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Abstract. A heuristic-based symbolic model checking algorithm,
BDD-IDA™ that efficiently falsifies invariant properties of a system
is presented. As in bounded model checking, the algorithm uses an
iterative deepening search strategy. However, in our case, the search
strategy is guided by a heuristic that is computed from an abstract
model, which is derived from the concrete model by a synthesis tech-
nique. Synthesis involves eliminating so-called weak variables from the
concrete specification, where the weak variables are identified by a data-
dependency analysis. Unique to this work is the use of the depth-first
IDA™ search algorithm in a BDD setting, and the automatic synthesis
of the heuristic. The performance of the approach on a large number
of small examples is compared with standard BDD-based approaches.
Experiments on a variety of real-world models from different domains
are also conducted. The approach reveals a consistent improvement on
all models, and in some cases a speed-up of 2 orders of magnitude is
obtained.
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1 Introduction

Model checking [7] is often used in preference to theorem proving for the verifica-
tion of properties in finite-state systems because of its high level of automation as
well as its ability to produce counter-examples when a given property is found
not to hold. The safety properties of a system can often be captured by one
or more system invariants that characterise the set of states within which the
system must reside. This process of checking invariants is also called a reacha-
bility analysis. The aim of a reachability analysis is to detect error states, where
the paths leading to these states determine counter-examples to the invariant.
Counter-examples provide valuable information to system developers about po-
tential design errors in a system. In this work we are more focussed on falsification
of invariants than verification.

This work is based on the symbolic model checking approach [I5] in which
symbolic data structures called binary decision diagrams (BDDs) [2] are used

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 275-289] 2005.
© IFIP International Federation for Information Processing 2005



276 K. Qian, A. Nymeyer, and S. Susanto

to represent a finite-state space. Invariant checking in symbolic model checking
is usually done by either BDD-based or SAT-based algorithms. The BDD-based
algorithm, BDD-BFS, conducts a breadth-first search on the system state space
and records all reachable states. The goal for the search algorithm usually cap-
tures those states in which the invariants are violated. Being ‘blind’, BDD-BFS
is an inefficient way to find error states as typically many regions of the state
space will needlessly be searched. A BF'S strategy is more suited to correct mod-
els and is wasteful of space as generally all reachable states need to be stored. As
well, for large systems, the sizes of BDDs in BDD-BF'S can grow exponentially,
making state space exploration almost impossible in realistic cases.

An alternative symbolic model checking approach is called bounded model
checking[I]. Bounded model checking translates the bounded semantics of the
invariant into Boolean expressions and uses SAT procedures to determine their
satisfiability. By incrementally increasing the bound, the algorithm iteratively
deepens the state space exploration. If an error state is encountered at some
level, the algorithm will terminate and report a counter-example. In general,
SAT-based algorithms tend to detect counter-examples quicker than BDD-BF'S
due to the inherent DF'S search strategy that SAT solvers use [5] if the counter-
examples are short. SAT-based approaches, however, can be handicapped by a
huge number of clauses that need to be input to the SAT solver. In our work, we
combine aspects of both techniques by using BDDs to represent the state space
and a heuristic DFS strategy to locate error states.

Because a BDD-based, depth-first search (BDD-DFS) strategy is not natu-
rally layered like BF'S, it requires a special mechanism to partition each BDD
frontier during the search. The integration of BDD-DFS with heuristic search
provides this mechanism: the heuristic values of states are not only used to es-
timate the distances to the goal, they are also used to partition the frontier
into sub-frontiers. Each sub-frontier, represented by a single BDD, is treated by
BDD-DFS as a single node in the search graph.

Our integration of heuristics and symbolic data is yet another development
in the growing field of guided model checking [TOJT7IT9/20] whose aim is to apply
‘smart’ technology to model verification. In previous work [I7], we integrated the
A* search algorithm into a symbolic model checker. In this paper, we instead use
a ‘more efficient’ version of A* called IDA* (iterative deepening A*), designed
to minimise memory usage. A* is in essence a mixture of BFS and DFS. If the
heuristic is informative, the search is more like DFS, otherwise, with poor di-
rection, the search works on a broad front. The tendency to mimic BFS when
poorly informed means that A* can have exponential memory requirements. In
1985, Korf [13] devised IDA* that is basically DFS, but has some BFS charac-
teristics. He found this algorithm was often better than A* in solving hard Al
problems [14].

