the (two-valued) well-founded model of
D ∪ (I ∩ open(D)) where I ∩ open(D) is the set of open atoms in D which
are true in I;

2. I |= A.

We illustrate the syntax of the logic with a formulation of the Hamiltonian
Cycle problem [16].

Example 1 (Hamiltonian Cycle). The problem of finding a Hamiltonian cycle in
a directed graph is encoded by the following FO(ID) theory 〈{D1, D2},A〉. The
first definition D1 encodes the input graph and a designated initial node as a set
of facts:

D1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vertex(v).
. . .
arc(u, v).
. . .
initialnode(v).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The Hamiltonian cycle is described by a binary predicate hc(x, y). The second
definition defines, by a positive induction, the the set of nodes reachable through
the hc(x, y) relation starting from a designated initial node:
2 In this paper we use a restricted syntax of FO(ID) and its propositional fragment

PC(ID) which is more suitable for programming and implementation.

226 N. Pelov and E. Ternovska

D2 =

⎧⎪⎨
⎪⎩
∀xy(reached(y) ←initialnode(x) ∧ arc(x, y) ∧ hc(x, y))
∀xy(reached(y) ←reached(x) ∧ arc(x, y) ∧ hc(x, y)∧

¬ initialnode(x))

⎫⎪⎬
⎪⎭ .

Finally, the formulas A are the following axioms:

∀x(vertex(x) ⊃ reached(x)),
∀xyz(arc(x, y) ∧ arc(x, z) ∧ hc(x, y) ∧ hc(x, z) ⊃ y = z),
∀xyz(arc(x, y) ∧ arc(z, y) ∧ hc(x, y) ∧ hc(z, y) ⊃ x = z),
∀xy(hc(x, y) ⊃ arc(x, y)).

��

A PC(ID) theory is obtained from the above FO(ID) formulation by a stan-
dard process of grounding which eliminates quantifiers by substituting all pos-
sible values in their domain.

4 Weak Level Mappings

The reduction of inductive definitions under the well-founded semantics to propo-
sitional satisfiability is based on modeling of the computation of the well-founded
operator WP . If we encode precisely the stages induced by the operator WP

(the function |·|WP), we can obtain a faithful reduction. However, such reduc-
tion will be very expensive in terms of its size. Instead, we use a function
|·|wk : WF (P) → N called a weak level mapping which only captures the or-
dering of literals induced by |·|WP : if |l1|WP < |l2|WP then |·|wk should satisfy
|l1|wk < |l2|wk. Since there will be many such functions, the reductions which
we obtain is non-faithful.

Definition 3. Let P be a logic program and L a consistent set of literals. A
weak level mapping is any function |·|wk : L → N such that L and |·|wk satisfy
the following conditions.

1. For every positive literal a ∈ L, there exists a rule r ∈ P such that hd(r) = a,
body(r) ⊆ L and for every literal li ∈ body(r), |a|wk > |li|wk.

2. For every negative literal ¬a ∈ L and for every rule r ∈ P with hd(r) =
a, there exists a literal li ∈ body(r) such that ¬li ∈ L, and if a depends
negatively on itself then:
(a) |¬a|wk ≥ |¬li|wk if li is positive;
(b) |¬a|wk > |¬li|wk if li is negative.

Example 2. Consider the following logic program:

a← a ∧ c

b← a

c← ¬ b.

Reducing Inductive Definitions to Propositional Satisfiability 227

Its well-founded model is {¬a,¬b, c} and is computed as:

W 1
P = WP (∅) = {¬a,¬b}

W 2
P = WP (W 1

P) = {¬a,¬b, c}

so the stages of the literals in the well-founded model are

|¬a|WP = 1, |¬b|WP = 1, |c|WP = 2.

One possible weak level mapping is the following:

|¬a|wk = 2, |¬b|wk = 3, |c|wk = 5.

The above example illustrates several differences between a weak level map-
ping |·|wk and the level mapping |·|WP :

– the smallest value of |·|wk may be higher than 1;
– |·|wk may have gaps between levels;
– literals that have the same value of |·|WP may have different values of |·|wk.

The first result is soundness of the weak level mappings with respect to the
well-founded semantics.

Proposition 2. Let P be a logic program and L a consistent set of literals. If
there exists a weak level mapping with domain L then L ⊆WF (P).

For models of inductive definitions, we are interested only in two-valued well-
founded models, so we have the following corollary.

Corollary 1. Let P be a logic program and L a consistent set of literals which
is two-valued, i.e., for every a ∈ At either a ∈ L or ¬a ∈ L. If there exists a
weak level mapping with domain L then L is the well-founded model of P .

Note that under the conditions of the corollary, the set L is also the unique
stable model of P .

The next proposition is a completeness result, meaning that there exists a
weak level mapping whose domain is the well-founded model of a program.

Proposition 3. Let P be a logic program. The level mapping |·|WP : WF (P) →
N is a weak level mapping.

5 Reduction

The reduction from PC(ID) to SAT is obtained by encoding, as a set of clauses,
the conditions on weak level mappings from Definition 3.

The reduction Tweak of a PC(ID) theory 〈D,A〉 to a CNF formula is defined
as

Tweak(〈D,A〉) =
(⋃

D∈D
Tweak(D)

)
∪ A

228 N. Pelov and E. Ternovska

where the reduction Tweak(D) of a definition D is defined as

Tweak(D) =
⋃

a∈def(D)

{clauses (2), . . . , (9)}.

Clauses (2), . . . , (9) are defined as follows. Let a be an atom and r1 : a ←
B1, . . . , rn : a ← Bn be all the rules in D with a in the head. For every rule
ri we introduce a new propositional variable ri and the clause:

a ⊃ r1 ∨ . . . ∨ rn. (2)

For every rule ri : a ← Bi partition the literals in Bi in the set def(ri) =
body(ri) ∩ def(D) of literals which are defined in D and the set open(ri) =
body(ri) \ def(ri) of literals which are open in D. Then we add the clauses:

ri ⊃lj for every lj ∈ body(ri) (3)
ri ⊃|a|wk > |lj |wk for every lj ∈ def(ri) (4)

If a does not depend negatively on itself, we add the “if” part of ri:

a ⊂ Bi . (5)

Otherwise, if a depends negatively on itself, we introduce a new variable cj for
every literal lj ∈ def(ri) and add the following clauses:

a ∨
∨

lj∈def(ri)

cj ∨
∨

lj∈open(ri)

¬lj (6)

cj ⊃¬lj for every lj ∈ def(ri) (7)
cj ⊃|a|wk ≥ |lj |wk for every pos. literal lj ∈ def(ri) (8)
cj ⊃|a|wk > |lj |wk for every neg. literal lj ∈ def(ri) (9)

Clauses (2)–(4) encode the first condition of weak level mappings (justification
of true atoms) while clauses (5)–(9) encode the second condition (justification
of false atoms). In case when there is no recursion through negation, false atoms
are justified by (the contra-positive of) clause (5). Notice that by resolving (6)
with the clauses (7) for all cj ∈ def(ri) we obtain the clause

a ∨
∨
{¬lj : lj ∈ body(ri)}

which is equivalent to (5).
We now explain the encoding of the comparisons between level mappings used

in the definition of the reduction. The weak level mapping |·|wk : At → [1, n] is
encoded by a set of vectors �a = ak, . . . , a1 of propositional variables for each
a ∈ At, representing the binary encoding of the value of |a|wk. The length k of
the vectors is k = +1 + log2 n,. Since the well-founded operator WP reaches a
fixpoint in at most |At| steps3 we can take n = |At|. For two vectors �a and �b the
encoding of |a|wk < |b|wk is given by the following logic program LT (�a,�b) =
3 A tighter bound on the number of steps is the length of the longest path in any

strongly connected component [2], however this is an NP-complete problem.

Reducing Inductive Definitions to Propositional Satisfiability 229

lt(a, b)i ← ¬ ai ∧ bi i ∈ [1, k]
lt(a, b)i ← ai ∧ bi ∧ lt(a, b)i−1 i ∈ [2, k]
lt(a, b)i ← ¬ ai ∧ ¬ bi ∧ lt(a, b)i−1 i ∈ [2, k]

For a variable assignment v : {a1, . . . , ak} → {0, 1} we denote with v(�a) the
number whose binary representation is v(ak) . . . v(a1).

Lemma 1. Let �a = ak, . . . , a1 and �b = ak, . . . , a1 be two vectors of propositional
variables and let v be a variable assignment for �a and �b. Then

– v |= lt(a, b)k ∧ only if(LT (�a,�b)) implies v(�a) < v(�b);
– v |= ¬lt(b, a)k ∧ th(LT (�b,�a)) implies v(�a) ≤ v(�b).

So, in the clauses of the reduction |a|wk < |b|wk stands for the variable lt(a, b)k

and only if(LT (�a,�b)) is added to the output of the translation. Similarly, |a|wk ≤
|b|wk stands for the variable ¬lt(b, a)k and th(LT (�b,�a)) is added to the output
of the translation.

Theorem 1. Let T be a PC(ID) theory. Then: (i) for every model M of T there
exists a model M ′ of Tweak(T) such that M = M ′ ∩At; and (ii) the restriction
M ′ ∩At of every model M ′ of Tweak(T) is a model of T .

To reduce the size of the translation, we split every definition D ∈ D in a
PC(ID) theory 〈D,A〉 to a set of definitions {DS : S ∈ SCC(D)} — one for
each strongly connected component S of D. This is an equivalence preserving
transformation as shown in [6].

Proposition 4. Let T = 〈D,A〉 be a PC(ID) theory. The number of literals in
Tweak(T) is O(size(T)× logm) where size(T) is the total number of literals in
T and m = max{|def(D)| : D ∈ D}.

5.1 Stable Semantics

The Tweak reduction can be adapted for logic programs under the stable seman-
tics by assuming that the program does not contain a recursion over negation
(even if it actually does). The intuition is that, under the stable semantics, no
justification is necessary for atoms which are false — they can be assumed “false
by default”. So, clauses (6)–(9) are never used and clause (5) is used instead. In
addition, atoms without rules should be set to false. Let Tsm denote this modified
translation:

Tsm(P) =
⋃

a∈def(P)

{clauses (2), . . . , (5)} ∪
⋃

a∈open(P)

{¬a}.

Theorem 2. Let P be a logic program. Then: (i) for every stable model M of P
there exists a model M ′ of Tsm(P) such that M = M ′∩At; and (ii) the restriction
M ′ ∩At of every model M ′ of Tsm(P) is a stable model of P .

230 N. Pelov and E. Ternovska

Similarly to the Tweak reduction, the Tsm reduction can be applied separately
for each strongly connected component of the program. It is possible to further
improve the reduction by exploiting a well-known theorem by Fages [9] stating
that the stable models of a tight4 logic program P are equal to the models of
comp(P). The obvious application of this result is to change the reduction such
that for a SCC which is tight to compute its completion. However, even for
a non-tight component it is possible to avoid assigning level mapping to some
atoms. This is done by refining the condition of tightness to individual atoms.
Definition 4. Let P be a logic program. An atom a is tight if every cycle in
the dependency graph of P which passes through a contains negation. A logic
program P is tight if every atom in P is tight.

The above definition of a tight logic program is equivalent to the one of [9]
and the one of Erdem and Lifschitz [8] based on level mappings.
Example 3. Consider the following program:

r1 : p← ¬ q

r2 : p← p ∧ r

r3 : q ← ¬ p.

The atom q is tight, however the atom p is not because of the positive dependence
of p on itself from the second rule. Consequently, the program is not tight. ��

The importance of tight atoms is that in the reduction it is not necessary
to assign to them a level mapping. This optimization is easy to implement by
changing the definition of the set def(r) used in clause (4) as follows:

def(r) = {a ∈ pos(r) : SCC(a) = SCC(hd(r)) and a is not tight}.

Example 4. Applying the optimized reduction to the program from Example 3
we obtain the following theory:

p ⊃ r1 ∨ r2 by rule (2)
r1 ⊃ ¬q by rule (3)
p ⊂ ¬q by rule (5)
r2 ⊃ ¬p by rule (3)
r2 ⊃ |p|wk > |p|wk by rule (4)
r2 ⊃ r by rule (3)
p ⊂ p ∧ r by rule (5)

q ⊃ r3 by rule (2)
r3 ⊃ ¬p by rule (3)
q ⊂ ¬p by rule (5)

¬r
We conclude the section by giving a result on the size of the reduction.

4 Originally called positive-order-consistent.

Reducing Inductive Definitions to Propositional Satisfiability 231

Proposition 5. Let P be a logic program. The number of literals in Tsm(P) is
O(size(P)× log|At|) where size(P) is the total number of literals in P .

6 Experiments

To test the different reductions we implemented a prototype system in perl called
idsat5. As a front-end we used lparse for grounding, however only PC(ID) the-
ories consisting of a single definition D can be encoded in the input language
of lparse and the set of sentences must be written as a set of integrity con-
straints. To be able to support correctly open predicates we needed to make some
changes to lparse. The problem is that under the stable semantics, predicates
without definition are assumed to be false (while they are open for PC(ID)).
Consequently, lparse will remove all rules which have such predicates in the
body. After the change such rules were left in the output.

All experiments were performed on a 2GHz Intel Pentium 4 PC with 256MB
memory running Linux with kernel 2.4.20. We report the number of seconds for
finding first solution (or showing that no solution exists) averaged over 5 runs.
Since all systems use lparse for grounding, lparse time is not included. A “-”
means that no solution was found within 2 hours. We used smodels version
2.28 [20] and assat version 2.02 [14]. The lp2sat is an implementation of the
faithful reduction of Janhunen [11]. For all SAT based systems we used the SAT
solver siege variant 4 [19].

Table 1 reports the results for the Hamiltonian Cycle problem. For the Tweak
reduction, we used the formulation in Example 1, and for all other systems
(including the Tsm reduction), the encoding by Niemelä [18]. The second column
“HC” shows whether the given graph has a Hamiltonian cycle or not. assat is
the only system which is able to solve all problems. The three reductions are
faster than assat on smaller graphs (p20–p30) where assat needs to call a SAT
solver several times before finding the first solution. However, on larger graphs,
assat is the fastest SAT based system. The performance of the three off-line
reductions (Tweak, Tsm, and lp2sat), is close to that of assat with lp2sat
being the fastest among them. It is interesting that all three reductions to SAT
have problems with graphs without a Hamiltonian cycle.

Table 2 compares the input sizes for the formulation of the problem in PC(ID)
and in ASP (columns “input rules”) and the increase in size for all reductions
to SAT (columns “Tweak factor”, “Tsm factor”, “lp2sat factor”, and “assat
factor”). The input size is measured as the total number of rules and sentences
for PC(ID) and the total number of rules for ASP after grounding with lparse
-d none. The assat reduction is measured as the number of clauses in the
completion plus the number of loop formulas and is averaged over the 5 runs.
The two “SCCs” columns give the number of strongly connected components
with size greater than 1 for the two formulations. The additional SCCs for the

5 http://nik.pelov.name/idsat/

ASP formulation come from the rules defining hc(x, y) as an “open” predicate.
The presence of more than one additional SCC for graphs 2xp30 and 4xp20

232 N. Pelov and E. Ternovska

Table 1. Times for the Hamiltonian Cycle problem: pN — a graph with N nodes6;
KxpN.i — K copies of the the graph pN with some extra edges added, i stands for a
variation of the graph7

PC(ID) ASP
Graph HC Tweak Tsm lp2sat assat smodels
p20 y 0.84 0.46 0.19 5.03 0.07
p25 y 0.77 0.62 0.94 9.27 0.09
p29 y 0.97 1.15 0.20 9.59 1.19
p30 y 0.96 1.33 2.10 13.28 0.13

2xp30 n - - - 0.21 0.18
2xp30.1 y 188.62 237.84 197.56 84.04 0.33
2xp30.2 y 168.53 212.76 112.86 112.17 -
2xp30.3 y 218.63 169.26 133.15 103.83 -
2xp30.4 n - - - 98.91 -
4xp20 n 208.07 266.18 190.85 0.29 0.22

4xp20.1 n 266.30 314.07 183.66 2.45 -
4xp20.2 y 196.69 147.08 81.37 29.43 0.43
4xp20.3 n - - 202.87 5.16 0.22

Table 2. Size of the input and output of the reductions

PC(ID) ASP
Graph SCCs of input Tweak SCCs of input Tsm lp2sat assat

size > 1 rules factor size > 1 rules factor factor factor
p20 1 950 2.89 2 1048 3.79 18.64 2.59
p25 1 1297 2.82 2 1425 3.73 18.06 4.22
p29 1 1577 2.78 2 1729 3.70 17.73 5.02
p30 1 1644 2.78 2 1802 3.70 17.73 5.43

2xp30 2 3288 2.86 4 3604 3.77 18.34 1.47
2xp30.1 2 3350 2.83 3 3668 3.74 18.07 7.20
2xp30.2 1 3330 3.12 2 3648 4.01 21.24 8.96
2xp30.3 1 3330 3.12 2 3648 4.01 21.24 9.14
2xp30.4 1 3330 3.12 2 3648 4.01 21.24 2.01
4xp20 4 3800 3.04 8 4192 3.92 19.78 1.51

4xp20.1 4 3857 3.01 5 4252 3.89 19.55 1.50
4xp20.2 1 3876 3.61 2 4272 4.45 26.18 5.35
4xp20.3 1 3884 3.61 2 4280 4.44 26.13 1.69

indicates that they consist of several disconnected components and hence they
do not contain a Hamiltonian cycle.

Comparing the size of the non-faithful reduction Tsm and the faithful reduc-
tion lp2sat confirms the conjecture that faithful reductions are much bigger —
for this example about 5 times. However, the performance of the SAT solver
is not proportional to the size of the theory. Even to the contrary, the lp2sat
reduction has a consistently better performance.

6 http://www.tcs.hut.fi/Software/smodels/tests/lp-csp-tests.tar.gz
7 http://assat.cs.ust.hk/Assat-2.0/hc-2.0.html

Reducing Inductive Definitions to Propositional Satisfiability 233

7 Conclusion

In this paper we reported on an implementation of a system for finding models of
the propositional fragment of FO(ID) by doing a reduction to propositional sat-
isfiability. Our experiments showed that, on satisfiable problems, this approach
is competitive with ASP systems — both direct implementations like smodels
and SAT based systems like assat and lp2sat.

We also showed how the reduction from PC(ID) to SAT can be adapted for
the stable model semantics. In our experiments we compared this reduction to
the faithful reduction lp2sat [11] and confirmed our hypothesis that developing
a one-to-one reduction is much more costly in terms of its size. However, despite
this difference in size, the faithful reduction performed better on all examples.
To better understand the performance of the different reductions it is necessary
to do experiments with other problems and different SAT solvers.

An interesting direction for future research is to follow the approach of assat
and cmodels-2 and try to define loop formulas for two-valued well-founded
semantics.

References

[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[2] R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence, 12(1–2):53–87, 1994.

[3] R. J. Brachman and H. Levesque. Competence in knowledge representation. In
Proc. of the National Conference on Artificial Intelligence, pages 189–192, 1982.

[4] M. Denecker. Extending classical logic with inductive definitions. In Compu-
tational Logic, First International Conference, volume 1861 of Lecture Notes in
Computer Science, pages 703–717. Springer, 2000.

[5] M. Denecker and E. Ternovska. Inductive situation calculus. In Principles of
Knowledge Representation and Reasoning: Proc. of the 9th International Confer-
ence, pages 545–553. AAAI Press, 2004.

[6] M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions and
its modularity properties. In Logic Programming and Nonmonotonic Reasoning:
7th International Conference, volume 2923 of Lecture Notes in Computer Science,
pages 47–60. Springer, 2004.

[7] M. Denecker, D. Theseider Dupré, and K. Van Belleghem. An inductive definition
approach to ramifications. Linköping Electronic Articles in Computer and Infor-
mation Science, 3(7):1–43, 1998. http://www.ep.liu.se/ea/cis/1998/007/.

[8] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic
Programming, 3(4–5):499–518, 2003.

[9] F. Fages. Consistency of Clark’s completion and existence of stable models. Jour-
nal of Methods of Logic in Computer Science, 1:51–60, 1994.

[10] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Logic Programming, 5th International Conference and Symposium, pages 1070–
1080, 1988.

[11] T. Janhunen. Representing normal programs with clauses. In Proc. of the 16th
European Conference on Artificial Intelligence, pages 358–362, 2004.

234 N. Pelov and E. Ternovska

[12] Y. Lierler and M. Maratea. Cmodels-2: SAT-based answer set solver enhanced
to non-tight programs. In Logic Programming and Nonmonotonic Reasoning, 7th
International Conference, volume 2923 of Lecture Notes in Computer Science,
pages 346–350. Springer, 2004.

[13] F. Lin and J. Zhao. On tight logic programs and yet another translation from
normal logic programs to propositional logic. In International Joint Conference
on Artificial Intelligence, pages 853–858. Morgan Kaufmann, 2003.

[14] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1–2):115–137, 2004.

[15] T. Linke, H. Tompits, and S. Woltran. On acyclic and head-cycle free nested logic
programs. In 20th International Conference on Logic Programming, volume 3132
of Lecture Notes in Computer Science, pages 225–239. Springer, 2004.

[16] M. Mariën, D. Gilis, and M. Denecker. On the relation between ID-Logic and An-
swer Set Programming. In Logics in Artificial Intelligence, 9th European Confer-
ence (JELIA), volume 3229 of Lecture Notes in Computer Science, pages 108–120.
Springer, 2004.

[17] D. Mitchell and E. Ternovska. A framework for representing and solving NP-
search problems. In Proc. of the National Conference on Artificial Intelligence,
pages 430–435, 2005.

[18] I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–
273, 1999.

[19] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, Burnaby, Canada, 2004.

[20] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

[21] E. Ternovskaia. Causality via inductive definitions. In Working Notes of
”Prospects for a Commonsense Theory of Causation”, AAAI Spring Symposium
Series, pages 94–100, 1998.

[22] E. Ternovskaia. ID-logic and the ramification problem for the situation calculus.
In Proc. of the 14th European Conference on Artificial Intelligence, pages 563–567,
2000.

[23] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[24] B. Van Nuffelen, A. Cortés-Calabuig, M. Denecker, O. Arieli, and M. Bruynooghe.
Data integration ising ID-logic. In Advanced Information Systems Engineering,
Proc. of the 16th International Conference (CAiSE), volume 3084 of Lecture Notes
in Computer Science, pages 67–81. Springer, 2004.

Symbolic Support Graph: A Space Efficient Data
Structure for Incremental Tabled Evaluation�

Diptikalyan Saha and C.R. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook,
Stony Brook, New York, 11794-4400, U.S.A
{dsaha, cram}@cs.sunysb.edu

Abstract. In an earlier paper, we described a data structure, called support graph,
for efficient incremental evaluation of tabled logic programs. The support graph
records the dependencies between answers in the tables, and is crucial for effi-
ciently propagating the changes to the tables when facts are deleted. Incremental
computation with support graphs are hundreds of times faster than from-scratch
evaluation for small changes in the program. However, the graph typically grows
faster than the tables themselves, making it impractical to maintain the full sup-
port graph for large applications.

In this paper we present a data structure, called symbolic support graph, which
represents support information compactly. For a variety of useful tabled logic pro-
grams, the size of the symbolic support graph grows no faster than the table size.
We demonstrate its effectiveness using a large application: a logic-programming-
based points-to analyzer for C programs. The incremental analyzer shows very
good scalability in terms of space usage, and is hundreds of times faster than
from-scratch analysis for small changes to the program.

1 Introduction

Tabled resolution [5,7,28] has become an important evaluation technique in logic pro-
gramming. Many implementations of tabling have now emerged [10,20,29,31]. Tabling
has enabled us to construct many practical applications— program analysis and verifi-
cation systems [8,17], in particular— by encoding them as high-level logic programs.

Tabled resolution-based systems evaluate programs by memoizing subgoals (re-
ferred to as calls) and their provable instances (referred to as answers) in a set of tables.
During resolution, if a subgoal is present in the call table, then it is resolved against the
answers recorded in the corresponding answer table; otherwise the subgoal is entered
in the call table, and its answers, computed by resolving the subgoal against program
clauses, are also entered in the answer table. For instance, the call and answer tables
created when evaluating the query r(6,X) over the program in Figure 1(a) is given in
Figure 1(b). (The answers in the figure are labeled a1, a2 etc.)

Tabling opens up the possibility of incremental evaluation: when some of a pro-
gram’s facts or rules change, we can recompute only the results affected by the changes,
instead of re-evaluating the program from scratch.

� This research was supported in part by NSF grants CCR-020537 and CCR-0311512.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 235–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 D. Saha and C.R. Ramakrishnan

:- table r/2.
r(X,Y) :- b(X,Y).
r(X,Y) :- c(X,Z),

r(Z,Y).

b(1,2). %f1
b(6,2). %f2
b(6,4). %f3

c(1,6). %f4
c(3,6). %f5
c(3,1). %f6
c(6,3). %f7

Calls Answers Supports
r(6,X)

[a1] r(6,2) [s1] {b(6,2)}, [s10] {c(6,3),r(3,2)}
[a2] r(6,4) [s2] {b(6,4)}, [s11] {c(6,3),r(3,4)}

r(3,X)
[a3] r(3,2) [s3] {c(3,6),r(6,2)}, [s8] {c(3,1),r(1,2)}
[a4] r(3,4) [s4] {c(3,6),r(6,4)}, [s9] {c(3,1),r(1,4)}

r(1,X)
[a5] r(1,2) [s5] {b(1,2)}, [s6] {c(1,6),r(6,2)}
[a6] r(1,4) [s7] {c(1,6),r(6,4)}

(b) (c)

(a)

Fig. 1. Example program (a); calls and answers generated when evaluating query r(6,X) (b);
and supports for the query evaluation (c)

Background: Incremental evaluation of tabled programs is closely related to the well-
investigated problem of materialized view maintenance in databases [12, e.g.]. Most of
these works handle two kinds of changes to a program, namely, insertion and deletion
of facts; update is treated as deletion followed by insertion. Incremental processing of
deletion is more challenging than that of addition, especially for maintaining recursively
defined views. This paper focusses solely on incremental processing of deletion.

The DRed algorithm [11], which subsumes the other recursive view maintenance
algorithms, first deletes all answers that may be affected by the deleted facts (the dele-
tion phase). The second (rederivation) phase attempts to rederive the deleted answers
without using the deleted facts. For instance, consider the deletion of fact b(6,2)
from the program in Figure 1(a). Since there is one derivation of r(6,2) that con-
tains b(6,2), the DRed algorithm deletes r(6,2). Similarly, r(3,2) and r(1,2)
are also deleted. In the second phase, r(1,2) is rederived due to b(1,2). Conse-
quently, r(3,2) and r(6,2) are also rederived, thereby rederiving all the three orig-
inally deleted answers. The deletion-rederivation strategy appears to be universal for
handling incremental deletion: it also appears in independently-developed incremental
algorithms for program analysis [16,30] and model checking [25].

Two factors make the DRed algorithm impractical. First, the deletion phase uses
program clauses to propagate the deletions. Second, many of the deleted answers are
rederived in the second phase, again by applying program clauses. In [21], we proposed
a solution to these two problems, as described below.

Support Graph: An instance of a rule that can be used to derive an answer is known
as a support for that answer. For instance, the supports for the answers used to evalu-
ate the query r(6,X) over the program in Figure 1(a), are given in Figure 1(c). The
supports in the figure are labeled s1, s2, etc. A support graph has answers, facts and sup-
ports as vertices; the support graph corresponding to Figure 1(c) is shown in Figure 2.
An “answer” edge connects a support (circled in the figure) with the answer it supports
(shown with white arrowheads in the figure). An answer/fact contained in a support is
connected to the support with a “uses-of” edge (filled arrowheads in the figure).

Our incremental algorithm [21] is based on DRed [11] and has two phases. In the
first phase, when a fact is deleted, the supports containing the fact are marked. When a

Symbolic Support Graph: A Space Efficient Data Structure 237

s1 a1

a4

f3

a2a5

f2

f5

a3

f7

a6

f6

f1

f4

1

0

0

2

2

s3

s8

s6 s7

s9 s11

s4

s2
s5

s10
2

1

2

2

1

0

1

2

2

3
3

1

0

0

0

3
2 0

1

Fig. 2. Support graph for answers to query r(6,X) over example program in Figure 1(a)

support is marked, the answers it supports are marked; the marks are then further prop-
agated, alternately marking supports and answers. Note that marking is done without
using the program rules. The propagation of marks is optimized by (i) annotating the
first support used to derive an answer as its primary support, and (ii) marking an answer
only when its primary support is marked. In Figure 1(c), the primary support is listed
first. In our running example, the deletion of b(6,2) will mark r(6,2), and conse-
quently r(3,2). The marked supports and answers due to this deletion are shown in
boldface in Figure 1(c). Note that r(1,2) is not even marked.

More importantly, support graphs significantly simplify rederivation. Observe that
after the marks have been completely propagated, if a marked answer has unmarked
supports, then it is derivable using any of those supports. Continuing with our running
example, we can thus remove the mark on r(3,2). Consequently, the marks on sup-
port {c(6,3),r(3,2)}, and hence r(6,2) are removed. Note that rederivation can
be done without using the program clauses.

The Problem: Our incremental algorithm in [21] based on support graphs shows very
good time performance: incremental evaluation times for small changes are typically
0.1% of the from-scratch evaluation time for most programs. However, support graphs
are usually very large, and the memory overhead makes it impossible to maintain the
full support graph for large applications.

In [22] we proposed an algorithm that kept only a limited number of supports for
each answer, making its space requirements linear in the number of answers. The space
savings and scalability however come at the price of increased rederivation time. Since
all supports are not stored, an answer may have a derivation even when all of its stored
supports are marked. Hence, we need to re-evaluate the program clauses to check if the
answer can be rederived. The time penalty can be high: incremental evaluation time (for
small changes) may be as much as 15% of that of from-scratch evaluation.

This raises an interesting question: Can we store the entire support graph, which
eases rederivation and significantly improves incremental evaluation time, without in-
curring a prohibitive space overhead? We address this problem in this paper.

Our Solution: The key to storing the entire support graph is to make use of explicit
sharing inherent in the supports. Consider the two answers to call r(3,X), r(3,2)
and r(3,4), and their supports s3 and s4 respectively. Observe that the two supports
share c(3,6). Also notice that the literals which make the two supports different, i.e.

238 D. Saha and C.R. Ramakrishnan

Call Symbolic Supports
r(6,X) 〈r(6,X), {}, b(6,X)〉, 〈r(6,X), {c(6,3)},r(3,X)〉
r(3,X) 〈r(3,X), {c(3,6)},r(6,X)〉, 〈r(3,X), {c(3,1)},r(1,X)〉
r(1,X) 〈r(1,X), {}, b(1,X)〉, 〈r(1,X), {c(1,6)},r(6,X)〉

Fig. 3. Symbolic supports for query evaluation over the example program in Figure 1(a)

r(6,2) and r(6,4), are answers to the call r(6,X). Thus two supports for answers
to r(3,X) can be represented in intensional form as: c(3,6), r(6,X). This inten-
sional form is represented in a symbolic support, which consists of three parts, namely,
the set of answers supported (e.g. r(3,X), the common part of all the supports (e.g.
c(3,6), and the call whose answers distinguish the supports (e.g. r(6,X)). Now,
when an answer to r(6,X), say r(6,2) is deleted, we can compute, using the sym-
bolic support, that r(3,2) may be affected. A symbolic support captures dependen-
cies between certain calls while our earlier notion of supports captured dependencies
between answers. By lifting this to the level of calls, a symbolic support compactly
represents multiple supports.

The symbolic supports for the evaluation of query r(6,X) over the program in
Figure 1(a) appears in Figure 3. Marking can be readily done using the symbolic sup-
ports. Given a marked answer (e.g. r(6,2)), we first compute the substitution for the
variables in a support corresponding to it (e.g. r(6,X), X = 2), and use this sub-
stitution to find the supported answer (e.g. r(3,2)). When the intensional form does
not contain any join operations, we can compute the answer dependencies from the
symbolic support in time proportional to the answer size.

Contributions: We propose Symbolic Support Graph (SSG), a data structure for
space-efficient and time-efficient incremental evaluation of tabled logic programs (Sec-
tion 3). We give efficient algorithms for incremental evaluation with SSGs (Section 4).
SSGs grow no faster than the tables for an important class of tabled programs and
queries (Section 5). In practice, SSGs take much less space than full support graphs,
and yet show time performance comparable to the latter (Section 6). We demonstrate
the scalability of incremental evaluation using a points-to analyzer for C programs as
an example. Our incremental analyzer scales to programs with over 60K lines of code.
In many cases, the size of SSG is even smaller than that of partial support graphs used
in [22]. Thus, SSGs enable incremental evaluation of large, realistic applications.

The relationship between this paper and the previous work is explored in Section 7.
In this paper, we describe SSGs for incremental evaluation when facts are deleted from
a definite tabled logic program. The use of SSGs is orthogonal to other issues in in-
cremental evaluation, such as the handling of insertion of facts/rules, deletion of rules,
updates, and stratified negation. A brief discussion of these issues appear in Section 8.

2 Preliminaries

We now formally define the notions of supports and support graph. We consider definite
logic programs, and partition the predicates into intensional and extensional predicates.
Extensional predicates are defined solely by facts. For simplicity of notation, we assume

Symbolic Support Graph: A Space Efficient Data Structure 239

that only the definitions of extensional predicates may be deleted. The techniques in this
paper can be generalized to handle the deletion of rules along the lines described in [21].

Definition 1 (Support). Let P be a definite logic program, and let T be a set of answer
tables obtained when evaluating a query γ over P . A set {b1, b2, . . . , bn} is called a
support of an answer a of γ if there exists a clause in P of the form α :− β1, β2, . . . , βn

and a substitution θ, such that αθ = a, and, for all i ∈ [1, n] βiθ = bi and bi is an
instance of an answer in T or a fact in P .

A support graph maintains the relationships between the answers and supports gen-
erated during query evaluation.

Definition 2 (Support graph). Let P be a definite logic program, and let T be a set of
answer tables obtained when evaluating a query γ over P .

The support graph for the evaluation of γ is a directed graph (V,E) where V con-
tains the facts in P , answers in T and their supports. The set of edges E is such that

– (bi, s) ∈ E for all supports s ∈ V such that s = {b1, b2, . . . bn}, and for all
i ∈ [1, n]. We say that s ∈ bi.uses of and bi ∈ s.part of .

– (s, a) ∈ E for all a ∈ T and s ∈ V such that s is a support of a. We say that
s.answer = a and s ∈ a.support.

The primary support of an answer is the first support used to derive the answer in
some least fixed point computation procedure. It follows from the property of least fixed
point computations that the primary support will be independent of the answer itself.
We generalized this to acyclic supports in [22], defined using the notion of derivation
length described below:

v.dl =

⎧⎨
⎩

0 if v is a fact
1 + max{a.dl | v ∈ a.uses of} if v is a support
s.dl | s is the primary support of v if v is an answer

The derivation length represents the height of a proof tree for an answer. Note that
if the derivation length of a support s is no greater than its supported answer a, then s
has a derivation independent of a. A support s is acyclic if s.dl ≤ s.answer.dl. Thus an
answer need not be marked in the first phase until all of its acyclic supports are marked.
In our running example in Figure 2, we have annotated the vertices with their derivation
lengths. Based on the derivation lengths, we determine s1, s2, s3, s4, s5, s7 and s8 as
acyclic supports. Thus deletion of f2 causes only a1 to be marked. Note, however, an
acyclic support may not remain acyclic after rederivation. For instance, a1 is rederived
due to s10 which now becomes its acyclic support by updating a1.dl to 3. Consequently,
the derivation lengths s3 and s6 are changed to 4 making s3 non-acyclic.

3 Symbolic Support Graphs

We now formally define the notion symbolic supports, and describe the data structure
to represent symbolic support graphs.

240 D. Saha and C.R. Ramakrishnan

Definition 3 (Symbolic Support). Let P be a definite logic program with a set of facts
F , and let C and A be a set of call and answer tables respectively, obtained when
evaluating a query ξ over P . The triple S = 〈h, s, d〉 is a symbolic support for a call
γ ∈ C if there is a clause in P of the form α :− β1, β2, . . . , βn−1, βn and a substitution
θ such that

1. h, called the head of S, is such that αθ = h;
2. s, called the static part of S, is such that s = {b1, b2, . . . bn−1}, and
∀i ∈ [1, n− 1], bi = βiθ and bi ∈ A ∪ F ;

3. d, called the dynamic part of S, is such that βnθ = d.

Note that a symbolic support is shared between a non-empty set of answers of a
call. The set of non-symbolic supports represented by a symbolic support S are called
embedded supports of S, defined below.

Definition 4 (Embedded Supports). Let P be a definite logic program with set of
facts F , and let A be answers in the tables obtained when evaluating a query γ over P .
A non-symbolic support s is embedded in a symbolic support S = 〈h, s′, d〉 if there is
a substitution σ such that s.answer = hσ ∈ A, s = s′ ∪ {dσ}, and dσ ∈ A ∪ F .

Given a symbolic support S = 〈h, s, d〉, then answer a′ is said to be a supported
answer for an answer/fact a w.r.t. S if there is a substitution σ such that a = dσ and
a′ = hσ. In that case, we also say that a is a supporting answer w.r.t. S.

When the mark on an answer is propagated, we need to find an embedded support
that contains this answer. For instance, consider our running example and its symbolic
supports in Figures 1(a) and 3 respectively. If r(6,2) is marked, since it is an instance
of r(6,X), we need to mark supports embedded in 〈r(1,X), {c(1,6)},r(6,X)〉
and 〈r(3,X), {c(3,6)},r(6,X)〉. This lookup can be efficiently done if the dy-
namic part of a symbolic support is a tabled call. Moreover, we can maintain, for each
tabled call, the set of symbolic supports that contain it. If the dynamic part of the sym-
bolic support is not a tabled call, then we need to maintain additional indexing struc-
tures to find the embedded supports. Hence we do not use a symbolic support when its
dynamic part is not a tabled call, and use non-symbolic supports instead.

Symbolic support graphs (SSG) are an extension of the support graphs that has calls,
answers, symbolic as well as non-symbolic supports as vertices and the relationships
between them as edges. The edges in an SSG are described below.

– uses of , part of , support, answer: as in Definition 2.
– set uses of : If a fact or an answer a is in the static part of a symbolic support SS

then there is a set uses of edge from a to SS.
– set uses of call and dynamic call: If a call C is the dynamic part of a symbolic

support SS then there is a set uses of call edge from C to SS. There is also a
dynamic call edge from SS to C.

– supported call and symsupport: If a symbolic support SS supports a nonempty set
of answers of a call C then there is a supported call edge from SS to C, and a
symsupport edge from C to SS.

– answers and subgoal: If A is the set of answers for call C, then there is a answers
edge from C to elements of A and a subgoal edge from each element of A to C.

Symbolic Support Graph: A Space Efficient Data Structure 241

supported_call
set_uses_of, set_uses_of_call
answer
uses_of

r(6,X)r(1,X)
a5
a6

f1

s5

a1
a2

s1f2
s2f3

a3a4

r(3,X)

SS2

f5

f4

SS1
SS2
SS3
SS4

:: s8, s9
s6, s7
s10, s11
s3, s4

::

::

::

SS4

SS1f6
SS3 f7

Fig. 4. Symbolic support graph for answers to query r(6,X)

The SSG corresponding to the supports in Figure 2 is shown in Figure 4. Note
that any tabling engine will give unique identities to each tabled call (e.g. the subgoal
frame in the SLG-WAM [7]) and tabled answers. We use these identifiers in our imple-
mentation of the SSG to denote calls and answers (we use terms to represent calls in
examples, for clarity). The information about the variables in the head and the dynamic
part, needed to compute the embedded supports, is also kept in a symbolic support. This
implementation detail is not shown in the examples.

The set uses of , set uses of call, and supported call edges in an SSG are required
for propagation of marks and rederivation. They are analogues of uses of and answer
in a support graph. The symsupport edges are used to adjust the derivation length of
an answer after rederivation. Finally, dynamic call is used to compute the embedded
supports of a symbolic support.

In addition, for each answer we maintain the total number of unmarked supports
in attribute total support count and the number of unmarked acyclic supports in at-
tribute acyclic support count. These attributes counts the number of embedded sup-
ports represented by a symbolic support. In Figure 4, total support count of a1 is 2 and
acyclic support count of a1 is 1.

4 The Incremental Table Maintenance Algorithm

We now describe the incremental algorithm for maintaining the tables using symbolic
supports. The algorithm extends the one in [21] and handles graphs with a mixture
of symbolic and non-symbolic supports. We have already seen in the previous section
how to compute the embedded (non-symbolic) supports for each symbolic support.
Note that information such as derivation length and marking are specific to the non-
symbolic embedded supports; computing this information based on symbolic supports
is the key issue in the algorithm. Note also that the static part of a symbolic support
is common to all its embedded supports. Hence we associate the information due to
the static part in the symbolic support. For each symbolic support node we maintain an
attribute static maxdl that stores the maximum of derivation lengths of the answers and
facts in its static part. We use this information to compute the derivation length of each
embedded support. Similarly, with each non-symbolic support we maintain an attribute
falsecount which counts the number of marked answers/facts in the support. With each

242 D. Saha and C.R. Ramakrishnan

symbolic support, we maintain static falsecount which counts the number of marked
answers and facts in its static part.

The algorithm has two phases analogous to the two phases of DRed and other in-
cremental recursive-view maintenance algorithms.

Marking Phase. The algorithm for the marking phase is shown in the Figure 5(a).
The falsecount attributes of symbolic and non-symbolic supports are initialized to zero
before the marking phase. An answer is marked by setting its marked flag to true; this
attribute is initialized to false. The answers to be marked are placed in a queue, and the
marking phase ends when the queue is empty. The marked answers are placed in a set
marked set for processing in the rederivation phase.

The functions mark answer and mark fact propagates the effect of marking an an-
swer/fact to the supports containing it. The function mark fact propagates the effect of
deleting a fact to the supports containing it. In addition mark answer places a mark on
the answer. Function mark support marks a support and propagates this mark to the
answer supported by it; functions mark static and mark dynamic mark a symbolic sup-
port and if needed propagate this mark to the answer(s) supported by it. Note that a
(symbolic) support is marked if its (static) falsecount is nonzero.

We illustrate the working of the marking phase using the deletion of f2 and f4
from Figure 4 as an example. A call to mark fact(f2) will call mark support(s1), and
subsequently propagate mark(a1, 1). This will decrement a1’s total and acyclic support
counts (to 1 and 0, resp.), and place a1 in the queue. We will call mark fact(f4) next.
Since f4 is in the static part of symbolic support SS2, we call mark static(SS2). This
sets static falsecount of SS2 to 1, iterates over the answers of the dynamic part of SS2,
i.e. r(6,X). The supported answers of a1 and a2 w.r.t SS2 are a5 and a6, resp., and
a6 is added to the queue as a5 has an unmarked acyclic support s5. Note this is equiv-
alent to propagation of marking through s6 and s7 in support graph based algorithm.
Continuing further, we pick up a1 for processing from the queue. Since a1 appears in
the dynamic parts of SS2 and SS4 mark dynamic is called for both the symbolic sup-
ports. However, mark dynamic(SS2,a1) has no effect as its static falsecount is already
1; mark dynamic(SS4,a1) will call propagate mark(a3, 2) which reduces the total and
acyclic support counts of a3 to 1 (due to acyclic embedded support s8 in SS1). Sim-
ilarly, processing a6 from the queue does not mark a4 as it has an acyclic embedded
support in SS4. Thus at the end of marking phase a1 and a6 are marked.

Rederivation Phase. Each marked answer that has some unmarked support at the
end of the marking phase is known to have a proof not involving its previously known
acyclic supports. In addition to resetting its mark, we need to compute its new deriva-
tion length (due to the new proofs). In our running example we compute the new
derivation length of a1 by computing derivation length of its unmarked support (s10
in SG) embedded in SS3. This is done by finding the supporting answer for a1 w.r.t.
SS3, i.e. answer a3 (dl = 3), and computing the dl of the embedded support. When
some of the marked answers are rederived, we propagate rederivation using the function
rederive answer. Figure 5(b) gives the rederivation algorithm, which is very similar to
the marking algorithm.

Correctness. The correctness of the algorithm can be shown by induction on the
number of steps needed to derive an answer. The soundness of the algorithm follows

Symbolic Support Graph: A Space Efficient Data Structure 243

mark()
mark queue = empty
∀ deleted facts f
mark fact(f)

while (mark queue != empty)
a = dequeue(mark queue)
mark answer(a)

mark fact(f)
∀ Support s ∈ f.uses of
mark support(s)
∀ SymbolicSupport S ∈ f.set uses of
mark static(S)

mark answer(a)
a.marked = true
∀ s ∈ a.uses of

mark support(s)
∀ S ∈ a.set uses of

mark static(S)
subg = a.subgoal
∀ S ∈ subg.set uses of call

mark dynamic(S, a)

mark support(s)
s.falsecount++
if (s.falsecount == 1)

propagate mark(s.answer, s.dl)

mark dynamic(S, sourceans)
(* Propagate via dynamic part *)
if (S.static falsecount == 0)

targetans = supported answer of sourceans w.r.t. S
support dl =

1 + max(S.static maxdl, sourceans.dl)
propagate mark(targetans, support dl)

mark static(S)
(* Propagate via static part *)
S.static falsecount++
if (S.static falsecount == 1)
∀ sourceans ∈ answers(S.dynamic call)

if (! sourceans.marked)
targetans = supported answer of sourceans w.r.t. S
support dl =

1 + max(S.static maxdl, sourceans.dl)
propagate mark(targetans, support dl)

propagate mark(ans, support dl)
ans.total support count−−
if (ans.dl ≥ support dl)

ans.acyclic support count−−
if (ans.acyclic support count == 0)

enqueue(mark queue, ans)
marked set = marked set ∪ { ans }

(a)

rederive()
∀ ans ∈ marked set

if (ans.total support count > 0)
ans.acyclic support count

= ans.total support count
recalculate dl(ans)
enqueue(rq, ans)

∀ Answer ans ∈ rq
rederive ans(ans)

recalculate dl(targetans)
spt max=max{s.dl | s = targetans.support ∧

s.falsecount == 0}
espt max=max{max(S.static maxdl,ans.dl)+1
| S ∈ targetans.subgoal.symsupport
∧ S.static falsecount=0
∧ ans is a supporting answer of targetans w.r.t S
∧ !ans.marked}

targetans.dl=max(spt max,espt max)

rederive answer(ans)
ans.marked = false
∀ s ∈ ans.uses of
rederive support(s, ans.dl)
∀ S ∈ ans.set uses of
rederive static(S, ans.dl)

subg=get subgoal(ans)
∀ S ∈ subg.set uses of call
rederive dynamic(S, ans)

rederive support(s, dlen)
s.dl = max(s.dl, dlen+1)
s.falsecount−−
if (s.falsecount == 0)

propagate rederive(s.answer of, s.dl)

rederive dynamic(S, sourceans)
if (S.static falsecount == 0)

targetans = supported answer of sourceans w.r.t. S
dlen = max(S.static maxdl, sourceans.dl)+1
propagate rederive(targetans, dlen)

rederive static(S, dlen)
S.static maxdl = max(S.static maxdl, dlen)
S.static falsecount−−
if (static falsecount(S) == 0)
∀ sourceans ∈ S.supported call.answers

if (!sourceans.marked)
targetans = supported answer of sourceans w.r.t. S
dlen’ = max(S.static maxdl, sourceans.dl)+1
propagate rederive(targetans, dlen’)

propagate rederive(ans, dlen)
ans.total support count++
if (ans.acyclic support count==0)

ans.acyclic support count = 1
ans.dl = dlen
enqueue(rq, ans)

else
if (ans.dl ≥ dlen)

ans.acyclic support count++
(b)

Fig. 5. Algorithm for Marking (a), Rederivation(b)

244 D. Saha and C.R. Ramakrishnan

from the property that all answers no longer derivable after facts are deleted are marked.
The completeness follows from the property that the rederivation removes mark of an
answer which has at least one proof independent of the deleted facts. Thus the incre-
mental algorithm can be applied repeatedly applied. The details of the proofs can be
found in [24].

5 Space Complexity of Symbolic Support Graphs

In this section we compare the asymptotic size of SSGs with respect to table size and
the size of non-symbolic support graphs for a number of useful tabled programs. For
purposes of this comparison, we assume that all supports in the SSG are symbolic. The
selected programs and the complexity measures are shown in Figure 6. The apparently
simple transitive closure programs (lreach/2 and rreach/2) lie at the heart of a
remarkable number of applications of tabled logic programming. For instance, verifica-
tion of safety properties of systems and implementation of inheritance in object-oriented
logics reduce to reachability problem. Context-free language reachability, which is the
basis for the verification of push-down systems, has rules that resemble the definition of
the simpler same-generation (sg/2) predicate. A class of useful tabled logic programs
not in the figure are those involving negation and aggregation (e.g. dynamic program-
ming problems). In principle, symbolic supports can be used in these cases also, but
other aspects of our implementation (e.g. handling of insertions/updates) need exten-
sion (see Section 8). Hence we do not include this class in the comparison.

For the graph traversal examples, we assume that the edge/2 relation defines a
graph with v vertices and e edges. We consider a bound-free query to right-recursive
transitive closure, say rreach(a,X). Tabled evaluation makes O(v) distinct tabled
calls to answer this query. Each of these calls can have O(v) answers, and hence the ta-
ble size is O(v2). Each answer rreach(b,c) has supports of the form {edge(b,Y),
rreach(Y ,b)} where Y ranges over neighbors of b. The number of supports for this
answer is bounded by the out-degree of b. Since there are O(v2) answers, the total num-
ber of supports is O(v ∗e). The symbolic supports associated with call rreach(a,X)
are {edge(a,X)} and those of the form {edge(a,Y), rreach(Y ,X)}. Thus
there are two symbolic supports for each edge and hence the number of symbolic sup-
ports is O(e). Note that SSG grows slower than the tables for this example.

Example programs Query Space Complexity
Modes Table SG SSG

lreach(X,Y):- edge(X,Y).
lreach(X,Y):- lreach(X,Z), edge(Z,Y).

bb, bf O(v) O(e) O(v)
fb, ff O(v2) O(v ∗ e) O(v2)

rreach(X,Y):- edge(X,Y).
rreach(X,Y):- edge(X,Z), rreach(Z,Y).

bf, ff O(v2) O(v ∗ e) O(e)
bb, fb O(v) O(e) O(e)

sg(X,X).
sg(X,Y):- edge(X,Y1),sg(Y1,Y2),edge(Y2,Y).

all O(v2) O(e2) O(v ∗ e)
sg opt(X,X).
sg opt(X,Y) :- aux(X,Z),edge(Y,Z).
aux(X,Y):- edge(X,Z),sg opt(Z,Y).

all O(v2) O(v ∗ e) O(v2)

Context-Free Language Reachability
N=|nonterms|,G=grammar size

all O(N ∗ v2) O(G ∗ v3) O(G ∗ v2)

Fig. 6. Space complexity of symbolic support graphs

Symbolic Support Graph: A Space Efficient Data Structure 245

The asymptotic space complexity for the other examples and queries in Figure 6 are
computed along the same lines. The figure shows two versions of the same generation
predicate: the naive sg/2, and an optimized version sg opt/2 obtained by supplementary
tabling (i.e. tabling an intermediate join). The latter has better time complexity; observe
from the figure that the size of SSG for this program is proportional to table size. For
such programs, the space needed for SSG is less than three times the table space in the
worst case. In practice the constant factor is close to 1.5 (see next section).

6 Experimental Results

The aim of symbolic support graphs is to make incremental evaluation scale to large
applications. To determine the effectiveness of our new data structure and algorithm,
we measured their performance on a points-to analyzer for C programs. The analyzer
itself is a tabled logic program which encodes Anderson’s points-to analysis [2,22].
We measured the performance of the analyzer on programs taken from C benchmarks
available with PAF [15] compiler suite and SPEC95 benchmarks. The symbolic support
graph based incremental evaluation algorithm was implemented by extending the XSB
logic programming system [29] (v2.6). Our incremental points-to analysis system, the
benchmarks, and detailed experimental results are available at [24].

We preprocessed the C source code using CIL [14] into Prolog facts representing
the primitive assignment statements. Each library function was replaced by a stub repre-
senting the data flow between its formal parameters and return value and preprocessed
in the same manner. Performance measurements were taken on a PC with 1.4Ghz Pen-
tium M processor with 2GB of physical memory running Linux (Debian) 2.6.7.

We performed All Points-to Analysis (APA), which computes the points-to relation
for all program variables. The characteristics of the benchmarks are given in Table 1.
In the table, “LOC” refers to the number of lines of source code in the benchmark;
“Avg. size” shows the average number of of the points-to tuples per variable. The first
four benchmarks in the table are relatively small; to remove noise from the results, we
replicated the programs, generating new variable names as appropriate. The remaining
three benchmarks are large enough to permit stable measurements without replication.
We show the replication factor for each benchmark in the column named “RF”.

Space. Table 1 shows the number of supports, and space (in MB) taken by, support
graphs [21], partial support graphs with maximum of 2 supports per answer [22], and

Table 1. Comparison of support graph sizes for pointer analysis

Avg. Support Graph Partial Su. Gr. Symbolic Support Gr. mem
Benchmark LOC RF size supports mem supports mem support symspt mem sym

com
%

smail 3850 15 24.5 3,159.4K 92.2 560K 22.8 42.2K 163.0K 15.5 16.8
parser 11391 15 5.8 1,355.7K 44.2 518K 21.8 130.0K 159.2K 17.9 40.5
vpr 17729 15 1.8 213.1K 9.7 172K 8.7 56.2K 51.9K 8.5 86.9
m88ksim 19093 15 6.0 303.5K 11.8 206K 9.2 34.3K 47.9K 7.1 60.5
twmc 24951 1 16.7 5,727.8K 158.5 396K 16.2 90.5K 105.0K 12.6 8.0
nethack 33993 1 35.0 2,074.8K 59.4 269K 11.2 34.9K 60.4K 8.1 13.6
vortex 67110 1 69.8 33,334.5K 912.0 1,714K 65.2 215.3K 361.4K 46.1 5.1

246 D. Saha and C.R. Ramakrishnan

Table 2. Support graph sizes (in MB) for: push-down model checking (a); and synthetic bench-
marks from Table 6

Benchmark Table SG SSG
smail 0.8 0.9 0.8
allroots 0.5 0.5 0.4
assembler 47.7 67.6 48.6
compiler 51.1 154.0 53.7
compress 7.0 9.2 7.0
loader 5.9 6.9 6.0

Graphs
Programs chain complete tree

2000 nodes 100 nodes 10000 nodes
Table SG SSG Table SG SSG Table SG SSG

lreach 0.3 0.2 0.2 0.3 0.7 0.4 1.6 0.8 0.9
rreach 47.0 96.0 40.2 0.7 28.5 0.9 5.4 5.7 3.2
sg opt 1.1 0.4 0.4 1.3 56.6 1.9 5.7 1.8 1.9

(a) (b)

Table 3. Comparison of running times: pointer analysis (a), model checking (b)

Benchmark from Incr- Support Graph
scratch complete partial symbolic % % %

(a) (b) (c) (d) b/a c/a d/a
smail 1.45 0.0178 0.1073 0.0433 1.22 7.4 2.98
parser 1.19 0.0025 0.0916 0.0108 0.21 7.7 0.90
vpr 0.37 0.0001 0.0048 0.0005 0.03 1.3 0.14
m88ksim 0.25 0.0005 0.0028 0.0015 0.20 1.1 0.60
twmc 2.49 0.0039 0.2092 0.0125 0.16 8.4 0.50
nethack 0.87 0.0005 0.0487 0.0028 0.06 5.6 0.32
vortex 12.80 0.0040 1.9200 0.0200 0.03 15.0 0.16

Bench- from Incremental
mark scratch SG SSG
smail .0360 .0005 .0006
allroots .0050 .0003 .0004
assembler .0330 .0101 .0131
compiler .0270 .0113 .0231
compress .0140 .0023 .0031
loader .0150 .0017 .0017

(a) (b)

symbolic support graphs for each benchmark. Observe from the table that the symbolic
support graph takes the least space among the three. Note that the symbolic support
graph may contain non-symbolic supports; while it is possible to make all supports
symbolic, we find that it usually increases space requirements by 20%. Finally, the
table shows that the symbolic support graph can be considerably smaller than the (non-
symbolic) support graph of [21]. Since symbolic supports keep dependencies between
calls instead of answers, the reduction in space is proportional to the number of answers
per call (the average points-to size).

Table 2(a) shows the sizes of non-symbolic (SG) and symbolic (SSG) support
graphs for performing automata-based dead variable analysis of C programs using the
push down model checker of [4]. The model checker has few answers per call, conse-
quently we see a reduction in space due to SSGs, but not as much as in the points-to
analysis.

Recall from Section 5 the size of the symbolic support graph grows at or near the
same rate as the table size for bound-free queries to left-recursive and right-recursive
transitive closure and same generation programs (from Figure 6). Table 2(b) shows that
not only the growth rates, but the total space requirements of symbolic supports are also
close to those of the tables themselves.

Time. The effectiveness of the incremental techniques were evaluated by remov-
ing one (source-level) statement from the benchmark programs, and measuring the
time and space taken to redo the analysis from scratch and to maintain the points-to

Symbolic Support Graph: A Space Efficient Data Structure 247

relation incrementally. Deleting one source level assignment statement may delete mul-
tiple primitive assignment statements and hence multiple facts.

The results are shown in Table 3. The incremental analysis timings were obtained
by repeating the incremental evaluation a number of times to obtain measurable running
times. Table 3(a) shows the incremental evaluation times for pointer analysis using the
non-symbolic support graph [21] (complete), the partial support graph with at most 2
supports per answer [22] (partial), and the symbolic support graph (symbolic). Observe
that the SSG-based algorithm is on average 5 times slower than the complete support
graph based one, but is still two orders of magnitude faster than the from-scratch anal-
ysis for small changes. For model checking benchmarks SSG-based analysis is on av-
erage 1.5 times slower than complete support graph based analysis. The incremental
times for synthetic benchmarks are non-measurable and thus omitted here.

7 Related Work

The idea of recording the evaluation process as a graph to guide incremental change
propagation has been used in various fields viz. AI, view maintenance, program analy-
sis, model checking, functional programming, and logic programming.

Structures similar to support graph was seen in truth maintenance system [9] (TMS),
and later in belief revision systems [3]. With each belief node in TMS a justification
set, which represents the reasons for the belief, is kept. This is analogous to the support
graph with beliefs as answers and justifications as their supports.

Among the works on materialized view maintenance, we reviewed the relationships
between our work and the DRed algorithm [11] in the introduction. The Straight Delete
(StDel) [13] algorithm keeps the all the proofs associated with every answer, thereby
eliminating the rederivation phase. While this approach may be feasible in constraint
databases, its space complexity is worse than the support graph-based algorithm.

The product graph generated during the model checking process is used by incre-
mental model checking algorithm (MCI) of [25]. The complete graph is kept explicitly
and the space issues are not addressed. As mentioned in [21] we have adopted MCI’s
use of counts to efficiently compute truth values of nodes during incremental evaluation.

Incremental attribute grammar evaluation [18] generates an acyclic dependency
graph to record the functional dependencies among attribute in the non-circular attribute
grammar. In [19] Reps discussed ways to reduce storage space of acyclic dependency
graph of attribute grammars. Another instance of an acyclic dependency graph is the
augmented dependency graph [1] which records dependencies between input and out-
put values in the execution of pure functional programs.

The SSG proposed in this paper grows at or near the rate at which tables grow for
many tabled logic programs and queries; in the worst case, however, SSG’s size is not
bounded by table size. In [22] we proposed an approach to keep a bounded number of
supports with each answer, thereby making the support graph size proportional to the
table space for arbitrary tabled logic programs.

In [27,26] Binary Decision Diagrams (BDDs) [6] are used to represent transition
relation and reachable states of a state transition graph in the context of logic synthesis
and formal verification of digital circuits. To incrementally maintain reachable states

248 D. Saha and C.R. Ramakrishnan

in response to changes in the transition relation, a spanning graph is generated during
reachability analysis as the evidence for all the reachable states. BDDs are used to
represent the edge relation of the spanning graph, thereby making it space efficient. We
attempted to keep the support graph using BDDs. However, an inordinate amount of
time was taken to build the support graph BDDs: there appears to be no way to use the
efficient set-at-a-time operations of the BDDs to construct the support graph when the
query evaluation is done tuple at a time.

8 Conclusion

We presented a space-efficient data structure and incremental algorithms for maintain-
ing tables in the presence of deletion of facts. The techniques can be readily extended
to handle deletion of rules by keeping rule information in supports as done in [21]. The
symbolic support graph maintains dependencies between certain calls, but in such a way
that the dependencies between answers can be readily computed whenever needed. The
ease of computation is ensured by keeping the symbolic supports in a “join-free” form,
keeping only the last literal of a support as a call. This can be easily extended to keep-
ing as calls the right-most literal in a clause that is followed by simple computations
(such as comparison operations). This extension of the notion of symbolic supports will
permit us to represent programs with aggregation operations using symbolic supports,
thereby enabling incremental evaluation of dynamic programming problems.

In this paper, we considered only definite logic programs, where all predicates are
either tabled or defined by facts. We can extend this to programs containing a mixture of
tabled and non-tabled predicates along the same lines as in [21]: accumulating support
information from non-tabled predicates and storing them with answers. In [23] we give
a support-graph-based bottom-up algorithm that interleaves insertion and deletion that
permits efficient handling of incremental updates, and programs with stratified negation.
The idea of symbolic support graph can be used in the algorithm of [23].

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In POPL,
pages 247–259. ACM Press, 2002.

2. L. O. Anderson. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, Unversity of Copenhagen, 1994.

3. K. Apt and J. M. Pugin. Maintenance of stratified databases viewed as a belief revision
system. In Principles of Database Systems, pages 136–145. ACM Press, 1987.

4. S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan. Resource-constrained model
checking of recursive programs. In TACAS, volume 2280 of LNCS, pages 236–250, 2002.

5. R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantics. In ILPS, 1993.
6. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677–691, 1986.
7. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.

JACM, 43(1):20–74, 1996.
8. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general

purpose logic programming systems — a case study. In ACM PLDI, pages 117–126, 1996.

Symbolic Support Graph: A Space Efficient Data Structure 249

9. J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
10. H. Guo and G. Gupta. A simple scheme for implementing tabled logic programming systems

based on dynamic reordering of alternatives. In ICLP, pages 181–196. Springer, 2001.
11. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In

SIGMOD, pages 157–166, 1993.
12. A. Gupta and I.S. Mumick. Maintenance of materialized views: Problems, techniques, and

appfications. IEEE Data Engineering Bulletin, 18(2):3–18, 1995.
13. J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian. Efficient maintenance of materialized

mediated views. In ACM SIGMOD, pages 340–351, 1995.
14. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools

for analysis and transformation of C programs. In Compiler Construction, pages 213–228.
Springer-Verlag, 2002.

15. PAF. Prolangs analysis framework. Available at http://www.prolangs.rutgers.
edu/public.html.

16. L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis. IEEE
Trans. Softw. Eng., 15(12):1537–1549, 1989.

17. C. R. Ramakrishnan et al. XMC: A logic-programming-based verification toolset. In CAV,
number 1855 in LNCS, pages 576–580, 2000.

18. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. TOPLAS, 5(3):449–477, 1983.

19. T. W. Reps. Generating language-based environments. MIT Press, 1984.
20. R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed to Support

Parallelism. In Workshop on Tabling in Parsing and Deduction, 2000.
21. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs. In ICLP,

volume 2916 of LNCS, pages 389–406, 2003.
22. D. Saha and C. R. Ramakrishnan. Incremental and demand-driven points-to analysis using

logic programming. In PPDP, pages 117–128. ACM Press, 2005.
23. D. Saha and C. R. Ramakrishnan. A local algorithm for efficient incremental evalua-

tion of tabled logic programs, 2005. Available at http://www.lmc.cs.sunysb.
edu/∼dsaha/local.

24. D. Saha and C. R. Ramakrishnan. Symbolic support graph: A space efficient data structure
for incremental tabled evaluation, 2005. Available at http://www.lmc.cs.sunysb.
edu/∼dsaha/symspt.

25. O. V. Sokolsky and S. A. Smolka. Incremental model checking in the modal mu-calculus. In
CAV, volume 818 of LNCS, pages 351–363, 1994.

26. G. Swamy. Incremental Methods for Formal Verification and Logic Synthesis. PhD thesis,
University of California at Berkeley, 1996.

27. G. Swamy, R. K. Brayton, and V. Singhal. Incremental methods for FSM traversal. In Intl.
Conference on Computer Design (ICCD). IEEE Computer Society, 1995.

28. H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84–98, 1986.
29. XSB. The XSB logic programming system. Available at http://xsb.sourceforge.

net.
30. J. Yur, B. G. Ryder, and W. Landi. An incremental flow- and context-sensitive pointer aliasing

analysis. In ICSE, pages 442–451, 1999.
31. N. Zhou, Y. Shen, L. Yuan, and J. You. Implementation of a linear tabling mechanism.

Journal of Functional and Logic Programming, 2001(10), October 2001.

Dynamic Mixed-Strategy Evaluation
of Tabled Logic Programs

Ricardo Rocha1, Fernando Silva1, and Vı́tor Santos Costa2

1 DCC-FC & LIACC, University of Porto, Portugal,
{ricroc, fds}@ncc.up.pt

2 COPPE Systems & LIACC, Federal University of Rio de Janeiro, Brazil
vitor@cos.ufrj.br

Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog by reusing answers to sub-
goals. During tabled execution, several decisions have to be made. These
are determined by the scheduling strategy. Whereas a strategy can
achieve very good performance for certain applications, for others it
might add overheads and even lead to unacceptable inefficiency. The
ability of using multiple strategies within the same evaluation can be
a means of achieving the best possible performance. In this work, we
present how the YapTab system was designed to support dynamic mixed-
strategy evaluation of the two most successful tabling scheduling strate-
gies: batched scheduling and local scheduling.

1 Introduction

The past years have seen wide efforts at increasing Prolog’s declarativeness, ex-
pressiveness and performance. One proposal that has gained popularity is the
use of tabling (also known as tabulation or memoing). Tabling based models are
able to reduce the search space, avoid looping, and have better termination prop-
erties than traditional Prolog based models. Several alternative tabling models
have been proposed and implemented [1,2,3,4,5]. The most well-known tabling
Prolog system is XSB Prolog [6], which proved the viability of tabling technol-
ogy in application areas such as Natural Language Processing, Knowledge Based
Systems, Model Checking, and Program Analysis.

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for current subgoals in an appropriate data space, called the table
space. Whenever a repeated call is found, the subgoal’s answers are recalled from
the table instead of being re-evaluated against the program clauses.

During tabled execution, there are several points where we may have to
choose between continuing forward execution, backtracking, consuming answers
from the table, or completing subgoals. The decision on which operation to
perform is crucial to system performance and is determined by the scheduling
strategy. Different strategies may have a significant impact on performance, and
may lead to a different ordering of solutions to the query goal. Arguably, the two

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 250–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 251

most successful tabling scheduling strategies are batched scheduling and local
scheduling [7].

Batched scheduling favors forward execution first, backtracking next, and
consuming answers or completion last. It thus tries to delay the need to move
around the search tree by batching the return of answers. When new answers
are found for a particular tabled subgoal, they are added to the table space and
the evaluation continues. On the other hand, local scheduling tries to complete
subgoals as soon as possible. When new answers are found, they are added to
the table space and the evaluation fails. Answers are only returned when all
program clauses for the subgoal in hand were resolved.

Empirical work from Freire et al. [7,8] showed that, regarding the require-
ments of an application, the choice of the scheduling strategy can affect the
memory usage, execution time and disk access patterns. Freire argues [9] that
there is no single best scheduling strategy, and whereas a strategy can achieve
very good performance for certain applications, for others it might add over-
heads and even lead to unacceptable inefficiency. Freire and Warren [10] sug-
gested that using multiple strategies within the same evaluation would be most
useful. However, to the best of our knowledge, no such implementation has yet
been done.

Our main contribution is a novel approach to supporting dynamic mixed-
strategy evaluation of tabled logic programs. We have implemented this approach
in the YapTab system, as an elegant extension of the original design [2]. YapTab
supports the dynamic intermixing of batched and local scheduling at the subgoal
level, that is, it allows one to modify at runtime the strategy to be used to resolve
the subsequent subgoal calls of a tabled predicate. We show that YapTab’s hybrid
approach does indeed return very substantial performance gains. Results were
impressive both on artificial applications, and on a complex, real-life, application.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the basic tabling definitions and present the differences between batched
and local scheduling. Next, we describe the issues involved in providing engine
support for integrating both scheduling strategies at the subgoal level. We then
discuss some experimental results and outline some conclusions.

2 Basic Tabling Definitions

Tabling is about storing intermediate answers for subgoals so that they can
be reused when a repeated call appears. Whenever a tabled subgoal S is first
called, a new entry is allocated in the table space. This entry will collect all the
answers found for S. Repeated calls to variants of S are resolved by consuming
the answers already in the table. Meanwhile, as new answers are found, they are
stored into the table and returned to all variant subgoals. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to variant calls to
tabled subgoals; or interior nodes, corresponding to non-tabled subgoals. Tabling
based models have four main types of operations for definite programs:

252 R. Rocha, F. Silva, and V. Santos Costa

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if
the subgoal is in the table. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table,
and allocates a new generator node.

2. The new answer operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

3. The answer resolution operation is executed every time the computation
reaches a consumer node. It verifies whether extra answers are available for
the particular consumer node and, if so, consumes the next one. If no answers
are available, it suspends the current computation, either by freezing the
whole stacks [1], or by copying the execution stacks to separate storage [3],
and schedules a possible resolution to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely
evaluated. A subgoal is said to be completely evaluated when all its possible
resolutions have been performed, that is, when no more answers can be
generated. It executes when we backtrack to a generator node and all of its
clauses have been tried. If the subgoal has been completely evaluated, the
operation closes the goal’s table entry and reclaims stack space. Otherwise,
control moves to a consumer with unconsumed answers.

Completion is needed in order to recover space and to support negation. We
are most interested on space recovery in this work. Arguably, in this case, we
could delay completion until the very end of the execution. Unfortunately, doing
so would also mean that we could only recover space for consumers (suspended
subgoals) at the very end of the execution. Instead we shall try to achieve in-
cremental completion [11] to detect whether a generator node has been fully
exploited, and if so to recover space for all its consumers.

Completion is hard because a number of generators may be mutually depen-
dent, thus forming a Strongly Connected Component (or SCC). Clearly, we can
only complete SCCs together. We will usually represent an SCC through the
oldest generator. More precisely, the youngest generator node which does not
depend on older generators is called the leader node. A leader node is also the
oldest node for its SCC, and defines the current completion point.

