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Preface

FORTE (Formal Techniques for Networked and Distributed Systems) 2005 was spon-
sored by Working Group 6.1, Technical Committee 6 (TC6) of the International Feder-
ation for Information Processing (IFIP). The conference series started in 1981 under the
name PSTV (Protocol Specification, Testing, and Verification). In 1988, a second series
under the name FORTE was started. Both series merged to FORTE/PSTV in 1996. The
conference name was changed to FORTE in 2001. During its 24-year history, many
important contributions have been reported in the conference series. The last five meet-
ings of FORTE were held in Pisa (Italy), Cheju Island (Korea), Houston (USA), Berlin
(Germany), and Madrid (Spain).

The 25th FORTE was held from Sunday to Wednesday, October 2–5, 2005 on the
beautiful campus of the National Taiwan University (NTU), Taipei, Taiwan, ROC. The
scope covered formal description techniques (MSC, UML, Use cases, . . .),
semantic foundations, model-checking, SAT-based techniques, process algebrae, ab-
stractions, protocol testing, protocol verification, network synthesis, security system
analysis, network robustness, embedded systems, communication protocols, and sev-
eral promising new techniques. In total, we received 88 submissions and accepted 33
regular papers and 6 short papers. All submissions received three reviews. The final
program also included 3 keynote speeches, respectively by Prof. Amir Pnueli, Dr. Con-
stance Heitmeyer, and Prof. Teruo Higashino, and 3 tutorials, respectively by Prof.
Rance Cleaveland, Dr. Constance Heitmeyer, and Prof. Teruo Higashino. The proceed-
ings also include the text of the keynote speeches. In addition, there were social events,
including a reception, a banquet, and an excursion.

FORTE 2005 was co-located with ATVA (Automated Technology for Verification
and Analysis) 2005 with a two-day overlap. Prof. Amir Pnueli was the joint keynote
speaker. The participants of FORTE 2005 and ATVA 2005 also enjoyed a joint ban-
quet/reception and a joint excursion.

FORTE 2005 was organized under the auspices of IFIP TC 6 by the Department
of Electrical Engineering, NTU. It was generously supported by the National Science
Council, Taiwan, ROC; the Ministry of Education, Taiwan, ROC; the Institute of In-
formation Science, Academia Sinica, Taiwan, ROC; the Center for Information and
Electronic Technologies, NTU; the Graduate Institute of Communication Engineering,
NTU; and the Computer and Information Networking Center, NTU.

We would like to thank the Steering Committee members of FORTE for all their
suggestions, guidance, and assistance. We also owe a lot to all the Program Commit-
tee members and reviewers for their effort in compiling rigorous reviews. Prof. Manuel
Nunez deserves special thanks for unselfishly passing on his experience as organizer of
FORTE 2004. We would also like to thank Prof. Jin-Fu Chang, Prof. Chuan Yi Tang,
Prof. Wanjiun Liao, Prof. Sy-Yen Kuo, Prof. Ming-Syan Chen, Dr. Churn-Jung Liau,
and Dr. Ching-Tarng Hsieh for their assistance. Finally special thanks go to Ms. Lih-
Chung Lin, Ms. Tz-Hua Chen, Mr. Rong-Shiung Wu, and Mr. Zawa Chu for their ener-
getic and careful planning in the local arrangements and webpage management.

October 2005 Farn Wang



Organization

Steering Committee

Gregor v. Bochmann (Canada) Tommaso Bolognesi (Italy)
John Derrick (UK) Guy Leduc (Belgium)
Ken Turner (UK)

General Chair

Jin-Fu Chang (Taiwan)

Program Chair

Farn Wang (Taiwan)

Program Committee

Gregor v. Bochmann (Canada) Tommaso Bolognesi (Italy)
Mario Bravetti (Italy) Ana Cavalli (France)
Jin Song Dong (Singapore) Khaled El-Fakih (UAE)
Colin Fidge (Australia) David de Frutos-Escrig (Spain)
Reinhard Gotzhein (Germany) Constance Heitmeyer (USA)
Holger Hermanns (Germany) Teruo Higashino (Japan)
Dieter Hogrefe (Germany) Gerald J. Holzmann (USA)
Ching-Tarng Hsieh (Taiwan) Claude Jard (France)
Myungchul Kim (Korea) Hartmut Koenig (Germany)
David Lee (USA) Chin-Laung Lei (Taiwan)
Wanjiun Liao (Taiwan) Churn-Jung Liau (Taiwan)
Huimin Lin (China) Nancy Lynch (USA)
Elie Najm (France) Manuel Nunez (Spain)
Kenji Suzuki (Japan) Alex Petrenko (Canada)
Ken Turner (UK) Chuan Yi Tang (Taiwan)
Farn Wang (Taiwan) Hasan Ural (Canada)
Tomohiro Yoneda (Japan) Hsu-Chun Yen (Taiwan)

Additional Reviewers

Akira Idoue Alessandro Fantechi Alex Groce
Arnaud Dury Baptiste Alcalde Bassel Daou and Daniel Amyot



VIII Organization

Carlos Gregorio -Rodríguez Carron Shankland Clara Segura
Claudio Guidi Claudio Sacerdoti Coen Constantin Werner
Dario VIEIRA Dong Wang Dongluo Chen
Elisangela Rodrigues-Vieira Fabio Martinelli Fida Dankar
Guoqiang Shu Hesham Hallal Hidetoshi Yokota
Hong PAN Ingmar Fliege Ismael Rodriguez
Jalal Kawash Jiale Huo Jian Liu
Jinzhi Xia Joachim Thees Jun Lei
Jun Sun Keqin Li Li Jiao
Lijun Zhang Luis Llana Manuel Mazzara
Marco Zibull Maurice ter Beek Mercedes G. Merayo
Michael Ebner Miguel Palomino Natalia Lopez
Nicola Tonellotto O. Marroquin-Alonso Ping Hao
Rene Soltwisch Robert Clark Roberto Gorrieri
Roberto Lucchi Rüdiger Grammes Rui Xue
Salvatore Rinzivillo Sam Owre Savi Maharaj
Sebastian Schmerl Serge Boroday Soonuk Seol
Stefania Gnesi Stephan Schröder Stephane Maag
Sungwon Kang Takashi Kitamura Thomas Kuhn
Tomohiko Ogishi Toru Hasegawa Wenhui Zhang
Xinxin Liu Yolanda Ortega-Mallén Yuan Fang Li
Yutaka Miyake

Sponsoring Institutions

National Science Council, Taiwan, ROC
Ministry of Education, Taiwan, ROC
Institute of Information Science, Academia Sinica, Taiwan, ROC
Center for Information and Electronic Technologies, NTU
Graduate Institute of Communication Engineering, NTU
Computer and Information Networking Center, NTU



Table of Contents

KEYNOTE SPEECHES

Ranking Abstraction as Companion to Predicate Abstraction
Ittai Balaban, Amir Pnueli, Lenore D. Zuck . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Developing High Quality Software with Formal Methods:
What Else Is Needed?

Constance Heitmeyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A Testing Architecture for Designing High-Reliable MANET Protocols
Teruo Higashino, Hirozumi Yamaguchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

REGULAR PAPERS

A Composition Operator for Systems with Active and Passive Actions
Stefan Strubbe, Rom Langerak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A Formal Semantics of UML StateCharts by Means of Timed Petri Nets
Youcef Hammal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Hierarchy of Implementable MSC Languages
Benedikt Bollig, Martin Leucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Combining Static Analysis and Model Checking for Systems Employing
Commutative Functions

A. Prasad Sistla, Min Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Fast Generic Model-Checking for Data-Based Systems
Dezhuang Zhang, Rance Cleaveland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Logic and Model Checking for Hidden Markov Models
Lijun Zhang, Holger Hermanns, David N. Jansen . . . . . . . . . . . . . . . . . . . . . . 98

Proving ∀μ-Calculus Properties with SAT-Based Model Checking
Bow-Yaw Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Ad Hoc Routing Protocol Verification Through Broadcast Abstraction
Oskar Wibling, Joachim Parrow, Arnold Pears . . . . . . . . . . . . . . . . . . . . . . . . 128



X Table of Contents

Discovering Chatter and Incompleteness in the Datagram Congestion Control
Protocol

Somsak Vanit-Anunchai, Jonathan Billington, Tul Kongprakaiwoot . . . . . . . . 143

Thread Allocation Protocols for Distributed Real-Time and Embedded
Systems

César Sánchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill,
Zohar Manna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A Petri Net View of Mobility
Charles A. Lakos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Modular Verification of Petri Nets Properties: A Structure-Based Approach
Kais Klai, Serge Haddad, Jean-Michel Ilié . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

An Improved Conformance Testing Method
Rita Dorofeeva, Khaled El-Fakih, Nina Yevtushenko . . . . . . . . . . . . . . . . . . . . 204

Resolving Observability Problems in Distributed Test Architectures
J. Chen, R.M. Hierons, H. Ural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Automatic Generation of Conflict-Free IPsec Policies
Chi-Lan Chang, Yun-Peng Chiu, Chin-Laung Lei . . . . . . . . . . . . . . . . . . . . . . 233

A Framework Based Approach for Formal Modeling and Analysis of
Multi-level Attacks in Computer Networks

Gerrit Rothmaier, Heiko Krumm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Model Checking for Timed Statecharts
Junyan Qian, Baowen Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Abstraction-Guided Model Checking Using Symbolic IDA* And Heuristic
Synthesis

Kairong Qian, Albert Nymeyer, Steven Susanto . . . . . . . . . . . . . . . . . . . . . . . . 275

Modeling and Verification of Safety-Critical Systems Using Safecharts
Pao-Ann Hsiung, Yen-Hung Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Structure Preserving Data Abstractions for Statecharts
Steffen Helke, Florian Kammüller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Amortised Bisimulations
Astrid Kiehn, S. Arun-Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Proof Methodologies for Behavioural Equivalence in DPI

Alberto Ciaffaglione, Matthew Hennessy, Julian Rathke . . . . . . . . . . . . . . . . . 335



Table of Contents XI

Deriving Non-determinism from Conjunction and Disjunction
Naijun Zhan, Mila Majster-Cederbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Abstract Operational Semantics for Use Case Maps
Jameleddine Hassine, Juergen Rilling, Rachida Dssouli . . . . . . . . . . . . . . . . . 366

ArchiTRIO: A UML-Compatible Language for Architectural Description and
Its Formal Semantics

Matteo Pradella, Matteo Rossi, Dino Mandrioli . . . . . . . . . . . . . . . . . . . . . . . 381

Submodule Construction for Extended State Machine Models
Bassel Daou, Gregor V. Bochmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Towards Synchronizing Linear Collaborative Objects with Operational
Transformation

Abdessamad Imine, Pascal Molli, Gérald Oster, Michaël Rusinowitch . . . . . . 411

Designing Efficient Fail-Safe Multitolerant Systems
Arshad Jhumka, Neeraj Suri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Hierarchical Decision Diagrams to Exploit Model Structure
Jean-Michel Couvreur, Yann Thierry-Mieg . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Computing Subgraph Probability of Random Geometric Graphs: Quantitative
Analyses of Wireless Ad Hoc Networks

Chang Wu Yu, Li-Hsing Yen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Formalising Web Services
Kenneth J. Turner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