The new, integrated algorithm we develop is called BDD-IDA*. The advan-
tages of using BDD-IDA* are:

1. The iterative and bounded DFS strategy in IDA* detects so-called shallow
and corner bugs that are difficult to detect by unbounded DFS.
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2. In BF'S, the frontier is layered. In A*| the frontier is typically ‘onion shaped’
because of the action of the heuristic (biasing the search towards a particular
path that leads to a goal state). Pruning of the search space in fact occurs
before the bound is reached, so the frontier is more pointed to the goal for
each iteration.

3. IDA* has the same linear (in the search depth) space complexity as DFS.
(But note, as we use BDDs to represent sets of states, the actual space
requirement can be exponential in the number of states.)

A second important feature of our work is that we have extended the idea
presented in earlier work [I7] of using an abstract version of the concrete model
as a heuristic (the so-called pattern database). In that work we did not address
the problem of how to obtain the abstract model. In this work, we address
this issue and present an automatic method to generate abstract models that
is based on a data-dependency analysis of the concrete model specification. In
this analysis, we determine the strength of each variable. This information is
used by the heuristic generator to eliminate those variables that are considered
less relevant (or weak), and thereby reduce the size of the model. We refer to
this technique as heuristic synthesis. Being able to automatically determine a
heuristic frees the system designer /verifier from this task, and makes the guided
model checker fully automatic.

In summary, a number of model-checking and artificial intelligence ap-
proaches have been combined to produce an integrated, fully automatic frame-
work that allows more efficient property falsification than alternative approaches.
The rest of paper is organised as follows. Section [2] reviews the guided model
checking framework we use and presents the BDD-based IDA* algorithm. In
Section [3 the three-phase heuristic synthesis procedure based on abstractions is
illustrated. We describe the tool that we have developed and the experiments
in Section [l Section [ discusses related work from the literature and Section
concludes this work.

2 Guided Model Checking and Symbolic IDA*

The general framework for our abstraction-guided approach is based on work
presented in [I7]. We depict our approach in Figure [[l The process starts with
the concrete model. In the first step we generate, automatically, a data abstrac-
tion of the concrete model using a data dependency analysis. The abstract model
is taken as input by a standard model checker that uses a BFS search algorithm.
If the model checker verifies the abstract model successfully, we terminate. If
the abstract model fails the verification, we construct a heuristic using the ab-
stract model. The guided model checking algorithm is then invoked to check the
concrete system using the heuristic as guide. The outcome of the guided model
checker is either that the concrete model is verified, or that a counter-example
(CX in the figure) is produced. The approach in this paper differs from [17] in
two aspects. 1) We use an automatic heuristic synthesis procedure, and 2) as
our primary focus is on falsification and not verification, we use a DFS-based
heuristic search algorithm, IDA*, and modify it to use BDDs.
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Fig. 1. The abstraction-guided model checking framework

The algorithm, called BDD-IDA*, is based on the explicit IDA* algorithm.
The algorithm takes four inputs. The inputs Sy and G of the algorithm are BDDs
representing the initial set of states and the goal, i.e. set of “bad” states. The
input BDD R is the transition relation. Note that we denote the calculation of
the image of a given set of states S by R(S). The input o is a heuristic that will
be illustrated in next section. Finally, the input Bound determines the search
depth. We use an explicit stack where each element in the stack is of the form
(g9,h,8). The integer ¢ indicates the actual number of transitions from Sy to
S and h the heuristic estimation of number of transitions from S to G. In line
10, the algorithm calls the procedure SplitAndPush. This procedure uses the
heuristic o to partition a set of states S (that constitute the frontier of the IDA*
search) into subsets, and together with their associated costs g and h, pushes
each subset onto the stack. We show this procedure in the next session.