When we call a variant subgoal that is already completed, we can avoid
consumer node allocation and perform instead what is called a completed table
optimization [1]. This optimization allocates a node, similar to an interior node,
that will consume the set of found answers executing compiled code directly
from the table data structures associated with the completed subgoal [12].

3 Scheduling Strategies

It should be clear that at several points we can choose between continuing for-
ward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The actual sequence of operations depends on
the scheduling strategy. We next discuss in some more detail the batched and
local scheduling strategies.

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 253

3.1 Batched Scheduling

The batched strategy schedules the program clauses in a depth-first manner
as does the WAM. In this strategy, new answers are added to the table space
but evaluation continues until it resolves all program clauses for the subgoal in
hand. Only when all clauses have been resolved, the newly found answers will be
returned to consumer nodes. Hence, when backtracking we may encounter three
situations: (i) if backtracking to a generator or interior node, we take the next
available alternative; (ii) if backtracking to a consumer node, we take the next
unconsumed answer; (iii) if there are no available alternatives or no unconsumed
answers, we simply backtrack to the previous node on the current branch. Note
however that, if the node without alternatives is a leader generator node, then
we must check for completion.

In order to perform completion, we must ensure that all answers have been
returned to all consumers in the SCC. The process of resuming a consumer node,
consuming the available set of answers, suspending and then resuming another
consumer node can be seen as an iterative process which repeats until a fixpoint
is reached. This fixpoint is reached when the SCC is completely evaluated.

At the engine level, the fixpoint check procedure is controlled by the leader of
the SCC. Initially, it searches for the younger consumer with unresolved answers,
and as long as there new answers, it will consume them. After consuming the
available set of answers, the consumer suspends and fails into the next consumer
with unresolved answers. This process repeats until it reaches the last consumer,
in which case it fails into the leader node in order to allow the re-execution of the
fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC
are marked completed and the stack segments belonging to them are released.

3.2 Local Scheduling

Local scheduling is an alternative tabling scheduling strategy that tries to com-
plete subgoals as soon as possible. In this strategy, evaluation is done one SCC
at a time. The key idea is that whenever new answers are found, they are added
to the table space as usual but execution fails. Thus, execution explores the
whole SCC before returning answers outside the SCC. Hence, answers are only
returned when all program clauses for the subgoal in hand were resolved.

Figure 1 shows a small example that clarifies the differences between batched
and local evaluation. The top sub-figure illustrates the program code and query
goal used in the example. Declaration ’:- table t/1.’ indicates that calls to
predicate t/1 should be tabled. The two sub-figures below depict the evaluation
sequence for each strategy and how the table space is filled in. In both cases, the
leftmost tree represents the evaluation of the query goal q(X,Y). Nodes are num-
bered according to the evaluation sequence. Generators are depicted by white
oval boxes, and consumers by gray oval boxes. For simplicity of presentation,
the computation tree for t(X) is represented independently at the right.

Both cases begin by resolving the query goal against the unique clause for
predicate q/2, thus calling the tabled subgoal t(X). As this is the first call to
t(X), we create a generator node and insert a new entry in the table space.

254 R. Rocha, F. Silva, and V. Santos Costa

1. t(X)
2. X = 1
3. X = 2

subgoal answers

4. complete

:- table t/1. t(1).
q(X,Y) :- t(X), t(Y). t(2).

 ?- q(X,Y).

0. q(X,Y)

1. t(X), t(Y)

8. Y = 2

1. t(X)

2. X = 1 5. X = 2

Table space

1. t(X)
2. X = 1
5. X = 2

subgoal answers

3. t(Y)

4. Y = 1

6. t(Y)

9. Y = 2 7. Y = 1

0. q(X,Y)

1. t(X), t(Y)

10. Y = 2

X = 1

1. t(X)

2. X = 1 3. X = 2

Table space

5. t(Y)

6. Y = 1

8. t(Y)

X = 2

7. Y = 2 9. Y = 1

10. complete
X = 1 X = 2

Batched
scheduling

Local
scheduling

Fig. 1. Batched scheduling versus local scheduling

The first clause for t(X) succeeds immediately, obtaining a first answer for t(X)
that is stored in the table (step 2). The example is most interesting in how both
strategies handle the continuation of t(X).

Evaluation with batched scheduling proceeds as in standard Prolog with a
call to the second goal, t(Y), therefore creating consumer node 3. Node 3 is a
variant call to t(X), so instead of resolving the call against the program clauses,
we consume answers from the table space. As we already have one answer stored
in the table for this call (X=1), we continue by consuming it, which leads to a
first solution for the query goal (X=1,Y=1). When returning to node 3, we must
suspend the consumer node because we cannot collect more answers from the
table. We then backtrack to node 1 to try the second clause for t(X), and a new
answer is found (X=2). The continuation again calls t(Y), and a new consumer
is created (node 6). Eventually, two new solutions are found for the query goal
(steps 7 and 8). We have consumed all answers from the table. Hence, node 6
suspends and the computation backtracks again to node 1. Node 1 is the leader
of the SCC, hence at that point, we can check for completion. However, the
generator cannot complete because consumer 3 still has unconsumed answers.
The computation thus resumes at node 3 and a new solution for the query goal
is found (step 9). No new answers are inserted into the table, and all consumers
have exhausted the entries in the table. Thus, when we return to the generator
node 1, we can finally complete the tabled subgoal call t(X) (step 10).

Evaluation with local scheduling differs from early on, namely, after the first
answer was found (step 2). To exhaust the current SCC, we should fail, backtrack
to node 1, and execute the second clause for t(X). We thus find a second answer

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 255

for it (step 3). Then, we fail again to node 1, and the tabled subgoal call t(X) can
be completed immediately, as we have found no consumers yet (step 4). From
now on, answers are consumed by executing compiled code, as we discussed
before. The variant calls to t(X) at steps 5 and 8 are thus resolved in this way,
and no consumer goals are ever needed.

Choosing the best strategy is hard. The main difference between the two
is that in batched scheduling, variable bindings are immediately propagated
to the calling environment when an answer is found. For some situations, this
behavior may result in creating complex dependencies between consumers. On
the other hand, the clear advantage of local scheduling shown in the example
does not always hold. Since local scheduling delays answers, it does not ben-
efit from variable propagation, and instead, when explicitly returning the de-
layed answers, it incurs an extra overhead for copying them out of the table.
Freire et al. [7] showed that, on average, local scheduling is about 15% slower
than batched scheduling in the SLG-WAM [1]. Similar results were also obtained
in YapTab [2].

3.3 Defining the Scheduling Strategy

We provide two built-in predicates for defining and controlling the tabling mode
to be used to evaluate a tabled computation. We extend the standard predicate
yap flag/2 to define the standard scheduling strategy for the whole compu-
tation. Alternatively, we can use the tabling mode/2 predicate to define the
scheduling strategy of a particular tabled predicate. We next discuss how these
predicates can be used to dynamically control the evaluation. Consider, for ex-
ample, two tabled predicates, t/1 and t/2, and the following query goals:

:- t(1).
:- yap_flag(tabling_mode,local), t(2,2).
:- t(3), yap_flag(tabling_mode,default), t(3,3).
:- tabling_mode(t/1,local), t(X),t(X,Y), tabling_mode(t/1,batched), t(Y).

In the first example query, t(1) evaluates using batched scheduling. This
happens because, by default in YapTab, when a predicate is declared as tabled,
its initial tabling mode is batched. In the second query, t(2,2) evaluates us-
ing local scheduling as the call to yap flag(tabling mode,local) changes the
tabling mode of the following computations to local. In the third query, t(3)
evaluates using local scheduling because the tabling mode for the computa-
tion is still local (as a result of the previous yap flag/2 declaration in the
second query), and t(3,3) evaluates using batched. Note that the actual exe-
cution tree will have nodes for both strategies: t(3,3) might itself call t(3).
The call to yap flag(tabling mode,default) defines that, in what follows,
we should use the default strategy of each predicate and the initial tabling
mode of t/2 is batched. Finally, in the fourth query, t(X) evaluates using local
scheduling and t(X,Y) and t(Y) evaluates using batched scheduling. The call to
tabling mode(t/1,local) initially changes the tabling mode of predicate t/1
to local and then tabling mode(t/1,batched) changes it back to batched.

256 R. Rocha, F. Silva, and V. Santos Costa

4 Implementation

The YapTab design mostly follows the seminal SLG-WAM design [1]: it intro-
duces a new data area to the WAM, the table space; a new set of registers, the
freeze registers; an extension of the standard trail, the forward trail ; and four new
operations: tabled subgoal call, new answer, answer resolution, and completion.
Tables are implemented using tries as proposed in [12]. The differences between
the two designs reside in the data structures and algorithms used to control the
process of leader detection and the scheduling of unconsumed answers.

Namely, the original SLG-WAM considers that such control should be done at
the level of the data structures corresponding to first calls to tabled subgoals, and
does so by associating completion frames to generator nodes. The SLG-WAM
relies on a completion stack of generators to detect completion points. On the
other hand, YapTab innovates by considering that the control of leader detection
and scheduling of unconsumed answers should be performed through the data
structures corresponding to variant calls to tabled subgoals, and it associates
a new data structure, the dependency frame, to consumer nodes. Dependency
frames store information about the last consumed answer; and information to ef-
ficiently check for completion points, and to efficiently move across the consumer
nodes with unconsumed answers.

In YapTab, applying batched or local scheduling to an evaluation mainly de-
pends on the way generator nodes are handled. At the engine level, this includes
minor changes to the operations tabled subgoal call, new answer and comple-
tion. All the other tabling extensions are common across both strategies. We
claim that, this makes YapTab highly suitable to efficiently support a dynamic
mixed-strategy evaluation.

4.1 Tabled Nodes

By combining the two built-in predicates yap flag/2 and tabling mode/2 we
can dynamically define the scheduling strategy to be used to evaluate each tabled
subgoal. Thus, when a tabled subgoal is first called, the tabled subgoal call oper-
ation starts by consulting the current tabling mode of the computation/predicate
in order to decide the strategy to be used by the corresponding generator node.

In our implementation, generator nodes are WAM choice points extended
with two extra fields: CP DepFr is a pointer to the corresponding dependency
frame (its use is detailed next) and CP SgFr is a pointer to the associated subgoal
frame where answers should be stored. Consumer nodes are WAM choice points
extended with the CP DepFr field only. Figure 2 details generator and consumer
choice points and their relationship with the table and dependency spaces.

The left sub-figure shows a choice point stack with generator nodes for both
strategies and with a consumer node. Remember that the key difference be-
tween the two strategies is that local scheduling prevents answers from being
returned early by backtracking until getting all answers for the leader genera-
tor. At the point all answers have been exhausted, the leader must export them
to its environment. To do so, it must act like a consumer: consuming answers

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 257

DepFr_previous

DepFr_last_answer

DepFr_cons_cp

DepFr_leader

DepFr_back_leader

Choice point stack

Answer
Trie

Structure

Subgoal
Frame

Table space

TOP_DF

CP_DepFr

Dependency space

Generator
choice point for
local scheduling

CP_SgFr

CP_DepFr

Generator
choice point for
batched scheduling

CP_SgFr

CP_DepFr

Consumer
choice point

DepFr_previous

DepFr_last_answer

DepFr_cons_cp

DepFr_leader

DepFr_back_leader

Answer
Trie

Structure

Subgoal
Frame

Fig. 2. Generator and consumer choice points in YapTab

and propagating them to caller one by one. In YapTab, this was implemented
by having the CP DepFr field in the generators at the same position as for the
consumers. This simple extension allows generators being evaluated using local
scheduling to easily become consumers. Note that YapTab relies on this field: it
is used by the operations new answer and completion as a way to distinguish if
a generator is being evaluated using local scheduling (cases where CP DepFr is
not NULL) or using batched scheduling (cases where CP DepFr is NULL).

The right sub-figure shows the dependency frames, the key data structure to
synchronize the flow of a tabled evaluation. The TOP DF variable always points to
the youngest dependency frame on stack. Frames form a linked list through the
DepFr previous field. The DepFr last answer field points to the last consumed
answer in the table space. The DepFr cons cp field points back to the corre-
sponding consumer choice point. The DepFr leader and the DepFr back leader
fields respectively point to the leader node at creation time and to the leader
node where we performed the last unsuccessful completion operation. They are
critical in the SCC fixpoint check procedure, that we discuss next.

4.2 Leader Nodes

How does completion change in a mixed environment? Completion takes place
when we backtrack to a generator node that (i) has exhausted all its alternatives
and that (ii) is a leader node (remember that the youngest generator which
does not depend on older generators is called a leader node). The key idea in our
original algorithms is that each dependency frame holds a pointer to the resulting
leader node of the SCC that includes the correspondent consumer node. Using
the leader node pointer from the dependency frames, a generator can quickly
determine whether it is a leader node. We thus rely on the notion of leader node:

258 R. Rocha, F. Silva, and V. Santos Costa

a generator L is a leader node when either (a) L is the youngest tabled node,
or (b) the youngest consumer says that L is the leader.

Next we show that our algorithm for detecting leader nodes works well in a
mixed environment. The algorithm requires computing leader node information
whenever creating a new consumer node C. First, we hypothesize that the leader
node is C’s generator, say G. Next, for all consumer nodes older than C and
younger than G, we check whether they depend on an older generator node.
Consider that there is at least one such node and that the oldest of these nodes
is G′. If so then G′ is the leader node. Otherwise, our hypothesis was correct
and the leader node is indeed G. Leader node information is implemented as a
pointer to the choice point of the newly computed leader node. Figure 3 shows
the procedure that computes the leader node information for a new consumer.

compute_leader(consumer node CN) {
leader_cp = generator_for(CN) // the generator is the default leader
df = TOP_DF
while (DepFr_cons_cp(df) is younger than leader_cp) {

if (DepFr_leader(df) is older than leader_cp) { // older dependency
leader_cp = DepFr_leader(df)
break

}
df = DepFr_previous(df)

}
return leader_cp

}
Fig. 3. Pseudo-code for compute leader()

The procedure traverses the dependency frames for the consumer nodes be-
tween the new consumer and its generator in order to check for older dependen-
cies. As an optimization it only searches until it finds the first dependency frame
holding an older reference (the DepFr leader field). The nature of the procedure
ensures that the remaining dependency frames cannot hold older references.

Note that for local scheduling, when we store a generator node G we also
allocate a dependency frame. However, we can avoid calling compute leader()
because G itself is the leader node.

4.3 Completion

Next, we show our implementation of completion. Completion is forced as fol-
lows. When a generator choice point tries the last program clause, its CP AP
(failure continuation program counter) field is updated to the completion in-
struction. From then on, every time we backtrack to the choice point the oper-
ation is executed. Figure 4 shows the pseudo-code for completion in YapTab.

First, the procedure checks out if the generator is the current leader node.
If a leader, it checks whether all younger consumer nodes have consumed all
their answers. To do so, it traverses the chain of dependency frames looking for
a frame that has not yet consumed all the generated answers. If there is such a
frame, the computation should be resumed to the corresponding consumer node.
Otherwise, it can perform completion. This includes (i) marking as complete all

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 259

completion(generator node GN) {
if (GN is the current leader node) {

df = TOP_DF
while (DepFr_cons_cp(df) is younger than GN) {
if (unconsumed_answers(DepFr_last_answer(df))) {

DepFr_back_leader(df) = GN // mark the leader to return to
move_to(DepFr_cons_cp(df))

}
df = DepFr_previous(df)

}
perform_completion()
if (CP_DepFr(GN) != NULL) // local scheduling
completed_table_optimization()

}
if (CP_DepFr(GN) != NULL) { // local scheduling

CP_AP(GN) = answer_resolution
load_first_available_answer_and_proceed()

} else backtrack() // batched scheduling
}

Fig. 4. Pseudo-code for completion()

the subgoals in the SCC, and (ii) deallocating all younger dependency frames.
At the end, if the generator was evaluated using local scheduling, we need to
consume the set of answers that have been found. As the subgoal is already
completed, we can execute compiled code directly from the trie data structure
associated with the completed subgoal.

On the other hand, if the current node is not the leader, the procedure
simply backtracks to the previous node, if in batched mode, or starts acting like
a consumer node and consumes the first available answer, if in local mode.

4.4 Answer Resolution

Next, we show that our implementation of answer resolution is independent of
strategy. The answer resolution operation executes every time the computation
fails back to a consumer. In our implementation, a consumer choice point always
points to the answer resolution instruction in its CP AP field. Figure 5 shows
the pseudo-code for this instruction in YapTab.

Initially, the procedure checks the table space for unconsumed answers. If
there are new answers, it loads the next available answer and proceeds. Other-
wise, it schedules for a backtracking node. If this is the first time that backtrack-
ing from that consumer node takes place, then it is performed as usual to the
previous node. This is the case when the DepFr back leader field is NULL. Oth-
erwise, we know that the computation has been resumed from an older leader
node L during an unsuccessful completion operation. Therefore, backtracking
must be done to the next consumer node that has unconsumed answers and
that is younger than L. We do this by restoring bindings and stack pointers. If
no such consumer node can be found, backtracking must be done to node L.

The iterative process of resuming a consumer node, consuming the available
set of answers, suspending and then resuming another consumer until a fixpoint
is reached, is completely independent of the scheduling strategy being used.

260 R. Rocha, F. Silva, and V. Santos Costa

answer_resolution(consumer node CN) {
df = CP_DepFr(CN) // dependency frame for CN
if (unconsumed_answers(DepFr_last_answer(df)))

load_next_available_answer_and_proceed()
back_cp = DepFr_back_leader(df)
if (back_cp == NULL) // first time here

backtrack()
df = DepFr_previous(df)
while (DepFr_cons_cp(df) is younger than back_cp) {

if (unconsumed_answers(DepFr_last_answer(df))) {
DepFr_back_leader(df) = back_cp // mark the leader to return to
move_to(DepFr_cons_cp(df))

}
df = DepFr_previous(df)

}
move_to(back_cp) // move to last leader node

}
Fig. 5. Pseudo-code for answer resolution()

5 Experimental Results

To put the performance results in perspective, we first used a set of common
tabled benchmark programs to evaluate the overheads of supporting mixed-
strategy evaluation for programs that only require a single-strategy approach.
The environment for our experiments was an AMD Athlon XP 2800+ processor
with 1 GByte of main memory and running the Linux kernel 2.6.8. YapTab is
based on the current development version of Yap, version 4.5.7.

Table 1 shows the running times, in milliseconds, for YapTab supporting a
single scheduling strategy (YapTab Single) and supporting the mixed approach
(YapTab Mixed). In parentheses, it shows the overhead over YapTab Single.
The execution times correspond to the average times obtained in a set of 3
runs. The results indicate that YapTab Mixed introduces insignificant overheads
over YapTab Single, both for batched and local scheduling. These overheads are
very small. They mainly result from operations that test if a generator is being
evaluated using batched or local scheduling.

In the literature, we can find several examples showing that batched schedul-
ing performs better than local scheduling for certain applications and that local
scheduling performs better for others [7,10]. However, usually, these examples

Table 1. Overheads of supporting mixed-strategy evaluation

Batched Scheduling Local Scheduling
Program YapTab Single YapTab Mixed YapTab Single YapTab Mixed
mc-iproto 2495 2519 (1.009) 2668 2689 (1.007)
mc-leader 8452 8467 (1.001) 8385 8403 (1.002)
mc-sieve 21568 21325 (0.988) 21797 21217 (0.973)
lgrid 850 870 (1.023) 1012 1031 (1.018)
rgrid 1250 1332 (1.065) 1075 1141 (1.061)
samegen 20 20 (1.000) 21 21 (1.000)
Average (1.014) (1.010)

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 261

are independent and not part of the same application. To further motivate for
the applicability of our mixed-strategy approach, we next present two different
examples where we take advantage of YapTab’s flexibility.

Our first example is an application in the context of Inductive Logic Program-
ming (ILP) [13]. The fundamental goal of an ILP system is to find a consistent
and complete theory (logic program), from a set of examples and prior knowl-
edge, the background knowledge, that explain all given positive examples, while
being consistent with the given negative examples. Since it is not usually obvious
which set of hypotheses should be picked as the theory, an ILP system generates
many candidate hypotheses (clauses) which have many similarities among them.
Usually, these similarities tend to correspond to common prefixes (subgoals)
among the hypotheses. Consider, for example, that the system generates an hy-
pothesis ’theory(X):- b1(X),b2(X,Y).’ which obtains a good coverage quality,
that is, the number of positive examples covered by it is high and the number
of negative example is low. Then, it is quite possible that the system will use it
to generate more specific clauses like ’theory(X):- b1(X),b2(X,Y),b3(Y).’.

Computing the coverage of an hypothesis requires, in general, running all
positives and negatives examples against the clause. For example, to evaluate if
the positive example theory(p1) is covered by ’theory(X):- b1(X),b2(X,Y).’,
the system executes the goal ’b1(p1),b2(p1,Y)’. If the same example is then
evaluated against the other clause, goal ’b1(p1),b2(p1,Y),b3(Y)’, part of the
computation will be repeated. For datasets with a large number of examples, we
can arbitrarily do a lot of recomputation. Tabling technology is thus an excellent
candidate to significantly reduce the execution time for these kind of problems.
Moreover, as we will see, we can benefit from YapTab’s mixed-strategy approach
to further improve performance.

Assume now that we declared b2/2 as tabled and that ’b1(p1),b2(p1,Y)’
succeeds. Thus, we can mark theory(p1) as covered by the corresponding hy-
pothesis, and we can reclaim space by pruning the search space for the goal in
hand. Note that the ILP system is only interested in evaluating the coverage of
the examples, and not in finding answers for the subgoals. On the other hand,
from the tabling point of view, b2(p1,Y) is not completed because it may suc-
ceed with other answers for Y. A question then arises: should we use batched or
local scheduling to table these predicates?

At first, local scheduling seems more attractive because it avoids the pruning
problem mentioned above. When the ILP system prunes the search space, the
tables are already completed. On the other hand, if the cost of fully generating
the complete set of answers is very expensive, then the ILP system may not
always benefit from it. Consider, for example a predicate defined by several
facts and then by a recursive clause (quite common in some ILP datasets). It
can happen that, after completing a subgoal, the subgoal is not called again or
when called it succeeds just by using the known facts, thus, turning it useless to
compute beforehand the full set of answers.

Note also that, when an example is not covered, all the subgoals in the clause
are completed. For example, if in ’b1(p1),b2(p1,Y),b3(Y)’, the subgoal b3(Y)

262 R. Rocha, F. Silva, and V. Santos Costa

Table 2. Intermixing batched and local scheduling at the predicate level

Predicates Running Time
Without tabling > 1 day
All batched (11 predicates) 283779
All local (11 predicates) 147937
Some batched (7 predicates), others local (4 predicates) 127388

never succeeds then, by backtracking, b2(p1,Y) will be completely evaluated.
For such cases, batched scheduling is better because variable bindings are au-
tomatically propagated. We can also benefit from batched when an example is
covered in clauses of the form ’b2(p1,Y),b2(p1,Z)’, with the tabled subgoal ap-
pearing repeated. Finally, for subgoals that never succeed or that succeed with
a yes answer (all arguments ground), batched and local obtain similar results.

We experimented with using both strategies individually and together.
Table 2 shows, the running times, in milliseconds, for the April ILP system [14]
running a well-known ILP dataset, the mutagenesis dataset.

We used four different approaches to evaluate the predicates in the back-
ground knowledge: (i) without tabling; (ii) all predicates being evaluated using
batched scheduling; (iii) all using local scheduling; and (iv) some using batched
and others using local (for this approach we show the running time for the
best result obtained). Note that the running times include the time to run the
whole ILP system and not just the time for computing the coverage of the hy-
potheses. The results show that tabled evaluation can significantly reduce the
execution time for these kind of problems. Moreover, they show that, by using
mixed-strategy evaluation, we can further speedup the execution. Better perfor-
mance is still possible if we use YapTab’s flexibility to intermix batched and local
scheduling at the subgoal level. However, from the programmer point of view,
it is very difficult to define the subgoals to table using one or another strategy.
Further work is still needed to study how to use this flexibility to, in runtime,
automatically adjust the system to the best approach.

We next show a different application where we take full advantage of the
dynamic mixed-strategy of YapTab by intermixing batched and local scheduling
at the subgoal level. Consider a 30x30 grid, represented by a number of edge/2
facts, and the following program code:

:- table path/2.
path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

reachable(X,Y) :- path(F,X), path(F,Y), !.

go_batched :- tabling_mode(path/2,batched).
go_local :- tabling_mode(path/2,local).

Now consider the query goal ’path(X,Y),reachable(X,Y)’ that computes
the paths in the grid whose extremities are reachable from, at least, another
node. We solve this query using three alternative approaches for tabling the

Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs 263

Table 3. Intermixing batched and local scheduling at the subgoal level

Query Goal Running Time
(i) :- go batched, path(X,Y), reachable(X,Y), fail. 141962
(ii) :- go local, path(X,Y), reachable(X,Y), fail. 60471
(iii) :- go local, path(X,Y), go batched, reachable(X,Y), fail. 19770

path/2 predicate: (i) only batched scheduling; (ii) only local scheduling; and
(iii) local scheduling for the first query subgoal and batched scheduling for the
second. Table 3 shows the running times, in milliseconds, for finding all the
solutions for the query above using the three approaches. The execution times
correspond to the average times obtained in a set of 3 runs.

The results show that by using local scheduling for computing the first sub-
goal and batched for the second we are able to significantly reduce the execution
time and achieve the best performance. This happens because, by using local
scheduling to compute the complete set of answers for path(X,Y), we avoid
complex dependencies when executing predicate reachable(X,Y) with batched.
Note that when we call path(F,X) in predicate reachable/2, F is a free vari-
able. Then, when we use the first clause of path/2 to solve path(F,X), we get a
call to path(F,Z) (with both variables free), which is a variant call of the initial
query subgoal path(X,Y), and thus we must allocate a consumer node.

On the other hand, if we already have the set of answers for the first query
subgoal, it is best if we use batched to solve the calls to the reachable/2 pred-
icate. If we use local scheduling, we will compute all the answers for each par-
ticular call to path(F,X), with X ground, and this may lead to unnecessary
computation. Note that predicate reachable/2 succeeds by pruning the search
space with a cut operation, which makes batched scheduling more appropriate
for this particular example.

6 Conclusions

In this work, we presented the design and implementation of YapTab to sup-
port dynamic mixed-strategy evaluation of tabled logic programs. Our approach
proposes the ability to combine batched scheduling with local scheduling at the
subgoal level with minor changes to the tabling engine. These changes intro-
duced insignificant overheads on YapTab’s performance. Moreover, our results
show that dynamic mixed-strategies can be extremely important to improve the
performance of some applications.

The proposed data structures and algorithms can also be easily extended
to support dynamic switching from batched to local scheduling and vice versa,
while a generator is still producing answers. In particular, we plan to study how
such flexibility can be used to design a more aggressive approach for applications
that do a lot of pruning over the table space, such as ILP applications. We also
plan to further investigate the impact of combining both strategies in other
application areas.

264 R. Rocha, F. Silva, and V. Santos Costa

Acknowledgments

We are very thankful to Nuno Fonseca for his support with the April ILP System.
This work has been partially supported by APRIL (POSI/SRI/40749/2001),
Myddas (POSC/EIA/59154/2004) and by funds granted to LIACC through the
Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia
and Programa POSC.

References

1. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20 (1998) 586–634

2. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

3. Demoen, B., Sagonas, K.: CHAT: The Copy-Hybrid Approach to Tabling. Future
Generation Computer Systems 16 (2000) 809–830

4. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

5. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. Journal of Functional and Logic Programming 2001 (2001)

6. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: ACM SIGMOD International Conference on the Management of Data,
ACM Press (1994) 442–453

7. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. Number 1140
in LNCS, Springer-Verlag (1996) 243–258

8. Freire, J., Swift, T., Warren, D.S.: Taking I/O seriously: Resolution reconsidered
for disk. In: International Conference on Logic Programming. (1997) 198–212

9. Freire, J.: Scheduling Strategies for Evaluation of Recursive Queries over Memory
and Disk-Resident Data. PhD thesis, State University of New York (1997)

10. Freire, J., Warren, D.S.: Combining Scheduling Strategies in Tabled Evaluation. In:
Workshop on Parallelism and Implementation Technology for Logic Programming.
(1997)

11. Chen, W., Swift, T., Warren, D.S.: Efficient Top-Down Computation of Queries
under the Well-Founded Semantics. Journal of Logic Programming 24 (1995) 161–
199

12. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

13. Muggleton, S.: Inductive Logic Programming. In: Conference on Algorithmic
Learning Theory, Ohmsma (1990) 43–62

14. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A
Preliminary Report. Technical Report DCC-2003-02, Department of Computer
Science, University of Porto (2003)

Nondeterminism Analysis
of Functional Logic Programs�

Bernd Braßel and Michael Hanus

Institut für Informatik, CAU Kiel, Olshausenstr. 40,
D-24098 Kiel, Germany

{bbr, mh}@informatik.uni-kiel.de

Abstract. Information about the nondeterminism behavior of a func-
tional logic program is important for various reasons. For instance, a non-
deterministic choice in I/O operations results in a run-time error. Thus,
it is desirable to ensure at compile time that a given program is not go-
ing to crash in this way. Furthermore, knowledge about nondeterminism
can be exploited to optimize programs. In particular, if functional logic
programs are compiled to target languages without builtin support for
nondeterministic computations, the transformation can be much simpler
if it is known that the source program is deterministic.

In this paper we present a nondeterminism analysis of functional logic
programs in form of a type/effect system. We present a type inferencer
to approximate the nondeterminism behavior via nonstandard types and
show its correctness w.r.t. the operational semantics of functional logic
programs. The type inference is based on a new compact representation
of sets of types and effects.

1 Introduction

Functional logic languages [8] aim to integrate the best features of functional
and logic languages in order to provide a variety of programming concepts. For
instance, the concepts of demand-driven evaluation, higher-order functions, and
polymorphic typing from functional programming can be combined with logic
programming features like computing with partial information (logic variables),
constraint solving, and nondeterministic search for solutions. This combination
leads to optimal evaluation strategies [2] and new design patterns [3] that can
provide better programming abstractions, e.g., for implementing graphical user
interfaces [10] or dynamic web pages [11]. One of the key points in this integra-
tion is the treatment of nondeterministic computations. Usually, the top-level of
an application written in a functional logic language is a sequence of I/O oper-
ations applied to the outside world (e.g., see [25]). Since the outside world (e.g.,
file system, Internet) cannot be copied in nondeterministic branches, all non-
determinism in logic computations must be encapsulated, as proposed in [4,13]
for the declarative multi-paradigm language Curry [15], otherwise a run-time
� The research described in this paper has been partially supported by the German

Research Council (DFG) under grant Ha 2457/5-1.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 265–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 B. Braßel and M. Hanus

error occurs. Therefore, it is desirable to ensure at compile time that this cannot
happen for a given program. Since this is undecidable in general, one can try
to approximate the nondeterminism behavior by some program analysis. As a
further motivation, the results of such an analysis can also be used for program
optimization. For instance, if functional logic programs are compiled to target
languages without builtin support for nondeterministic computations (e.g., im-
perative or functional languages), the compilation process can be considerably
simplified for deterministic source programs.

Existing determinism analyses for (functional) logic languages cannot be di-
rectly adapted to Curry due to its advanced lazy operational semantics ensuring
optimal evaluation for large classes of programs [2]. This demand-driven seman-
tics has the effect that the occurrence of nondeterministic choices depends on
the demandedness of argument evaluation (see also [14]). Therefore, analyses
for languages like Prolog [24,6], Mercury [16], or HAL [7] do not apply because
they do not deal with lazy evaluation. On the other hand, analyses proposed for
narrowing-based functional logic languages dealing with lazy evaluation cannot
handle residuation, which additionally exists in Curry and is important to con-
nect external operations, and rely on the non-ambiguity condition [20] which is
too restrictive in practice. Furthermore, these analyses are either applied during
run time (like in Babel [20] and partially in K-Leaf [19]), or are unable to derive
groundness information for function calls in arguments (like in K-Leaf).

We present a static analysis of functional logic programs with a demand-
driven evaluation strategy. The analysis has the form of a type/effect system [22].
Such systems can be seen as extensions of classical type systems known from
functional languages. In our analysis the types represent information about the
groundness of the considered expressions, and the effects provide information
about the possible source of nondeterministic branches. The inclusion of ground-
ness information is necessary since the same function might evaluate determin-
istically or not, depending on the instantiation of its arguments. The idea of this
type/effect system has been proposed in [14]. In the current paper we propose
a slightly modified system and show its correctness w.r.t. a recently developed
high-level operational semantics of functional logic programs [1] that covers all
operational aspects, in particular, the sharing of subterms which is important
in practice but has not been addressed in [14]. Furthermore, we present a new
method to infer types and effects (which was not covered in [14]) and show the
correctness of this inference. In order to make the type/effect inference feasible,
we introduce a new compact representation of sets of types and effects.

Due to lack of space, all proofs and details about the implementation are
omitted. They can be found in the full version of the paper that is available
from http://www.informatik.uni-kiel.de/∼mh.

2 The Type/Effect Analysis

In this section we define a type/effect system based on the ideas in [14] and
show its correctness w.r.t. the operational semantics of functional logic programs

Nondeterminism Analysis of Functional Logic Programs 267

developed in [1]. We assume familiarity with the basic ideas of functional logic
programming (see [8] for a survey).

2.1 Flat Functional Logic Programs

Since a determinism analysis of functional logic programs should provide in-
formation about nondeterministic branches that might occur during run time,
it requires detailed information about the operational behavior of programs.
Recently, it has been shown that an intermediate flat representation of pro-
grams [12] is a good basis to provide this information. In flat programs, the
pattern matching strategy (which determines the demand-driven evaluation of
goals) is explicitly given by case expressions. This flat representation consti-
tutes the kernel of modern functional logic languages like Curry [9,15] or Toy
[21]. Thus, our approach is applicable for general lazy functional logic languages
although the examples and implementation are for Curry.

P ::=D1 . . . Dm (program) Domains
D::=f(x1, . . . , xn) = e (function definition)
e::=x (variable) P1, P2, . . . ∈ Prog (Programs)
| s(e1, . . . , en) (constructor or x, y, z, . . . ∈ Var (Variables)

function call) a, b, c, . . . ∈ C (Constructors)
| let x = e1 in e2 (let binding) f, g,h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) s, t, u, . . . ∈ C ∪ F
| case e of {pk → ek} (rigid case) p1, p2, . . . ∈ Pat (Patterns)
| fcase e of {pk → ek} (flexible case) e, e1, e2, . . . ∈ Exp (Expressions)

p::=c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of flat programs

The syntax of flat programs is shown in Figure 1. There and in the following
we write ok to denote a sequence o1, . . . , ok (o0 is empty). A flat program is a set
of function definitions, i.e., the arguments are pairwise different variables and the
right-hand side consists of variables, constructor/function applications, let bind-
ings, disjunctions to represent nondeterministic choices, and case expressions to
represent pattern matching. The difference between case and fcase corresponds
to principles of residuation and narrowing: if the argument is a logic variable,
case suspends whereas fcase proceeds with a nondeterministic binding of the
variable in one branch of the case expression (cf. Section 2.1). A flat program is
called normalized if all arguments of constructor and function calls are variables.
Any flat program can be normalized by introducing let expressions [1,18]. The
operational semantics is defined only on normalized programs in order to model
sharing, whereas our type-based analysis is defined for flat programs.

Any Curry program can be translated into this flat representation.

Example 1 (Flat Curry representation). The concatenation function on lists

app [] ys = ys
app (x:xs) ys = x : app xs ys

268 B. Braßel and M. Hanus

is represented by the (normalized) flat program

app(xs,ys) = fcase xs of {[] -> ys, z:zs -> let a = app(zs,ys) in z:a }

Note that all variables occurring in the right-hand side of a function definition
must occur in the left-hand side or be introduced by an enclosing let binding. In
order to avoid a special declaration for logic variables, they are represented as
self-circular let bindings. E.g., the expression “let xs=xs in app(xs,[])” intro-
duces the logic variable xs in the expression “app(xs,[])”.

Based on the principles developed in [18], [1] introduces a natural semantics
of normalized flat programs. As this semantics adequately resembles the behav-
ior of modern multi-paradigm languages like Curry [9,15] or Toy [21], it is a good
reference to show the correctness of program analyses for functional logic lan-
guages. There are some special properties of this semantics we have to consider
in order to examine our type/effect analysis.

The only difference we have to consider is the treatment of circular data
structures which are allowed in [1]. Since the nondeterminism analysis of [14] as
well as ours do not consider such structures, we restrict the set of permissible
programs to those without circular data structures. This is not a restriction in
practice since the current definitions of Curry [9,15] or Toy [21] do not support
such structures. Note that the definition of infinite data structures is still possible
since they can be defined by functions, e.g., “repeat x = x : repeat x”.

Definition 1 (Cycle restriction). The set of programs P⊗ is defined exactly
like P except for the definition of let-clauses: For any expression let x = e, if x
occurs in e then e = x.

This definition allows only non-circular let-expressions with the single exception
being logic variables defined by “let x=x”.

Having defined the set of programs we want to examine, we now turn to
the semantics of these programs. In contrast to an operational semantics based
on term rewriting (e.g., [2,15]), the semantics considered here correctly models
sharing of common subterms as necessary for optimal evaluation and done in
implementations. Sharing is modeled by introducing heaps. A heap, here denoted
by Γ,Δ, or Θ, is a finite partial mapping from variables to expressions (the
empty heap is denoted by []). The value associated to variable x in heap Γ is
denoted by Γ [x]. Γ [x �→ e] denotes a heap Γ ′ with Γ ′[x] = e (in the rules, this
notation is used as a condition as well as an update of a heap). A logic variable
x is represented by a circular binding of the form Γ [x] = x. A value v is a
constructor-rooted term c(xn) (i.e., a term whose outermost function symbol is
a constructor symbol) or a logic variable (w.r.t. the associated heap). ρ represents
a substitution of variables in expressions by other variables, i.e., ρ is a renaming.

The natural semantics uses judgements of the form “Γ : e ⇓ Δ : v” which
are interpreted as: “In the context of heap Γ , the expression e evaluates to value
v and produces a new heap Δ.” Figure 2 shows the rules defining this semantics
(also called big-step semantics) of normalized flat programs, where the current
program P is considered as a global constant. The rules VarCons and VarExp

Nondeterminism Analysis of Functional Logic Programs 269

VarCons Γ [x �→ t] : x ⇓ Γ [x �→ t] : t where t is constructor-rooted

VarExp
Γ [x �→ e] : e ⇓ Δ : v

Γ [x �→ e] : x ⇓ Δ[x �→ v] : v

where e is not constructor-rooted
and e �= x

Val Γ : v ⇓ Γ : v where v is constructor-rooted or a logic variable

Fun
Γ : ρ(e) ⇓ Δ : v

Γ : f(xn) ⇓ Δ : v
where f(yn) = e ∈ P and ρ = {yn �→ xn}

Let
Γ [y �→ ρ(e1)] : ρ(e2) ⇓ Δ : v

Γ : let x = e1 in e2 ⇓ Δ : v

where ρ = {x �→ y}
and y is a fresh variable

Or
Γ : ei ⇓ Δ : v

Γ : e1 or e2 ⇓ Δ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ Δ : c(yn) Δ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn �→ yn}

Guess
Γ : e ⇓ Δ : x Δ[x �→ ρ(pi), yn �→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v
where pi = c(xn), ρ = {xn �→ yn}, and yn are fresh variables

Domains: v, t ∈ Exp (Expressions), Γ, Δ, Θ Heaps, ρ Substitution (Renaming)

Fig. 2. Natural semantics of normalized flat programs [1]

are responsible to retrieve expressions from the heap, the difference being that
VarCons retrieves values, whereas the expressions retrieved by VarExp have to
be further evaluated. VarCons and Val form the base of proof trees generated
by the big-step semantics. They treat values, i.e., expressions which are either
logic variables or evaluated to head normal form. VarCons is merely a shortcut
for applying VarExp and Val once each. The rule Let introduces a new binding
for the heap, Fun is used to unfold function applications, and Or introduces a
nondeterministic branching. Select and Guess deal with case expressions. Select
determines the corresponding branch to continue with, if the first argument of
case was reduced to a constructor rooted term. Guess treats the case that the first
argument evaluates to a logic variable. If so, Guess introduces a nondeterministic
branching where the logic variable is bound nondeterministically to one of the
patterns of the case-expression. Remember that there are two kinds of case-
expressions in flat programs. Only fcase (with f for “flexible”) can introduce
nondeterminism if the number of branches is greater than one. In short, fcase
models narrowing whereas case is used to model the operational behavior of
residuation. We often write (f)case to denote both kinds of cases.

The restriction to non-circular data structures introduced in Definition 1
implicates that no circular structures are produced during program execution,
which is the content of Lemma 1.

Lemma 1 (Well-founded heaps). Let Γ be a heap occurring in a derivation
[] : e ⇓ Δ : v w.r.t. a program P ∈ P⊗, and Γ0 := Γ , Γn+1 := Γ̂ ◦ Γn for

270 B. Braßel and M. Hanus

n ≥ 0 where Γ̂ is the homomorphic extension of Γ . Then there is no non-trivial
circular structure in Γ , i.e., there is no natural number n for which a variable
x exists with Γn(x) = t such that x occurs in t and t �= x.

As programs in P⊗ produce only well founded heaps, we can extract a complete
substitution from the heap as follows:

Definition 2 (σΓ). For a well-founded heap Γ , Γ ∗ is defined as the least fixpoint
of {Γ0 := Γ, Γn+1 := Γ̂ ◦ Γn}. Then σΓ is the substitution with dom(σΓ) =
dom(Γ) and {x �→ Γ ∗(x)}.

Example 2 (Substitution σΓ). Consider the following definition:

main = let z = 3 in let y = c(z,z) in let x = f(y) in f(x)

Evaluating main yields heap Γ := [][z’ �→3][y’ �→c(z’,z’)][x’ �→f(y’)]. For this
heap, σΓ (z’) = 3, σΓ (y’) = c(3,3) and σΓ (x’) = f(c(3,3)).

The main purpose of Definition 1 is to ensure that the substitution σΓ is well
defined.

2.2 Type/Effect Analysis Revisited

The basic ideas of the type/effect analysis used in this paper were first proposed
in [14]. Here we use a slightly different definition (e.g., without a rule for sub-
typing but let clauses to describe sharing that is not covered in [14]) and base
it on the natural semantics introduced in the previous section. The analysis uses
the idea to attach to expressions and functions two kinds of information: a type
to describe the ground status and an effect to describe the nondeterminism be-
havior. Similarly to standard types in typed functional languages, there are also
typing rules that define well-typed expressions w.r.t. this type/effect system.
Before defining these rules, two preliminary Definitions are needed. The analy-
sis of a given program is always performed w.r.t. a type environment E which
associates types/effects to functions, constructors and variables in the given pro-
gram. Such an association is called type annotation and denoted by s :: τn

ϕ→ τ
(resp. s :: τ/ϕ for constants or variables). Note that there may be more than one
type annotation for a function or constructor. The purpose of the type inference
described in Section 3 is to provide a method to derive appropriate type envi-
ronments. In this section, we assume that a correct type environment (defined
below) is given. In a type annotation s :: τn

ϕ→ τ for a function or construc-
tor s each τ(i) describes whether the corresponding argument or result of the
function is a ground value, denoted by G, or if it might contain logic variables,
and, hence, is of any value, denoted by A. The set of effects ϕ describes the
possible causes for nondeterminism which might occur while evaluating s, if s is
a function. Effects are either or or guess . The meaning of these effects is that
one of the nondeterministic rules Or or Guess could be applied while evaluating
an expression or function.

Definition 3 (Type/Effects, Type Annotation, Type Environment).
The set of types T is defined as T = {A,G}, the set of Effects E is defined as

Nondeterminism Analysis of Functional Logic Programs 271

E={or, guess}, the set of type/effects for arity n is defined as TEn={τn
ϕ→ τ |

τ, τi ∈ T , ϕ ⊆ E}. For n = 0 instead of ϕ→ τ we write τ/ϕ. And, finally, a
type environment E is a subset of the set of all type annotations TA = {x :: χ |
x is a variable, χ ∈ TE0} ∪ {s :: ξ | s ∈ F ∪ C, s is of arity n, ξ ∈ TEn}.
Before defining the typing rules and giving an example, we have to introduce
an ordering on the types to compare different abstract results. In general, an
ordering is a reflexive, transitive and anti-symmetric relation.

Definition 4 (Type/effect ordering ≤, max, min). ≤ denotes an ordering
on types and effects that is the least order relation satisfying G ≤ A and, for
effects ϕ ≤ ϕ′ iff ϕ ⊆ ϕ′. Type/effects are ordered by τ1

ϕ1→ τ2 ≤ τ ′1
ϕ2→ τ ′2 iff

τ ′1 ≤ τ1, τ2 ≤ τ ′2 and ϕ1 ≤ ϕ2. Furthermore, max(τk) (resp. min(τk)) denotes
the maximum (minimum) of the τk with respect to ≤.

Note the difference between argument and result in the definition of ≤ for func-
tional types. Informally speaking, for functions with the same result type, it
holds: the bigger the argument type, the smaller is the type of the whole function.
This makes perfect sense if we think of the type as a grade of nondeterminism. A
function of type A

∅→ G is more deterministic than one of type A
∅→ A. However,

A
∅→ A is still more deterministic than G

∅→ A because a function of the latter
type might not merely map logic variables to logic variables but could introduce
new ones. We are now ready to define the typing rules as given in Figure 3.

Example 3 ((In)correct type annotation). Consider the (flat) function

and(x,y) = fcase x of {False -> False; True -> y}
Correct types for and would be GA

∅→ A and GG
∅→ G. The first type can

be intuitively read as: “If the first argument is ground and the second possibly

VAR E � x ::τ/ϕ if x :: τ/ϕ ∈ E

APP
E � en ::τn/ϕn

E � s en :: τ/
⋃n

i=1 ϕi ∪ ϕ
if s ::τn

ϕ→ τ ∈ E

LET
E[x ::A/∅] � e1 ::τ1/ϕ1 E[x ::τ1/ϕ1] � e2 ::τ/ϕ

E � let x = e1 in e2 :: τ/ϕ

OR
E � e1 :: τ1/ϕ1 E � e2 :: τ2/ϕ2

E � or(e1, e2) :: max(τ1, τ2)/ϕ1 ∪ ϕ2 ∪ {or}

SELECT
E � e ::τ/ϕ E[xkm ::τ/∅] � ek ::τk/ϕk

E � (f)case e of {pk(xkm) → ek} :: max(τk)/
⋃k

i=1 ϕi ∪ ϕ

if, for fcase, τ = G or k = 1

GUESS
E � e ::A/ϕ E[xkm ::A/∅] � ek ::τk/ϕk k > 1

E � fcase e of {pk(xkm) → ek} :: max(τk)/
⋃k

i=1 ϕi ∪ ϕ ∪ {guess}

Domains: τ, τ1, τ2 . . .∈T (Types), ϕ, ϕ1, ϕ2 . . .∈E(Effects), E ⊆ TA (Annotations)

Fig. 3. Typing rules for flat expressions

272 B. Braßel and M. Hanus

contains a logic variable, then the result may also contain a logic variable.”
However, AG

∅→ A is not a valid type. If the first argument is a logic variable,
fcase will instantiate this variable nondeterministically (cf. Figure 2). Thus, the
correct type for these input arguments is AG

{guess}→ G. The difference in the
actual type check by the rules of Figure 3 is that rule SELECT is applicable for
input vector GA, whereas the case AG is covered by rule GUESS.

The correctness of type annotations is now defined in two steps.

Definition 5 (Constructor-correct). A type environment E is called correct
with respect to constructor symbols, or constructor-correct for short, iff E con-
tains only the types c ::τn

∅→ max(τn) for any constructor symbol c.

This definition implies that constructors do not influence the deterministic
type of their arguments at all. If any argument is of type A, then the whole term
is as well. Furthermore, constructors do never yield any nondeterministic effect.
Constructor-correctness is a requirement for our definition of general correctness.

Definition 6 (Correctness). A type annotation f ::τn
ϕ→ τ contained in a type

environment E is correct for a definition f(xn) = e if E[xn ::τn/∅] # e ::τ/ϕ. E
is correct if it is constructor-correct and contains only correct type annotations.

The aim of this section is to show that correct type environments correctly indi-
cate the nondeterminism caused by the evaluation of a given function. Whenever
the evaluation of a function call f en involves a nondeterministic branching by
an or or a flexible case expression, a correct type environment must contain the
corresponding type indicating the effect or or guess . And whenever the correct
type environment indicates that a function f with arguments of a certain type
evaluates to a ground term, then no evaluation of f with corresponding argu-
ments yields a result containing a logic variable. The first step towards proving
this correctness is the observation that expressions of the same type are indis-
tinguishable by the type/effect system.

Lemma 2 (Substitution Lemma). Let E be a correct type environment for
a flat program. Then for each expression e holds: E[xn ::τn/∅] # e :: τ/ϕ if and
only if replacing each xi (by a substitution σ) with a term ei of the same type
also yields the same type for e, i.e., E # en ::τn/∅ also implies E # σ(e) :: τ/ϕ.
Furthermore, if some of the en have a non-empty effect, i.e., E # ei ::τi/ϕi, then
E # σ(e) :: τ/

⋃n
i=1 ϕi ∪ ϕ, i.e., the type τ of e remains the same but the effect

inferred for e is larger.

Lemma 2 is a typical requirement in type systems. The correctness of the type
analysis is mainly based on the following theorem. We use the notation Efree for
a type environment that extends a type environment E by annotations for free
variables, i.e., if x :: τ/ϕ ∈ E, then x :: τ/ϕ ∈ Efree , otherwise x :: A/∅ ∈ Efree .

Theorem 1 (Type-descending). Let E be a correct type environment for a
non-circular program P in P⊗, e an expression with Γ : e ⇓ Δ : v built in
a proof tree for an expression [] : e′ ⇓ Δ′ : v′, and Efree # σΓ (e) :: τ/ϕ and
Efree # σΔ(v) ::τ ′/ϕ′. Then τ ≥ τ ′ and ϕ ⊇ ϕ′.

Nondeterminism Analysis of Functional Logic Programs 273

Theorem 1 implies that the type analysis correctly indicates the evaluation of
expressions to ground terms:

Corollary 1 (Correctness for ground terms). Let E be a correct type envi-
ronment for a non-circular program P in P⊗. If, for some expression e, Efree #
e ::G/ϕ and e reduces in finitely many steps to a value v (i.e., a term without
defined function symbols), then v is a ground term.

The last property to prove is that the analysis is not only decreasing for types
but also gathers all effects. This finally leads to the proposition that all potential
effects in the evaluation of a given expression are correctly predicted.

Lemma 3 (Gathering of effects). Let E be a correct type environment for a
non-circular program P in P⊗. Let Γ be a well-founded heap, T be a proof tree
for Γ : e ⇓ Δ : v and Efree # σΓ (e) :: τ/ϕ. Then, for any Γ ′ : e′ ⇓ Δ′ : v′ in T
with Efree # σΓ (e′) ::τ ′/ϕ′, ϕ′ ⊆ ϕ holds.

Lemma 3 implies the final important property of the type/effect system:

Corollary 2 (Identification of nondeterminism). If, for a non-circular pro-
gram P ∈ P⊗ and expression e, there are two proof trees T and T ′ for [] : e ⇓
Δ : v and [] : e ⇓ Δ′ : v′ differing in more than variable names, then any type of
e w.r.t. a correct type environment for P contains an effect or or guess.

3 Type/Effect Inference

In this section we introduce a method to infer the types and effects introduced in
the previous section. In order to obtain a feasible inference method, we introduce
base annotations, a compact representation of sets of types and effects.

3.1 Base Annotations

The definition of well-typed programs is usually not sufficient. Instead one wants
to compute all of the correct type environments for a given program. On a first
glance, this problem seems quite hard, as for each n-ary function there are 2n+1

possible types even with an empty effect. However, a closer observation shows
that one need only to consider n+1 types, namely the type where all arguments
are ground (G) and the n types where a single argument is any (A) and all others
are ground. The remaining types can be deduced by combining these n+ 1 base
types, which we also call a type base. For instance, the type for GGAGAG

ϕ→ τ
is the result of combining the type for GGGGAG

ϕ1→ τ1 and GGAGGG
ϕ2→ τ2.

Before introducing the compact representation of type/effects, we first show the
soundness of this combination of two types.

Definition 7 (Supremum �, τ/ϕ1/ϕ2). For types τ1, τ2 ∈ T the type τ1 � τ2
is their supremum, i.e. max(τ1, τ2). For type/effects τn

ϕ1→ τ, un
ϕ2→ u ∈ TEn, the

type/effect (τn
ϕ1→ τ) � (un

ϕ2→ u) denotes max(τn, un)
ϕ1∪ϕ2→ max(τ, u). For type

environments E1, E2 ⊆ TA , E1 � E2 ={s :: ξ � ξ′ | s ∈Var ∪ C∪F , s :: ξ, s :: ξ′ ∈
E1∪E2}. Finally,

⊔
x denotes the supremum of a set x and the notation τ/ϕ/ϕ′

is used to denote τ/ϕ ∪ ϕ′.

274 B. Braßel and M. Hanus

Lemma 4 (Compositionality). If, for any function declaration f xn = e,
there are correct type annotations A1 = τn

ϕ1→ τ and A2 = un
ϕ2→ u for environ-

ments E1 and E2, respectively, then A1 �A2 is also a correct type for f for the
environment E1 � E2.

Lemma 4 ensures that every correct type can be easily derived from a correct
type base, i.e., a set containing the n + 1 basic types as mentioned above. This
fact is the basis for the compact representation of correct type environments.
Instead of an exponential number of types, it is sufficient to consider only the
n + 1 elements of a type base. Furthermore, we can pack the information of
the type base into a single structure with at most n elements, which we call
a base annotation for a function. A base annotation for a function f is either
A (or G) if the result of f is of type A (or G) regardless of the types of its
arguments, or it is a term indicating which arguments influence the type of f .
For instance, if f has type A whenever its first argument is of type A, then the
base annotation for f is Π1 (Π denotes a kind of projection). If f has type A
whenever either its second or its fourth argument is A, the annotation for f is
Π2�Π4. To determine the type for a given application of f , the Πs are replaced
by the actual types of the corresponding arguments. For complex annotations,
like Π2 �Π4, the result type is the supremum of the replacements. Therefore,
we reuse the symbol � although it is used here as a term constructor for base
annotations. Furthermore, the effect guess is extended by a base annotation,
e.g., guess(Π1). The reason for this will be explained soon.

Definition 8 (Syntax of base annotations). Let s ∈ C ∪ F be of arity n.
Then the set of well formed base types for s, BTs, is the smallest set satisfying:
({G,A,Π1, . . . , Πn} ⊆ BTs)∧(ν, μ ∈ BTs ⇒ ν�μ ∈ BTs). The set of well formed
base effects BEs for s is the smallest set satisfying: ({or, guess} ⊆ BEs) ∧ (ν ∈
BTs ⇒ guess(ν) ∈ BEs). The set of well formed base annotations BAs is defined
as BAs = {s :: ν/ε | ν ∈ BTs, ε ∈ BEs}. We also use BT , BE, BA (without index)
to denote the set of all base types, effects, annotations.

Example 4 (Some correct base annotations).
-For each n-ary constructor c: c=Π1 � . . . �Πn/∅ if n > 0, otherwise c = G/∅
-f1 x = 1 f1 :: G/∅
-f2 = let x=x in x f2 :: A/∅
-f3 x y = y f3 :: Π2/∅
-f4 x y = fcase x of {1->1; 2->y} f4 :: Π2/{guess(Π1)}
Function f4 also illustrates the meaning of a guess effect depending on a type.
The rule Guess of the natural semantics (Figure 2) will only be applied if the
first argument of f4 is a logic variable. Therefore, guess(Π1) will yield the effect
guess only if Π1 is replaced by type A and no effect if it is replaced by type G.

The general meaning of base annotations is best conveyed by defining the set
of type/effects each of them represents. In the next section we will show how to
compute base annotations for a given program. For both purposes, we need the

Nondeterminism Analysis of Functional Logic Programs 275

notion of a normal form for base annotations as a means to effectively decide the
equivalence on base annotations. The normal forms are obtained by rewriting
with the following set of confluent and terminating rewrite rules.

Definition 9 (Normal form 0ν/ε1). We denote by 0ν1 and 0ε1 the simplifi-
cation of base type ν and base effect ε, respectively, with the rules

G � ν → ν ν �G→ ν
A � ν → A ν �A→ A

Πi �Πj → Πj �Πi, i > j
ν � ν → ν

{guess(G)} → {}
guess(A) → guess
guess(ν) → guess(0ν1)

(the simplification rules for guess become applicable after the transformation
shown in the subsequent definition, where the last rule only maintains the sorting
of the Π by index). Similarly, 0ν/ε1 denotes component-wise simplification.

As motivated above, the base annotations of a given function represents all of its
(minimal) types. The following definition describes this representation in detail.

Definition 10 (Base annotations and types). Let f be an n-ary func-
tion. To each base annotation b for f we associate a set of type annotations
types(n, 0b1):

types(n,G/ε) = {τn
eff(τn,ε)→ G | τn ∈ T }

types(n,A/ε) = {τn
eff(τn,ε)→ A | τn ∈ T }

types(n,Πi1 � . . . �Πij/ε) =⊔
({Gn eff(Gn,ε)→ G} ∪ {Gk−1AGn−k︸ ︷︷ ︸

τk

eff(τk,ε)→ A | k ∈ {i1 . . . ij}})

where Gj is the usual notation for a sequence of Gs with length j and
eff(τn, ε) = 0{Πn �→ τn}ε1.1

Example 5 (Continuing Example 4). The types associated with the base anno-
tations from Example 4 are:
-For a unary constructor c : types(1, Π1/∅) = {G ∅→ G,A

∅→ A}
-f1: types(1, G/∅) = {G ∅→ G,A

∅→ G}
-f2: types(0, A/∅) = {A/∅}
-f3: types(2, Π2/∅) = {GG

∅→ G,GA
∅→ A,AG

∅→ G,AA
∅→ A}

-f4: types(2, Π2/{guess(Π1)}) = {GG
∅→ G,GA

∅→ A,AG
{guess}→ G,AA

{guess}→ A}

This representation of groundness information has some similarities to the
domain Prop of propositional formulas used in groundness analysis of logic pro-
grams [5]. However, we are interested in covering all sources of nondeterminism
which is usually the effect non-ground function arguments (apart from function
definitions with overlapping right-hand sides, represented by or). Therefore, we

1 {Πn �→ τn}ε denotes the replacement of all occurrences of Πi by τi in ε for i ∈
{1, . . . , n}.

276 B. Braßel and M. Hanus

VAR B � x ::ν/ε if x :: ν/ε ∈ B

APP
B � en ::νn/εn

B � f en :: �{Πn �→ νn/εn}ν/{Πn �→ νn}ε�
if f :: ν/ε ∈ B

LET
B[x ::A/∅] � e1 ::ν1/ε1 B[x ::ν1/ε1] � e2 ::ν/ε

B � let x = e1 in e2 :: ν/ε

OR
B � e1 :: ν1/ε1 B � e2 :: ν2/ε2

B � or(e1, e2) :: ν1/ε1 � ν2/ε2 ∪ {or}

SELECT
B � e ::ν/ε B[xkm ::ν/∅] � ek ::νk/εk

B � (f)case e of {pk(xkm) → ek} ::
⊔k

i=1 νi/εi ∪ ε

if, for fcase, ν = G or k = 1

GUESS
B � e ::ν/ε ν �= G B[xkm ::ν/∅] � ek ::νi/εi k > 1

B � fcase e of {pk(xkm) → ek} ::
⊔k

i=1 νi/εi ∪ ε ∪ �{guess(ν)}�

Domains: ν, ν1, ν2, . . . ∈ BT (Base Types), ε, ε1, ε2, . . . ∈ BE (Base Effects),
B ⊆ BA (Base Annotations)

Fig. 4. Inference rules

use projections Πi in the base annotations to associate potential nondetermin-
istic behavior to the instantiation of particular arguments.

Finally, we define an ordering on base annotations. This ordering is used to
define the type inference in the next section and show its correctness. For the
latter purpose, it is important to note that the order is finite.

Definition 11 (Ordering on base annotations "). The ordering " is used
on base types, base effects, base annotations and sets of base annotations (base
environments). It is defined as the least ordering satisfying

– G " ν and ν " A for all ν ∈ BT
– Πi1 � . . . �Πim " Πj1 � . . . �Πjn if {Πi1 , . . . , Πim} ⊆ {Πj1 , . . . , Πjn}
– guess(ν) " guess and guess(ν) " guess(ν′) if ν " ν′ for all ν, ν′ ∈ BT
– For ε, ε′ ∈ BE: ε " ε′ if ∀x ∈ ε ∃x′ ∈ ε′ : x " x′
– Ordering on base type/effects: ν/ε " ν′/ε′ if 0ν1 " 0ν′1 and 0ε1 " 0ε′1
– Ordering on base environments: B " B′ if ∀x ∈ B ∃x′ ∈ B′ : x " x′

� (resp.
⊔

) denotes the "-supremum of two (resp. a set of) base annotations.

3.2 Inferring Base Annotations

After having defined the structure of base annotations, we are ready to define
the inference of them. Figure 4 shows the rules to infer base annotations for a
given expression. The complete inference is defined as a fix-point iteration on a
given flat program. Before we can define the iteration, we need to observe that
the inference is monotone, i.e., the inference always computes greater types for
greater environments (with respect to ").

Nondeterminism Analysis of Functional Logic Programs 277

Lemma 5 (� respects "). Let B and B′ be two base environments with B "
B′. Then, for each e with B � e :: ν/ε, there is a derivation B′ � e :: ν′/ε′ with
ν/ε " ν′/ε′.

Because of the monotonicity of �, we can define the inference of a base environ-
ment as follows:

Definition 12 (Type inference). The mapping Inf associates to a flat pro-
gram P a type environment. It is defined by the following fix-point iteration based
on the inference system in Figure 4:

Inf 0(P) = {c :: G/∅ | c is a 0-ary constructor} ∪
{c :: Π1 � . . . �Πn/∅ | c is an n-ary constructor, n > 0} ∪
{f :: G/∅ | f is a defined function}

Inf i+1(P) = {f :: 0ν/ε1 | f xn = e ∈ P, Inf i(P)[xn :: Πn/∅] � e :: ν/ε}
Inf (P) = Inf j(P), if j ∈ is smallest with Inf j(P) = Inf j+1(P)

After proving that Inf (P) is indeed well defined, we will give examples for in-
ferring types for a given program.

Lemma 6 (Type increase). Let P be a flat program and f a function defined
in P . If f :: ν/ε ∈ Inf i(P) and f :: ν′/ε′ ∈ Inf i+1(P), then ν/ε " ν′/ε′.

Corollary 3 (Inf (P) is well defined). For each finite program P there is a
natural number n with Inf n(P) = Inf n+1(P).

Corollary 3 states that the iteration of the inference finally terminates.

Example 6 (Type inference). As an example for the type inference, consider the
flat program (c0, c1 are constructors of arity 0, 1):

P =

⎧⎨
⎩

f1(x) = fcase x of {c0 → g, c1(y)→ f1(y)}
f2(x, y) = f1(y)
g = let x = x in x

Remember that “let x = x” defines a logic variable x so that g evaluates to a
new logic variable. The type environments are computed by the iterations:

Inf 0(P)={c0 ::G/∅, c1 ::Π1/∅, f1 ::G/∅, f2 ::G/∅, g ::G/∅}
Inf 1(P)={c0 ::G/∅, c1 ::Π1/∅, f1 ::G/{guess(Π1)}, f2 ::G/∅, g ::A/∅}
Inf 2(P)={c0 ::G/∅, c1 ::Π1/∅, f1 ::A/{guess(Π1)}, f2 ::G/{guess(Π2)}, g ::A/∅}
Inf 3(P)={c0 ::G/∅, c1 ::Π1/∅, f1 ::A/{guess(Π1)}, f2 ::A/{guess(Π2)}, g ::A/∅}
Inf (P) =Inf 3(P)

The inference shows that a call to f2 might produce a non-ground result but
causes nondeterministic steps only if the second argument is non-ground.

To complete this section about the type inference, we show that its computed
results correctly and completely correspond to the results of the type/effect
analysis of Section 2.

278 B. Braßel and M. Hanus

Theorem 2 (Correctness of the inference). Let P be a flat program, E(P)=
{s :: τn

ϕ→ τ | s is n-ary, s :: ν/ε ∈ Inf (P), τn
ϕ→ τ ∈ types(n, ν/ε)}, and E be a

correct environment for P . Then:

Soundness: E(P) is a correct environment in the sense of Definition 6.
Completeness: If A ∈ E is a type annotation, then E(P) contains a type

annotation A′ with A′ ≤ A (cf. Definition 4).

4 Conclusions

We have presented a program analysis to approximate the nondeterminism be-
havior of functional logic programs. Unlike existing nondeterminism analyses for
logic languages, we have considered a language with a demand-driven evaluation
strategy. Such a strategy has good properties for executing (e.g., optimal evalu-
ation [2]) and writing programs (e.g., more modularity due to the use of infinite
data structures [17]), it considerably complicates the analysis of programs since,
in contrast to logic languages with an eager evaluation model (e.g., Prolog, Mer-
cury, HAL), there is no direct correspondence between the program structure
and its evaluation order. Therefore, we have abstracted the information about
the run-time behavior of the program in form of a non-standard type and effect
system. The program analysis is then an iterative type inference process based
on a compact structure to represent sets of types and effects.

For future work we plan to improve the preliminary implementation of the
type inference and apply it to larger application programs. Furthermore, we are
working on a compilation for the functional logic language Curry [9,15] into the
functional language Haskell [23]. This compilation should take great advantage
of the presented analysis.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for
Declarative Multi-Paradigm Languages. JSC, Vol. 40, No. 1, pp. 795–829, 2005.

2. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

3. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of FLOPS
2002, pp. 67–87. Springer LNCS 2441, 2002.

4. B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming, No. 6, 2004.

5. A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. IEEE Symposium on Logic
in Computer Science, pp. 322–327, 1991.

6. S.K. Debray and D.S. Warren. Detection and Optimization of Functional Compu-
tations in Prolog. In Proc. Third International Conference on Logic Programming
(London), pp. 490–504. Springer LNCS 225, 1986.

7. B. Demoen et al. Herbrand constraint solving in HAL. In Proc. of ICLP’99, pp.
260–274. MIT Press, 1999.

Nondeterminism Analysis of Functional Logic Programs 279

8. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

9. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
Proc. 24th ACM Symp. on Principles of Programming Languages, pp. 80–93, 1997.

10. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

11. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

12. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

13. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pp. 374–390. Springer LNCS 1490, 1998.

14. M. Hanus and F. Steiner. Type-based Nondeterminism Checking in Functional
Logic Programs. In Proc. of PPDP 2000, pp. 202–213. ACM Press, 2000.

15. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry, 2003.

16. F. Henderson, T. Somogyi, Z. Conway. Determinism analysis in the Mercury com-
piler. In Proc. 19th Australian Computer Science Conference, pp. 337–346, 1996.

17. J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17–42. Addison Wesley, 1990.

18. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of POPL’93,
pp. 144–154. ACM Press, 1993.

19. F. Liu. Towards lazy evaluation, sharing and non-determinism in resolution based
functional logic languages. In Proc. of FPCA’93, pp. 201–209. ACM Press, 1993.

20. R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, pp. 59–87, 1995.

21. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

22. F.Nielson, H.R.Nielson, C.Hankin. Principles of Program Analysis. Springer, 1999.
23. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press, 2003.
24. P. Van Roy, B. Demoen, and Y.D. Willems. Improving the execution speed of

compiled Prolog with modes, clause selection, and determinism. In Proc. of the
TAPSOFT ’87, pp. 111–125. Springer LNCS 250, 1987.

25. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

Techniques for Scaling Up Analyses Based
on Pre-interpretations�

John P. Gallagher��, Kim S. Henriksen, and Gourinath Banda

Computer Science, Building 42.1, P.O. Box 260,
Roskilde University, DK-4000, Denmark

{jpg, kimsh, gnbanda}@ruc.dk

Abstract. Any finite tree automaton (or regular type) can be used to
construct an abstract interpretation of a logic program, by first deter-
minising and completing the automaton to get a pre-interpretation of
the language of the program. This has been shown to be a flexible and
practical approach to building a variety of analyses, both generic (such
as mode analysis) and program-specific (with respect to a type describ-
ing some particular property of interest). Previous work demonstrated
the approach using pre-interpretations over small domains. In this pa-
per we present techniques that allow the method to be applied to more
complex pre-interpretations and larger programs. There are two main
techniques presented: the first is a novel algorithm for determinising fi-
nite tree automata, yielding a compact “product” form of the transitions
of the result automaton, that is often orders of magnitude smaller than an
explicit representation of the automaton. Secondly, it is shown how this
form (which is a representation of a pre-interpretation) can then be input
directly to a BDD-based analyser of Datalog programs. We demonstrate
through experiments that much more complex analyses become feasible.

1 Introduction and Motivation

In this paper we investigate the question of the scalability of logic program analy-
ses based on pre-interpretations. This question is raised since pre-interpretations
provide a general and flexible approach to specifying a variety of analyses, com-
bining modes, types and other program specific properties. However, previous
experiments [1,2,3] were limited to domains containing not more than four or
five elements; furthermore for larger programs (especially those with predicates
of high arity) experiments were restricted to even smaller domains. We discuss
the reasons for this below. It was mentioned in earlier work that efficient repre-
sentations of relations would be crucial to scalability.

An arbitrary regular type can be used to construct a pre-interpretation [2].
This contributes to the ease of specifying pre-interpretations, but adds another
dimension to the complexity problem. A pre-interpretation can be orders of
� Work partially supported by European Framework 5 Project ASAP (IST-2001-

38059).
�� Partially supported by the CONTROL project funded by the Danish Natural Science

Research Council, and the IT University of Copenhagen.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 280–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Techniques for Scaling Up Analyses Based on Pre-interpretations 281

magnitude larger than the regular type from which it is derived, when repre-
sented naively. This raises the question of whether the flexibility of this approach
can be exploited for more complex analyses.

To summarise our conclusions, we show promising results for both aspects of
the scalability problem. We give a new determinisation algorithm for finite tree
automata, which returns the determinised automaton in a compact form. We
then show how this compact form can be used directly in a BDD-based analyser
for Datalog programs.

2 Preliminaries

In this section we recall those concepts pertaining to pre-interpretations and
finite tree automata that concern us. We assume familiarity with standard logical
concepts such as interpretation, satisfiable and model [4].

Pre-interpretations. Let P be a definite program and Σ the signature of its
underlying language L; Σ is a set of ranked function and predicate symbols. A
pre-interpretation of L consists of

1. a non-empty domain of interpretation D;
2. an assignment of an n-ary function Dn → D to each n-ary function symbol

in Σ (n ≥ 0).