From Automata Networks to HMSCs: A Reverse Model Engineering
Perspective

Thomas Chatain, Loïc Hélouët, Claude Jard . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Properties as Processes: Their Specification and Verification
Joel Kelso, George Milne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

SHORT PAPERS

Epoch Distance of the Random Waypoint Model in Mobile Ad Hoc Networks
Yueh-Ting Wu, Wanjiun Liao, Cheng-Lin Tsao . . . . . . . . . . . . . . . . . . . . . . . . . 518

Automatic Partitioner for Behavior Level Distributed Logic Simulation
Kai-Hui Chang, Jeh-Yen Kang, Han-Wei Wang, Wei-Ting Tu, Yi-Jong Yeh,
Sy-Yen Kuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



XII Table of Contents

Expressive Completeness of an Event-Pattern Reactive Programming
Language

César Sánchez, Matteo Slanina, Henny B. Sipma, Zohar Manna . . . . . . . . . . 529

Formalizing Interoperability Testing: Quiescence Management and Test
Generation

Alexandra Desmoulin, César Viho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Formal Description of Mobile IPv6 Protocol
Yujun Zhang, Zhongcheng Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Incremental Modeling Under Large-Scale Distributed Interaction
Horst F. Wedde, Arnim Wedig, Anca Lazarescu, Ralf Paaschen,
Elisei Rotaru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

The Inductive Approach to Strand Space
Yongjian Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Compositional Modelling and Verification of IPv6 Mobility
Peng Wu, Dongmei Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557



Ranking Abstraction as Companion to
Predicate Abstraction�

Ittai Balaban1, Amir Pnueli1,2, and Lenore D. Zuck3

1 New York University, New York
{balaban, amir}@cs.nyu.edu

2 Weizmann Institute of Science
3 University of Illinois at Chicago

lenore@cs.uic.edu

Abstract. Predicate abstraction has become one of the most successful method-
ologies for proving safety properties of programs. Recently, several abstrac-
tion methodologies have been proposed for proving liveness properties. This
paper studies “ranking abstraction” where a program is augmented by a non-
constraining progress monitor, and further abstracted by predicate-abstraction,
to allow for automatic verification of progress properties. Unlike most liveness
methodologies, the augmentation does not require a complete ranking function
that is expected to decrease with each step. Rather, the inputs are component
rankings from which a complete ranking function may be formed.

The premise of the paper is an analogy between the methods of ranking ab-
straction and predicate abstraction, one ingredient of which is refinement: When
predicate abstraction fails, one can refine it. When ranking abstraction fails, one
must determine whether the predicate abstraction, or the ranking abstraction, need
be refined. The paper presents strategies for determining which case is at hand.

The other part of the analogy is that of automatically deriving deductive proof
constructs: Predicate abstraction is often used to derive program invariants for
proving safety properties as a boolean combination of the given predicates. De-
ductive proof of progress properties requires well-founded ranking functions in-
stead of invariants. We show how to obtain concrete global ranking functions
from abstract programs.

We demonstrate the various methods on examples with nested loops, including
a bubble sort algorithm on linked lists.

1 Introduction

Predicate abstraction has become one of the most successful methodologies for proving
safety properties of programs. However, with no extension it cannot be used to verify
general liveness properties. In this paper, we present a framework, based on predicate
abstraction and ranking abstraction, for verification of both safety and progress prop-
erties. Ranking abstraction, introduced in [7], is based on an augmentation of the con-
crete program. The augmentation is parameterized by a set of well founded ranking

� This research was supported in part by NSF grant CCR-0205571, ONR grant N00014-99-1-
0131, and Israel Science Foundation grant 106/02-1.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 1–12, 2005.
c© IFIP International Federation for Information Processing 2005



2 I. Balaban, A. Pnueli, and L.D. Zuck

functions. Based on these, new compassion (strong fairness) requirements as well as
transitions are generated, all of which are synchronously composed with the program
in a non-constraining manner. Unlike most methodologies, the ranking functions are
not expected to decrease with each transition of the program. Rather, a further step of
state abstraction is performed such that, coupled with the new compassion, it serves to
construct a complete ranking function.

The basic premise presented in this paper is that there is a duality between the
activities that lead to verification of safety properties via predicate abstraction, and those
that lead to verification of progress properties via ranking abstraction. This duality is
expressed through the following components:

• The initial abstraction. Heuristics are applied to choose either an initial set of pred-
icates, or a set of core well founded ranking functions.

• Refinement. A too-coarse initial abstraction leads to spurious abstract counterex-
amples. Depending on the character of the counterexample, either a predicate, or a
ranking, refinement is performed.

• Generation of deductive proof constructs. Predicate abstraction is often used as an
automatic method to generate an inductive invariant as a boolean combination of
the given predicates. Dually, ranking abstraction can be used to generate a global
concrete ranking function that decreases with every step of the program, as a lexi-
cographical combination of the core ranking functions.

We demonstrate the use of ranking refinement in order to prove termination of a canoni-
cal program with nested loops and unbounded random assignments, as well as a bubble
sort algorithm on unbounded linked lists. Both examples entail the use of additional
heuristics in order to synthesize core ranking functions.

The framework, as well as all experiments, have been implemented using the TLV

interactive model-checker [1]. The contribution of the paper is as follows: At the infor-
mal, philosophical level, it strives to convince the reader that the duality between invari-
ance and progress, present in deductive frameworks, extends to how one approaches
automatic verification of each kind of property. More concretely, it suggests a for-
mal framework, based on two specific abstraction methods for proving both safety and
progress properties. This includes heuristics for choosing separate refinement method-
ologies based on the form of counterexamples, and a method for automatically deriving
a global well founded program ranking function.

The paper is organized as follows: Section 2 describes the computational model of
fair discrete systems as well as predicate and ranking abstractions. Furthermore, it mo-
tivates the use of ranking abstraction by demonstrating its value, compared to a typical
deductive method. Section 3 formalizes the different notions of abstraction refinement.
Section 4 presents a method for extracting a global ranking function from an abstract
program. Finally, Section 5 summarizes and concludes.

Related Work

Dams, Gerth, and Grumberg [6] point out the duality between verification of safety
and progress of programs. Like us, they aim to lift this duality to provide tools for
proving progress properties, whose functionality is analogous to similar tools used for
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safety. Specifically, they propose a heuristic for discovering ranking functions from a
program’s text. In contrast, we concentrate on an analogy with predicate abstraction,
a particular method for safety. Our approach is broader, however, in that we suggest a
general framework for safety and progress properties where each of the activities in a
verification process has an instantiation with respect to each of the dualities.

In [10] Podelski and Rybalchenko present a method for synthesis of linear ranking
functions. The method is complete for unnested loops, and is embedded successfully in
a broader framework for proving liveness properties [9].

The topic of refinement of state abstraction, specifically predicate abstraction, has
been widely studied. A number of existing works in this area are [5,3], and [4].

2 The Formal Framework

In this section we present our computational model, as well as the methods of predicate
abstraction and ranking abstraction.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (FDS) S = 〈V, Θ, ρ, J , C〉,
where

• V — A set of system variables. A state of S provides a type-consistent interpreta-
tion of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each compassion require-
ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A computation of an FDS S is an infinite sequence of states σ : s0, s1, s2, ..., satis-

fying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.
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2.2 Predicate Abstraction

The material here is a summary of [7] and [2]. We fix an FDS S = 〈V, Θ, ρ,J , C〉
whose set of states is Σ. A predicate abstraction is a mapping α : Σ → {0, 1}n for
some positive n. The set of tuples {0, 1}n is referred to as the set of abstract states.
We focus on abstractions that can be represented by a set of equations of the form
{ui = Pi(V ) | i = 1, . . . , n}, where the Pi’s are assertions over the concrete variables
V , to which we refer as predicates, and U = {u1, . . . , un} is the set of boolean abstract
variables. The mapping α can also be expressed more succinctly by:

U = P(V )

For an assertion p(V ), we define its abstraction by:

α(p) : ∃V.(U = P(V ) ∧ p(V ))

The semantics of α(p) is ‖α(p)‖ = {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is, in general,
an over-approximation – an abstract state is in ‖α(p)‖ iff there exists some concrete
p-state that is abstracted into it. An assertion p(V, V ′) over both primed and unprimed
variables is abstracted by:

α(p) : ∃V, V ′.(U = P(V ) ∧ U ′ = P(V ′) ∧ p(V, V ′))

The assertion p is said to be precise with respect to the abstraction α if ‖p‖ =
α−1(‖α(p)‖), i.e., if two concrete states are abstracted into the same abstract state, they
are either both p-states, or they are both ¬p-states. For a temporal formula ψ in positive
normal form (where negation is applied only to state assertions), ψα is the formula
obtained by replacing every maximal state sub-formula p in ψ by α(p). The formula
ψ is said to be precise with respect to α if each of its maximal state sub-formulas are
precise with respect to α.

In all cases discussed in this paper, the formulae are precise with respect to the
relevant abstractions. Hence, we can restrict to the over-approximation semantics.

The abstraction of S by α is the system

Sα = 〈U, α(Θ), α(ρ),
⋃

J∈J
α(J),

⋃
(p,q)∈C

(α(p), α(q))〉

The soundness of predicate abstraction is derived from [7]:

Theorem 1. For a system S, abstraction α, and a positive normal form temporal for-
mula ψ:

Sα |= ψα =⇒ S |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete system sat-
isfies the concrete property.

2.3 Ranking Abstraction

State abstraction often does not suffice to verify progress properties. We consider rank-
ing abstraction, a method of augmenting the concrete program in a non-constraining
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manner, in order to measure progress of program transitions, with respect to a ranking
function. Once a program is augmented, a conventional state abstraction can be used to
preserve this notion in the abstract system. This method was introduced in [7].

A ranking function is a function mapping program states to some domain D. A
ranking function is well founded if D is partially ordered by a relation �, which does not
admit an infinitely descending chain of the form a0 � a1 � a2 � · · · . Throughout the
rest of the paper we assume all ranking functions to be well founded. The augmentation
of system S by a ranking function δ, written S+δ, is the system

S+δ : 〈V ∪ {dec}, Θ, ρ ∧ ρδ, J , C ∪ {(dec > 0, dec < 0)}〉
where dec is a fresh variable symbol, and the conjunct ρδ is defined as

ρδ : dec′ =

⎧⎨
⎩

1 δ � δ′

0 δ = δ′

−1 otherwise

The well foundedness of δ is abstracted by the augmentation into the compassion
requirement (dec > 0, dec < 0), stating that if dec is positive infinitely often in a
computation, then it must also be negative infinitely often.

Since augmentation does not constrain the behavior of S, any property in terms
of variables of S is valid over S iff it is valid over S+δ. In order to verify a progress
property ψ, an augmentation S+δ is abstracted using a standard state abstraction, as
shown in Example 1.

x, y : natural init x = 0, y = 0⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 : x := ?
while x > 0 do⎡
⎢⎣

1 : y := ?
while y > 0 do[
2 : y := y − 1

]
3 : x := x − 1

⎤
⎥⎦

4 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Program NESTED-LOOPS

Example 1 (Nested Loops). Consider the program NESTED-LOOPS in Fig. 1. In the
program, the statements x := ?, y := ? in lines 0 and 1 denote random assignments of
arbitrary positive integers to variables x and y. An initial attempt to prove termination
of this program is to define the ranking function δy = y. The augmentation S+δy is
shown in Fig. 2. Note that statements that in the original program assigned to y, are
now replaced with a simultaneous assignment to both y and the augmentation variable
decy .