Procedure BDD-IDA* (Sy, R, G, o, Bound)

1 stack.push() < (0,0,So)

2 counter <+ 1

3 while (counter < Bound) do
4 while (stack # ¢) do

5 (g9, h,S) « stack.pop()
6 if (SAG#9)

7 return Bound

8 if (h 4+ g < counter)

9 S — R(S)

10 SplitAndPush(g, S, o)
11 counter < counter+ 1

12 stack.push() < (0,0, Sp)

13  return NoFErrorIinBound
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Note that we do not memorise the set of reachable states in the algorithm as we
are only interested in the falsification of invariant properties.

3 Heuristic Synthesis

In this section we will outline how the heuristic ¢ is synthesised. It is a three-
phase process. (1) Abstraction: a data dependency analysis is used to auto-
matically define an abstraction function for the concrete model. (2) Approxi-
mation: an approximation of the abstract model is then computed in order to
avoid the computational penalty for exact abstraction. (3) Heuristic Construc-
tion: a standard BDD-BFS algorithm is used to compute all reachable fron-
tiers in the approximate model. The result of this synthesis is a set of BDDs
o = {Bj,Bs,...,B,} where each B; represents a set of states in the abstract
model with the same heuristic value.

Phase 1: Abstraction

Let M = (S, R, Sp) denote a concrete model where S is a set of states, So C S
is a set of initial states and R is the transition relation. Let H : § — S be
a surjection that maps the concrete state space onto an abstract space S with
|S| <|S|. H therefore induces an abstract model that is defined as follows.

Definition 1 (Abstraction). The abstraction of M w.r.t. H is denoted by M
(8, R, So), where

~ S={3lse SAs=H(s)}

So=1{8l5€ SA5=H(s)As€ So}
S x S is a transition relation, where ($1,$2) € R iff $1 = H(s1) A $2
A 381382(81,82) c€R

In symbolic model checking, Sy and R of M are usually represented by two
first-order formulas, Fo (21, X2, ..., ) and Fr(x1, X2, ..., Tn, &), Th, ..., x)), where
{x1,22, ..., zn} and {a], ), ..., 2] } are variables that represent the current state
and next state of the model. Without loss of generality we assume all variables
range over same domain D, hence the state set of M is S = D x D x ... x D. Let
{#1,%2,...,2n} and {27,453, ..., 2;,} be variables that represent the current state
and next state of M. We denote H (z;) = 2; iff H maps every value of T; to an
abstract value of Z;. Let fo and F r denote the formulas that represent SO and
R respectively. Using the quantification on Fy and Fgr, we construct Sy and R
by evaluating the following formulas.

1. Fo=3wr.. 3w, (H(z1) = 81 Ao AH(20) = 80 ASo (21,00 T0)) A
2. Fr = 3wy 32,321 32, (H(21) = 21 A o A H(zn) = 3 A H(zp) = 21 A
CANH@L) =2 AR(T1, oy T,y T4 oy )

n

To build the abstraction from a concrete model, we first need to define H.
In BDD-based symbolic model checking, every variable of the concrete model is
encoded using a set of Boolean variables. Let V be a set of Boolean variables
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that encode all the variables in M. Following [5/I7], we define H by restricting
a subset Vin, C V to a single-element domain, i.e. H(F) = Jvg...3v,, F for
all v; € Vi, where F is formula representing a set of concrete states. This
abstraction essentially makes the variables in V;,, invisible. Note that in our
earlier work [I7], the user had to provide V;,, to build the abstract model;
possibly a difficult task. In this paper we describe an automated method to
generate Vj,, that is based on a data dependency analysis.

Data Dependency Analysis. The aim of this analysis is to estimate the
strength of each variable v; in V, and remove weak variables to form an ab-
stract model. The analysis is based on the cone of influence (COI) abstraction
techniques [7]. Let V, C V be a set of variables that appears in the specification
@. The COI of V,,, denoted by C, is the minimal set of variables such that:

-V, cC

— if for some v; € C its next(v;) depends on v;, then v; € C
If |C| < |V, then we construct a reduced model M’ that only contains variables
in C. Tt is proved in [7] that the reduced and original models form a bi-simulation
relation w.r.t. all CTL specifications that only have variables from V,, i.e. M’ =
@ « M [ ¢. As a result, model checking can be performed on the reduced
model. Of course, every variable in C' must be included, otherwise the reduced
model is not bi-similar.