A domain atom for a pre-interpretation J having domain D is an expression
p(d1, . . . , dn) where p is an n-ary predicate symbol in Σ and d1, . . . , dn are el-
ements of D. Let BJ

P be the set of domain atoms for pre-interpretation J and
the signature of the language associated with program P . A model of a definite
program P , based on pre-interpretation J , is some subset of BJ

P which satisfies
P . A definite program has a least model for a given pre-interpretation. In partic-
ular, the least model for the Herbrand pre-interpretation is the usual declarative
semantics of definite logic programs. The least model for a pre-interpretation J
can be computed as the least fixpoint of a function T J

P : BJ
P → BJ

P .
A pre-interpretation assigns a domain element to each ground term in

Term(Σ), its denotation. Let fJ : Dn → D be the function assigned to the
n-ary function f by the pre-interpretation J . Then the denotation DenJ(t) of a
term t ∈ Term(Σ) is defined as DenJ(f(t1, . . . , tn)) = fJ(Den(t1), . . . ,Den(tn))
(n > 0), and DenJ (t) = fJ(t) if t is a 0-ary function symbol.

Pre-interpretations and term properties. The domain elements of a pre-
interpretation J define term properties. A domain element d corresponds to
a term property p where for all terms t, p(t) holds if and only if DenJ(t) = d.
Note that the properties defined by the elements of a pre-interpretation are dis-
joint and complete; each term has exactly one of the properties since it denotes
exactly one domain element.

Abstract interpretation based on pre-interpretations. Static analysis of definite
logic programs using (finite) pre-interpretations was set out in [5,6] and [1]. Ear-
lier related ideas, not mentioning pre-interpretations, were developed by Corsini

282 J.P. Gallagher, K.S. Henriksen, and G. Banda

et al. [7] and by Codish and Demoen [8]. We briefly summarise the approach;
analysis consists of the construction of a pre-interpretation capturing some prop-
erty of interest, followed by the computation of the least model with respect to
that pre-interpretation. The implementation method is in three stages; let P be
a program and J a pre-interpretation.

1. Represent J as a set of facts of the form f(d1, . . . , dn) → d, such that
fJ(d1, . . . , dn) = d, where fJ is the function assigned to f .

2. Transform P , introducing equalities until every non-variable appears in the
left-hand-side of an equality, and no nested functions occur.

3. Convert to an abstract domain program by interpreting the introduced equal-
ities as the pre-interpretation function. In practice this just means replacing
the = symbol by →.

The stages of transformation are illustrated for a single clause below.

rev([X|Xs],Zs) :- rev(Xs,Ys), append(Ys,[X],Zs).
rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]=U, [X|W]=V, []=W.
rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]→U, [X|W]→V, []→W.

To continue the example, the pre-interpretation capturing the properties
ground (g) and non-ground (ng) is given by the following facts defining the
relation →: {[] → g, [g|g] → g, [g|ng] → ng, [ng|g] → ng, [ng|ng] → ng}. The
least model of the transformed program together with the facts defining the
pre-interpretation is then computed.

Analysis based on pre-interpretations can be presented as an abstract in-
terpretation [9]. The abstract domain 2BJ

P is relational, capturing dependencies
among arguments of a predicate, and condensing, implying that a bottom-up,
goal-independent analysis yields results that lose no information with respect to
goal-dependent analyses.

From regular types to pre-interpretations. In [2] it was shown that any term prop-
erties expressible by regular types could be transformed to a pre-interpretation,
even if the properties were not disjoint. The process of constructing the pre-
interpretation uses the algorithm for determinising a finite tree automaton. This
means that one can start from term properties and build a pre-interpretation
capturing those properties. More specifically, the pre-interpretation captures a
set of disjoint properties derived from the original properties; for instance, given
properties p1, p2 and p3, the pre-interpretation might for example have domain
elements corresponding to p1 ∧ p3, p2 ∧ p3, where these two properties were
disjoint.

Determinisation of Finite Tree Automata. A finite tree automaton (FTA) is
defined as a quadruple 〈Q,Qf , Σ,Δ〉, where Q is a finite set called states, Qf ⊆ Q
is called the set of accepting (or final) states, Σ is a set of ranked function symbols
and Δ is a set of transitions. Each element of Δ is of the form f(q1, . . . , qn) → q,
where f ∈ Σ and q, q1, . . . , qn ∈ Q. We write fn to indicate that function symbol
f has arity n. and we often write the term f0() as f and call f a constant. TermΣ

is the set of ground terms (or trees) constructed from Σ in the usual way.

Techniques for Scaling Up Analyses Based on Pre-interpretations 283

An FTA can be “run” on terms in TermΣ ; the details are omitted here,
except to say that a successful run of a term and an FTA is one in which the
term is accepted by one of the final states the FTA. Implicitly, a tree automaton
R defines a set of terms, that is, a tree language, denoted L(R), as the set of all
terms that it accepts.

As far as expressiveness is concerned we can limit our attention to FTAs
in which the set of transitions Δ contains no two transitions with the same
left-hand-side. These are called bottom-up deterministic finite tree automata
(DFTAs). For every FTA R there exists a bottom-up deterministic FTA R′

such that L(R) = L(R′). A term can be accepted by at most one final state of
a DFTA.

An automaton R = 〈Q,Qf , Σ,Δ〉 is called complete if for all n-ary functions
f ∈ Σ and states q1, . . . , qn ∈ Q, f(q1, . . . , qn)→ q ∈ Δ.

A complete DFTA in which every state is an accepting state partitions the
set of terms into disjoint subsets, one for each state, since every term is accepted
by exactly one state.

Example 1. Let Σ = {[]0, [|]2, 00}, and let Q = {list, listlist, any}. We define
the set Δany , for a given Σ, to be the following set of transitions.

{f(
n times︷ ︸︸ ︷

any, . . . , any)→ any |fn ∈ Σ}

Let Qf = {list, listlist}, Δ = {[] → list, [any|list] → list, [] → listlist,
[list|listlist] → listlist} ∪Δany. The state (or regular type) list accepts terms
in the set of lists of any terms, while the state listlist accepts terms in the set
of lists whose elements are themselves lists. Clearly listlist is contained in list,
which is contained in any.

The automaton is not bottom-up deterministic; a determinisation algorithm
yields the DFTA 〈Q′, Q′

f , Σ,Δ′〉, where Q′ = {q1, q2, q3}, Q′
f = {q1, q2} and

Δ′ = {[] → q1, [q1|q1] → q1, [q2|q1] → q1, [q1|q2] → q2, [q2|q2] → q2, [q3|q2] →
q2, [q3|q1] → q2, [q2|q3] → q3, [q1|q3] → q3, [q3|q3] → q3, 0 → q3}. q1 corresponds

any

listlist

list

q1 = any list listlist

q2 = (any list) - listlist

q3 = any - (list listlist)

Fig. 1. The original types and the disjoint types from Example 1

284 J.P. Gallagher, K.S. Henriksen, and G. Banda

to the set any ∩ list ∩ listlist, q2 to the set (list ∩ any) − listlist, and q3 to
any−(list∪listlist). Thus q1, q2 and q3 accept disjoint sets of terms. The original
regular types and the disjoint types are shown in Figure 1. This automaton is also
complete. In fact, any DFTA obtained from an FTA whose transitions include
Δany (for the appropriate signature) is complete. ��

3 An Algorithm for Determinisation

Product representation sets of transitions. The determinisation algorithm de-
scribed below generates an automaton whose transitions are represented in
product form, as described below, which is a more compact form and leads
to a correspondingly more efficient determinisation algorithm. The main dif-
ference from the textbook algorithm is the form of the output, and in the
explicit use of indices for efficient searching of the set of transitions. A pro-
duct transition is of the form f(Q1, . . . , Qn) → q where Q1, . . . , Qn are sets of
states and q is a state. This product transition denotes the set of transitions
{f(q1, . . . , qn) → q | q1 ∈ Q1, . . . , qn ∈ Qn}. Thus

∏
i=1...n |Qi| transitions are

represented by a single product transition.

Example 2. The transitions of the DFTA generated in Example 1 can be repre-
sented in product transition form as follows. Δ′ = {[]→ q1, 0 → q3, [{q1, q2, q3}|
{q3}] → q3, [{q1, q2}|{q2}] → q2, [{q1, q2, q3}|{q1}] → q1, [{q3}|{q2}] → q2}. Thus
4 product transitions replace the 9 transitions for [|]2 shown in Example 1.
There are other equivalent sets of product transitions, for example, Δ′ = {0 →
q3, [{q1, q2}|{q3}] → q3, [{q3}|{q3}] → q3, [{q1, q2}|{q2}] → q2, [{q3}|{q2}] →
q2[{q1, q2}|{q1}]→ q1, [{q3}|{q1}]→ q1, []→ q1}.

3.1 A Determinisation Algorithm Generating Product Form

The algorithm developed in this section was based initially on the classical text-
book algorithm [10]. It differs firstly by introducing an index structure to avoid
traversing the complete set of transitions in each iteration of the algorithm, and
secondly by noting that the algorithm only needs to compute explicitly the set of
states of the determinised automaton. The set of transitions can be represented
implicitly in the algorithm and generated later if required from the determinised
states and the implicit form. However, in our approach the implicit form is
close to product transition form and we will use this form directly. Hence, we
never need to compute the full set of transitions and this is a major saving of
computation. Let 〈Q,Qf , Σ,Δ〉 be an FTA. Consider the following functions.

– qmapΔ : (Q×Σ ×N) → 2Δ

qmapΔ(q, fn, j) = {f(q1, . . . , qn)→ q0 ∈ Δ | q = qj} for 1 ≤ j ≤ n.
– QmapΔ : (2Q ×Σ ×N) → 2Δ

QmapΔ(Q′, fn, j) =
⋃
{qmapΔ(q, fn, j) | q ∈ Q′}.

– statesΔ : 2Δ → 2Q

statesΔ(Δ′) = {q0 | f(q1, . . . , qn)→ q0 ∈ Δ′}.

Techniques for Scaling Up Analyses Based on Pre-interpretations 285

– fmapΔ : Σ ×N × 22Q → 22Δ

fmapΔ(fn, j,D) = {QmapΔ(Q′, fn, j) | Q′ ∈ D} \ ∅, for 1 ≤ j ≤ n.
– C : 2Q

C = {{q | f0 → q ∈ Δ} | f0 ∈ Σ}
– FΔ : 22Q → 22Q

FΔ(D′) = C ∪ {statesΔ(Δ1 ∩ · · · ∩Δn) | fn ∈ Σ,
Δ1 ∈ fmapΔ(fn, 1,D′),
. . . ,
Δn ∈ fmapΔ(fn, n,D′)} \ ∅

The subscript Δ is omitted in the context of some fixed FTA. The function
qmapΔ is an index on Δ, recording the set of transitions that contain a given
state q at a given position in its left-hand-side. QmapΔ is the same index lifted
to sets of states.

The algorithm finds the least set D ∈ 22Q

such that D = F(D). The set D is
computed by a fixpoint iteration as follows.

initialise i = 0; D0 = ∅
repeat Di+1 = F(Di); i = i + 1 until Di = Di−1

It can be shown that the sequence D0,D1,D2, . . . increases monotonically (with
respect to the subset ordering on 22Q

) and clearly there exists some i such that
Di−1 = Di since Q is finite.

Example 3. Consider the following regular types (FTA transitions), in which
each transition has been labelled to identify it conveniently. We have Q =
{any, list} and Δ = {t1, . . . , t5}.

t1 : []→ list t3 : []→ any
t2 : [any|list]→ list t4 : [any|any]→ any

t5 : f(any, any)→ any

The qmap function is as follows:

qmap(list, cons, 1)=∅ qmap(list, cons, 2)={t2} qmap(list, f, 1)=∅
qmap(list, f, 2)=∅ qmap(any, cons, 1)={t2, t4} qmap(any, cons, 2)={t4}
qmap(any, f, 1)={t5} qmap(any, f, 2)={t5}

There is only one constant, [], and C = {{any, list}}. Initialise D0 = ∅; the
iterations of the algorithm produce the following values.

1. D1 = {{any, list}}
2. D2 = {{any, list}, {any}}
3. D2 = D3 ��

The determinised automaton can be constructed from the fixpoint D and Qmap.
The set of states Q is D itself. The set of final states Qf is {Q′ | Q′ ∈ Q,
Q′ ∩Qf �= ∅}. The set of transitions is

{f(Q1, . . . , Qn)→ states(Qmap(Q1, f, 1) ∩ · · · ∩ Qmap(Qn, f, n)) |
fn ∈ Σ,Q1 ∈ Q, . . . , Qn ∈ Q}

286 J.P. Gallagher, K.S. Henriksen, and G. Banda

The transition for each constant f0 is f0 → {q | f0 → q ∈ Δ}. Continuing
Example 3, we obtain

[]→ {any, list}
[{any}|{any, list}]→ states(Qmap({any}, cons, 1)∩Qmap({any, list}, cons, 2))
→ states({t2, t4} ∩ {t2, t4})
→ {any, list}

[{any} | {any}]→ states(Qmap({any}, cons, 1) ∩ Qmap({any}, cons, 2))
→ states({t2, t4} ∩ {t4})
→ {any}

f({any}, {any})→ states(Qmap({any}, f, 1) ∩Qmap({any}, f, 2))
→ states({t5} ∩ {t5})
→ {any}

and so on.

There are nine transitions in this small example. As we will see we can also
obtain a more compact representation as a set of product transitions.

Implementation of the Algorithm. The function qmap is computed once at the
start of the algorithm in time O(|Δ|), and it can be stored as a hash-table,
which allows the computation of qmap(q, f, j) in constant time. The value of
Qmap(Q′, f, j) can thus be computed in O(|Q|). states(Δ′) can be computed in
O(|Δ|) after construction of a suitable index to the transitions.

The function fmap is maintained as a table, called ftable. As described above,
the algorithm computes a sequence ∅,F(∅),F2(∅), . . . , where Di = Fi(∅). Let
Di and Di+1 be successive values of the sequence. At the i + 1th stage of the
algorithm values of the form fmap(f, j,Di+1) are computed for each f and j. We
use the property that fmap(f, j,Di+1) = fmap(f, j,Di) ∪ fmap(f, j, (Di+1 \ Di)).
The table entry ftable(fn, j) holds the values of fmap(f, j,Di) on the ith iteration
of the algorithm. Hence on the next iteration only the new values of fmap, that
is, fmap(f, j, (Di+1 \ Di)), need to be added to ftable(f, j).

The evaluation of the function F can also be optimised taking into account
the newly computed values of fmap. Assuming the existence of the ftable, define
a function F′ as

F′(Dnew) = {states(Δ1 ∩ · · · ∩Δn) | fn ∈ Σ,
Δ1 ∈ ftable(fn, 1),
. . . ,
Δj ∈ fmap(fn, j,Dnew),
. . . ,
Δn ∈ ftable(fn, n),
1 ≤ j ≤ n} \ ∅

Thus for each tuple Δ1, . . . , Δn, at least one component of the tuple must be
chosen from Dnew , ensuring that each tuple Δ1, . . . , Δn needs to be considered
only once for each fn during the execution of the algorithm. After performing
these optimisations the algorithm can be summarised as follows.

Techniques for Scaling Up Analyses Based on Pre-interpretations 287

D = C; Dnew = D;
for fn ∈ Σ

for j = 1 to n
ftable(fn, j) = ∅

endfor
endfor
repeat
Dold = D;
for fn ∈ Σ
for j = 1 to n

ftable(fn, j) = ftable(fn, j) ∪ fmap(fn, j,Dnew)
endfor

endfor
D = D ∪ F′(Dnew);
Dnew = D \ Dold

until Dnew = ∅

Complexity. For each fn ∈ Σ, the computation time is dominated by the number
of tuples Q1, . . . , Qn that have to be considered during the computation of F.
This is

∏
i=1...n |fmap(f, i,D)|. The maximum size of |fmap(f, i,D)| is the number

of possible right-hand-sides in the determinised transitions for a f , say kf . This
is 2Q in the worst case, but in practice it is often much smaller. The number
of tuples is in fact closely related to the set of product transitions generated as
follows. As can be seen from Figure 2, this is usually much smaller than the set
of transitions in the DFTA.

Let fn ∈ Σ and let D be the set of sets of states computed as the fixpoint
in the algorithm. Then the set of product transitions for fn (n > 0) is

{f(fmap−1(Δ1, f
n, 1), . . . , fmap−1(Δn, f

n, n))→ states(Δ1 ∩ · · · ∩Δn) |
Δ1 ∈ fmap(fn, 1,D), . . . , Δn ∈ fmap(fn, n,D)}

where fmap−1(Δ′, fn, i)={Q′ | Qmap(Q′, fn, i)=Δ′, Q′∈D}. fmap−1(Δ′, fn, i)
can be computed and stored during the evaluation of fmap(fn, i,D). For the
example above, the final values of the fmap function are

fmap(cons, 1,D) = {{t2, t4}} fmap(cons, 2,D) = {{t2, t4}, {t4}}
fmap(f, 1,D) = {{t5}} fmap(f, 2,D) = {{t5}}

The values of fmap−1 are:

fmap−1({t2, t4}, cons, 1)={{any, list}, {list}} fmap−1({t2, t4}, cons, 2)={{any, list}}
fmap−1({t4}, cons, 2)={{any}} fmap−1({t5}, f, 1)={{any, list}, {list}}
From these values we obtain the following product transitions (including the

transition for the constant []).

[{{any}, {any, list}}|{{any, list}}]→ {any, list}
[{{any}, {any, list}}|{{any}}]→ {any}
f({{any}, {any, list}}, {{any}, {any, list}})→ {any}
[]→ {any, list}

288 J.P. Gallagher, K.S. Henriksen, and G. Banda

The two states {any} and {any, list} denote non-lists and lists respectively. The
determinised automaton is a pre-interpretation over this two-element domain. In
general, a state {q1, . . . , qk} in a determinised automaton represents those terms
in the intersection of the original states q1, . . . , qk, and not in any other state.
Thus {any} always stands for terms that are of type any that are not of some
other type.

4 Computing Models of Datalog Programs

The essential task in performing an analysis using pre-interpretations is to com-
pute the minimal Herbrand model of a (definite) Datalog program [11]. A definite
Datalog program is a set of Horn clauses containing no function symbols with
arity greater than zero. The Herbrand models of such programs are finite. In the
abstract domain programs defined in Section 2, a pre-interpretation was repre-
sented by a set of facts (unit clauses) of the form (f(d1, . . . , dn) → d) ← true.
Although there are function symbols occuring in such facts, we can easily repre-
sent the facts using a separate predicate for each function symbol; say pref is the
relation corresponding to f . Then all atoms of form f(d1, . . . , dn)→ d would be
represented as the function-free atom pref (d1, . . . , dn, d) instead. Since function
symbols occur nowhere else in the abstract domain program, we are left with a
Datalog program.

Efficient techniques for computing Datalog models have been studied exten-
sively in research on deductive database systems [11], and indeed, many tech-
niques (especially algorithms for computing joins) from the field of relational
databases are also relevant. In the logic programming context, facts containing
variables are also allowed; tabulation and subsumption techniques have been
applied in a Datalog model evaluation system for program analysis [12].

The analysis method based on pre-interpretations is of course independent
of which technique is used for computing the model of the Datalog program.
Having transformed the analysis task to that of computing a Datalog program
model, we are free to choose the best method available. We do not give a detailed
account of the various techniques here, but remark only that current techniques
allow very large Datalog programs to be handled [13].

Our previous experiments [2] used a Prolog implementation, which though it
incorporated many optimisations such as computing SCCs and the semi-naive
strategy, did not scale well in certain dimensions. In particular, programs con-
taining predicates of high arity (such as the Aquarius compiler benchmark, which
has some predicates with arity greater than 25) could not be analysed for do-
mains with size greater than three. The number of possible tuples of arity n with
a domain of size m is mn, so this limitation is almost certain to apply to any
tuple-based representation. It was pointed out in [2] that improved representa-
tions of finite relations was a key factor in scaling up to larger domains.

Computing Datalog models using BDDs. Our current work uses the BDD-based
solver bddbddb developed by Whaley [14]. This tool computes the model of
a Datalog program, and provides facilities for querying Datalog programs. It

Techniques for Scaling Up Analyses Based on Pre-interpretations 289

is written in Java and can link to established BDD libraries using the Java
Native Interface (JNI). Our experiments were conducted using bddbddb linked
to the BuDDy package [15]. We wrote a front end to translate our abstract logic
programs and pre-interpretations into the form required by bddbddb.

The possibility of using Boolean functions to represent finite relations1 was
exploited in model-checking [16]. Assume that a relation over Dn is to be rep-
resented, where D contains m elements. Then we code the m elements using
k = +log2(m), bits and introduce n.k Boolean variables x1,1, . . . , x1,k, x2,1, . . . ,
xn,1, . . . , xn,k. A tuple in the relation is then a conjunction x1,1 =b1,1∧. . .∧, xn,k =
bn,k where bi,1 · · · bi,k is the encoding of the ith component of the tuple. A finite
relation is thus a disjunction of such conjunctions. BDDs allow very large rela-
tions, translated in this way into Boolean formulas, to be represented compactly
(though variable ordering is critical, and there are some relations that admit no
compact representation).

In a BDD-based evaluation of a Datalog program, the solution of each pred-
icate is thus represented as a Boolean formula (in BDD form) and the relational
operations required to compute the model can be translated into operations on
BDDs. For example, if we are solving the conjunction p(A,B), q(B,C) we take
the Boolean formulas representing the current solutions of p and q, say Fp and
Fq and build a new BDD representing the formula Fp ∧ Fq ∧ x2,1 = y1,1 ∧ . . . ∧
x2,k = y1,k where x1,1, . . . , x1,k, x2,1, . . . , x2,k and y1,1, . . . , y1,k, y2,1, . . . , y2,k are
the Boolean variables representing the respective arguments of p and q.

Representing and manipulating Boolean formulas is a very active research
field and there are other techniques besides BDDs that are competitive. In logic-
program analyses, multi-headed clauses have demonstrated good performance
when compared to BDDs, for example [17].

5 From Product Representations to Datalog

The determinisation algorithm in Section 3 returns transitions in product form.
Though this saves computation, we still need to represent the product form
as a Datalog program, so that we can exploit techniques such as BDD-based
evaluation of the model.

Consider a product transition f({a, b}, {c, d, e}) → q. As before, we can in-
troduce a predicate for each function to replace the arrow relation, obtaining
pref ({a, b}, {c, d, e}, q). To represent this as a clause we could write the following.

pref (X,Y, q)← member(X, [a, b]),member(Y, [c, d, e]).

To convert to Datalog we need only introduce a specialised member predicate
for each set that occurs as an argument in a product transition. In the above
case we obtain:

1 We are indebted to Peter Stuckey for drawing our attention to the fact that BDD-
based approaches could be applied to arbitrary Datalog programs.

290 J.P. Gallagher, K.S. Henriksen, and G. Banda

pref (X,Y, q)← m1(X),m2(Y). m2(c)← true.
m1(a) ← true. m2(d) ← true.
m1(b)← true. m2(e)← true.

As a further optimisation, if some product transition has for some argument a
set containing all of the determinised states, we may simply replace that argu-
ment by an anonymous variable (a “don’t care” argument). Also, singleton sets
{q} can be replaced by q instead of introducing a deterministic member call.
For the transitions produced from Example 3, the set of determinised states was
{{any}, {any, list}}. (We can write these states as constants q1, q2 respectively).
The product transitions are

[{q1, q2}|{q2}]→ q2
[{q1, q2}|{q1}]→ q1
f({q1, q2}, {q1, q2})→ q1
[]→ q2

The Datalog program is thus

precons(, q2, q2) ← true.
precons(, q1, q1) ← true.
pref (, , q1)← true.
prenil(q2) ← true.

Introduction of don’t care arguments is certainly important for tuple-based rep-
resentations but probably not for BDD-based approaches. In any case it does no
harm in the latter case.

6 Experiments

We now summarise the analysis procedure. The procedure takes two inputs: a
program P to be analysed and a set of regular type definitions R expressing
term properties of interest. The procedure then follows these steps.

1. Augment the types with a standard type any over the signature of the pro-
gram, and determinise yielding transitions Rd in product form.

2. Transform P to an abstract domain program Pa (using flattened predicates
pref to denote the pre-interpretation of function f as explained in the pre-
vious section).

3. Transform Rd to a suitable Datalog representation Rdat, again using the
pref representation, together with the specialised member predicates for
the product transitions (and optionally introduce don’t care arguments).

4. Transform Pa ∪ Rdat to the syntax required by bddbddb and compute its
least model.

bddbddb provides facilities for querying specific predicates rather than computing
the whole model, which may be more useful in certain applications, especially

Techniques for Scaling Up Analyses Based on Pre-interpretations 291

those where we are simply interested in whether a predicate has any solution
at all. However, we simply computed the whole model in the experiments. All
the experiments were carried out using a machine equipped with a Pentium
IV 2.8GHz processor with Hyper Threading enabled, 512MB RAM, with Linux
installed. The determinisation algorithm is implemented in Ciao-Prolog, and the
bddbddb tool is implemented in Java, with a JNI interface to the BuDDy BDD
package, which is implemented in C.

Experiments on determinisation. Figure 2 shows a few experimental results just
illustrating the effect of the determinisation algorithm. For each input FTA, the
table shows the number of states Q and transitions Δ, followed by the number
of states in the output DFTA, Qd. Three measures of the set of transitions are
shown. First the total number of transitions Δd, followed by the size of the set of
product transitions generated by the algorithm Δ∏ . Thirdly we show the size of
another set of product transitions Δdc that is generated by locating “don’t care”
arguments. The final column is the time in seconds to compute the product form
Δdc (which is almost identical to the time to compute Δ∏).

The most important observation is the significant reduction in size of Δ∏
and Δdc compared to Δd. Note also that the set of states in the DFTA can
actually be less than the set of states in the input FTA, as in the dnf example.
This is because, as is typical in automatically generated FTAs, there are many
equivalent states in the input, and this redundancy is removed in the DFTA.

FTA DFTA
Name Q Δ Qd Δd Δ∏ Δdc secs
chr 21 64 57 118837 242 86 0.09
dnf 105 803 46 6567 168 141 0.57
mat1 6 10 6 39 8 8 0.01
mat2 3 8 3 12 9 7 0.01
ring 5 12 5 30 14 11 0.01
pic 8 270 8 4989 274 280 0.15

Fig. 2. Determinisation results

The input FTAs are chr, a set of regular types for analysing a CHR transition
system; dnf, the regular type inferred automatically by the abstract interpreta-
tion over DFTAs described in [18]; mat1, a set of types for an off-line binding
time analysis of a matrix transposition program; mat2, the regular types from
Example 1 augmented by two extra function symbols; ring, the regular types
describing states in the token-ring analysis problem [2]; and pic, a set of regu-
lar types expressing properties of a PIC processor emulator. We were unable to
determinise the chr, dnf or pic examples using an available toolkit for handling
tree automata, Timbuk2 [19].
2 The author of Timbuk confirmed that the implementation followed the textbook

algorithm and no special effort to optimise it had been made.

292 J.P. Gallagher, K.S. Henriksen, and G. Banda

Experiments on model computation. We now describe some experiments with
analyses that use both determinisation and model computation.

We performed three general kinds of experiment. Firstly, we analysed two
larger standard benchmarks using general-purpose domains including ground-
ness, and list types. The results shown are for the Aquarius compiler and the
Chat parser. One domain (dom1) has four elements (ground-lists, non-ground-
lists, ground-non-lists, non-ground-non-lists) but this is more complex than the
two-element domains (such as Pos [20]) reported previously for analysis of these
programs [21,17]. Another (dom2) includes a fifth element (variable) as well as
the ones mentioned above (and therefore the binary encoding requires three bits
per element). This caused a much more complex analysis for the Aquarius com-
piler (see Figure 3). Secondly, we took an example of automatically generated
regular types from a program (dnf) using the type inference system described in
[18] and re-analysed the program with a pre-interpretation based on those types
dnftype. The point of doing this is that further precision can be gained, since
the type inference analysis is not relational, but derives an independent type for
each variable of the program. Using analysis with a pre-interpretation, depen-
dencies among the arguments can be derived. Thirdly, we analysed a program
using some program-specific types colours written by the user. The purpose is
to check that required properties hold. In our case the program analysed is a
Coloured Petri Net emulator, implemented in Prolog, for the task scheduler of
an operating system kernel for real-time embedded systems [22]. The user types
describe the types (colours) of the tokens in the net.

None of these examples could be handled by our previous analyser employ-
ing a tuple-representation of the least model. In the case of the larger pre-
interpretations, the results show that the product representation allows pre-
interpretations that would have enormous numbers of transitions if written out
in full.

For each experiment in Figure 3, the following information is reported: the
name of the program (Prog) and the number of clauses it contains (Clauses); the
name of the pre-interpretation (Domain); the number of states in the original
FTA (Q); the number of transitions in the FTA (Δ); the number of states in the
determinised automaton (Qd); the number of transitions in the full determinised
automaton (Δd), which is shown in brackets as this is not actually computed -
it is just shown to underline the impracticality of computing this; the number of
product transitions (Δ∏); and finally the time taken, split into the pre-processing
time and the actual model computation. The pre-processing is shown separately
since bddbddb can be considerably optimised in this respect3, and should in fact
be linear in the size of the program.

Variable ordering can be critical to the effectiveness of BDDs. In the exper-
iments we used the default textual order of variables occurring in the program,
and this was satisfactory except for the aquarius program with dom2, which
was unable to complete in one hour. bddbddb has various heuristics for selecting
variable order but we have not yet succeeded in exploiting these effectively. An-

3 Personal communication from the developer of bddbddb.

Techniques for Scaling Up Analyses Based on Pre-interpretations 293

Prog Clauses Domain Q Δ Qd (Δd) Δ∏ Pre-Process Analyse
aquarius 4192 dom1 3 1933 4 (1130118) 1951 68.8s 3.0s
aquarius 4192 dom2 4 1934 5 (10054302) 1951 70.0s 1h+
chat 515 dom1 3 655 4 (20067) 433 1.6s 0.2s
chat 515 dom2 4 656 5 (86803) 433 1.6s 2.8s
dnf 33 dnftype 105 803 46 (6567) 141 0.5s 58.0s
petri 66 colours 16 65 16 (268436271) 89 1.2s 1.5s

Fig. 3. Experimental results for Model Computation

other aspect of the variable ordering issue is the binary encoding of the domain
elements. For instance,4 given domain elements {a, b, c, d}, with the encoding
a = 00, b = 01, c = 10, d = 11, the relation {p(b), p(c)} requires two BDD nodes,
while the relation {p(a), p(b)} can be represented with a single node. The situa-
tion is reversed with the encoding a = 10, b = 00, c = 01, d = 11.

7 Related Work and Conclusions

Analysis based on pre-interpretations was introduced some time ago [5,6,1]. Ear-
lier related approaches were put forward [7,8]. Scalability of these approaches was
not really investigated, except in the case of Boolean domains, where BDDs [21]
and other representations [17] were applied.

Tree automata are increasingly being applied in static analysis e.g.
[23,24,25,26,18,19]. It is well known that an arbitrary finite tree automaton
(FTA) can be transformed to an equivalent bottom-up deterministic tree au-
tomaton (DFTA). Many important operations and properties of tree automata
are stated in terms of DFTAs [10]. However, the transformation to deterministic
form can result in an explosion of states and transitions, and so some previous
attempts to use DFTAs directly in static analysis reported problems with scala-
bility [25,27]. The possibility of using a product representation does not seem to
have been investigated before, though other means of compressing tree automata
have been studied [28].

Dawson et al. [12] described an approach to program analysis (for various
target languages) using logic programs to express semantic properties. Computa-
tion in a Datalog program is fundamental to the approach. Their implementation
uses optimisations such as tabling and subsumption, but presumably relies on
a tuple-based representation of the model and hence scalability for large rela-
tions must be an issue. Whaley et al. [14] obtained very promising results, with
more evidence of scalability, again using Datalog programs to represent proper-
ties, but using BDDs to represent relations. Iwaihara et al. [29] presented two
different approaches for using BDDs to compute models of Datalog programs,
including the one used in bddbddb. In future work we plan to compare other
binary encodings of relations.

4 This example was provided by one of the anonymous referees.

294 J.P. Gallagher, K.S. Henriksen, and G. Banda

Conclusions. We have described two techniques for handling larger
pre-interpretations and applying them to analyse larger programs. Firstly, we
presented a novel determinisation algorithm for finite tree automata, which yields
a compact representation of the result. This makes it possible to build pre-
interpretations from regular types, that are much more complex than those de-
scribed previously [2]. Secondly, we showed how analysis based on
pre-interpretations can be computed using BDD-based methods (or any other
technique able to compute models of Datalog programs). Such methods have
proven their scalability in other domains, especially model-checking, and there
is a reasonable hope of achieving greater scalability for logic program analysis
using these techniques.

Much work is required, especially in investigating strategies for improving
BDD-based computations, particularly variable orderings, but also strategies for
solving clause bodies, where the order of solution of body atoms, and the early
elimination of local variables, can have a significant effect.

Acknowledgements

We wish to thank Peter Stuckey for suggesting the use of BDDs for computing
models of Datalog programs, and for other related discussions. John Whaley
provided great assistance with the bddbddb tool. We also thank the partners in
the ASAP project for discussions and feedback on related topics. An abstract
presenting the determinisation algorithm was presented at the NSAD Work-
shop in Paris, January 2005, and useful comments were received from Laurent
Mauborgne and other attendees at the workshop. The ICLP referees gave valu-
able suggestions for improving the paper.

References

1. Gallagher, J.P., Boulanger, D., Sağlam, H.: Practical model-based static analy-
sis for definite logic programs. In Lloyd, J.W., ed.: Proc. of International Logic
Programming Symposium, MIT Press (1995) 351–365

2. Gallagher, J.P., Henriksen, K.S.: Abstract domains based on regular types. In
Lifschitz, V., Demoen, B., eds.: Proceedings of the International Conference on
Logic Programming (ICLP’2004). Volume 3132 of Springer-Verlag Lecture Notes
in Computer Science. (2004) 27–42

3. Craig, S., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully automatic binding
time analysis for Prolog. In Etalle, S., ed.: Pre-Proceedings, 14th International
Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004,
Verona, August 2004. (2004) 61–70

4. Lloyd, J.: Foundations of Logic Programming: 2nd Edition. Springer-Verlag (1987)
5. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a

model-theoretic approach. In Hermenegildo, M., Penjam, J., eds.: Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94. Volume 844 of Springer-Verlag Lecture Notes in Computer
Science. (1994) 432–446

Techniques for Scaling Up Analyses Based on Pre-interpretations 295

6. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains. In
Le Charlier, B., ed.: Proc. First International Static Analysis Symposium, SAS’94.
Volume 864 of Springer-Verlag Lecture Notes in Computer Science. (1994) 61–77

7. Corsini, M.M., Musumbu, K., Rauzy, A., Le Charlier, B.: Efficient bottom-up ab-
stract interpretation of prolog by means of constraint solving over symbolic finite
domains. In Bruynooghe, M., Penjam, J., eds.: Programming Language Implemen-
tation and Logic Programming, 5th International Symposium, PLILP’93. Volume
714 of Springer-Verlag Lecture Notes in Computer Science. (1994) 75 – 91

8. Codish, M., Demoen, B.: Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. In Miller, D., ed.: Proceedings of the 1993 Interna-
tional Symposium on Logic Programming, Vancouver, MIT Press (1993)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles.
(1977) 238–252

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. http://www.grappa.univ-
lille3.fr/tata (1999)

11. Ullman, J.: Principles of Knowledge and Database Systems; Volume 1. Computer
Science Press (1988)

12. Dawson, S., Ramakrishnan, C.R., Warren, D.S.: Practical program analysis us-
ing general purpose logic programming systemsa case study. In: Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementation.
(May 1996) 17–126

13. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In Pugh, W., Chambers, C., eds.: PLDI, ACM (2004)
131–144

14. Whaley, J., Unkel, C., Lam, M.S.: A bdd-based deductive database for program
analysis (2004) http://bddbddb.sourceforge.net/.

15. Lind-Nielsen, J.: BuDDy, a binary decision diagram package (2004)
http://sourceforge.net/projects/buddy.

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
17. Howe, J.M., King, A.: Positive Boolean Functions as Multiheaded Clauses. In

Codognet, P., ed.: International Conference on Logic Programming. Volume 2237
of LNCS. (2001) 120–134

18. Gallagher, J.P., Puebla, G.: Abstract Interpretation over Non-Deterministic Fi-
nite Tree Automata for Set-Based Analysis of Logic Programs. In: Fourth Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’02).
LNCS (2002)

19. Genet, T., Tong, V.V.T.: Reachability analysis of term rewriting systems with
Timbuk. In Nieuwenhuis, R., Voronkov, A., eds.: LPAR. Volume 2250 of Lecture
Notes in Computer Science., Springer (2001) 695–706

20. Marriott, K., Søndergaard, H.: Bottom-up abstract interpretation of logic pro-
grams. In: Proceedings of the Fifth International Conference and Symposium on
Logic Programming, Washington. (1988)

21. Schachte, P.: Precise and Efficient Static Analysis of Logic Programs. PhD thesis,
Dept. of Computer Science, The University of Melbourne, Australia (1999)

22. Banda, G.: Scalable real-time kernel for small embedded systems. Master’s thesis,
Southern Univ. of Denmark, Sønderborg (2003)

296 J.P. Gallagher, K.S. Henriksen, and G. Banda

23. Charatonik, W., Podelski, A.: Set-based analysis of reactive infinite-state systems.
In Steffen, B., ed.: Proc. of TACAS’98, Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference, TACAS ’98. Volume 1384 of
Springer-Verlag Lecture Notes in Computer Science. (1998)

24. Goubault-Larrecq, J.: A method for automatic cryptographic protocol verification.
In Rolim, J.D.P., ed.: 15 IPDPS 2000 Workshops, Cancun, Mexico, May 1-5, 2000,
Proceedings. Volume 1800 of Springer-Verlag Lecture Notes in Computer Science.,
Springer (2000) 977–984

25. Monniaux, D.: Abstracting cryptographic protocols with tree automata. Sci. Com-
put. Program. 47(2-3) (2003) 177–202

26. Comon, H., Kozen, D., Seidl, H., Vardi, M.: Applications of Tree Au-
tomata in Rewriting, Logic and Programming. Schloß Dagstuhl Seminar
9743, http://www.informatik.uni-trier.de/~seidl/Trees.html (October 20-
24, 1997)

27. Heintze, N.: Using bottom-up tree automaton to solve definite set constraints.
Unpublished. Presentation at Schloß Dagstuhl Seminar 9743,
http://www.informatik.uni-trier.de/~seidl/Trees.html (1997)

28. Börstler, J., Möncke, U., Wilhelm, R.: Table compression for tree automata. ACM
Trans. Program. Lang. Syst. 13 (1991) 295–314

29. Iwaihara, M., Inoue, Y.: Bottom-up evaluation of logic programs using binary
decision diagrams. In Yu, P.S., Chen, A.L.P., eds.: ICDE, IEEE Computer Society
(1995) 467–474

Deductive Multi-valued Model Checking

Ajay Mallya

Department of Computer Science,
University of Texas at Dallas
axm011500@utdallas.edu

Abstract. Model checking is a widely used technique for verifying com-
plex concurrent systems. The models used in classical model checking
methods are assumed to be complete and consistent. However, a recent
body of work has shown that this is not always the case, and multi-
valued logics have been proposed to represent such models, spawning
an extension of classical model checking, known as, multi-valued model
checking. In this paper, we define a multi-valued set based semantics
for the multi-valued modal μ-calculus and present a novel interpreta-
tion of logic programs to support multi-valued sets as first-class entities,
that can be used as a practical deductive multi-valued model checking
framework. This framework provides a semantics preserving encoding
of multi-valued transition systems, and allows verification of arbitrary
multi-valued modal μ-calculus properties. A prototype implementation
of this framework has also been realized.

1 Introduction

Model checking [8] is a widely used technique for the verification of complex
concurrent systems such as digital circuits, communication protocols and more
recently software systems. It involves verifying whether a model M of a system
has a property φ, i.e. M |= φ. If the model does not satisfy the property, the
model checker then produces a counterexample for the checked property, which
is a run of the system that causes the property to be falsified. The property φ is
formally represented, usually as a temporal logic formula. A number of temporal
logics have been used to specify properties, almost all of which are fragments of
the modal μ-calculus [20]. The verification of the temporal logic formula φ over
M is performed automatically. The complexity of model checking depends on
the transition system M used to model the system and on the property φ that
is to be verified.

The models used for representing concurrent systems in classical model check-
ing are assumed to be complete and consistent. Therefore, two-valued transition
systems and the two-valued modal μ-calculus are sufficient for verifying proper-
ties of such systems. However, a recent body of work shows that this assumption
does not always hold and there are problems where the models may be incomplete
or inconsistent. Incomplete models arise when information about the system is
not known or has been abstracted away [6,9].

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 297–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

298 A. Mallya

Typically, at system design time, even though some implementation spe-
cific details are still unknown, it is still beneficial to verify the design to ensure
that design errors are not propagated into the implementation. Also when deal-
ing with systems that have very large state spaces, a common technique is to
select a part of the state space hoping to find errors there [2]. Since the se-
lection is usually done on an ad-hoc basis, it is essential to have a modeling
representation that takes the partiality of the state space into consideration.
Models may contain inconsistency because they combine conflicting points of
view or contain components that have been developed independently by different
designers [14].

Multi-valued temporal logics are an extension of their classical two-valued
counterparts to verify properties of systems that are represented by incomplete
and/or inconsistent models. The set of truth values is usually chosen to be a
DeMorgan (or quasi-boolean) lattice, so that the operations of conjunction, dis-
junction and negation are well-defined.

There are two different approaches to model checking multi-valued logics:
the direct approach and the reduction approach [2,19]. The reduction approach
exploits truth values that form a distributive DeMorgan lattice and reduce the
model checking problem to j instances of classical two-valued model checking,
where j is the number of join-irreducible elements of the lattice of truth values
and then combining the individual results to obtain the result for the multi-
valued model checking problem. The advantage of this approach is that it can
leverage existing two-valued model checking tools.

The direct approach involves the use of special-purpose model checking al-
gorithms, which are extensions of the classical two-valued model checking algo-
rithms. Techniques based on the direct approach are applicable even when the
lattice is not distributive. Therefore these techniques are more general than those
based on the reduction approach. For example, the rightmost lattice shown in
Figure 1 is quasi-boolean, but not distributive. Consequently, reduction based
techniques are unable to handle such lattices. However, direct techniques are
also harder to implement and proving correctness is cumbersome.

In this paper, we present a technique for direct multi-valued model checking,
using logic programming. Our main contributions are: (1) We propose a novel
interpretation of logic programming predicates as multi-valued sets that allows
us to represent the multi- valued semantics of the modal μ-calculus in terms
of logic programs and prove the correctness of this approach (2) Since logic
programs are executable, our technique gives rise to a logic based executable
multi-valued model checking framework for the full modal μ-calculus, and for
all DeMorgan lattices; as far as we are aware this is the first such executable
framework.

2 Preliminaries

We will take the notions of logic programming [24], lattice theory [11] and de-
notational semantics [23].

Deductive Multi-valued Model Checking 299

2.1 DeMorgan Lattices

DeMorgan Lattices. A DeMorgan lattice is a tuple (L,",�,�,¬), such that:

– (L,") is a complete lattice.
– � and � are the join and meet operators of (L,")
– The negation operator ¬ satisfies DeMorgan’s laws:

¬(a � b) = ¬a � ¬b
¬(a � b) = ¬a � ¬b

for a, b ε L.
– Negation is involutive, i.e. ¬¬a = a for a εL.
– Negation is anti-monotonic, i.e., a " b iff ¬b " ¬a, for a, b ε L.

In the rest of the paper, we will use the term lattice to refer to DeMorgan
lattices.

DeMorgan lattices exhibit horizontal symmetry, which makes it possible to
define the complement operation in an unambiguous manner. Therefore, every
element has a unique complement. The complement of an element is simply its
image under horizontal symmetry. In addition to the join and meet operation
which are defined over individual elements, the operators

∨
and
∧

extend join
and meet to subsets of L.

Some examples of DeMorgan lattices are shown in Figure 1. The lattice
2 represents the truth values of classical logic i.e., true and false. The lattice
3, has the additional truth value M , which represents unknown truth values.
This lattice corresponds to the truth values of Kleene’s three-valued logic [17].
The lattice 3x3, which is the product of the lattice 3 with itself, is used to
denote inconsistencies in models caused by merging differing viewpoints. The
element FM of 3x3 indicates that a proposition is false in the first viewpoint
and unknown in the second viewpoint, whereas the element FT, indicates that
a proposition is false in the first viewpoint and true in the second viewpoint.

T

F

FM

FT TF

MF

TMMT

DK DC

S

N

b c d

TT

FF

T

F

e

a

T

M

F

(a) (b) (c) (d) (e)

Fig. 1. Some DeMorgan lattices

300 A. Mallya

2.2 Multi-valued Sets

In classical set theory, sets are defined by a boolean predicate, also known as
a characteristic function, that maps elements of some universe to true, if that
element belongs to the set and to false otherwise. For example, if a predicate
P defines a set S, then we write S = {x|P (x)}. If this intensional definition of
sets is extended such that the characteristic function, instead of being a boolean
predicate, maps the elements of the universe to the elements of a lattice L, then
we obtain the notion of multi-valued sets, or L-valued sets.

Definition 1. Given a lattice 〈L,�,�,¬〉, and a classical set, U , a L-valued set
on U is a total function U → L.

Consider the multi-valued transition system shown in Figure 2, which uses
the quasi-boolean lattice 2×2+2 shown in Figure 1. Each state variable induces
a multi-valued set over the state space of the multi-valued transition system. For
example, the state variable cup induces the multi-valued set {〈idle, dc〉,〈ready, t〉,
〈off , dc〉, 〈del coffee, t〉}.

2.3 Representing DeMorgan Lattices as Logic Programs

Consider the lattice 2× 2 + 2 shown in Fig. 1(d).The partial order relation of
the lattice is represented by a predicate leqL, which is defined as follows:

leqL(f, n). leqL(n, dk). leqL(n, dc).
leqL(dk, s). leqL(dc, s). leqL(s, t).
leqL(x, x).
leqL(x, z)← leqL(x, y), leqL(y, z).

The ground facts model the immediate precedence relation of the lattice and
the rules model the transitive and reflexive closure of the immediate precedence
relation. The set of all ground instances of the predicate leqL represents the par-
tial order relation " of the lattice. The definition of leqL can be used to define
the predicates joinL and meetL, which model the � and � operations of the
lattice. The predicates join setL and meet setL model the operations

∨
and
∧

respectively. The definition of these predicates is obvious and we will not discuss
it further.

The complement operation is defined in terms of the horizontal symmetry
exhibited by DeMorgan lattices. For example, in the lattice 2× 2 + 2, we have
¬T = F , ¬S = N , ¬DC = DC and ¬DK = DK. This is represented by the
following logical predicates:

compL(f, t). compL(dc, dc).
compL(n, s). compL(dk, dk).
compL(x, y) ← compL(y, x).

The predicate compL captures the horizontal symmetry of the DeMorgan
lattice. We add a rule that computes the symmetric closure of the complement

Deductive Multi-valued Model Checking 301

relation. Unlike classical two-valued logic, where, the two truth values are com-
plements of each other, in a multi-valued logic, the complement of a given truth
value is not always obvious. The predicate compL is therefore a definition of
the complement operation of the lattice that returns the complement of a given
truth value. The definition of the predicates leqL,joinL,meetL and compL pro-
vides a structure for treating DeMorgan lattices as first-class entities in our
model checking procedure.

3 Multi-valued Transition Systems

Formally, a multi-valued transition system over a lattice L, with respect to a set
of atomic propositions AP, is a tuple 〈S, s0,R, θ, L,AP 〉, where:

1. AP is a set of atomic propositions.
2. S is a finite set of states.
3. s0 ε S is the start state.
4. θ : S → AP → L is a function that maps states to a function mapping

atomic propositions to elements of L.
5. R : (S ×S) → L is a transition labelling function, mapping transitions to

elements of L.
6. L is a DeMorgan lattice.

3.1 Multi-valued Transition Systems as Logic Programs

A multi-valued transition system M is transformed into a logic program PM by
representing the states and transitions of M by ground facts in PM . For each
state s of M , a predicate thetas is generated and the atom thetas(p, t) denotes
that the value of the atomic proposition p at state s is the truth value t. For every
outgoing multi-valued transition from state s, a predicate transs is generated,
and the atom transs(s′, t) denotes that the transition from state s to s′ has
truth value t.

We use an example multi-valued model checking problem adapted from [19]
to introduce the concepts of multi-valued model checking. Figure 2 shows a multi-
valued transition system for a coffee machine. Propositional state variables and
transitions of the transition system are labeled with truth values, from the lattice
2× 2 + 2, shown in Figure 2.

The lattice elements T, S,N, F,DK,DC represent truth values as indicated
in Figure 2. The element DK denotes that the truth value is unknown for vari-
ables controlled by the system and DC denotes that the truth value is un-
known for variables controlled by the environment.Transitions between states
also have a similar notion of “truth” associated with them. Transitions la-
beled with F have been omitted from the figure, since these transitions are
“impossible”.

The initial state of the coffee machine is the state OFF. In this state, it does
not matter whether a cup has been provided or not and the proposition cup is
labeled DC. The truth value DK is assigned to the transition from state OFF

302 A. Mallya

e

IDLE

power = DK

cup = DC
coffee = F

READY
power = T
coffee = F
cup = T

OFF
power = F
coffee = F
cup = DC

power = T
coffee = T
cup = T

S

T

T

N

Delivers coffee

T T

S

T

S

T DK DK DC

N

F

S

T

T- must

S- should

DC - do not care

DK - do not know

N - should not

F - must not

(a) (b)

Fig. 2. Multi-valued model for a coffee machine

to IDLE to indicate that it is unknown whether the system can go directly from
OFF to IDLE or not. Although the system itself disallows transitions from the
state Delivers coffee to the state OFF, this transition is still lablelled by the
truth value N, since it depends on the environment and cannot be explicitly
prohibited by the system.

For the transition system in the coffee machine example above, we obtain
the following predicates:

thetaidle(power, dk). thetaoff (power, f)
thetaidle(coffee, f). thetaoff (coffee, f).
thetaidle(cup, dc). thetaoff (cup, dc).
· · ·
thetadel coffee(power, t).
thetadel coffee(coffee, t).
thetadel coffee(cup, t).

Each state s is represented by the predicate thetas, which maps atomic propo-
sitions to their value in state s. Multi-valued transitions are represented by the
following logical predicates:

transidle(idle, s). transdel coffee(off , n).
transidle(ready, t). transdel coffee(ready, t).
transidle(off , t).
transidle(del coffee, s)
· · ·

The definitions of the predicates thetas and transs together comprise a trans-
formation of the transition system M into a logic program PM .

Definition 2. Given a multi-valued transition system M = 〈S, s0,R, θ, L,AP 〉,
the logic program PM is defined as

Deductive Multi-valued Model Checking 303

PM = {thetas(p, l) | s εS, p εAP, l ε L, θ(s)(p) = l} ∪ {transs(s′, t) | s, s′ εS,
t ε L− {⊥}, R(s, s′) = t}

The predicates thetas and transs represent the states and transitions of the
multi-valued transition system respectively. The meaning of the predicate thetas,
written as �thetas� is the set of all ground instances of thetas(P, T) that can be
inferred from PM , i.e.,

�thetas� = {(p, t)|PM |= thetas(p, t)}

Similarly,

�transs� = {(s′, t)|PM |= transs(s′, t)}

The logical consequence operator TP of a logic program P is a function that
when applied to a set A of ground atoms, yields the set of all atoms that are
direct logical consequences of the atoms in A, i.e., for the program PM , we have,

TP (A) = {q(d̃)|q(d̃) ← b1, . . . , bn is a ground instance of a clause in P, b1, . . . ,
bn εA}

where d̃ refers to the tuple of values 〈d1, . . . , dn〉. Since a ground fact q(d) is in
fact, a Horn clause of the form q(d) ← true, it follows that all ground facts in
P are always included in the set TP (A), for all A. Therefore, the set of ground
facts of the logic program P is exactly the set obtained by applying TP to the
empty set φ of atoms:

TP (φ) = {q(d̃)|q(d̃) is a ground fact in P}

�thetas� = {(p, t)|thetas(p, t) ε TPM (φ)}

Similarly, we have

�transs� = {(s′, t)|transs(s′, t) ε TPM (φ)}

If the system cannot transition from state s to state s′, thenR(s, s′) = ⊥L, as
false is the bottom value of L. In other words, impossible transitions are mapped
onto the bottom value of the multi-valued logic used to represent the system.
According to Definition 2, such transitions are not represented by facts in PM

and hence they are not logical consequences of PM . All transitions that are not
impossible are represented by facts in PM . For each of these transitions, the
set of predicates transs associates the transition with its corresponding truth
value.

The following theorem demonstrates the correctness of the above transforma-
tion of a multi-valued transition system into a classical two-valued logic program.

304 A. Mallya

Theorem 1. Given a multi-valued transition system M , and a transformation
of M into a logic program, PM , as shown above, then the tuple 〈�thetas0�, . . . ,
�thetas|S|−1�〉 is the definition of the function θ of M and the tuple 〈�transs0�,. . . ,
�transs|S|−1�〉 is the definition of the multi-valued transition relation R of M and
these definitions are effectively computable from the definition of PM .

Proof. By construction, for each predicate thetas, �thetas� is the tuple of pairs
〈(p1, t1), . . . , (pk, tk)〉, mapping atomic propositions pi in state s to truth value
ti. But, this is exactly the definition of θ(s), the function θ, instantiated to the
state s. Therefore, tuple of instantiations of θ over all s εS, �, . . . , �thetas|S−1|�〉,
is the required definition of θ. By similar reasoning, it can be shown that the
tuple 〈�transs0�, . . . , �transs|S|−1�〉 is the definition of R.

The definitions of θ and R are computable, because, for finite state systems,
the transformation yields a finite number of ground facts of the form thetas

and transs. �thetas� and �transs� can therefore be computed by iterating TPM

over the empty set φ of atoms, until a fixpoint is reached. Since, PM only con-
sists of ground facts, the least fixpoint is obtained in a single iteration and the
computation always terminates. �

4 The Modal μ-Calculus

In classical model checking, μ-calculus formulas are associated with sets of states
of a transition system. In the multi-valued scenario, this notion is extended
to associate with each μ-calculus formula Φ, a L-valued set S → L, over the
states, S of a multi-valued transition system, M , with respect to a lattice L
of truth values, such that Φ is the characteristic function of the L-valued set.
The truth value of the formula is then obtained by applying the characteristic
function to the start state s0 of the multi-valued transition system translation.
A μ-calculus formula is a set of fixpoint equations, whose variables range over
L-valued sets. Given a formula Φ, we associate with each variable Z in Φ, a
predicate mZ , such that �mZ� is the set of tuples {〈s, t〉 | s εS, t ε L}, that form
ground instances of mZ(S, T), that satisfy the formula Φ. In other words, �mZ�
implicitly represents the L-valued set that is assigned to Z in a solution of Φ.
The truth value of Φ is then given by applying the characteristic function of the
L-valued set induced by Φ to the initial state s0 of the multi-valued transition
system.

The formula Φ consists of a sequence of fixpoint operators μZ or νZ, which
denote least and greatest fixpoint operations respectively, applied to a set of
equations of the form Z = ψ, where ψ is defined by the grammar

ψ ::= p |¬p |Z1 ∨ Z2 |Z1 ∧ Z2 |�Z |�Z.

where p εAP and Z,Z1 and Z2 ε V ar, a set of logical variables, that range over
μ-calculus formulas. We assume that the formula Φ is in positive normal form,
i.e. negation is only applied to atomic propositions and that it is syntactically
monotone in the fixpoint variables, i.e. all occurrences of fixpoint variables in Φ
fall under an even number of negations.

Deductive Multi-valued Model Checking 305

4.1 Translating the Multi-valued Semantics of μ-Calculus Formulas
into Logic Programs

For each equation in a μ-calculus formula Φ, a Horn clause is obtained as follows:

mZ(s, t) ← thetas(p, t) for Z = p
mZ(s, t) ← thetas(p, t′), t = ¬Lt

′ for Z = ¬p
mZ(s, t) ← mZ1(s, t′),mZ2(s, t′′), t = t′ � t′′ for Z = Z1 ∧ Z2
mZ(s, t) ← mZ1(s, t′),mZ2(s, t′′), t = t′ � t′′ for Z = Z1 ∨ Z2
mZ(s, t) ← t =

∨
s′ εS{t′ | transs(s′, l),mZ′(s′, l′), t′ = l � l′} for Z = �Z ′

mZ(s, t) ← t =
∧

s′ εS{t′ | transs(s′, l),mZ′(s′, l′), t′ = l � l′} for Z = �Z ′

The symbols ¬L,�,�,
∨
,
∧

are syntactic sugar for the predicates compL,
meetL, joinL, join setL and meet setL respectively, defined in Section 2.3.

The last two rules differ from the usual notion of a Horn clause, since, in
the body of the clause, there is an implicit universal quantification over sets of
tuples, i.e., relations, rather than over an individual tuple, which is an instance
of a relation. This is because the transition with the greatest (resp. least) truth
value has to be chosen non-deterministically for the � (resp. �) operator. This
is achieved by means of second order logic programming predicates (our imple-
mentation uses the findall predicate in XSB); however, the logical consequence
operator is still defined and computable for programs with finite models. We will
call the logic program that is obtained by the above transformation PΦ.

From the programs PM and PΦ, we obtain the program Pμ, by taking the
union of their Horn clauses:

Pμ = PM ∪ PΦ

The predicate symbols 〈mZ1 , . . . ,mZn〉 of Pμ denote L-valued sets, and the
semantics of Pμ is the tuple of L-valued sets 〈SmZ1

, . . . , SmZn
〉. Each L-valued

set is of the form {〈si, ti〉 | si εS, ti ε L}.

Definition 3. Assuming that Φ is of the form

Φ ≡ σ1Z1 . . . σnZn {Zi = ψi | i = 1, . . . , n}.

where each σi is μ or ν, the semantics 〈�mZ1�, . . . , �mZn�〉 of Pμ according to
the fixpoint prefix of the logical consequence operator TPμ is:

〈�mZ1�, . . . , �mZn�〉 = σ1mZ1 . . . σnmZnTPμ(〈mZ1 , . . . ,mZn〉).

Theorem 2. Given a multi-valued transition system M and a property in the
form of a μ-calculus formula Φ, the L-valued set induced on the states of M by
Φ is the value �mZ1� of the predicate mZ1 under the solution of Pμ specified by
the fixpoint prefix of Φ.

Proof . We extend the logical consequence operator of logic programs to a oper-
ator TPμ over tuples 〈SmZ1

, . . . , SmZn
〉 of L-valued sets of states. Formally, TPμ

is defined as:

TPμ(〈SmZ1
, . . . , SmZn

〉) = (〈S′
mZ1

, . . . , S′
mZn

〉)

306 A. Mallya

where S′
mZj

= { 〈s, t〉 |Pμ ∪ mZ1(SmZ1
) ∪ . . .mZn(SmZn

) # mZj (〈s, t〉)} and
mZj (SmZj

) stands for the conjunction of ground atoms mZj (〈s, t〉), where
〈s, t〉 ε SmZj

. From the definition of Φ and the construction of Pμ, it follows
that by applying the fixpoint prefix of Φ to TPμ(〈mZ1 , . . . ,mZn〉), the value of
mZ1 is the required L-valued set. �

4.2 Multi-valued Model Checking Temporal Properties

We consider some examples of multi-valued temporal properties with respect to
the coffee machine example to demonstrate the details of multi-valued model
checking. Consider the μ-calculus formula

Φ = μZμZ1μZ2

⎧⎨
⎩

Z = Z1 ∨ Z2,
Z1 = coffee,
Z2 = �Z

⎫⎬
⎭

which states that “eventually, a state is reached where coffee is produced”. This
formula is transformed into the logic program

PΦ =

⎧⎨
⎩

mZ(s, t) ← mZ1(s, t′),mZ2(s, t′′), t = t′ � t′′

mZ1(s, t)← thetas(coffee, t)
mZ2(s, t)← t =

∨
s′ εS{t′ | transs(s′, l),m′

Z(s′, l′), t′ = l � l′}

⎫⎬
⎭

Assuming that we construct Pμ in the usual way, then, by Theorem 2, the L-
valued set corresponding to Φ is given by the value �mZ� of the predicate mZ ,
obtained by computing the least fixpoint of TPμ . The L-valued set is:

{〈idle, t〉, 〈ready, t〉, 〈off , dk〉, 〈del coffee, t〉}.

The truth value of the formula Φ is the value that the initial state is mapped to
in the L-valued set, i.e dk.

Another property that is of interest is the safety property “coffee is always
delivered in a cup”, which is specified by the formula νZ.(¬coffee ∨ cup) ∧ �Z,
whose corresponding L-valued set is

{〈idle, t〉, 〈ready, t〉, 〈off , t〉, 〈del coffee, t〉}.

The truth value of this safety property is therefore t.

5 Implementation and Performance

We have developed an implementation of our framework and have verified several
multi-valued model checking problems found in the literature. The tabled logic
programming engine XSB has been used for the implementation. The system
takes a description of a DeMorgan lattice, a multi-valued transition system and
a μ-calculus formula and computes the multi-valued semantics of the formula.

Deductive Multi-valued Model Checking 307

Preliminary experiments demonstrate that performance of the tool is com-
parable to that of other multi-valued model checkers developed using MBTDDs,
MDDs, ADDs and BDDs. These other multi-valued model checkers can only
verify subsets of the modal μ-calculus. Our implementation can perform multi-
valued model checking of the full modal μ-calculus and as far as we are aware, no
other such implementation has been described in the liteature. Moreover, since
our implementation is declarative, it is considerably easier to realize, compared
to other existing techniques. At the same time experimental results demonstrate
that this ease of implementation can be achieved without paying a penalty in
terms of performance.

We have obtained results by running our prototype implementation on sev-
eral benchmarks described in [5]. The benchmark problems are a 3-floor eleva-
tor, a 5-floor elevator, a phone system modelled using 4-valued logic and using
9-valued logic. Various example properties of these systems have also been de-
scribed Their framework was implemented separately using MDDs, MBTDDs,
ADDs and BDDs. The execution times of each of these implementations on the
benchmarks has been taken from [5]. A comparison of these implementations
against our XSB implementation is shown in Table 1. It is obvious that our
implementation is comparable to theirs and in some cases performs consider-
ably better. The reason for this is their technique uses the reduction approach,
which reduces the multi-valued model checking problem to a number of classical
two-value model checking sub-problems, which is equal to the number of join-
irreducible elements of the lattice of truth values. Solving all these instances can
significantly deteriorate the performance of the system. Our technique on the
other hand is based on the direct approach and only requires us to perform the
model checking once. The results for our implementation were obtained on a Sun

Table 1. Multi-valued model checking results

Model Property Result MDD MBTDD ADD BDD XSB
3-floor 1. F 0.505 s 0.423 s 1.222 s 1.007 s 0.680 s

2. T 0.194 s 0.125 s 1.306 s 0.23 s 0.730 s
3. T 0.197 s 0.122 s 1.171 s 0.233 s 0.430 s
4. T 0.497 s 0.591 s 1.406 s 1.196 s 1.020 s
5. M 0.202 s 0.125 s 0.596 s 0.23 s 0.020 s

5-floor 1. F 19.009 s 21.251 s 30.89 s 66.713 s 8.230 s
2. T 2.254 s 2.407 s 6.978 s 5.156 s 3.730 s
3. T 2.331 s 2.406 s 5.210 s 4.929 s 4.150 s
4. T 14.853 s 19.394 s 79.753 s 63.978 s 7.550 s
5. M 1.017 s 0.862 s 4.263 s 1.725 s 0.050 s

Phone system 1. MM 0.048 s 0.066 s 2.3 s 0.048 s 0.070 s
(9-valued) 2. MF 0.044 s 0.074 s 2.135 s 0.052 s 0.320 s

3. MF 0.046 s 0.068 s 2.613 s 0.037 s 0.320 s
Phone system 1. TT 0.031 s 0.023 s 0.024 s 0.029 s 0.040 s

(4-valued) 2. FF 0.031 s 0.027 s 0.042 s 0.036 s 0.240 s
3. FF 0.031 s 0.027 s 0.041 s 0.031 s 0.240 s

308 A. Mallya

Sparc machine with two 750 MHz processors and 4GB of RAM. Each individual
execution, however, was carried out on a single processor with about 1 GB of
available RAM.

Model checking of the full modal μ-calculus with Horn logic, requires that
the Horn clauses be interpreted according to the answer set semantics [18]. The
tabled resolution strategy used by XSB implements the well-founded semantics
and therefore, it might be unable to verify certain kinds of μ-calculus formulas
with alternating least and greatest fixed point operators. In such cases, XSB gen-
erates a residual program, which captures the dependencies between predicates
with unknown truth values in the well-founded semantics. The stable models
generator smodels is then invoked to compute the stable models of the residual
program via the XNMR interface provided by XSB. The details of interfacing
XSB with smodels can be found in the XSB manual [25].

6 Related Work

Several methods based on both the direct and the reduction approaches have
been studied in the literature on multi-valued model checking. [2] describes a
reduction from the 3-valued μ-calculus to standard model checking. [6] defines
an algorithm based on the direct approach, for model checking multi-valued
CTL using multi-valued extensions of BDDs. [5] presents a reduction algorithm
for distributive quasi-boolean lattices. In [7] an algorithm for model checking
multi-valued LTL is presented,based on a transformation to multi-valued Büchi
automata, under the restriction that truth values form a totally ordered set. [19]
defines a transformation from multi-valued CTL* to standard CTL*, based on
the reduction approach and is limited to handling distributive quasi-boolean lat-
tices. [16] demonstrates how multi-valued model checking can be performed for
the full modal μ-calculus based on a reduction to standard model checking. Like
all reduction based techniques, it can only deal with truth values that form a
distributive lattice. [3] demonstrates multi-valued model checking for the full
modal μ-calculus for arbitrary quasi-boolean lattices. Therefore, our technique
is equivalent to theirs. However, their method involves a transformation of the
denotational semantics of the multi-valued modal μ-calculus to Extended Al-
ternating Automata [3], which is quite complex and proving correctness is also
quite involved. Also, the resulting automata-theoretic semantics is not directly
executable and its implementation can be quite complex. Our technique on on
the other hand, uses Horn logic to directly specify the formal semantics of the
multi-valued modal μ-calculus and avoids the additional step of converting the
denotational semantics into an automata-theoretic formalism. Also these Horn
logic definitions are executable, unlike the automata-theoretic definitions.

Horn Logic-based approaches have been widely used in classical two-valued
model checking, although we are not aware of any that are targeted towards
multi-valued model checking. In [4] transition systems are encoded as logic pro-
grams and the logical consequence operator computes the set of predecessor
states for a given set of states. [22] uses the tabled logic programming engine

Deductive Multi-valued Model Checking 309

XSB to compute fixpoints of temporal logic formulas. Constraint Logic Program-
ming based methods have also been used for the verification of discrete infinite
state [12] and real-time systems [15,13,21].

7 Conclusions and Future Work

In this paper, we have formalized the multi-valued semantics of μ-calculus for-
mulas in terms of L-valued sets. Each formula induces a L-valued set over the
state space of a multi-valued transition system, and this L-valued set is the se-
mantics of the formula. We formulate a representation for L-valued sets, using
the two-valued predicates of classical logic programming, which yields an ex-
ecutable framework for multi-valued model checking of the modal μ-calculus.
We prove the correctness of our representation and demonstrate a mechanism
to compute fixpoints of multi-valued temporal logic formulas, via the formal se-
mantics of logic programming. Even though our method encompasses the most
general multi-valued model checking techniques described in the literature, it has
an elegant intuitive semantics due to the declarative nature of logic program-
ming, while comparing favorably to various existing ad-hoc techniques in terms
of performance. Future work includes exploring the possibility of extending the
logic programming based approach by using constraint systems, especially ones
defined over lattice domains. Another direction for future research is to study
the use of multi-valued techniques in the verification of real-time systems.

References

1. L. Bolc and P. Borowik Many-Valued Logics. Springer-Verlag, 1992.
2. G. Bruns and P. Godefroid: Generalized model checking:reasoning about partial

state spaces. In Proc. of CONCUR’00, LNCS, pp. 168-182. Springer-Verlag.
3. G. Bruns and P. Godefroid: Model checking with Multi-Valued Logics In Proc. of

ICALP’04, LNCS, pp. 281-293. Springer-Verlag.
4. W. Charatonik and A. Podelski: Set based analysis of reactive infinite-state sys-

tems. In Proc. TACAS’98, LNCS. Springer-Verlag.
5. M. Chechik,A. Gurfinkel,B. Deverereux, A. Lai, S. Easterbrook: Symbolic data

structures for multi-valued model checking. CSRG Technical Report 446, Univer-
sity of Toronto, 2002.

6. M.Chechik, B. Devereux, S. Easterbrook and A. Gurfinkel: Multi-valued Symbolic
Model Checking ACM TOSEM, ACM, 2003.

7. M. Chechik, B. Devereux, A. Gurfinkel: Model checking infinite state-space systems
with fine-grained abstractions using SPIN. In Proc. SPIN Workshop on Model-
Checking software, 2001.

8. E.M.Clarke and E.A.Emerson: Design and Synthesis of synchronization skeletons
using branching time temporal logic logic. In Logic of Programs: Workshop, York-
town Heights,NY,May 1981, LNS 131.

9. D. Dams, Rob Gerth,Gert Dohmen, Ronald Herrmann,Peter Kelb,Hergen
Pargmann: Model checking using adaptive state and data abstraction. In Proc.
CAV’94, LNCS, pp. 455-467. Springer-Verlag.

310 A. Mallya

10. E. Dantsin, Thomas Eiter, Georg Gottlob, Andrei Voronkov: Complexity and
Expressive Power of Logic Programming ACM Computing Surveys, ACM, 2001.

11. B.A. Davey and H.A. Priestley: Introduction to Lattices and Order. Cambridge
University Press, 1990.

12. G. Delzanno and A. Podelski: Model Checking in CLP In Proc. TACAS’99, LNCS,
pp.223-239. Springer-Verlag.

13. X. Du, C.R. Ramakrishnan, Scott A. Smolka: Tabled Resolution + Constraints:
A Recipe for Model Checking Real-Time Systems In Proc. RTSS’00, pp. 175-184.
IEEE.

14. S. Easterbrook and M. Chechik: A framework for multi-valued reasoning with over
inconsistent viewpoints In Proc. of ICSE’01, pp. 411-420.

15. G. Gupta and E. Pontelli: A Constraint Based Approach for Specification and
Verification of Real-Time Systems In Proc. RTSS’97, IEEE.

16. A. Gurfinkel and M. Chechik: Multi-valued model checking via classical model
checking. In Proc. of CONCUR’03, LNCS, pp. 411-420. Springer-Verlag.

