
Abstract. In this paper, we present a novel conformance test suite derivation 
method. Similar to the HIS method, our method uses harmonized state 
identifiers for state identification and transition checking and can be applied to 
any reduced possibly partial deterministic or nondeterministic specification 
FSM. However, in contrast with the HIS method, in the proposed method 
appropriate state identifiers are selected on-the-fly (for transition checking) in 
order to shorten the length of the obtained test suite. Application examples and 
experimental results are provided. These results show that the proposed method 
generates shorter test suites than the HIS method. Particularly, on average, the 
ratio of the length of the test suites derived using the proposed method over the 
length of corresponding suites derived using the HIS method is 0.66 (0.55) 
when the number of states of an implementation equals to (is greater than) the 
number of states of the specification. These ratios are almost independent of the 
size of specifications.  

Many FSM-based test derivation methods have been developed for conformance 
testing of communication protocols and other reactive systems [2,3,10,12,14,15,17]. 
Well-known methods are called the W [2, 14], partial W (Wp) [3], HIS [10,17], and 
generalized Wp (GWp) [7, 8] test derivation methods. For related surveys the reader 
may refer to [1,6,13,16]. In [2,3,10,14,15,17] testing methods, one usually assumes 
that not only the specification, but also the implementation can be modeled as a 
deterministic FSM, while in [7,8] the specification and the implementation are 
modeled as non-deterministic FSMs (NFSMs). If the behavior of a (deterministic/non-
deterministic) implementation FSM is different than the specified behavior, the 
implementation contains a fault. 

The above methods, each provides the following fault coverage guarantee: If the 
specification can be modeled by a (reduced) FSM with n states and if a corresponding 
implementation can be modeled by an FSM with at most m states, where m is larger 
or equal to n, then a test suite can be derived by the method (for this given m) and the 
implementation passes this test suite if and only if it conforms (i.e. is equivalent) to 
the specification. A test suite is called m-complete [11] if it detects any 
nonconforming implementation with at most m states. Guessing the bound of m is an 
intuitive process based on the knowledge of a specification, the class of 
implementations which have to be tested for conformance and their interior structure 
[1]. All of the above methods assume that a reliable reset is available for each 
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implementation under test (written as ‘r’). This implies that a test suite can be 
composed of several individual test cases, each starting with the reset operation. 

The HIS, Wp, and UIOv methods are modifications of the so-called W method. All 
these methods have two phases. Tests derived for the first phase check that each state 
presented in the specification also exists in the implementation, while tests derived for 
the second phase check all (remaining) transitions of the implementation for correct 
output and ending state as defined by the specification. For identifying the state 
during the first phase and for checking the ending states of the transitions in the 
second phase, certain state distinguishing input sequences are used. The only 
difference between the above methods is how such distinguishing sequences are 
selected. In the original W method, a so-called characterization set W is used to 
distinguish the different states of the specification. The Wp method uses the W set 
during the state identification phase (the first phase) while only an appropriate subset, 
namely a corresponding state identifier, is used when checking the ending state of a 
transition. In the UIOv method, which is a proper sub-case of the Wp method, the 
ending state of a transition is identified by the output obtained in response to a single 
input sequence. Such a Unique Input/Output sequence, called UIO, allows 
distinguishing the expected ending state from all other states of the specification. 
However, a UIO sequence may not exist for some states of a given specification FSM. 
Moreover, a W set also may not exist for a partially specified specification [16,17]. In 
this case, only the HIS method can be used where a family of state identifiers 
[9,10,16] is used for state identification as well as for transition checking. 

The GWp method is a generalization of the Wp method to the case when the 
system specification and implementation are modeled as non-deterministic FSMs. For 
nondeterministic FSM implementations, in order to guarantee a full-fault detection 
power, the GWp method assumes that all possible observations of the non-
deterministic implementation to a given test can be obtained by repeatedly executing 
this test. This assumption is called the complete testing assumption [7,8]. The GWp 
method uses a characterization set W to distinguish the different states of the 
specification. However, a W set may not exist for partially specified NFSMs. In this 
case, only the generalized HIS method [8] can be used where a family of harmonized 
state identifiers is used instead of a characterization set for state identification and 
transition checking. 