While this augmentation is not sufficient to prove program termination, it can be
used to show termination of the inner loop, expressed by

(π = 2) =⇒ (π = 3) (1)

where the variable π denotes the program counter. As a state abstraction we use

α : (X = (x > 0)) ∧ (Y = (y > 0)) ∧ (Decy = decy)
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x, y : natural init x = 0, y = 0
decy : {−1, 0, 1}
compassion (decy > 0, decy < 0)⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 : x := ?
while x > 0 do⎡
⎢⎣

1 : (y, decy) := (?,−1)
while y > 0 do[
2 : (y, decy) := (y − 1, 1)

]
3 : x := x − 1

⎤
⎥⎦

4 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Program AUGMENTED-NESTED-LOOPS

which results in the abstract program in Fig. 3. Notice that the abstraction has introduced
nondeterministic assignments to both X and Y (lines 2 and 3). It is now possible to
verify, e.g. by model-checking, the property (1) over the abstract program.

X, Y : {0, 1} init Y = 0, X = 0
Decy : {−1, 0, 1}

compassion (Decy > 0, Decy < 0)⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 : X := 1
while X do⎡
⎢⎣

1 : (Y, Decy) := (1,−1)
while Y do[
2 : (Y, Decy) := ({0, 1}, 1)

]
3 : X := {0, 1}

⎤
⎥⎦

4 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Program ABSTRACT-AUGMENTED-NESTED-LOOPS

In general, we consider simultaneous augmentation with sets of ranking functions.
A ranking is a set of ranking functions. Let Δ be the ranking {δ1, . . . , δk}. Then the
augmentation S+Δ is the system

S+Δ : S+δ1+· · ·+δk

Just like the case of predicate abstraction, we lose nothing (except efficiency) by
adding potentially redundant rankings. The main advantage here over direct use of
ranking functions within deductive verification is that one may contribute as many ele-
mentary ranking functions as one wishes. It is then left to a model-checker to sort out
their interaction and relevance. To illustrate this, consider a full termination proof of
the program NESTED-LOOPS. Due to the unbounded non-determinism of the random
assignments, a termination proof needs to use a ranking function ranging over lexico-
graphic tuples, whose elementary ranking components are {π = 0, x, y}. With ranking
abstraction, however, one need only provide the well founded ranking Δ = {x, y}.

3 Abstraction Refinement

3.1 Preliminaries

In the following sections we refer to finite sequences of consecutive states, known
as traces, as well as composite transition relations denoted by traces. Fix a trace
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σ : σ1 . . . σ�, where the σi are program states. An alternate representation of σ is as
the sequence of transitions ρ1 . . . ρ�−1, with ρi defined as σi ∧ σ′

i+1 for each i < �.
A composition of two transition relations ρ1 and ρ2, denoted by ρ1 ◦ ρ2, is defined

as ∃V ′.ρ1(V, V ′) ∧ ρ2(V ′, V ′′). The transition relation denoted by the trace σ, written
ρσ, is the composition of its transition relations, given by ρσ : ρ1 ◦ . . . ◦ ρ�−1.

A cycle is a trace of the form σ1 . . . σ�σ1. In the following sections we discuss both
cycles and control flow loops, the difference being that while in a cycle the initial and
last states are identical, a control flow loop is a trace where the initial and last states
assign identical values to the program counter π, but not necessarily to other variables.

3.2 Refinement

The process of proving or refuting a progress property ψ over a program begins with a
user-provided initial ranking Δ and an abstraction α. Following [11], the initial predi-
cate abstraction is chosen as follows: Let P be the (finite) set of atomic state formulas
occurring in ρ, Θ, J , C and the concrete formula ψ that refer to non-control and non-
primed variables. Then the abstraction α is the set of equations {Bp = p : p ∈ P}.

The formula ψα is then model-checked over (S+Δ)α. If ψα is valid then we can
conclude that S |= ψ. Otherwise, a counterexample is found, in the form of a com-
putation of Sα that does not satisfy ψα. If such a computation exists then a standard
model checker will return a counter-example that is finitely represented as a “lasso”
– a finite initial trace followed by a cycle. The following scenarios may give rise to a
counterexample:

1. The property ψ is not valid: The concrete system indeed has a computation in which
a cycle is repeated infinitely

2. The state abstraction is too coarse: The abstract system has a finite trace with no
concrete counterpart

3. The concrete system has a finite acyclic trace that cannot be extended to an infinite
computation, such that its abstraction contains a cycle.

In case 1, a valid counterexample to ψ has been found, and we conclude that ψ
indeed is not valid over S. Cases 2 and 3 represent different forms of infeasibility of the
counterexample, and are handled by different means of refinement.

Case 2 represents a typical scenario in state abstraction refinement, in the follow-
ing way: Although the counterexample may be a lasso, say (σ1, σ2), we consider the
finite trace σ1σ2 and the fact that it is spurious, i.e., cannot be concretized. This case
is therefore handled by refining the abstraction with a new predicate that eliminates
the spurious trace. Any one of existing refinement methods may be applied (see, for
example, [5,3,4]).

Case 3 implies the following situation: A cyclic trace is present in the abstract sys-
tem, the concretization of which is a control-flow loop. Furthermore, the loop is well-
founded, in that there exists no infinite sequence of iterations of the loop. To preserve
this property in the abstract program, we search for a ranking function that proves the
loop’s well-foundedness. Formally, if ρσ is the loop transition relation, then our goal is
to find a ranking function δ over a domain (D, �) such that ρσ → δ � δ′. A number
of methods have been proposed to synthesize such functions, among them in [10,6]. In
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Subsection 3.3 we present an additional heuristic for the domain of unbounded linked
lists.

Cases 2 and 3 both result in a refined abstraction and a refined ranking, respectively.
Therefore, the verification process continues with a new iteration of augmentation and
abstraction. The process repeats until success — ψ is proven to be valid or invalid — or
the refinement reaches a fixpoint, in which case the process fails.

Example 2 (Termination of NESTED-LOOPS). Recall the program NESTED-LOOPS in
Fig. 1, for which we wish to prove termination, expressed as (π = 0) =⇒ (π = 4).
We begin with the initial abstraction and ranking used in Example 1:

α : (X = (x > 0)) ∧ (Y = (y > 0)) ∧ (Decy = decy)
Δ : {δ1 = y}

An initial iteration of abstraction and model-checking results in an abstract lasso coun-
terexample consisting of the prefix

〈Π = 0, X, ¬Y, Decy = 0 〉

and the cycle
〈Π = 1, X, ¬Y, Decy = 0 〉
〈Π = 2, X, Y, Decy = −1 〉
〈Π = 3, X, ¬Y, Decy = 1 〉

with Π denoting the program counter in the abstract program. The lasso can be con-
cretized, as shown by the concrete trace

s1 : 〈π = 0, x = 0, y = 0, decy = 0 〉
s2 : 〈π = 1, x = 4, y = 0, decy = 0 〉
s3 : 〈π = 2, x = 4, y = 1, decy = −1 〉
s4 : 〈π = 3, x = 4, y = 0, decy = 1 〉
s5 : 〈π = 1, x = 3, y = 0, decy = 0 〉

Therefore the counterexample falls under Case 3 above, and we examine a concretiza-
tion of the cyclic portion of the lasso, i.e., the subtrace σ : s2 . . . s5. Forming its transi-
tion relation ρσ , we now examine its implication on transitions of the program variables,
in the hope of proving well-foundedness. Specifically, we discover that the constraint
x > x′ is implied by ρσ . This suggests refining Δ with the ranking function δ2 = x, to
form Δ′ : {δ1 = y, δ2 = x}. At this point, the abstraction of S+Δ′ by α is sufficient to
verify the termination property.

3.3 Synthesizing Elementary Ranking Functions

A number of methods have been suggested for synthesis of ranking functions. In our
examples we have used the general heuristic of searching for simple linear constraints
implied by the transition relation of a control-flow loop ([10] provides a less naı̈ve
method for doing this. Indeed, their method is complete). For example, given a set of
variables V and the transition relation ρσ of a loop, we check validity of implications
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such as ρσ → v > v′, for each v ∈ V . As demonstrated, this has been sufficient in
dealing with the NESTED-LOOPS program.

We have used a variant of this heuristic to deal with programs that manipulate un-
bounded pointer structures. One such program is BUBBLE SORT, shown in Fig. 4. This
is a parametrized system with H denoting the maximal size of a singly-linked pointer
structure (or heap). The heap itself is represented by the array Nxt . In addition there are
a number of pointer variables, such as x and y, that are also parametrized by H .

x, y, yn, prev, last : [0..H]
Nxt : array [0..H] of [0..H] where Nxt∗(x, nil)
D : array [0..H] of bool⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 : (prev, y, yn, last) := (nil , x, Nxt [x],nil);
1 : while last �= Nxt [x] do⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 : while yn �= last do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 : if (D[y] > D[yn]) then⎡
⎢⎢⎢⎢⎢⎣

4 : (Nxt[y], Nxt[yn]) := (Nxt [yn], y);
5 : if (prev = nil) then

6 : x := yn
else

7 : Nxt [prev] := yn;
8 : (prev, yn) := (yn, Nxt [y])

⎤
⎥⎥⎥⎥⎥⎦

else
9 : (prev, y, yn) := (y, yn, Nxt [y])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10 : (prev, y, yn, last) := (nil , x, Nxt [x], y);
11 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Program BUBBLE SORT

In order to synthesize a ranking function for BUBBLE SORT and similar programs,
our strategy is to seek constraints on graph reachability. One such form of constraint is

ρσ → (reach(v, v′) ∧ v �= v′)

where ρσ is a loop transition relation and v is a pointer variable. Under the assump-
tion that a singly-linked list emanating from v is acyclic, such a constraint suggests
the ranking function {i | reach(v, i)} over the domain (2N, ⊃). Indeed, while proving
termination of BUBBLE SORT, one of the functions discovered automatically by refine-
ment was {i | reach(yn, i)}, a function that serves to prove termination of the nested
loop (lines 2 . . . 9).

4 Extracting Complete Ranking Functions

This section provides an overview of an algorithm that extracts a ranking function from
a program constructed by a joint (ranking and predicate) abstraction. The algorithm
manipulates a symbolic (BDD-based) representation of the system, and is an adaptation
of the explicit state version in [8].