17. S.C. Kleene: Introduction to Metamathematics : D. Van Nostrand Company Inc.,
Princeton, New Jersey, 1952.

18. X. Liu, C. Ramakrishnan,S.A. Smolka: Fully Local and Efficient Evaluation of Al-
ternating Fixed Points In Proc. TACAS ’98, LNCS 1384,pp 5-19, Springer-Verlag,
1998.

19. B. Konikowska and W. Penczek: Reducing model checking from multi-valued CTL*
to CTL*. In Proc. of CONCUR’02,LNCS. Springer-Verlag.

20. D.Kozen: Results on the propositional mu-calculus Theoretical Computer Science
27:333-354.

21. S. Mukhopadhyay and A. Podelski: Model checking for timed logic processes. In
Proc. Computational Logic’00, LNCS, pp. 598-612. Springer-Verlag.

22. Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Scott A. Smolka, Ter-
rance Swift and David S. Warren: Efficient Model Checking Using Tabled Resolu-
tion In Proc. CAV’97, LNCS, pp 143-154. Springer-Verlag.

23. D. Schmidt: Denotational Semantics: A Methodology for Language Development.
W.C. Brown Publishers, 1986.

24. L. Sterling and S. Shapiro: The Art of Prolog. MIT Press, 1994.
25. www.xsb.sourceforge.net

Polynomial Interpretations as a Basis
for Termination Analysis of Logic Programs

Manh Thang Nguyen and Danny De Schreye

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium

{ManhThang.Nguyen, Danny.DeSchreye}@cs.kuleuven.ac.be

Abstract. This paper introduces a new technique for termination anal-
ysis of definite logic programs based on polynomial interpretations. The
principle of this technique is to map each function and predicate symbol
to a polynomial over some domain of natural numbers, like it has been
done in proving termination of term rewriting systems. Such polynomial
interpretations can be seen as a direct generalisation of the traditional
techniques in termination analysis of LPs, where (semi-) linear norms
and level mappings are used. Our extension generalises these to arbitrary
polynomials. We extend a number of standard concepts and results on
termination analysis to the context of polynomial interpretations. We
propose a constraint based approach for automatically generating poly-
nomial interpretations that satisfy termination conditions.

Keywords: Termination analysis, acceptability, polynomial interpreta-
tions.

1 Introduction

In the last 20 years, the work on termination analysis has been most active for
declarative programming languages, with an emphasis on two specific paradigms:
logic programming (LP) and term rewriting systems (TRSs). In both areas, the
work has been extensive and successful, with many powerful techniques devel-
oped and automated tools for these techniques available. However, termination
analysis research has evolved very independently for these two paradigms. This
has led to two collections of techniques and tools that co-exist without a reason-
able level of cross-fertilization between them, nor an acceptable understanding
of the portability of these techniques from one paradigm to the other.

Independent of the paradigm, almost every termination analysis is based on
a mapping from computational states to some well-founded ordered set. A main
difference between LP and TRS is the class of well-founded orderings that are
being considered as a basis for the termination proof. For LP, computational
states are usually mapped to a well-founded order on the natural numbers. This
is usually done through “norms” and “level mappings”, that respectively map
terms and atoms to corresponding natural numbers (see [4]). In TRSs, a con-
siderably wider range of well-ordered sets is being considered in the literature,

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 311–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

312 M.T. Nguyen and D. De Schreye

including polynomial interpretations, recursive and lexicographic path orders,
and Knuth-Bendix orders (see [7,18]).

On a most general, methodological level, cross-fertilization of techniques
could be organized using two alternative routes: a transformational approach
or a direct approach. A disadvantage of the transformational approach is that
it somewhat obscures the intuitions regarding the termination argument. Often,
one is not merely interested in finding a proof of termination as such, but it is
more helpful if the proof - or the absence of it - helps us in better understanding
the behaviour of the program. Another disadvantage is that this approach is only
applicable to a class of transformable programs (i.e. well-moded logic programs).

In this paper we focus on a direct approach of porting techniques, in our case
from TRS to LP. Within this context, an initial result to allow porting of more
general orderings to the LP setting is presented in [5]. This work provides a new
termination condition for definite logic programs based on general term orders.
As such, it can be used as a framework in which different orderings considered
in TRSs could be ported to LP directly and be evaluated. The current paper
provides a first step in this study: the use of polynomial interpretations for LP
termination analysis. Using polynomial interpretations as a basis for ordering
terms in TRSs was first introduced by Lankford in [12]. It is currently one of the
best known and most widely used techniques in TRS termination analysis.

In this paper, we develop the approach within an LP context. We redefine
and extend several known concepts and results from LP termination analysis to
polynomial interpretations. We show how polynomial interpretations can be seen
as a direct generalisation of currently used techniques in LP termination based
on (semi-) linear norms and linear level-mappings. As one would expect, the gen-
eralisation is a move from linear polynomial functions to arbitrary polynomials,
while the concepts that link the two approaches are those of the “abstract norm”
and “abstract level mapping” [17]. The paper is organised as follows. In the next
section, we present some preliminaries. In section 3, we introduce basic defini-
tions of polynomial interpretations and show how this approach can be used to
prove termination with some examples. In section 4, we discuss the automation
of the approach. We end with a conclusion in section 5.

2 Preliminaries

2.1 Notations and Terminology

We assume familiarity with logic programming concepts and with the main re-
sults of logic programming [1,13]. In the following, L denotes the language un-
derlying a definite logic program P . We use V arP , ConstP , FunP and PredP

to denote the set of variables, constant, function, and predicate symbols of L.
Given an atom A, rel(A) denotes the predicate occurring in A. Let p, q be pred-
icates occurring in the program P , we say that p refers to q if there is a clause
in P such that p is in its head and q is in its body. We say that p depends on q
if (p, q) is in the transitive, reflexive closure of the relation refer to. If p depends
on q and vice versa, p and q are called mutually recursive, denoted by p�q. Let

Polynomial Interpretations as a Basis for Termination Analysis of LPs 313

TermP and AtomP denote, respectively, the sets of all terms and atoms that can
be constructed from L. The extended Herbrand Universe UE

P , and the extended
Herbrand Base BE

P are the quotient sets of TermP , and AtomP modulo the
variant relation [9]. Given two expressions E and F (terms, atoms, n-tuples of
terms or n-tuples of atoms), we denote by mgu(E,F) their most general unifier.

In this paper, we focus our attention only on definite logic programs and
SLD-derivations where the left-to-right selection rule is used. Such derivations
are referred to as LD-derivations; the corresponding derivation tree as the LD-
tree. We say that a query Q LD-terminates for a program P , if the LD-tree for
Q∪P is finite (left-termination [13]).

2.2 Norms and Level Mappings

Definition 1 (norm, level mapping). A norm is a mapping ‖.‖ : UE
P →N. A

level-mapping is a mapping |.| : BE
P→N.

Several examples of norms can be found in literature [2]. One of the most com-
monly used norms is the list-length norm which maps lists to their lengths and
any other term to 0. Another frequently used norm is term-size which counts
the number of function symbols in the tree representation of a term.

Definition 2 (linear norm). [15] A norm ‖.‖ is a linear norm if it is recur-
sively defined by means of the following schema:

- ‖X‖ = 0 for any variable X,
- ‖f(t1, ..., tn)‖ = f0+

∑
i∈If

fi‖ti‖ where fi∈N and the index set If⊆{1, ..., n}
depend only on the n-ary function symbol f/n, n≥0.

2.3 Conditions for Termination w.r.t. General Orderings

A quasi-ordering on a set S is a reflexive and transitive binary relation 2 defined
on elements of S. We define the associated equivalence relation 32 as s32t if
and only if s2t and t2s. If neither s2t, nor t2s we write ‖�. To each quasi-
ordering 2 on S, we can associate a strict ordering 4 on S as s4t if and only
if s2t and it is not the case that t2s. A strict ordering 4 is called well-founded
if there is no infinite sequence s04s14... with si∈S. Let T be a set such that
S⊆T . A quasi-ordering � defined on T is called a proper extension of 2 if

- t12t2 implies t1�t2 for all t1, t2∈S.
- t14t2 implies t1�t2 for all t1, t2∈S, where � is the strict ordering associated

with �.

We also need the following notion of a call set.

Definition 3 (call set). Let P be a program and S be a set of atomic queries.
The call set, Call(P, S), is the set of all atoms A, such that a variant of A is
the selected atom in some derivation for (P,Q), for some Q∈S and under the
left-to-right selection rule.

314 M.T. Nguyen and D. De Schreye

In practice, the query set S is specified as a call pattern. The set Call(P, S) can
be computed by using a type inference technique (e.g.[11]).

Definition 4 (order-acceptability w.r.t. a set). [5] Let S be a set of atomic
queries and P be a program. P is order-acceptable w.r.t. S if there exists a well-
founded ordering 4 such that

- for any A∈Call(P, S),
- for any clause A′←B1, ..., Bn, such that mgu(A,A′) = θ exists,
- for any atom Bi, such that rel(Bi)�rel(A),
- for any computed answer substitution σ for ←(B1, ..., Bi−1)θ:

A4Biθσ

The following theorem establishes the link between order-acceptability w.r.t. a
set and LD-termination of a program.

Theorem 1. [5] A program P LD-terminates under the left-to-right selection
rule for any query in S if and only if P is order-acceptable w.r.t. S.

Definition 5 (interargument relation). Let P be a program, p/n be a pred-
icate in P and 4 be an ordering on UE

P . An interargument relation for p is a
relation Rp = {(t1, ..., tn)|ti∈TermP ∧ ϕp(t1, ..., tn)}, where:

- ϕp(t1, ..., tn) is a formula in a disjunctive normal form,
- each conjunct in ϕp is either si2sj, si4sj, si32sj or si‖�sj, where si, sj

are constructed from t1, ..., tn by applying functors of P .

Rp is a valid interargument relation for p/n w.r.t. the ordering 4 if and only if
for every p(t1, ..., tn)∈AtomP : P |= p(t1, ..., tn) implies p(t1, ..., tn)∈Rp.

The concept of rigidity is also generalized to general orderings.

Definition 6 (rigidity). [5] A term or atom A∈UE
P ∪BE

P is called rigid w.r.t.
a quasi-ordering 2 if ∀σ∈Subs, A32Aσ. In this case, 2 is said to be rigid on
A. A set of terms (or atoms) S is called rigid w.r.t. a quasi-ordering 2 if all its
elements are rigid w.r.t. 2.

Example 1. The list [X |t] (X is a variable, t is a ground term) is rigid w.r.t. the
quasi-ordering 2 imposed by the list-length norm ‖.‖l, i.e. t12t2 if and only if
‖t1‖l≥‖t2‖l, t14t2 if and only if ‖t1‖l>‖t2‖l. For any substitution σ, ‖[X |t]σ‖l =
1+‖t‖l = ‖[X |t]‖l. Therefore, [X |t]σ32[X |t]. However, this list is not rigid w.r.t.
the quasi-ordering � imposed by the term-size norm ‖.‖t, i.e. t1�t2 if and only
if ‖t1‖t≥‖t2‖t, t1�t2 if and only if ‖t1‖t>‖t2‖t. For instance, with σ1 = {X/a1},
a1 is a constant, ‖[X |t]σ1‖t = 1 + ‖t‖t, while with σ2 = {X/[a1, a2]} a1, a2 are
constants, ‖[X |t]σ2‖t = 3 + ‖t‖t. That implies [X |t]σ2�[X |t]σ1. �

The following notion of rigid order-acceptability w.r.t. a set of atoms no longer
forces us to reason on Call(P, S). Instead, we only need to consider the rigidity
of the call set. Furthermore, the condition in this notion is fully at the clause
level and the condition on computed answer substitution is replaced by one on
valid interargument relations.

Polynomial Interpretations as a Basis for Termination Analysis of LPs 315

Definition 7 (rigid order-acceptability w.r.t. a set). [5] Let S be a set of
atomic queries and P be a program. Let 2 be a well-founded quasi-ordering on
UE

P and for each predicate p in P , let Rp be a valid interargument relation for p
w.r.t. 2. P is rigid order-acceptable w.r.t. S if there exists a proper extension
� of 2 on UE

P ∪BE
P , which is rigid on Call(P, S) such that

- for any clause H←B1, B2, ..., Bn,
- for any atom Bi in its body such that rel(Bi)�rel(H),
- for any substitution θ such that the arguments of the atoms in (B1, ..., Bi−1)θ

all satisfy their associated interargument relations Rrel(B1), ..., Rrel(Bi−1):

Hθ�Biθ

Theorem 2. [5] If P is rigid order-acceptable w.r.t. S, then P is order-
acceptable w.r.t. S.

The stated condition of rigid order-acceptability is sufficient for acceptability,
but is not necessary for it (see [5]).

3 Polynomial Interpretations in Logic Programming

Recall that our objective is to develop and discuss the basic definitions and
properties of polynomial interpretations, and apply them to prove termination
of a program. Here terms and atoms are mapped to polynomials, instead of
natural numbers. This will allow to solve a class of problems that the traditional
approach can not solve. To illustrate this point, consider the following program,
Der, that formulates rules for computing the repeated derivative of a function
in some variable u. This example was introduced in [5] (see also [8]).

Example 2 (Der).

d(der(u), 1).
d(der(A), 0) : −number(A).
d(der(X + Y), DX + DY) : −d(der(X), DX), d(der(Y), DY).
d(der(X ∗ Y), X ∗DY + Y ∗DX) : −d(der(X), DX), d(der(Y), DY).
d(der(der(X)), DDX) : −d(der(X), DX), d(der(DX), DDX).

We are interested in proving termination of this program w.r.t. the query set
S={d(t1, t2)|t1 is a ground term, and t2 is a free variable}. We consider the first
argument of d/2 as an input argument and the second as an output.

Doing this on the basis of a linear norm and level mapping is impossible. The
function symbol der/1 expresses a non-linear relation between the input and
output of the original derivative function. In particular, assume that there exists
such a linear norm ‖.‖ and level mapping |.| of general forms such that: ‖u‖ = 0,
‖t1 + t2‖ = f+

0 + f+
1 ‖t1‖+ f+

2 ‖t2‖, ‖t1 ∗ t2‖ = f∗
0 + f∗

1 ‖t1‖+ f∗
2 ‖t2‖, ‖der(t)‖ =

fd
0 + fd

1 ‖t‖, |d(t1, t2)| = d0 + d1‖t1‖ + d2‖t2‖, |number(t)| = n0 + n1‖t‖ where

316 M.T. Nguyen and D. De Schreye

t, t1, t2 are terms and f+
0 , f+

1 , f+
2 , f∗

0 , f∗
1 , f∗

2 , fd
0 , fd

1 , d0, d1, d2, n0 and n1 are
non-negative integers. Applying the general constraint based method in [6] shows
a contradiction: the system of inequalities that is set up from the acceptability
condition is unsolvable. A complete proof can be found in [14]. Of course this
only proves that one particular approach is unable to prove termination on the
basis of linear mappings. �

3.1 Polynomial Interpretations

Let N be the set of all natural numbers and A⊆N. We denote by PA
V arP

the set of
all polynomials in V arP over A, with coefficients in N. The following definition
establishes an ordering on PA

V arP
.

Definition 8 (polynomial ordering). Let P be a program and A⊆N. Let
PA

V arP
be a set of all polynomials in V arP over A. For polynomials H,Q∈PA

V arP

let X1, ..., Xn be the variables occurring in H or Q. We define an ordering ≥A

on PA
V arP

as H≥AQ if and only if H −Q ≥ 0 for all instantiations a1, ..., an∈A
of X1, ..., Xn respectively. A strict ordering >A associated with ≥A is defined
as H >A Q if and only if H − Q>0 for all a1, ..., an∈A. If H − Q=0 for all
a1, ..., an∈A, we write H≤≥AQ. For any other cases, H‖≥A

Q.

We usually require that A is an infinite set. Under this condition, H≤≥AQ
if and only if the two polynomials are identical, denoted by H≡Q, i.e. all their
corresponding coefficients are equal.

Example 3. Let H , Q be two polynomials in V arP = {X1, X2, X3} over A such
that: H = 2X2

1 + 3X2X3 + 5X3 and Q = X2
1 + 3X2 + 2X3 + 4. We define a

function F (X1, X2, X3) = H −Q = X2
1 + 3X2X3− 3X2 + 3X3− 4. Consider the

following cases:

- A = N\{0}. For all a1, a2, a3∈A, F (a1, a2, a3)≥0. Hence, H≥AQ.
- A = N\{0, 1}. For all a1, a2, a3∈A, F (a1, a2, a3)>0. Hence, H>AQ.
- A = N. For a1 = a2 = a3 = 0, F (a1, a2, a3) = −4<0. For a1 = a2 = a3 = 2,
F (a1, a2, a3) = 12>0. Hence, H‖≥A

Q. �

Theorem 3. Let A�=∅. The ordering >A on PA
V arP

defined in definition 8 is a
well-founded ordering.

Proof. See [14].

Definition 9 (polynomial pre-interpretation).
A polynomial pre-interpretation J for a language of terms L consists of:

- a set of natural numbers A, A ⊆ N,
- an assignment that associates each n-ary function symbol f , n≥0, in L with

a polynomial Pf (Xf1 , ..., Xfm) from Am to A, where the coefficients of the
polynomial Pf/m are in N and the index set If = {f1, ..., fm}⊆{1, ..., n} is
determined by f/n.

Polynomial Interpretations as a Basis for Termination Analysis of LPs 317

Note that each constant c in L can be considered an 0-ary function symbol
and is assigned to an element cI of A. Another issue is that the set A should be
closed under evaluating the polynomials, i.e. for all f∈FunP and a1, ..., an∈A,
Pf (a1, ..., an)∈A. This extra condition is required in the definition because of the
fact that terms are recursively defined from their subterms. Thus, when selecting
a polynomial pre-interpretation, we not only select an appropriate polynomial
associated with each function symbol but also an appropriate set A such that
the above closure property is guaranteed.

Definition 10 (polynomial norm). The polynomial norm associated with a
polynomial pre-interpretation J is a mapping ‖.‖J : TermP→PA

V arP
which is

defined recursively as:

- ‖X‖J = X if X is a variable,
- ‖f(t1, ..., tn)‖J = Pf (‖tf1‖J , ..., ‖tfm‖J),

where Pf (X1, ..., Xm) and If = {f1, ..., fm} are the same as in the definition of
the polynomial pre-interpretation J .

Similarly, we define the notion of a polynomial interpretation that sets up an
abstract version of each predicate symbol.

Definition 11 (polynomial interpretation). A polynomial interpretation I
for a language L underlying a program P consists of a polynomial
pre-interpretation J for the language of terms defined by L extended by

- an assignment to each predicate symbol p/n, n≥0, in L of a polynomial
Pp(Xp1 , ..., Xpm) from Am to A, where the coefficients of the polynomial
Pp/m are in N and the index set Ip = {p1, ..., pm}⊆{1, ..., n} is determined
by p/n.

Definition 12 (polynomial level-mapping). The polynomial level-mapping
associated with a polynomial interpretation I is a mapping |.|I : AtomP→PA

V arP

which is defined as: |p(t1, ..., tn)|I = Pp(‖tp1‖J , ..., ‖tpm‖J) where Pp(X1, ..., Xm)
and Ip = {p1, ..., pm} are as in the definition of the polynomial interpretation I.

For each term t and atom A, we denote by Pt = ‖t‖J and PA = |A|I as the
polynomial interpretations of respectively t and A in I.

Example 4 (Dist). Consider the following distributive program Dist. This exam-
ple was introduced in [5] (see also [18]):

dist(x, x).
dist(x ∗ x, x ∗ x).
dist(X + Y, U + V) : −dist(X,U), dist(Y, V). (1)
dist(X ∗ (Y + Z), T) : −dist(X ∗ Y + X ∗ Z, T). (2)
dist((X + Y) ∗ Z, T) : −dist(X ∗ Z + Y ∗ Z, T). (3)

318 M.T. Nguyen and D. De Schreye

Let I be a polynomial interpretation that consists of a set A⊆N, an assign-
ment that associates the function symbol ∗/2 with the polynomial P∗ = X1∗X2,
the function symbol +/2 with the polynomial P+ = X1 +X2 +1, the constant x
with a constant cx∈A, and an assignment that associates the predicate symbol
dist/2 with the polynomial Pdist = X , where the variable X corresponds to
the first argument position of dist/2. The polynomial interpretation of the atom
A = dist(U ∗(X+Y), T) in I is: PA= |dist(U ∗(X+Y), T))|I = ‖U ∗(X+Y)‖J =
P∗(‖U‖J , ‖X+Y ‖J) = P∗(‖U‖J , P+(‖X‖J , ‖Y ‖J)) = ‖U‖J ∗(‖X‖J +‖Y ‖J +1)
= U ∗ (X + Y + 1). �

We define a quasi-ordering on UE
P ∪BE

P imposed by the ordering >A on PA
V arP

as follows:

Definition 13 (ordering on terms and atoms). Let P be a program and I
be a polynomial interpretation. We define 2I a quasi-ordering on UE

P such that:

- t4Is if and only if Pt >A Ps for any t, s∈UE
P ,

- t32Is if and only if Pt≤≥APs for any t, s∈UE
P ,

and �I a proper extension of 2I on UE
P ∪BE

P such that:

- B�IC if and only if PB >A PC for any B,C∈BE
P ,

- B��IC if and only if PB≤≥APC for any B,C∈BE
P ,

where Pt, Ps, PB, PC are polynomial interpretations of t, s, B and C.

Theorem 4. The strict orderings 4I and �I are well-founded orderings on UE
P

and UE
P ∪BE

P respectively.

Integrated with definition 4 and theorem 1 we obtain:

Proposition 1. Let P be a program and S be a set of atomic queries. If there
exists a polynomial interpretation I such that

- for any A∈Call(P, S),
- for any clause A′←B1, ..., Bn in P , such that mgu(A,A′) = θ exists,
- for any atom Bi, such that rel(Bi)�rel(A),
- for any computed answer substitution σ for ←(B1, ..., Bi−1)θ:

PA >A PBiθσ

where PA denotes the polynomial interpretation of the atom A,

then P left-terminates w.r.t. S.

Example 5. Reconsider example 4. We prove termination of the program with
the following set of queries S = {dist(t1, t2)|t1 is a ground term and t2 is a free
variable}. We choose the polynomial interpretation I of example 4 except that
A=N\{0, 1}. Then, ∀t∈TermP , ‖t‖J >A 1. Observe that the set Call(P, S) = S.
Suppose A = dist(t, s) is a selected atom in Call(P,S). There are 3 cases to
consider: clauses (1), (2) and (3). We present only the last one:

Polynomial Interpretations as a Basis for Termination Analysis of LPs 319

- A = dist((t1+t2)∗t3, s) (t1, t2, t3 are ground terms) and clause (3) is selected.
There exists a substitution θ such that θ = mgu(A, dist((X1 +Y1)∗Z1, T1)).
That implies X1θ = t1, Y1θ = t2, Z1θ = t3. Therefore, |dist((t1 + t2) ∗
t3, s)|I = ‖(t1 + t2) ∗ t3‖J = ‖t1 + t2‖J ∗ ‖t3‖J = ‖t1‖J ∗ ‖t3‖J + ‖t2‖J ∗
‖t3‖J + ‖t3‖J >A ‖t1‖J ∗ ‖t3‖J + ‖t2‖J ∗ ‖t3‖J + 1 = ‖t1 ∗ t3 + t2 ∗ t3‖J =
|dist(X1 ∗ Z1 + Y1 ∗ Z1, T1)θ|I .

With a similar verification for clauses (1) and (2), P is order-acceptable w.r.t.
S and P terminates on S. �

Next, we study rigidity of a call set w.r.t. a polynomial interpretation and
use it to verify rigid order acceptability.

3.2 Rigidity

First we present the classical notion of strictly monotone polynomials. This class
of polynomials is discussed in [18]. Next we study the rigidity of a set of (terms)
atoms w.r.t. a polynomial (pre-)interpretation that maps (terms) atoms to poly-
nomials.

Definition 14 (strictly monotone polynomials). Let A⊆N. A polynomial
P (X1, ..., Xn), n > 0, over A is called strictly monotone if and only if
t > s ⇒ P (a1, ..., ai−1, t, ai+1..., an) > P (a1, ..., ai−1, s, ai+1..., an) holds for all
i, 1≤i≤n, and all s, t, a1, ..., ai−1, ai+1..., an∈A\{0}.

Example 6. Reconsider example 3. Let A = N\{0}. Obviously, both H and Q
are monotone polynomials. �

Definition 15 (monotone polynomial (pre-)interpretation). A polyno-
mial pre-interpretation is called monotone if it associates each function symbol
f/n, n> 0 in FunP with a strictly monotone polynomial. A polynomial interpre-
tation is monotone if it consists of a monotone polynomial pre-interpretation
and an assignment that associates each predicate symbol p/n, n > 0, in PredP

with a strictly monotone polynomial.

Usually, when talking about rigidity, we are only interested in rigidity of a
set of terms (or atoms) w.r.t. a particular norm (or level mapping). In [2], Bossi,
Cocco and Fabris discussed rigidity of Call(P,S) w.r.t. a semi-linear norm and
a level mapping for some P and S. It is then generally extended to the case
of rigidity of Call(P,S) w.r.t. a general term ordering in [5]. In this paper, we
discuss rigidity of terms (or atoms) w.r.t. a polynomial interpretation and show
that it is also an extension of [2]. Let us recall and extend some basic notions
defined in [2].

Definition 16 (rigidity w.r.t. a polynomial (pre-)interpretation). A
term t∈UE

P is called rigid w.r.t. a polynomial pre-interpretation J if and only if
for any substitution θ, ‖t‖J≤≥A‖tθ‖J . An atom A∈BE

P is called rigid w.r.t. a
polynomial interpretation I if and only if for any substitution θ, |A|I≤≥A|Aθ|I .
In this case, J and I are said to be rigid on, respectively, t and A.

320 M.T. Nguyen and D. De Schreye

The notion of rigidity on a term or an atom is naturally extended to the notion
of rigidity on a set of terms or atoms. In particular, we are interested in polynomial
interpretations that are rigid on a call set Call(P, S) for some P and S.

Definition 17. Let J be a polynomial pre-interpretation and t be a term. The
ith occurrence X(i) of a variable X in t is called relevant w.r.t. J if there exists
a replacement {s→X(i)} of a term s for X(i) such that ‖t{s→X(i)}‖J �≡‖t‖J . We
call V REL(t) the set of all relevant occurrences of variables in t.

Obviously from definition 17, if a term t is not rigid w.r.t. J , there must be
some relevant occurrence of some variable in t.

Example 7. Let t = [X |X] and J be the polynomial pre-interpretation imposed
by the list-length norm ‖.‖l, P[H|T] = 1 + PT . Then, V REL(t) = {X(2)}. �

Proposition 2. Let J be a polynomial pre-interpretation and t be a term. If
V REL(t) = ∅, then t is rigid w.r.t. J . For the reverse direction, if J is monotone
and t is rigid w.r.t. J , then V REL(t) = ∅.

Proof. See [14].

The following proposition shows that monotone polynomial pre-interpreta-
tions characterize relevant subterms in a purely syntactic way.

Proposition 3. For any polynomial pre-interpretation J , for any term t, the
following property holds:

(i) V REL(t) = {t} if t is a variable,
(ii) V REL(t)⊆∪j=1,...,mV REL(tfj), if t=f(t1, ..., tn) and Pt=Pf (Ptf1

, ..., Ptfm
)

is the polynomial interpretation of t (tfj , 1≤j≤m, are the selected subterms
of t under J),

(iii) If J is monotone, then the inclusion in the conclusion of ii) becomes an
equality.

Proof. The proof is similar to the proof in [2] except that it is extended to the
case of polynomial pre-interpretations. �

The major advantage of monotone polynomial pre-interpretations is that
we can check the rigidity of a term t w.r.t. a given monotone polynomial pre-
interpretation in a syntactic way: namely to verifying emptiness of V REL(t). In
principle, another way of verifying that t is rigid under J is to compute Pt and
check that it is variable-free. However, this is computationally more expensive.

3.3 Applying Rigid Order Acceptability to Polynomial
Interpretations

First, we need the following notion of polynomial interargument relations.

Definition 18 (polynomial interargument relation). Let P be a program,
p/n be a predicate in P and I be a polynomial interpretation for the language

Polynomial Interpretations as a Basis for Termination Analysis of LPs 321

L underlying P . A polynomial interargument relation for p is a relation Rp =
{(t1, ..., tn)|ti∈TermP ∧ ϕp(Pt1 , ..., Ptn)}, where:

- ϕp(Pt1 , ..., Ptn) is a formula in a disjunctive normal form,
- each conjunct in ϕp is either Psi≥APsj , Psi>APsj , Psi≤≥APsj or Psi‖≥A

Psj ,
where si, sj are constructed from t1, ..., tn by applying functors of P .

Rp is a valid polynomial interargument relation for p/n w.r.t. I if and only if
for every p(t1, ..., tn)∈AtomP : P |= p(t1, ..., tn) implies (t1, ..., tn)∈Rp.

Using the notions of rigidity and polynomial interargument relations w.r.t. a
polynomial interpretation integrated with definition 7, theorem 2 and definition
13 we obtain:

Proposition 4. Let S be a set of atomic queries, P be a program and I be a
polynomial interpretation for the language L underlying P . For each predicate p
in P , let Rp be a valid polynomial interargument relation for p w.r.t. I. If I is
rigid on Call(P, S) such that

- for any clause H←B1, ..., Bn,
- for any atom Bi in its body, such that rel(Bi)�rel(H),
- for any substitution θ, such that the arguments of the atoms in (B1, ..., Bi−1)θ

satisfy their associated polynomial interargument relations Rrel(B1), ...,
Rrel(Bi−1),

PHθ >A PBiθ,

then P left-terminates w.r.t. S.

Example 8. Reconsider example 2. We are interested in proving termination of
the program w.r.t. the query set S={d(t1, t2)|t1 is a ground term and t2 is a free
variable}. Observe that Call(P, S) coincides with S.

Let I be a polynomial interpretation that consists of a set A = N\{0, 1},
an assignment that associates the function symbol der/1 with the polynomial
Pder = X2, +/2 with P+ = X1+X2, ∗/2 with P∗ = X1∗X2, the constant u with a
constant cu∈A and an assignment that associates the predicate symbol d/2 with
Pd = X , where the variable X corresponds to the first argument position of d/2.
Let Rd = {(t1, t2)|t1, t2∈TermP and Pt1≥APt2} be a polynomial interargument
relation w.r.t. the predicate d/2.

It is easy to verify that I is rigid on Call(P, S) and Rd is valid w.r.t. I. Then,
the program terminates if the following holds:

|d(der(X + Y), DX + DY)θ|I >A |d(der(X), DX)θ|I
d(der(X), DX)θ satisfies Rd implies

|d(der(X + Y), DX + DY)θ|I >A |d(der(Y), DY)θ|I
|d(der(X ∗ Y), X ∗DY + Y ∗DX)θ|I >A |d(der(X), DX)θ|I

d(der(X), DX)θ satisfies Rd implies
|d(der(X ∗ Y), X ∗DY + Y ∗DX)θ|I >A |d(der(Y), DY)θ|I

322 M.T. Nguyen and D. De Schreye

|d(der(der(X)), DDX)θ|I >A |d(der(X), DX)θ|I
d(der(X), DX)θ satisfies Rd implies

|d(der(der(X)), DDX)θ|I >A |d(der(DX), DDX)θ|I
They are equivalent to the following inequalities on X,Y,DX ∈ V arp:

(X + Y)2 >A X2 X2 >A DX⇒(X ∗ Y)2 >A Y 2

X2 >A DX⇒(X + Y)2 >A Y 2 X4 >A X2

(X ∗ Y)2 >A X2 X2 >A DX⇒X4 >A DX2

Since A = N\{0, 1}, the above inequalities are easily verified and the program
left-terminates. �

4 Automation: The General Idea

For automation of the approach, two sources of ideas and techniques are impor-
tant:

- the generalisation of the constraint-based approach to termination analysis
of [6] from linear norms and level mappings to polynomials.

- the integration of a number of useful results and heuristics from TRSs
([3,7,10,12,16]).

The idea of the approach in [6] is to set up a symbolic form for all concepts
involved in the termination conditions: in our case, the polynomial interpretation
of each function and predicate symbol, the polynomial interargument relations
and polynomial ordering conditions in proposition 4. Note that if we do not
put a limit on the maximal degree of the polynomial, then there can be no
finite general form of the polynomial associated with a term (there are infinitely
many monomials aiX

i1X i2 ...X ik to consider). This is why we associate each
function and predicate symbol with a simple-mixed polynomial, which is either
a multivariate polynomial with all variables of at most degree 1 or a unary
polynomial of at most degree 2.

From TRSs we borrow a sufficient condition for monotonicity of the polyno-
mials:

Proposition 5. (see also [18]) Let P =
∑r

i=1 aiX
ki,1
1 X

ki,2
2 ...X

ki,m
m be a polyno-

mial from Am to A for which A=N\{0},m > 0 and ai≥0 for all i = 1, ..., r, r>0.
P is strictly monotone if

∑r
i=1 aiki,j > 0 for every j = 1, ...,m.

Example 9. Reconsider example 4. Let the first and the second argument po-
sitions of the predicate dist/2 be, respectively, the input and output positions.
For all other function symbols, let all arguments be the input arguments. Let
I be a polynomial interpretation such that the constant x is associated with
xI∈A, the function symbol +/2 is associated with the polynomial P+(X,Y) =
f+
0 +f+

1 X +f+
2 Y +f+

3 XY , the function symbol ∗/2 is associated with the poly-
nomial P∗(X,Y) = f∗

0 + f∗
1X + f∗

2Y + f∗
3XY , and the predicate symbol dist/2

Polynomial Interpretations as a Basis for Termination Analysis of LPs 323

is associated with the polynomial Pdist(X) = fd
0 + fd

1X + fd
2X

2. I is monotone
if fd

1 + fd
2 ∗ 2 > 0, f+

1 + f+
3 > 0, f+

2 + f+
3 > 0, f∗

1 + f∗
3 > 0, f∗

2 + f∗
3 > 0. �

For the interargument relations, we only allow the linear interargument re-
lations of [6], i.e. Rp/n = {(t1, ..., tn)|

∑
i∈pinp

pe
iPti≥A

∑
j∈pout

pe
jPtj + pe

0}, with
pe

i∈N, i∈{1, ..., n}, pinp and pout respectively the sets of input and output argu-
ment positions of p/n. But because these are applied to polynomial interpreta-
tions of terms, they still give rise to non-linear conditions in general.

Example 9 (continued). As an example, the condition for a valid interargument
relation Rdist applied to clause 1 is of the following form:

(de
1X≥Ade

2U + de
0) ∧ (de

1Y≥Ade
2V + de

0) ⇒
de
1(f

+
0 + f+

1 X + f+
2 Y + f+

3 XY)≥Ade
2(f

+
0 + f+

1 U + f+
2 V + f+

3 UV) + de
0. �

Next all other polynomial inequality conditions from proposition 4 are trans-
lated into constraints on the introduced symbols.

Example 9(continued). As an example, for recursive clause 1, the following con-
straints are imposed:

fd
0 +fd

1 (f+
0 + f+

1 X + f+
2 Y + f+

3 XY)
+fd

2 (f+
0 + f+

1 X + f+
2 Y + f+

3 XY)2 >A fd
0 + fd

1X + fd
2X

2

de
1X≥de

2U + de
0 ⇒ fd

0 +fd
1 (f+

0 + f+
1 X + f+

2 Y + f+
3 XY)

+fd
2 (f+

0 + f+
1 X + f+

2 Y + f+
3 XY)2 >A fd

0 + fd
1 Y + fd

2Y
2 �

After normalisation, all the above constraints are transformed into the form:
P (X1, ..., Xn) ≥A 0 ⇒ Q(X1, ..., Xm)≥A0 or the form P (X1, ..., Xn)≥A0. In
[6] techniques are proposed to transform the constraints of the first type into
constraints of the second type. These can be extended to polynomials.

The following step is to transform all those constraints into constraints which
contain only coefficients as variables. It can be done by applying one of the
following approaches from TRS:

In the first approach of [10], the first step is to move from A⊆N to R+. Let
a be min{cI |cI∈A is a polynomial interpretation of a constant c}. Then instead
of demanding that any of these constraints should hold (i.e. P (X1, ..., Xn)≥0 for
all X1, ..., Xn∈A), it is sufficient to prove that P (X1, ..., Xn)≥0 for all X1, ..., Xn

∈ AR, AR = R+\[0, a). The next step is to apply repeatedly the following differ-
entiation rules to transform all polynomial constraints to constraints containing
only coefficients as variables:

P (..., Xi, ...) > 0

P (..., a, ...) > 0, ∂P (...,Xi,...)
∂Xi

≥0

P (..., Xi, ...)≥0

P (..., a, ...)≥0, ∂P (...,Xi,...)
∂Xi

≥0

Note the introduction of the inequations on the derivatives, which are actually
extra constraints. Within TRS it has been argued that imposing these extra
constraints is most often reasonable as it allows to eliminate all variables Xi and
because, if a solution to the original problem exists, the solution space is usually

324 M.T. Nguyen and D. De Schreye

large enough to also contain an element that respects the extra constraints.
There are a number of heuristics that can be applied to solve these constraints.

In the second approach of [3], all constraints are transformed to Diophan-
tine inequalities. Then, if we put an arbitrary bound on the values of variable
coefficients (e.g., [0, B]), the problem becomes solving a finite domain constraint
satisfaction problem for a finite set of variables. Here finite-domain constraint
solvers provide a variety of techniques to solve the remaining inequalities.

5 Conclusions

Since a few years ago, the LP termination analysis community and the TRS
termination analysis community jointly organize the “International Workshop
on Termination” (WST). These workshops have raised a considerable interest
in gaining a better understanding of each others approaches. It soon became
clear that there has to be a close relationship between one of the most popular
techniques in TRS, polynomial interpretations, and one of the key techniques
in LP, acceptability with linear norms and level mappings. However, partly be-
cause of the distinction between orderings over the natural numbers (LP) versus
orderings over polynomials (TRS), the actual relation between the approaches
was unclear.

One main conclusion of the research that led to this paper is that the distinc-
tion is a superficial one. Although termination conditions in LP are formulated
in terms of mappings to natural numbers, the actual termination proofs do not
reason on natural numbers. They are formulated in terms of linear inequalities.
In fact, LP termination analysis systems never work on the basis of the norm and
the level mapping; they work on the level of the abstract norm and abstract level
mapping (see [17]). As such, one outcome of the work is that, indeed, the polyno-
mial interpretations of TRS are a direct generalization of the current LP practice.

On the more technical level, the contribution of this paper is that we provide a
complete theoretical framework for polynomial interpretations in LP termination
analysis. Part of this builds strongly on the results in [5] on order acceptability,
another part extends the results of Bossi et al. [2] on syntactic characterization
of rigidity.

In the paper we only provide two examples of the class of programs forwhich the
extension from linear to polynomial interpretations is important. Note that typical
examples in LP termination analysis are often deliberately chosen to be linear, to
remain in the scope of the designed techniques. Non-linear polynomial functions
are present in many real world problems and programs encoding these problems
are bound to require polynomial interpretations for their termination proofs.

It remains to be studied how we can benefit from the huge amount of work
that people in TRS termination analysis have spent on automating proofs with
polynomial interpretations and how integration of these techniques with the
best approaches of LP termination analysis can lead to even more powerful
techniques. We expect that this will lead to the development of a powerful new
termination analyzer in the near future.

Polynomial Interpretations as a Basis for Termination Analysis of LPs 325

Acknowledgements

Manh Thang Nguyen is supported by GOA/2003/08. We thank the referees for
useful comments.

References

1. K. R. Apt. Logic programming. In Handbook of theoretical computer science (vol.
B): formal models and semantics, pages 493–574. MIT Press, 1990.

2. A. Bossi, N. Cocco, and M. Fabris. Proving termination of logic programs by
exploiting term properties. In TAPSOFT, Vol.2, pages 153–180, 1991.

3. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. J. Auto. Reason., 2005.

4. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. J. Log. Program., 19-20:199–260, 1994.

5. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Com-
putational Logic: Logic Programming and Beyond, pages 187–210. Springer Verlag,
2002.

6. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint based automatic ter-
mination analysis of logic programs. ACM Trans. Program. Lang. Syst, 21(6):1137–
1195, November 1999.

7. N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1-2):69–116, 1987.
8. N. Dershowitz. 33 examples of termination. LNCS, 909:16–26, 1995.
9. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of

the operational behaviour of logic languages. Theor. Comput. Sci., 63(3):289–318,
1989.

10. J. Giesl. Generating polynomial orderings for termination proofs. In RTA, pages
426–431, 1995.

11. G. Janssen and M. Bruynooghe. Deriving descriptions of possible values of program
variables by means of abstract interpretation. J. Log. Program., 13(2&3):205–258,
1992.

12. D. S. Lankford. On proving term rewriting systems are noetherian. Technical
report, Mathematics Department, Louisiana Tech. University, Ruston, LA, 1979.

13. J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, 1987.
14. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for ter-

mination analysis of logic programs. Technical report, Department of Computer
Science, K.U.Leuven, Belgium, 2005.

15. A. Serebrenik. Termination Analysis of Logic Programs. PhD thesis, Department
of Computer Science, K.U.Leuven, Belgium, 2003.

16. J. Steinbach. Generating polynomial orderings. Inf. Process. Lett., 49(2):85–93,
1994.

17. K. Verschaetse and D. De Schreye. Deriving termination proofs for logic programs,
using abstract procedures. In Proceedings 8th ICLP, pages 301–315, 1991.

18. H. Zantema. Termination, In Terese, Term Rewriting Systems, chapter 6. Cam-
bridge Univ. Press, 2003.

Testing for Termination with
Monotonicity Constraints

Michael Codish1,�, Vitaly Lagoon2, and Peter J. Stuckey2,3

1 Department of Computer Science, Ben-Gurion University, Israel
2 Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
3 NICTA Victoria Laboratory

mcodish@cs.bgu.ac.il,
{lagoon, pjs}@cs.mu.oz.au

Abstract. Termination analysis is often performed over the abstract
domains of monotonicity constraints or of size change graphs. First, the
transition relation for a given program is approximated by a set of de-
scriptions. Then, this set is closed under a composition operation. Finally,
termination is determined if all of the idempotent loop descriptions in
this closure have (possibly different) ranking functions. This approach
is complete for size change graphs: An idempotent loop description has
a ranking function if and only if it has one which indicates that some
specific argument decreases in size. In this paper we generalize the size
change criteria for size change graphs which are not idempotent. We
also illustrate that proving termination with monotonicity constraints is
more powerful than with size change graphs and demonstrate that the
size change criteria is incomplete for monotonicity constraints. Finally,
we provide a complete termination test for monotonicity constraints.

1 Introduction

Termination analysis is often performed by approximating the transition relation
induced by a program. For logic programs this is a relation on the calls to
predicates encountered during computation. A transition from call p(t̄) to a
subsequent call q(s̄) in some computation can be represented as a binary clause
of the form p(t̄) ← q(s̄). A semantics which specifies this transition relation
is introduced and shown to make calls observable in [6]. It is shown to make
termination observable in [2]. The TerminWeb termination analyzer for logic
programs [2] is basically, a meta-interpreter for an abstraction of this semantics
with transitions approximated by monotonicity constraints [1].

Size change graphs were introduced in [7] and are similar to monotonicity
constraints. These two domains are used by an increasing number of termination
analyzers for a variety of languages including: TermiLog [9,8] and TerminWeb [2]
for logic programs, implementations for simple first-order functional languages
[13,4] and the AProVE analyzer for term rewrite systems [12].
� Research performed at the University of Melbourne.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 326–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Testing for Termination with Monotonicity Constraints 327

Monotonicity constraints and size change graphs can be represented as (ab-
stract) binary clauses of the form p(x̄) ← μ(x̄, ȳ), q(ȳ) where x̄ and ȳ are tuples
of distinct variables and μ(x̄, ȳ) is a conjunction of binary constraints of the form
u > v,u ≥ v on the sizes of the data before and after a corresponding concrete
transition. For monotonicity constraints u and v are any variables among x̄ and
ȳ. Size change graphs are more restricted with u in x̄ and v in ȳ. When p and
q are the same symbol the (abstract) binary clause is recursive and describes a
loop.

Example 1. Consider the predicate ackerman/3 below (on the left) which com-
putes Ackerman’s function. The size change graphs (on the right) describe the
induced transition relation. In subsequent calls to this predicate, either the first
argument decreases in size or else it does not increase in size and the second
argument decreases in size.

ackerman(0, N, s(N)).
ackerman(s(M), 0, Res) ←

ackerman(M, s(0), Res).
ackerman(s(M), s(N), Res) ←

ackerman(s(M),N, Res1),
ackerman(M,Res1, Res).

ackermann(x1, x2, x3) ←
x1 > y1, ackermann(y1, y2, y3).

ackermann(x1, x2, x3) ←
x1 ≥ y1, x2 > y2, ackermann(y1, y2, y3).

This paper is not concerned with how approximations of transition rela-
tions are obtained, but rather with the question of how termination is proven
given such an approximation. Existing analyzers provide the approximations as
a starting point for this paper.

In the classic approach, to prove termination of a program P one should
identify a ranking function f from program states to the elements of a well
founded domain and show that f decreases as execution proceeds through all of
the loops in P . For example, one might show that the function f(u1, u2, u3) =
〈u1, u2〉 decreases with respect to the lexicographic ordering for both of the loop
descriptions in Example 1. This is a global ranking function — it is shown to
decrease for all loop descriptions in the analysis.

An alternative approach is based on the application of local ranking func-
tions. In this approach, under the condition that the set of loop descriptions is
“closed under composition” (resolution of abstract binary clauses), termination
is guaranteed if for each individual loop description a (possibly different) ranking
function is shown to decrease when execution goes through that loop.

The main advantage in applying local ranking functions is that they take a
simpler form than corresponding global ranking functions and are easy to find
automatically. Moreover, it is sufficient to find ranking functions only for those
descriptions which are idempotent (a description is idempotent if it remains
invariant when composed with itself) [7]. There is also a disadvantage: as illus-
trated in [7], for size change graphs, there is a worst case exponential growth
factor (in the number of arguments) associated with the computation of clo-
sure under composition. The following example illustrates the advantage. The
disadvantage is the topic of another paper.

328 M. Codish, V. Lagoon, and P.J. Stuckey

Example 2. Consider the following three loop descriptions (which are idempo-
tent and closed under composition)1.

p(x1, x2, x3) ← x1 > y2, x2 ≥ y2, x3 > y3, p(y1, y2, y3).
p(x1, x2, x3) ← x1 > y1, x2 ≥ y1, p(y1, y2, y3).
p(x1, x2, x3) ← x1 > y2, x2 > y2, p(y1, y2, y3).

Local ranking functions are respectively f1(u1, u2, u3) = u3, f2(u1, u2, u3) = u1,
and f3(u1, u2, u3) = u2. The function min(u1, u2) decreases for the third loop
description and does not increase for the first two descriptions. The functions
〈min(u1, u2), u3〉 and 〈min(u1, u2), u1〉 decrease (with respect to the lexicographic
ordering) for the first two and last two loop descriptions respectively. One can
verify that there does not exist any function based on lexicographic ordering of
linear functions (even allowing minimum and maximum functions) that is a
global ranking function for this example.

The correctness of the local approach is first given by Dershowitz et al. [3]
and is based on the application of Ramsey’s Theorem [11]. The approach is also
complete [7] in the sense that an idempotent size change graph has a ranking
function if and only if it has one of the form f(ū) = ui. Hence an algorithm to
decide termination for size change graphs is obtained.

The first contribution of this paper is to generalize the completeness result
for size change graphs which are not necessarily idempotent. Here, if there exists
any ranking function then there exists one of the form f(u1, . . . , un) = Σaiui

with all coefficients ai ∈ {0, 1}. In [8] the authors suggest a termination test
for monotonicity constraints which is the one implemented in TermiLog and
TerminWeb. We show that this test provides a simple decision procedure for the
existence of a ranking function for a size change graph (idempotent or not).

We proceed to illustrate that size change termination is incomplete for mono-
tonicity constraints which are not size change graphs. This fact has been over-
looked until now. Both TermiLog and TerminWeb implement for monotonicity
constraints the test which is complete for size change graphs. The second con-
tribution of this paper is to provide completeness results for monotonicity con-
straints: for an idempotent monotonicity constraint, if there exists any ranking
function then there exists one of the form f(u1, . . . , un) = ui or of the form
f(u1, . . . , un) = ui − uj . For arbitrary monotonicity constraints if there exists a
ranking function then there exists one which is linear.

In [10], the authors present an efficient test for termination for loop descrip-
tions for a domain which is more general than monotonicity constraints. Their
approach is complete with respect to linear ranking functions: if there exists a
linear ranking function then the proposed procedure will succeed (and synthe-
size it). However, if the procedure fails, it could be the case that there exists a
ranking function which is non-linear. Our result implies that the test presented
in [10] is complete for monotonicity constraints.

The remainder of this paper is structured as follows: Section 2 introduces
monotonicity constraints and size change graphs. Section 3 describes the com-
1 This example was suggested by Amir Ben Amram.

Testing for Termination with Monotonicity Constraints 329

pleteness result for idempotent size change graphs and extends it for arbitrary
size change graphs. Section 4 illustrates that size change termination is incom-
plete for monotonicity constraints and provides two completeness results: first
for idempotent descriptions and second for descriptions which are not necessarily
idempotent. Section 5 concludes.

2 Monotonicity Constraints and Size Change Graphs

Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , yn〉 denote n-tuples of variables taking
non-negative integer values. When clear from the context we let these denote
the corresponding sets of variables. Intuitively, these values correspond to the
sizes of terms in a computation, with respect to a given norm function.

Definition 1 (monotonicity constraint, size change graph). A mono-
tonicity constraint is a binary clause of the form p(x̄) ← μ(x̄, ȳ), q(ȳ) where
μ(x̄, ȳ) is a conjunction of constraints of the form u ≥ v + b, denoted also
u 4b v, with u, v ∈ x̄ ∪ ȳ and b ∈ {0, 1}. We write also u > v and u ≥ v
when respectively b = 1 or b = 0 or u 4 v when not distinguishing between
the two cases. If constraints are restricted so that u ∈ x̄, v ∈ ȳ then μ(x̄, ȳ) is
called a size change graph. When clear from the context we refer to μ(x̄, ȳ) as
the monotonicity constraint (or size change graph).

A monotonicity constraint μ(x̄, ȳ) can be viewed as a directed graph with
nodes x̄∪ ȳ and an edge labeled by b from u to v if and only if μ(x̄, ȳ) |= u 4b v.
For size change graphs this view gives a directed bipartite graph. In the examples,
graphs are depicted with solid and dashed arrows representing edges of the form
u > v and u ≥ v respectively. We often omit edges which can be inferred from
those drawn. A monotonicity constraint is satisfiable if and only if its graph
representation has no cycle with a solid edge. Note that a size change graph
is always satisfiable. The size change graphs from Example 2 are depicted in
Figure 1.

Monotonicity constraints induce corresponding transition relations.

Definition 2 (transition relation).
A monotonicity constraint p(x̄)← μ(x̄, ȳ), q(ȳ) induces a transition relation "μ

on labeled vectors of non-negative integers given by p(ā) "μ q(b̄) if and only if
μ(ā, b̄) is valid. When clear from the context we drop the labels p and q.

A derivation for a set of monotonicity constraints is a chain in the correspond-
ing transition relations. For the completeness results of this paper it is sufficient
to consider derivations induced by a single recursive monotonicity constraint.

x1

���
��

��
� x2

���
�
� x3

��
y1 y2 y3

x1

��

x2

���
�

�
x3

y1 y2 y3

x1

���
��

��
� x2

��

x3

y1 y2 y3

Fig. 1. Size change graphs from Example 2

330 M. Codish, V. Lagoon, and P.J. Stuckey

x1

���
��

��
� x2

���
�

�
x3

�������������

y1 y2 y3

x1

����
��

� x2

���
�

�
x3

�������������

z1

��	
		

		
z2

��

z3

�������������

y1 y2 y3

x1

��

x2

��

x3

		��
��
��
��
��

y1 y2 y3

(a) (b) (c)

Fig. 2. Constraints of Example 3: (a) monotonicity constraint μ(x̄, ȳ), (b) derivation
constraint μ(x̄, z̄, ȳ), and (c) self composition μ2(x̄, ȳ)

Definition 3 (derivation, derivation constraint). Let p(x̄) ← μ(x̄, ȳ), p(ȳ)
be a recursive monotonicity constraint. A derivation of μ(x̄, ȳ) is a chain of non-
negative integer vectors of the form ā0 "μ ā1 "μ · · · "μ āk which may also be
infinite. For a finite derivation, there is a corresponding derivation constraint
μ(x̄0, . . . , x̄k) = μ(x̄0, x̄1)∧ · · · ∧μ(x̄k−1, x̄k). A derivation constraint can also be
viewed as a directed graph.

The composition of monotonicity constraints is defined through renaming of
variables (graph nodes), conjunction and entailment. Derivation constraints and
composition are illustrated in Figure 2.

Definition 4 (composition of monotonicity constraints). The composi-
tion of monotonicity constraints μ1(x̄, ȳ) and μ2(x̄, ȳ) is given by

μ1(x̄, ȳ) ◦ μ2(x̄, ȳ) =
∧{

u 4b v
∣∣u, v ∈ x̄ ∪ ȳ, μ1(x̄, z̄) ∧ μ2(z̄, ȳ) |= u 4b v

}
.

We denote by μk(x̄, ȳ) the composition of μ(x̄, ȳ) with itself k times.

Definition 5 (idempotent monotonicity constraints). A monotonicity
constraint, μ(x̄, ȳ), is idempotent if and only if μ2(x̄, ȳ) = μ(x̄, ȳ).

Example 3. The monotonicity constraint μ(x̄, ȳ) = x1 > y2 ∧ x2 ≥ y1 ∧ x3 >
y1 is depicted as Figure 2(a). The derivation constraint μ(x̄, z̄, ȳ) is shown in
Figure 2(b) and consists of 2 copies of μ(x̄, ȳ). The self composition μ2(x̄, ȳ) is
depicted in Figure 2(c). The constraint of Figure 2(a) is not idempotent but the
constraint of Figure 2(c) is. Note that μ(x̄, z̄, ȳ) |= x3 ≥ y2 + 2 while μ2(x̄, ȳ) |=
x3 ≥ y2 + 1. This illustrates that (projections of) derivation constraints are not
monotonicity constraints.

Definition 6 (closure under composition). Let G be a set of monotonicity
constraints. We denote by G∗ the closure of G under composition. This is the
smallest superset of G such that if μ1(x̄, ȳ) ∈ G∗ and μ2(x̄, ȳ) ∈ G∗ then also
μ1(x̄, ȳ) ◦ μ2(x̄, ȳ) ∈ G∗.

A central notion when proving termination is that of a ranking function. We
focus on ranking functions for individual monotonicity constraints.

Definition 7 (ranking function). A ranking function for a monotonicity con-
straint μ(x̄, ȳ) is a mapping f from tuples of non-negative integers to a well
founded domain (D,≺D) such that μ(x̄, ȳ) |= f(ȳ) ≺D f(x̄).

Testing for Termination with Monotonicity Constraints 331

In this paper we often choose ranking functions mapping to the domain of
natural numbers (N , <) with the standard ordering.

Example 4. Consider the size change graph μ(x̄, ȳ) from Figure 2(a). The func-
tion f(ū) = u1 + u2 on the natural numbers is a ranking function for μ(x̄, ȳ).

Theorem 1 (correctness [3,7]). Let G be a finite set of monotonicity con-
straints which approximates the loops in the transition relation of a program
P . If for each of the idempotent monotonicity constraints in G∗ there exists a
(possibly different) ranking function then P terminates.

The proofs in [3] and [7] are for monotonicity constraints and size change
graphs respectively. The proofs are essentially the same and presented as appli-
cations of Ramsey’s Theorem [11].

3 Completeness for Size Change Graphs

In [7] the authors present a completeness result for size change graphs. We
rephrase this result in terms of ranking functions.

Theorem 2 (completeness – idempotent size change graphs). Let μ(x̄, ȳ)
be an idempotent size change graph. If there exists a ranking function for μ(x̄, ȳ)
then there exists one mapping to (N , <) of the form f(u1, . . . , un) = ui.

We present a proof, different from the one in [7]. Following this proof will
help understand its generalizations in the remainder of this paper. The proof
relies on the following two lemmata.

Lemma 1. If μ(x̄, ȳ) is an idempotent monotonicity constraint which implies
xi 4b1 yj and xj 4b2 yk (or yi 4b1 xj and yj 4b2 xk) then it implies also
xi 4b1∨b2 yk (or yi 4b1∨b2 xk).

Proof. By definitions of composition and idempotence.

Lemma 2. If μ(x̄, ȳ) is an idempotent size change graph, then either for some
argument i, μ(x̄, ȳ) |= xi > yi; or μ(x̄, ȳ) ∧ x̄ = ȳ is satisfiable.

Proof. Let μ(x̄, ȳ) be an idempotent size change graph and assume that the second
condition does not hold. Since μ(x̄, ȳ) is a size change graph, μ(x̄, ȳ) must be
satisfiable and there must be an alternating sequence of constraints implied by
μ(x̄, ȳ) and x̄ = ȳ, forming a simple cycle, as depicted in Figure 3 and of the
form: xi1 4b1 yi2 = xi2 4b2 yi3 . . . yik

= xik
4bk yi1 = xi1 with b1 ∨ · · · ∨ bk = 1.

From idempotence using Lemma 1 since the constraints xi1 4b1 yi2 , xi2 4b2 yi3 ,
. . ., xik

4bk yi1 are implied by μ(x̄, ȳ) then so is the constraint xi1 > yi1 . Hence
the first condition must hold.

For the proof of Theorem 2, we know only that μ(x̄, ȳ) has some ranking
function of an unknown form. This is sufficient to guarantee that the transition
relation induced by μ(x̄, ȳ) has no infinite derivations.

332 M. Codish, V. Lagoon, and P.J. Stuckey

xi1
b1

������ xi2
b2

�������� x3

�� . . .

������� xik

bk��������������������������������

yi1

�
�

yi2

�
�

y3

�
�

. . .

�
�
�

yik

�
�

Fig. 3. An alternating cycle of inconsistent constraints from μ(x̄, ȳ) and x̄ = ȳ

Proof. (of Theorem 2) Assume μ(x̄, ȳ) has a ranking function. So μ(x̄, ȳ)∧ x̄ = ȳ
is not satisfiable. Otherwise there would be a vector ā such that ā "μ ā giving
an infinite derivation. By Lemma 2, μ(x̄, ȳ) |= xi > yi and so f(u1, . . . , un) = ui

is a ranking function.

Theorems 1 and 2 provide the basis for a decision procedure [7]. For a set
of size change graphs G, first compute G∗ and then check for each μ(x̄, ȳ) ∈ G∗

if it is idempotent and if:
∨

1≤i≤n(μ(x̄, ȳ) |= xi > yi). We can strengthen this
statement checking instead for each idempotent size graph the condition:

μ(x̄, ȳ) |=
∨

1≤i≤n

(xi > yi) (1)

This is justified by the following result.

Lemma 3. Let μ(x̄, ȳ) be an idempotent size change graph. Then∨
1≤i≤n

(μ(x̄, ȳ) |= xi > yi) ⇔ μ(x̄, ȳ) |=
∨

1≤i≤n

(xi > yi).

The graph in Figure 2(a) demonstrates that this result does not hold for
non-idempotent size change graphs.

Proof. (of Lemma 3) (⇒) Obvious. (⇐) If μ(x̄, ȳ) |=
∨

i xi > yi then μ(x̄, ȳ) ∧∧
i(xi = yi) is not satisfiable. Hence, by Lemma 2, μ(x̄, ȳ) implies a constraint

of the form xi > yi as required.

It is interesting to note that the condition of Equation (1) is precisely that
implemented in TermiLog and TerminWeb where no test for idempotence is ap-
plied. We proceed to generalize the completeness result of Theorem 2 to apply
for size change graphs which are not necessarily idempotent. We show the con-
dition of Equation (1) is complete for arbitrary size change graphs, idempotent
or not. It means that we need not test for idempotence in an implementation.

Theorem 3 (Completeness – arbitrary size change graphs). Let μ(x̄, ȳ)
be a size change graph (not necessarily idempotent). If there exists any ranking
function for μ(x̄, ȳ) then there exists one mapping to the non-negative integers
of the form f(u1, . . . , un) =

∑
aiui with all coefficients ai ∈ {0, 1}.

The proof follows from the observation that a set of size change graphs closed
under composition is a finite semigroup with composition as the operator.

Lemma 4 (idempotent self composition). Let μ(x̄, ȳ) be a monotonicity
constraint. Then there exists a positive integer k such that μk(x̄, ȳ) is idempotent.

Testing for Termination with Monotonicity Constraints 333

Proof. A finite non-empty semigroup of the form
{
ak
∣∣k ∈ Z+

}
contains pre-

cisely one idempotent element [5].

Proof. (of Theorem 3) Let f mapping to (D,≺D) be a ranking function for size
change graph μ(x̄, ȳ). By Lemma 4, there exists a positive k such that μk(x̄, ȳ)
is idempotent. By transitivity of ≺D, f is also a ranking function for μk(x̄, ȳ).
By Theorem 2, μk(x̄, ȳ) has a ranking function of the form f ′(u1, . . . , un) = ui

indicating the presence of a corresponding strict down arrow μk(x̄, ȳ) |= xi > yi.
It follows that μ(x̄0, x̄1), . . . , μ(x̄k−1, x̄k) imply respectively constraints forming
a chain of the form x0

i0
4b1 x1

i1
4b2 x2

i2
4 · · · 4 xk−1

ik−1
4bk xk

ik
with i0 = ik =

i such that at least one of b1, . . . , bk is 1 (i.e., strict). It follows that μ(x̄, ȳ)
implies corresponding constraints xi0 4b1 yi1 , xi1 4b2 yi2 , . . ., xik−2 4bk−1 yik−1 ,
xik−1 4bk yik

with i0 = ik = i. Summing these constraints we get xi0 + · · · +
xik−1 > yi0 + · · ·+ yik−1 .

We can assume without loss of generality that there are no repeated in-
dices among i0, . . . , ik−1. Hence we obtain the required result taking coefficients
ai0 , . . . , aik−1 equal to one and all others equal to zero.

If there were a repeated index i� = i�′ = i′ then the sequence would be of the
form x0

i0 4 x1
i1 4 · · · 4 x�

i�
4 · · · 4 x�′

i�′ 4 · · · 4 xk
ik

. At least one of the shorter
sequences: that starting and ending in argument position i without the segment
from i′ to i′, or that starting and ending in argument position i′ must contain a
strict relation and can be chosen instead.

Theorem 3 does indicate an efficient test for termination and it would seem
to require checking all possible combinations of coefficients ai ∈ {0, 1}. We show
that the, easy to implement, condition of Equation (1) is a complete test for
non-idempotent graphs.

Corollary 1 (detecting ranking functions). A size change graph μ(x̄, ȳ) has
a ranking function if and only if

μ(x̄, ȳ) |=
∨

1≤i≤n

xi > yi.

Proof. (⇒) Assume to the contrary that μ(x̄, ȳ) has a ranking function and
μ(x̄, ȳ) ∧ ¬

∨
i(xi > yi) has a solution. So μ(x̄, ȳ) ∧

∧
i(xi ≤ yi) has a solution

which implies that μ(x̄, ȳ)∧ (Σiaixi ≤ Σiaiyi) has a solution for any coeeficients
ai. This is a contradiction because by Theorem 3, μ(x̄, ȳ) |= Σiaixi > Σiaiyi for
some coefficients ai ∈ {0, 1}. (⇐) If μ(x̄, ȳ) |=

∨
i(xi > yi) then μ(x̄, ȳ) ∧ x̄ = ȳ

is not satisfiable and follow the proof of Theorem 2 up till the point when we
get a simple cycle of constraints of the form depicted in Figure 3 (this part does
not rely on idempotence). Summing these constraints gives a ranking function
of the form f(ū) = Σiaiui with ai ∈ {0, 1}.

4 Completeness for Monotonicity Constraints

Monotonicity constraints are more expressive than size change graphs. They may
contain relations of the form yi 4 xj , going “up” in the graph representation,

334 M. Codish, V. Lagoon, and P.J. Stuckey

and also “horizontal” loop invariants of the form xi 4 xj or of the form yi 4
yj . An analyzer based on size change graphs cannot prove termination when
the size of an argument is increasing in a loop towards an upper bound. The
following generic example illustrates that size change termination is incomplete
for monotonicity constraints.

Example 5. Consider a program involving a loop of the form while (a1 < a2)
a1 := a1 + 1. A corresponding loop description involves a monotonicity con-
straint of the form μ(x̄, ȳ) = x1 < x2, x1 < y1, x2 = y2 which is idempotent but
not a size change graph. While the loop clearly terminates, neither f(u1, u2) = u1
nor f(u1, u2) = u2 is a ranking function. There is however a ranking function
of the form f(u1, u2) = u2 − u1.

We provide a completeness result for monotonicity constraints. If μ(x̄, ȳ) is
an idempotent monotonicity constraint and has a ranking function, then it has
a ranking function of the form f(u1, . . . , un) = ui or of the form f(u1, . . . , un) =
ui− uj for 1 ≤ i, j ≤ n. If μ(x̄, ȳ) is not idempotent, then it has a linear ranking
function.

The extra expressiveness of monotonicity constraints introduces several prob-
lems. First, a monotonicity constraint μ(x̄, ȳ) or one of its derivation constraints
may be unsatisfiable and hence have no infinite derivations. For example,
μ(x̄, ȳ) = x1 > x2 ∧y1 ≤ y2 is satisfiable but μ(x̄, z̄, ȳ) is not. A second problem
is illustrated in Figure 4. The constraint in Figure 4(a) is idempotent and has no
infinite derivations because the value in its first argument is strictly decreasing
in any such derivation. However there is no direct down arc in μ(x̄, ȳ). If we re-
strict attention to constraints with balanced invariants we avoid both problems.
This is not a limitation for termination analysis as every postcondition of a loop
is the precondition for the next time around.

Definition 8 (balanced constraint). A monotonicity constraint μ(x̄, ȳ) is
balanced if μ(x̄, ȳ) |= xi 4b xj ⇔ μ(x̄, ȳ) |= yi 4b yj. The balanced extension
μB(x̄, ȳ) of μ(x̄, ȳ) is the smallest monotonicity constraint which includes μ(x̄, ȳ)
and is balanced. We define bal(μ)(x̄, ȳ)) = μ(x̄, ȳ) ∧ {xi 4b xj | μ(x̄, ȳ) |= yi 4b

yj} ∧ {yi 4b yj | μ(x̄, ȳ) |= xi 4b xj}. Clearly μ(x̄, ȳ)B = bal4n(n−1)(μ)(x̄, ȳ))
since there are at most 4n(n−1) constraints that can be added by bal. There are
tighter bounds but that will suffice for our purposes.

The balanced extension of the constraint in Figure 4(a) is shown in Fig-
ure 4(b) and with transitive closure in Figure 4(c). The downwards paths are
now explicit. The balanced extension of a constraint is almost equivalent to the
original, particularly in its powers. Figures 4(d) and (e) illustrate the similarity.
For termination analysis we can restrict our attention to balanced extensions
because of the following two Lemmata.

Lemma 5. If monotonicity constraint μ(x̄, ȳ) is balanced, then either the deriva-
tion constraint μ(x̄0, . . . , x̄m) is satisfiable for all m > 0 or μ(x̄, ȳ) is unsatisfiable.

Proof. Assume that μ(x̄, ȳ) is balanced and let m > 0 be such that μ(x̄0, . . . , x̄m)
is not satisfiable. Hence for some variable xk

i (at level k in argument i) there

Testing for Termination with Monotonicity Constraints 335

x1

������ x2 ����� x3

y1 y2 y3�� �������

(a)

x1

������ x2 ����� x3
�� �������

y1 y2 ����� y3�� �������

(b)

x1

������
�� ���������������� x2 �������� � �

������
���������� x3

�� �������

����������
����������������

y1 y2 �������� � � y3�� �������

(c)

x0
1

���
��

��
�

��

x0
2

���� x0
3

x1
1

���
��

��
�

��

x1
2

���� x1
3�� ���

��
x2

1

���
��

��
� x2

2
���� x2

3�� ���

��
x3

1 x3
2 x3

3�� ���

x0
1

���
��

��
�

��

x0
2

���� x0
3�� ���

��
x1

1

���
��

��
�

��

x1
2

���� x1
3�� ���

��
x2

1

���
��

��
�

��

x2
2

���� x2
3�� ���

��
x3

1 x3
2

���� x3
3�� ���

(d) (e)

Fig. 4. (a) An unbalanced but idempotent constraint μ(x̄, ȳ), (b) its balanced extension
μB(x̄, ȳ), and (c) μB(x̄, ȳ) indicating also transitive paths, (d) derivation constraint
μ(x̄0, x̄1, x̄3, x̄4), and (e) μB(x̄0, x̄1, x̄3, x̄4)

is a strict cycle of constraints implied by μ(x̄0, . . . , x̄m) of the form xk
i 4 xk′

j 4
xk′

j′ 4 xk
i′ 4 xk

i such that: (i) if k = k′ then i �= j, i = i′ and j = j′; or (ii)
k′ = k ± 1. Thus, as μ(x̄, ȳ) is balanced it must also imply a strict cycle of the
form xi 4 xj 4 xi (if k = k′) or of the form xi 4 yj 4 yj′ 4 xi′ 4 xi (if
k′ = k+1) or of the form yi 4 xj 4 xj′ 4 yi′ 4 yi (if k′ = k− 1). Hence μ(x̄, ȳ)
is not satisfiable.

Lemma 6. Monotonicity constraint μ(x̄, ȳ) has an infinite derivation if and
only if its balanced extension μB(x̄, ȳ) has an infinite derivation.

Proof. (sketch) (⇐) Let b̄0 "μB b̄1 "μB b̄2 "μB · · · be an infinite derivation for
the balanced extension. Since μB(x̄, ȳ) |= μ(x̄, ȳ), the infinite derivation b̄0 "μ

b̄1 "μ b̄2 "μ · · · exists. (⇒) Let ā0 "μ · · · āk "μ āk+1 "μ · · · be an infinite
derivation. One can show by induction that for any k and � such that 0 ≤ � ≤ k,
āk "bal�(μ) āk+1. Now given that μB(x̄, ȳ) = bal4n(n−1)(μ(x̄, ȳ)) we have the
infinite derivation ā4n(n−1) "μB ā4n(n−1)+1 "μB a4n(n−1)+2 "μB · · · .

Theorem 4 (Completeness for idempotent monotonicity constraints).
Let μ(x̄, ȳ) be a balanced idempotent monotonicity constraint. If there exists any
ranking function for μ(x̄, ȳ) then there exists one mapping to (N , <) of the form
f(u1, . . . , un) = ui or of the form f(u1, . . . , un) = ui − uj for some 1 ≤ i, j ≤ n.