The length of a derived test suite essentially depends on how a family of state 
identifiers is selected. In the above methods, for every state of the specification FSM, 
only one state identifier is selected (in advance) for testing all the incoming transitions 
of the state. In this paper, we propose an improved method that for every incoming 
transition of a state selects (on-the-fly) an appropriate state identifier that shortens the 
length of the resulting test suite. Our method generalizes the method (called H 
method) originally proposed for complete deterministic FSMs [5]. First we extend the 
H method for partial deterministic machines and we present more detailed sufficient 
conditions for having a complete test suite when the system specification and 
implementation have equal number of states. Then, we experiment with the extended 
H (hereafter also called as H method) method in order to compare the length of its test 
suites with test suites derived using the HIS method. The experiments are conducted 
for the case when m = n and for the case when m > n. Experiments with the case when 
m = n show that on average, the ratio of the length of H over the length of the HIS test 
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suites is 0.66 and experiments with the case when m = n + 1 and m = n + 2 show that 
on average this ratio is 0.55. Moreover, the experiments show that these ratios are 
almost independent of the size of the specification machines. Finally, we extend the H 
test derivation method for partial nondeterministic machines. We note that the H 
method, as the HIS, generates complete test suites and is applicable to any complete 
or partial reduced specification machine. 

This paper is organized as follows. Section 2 defines notations for describing finite 
state machines. Section 3 includes the H method for deterministic partial FSMs and 
Section 4 includes related experimental results. Section 5 includes the generalization 
of the H method for non-deterministic partial machines and Section 6 concludes the 
paper. 

2  Finite State Machines 

A non-deterministic finite  state  machine  (NFSM) is an initialized non-deterministic 
Mealy machine that can be formally defined as follows. A non-deterministic finite 
state machine M is a 6-tuple 〈S, X, Y, h, DM, s0〉, where S is a finite nonempty set of 
states with s0 as the initial state; X and Y are input and output alphabets; DM is the 
specification domain that is a subset of S×X; and h: DM → 2S×Y\∅ is a behavior 
function where 2S×Y is the set of all subsets of the set S×Y. The behavior function 
defines the possible transitions of the machine. Given a present state si and an input 
symbol x, each pair (sj,y)∈h(si,x) represents a possible transition to the next state sj 
with the output y. 

An NFSM M is observable if for each pair (s, x) ∈ DM and each output y there is at 
most one state s’ ∈ S such that (s′, y) ∈ h(s, x). In this paper, we consider only 
observable NFSMs. Each NFSM is known to have an observable FSM with the same 
behavior [7, 8]. If DM = S×X then M is said to be a complete FSM; otherwise, it is 
called a partial FSM. In the complete FSM we omit the specification domain DM, i.e. 
complete FSM is 5-tuple M = 〈S, X, Y, h, s0〉. If for each pair (s, x) ∈ DM it holds that 
|h(s, x)| = 1 then FSM M is said to be deterministic. In the deterministic FSM (DFSM) 
M instead of behavior function h we use two functions, transition function δM: DM → 
S and output function λM: DM → Y.  

We use the notation “(si-x/y->sj)” to indicate that the FSM M at state si responds 
with an output y and makes the transition to the state sj when the input x is applied. 
State si is said to be the starting state of the transition, while sj is said to be the ending 
state of the transition. If we are not interested in the output we write “si-x->sj” when 
an input x is applied at state si. 

The concatenation of sequences v1 and v2 is the sequence v1.v2. For a given 

alphabet Z, Z* is used to denote the set of all finite words over Z including the empty 
word ε while Zm denotes the set of all the words of length m. Let V be a set of words 
over alphabet Ζ. The prefix closure of V, written Pref(V), consists of all the prefixes 
of all words in V, i.e. Pref(V) = {α | ∃ γ (α.γ ∈ V)}. The set V is prefix-closed if 
Pref(V) = V.  

As usual, the behavior function h of a FSM M can be extended to the set X* of 
finite input sequences. Given state s and input sequence x1…xk, the pair (s′, y1…yk) ∈ 
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h(s, x1…xk) if and only if there exists states s1′,…, sk+1′ such that s1′ = s and (sj+1′, yj) ∈ 
h(sj′,xj) for each j = 1, …, k. In this case, the sequence x1 … xk is called a defined input 
sequence at state s. The set of all defined input sequences at state s of M is denoted 
DISM(s); while the set of defined input sequences at the initial state is denoted DISM, 
for short. 

Given an input sequence α = x1 … xk and an FSM M, we let the set outM(s, α) 
denote the set of output projections (i.e. responses) of M to the input α. Formally, 
outM(s, α) = {γ| ∃s’ ∈  S [(s’, γ) ∈ h(s, α)]}. If M is deterministic then |outM(s, α)| ≤ 1. 
The FSM is called connected if for each state s∈S there exists an input sequence αs 
that takes the FSM from the initial state to state s. The sequence αs is called a transfer 
sequence for the state s. We further consider only connected FSMs. A set Q of input 
sequences is called a state cover set of FSM M if for each state si of S, there is an 
input sequence αi∈Q such that s1-αi->si. A state cover set exists for every connected 
FSM. We further consider prefix-closed state cover sets, i.e., we include the empty 
sequence ε in Q. 