We use abstraction only to synthesise the heuristics that guide the model
checker of the concrete model, so we do not need to restrict ourself to removing
only the variables outside of C' (unlike [7]). Although all variables in C can
influence the variables in ¢, the degree of influence will not normally be the
same. Some variables in V,, are more strongly influenced by variables in C' -V,
than others. To determine the subset of variables of V' on which the truth of ¢
is heavily reliant, we build a dependency tree. Let D(v) be the positive integer
denoting the distance from v to the root of the dependency tree. The smaller
D(v) is, the stronger the influence of v on ¢. The following algorithm computes
D(v) for allv e C.

initialise ¢ :== 0, C :=V,, and V; := V};
while C' changes do
=141
for each v; € Vi, compute all its dependable variables;
put those who are not in C' into Vi;
assign D(v) := 1 for all v € Vi
assign C := C UV and V; 1= Viy;

To determine V;,,,, we need to set the threshold d for D(v), and compute Vjy,,, :=
(V-=C)U{vlv € CAD(v) > d}, where (V —C') are all variables that are outside
of the COL. (In our tool the value of d is a run-time option.)

Phase 2: Approximation

Havmg defined H, we need to evaluate fo and F R in order to compute SO and
R for M. We could evaluate them directly, i.e. quantifier elimination. For asyn-
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chronous systems, Fris usually made up of a disjunction of transition blocks and
existential quantification can distribute over them. Synchronous models however
consist of conjunctions of small transition blocks and existential quantifiers do
not distribute over them. This means that we need to build a monolithic BDD
for the formulae Fy and Fr and then perform quantifier elimination on them.
This is computationally very expensive, especially in the case of Fr.

This problem can be avoided if we allow the existential quantifiers to dis-
tribute over the conjunctions. In other words, we want to push the quantification
to the small transition blocks. This computation can be relatively easy because
the blocks are often small. But of course the resulting model is not M anymore,
but an approximation of it, which we denote Mapp It is proved in [6] that this
approximation does not cause the loss of any initial states and transitions, i.e.
My, simulates M (see [6] or [16] for the definition of a simulation relation for
Kripke structures) By tran81t1V1ty of the simulation relation, Mapp simulates M
because Mapp simulates M and M simulates M [16] In order to show the cor-
rectness of the mechanism, we need to show that Mapp contains the information
that we can use to estimate the length of counter-examples of M. This we do in
the following lemma.

Lemma 1. If a state s € S is reachable in M from any state in So, then its
abstract counterpart 5 is also reachable in Mapp from any state in So.

The proof of this lemma is omitted. In essence, this lemma implies that if a
counter-example is present in the original model, it must be manifest in the
abstract model M as well as in the approximation Mapp. Note that both the ab-
straction and approximation do not ‘lose’ any transitions of the original system,
although internal transitions with one abstract state are not visible in M. Thus,
the admissibility of the approach will therefore not be affected (see [17]). This
guarantees the resulting counter-example will be the shortest.

Phase 3: Constructing a Heuristic

The purpose of a heuristic is to estimate the number of transitions from each
concrete state to a goal state (or error state). The heuristic value for each state
s € S in M is simply the number of transitions from § = H(s) to the ab-
stract goal state in Mapp. This type of heuristic is usually referred to as a
pattern database [BIIINIT7|, where pattern is another term for abstraction. The
term database means the heuristic is a memory-based heuristic that can be
handled by a hash table, where the indices represent abstract states and the
entries are heuristic values. As in our earlier work [I7], we use a set of BDDs
to store the heuristic, called symbolic pattern databases (SPDB) and denoted
by ¢ = {Bi, Ba, ..., B, }. Note that the set of states represented by these BDDs
are disjoint, i.e. By A Bo A ... A B, = ¢. Each B; represents a set of abstract
states that have the same heuristic value, and hence have the same number of
transitions to the abstract goal state. A SPDB can be constructed using both
backward and forward blind BFS search in My,
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Backward Construction. Use a BDD-based BFS strategy to explore Mapp,
and start at the abstract goal. Put each frontier-BDD into the heuristic hash
table with the number of iterations as the entry in SPDB. Terminate if an
abstract initial state is encountered.