The proof strategy for Theorem 4 is similar to that for Theorem 2. We
will show that if there exists no ranking function for μ(x̄, ȳ) of the prescribed
form then there is an infinite chain in "μ implying that there exists no ranking
function of any form for μ(x̄, ȳ). We will need the following lemma.

336 M. Codish, V. Lagoon, and P.J. Stuckey

u1

���
��

��
� u2 �� u3 u4

v1 v2 v3

��������
v4

u1

���
��

��
� u2 u3 u4

v1 v2 �� v3

��������
v4

u1
��

u2 u3 u4

v1 v2 v3 v4

(a) (b) (c)

Fig. 5. Illustrating the proof of Lemma 7: (a) An alternating path from v1 to v4 with
horizontal relation u2 > u3 (b) The graph is balanced so it contains also v2 > v3 (c)
By transitivity it contains also u1 > u4 giving a shorter alternating path from v1 to v4

Lemma 7. If μ(x̄, ȳ) is a satisfiable balanced idempotent monotonicity con-
straint then either: (a) μ(x̄, ȳ) implies a constraint of the form xi > yi or of
the form yi > xi or (b) μ(x̄, ȳ) ∧ x̄ = ȳ is satisfiable.

Proof. Let μ(x̄, ȳ) be a satisfiable balanced idempotent monotonicity constraint
and assume that condition (b) does not hold. Given that μ(x̄, ȳ) is satisfiable
and since μ(x̄, ȳ) ∧ x̄ = ȳ is not satisfiable, it must be the case that there is
a sequence of constraints from μ(x̄, ȳ) and from x̄ = ȳ giving a contradiction.
Without loss of generality, otherwise applying transitivity, we may assume the
sequence is alternating and hence of the form:

ui1 4b1 vi2 = ui2 4b2 vi3 . . . = uik
4bk vi1 = ui1

with b1∨· · ·∨bk = 1. Given that μ(x̄, ȳ) is balanced, we may also assume without
loss of generality that the sequence does not involve “horizontal” relations as
these could be removed by transitivity. See Figure 5. It follows that all of the
constraints uij 4b1 vij+1 are in the same direction (downwards or upwards).
Namely, that for all 1 ≤ j ≤ k either uij ∈ x̄ and vij ∈ ȳ or uij ∈ ȳ and vij ∈ x̄.
From idempotence using Lemma 1 we get that μ(x̄, ȳ) contains a constraint of
the form xi > yi or of the form yi > xi.

Lemma 8. If μ(x̄, ȳ) is a balanced idempotent monotonicity constraint where
for all i μ(x̄, ȳ) �|= xi 4 yi, then for all i, j, μ(x̄, ȳ) �|= xi 4 yj.

Proof. Assume to the contrary that μ(x̄, ȳ) |= xi 4 yj . Then since μ(x̄, ȳ) is
idempotent and balanced there must exist two constraints xi 4 yk1 and xk1 4 yj

implied by μ(x̄, ȳ) to ensure that xi 4 yj is in the self composition. If k1 ∈ {i, j}
we have a contradiction. So k1 �∈ {i, j}. Now consider the constraint xi 4 yk1

implied by μ(x̄, ȳ). Using the same reasoning there must be constraints xi 4 yk2

and xk2 4 yk1 implied by μ(x̄, ȳ). If k2 = i or k2 = k1 we immediately have a
contradiction. If k2 = j, then we have xj = xk2 4 yk1 and xk1 4 yj implied by
μ(x̄, ȳ) and hence by Lemma 1 also xj 4 yj implied by μ(x̄, ȳ). Contradiction.
Hence k2 �∈ {i, j, k1}. We can now consider the constraint xi 4 yk2 to generate
xi 4 yk3 and xk3 4 yk2 , where k3 �∈ {i, j, k1, k2}. Following the same reasoning
we eventually run out of argument positions. Contradiction.

Lemma 9. For satisfiable, balanced and idempotent monotonicity constraint
μ(x̄, ȳ), if for all 1 ≤ i, j ≤ n, μ(x̄, ȳ) �|= xi > yi and μ(x̄, ȳ) �|= xi ≥ yi ∧ xi ≥
xj ∧ yj > xj then there is an infinite derivation using μ(x̄, ȳ).

Testing for Termination with Monotonicity Constraints 337

Proof. (Sketch)
Construction: Let μ be the set of binary relations of the form u 4 v implied
by μ(x̄, ȳ). Let U ⊆ {1, . . . , n} be the set of arguments j which have a strict
up arrow yj > xj ∈ μ and arguments i such that j ∈ U and ui 4 vj ∈ μ. Let
E = {1, . . . , n}−U be the rest of the arguments. Let VE = ∪{{xi, yi} | i ∈ E} and
VU = ∪{{xi, yi} | i ∈ U}. We partition μ into three disjoint sets (conjunctions)
of constraints: μU — the restriction of μ to the arguments U , μE — its restriction
to the arguments in E, and μEU — the rest. So, μ(x̄, ȳ) = μU ∧μE ∧μEU . This
partitioning is given by: μE = {u 4 v ∈ μ | {u, v} ⊆ VE}, μU = {u 4 v ∈
μ | {u, v} ⊆ VU} and μEU = μ− μE − μU .

The “equals” part: First we show that μE ∧
∧

i∈E xi = yi is satisfiable.
By Lemma 7 either this holds or there exists xi > yi in μ contradicting the
assumption of the Lemma or yi > xi in μ for i ∈ E contradicting the definition
of E. Hence there is a solution āE of μE(x̄, ȳ)∧

∧
i∈E xi = yi and so āE "μE āE.

The “up” part: Now let us consider μU . From the assumption of the Lemma
there can be no i ∈ U with xi > yi ∈ μU . We show by the construction and the
preconditions that there is no i ∈ U with xi ≥ yi ∈ μU .

First we show that for each i ∈ U either yi > xi or there exists k where
yk > xk and xi 4 xk or yi 4 xk. The first case is straightforward from the
definition of U . For the second, suppose i is added to U because j is already
in U . Then either (a) xi 4 xj (and yi 4 yj), (b) xi 4 yj or (c) yi 4 xj. If
yj > xj then in all three cases we get the result. Otherwise by induction, we
have xj 4 xk or yj 4 xk. For case (a) if xj 4 xk then we have by transitivity
xi 4 xk or if yj 4 xk we have yi 4 xk. For case (b) if xj 4 xk then by balance
we have that yj 4 yk and by transitivity (xi 4 yj , yj 4 yk, yk > xk) we have
xi 4 xk, or if yj 4 xk then by transitivity we have xi 4 xk. For (c) if xj 4 xk

then by transitivity we have yi 4 xk, and if yj 4 xk we have by idempotence that
yi 4 xk.

Suppose that xi ≥ yi for some i ∈ U . Then for some j with yj > xj we have
either xi 4 xj or yi 4 xj. In the first case this contradicts the preconditions of
the lemma. In the second case since xi ≥ yi and yi 4 xj by transitivity we have
xi 4 xj again contradicting the preconditions of the lemma. So we have that there
are no directly down arcs in U . By Lemma 8 we have there are no downwards
arcs (direct or indirect) amongst arguments in U (E cannot be involved since
there are no arcs from arguments in E to arguments in U).

Ordering the “up” part: We now partition U into (disjoint) sets U = U1
∪ · · · ∪ Ul where for each 1 ≤ k ≤ l and {i, j} ⊆ Uk we have μU |= xi = xj and
for each 1 ≤ k1 < k2 ≤ l, i1 ∈ Uk1 and i2 ∈ Uk2 we do not have μU |= xi1 4 xi2 .
This is possible since μ is satisfiable. This provides a total order on equivalence
classes of arguments such that variables in Uk are not constrained from above by
any arguments in E or U1 ∪ · · · ∪ Uk−1.

An infinite derivation: We can now build an infinite derivation for μ. To build
ā0 set each position in E to the value in āE. Then for U1 set all positions j1 ∈ U1
to the least integer satisfying all the constraints with respect to arguments in E.

338 M. Codish, V. Lagoon, and P.J. Stuckey

x1

��	
		

		
		

x2

���
�
� x3�� x4

��
x5��� �

y1 y2 y3��

��

y4

��							
�� y5��� � �

x1

���
��

��
� x2

���
�
�

y1 y2

x3 x4 x5��� �

y3

��

y4

��							
y5��� � �

(a) (b) (c)

Fig. 6. The monotonicity constraints from Example 6: (a) the monotonicity constraint
μ(x̄, ȳ), (b) the “equals” part μE , and (c) the “up” part μU

For k = 2, . . . l set all positions jk to the least integer satisfying all constraints
with respect to arguments in E ∪ U1 ∪ · · · ∪ Uk−1.

To build āk+1 from ak is similar but also taking into account all (lower bound-
ing) constraints with respect to āk.

Example 6. Consider the satisfiable balanced idempotent monotonicity con-
straint depicted in Figure 6(a). Building U = {3, 4, 5}: 3 ∈ U because of the
constraint y3 > x3, 4 ∈ U because of 3 and the constraint y4 ≥ x3 and 5 ∈ U
because of 4 and the constraint x5 ≥ x4. The remaining indices are E = {1, 2}.
Partitioning U : we can take U1 = {3}, U2 = {4} and U3 = {5} (U3 must be
last in the ordering). The constraints μE and μU are depicted as Figures 6(b)
and (c). The constraint μEU = {u > v | u ∈ {x3, x4, x5, y3, y4, y5}, v ∈ {x2, y2}}.

We build an infinite derivation as follows. Pick a solution for μE ∧ x1 =
y1 ∧ x2 = y2, say x1 = y1 = 1, x2 = y2 = 0. āE = (1, 0). Create ā0 starting
from āE, and filling in the argument positions in U1, U2, and U3 with the least
value satisfying constraints in filled in positions. Since there are no arcs from
an argument position to an unfilled position this is always possible. We find
ā0 = (1, 0, 1, 1, 1), ā1 = (1, 0, 2, 2, 2), ā2 = (1, 0, 3, 3, 3),. . .

Proof. (of Theorem 4) If μ(x̄, ȳ) is unsatisfiable then any ranking function is
suitable (in particular one the form required by the theorem). Otherwise the
conditions of Lemma 9 hold and since there exists a ranking function there
can be no infinite derivation. Hence either (a) for some i, μ(x̄, ȳ) |= xi > yi

and the function f(ū) = ui is thus a ranking function, or (b) for some i, j,
μ(x̄, ȳ) |= xi ≥ yi ∧ xi ≥ xj ∧ yj > xj from which it follows that f(ū) = ui − uj

is a ranking function.

Theorem 5 (Completeness for arbitrary monotonicity constraints).
Let μ(x̄, ȳ) be a balanced monotonicity constraint (not necessarily idempotent).
If there exists any ranking function for μ(x̄, ȳ) then there exists a linear ranking
function for μ(x̄, ȳ).

Proof. Assume balanced μ(x̄, ȳ) has a ranking function. Assume μ(x̄, ȳ) is satisfi-
able otherwise the result is trivial. It follows that μk(x̄, ȳ) is satisfiable, balanced
and has a ranking function for any positive k. By Lemma 4 there exists a k such
that μk(x̄, ȳ) is idempotent and hence by Theorem 4, μk(x̄, ȳ) has a ranking

Testing for Termination with Monotonicity Constraints 339

function of the form f(u1, . . . , un) = ui or of the form f(u1, . . . , un) = ui − uj .
If the first case then the proof is identical to that of Theorem 3. If the second
case then μk(x̄, ȳ) |= xi ≥ yi∧xi ≥ xj ∧yj > xj and similar to the proof of The-
orem 3 the following two sequences of “down” and “up” constraints are implied
by μ(x̄, ȳ):

xi0 ≥ yi1 , xi1 ≥ yi2 , . . . , xik−2 ≥ yik−1 , xik−1 ≥ yik

yj1 4 xj0 , yj2 4 xj1 , . . . , yjk−1 4 xjk−2 , yjk
4 xjk−1

where at least one of the inequalities in the second (“up”) sequence is strict.
Adding these inequalities pairwise we get the sequence:

xi0 − xj0 4 yi1 − yj1 , xi1 − xj1 4 yi2 − yj2 , . . . , xik−1 − xjk−1 4 yik
− yjk

with at least one strict inequality. Summing this sequence and observing that
i0 = ik = i and j0 = jk = j we obtain Σk

�=1(xi�
− xj�

) > Σk
�=1(yi�

− yj�
) which

is of the form Σaixi > Σaiyi with coefficients determined by the number of
repetitions of the constraints in the two sequences. Positive coefficients originate
from “downwards” constraints and negative coefficients from the “upwards”. We
take f(ū) = Σaiui.

We now show that μ(x̄, ȳ) |= f(x̄) ≥ 0. We have μk(x̄, ȳ) |= xi ≥ xj which
implies that μ(x̄, ȳ) |= xi ≥ xj and from balance μ(x̄, ȳ) |= yi ≥ yj . Recalling
that i = ik and j = jk we have μ(x̄, ȳ) |= yik

≥ yjk
and μ(x̄, ȳ) |= xik

≥ xjk
. From

transitivity (with the last constraints in the “down” and “up” sequences) that
μ(x̄, ȳ) |= xik−1 ≥ xjk−1 and from balance μ(x̄, ȳ) |= yik−1 ≥ yjk−1 . In a similar
way we obtain that μ(x̄, ȳ) implies the constraints xi�

≥ xj�
for � ∈ {1, . . . , k}.

Summing these constraints gives f(x̄) = Σk
�=1(xi�

− xj�
) ≥ 0.

Example 7. Consider the (balanced extension of) monotonicity constraint x1 ≥
y2, x2 ≥ y1, x2 ≥ x3, y3 > x3. The “down” and “up” sequences from the proof
of Theorem 5 are respectively x1 ≥ y2, x2 ≥ y1 and y3 < x3, y3 < x3. Summing
these gives x1 + x2 − 2x3 > y1 + y2 − 2y3. A ranking function of the form
f(ū) = u1 + u2 − 2u3 exists. The constraints x1 ≥ x3 and x2 ≥ x3 imply that
f(x̄) = x1 + x2 − 2x3 ≥ 0.

5 Conclusion

This paper makes two contributions. For size change graphs we establish that the
termination test implemented in analyzers such as TermiLog and TerminWeb is
complete for size change graphs and incomplete for monotonicity constraints. In
particular there is no loss of precision when not checking for idempotence. For
idempotent monotonicity constraints, we prove that if there exists any ranking
function for a loop description then there exists one of a simple form: a single
argument or the difference between two arguments is decreasing. Moreover, for
loop descriptions which are not idempotent if there exists a ranking function
then there exists one which is linear.

340 M. Codish, V. Lagoon, and P.J. Stuckey

References

1. A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalog pro-
grams. In Proceedings of the Eighth ACM SIGACT-SIGART-SIGMOD Symposium
on Principles of Database Systems, pages 190–199, 1989.

2. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

3. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-
work for automatic termination analysis of logic programs. Applicable Algebra in
Engineering, Communication and Computing, 12(1-2):117–156, 2001.

4. C. C. Frederiksen. A simple implementation of the size-change termination prin-
ciple. Technical Report D-442, DIKU, Copenhagen University, Denmark, 2001.

5. G. Frobenius. Über endliche gruppen. Sitzungsber. Preuss. Akad. Wiss. Berlin,
pages 163–194, 1895.

6. M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proceedings of the Ninth ACM Symposium on Applied
Computing, pages 394–399. ACM Press, 1994.

7. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. ACM SIGPLAN Notices, 36(3):81–92, 2001. Proceedings of
POPL’01.

8. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In L. Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 63–77, Leuven, Belgium, 1997. The MIT Press.

9. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Termilog: A system for checking
termination of queries to logic programs. In O. Grumberg, editor, CAV, volume
1254 of Lecture Notes in Computer Science, pages 444–447. Springer, 1997.

10. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In B. Steffen and G. Levi, editors, Verification, Model Checking,
and Abstract Interpretation, 5th International Conference, volume 2937 of Lecture
Notes in Computer Science, pages 239–251. Springer, 2004.

11. F. Ramsey. On a problem of formal logic. In Proceedings London Mathematical
Society, volume 30, pages 264–286, 1930.

12. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Pro-
ceedings of the 14th International Conference on Rewriting Techniques and Ap-
plications (RTA-03), volume 2706 of Lecture Notes in Computer Science, pages
264–278. Springer-Verlag, 2003.

13. D. Wahlstedt. Detecting termination using size-change in parameter values. Mas-
ter’s thesis, Göteborgs Universitet, 2000. http://www.cs.chalmers.se/∼davidw/.

A Well-Founded Semantics with Disjunction

João Alcântara, Carlos Viegas Damásio, and Lúıs Moniz Pereira

Centro de Inteligência Artificial (CENTRIA),
Departamento de Informática, Universidade Nova de Lisboa,

2829-516 Caparica, Portugal
{jfla, cd, lmp}@di.fct.unl.pt

Abstract. In this paper we develop a new semantics for disjunctive logic
programs, called Well-Founded Semantics with Disjunction (WFSd), by
resorting to a fixed point-based operator. Coinciding with the Well-
Founded Semantics (WFS) for normal logic programs, our semantics
is uniquely defined for every disjunctive logic program. By exploring ex-
amples, we show WFSd does not agree with any other semantics we have
studied, such as Brass and Dix’s D-WFS , Przymusinski’s Static, Baral
et al’s GDWFS , Wang’s WFDS , and van Gelder et al’s SWFS . Despite
that, we ensure WFSd is strictly stronger than D-WFS by guaranteing
WFSd allows the five, desirable, program transformations proposed by
Brass and Dix: unfolding, elimination of tautologies and non-minimal
rules, and positive and negative reduction.

1 Introduction

To be, or not to be: that is the question
William Shakespeare in Hamlet (III, I)

Not just Hamlet has been involved in disquisitions on disjunctions; since the
early eighties the Logic Programming Community too has devoted great effort
to provide reasonable answers to disjunctive forms of reasoning. The pioneer
work in the field is [6], where Minker presents the Generalized Closed World
Assumption (GCWA) to define model-theoretically the default negation in dis-
junctive theories. For Horn theories [12], GCWA reduces to the Closed World
Assumption.

For a Horn theory extended to allow disjunction in the head of its rules,
named positive-disjunctive logic program (PDLP), we can easily match its se-
mantics to the set of minimal Herbrand models or to the minimal model state,
which is the collection of all positive disjunctions holding in every minimal Her-
brand Model. Both paths can equivalently yield the expected meaning. In [7],
Minker and Rajasekar defined the operator T s

P , whose least fixed point repre-
sents the minimal model state of a PDLP . Regarding the path based on minimal
Herbrand models, in [3], for PDLPs without function symbols, Fernández and
Minker defined the operator T M

P on sets of Herbrand interpretations whose least
fixed point is the set of minimal Herbrand models of the program. Afterwards,
in [14], the authors extended T M

P in terms of T INT
P in order to deal also with

function symbols in such programs.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 341–355, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

342 J. Alcântara, C.V. Damásio, and L.M. Pereira

Whereas the minimal Herbrand models (or minimal model state) are largely
accepted as capturing the meaning of PDLPs, the same cannot be said for dis-
junctive logic programs, i.e. normal logic programs whose syntax allows disjunc-
tion in the head of their rules. Indeed, as well as for normal logic programs,
there are two major approaches when considering the semantics of disjunctive
logic programs: one extends stable models semantics [4], and the other, more
skeptical, extends well-founded models semantics (WFS) [18].

Unlike stable model semantics, WFS is defined for every normal logic pro-
gram. Indeed, for each there is a unique WFM intended to capture its meaning
or declarative semantics. This is attained by abandoning classical two-valued
interpretations and permitting partial interpretations, wherein a third value is
introduced to represent undefinedness. The result is an elegant semantics, ad-
vantageously compared, from a computational viewpoint, to stable models.

When moving to disjunctive logic programming one would hope that such
properties be preserved. Notwithstanding, given the numerous proposals (for a
non-exhaustive list, see [13,1,9,2,19]), we would agree that a well-founded se-
mantics for disjunctive logic programs representing their intended meaning is
not consensual. The issues arise from the start in identifying which meaning
someone assigns to disjunction in logic programming: should it be exclusive?
inclusive? or should it be the so-called epistemic disjunction, designed to be
exclusive as far as possible? This barrier surmounted, which properties should
endorse the relation between disjunction and default negation? Such concerns are
not only formidable, but they involve aspects so diverse that even the choice of a
touchstone to appraise disjunctive well-founded semantics is hardly achievable.

Prospectively, we propound that a good well-founded semantics for disjunc-
tive logic programs should, at least:

– Coincide with WFS on normal logic programs.
– Be uniquely defined for every disjunctive logic program.
– Be definable by both a fixed point operator and a model-theoretically one.
– Comply with the five program transformations proposed by Brass and Dix:

unfolding, elimination of tautologies and non-minimal rules, positive and
negative reduction. In other words, their D-WFS should be the weakest
well-founded semantics for disjunctive logic programs.

– Allow further extensions to assimilate explicit negation, both in its explosive
as well as in its paraconsistent varieties.

In our studies about the applicability of logic programming as a suitable tool
to represent knowledge and reasoning we have observed that by generalising to a
set of interpretations the ΩP operator [8], used to define WFS , and by positing
a new domain to deal specifically with default negation, we are able to define
a new well-founded semantics for disjunctive logic programs. This semantics,
dubbed Well-Founded Semantics with Disjunction (WFSd), shows to be worthy
enough and to satisfy the conditions just enrolled.

The remainder of this work is spent as follows. First, by recalling in Section 2
how to determine the minimal models of a PDLP via the T INT

P operator [14]. We

A Well-Founded Semantics with Disjunction 343

then reserve Section 3 to present our main contribution: the definition of WFSd

established by a fixed point operator. Section 4 is devoted to guarantee, by means
of examples, that WFSd generally does not agree with any of the semantics for
disjunctive logic programs we have studied. Going into more detail, we then
show that WFSd is strictly stronger than D-WFS [2]. The paper terminates
with conclusions and future work.

2 Minimal Models of Positive-Disjunctive Logic
Programs

In this section we recall [14] in showing how to capture the minimal models of a
PDLP via the fixed point operator T INT

P . As the authors emphasise, although
non-continuous it converges to its least fixed point in at most ω iterations. We
also present basic concepts employed throughout this paper.

Let us now present disjunctive (and positive-disjunctive) logic programs in
more formal terms. Given a first order language L, a disjunctive logic program
is a set of logical inference rules r of the form

r = A1 ∨ . . . ∨Al ← B1 ∧ . . . ∧Bm ∧ not C1 . . . ∧ not Cn (1)

in which the Ai, Bj , Ck are atoms in L, and l,m, n ∈ N. The set of all ground
instances of the rules in P is denoted by gnd(P). If m = n = 0 the rule is said
a fact, and the symbol ← may be dropped.

In particular, P is defined as a positive-disjunctive logic program (PDLP) if
∀r ∈ P we have that k = 0, i.e. P is deprived of default negation.

By Herbrand base HBP of a disjunctive logic program P , we mean the set of
all ground atoms over the language of P . In order to study the meaning of these
programs, the notion of interpretation is introduced:

Definition 1 (Interpretations and coins). Given a program P , we define
the following terms:

– By Herbrand interpretation (or just interpretation) we mean a set I ⊆ HBP .
The set of all interpretations is denoted by HIP .

– For conciseness, by coin we mean a collection of interpretations. In partic-
ular, HIP is a coin.

When dealing with a coin I, we will frequently refer to the operators min, exp,
and imp for I:

min(I) = {I ∈ I |� ∃J ∈ I : J ⊂ I},
exp(I) = {I ∈ HIP | ∃J ∈ I : J ⊆ I},
imp(I) = {I ∈ HIP | ∃J ∈ I : I ⊆ J}.

A coin I is called expanded if, for each interpretation I ∈ I, I contains all
interpretations that are supersets of I, i.e. I = exp(I). Similarly, I is called
self-contained if, for each interpretation I ∈ I, I contains all interpretations

344 J. Alcântara, C.V. Damásio, and L.M. Pereira

that are subsets of I, i.e. I = imp(I). In order to illustrate applications of
these operators, let us choose the Herbrand base HBP = {a, b, c} and the coin
I = {{a}, {a, b}, {b, c}}; we have:

min(I) = {{a}, {b, c}},
exp(I) = I ∪ {{a, c}, {a, b, c}},
imp(I) = I ∪ {{}, {b}, {c}}.

For PDLPs, we can distinguish the models as per below:

Definition 2 (Satisfaction and model). An interpretation I satisfies a rule
r = A1 ∨ . . . ∨ Al ← B1, . . . , Bm of a PDLP P iff it holds that {Bi | 1 ≤ i ≤
m} ⊆ I implies that there exists Aj ∈ I such that 1 ≤ j ≤ l. I is a model of P iff
for every r ∈ P , I satisfies r. The set of all models of P is denoted by MOD(P).

We say a model M of P is minimal if there is no model M ′ for which M ′ ⊂M .
In order to reason with PDLPs, we consider the setMMP of all minimal models
of P . For Horn theories, the unique minimal (least) model can be obtained
by iteratively applying an immediate consequences operator introduced by van
Emden and Kowalski [17]. This operator can be generalised to deal with PDLPs:

Definition 3 (TP mapping). Let P be a PDLP and I be an interpretation.
Then the immediate consequences mapping TP : HIP → 2HIP is defined as
follows:

TP (I) = {J | J ∩ {a1, . . . , al} �= ∅ for every r = a1 ∨ . . . ∨ al ← b1, . . . , bm ∈
P such that {b1, . . . , bm} ⊆ I, I ⊆ J}.

Thus, from each single interpretation, various interpretations may be derived
through the TP mapping. Then the T INT

P operator can be defined by applying
TP to each interpretation of a coin. Formally:

Definition 4 (T INT
P Operator). Let P be a PDLP and I be a coin. We define

T INT
P : 2HIP → 2HIP such that

T INT
P (I) =

⋃
I∈I

TP (I)

In their studies to define an immediate consequences operator for PDLPs,
Fernández and Minker [3] explored the subsumption relation " established for
coins I,J ∈ 2HIP :

I " J iff ∀J ∈ J : ∃I ∈ I : I ⊆ J

In fact, " corresponds to the Hoare ordering (see [15]) associated with the
partially ordered set (HIP ,⊆). For example, letting I = {{a}, {c}} and J =
{{a}, {a, b}, {b, c}}, we have I " J .

They also define an equivalence class with respect to ", denoted by ≡�, when
coins subsume one another, i.e.

I ≡� J iff I " J and J " I

A Well-Founded Semantics with Disjunction 345

Nonetheless, as it stands, the characterisation of T INT
P may present some

problems. The reason is that " on 2HIP is reflexive and transitive, but not anti-
symmetric; the pair O =< 2HIP ,"> is not a (complete) lattice. This jeopardises
making use of the results supported by the Knaster-Tarski theorem [16].

In order to overcome this, extending Fernández and Minker’s work [3], Seipel
et al [14] proposed the lattice Oexp =< 2

HIP
exp ,">, in which 2

HIP
exp corresponds

to the set of all expanded coins. In Oexp the relation " reduces to superset
inclusion, i.e. for every I,J ∈ 2HIP it holds that

I " J iff exp(J) ⊆ exp(I) (2)

This suffices to ensure Oexp is complete and that the least upper bound and
the greatest lower bound of a set X ⊆ 2

HIP
exp of expanded coins are respectively

given by
lubexp(X) =

⋂
I∈X

I, glbexp(X) =
⋃
I∈X

I

The bottom element of Oexp is the coin ⊥exp = HIP . Notice that both the union
and the intersection of a set X of expanded interpretations is an expanded
interpretation.

The T INT
P operator is guaranteed monotonic with respect to ", i.e. if I1 " I2

then T INT
P (I1) " T INT

P (I2), so, according to the Knaster-Tarski theorem, a least
fixed point of T INT

P on < 2
HIP
exp ,"> is guaranteed to exist. Hence we can employ

the ordinal powers of T INT
P defined below to reach this least fixed point:

Definition 5 (Ordinal powers of T INT
P). Let P be a PDLP.

1. For I ∈ 2
HIP
exp , the ordinal powers T INT

P
↑α are defined by

T INT
P

↑0 = ⊥exp = HIP .

T INT
P

↑α = T INT
P (T INT

P
↑α−1), for successor ordinal α.

T INT
P

↑α = lubexp({T INT
P

↑β | β < α})=
⋂

β<α T INT
P

↑β, for limit ordinal α.

2. The least fixed point of T INT
P , denoted by T coin

P , is given by T INT
P

↑α, in
which α is the smallest ordinal such that T INT

P
↑α = T INT

P
↑α+1.

The authors show in [14] that even though T INT
P is not continuous, it reaches

its least fixed point in at most ω iterations. They also guarantee that T INT
P

generalises the characterisation of the minimal model semantics that Fernández
and Minker obtained for disjunctive deductive databases to arbitrary PDLPs,
namely that

MMP ≡� exp(MMP) = T coin
P = T INT ↑ω

P (3)

In the next section, we will investigate how to explore the results exhibited
here in order to define a well-founded semantics for disjunctive logic programs.

346 J. Alcântara, C.V. Damásio, and L.M. Pereira

3 A Fixed Point Based Definition of WFSd

The definition of an adequate semantics for default negation in disjunctive logic
programs has puzzled many researchers [10,13,1,11,9,2,19] employed to define
well-founded semantics [8] to a set of interpretations, we propose a new disjunc-
tive version of the well-founded semantics. A fixed point-based definition is then
presented to characterise it.

In normal logic programs, well-founded semantics may be defined by in-
troducing partial interpretations, which are a pair of interpretations Ip =<
It, Itu >; the It component is designed to determine what is true in Ip, whilst
Itu what is “non-false”, i.e. true or undefined, in Ip. As is suggestive, It is em-
ployed to evaluate atoms, and Itu default negated atoms, the later being true if
and only if their atoms are not in Itu.

Our idea is to exploit this notion of pair of interpretations to characterise
well-founded semantics for disjunctive logic programs, but now considering the
pair Ip =< It, Itu >, in which both It and Itu are coins. Pairs of coins will be
used to evaluate disjunctive clauses as follows:

A disjunctive ground clause a1 ∨ . . . ∨ am ∨ not b1 ∨ . . . ∨ not bn is true in
Ip =< It, Itu > iff

D1 For each I1 ∈ It, ∃ai ∈ {a1, . . . , am}, such that ai ∈ I1
or

D2 For each I2 ∈ Itu, ∃bj ∈ {b1, . . . , bn}, such that bj �∈ I2.

As we shall unveil, conditions D1 and D2 generalise the evaluation mecha-
nism of positive-disjunctive and negative-disjunctive ground clauses in PDLPs.
Condition D1 is motivated by the way positive-disjunctive ground clauses are
characterised in terms of minimal models of PDLP , as Minker proved [6]:

Theorem 1. Let P be a PDLP. A positive-disjunctive ground clause a1∨. . .∨an

is a logical consequence of P if and only if a1∨ . . .∨an is true in every minimal
model of P .

Then we have the following result, linking condition D1 to the notion of
logical consequence of a positive-disjunctive logic program:

Proposition 1. Let P be a PDLP, a1∨ . . .∨an be a positive-disjunctive ground
clause such that ai ∈ HBP , 1 ≤ i ≤ n, and exp(Mt) = exp(MMP)1. We have

a1 ∨ . . . ∨ an is a logical consequence of P

iff
a1 ∨ . . . ∨ an is true in Mp =<Mt,Mtu >

in which Mtu is any set of interpretations.

Regarding D2, it provides a mechanism to evaluate negative-disjunctive
ground clauses based on a principle known as Extended Generalised Closed-
World Assumption (EGCWA), that we recall below:
1 Note that the theorem holds for Mt = MMP .

A Well-Founded Semantics with Disjunction 347

Definition 6 (Semantic definition of EGCWA). [5] Let P be a PDLP and
C be a negative-disjunctive ground clause not a1∨. . .∨not an such that ai ∈ HBP ,
1 ≤ i ≤ n. Then the model-theoretic definition of EGCWA is given by

EGCWA(P) = {C | C is true in all minimal models of P}.

The relation between EGCWA and how to evaluate negative-disjunctive
ground clauses is described by Proposition 2:

Proposition 2. Let P be a PDLP, C be a negative-disjunctive ground clause
not A1∨. . .∨not An such that Ai ∈ HBP , 1 ≤ i ≤ n, imp(Mtu) = imp(MMP),
and MMP is the set of minimal models of P . We have

not A1 ∨ . . . ∨ not An ∈ EGCWA(P)

iff
not A1 ∨ . . . ∨ not An is true in Mp =<Mt,Mtu >

in which Mt is any coin.

Proposition 2 ensures that D2 corresponds to evaluating negative-disjunctive
ground clauses according to EGCWA. It emphasises as well, like in Proposition
1, the role played by minimal models in determining what follows from a PDLP .
So, if we wish to provide meaning for the more complex syntax of disjunctive
logic programs, determining them is fundamental.

As expounded in Section 2, the ordinal powers for the T INT
P operator on the

lattice Oexp =< 2
HIP
exp ,"> are suitable to express what is true in a disjunctive

positive logic program. Ideally, a similar mathematical equipment would give us
what is false by default in a PDLP . The problem is that the relation " does not
preserve the notion of falsity by default, as shown below:

Example 1. Let Ip
1 =< It

1, Itu
1 > and Ip

2 =< It
2, Itu

2 >, in which Itu
1 = {{a}},

Itu
2 = {{a}, {a, b}}, and It

1 and It
2 are arbitrary coins.

If " was suitable to deal with default negation, equivalent elements of 2HIP

according to " would correspond to equivalent evaluations for default negated
atoms. That is not the case in Example 1, wherein Itu

1 ≡� Itu
2 , but intuitively

b is false by default in Ip
1 , whilst it is not false by default in Ip

2 .

In conclusion, the notion of equivalence suggested by " does not correspond
generally to equivalent evaluations for default negated atoms, we thence intro-
duce the new relation3, which corresponds to the Smyth ordering [15] associated
with the partially ordered set (HIP ,⊆) amongst coins:

I 3 J iff ∀I ∈ I, ∃J ∈ J : I ⊆ J (4)

The relation 3 works as the dual of ". Like for ", the relation 3 on 2HIP

does not represent a partial ordering because the anti-symmetry property does
not hold. In any case, considering the domain 2

HIP
imp , defined as the set of all

coins I ∈ 2HIP such that imp(I) = I, we know that Omin =< 2
HIP
imp ,3> is a

complete lattice. Let us start by guaranteeing the following result:

348 J. Alcântara, C.V. Damásio, and L.M. Pereira

Theorem 2. For every I,J ∈ 2HIP it holds that I 3 J iff imp(I) ⊆ imp(J).

Hence if I,J ∈ 2
HIP
imp we have I 3 J iff I ⊆ J . This is enough to guarantee

that Oimp =< 2
HIP
imp ,3> is a complete lattice in which 3 reduces to subset

inclusion, whereas the least upper bound and the greatest lower bound of a set
X ⊆ 2

HIP
imp are given respectively by

lubimp(X) =
⋃
I∈X

I, glbimp(X) =
⋂
I∈X

I

The bottom element of Oimp is the coin ⊥imp = {{}}, and the top one is
�imp = HIP . Notice that both the union and the intersection of a set X of coins
I ∈ 2

HIP
imp is also an element of 2

HIP
imp .

We are going to show in the sequel that the lattice Oimp complies with
our objective of providing a suitable means to interpret default negation in a
disjunctive logic program. For the moment, let us reconsider Example 1:

Example 2. Let Oimp =< {{a, b}, {a}, {b}, {}},3>, and both Itu
1 = {{a}} and

Itu
2 = {{a}, {a, b}} be coins.

As we can see, Itu
1 and Itu

2 are not equivalent according to 3, reflecting that
b is false by default in Ip

1 , whilst it is not false by default in Ip
2 .

We prove now that in 2
HIP
imp the truth-value assigned to a negative-disjunctive

clause is preserved in the equivalence class created by 3:

Proposition 3. If a negative-disjunctive clause C = not A1 ∨ . . . ∨ not An is
true in the pair of coins Ip =< It, Itu >, in which Itu ∈ HIP , then C is true in
any pair of coins J p =< J t,J tu > such that imp(J tu) = imp(Itu).

Because in 2
HIP
imp the equivalence classes preserve the truth-value assigned to

negative-disjunctive clauses, then, instead of using the domain HIP the subdo-
main 2

HIP
imp rather would be suitable to provide semantics for negative-disjunctive

clauses in disjunctive logic programs, whereas 2
HIP
exp would be suitable to deal

with positive-disjunctive clauses. With these ideas in mind, we define partial
coins as follows:

Definition 7 (Partial coins). A partial coin is a pair Ip =< It, Itu > such
that It ∈ 2

HIP
exp and Itu ∈ 2

HIP
imp .

Accordingly, partial coins are designed to evaluate positive and negative-
disjunctive rules, and can be ordered in the following way:

Definition 8 (Truth and knowledge ordering). Let Ip
1 and Ip

2 be two partial
coins. The truth and knowledge orderings among them are defined by

Truth ordering: Ip
1 "t Ip

2 iff It
1 " It

2 and Itu
1 3 Itu

2 .
Knowledge ordering: Ip

1 "k Ip
2 iff It

1 " It
2 and Itu

2 3 Itu
1 .

A Well-Founded Semantics with Disjunction 349

Associated with partial coins, we propose the following notions of models:

Definition 9 (T and TU-models).Let P be a PDLP, andMp =<Mt,Mtu >
be a partial coin. We say that

– Mt is a T-model of P iff, for every M ∈ Mt, M is a model of P .
– Mtu is a TU-model of P iff, for every M ∈ Mtu, there exists a model

M ′ ∈Mtu of P such that M ⊆M ′.

We refer to Mt as minimal T-model of P whenever there is no T-model M
of P such that M 	 Mt. Similarly, we refer to Mtu as minimal TU-model of
P whenever there is no TU-model M′ of P such that M′ ≺Mtu.

In point of fact, we saw in Section 2 that, for each PDLP P , there is a
unique minimal (least) T-model MMP ∈ MOD(P) [14] captured by the T INT

P

operator, i.e. MMP ≡� T coin
P = T INT ↑ω

P .
Before continuing the study of TU-models, we introduce the T Ucoin

P mapping:

Definition 10 (T Ucoin
P mapping). Let P be a PDLP. We define

T Ucoin
P = imp(MMP) = imp(min(T INT

P
↑ω))

The T Ucoin
P mapping will be used to obtain the set of interpretations in

2
HIP
imp corresponding to the minimal models of a PDLP . Concerning its meaning,

unlike for the T INT
P operator, from which one can obtain the least T-model of

a positive-disjunctive definite logic program P (see Equation (3)), one cannot
draw out the least TU-model of P , under 3, with the operator T Ucoin

P .

Example 3. Let P = {a ∨ b} be a PDLP . Although T Ucoin
P = {{a}, {b}, {}}, P

has two minimal TU-models: {{a}, {}} and {{b}, {}}.

Notwithstanding, as we are about to prove, T Ucoin
P corresponds to the least

upper bound in 2
HIP
imp of the minimal TU -models of a PDLP P :

Theorem 3. Let P be a PDLP, and M =
⋃
{Mtu | Mtu is a minimal TU-

model of P}. We have that M = T Ucoin
P .

Even though T coin
P and T Ucoin

P mappings were defined in different domains
in order to attain different objectives, they do not disagree with each other in
what concerns the set of minimal models of a PDLP :

Theorem 4. Let P be a PDLP. We have

T coin
P ∩ T Ucoin

P =MMP (P).

The T coin
P and T Ucoin

P mappings therefore share the core meaning of a PDLP
P represented by its sets of minimal models. The difference in these mappings is
focused on the way that such minimal models are interpreted. In order to capture
what is true in P the sets of minimal models of P are closed upward (expanded)
in T coin

P , whereas this very set is closed downward in T Ucoin
P to capture what is

non-false in P .

350 J. Alcântara, C.V. Damásio, and L.M. Pereira

Example 4. Let P = {a ∨ b, b ∨ c} be a PDLP . We have

MOD(P) = {{b}, {a, c}, {a, b}, {b, c}, {a, b, c}}

MMP (P) = {{b}, {a, c}}

and

T INT
P

↑0 = {{}, {a}, {b}, {c}, {a, b}, {a, c}{b, c}, {a, b, c}}

T INT
P

↑1 = T INT
P (T INT

P
↑0) = {{b}, {a, c}, {a, b}, {b, c}, {a, b, c}}

T INT
P

↑ω = T INT
P

↑2 = T INT
P (T INT

P
↑1) = T INT

P
↑1

From which we obtain T coin
P = T INT

P
↑ω = {{b}, {a, c}, {a, b}, {b, c}, {a, b, c}}

and T Ucoin
P = {{b}, {a, c}, {a}, {c}, {}}. As expected according to Theorem 4,

T coin
P ∩ T Ucoin

P =MMP (P).

In order to provide semantics for disjunctive logic programs we will resort to
a Gelfond-Lifschitz like division operator [4], which transforms disjunctive logic
programs into PDLPs. Then, to these programs, we can apply T coin

P or T Ucoin
P

to determine, respectively, what is true and what is false by default.

Definition 11 (Division program). Consider a disjunctive logic program P
and an interpretation I. The division of program P

I is the PDLP obtained by
following the procedure below:

– For each rule a1 ∨ . . . ∨ al ← b1, . . . , bm,not c1, . . . ,not cn ∈ P such that
{c1, . . . , cn} ∩ I = ∅, add P

I the rule a1 ∨ . . . ∨ al ← b1, . . . , bm.
– No other rule is in P

I .

In a normal logic program P , the program division is employed to define
the operators Γ t

P and Γ tu
P to obtain, respectively, what is true and what is not

false by default in P , i.e. true or undefined. In the sequel, we enroll this notion
and apply it to coins. However, in order to guarantee that 2

HIP
exp and 2

HIP

imp are,
respectively, closed under Γ t

P and under Γ tu
P , we impose HIP

I

equal to HIP by

assuming P and P
I defined over the same language.

Definition 12 (Γ t
P and Γ tu

P). Let P be a disjunctive logic program and Ip =<

It, Itu > a partial coin. We define Γ t
P : 2

HIP

imp → 2
HIP
exp and Γ tu

P : 2
HIP
exp → 2

HIP

imp
thus:

Γ t
P (Itu) =

⋃
I∈Itu

T coin
P
I

and Γ tu
P (It) =

⋃
I∈It

T Ucoin
P
I

Casting attention to the definition of well founded semantics for normal logic
programs [8], we now introduce the operator ΦP to establish what follows im-
mediately from a disjunctive logic program given a partial coin:

A Well-Founded Semantics with Disjunction 351

Definition 13 (ΦP operator). Consider a disjunctive logic program P and a
partial coin Ip =< It, Itu >, where

F(Itu) = {A ∈ HBP | ∀I ∈ Itu, A �∈ I} and T(Ip) = {I ∈ It | F(Itu) ∩ I = ∅}.

We define
ΦP (Ip) =< Γ t

P (Itu), Γ tu
P (T(Ip)) >

Conceiving the partial coin Ip =< It, Itu > as representing the safe knowl-
edge so far, the rationale behind the ΦP operator is that from Itu one can
conclude what definitely does not hold; so we can use this set of interpretations
for deriving what surely holds. On the other hand, from It one knows what is
true; then, by ignoring those interpretations containing atoms false by default
in It, one can use the remaining interpretations for deriving what may possibly
hold. The ΦP operator is assured monotonic with respect to "k:

Theorem 5 (Monotonicity of operator ΦP according to "k). Consider a
disjunctive logic program P plus two partial coins Ip =< It, Itu > and J p =<
J t,J tu >. If Ip "k J p then ΦP (Ip) "k ΦP (J p).

We ascertain forthwith, by the Knaster-Tarski theorem, that, for every dis-
junctive logic program P , ΦP possesses a least fixed point under "k, thereby
establishing the well-founded model with disjunction of P .

Definition 14 (Well-founded semantics with disjunction). Let P be a
disjunctive logic program. Each fixed point of the ΦP operator corresponds to
a partial stable model with disjunction of P . In particular, the least one under
the "k ordering is its well-founded model. It can be obtained by the following
transfinite sequence of partial coins I↑α

P =< It
α, Itu

α >:

I↑0P =< HIP ,HIP >

I↑α
P = ΦP (I↑α−1

P) =< Γ t
P (Itu

α−1), Γ
tu
P (T(I↑α−1

P)) >, for successor ordinal α
I↑α

P =< lubexp({It
β | β < α}), glbimp({Itu

β | β < α}) >=
<
⋂

β<α It
β ,
⋂

β<α Itu
β >, for limit ordinal α.

The Well-Founded Semantics with Disjunction for a disjunctive logic program
P (WFSd (P)) is defined by I↑α

P , where α is the smallest ordinal such that I↑α
P =

ΦP (I↑α
P).

It is noteworthy stressing that, for normal logic programs, WFSd and WFS
are isomorphic:

Theorem 6. Let P be a normal logic program, W =<Wt,Wtu > be the WFSd

of P , and W =< W t,W tu > be the WFS of P .

– An atom A is true in W iff it is also true in W .
– not A is true in W iff it is also true in W .

352 J. Alcântara, C.V. Damásio, and L.M. Pereira

Hence, for normal logic programs, WFSd may be understood as an alternative
characterisation of WFS , satisfying one condition we exacted for evaluating a
good well-founded semantics for disjunctive logic programs.

One may wonder why not define ΦP just as < Γ t
P (Itu), Γ tu

P (It)) >. The
justification is simple; posed in that manner, WFSd becomes ineligible for one
of the program transformations presented in [2]: positive reduction. We illustrate
this in the next example:

Example 5. Let P = {a ∨ b, b← not c}

I↑0P = < HIP ,HIP >

I↑1P = < {{a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}}, {{a}, {b}, {}}>
I↑2P = < {{b}, {a, b}, {b, c}, {a, b, c}}, {{b}, {}}>
WFSd(P) = <Wt,Wtu >= I↑3P = I↑2P

As not c is true in WFSd(P), c ∈ F(Wtu), only interpretations inWt deprived
of c are considered to determine Wtu, i.e.

Wtu =
⋃

W1∈T(WFSd (P))

T Ucoin
P

W1
(5)

Considering that for every W1 ∈ T(WFSd(P)), P
W1

= {a ∨ b, b}, we have
imp(min(T coin

P
W1

)) = {{b}, {}}, leading us to conclude not a is in WFSd(P).

Indeed, had we considered every interpretation in Wt to characterise Wtu

in (5), then whether from {b, c} or {a, b, c} we would obtain a ∈ T Ucoin
P

{b,c}
or

a ∈ T Ucoin
P

{a,b,c}
, because the rule b← not c ∈ P is eliminated in P

{b,c} as well as in
P

{a,b,c} . Under such a scheme, we would infer the unexpected result {a} ∈ Wtu,
dismissing any possibility of concluding not a in WFSd (P).

4 Examples

By exhibiting appropriate examples, we are about to show that WFSd does
not coincide with the most prominent semantics for disjunctive logic programs
[10,13,1,11,9,2,19].

Example 6. Let P1 = {a ∨ b ∨ c, a← not b, b← not c, c← not a}.

I↑0P1
= < HIP1

,HIP1
>

I↑1P1
= < {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c},HIP >

I↑2P1
= < {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},
{{a, b}, {b, c}, {a, c}, {a}, {b}, {c}, {}}>

WFSd(P1) = I↑3P1
= I↑2P1

.

Program P1 is not assigned any meaning according to Partial Disjunctive
Stable Models [11]. In contradistinction, WFSd enables us to say that both
a ∨ b ∨ c and not a ∨ not b ∨ not c are true.

A Well-Founded Semantics with Disjunction 353

Indeed, even for stratified programs, where Partial Disjunctive Stable Models
and Perfect Models [10] are always defined, we obtain distinct results via WFSd :

Example 7. Let P2 = {a ∨ b, b ∨ c, d← not a, d ∨ e← not c}.

I↑0P2
= < HIP2

,HIP2
>

I↑1P2
=<{{b},{a, c},{a, b},{b, c},{b, d},{b, e},{a, b, c},{a, b, d},{a, b, e},{a, c, d},
{a, c, e},{b, c, d},{b, c, e},{b, d, e},{a, b, c, d},{a, b, c, e},{a, b, d, e},{b, c, d, e},
{a, c, d, e}, {a, b, c, d, e}},
{{a, c, d},{a, c, e},{a, c},{a, d},{a, e},{c, d},{c, e},{b, d},{b, e},{a},{b},
{c}, {d}, {e}, {}}>

WFSd(P2)=I↑2P2
= I↑1P2

.

P2 has the partial stable models (perfect models): < {a, c}, {a, c} > and
< {b, d}, {b, d} >. Hence not e is obtained according to disjunctive partial stable
models and perfect models; that same conclusion is verified under static [9] and
stationary semantics, whilst it stands undefined in WFSd .

In the next example we compare WFSd to GDWFS [1], D-WFS [2], WFDS
[19], and SWFS [13]:

Example 8. Let P3 = {a ∨ b← not b, b← not b}.

I↑0P3
= < HIP3

,HIP3
>

I↑1P3
= < {{}, {a}, {b}, {a, b}, {a, b}}, {{b}, {}}>

WFSd(P3) = I↑2P3
= I↑1P3

.

In P3, WFSd assigns false to a, whilst b remains undefined. Given that
D-WFS deletes the first clause by elimination of non-minimal clauses, a is ob-
tained as false and b continues undefined because there is no rule left with a
in the head. SWFS assigns undefined to both a and b. In GDWFS b is true
and a is false. Finally, for WFDS a and b are undefined. Then we have that in
P3 GDWFS derives the most information, followed by WFSd and D-WFS . The
weakest semantics for this program are SWFS and WFDS .

So far WFSd and D-WFS have presented the same results. However this is
not the case generally:

Example 9. Let P4 = {a ∨ b, c← not a, c← not b}.

I↑0P4
= < HIP4

,HIP4
>

I↑1P4
= < {{a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}},
{{a, c}, {b, c}, {a}, {b}, {c}, {}}>

I↑2P4
= < {{a, c}, {b, c}, {a, b, c}}, {{a, c}, {b, c}, {a}, {b}, {c}, {}}>

WFSd(P4) = I↑3P4
= I↑2P4

.

According to WFSd , c is true in P4 but undefined in D-WFS . Though D-WFS
and WFSd do not coincide generally, yet D-WFS is strictly weaker than WFSd .

354 J. Alcântara, C.V. Damásio, and L.M. Pereira

Theorem 7. Let P1 and P2 be disjunctive logic programs such that P2 results
from P1 by unfolding, elimination of tautologies and nonminimal rules, and pos-
itive and negative reduction. We have WFSd(P1) = WFSd (P2).

This guarantees that D-WFS is strictly weaker than WFSd , since D-WFS is
known to be the weakest semantics allowing unfolding, elimination of tautologies
and nonminimal rules, and positive and negative reduction.

5 Conclusions and Future Work

When studying disjunctive logic programs, one of the first obstacles is not to
be at a loss in keeping track of the alphabet soup of their different semantics.
Despite the jocular tone of this affirmation, it reveals the great attention the logic
programming community has devoted to this matter since 1982. Collaterally, it
also reveals the difficulty in reaching a consensual semantics.

Bearing in mind that scores of semantics have already been presented to treat
disjunction in logic programming, it might appear unreasonable to consider new
proposals. Indeed, finding a semantics to capture the meaning of disjunctive logic
programs is a conundrum sufficiently hard to dissuade simple solutions.

Notwithstanding, we have developed a new semantics for disjunctive logic
programs, christened Well-Founded Semantics with Disjunction (WFSd), by gen-
eralising to a set of interpretations the fixed point operator ΩP defined in [8]
to characterise WFS . Our semantics does not coincide generally with any other
we have studied. It surmises D-WFS , Static, GDWFS , WFDS and SWFS . Yet
we have shown WFSd is uniquely defined for every disjunctive logic program,
generalises WFS , and is strictly stronger than D-WFS .

Furthermore, preliminary results authorise us to state that WFSd can be ex-
tended to deal with explicit negation, either explosive or paraconsistent. Again
we postpone analyses of the algorithmic complexity of WFSd , along with its
model-theoretical counterpart, apropos of which we can promote a detailed sce-
nario exploring the logical properties of WFSd . In particular, it empowers us to
identify the meaning assigned to disjunction and the properties supporting the
relation between disjunction and default negation in our semantics.

Concomitantly we are working in another well-founded semantics for disjunc-
tive logic programs we will present in a future work. Although preserving good
properties of WFSd , this new semantics is simpler and in some cases more cred-
ulous. For instance, in the program shown in Example 7, it concludes that not e
is true, instead of standing undefined as in WFSd .

Scaffolded on the aforementioned reasons, while we do not claim WFSd is
the best semantics for disjunctive logic programs, we steadfastly uphold that
WFSd is not just a new semantics for disjunctive logic programs, but that it is
at least a worthwhile one: a semantics whose adequacy rend it a possible choice
for representing knowledge and reasoning in logic programming.

Acknowledgments. João Alcântara is a PhD student supported by CAPES -
Braśılia, Brazil. The authors also thank the REWERSE project.

A Well-Founded Semantics with Disjunction 355

References

1. C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics for logic
programs. In 10th International Conference on Automated Deduction, 1990.

2. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial
Evaluation. Journal of Logic Programming, 38(3):167–213, 1999.

3. J. A. Fernández and J. Minker. Bottom-up computation of perfect models for
disjunctive theories. Journal of Logic Programming, 25(1):33–51, 1995.

4. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In 5th Int. Conf. on Logic Programming, pages 1070–1080. MIT Press, 1988.

5. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT Press, 1992.

6. J. Minker. On indefinite databases and the closed world assumption. In 6th Confer-
ence on Automated Deduction, volume 138, pages 292–308. Springer-Verlag, 1982.

7. J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic programs.
Journal of Logic Programming, 9(1):45–74, 1990.

8. H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases
and logic. In R. Banerji, editor, Formal Techniques in Artificial Intelligence - a
Sourcebook, pages 321–367. North Holland, 1990.

9. T. Przymusinski. Static semantics for normal and disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence, Special Issue on Disjunctive
Programs:323–357, 1995.

10. T. C. Przymusinski. On the declarative semantics of stratified deductive databases
and logic programs. In J. Minker, editor, Foundation of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, 1988.

11. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing Journal, 9:401–424, 1991.

12. R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 55–76. Plenum Press, 1978.

13. K. Ross. The well founded semantics for disjunctive logic programs. In First Int.
Conf. on Deductive and Object Oriented Databases, pages 352–369, 1989.

14. D. Seipel, J. Minker, and C. Ruiz. Model generation and state generation for
disjunctive logic programs. Journal of Logic Programming, 32(1):49–69, 1997.

15. M. Smyth. Power domains. J. Computer and System Sciences, 16(1):23–36, 1978.
16. A. Tarski. Lattice-theoretic fixpoint theorem and its applications. Pacific Journal

of Mathematics, pages 285–309, 1955.
17. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming

language. Journal of ACM, 4(23):733–742, 1976.
18. A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general

logic programs. Journal of the ACM, 38(3):620–650, 1991.
19. K. Wang. Argumentation-based abduction in disjunctive logic programming. Jour-

nal of Logic Programming, 2001.

Semantics of Framed Temporal Logic Programs�

Zhenhua Duan1, Xiaoxiao Yang1, and Maciej Koutny2

1 School of Computer Science and Engineering, Xidian University,
Xi’an 710071, P.R. China

{zhhduan, xxyang}@mail.xidian.edu.cn
2 Department of Computing Science, University of Newcastle,

Newcastle upon Tyne NE1 7RU, UK
maciej.koutny@ncl.ac.uk

Abstract. This paper investigates semantics of framed temporal logic
programs. To this end, a projection temporal logic and its executable
subset are presented. Based on this language, a framing technique is
introduced. The semantics of a non-framed program is well interpreted
by the canonical model. However, since introducing a framing opera-
tor destroys monotonicity, a canonical model may no longer capture the
intended meaning of a program. Hence, a minimal model theory is de-
veloped. Within this model, negation by default is used to manipulate
frame operator. Further, the temporal semantics of framed programs is
captured by means of the minimal models. The existence of a minimal
model for a given framed program is also proved. An example is given
to illustrate how the semantics of framed programs can be captured.

Keywords: Temporal logic programming, framing, minimal model,
monotonicity, semantics.

1 Introduction

Framing [6,3] is concerned with how the value of a variable from one state can
be carried to the next. Temporal logic offers no solution in this respect; no value
from a previous state is assumed to be carried along. Framing techniques have
been employed by conventional imperative languages for many years. However,
framing in conventional languages has been taken for granted and there is no
conscious effort to consider it explicitly. However, within a temporal logic pro-
gramming language such as Tempura [8,3], XYZ/E [11] a program is executed
over a sequence of states and the values of variables are not inherited auto-
matically. Thus, for improving the efficiency of a program and synchronizing
communication for parallel processes, we have to consider the framing tech-
niques carefully in temporal logic programming. To synchronize communication
between parallel processes in a concurrent program with the shared variable

� This research is supported by the NSFC Grant No. 60373103 and 60433010, the
SRFDP Grant 20030701015, and Grant SYSKF0407 from Lab. Computer Science,
ISCAS.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 356–370, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantics of Framed Temporal Logic Programs 357

model, a synchronization construct, await(c) is required, similarly as in many
concurrent programming languages [10]. Defining await(c) is difficult without
some kind of framing construct since the values of variables are not inherited
automatically from one state to another. But one requires some kind of indefi-
nite stability, since it cannot be known at the point of use how long the waiting
will last. At the same time one must also allow variables to change, so that an
external process can modify the boolean parameter and it can eventually become
true.

To capture the temporal semantics of non-framed programs in Tempura,
the canonical model has been introduced to interpret programs [3]. Within this
model, the semantics of a non-framed program is well captured. However, since
introducing a framing operator destroys monotonicity, a canonical model may
no longer capture the intended meaning of a program. A program, therefore, can
have different meanings under different models. To interpret a framed program
faithfully, minimal models will be employed in this paper. Within this model,
negation by default is used to manipulate the frame operator. Furthermore, the
existence of a minimal model for a satisfiable program is proved by means of
fix-point theory.

This paper is organized as follows. In the following section, a Projection
Temporal Logic (PTL) is briefly introduced. Based on this logic, an executable
temporal logic programming language called Tempura is formalized in Section
3. Section 4 formalizes a framing technique. Section 5 presents the temporal
semantics of framed programs by means of minimal models. Finally, in Section
6, an example is given to illustrate how the minimal model can be used to capture
the meaning of a framed program. Conclusions are drawn in Section 7.

2 Projection Temporal Logic

Our underlying logic PTL is the first order temporal logic [7,10] with projection
[2,3,5]. It is an extension of ITL [8].

2.1 Syntax

Let Π be a countable set of propositions, and V be a countable set of typed
static and dynamic variables. The terms e and formulas p of the logic are given
by the following grammar:

e ::= x | u | ©e | -©e | beg(e) | end(e) | f(e1, . . . , en)

p ::= π | e1 = e2 | P (e1, . . . , en) | ¬p | p1 ∧ p2 | ∃x : p | ©p | -©p | (p1, . . . , pm) prj p

where π is a proposition, x is a dynamic variable and u is a static variable. In
f(e1, . . . , en) and P (e1, . . . , en), where f is a function and P is a predicate. It is
assumed that the types of the terms are compatible with those of the arguments
of f and P . A formula (term) is called a state formula (term) if it does not
contain any temporal operators (i.e. ©, -©, beg(.), end(.) and prj); otherwise it
is a temporal formula (term).

358 Z. Duan, X. Yang, and M. Koutny

2.2 Semantics

A state s is a pair of assignments (Iv, Ip) which for each variable v ∈ V defines
s[v] = Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value
of the appropriate type or nil (undefined), whereas Ip[π] ∈ {true, false}. An
interval σ = 〈s0, s1, . . . 〉 is a non-empty (possibly infinite) sequence of states.
The length of σ, denoted by |σ|, is defined as ω if σ is infinite; otherwise it
is the number of states in σ minus one. To have a uniform notation for both
finite and infinite intervals, we will use extended integers as indices. That is,
we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω} and
extend the comparison operators, =, <,≤, to Nω by considering ω = ω, and
for all i ∈ N0, i < ω. Moreover, we define 3 as ≤ −{(ω, ω)}. For 0 ≤ i, j ≤
|σ| we will use σ(i..j) to denote the subinterval 〈si, si+1, . . . , sj〉.1 It is assumed
that each static variable is assigned the same value in all the states in σ. To
define the semantics of the projection operator we need an auxiliary operator
for intervals.

Let σ = 〈s0, s1, . . . 〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ|. The projection of σ onto r1, . . . , rh is the interval,
σ↓(r1, . . . , rh) = 〈st1 , st2 , . . . , stl

〉, where t1, . . . , tl is obtained from r1, . . . , rh by
deleting all duplicates. For example, 〈s0, s1, s2, s3, s4〉↓(0, 0, 2, 2, 2, 3)=〈s0, s2, s3〉.

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = 〈s0, s1, . . . 〉 is an interval, i and k are non-negative integers, and j is an
integer or ω, such that i ≤ k 3 j ≤ |σ|. We use (σ, i, k, j) to mean that a term or
formula is interpreted over a subinterval σ(i..j) with the current state being sk.
For every term e, the evaluation of e relative to interpretation I = (σ, i, k, j) is
defined as I[e], by induction on the structure of a term, as shown in Fig. 1, where
v is a variable and e1, . . . , em are terms. The satisfaction relation for formulas
|= is defined as the least relation satisfying the following.

I[a] = sk[a] = Ik
v [a] = Ii

v[a] if a is a static variable.
I[x] = sk[x] = Ik

v [x] if x is a dynamic variable.

I[f(e1, . . . , em)] =
{

f(I[e1], . . . , I[em]) if I[eh] �= nil for all h
nil otherwise

I[©e] =
{

(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[-©e] =
{

(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[beg(e)] = (σ, i, i, j)[e]

I[end(e)] =
{

(σ, i, j, j)[e] if j �= ω
nil otherwise

Fig. 1. Interpretation of PTL terms

1 When i > j, σ(i..j) is the empty string, and if j = ω then σ(i..j) = 〈si, si+1, . . . 〉.

Semantics of Framed Temporal Logic Programs 359

1. I |= π if sk[π] = Ik
p [π] = true.

2. I |= P (e1, . . . , em) if P (I[e1], . . . , I[em]) = true and I[eh] �= nil, for all h.
3. I |= e = e′ if I[e] = I[e′].
4. I |= ¬p if I �|= p.
5. I |= p ∧ q if I |= p and I |= q.
6. I |= ©p if k < j and (σ, i, k + 1, j) |= p.
7. I |= -©p if i < k and (σ, i, k − 1, j) |= p.
8. I |= ∃x : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j)
|= p and the only difference between σ and σ′ can be in the values assigned
to variable x.

9. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm 3 j
such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ↓(r0, . . . , rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ↓(r0, . . . , rh) for some 0 ≤ h ≤ m.

A formula p is said to be:

– satisfied by an interval σ, denoted σ |= p, if (σ, 0, 0, |σ|) |= p.
– satisfiable if σ |= p for some σ.
– valid, denoted |= p, if σ |= p for all σ.
– left end closed (lec-formula) if (σ, k, k, j) |= p ⇔ (σ, i, k, j) |= p for any

interpretation (σ, i, k, j).
– equivalent to another formula q, denoted p ≡ q, if |= �(p↔ q).

Projection. To ensure smooth synchronization between p1, . . . , pm and q, the
previous operator is not allowed within q appearing in (p1, . . . , pm) prj q. The
projection construct is executable, and to interpret (p1, . . . , pm) prj q we need
two sequences of clocks (states) running on different time scales: one is a local
state sequence, over which p1, . . . , pm are executed, while the other is a global
state sequence over which q is executed in parallel with the sequence of pro-
cesses p1, . . . , pm. The execution proceeds as follows: First, q and p1 start at
the first global state and p1 is executed over a sequence of local states until its
termination. Then (the remaining part of) q and p2 are executed at the sec-
ond global state. Subsequently, p2 is continuously executed over a sequence of
local states until its termination, and so on. Although q and p1 start at the
same time, p1, . . . , pm and q may terminate at different time points. E.g., if
q terminates before some ph+1, then, subsequently, ph+1, . . . , pm are executed
sequentially.

2.3 Other Formulas

The derived connectives, ∨, → and ↔, as well as the logic formulas, true and
false, are defined as usual. We also use the following derived formulas:

360 Z. Duan, X. Yang, and M. Koutny

Simple Temporal Formulas

Prj (p1, . . . , pm) def= (p1, . . . , pm) prj empty empty def= ¬© true⊙
p

def= ¬ -©¬p more def= ¬empty
first def= ¬ -©true skip def= len(1)⊙

p
def= empty ∨©p �p

def= Prj (true, p)

len(n) def=

⎧⎨
⎩

empty n = 0

©len(n− 1) n > 1
�p

def= ¬�¬p

The chop operator (;), which is a central operator in ITL [8], can be expressed
by the projection operator of PTL, as follows: p; q def= Prj (p, q). The chop star
operator (∗) of [9] can also be defined.

Theorem 1. Let p, q, w be formulas, and e, e1, e2 terms, then the following for-
mulas hold:

FCH1 ©p; q≡© (p; q) FDU1 ¬
⊙

p≡©¬p
FCH2 w ∧ (p; q)≡(w ∧ p; q) FDU2 ¬©p≡

⊙
¬p

FD3 ©(p∧q)≡©p∧©q FE1 �p≡p∨©�p
FD4 ©(p∨q)≡©p∨©q FE2 �p≡p∧

⊙
�p

FD9 (w; p∨q)≡(w; p)∨(w; q) NFE ¬first∧more ⊃ (© -©p↔ -©©p)
FD10 (p∨q;w)≡(p;w)∨(q;w) FQT1 ©(∃x : p) ≡ ∃x : ©p
FW2

⊙
p ≡ ¬©¬p EQ3 ¬first∧more ⊃ (© -©e = -©©e)

FW1 ©p ≡
⊙

p∧more EQ1 more ⊃ (©e1 =©e2 ↔©(e1 = e2))
FUN3©e1 +©e2 =©(e1 + e2) FST 1 p∗ ≡ empty ∨ (p; p∗) ∨ p ∧�more

These logic laws are useful in the reduction of programs and the proofs of them
can be found in [3].

3 Temporal Logic Programming Language

The programming language we use is an executable subset of PTL. It is an ex-
tension of Tempura [8,6]. We augment Tempura with frame, new projection, and
await operators [2,3,4,5]. In addition, variables within a program can also refer
to their previous values. In the following, we first introduce the basic constructs
of Tempura. Later, we formalize the frame and await constructs.

3.1 Syntax

The basic statements of Tempura are as follows.

– Assignment: x = e
– Conjunction: p∧q
– Conditional statement: if b then p else q

def= (b→p)∧(¬b→q)
– Local variable: ∃x : p
– Next statement: ©p

Semantics of Framed Temporal Logic Programs 361

– Always statement: �p
– Sequential statement: p; q
– While statement: while b do p

def= (p∧b)∗∧�(empty → ¬b)
– Projection statement: (p1, ..., pm) prj q

– Parallel statement: p||q def= p ∧ (q; true) ∨ q ∧ (p; true)
– Termination: empty

where b is a state boolean expression consisting of propositions, variables, and
boolean connectives.

The following formulas are derived from PTL and can be used in programs.

1. Assignment Operators
Let x be a variable, u a static variable, and e an expression (term).
1) Next assignment: x o= e

def= ©x = e

2) Unit assignment: x := e
def= skip∧x o= e

The next assignment specifies the value of x to be e at the next state, while
the unit assignment assigns value e to x at the next state, the same function
as the next assignment, but, in the meantime, it specifies the length of the
interval over which the assignment takes place to be 1.

2. Termination and the Final State
1) fin(p) def= �(empty→p)
2) keep(p) def= �(¬empty→p)
3) halt(p) def= �(empty↔p)
fin(p) holds over an interval as long as p holds at the final state, whereas
keep(p) holds over an interval if p holds at every state, ignoring the final
one. halt(p) holds over an interval if and only if p holds at the final state.

3.2 Semantics of Programs

An expression e can be treated as a term and a program P can be viewed as
a formula in PTL. Therefore, the evaluation of e and the interpretation of P
can be done as in PTL. However, since the programming language is a subset
of the underlying logic, a program may have its own characteristics and may be
interpreted in a simple and manageable way.

In order to interpret temporal logic programs, we assume that a program P
contains a finite set S of variables and a finite set Φ of propositions. We interpret
propositions over B and variables over D′ = D ∪ {nil}, where nil is undefined
and D denotes all data needed by us including integers, lists, sets etc. For a
program P , there are three ways to interpret propositions contained in P , namely
canonical, complete, and partial interpretations as defined for the semantics of
logic programming language [1]. Here, we use the canonical interpretation only
on propositions. That is, in a model σ =< (I0

v , I
0
p), ... >, Ik

v is used as in the
logic but Ik

p is changed to the canonical interpretation.
A canonical interpretation on propositions is a subset Ip⊆Φ. Implicitly,

propositions not in Ip are false. Note that Ik
p in the interpretation of the logic

362 Z. Duan, X. Yang, and M. Koutny

framework is an assignment of a truth value in B to each proposition π∈Π at
state sk; whereas in a canonical interpretation, Ik

p is a set of propositions, each
of them has truth value true in B at sk. Clearly, the two definitions are equiva-
lent except that they refer to different sets of variables and propositions. Using
canonical interpretation is necessary for easy manipulation of minimal models.
Let σ =< (I0

v , I
0
p), ... > be a model. We denote the sequence of interpretation on

propositions of σ by σp =< I0
p , ... >. σp is said to be canonical if each Ii

p(i≥0)
is a canonical interpretation on propositions.

If there exists a model σ with σp being a canonical interpretation sequence on
propositions andσ|=P as in the logic, then programP is said to be satisfiable under
the canonical interpretation on propositions, denoted by σ|=cP ; and σp is said to
be a canonical interpretation sequence (on propositions) of program P . If for all σ
with σp being a canonical interpretation sequence, σ|=P , then program P is said
to be valid under the canonical interpretation on propositions, denoted by |=cP .

Note that the definition of the canonical interpretation of program P is in-
dependent of its syntax in the sense that the definition does not refer to the
structure of the program. So the definition can be extended so that it can be
applied to non-deterministic programs and temporal formulas.

Example 1. For the propositional formula, P1: ¬A↔©B, which can be treated
as a non-deterministic program, we have Φ = {A,B}, and P1 has the following
canonical interpretation sequences of length 2, < φ, {B} >, < φ, {A,B} >,<
{B}, {B} >,< {B}, {A,B} >, < {A}, φ >,< {A}, {A} >,< {A,B}, φ >, and
< {A,B}, {A} >.

P1 is satisfiable but not valid under the canonical interpretation on propositions
because a canonical interpretation sequence, < φ, φ >, does not satisfy it.

Note that a program P can be satisfied by several different canonical models
on propositions so program P has, possibly, different meanings under different
models. Therefore, it is important to choose a model which satisfies the intended
meaning of a program P , and this is the topic of Section 5.