The algorithm EXTRACT-RANKING, shown in Fig. 5, is based on a partitioning of
the control flow graph of an abstract program into strongly connected components. It dis-
tinguishes between components that are singletons with no edges, and components with
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ranking : Σ → rankings
{(p1, q1), . . . , (pn, qn)} : set of compassion requirements

EXTRACT-RANKING(S : state assertion;
ρ : transition relation;
〈r1, . . . , rk〉 : rk ∈ N,

rj ∈ N or rj = δi, for some i ≤ n,
for all j < k) :⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if S is satisfiable⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

let s = S ∧ deadlock
if s is satisfiable⎡

⎢⎢⎣
ranking[α−1(s)] := 〈r1, . . . , rk〉
EXTRACT-RANKING(S ∧ ¬s;

ρ ∧ ¬s′;
〈r1, . . . , rk + 1〉)

⎤
⎥⎥⎦

else⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

let s = the set of pi-states in S such that
s ◦ ρ∗ → ¬qi ∧
s ◦ ρ∗ ↔ ρ∗ ◦ s,
for some 1 ≤ i ≤ n

let scc = S ∧ (s ◦ ρ∗)
EXTRACT-RANKING(scc;

ρ ∧ ¬s′;
〈ri, . . . , rk, δi, 0〉)

EXTRACT-RANKING(S ∧ ¬ scc;
ρ ∧ ¬ scc ∧ ¬ scc′;
〈r1, . . . , rk〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 5. Ranking Extraction Algorithm. The notations s ◦ ρ∗ and ρ∗ ◦ s denote, respectively, the
sets of eventual successors and eventual predecessors of s.

at least one transition. The observation is that zero-edge singleton components repre-
sent program states that reside outside of any control-flow loop, while other components
represent loops. A further observation is that if an always-decreasing ranking function
indeed exists, any loop is necessarily unfair, i.e. there exists some fairness requirement
that is not satisfied by a run that never escapes the loop. For clarity of presentation we
assume that there are no justice requirements, only compassion. We also assume that
all compassion requirements have been generated as a result of ranking abstraction, and
hence each requirement (pi, qi) is associated with a component ranking function δi.

The algorithm iterates over the set of components, singleton or otherwise, while
constructing a mapping between state sets and rankings. A ranking is a lexicographic
tuple of the form 〈r1, . . . , rk〉, where for all j < k, rj is either a nonnegative integer,
or the ranking function δi associated with the compassion (pi, qi). The element rk is
always a nonnegative integer.

Initially the algorithm is called with the set of reachable abstraction states, the ab-
stract transition relation, and the tuple 〈0〉 as inputs. At every iteration, the algorithm
first attempts to prune all deadlock states. It assigns the ranking 〈r1, . . . , rk + 1〉 to
the concretization of every such state, where 〈r1, . . . , rk〉 is the the ranking assigned
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X, Y : {0, 1} init Y = 0, X = 0
Decy : {−1, 0, 1}
Decx : {−1, 0, 1}

compassion {(Decx > 0, Decx < 0), (Decy > 0, Decy < 0)}⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 : (X, Decx) := (1,−1)
while X do⎡
⎢⎣

1 : (Y, Decy) := (1,−1)
while Y do[
2 : (Y, Decy) := ({0, 1}, 1)

]
3 : (X, Decx) := ({0, 1}, 1)

⎤
⎥⎦

4 :

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6. Abstraction of Program NESTED-LOOPS augmented with ranking functions δ1 = y and
δ2 = x

(1, 1, 0, −1, 0) 〈2, 0, 0, 0, 0〉

(2, 1, 1, 0, −1) 〈1, x, 2, 0, 0〉

(2, 1, 1, 0, 1) 〈1, x, 1, y, 0〉

(3, 1, 0, 0, 1) 〈1, x, 0, 0, 0〉

(4, 0, 0, 1, 0) 〈0, 0, 0, 0, 0〉

(1, 1, 0, 1, 0) 〈1, x, 3, 0, 0〉

(0, 0, 0, 0, 0) 〈3, 0, 0, 0, 0〉

Fig. 7. Abstract Control Flow Graph and Ranking Function of NESTED-LOOPS. Each tuple
(a, b, c, d, e) denotes the abstract program state (Π = a,X = b, Y = c, Decx = d, Decy = e).

in the previous iteration. If no deadlock exists, an arbitrary component is picked that
has no outgoing edge and violates a compassion requirement (pi, qi), for some i.
That is, the component contains one or more pi-states, but no qi-state. At this point
the outgoing edges of the pi-states are pruned from the graph. The algorithm is then
applied recursively on what remains of the component, with the input ranking of
〈r1, . . . , rk + 1, δi, 0〉, where 〈r1, . . . , rk〉 is the ranking assigned in the previous itera-
tion. This means that all rankings assigned by the recursive call will contain the prefix
〈r1, . . . , rk + 1, δi〉.
Example 3 (Extracting a Ranking Function of NESTED-LOOPS). We illustrate the algo-
rithm by extracting a ranking function for NESTED-LOOPS, given the abstract program
shown in Fig. 6. This is a version of the augmented abstract version from Fig. 3, after
refinement with the ranking function δ2 = x.

Fig. 7 shows the control flow graph of the abstract program, with a ranking associ-
ated with each state. The interpretation of this diagram is a ranking function defined as
follows: For any concrete state s that abstracts to a graph state α(s), the rank of s is the
lexicographic tuple associated with α(s).
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Space limitations prevent us from presenting a proof that the resulting ranking func-
tion is in fact always-decreasing.

5 Conclusion

The work in this paper is a direct continuation of [2], where a framework was pre-
sented for automatic computation of predicate and ranking abstractions, with a specific
application to the domain of unbounded pointer structures (aka Shape Analysis). That
framework requires all predicates and component ranking functions to be provided by
the user. Here we have extended it with dual means of refinement for both types of
abstraction.

We have shown two heuristics for synthesizing component ranking functions, one for
a linear domain and another for a domain of unbounded pointer structures. These have
been surprisingly effective in proving termination of a number of example programs. In
the near future we plan to explore richer heuristics in the domain of shape analysis.
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Abstract. In recent years, many formal methods have been proposed for
improving software quality. These include new specification and modeling
languages, whose purpose is to precisely describe the required software
behavior at a high level of abstraction, and formal verification techniques,
such as model checking and theorem proving, for mechanically prov-
ing or refuting critical properties of the software. Unfortunately, while
promising, these methods are rarely used in software practice. This pa-
per describes improvements in languages, specifications and models, code
quality, and code verification techniques that could, along with existing
formal methods, play a major role in improving software quality.

1 Introduction

During the past two decades, many specification and modeling languages have
been introduced whose purpose is to precisely describe the required software
behavior at a higher level of abstraction than the code. Examples of these lan-
guages include the synchronous languages, such as Lustre [Halbwachs1993]; the
design language Statecharts [Harel1987]; requirements languages such as RSML
[Heimdahl and Leveson1996], and SCR [Heitmeyer et al.2005]; and design lan-
guages offered by industry, such as UML and Stateflow [Mathworks1999], a ver-
sion of Statecharts included in Matlab’s Simulink graphical language.

Specifications and models expressed in these languages can have important
advantages in software development. First, they provide a solid basis for both
evaluating and improving the software code. Moreover, because they usually
exclude design and implementation detail, these specifications and models are
more concise than code. As a result, they can serve as an effective medium for
customers and developers to communicate precisely about the required software
behavior. In addition, they allow both manual and automated analysis of the
required software behavior. Analyzing and correcting a software specification is
usually cheaper than analyzing and correcting the code itself because the specifi-
cation is most often smaller—thus finding and correcting bugs in a specification
is easier than finding and correcting bugs in code.

Significant advances have also occurred in formal verification. These advances
include automated analysis of software or a software artifact using an automated
theorem prover such as PVS [Owre et al.1993] or a model checker, such as Spin

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 13–19, 2005.
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[Holzmann1997] or SMV [McMillan1993]. Such analysis is useful in analyzing a
software specification, a model, or software code for critical properties, such as
safety and security properties. Because the analysis is largely mechanical, these
techniques can be a cost-effective means of either verifying or refuting that a
software artifact or software code satisfies a specified property.

Unfortunately, while promising, formal specifications, models and verification
techniques are rarely used by most software developers. After reviewing how
formally-based tools can help developers improve the quality of both software
and software artifacts, this paper describes four enhancements to the software
development process which should not only improve software quality directly
but should also encourage the use of existing formal methods.

2 On the Role of Tools

Many automated techniques and tools have been developed in recent years to
improve the quality of software and to decrease the cost of producing quality
software [Heitmeyer2003]. Such tools can play an important role in obtaining
high confidence that a software system is correct, i.e., satisfies its requirements.
Described below are five different roles that tools can play in improving the
quality of both software and software artifacts. The first four help improve the
quality of a specification or model. The fifth uses a high-quality specification to
construct a set of tests for use in checking and debugging the software code.

2.1 Demonstrate Well-Formedness

A well-formed specification is syntactically and type correct, has no circular
dependencies, and is complete (no required behavior is missing) and consistent
(no behavior in the specification is ambiguous). Tools, such as NRL’s consistency
checker [Heitmeyer et al.1996], can automatically detect well-formedness errors.

2.2 Discover Property Violations

In analyzing software or a software artifact for a property, a tool, such as a model
checker, can uncover a property violation. By analyzing the counterexample
returned by the model checker, a developer may trace the problem to either a
flaw in the specification or to one or more missing assumptions. Alternatively,
the formulation of the property, rather than the specification, may be incorrect.
Detecting and correcting such defects can lead to higher quality specifications
and to higher quality code.

2.3 Verify Critical Properties

Either a theorem prover or a model checker may be used to verify that a software
artifact, such as a requirements specification or a design specification, satisfies a
critical property. Verifying that an artifact satisfies a set of properties can help
practitioners develop high confidence that the artifact is correct.
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2.4 Validate a Specification

A developer may use a tool, such as a simulator or animator, to check that a
formal specification captures the intended software behavior. By running scenar-
ios through a simulator (see, e.g., [Heitmeyer et al.2005]), the user can ensure
that the system specification neither omits nor incorrectly specifies the software
system requirements.

2.5 Automatically Construct a Suite of Test Cases

Specification-based testing can automatically derive a suite of test cases satis-
fying some coverage criterion, such as branch coverage, from a formal specifi-
cation [Gargantini and Heitmeyer1999]. Automated test case generation can be
enormously useful to software developers because 1) the cost and time needed
to automatically construct tests is much lower than the cost and time needed
in manually constructing tests, and 2) a suite of test cases mechanically gener-
ated from a specification usually checks a wider range of software behaviors than
manually generated tests and hence may uncover more software defects.

3 What Else Is Needed?

For practitioners to apply existing formal methods more widely, a number of
improvements in the software development process are needed. Described below
are four areas where improvements are needed—in specification and modeling
languages, in the quality of specifications and models, in the quality of manually
generated code, and in improved techniques for software verification.

3.1 Improved Languages

One area that should be revisited is specification and modeling languages. In
recent years, researchers have proposed many new languages for specifying and
modeling software. Although these languages have been applied effectively in
some specialized areas, for example, in control systems for nuclear power plants
and in avionics systems, they are still not used widely by software practitioners.
While languages introduced by industry, such as UML and Stateflow, are more
widely used, they lack a formal semantics. Moreover, the specifications and mod-
els that practitioners produce using these languages usually include significant
design and implement detail. Given the lack of formal semantics and the large
specifications and models that result when design and implementation detail
are included, the opportunity to analyze these specifications and models using
formally-based tools is severely limited.