Let M = (S, X, Y, hM, DM, s1) and I = (T, X, Y, hI, DI, t1) be two FSMs. In the 
following sections M usually represents a specification while I denotes an 
implementation. We say that state t of I is quasi-equivalent to state s of M [4, 10, 8], 
written t ⊒ s, if DISM(s) ⊆ DISI(t), and for each input sequence α ∈ DISM(s) it holds 
that outM(s, α) = outI(t, α). In other words, FSM I at state t can have “more defined” 
behavior than FSM M at state s. However, for each defined input sequence at state s, 
the output responses of FSMs M and I coincide. FSM I is quasi-equivalent to M if t1⊒ 
s1. We also say that states s and t are distinguishable, written s ≇ t, if there exists an 
input sequence α ∈ DISM(s) ∩ DISI(t) such that outM(s, α) ≠ outI(t, α); the sequence 
α is said to distinguish the states sj and ti. Two FSMs M and I are said to be 
distinguishable if their initial states are distinguishable. An FSM is said to be reduced 
if its states are pair-wise distinguishable. 

When testing NFSMs, the specification M of the given system is assumed to be a 
partial/complete non-deterministic finite state machine while an implementation I of 
M is assumed to be a complete and non-deterministic. However, it is assumed that the 
specification M has so-called harmonized traces [10] such that for each input 
sequence α= x1…xk defined at the initial state and each two pairs (s′, y1…yk), (s′′, 
y1…yk) ∈ hM(s 1, x1…xk) the sets of defined input sequences at states s′ and s′′ 
coincide. The reason is a test suite is derived in advance and each input sequence is 
applied independently of the output response of an implementation at hand. When 
testing DFSMs, the specification M of the given system is assumed to be a 
deterministic partial/complete finite state machine while an implementation I of M is 
assumed to be complete and deterministic. 

We say that implementation I conforms to the specification M if and only if FSM I 
is quasi-equivalent to M. In other words, for each input sequence that is defined in the 
specification the output responses of M and I coincide [4,16,8]. Otherwise, I is called 
a nonconforming (or faulty) implementation of M. In this case, an input sequence α 
that distinguishes initial states of FSMs I and M is said to distinguish the 
implementation I from the specification M or α is said to detect the faulty 
implementation I. 
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Given the input alphabet X, we denote Jm(X) the set of all complete deterministic 
machines over the input alphabet X with up to m states. Given a deterministic 
specification FSM M, a test suite TS is a finite set of finite input sequences of the 
FSM M. A test suite TS is m-complete for the specification FSM M if for each 
implementation I ∈ Jm(X) that is distinguishable from M, there exists a sequence in TS 
that distinguishes M and I.  

3  An Improved Test Generation Method 

Given  a deterministic  reduced possibly partial specification FSM M with n states, 
in this section, we first establish sufficient conditions for having an m-complete test 
suite. This is done for the cases when m > n and when m = n. Based on these 
conditions, in the following two subsections we present a novel test derivation method 
with related experimental results. In Section 5, we generalize the method for the case 
when the specification and implementation machines are non-deterministic. 

Given a  reduced  deterministic  specification machine M with n states, the following 
theorem establishes sufficient conditions for a given test suite to be m-complete 
assuming that m ≥ n. The theorem extends a related theorem given in [5] for partial 
deterministic specification machines. 
 
Theorem 1. Given a reduced deterministic specification M with n states and a state

 cover set Q of M, let TS be a  finite set of defined finite input  sequences of M that 
contains the set of sequences Q.Xm-n+1 ∩ DISM. The test suite TS is m-complete if the 
following conditions hold: 

 
1. For  each  two (different)  states of M reachable through sequences α and  β in 

Q, TS has sequences α.γ and β.γ where γ is a distinguishing sequence of the 
states δM(s1, α) and δM(s1, β) reachable by the sequences α and β, 
respectively. 

2. For each  sequence α.β, α ∈ Q, |β| = m – n + 1, and each non-empty prefix β1 
of β that takes the specification FSM M to state s from state δM(s1, α), TS has 
the sequences α.β1.γ and ω.γ,  where ω ∈ Q and δM(s1, ω) ≠ s, and γ is a 
distinguishing sequence of states δM(s1, αβ1) and δM(s1, ω). 