Forward Construction. Instead, start at an abstract initial state, and store
each frontier temporarily. If the search detects the abstract goal, then ex-
tract the path backward from the goal to the initial state. The set of BDDs
that comprises the path is a forward SPDB. This process is the same as
the counter-example extraction in standard invariant checking. The paths
generated here are a subset of the paths extracted by backward SPDB.

It is of course possible that the heuristic synthesis procedure cannot find a trace
in the approximation Mg,,. In that case the original model M does not have a
counter-example (by Lemma [I]).

Splitting the BDD. Let o = {By, Bs, ..., By} be the heuristic (SPDB) that is
synthesised by the the 3-phase process described above. The following algorithm
splits a BDD into several BDDs that are the disjoint subsets of the original set
of states. In order to contain the BDD size after splitting, we use the restrict
operator on BDDs, denoted by |. Note the subscript i of each B; indicates the
number of transitions B; to the error state in the abstract model. The heuristic
of a concrete state is simply the value of ¢ of its corresponding abstract state and
is used by BDD-IDA* to prioritise the state space search and hence for efficient
error detection.

Procedure SplitAndPush (Cost, S, o)
for each B; € 0 do
I—S8|B
if (1 £ 0)
stack.push() « (Cost+ 1,i,1)
S—SAI
if (S £ )
stack.push() < (Cost+ 1,00, S)

4 The GOLFER Tool and Experiments

The algorithms described above have been implemented in an model checker
called GOLFER. The tool GOLFER incorporates the heuristic search algorithms
A*, IDA* and weighted A*, and will construct a SPDB as part of heuristic
synthesis using the abstraction/approximation techniques described above.
GOLFER is built on top of the open-source model checker NuSMV [4], and
offers almost all the BDD-based verification facilities included in the system. It
allows, for example, the user to choose an input ordering and transition-partition
heuristics. Additionally, we have implemented a frontier-partition heuristic that
is important in the guided model checking algorithm. As well as the automatic
abstraction construction that uses the data dependency analysis, GOLFER al-
lows the user to input the abstraction H as a file of variable strength values.
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The work is of course on-going and the current version of GOLFER consists of
about 3200 lines of C code (not including the NuSMV code).

To evaluate the ideas presented in this paper we have experimentally com-
pared the performance of BDD-IDA* in GOLFER and the standard algorithms
in NuSMV (namely BDD-BFS and a SAT-based bounded model checking al-
gorithm). Note that in our experiment both BDD-IDA* and BDD-BFS use the
same transition partition method of NuSMV for each model. We compare the
run-time and memory usage for these methods. These approaches all operate in
a fully automated manner, without any user interference except that we need to
set up a bound for our algorithm and the SAT-based algorithm. In the experi-
ment we set the bound to 50 and use the zChaff solver for the SAT algorithm.
We first compare the performance of GOLFER and NuSMV on a simple game.
We then follow with more realistic models. In the experiment we used known
good BDD variable orderings for both BDD-IDA* and BDD-BFS when they
were available. We also tried random orderings and found both algorithm has
similar sensitivity to the same ordering. All experiments were carried out using
shell scripts. The timeout operation (set to 2 hours) was implemented by a perl
script. All experiments were conducted in a shared Intel X86 machine (CPU P4
933MHz) running Linux with 6G RAM.

The Sliding-Tile Puzzle. consists of a board of n X n squares occupied by
n? — 1 tiles. Each tile exactly fits on one square and is labelled by a number
ranging from 1 to n? — 1. Starting in some given initial configuration of the
tiles on the board, the aim of the game is to move the tiles one at a time by
utilising the empty square until some given goal configuration is reached. Each
state of the puzzle has between 2 and 4 successors, hence the branching factor
for the search graph is small. In the experiment, we use a 3 X 3 board and 8 tiles.
We encode the puzzle in the SMV input language and randomly generate 500
solvable initial configurations. We show the results for our algorithm BDD-IDA*
and the standard BDD-BF'S approach in NuSMV in Figure 2l (The SAT-based
approach is not included at this stage as it is not competitive on small models.)