Hence, existing languages either need to be enhanced with features (such
as fancy graphical interfaces) to encourage practitioners to use them, or new
languages need to be invented. One promising approach is to design languages
for specialized domains. For example, one or more languages could be designed
to specify and model the required behavior of networks and distributed sys-
tems. Significantly different specification and modeling languages are likely to
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be needed to specify and model the required behavior of software used in auto-
mobiles or in avionics systems.

The benefits of using specification and modeling languages with an explicit
formal semantics and which minimize implementation detail could be enormous.
First, precise, unambiguous specifications can be analyzed automatically for
well-formedness, such as syntax and type correctness, consistency (no unwanted
non-determinism), and completeness (no missing cases), for critical application
properties, such as security and safety properties, and for validity (a check that
the specification captures the intended behavior). Specifications that are well-
formed, correct with respect to critical application properties, and validated us-
ing simulation also provide a solid foundation both for automatic test generation
and for generating efficient, provably correct source code.

3.2 Improved Specifications and Models

The specifications and models produced by practitioners (and some researchers)
usually include significant design and implementation detail (i.e., are close to
the code). Moreover, often they do not use abstraction effectively to remove re-
dundancy and to enhance readabililty. The result is large, hard to understand
specifications and models, filled with unnecessary detail and redundancy, which
do not distinguish between the required software behavior and implementation
detail. In part, this problem can be solved through education. The attributes of
good specifications and models and how to construct them are topics that need
to be taught and emphasized in software engineering curricula. The problem
of poor quality specifications and models can also be ameliorated by improved
specification and modeling languages. Such languages should reduce the oppor-
tunity for implementation bias and contain mechanisms which encourage the
construction of precise, concise, and readable specifications and models. Well-
thought out examples of high-quality specifications and models would also help
practitioners produce better specifications and models.

3.3 Improved Methods for Building Code

However, improved specification and modeling languages and improved specifi-
cations and models are not enough. In the end, what is needed is correct, efficient
code. As noted above, an important benefit of a formal specification is that it
provides a solid basis for automatically generating provably correct, efficient
code. While many techniques have been proposed for constructing source code
from specifications, and many software developers use automatic code generators
developed by industry, the code produced by these generators is often inefficient
and wasteful of memory. Urgently needed are improved, more powerful methods
for automatic generation of provably correct, efficient code from specifications.

Another promising approach to producing high quality code is to use “safe”
languages, such as Cyclone [Trevor et al.2002]. Using a language such as Cy-
clone, which is designed to improve the quality of C programs, can reduce code
vulnerabilities, such as uninitialized variables and potential sources of buffer
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overflows and arithmetic exceptions. A third promising approach to construct-
ing high quality code is to encourage programmers to annotate their code with
assertions that a compiler can check at run-time. Hardware designers routinely
include such assertions in their designs. Moreover, some C, C++, and Java pro-
grammers routinely use assertions as an aid in both detecting and correcting
software bugs. Increased use of both safe languages and the annotation of pro-
grams with assertions should help improve the quality of software code.

3.4 Improved Methods for Verifying Code

Although improved specifications and models and automatic code generation
from high quality specifications can help improve the quality of software, it is
highly likely that in the near future, most source code will be generated manu-
ally. Urgently needed therefore are improved methods for demonstrating that a
manually generated program satisfies critical properties.

One promising approach is to encourage programmers to annotate their code
with assertions and to then check those assertions automatically. While current
compilers for C, C++, and Java, support and check assertions that annotate
the code, the set of assertions that can be analyzed is very limited. Needed
are compilers that can not only check simple Boolean inequalities, e.g., x > 0,
but more complex assertions, e.g., priv(P, x) = R, which means that process P
has read privileges for variable x. Such assertions can be translated into logic
formulae, such as first-order logic formulae, and then a compiler should be able
to use decision procedures to check that the code satisfies these logic assertions.
In addition to helping practitioners document and detect bugs in their code, such
assertions may also be used to prove that the code satisfies critical properties,
such as security and safety properties.

Recently, we applied this approach to a software-based cryptographic system
called CD (Cryptographic Device) II, the second member of a family of systems,
each of which decrypts and encrypts data stored on two or more communication
channels [Kirby et al.1999]. An essential property of this system is to enforce
data separation, that is, to guarantee that data stored on one channel does
not influence nor is influenced by data stored on a different channel. Satisfying
this property is critical since data stored on one channel may be classified at
a different level (e.g., Top Secret) than data stored on another channel (e.g.,
Unclassified).

A technique which could automatically check code annotated with asser-
tions for a security property such as data separation would be extremely useful.
However, rather than directly checking the code for conformance to the secu-
rity property, an alternative is to construct a high-level formal specification of
a system’s required behavior, check the high-level specification for the property,
and then check that the code is a refinement of the specification. The benefit of
the high-level specification is that it describes precisely the set of services that
the software is required to support. In checking CD II for data separation, we
followed the latter approach: we constructed a high-level specification of the re-
quired behavior of CD II, used PVS to prove that the specification satisfied the
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data separation property, and then used inspection to show that the CD code,
annotated with assertions, satisfied the high-level specification.

More automation of the process we used in verifying that the CD II code
satisfies the data separation property would have been extremely useful. Not only
would more automation dramatically reduce the human effort need to construct
and check the code assertions against both the code and the formal specification,
it would also significantly enhance our confidence that the code satisfied the
assertions and therefore enforced data separation since manual construction and
manual checking of assertions is somewhat error-prone. Two steps were especially
labor-intensive: 1) annotating the code with assertions and 2) verifying that
the code satisfied the assertions. Also expensive in terms of human effort was
the process of demonstrating that the code assertions satisfied the high-level
specification.

Adding some annotations to code is straightforward and, as mentioned above,
automatic checking of simple code annotations is already supported by many
source language compilers. However, generating more complex annotations from
code (e.g., constructing inductive invariants from loops) is a problem that re-
quires more research. Checking the conformance of the code with a set of asser-
tions using decision procedures is a promising approach that should be explored
by researchers and should help in automating the second step described above.
Finally, checking the conformance of a set of validated assertions with a formal
specification is also a problem that may require further research.

4 Summary

The improvements described above will require new research in specification and
modeling languages, in checking and constructing more complex code assertions,
in automatic code generation, and in code verification. They will also require
the transfer of existing research, for example, the use of safe languages such as
Cyclone, and of formal techniques, such as model checking, theorem proving, and
decision procedures, into programming practice. In addition, better educated
software developers are needed; such developers will know how to build high
quality specifications and models and will routinely include assertions in their
code. Finally, existing methods and tools must be better engineered. The result
of improved and more automated methods, better educated practitioners, and
better engineered tools should allow software practitioners to construct software
in an environment in which tools do the tedious analysis and book-keeping and
software developers are liberated to transform vague notions of the required
software behavior into precise, readable specifications that minimize design and
implementation detail and into code that is both provably correct and efficient.
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Abstract. In future ubiquitous communication environments, broad-
band wireless communication will become popular. Also, wireless LAN
devices such as IEEE802.11a/b/g and wireless PAN devices such as Blue-
tooth and ZigBee may be integrated into mobile terminals with reason-
able cost and complementarily used with existing cellular networks. This
means that mobile ad-hoc networks (MANETs), which are composed
between these narrow range communication devices without fixed net-
work infrastructures will be seamlessly connected to global networks (IP
networks). For future deployment of MANET protocols, we discuss their
testing issues with some experimental results.

1 Introduction

MANETs are getting recognized as one of key infrastructures to realize future
ubiquitous communication environments. However, testing functional and per-
formance validity of MANET applications and protocols is not an easy task.
Even if given IUTs (Implementation Under Test) of mobile nodes have inde-
pendently passed general conformance tests, they might not work correctly (or
might not achieve reasonable performance) if they work together collaboratively
to provide services and functionalities such as distributed content search and
routing. Additionally, mobility of nodes makes the problem much more difficult.
It is known that mobility models strongly make influence for their performance
and correctness [1].

In this paper, we focus on functional and performance testing for MANET
protocols. We discuss what properties should be validated in testing, and ac-
cordingly how we model the environments of target protocols. Then we propose
a testing architecture for MANET protocols. The architecture is based on our
network simulator MobiREAL [2,3]. We basically use passive testing methods
where we observe sequences of data transmission between IUTs. Given IUTs to
be tested and properties to be validated, the environments including mobility
models and underlying wireless transmission layers can be virtually provided to
IUTs as if they are executed on real mobile terminals. The architecture sup-
ports not only to provide environments but also to observe the results of passive
testing visually. Some experimental results are also shown in this paper.
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2 Passive Testing of MANET Protocols

When we consider passive testing in the higher layer (layer 4 and the above) of
MANET protocols, we may simply abstract the communication channel between
them as single unreliable channel. On the other hand, testing the network layer
protocols of MANETs needs much consideration mainly because of (i) mobility
modeling and (ii) upper/lower layer modeling.

Let us consider DSR (Dynamic Source Routing) [4] as an example. DSR
finds multiple potential routes at the route request phase. Then one of them is
selected and the others are kept in route cache of the nodes for some period. If
the current route is broken, the route is re-established using the cache at the
nodes. In this situation, if we would like to validate such property that the route
can be re-established in any situation of node mobility, topology and density, we
have to test given IUTs in many cases, giving many types of mobility models
with different numbers of nodes. We may refer to Ref. [1] where several mobil-
ity models have been introduced. However, it is hard for designers to imagine
mobility patterns of mobile nodes and choose ones that generate node mobility,
topology and density that totally generates the desired situations. To cope with
this problem, we may use several metrics to characterize the mobility [5–7].

The modeling of the upper/lower layers of the target layer might make some
influence. In the lower layers, packet delay by collision avoidance and/or retrans-
mission might make some influence to the performance of the network layer. The
packet duplication by retransmission and packet regulation by rate control in the
upper layers also might make some influence. Here, we assume that the imple-
mentation in the lower layers is correct. Also, we assume that we use general
functions and applications in the upper layers (e.g. we assume that we use CBR
(Constant Bit Rate)).

Under these assumptions, we assume that IUTs are provided as executable
codes (thus they are black-boxes), and provide an architecture for passive testing.
For given properties to be validated (e.g. communication between source and
destination nodes can take place correctly in DSR), we observe communications
between IUTs. We use a mobile ad-hoc network simulator called MobiREAL[2,3]
which can control the mobility of each mobile node using a set of events with pre-
and post-conditions. For macroscopic control of mobile nodes, mobility scenarios
can be given. The simulator can provide implementation of the other layers such
as CBR, TCP, IEEE802.11 MAC, and radio propagation. We are now planning
to provide a virtual environment in the MobiREAL simulator where given IUTs
can be executed as if they are executed on the real terminals. But actually these
terminals are emulated using implementations of the other layer protocols of
MobiREAL simulator.

3 Impact of Mobility – Experimental Results –

In this section, we present the experimental results of performance evaluation
of DSR using MobiREAL. The results will show the difference of performance
depending on mobility, and encourage us to provide our testing architecture.
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Fig. 1. Mobility Metrics
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Fig. 2. DSR Performance

We have used different mobility models to see the impact of mobility mod-
els to MANET protocols. We have modeled a real 500m×500m region includ-
ing buildings in downtown Osaka city. We have used two mobility models, (i)
UPF (Urban Pedestrian Flow) mobility[8] which represents realistic movement
of pedestrians in city sections, and (ii) a modified version of RWP (random way
point) mobility denoted as RWP/ob (“ob.” stands for obstacles). In RWP/ob,
each node moves between intersections. At each intersection, the node randomly
decides the next direction, avoiding to go backward. Then we have measured
the metrics presented in Ref. [7] that characterize mobility. (i) link changes (i.e.
the number of link creations between two nodes) and (ii) link duration (i.e. the
longest time interval during which two nodes are in the transmission range of
each other).