3. For  each  sequence α.β, α ∈ Q, |β| = m – n + 1,  and  each two non-empty 
prefixes β1 and β2 of β that take the specification FSM M from state δM(s1, α) 
to two different states, TS has sequences α.β1.γ and α.β2.γ, where γ is a 
distinguishing sequence of states δM(s1, αβ1) and δM(s1, αβ2). 

 
Proof.  Consider  a test suite TS that satisfies the conditions of the theorem and 
assume that there exists a complete FSM I = 〈T, X, Y, δI, λI, t1〉  with m states that is 
distinguishable from the specification FSM M = 〈S, X, Y, δM, λM, DM, s1〉 but for each 
input sequence of the set TS, the output responses of M and I to the input sequence 

3.1   Sufficient Conditions for an M-Complete Test Suite 
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coincide. Let P be the set of states that are reachable in I via sequences of the state 
cover set Q, and ν be a shortest input sequence from some state δI(t1, αj) of the set P 
that distinguishes states δM(s1, αj) and δI(t1, αj). By definition, TS has a sequence αjβ, 
where β has length m – n + 1 and β is a prefix of ν.  

Consider the set R of sequences that is the union of sequences in the state cover set 
and the set of sequences αjβ’ over all non-empty prefixes β’ of β. The number of such 
sequences equals to n + (m – n + 1) = m + 1 and since I has at most m states there are 
two sequences in the set that take FSM I from the initial state to the same state. Let R 
= {α1, …, αn, …, αm+1} where αi = αjβi for i = n + 1, …, m + 1, and δI(t1, αi) = δI(t1, 
αr). 

Considering i and r, there are three possible cases: i, r ≤ n; i ≤ n < r; or i, r > n.  
1) i, r ≤ n. In this case, αi, αr ∈ Q and the set TS has sequences αiγ and αrγ where 

γ distinguishes states δM(s1, αi) and δM(s1, αr). Thus, this case is not possible for FSM 
I that passes the test TS. 

2) i ≤ n < r. In this case, αi ∈ Q and the trace ν′, where ν′ is obtained from ν by 
deleting the prefix βr, distinguishes states δM(s1, αi) and δI(t1, αr). The latter 
contradicts the fact that the trace ν that contains β as a prefix is a shortest trace with 
such feature.   

3) i, r > n. In this case, the trace ν could be shortened by deleting the part between 
two states δM(s1, αi) and δM(s1, αr). 

Thus, given an FSM I with at most m states that is not quasi-equivalent to M, there 
exists an input sequence of the test TS such that output response of I to the sequence is 
different from that of the specification FSM M, i.e., TS is m-complete. ٱ 

 
According to Theorem 1, given a state s of M, different state identification 

sequences can be used when checking different incoming transitions of state s. When 
m = n, Theorem 1 can be refined and the following theorem establishes sufficient 
conditions for a given test suite to be n-complete. 

Theorem 2. Given a  reduced deterministic specification M with n states and state
 cover set Q  of  M, let TS be a finite set  of  defined  finite  input sequences of M that 
contains the set Q.X ∩ DISM. The set TS is n-complete if the following conditions 
hold: 

1. For each two different states of M reachable through sequences α and β in 
Q, TS has the sequences α.γ and β.γ where γ is a distinguishing sequence 
of the states δM(s1, α) and δM(s1, β). 

2. For each defined transition (s, x) of the specification M, TS has a sequence 
α.x with the following properties:  
a) δM(s1, α) = s. 
b) For each state reachable through a sequence β ∈ Q such that state 

δM(s1, β) ≠ s, TS has sequences α.γ and β.γ where γ is a distinguishing 
sequence of states s and δM(s1, β).   

c) For each state reachable through sequence β ∈ Q such that state 
δM(s1, β) ≠ δM(s, x), TS has sequences α.x.γ and β.γ, where γ is a 
distinguishing sequence of states δM(s, x) and δM(s1, β).  
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In the following section, we consider a simple application example that shows how 
test suites derived by other methods can be shortened by use of Theorems 1 and 2. We 
also illustrate by an example that the conditions stated in Theorems 1 and 2 are not 
necessary conditions.  