In Figure 2 we group, average and order the data for the runs that result
in the same solution depth. Generally, but not always, the shorter the solution

14 T T T T 12000 T
BDD-IDA* mmmmm BDD-IDA* mmmm
BDD-BFS i BDD-BFS i

10000

8000

6000

4000

Average Run Time (s)
Average Memory Usage (B)

2000

30 5 10 15 20 25 30
Solution Depth Solution Depth

Fig. 2. Run-time and memory usage for IDA* and BFS for the sliding-tile puzzle
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depth, the faster the model checker finds the solution. Most solutions for the 500
starting configurations were in the range 17 to 27. Within this solution range
BDD-IDA* outperforms BDD-BF'S in both time and memory. For configurations
with shorter solutions, BDD-BFS is generally faster than BDD-IDA* because of
the overhead of the abstraction process in BDD-IDA*, which dominates when
the goal configuration is just a few transitions away. For configurations with the
longest solutions, BDD-IDA* and BDD-BFS perform similarly. It is not clear
why this is the case. It is true that there are few long solutions, so the sparseness
of data may be contributing to this behaviour. However, we have observed the
heuristic is quite poor for these configurations. If we manually generate a better
heuristic for these configurations, we found that BDD-IDA* performed much
better than BDD-BFS. We therefore feel that the data dependency analysis
may be responsible, and conjecture that abstracting the system by eliminating
supposedly weak variables loses validity in the longest runs. This may be an
artifact of the particular data-dependency analysis that we have used.

While this data provides an interesting comparison between the 2 methods,
one needs to remember that these methods are certainly not the best way to
solve this kind of puzzle. An explicit-state model checker for example could be
made to solve these puzzles faster than any of the above methods.

Real-World Examples. We applied the BDD-IDA* and BDD-BFS to the 8
models listed in Table Il In this table, we show the type of model and the size
of the SMV specification in each case. Some of the models can be found from

Table 1. Model used in the experimentation

Name Description Type Lines SMV code
dme distributed mutual exclusive ring circuit 102
leader concurrent leader election protocol 129
mutex mutual exclusion protocol 116
ns Needham-Schroeder public key protocol protocol 319
peter Peterson’s mutual exclusion algorithm  protocol 126
sr sender receiver protocol protocol 106
tarb  tree arbiter circuit 142
tcas  traffic collision avoiding system controller 3269

Bwolen Yang’s collection of SMV models. If a model is parameterised, the value
of the parameter is indicated by a numerical suffix in the name of the model.
We sometimes also used the same model with different invariants. These models
contain a parenthesised ‘p’ suffix in the model name.

The experimental results for comparing BDD-IDA*and BDD-BFS are shown
in Table 2 For each model, we show the number of Boolean variables (#Vars)
that are used to encode the model, the length of the counter-examples (CX),
and the run-time and the number of BDD nodes for each of the methods (when
possible). The table shows that BDD-IDA* consistently outperforms BDD-BFS
in all but one case, peter-3. Note that the run-times for BDD-IDA* include the
time for heuristic synthesis. We believe that the poor performance in the case
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Table 2. Experimental results for BDD-IDA*, BDD-BFS

Run-time # BDD Nodes
Model # Vars CX BDD-IDA* BDD-BFS BDD-IDA* BDD-BFS
dme6 240 28 78.46 - 655163 -
dme8 320 30 7033.99 - 4499580 -
leader-3 85 16 1.01 1.65 305231 535585
leader-4 128 18 11.07 40.33 228193 223136
leader-5 168 20 111.62 502.18 981095 2335851
leader-6 200 22 1123.79 5486.61 3945215 4988551
mutex-16 141 10 0.66 11.13 208967 439208
mutex-20 175 10 1.01 36.13 320392 598775
mutex-24 207 10 1.56 87.59 461404 2486530
mutex-28 239 10 2.30 208.93 158186 4898940
ns (pl) 87 14 0.90 13.14 183538 117207
ns (p2) 133 14 7.43 341.80 103938 1267943
peter-3 72 26 0.59 0.42 151819 144783
peter-4 103 42 10.06 54.87 278411 542995
sr-11 273 14 0.44 67.14 177872 237768
sr-12 297 14 0.70 95.83 211911 262272
tarb-15 244 24 15.29 431.64 258489 6743882
tarb-17 276 24 32.11 712.31 464059 12649365
tarb-19 308 24 28.46 561.77 626627 11079508
tcas (pl) 292 12 4.44 25.07 190876 617102
tcas (p2) 292 16 3.43 92.11 536990 2918189
tcas (p3) 292 24 9.45 2364.88 328944 17165753
tcas (p4) 292 18 116.37 250.39 1745925 10673258
tcast (pl) 292 12 5.34 27.94 230336 623381
tcast (p2) 292 18 38.05 275.91 623307 6224724
tcast (p3) 292 16 4.37 107.33 562949 1625174
tcast (p4) 292 16 4.97 93.85 552857 1620110