Since the canonical model is basically equivalent to the basic model except
that the latter acts on the fixed set V of variables and the fixed set Π of proposi-
tions, whereas the former acts on the set of variables and the set of propositions
within a concrete program. ∃x : p(x) can be renamed as a formula p(y) (or
p[y/x]) with a free variable y by renaming x as y.

Lemma 2. Let p(y) be a renamed formula of ∃x : p(x). Then, ∃x : p(x) is
satisfiable if and only if p(y) is satisfiable. Furthermore, any model of p(y) is a
model of ∃x : p(x).

4 Framing

In this section, we first define some new assignments which are required by
framing, then we define frame operators; and finally, we present a minimal model-
based approach for framing.

Semantics of Framed Temporal Logic Programs 363

Suppose S = {x1, ..., xn}(S⊂V) is a set of state variables within a program
P . Note that variables bound by quantifiers can always be given distinct names
by renaming them as necessary.

Definition 1. (new assignments)

(1) xi⇐e
def= xi = e∧pi (0≤i≤n, e �= nil)

(2) xi o=+ e
def= ©xi = e∧©pi

(3) xi :=+ e
def= xi o=+ e∧skip

where pi is an atomic proposition associated with state variable xi (0≤i≤n) and
cannot be used for other purposes.

The meanings of these assignment operators are similar to those presented in
Section 3, but they render some propositions true besides assigning some values
to variables in the same unit of time. It is now time to define the assignment
flag

af(xi)
def= pi

where proposition pi associated with variable xi is the same as in Definition 1,
and cannot be used for other purposes. As expected, whenever xi⇐b is encoun-
tered, pi is set to be true, hence af(xi) is true whereas if no assignment to xi

takes place, pi is unspecified. In this case, we will use a minimal model to force
it to be false.

Armed with the assignment flag, we can define state frame and interval frame
operators. Intuitively, when a variable is framed at a state, its value remains
unchanged if no assignment is encountered at that state. A variable is framed
over an interval if it is framed at every state over the interval.

Definition 2. (looking back framing)

(1) lbf(xk) def= ¬af(xk)→∃b : (-©xk = b∧xk = b)
(2) frame(xk) def= �(more→©lbf(xk))
(3) frame(x1, ..., xn) def= frame(x1)∧...∧frame(xn)

We interpret programs using minimal models. Let σ =< s0, ... > be an
interval, and si = (Ii

v , I
i
p); Ii

v is defined as in Section 2.2 and Ii
p is the canoni-

cal interpretation defined as in Section 3.2 but the sequence of interpretations
on propositions of σ, σp =< I0

p , ..., >, is required to be a minimal canonical
sequence, as defined in the next section. Armed with framing operator, the syn-
chronized communication construct await(c) can be defined as follows:

Definition 3. await(c) def= frame(Vc)∧halt(c) whereVc represents all dynamic
variables contained in c.

5 Minimal Model

5.1 The Minimal Satisfaction Relation

In this section, we discuss semantics of framed programs. As before, let V denote
the set of all variables. A dynamic variable x ∈ V is said to be framed in a

364 Z. Duan, X. Yang, and M. Koutny

program p if frame(x) or lbf(x) is contained in p. A program p is said to be
framed if p contains at least one framed variable. In general, a framed program is
non-deterministic under the canonical model. Consequently, a framed program
can inductively be defined, as follows

– For any variable x ∈ V and any well-formed expression e, x = e, x⇐ e, and
empty are framed programs.

– lbf(x), and frame(x) are framed programs.
– If p, q, p1, ..., pm are framed programs, then so are the followings:

©p, �p, p ∧ q, p; q, if b then p else q, while b do p, p‖q, (p1, ..., pm) prj q,
and ∃x : p.

Fact 1.
EQFR xi = ei ≡ pxi ∧ xi = ei ∨ ¬pxi ∧ xi = ei

LBF lbf(xi) ≡ pxi ∨ ¬pxi ∧ xi = -©xi

Proof:

EQFR is obviously true. We only prove LBF.

lbf(xi) ≡ ¬afxi → ∃b : -©xi = b ∧ xi = b
≡ ¬pxi → ∃b : -©xi = b ∧ xi = b
≡ ¬pxi → -©xi = a ∧ xi = a Lemma 2
≡ ¬pxi → xi = -©xi (�= nil)
≡ pxi ∨ ¬pxi ∧ xi = -©xi

By EQFR and LBF, when we reduce a framed program p, whenever xi = ei

occurs in p, it is replaced by pxi ∧ xi = ei ∨ ¬pxi ∧ xi = ei; whereas whenever
lbf(xi) occurs in p, it is replaced by pxi ∨¬pxi ∧ xi = -©xi. Then we can reduce
p under the canonical model as usual.

A framed program p can be a non-deterministic program. There may be
several models satisfying the program under the canonical models.

Example 2.

frame(x) ∧ x = 1 ∧ len(1)
≡ �(more→©lbf(x)) ∧ x = 1 ∧©(empty)
≡ (more→©lbf(x)) ∧

⊙
�(more→©lbf(x)) ∧ x = 1 ∧more ∧©(empty)

≡ ©lbf(x) ∧©�(more→©lbf(x)) ∧ x = 1 ∧©(empty)
≡ (px ∧ x = 1 ∨ ¬px ∧ x = 1) ∧©(lbf(x) ∧ empty)

Thus,
pc ≡ px ∧ x = 1 ∨ ¬px ∧ x = 1

pf ≡ lbf(x) ∧ empty
≡ (px ∨ ¬px ∧ x = 1) ∧ empty
≡ px ∧ empty ∨ ¬px ∧ x = 1 ∧ empty

Semantics of Framed Temporal Logic Programs 365

Hence, four models given below can satisfy the program.

σ1 =< ({px}, {x : 1}), ({px}, φ) >, σ2 =< ({px}, {x : 1}), (φ, {x : 1}) >

σ3 =< (φ, {x : 1}), ({px}, φ) >, σ4 =< (φ, {x : 1}), (φ, {x : 1}) >

As seen, a framed program can have a number of canonical models. Thus,
a problem we have to face is how to choose a model to satisfy the intended
meaning of a program. We interpret framed programs using minimal models.

Definition 4. Let p be a framed program, and Σp = {σ|σ |=c p}. Let σp =<
I0
p , I

1
p , ... >, σ1, σ2 ∈ Σp. We define

– σ1p " σ2p iff Ii
1p ⊆ Ii

2p and |σ1| = |σ2| for all i, 0 ≤ i ≤ |σ1|
– σ1 " σ2 iff σ1p " σ2p

– σ1 � σ2 iff σ1 " σ2 and σ2 �" σ1

Example 3.

< (φ, {x : 1}) >=< (φ, {x : 1}) >,< ({px}, φ) >�< (φ, {x : 1}) >

Definition 5. (the minimal satisfaction relation)
Let p be a program, and (σ, i, k, j) be an interpretation. Then the minimal sat-
isfaction relation |=m is defined as

(σ, i, k, j) |=m p iff (σ, i, k, j) |=c p and there is no σ′ such that σ′ � σ and
(σ′, i, k, j) |=c p.

A program p is satisfied by a model σ under relation |=m, denoted by σ|=mp,
if (σ, 0, 0, |σ|) |=m p. A model σ is a minimal model of program p if σ |=m p.

The relations ≡m and ≈m can be defined similarly to the relations ≡ and ≈.
p ≡m q iff for all σ, all k, 0 ≤ k 3 |σ|, (σ, 0, k, |σ|) |=m p ⇔ (σ, 0, k, |σ|) |=m q.
p ≈m q iff for all σ, σ |=m p ⇔ σ |=m q. The relations ≡m and ≈m are
also equivalence relations over the set of programs. That is, they are reflexive,
symmetric and transitive.

Note that the definition of the minimal model of a program p is also indepen-
dent of its syntax in the sense that the definition does not refer to the structure
of the program, and can be applied to temporal formulas.

Example 4. The program p in Example 2 has only one minimal model σ4 = (<
φ, {x : 1}), (φ, {x : 1}) >. The formula P1 in Example 1 has only two minimal
models, namely, < φ, {B} > and < {A}, φ >.

The intended meaning of a program p is captured by its minimal model. For
instance, if p is x1⇐1∧frame(x1)∧len(1) then under the minimal model, x1 = 1
defined at both state s0 and s1, this is the intended meaning of p. However, within
only the canonical model, px1 is unspecified at state s1, so it could be true at s1.
This causes x1 to be unspecified at state s1. Therefore, x1 could be any value
from its domain.

366 Z. Duan, X. Yang, and M. Koutny

5.2 Normal Form

Definition 6. A framed program q is in normal form if

q
def=

k∨
i=1

qei ∧ empty∨
h∨

j=1

qcj ∧©qfj (5.1)

where k, h ≥ 0 (k + h ≥ 1) and

– for all 1 ≤ j ≤ h, ©qfj are lec-formulas and qfj are programs.
– qcj (j ≤ h) and qei (i ≤ k) are true or all state formulas of the form:

(x1 = e1) ∧ ... ∧ (xl = el) ∧ ṗx1 ∧ ... ∧ ṗxm

where ei ∈ D (1 ≤ i ≤ l) and ṗx denotes px or ¬px and l ≥ 0 and m ≥ 0 and
k + h ≥ 1. Notice that, qcj1 �≡ qcj2 if j1 �= j2, otherwise they can be merged
into one by taking the common factor.

In some circumstances, we simply write qe ∧ empty instead of
k∨

i=1
qei ∧ empty.

Also, we call conjuncts, qei ∧ empty, qcj ∧©qfj , basic products; the former is
called terminal product whereas the latter is called future products. Further, we
call qei, qcj present components, ©qfj future components of basic products.

Theorem 3. If p is a framed program, then there is a program q as defined in
(5.1) such that

p ≡ q

Theorem 4. Let q ≡
k∨

i=1
qei ∧ empty ∨

h∨
j=1

qcj ∧©qfj be the normal form of a

framed program q. If px and x = e′, where e′ �= e (e′, e ∈ D), are not contained
in qei (1 ≤ i ≤ k) and qcj (1 ≤ j ≤ h), then

(px ∨ ¬px ∧ x = e) ∧ q ≡m ¬px ∧ x = e ∧ q

The proofs of the above two theorems can be found in [3]. Armed with
the normal form, a program q can be decomposed to a so called Normal Form
Graph(NFG) as follows:

Initially, the root (denoted by a small double circle) of the Graph is labelled
by program q, each basic product in the normal form of q becomes a son of q.
With the terminal product, the edge labelled by present component qe and a
terminal vertex (a small black dot) labelled by ε without appearing of empty;
and with the future product, the edge labelled by qcj and the next vertex (a
small circle) labelled by next component qfj . Then, qfj can further be reduced
to a sub-graph of q and so on. If two vertices are identical, we merge them into
one. It is clear that if q has only finite models, its NFG is also finite. A normal
form graph is shown in Fig.2(a). Note that a sup-script of a present component
denotes the reduction level on a path in NFG.

Semantics of Framed Temporal Logic Programs 367

q

qe

ε

qc2
qc1

qf1

qf2

q11
c1

q12
c1 q13

c1

q11
f1 q12

f1
q13
f1

q
I−1 = {(−1, φ)}

I
0,(1)
p

I0
p

I
0,(2)
p

I0
I
1,(1)
p

I
1,(2)
p

I1
p

I1

Ik
I

k+1,(1)
p

Ik+1
p

I
k+1,(2)
p

Ik+1

(a) (b)

q11
c2

Fig. 2. NFG

5.3 Existence Theorems of Minimal Models

In this section, we investigate the existence of minimal models of a satisfiable
framed program. Two theorems are proved. The first is the one with suffi-
ciency conditions whereas the second is the one with necessity and sufficiency
conditions.

Theorem 5. Let p be a satisfiable framed program (which may be non-
terminating, and/or non-deterministic). If, (1) p has at least one finite model
or (2) p has finitely many models, then p has at least one minimal model on
propositions.

The proof of the theorem can be found in [3] and is omitted here.

Theorem 6. Let p be a satisfiable framed program (which can be
non-terminating, and/or non-deterministic), then p has at least one minimal
model on propositions.

Proof:
In order to distinguish operations between sequences and sets, we denote a
finite canonical interpretation sequence (I0

p , ..., Ik
p) by Ik, and its correspond-

ing coded set {(0, I0
p), ..., (k, Ik

p)} by Ik. Thus, for an arbitrary canonical in-
terpretation sequence I = (I0

p , ..., Ih
p) (h ∈ N0), its corresponding coded set is

I = {(0, I0
p), ..., (h, Ih

p)}.
For convenience, we need to add extra information to the NFG of a program p.

First, the label of each edge, i.e, present component in the normal form of p, e.g.
pej or pci is changed to corresponding canonical interpretation on propositions Ih

p

for some h ≥ 0 ((h− 1)th edge from root on a path) ignoring program variables.
For instance, if pci ≡ p1∧x1 = 1∧p2∧p3∧x3 = 2, then Ih

p = {p1, p2, p3}. Second,
a node is given an extra label Ik. The initial node is labelled by I−1 = {(−1, φ)}.
With a node Ik ((k−2)th node from root), to find out the next edge with minimal
canonical interpretation, we define a function e−min as follows.

368 Z. Duan, X. Yang, and M. Koutny

e−min(Ik) = min{Ik+1,(1)
p , ..., I

k+1,(h)
p } = I

k+1,(i)
p (Ik+1

p for short), if I
k+1,(i)
p

⊂ I
k+1,(j)
p or I

k+1,(i)
p is not comparable with I

k+1,(j)
p , for ∀j, i �= j, 0 ≤ i, j ≤ h

where I
k+1,(1)
p , ..., I

k+1,(h)
p are all canonical interpretations associated with edges

departing from node Ik.
By Theorem 3, a framed program p can be reduced to its normal form. Since

p is satisfiable, so p has at least one canonical model. Thus, we can construct its
NFG as shown in Fig.2(b). Based on NFG, we can construct a calculus T on a
canonical interpretation coded set I, T (I) is defined as:

T (I) = {(n, In
p)|∃In−1 ⊆ I, In

p = e−min(In−1), n ≥ 0}

e − min(In−1) is a function returning the minimal interpretation among all
canonical interpretations associated with edges departing from node In−1.

Initially I−1={(−1, ∅)}, then we repeatedly apply calculus T to sets I−1, I0, ...
Thus, we got,
I0 = T (I−1) = {(0, I0

p)} , I1 = T (I0) = {(0, I0
p), (1, I1

p)}, I2 = T (I1) = T 2(I0) =
{(0, I0

p), (1, I1
p), (2, I2

p)},..., In = T (In−1) = T n(I0) = {(0, I0
p), (1, I1

p), ..., (n, In
p)}.

Thus, I0 ⊆ I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ It is readily to see that T is monotonic.

Let I =
∞⋃

n=0
In, In stands for the prefix of minimal interpretation sequence I.

We now prove the following conclusions.
1. I is a canonical interpretation sequence of p.
We first prove T (I) = I.
(1) T (I) ⊆ I. For ∀(n + 1, In+1

p) ∈ T (I), by definition, ∃In, In ⊆ I, In+1
p =

e−min(In), so (n + 1, In+1
p) ∈ T (In), i.e. (n + 1, In+1

p) ∈ In+1. Since In+1 ⊆ I,
we have (n + 1, In+1

p) ∈ I. Hence T (I) ⊆ I.

(2) I ⊆ T (I). That is to prove
∞⋃

n=0
In ⊆ T (I). First, we prove ∀n, n ∈ N, In ⊆

T (I). Suppose (n, In
p) ∈ In, then (n, In

p) ∈ T (In−1). Since In−1 ⊆ I, by defini-
tion, In

p = e−min(In−1) , so (n, In
p) ∈ T (I), hence In ⊆ T (I). In addition, for

all i ∈ N , if (i, Ii
p) ∈

∞⋃
n=0

In, then ∃n ∈ N such that (i, Ii
p) ∈ In. Since In ⊆ T (I),

so (i, Ii
p) ∈ T (I),

∞⋃
n=0

In ⊆ T (I), therefore I ⊆ T (I).

By the above, we have T (I) = I. Thus, I is a fix-point of T and I is a canonical
interpretation sequence of program p.

2. Let M = {σ|σ |=c p} and σ ∈ M , σp = I. Then σ is a minimal model of p.
Suppose ∃σ′ ∈ M, σ′ " σ. We prove σ = σ′ by induction on In

p = I
′n
p .

(1) Since σ′ " σ, so σ
′
p " σp, i.e. I

′i
p ⊆ Ii

p for all i, 0 ≤ i ≤ |σ|. Thus I
′0
p ⊆ I0

p ,
by definition of T , I0

p ⊆ I
′0
p , therefore I0

p = I
′0
p .

(2) Suppose for n ≤ k (0 ≤ k ≤ |σ|), Ih
p = I

′h
p (0 ≤ h ≤ k). Let n = k + 1.

Since I
′k+1
p ⊆ Ik+1

p , on the other hand, by definition of T , Ik+1
p ⊆ I

′k+1
p , so

Ik+1
p = I

′k+1
p . Therefore σ = σ′.

In conclusion, σ is a minimal model of program p.

Semantics of Framed Temporal Logic Programs 369

6 Example

In this section, an example is given to show how to apply the minimal model
to interpret a framed program. Let p ≡ frame(x)∧x = 1∧if px then y ◦=
1 else y ◦=+ 2 ∧len(1). The following is a complete reduction process of program
p. The sup-scripts of components denote the reduction levels and positions.

p ≡ frame(x)∧x = 1∧if px then y ◦= 1 else y ◦=+ 2 ∧len(1)
≡ �(more →©lbf(x)) ∧ x = 1 ∧(px∧ y ◦= 1 ∨ ¬px∧ y ◦=+ 2)∧
©(empty) definition 2

≡ (more →©lbf(x))∧
⊙

�(more →©lbf(x))∧x = 1 ∧
(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2∧© (empty)∧more FE2

≡ ©lbf(x)∧©�(more →©lbf(x))∧x = 1 ∧
(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2)∧© (empty) FW1

≡ x = 1∧© (lbf(x)∧empty)∧(px∧ y ◦= 1 ∨ ¬px∧y ◦=+ 2)
≡ x = 1∧© (lbf(x)∧empty)∧px∧y◦= 1∨

x = 1∧© (lbf(x)∧empty)∧¬px∧y ◦=+ 2
≡ x = 1∧© (lbf(x)∧empty)∧px∧© y = 1∨

x = 1∧© (lbf(x)∧empty)∧¬px∧© y ⇐ 2 Next assignment,def1(3)
≡ x=1∧px∧© (lbf(x)∧y=1∧empty) ∨ x=1∧¬px∧© (lbf(x)∧y⇐ 2∧empty)

The last formula shows that p is in a well-reduced (i.e. normal) form p
0(1)
c ∧©

p
0(1)
f ∨p

0(2)
c ∧©p

0(2)
f at state s0. Then p

0(1)
f and p

0(2)
f are continuously re-reduced

as follows:

p
0(1)
c ≡ x = 1∧px

p
0(1)
f ≡ lbf(x)∧y = 1∧empty

≡ (px ∨ ¬px∧x = 1)∧(py∧y = 1 ∨ ¬py∧y = 1)∧empty fact1
≡m ¬px∧x = 1∧¬py∧y = 1∧empty theorem4

p
0(2)
c ≡ x = 1∧¬px

p
0(2)
f ≡ lbf(x)∧y ⇐ 2∧empty

≡ (px ∨ ¬px∧x = 1)∧y ⇐ 2∧empty fact 1,LBF
≡m ¬px∧x = 1∧py∧y = 2∧empty theorem4, def1(1)

Finally, p
0(1)
f is reduced to the form pe(1) ≡ p

1(1)
c ∧empty, p

0(2)
f is reduced to

the form pe(2) ≡ p
1(2)
c ∧empty,which indicate that the reduction process of p are

successfully completed. Where

p
1(1)
c ≡ ¬px∧x = 1∧¬py∧y = 1, p

1(1)
f ≡ empty

p
1(2)
c ≡ ¬px∧x = 1∧py∧y = 2, p

1(2)
f ≡ empty

Hence, six models given below can satisfy the program.

σ1 =< ({px}, {x : 1}), ({px}, {y : 1}) >, σ2 =< ({px}, {x : 1}), ({px, py}, {y : 1}) >

σ3 =< ({px}, {x : 1}), ({py}, {x : 1, y : 1}) >,σ4 =< (φ, {x : 1}), ({px, py}, {y : 2}) >

σ5 =< ({px}, {x : 1}), (φ, {x : 1, y : 1}) >, σ6 =< (φ, {x : 1}), ({py}, {x : 1, y : 2}) >

370 Z. Duan, X. Yang, and M. Koutny

However, only two minimal models, σ5 and σ6, can capture the meaning of
program p. This example also shows us that a framed program might have more
than one minimal models.

7 Conclusion

This paper presented a framing technique based on an explicit frame operator.
A framed program is interpreted by a minimal model. An interpreter was also
developed using SICSTUS Prolog for the Framed Tempura. The interpreter em-
ployed the framing technique we presented in this paper. It is a workable and
useful technique. Because of the space limitation, we cannot introduce the inter-
preter and the reduction technique in this paper. It will be discussed elsewhere.

References

1. N.Bidoit: Negation in Rule-based Data Base Languages: A Survey. Theoretical
Computer Science 78 (1991) 3-83, North-Holland.

2. Z.Duan, M.Koutny M., and C.Holt: Projection in temporal logic programming. In
F. Pfenning, editor, Proceeding of Logic Programming and Automatic Reasoning,
Lecture Notes in Artificial Intelligence, a subseries of LNAI, Vol. 822, pp333-344,
Springer Verlag, July, 1994.

3. Z.Duan: An Extended Interval Temporal Logic and A Framing Technique for Tem-
poral Logic Programming. Ph.D Thesis (Technical Report No.556), University of
Newcastle upon Tyne, May 1996.

4. Z.Duan, M.Holcombe, and A.Bell: A Logic for Biological Systems. BioSystems 55
(2000) 93-105, Elsevier, 2000.

5. Z.Duan, M.Koutny: A Framed Temporal Logic Programming Language. Journal of
Computer Science and Technology, Vol.19, No.3, pp.341-351, May, 2004.

6. R.Hale: Programming in Temporal Logic. Ph.D. Thesis, 173, (1989) Trini College
Computer Laboratory, Cambridge University, Cambridge, England, October, 1988

7. F.Kröger: Temporal logic of programs. Springer-Verlag (1987).
8. B.Moszkowski: Executing temporal logic programs. Cambridge University Press

Cambridge (1986).
9. B. Moszkowski: Some very compositional temporal properties. Programming Con-

cepts, Methods, and Calculi, 307–326. Elsevier Science B.V. (North-Holland), 1994.
10. Z.Manner and A.Pnueli: The temporal logic of reactive and concurrent systems.

Springer-Verlag (1992).
11. H.xie, J.Gong, C.S.Tang: A Structured Temporal Logic Language XYZ/SE. J.of

Comp.Sci.& Tech.,1991.1

Practical Higher-Order Pattern Unification
with On-the-Fly Raising

Gopalan Nadathur and Natalie Linnell

Digital Technology Center and Department of Computer Science and Engineering,
Univ. of Minnesota, 4-192 EE/CS Bldg, 200 Union St SE, Minneapolis, MN 55455

Abstract. Higher-order pattern unification problems arise often in com-
putations within systems such as Twelf, λProlog and Isabelle. An impor-
tant characteristic of such problems is that they are given by equations
appearing under a prefix of alternating universal and existential quan-
tifiers. Most existing algorithms for solving these problems assume that
such prefixes are simplified to a ∀∃∀ form by an a priori application of a
transformation known as raising. There are drawbacks to this approach.
Mixed quantifier prefixes typically manifest themselves in the course of
computation, thereby requiring a dynamic form of preprocessing that is
difficult to support in low-level implementations. Moreover, raising may
be redundant in many cases and its effect may have to be undone by a
subsequent pruning transformation. We propose a method to overcome
these difficulties. In particular, a unification algorithm is described that
proceeds by recursively descending through the structures of terms, per-
forming raising and other transformations on-the-fly and only as needed.

1 Introduction

Higher-order unification, or the unification of typed lambda terms modulo the
rules of lambda conversion, is a problem that appears to have poor computational
properties: most general unifiers may not exist in relevant instances, complete
sets of unifiers may be infinite, the search for such unifiers cannot always be
nonredundant and unifiability itself is, in general, undecidable. It seems some-
what of an anomaly, therefore, that effective use has been made of this operation
in a variety of applications within metalanguages, logical frameworks and proof
assistants such as λProlog [9], Twelf [16] and Isabelle [13]. The answer to this
puzzle seems to lie in the fact that good programming practice avoids exercising
the pathological cases for this form of unification. A discovery of this kind was
made by Dale Miller who observed that occurrences of instantiatable (existen-
tial) variables in λProlog programs usually satisfy static conditions that lead to
unification computations belonging to what is known as the Lλ or higher-order
pattern class [6,12]. For problems in this class, unifiability is decidable and most
general unifiers can be provided. Moreover, even though the syntactic restric-
tions may not be satisfied by all useful programs [5], the unification problems
that arise dynamically still usually lie within the Lλ class.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 371–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

372 G. Nadathur and N. Linnell

In light of these observations, higher-order pattern unification has adopted
a special practical significance. At a coarse level, the unification procedure for
simply typed lambda terms that was invented by Huet [3] behaves well on these
special problems: it converges on exactly one successful path for each solvable
problem and can also be made to terminate in every case. Nevertheless, this
procedure has finer-grained characteristics that can be improved: each local step
within it still involves examining several competing substitutions and a success-
ful computation may offer only a pre-unifier, conditioned by a solvable but as
yet unsolved set of constraints. Both deficiencies can be addressed. Miller has
proposed what is ultimately a refinement of Huet’s procedure that, for each prob-
lem of the Lλ kind, either determines non-unifiability or yields a most general
unifier at the end of a non-branching computation [6]. The ideas underlying this
procedure has been extended to dependently typed lambda calculi [14,15] and
higher-order rewrite systems [11]. A version of the procedure that has a time and
space complexity that is linear in the size of the input terms has been developed
[18] and it has also been adapted to use explicit substitutions relative to a special
grafting interpretation of instantiatable variables [2].

This work is motivated by a desire to exploit higher-order pattern unifica-
tion in low-level implementations; in particular, in the Teyjus implementation
of λProlog [10]. While many variants of the original procedure have been de-
scribed, none of them seems quite suited to this task. In such a setting, it is
important that the processing be driven entirely by a recursive examination of
the structures of terms. The original procedure that is given by transformation
rules has two rules—pruning and raising—that do not possess this character.
Another important property of practical unification problems is that they need
to be solved under a mixed prefix of quantifiers [7] that are created in the course
of computation. Most procedures other than the original one seem to finesse this
issue by assuming that existential quantifiers appear only at the top-level, em-
bedded at most under universal quantifiers corresponding to global constants.1

Now, it is possible to transform arbitrary prefixes into this specialized form by
initially applying a raising transformation to existential quantifiers. However,
this preprocessing must be done dynamically and it requires at least some ad-
ditional bookkeeping at runtime. Moreover, much of this kind of raising may be
unnecessary and performing it has the potential of making other necessary steps
more expensive than they need to be.

This paper is intended to redress this situation. We describe in it a proce-
dure within which unification takes place relative to a mixed quantifier prefix.
However, such prefixes are rendered implicit by tagging existential and universal
variables with numbers that count the quantifier alternations prior to the ones
binding these variables. The processing is oriented around a recursive traversal
of the terms to be unified and consists essentially of simplification and variable
binding phases. The latter phase is characterized by an on-the-fly application of
the pruning and raising rules in which the numeric tags are used to recognize
quantifier orders. The algorithm we describe is meant for use with lambda terms

1 See Section 7 for a further discussion of this matter.

Practical Higher-Order Pattern Unification 373

that are polymorphically typed. In this setting it may sometimes be necessary
to treat η-convertibility dynamically. Our algorithm supports this capability.

The rest of this paper is organized as follows. The next two sections describe
the higher-order pattern unification problem and present a naive procedure for
solving it. This procedure is then refined into a more sophisticated form. One
refinement, described in Section 4, makes the quantifier prefix implicit. Another
refinement, developed in Section 5, factors the algorithm into simplification and
variable binding phases. In Section 6 we discuss some aspects relevant to the
practical realization of the procedure. We illustrate our procedure in Section 7
and also contrast its behaviour with previously described ones for the same
problem. We conclude the paper with a brief discussion of continuing work.

2 Logical Preliminaries

The lambda terms that are of interest to us may contain universal, existential
and lambda bound variables. We initially use the symbol u and x, possibly with
subscripts, to denote variables of the first two kinds; later the status of such vari-
ables will be determined by an explicit quantifier prefix. A variable occurrence
that is bound by an abstraction will be represented, following the scheme due to
de Bruijn, by a positive number that counts the abstractions up to and includ-
ing the one binding that particular occurrence. We bunch together a sequence
of abstractions and, likewise the arguments in a sequence of applications.

Formally, our terms are given by the syntax rule

t ::= x | u | i | λ(n, t) | t(t)

in which i represents positive integers, n represents natural numbers and t repre-
sents a sequence of comma separated terms. In an expression of the form λ(i, t),
i denotes the number of abstractions. In a schematic presentation, we shall allow
this number also to be 0, in which case the term is identical to t. Applications
are written in a manner reminiscent of first-order syntax rather than in the usual
curried form: thus, the term t1(t2, t3) is equivalent to what we would ordinarily
write as ((t1 t2) t3) in a higher-order language. We actually think of t as a vector,
writing |t| to denote its length and t[i] to refer to its i-th argument. Once again,
in a schematic presentation, we shall let t be an empty sequence; the expression
t(t) in this case matches with whatever matches with t.

Two terms are considered equal if they can be β-converted to each other.
Testing for such equality is based on head normal forms. A term in this form
has the structure λ(n, a(t)) where a, called the head of the term, is a universal
or existential variable or a de Bruijn index. Although we do not display types
explicitly anywhere, we assume that our terms are typed in an ML-like sense.
A consequence of this assumption is that every term in fact reduces to a head
normal form. A discussion of procedures for producing such a form that exploit
explicit substitution notations for the lambda calculus may be found in [4].

Our operative notion of equality also includes η-conversion. This makes it
necessary to sometimes consider the η-expansion of terms. We write t ↑ j to

374 G. Nadathur and N. Linnell

denote the ‘lifting’ of the term t over j (new) abstractions; this operation, in
effect, increments the free variables in t by j. For atomic terms, the computation
actually has a simple form: if t is a universal or existential variable then t↑j = t
and if it is a de Bruijn index then t↑j = t + j. For existential variables, this
definition reflects a logical interpretation as opposed to the grafting one in [1]; in
particular, these variables cannot be instantiated by terms containing de Bruijn
indices bound by external abstractions. The lifting operation is extended to a
sequence of terms: if |t| = n then t↑j = t′ where t′ is a sequence of length n + j
with t′[i] = t[i]↑j for 1 ≤ i ≤ n and t′[i] = j− (i− (n+1)) for n < i ≤ n+ j. This
definition applies even when |t| = 0 and we allow the expressions t↑j and t↑j to
be used also when j is 0 in which case they are identical to t and t, respectively.
Using these operations, the j-fold η-expansion of the term λ(n, a(t)) in head-
normal form is given by the term λ(n + j, (a↑j)(t↑j)), also in head-normal form.
Such an η-expansion is sensible only if the type of a allows for it.

A unification problem is defined by two components: a list of equations such
that the two terms in each equation have the same type and a quantifier prefix
that scopes over the list. In depicting equation lists, we shall use nil to denote the
empty list and :: to denote an infix, right associative operator that allows a new
equation to be added to the front of an existing list. Universal and existential
variables may appear in the equations and these are expected to be captured
by a quantifier of the corresponding force appearing in the prefix. Intuitively,
universal variables correspond to constants whereas existential variables may be
instantiated towards solving the equations in a situation where an equation is
considered solved when it relates two (closed) terms that are equal modulo β-
and η-conversion. A solution to or a unifier for a given problem is a substitution
for the existential variables that reduces the list of equations to a solved form.

However, the prefix structure restricts what substitutions may legitimately be
made for a given existential variable: these must be closed terms, i.e., terms with
no existential variables or unbound de Bruijn indices, in which the only constants
that are allowed to appear are ones whose quantifier scope includes that of
the quantifier governing the existential variable. This constraint determines, for
example, that the unification problem given by ∃x∀u((x = u) :: nil) has no
solutions whereas the problem ∀u∃x((x = u) :: nil) has the solution {〈x, u〉}.

In the description above, solutions are required to be closed substitutions.
We relax this requirement to permit an existential variable to appear in a sub-
stitution term provided its quantifier scope includes all the universal quantifiers
within the scope of the quantifier governing the variable being substituted for.
Thus, the unification problem ∀u∃x1∃x2((x1 = x2) :: nil) now has {〈x1, x2〉} as
a solution. We further allow a prefix to be extended by the introduction of exis-
tential quantifiers over variables not occurring in the equation list and consider
solutions to such modified problems to be solutions to the original problem. For
instance, the earlier problem may be modified to ∀u∃x1∃x2∃x3((x1 = x2) :: nil)
and then has the solution {〈x1, x3〉, 〈x2, x3〉}. Substitutions with existential vari-
ables may be thought of as schemas for generating (legitimate) closed solutions.
Towards making this idea precise, we first note that substitutions are given by

Practical Higher-Order Pattern Unification 375

a finite set of variable-term pairs where each pair pertains to a distinct variable
and where the term obeys the constraints imposed by a relevant quantifier pre-
fix and that the application of a substitution θ to a term t is denoted by θ(t).
Further, the composition of two substitutions θ1 and θ2, written θ1 ◦ θ2, is given
as follows: 〈x, t〉 belongs to θ1 ◦ θ2 just in case 〈x, s〉 ∈ θ2 and t = θ1(s) or there
is no pair pertaining to x in θ2 and 〈x, t〉 ∈ θ1. Now, it is easily seen that if θ
is a solution to a unification problem Q(E) that is legitimate with respect to a
prefix Q′ that extends Q in the permitted fashion and ρ is another substitution
that is legitimate with respect to Q′, then ρ ◦ θ is also a solution to Q(E). The
substitution θ then constitutes a schema in the sense that it represents all the
closed solutions that can be obtained from it by such a composition. Our interest
is eventually only in closed substitutions pertaining to the existential variables
appearing in Q, the original prefix. Letting θ1 =Q θ2 represent the proposition
that θ1 and θ2 agree on these variables, we say that θ is a most general unifier
for Q(E) just in case it is a solution to this problem that is legitimate with
respect an extended prefix Q′ and for every closed solution ρ1 of Q(E) there is a
substitution ρ2 that is legitimate with respect to Q′ and such that ρ1 =Q ρ2 ◦ θ.

Unification problems may be higher-order in the sense that function variables
may by existentially quantified in the prefix. A particular problem illustrating
this facet is the following: ∀u1∀u2∃x((x(u2) = u1(u2)) :: nil). This problem
has the two incomparable solutions {〈x, λ(1, u1(1))〉} and {〈x, λ(1, u1(u2))〉}.
A higher-order pattern unification problem is one where each occurrence of an
existential variable in the equation list satisfies the following syntactic constraint:
if it appears applied to arguments, then each of these arguments is a distinct de
Bruijn index or a distinct universal variable whose quantifier appears within the
scope of the quantifier binding the existential variable. The expression x(u2) in
the unification problem just considered does not satisfy this constraint. However,
it does obey this requirement in the problem ∀u1∃x∀u2((x(u2) = u1(u2)) :: nil)
with a modified prefix. The result of this change is that the problem now has only
one solution: the substitution {〈x, λ(1, u1(1))〉}. The existence of most general
solutions is a general property of higher-order pattern unification problems [6].

The quantifier prefixes governing the list of equations in a unification problem
usually arise from reasoning over predicate formulas in a larger logical system.
While our presentation appears to portray these prefixes as fixed entities, it is
important to bear in mind that they evolve during computation in practice.

3 Unification via Transformations

We present the first version of our unification procedure in the form of rewrite
rules that transform tuples of the form 〈Q(E), θ〉 where Q(E) is a unification
problem and θ is a substitution. In the initial configuration, the first component
of the tuple is the problem that we want solved and θ is the empty substitution.
The purpose of the rewrite rules is to reduce the differences between the terms in
the equations. They may postulate substitutions towards this end and these are
accumulated in the second component of the tuple. New existential variables may

376 G. Nadathur and N. Linnell

(1) 〈Q((λ(n, t) = λ(n, s)) :: E), θ〉 −→ 〈Q((t = s) :: E), θ〉, provided n > 0.
(2) 〈Q((λ(n, t) = λ(m, s)) :: E), θ〉 −→ 〈Q((t = λ(m − n, s)) :: E), θ〉,

provided n > 0 and m > n.
(3) 〈Q((a(t) = λ(m, s)) :: E), θ〉 −→ 〈Q(((a↑m)(t↑m) = s) :: E), θ〉,

provided a is a de Bruijn index or a universal variable and m > 0.
(4) 〈Q((f(t) = λ(n, g(s))) :: E), θ〉 −→ 〈Q((f(t↑n) = g(s)) :: E), θ〉,

provided f and g are existential variables and n > 0.
(5) 〈Q((a(t) = a(s)) :: E), θ〉 −→ 〈Q((t[1] = s[1]) :: . . . :: (t[n] = s[n]) :: E), θ〉,

where |t| = n, provided a is a de Bruijn index or a universal variable.
(6) 〈Q1∃fQ2((f(y) = λ(n, a(t1, . . . , tm))) :: E), θ〉 −→

〈Q1∃h1 . . . ∃hm∃fQ2((h1(y↑n) = t1) :: . . . :: (hm(y↑n) = tm) :: θ′(E)), θ′ ◦ θ〉,
where θ′ = {〈f, λ(|y| + n, a(h1(|y| + n, . . . , 1), . . . , hm(|y| + n, . . . , 1)))〉},
provided a is universally quantified in Q1 and f does not appear in t.

(7) 〈Q1∃fQ2((f(y) = λ(n, a(t1, . . . , tm))) :: E), θ〉 −→
〈Q1∃h1 . . . ∃hm∃fQ2((h1(y↑n) = t1) :: . . . :: (hm(y↑n) = tm) :: θ′(E)), θ′ ◦ θ〉,

where θ′ = {〈f, λ(|y| + n, a′(h1(|y| + n, . . . , 1), . . . hm(|y| + n, . . . , 1)))〉}
for a′ = a↓(y↑n), provided a appears in y↑n and f does not appear in t.

(8) 〈Q1∃fQ2((f(y) = f(z)) :: E), θ〉 −→ 〈Q1∃h∃fQ2(θ′(E)), θ′ ◦ θ〉,
for θ′ = {〈f, λ(m,h(w))〉}, where m = |y| and w = {m − i | i ≤ m and y[i] = z[i]}.

(9) 〈Q1∃fQ2∃gQ3((f(y) = g(z)) :: E), θ〉 −→
〈Q1∃f∃hQ2∃gQ3((f(y) = h(w + z)) :: θ′(E)), θ′ ◦ θ〉,

where w = {u | ∀u appears in Q2} and θ′ = {〈g, h(w)〉},
provided Q2 contains at least one universal quantifier.

(10) 〈Q1∃fQ2∃gQ3((f(y) = g(z)) :: E), θ〉 −→ 〈Q1∃h∃fQ2∃gQ3(θ′(E)), θ′ ◦ θ〉,
for θ′ = {〈f, λ(m,h(u))〉, 〈g, λ(n, h(v))〉},
where m = |y|, n = |z| and u = w↓y and v = w↓z for w = y∩z,
provided no universal quantifiers appear in Q2.

Fig. 1. Transformation rules for higher-order pattern unification

be introduced in the process and the quantifier prefix is, in this case, modified
to accommodate them. If a reduction sequence succeeds in transforming the
equation list to an empty one in this way, then the substitution component is
intended to be a most general solution to the original unification problem.

The specific rules defining the procedure appear in Figure 1. As is evident
from their lefthand sides, the action carried out by these rules is based on the
form of the first equation in a non-empty list. Prior to attempting a match, the
two terms in such an equation must be reduced to their head normal forms. The
matching process assumes that the equality symbol is symmetric, i.e., it will
attempt a match by also interchanging the left and right sides of the equations
shown in the patterns. An explanation is warranted with respect to some of the
notation for terms used in these patterns. The symbols t and s used in rules
(3)-(7) are intended to match with (possibly empty) sequences of arguments in
actual terms and the rules may refer to the lengths of these sequences as well as
their components subsequent to the match. The symbols y and z that are used in
rules (6)-(10) match with actual argument sequences only if they further satisfy

Practical Higher-Order Pattern Unification 377

the higher-order pattern restriction: each element of such a sequence must be a
distinct de Bruijn index or universal variable that is quantified within the scope
of the existential quantifier binding the variable that appears as the head of the
term. That this condition is satisfied needs to be ascertained only if the problem
is not already known to be of the higher-order pattern unification kind and, in
this case, the arguments will also have to be reduced to head-normal form prior
to the attempted match. Some explanation pertaining to the action parts of the
rules is also relevant. The rules (6)-(10) introduce existential quantifiers over
variables shown schematically as h, possibly with subscripts. These variables
must be different from ones already appearing in the quantifier prefix. In rule
(9), the notation S where S is a set is used to denote a sequence created from
the elements of S and the expression w + z is used to represent the sequence
obtained from the concatenation of two given ones. In rule (10), we write y∩z
to represent a sequence of the elements common to y and z. The notation a↓z
where z is a sequence of distinct universal variables and de Bruijn indices and
a is an element of this sequence that is used in rule (7) corresponds to the de
Bruijn index given by (|z| + 1 − i) where z[i] = a. The expression w↓z used in
rule (10) extends this notation to the situation where w is a sequence of elements
appearing in z as follows: if |w| = n then w↓z = w[1]↓z, . . . , w[n]↓z.

The procedure that we have described here is essentially a deterministic adap-
tation of the one in [6] to a situation where the de Bruijn notation is used and
where η-expansion is done on demand. Determinism is obtained by imposing a
processing order that is based on a recursive traversal of the structures of the
terms to be unified. In this context the rules in Figure 1 may be understood
as follows. Rules (1) and (2) implement a descent through abstractions. If the
number of abstractions at the top-level in the two terms are mismatched, an
η-expansion may be needed. This is done explicitly when the head of the non-
abstraction term is rigid or unchangeable under substitution (rule (3)) or when
both terms have existential variables as their heads, i.e., have heads that are
flexible (rule (4)). In the only remaining case, η-expansion is folded into the
substitution generation process (rules (6) and (7)). Once past abstractions, rule
(5) reduces the task of unifying two terms with the same rigid head to that
of unifying their (possibly empty) sequence of arguments in a pairwise fashion;
typing constraints ensure that the lengths of these sequences are the same. Rule
(8) solves an equation between two terms with the same flexible head; if these
are applications, typing constraints again ensure that they have the same num-
ber of arguments. Rule (10) solves such an equation when the two heads are
not identical but are bound by existential quantifiers that scope over the same
universal quantifiers. Rule (9) applies the raising transformation to prepare the
ground for rule (10) in case the proviso on quantifier scopes is not met initially.
The only remaining case relative to higher-order patterns is that where one of
the terms is an application with a flexible head and the other term has a rigid
head. Rules (6) and (7) attempt to solve this problem at the root using imitation
and projection substitutions, respectively, adding new equations to realize the
needed recursion over the arguments of the term with the rigid head.

378 G. Nadathur and N. Linnell

The formal properties of the procedure are given by the following theorem
whose proof is to be found in an extended version of this paper:

Theorem 1. If Q(E) represents a unification problem, then the sequence of rule
applications starting from 〈Q(E), ∅〉 must terminate. Further, if the last tuple has
the form 〈Q′(nil), θ〉, then θ represents a most general solution to Q(E). Finally,
if Q(E) is a solvable higher-order pattern unification problem, then the tuple at
the end must have such a form.

Theorem 1 shows that the procedure we have outlined in this section is com-
plete for higher-order pattern unification problems. In a more general situation,
however, the procedure may terminate because the proviso on the forms of argu-
ments for terms with flexible heads is not satisfied. This can happen even when
the problem embodied in the state has a solution. Our procedure is therefore
seen not to be complete for general higher-order unification.

4 Eliminating the Quantifier Prefix

The explicit treatment of quantifier prefixes poses practical difficulties: Prefixes
grow and shrink as the result of other logical computations and maintaining them
therefore requires run-time effort. Using the prefixes also requires that contextual
information be examined in the recursive descent through term structure. It is
preferable that such a descent be predicated entirely on local information.

Towards understanding how quantifier prefixes may be obviated, we examine
the manner in which they are utilized in the unification procedure. These prefixes
are relevant to three tasks: (i) determining whether given variable occurrences
are of the existential or universal kind, (ii) ascertaining that the arguments of
a flexible term satisfy the scoping requirements of higher-order patterns, and
(iii) realizing the raising transformation embodied in rule (9). The first of these
tasks can also be accomplished by labelling each variable with its associated
type. The only additional information the prefix supplies for the second task is
the relative order of quantification. However, this information can be maintained
more succinctly by associating with each variable a numeric tag that records the
number of times an existential quantifier is immediately followed by a universal
one in the prefix up to and including the quantifier binding that occurrence. We
assume henceforth that this is done and that the tag for a variable y is given by
l(y). The test for the satisfaction of the higher-order pattern constraint becomes
a local one with these tags: a universal variable u is quantified within the scope
of the quantifier for an existential variable x just in case l(x) < l(u).

The information needed for the raising transformation seems more difficult
to encode in a local fashion at the outset: rule (9) requires knowledge of the uni-
versal quantifiers that intervene between two existential quantifiers in the prefix
and this is information that appears not to be available simply from looking at
the two (flexible) terms that are to be unified. There is, however, an important
observation to be made about the role of rule (9) in the unification procedure.
The purpose of this rule is essentially to prepare the stage for an application

Practical Higher-Order Pattern Unification 379

of rule (10) that solves an equation between two flexible terms with distinct
heads. From this perspective, the universal variables over which g, the flexible
head of one of the pertinent terms in rule (9), is raised can be factored into two
kinds: those that appear as arguments of f , the flexible head of the other term,
and those that do not so appear. While rule (9) raises g over the latter kind of
variables as well, this raising is redundant since the subsequent application of
rule (10) prunes them away. Thus, the collection of variables over which g really
needs to be raised can be determined simply by looking at the universal variables
that appear as arguments of f and checking if they are quantified outside the
scope of the quantifier for g. The last aspect, as we have already noted, can be
decided by looking at the tags associated with the two variables.

We introduce notation to represent the operation of raising over a restricted
collection of variables: If g is an existential variable and y is a sequence of distinct
universal variables and de Bruijn indices, then y⇑g will denote the sequence

{u | u is a universal variable occurring in y such that l(u) ≤ l(g)}.

Now, the modified version of rule (9) and rule (10) both involve traversals over
the arguments of the flexible terms that can potentially be carried out simulta-
neously in an implementation. Towards facilitating this possibility, we combine
these rules into one new rule labelled (9’):

(9’) 〈(f(y) = g(z)) :: E, θ〉 −→ 〈θ′(E), θ′ ◦ θ〉,
for θ′ = {〈f, λ(m, h(q + v))〉, 〈g, λ(n, h(p + u))〉}, where m = |y|, n = |z|,
h is a new existential variable such that l(h) = l(f), p = y⇑g, q = p↓y,
and v = w↓y and u = w↓z for w = {a | a appears in both y and z},
assuming f �= g and l(f) ≤ l(g).

In this rule, p collects the universal variables over which g must eventually be
raised by looking at the arguments of f and q represents a sequence of projections
over the arguments of f that is needed to match p. The calculation of p and q
captures the cumulative effect of raising as per rule (9) and the application of
rule (10) relative to the added arguments. The effect of rule (10) corresponding
to the original arguments of g and their counterparts in f is reflected in the
calculation of v and u, respectively.

The discussions of this section result in a unification procedure that is ob-
tained by modifying the rules in Figure 1 as follows: First, quantifier prefixes are
eliminated from unification problems and numeric and type tags are associated
with all universal and existential variables. Second, the new existential variables
introduced in rules (6)-(8) are all accorded the same numeric tag as f . Third,
the choice between rules (7) and (8) when a is a universal variable is made by
comparing the numeric tags of a and f , picking (7) if l(a) ≤ l(f) and attempting
to use (8) otherwise. Finally, rules (9) and (10) are replaced by rule (9’).

Let Q(E) be a unification problem that is presented with an explicit quanti-
fier prefix and let E′ be a version of the equations in E in which universal and
existential variables are distinguished and labelled with numeric tags consistent
with the prefix. We shall then say that E′ is obtained from Q(E) by prefix

380 G. Nadathur and N. Linnell

erasure. The important property of the unification procedure described in this
section is the content of the following theorem whose proof involves using the
intended correspondence between tags and prefixes and the relationship between
rule (9’) in the present system and the earlier rules (9) and (10).

Theorem 2. Let E′ be obtained from Q(E) by prefix erasure. Then the sequence
of rule applications starting from 〈E′, ∅〉 must terminate. Further, if the last tuple
has the form 〈nil, θ〉, then θ is a most general unifier for Q(E). Finally, if Q(E)
is a solvable higher-order pattern unification problem, then the tuple at the end
must have such a form.

5 Combining Variable Substitution Steps

The procedure we have at this point solves equations involving two flexible terms
immediately. However, it resorts to an incremental process when one term is
flexible and the other is rigid and has arguments. This character is manifest in
the structure of rules (6) and (7) in Figure 1 that solve the problem if possible
at the ‘root’ and introduce new variables and equations towards solving the
rest of the problem in subsequent steps. There is a bookkeeping overhead to
this approach that can be avoided by combining the sequence of steps into a
mechanism that generates a single composite substitution for solving the entire
equation. Such a mechanism would obviously involve a traversal of the structure
of the rigid term. Rules (6) and (7) already require such a traversal towards
ascertaining that the head of the flexible term does not appear in the arguments
of the rigid one. Ideally, these two traversals should be folded into one.

Figure 2 presents a set of rewrite rules that embody a realization of the
substitution generation process of the kind desired. These rewrite rules have
a pseudo-procedural character in that some of them have as side conditions
additional computations using the same set of rules; the symbol ∗−→ is to be
interpreted in them as a sequence of rewritings. In interpreting these rules, all the
notational conventions described in conjunction with Figure 1 are to be utilized.
We also assume the following additional conventions: sR represents the reverse of
the sequence s, ε matches with the empty sequence and ϕ(t) denotes the result of
applying the substitution ϕ to each term in the sequence t. Further, in attempting
to match with the first two rules, i.e., the ones for mksubst, we require that the
second argument be head normalized and, similarly, before matching with the
next four rules, the second argument of bnd should be put in head normal form.
Finally, the satisfaction of side conditions that involve rewriting requires also
that the results of the rewriting have the forms shown for the righthand sides.

The rules in Figure 2 are intended for solving an equation of the form f(y) = t
where f is an existential variable, y is a sequence of arguments satisfying the
higher-order pattern restriction and t is an arbitrary term. Their usage begins
with an attempt to rewrite the expression mksubst(f, t, y, |y|). The outcome of a
successful rewriting will be a substitution with a binding for f . The substitution
may also bind other variables: t may contain occurrences of existential variables
and the solution to the equation may require that substitutions be made for these

Practical Higher-Order Pattern Unification 381

mksubst(f, λ(n, f(z)), y, m) −→ {〈f, λ(n + m,h(w))〉},
where w = {m + n − i | i ≤ n + m and (y↑n)[i] = z[i]} and
h is a new existential variable such that l(h) = l(f).
mksubst(f, t, y, m) −→ {〈f, λ(m, s)〉} ◦ θ,
if the head of t is not f and bnd(f, t, y, 0) ∗−→ 〈θ, s〉.
bnd(f, λ(n, t), y, l) −→ 〈θ, λ(n, s)〉,
if n > 0 and bnd(f, t, y, l + n) ∗−→ 〈θ, s〉.
bnd(f, a(t), y, l) −→ 〈θ, b(sR)〉,
provided foldbnd(f, 〈θ, ε〉, t, y, l) ∗−→ 〈θ, s〉 and
either a is a universal variable such that l(a) ≤ l(f) and b = a
or a appears in y↑l and b = a↓(y↑l).
bnd(f, g(z), y, l) −→ 〈{〈g, λ(|z|, h(p + u))〉}, h(q + v)〉,
where h is a new existential variable such that l(h) = l(f),
p = (y↑l)⇑g, q = p↓(y↑l), and u = w↓z and v = w↓(y↑l) for w = (y↑l)∩z,
provided f and g are distinct existential variables such that l(f) < l(g).
bnd(f, g(z), y, l) −→ 〈{〈g, λ(|z|, h(q + v))〉}, h(p + u)〉,
where h is a new existential variable such that l(h) = l(g),
p = z⇑f , q = p↓z, and v = w↓z and u = w↓(y↑l) for w = (y↑l)∩z,
provided f and g are distinct existential variables such that l(g) ≤ l(f).

foldbnd(f, 〈θ, s〉, ε, y, l) −→ 〈θ, s〉.
foldbnd(f, 〈θ, s〉, (t1, t), y, l) −→ foldbnd(f, 〈ϕ ◦ θ, (s1, s)〉, ϕ(t), y, l),
provided bnd(f, t1, y, l) ∗−→ 〈ϕ, s1〉.

Fig. 2. Calculating variable bindings

as well. Of course, not every such equation will be solved: this may happen, as in
Section 3, because t violates the higher-order pattern restriction or because f(y)
and t are not unifiable. Such an effect would be manifest in our system by the
inability to rewrite mksubst(f, t, y, |y|) to a substitution. A failure of this kind
would arise, in turn, out of the inability to use any rule to rewrite an intermediate
expression either because it does not match with the lefthand side of the rule or
because of the violation of a side condition.

We comment briefly on the content of the rules in Figure 2, explaining this
with reference to the rules in Figure 1. Borrowing imagery from [2], the substi-
tution for f that solves the equation f(y) = t may be viewed as an ‘inversion’
of t relative to y. That such an inversion has to be performed is an essential
difference from first-order unification and its reflection is the third argument to
mksubst. Now, the only situation in which the equation with f occurring in t has
a solution is when this occurrence is at the head. The first rule for mksubst treats
this case, leaving all others to be handled by bnd. In the treatment of the other
cases, actual η-expansion of the flexible term is delayed—this is more efficient
and also necessary to treat embedded abstractions. The fourth argument of bnd
provides the information for this expansion when needed. The first rule for bnd
reflects this treatment of η-expansion. The second rule treats the case when a
rigid structure is encountered in the traversal, building rules (6) and (7) into
this process. These rules naturally lead to the examination of the arguments of

382 G. Nadathur and N. Linnell

(1’) 〈(λ(n, t) = λ(n, s)) :: E, θ〉 −→ 〈(t = s) :: E, θ〉, provided n > 0.
(2’) 〈(λ(n, t) = λ(m, s)) :: E, θ〉 −→ 〈((t = λ(m − n, s)) :: E), θ〉,

provided n > 0 and m > n.
(3’) 〈(a(t) = λ(m, s)) :: E, θ〉 −→ 〈((a↑m)(t↑m) = s) :: E, θ〉,

provided a is a de Bruijn index or a universal variable and m > 0.
(4’) 〈(a(t) = a(s)) :: E, θ〉 −→ 〈(t[1] = s[1]) :: . . . :: (t[n] = s[n]) :: E, θ〉,

where |t| = n, provided a is a de Bruijn index or a universal variable.
(5’) 〈(f(y) = t) :: E, θ〉 −→ 〈ϕ(E),ϕ ◦ θ〉

provided f is an existential variable and mksubst(f, t, y, |y|) −→ ϕ.

Fig. 3. Simplified higher-order pattern unification rules

the rigid term. This process is compiled into the definition of bnd and is realized
through foldbnd that ‘maps’ bnd over the arguments. The third and fourth rules
for bnd use the idea embodied in rule (9’) to treat the situation where a flexible
term is encountered. The analysis splits into two cases here because, unlike in
rule (9’), we cannot guarantee that l(f) ≤ l(g). A final aspect to observe is the
effect the delaying of η-expansion has on the last three rules for bnd.

Our higher-order pattern unification procedure can be simplified based on the
substitution computation rules. The changed set of rules are shown in Figure 3.
These rules are to be used in the manner already described and the correctness of
the resulting procedure follows from Theorem 2 by formalizing the explanation
provided of mksubst earlier in this section. We omit the details.

6 Some Aspects Relevant to Actual Implementation

The presentation of the procedure of the last section is still at a high-level and
some optimizations are possible in an actual implementation. One such aspect
concerns the treatment of the lifting transformation on an argument sequence
that is needed in the course of generating a substitution term. Although our
presentation suggests that this is done at the relevant points in an eager fashion,
a delayed realization that folds lifting into the specific computation that needs
it is usually possible. Thus consider the calculation of the sequence

{m + n− i | i ≤ n + m and (y↑n)[i] = z[i]}

that appears in the first rule for mksubst. Finding this sequence requires an
iteration over z and y↑n. However, rather than adjusting y at the outset, the
iteration may be driven by z and the lifting operation can be performed on
demand. A similar observation also applies to the places where this operation is
needed in the definition of bnd.

Another observation concerns the computation of the raising and pruning
sequences of arguments in the last two rules for bnd. The presentation of these
rules may suggest that the sequences p, q, u, v and w are to be calculated
separately. In reality, however, the calculation of at least p and q on the one
hand and that of u, v and w on the other can be coordinated to yield two

Practical Higher-Order Pattern Unification 383

essential iterations. The last rule for bnd presents an even better situation where
the entire computation can be carried out in one iteration assuming that the
elements of q + v can be shuffled so long as the elements of p + u are shuffled in
the same way: we sweep through the elements of z determining which ones to
keep in q + v either because of raising or because they also occur in y↑l and we
simultaneously determine the corresponding elements in p + u.

We have treated substitution non-destructively up to this point. This may
be changed in an implementation, thereby obviating the explicit application of
substitutions to argument sequences and equation lists. In a different direction,
our procedure currently fails when it discovers terms that are not higher-order
patterns. This failure may be treated by simply deferring the unification problem.
This is probably the best decision at the top-level but a different treatment is
possible within the substitution computation process. If it is discovered that t is
a flexible term that does not have the structure of a higher-order pattern when
attempting to rewrite the expression bnd(f, t, y, l), a substitution term of the
form h(y↑l) where h is a new existential variable such that l(h) = l(f) may be
returned and the equation h(y↑l) = t may be deferred.

7 An Example

We illustrate our procedure relative to the unification problem

∃x∀a∀b∀c∃y∀d((b(x(a, d)) = b(λ(2, (y(1))))) :: nil).

Associating the tags 0 with x, 1 with a, b, c and y and 2 with d allows the
quantifier prefix to be eliminated, reducing the problem representation to

(b(x(a, d)) = b(λ(2, (y(1))))) :: nil.

Rule (4’) of Figure 3 simplifies this to (x(a, d) = λ(2, (y(1)))) :: nil and rule (5’)
then calls for the rewriting of the expression mksubst(x, λ(2, (y(1))), (a, d), 2) to
a substitution that solves the sole equation in this list.

The rule for mksubst in Figure 2 that is relevant to this rewriting task is
the second one. This rule requires the expression bnd(x, λ(2, (y(1))), (a, d), 0)
to be transformed into the form 〈θ, s〉 where θ composed with the substitution
λ(2, s) for x is intended to be a solution to the original equation. The first rule
for bnd applies to this case, leading to the attempt to rewrite the expression
bnd(x, y(1), (a, d), 2); observe that (a, d) ↑ 2 = (a, d, 2, 1) represents the argu-
ments of x after an η-expansion. The evaluation of this last expression actually
represents the heart of the entire calculation. The rule relevant to its rewriting is
the third one for bnd. Conceptually, one component of this rule determines the
arguments of x over which y needs to be raised. This part is given by ((a, d)↑2)⇑y
that evaluates to (a). The projection over (a, d)↑2 of this sequence, notated as
(a)↓((a, d)↑2), yields (4) that represents the corresponding part of the substitu-
tion term being constructed for x. Another component of the rule finds that part
of y’s arguments that must not be pruned. This is calculated as ((a, d)↑2)∩(1),
yielding the sequence (1). The projection over the arguments of y and x of this

384 G. Nadathur and N. Linnell

sequence have an identical result, both being given by (1). Combining the two
parts gives us the substitution λ(1, h(a, 1)) for y and the term h(4, 1) that rep-
resents the corresponding part of the substitution for x; h is a new existential
variable with tag 0 here. Embedding the substitution term for x in the right con-
text eventually yields the substitution {〈x, λ(4, h(4, 1))〉, 〈y, λ(1, h(a, 1))〉} that
is a most general unifier for the given problem.

It is instructive to contrast the calculation described above with the one that
results under a “blind” raising that first moves all existential variables to the
outermost level. Such a raising transforms the problem into the form

∃x∃y′∀a∀b∀c∀d((b(x(a, d)) = b(λ(2, (y′(a, b, c, 1))))) :: nil)

by substituting y′(a, b, c) for y. The subsequent substitution generation process
must then take responsibility for pruning away the unnecessary arguments intro-
duced during the initial raising. The advantages of our approach become evident
from this especially when we note that, in the typical setting, the initial raising
must be performed dynamically, the quantifier prefixes can get long and, finally,
most of the dependencies that are introduced during the indiscriminate raising
eventually have to be pruned away.

Most previously described procedures for higher-order pattern unification as-
sume that existential quantifiers have an outermost scope. The comparison of our
ideas with these is therefore obvious. The contrast with the approach presented
in [2] is more subtle. In the statement of the problem, this work also assumes
that all existential variables are quantified at the outermost level. However, by
exploiting properties of explicit substitutions and a special interpretation for in-
stantiatable variables, this requirement can be eliminated and, diverging from
the underlying theory, the eventual procedure presented in [2] seems to actually
allow for mixed quantifier prefixes. Moreover, this procedure does not explicitly
utilize quantifier prefixes, basing its behaviour mainly on the manipulation of
explicit substitutions. However, even given this, the computation that results
can manifest a character that is akin to redundant raising complemented by
pruning. In the particular example considered here, the behaviour will, in fact,
be quite similar to that seen under an initial blind raising. A detailed discussion
of this matter requires an exposition also of the explicit substitution approach
and is, for this reason, beyond the scope of this paper.

8 Conclusion

We have presented in this paper a procedure that allows for the treatment of
higher-order pattern unification in the context of a mixed prefix of quantifiers.
This procedure has actually been implemented in C and incorporated into the
Teyjus system, leading to what appear to be significant performance improve-
ments over full general higher-order unification. We have also realized these ideas
in an SML program [8] that has been used in a meta-proof system built by Alwen
Tiu and Dale Miller.

This work can be extended in a few different directions. First, there are
similarities in the dynamics of our procedure and the one presented in [2] even

Practical Higher-Order Pattern Unification 385

though we have not utilized explicit substitutions. We would like to understand
these connections better since this is likely to shed light on the question of
whether the explicit substitutions based approach of [2] is really useful in the
higher-order pattern unification setting. In a different direction, we have found it
beneficial to employ explicit substitutions implicitly in reduction procedures [4]
and we would like to extend this approach also to the unification context. Finally,
higher-order pattern unification offers promising possibilities for compilation.
Some work has already been done on this topic [17] and we also have recently
started a systematic study oriented around a redesign of the λProlog abstract
machine that exploits the procedure of this paper.

Acknowledgements

This work began while the first author was on a sabbatical visit to the Protheo
group at LORIA and INRIA, Nancy and the Comete and Parsifal groups at
Ecole Polytechnique and INRIA, Saclay. Support has also been derived from the
NSF through a Graduate Fellowship and the grant numbered CCR-0429572 and
from the Digital Technology Center at the University of Minnesota.

References

1. G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit sub-
stitutions. Information and Computation, 157:183–235, 2000.

2. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit sub-
stitutions: The case for higher-order patterns. Technical Report 3591, INRIA,
December 1998.

3. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

4. C. Liang, G. Nadathur, and X. Qi. Choices in representation and reduction strate-
gies for lambda terms in intensional contexts. Journal of Automated Reasoning,
33:89–132, 2005.

5. S. Michaylov and F. Pfenning. An empirical study of the runtime behavior of
higher-order logic programs. In Conference Record of the Workshop on the λProlog
Programming Language, Philadelphia, July-August 1992.

6. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

7. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321–358, 1992.

8. G. Nadathur and N. Linnell. An SML implementation of higher-order pattern
unification, January 2004. Source code available from the first author’s web page.

9. G. Nadathur and D. Miller. An overview of λProlog. In K. A. Bowen and R. A.
Kowalski, editors, Fifth International Logic Programming Conference, pages 810–
827. MIT Press, August 1988.

10. G. Nadathur and D.J. Mitchell. System description: Teyjus—a compiler and ab-
stract machine based implementation of λProlog. In H. Ganzinger, editor, Auto-
mated Deduction–CADE-16, number 1632 in LNAI, pages 287–291. Springer, 1999.

386 G. Nadathur and N. Linnell

11. T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Computer
Science, pages 342–349. IEEE Press, 1991.

12. T. Nipkow. Functional unification of higher-order patterns. In Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 64–74. IEEE Computer Society
Press, June 1993.

13. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

14. F. Pfenning. Logic programming in the LF logical framework. In G. Huet and
G. D. Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

15. F. Pfenning. Unification and anti-unification in the Calculus of Constructions. In
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85, 1991.

16. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Automated Deduction–CADE-
16, number 1632 in LNAI, pages 202–206. Springer, July 1999.

17. B. Pientka and F. Pfenning. Optimizing higher-order pattern unification. In
F. Baader, editor, Proceedings of the 19th Conference on Automated Deduction
(CADE-19), LNCS 2741, pages 473–487. Springer-Verlag, July 2003.

18. Z. Qian. Unification of higher-order patterns in linear time and space. Journal of
Logic and Computation, 6(3):315–341, 1996.

Small Proof Witnesses for LF

Susmit Sarkar1,�, Brigitte Pientka2, and Karl Crary1

1 Carnegie Mellon University, Pittsburgh, USA
2 McGill University, Montréal, Canada

Abstract. We instrument a higher-order logic programming search pro-
cedure to generate and check small proof witnesses for the Twelf system,
an implementation of the logical framework LF. In particular, we ex-
tend and generalize ideas from Necula and Rahul [16] in two main ways:
1) We consider the full fragment of LF including dependent types and
higher-order terms and 2) We study the use of caching of sub-proofs to
further compact proof representations. Our experimental results demon-
strate that many of the restrictions in previous work can be overcome and
generating and checking small witnesses within Twelf provides valuable
addition to its general safety infrastructure.

1 Introduction

Proof-carrying code applications establish trust by verifying compliance of the
code with safety and security policies. A code producer verifies that the program
is safe to run according to some predetermined safety policy, and supplies a
binary executable together with its safety proof. Before executing the program,
the code consumer then quickly checks the code’s safety proof against the binary.

The Twelf system [22], an implementation of the logical framework LF [12],
provides a general safety infrastructure to represent and execute safety policies
via a higher-order logic program interpretation and has been employed in several
proof-carrying code projects [4,8,3,9]. Higher-order logic programming extends
first order logic programming along two orthogonal dimensions: First, dynamic
assumptions may be generated and used during proof search. Second, first-order
terms are replaced with dependently typed λ-terms, thereby directly supporting
encodings via higher-order abstract syntax.

One of the benefits of using Twelf is that the execution of a query will not only
produce a yes or no answer, but produce a proof term as a certificate that can be
checked independently. This increases the confidence in the overall correctness
of the higher-order logic programming engine, and the certificate can be sent to
the code consumer where compliance with the code is checked.

Unfortunately, the proof terms produced by Twelf are quite big in size. This
creates problems in a proof carrying code setting where proof terms are sent
across the network. We would like to produce small proof witnesses and check

� This work was supported by NSF ITR Grant 0121633:ITR/SY+SI: “Language Tech-
nology for Trustless Software Dissemination”.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 387–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

388 S. Sarkar, B. Pientka, and K. Crary

them. Our approach to this problem is to instrument the higher-order logic pro-
gramming interpreter by extending and generalizing ideas by Rahul and Nec-
ula [16]. To obtain small proof witnesses, they propose to only record the non-
deterministic choices during logic programming execution as a bit-string. We
can check such a proof witness by guiding a deterministic logic programming
interpreter using the bit-string and re-running the proof. This simple idea has
been proven to be effective in many practical examples. We observe a minimum
compression of a factor of 70 in proof size in our experiments, increasing up to
a factor of almost 700 for larger proofs. This idea has also been used by Wu et.
al [30] for creating a foundational proof checker with small witnesses.

Previous approaches restricted themselves to a fragment of LF excluding
higher-order terms and dependent types thereby trading the expressive power
of the logical framework LF against simplicity of implementation to generate
and check proof witnesses. As a consequence, these systems do not support
higher-order abstract syntax in practice, but each particular system now has to
use encoding tricks to encode their variable binding constructs together with
substitution operations. For example, Wu et al. [30] encode the explicit substi-
tution calculus [1] together with the necessary proofs about substitutions for
their foundational certified code implementation. As the technology of certified
code evolves, we will move to more powerful and expressive safety policies and
type systems and the use of higher-order abstract syntax will become crucial for
achieving a simple, compact encoding of these systems.

In this paper, we describe the design of generating and checking of small
proof witnesses for the full logical framework LF. This work continues where
Necula and Rahul [16] left off saying “more experimental results are needed
especially in the higher-order setting”. Our work has been implemented and
evaluated within the Twelf system [22] making it unnecessary to build separate
proof checking engines. To obtain a practical scalable implementation, we use
higher-order substitution tree indexing [24]. Furthermore, we improve on the size
of proof witnesses by caching common sub-proofs1 .

This paper is structured as follows. We give background on higher-order
logic programming in Twelf in Section 2. In Section 3, we present our approach
to generating and checking small proof witnesses. In Section 4.1 we explain
higher-order term indexing and in Section 4.2, we discuss caching techniques
for factoring out common subproofs. We conclude with a discussion of some
experimental results within Twelf and related work.

2 Higher-Order Logic Programming

The theoretical foundation underlying higher-order logic programming within
Twelf is the LF type theory, a dependently typed lambda calculus [20]. In this
setting types are interpreted as clauses and goals and typing context represents

1 Eliminating common sub-proofs is an orthogonal problem to eliminating redundant
implicit type information, as is proposed in [17].

Small Proof Witnesses for LF 389

the store of program clauses available. We will use types and formulas inter-
changeably. Types and programs are defined as follows:

Types A ::= P | A1 → A2 | Πx : A1.A2
Terms M ::= c · S | x · S | λx.M

Programs Γ ::= · | Γ, x : A
Spines S ::= nil |M ; S

We present terms and types using the spine notation [6]. We use meta-
variables x to range over term level variables. There are constants at both the
term level, denoted by c, and at type level, denoted by a. P ranges over atomic
formulas such as a · S, i.e. type constants applied to spines. We interpret the
function arrow A1 → A2 as implication and the Π-quantifier, denoting depen-
dent function type, corresponds to the universal ∀-quantifier. Types, which are
goals and clauses, are inhabited by corresponding proof terms M , and we assume
that all proof terms are in normal form.