3.2 Application Example 

Consider  the specification FSM shown in Fig. 1. We derive a 4-complete test suite 
based on the HIS method [10, 17] using Q = {ε, a, b, c} as a state cover set and F = 
{H1, H2, H3, H4} with H1 = {a, bb}, H2 = {a, b}, H3 = {a}, H4 = {a, bb}, as a 
separating family of state identifiers. For state identification, we use the sequences: 
r.ε.H1 + r.a.H3 + r.b.H4 + r.c.H2. For testing transitions we use the sequences: r.a.H3 + 
r.b.H4 + r.c.H2 + r.a.a.H2 + r.a.b.H1 + r.b.a.H3 + r.b.b.H2 + r.b.c.H3 + r.c.a.H4 + 
r.c.b.H3. We replace the H’s in the above sequences by their corresponding values and 
then remove from the obtained set those sequences that are proper prefixes of other 
sequences. The obtained 4-complete test suite TSHIS  = {raaa, raab, raba, rabbb, 
rbaa, rbba, rbbb, rbca,  rcaa, rcabb, rcba} with total length 46. However, due to 
Theorem 1, we do not need to append sequence r.aa with a, as b already distinguishes 
state 2 = δM(1, aa) from any other state reachable through the sequences of the state 
cover set. For the same reason, without loss of the completeness of the test suite the 
following sequences can be deleted from TSHIS: rbba and rcaa. Moreover, transition 
4–b-> 2 can be checked by the sequences rcabb, while transition 2 – b –> 3 can be 
checked by the sequence raaba; thus, the sequence rcba and rbbb can be deleted from 
the test suite. As a result, we obtain a 4-complete test suite {raaba, raba, rabbb, rbaa, 
rbca, rcabb} with total length 27. 

We further show that the conditions of Theorems 1 and 2 are not necessary 
conditions. The reason is that two states can be implicitly distinguished if their 
successor states under some input are different. Consider the FSM B shown in Fig. 2.  

 
 1 2 3 

a 2/0 1/1 2/1 

b 3/0 1/1 3/1 

Fig. 2. Specification FSM B

 1 2 3 4 

a 3/1 4/1 2/0 3/1 

b 4/0 3/1 1/0 2/0 

c 2/1 - - 3/1 

Fig. 1. Specification FSM M
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sequences of the set r.Q.{a, b}. We first observe that states 2 and 3 that are reachable 
through sequences a and b in Q are not distinguished with suffixes aa, bb and aba, 
bab applied after ra and rb in the test suite. Nevertheless, if an implementation at 
hand passes the test suite TS1 then the states reachable after the sequences ra and rb 
are different. Otherwise, the states reachable after the sequence raa (rab) and after the 
sequence rba (rbb) coincide and thus we have four different output responses to the 
sequences r.a and r.b:   

 
 a b 

t1 0 0 
δB(t1, a) = δB(t1, b) 1 1 

δB(t1, a.a) = δB(t1, b.a) 0 1 
δB(t1, a.b) = δB(t1, b.b) 1 0 
 

If an implementation I has at most three states and passes TS1, we can draw the 
following conclusions: 

a) States t2 = δI(t1, a) and t3 = δI(t1, b) of I are two different states; 
b) Input a distinguishes the initial state of I from the other states of I; 
c) δI(t2, a) = δI(t2, b) = t1. 

Thus, δI(t3, a) = t2 since λI(t3, ba) = 11, and δI(t3, b) = t3 since λI(t2, ab) = 10 and 
δI(t2, a) = t1. Therefore, any implementation that passes TS1 is equivalent to the given 
specification FSM B, i.e., TS1 is a 3-complete test suite. 

As demonstrated by the above example, the possibility to distinguish two states 
based on their successor states depends on the number of states of an implementation 
at hand. Based on this, more rigorous analysis is needed to determine related 
conditions that can be used for shortening the length of a test suite. 

3.3 Test Derivation Method 

Let A  be a specification FSM, A = (S,X,Y,δ,λ,s0), where |S|=n. Below we present a 
test generation method that derives an m-complete test suite for A, where m ≥ n. 
 
Algorithm 1.  Test Generation Method 
Input : A reduced deterministic specification FSM M = (S,X,Y,δ,λ,DM,s0) with n 

states,  a prefix-closed state cover set Q of M, and an upper bound m on the 
number of states of an implementation FSM of M, where m ≥ n.  