Table 3. Experimental results for BDD-IDA*, BDD-BFS and SAT

Run-time
Model BDD-IDA* BDD-BFS SAT

dme6 78.46 - 176.37
dme8 7033.99 - 521.77
ns (p2) 7.43 341.80 192.80
tarb-15 15.29 431.64 121.61
tarb-17 32.11 712.31 156.45
tarb-19 28.46 561.77 195.11

of peter-3 is an artifact of its smallness: the run-time is short and the automatic
heuristic synthesis is an overhead that BDD-BFS does not have. In the cases
mutexr and tcas, BDD-IDA* can be up to 2 orders of magnitude faster. In most
cases, less BDD nodes are used, sometimes an order of magnitude less. In the few
cases where more BDD nodes were used, it was the same order of magnitude.
We cannot see from this data how much of the improved run-times comes
from the ‘falsification superiority’ of DFS over BFS (note the very different BDD-
partitioning schemes used in both strategies clouds this issue somewhat as well),
and how much is a result of the guided search. We have used the same run-time
options in all cases. In a few cases, we did notice that by changing certain run-
time options such as the threshold of partition size or partition heuristics, we
could improve the performance for BDD-BFS. However, we could never make it
perform better than BDD-IDA*. We have not tried to fine-tune the partitioning
scheme used in BDD-IDA*. Placing this work in context we should note that
all the models contain at most a few invariant properties, and we know these
properties are false. The experimental context is hence somewhat artificial and
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BDD-IDA*may not produce such performance improvements when used to verify
models containing many properties. Furthermore, BDD-IDA* detects counter-
examples. If the algorithm does not return before the timeout then we cannot
say whether a counter-example exists or not.

We also compared the run-time of BDD-IDA*, BDD-BFS and SAT methods
and the results are shown in Table Bl Note that we only do so if the SAT has
better performance than BDD-BFS. Of 6 models we have experimented, BDD-
IDA*detects error faster than SAT in 5 models. For model “dme8”, our BDD-
IDA* runs much slower than SAT for some unknown reason.

Optimality. The performance of BDD-IDA* is dependent on the quality of the
heuristic. Suppose the heuristic cost for a BDD is A* and the exact cost h, then
the quality is determined by the smallness of | h* — h |. We in fact don’t care
whether h* over- or under-estimates the real cost, but if it does over-estimate the
cost, then we cannot guarantee that the algorithm will find the shortest counter-
example. In model checking this is not normally an issue, but in general, and
in particular in artificial intelligence, it can be a very serious issue. In fact, the
heuristic synthesis procedure used in this work always results in a heuristic that
under-estimates the cost because it is based on homomorphic abstractions [17].
To improve the effectiveness of the heuristic, we could instead use the heuristic
cost a X h* instead of h*, where a > 1 is a constant factor that can be tuned for
specific applications. We could go a step further and use the total cost formula
f*=0bx g+ ax h* where a,b are constant values and g is the exact cost from
the initial BDD (or state) to the current BDD (state). This may speed up the
search dramatically, but optimality can no longer be guaranteed.