Other higher-order logic programming languages of a similar flavor are λ-
Prolog [15] or Isabelle [19]. To illustrate the notation and explain the problem
of small proof witnesses, we will first give an example of encoding the natural
deduction calculus in the logical framework LF using higher-order logic pro-
gramming following the methodology in Harper et al. [12]. For more informa-
tion on how to encode formal systems in LF, see for example Pfenning [21].
Using this example, we will explain generating and checking of small proof
witnesses.

2.1 Representing Logics

As a running example, we will consider a fragment of intuitionistic natural de-
duction calculus consisting of implications and universal quantifiers. Propositions
can be then described as follows:

Propositions A, B, C := . . . | A ⊃ B | ∀x.A
Context Γ := . | Γ, A

Inference rules describing natural deduction are presented next.

Γ # [a/x]A a is new
Γ # ∀x.A

allI
Γ # ∀x.A

Γ # [T/x]A allE
Γ, A # A

hyp

Γ, A # B

Γ # A ⊃ B
impI Γ # A ⊃ B Γ # A

Γ # B
impE

To represent this system in LF, we first need formation rules to construct
terms for propositions. We intend that terms belonging to prop represent well-
formed propositions and i represents individuals.

The connective for implication has a type that takes in two propositions and
returns a proposition, hence the constructor imp has type prop -> prop ->
prop. To represent the forall-quantifier, we will use higher-order abstract syntax.
The crucial idea is to represent bound variables in the object language (logic)

390 S. Sarkar, B. Pientka, and K. Crary

with bound variables in the meta-language (higher-order logic programming).
Hence the type of forall is (i -> prop) -> prop.

Next we turn our attention to the inference rules. The judgment for prov-
ability within this logic is denoted by the type family prov. Each clause will
correspond to an inference rule in the object logic. For convenience, we give the
constructors descriptive names.

alli: prov (forall λx. A x)
<- Πx. prov (A x)

alle: prov (A T)
<- prov (forall λx. A x).

impi: prov (imp A B)
<- (prov A -> prov B).

impe: prov B
<- prov (imp A B)
<- prov A.

A, B, C denote existential or logic variables which are instantiated during
proof search. Throughout the example we reverse the arrow A -> B writing in-
stead B <- A. This way, goals appear in the order in which they are processed
during proof search. From a logic programming view, it might be more intuitive
to think of the clause H <- A1 <- A2 <- . . . <- An as H <- A1, A2, . . ., An.
There are two key ideas which make the encoding of the logic calculus elegant
and direct. First, we use and manipulate dynamic assumptions which higher-
order logic programming provides, to eliminate the need to manage assumptions
in a list explicitly. To illustrate, we consider the clause impI. To prove prov
(imp A B), we prove prov B assuming prov A. In other words, the proof for
prov B may use the dynamic assumption prov A. Second, we use higher-order
abstract syntax to encode the bound variables in the universal quantifier. As a
consequence substitution in the object language can be reduced to application
and β-reduction in the meta-language (higher-order logic programming). Con-
sider the rule for all-elimination. If we have a proof of ∀x.A , then we know that
[T/x]A is true for any term T . The substitution [T/x]A in the object language
is achieved via application in the meta-language (A T).

2.2 Proof Search in Higher-Order Logic Programming

Higher-order logic programming is similar to a Prolog interpreter in that it
performs essentially a depth-first search over all the program clauses. The key
challenges in moving to a higher order setting are twofold: First, we may have
dynamic assumptions which may be used within a certain scope. Second, since
we allow higher-order terms (i.e. terms may contain λ-abstraction), higher-order
unification is used to unify clause heads with current goal.

In this section, we briefly describe the depth-first proof search procedure
of the higher-order logic programming interpreter. Computation in logic pro-
gramming is achieved through proof search. Given a goal (or query) G and
a program Γ , we derive G by successive application of clauses of the pro-
gram Γ . To solve a goal G from a set of clauses Γ , we decompose the com-
pound goal G until it is atomic and then resolved it with a program clause. We
have the following three possible actions (for a more detailed description see
Miller et al. [14]):

Small Proof Witnesses for LF 391

Select. Γ � G ⇒ ci · S
Given an atomic goal G and clauses Γ :
Focus on a clause ci : Ai from Γ by unifying the head of Ai with the current
goal G. Solve the subgoals of the clause, yielding a proof spine S. The proof term
established for G is ci · S.

Augment. Γ � G1 → G2 ⇒ λu.M if Γ, u:G1 � G2 ⇒ M
Augment the clauses in Γ with the dynamic assumption u:G1 and establish a proof
M for the goal G2 from the extended program Γ, u:G1.

Universal. Γ � Πx.G ⇒ λx.M if Γ � [a/x]G ⇒ [a/x]M where a is a new parameter
Given a universally quantified goal Πx.G, we generate a new parameter a, and
establish a proof [a/x]M for the goal [a/x]G in the program context Γ .

Once the goal is atomic, we need to select a clause from the program context
Γ to establish a proof for G. In a logic programming interpreter, we consider all
the clauses in Γ in order. First, we will consider the dynamic assumptions, and
then we will try the static program clauses one after the other. Let us assume,
we picked a clause A from the program context Γ . We now need to establish a
proof for G, by unifying the head of the clause A with G and solving the subgoals
of A. We will illustrate proof search by considering the following example:

prov (forall λy. (imp (forall λ x. p x) (p y)))

which corresponds to (∀y.(∀x.p(x)) ⊃ p(y)). where p is a defined predicate.
To prove the query, we will start by unifying the head of the clause (allI) with
the query, which results in subgoal:

Πa.prov(imp (forall λy.p y) (pa))

In the Universal step, we introduce a new parameter a yielding the subgoal:

prov(imp (forall λy.p y) (pa)).

To prove this subgoal we will again inspect our clauses. Three of them will be
applicable, namely allE, impI, and impE. This time we will pick the second clause
impI. Hence we will introduce the dynamic assumption u:prov(forall λ y.p y)
and show prov (p a) using the dynamic assumption u. In the third step, again
two clauses are applicable, allE, and impE. Using the first one, allE, we need
to show that we can prove prov(forall λy.P y). There are four possible clauses
whose clause head will unify: the dynamic clause u and the three program clauses
alli, alle, and impe. Using the dynamic assumption u, we can finish the proof.
Twelf’s higher-order logic programming engine will generate the following proof
term in explicit form:

(alli (λ x. ((forall λ y. p y) imp p x))
λ a. (impi (forall λ y.p y) (p a)

λ u. (alle (λ y.p y) a u))).

The final proof term not only tracks the rules which have been used in every
step of the proof, but also tracks the instantiations for the logic variables in each
steps. In the proof term above we show the instantiations in gray.

392 S. Sarkar, B. Pientka, and K. Crary

As shown in Necula [17], the instantiations of existential variables need not
be recorded in the explicit proof terms but can be reconstructed as long as we
only concentrate on a fragment of LF, called LFi. This can lead to substantial
savings in proof checking and proof size. Proofs are roughly O(

√
n), where n is the

size of the query. However, extending this idea to full LF has been difficult [29].
Maybe more importantly, proofs in LFi are still several times as big as the overall
program they certify.

Our goal is to produce smaller proof witnesses by reducing the proof evidence
to the choices we make while constructing the proof. In the previous example, it
suffices to know that in the first step, three possible rules apply, namely alli,
alle, and impe and we want to follow the first possibility. In the second step,
again three possible rules apply, namely alle, impi, and impe, and we want to
follow the second possibility. In the final step, we have four potential candidates,
the dynamic assumption u:forall (λy.p y), and the rules allI, allE, and impE.
Hence it would suffice to store only a list of the choices made in the proof. In
this example, the choices can be characterized by the following sequence: 1/3,
2/3, 1/2, 1/4, keeping in mind that dynamic assumptions are tried first by proof
search procedures. This sequence will constitute our compact proof witness and
is all that needs to be generated and sent to the verifier. In the remainder of the
paper, we show how to incorporate this technique into Twelf.

3 Generating and Checking Small Proof Witnesses

3.1 Proof Compression

In this section, we describe the modifications to the proof search procedure
needed to generate a compact proof witness in the form of a bit-string. We
assume that we already have the full proof term, which in certifying code systems
is typically generated by a compiler. The bit-string encodes the non-deterministic
choices within the proof, namely picking the right clause ci:A from the program
context Γ to establish a proof P for G, once the goal G is atomic, by unifying
the head of A with the atomic goal G. Potentially, there is more than one clause
whose head unifies with G, and hence a proof search procedure would need to
try all the possible choices in order. The proof witness just needs to keep track
of which possibility was successful.

In our approach, generating and checking witnesses essentially perform the
same overall proof search. The only difference is that in proof search we would
likely explore multiple fruitless paths and backtrack until we find the right path.
When generating and checking witnesses, we will consult the proof term or wit-
ness respectively to know which choice to consider, and thus eliminate back-
tracking. We modify the proof search steps presented earlier as follows:
Select. Γ � ci · S : G ⇒ 0 . . . 0︸ ︷︷ ︸

1...(i−1)

1W

Given an atomic goal G and clauses Γ :
Let ci : Ai be the i−th clause from Γ whose head unifies with goal G.
Focus on clause ci : Ai from Γ . Use the proof spine S to guide the solving of
subgoals, yielding witness W .

Small Proof Witnesses for LF 393

Augment. Γ � λu.M : G1 → G2 ⇒ W if Γ, u:G1 � M : G2 ⇒ W
Augment the clauses in Γ with the dynamic assumption u:G1 and compress a proof
M for G2 within the extended program Γ, u:G1 to obtain the witness W .

Universal. Γ � λx.M : Πx.G ⇒ W if Γ � [a/x]M : [a/x]G ⇒ W
Given a universally quantified goal Πx.G, we generate a new parameter a, and
compress a proof [a/x]M for [a/x]G in the program context Γ to W .

Note that the Select step is deterministic as the proof term determines which
choice will be successful. It should be intuitively clear that we do not necessarily
have to pass in the full proof term, but could directly produce a proof witness in
form of a bit-string if our proof search is powerful enough that it will eventually
find a proof.

3.2 Checking Small Proof Witnesses

In this section, we modify the previous search procedure, in such a way that
it is not parameterized by the proof term M , but rather by the compact proof
witness W encoded as a bit-string. We are given goal G in a program context Γ ,
together with a proof witness W . The procedure is the dual of the compression
case, and we show the important Select case.

Select Γ � 0 . . . 0︸ ︷︷ ︸
1...(i−1)

1W : G

Given an atomic goal G and clauses Γ :
Let k be the number of clauses whose head unifies with the current goal G, then
inspect up to k bits, and find the i-th bit which is one.
Focus on clauses ci : Ai from Γ to establish a proof for the atomic goal G from Γ
using remaining proof witness W .

In Select step, we first generate the k possible candidates whose head will
unify with the current goal G. If k is greater than 1, we will examine up to k bits
from the witness to see which choice to take. If a bit 1 occurs at position i of these
k bits, we will pick the i-th candidate. For this idea to work, it is crucial that the
order of choices during witness checking is same as during witness generation.

In order to check the proof witnesses, we re-run the prover guided with the
advice encoded in the bit-string. The witness checker is then a deterministic
search procedure. No backtracking is necessary, since all the non-deterministic
choices are resolved. Note that the proof term does not need to be reconstructed.

3.3 Bit-String Encodings for Proof Witnesses

The choices as described above are choice sequences of the form i1/k1, i2/k2, . . .,
where at the jth stage we have kj choices, and we want to pick ij (1 ≤ ij ≤ kj).
With the tight coupling of the witness generation and checking phases, both
phases agree on the number of choices (kj) as well as the ordering of those
choices,i.e. both producer and checker agree on which choice is to be considered
the ij-th one.

394 S. Sarkar, B. Pientka, and K. Crary

We can now see that the separator between choices is unnecessary. We can
decide on a encoding scheme, and pull only the required number of bits from the
oracle. The witness checker will always know how many bits to extract.

We have experimented with two simple encoding schemes, though more com-
plex coding schemes can be imagined. The original proposal by Necula and Rahul
proposed what we call the binary scheme, in that the number would be encoded
in binary. If k choices apply, this will require +log k, bits. We discover that a
scheme we call unary encoding works better in practice. In this scheme, the
choice number i is encoded as 000 . . . (i-1 zeros)1. This takes i bits.

The binary scheme will work better when we habitually have a large number
of choices, and we take one of the later choices in the ordering considered by
the producer/checker. The unary scheme will work better precisely in the other
cases. In all our examples, we have observed that only a few choices typically
apply. Further, logic programmers usually write their programs so that the more
common choices are tried first. With these observations, unary encodings should
outperform binary encodings, as indeed they do in experimental studies. This is
a configurable option in our engine, and can be set depending on the particular
proof or logic.

4 Optimizations

4.1 Higher-Order Term Indexing

In the Select step of our algorithms, we need to retrieve clauses which may
unify with the goal. To avoid redundant computations most first-order logic
programming interpreter use efficient term indexing strategies such as automata
driven indexing [28]. Indexing strategies for higher-order terms are more difficult,
since in general retrieval and insertion operations rely on computing the most
general unifier or the most specific generalization. However, in the higher-order
case, unification is in general undecidable and the most general unifier does not
necessarily exist. The same holds for computing the most specific generalization
of two terms.

We will adopt higher-order substitution trees [24,26] as our indexing mech-
anism. Substitution tree indexing has been successfully used in a first-order
setting [11] and allows the sharing of common sub-expressions via substitutions.
This is unlike other non-adaptive term indexing methods which only allow shar-
ing of common term prefixes. To extend substitution tree indexing to the higher-
order setting, we use linear higher-order patterns [27]. Higher-order patterns [13]
are terms where all existential variables must be applied to distinct bound vari-
ables. Linear higher-order patterns further restrict existential variables to occur
only once and to be applied to all distinct bound variables.

The construction of a substitution tree in the higher-order setting follows
the overall algorithm described in Ramakrishnan et al [28]. We will illustrate
higher-order substitution trees by an example. Assume we have the following
clauses which allow quantifier manipulation for first-order logic:

Small Proof Witnesses for LF 395

e1 : eq (imp (exists λx.A x) B) (forall λx.(imp (A x) B)).
e2 : eq (imp A (forall λx.B x)) (forall λx.(imp A (B x))).
e3 : eq (and A (forall λx.B x)) (forall λx.(and A (B x))).

Although all the terms in these clauses fall into the pattern fragment, not
all of them are linear patterns. We linearize them by eliminating any duplicate
occurrences of existential variables, and replacing any existential variable which
is not fully applied with one which is. The linearized program is given next:

e1 : eq (imp (exists λx.A x) B) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x) .= (A x) and B′ x

.= B

e2 : eq (imp A (forall λx.B x)) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x) .= A and B′ x

.= (B x)

e3 : eq (and A (forall λx.B x)) (forall λx.and (A′ x) (B′x)).
∀x.(A′ x) .= A and B′ x

.= (B x)

We now compute the most specific generalization between these clauses, and
can build up a substitution tree. The algorithm for computing the most specific
generalization is given in [26,24].

eq i2 (forall λx.i1 x)

λx.(and (A′ x) (B′ x))/i1
(and A (forall λx.(B x)))/i2

∀x.A′ x
.= A

∀x.B′ x
.= B x

e3

λx.(imp (A′ x) (B′ x))/i1
(imp (i3 x) (i4 x))/i2

λy.exists λx.A x/i3,
λy.B/i4

∀x.A′ x
.= A x

∀x.B′ x
.= B

e1

λy.A/i3,
λy.(forall λx.B x)/i4

∀x.A′ x
.= A

∀x.B′ x
.= B x

e2

Fig. 1. Substitution tree

By composing the substitutions along a path, we will obtain a clause head.
By composing the substitutions in the right-most branch, we obtain the clause
head e2. In contrast to other indexing techniques such as discrimination tries,
substitution trees allows the sharing of common sub-expressions instead of com-
mon term prefixes. This is often very useful, as we can see in this example, since
the most sharing is done in the second argument.

We have chosen to index only the static set of program clauses. In theory,
substitution tree indexing can be used for dynamic clauses generated during
proof search also. However, it is not clear how useful this will be, since creating
the tree itself is time-consuming. It is also noted by Necula and Rahul [16] that
indexing dynamic assumptions imposes a performance penalty.

4.2 Caching Results

Since large proofs often have identical subproofs, there is often potential for
sharing subproofs, particularly in machine-generated proofs which tend to have

396 S. Sarkar, B. Pientka, and K. Crary

repeated proofs of simple facts. This was also pointed out by Necula and Lee [18]:
“... it is very common for the proofs to have repeated sub-proofs that should be
hoisted out and proved only once ...”.

When generating and checking small proof witnesses, this leads to two prob-
lems. First, the proof witnesses become larger, thus increasing transmission costs.
Second, the performance of the witness checker may degrade, since it spends its
time uselessly verifying the same fact over and over again. Ideally we would like
to cache intermediate results and re-use them later.

We use ideas from and also infrastructure developed for tabled higher order
logic programming [26,23]. Since caching everything may be too costly in prac-
tice, we support selective caching. The user can declare certain predicates to be
cached. We modify the Select step in our previous search procedure to allow for
caching. Assume our subgoal is Γ # G. We check whether the current subgoal
is an instance of a previous table entry. If there exists a table entry Γ ′ # G′ s.t.
Γ # G is a variant (or instance) of the already existing entry, then a pointer to
the corresponding answer list is returned. If no such entry exists, Γ # G is added
to the table and a pointer to an empty answer list is returned. In this case, we
will continue to focus on a clause ci as usual to solve the goal Γ # G. When
we are done, we will add the answer substitution for the existential variables in
Γ # G together with its proof term ci · S to its answer list.

If a table entry for the goal already exists, there are two possible situations:

1. If the answer list contains an answer substitution θk that leads to the proof
ci ·S we are compressing, then we will just re-use the answer substitution θk.

2. If the answer list does not contain an answer that would lead to the proof
ci ·S, then we need to use a program clause cj to focus on and solve the goal
Γ # G.

The generation and checking of witnesses will follow similar algorithms, so
both have identical caches and consider the same number of choices.

5 Experimental Results

In this section, we give an experimental evaluation of generating and checking
compact proof witnesses. In particular, the results discuss the trade off between
witness size and the time it takes to construct or check witnesses. Thus, we will
consider three cases: asking the checker to perform proof search, proof checking of
explicit proofs, and our approach of small proof witnesses. The first two represent
two extreme cases, the first one with zero witness size but large proof search time,
and the second one with large witness size but fast checking times. We will also
discuss the trade-offs of caching subproofs. Finally, we will compare different
encoding schemes for describing the non-deterministic choices and see how this
affects the size of the proof witness.

Our experiments are run on a Pentium 4 machine running at 2GHz with 1
GB of memory size. The machine runs Twelf compiled by SML of New Jersey
version 110.0.7, and runs it on the Redhat Linux 7.1 operating system, with no

Small Proof Witnesses for LF 397

programs running on the background. We present a representative selection of
results from an extensive suite of experiments we have run.

5.1 Time and Size Trade-Offs

Our first example suite is an implementation of a sequent calculus for intu-
itionistic propositional logic where invertible rules are chained together thereby
eliminating some non-determinism in the overall proof search.

Sequent Calculus: Times with Caching of User-Selected Predicates
Example PST PCT WV(PST/WV) PS PSNWS(PS/WS)
(A ⊃ B) ∧ (A ⊃ C) ⇒ A ⊃ B ∧ C 0.47 < 0.01< 0.01 ∞ 361 43 5 72.2
A ∨ C ∧ (B ⊃ C) ⇒ (A ⊃ B) ⊃ C 1.70 < 0.01 0.01 170 570 50 6 95.0
(A ⊃ C) ∧ (B ⊃ C) ⇒ A ∨ B ⊃ C 2.18 < 0.01< 0.01 ∞ 561 56 6 93.5
⇒ (A ⊃ C) ∧ (B ⊃ C) ⊃ A ∨ B ⊃ C 2.43 < 0.01 0.01 243 792 57 6 132.0

Key:PST=Proof Search time (s)
PCT=Proof Checking time (s)
WV =Witness Verification time (s)

PS =Proof Size in bytes
PSN=Proof Size in Number of tokens
WS =Witness Size in bytes

We study the time to find a proof and contrast it against the proof checking
times. We use the tabled higher-order logic programming engine [25,26] to find
proofs for the propositional logic. The proof compression and the verification
procedures provide significant time speedups, since in these procedures, we al-
ready know the proof. Next, we turn our attention to questions of proof size.
The original proof is measured both by number of bytes as well as the number
of tokens, and the compact proof witness is produced using the unary encoding
described earlier.

Our second example is an advanced type system for a high-level call-by-value
functional language using refinement types [10]. The language has functions, a
fix-point construct, booleans and bit-strings. In particular, the type of bit-strings
is refined by zero and strictly positive number representations.

Refinement Type System : Proof Compression Times with Caching
Example PST PCT WV (PST / WV) PS PSN WS (PS / WS)
mult-pos-nat 5.81 0.05 1.10 5.3 15,654 1,159 169 92.6
mult 0.39 0.02 0.13 3.0 6,074 509 47 129.2
square-pos-nat 12.55 0.06 1.85 6.8 25,303 1,587 242 104.6

The experimental results demonstrates that proof checking yields a speedup
between three and six times. This figure is achieved if we are caching subgoals
to get maximum compressions. As we see later, even more time gains can be
achieved by turning off caching, since we do not explore unproductive branches
in the proof tree. Finally, we notice that the compact oracle is about 1% of the
size of the proof term.

Our last example suite is an implementation from the Foundational Proof
Carrying Code project at Princeton [2]. This is a large program that type checks

398 S. Sarkar, B. Pientka, and K. Crary

SPARC object code with the help of annotations produced by a compiler. The
type system used is a low-level type system known as LTAL [7].

FPCC: Times without Caching
Example PST PCT WV (PST / WV) PS PSN WS (PS / WS)
clos 12.26 2.505 0.47 26.1 201,910 16,502 638 316.5
mid 10.29 2.246 0.45 22.9 398,589 34,250 528 754.9
inc 11.55 2.310 0.47 24.6 410,600 35,724 579 709.2
lint 12.84 2.591 0.70 18.3 441,965 38,416 703 628.7

In the proof carrying code scenario, asking the consumer to verify our com-
pact proof witness as opposed to doing proof search gives a speedup of about
20 times. Also important is the size of the proof that must be sent to the con-
sumer. Our proof witnesses are between 300 and 700 times smaller than the
corresponding proof terms. Finally, we notice that as proof sizes become big-
ger, our mechanisms perform better at compressing proofs. The space savings
go from a factor of about 70 in the smallest examples all the way to about 700
times for our largest examples. The gains in time are from a factor of about 5
to a factor of about 25 for the larger examples.

5.2 Caching: Time vs Space

Next we investigate the practicality of caching subgoals. Caching is a fairly ex-
pensive operation, in terms of both time for stores and lookups and the memory
required to maintain the table and we investigate this trade-off next. As our re-
sult show, caching results in a speed penalty of between three and fifteen times.
The gain from this is that the size of the oracle is smaller for the cached version
in every experiment. Disappointingly, the gain is usually small.

Refinement Type System: Caching during proof compression
Example Compression Time Witness Size Table

Cached Uncached Slowdown Cached Uncached Saving Size
(sec) (sec) (bytes) (bytes)
(A) (B) (A / B) (C) (D) (D - C)/D

mult-pos-nat 1.18 0.11 10.7 169 171 1.2 % 579
mult 0.14 0.05 2.8 47 67 29.9 % 164
square-pos-nat 2.31 0.16 14.4 242 247 2.0 % 794

5.3 Encoding Schemes

Finally, we study the issue of unary versus binary encodings of the choices.
A representative study with examples from multiple example suites is given
next. We notice that binary encodings always increase the size of the oracle, by
between 7% and 115%. As we discussed before, logic programmers usually write
their programs so that the first few clauses are the ones that are used more
commonly, in which case unary encodings are better.

Small Proof Witnesses for LF 399

Unary versus Binary Encodings: no Caching
Example WSU WSB (WSB - WSU/ WSU)
clos 638 715 12.0 %
mid 528 652 23.5 %
lint 703 754 7.3 %
mult-pos-nat 171 338 97.7 %
mult 67 144 114.9 %

Key WSU=Witness Size
(Unary Encoded)

WSB= Witness Size
(Binary Encoded)

6 Related Work

The idea of compact proof witnesses that encode the non-deterministic choice in
a logic programming interpreter was first proposed by Necula and Rahul [16] for
a fragment of the logical framework LF, that excludes the use of higher-order
terms and significantly limits the use of dependent types in practice. Their main
goal was to design a practical method for current proof-carrying code applica-
tions to reduce the size of proofs sent to a consumer. To achieve an efficient
implementation, they propose the use of automata-driven indexing, where any
higher-order features are ignored. Their indexing algorithm will generate a set
of potential candidates from which unsound candidates need to be weeded out
by calling higher-order unification based on Huet’s algorithm. This is clearly
wasteful and expensive in the general higher-order case, since we will traverse
higher-order terms at least twice. Moreover, since Huet’s unification algorithm is
non-deterministic itself, their proof witnesses also record the choices made dur-
ing unification. To avoid these problems in practice, their realization and their
experimental evaluation does not consider terms defined via λ-abstraction.

The idea of using oracles was also explored in Wu et al [30]. The main differ-
ence between their and the previous approach is that the proof rules are proven
correct independently thereby minimizing the trusted computing base. Trust is
not our concern here, rather we aim at extending the safety infrastructure al-
ready provided by Twelf with capabilities of generating and checking small proof
witnesses. This step, we believe, will provide the developers of safety policies in
Twelf with new insights about the relationship of safety rules and size of proofs.

As in Necula and Rahul’s work, Wu et al.’s system does not support higher-
order abstract syntax, which drastically limits its usefulness. Wu et al.[30] encode
the explicit substitution calculus [1] together with the necessary proofs about
substitutions for their foundational implementation of LTAL. Although the over-
head in this setting is still manageable, it is not general enough to handle richer
safety polices.

7 Conclusion

In this paper, we extended the logical framework LF with small proof witnesses.
Witness generation and checking within the logical framework LF constitutes
a valuable addition to the general safety infrastructure already provided. This
can provide insights into the relationship between safety policies and small safety

400 S. Sarkar, B. Pientka, and K. Crary

proofs and allows for experiments with different kinds of encoding schemes. Given
the potential of proof-carrying code methods and their new applications to proof-
carrying authorization [3,5], this will provide a comprehensive guide for future
implementations of proof checkers which need not be restricted to first-order
Prolog-like systems.

References

1. Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit
substitutions. In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, California, pages 31–46.
ACM, 1990.

2. Andrew Appel. Foundational proof-carrying code. In J. Halpern, editor, Pro-
ceedings of the 16th Annual Symposium on Logic in Computer Science (LICS’01),
pages 247–256. IEEE Computer Society Press, June 2001. Invited Talk.

3. Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In ACM
Conference on Computer and Communications Security, pages 52–62, 1999.

4. W. Appel and Amy P. Felty. A semantic model of types and machine instruc-
tions for proof-carrying code. In 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’00), pages 243–253, Jan. 2000.

5. Lujo Bauer. Access Control for the Web via Proof-carrying Authorization. PhD
thesis, Princeton University, November 2003.

6. Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic
and Computation, 13(5):639–688, 2003.

7. Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably sound TAL
for back-end optimization. In PLDI ’03 : Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, pages 208–219.
ACM Press, June 2003.

8. Karl Crary. Toward a foundational typed assembly language. In 30th ACM Sym-
posiumn on Principles of Programming Languages (POPL), pages 198–212, New
Orleans, Louisisana, January 2003. ACM-Press.

9. Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical frame-
work. In 19th International Conference on Automated Deduction, Miami, Florida,
USA, 2003. Extended version published as CMU technical report CMU-CS-03-108.

10. Rowan Davies and Frank Pfenning. Intersection types and computational effects. In
P. Wadler, editor, Proceedings of the Fifth International Conference on Functional
Programming, pages 198–208. ACM Press, 2000.

11. Peter Graf. Term Indexing, volume 1053 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1995.

12. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

13. Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eighth International Logic Programming Conference, pages 255–269, Paris, France,
June 1991. MIT Press.

14. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

Small Proof Witnesses for LF 401

15. Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus – a compiler
and abstract machine based implementation of Lambda Prolog. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), pages 287–291, Trento, Italy, July 1999. Springer-Verlag LNCS.

16. G. Necula and S. Rahul. Oracle-based checking of untrusted software. In 28th ACM
Symposium on Principles of Programming Languages (POPL’01), pages 142–154,
2001.

17. George C. Necula and Peter Lee. Efficient representation and validation of logical
proofs. In Vaughan Pratt, editor, Proceedings of the 13th Annual Symposium on
Logic in Computer Science (LICS’98), pages 93–104, Indianapolis, Indiana, June
1998. IEEE Computer Society Press.

18. George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In Giovanni Vigna, editor, Mobile Agents and Security, pages 61–91. Springer-
Verlag LNCS 1419, August 1998.

19. Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of
Logic Programming, 3:237–258, 1986.

20. Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge
University Press, 1991.

21. Frank Pfenning. Computation and deduction, 1997.
22. Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-

logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag Lecture Notes in Artificial In-
telligence (LNAI) 1632.

23. Brigitte Pientka. A proof-theoretic foundation for tabled higher-order logic pro-
gramming. In P. Stuckey, editor, 18th International Conference on Logic Program-
ming, Copenhagen, Denmark, Lecture Notes in Computer Science (LNCS), 2401,
pages 271 –286. Springer-Verlag, 2002.

24. Brigitte Pientka. Higher-order substitution tree indexing. In C. Palamidessi, edi-
tor, 19th International Conference on Logic Programming, Mumbai, India, Lecture
Notes in Computer Science (LNCS 2916), pages 377–391. Springer-Verlag, 2003.

25. Brigitte Pientka. Tabling for higher-order logic programming. In R. Nieuwenhuis,
editor, 20th International Conference on Automated Deduction, Talinn, Estonia,
Lecture Notes in Computer Science (LNCS) (to appear). Springer-Verlag, 2005.

26. Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Dept. of
Computer Sciences, Carnegie Mellon University, Dec 2003. CMU-CS-03-185.

27. Brigitte Pientka and Frank Pfennning. Optimizing higher-order pattern unifica-
tion. In F. Baader, editor, 19th International Conference on Automated Deduction,
Miami, USA, Lecture Notes in Artificial Intelligence (LNAI) 2741, pages 473–487.
Springer-Verlag, July 2003.

28. I. V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2, pages
1853–1962. Elsevier Science Publishers B.V., 2001.

29. Jason Reed. Redundancy Elimination for LF. In Carsten Schuermann, editor,
Proceedings of the Fourth Workshop on Logical Frameworks and Meta-languages —
LFM’04, Cork, Ireland, 5 July 2004.

30. Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof checkers
with small witnesses. In PPDP ’03: Proceedings of the 5th ACM SIGPLAN inter-
national conference on Principles and practice of declaritive programming, pages
264–274. ACM Press, 2003.

A Type System for CHR

Emmanuel Coquery1,2 and François Fages1

1 INRIA Rocquencourt, France
2 Conservatoire National des Arts et Métiers, Paris, France

The language of Constraint Handling Rules (CHR) of T. Frühwirth [1] is a
successful rule-based language for implementing constraint solvers in a wide
variety of domains. It is an extension of a host language, such as Prolog [2],
Java or Haskell [3], allowing the introduction of new constraints in a declarative
way. One peculiarity of CHR is that it allows multiple heads in rules. For the
sake of simplicity, we consider only simplification rules, since the distinction
of propagation and simpagation rules [1] is not needed for typing purposes. A
simplification rule is of the form H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk, where
H1, . . . , Hi is a nonempty sequence of CHR constraints, the guard G1, . . . , Gj is
a sequence of native constraints and the body B1, . . . , Bk is a sequence of CHR
and native constraints.

In this paper, we describe a type system for CHRs. Chin, Sulzmann and
Wang [3] proposed a monomorphic type system for their type-safe embedding of
CHR into Haskell. Here, we propose a generic type system for CHR inspired by
the TCLP type system for constraint logic programs [4]. As CHR is an extension
of a host language, the type system is parameterized by the type system of
the host language. We assume that the host type system, noted #N , is based
on some algebra of types T . Typing environments, noted Γ , associate types to
program variables. Given an expression t and a typing environment Γ , #N is
used to deduce typing judgments of the form Γ #N t : τ , which means that the
expression t has type τ in Γ , or of the form Γ #N C Atom, which means that C
is a well-typed constraint in Γ .

The type system for CHR defines a notion of well-typedness for CHR rules. To
each CHR constraint symbol c/n is associated a set of types types(c/n), each type
being of the form τ1×. . .×τn. This set of types is assumed to be fixed, for example
using some declarations provided by the programmer. This framework allows the
use of parametric polymorphism [5]. A parametric type scheme ∀α1 . . . αk. τ1 ×
. . .× τn is represented by the set of all its possible instanciations. For example,
the declaration types(append/3) = {list(τ)× list (τ)× list (τ) | τ ∈ T } allows one
to give the type ∀α. list(α) × list(α)× list(α) to the constraint append/3.

In the typing rules given below, σ represents a type for a CHR constraint
and S represents a set of such types. The rule (CHR Rule) requires that, for
each combination σ1, . . . , σn of the types of the different occurences of the CHR
constraints in the head of a CHR rule, the head, the guard and the body of the
CHR rule are well-typed in some typing environment Γ . This can be seen as a
generalization of the definitional genericity [6] condition in logic programming.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 402–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Type System for CHR 403

(Native)
Γ �N C Atom
Γ � C Atom

if C is a native constraint

(Atom)
Γ �N t1 : τ1 . . . Γ �N tn : τn

Γ � c(t1, . . . , tn) Atom
where c/n a CHR constraint

and τ1 × . . . × τn ∈ types(c/n)

(Goal)
Γ � B1 Atom . . . Γ � Bn Atom

Γ � B1, . . . , Bn Goal

(Head)
Γ �N t1 : τ1 . . . Γ �N tn : τn

Γ � c(t1, . . . , tn) Headτ1×...×τn

where c/n a CHR constraint
and τ1 × . . . × τn ∈ types(c/n)

(MultiHead)
Γ � H1 Headσ1 . . . Γ � Hi Headσi

Γ � H1, . . . , Hi MHeadσ1,...,σi

(CHR Rule)

∀σ1 ∈ S1, . . . , ∀σn ∈ Sn∃Γ
Γ � H1, . . . , Hn MHeadσ1,...,σn

Γ � G1, . . . , Gr Goal
Γ � B1, . . . , Bq Goal

� H1, . . . , Hn <=> G1, . . . , Gr | B1, . . . , Bq Rule

where Hi = ci(ti
1, . . . , t

i
mi

) and Si = types(ci/mi) for all 1 ≤ i ≤ n

This type system has been implemented with the TCLP type system [4] for
constraint logic languages. In this implementation, the type system is extended
to allow the combined use of predicates both in CHR and CLP, following the
CLP+CHR framework [1]. We refer to [7] for more details. This implemention
is part of the TCLP software1 and experiments, including the typing of TCLP
itself, show that the system is usable with large programs and useful in practice.

References

1. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37 (1998) 95–138

2. Holzbaur, C., Frühwirth, T.: A Prolog Constraint Handling Rules compiler and
runtime system. Special Issue Journal of Applied Artificial Intelligence on Constraint
Handling Rules 14 (2000)

3. Chin, W.N., Sulzmann, M., Wang, M.: A type-safe embedding of constraint han-
dling rules into Haskell. Technical report, National University of Singapore (2003)
http://www.comp.nus.edu.sg/~sulzmann/chr/hchr/hchr-tr.ps.

4. Fages, F., Coquery, E.: Typing constraint logic programs. Journal of Theory and
Practice of Logic Programming 1 (2001) 751–777

5. Mycroft, A., O’Keefe, R.: A polymorphic type system for Prolog. Artificial Intelli-
gence 23 (1984) 295–307

6. Lakshman, T., Reddy, U.: Typed Prolog: A semantic reconstruction of the Mycroft-
O’Keefe type system. In Saraswat, V., Ueda, K., eds.: Proceedings of the 1991
International Symposium on Logic Programming, MIT Press (1991) 202–217

7. Coquery, E., Fages, F.: A type system for CHR. Technical Report RR-5565, INRIA
(2005)

1 http://contraintes.inria.fr/~coquery/tclp

Decision Support for Personalization
on Mobile Devices

Thomas Kleemann and Alex Sinner

University of Koblenz-Landau, Department of Computer Science, Germany
{tomkl, sinner}@uni-koblenz.de

During the past few years mobile phones have become an ubiquitous companion.
Starting as a handset to cellular networks today’s mobile phones are devices ca-
pable of intelligent services itself. The IASON1 project aims at providing mobile
users with location-aware personalized information. Motivated by the develop-
ment of powerful mobile devices and the semantic web, we define a Semantic
Mobile Environment. In such an environment, so-called service nodes are in-
stalled at chosen points of interest. These service nodes broadcast semantically
annotated messages to nearby mobile users using bluetooth ad-hoc wireless tech-
nology. Location-awareness is given implicitly by being in the wireless range of
a service node and comes free of costs just as the communication itself. A Se-
mantic User Profile describing the users interests and disinterests is managed
on her mobile device. This user profile is used to sort out unwanted messages by
performing matchmaking between the semantic annotation of the messages and
the user profile (see [8]). The protection of privacy requires the profile to stay
on the phone and to perform all necessary reasoning on the phone.

Semantic Personalization

Personalization is essential for all kinds of mobile services. The most obvious
reason is that spam messages are generally not wanted. Another less obvious
reason is that if mobile users want information, they only want information that
is of interest to them. In our approach we use the description logic SHI [2] as a
semantic language. SHI is the standard DL ALC extended with role hierarchies
and inverse, transitive roles, it covers most of OWL-lite [1] enabling the use of
tools like protege to edit ontologies.

Every message is accompanied by a concept-expression that defines the se-
mantics of the message. In order to distinguish different roles like producer/con-
sumer in a commercial environment or generic preferences in a peer2peer setting
all annotations (1) feature an existentially quantified role R of the service ontol-
ogy (2,3) and a concept C based on the vocabulary of an ontology available to
all participants.

The profile (4) is a collection of positively or negatively marked annotation
(5,6). It is initialized through a short questionaire and is updated upon the

1 http://www.uni-koblenz.de/∼iason, funded by ”Stiftung Rheinland-Pfalz für
Innovation”

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 404–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Decision Support for Personalization on Mobile Devices 405

user’s responses to previously received messages. All subsequent messages are
evaluated wrt. the profile. This matchmaking is a refinement of [6] providing
graded matches (mismatch, compatible, match) with only two reasoning steps
(7,8) even for complex profiles defining many interests and disinterests including
distinguished business-roles.

annotationj ≡ ∃R.C with R " share (1)
request " share (2)
offer " share (3)

prof ile ≡ interests � disinterests (4)

interests ≡
n⊔

i=1

positive−marked− annotationi (5)

disinterests ≡
m⊔

i=1

negative−marked− annotationi (6)

prof ile � annotation �≡ ⊥ compatibility− test (7)
annotation " prof ile match− test (8)

To enable the Pocket KRHyper [7] to evaluate the matchmaking all DL ax-
ioms are translated into a disjunctive logic program. This translation (similar
to [3]) preserves the decidability for acyclic general TBoxes and extends the
common subset of DL and LP (DLP) [5] significantly.

To cope with the restrictions on resources of the mobile phones a segmenta-
tion of the clausal knowledgebase limits the number of translations from DL to
LP and numerous reductions of equivalences to implications reduces the number
of generated clauses. As a result the matchmaking turned out to be fast enough
to be accepted by a user. Distinguishing between offers and requests was an
additional benefit for users. Different from other approaches [4] all decisions are
kept on the mobile device to protect the user’s profile. Our J2ME based imple-
mentation of the reasoner and the matchmaking library enables the development
of a new class of applications on independant mobile devices.

References

1. G. Antoniou and F. van Harmelen. Web ontology language: Owl. In S. Staab and
R. Studer, editors, Handbook on Ontologies in Information Systems. Springer, 2003.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The description logic handbook: theory, implementation, and applications. Cam-
bridge University Press, 2003.

3. P. Baumgartner, U. Furbach, M. Gross-Hardt, and T. Kleemann. Model based
deduction for database schema reasoning. In S. Biundo, T. Frühwirth, and G. Palm,
editors, KI 2004: Advances in Artificial Intelligence, volume 3238, pages 168–182.
Springer Verlag, Berlin, Heidelberg, New-York, 2004.

4. F. L. Gandon and N. M. Sadeh. Semantic web technologies to reconcile privacy and
context awareness. J. Web Sem., 1(3):241–260, 2004.

406 T. Kleemann and A. Sinner

5. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic. In Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), pages 48–57. ACM, 2003.

6. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proc. of the 12th Int. World Wide Web Conf. ACM, 2003.

7. A. Sinner and T. Kleemann. Krhyper - in your pocket, system description. In proc.
of Conference on Automated Deduction, CADE-20, 2005.

8. A. Sinner, T. Kleemann, and A. v. Hessling. Semantic user profiles and their ap-
plications in a mobile environment. In Artificial Intelligence in Mobile Systems,
2004.

A Generic Framework for the Analysis
and Specialization of Logic Programs�

Germán Puebla1, Elvira Albert2, and Manuel Hermenegildo1,3

1 School of Computer Science, Technical U. of Madrid
{german, herme}@fi.upm.es

2 School of Computer Science, Complutense U. of Madrid
elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico
herme@unm.edu

The relationship between abstract interpretation [2] and partial evaluation [5]
has received considerable attention and (partial) integrations have been proposed
starting from both the partial deduction (see e.g. [6] and its references) and ab-
stract interpretation perspectives. Abstract interpretation-based analyzers (such
as the CiaoPP analyzer [9,4]) generally compute a program analysis graph [1] in
order to propagate (abstract) call and success information by performing fixpoint
computations when needed. On the other hand, partial deduction methods [7]
incorporate powerful techniques for on-line specialization including (concrete)
call propagation and unfolding.

In this work we propose what we argue is the first generic framework for
the efficient and precise integration of abstract interpretation and partial de-
duction from an abstract interpretation perspective, and which combines the
best of both worlds. As starting point, we consider state-of-the-art algorithms
for context-sensitive, polyvariant abstract interpretation [9,4]. The central idea
in this novel framework is to extend such algorithms, which already incor-
porate success propagation, such that calls which appear dynamically in the
analysis graph are not analyzed w.r.t. the definition of the procedure in the
original program but w.r.t. possibly new, specialized definitions of these proce-
dures. These specialized definitions are obtained by applying powerful techniques
for on-line program specialization, including unfolding and abstract executabil-
ity [10]. Abstract executability allows exploiting analysis information in order
to (abstractly) execute certain atoms, which in turn may allow unfolding of
other atoms. Also, performing unfolding steps allows us to prune away useless
branches, which will result in improved success information. Furthermore, prop-
agating (abstract) success information simultaneously will result in an improved

� This work was funded in part by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-38059 ASAP project and by the Spanish Ministry of Science and Education
under the MCYT TIC 2002-0055 CUBICO project. Manuel Hermenegildo is also
supported by the Prince of Asturias Chair in Information Science and Technology
at UNM.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 407–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

408 G. Puebla, E. Albert, and M. Hermenegildo

unfolding. Therefore, key ingredients of our proposal include the accurate success
propagation inherent to context-sensitive abstract interpretation and the pow-
erful constant propagation and program transformations achievable by partial
deduction.

It should be noted that existing proposals for such integration use abstract
interpretation as a means for improving partial evaluation rather than as a goal
at the same level as producing a specialized program. This implies that, as a
result, their objective is to yield a set of atoms which determines a partial eval-
uation rather than to compute a safe approximation of its success. In contrast, a
fundamental objective of our work is to improve success information by analyz-
ing the specialized code, rather than the original one. We achieve this objective
by smoothly interleaving both techniques and this, on one hand, improves suc-
cess information, even for abstract domains which are not related directly to
partial evaluation. On the other hand, with more accurate success information
we can improve further the quality of partial evaluation. The overall method
thus yields not only a specialized program but also a safe approximation of its
behavior.

Our framework is parametric w.r.t. different control strategies (both for local
and global control [3]) and abstract domains (including non downwards-closed
properties). Different combinations of such parameters correspond to existing
algorithms for program analysis and specialization. Simultaneously, our approach
opens the door to strictly more precise results than those achievable by each of
the individual techniques. The framework has been implemented in the context
of the CiaoPP analysis and specialization system. A complete description of the
method (and related techniques) can be found in [8].

References

1. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

2. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

3. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88–98. ACM Press, 1993.

4. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187–223, March 2000.

5. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

6. M. Leuschel. A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM Transactions on Programming Languages
and Systems, 26(3):413 – 463, May 2004.

7. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217–242, 1991.

A Generic Framework for the Analysis and Specialization 409

8. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-
ized Definitions. Technical Report CLIP6/2005.0, Technical University of Madrid,
School of Computer Science, UPM, July 2005.

9. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145,
1996.

10. G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Ap-
plication to Program Parallelization. J. of Logic Programming., 41(2&3):279–316,
November 1999.

The Need for Ancestor Resolution When
Answering Queries in Horn Clause Logic

Oliver Ray

Department of Computing, Imperial College London, UK
or@doc.ic.ac.uk

Prolog Technology Theorem Proving. (PTTP) [5] is a well known extension
of Prolog for answering queries in first-order logic. PTTP is based on the idea
that ‘Prolog can be viewed as an “almost complete” theorem prover, which has to
be extended by only a few ingredients in order to handle the non-Horn case’ [1].
As explained in [5], PTTP is an efficient realisation of the Model Elimination
(ME) calculus [2] that utilises five extensions of standard Prolog:

1. It uses a sound unification algorithm with the occur-check;
2. It uses a complete search strategy based on iterative-deepening;
3. It adds contrapositives of the clauses in the theory in order to

provide entry points for all of the literals in those clauses;
4. It uses ancestor resolution when unfolding the query in order to

overcome the incompleteness of Prolog’s SLD resolution;
5. It adds contrapositives for the negation of the query in order to

extract indefinite answers from successful computations.

Although it is equipped for full clausal reasoning, PTTP has been tailored
to some notable Horn clause applications by removing those features deemed
unnecessary in the Horn case. For example, the Inductive Logic Programming
(ILP) system Progol5 [3] includes a simplified PTTP technique that uses contra-
positives in order to query the negative literals entailed by a given Horn theory,
but does not support ancestor resolution or indefinite answers.

This paper shows all five extensions above are needed for the soundness and
completeness of PTTP in the Horn case (where the theory is a set of Horn clauses
and the query is a set of literals — implicitly read as universally and existentially
quantified conjunctions, respectively). It also shows how the omission of ancestor
resolution is responsible for a recently discovered incompleteness [4] of Progol5
and how indefinite answers can be used to enhance Progol5’s learning ability.

Evidently, sound unification and complete search are needed in the Horn case
just as much as the general case (even if they are often omitted for efficiency).
Contrapositives are also needed in the Horn case to solve queries with negative
literals. For example, the negative literal ¬q(0) is entailed by the Horn clauses
p(x)← q(x) and ← p(0), but the query ¬q(y) only succeeds with answer y/0 if
the contrapositives ¬q(x)←¬p(x) and ¬p(0) are also provided.

At first sight, it might appear as if ancestor resolution and indefinite answers
are made redundant in the Horn case by the completeness of SLD resolution.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 410–411, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Need for Ancestor Resolution 411

However, the following examples show that they are both in fact needed for the
completeness of PTTP even when the theory comprises a single Horn clause:

• First, consider the Horn clause ←q(0), q(x) and note that although this clause
entails ¬q(0), the query ¬q(y) only succeeds with the answer y/0 from the con-
trapositives ¬q(0)← q(x) and ¬q(x)← q(0) if ancestor resolution is used (i.e.
resolved upon literals are retained as framed literals and allowed to resolve away
complementary unframed literals to their left).

• Then, consider the Horn clause ← q(0), q(1) and note that although this
clause entails ∃y(¬q(y)), the query ¬q(y) only succeeds from the contraposi-
tives ¬q(0) ← q(1) and ¬q(1) ← q(0) if indefinite answers are supported (i.e.
contrapositives are added for the negation of the query and any resulting input
bindings are used to identify indefinite answers: y/(0 or 1), in this case).

Progol5 [3] is a prominent ILP system for generalising sets of positive and
negative examples with respect to prior background knowledge. It is based on a
method for computing Horn clauses h (hypothesis) that entail a ground atom e
(example) relative to a Horn theory B (background). In a nutshell, this method
searches for those clauses h = A0 ← A1, . . . , An having a ground instance hθ
such that B ∪ {←e} |= ¬hθ where ¬hθ ≡ ¬A0θ ∧A1θ ∧ . . . ∧Anθ.

To find these hypotheses, Progol5 first attempts to compute the atom ¬A0θ
using a Prolog engine supplemented with contrapositives to identify the ground
instances of the negative literal ¬A0 entailed by the Horn theory B∪{←e}. But,
without ancestor resolution, the incompleteness of this method is immediate from
the examples above. For example, if B = {p←q(0), q(x)} and e = p, then Progol5
cannot compute the hypothesis h = q(0) as the query ¬q(0) only succeeds from
the theory B ∪ {←e} using both contrapositives and ancestor resolution.

Although ancestor resolution overcomes the incompleteness of Progol5 noted
above, indefinite answers can be used to further enhance its learning ability. In
particular, by simply Skolemising any variables in ¬A0 that return disjunctive
answers, the Progol5 proof procedure can easily learn sound ILP hypotheses
outside its original semantics. For example, if B = {p← q(0), q(1)} and e = p,
then the extended procedure could compute the hypothesis h = q(y) as the query
¬q(y) effectively succeeds with the answer y/k for some Skolem constant k.

References

1. P.Baumgartner and U.Furbach. Model Elimination without Contrapositives and its
Application to PTTP. Journal of Automated Reasoning, 13:339–359, 1994.

2. D. Loveland. Automated Theorem Proving: A Logical Basis. North Holland, 1978.
3. S. Muggleton and C. Bryant. Theory Completion Using Inverse Entailment. In

Proc. 10th Int. Conf. on ILP, LNCS 1866: 130–146, 2000.
4. O. Ray, K. Broda and A. Russo. Hybrid Abductive Inductive Learning: a General-

isation of Progol. In Proc. 13th Int. Conf. on ILP, LNAI 2835: 311–328, 2003.
5. M. Stickel. A Prolog technology theorem prover: Implementation by an extended

Prolog compiler. Journal of Automated Reasoning, 4(4):353–380, 1988.

Modeling Systems in CLP

Joxan Jaffar, Andrew E. Santosa, and Răzvan Voicu

School of Computing, National University of Singapore
{joxan, andrews, razvan}@comp.nus.edu.sg

Constraint Logic Programming has been successful as a programming language, and
more recently, as a model of executable specifications. There have been numerous
works which use CLP to model programs and which use an adaptation of the CLP proof
system for proving certain properties, for example, the XMC system [3] uses SLG reso-
lution on alternation-free μ-calculus formulas, and the work on deductive model check-
ing [1] model for CTL properties on transition systems represented as CLP rules. These,
amongst other works, cover a limited class of programs and use specialized proof meth-
ods. In our work, we present a systematic method to model a general class of programs,
and provide adaptations of the CLP proof systems in order to provide a systematic and
general proof method.

We start by representing the behavior of a concurrent program, possibly with a
parameterized number of processes, or a high-level specification, in the form a predicate
transformer. The method is intuitive: we use, for a program p, a predicate p(k, X̃ , X̃t),
where the logic variables X̃ and X̃t represent values of program variables at program
point k, and at a target program point, respectively. We can model bottom up behavior,
in which case we capture the strongest postcondition transform, or top-down behavior,
where we capture the weakest precondition transform. Most importantly, we specify the
program property in a rely-guarantee or Hoare-triple style, relating the initial program
values to those at target program points, and hence our proof method is compositional.

We can model, in addition to traditional sequential and concurrent programs:

• Parameterized Systems. Program counters are described symbolically as an array
of counters, and an array theory is added to the proof method to handle constraints
over arrays.

• Synchronous and Asynchronous Concurrency. We consider both non-blocking,
as well as blocking, await statement-based concurrency, and model both asyn-
chronous and synchronous (e.g. [2]) composition of processes.

• High-level specifications.
– Timed automata. We can mix clock and non-clock variables in (possibly non-

linear) constraints. Moreover, we do not require region-based analysis for ver-
ification. See [2] for more details.

– Statecharts. Different semantics of Statecharts (e.g., Statemate, UML, step, su-
perstep) can be easily encoded and then verified (including history states —
often ignored by Statechart verification tools).

– The list can be extended to any behavioral specifications, e.g., MSC and LSC.

Our model captures the trace semantics, reflecting not only properties of variables, but
also properties of runtime behavior, e.g. the value of a variable is monotonically increas-
ing. Further, our model elegantly captures properties of the underlying runtime system,
thus providing a foundation for resource (e.g. time and space) reasoning. For example:

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 412–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling Systems in CLP 413

• Scheduling. In a concurrent setting, we explicitly model the policy of choosing
which process should execute next. Such modeling can be either very detailed (e.g.
round robin), or high level (e.g. a generic fair scheduler).

• Micro architecture. Here we model the execution of programs on hardware with
instruction and data caches, pipelining, etc.

A safety proof is established by executing a particular goal representing a state or set
of states, against the CLP model of the program. Informally, an assertion A of the form
G |= Ψ where G is a goal and Ψ a constraint, we perform unfolding toward the objective
that each derived goal G′ is either

• directly provable, ie of the form p(k, X̃ , X̃t),Ψ1 |= Ψ2 where Ψ1 |= Ψ2 can be di-
rectly validated (and typically this is done when G′ is terminal); or

• subsumed, ie G′ is an instance of another goal in another derivation sequence, or
• coinductive, ie G′ can be proved using the assumption that some parent goal is true.

To implement the proof method, we extend CLP with coinductive tabling. This allows
the use of proof obligations that are assumed but not yet proven according to the prin-
ciple of the coinductive proof above. This is akin to tabling in logic programming,
and a main purpose is termination. A main difference is that coinductive tabling stores
proof obligations instead of calls and answers. While there have been similar uses of
induction, eg. for program transformation [4], our formulation is new for the purpose
of proving general safety assertions. We have implemented a prototype of coinductive
tabling as a regular CLP(R) program.

In general we need to combine abstraction techniques with our proof method to
verify programs with large or infinite state space. We have augmented the proof method
above with an abstraction mechanism where any goal in a derivation sequence may
be abstracted by replacing the constraint Ψ in G with a more general one Ψ1, that is,
Ψ |= Ψ1. Essentially, a proof obligation G′ |= Ψ is correct implies that G |= Ψ, where
G′ is an abstraction of G, is also correct. Note that here we do not require Ψ1 to be of
finite domain.

We have also implemented an abstraction method whose key feature is that it is
intermittent, that is, abstraction is performed at arbitrarily selected points. The challenge
here is to deal with an unbounded number of variables because the relationship between
the initial and target values of a program fragment require auxiliary variables in general.
A main advantage is performance: in general, performing abstraction entails the cost of
theorem-proving. A second advantage is accuracy: we need in general a less detailed
abstract description because we only perform abstraction intermittently.

Finally, ongoing work is on automatic discovery of abstraction functions, and on
progress properties.

References

1. G. Delzanno, A. Podelski. Constraint-Based Deductive Model Checking. Int. J. STTT, 2001.
2. J. Jaffar, A. Santosa, R. Voicu, A CLP Proof Method for Timed Automata, 25th RTSS, 2004.
3. Y. S. Ramakrishna et al, Efficient Model Checking Using Tabled Resolution, CAV’97.
4. A. Roychoudhury et al, An Unfold/Fold Transformation Framework for Definite Logic Pro-

grams, TOPLAS 26/3.

A Sufficient Condition for Strong Equivalence
Under the Well-Founded Semantics�

Christos Nomikos1, Panos Rondogiannis2, and William W. Wadge3

1 Department of Computer Science, University of Ioannina,
P.O. Box 1186, 45 110 Ioannina, Greece

cnomikos@cs.uoi.gr
2 Department of Informatics & Telecommunications, University of Athens,

Panepistimiopolis, 157 84 Athens, Greece
prondo@di.uoa.gr

3 Department of Computer Science, University of Victoria,
PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6

wwadge@csr.uvic.ca

Abstract. We consider the problem of strong equivalence [1] under the
infinite-valued semantics [2] (which is a purely model-theoretic version of
the well-founded semantics). We demonstrate that two programs are now
strongly equivalent if and only if they are logically equivalent under the
infinite-valued logic of [2]. In particular, we show that for propositional
programs strong equivalence is decidable but coNP-complete. Our results
have a direct practical implication for the well-founded semantics since,
as we demonstrate, if two programs are strongly equivalent under the
infinite-valued semantics, then they are also strongly equivalent under
the well-founded semantics.

1 Introduction

The notion of strong equivalence of logic programs was recently introduced in [1].
Two logic programs P1 and P2 are termed strongly equivalent under the answer
set semantics if for all logic programs P , P1 ∪ P has the same answer sets as
P2 ∪ P . Obviously, when two logic programs are strongly equivalent, we can
replace one for the other inside a bigger program without any change in the
observable behaviour of this program. In [1] it is demonstrated that two programs
are strongly equivalent under the answer set semantics if and only if they are
equivalent in the logic of here-and-there.

We consider the problem of characterizing the notion of strong equivalence
under the infinite-valued semantics of [2] (which is actually a refined version
of the well-founded semantics). Our characterization of strong equivalence un-
der the infinite-valued semantics is actually very simple: two programs are now
� This research is supported by EΠEAEK II under the task “ΠYΘAΓOPAΣ-II:

ENIΣXYΣH EPEYNHTIKΩN OMAΔΩN ΣTA ΠANEΠIΣTHMIA”, Project title:
Applications of Computational Logic to the Semantic Web, funded by the European
Social Fund (75%) and the Greek Ministry of Education (25%).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 414–415, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Sufficient Condition for Strong Equivalence 415

strongly equivalent if and only if they are logically equivalent under the infinite-
valued logic of [2]. Moreover, although the underlying logic is based on a truth
domain with an infinite number of truth values, we demonstrate that for propo-
sitional programs strong equivalence is decidable (but coNP-complete). As an
immediate consequence of our characterization, we get a sufficient condition for
strong equivalence under the well-founded semantics.

2 Main Technical Results

Our first result states that the notion of strong equivalence under the infinite-
valued semantics, coincides with the notion of logical equivalence under the
infinite-valued logic that has been developed in [2]:

Theorem 1. Two programs are strongly equivalent under the infinite-valued se-
mantics if and only if they are logically equivalent under the infinite-valued logic
of [2].

The above theorem gives as an immediate corollary the following:

Corollary 1. If two programs are logically equivalent in the infinite-valued logic
of [2], then they are strongly equivalent under the well-founded semantics.

The following result demonstrates that the problem of strong equivalence under
the infinite-valued semantics is actually decidable. This fact is not obvious since
the underlying logic has an infinite number of truth values. The proof is based on
the observation that in order to decide if two programs are strongly equivalent,
we need to examine only a finite set of interpretations. On the negative side, we
also demonstrate that the problem of strong equivalence is co-NP complete.

Theorem 2. The problem of whether two programs are strongly equivalent un-
der the infinite-valued semantics is decidable but co-NP complete.

The main open problem of this work is the strengthening of Corollary 1: can
the infinite-valued approach be used so as to provide a necessary and sufficient
condition for strong equivalence under the well-founded semantics? We believe
that a further investigation of this issue would give a better understanding of
strong equivalence under canonical model semantics.

References

1. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

2. P. Rondogiannis and W.W. Wadge. Minimum Model Semantics for Logic Programs
with Negation-as-Failure. ACM Transactions on Computational Logic, 6(2):441–467,
2005.

IMPACT: Innovative Models for Prolog
with Advanced Control and Tabling

(Extended Abstract)

Ricardo Rocha1, Ricardo Lopes1, Fernando Silva1, and Vı́tor Santos Costa2,�

1 DCC-FC & LIACC, University of Porto, Portugal
{ricroc, rslopes, fds}@ncc.up.pt

2 COPPE Systems & LIACC, Federal University of Rio de Janeiro, Brazil
vitor@cos.ufrj.br

During the past years, our research group has been working in the design and
implementation of Logic Programming Systems. In previous work, we have pro-
duced systems to support sequential, parallel and distributed execution of Pro-
log; to support novel techniques and models, such as tabling, through the YapTab
system [1], or the Extended Andorra Model (EAM), through the BEAM [2]; and
to support the combination of the above, such as parallel tabling [3]. With the
IMPACT project we want to combine the power of tabling with that of EAM
in order to produce an execution model with advanced control strategies that
guarantees termination, avoids looping, reduces the search space, and is less sen-
sitive to goal ordering. Ultimately, we believe such a system will allow novel logic
programming applications.

To the best of our knowledge, YapTab is the only proposal that compares
favorably with current versions of XSB [4], the most successful and well-known
tabling Prolog system. YapTab has been designed taking into account the ma-
jor purpose of further integration with parallelism to achieve the first available
parallel tabling computational system, the OPTYap [3].

The Andorra based execution models were designed to explore more advanced
control strategies aiming at reducing the search space and maximizing available
parallelism. To study whether the EAM with implicit control was practical, we
have developed the BEAM, a novel system that refines Warren’s original design.
Performance results showed that our model is less sensitive to goal ordering and
quite effective at reducing the search space.

We have noticed that both EAM and tabling have common characteristics
that seem to fit naturally. First, tabling contributes to one of the main premises
of the EAM, reducing search space through the reuse of goals. Second, both
paradigms are less sensible to goal ordering. Third, tabling avoids looping thus
guaranteeing termination for programs with recursive computations. Is thus our
belief that BEAM with tabling opens up a design space for novel mechanisms to

� This work has been partially supported by APRIL (POSI/SRI/40749/2001), Myddas
(POSC/EIA/59154/2004) and by funds granted to LIACC through the Programa
de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa
POSC.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 416–417, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Innovative Models for Prolog with Advanced Control and Tabling 417

improve both control and performance of existing applications and to achieve a
more declarative formulation of search and database applications.

To address the integration between tabling and the EAM we have identified
the following tasks for the IMPACT project. (1) Build an external module in
C implementing tabling primitives that provide direct control over the search
strategy. This module will allow tabling to be easily incorporated into other
Prolog systems. (2) Use the external module with BEAM to study how tabling
interacts with the EAM. This involves running and validating the system with
a set of benchmark applications. (3) Design a new model to extend the BEAM
system to support tabling running within the EAM environment. There are sev-
eral major problems that need to be tackled. (i) Integrate the basic operations of
tabling evaluation, such as checking for variants, checking for new answers, and
performing completion, with the BEAM execution rules. This includes studying
and defining how to start the execution of tabled subgoals, when new answers
should be allowed to be exported, and how completion should be done. Note that
whereas these operations are already complex for Prolog, they are even more in-
tricate within the EAM. (ii) Study the implications of tabling evaluation on the
BEAM rewrite rules. Some of the BEAM rewrite rules will need to be modified
to support tabling. We will address the implications on the reduction, splitting,
eager-splitting, promotion, propagation, and-compression, deterministic-reduce-
and-promote, success propagation, and failure propagation rules. (iii) Study how
pruning should be implemented on BEAM with tabling. BEAM allows both im-
plicit and explicit pruning, but aggressive pruning may interfere with tabling and
result in incomplete tables. (4) Implement the combined system. The proposed
work will be implemented on top of the existing systems and will profit from the
expertise of our research group in the area.

In this project we focus on combining tabling with the EAM. Our ultimate
goal is to develop a system that supports simultaneously and efficiently paral-
lelism, tabling, and the EAM model.

References

1. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

2. R. Lopes, V.S., Silva, F.: A Novel Implementation of the Extended Andorra Model.
In: International Symposium on Pratical Aspects of Declarative Languages. Number
1990 in LNCS, Springer-Verlag (2001) 199–213

3. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Journal of Theory and Practice of Logic Programming 5 (2005)
161–205

4. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: ACM SIGMOD International Conference on the Management of Data,
ACM Press (1994) 442–453

Using CLP to Characterise Linguistic Lattice
Boundaries in a Text Mining Process

Alexandre S. Saidi

LIRIS & Ecole Centrale de Lyon, B.P. 163, 69134 Ecully - France
Alexandre.Saidi@ec-lyon.fr

Abstract. In this paper, we expose the use of CLP in a Textual Data
Mining Task. Text Mining process is here applied to a corpus of semi-
structured documents like seminary and job announcement. Such docu-
ments contain semi-structured sections each of which will be recognised
by an automaton whose language is characterised by a set of CLP rules.

1 Introduction and Objectives

The textual data bases constitute the major part of available information. Hence,
significant research work concentrate on the Information Extraction (IE) from
these databases. Given a corpus, the Information Extraction process applied by
Text Mining techniques (see e.g. [FAY 96], [HEA 97], [GRI 97]) consists on the
search for non explicit information in these texts. Text Mining aims to extract
significative informations like the general research directions of a university, lo-
cation or the subject of a (untagged) seminar in a conference announcement.

�

� �

�Σ∗

∅

L(A) ?

Fig. 1. The search lattice

0 2 3 4

1

5

6

a/s,f

b/f

b/s,f a/s

a/s,f
$/f

$/s

b/s,f

b/sb/s,f

$/f

Fig. 2. The inferred automaton A

2 The Task

Given a set of positive (e.g. seminar announcements) and negative samples, the
task is to characterise the language that generalises these examples.

Hence, given an alphabet Σ, the search space can be characterised by a
(language inclusion) lattice (see Fig. 1) where the top element Σ∗ is the set of
all possible constructions over Σ and the bottom element is the empty language.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 418–420, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using CLP to Characterise Linguistic Lattice Boundaries 419

Let I+ ∈ Σ∗ a finite set of positive sentences (to be accepted and generalised)
and I− ∈ Σ∗ a finite set of negative sentences (to be rejected), we aim to infer A
a minimal generalised deterministic finite state automaton (DFA) that accepts
all sentences belonging to its (possibly infinite) language L(A), and rejects those
that do not belong to L(A). Note that I+ ⊆ L(A) and I− � L(A).

An example: being interested to the language L = {an bm | n, m both even
or both odd}1, we have (Fig 2 is a minimal generalised DFA for L):

Σ={a, b}, I+ = {ab, aabb, aaabbb, ... } , I− = {a, b, aab, abb, ... }.

3 Equivalence Classes and Rule Inference by CLP

The following set of constraints (implemented by GNU Prolog) characterises the
lattice i which we will search a solution that minimises the final automaton.
Elements of I = I+ ∪ I− are first described by a set of automata giving a
tree T of automata. Then every pair of transition like (r1 : α × s’1 → s1) and
(r2 : β × s’2 → s2) in T is considered by the following predicate. [x] denotes the
equivalence class of the lexeme x ∈ Σ+. F denotes the set of final states in T .

Predicate Congruence(r1, r2) adds constraints to the constraint store θ
Let r1 and r2 be the above rules (transitions) with α,β ∈ Σ

r1 : [α] × s’1 → s1 r2 : [β] × s′2 → s2
(1) if s1 and s2 are different final states in (F+ × F−) then tell [s1]�=[s2].
(2) if [α] = [β] then tell ([s′1] = [s′2] ⇒ [s1] = [s2]) (DFA condition)
(3) if [α] �= [β] then tell [s1] �= [s2]

4 Conclusion

In the current realisation, an announcement (e.g. seminar or job) contains sev-
eral sections (name, address, salary, job description or seminary object, date,
etc.) each of which is translated to an automata. Then a (prefix-) tree T of au-
tomata is constructed for each section before applying the above predicate that
creates equivalence classes for the DFA states. Having generalised and learned
how to recognise each section of the announcement corpus, template slots are
filled to summarise (new) announcements. Theses templates can then be used
by classical database engines. Note that for some nontrivial sections, a prelim-
inary partial but time consuming syntactical analysis may be required (thanks
to DCG).

A system totally based on CLP is realized and applied to corpora of var-
ious announcement texts. We plan to translate parts of this system in some
imperative language (Java, C++, ADA) and asset by applying it to real world
databases.
1 Visually, the set I+ may be thought to describe words in {anbn| n ≥ 1} which is a

Context-Free language that we do not treat (being limited to regular languages).

420 A.S. Saidi

References

[FAY 96] U. fayyad & all, From Data Mining to KD : An overview. in Advances in
Knowledge Discovery and Data Mining, MIT Press, Cambridge, Mass 1996.

[GRI 97] R. Grishman, Information Extraction: Techniques and Challenges,
http://citeseer.nj.nec.com/grishman97information.html.

[HEA 97] M.A. Hearst, Text Data Mining : Issues, Techniques and Relationship to In-
formation Access, Presentation Notes for UW/MS Workshop on data min-
ing, July 1997.

Hybridization of Genetic Algorithms and
Constraint Propagation for the BACP

Tony Lambert1,2, Carlos Castro3, Eric Monfroy1,3,
Maŕıa Cristina Riff3, and Frédéric Saubion2

1 LINA, Université de Nantes, France
Firstname.Name@lina.univ-nantes.fr
2 LERIA, Université d’Angers, France
Firstname.Name@univ-angers.fr

3 Universidad Santa Maŕıa, Valparáıso, Chile
Firstname.Name@inf.utfsm.cl

1 Introduction

Constraint Satisfaction Problems (CSP) provide a modelling framework for many
computer aided decision making problems. Many of these problems are associ-
ated to an optimization criterion. Solving a CSP consists in finding an assignment
of values to the variables that satisfies the constraints and optimizes a given ob-
jective function (in case of an optimization problem). In this paper, we extend
our framework for genetic algorithms (GA) as suggested by the reviewers of our
previous ICLP paper [5]. Our purpose is not to solve efficiently the Balanced
Academic Curriculum Problem (BACP) [2] but to combine a genetic algorithm
with constraint programming techniques and to propose a general modelling
framework to precisely design such hybrid resolution process and highlight their
characteristics and properties.

2 Computational Frameworks: CP vs GA

Constraint propagation, one of the most famous techniques for solving CSP con-
sists in iteratively reducing domains of variables by removing values that do
not satisfy the constraints. These reductions must be interleaved with a split-
ting mechanism in order to obtain a complete solver. Constraint optimization
problems, although similar to constraint solving, is comparatively harder be-
cause it only accepts solutions that minimize or maximize a given objective
function while satisfying the constraints. The key principle of Genetic Algo-
rithms approach states that, species evolve through adaptations to a changing
environment and that the gained knowledge is embedded in the structure of the
population and its members, encoded in their chromosomes. Applying a genetic
algorithm consists in iteratively generating better and better individuals w.r.t.
an evaluation function.

In the context of GA, for the resolution of a given CSP (X, D, C), the search
space can be usually defined with the set of tuples D = D1 × · · · × Dn. We

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 421–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

422 T. Lambert et al.

consider populations g of size i, g ⊆ D such as |g| = i. An element s ∈ g is an
individual and represents a potential solution to the problem.