Output :  An m-complete test suite TS  
Step 1. Derive the set of sequences TS = QPref(Xm-n+1) ∩ DISM 
Step 2. For each two sequences αi and αj of the state cover set Q check if the set TS 

has sequences αi.ω and αj.ω such that ω distinguishes states δ(s0, αi) and 
δ(s0, αj) in the specification FSM. If there are no such sequences select a 

The FSM B has the set Q = {ε, a, b} as a state cover. We consider the test suite TS1 
of all prefixes of the set {raaa, rabb, rbaba, rbbab}; the set TS1 contains all the 
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Step 3. For each sequence αi.β ∈  QPref(X≤m-n+1) ∩ DISM, αi ∈ Q, let si be the state 
reachable from the initial state of M by the sequence αi. Check if the set TS 
has sequences αi.β.ω and αj.ω , αj ∈ Q, δ(s0, αj) ≠ s, such that ω 
distinguishes states δ(s0, αi.β) and δ(s0, αj) in the specification FSM. If 
there are no such sequences select sequence ω that distinguishes states 
δ(s0, αi.β) and δ(s0, αj) and add to TS sequences αi.β.ω and αj.ω. 

Step 4. For each sequence αi.β ∈  QPref(X≤m-n+1) ∩ DISM, αi ∈ Q, and each two non-
empty prefixes β1 and β2 of the sequence β, check if the set TS has 
sequences αi.β1.ω and αi.β2.ω such that ω distinguishes states δ(s0, αi.β1) 
and δ(s0, αi.β2) in the specification FSM. If there are no such sequences 
select sequence ω that distinguishes states δ(s0, αi.β1) and δ(s0, αi.β2) and 
add to TS sequences αi.β1.ω and αi.β2.ω. 

Due to Theorem 2, the following statement holds. 

Theorem 3. The  set of  input  sequences TS obtained with  Algorithm 1  is  an m-
complete test suite for the given specification FSM M. 

Intuitively, the above method uses an appropriate sequence for testing each 
transition of the implementation. The prefix of the sequence takes the implementation 
to the starting state of the tested transition and its suffix distinguishes the expected 
final state of the tested transition from all other states of the specification using an 
appropriate state identification sequence. Unlike the HIS method, the identification 
sequence of the starting state of the tested transition has to be harmonized only with 
other state identification sequences of the states of the state cover set Q and of the 
states reachable from the initial state by the prefix of the sequence. Moreover, for the 
same state of the specification, we can use different state identification sequences 
when testing different transitions. 

To illustrate the method we derive a 5-complete test suite for the specification 
FSM in Figure 1. We first use the HIS method to obtain an 5-complete test suite and 
obtain the set {raaaa, raaabb, raaba, rabaa, rabba, rabbbb, rabca, rabcb, rbaaa, 
rbaab, rbaba, rbabbb, rbbaa, rbbabb, rbbba, rbcaa, rbcab, rbcba, rbcbbb,  rcaaa, 
rcaba, rcabb, rcaca,  rcbaa, rcbab, rcbba, rcbbbb} with total length 141. We use 
state identifiers {a} and {b} to check states 3 and 2, as both of them are applied after 
sequences of the state cover set Q, state identifier bb to check state 4, state identifiers 
{a, bb} to check state 1, and obtain the test suite {raaabb, raaba, rabaa, rabbbb, 
rabcb, rbaab, rbaba, rbabbb, rbbabb, rbbba,  rbcab, rbcba, rbcbbb, rcaaa, rcabb, 
rcaca,  rcbab, rcbba, rcbbbb} that is 5-complete and has total length 101. 

4  Experimental Results 

In  this  section we experiment  with  the HIS and H methods in order to compare the 
length of their test suites.  Table 1 provides a comparison between the length of the 
test suites obtained by these methods for the case when the number of states of an 

sequence ω that distinguishes states δ(s0, αi) and δ(s0, αj) and add to TS 
sequences αi.ω and αj.ω. 
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Each row of Tables 1 (2) corresponds to a group of 50 randomly generated 
completely specified reduced specifications. For each of these specifications we use 
the HIS and H methods to derive corresponding test suites. Then, we calculate the 
average length of the test suites generated for each group using each of these methods 
as shown in Columns IV and V (V and VI), respectively.  
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Fig. 3. Rations of average length H/HIS Test Suites when m = n for the experiments in Table 1  

Figure 3 depicts the ratios of length of the test suites of the H method over the 
length of the HIS based test suites for the experiments shown in Table 1. On average, 
the H test suites are 0.66 percent of the HIS test suites. Moreover, according to the 
experiments this ratio is almost independent of the size of the specification.   

 
 

implementation of a given system equals to the number of states of the given 
specification (i.e. m = n) and Table 2 provides a comparison for the case when m > n. 
The comparison in Tables 1 and 2 is based on randomly generated completely 
specified reduced deterministic specifications with a varying number of states (n).  