5 Related Work

The main work in BDD-based guided model checking uses prioritised traversal
techniques. In [3] Cabodi et. al. proposed a mixed forward-backward prioritised
traversal algorithm that checks invariant properties. This work is closely related
to our approach as both share the idea of using prioritised traversal as well as
abstractions and approximations. However, Cabodi et. al. differ in the way they
combine these aspects:

— They construct an approximation of the concrete model and use it to ap-
proximate the forward reachable state set, which is then used to prioritise
the backward traversal of the state space. They use a best-first search algo-
rithm. We use approximation for the computationally-intensive abstraction
process. The heuristic synthesis in our approach is goal-oriented and BDD-
IDA* also takes the real cost into account. As well, the state space search
of our approach is iterative deepening which characterises the SAT-based
search strategy.

— They study only forward-backward traversal orders, which are more suited
to circuits than communication protocols (for example) because traversals
in both directions may not be possible even in the abstract model due to
high branching factors. In our work we do not restrict ourselves in this way.
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During the approximation phase, we do not have to traverse from the target
to the initial states. Because our approximation is target-oriented, partial
approximation traversal also serves as a heuristic for estimating the length
of partial counter-examples.

In [I812] prioritised traversal algorithms are proposed based on BDD partition-
ing (or subsetting). A so-called “high-density” reachability analysis is used as a
BDD optimisation technique to traverse the state space of the system, and the
density of a BDD is defined to be the ratio of states the BDD can represent over
its size. The BDD with higher density will gain higher priority in the state space
traversal. This technique only aims at optimising the size of BDDs and offers
no guidance to the model checking algorithm in the search for error states. In
our work, heuristics are synthesised from the abstract model, and provide direct
information about potential error states in the model. The above approaches use
the VIS language and we use SMV. It would be possible combine our work with
the above approaches, but there would be difficulties.

Most work in guided model checking is based on the explicit-state representa-
tion [920021]. The first work on guided model checking in [22] applies prioritised
state space exploration to model checking and proposes practical heuristics to
guide the search. Heuristic search algorithms such as A* and IDA* have also
been used in explicit-state model checking in HFS-SPIN [9], recently Hopper
(implemented on top of Mury) [20] and FLAVERS [21]. All this work shows
that the heuristic search algorithm can enhance the model checker’s ability to
detect counter-examples. The role of BDDs, particularly in combination with
IDA*, is an important aspect of our work of course, as is the use of heuristic
synthesis, which none of these authors above have addressed.

6 Conclusion and Future Work

In this work we have presented a fully automatic, symbolic, abstraction-guided
model checker that builds its own abstract model, and uses this model as heuris-
tic to guide the model checker. The main contribution of this work is its inte-
gration of:

e a data dependency analysis that is used to build an abstract model
e IDA* with heuristic synthesised from the abstract model, and
e a BDD partitioning algorithm in BDD-IDA* based on the heuristic.

The heuristic, which plays a vital role in guided search, is ‘double-dipped’ in
this research: it not only guides the IDA* search strategy, it also provides a
mechanism to partition the search space (i.e. BDDs). While it is true that the
internal BDD operations are more complex than standard BDD-BFS, this is
hidden from the user.

The ‘bug-hunting’ ability of DFS has long been recognised, as is attested by
the huge popularity of SPIN. But SPIN is not symbolic of course, and is not
guided, and being conventional DFS, is not always able to find the nearest bugs,
which BFS does so well. The GOLFER tool adds a functionality to NuSMV that
is all of the above, without the expense of BFS.



288 K. Qian, A. Nymeyer, and S. Susanto

There is of course much work to be done. Foremost will be gaining a better
understanding of the best type of data analysis to use to build the abstract
model. It is not clear whether other notions of weak and strong may be more
appropriate in determining whether a variable is important or not in guiding the
search algorithm. For example, the current notion of eliminating weak variables
does not work when all variables are equally related to the property variables.
One direction for future research in this area is machine learning. Extending the
framework to search for counter-examples for liveness properties is also an useful
step to take.

Finally, in the abstraction-refinement framework Clarke et al. [5] uses ab-
straction in a very different way to us (we use it only to compute a heuristic).
Nevertheless, the efficient way we detect counter-examples, which play an im-
portant role in refinement, could be usefully employed in that framework.

Acknowledgement. We would like to thank all anonymous referees for their
corrections and suggestions.
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