The distributions of these metrics are shown in Fig. 1. Clearly, RWP/ob
model has several cases with larger link changes (e.g. 9 and the above) com-
pared with UPF mobility. This is natural because in the UPF mobility, more
neighboring nodes are going to the same destination than RWP mobility and
thus link changes do not occur many times. This observation is endorsed by the
link duration result, where UPF has longer durations clearly.
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Then we have measured several metrics that show the performance of DSR.
We have selected two application users in the same pedestrian flow but away
from each other. The results are shown in Fig. 2.

In the UPF mobility, DSR route was established along the flow. Therefore,
the route is stabler than RWP/ob. This observation is endorsed by Fig. 2(a)
and Fig. 2(b). The packet arrival ratio becomes lower and the number of control
packet is larger if the route is instable, since there are many disconnections of
the route.

4 Conclusion

In this paper, we have discussed a passive testing architecture of MANET pro-
tocols, and have presented a future direction to design high-reliable MANET
protocols. Our ongoing work is to design the presented architecture.
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Abstract. We investigate requirements for a composition operator for
complex control systems. The operator should be suitable for a context
where we have both supervisory control and a system that consists of
multiple (two or more) components. We conclude that using both pas-
sive (observing) and active (controlling) transitions is advantageous for
the specification of supervisory control systems. We introduce a compo-
sition operator that meets the requirements. We give both operational
and trace semantics for this operator and give necessary and sufficient
conditions for commutativity and associativity.

Keywords: Compositional modelling, supervisory control.

1 Introduction

A complex system typically consists of multiple components which are running
simultaneously and which are interacting with each other. Modelling these com-
plex systems in a compositional way can be done by using a composition operator
which combines the different components of the system. If we denote the compo-
sition operator by ||, then A||B is the system that is composed out of subsystems
A and B. The interaction between the two subsystems is regulated by the com-
position rules of the operator ||. Because the systems A and B run in parallel
(or concurrently), we call || the parallel composition operator.

The goal of this paper is to make clear that for the modelling of many types of
systems, it is advantageous and natural to use two types of interaction: blocking-
interaction and non-blocking-interaction. We show that this idea can be formal-
ized by distinguishing active and passive actions. The operator we define via
structured operational semantics ([1]) can be used with any transition-based
model like automata or process algebra. The focus of this paper is to give a
careful motivation for this operator.

In Section 2, which is the main part of the paper, we introduce the ac-
tive/passive framework and we develop a composition operator that can estab-
lish several types of interaction between systems (that are built out of active
and passive transitions). While we develop the operator step by step, we moti-
vate each step by means of simple and clear examples. Some of these examples
� Supported by the EU-project HYBRIDGE (IST-2001-32460).
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are about supervisory control systems because we think that supervisory control
systems provide natural examples for our modelling framework. After the frame-
work has been introduced (including a structural operational semantics for the
composition operator), we give a more extensive example in Section 2.4 which
shows all features of the framework and the composition operator. In Section
2.5 we take a closer look at supervisory control systems. We explain why we
think that our framework has certain advantages over other frameworks in mod-
elling supervisory control systems. Section 2 ends with a technical result on the
operator.

In Section 3 we give a denotational semantics in terms of an extension of
traces. We think that this semantics gives more insight in the composition op-
eration and consequently more justification for the use of this specific operator.

In the last section we draw some conclusions and point out directions for
future research.

2 The Active/Passive Framework

We can distinguish two types of interactions between processes. First, blocking-
interaction: both partners (for example the controller and the process) need to
be able to do the action, otherwise the action will not take place. This is the type
of interaction that we see in many process algebra models (e.g. [2,3]). Secondly,
non-blocking-interaction: one of the partners (the passive one) is not able to
block the other (the active one). For example if a person (the passive partner)
observes that a light (the active partner) is switched on. The person observes,
but is not able to block the switching, i.e. the light could also be switched on
without the person observing it.

Non-blocking-interaction can already be found in the literature, e.g. in broad-
cast systems ([4]) where several listening processes can receive (but not block) a
signal, or in I/O automata ([5,6]), where processes should be input-enabled, i.e.
ready to receive an input in any state of the process, such that an output will
never be blocked.

We see that most formalisms support only blocking interaction and that some
formalisms (broadcasting systems, I/O automata) support only non-blocking
interaction. However, there exists no formalism that supports both blocking and
non-blocking interaction. We will motivate that for our purposes, it is desirable
to have a formalism that supports both types of interaction.

The context of processes that we want to specify is the following:

1. We want to specify supervisory control systems. We will see that we need
both blocking and non-blocking interaction for this.

2. We are also interested in modular supervisory control, where a controller
may consist of several modules. We will motivate that for this, in addition
to blocking and non-blocking interaction, we need to control the scope of
non-blocking interaction.

3. We want to specify complex processes that consist of interacting subprocesses.
Here we will argue that we need the possibility to have multi-way synchro-
nizations.
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Now we will introduce our framework, which is based on active and passive
actions and which supports both blocking and non-blocking interaction. We in-
troduce the framework in three steps, corresponding to the three points in the
above context. In each step we give motivating examples. In the first step we
explain how active and passive actions can be used to establish blocking and non-
blocking interaction. In the second step we explain how to deal with observations
in systems that consist of more than two components. In the third step we treat
the issue of multi-way synchronization (can one active action synchronize with
multiple passive actions or only with one passive action?).

2.1 Step 1: Establishing Blocking and Non-blocking Interaction

We consider two types of actions: active actions (denoted as a, b etc.) and passive
actions (which are observing actions and are denoted as ā, b̄, etc.). Because we
want to have both blocking and non-blocking interactions, we have to make
clear which interactions are blocking and which are non-blocking. Therefore,
we introduce the set A which contains all actions that are involved in blocking
interaction. The composition operator will now be denoted by |A|. We still use ||
to denote the composition operator in cases where A is unspecified or irrelevant.
Blocking-interaction is now expressed by the following operational rule ([1]):

r1.
L1

a−→ L′
1, L2

a−→ L′
2

L1|A|L2
a−→ L′

1|A|L′
2

(a ∈ A),

which says that a blocking-synchronization (or active-active synchronization)
on a from joint location L1|A|L2 to L′

1|A|L′
2, can only happen when both part-

ners have the action a available from locations L1 and L2 to locations L′
1 and L′

2

respectively (In order to comply with the terminology used in timed and hybrid
automata, we use the term locations to designate the states in an automaton).
In Figure 1, where a ∈ A, we see that both the process P and the controller
C have transitions labelled with a from their initial locations P1 and C1. This
results in the (synchronized) a-transition in the composite system P ||C. In lo-
cation P3, P can do an a-action, but because a ∈ A and C does not have an

P C CP ||

a b ba

a b

1P

2P 3P

4P 5P

1C

2C
3C

a b

b

Fig. 1. Process P controlled by C
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active a-transition in location C3, this transition is blocked by C and therefore
the transition is not present in P ||C.

Blocking as expressed in rule r1 can be used in supervisory control where a
controller C blocks certain actions of the process P . Another situation where ac-
tive actions must synchronize (i.e. are in A) is where two partners cooperate on
a certain task. If two persons are chatting with each other, then they are coop-
erating on the chat-task so to say. In other words, both are chatting or both are
not chatting, one cannot chat without the other (this situation will be described
in the example in Section 2.4). For a situation where two persons P1 and P2

can both do a specific action (like hanging up the phone as described in Section
2.4) independently of the other person, then the action can be independently
performed (i.e. should not be in A).

For non-blocking-interaction, we need an active a with a �∈ A in one partner
and a passive ā in the other partner. Non-blocking interaction is now expressed by

r2.
L1

a−→ L′
1, L2

ā−→ L′
2

L1|A|L2
a−→ L′

1|A|L′
2

(a �∈ A),

which means that L1 executes an a, which is observed by a ā-transition outgoing
from L2. In Figure 1 we see for example that the b-transition from location P1

in P , is observed by the b̄-transition in C. We also need rule r2’, which is the
mirror rule of r2 (i.e. L1

ā−→ L′
1, L2

a−→ L′
2 instead of L1

a−→ L′
1, L2

ā−→ L′
2

etc.).
If L2 can not observe a-actions (i.e. there is no outgoing ā-transition), L1

should still be able to execute a, since this execution does not depend on whether
or not some other process is observing the action. This is expressed by

r3.
L1

a−→ L′
1, L2 � ā−→

L1|A|L2
a−→ L′

1|A|L2

(a �∈ A)

and its mirror rule

r3′.
L1 � ā−→, L2

a−→ L′
2

L1|A|L2
a−→ L1|A|L′

2

(a �∈ A).

In Figure 1 we see for example that P has a b-transition from location P3,
which cannot be observed by C, but which is still present in P ||C.

Note that because rules r2, r3 and r3’ are the only rules from which active
transitions can be derived, it follows that if L2 can observe a, then it also will
observe a, i.e. if L2 has a ā-transition, then it can not choose not to observe an
a executed by the other component. This makes sense in many situations, e.g.
when some system broadcasts a radio signal a and a receiver is able to receive the
signal (i.e. it has a passive ā-transition), then we should not allow the possibility
that the signal is broadcast while the receiver does not receive (i.e. does not
synchronize its passive ā-action with the active a-action).

Negative premises in rules (as in rule r3) may in general lead to complications
(see [7]), however in our rules there are no problems, as can easily be seen from
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the fact that ā−→ transitions never depend on a−→ transitions, and therefore no
circularities may arise.

In the supervisory control context, observing as active/passive-synchronization
means that the controller observes actions of the process. Outside the supervi-
sory control context, this mechanism can be used for other kinds of observation
(e.g. a person that observes an alarm signal as described in Section 2.4).

2.2 Step 2: Controlling the Scope of the Observations

Passive transitions are intended to observe active transitions. This means that
outside an open-systems context (i.e. when the system is closed and will not
interact with other systems), passive transitions are supposed not to be present,
since there is nothing to observe. Suppose we have a system that consists of a
process P and a controller C, where the controller observes the actions of P . One
could argue that |A| should be defined such that after composition, there are
no passive transitions anymore (which is the case if we only consider rules r1,r2
and r3). But that would not be suitable for a broader composition context like
modular supervisory control: Suppose we have a system with one process P and
two controllers C1 and C2, where both C1 and C2 are concurrently observing
P . If we define C := C1||C2 as the composed controller, then C should still
observe P , with other words, C should still contain the passive transitions from
C1 and C2 to observe P . This means that the ‘real’ observations happen when
we compose C with P and not when we compose C1 with C2.

One solution one could think of is to indicate within the composition operator
where the ‘real’ observations take place. We could use an observation set O and
then ||O (or together with A, |OA|) means that observations take place in this
composition for the events in O. Then in the compound (C1||C2)||OP there are
no passive transitions with labels from O anymore.