Table 1. A summary of experiments for the case when number of inputs/outputs equals to 10 
and m=n
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6 10 12 48 6790 4181 
7 20 22 88 17238 9565 
8 30 32 128 29860 15115 
9 40 42 168 44137 21919 
10 50 52 208 58949 28813 

Table 2. A summary of experiments for the case when number of inputs/outputs equals 4 and 
m=n+1 and m=n+2
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Fig. 4. Ratios of average length H/HIS Test Suites when m=n+1 and m=n+2
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5  Generalizing the H ethod for Nondeterministic Machines  

When the specification FSM M  is  reduced, possibly partial, nondeterministic with 
harmonized traces, the fault domain Rm(X) contains all complete observable NFSM 
implementations of M, defined over the input alphabet X of M, with at most m states. 
A test suite TS is m-complete for M if for each implementation I ∈ Rm(X) that is 
distinguishable from M, there exists a sequence in TS that distinguishes M and I. 

Due to the complete testing assumption [7, 8], the procedure used for deriving an 
m-complete test suite for deterministic machines can be adapted for deriving an m-
complete test suite for nondeterministic machines. First, we derive a state cover set of 
the NFSM specification M =(S, X, Y, hM, DM, s1) [7, 8]. However, in this case, 
differently from deterministic FSMs, the number of sequences in a state cover set can 
be less than the number of states n of the specification machine. This is due to the fact 
that the specification machine in response to a single defined input sequence, 
repeatedly applied at the initial state, can reach several states and produce in response 
different output sequences. 

For each state si ∈ S, we consider the sequences αi.Xm-n+1 ∩ DISM(si), where αi ∈ Q 
is the sequence of Q that takes the NFSM specification to state si from the initial state 
and DISM(si) is the set of all defined input sequences at state si. We let Q.Xm-n+1 ∩ 
DISM denote the set of all obtained sequences. Since the specification FSM has 
harmonized traces, the sets of defined input sequences of the states reachable by any 
initially defined input sequence coincide. For every sequence αi ∈ Q, we denote Si ∈ 
S the subset of states for which we use αi ∈ Q. The subsets Si form a partition of the 
set S. 

As an application example of the HIS method [8], consider the NFSM M shown in 
Fig. 5. M admits the set {ε, a, b} as a state cover set. The NFSM M is reduced; state 3 
can be distinguished from all other states by the input sequence a, state 2 can be 
distinguished from all other states by the input sequence aa, and states 1 and 4 can be 
distinguished by the input sequence b. Moreover, M has harmonized traces since it 
has the same set of defined inputs at states 2 and 3. Let m = 4. Then the set Q.Xm-n+1 ∩ 
DISM = {a, b, c, aa, ac, ba, bb, bc}. 

The FSM M has the following sets of harmonized state identifiers, H1 = {aa, b}, H2 
= {aa}, H3 = {a} and H4 = {aa, b}. For each sequence in the set Q.Xm-n+1 ∩ DISM, we 
determine the states reached by this sequence and append the sequence with 
corresponding sets of harmonized state identifiers. The union of all obtained test 
sequences is the 4-complete test suite TSHIS = {raaaa, racaa, racb, rbaaa, rbbaa, 
rbbb, rbcaa, rcaa, rcb} which is of length 40. Here we note that state 1 has also the 
sequence cc as a state identifier which is shorter than the sequences of H1, but cc is 
not used since it is not harmonized with the identifiers of all other states. We note that 
the GWp [7] method can not be applied to this example since M does not have a 

Figure 4 depicts the ratios of length of the test suites of the H method over the 
length of the HIS based test suites for the experiments depicted in rows 1 to 5 and 
rows 6 to 10 of Table 2. On average, the H test suites are 0.55 percent of the HIS test 
suites. Moreover, according to the experiments this ratio slightly decreases as the size 
of the specification increases.  

M

characterization set. States 1 and 4 of M can be distinguished only by an input 
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 1 2 3 4 

a 3/1; 2/0 2/1; 3/0 2/0 3/1; 2/0 

b 4/0,1 - - 1/1 

c 1/1 1/0 1/0 2/1 

Fig. 5. Partial NFSM specification M  

Similar to Theorem 1, the following theorem allows us to use non-harmonized 
state identifiers when deriving an m-complete test suite. 

Theorem 4.  Given  a  set TS  of defined input sequences of the specification NFSM 
M, let TS contain the set Q.Xm-n+1 ∩ DISM. The set TS is m-complete if 

- For  each  two  sequences αi and αj ∈ Q, for each two states si ∈ Si and sj ∈ Si,  
the set TS has sequences αiσ and αjσ  where σ distinguishes states si and sj; 

- For each  sequence  αi.ν ∈ Q.(X≤m-n+1) ∩ DISM, αi ∈ Q, each state  si ∈ Si, and 
each state s reachable from state si via the sequence ν  and each state sj ∈ Sj, sj ≠ s 
and αj ∈ Q the set TS has sequences αi.νσ and αj.σ, where σ  distinguishes state s 
from state sj. 