In order to handle the different data structures associated to each side of the
resolution (GA & CP), we add a particular genetic factor to the search space to
each CSP, on which GA will work and where optimization will be done. A CSP
with genetic factor (ogCSP) for optimization is defined by a sequence (D, C, p)
where p = (g1, . . . , gn) corresponds to sequence of generations.

Based on the framework of chaotic iterations [1], resolution will be achieved
according to the generic algorithm through a partial ordering where the set of
functions is instantiated by reduction, split and GA functions.

3 Experimentation

The purpose of this section is to highlight the benefit of our framework for
hybridization. We consider the bacp8, bacp10 and bacp12 problems issued from
the CSPlib [3]. We control the rates of each family of functions reduction, split
and ga by giving as strategy a tuple (%red, %sp, %ga) of application rates. These
values correspond indeed to a probability of application of a function of each
family but, in practice, we measure in Fig 1 the real rate of participation during
the objective function evolution.

The most interesting in such an hybridization is the completeness of the as-
sociation GA-CP, and the roles played by GA and CP in the search process : GA
optimizes the solutions in a search space progressively being locally consistant
(and thus smaller and smaller) using constraint propagation and split.

0

20

40

60

80

100

16171819202122232425

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

8-period problem

0

20

40

60

80

100

12141618202224

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

10-period problem

0

20

40

60

80

100

171819202122232425

r
a
n
g
e

evaluation

propagation
genetic algorithm

split

12-period problem

Fig. 1. Evolution of CP vs GA during the optimization process

Concerning strategies using GA and CP alone, in this implementation, CP
is unable to find a feasible solution in 10 minutes cpu time. GA is able to find
alone the optimal but is 10 times slower w.r.t. the hybrid.

4 Perspectives and Conclusion

In this paper, we have used a more suitable general framework to model hybrid
optimization solving algorithms. The results over the BACP show the benefits of

Hybridization of Genetic Algorithms and Constraint Propagation 423

our framework and of hybridization. They also allow us to identify the interaction
between the different resolution mechanisms. Such studies could be used to tune
general purpose hybrid solvers in the future.

References

1. K. R. Apt. From chaotic iteration to constraint propagation. In Proceedings of
ICALP’97, pages 36–55. Springer-Verlag, 1997.

2. C. Castro and S. Manzano. Variable and value ordering when solving balanced
academic curriculum problems. In Proceedings of 6th Workshop of the ERCIM WG
on Constraints. CoRR cs.PL/0110007, 2001.

3. I. Gent, T. Walsh, and B. Selman. http://www.csplib.org, funded by the UK Net-
work of Constraints.

4. J. H. Holland. Adaptation in Natural and Artificial Systems. 1975.
5. E. Monfroy, F. Saubion, and T. Lambert. On hybridization of local search and

constraint propagation. Proc. of ICLP’04, LNCS 3132, pp 299–313. Springer, 2004.

The MYDDAS Project: Using a Deductive
Database for Traffic Characterization

Michel Ferreira

DCC-FC & LIACC, University of Porto,
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

michel@ncc.up.pt

The MYDDAS1 project (Mysql/Yap Deductive DAtabase System) is developing
a deductive database system by coupling Yap Prolog with MySQL [1]. Although
this coupling approach between a logic system and a relational database man-
agement system has been quite explored [5], our system tries to go a step further
in terms of the degree of tightness in the interface architecture between the two
systems. Examples of this improved integration include the representation of
relational tuples directly in choice-points, with a transparent support for cuts
over EDB predicates; the extended use of the tabling engine of Yap [3], with the
ability to persistently store the table data structure in MySQL relations; and
the development of automatic view-level transformations using information from
existing MySQL indexes and MySQL query optimizer. The MYDDAS system
should also be able to explore the combination of tabling with or-parallelism pro-
vided by the OPTYap engine [4] of Yap in the concurrent evaluation of database
goals.

Together with the development of the deductive database engine, the MYD-
DAS project also proposed to develop a real-world application supported by this
deductive engine. The application being developed aims at real-time traffic char-
acterization based on a mobile sensors network. In the next lines we concisely
describe the main features of this application and justify its appropriateness for
support by a deductive database system.

Traffic characterization based on the dynamic mobility pattern of vehicles is
an interesting problem for modelling using a deductive database, for two main
reasons. First, because of the dimension of the data involved, which is very large
(not because of static geographic information but because of GPS logs collected
simultaneously by a large number of vehicles). Second, because the mobility
pattern of vehicles follows consistent rules that we can try to model in a clausal
form using Prolog rules. For instance, we can have road classification, road signs
identification (stop signs, traffic lights) and daily congestion hours on roads,
represented by Prolog rules, instead of by static geographic information.

In our application the mobility sensors are installed on vehicles and can con-
sist of a laptop computer, generic PDA or Linux gumstixs, coupled with a GPS
receiver and wi-fi capability. Each sensor has an instance of the
1 This work has been partially supported by MYDDAS (POSC/EIA/59154/2004) and

by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 424–426, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The MYDDAS Project: Using a Deductive Database 425

deductive database, with limited information contextualized for the current lo-
cation. Vectorial road maps are stored in MySQL relations using the spatial
extensions available since version 4.1 of MySQL. Our coupling interface pro-
vides the representation as Yap terms of the several geometry objects, such as
points and lines.

The definition of rules for the different traffic features based only in mo-
bility is one of the most interesting aspects in this application. There are two
different approaches that can be taken: programmer defined rules, based on the
knowledge of the mobility pattern of each traffic feature; or definition based on
induction, using examples of mobility and an inductive logic programming sys-
tem, such as APRIL [2], for learning the rules. Rules for identifying, as soon as
possible, momentaneous traffic jams caused by accidents or similar events, are
also fundamental for the dynamic calculation of fastest route.

Another interesting aspect in this application is the communication model
between the different sensors. Clearly, the existence of stationary sensors with
higher processing power, which collect information from the mobile sensors and
dynamically update road traffic conditions sending back this updated informa-
tion, is the obvious communication model. Nevertheless, a vehicle-to-vehicle com-
munication in areas with no stationary sensors can be interesting. Consider a
traffic jam at a particular location in a highway. This information can be trans-
ported by vehicles on the opposite lane to vehicles which are approaching the
traffic jam. Clearly, the time lag of data is a crucial factor in this traffic infor-
mation system. A scaled evaluation of this communication model will be based
on traffic simulators.

The obvious and straightforward function of such a traffic information sys-
tem is the ability to calculate routes based on real-time traffic characterization,
avoiding congested roads and finding the fastest route for a given destination.
The ability to automatically complete maps with traffic controlling features and
road congestion characterization is also interesting.

The MYDDAS project is a three years project and is currently in the first
year. Implemented work so far is mainly on the interfacing between Yap and
MySQL, particularly to provide spatial extensions to Yap, and in the modelling
of the communication scheme between sensors. The project joins together peo-
ple from the areas of logic programming implementation, and communication
and information networks. For more information and current prototypes, visit
MYDDAS’s homepage at http://www.ncc.up.pt/∼michel/MYDDAS/.

References

[1] M. Ferreira and R. Rocha. The MyYapDB Deductive Database System. In J. J.
Alferes and J. Leite, editors, Proceedings of the 9th European Conference on Log-
ics in Artificial Intelligence, JELIA’2004, number 3229 in LNAI, pages 710–713,
Lisbon, Portugal, September 2004. Springer-Verlag.

[2] N. Fonseca, F.Silva, R. Camacho, and V. S. Costa. Induction with April - A pre-
liminary report. Technical Report DCC-2003-02, DCC-FC & LIACC, Universidade
do Porto, 2003.

426 M. Ferreira

[3] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed to
Support Parallelism. In Conference on Tabulation in Parsing and Deduction, pages
77–87, 2000.

[4] R. Rocha, F. Silva, and V. Santos Costa. On a Tabling Engine That Can Exploit
Or-Parallelism. In International Conference on Logic Programming, number 2237
in LNCS, pages 43–58. Springer-Verlag, 2001.

[5] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In ACM SIGMOD International Conference on the Management of Data,
pages 442–453. ACM Press, 1994.

Open World Reasoning in Datalog�

Gergely Lukácsy and Zsolt Nagy

Budapest University of Technology and Economics,
Department of Computer Science and Information Theory,

1117 Budapest, Magyar tudósok körútja 2., Hungary
{lukacsy, zsnagy}@cs.bme.hu

Introduction and Background. This work is part of the SILK project which
aims at supporting semantic integration using logic programming [2]. The main
idea of our approach is to collect and manage meta-information on the sources
to be integrated. These pieces of information are stored in the model warehouse
of the SILK system in the form of models, constraints and mappings. By using
logic, all these are represented in a uniform way.

Our modelling language incorporates UML-like constructs as well as descrip-
tion logic (DL) formulae. In the latter case we can build composite concepts,
e.g. Human 	¬Male 	 (
 3 hasChild) represents mothers with at least 3 children.

The process of querying the models is called mediation. Mediation decom-
poses complex queries formulated in terms of simple ones answerable by indi-
vidual information sources.

We have already dealt with the problem of querying the object oriented mod-
els [2]. Our current task is to investigate the possibilities how to do the same
for the description logic based models. Querying these models normally involves
using so called ABox reasoning techniques. The existing ABox algorithms how-
ever turn out to be very slow when dealing with large amount of instances, or
restrict the structure of the ABox significantly [1].

We are working on designing efficient algorithms which transform a descrip-
tion logic concept description into a Datalog query, where individual subgoals
access the databases which store the instances.

Open World Reasoning. A challenge is that we have to consider the so called
open world assumption (OWA), where the absence of information only indicates
the lack of knowledge.

For instance, let us examine the well-known example about the family of
Iocaste and Oedipus [3]. There are four instances in the ABox: I, O, P and T . O
is known to be patricide, while T is known not to be patricide. We do not know
anything about the other two instances, regarding them being patricide or not.
We also know that the children of I are O and P , P is a child of O, and T is a
child of P .

We will look for the answer to the following query: is there a person who has
a patricide child who, in turn, has a non-patricide child? The answer is yes, since
assuming that P is either patricide or non-patricide, I is found to be a solution.
� This work is part of the SINTAGMA project which is supported by the Hungarian

NKFP programme under grant no. 2/052/2004.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 427–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

428 G. Lukácsy and Z. Nagy

Thus the OWA may require case analysis. Note that the need for case analysis
can be detected by analyzing the structure of the query.

Possible Approaches. The most obvious approach is using brute force to
check all the possible cases. A more sophisticated solution would be to partially
evaluate the existing ABox inference algorithms. In this paper we present our
ideas about a technique based on retrieving so-called supersets. We use the
description logic language ALC over an empty terminology store (TBox).

Current Stage of Research. Our algorithm is based on the idea of first calcu-
lating a ,,superset” of the answer-set together with n-tuples supporting candidate
solutions (superset table). We decompose the concept in question to so-called
path queries of form ∃R1.(C1 	 ∃R2.(C2 	 . . . ∃Rn.Cn)). We then weaken this
query and calculate the superset table. This is examplified by the following
a Datalog program (the ABox contains Datalog facts of form patricide(i),
not_patricide(i) and hasChild(i,j), where i and j are instances):

superset(X, Y, Z) :- hasChild(X, Y), \+ not_patricide(Y),
hasChild(Y, Z), \+ patricide(Z).

| ?- findall(E, (superset(X, Y, Z), E = X-Y-Z), Superset).
Superset = [’I’-’O’-’P’, ’I’-’P’-’T’, ’O’-’P’-’T’]

The query above enumerates all the grandfather-father-child triples that con-
tain candidate solutions for the query. After finding the Superset, the solutions
that answer the query are derived from it using resolution-based techniques.

In the superset query above, the instances matching the logic variable Y are
candidates for patricide instances. If an instance is known to be not_patricide,
it will not be included in the Superset.

It can also be seen from the code that the ABox is only accessed when re-
trieving the patricide and not_patricide instances, and the pairs of instances
that are in hasChild relation with each other. If the ABox contained information
about other domains, we would not need to access them.

Future Work. We actually consider this technique as only the first step,
namely, we are investigating the possibilities to extend the algorithm to more
powerful description logics as well. If the TBox contained axioms, the termina-
tion of the Datalog programs would have to be assured by blocking techniques.

References

1. I. Horrocks, L. Li, D. Turi, S. Bechhofer: The instance store: DL reasoning with
large numbers of individuals. Proc. of the 2004 Description Logic Workshop 31-40

2. Tamás Benkő, Péter Krauth, and Péter Szeredi. A logic-based system for application
integration. In Proceedings of the International Conference on Logic Programming,
volume 2401 of Lecture Notes in Computer Science, pages 452–466. Springer, 2002.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

Optimizing Queries for Heterogeneous
Information Sources

András G. Békés

Budapest University of Technology and Economics,
Műegyetem rkp. 3-9. 1111, Budapest, Hungary

bekesa@sch.bme.hu

1 Introduction

Integration of heterogeneous information sources requires building an infrastruc-
ture for accessing several different information sources together. One task of the
integration is to provide a uniform interface to the different information sources
(databases, directory servers, web services, web sites, XML files). The other task
is the semantic integration: the meaning of the stored data is also different in
the different sources.

In the SILK [1] system (Semantic Integration with Knowledge and Logic),
semantic integration is carried out by providing a high-level model and the map-
pings between the high-level model and the models of the sources. When execut-
ing a query of the high-level model, the query has to be transformed to queries
of the sources and to the code performing the semantic transformation of the
data. The component which translates a high-level query to a low level query is
the Query Planner. The Query Planner builds the set of low-level queries, and
a further component is needed to create an efficient query plan from it.1 This
component in the SILK system is called the Query Optimizer.

2 Optimizing Query Plans

In the SILK system, the query plan, the result of query planning is a piece
of Prolog code, which when executed, enumerates the answers to the high-level
query. The Query Optimizer transforms this Prolog code to a piece of code which
has the same solution set, while it has better characteristics in some ways (e.g.
shorter execution time).

The input query plan is a Prolog predicate body in a disjunctive normal
form. This Prolog code requires call reordering to be executable: while some
sources can only be called with arbitrary argument instantiations (predicates
representing SQL tables), some predicates can be called with a certain subset of
their arguments instantiated (predicate representing web services, etc).

The main and compulsory goal of the optimization step is to make the query
callable. The available modes of the predicates are given, and with this informa-
tion at hand it is decidable whether a sequence of goals is actually callable. The
1 This can be compared to writing a Prolog Program with considering only the declar-

ative semantics, and modifying it to fit the execution mechanism.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 429–430, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 A.G. Békés

secondary goal of the optimizer is to lower the total cost of calling the query,
which is basically the estimated execution time of it. For this, some statistical
information is available on the average execution time of the predicates, and also
on the number of their solutions.

With this information at hand, the optimizer not just rearranges the order
of goals in the disjunctive branches, but it does other manipulations on the code
in the hope of obtaining a piece of code (i.e. a query) with better performance
characteristics. The possible optimizations examined so far are the following:

Reordering: when considering a sequence of predicates, there can be several
orders which are callable, but they can have different total costs. Consider
the predicates a and b where expectedly a will have less solutions than b,
then the sequence a,b is considered cheaper than b,a, assuming that a and
b themselves have the same cost. If the goals are not independent, then
the difference between the costs of the two query plans can be even more
significant.

Disjunction: a query with similar goals (unifiable with some constraints) in
the disjunctive branches can be transformed to have more levels of dis-
junctions by moving the common goals in front of an inner disjunction.
For example, the input query (b,a ; c,a ; d,e) can be transformed to
(a,(b ; c) ; d,e)2. The former leads to a cheaper query if the call to a
does not depend on the instantiations made by b and c, and a more expen-
sive query if the call to a without the instantiations made by b and c has
many solutions, which leads to a larger search space.

Collection of Common-Source predicates: in case of source predicates
which will call a common information source, sometimes it may be bene-
ficial to submit a compound query to the source, rather than the simple
ones. For example, the query sql table1(A,B), sql table2(B,C) would
lead to the execution of two separate SQL queries, while the SQL engine
can perform the join operation if given a compound query, which leads to
potentially better performance. In the SILK system, common-source predi-
cates are wrapped in a meta-predicate, which generates the compound source
query at run-time.

3 Status of the Research

The current implementation of the Query Optimizer supports the three men-
tioned optimizations, besides that it generates callable queries. The develop-
ment of the SILK system continues, we are in the course of exploring further
optimization possibilities.

Reference

1. Benkő, T., Krauth, P., Szeredi, P.: A logic-based system for application integration.
In: Proceedings of the International Conference on Logic Programming. Volume
2401 of Lecture Notes in Computer Science., Springer (2002) 452–466

2 Note that the goals in the disjunctive branches of the input query are considered
sets, rather than sequences.

Denotational Semantics Using Horn Concurrent
Transaction Logic

Marcus Vinicius Santos

Department of Computer Science,
Ryerson University, Toronto, Canada

m3santos@ryerson.ca

In this work we propose to use a Horn fragment of Concurrent Transaction Logic
(CT R) as an intuitive logic framework to specify semantics of concurrent program-
ming languages.

Using Horn logic to specify a programming language has been suggested before
[5,6,2]. By specifying a programming language we mean writing semantics, all three
semantics–operational, denotational, and axiomatic–in Horn logic, which is also exe-
cutable. Slonneger convincingly demonstrated that, for the specification of denotational
semantics, Prolog can be regarded as superior to imperative languages. Gupta [2] ex-
panded on the idea and showed how Horn logic denotations lead to some interesting
practical applications, such as automatic program verification and automatic generation
of compilers. The work presented here builds on the aforementioned works and extends
that of [2] by providing a Horn logic denotational semantics for concurrent program-
ming languages.

Using logic for expressing concepts of parallelism and mobility in computation has
been proposed by Milner in [3]. There he presented a calculus, further developed in
[4] and called π-calculus. The communication paradigm within CT R is inspired by
the π-calculus. However, CT R is a programming logic, while π-calculus is an algebra
for specifying and verifying finite-state concurrent systems (which databases and logic
programs are not). CT R [1] is an extension of classical logic that seamlessly integrates
concurrency and communication with queries and updates. It has a purely logic se-
mantics, including a natural model theory and a sound-and-complete proof theory. Like
classical logic, CT R has a Horn fragment, here called CT RH, with a procedural inter-
pretation, in which programs can be specified and executed. Next are some examples of
CT RH formulas: a concurrent serial goal is a formula of the form φ1⊗φ2 | ϕ1⊗�ϕ2,
which means: “execute concurrently the predicates φ1 ⊗ φ2 and ϕ1 ⊗ �ϕ2. To execute
φ1 ⊗ φ2, first do φ1 then φ2, and similarly for ϕ1 ⊗ �ϕ2, except that ϕ2 is executed
atomically, i.e., without interleaving with other predicates”; concurrent Horn rules are
expressions of the form p ← q, where q is a concurrent serial goal.

To provide logical denotations in CT RH for a typical stateful, imperative program-
ming language, we follow an approach similar to those based on plain Horn logic (e.g.,
[2]). More specifically, syntax and valuation functions (predicates) are specified analo-
gously to plain Horn logic approaches. To specify the semantic algebra we use CT RH’s
elementary database update operations, which resemble Prolog’s predicates assert and
retract. However, unlike Prolog, CT RH’s elementary operations are integrated into a
complete logical system, which enable us to implement the notion of scope and store

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 431–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

432 M.V. Santos

within the confines of the logic programming tradition. To avoid using database update
predicates, an alternative implementation technique would be to represent the notion of
store and scope using lists, usually thread through the valuation predicates. However,
we deem such approach renders the valuation predicates unwieldy.

As seen above, CT RH provides logic connectives for modeling the concurrent exe-
cution of complex processes. Such processes execute in an interleaved fashion and can
communicate and synchronize themselves. To provide logical denotations for shared-
state concurrent languages we use the same semantic algebra of stateful, imperative
languages. We model the semantics of explicit or implicit locking mechanisms, which
coordinate the execution of concurrent parts of a program, via CT RH’s modal opera-
tor, �, for atomic execution. For example, in a sequential language, the valuation predi-
cate for an assignment statement can be specified as follows: comm(assign(I, E)) ←
expr(E, V al)⊗update(I, V al). In a concurrent language, we must ensure an assign-
ment statement executes “atomically”, i.e., non interleaved with other concurrent parts.
Formally: comm(assign(I, E)) ← �(expr(E, V al)⊗update(I, V al)).

To provide Logical denotations for data-driven concurrent languages we use a dif-
ferent semantic algebra. The algebra specifies a store which consists of a set of vari-
ables, in which each variable is initially unbound, but once bound it stays bound
throughout the computation and is indistinguishable from its value. Hence variables
in a data-driven language support dataflow execution, i.e., an operation waits until all
arguments are bound before executing. If an argument is required for a computation but
a value is never bound to it, then the execution will result in failure. To model this sort
of communication through dataflow synchronization we resort to CT RH’s inference
system. In CT RH, if an execution path fails, the inference system backtracks and at-
tempts another path of execution by picking another concurrent part for execution. This
amounts to synchronizing the execution with the availability of data.

Our results have shown that the semantics of programming languages in general,
and concurrent languages in particular, can be fully specified in the CT R logic frame-
work. We were also successful in demonstrating that CT R-based logical denotations
provide a simple, unified formal semantics for a such languages, which can also serve
as a prototyping tool for the language developer.

References

1. A.J. Bonner and M. Kifer. Concurrency and communication in transaction logic. In Joint
Intl. Conference and Symposium on Logic Programming, pages 142–156, Bonn, Germany,
September 1996. MIT Press.

2. G. Gupta. Horn logic denotations and their applications. In Workshop on Current trends and
Future Directions in Logic Programming Research, 1998.

3. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
4. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Information and

Computation, 100(1):41–77, September 1992.
5. Chris D. Moss. How to define a language using prolog. In Acm Symposoium on Lisp and

Functional Programming, pages 67–73, 1982.
6. Ken Slonneger. Implementing denotational semantics with logic programming. In CSC ’92:

Proceedings of the 1992 ACM annual conference on Communications, pages 337–344, New
York, NY, USA, 1992. ACM Press.

Gentra4cp: A Generic Trace Format
for Constraint Programming�

Ludovic Langevine�� and The French RNTL OADymPPaC Team� � �

INRIA Rocquencourt, France
langevin@sics.se

Introduction. Several debugging tools have been designed for constraint pro-
gramming (CP). There is no ultimate tool, that satisfies all the needs, but rather
a set of complementary tools. Most of them are dynamic tools. They collect data
from the execution and produce abstract views of this execution, for instance a
search-tree, the evolution of some domains, or an application-specific display.

So far, there are two issues concerning CP debugging tools. Firstly, each tool
is dedicated to a given platform: there is no sharing of tools among the CP plat-
forms, whereas most of solvers are based on the same techniques. Secondly, the
extraction of execution data requires the solver to be instrumented. Such instru-
mentation is tedious and needs to access the solver code. We propose to address
those two issues by means of a generic trace format which allows the execution
to be described as a sequence of elementary events reflecting the behavior of the
search procedure and the propagation process. The tools can then pick in the
trace the data they need.

The genericity of the trace format is twofold. It is generic with respect to
the tools since the trace contains all the data they need. It is also generic with
respect to the solvers, as the very same set of events can reflect the executions of
many solvers. The difficult and tedious work of instrumenting the solver is made
only once. The efficiency of this scheme is ensured by an adaptation of the trace
to the needs of a specific tool. There exist four tracers implementing Gentra4cp,
namely for CHIP, Choco, PaLM and GNU-Prolog. Another tracer is currently
under implementation within SICStus Prolog. Several tools are freely available.

A Semantics to Specify the Trace. The trace is based on an abstraction of the
solver state, including the domains and the constraint store. This abstract state
specifies what in the execution state can be observed by a tool. The trace format
defines a set of possible events that are elementary modifications of this state.
Each one of these events is specified by a state transition rule [1]. This semantics
helps interpret the trace.

A Trace of Search and Propagation. The execution of a constraint program is
often viewed as the overlapping of two levels: search and propagation. The trace
format follows the same distinction.

� This work has been partly supported by the French RNTL OADymPPaC project.
�� Currently ERCIM fellow at SICS, Uppsala, Sweden.

� � � Pierre Deransart, François Fages (INRIA), Jean-Daniel Fekete, Mohammad
Ghoniem, Narendra Jussien (EMN), Mireille Ducassé, Erwan Jahier (IRISA),
Alexandre Tessier, Willy Lesaint, Gerard Ferrand, Ali Ed-Dbali (LIFO).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 433–434, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 L. Langevine

The search level is described by 9 different events. Firstly, three events deal
with the creation of entities (creation of a variable, of a constraint, adding of a
constraint into the store). Three specific events are used to trace solutions, fail-
ures and choice-points. Most of search-strategies can be modeled as the traversal
of a search-tree. The back-to event aims at tracing the restoration of a former
choice-point. The latter four events (solution, failure, choice-point and back-
to) can trace any tree-based search strategy, such as chronological backtracking
associated to depth-first search, branch-and-bound, or dynamic backjumping.
Some search strategies cannot be described as a search-tree, for instance repair
techniques such as MAC-DBT. Two additional events, relax and restore allow
tracing the relaxation of a constraint and an elementary restoration of a domain.
It is thus possible to trace a large variety of search strategies [1].

Different solvers exhibit different propagation strategies (e.g. variable- or
constraint-oriented propagation queues, and some priorities). The trace format
models the common behaviors while allowing solver specific extensions. Six dif-
ferent events have been defined to trace the propagation process. They capture
the common concepts of the solvers we studied. Most of the differences of these
solvers are reflected by the order in which those events occur. The reduce event
traces an elementary domain reduction. Four events describe the propagation
loop: the awakening of a constraint, its suspension, the detection of its entail-
ment or of its unsatisfiability. Those five events are generic: they can be found in
many constraint solvers, whatever the exact propagation strategy is. The sixth
event, schedule, is used to trace solver-specific aspects of the propagation.

Easy Development of Tools Thanks to XML. The trace format is an XML doc-
ument type. As a widely-used standard, XML enables dozens of libraries to be
used to parse the trace. XML answers the needs of trace structuring thanks to
attributes and nested elements: an execution event is an XML tag that encloses
all its attached data. WBXML, a binary representation using a table of symbols,
copes with the verbosity of XML and speeds up the parsing of the trace.

Trace Content Negotiation. The trace format makes for a potentially very de-
tailed description of the execution. This potential trace is not meant to be ex-
haustively generated. The format provides a protocol between the debugging tool
and the tracer. This protocol is used to set the actual level of details. This level
of details can even be modified during the execution. This protocol is flexible
enough to cope with the versatility of the tools and the evolution of their needs.
Evolution of the Trace Format. The OADymPPaC project is now finished, but
the Gentra4cp format is still under development by instrumentation of new
solvers, (e.g. SICStus Prolog). In order to take advantage of these experiences,
a new SourceForge project has been set up (see http://tra4cp.sf.net).

Reference

1. The OADymPPaC Project. Generic trace format for constraint programming.
http://contraintes.inria.fr/OADymPPaC/Public/Trace/, May 2004.

Analyses, Optimizations and Extensions of
Constraint Handling Rules: Ph.D. Summary

Tom Schrijvers�

Dept. of Computer Science,
K.U.Leuven, Belgium

Abstract. This is a summary of the Ph.D. thesis of Tom Schrijvers [4].
Constraint Handling Rules (CHR) [3] is a rule-based language com-

monly embedded in a host language. It combines elements of Constraint
Logic Programming and term rewriting. Several implementations of CHR
exist: in Prolog, Haskell, Java and HAL. Typical applications of CHR
are in the area of constraint solving, but currently CHR is also used in
a wider range of applications, such as type checking, natural language
processing and multi-agent systems.

In this work we contribute program analyses, program optimizations
and extensions of the CHR language.

For the optimized compilation of CHR we present several new op-
timizations: code specialization for ground constraints, anti-monotonic
delay avoidance, hashtable constraint stores and a new late storage op-
timization. These and other optimizations have been implemented in a
new state-of-the-art CHR system: the K.U.Leuven CHR system [5] which
is currently available in SWI-Prolog [10], XSB [9] and hProlog [2].

Abstract interpretation is a general technique for program analysis
[1]. We propose a framework of abstract interpretation for the CHR
language [7], in particular for the formulation of analyses that drive pro-
gram optimization. This frameworks allows for the uniform formulation
of program analyses as well as easier improvements and combinations of
existing analyses. We also evaluate analyses for theoretical properties,
confluence and time complexity, on a practical case study to investigate
their relevance.

We contribute two extensions to the expressivity of CHR. The first
extension comprises the integration of CHR with tabled execution [8].
Tabled execution avoids many forms of non-termination and is useful for
automatic program optimization through the dynamic reuse of previous
computations. The second extension automatically provides implication
checking functionality to constraint solvers written in CHR [6]. Impli-
cation checking is an essential building block for formulating complex
constraints in terms of basic constraints and for composing constraint
solvers.

� Research Assistant of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 435–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

436 T. Schrijvers

Acknowledgements

I would like to thank my supervisor Bart Demoen, the jury members of my
doctoral committee and all my co-authors for their help and support.

References

1. Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unifed Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 238–252, Los Angeles, California,
1977. ACM Press.

2. Bart Demoen. hProlog. http://www.cs.kuleuven.ac.be/ bmd/hProlog/.
3. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of

Logic Programming, 37(1–3):95–138, October 1998.
4. Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling

Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, June 2005.
5. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation

and application. In Thom Frühwirth and Marc Meister, editors, First Workshop
on Constraint Handling Rules: Selected Contributions, pages 1–5, Ulm, Germany,
May 2004.

6. Tom Schrijvers, Bart Demoen, Gregory Duck, Peter Stuckey, and Thom Frühwirth.
Automatic Implication Checking for CHR Constraints. In Horatiu Cirstea and Nar-
ciso Mart́ı-Oliet, editors, RULE’05: Proceedings of the 6th International Workshop
on Rule-Based Programming, Nara, Japan, April 2005.

7. Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for
Constraint Handling Rules. In PPDP’05: Proceedings of the 7th International Sym-
posium on Principles and Practice of Declarative Programming, Lisbon, Portugal,
July 2005. ACM Press.

8. Tom Schrijvers and David S. Warren. Constraint handling rules and tabled ex-
ecution. In Bart Demoen and Vladimir Lifschitz, editors, ICLP’04: Proceedings
of the 20th International Conference on Logic Programming, volume 3132 of Lec-
ture Notes in Computer Science, pages 120–136, St-Malo, France, September 2004.
Springer Verlag.

9. David S. Warren et al. The XSB Programmer’s Manual: version 2.7, vols. 1 and 2,
January 2005. http://xsb.sf.net.

10. Jan Wielemaker. SWI-Prolog release 5.4.0, 2004. http://www.swi-prolog.org/.

Formalization and Verification of
Interaction Protocols

Federico Chesani

DEIS – University of Bologna, viale Risorgimento 2,
40136 Bologna, Italy

fchesani@deis.unibo.it

1 Introduction

In recent years, the study of protocols and their properties has been one of the
most investigated issues in distributed and multi-process systems research, and
they are indeed one of the key component of Multi-Agent Systems. Several for-
mal languages for defining protocols and properties have been proposed within
different research communities. Some of the most common objectives of such
languages include the ability to: formalize the protocols in an easy and clear way
for human users; define the protocols abstracting away from the internal archi-
tecture of the participating peers; be able to specify and investigate properties,
and help the implementation of the peers.

Most of the current research on protocols falls into one of the following four
main areas of interest: protocol formalization, where languages for specifying pro-
tocol has been intensively studied not only in MAS research [3,5,9], but also in
the broader community of distributed and multi-process systems [6]; standard-
ization, aimed at guaranteeing interoperability between heterogeneous agents in
open computing environment [2,5]; protocol properties, where tools for proving
properties are of utmost importance in the MAS community [4] and in the secu-
rity protocols community [1]; and finally specific application domain protocols,
where argumentation and negotiation are examples of domains where the study
of protocols is driven by the need to address specific features [8].

2 Goal and Current Status of the Research

Interaction protocols are a necessary component of open and heterogeneous sys-
tems. Definition languages, formal semantics, verification tools and proof of prop-
erties are the main issues that must be considered to achieve effective interaction
protocols. Logic Programming can greatly contribute to tackle these issues, due
to its declarative character, as well as its possibility of automatically proving
theorems. My doctoral research programme aims to adopt Logic Programming,
and in particular Abduction, for solving these problems. To this end, I envisage
to pursue the following research directions:

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 437–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

438 F. Chesani

– study of the state-of-the-art for protocol definition languages;
– definition of a framework where concepts like protocol, property, compliance

and interaction are defined in a coherent and unified way;
– formulation of a language for protocol specification;
– development and implementation of tools for the verification of interaction

and the proof of properties;
– development of a methodology for multi agent systems design.

My research activity on protocols has started within the SOCS project, with
its definition of a general model for societies of agents, and of a protocol spec-
ification language based on Social Integrity Constraints (ICs). An abductive
proof-procedure, called SCIFF, has been developed and proven to be sound and
complete with respect to its declarative semantics. Using SCIFF it is possible to
verify if a certain interaction is compliant with a protocol specified using ICs [7].

My research activity, in particular, has focussed on studying the automatic
translation of other protocol definition languages such as AUML into ICs, and on
studying different methods for extending SCIFF in order to prove protocol prop-
erties automatically. In particular, we are considering several SCIFF extensions
for generating a proof based on refutation. Up to now, we are able to (dis)prove
a property only in certain cases. Next, I intend to investigate completeness so
as to able to rely on SCIFF for refutation-based property proving.

References

1. David A. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for
security protocol analysis. In ESORICS, pages 253–270, 2003.

2. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/
3. N. Fornara and M. Colombetti. Operational specification of a commitment-based

agent communication language. In C. Castelfranchi and W. L. Johnson, editors,
Proc. of AAMAS-2002, pages 535–542. ACM Press.

4. F. Guerin and J. Pitt. Proving properties of open agent systems. In C. Castelfranchi
and W. L. Johnson, editors, Proc. AAMAS-2002, pages 557–558. ACM Press.

5. M. P. Huget. Agent uml notation for multiagent system design. Internet Computing,
IEEE, Vol. 8(4):63–71, July-Aug. 2004.

6. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use., vol. 1 of Mon. in Theor. Computer Science. An EATCS Series. Springer, 2
edition, X 1997.

7. Alberti M., Chesani F., Gavanelli M., Lamma E., Mello P., and Torroni P., Compli-
ance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence, 2005. To appear.

8. P. J. McBurney. Rational Interaction. PhD thesis, University of Liverpool, 2002.
9. P. Yolum and M.P. Singh. Flexible protocol specification and execution: applying

event calculus planning using commitments. In C. Castelfranchi and W. L. Johnson,
editors, Proc. AAMAS-2002, pages 527–534. ACM Press.

PS-LTL for Constraint-Based Security
Protocol Analysis

Ricardo Corin, Ari Saptawijaya, and Sandro Etalle

Department of Computer Science, University of Twente, The Netherlands

Abstract. Several formal approaches have been proposed to analyse
security protocols, e.g. [2,7,11,1,6,12]. Recently, a great interest has been
growing on the use of constraint solving approach. Initially proposed
by Millen and Shmatikov [9], this approach allows analysis of a finite
number of protocol sessions. Yet, the representation of protocol runs by
symbolic traces (as opposed to concrete traces) captures the possibility
of having unbounded message space, allowing analysis over an infinite
state space. A constraint is defined as a pair consisting of a message M
and a set of messages K that represents the intruder’s knowledge. Millen
and Shmatikov present a procedure to solve a set of constraints, i.e. that
in each constraint, M can be built from K. When a set of constraints
is solved, then a concrete trace representing an attack over the protocol
can be extracted.

Corin and Etalle [4] has improved the work of Millen and Shmatikov
by presenting a more efficient procedure. However, none of these
constraint-based systems provide enough flexibility and expresiveness in
specifying security properties. For example, to check secrecy an artificial
protocol role is added to simulate whether a secret can be learned by
an intruder. Authentication cannot also be checked directly. Moreover,
only a built-in notion of authentication is implemented by Millen and
Shmatikov in his Prolog implementation [10]. This problem motivates
our current work.

A logical formalism is considered to be an appropriate solution to
improve the flexibility and expresiveness in specifying security properties.
A preliminary attempt to use logic for specifying local security properties
in a constraint-based setting has been carried out [3]. Inspired by this
work and the successful NPATRL [11,8], we currently explores a variant
of linear temporal logic (LTL) over finite traces, PS-LTL , standing
for pure-past security LTL [5]. In contrast to standard LTL, this logic
deals only with past events in a trace. In our current work, a protocol is
modelled as in previous works [9,4,3], viz. by protocol roles. A protocol
role is a sequence of send and receive events, together with status events
to indicate, e.g. that a protocol role has completed her protocol run. A
scenario is then used to deal with the number of sessions and protocol
roles considered in the analysis.

Integrating PS-LTL into our constraint solving approach presents a
challenge, since we need to develop a sound and complete decision pro-
cedure against symbolic traces, instead of concrete traces. Our idea to
address this problem is by concretizing symbolic traces incrementally
while deciding a formula. Basically, the decision procedure consists of
two steps: transform and decide. The former step transforms a PS-LTL

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 439–440, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

440 R. Corin, A. Saptawijaya, and S. Etalle

formula with respect to the current trace into a so-called elementary
formula that is built from constraints and equalities using logical con-
nectives and quantifiers. The decision is then performed by the latter
step through solving the constraints and checking the equalities.

Although we define a decision procedure for a fragment of PS-LTL ,
this fragment is expressive enough to specify several security properties,
like various notions of secrecy and authentication, and also data fresh-
ness. We provide a Prolog implementation and have analysed several
security protocols.

There are many directions for improvement. From the implementa-
tion point of view, the efficiency of the decision procedure can still be
improved. I would also like to investigate the expressiveness of the logic
for speficying other security properties. This may result in an extension
of the decision procedure for a larger fragment of the logic. Another di-
rection is to characterize the expressivity power of PS-LTL compared to
other security requirement languages.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Fourth ACM Conference on Computer and Communications Security, pages 36–
47. ACM Press, 1997.

2. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, 1990.

3. R. Corin, A. Durante, S. Etalle, and P. H. Hartel. A trace logic for local security
properties. In Int. Workshop on Software Verification and Validation (SVV), vol-
ume 118, pages 129–143, Mumbai, India, Dec 2003. Elsevier Science in Electronic
Notes in Theoretical Computer Science.

4. R. Corin and S. Etalle. An improved constraint-based system for the verification of
security protocols. In M. V. Hermenegildo and G. Puebla, editors, 9th Int. Static
Analysis Symp. (SAS), volume LNCS 2477, pages 326–341, Madrid, Spain, Sep
2002. Springer-Verlag, Berlin.

5. R. Corin, A. Saptawijaya, and S. Etalle. PS-LTL for constraint-based security
protocol analysis. http://www.cs.utwente.nl/∼corin/ces05long.ps, 2005.

6. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th
IEEE Computer Security Foundations Workshop (CSFW ’97), pages 18–30. IEEE,
1997.

7. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-
ming, 26(2):113–131, 1996.

8. C. Meadows, P. Syverson, and I. Cervesato. Formalizing GDOI group key man-
agement requirements in NPATRL. In Proceedings of the ACM Conference on
Computer and Communications, pages 235–244. ACM, November 2001.

9. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In 8th ACM Conference on Computer and Communication Se-
curity, pages 166–175. ACM SIGSAC, November 2001.

10. J. K. Millen. CAPSL web site. http://www.csl.sri.com/∼millen/capsl, 2000.
11. P. Syverson and C. Meadows. A formal language for cryptographic protocol re-

quirements. Designs, Codes, and Cryptography, 7(1/2):27–59, 1996.
12. F. J. Thayer, J. Herzog, , and J. D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security, 7:191–230, 1999.

Concurrent Methodologies for Global Optimization

Luca Bortolussi

Dept. of Maths and Computer Science, University of Udine,
Via delle Scienze 206, 33100 Udine, Italy
bortolussi@dimi.uniud.it

Introduction. My research interests are mainly focused on concurrent approaches to
global optimization problems. Optimization tasks have two main conflicting features:
they are both very difficult and central to a lot of the applications computer science
faces daily. The problems I’m most interested in stem out from biology, protein folding
being the principal one1.

The protein folding, or protein structure prediction problem, is the task of identify-
ing the characteristic (native) spatial configuration of a protein (a polymeric chain built
up from 20 different aminoacids), given the sequence of aminoacids composing it. This
problem can be modeled as the search of the configuration of minimum free energy, and
even very coarse abstractions of it are known to be NP-hard. Needless to say, it is far
from being solved in a satisfactory way, even if there is a huge amount of research on
it, due to its enormous importance in biological and pharmaceutical research.

The most striking feature, however, is not its mathematical difficulty, but the fact
that Nature is able to fold correctly a protein in a very short time (milliseconds), “explor-
ing” a very small portion of the search space, even if the main forces behind the process
(i.e. protein-solvent interaction) have a “stochastic” nature (in the sense of statistical
mechanics).2 In addition, the native configuration is reached simply by the interaction
among the atoms constituting the protein. In some sense, it’s the concurrent interaction
between these “simple” agents, that obey “simple” rules (the laws of physics), that de-
termines both the protein’s native structure and the dynamics of the process for reaching
it. Therefore, one of the key ingredient that enables Nature to be so efficient could be
this total concurrency itself.

Concurrent Simulation of Protein Folding. The previous reflections are the start-
ing point of the attempts we made so far in modelling the protein structure prediction
problem in a concurrent setting. In [1], we associated an independent process to each
aminoacid, modeled here in a simplified way as a single centre of interaction. These
agents interact by exchanging information about their spatial position, using this knowl-
edge to move in the space, trying to reach the configuration of minimum free energy.
The moving strategy used is a Monte-Carlo one: moves lowering the energy are al-
ways performed, while moves rising the energy are executed with a certain probability
depending on the difference of potential. The whole simulation was written in SICStus-
LINDA. The results were encouraging, even if the coarseness of the energy model used

1 Pointers to references describing the problems and the techniques mentioned here can
be found in the papers cited in the reference section. They are all available on-line at
http:www.dimi.uniud.it/bortolus

2 This is known as the Leventhal Paradox.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 441–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

442 L. Bortolussi

and the slowness of communications between LINDA processes forbade to obtain de-
cent predictions for whole proteins.

To tackle these problems, in [2] we embedded the previous framework in a multi-
agent scheme designed for optimization tasks, implementing the whole system both in
SICStus-LINDA and in C (in a multi-threading version). In this new model we adopted
a different potential, still representing the aminoacids as a single center of interaction,
and identifying them with a concurrent process. In addition, we introduced some higher
level agents, which have the task of both coordinating the exploration of the state space
performed by the aminoacid agents and introducing some form of cooperation among
them. This cooperative action helps the aminoacids to form some local patterns, like
helices and sheets, that are very common in proteins. The enhancements introduced
here improve a lot the results obtained in terms of both the stability of the simulation
and the quality of the predictions of the native structures.

A Language for Concurrent Optimization Algorithms. The development of con-
current simulations of protein folding induced us a more general interest in concurrent
optimization algorithms. This field is very prolific, and a lot of work on parallel opti-
mization heuristics has been done in the last 20 years. However, this area is also very
fragmented: every single family of algorithms (parallel simulated annealing, parallel
genetic algorithms, and so on) has its own conferences, and even its own language and
metaphors. It’s only recently that some unifying approaches have been put forward, like
the multi-agent framework MAGMA. Despite this, to our knowledge there is still lack-
ing of proposals of a unifying language in which describing and reasoning about these
optimization algorithms in general, and their concurrent features in particular.

We have identified some characterizing features that such a language should have:
it should be declarative (this permits to reason easily on it) and it should allow an
easy description of the optimization problems, it must be concurrent and capable to
express some form of localization, and it should also have probabilistic features. The
description of an optimization problem generally consists of both the objective function
and its domain, usually expressed by means of constraints on the variables into play.
Therefore, a constraint based language seems a reasonable choice. Concurrency can be
obtained by the mechanisms of concurrent constraint programming, while localization
can be achieved by adding to it some features of distributed languages. Finally, the
last request can be fulfilled by extending the language with a probabilistic semantics.
Actually, it turned out that a probabilistic and distributed version of CCP has never
been developed, so this was the first step in our investigation of general concurrent
optimization problems.

The language we have developed [3] casts CCP in a distributed setting, where there
is a network of computational resources, each one running CCP programs indepen-
dently. While local communications follow the rules of CCP and are asynchronous, the
exchange of information between different nodes is performed synchronously using a
π-calculus scheme. In addition, the language is provided with a probabilistic structural
operational semantics, where time is discrete both at the local and at the global level.
Currently, we are working on an implementation of the language, and on some straight-
forward generalizations, like modeling the transitions at the network level as contin-

Concurrent Methodologies for Global Optimization 443

uous stochastic processes and improving the dynamic reconfiguration of the network
topology.

Future Directions. In the future, we plan to develop methodologies for performing
some kind of analysis of programs written in this language. One direction can be that
of doing a probabilistic model checking of a suitable (probabilistic) abstraction of the
semantics of programs. This would enable us to study properties like the average cost of
execution, or the average quality of the solutions found. Another interesting approach
can be that of studying the programs using techniques proper of statistical mechanics
(like ergodicity analysis) or of complex systems analysis.

In the meanwhile, we want also to perfection the concurrent simulation of protein
folding, by developing a new, more realistic, energy function and by improving the
interaction strategies between the agents. In particular, we aim at defining enhanced
strategic coordination and cooperation features, in order to achieve a more efficient ex-
ploration of the search space. In addition, we want to encode this optimization algorithm
in our new language, in order to test the analysis techniques.

References

1. L. Bortolussi, A. Dal Palù, A. Dovier, and F. Fogolari. Agent-based protein folding simulation.
Intelligenza Artificiale, January 2005.

2. L. Bortolussi, A. Dovier, and F. Fogolari. Multi-agent simulation of protein folding. In To be
presented at MAS-BIOMED 2005, 2005.

3. L. Bortolussi and H. Wiklicky. A distriuted and probabilistic concurrent constraint program-
ming language. To be presented at ICLP 2005, 2005.

A Temporal Programming Language
for Heterogeneous Information Systems

Vitor Nogueira

Departamento de Informática, Universidade de Évora, Portugal
vbn@di.uevora.pt

In the last decades the number of information centers that receive data from dif-
ferent origins or technologies has increased enormously. Representing and reason-
ing with temporal data is an important issue in the majority of those centers.
Nevertheless, most of the solutions to solve such issue are rather limited and
specific to a certain domain.

Constraint–based frameworks are widely used to perform temporal reasoning.
There is even a specialisation of the Constraint Satisfaction Problem (basically
is a tuple < V, D, C >, where V is the set of variables, D their domains and
C the set of constraints to be satisfied) called Temporal Constraint Satisfaction
Problem (TCSP) where variables represent time and constraints stand for sets of
allowed temporal relations between the variables. According to the time entity
represented by the variables (such as time points, time intervals, durations) and
the class of constraints (qualitative, metric or both) different TCSP’s are defined.
For a survey on this subject see for instance [1].

Contextual Logic Programming [2] (CxLP) is a simple and powerful language
that extends logic programming with mechanisms for modularisation. Recent
work not only presented a revised specification of CxLP together with a new
implementation for it but also explained how this language could be seen as a
shift into the Object-Oriented Programming paradigm [3]. Finally, CxLP was
shown to be a powerful paradigm in which to design and implement Organiza-
tional Information Systems (the real-world application: Universidade de Évora’s
second generation Academic Information System [4], is an example of such).

From the reasons above one is lead assume that the combination of a con-
straint framework with CxLP is a promising tool for building a temporal pro-
gramming language. There is already some preliminary work on that direc-
tion [5,6,7] where CxLP is used not only in associating temporal information
to the propositions but also to build interesting concepts such as ”implicit time”
(given a computation with temporal elements, and even if there is no explicit
mention of time, it is assumed that all the elements share a ”common time”).
In this work the constraint language chosen was Constraint Logic Programming
since it combines the power of constraint solving with the one of logic pro-
gramming: the former allows us to do the temporal reasoning and the later to
establish a richer connection to the CxLP layer. CLP was also used to represent
the temporal elements since a satisfaction problem was regarded as way of defin-
ing implicitly a set of time points, i.e. as defining the basic temporal elements of
the framework.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 444–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Temporal Programming Language for Heterogeneous Information Systems 445

With this research we endeavour to further develop the framework briefly
described in the previous paragraph. We intend to give a formal definition of the
temporal data model along with the relation algebra proposed; to show how this
framework can represent qualitative and metric constraints; to exemplify that
it can work with elements having diferent units; to further explore the use of
CxLP paradigm in the temporal reasoning.

In the end its ourl goal to have a full blown language that can work as the
backbone for constructing and handling of Heterogeneous Information Systems.

References

1. Schwalb, E., Vila, L.: Temporal constraints: A survey. Constraints 3 (1998) 129–149
2. Porto, A., Monteiro, L.: Contextual logic programming. In Levi, G., Martelli, M.,

eds.: Proceedings 6th Intl. Conference on Logic Programming, Lisbon, Portugal ,
19–23 June 1989. The MIT Press, Cambridge, MA (1989) 284–299

3. Abreu, S., Diaz, D.: Objective: in minimum context. In: Proc. Nineteenth Interna-
tional Conference on Logic Programming. (2003)

4. Abreu, S., Diaz, D., Nogueira, V.: Organizational information systems design and
implementation with contextual constraint logic programming. In: IT Innovation
in a Changing World – The 10th International Conference of European University
Information Systems, Ljubljana, Slovenia (2004)

5. Nogueira, V.B., Abreu, S., David, G.: Towards temporal reasoning in constraint
contextual logic programming. In: Proceedings of the 3rd International Workshop
on Multiparadigm Constraint Programming Languages MultiCPL’04 associated to
ICLP’04, Saint–Malo, France (2004)

6. Nogueira, V., Abreu, S., David, G.: Using contextual logic programming for tempo-
ral reasoning. In Ernesto Pimentel, Nieves J. Brisaboa, J.G., ed.: Proceedings of the
VIII Jornadas de Ingenieŕıa del Software y Bases de Datos, Alicante, Spain (2003)
479–489

7. Nogueira, V., Abreu, S., David, G.: Towards temporal reasoning on isco. In Juan
José Moreno-Navarro, J.M.n.C., ed.: Proceedings of the Joint Conference on Declar-
ative Programming APPIA-GULPE-PRODE, Madrid, Spain (2002) 311–324

Nonmonotonic Logic Programs for the Semantic Web�

Roman Schindlauer

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

roman@kr.tuwien.ac.at

Motivation. The next step in the development of the Semantic Web is the realisation
of the Rules, Logic, and Proof layers, which will be developed on top of the Ontology
layer, and which should offer sophisticated representation and reasoning capabilities.
The aim of this project is to investigate methods and techniques how nonmonotonic
logic programming can be successfully and efficiently applied for integrating the Rules
and the Ontology layer. In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocabulary specified in ontology
knowledge bases. Another type of combination is to build ontologies on top of rules,
which means that ontological definitions are supplemented by rules or imported from
rules. Our approach combines both kinds of couplings in one single framework. At the
same time, we want to enrich Semantic Web reasoning by nonmonotonic reasoning
methods, focussing on those closely related to Answer Set Programming. Among these
are the use of defaults, closed-world reasoning and multiple model generation.

Current State. In [3], a combination of logic programs under the answer-set semantics
with description logics was proposed, introducing description logic programs (or dl-
programs), which are of the form KB = (L, P), where L is a knowledge base in a
description logic (e.g., an OWL ontology), and P is a finite set of description logic rules
(or dl-rules). Such dl-rules are similar to usual rules in logic programs with negation
as failure, but may also contain queries to L in their bodies which are given by special
atoms (on which possibly default negation may apply).

These queries to L also allow for specifying an input from P , and thus for a flow
of information from P to L, besides the flow of information from L to P , given by any
query to L. Hence, dl-programs allow for building rules on top of ontologies, but also
(to some extent) building ontologies on top of rules. This is achieved by dynamic up-
date operators through which the extensional part of L can be modified for subjunctive
querying. For example, the rule

paperArea(P, A) ← DL[keyword � kw ; inArea](P, A)

intuitively says that paper P is in area A, if P is in A according to the description
logic knowledge base L, where the extensional part of the keyword role in L (which
is known to influence inArea) is augmented by the facts of a binary predicate kw from
the program. In this way, additional knowledge (gained in the program) can be supplied

� This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
N04, and by the European Commission through the IST NoE REWERSE (IST-2003-506779).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 446–447, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Nonmonotonic Logic Programs for the Semantic Web 447

to L before querying. Using this mechanism, also more involved relationships between
concepts and/or roles in L can be defined and exploited.

Two basic types of semantics have been defined for dl-programs: A generalization
of the answer-set semantics [3] adopts the model-generation paradigm, while the well-
founded semantics, which has been generalized for dl-programs in [4], represents a
skeptical approximation of the answer-set semantics, i.e., every well-founded conse-
quence of a given ordinary normal program P is contained in every answer set of P .

For both semantics, a prototype system, called NLP-DL, has been implemented
(http://www.kr.tuwien.ac.at/staff/roman/semweblp), exploiting
the two state-of-the-art solvers DLV [6] and RACER [5]. A major issue in this respect
is an efficient interfacing between the two reasoning systems, for which we devised
special methods [1]. It supports cautious and brave reasoning from answer sets, which
enables default and minimal model reasoning on top of ontologies, as discussed in [2].

Open Tasks. In [2], we defined a more general class of logic programs, called HEX-
programs, which embeds new important features aimed at dealing with practical ap-
plications and, in particular, with Semantic Web applications. Firstly, the notion of a
dl-atom is generalized to a generic external atom, which imports external knowledge
of various nature into the context of a logic program. This creates a versatile interface
under well-defined semantics to any application that can serve as an external knowledge
source; for instance, the atom #reach [edge, a](X) computes all the reachable nodes in
the graph edge from node a, delegating this task to an external computational source.
Secondly, the language is extended by higher-order atoms, allowing to quantify values
over predicate names, and to freely exchange predicate symbols with constant symbols.

The computation of HEX-programs will be carried out by a reasoner, which is based
on the current prototype system. Currently, we are researching methods for a refined
program evaluation, based on extended notions of stratification and rule dependency,
reducing time and space complexity of the current iterative computation.

References

1. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits: Nonmonotonic Description Logic Progr-
ams: Implementation and Experiments. In: Proc. LPAR 2004. LNCS 3452, (2005), 511–517.

2. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: Proc. IJCAI-05, Morgan
Kaufmann (2005). To appear.

3. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits: Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In: Proc. KR-2004. (2004), 141–151.

4. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits: Well-founded Semantics for De-
scription Logic Programs in the Semantic Web. In: Proc. RuleML 2004. LNCS 3323, Springer
(2004), 81–97.

5. V. Haarslev and R. Möller: RACER System Description. In Proc. IJCAR-2001. LNCS 2083,
Springer (2001), 701–705.

6. N. Leone, et al: The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic (2005). To appear.

ICLP 2005 Doctoral Consortium
SiLCC Is Linear Concurrent Constraint Programming

Rémy Haemmerlé

Project Contraintes, INRIA Rocquencourt, France
Remy.Haemmerle@inria.fr

Introduction. The Concurrent Constraint (CC) [8] languages allow to model
a large number of constraint programming systems, form Prolog coroutinings
to constraints propagation mechanisms such these implemented in the Finite
Domain (FD) solver of GNU-Prolog [2]. These languages are an extension of
CLP obtained by an addition of a synchronization primitive based on constraint
implication. The Linear Concurrent Constraint (LCC) [9] languages are general-
izations of CC languages that consists of considerating constraint systems on Gi-
rard’s linear logic [5] instead of the classical logic. This new kind of languages of-
fer an unified framework combining constraints with state change and allow us to
express the semantics of constraint programming together with concurrency and
imperative features such as multiple assignment variables. It is, then, possible
to defined solvers as pure libraries written in the same languages as the system.

Objectives. The prime objective of this thesis is to design and implement a
LCC language called SiLCC, for “SiLCC is Linear Concurrent Constraint pro-
gramming”. The conception of this language should respected imperatives of
efficiency and of programming ease. The main idea is to define a rich language
combining constraints, concurrence and state change. The second objective is the
realization of a completely bootstrapped implementation of a constraint system.

Hence any parts of the system could be modify or extended by any usual
programmers. For this purpose we need to develop a kernel as small as possible
provided with a robust modules system.

Related Works. This thesis falls under the continuity of previous works of
our team. On the one hand there are the theoretical works of Fages, Ruet and
Soliman [4] on semantics of LCC languages. Using refined versions of observable,
they have extended Saraswat’s results to obtain more precise and more general
semantics. On the other hand there are the works of Diaz [2] on compilation
to native code of LP programs. We plan to use his compilation technology to
give efficient behavior to our system. The closest works to ours seem to be the
Cabeza’s ones [1]. In fact he has tried to develop “an extensible [and] global
analysis friendly LP System” (Ciao Prolog). For this purpose he proposed a
syntactic module system and designed a functional system in which the most
of the code is written in Prolog. Nonetheless he did not provide to his modules
system any formal definition and did not try to limit the size of his kernel.

Accomplish Results and Current Status. After one and half a year, the
main result of this thesis concerns the module system. We have proposed in [6] a

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 448–449, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ICLP 2005 Doctoral Consortium 449

formal definition of closed syntactic module system. By closed we mean the prop-
erty that the module system is able to prevent any call to the private predicates
of a module from the other modules, in particular through meta-programming
predicates. We show that this property necessitates to distinguish the execution
of a term (meta-programming predicate call) from the execution of a closure
(higher order). The system we propose is close to the one of CIAO Prolog in its
implementation, but has the advantage of revealing the need for closures, and of
positioning them w.r.t. meta-programming predicates in the framework of for-
mal operational semantics. We have also developed a first prototype consisting
of a layer, written in Prolog, on the top of GNU Prolog RH [3]. This layer is
composed of a preprocessor that converts modular code into non-modular code
and a new top-level, that transparently interprets modular programs and is able
to dynamically compile and load modules and their dependencies.

Current Status. We are actively working on the bootstrapping of our first
prototype. We think, hence, distinguish what must be native in our system from
what could be rewritten as pure SiLCC libraries.

Expected Achievements and Open Issues. At the end of this thesis, we plan
to have a complete implementation of SiLCC. The language will be based on a
small kernel, we call LCC(K) combining a basic constraints system, concurrence
and imperative features. We expect the language to be efficient and extensible,
thanks to its compilation to native code, to its modular architecture and to
the expressive power of its kernel. Moreover our team also plan to distribute
this system with a large number of libraries such as CHR, constraints solvers,
lexing/parsing, prescriptive typer. As future works, we can mention the possible
implementation of a more advanced module system such as the Sanella and
Wallen’s one [7] extended with meta-calls and closures.

References

1. Daniel Cabeza. An Extensible, Global Analysis Friendly Logic Programming System.
PhD thesis, Universidad Politécnica de Madrid, August 2004.

2. Daniel Diaz and Philipe Codognet. Design and implementation of the GNU Prolog
system. Journal of Functional and Logic Programming, 6, October 2001.

3. Daniel Diaz and Rémy Haemmerlé. GNU Prolog RH user’s manual, 1999–2004.
4. François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint

programming: operational and phase semantics. Information and Computation,
165(1):14–41, February 2001.

5. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.
6. Rémy Haemmerlé and François Fages. Closures are needed for closed module sys-

tems. Technical Report RR-5575, INRIA, 2005.
7. D. T. Sannella and L. A. Wallen. a calculus for the construction of modular Prolog

programs. Journal of Logic Programming, pages 147–177, 1992.
8. Vijay A. Saraswat. Concurrent constraint programming. ACM Doctoral Dissertation

Awards. MIT Press, 1993.
9. Vijay A. Saraswat and Patrick Lincoln. Higher-order linear concurrent constraint

programming. Technical report, Xerox Parc, 1992.

Analysis and Optimization of CHR Programs

Jon Sneyers�

Dept. of Computer Science, K.U.Leuven, Belgium
jon@cs.kuleuven.be

Introduction. Constraint Handling Rules (CHR) [2] is a high-level, powerful,
yet relatively simple “no box” CLP language, embedded in a host language,
commonly Prolog. It is based on multi-headed committed-choice rules. Recent
implementations of CHR consist of a compiler which translates a CHR program
to host language code, and a run-time system implementing the constraint store.
Originally, CHR was designed for rapid prototyping of user-defined constraint
solvers. In the early years of CHR limited attention went to optimized compi-
lation. As a consequence, the reference implementation of CHR [4] comprises a
general compilation schema, with only a small number of optimizations. Cur-
rently, CHR is increasingly used as a general-purpose programming language in
a wide range of applications. Therefore, performance becomes more important,
and recently, more advanced compilation optimizations have been proposed [3].

Several implementations of CHR exist [10]. The K.U.Leuven CHR system
[11] includes a state-of-the-art CHR compiler for popular Prolog systems like
SWI-Prolog and XSB. The formulation of the refined operational semantics of
CHR [1], and subsequently the formulation of the call-based refined operational
semantics [5], have captured the essentials of current implementations on a for-
mal level. Optimizations can now be defined formally and their correctness w.r.t.
the operational semantics can be proved.

The main goals of my research are to improve the practical usability of CHR,
to allow a more declarative use of CHR, and to compile CHR programs to
more efficient host language code. These goals are achieved by developping,
implementing, and evaluating analyses and optimizations for CHR programs.

Current Results. In [8], a new optimization called Guard Simplification is in-
troduced, which uses reasoning about the refined operational semantics to elimi-
nate parts of rule guards that are entailed by the conjunction of the negations of
guards in earlier subrules. The general compilation schema [4] translates every
head constraint occurrence to a Prolog clause. The Occurrence Subsumption op-
timization [7] detects occurrences for which the generated clause is redundant.
Both optimizations are implemented in the K.U.Leuven CHR compiler. We also
extended CHR to allow optional mode and type declarations, which further im-
prove the optimizations. We developed a stronger optimization called Guard and
Continuation Optimization [6] which unifies and extends the above two optimiza-
tions. It is defined formally using a new call-based refined operational semantics
� This work was partly supported by project G.0144.03 funded by the Research Foun-

dation - Flanders (F.W.O.-Vlaanderen).

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 450–451, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analysis and Optimization of CHR Programs 451

for Occurrence Representations, a more expressive representation of CHR pro-
grams. Correctness results have been proved. Performance improvements of 20
to 40% have been measured [6,7].

Ongoing and Future Work. Future work regarding the guard and continua-
tion optimization includes: enhancing the entailment reasoning knowledge base
to increase the strength of optimizations; improving the scalability of our ap-
proach (improving compilation times); adding support for declarations of in-
tended patterns of initial queries, allowing more accurate analyses and stronger
optimizations. More ideas for future work related to the guard and continuation
optimizations are given in [6].

In [9], we show that every algorithm can be implemented in CHR with the
best known time and space complexity. However, it remains a challenge to imple-
ment classical algorithms in a natural and elegant way. My current work focusses
on implementing and comparing shortest path algorithms in CHR. Identifying
and eliminating performance bottlenecks in these programs is a great inspiration
for new optimizations.

References

1. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The Refined Operational Semantics of Constraint Handling Rules. In
Proceedings of the 20th Intl. Conference on Logic Programming (ICLP’04), 2004.

2. Thom Frühwirth. Theory and Practice of Constraint Handling Rules. In Special
Issue on CLP, Journal of Logic Programming, volume 37 (1–3), October 1998.

3. Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J.
Duck. Optimizing compilation of Constraint Handling Rules in HAL. Special Issue
of Theory and Practice of Logic Programming on CHR, 5, 2005. To appear.

4. Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules
Compiler and Runtime System. Special Issue Journal of Applied Artificial Intelli-
gence on Constraint Handling Rules, 14(4), April 2000.

5. Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for
Constraint Handling Rules. In Proceedings of the 7th Intl. Conference on Principles
and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, July 2005.

6. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and Continuation Opti-
mization for Occurrence Representations of CHR. In 21st International Conference
on Logic Programming (ICLP’05), Sitges, Spain, October 2005.

7. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Reasoning for CHR Opti-
mization. Technical Report CW 411, K.U.Leuven, Dept. CS, May 2005.

8. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard simplification in CHR
programs. In 19th Workshop on (Constraint) Logic Programming, Germany, 2005.

9. Jon Sneyers, Tom Schrijvers, and Bart Demoen. The Computational Power and
Complexity of Constraint Handling Rules. In 2nd Workshop on Constraint Han-
dling Rules (CHR’05), Sitges, Spain, October 2005. Submitted.

10. CHR homepage. http://www.cs.kuleuven.be/˜dtai/projects/CHR.
11. K.U.Leuven CHR system. http://www.cs.kuleuven.ac.be/˜toms/Research/CHR.

Author Index

Albert, Elvira 407
Alcântara, João 341

Banda, Gourinath 280
Baselice, S. 52
Békés, András G. 429
Bonatti, P.A. 52
Bortolussi, Luca 143, 441
Braßel, Bernd 265

Carro, Manuel 21
Castro, Carlos 421
Chesani, Federico 437
Christiansen, Henning 159
Codish, Michael 326
Coquery, Emmanuel 402
Corin, Ricardo 439
Crary, Karl 387

Dahl, Veronica 159
Damásio, Carlos Viegas 341
Demoen, Bart 83
De Schreye, Danny 311
Dovier, Agostino 67
Duan, Zhenhua 356

Etalle, Sandro 439

Fages, François 402
Ferreira, Michel 424
Formisano, Andrea 67
Frühwirth, Thom 113

Gallagher, John P. 280
Garcia de la Banda, Maria 9
Gelfond, M. 52
Giunchiglia, Enrico 37

Haemmerlé, Rémy 448
Hanus, Michael 265
Henriksen, Kim S. 280
Hermenegildo, Manuel V. 21, 407
Horrocks, Ian 1

Jaffar, Joxan 98, 412

Kleemann, Thomas 404
Koutny, Maciej 356

Lagoon, Vitaly 326
Lambert, Tony 421
Langevine, Ludovic 433
Linnell, Natalie 371
Lopes, Ricardo 416
Lukácsy, Gergely 427

Maher, Michael J. 9, 174
Mallya, Ajay 297
Maratea, Marco 37
Marriott, Kim 9
Monfroy, Eric 421
Morales, José F. 21

Nadathur, Gopalan 371
Nagy, Zsolt 427
Nguyen, Manh Thang 311
Nogueira, Vitor 444
Nomikos, Christos 414

Pelov, Nikolay 221
Pereira, Lúıs Moniz 341
Pientka, Brigitte 387
Pontelli, Enrico 67, 204
Puebla, Germán 21, 407

Ramakrishnan, C.R. 235
Ray, Oliver 410
Riff, Maŕıa Cristina 421
Rocha, Ricardo 250, 416
Rondogiannis, Panos 414
Rossi, Francesca 5

Saad, Emad 204
Saha, Diptikalyan 235
Saidi, Alexandre S. 418
Santos Costa, Vı́tor 250, 416
Santos, Marcus Vinicius 431
Santosa, Andrew E. 412
Saptawijaya, Ari 439
Sarkar, Susmit 387
Saubion, Frédéric 421

454 Author Index

Schindlauer, Roman 446
Schrijvers, Tom 83, 435
Silva, Fernando 250, 416
Sinner, Alex 404
Slaney, John 9
Sneyers, Jon 83, 450
Somogyi, Zoltan 9
Stuckey, Peter J. 9, 326

Ternovska, Eugenia 221
Tompits, Hans 189

Voicu, Răzvan 412

Wadge, William W. 414
Wallace, Mark 9
Walsh, Toby 9
Wielemaker, Jan 128
Wiklicky, Herbert 143
Wilson, Walter G. 14
Woltran, Stefan 189

Yang, Xiaoxiao 356
Yap, Roland H.C. 98

Zhu, Kenny Q. 98

	Frontmatter
	OWL: A Description Logic Based Ontology Language
	Preference Reasoning
	The G12 Project: Mapping Solver Independent Models to Efficient Solutions
	Use of Logic Programming for Complex Business Rules
	A Generator of Efficient Abstract Machine Implementations and Its Application to Emulator Minimization
	On the Relation Between Answer Set and SAT Procedures (or, Between {\sc cmodels} and {\sc smodels})
	Towards an Integration of Answer Set and Constraint Solving
	A Comparison of CLP(FD) and ASP Solutions to NP-Complete Problems
	Guard and Continuation Optimization for Occurrence Representations of CHR
	Coordination of Many Agents
	Parallelizing Union-Find in Constraint Handling Rules Using Confluence Analysis
	An Optimised Semantic Web Query Language Implementation in Prolog
	A Distributed and Probabilistic Concurrent Constraint Programming Language
	HYPROLOG: A New Logic Programming Language with Assumptions and Abduction
	Abduction of Linear Arithmetic Constraints
	Towards Implementations for Advanced Equivalence Checking in Answer-Set Programming
	Hybrid Probabilistic Logic Programs with Non-monotonic Negation
	Reducing Inductive Definitions to Propositional Satisfiability
	Symbolic Support Graph: A Space Efficient Data Structure for Incremental Tabled Evaluation
	Dynamic Mixed-Strategy Evaluation of Tabled Logic Programs
	Nondeterminism Analysis of Functional Logic Programs
	Techniques for Scaling Up Analyses Based on Pre-interpretations
	Deductive Multi-valued Model Checking
	Polynomial Interpretations as a Basis for Termination Analysis of Logic Programs
	Testing for Termination with Monotonicity Constraints
	A Well-Founded Semantics with Disjunction
	Semantics of Framed Temporal Logic Programs
	Practical Higher-Order Pattern Unification with On-the-Fly Raising
	Small Proof Witnesses for LF
	A Type System for CHR
	Decision Support for Personalization on Mobile Devices
	A Generic Framework for the Analysis and Specialization of Logic Programs
	The Need for Ancestor Resolution When Answering Queries in Horn Clause Logic
	Modeling Systems in CLP
	A Sufficient Condition for Strong Equivalence Under the Well-Founded Semantics
	IMPACT: Innovative Models for Prolog with Advanced Control and Tabling
	Using CLP to Characterise Linguistic Lattice Boundaries in a Text Mining Process
	Hybridization of Genetic Algorithms and Constraint Propagation for the BACP
	The MYDDAS Project: Using a Deductive Database for Traffic Characterization
	Open World Reasoning in Datalog
	Optimizing Queries for Heterogeneous Information Sources
	Denotational Semantics Using Horn Concurrent Transaction Logic
	Gentra4cp: A Generic Trace Format for Constraint Programming
	Analyses, Optimizations and Extensions of Constraint Handling Rules: Ph.D. Summary
	Formalization and Verification of Interaction Protocols
	${\mathcal PS}$-LTL for Constraint-Based Security Protocol Analysis
	Concurrent Methodologies for Global Optimization
	A Temporal Programming Language for Heterogeneous Information Systems
	Nonmonotonic Logic Programs for the Semantic Web
	ICLP 2005 Doctoral Consortium
	Analysis and Optimization of CHR Programs
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