For the double-controller situation, ||O seems to be a good solution. However,
it seems that for modelling the following situation, we need a different solution:
Suppose three persons P1, P2 and P3 are working on a problem. All persons
start working independently on this problem. Once one of the persons found the
solution, all three persons stop with the problem. This can be modelled as in
Figure 2, where the signal ready is ‘broadcast’ by one of the persons as soon
as this person solved the problem, and is then received by the others. In this
situation, every Pi should be able to hear every Pj (i �= j). With ||O we can
not express this. (In (P1||P2)||OP3, P1 does not observe P2. In (P1||OP2)||P3, P3

does not observe P1 and P2 etc.).
Instead of using ||O, we use the closing operator [·]C . [X ]C discards all passive

transitions in X with labels from C. With this closing operator, we can solve
both the double-controller and the ‘three persons’ problem. The composition
rules for this operator are

r7.
L

a−→ L′

[L]C
a−→ [L′]C

r8.
L

ā−→ L′

[L]C
ā−→ [L′]C

(ā �∈ C).
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1P

ready

ready

2P

ready

ready

3P

ready

ready

Fig. 2. Situation where all persons can observe all others

With [·]C we can control the scope of the observations. Now, || should be
defined such that in X ||Y , X can observe Y (and vice versa), but also X ||Y can
still observe Z in (X ||Y )||Z. This is expressed by

r4.
L1

ā−→ L′
1

L1|A|L2
ā−→ L′

1|A|L2

and its mirror r4’ which say that after the composition, every passive transition
‘remains’, such that the component to which this transition belongs, is still able
to observe a new component which might be added to the composite system in a
new composition operation. If, for example, we know that X and Y only observe
each other and will (or can) not observe Z or other components, then we could
specify this as [X ||Y ]||Z. ([·] is shorthand for [·]Σ̄ with Σ̄ the set of all passive
actions).

2.3 Step 3: Multi-way Synchronization

Consider the modular supervisory control situation again where we have two con-
trollers C1 and C2 and a process C3. Now suppose that C3 has an action a which
can be observed by both C1 and C2 (i.e. both controllers have ā-transitions). If
we allow that both controllers can observe a concurrently (which is most natu-
ral), then we need to express the possibility of a multi-way synchronization (in
this case: two passive actions and one active action). Another example (outside
the supervisory control context) where we need a multi-way synchronization is
the situation where an alarm signal in an office is heard (observed) by two dif-
ferent employees working in that office (this example is also described in Section
2.4).

The question now is whether there are situations we want to model that
do not allow multi-way synchronizations. One such example (also considered in
Section 2.4) is the telephone situation: a telephone in an office rings and only
one of the employees may answer the call. Although both employees hear the
telephone, only one may answer it (i.e. may synchronize its passive action with
the active telephone signal).

We see that it is desirable to distinguish two types of passive actions: passive
actions for which multi-way synchronization is allowed and passive actions for
which this is not allowed. Therefore we introduce the set P , which contains all
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passive actions for which multi-way synchronization is allowed. The composition
operator will now be denoted by |PA|. Multi-way synchronization is expressed by

r5.
L1

ā−→ L′
1, L2

ā−→ L′
2

L1|PA|L2
ā−→ L′

1|PA|L′
2

(ā ∈ P ),

which means that two passive ā-transitions, one in C1 and one in C2, synchro-
nize, which results in a ā-transition for the composite system C1||C2. This syn-
chronized passive transition can observe an a in C3, which results in a new
(multi-way) synchronized transition in (C1||C2)||C3 which then expresses that
C1 and C2 concurrently observe C3.

If a ∈ P and C1 can observe a, but C2 cannot observe a, then in (C1||C2)||C3,
C1 should synchronize its passive ā with the active a of C3, while C2 idles. This
situation is expressed by

r6.
L1

ā−→ L′
1, L2 � ā−→

L1|PA|L2
ā−→ L′

1|PA|L2

(ā ∈ P )

and its mirror rule r6’. In the new situation (where we have introduced the set
P ), we can see that rule r4 (which expresses that passive transitions should
interleave) only applies for passive actions not in P . Therefore r4 should be
changed to

r4.
L1

ā−→ L′
1

L1|PA|L2
ā−→ L′

1|PA|L2

(ā �∈ P ).

With the set P as part of the operator, rules r1,r2 and r3 should be changed
to

r1.
L1

a−→ L′
1, L2

a−→ L′
2

L1|PA|L2
a−→ L′

1|PA|L′
2

(a ∈ A),

r2.
L1

a−→ L′
1, L2

ā−→ L′
2

L1|PA|L2
a−→ L′

1|PA|L′
2

(a �∈ A),

r3.
L1

a−→ L′
1, L2 � ā−→

L1|PA|L2
a−→ L′

1|PA|L2

(a �∈ A).

Now rules r1 till r6 (and the mirror rules r2’,r3’,r4’ and r6’) form the struc-
tural operational semantics for |PA| and rule r7 and r8 form the structural oper-
ational semantics for [·]C .

Note that the synchronization-mechanisms for active transitions and passive
transitions are different. If an active action a is synchronizing (i.e. a ∈ A), then
a component can execute the action only when the other component in the
composition can also execute the action (and vice versa). If a passive action ā is
synchronizing (i.e. ā ∈ P ), then if both components can execute the action, they
have to synchronize. However, if only one component can execute the action, the
action can still be executed without the other component synchronizing with it.
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This is expressed in rule r6. For active-active synchronization we do not have
an equivalent rule as r6. Because of this difference between the synchronization-
mechanisms, we need to use different composition rules for both the active and
the passive actions (i.e. we can not combine active and passive synchronization
in the same rules).

2.4 Example

In Figure 3 we see an example where we find back all interaction structures we
described before: non-synchronizing active transitions, synchronizing active tran-
sitions, non-synchronizing passive transitions, synchronizing passive transitions
and active-passive synchronization.

iEring

hangup chat

stopchat

alarm

alarmalarm

O

alarm

ring

Fig. 3. Example with different kinds of interaction

The example of Figure 3 concerns an office O with two employees E1 and
E2. In the office there are two sources which can produce a signal: A telephone
and an alarm. The telephone rings when somebody calls the office, the alarm
fires when there is danger, which means that the employees should leave the
office when they hear the alarm. Both the telephone and the alarm execute
their signals independently from the employees. Therefore they are modelled as
active transitions labelled ring and alarm respectively (see Figure 3). If the
telephone rings, O makes a self-loop which means that O stays in the same
location. This location has the meaning of ‘normal-working-conditions’. If the
alarm goes, O jumps to a second location which has as meaning ‘dangerous-
working-conditions’.

E1 and E2 have the same automaton-structure. From E1 (or E2), the em-
ployee can exhibit three different actions: He can chat with his fellow employee,
he can pick up the phone and he can leave the office. Leaving the office only
happens when the alarm goes off. This action is modelled as a passive transi-
tion which synchronizes with the independent active alarm-transition in O. We
see that from every location, the employee can react on the alarm. When the
phone rings, the employee can pick up the phone by synchronizing its passive
ring event with the active ring from O. The employee hangs up with an active
hangup event. The employee can start a chat with his office-mate via the active
chat event. This should synchronize with an active chat event of the office-mate
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(both should be willing or able to chat). The chat will be ended with an active-
active synchronization of stopchat.

From the model we see that if the employees are chatting, they first have to
end the chat before one of them can pick up the phone. This means that they
will probably miss the first ring signal, but can maybe interact on the second
ring signal (the phone might give multiple ring signals when somebody calls).
Also, if one employee is phoning, he first has to hang up before a chat can be
started.

Where do we see the different kinds of interaction? The passive ring transi-
tions of E1 and E2 should be non-synchronizing since only one passive transition
is allowed to synchronize with the active ring transition in O. The passive alarm
transitions in E1 and E2 should synchronize because both employees react syn-
chronously on the alarm. The active hangup transitions in E1 and E2 should be
non-synchronizing (only one employee hangs up). The active chat and stopchat
transitions in E1 and E2 should synchronize (both employees chat).

From the above follows that for the composition E1|PA|E2 we get A = {chat,

stopchat} and P = {alarm}. For the composition (E1|alarm
chat,stopchat|E2)|PA|O we

get A = ∅ and P = Σ̄. The total specification is then

(E1|alarm
chat,stopchat|E2)|Σ̄∅ |O. (1)

If (1) is the system that we want to analyze, then we could close down all
observation channels (i.e. the passive transitions) with the [·] operator. Now
suppose that (1) is only one chamber of a bigger office consisting of multiple
chambers. Then this chamber is only one unit and lets call it U1. The other
units then are U2 = (E′

1|alarm
chat,stopchat|E′

2)|Σ̄∅ |O′, U3 = (E′′
1 |alarm

chat,stopchat|E′′
2 )|Σ̄∅ |O′′

etc., where Ei = E′
i = E′′

i , O = O′ = O′′ etc. The telephones in each office are
local. With other words, if a telephone rings in one office, only the employees
in that office hear the phone and can answer it. The alarm however is global. If
there is danger in the building, the alarm goes synchronously in all offices. To
specify that the phones are local, we use [·] and get [Ui]ring. To specify that the
alarm is global, we use alarm as a synchronization event in the composition of
the units. The total composition of the whole building is then

U ′
1|alarm|U ′

2|alarm|U ′
3|alarm| · · · ,

where U ′
i = [Ui]ring.

2.5 Supervisory Control with |PA|
In this section we want to take a closer look at supervisory control. We will
shortly describe the main concepts of supervisory control and thereafter we
compare how specification of control systems can be done in our active/passive
framework to how it can be done in a framework where there is only blocking-
interaction.

In the supervisory control paradigm ([8,9]), the actions of a process can be
observable or unobservable and they can be controllable or uncontrollable. Ob-
servable actions can be observed by the controller (and unobservable actions can
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not). Controllable actions can be controlled by the controller (and uncontrollable
actions can not). This means that the controller can block these actions, i.e. can
prevent them from happening.

If we specify the control system within an automata framework, then the
process and the controller are modelled as two separate automata which can
interact. The plant executing an action is then modelled as a transition (labelled
with this action) from one process-location to another process-location. The
controller observing an action is then modelled as a transition in the controller
that synchronizes with the to-be-observed transition in the process.

P

a

blockingC

a

a

b

b

b

b

a

a

a

b

b

b

passiveactiveC /

a

a

a

b

a
1P 2P

3P 4P

CP ||

a

a

b

b

b

a
1P 2P

4P

1C

Fig. 4. Control in only-blocking framework and in active/passive framework

Consider the process P in Figure 4 with a controllable/observable and b un-
controllable/observable. We want to control this process such that the behavior
of P is restricted to P ||C in Figure 4.

First lets see how this can be done in the only-blocking-interaction frame-
work. Since a and b are both observable, we mark them as synchronization
actions (i.e. in the composition operation these actions must synchronize while
non-synchronization actions will be interleaved). The controller that does the job
is Cblocking in Figure 4. We see that we need two self-loops on action b, because
otherwise the two upper b-transitions of P are blocked and that is not what
we want according to P ||C. We see that, according to the specification P ||C,
transition P1

a−→ P3 of P is blocked because of the absence of an a-transition in
Cblocking at location C1.