- For each sequence α i.β, α i ∈ Q, |β| = m – n + 1, each  state si ∈ Si and each 
two non-empty prefixes β1 and β2 of β that take the specification FSM M from 
state si to the subsets of states P1 and P2, for each two states s1 ∈ P1 and s2 ∈ P2, 
TS has sequences α.β1.γ and α.β2.γ, where γ is a distinguishing sequence of states 
s1 and s2. 

In other words, similar to the case of deterministic FSMs, we do not need to derive 
in advance state distinguishing sequences for the specification FSM. These sequences 
can be derived on-the-fly starting with the set Q.Xm-n+1 ∩ DISM. Moreover, different 
state identifiers can be used for checking incoming transitions of states. These 
identifiers do not have to be harmonized with the identifiers of all other states. In our 
working example, we observe that the state identifier {cc} can be used for identifying 
state 1 despite of the fact that this identifier is not harmonized with the identifiers of 
all other states. Due to the above theorem, the test suite TS2 = {raaaa, raccc, rbaaa, 
rbbcc, rbcaa, rbcc, rccc} of length 33 is also 4-complete.  

 
Algorithm 2.  Test Generation Method 
Input : The reduced nondeterministic specification FSM M = (S,X,Y,δ,λ,DM,s0) with n 

states and harmonized traces, a prefix-closed state cover set Q of M, and an 
upper bound m on the number of states of an implementation FSM, where 
m ≥ n.  

sequence b or by an input sequence with the head symbol c. However, by direct 
inspection, one can observe that states 2 and 3 can not be distinguished with these 
sequences.  
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Step 3. For each sequence αi.β ∈  QPref(X≤m-n+1) ∩ DISM, αi ∈ Q, each state si ∈ Si, 
each state s reachable from si via sequence β and each state sj ∈ Sj, αj ∈ Q, 
check if the set TS has sequences αi.β.ω and αj.ω, sj ≠ s, such that ω 
distinguishes states sj and s in the specification FSM. If there are no such 
sequences select sequence ω that distinguishes states sj and s and add to TS 
sequences αi.β.ω and αj.ω. 

Step 4. For each sequence αi.β ∈  QPref(X≤m-n+1) ∩ DISM, αi ∈ Q, each state si ∈ Si, 
and each two non-empty prefixes β1 and β2 of the sequence β, let P1 and P2 

be the sets of states reachable from state si via sequences β1 and β2. For 
each two states s1 ∈ P1 and s2 ∈ P2, check if the set TS has sequences 
αi.β1.ω and αi.β2.ω such that ω distinguishes states s1 and s2 in the 
specification FSM. If there are no such sequences select sequence ω that 
distinguishes states s1 and s2 and add to TS sequences αi.β1.ω and αi.β2.ω. 

 
Due to Theorem 4, the following statement holds. 

Theorem 5 The set  of  input sequences TS obtained using Algorithm 2 is an m-
complete test suite for the given specification FSM M. 

6  Conclusion 

An improved HIS based test derivation method has been presented in this paper. The 
method can be applied for any reduced possibly partial and nondeterministic 
specification machine. In comparison with the HIS method, in the proposed method 
state identifiers are derived on-the-fly and different state identifiers can be used when 
checking different incoming transitions of a state. Experimental results show that the 
proposed method returns shorter test suites than the HIS method. In particular, on 
average, the length of a test suite derived using the H method is 0.66% (0.55%) of the 
length of a test suite derived using the HIS method when the number of states of an 
implementation equals to (is greater than) the number of states of the specification. 
The length of a test suite returned by the proposed method essentially depends on the 
order in which transitions are checked. Accordingly, currently, we are incorporating 
into our method an optimization procedure that determines an order that provides a 
shortest length test suite. 

Output :  An m-complete test suite TS  
Step 1. Derive the set of sequences TS = QPref(Xm-n+1) ∩ DISM and fix for each αi ∈ 

Q the subset Si of states for which we use the sequence αi. 
Step 2. For each two sequences αi and αj of the state cover set Q and each two states 

si ∈ Si and sj ∈ Sj, check if the set TS has sequences αi.ω and αj.ω such that 
ω distinguishes states si and sj in the specification FSM. If there are no such 
sequences select a sequence ω that distinguishes states si and sj and add 
into TS sequences αi.ω and αj.ω. 

.
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