For the active/passive framework, Cactive/passive from Figure 4 does the job.
Because a is controllable (i.e. blockable), a ∈ A and because b is not controllable,
b �∈ A. Blocking the a transition from P1 to P3 is done in the same way as in the
only-blocking framework. The difference however is, that here we do not need
the self-loops on b.

We could say that in the active/passive framework, the controller will ob-
serve only (by means of a passive transition) when it needs the information. In
Figure 4, Cactive/passive observes P1

b−→ P2, but does not observe the upper
b-transitions of P , because P may execute them without the controller ‘know-
ing’ it. In the only-blocking framework, the controller must also synchronize
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on the upper b-transitions, because otherwise they will be blocked. We think
that this is an important advantage of using active/passive transitions: for un-
controllable/observable actions, transitions are only needed where observations
are needed. If there is only blocking-interaction, transitions in the controller
are needed everywhere the process executes an uncontrollable/observable action
(otherwise they will be blocked and that is not allowed).

In fact we can say that in the supervisory control context, A (from P |PA|C)
contains the controllable actions of the process P . Then, we resume: uncontrol-
lable actions are observed by passive transitions and controllable actions are
observed and controlled by active transitions. Note that an active transition of
C labelled with a controllable event of P is both controlling (it allows P to exe-
cute the action) and observing (the controller synchronizes this transition with
the one from P ).

2.6 Commutativity and Associativity of |PA|
Theorem 1. |PA| is commutative for all A and P . |PA| is associative if and only
if for all events a we have: a �∈ A ⇒ ā ∈ P .

The proof of this theorem can be found on www.cs.utwente.nl/~strubbesn.
If, according to the above theorem, |PA1

| and |PA2
| are associative operators,

we have (X |PAi
|Y )|PAi

|Z = X |PAi
|(Y |PAi

|Z) for i = 1, 2, and therefore we could
write X |PAi

|Y |PAi
|Z instead. Note, however, that in general (X |PA1

|Y )|PA2
|Z �=

X |PA1
|(Y |PA2

|Z) just as in general we do not have (X |A1|Y )|A2|Z �= X |A1|
(Y |A2|Z) in for example CSP or LOTOS.

3 Trace Semantics

We want to give a trace semantics for the operator |PA|. This operator is used
in a context where we have active actions (like a) and passive actions (like ā).
A trace of an automaton could then be abā for example. However, this notion
of trace is not strong enough to give a trace semantics for composition (i.e. the
sets of traces of the components are not enough to determine the set of traces
of the composition).

See for example Figure 5. There the set of traces of X1 and X2 are both equals
to {ε, a, ab, aba, ac̄}. The set of traces of Y equals {ε, c}. If we could determine
the trace set of a composite system from the trace sets of the components, then
X1||Y and X2||Y should have the same trace set (because X1 and X2 have the
same trace set). But this is not the case, since acba is a trace of X1||Y while it
is not a trace of X2||Y . Therefore this notion of traces is not strong enough for
a trace semantics of |PA|.

Another option for a trace semantics would be to look at traces of the form
σP with σ ∈ (Σ∪Σ̄)∗ and P ⊂ Σ̄, where σP means that the process can execute
the trace σ such that it ends up in a state where the set of passive events that
are enabled equals P . This can be seen as an analogy of refusal traces in [10].
However, this notion of trace is also not strong enough because the processes
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Fig. 5. Processes X1, X2 and Y

X1 and X2 in Figure 5 have the same traces of the form σP , while X1||Y and
X2||Y have different traces.

We now introduce a trace concept called pie-traces (which stands for passive-
information-extended-traces). We will see that this notion of trace is indeed
strong enough to give a trace semantics for |PA|. A pie-trace in this semantics
looks like

P1α1P2α2 · · · Pnαn,

where αi ∈ Σ∪Σ̄ and Pi ⊂ Σ̄. We could say that part of the tree-structure (as far
as it concerns the passive actions) is contained in these pie-traces. P1α1P2α2 · · ·
Pnαn means that within the transition system, there exists an execution of trace
α1 · · · αn such that at the state in the transition system where αi is to be executed
there are outgoing passive transitions for each ᾱ ∈ Pi (i = 1 · · ·n) and there are
no outgoing passive transitions for α if α �∈ Pi.

The processes in figure 5 have the following pie-traces: Trpie(X1) = {a[c̄]b,
aba, ab, a}. Here a[c̄]b means P1aP2b with P1 = ∅, P2 = {c̄} etc. Trpie(X2) =
{a[c̄]ba, ab, a[c̄]b, a} and Trpie(Y ) = {c}. With this notion of trace semantics, X1

and X2 have different semantics, thus they are not equivalent with respect to
this notion of trace semantics. We now show that our notion of trace semantics
is strong enough for a trace semantics of the composition operator |PA|:

Let σ1 and σ2 be pie-traces. Then we define σ1|PA|σ2, which will turn out to
be the set of interleavings of σ1 and σ2 with respect to |PA|, as follows:

– ε|PA|ε := {ε}
– (R1α1σ

′
1)|PA|ε := {ε}∪S1, where S1 := R1α1(σ′

1|PA|ε) if (α1 ∈ Σ and α1 �∈ A)
or α1 ∈ Σ̄ else S1 := ∅.

– ε|PA|(R2α2σ
′
2) := {ε}∪S1, where S1 := R2α2(ε|PA|σ′

2) if (α2 ∈ Σ and α2 �∈ A)
or α2 ∈ Σ̄ else S1 := ∅.

– (R1α1σ
′
1)|PA|(R2α2σ

′
2) := {ε} ∪ S1 ∪ S2 ∪ S3 ∪ S4, where

S1 := (R1∪R2)α1(σ′
1|PA|σ2) if one of the cases r3,r4 or r6 is true, else S1 := ∅,

S2 := (R1∪R2)α1(σ′
1|PA|σ′

2) if one of the cases r1,r2 or r5 is true, else S2 := ∅,
S3 := (R1 ∪ R2)α2(σ1|PA|σ′

2) if one of the cases r3’,r4’ or r6’ is true, else
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S3 := ∅,
S4 := (R1 ∪ R2)α2(σ′

1|PA|σ′
2) if case r2’ is true, else S3 := ∅.

Cases:
r1: α1 = α2 ∈ Σ and α1 ∈ A
r2: α1 ∈ Σ and α2 = ᾱ1 and α1 �∈ A
r3: α1 ∈ Σ and ᾱ1 �∈ R2 and α1 �∈ A
r4: α1 ∈ Σ̄ and α1 �∈ P
r5: α1 = α2 ∈ Σ̄ and α1 ∈ P
r6: α1 ∈ Σ̄ and α1 �∈ R2 and α1 ∈ P
r2’: α2 ∈ Σ and α1 = ᾱ2 and α2 �∈ A
r3’: α2 ∈ Σ and ᾱ2 �∈ R1 and α2 �∈ A
r4’: α2 ∈ Σ̄ and α2 �∈ P
r6’: α2 ∈ Σ̄ and α2 �∈ R1 and α2 ∈ P

Theorem 2. σ is a pie-trace of X |PA|Y if and only if there exist pie-traces σx

and σy of X and Y respectively such that σ ∈ σx|PA|σy.

Proof. It can be seen that the cases r1 till r6 and r2’,r3’,r4’ and r6’ correspond
to the composition rules r1 till r6, r2’,r3’,r4’ and r6’. This correspondence is such
that when case r1 is true (from the initial states), then composition rule r1 can
be applied in the composition and when case r2 is true then composition rule
r2 can be applied, etc. Now it is easy to check that σx|PA|σy is exactly the set of
all interleavings (including synchronizations) of σx and σy that are accepted by
the composition rules of |PA|, from which the result follows.

Similar to the definition of refusals in [10], we can now define pie-refusal
traces of the form σX , where σ is a pie-trace and X a set of active actions that
can be refused after σ. In this way a semantics is defined that reduces to the
standard testing semantics in the absence of passive actions.

4 Conclusions and Outlook

In this paper we used active and passive transitions to model both blocking
and non-blocking interaction between processes. We motivated that the use of
active/passive transitions is particularly interesting for modelling supervisory
control systems. Supervisory controllers have two distinct actions: observing and
controlling, which can be modelled naturally with passive and active transitions
respectively. With the use of active/passive transitions, we are able to avoid
the problems that arise in the ‘blocking’ framework when it comes to modelling
uncontrollable process actions.

We introduced the composition operator |PA| for the active/passive framework
by means of structural operational rules. By using pie-traces, we have also given
a trace semantics for this operator.

With the active/passive framework and the operators [·]C and |PA|, we have
given two tools for the modular specification of control systems. First, with
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[·]C we can control the scope of the observations within the composite system.
Secondly, with |PA| we can establish synchronization of observations (which results
in multi-may synchronizations) via the set P .

We think that many phenomena, in particular supervisory control systems,
can be modelled naturally within the active/passive framework by making use
of operators like |PA| and [·]C . For future research, we want to explore the use of
|PA| in a hybrid (supervisory control) context. First steps in this direction can be
found in [11]. Another interesting question is whether stochastic aspects can be
incorporated in the |PA|-active/passive framework. In [12], we see the use of |Σ̄∅ |
enhanced with stochastic aspects for the specification of Piecewise Deterministic
Markov Processes.
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Abstract. This paper deals with the formalization of Unified Modeling 
language (UML) by means of Petri Nets. In order to improve the semantics of 
UML dynamic diagrams, we define a new method of embedding UML 
StateCharts into Interval Timed Petri Nets (ITPN). This method considers all 
kinds of hierarchical states together with the most of pseudo-states like history 
ones. Besides consistencies analysis, time intervals of ITPN model well event 
generation and dispatching delays making it possible to achieve performance 
and time properties analysis of complex systems. 

1   Introduction  

Complex systems are typically large and reactive systems containing a great number 
of different kinds of hardware and software components that may operate 
concurrently by means of various synchronization and communication mechanisms. 
They are also characterized by very high-level interactions with their environment and 
reactions to external stimuli must be achieved within given time intervals. Otherwise, 
violation of those temporal constrains produces critical consequences. Therefore, 
modeling and analysis of functional requirements are not enough and other concepts 
like reliability and safety become as important as the previous ones. 

Obviously a multi-paradigm modeling language is needed to design and analyze 
such critical systems. Hence the Unified Modeling language offers a collection of 
visual, friendly and flexible notations for expressing the artifacts representing various 
aspects of complex systems ranging from business applications to real time systems. 

This OMG standard language [13] is based on object-orientation involving high-
quality design concepts such as abstraction, encapsulation and decomposition of 
systems into objects. Besides, UML is also supported by wide-established tools and 
environments for specification, design and automatic code generation. Moreover its 
extensibility faculties make it easier to improve UML notations to address issues of 
critical systems with respect to the profile for schedulability, performance and time 
specification [14]. However in spite of the precise syntactic aspects of UML 
notations, their semantics remain too imprecise and lack verifiability capabilities 
[6][8]. So considering the semi-formal aspect of UML, it is imperative to define 
mapping methods of UML diagrams into other formal modeling languages to take 
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advantage of their tools developed for analysis, simulation and verification of parts of 
produced models. Thus, the lack of formality can be overcome by providing a 
dynamic semantics to UML by means of various rigorous mathematical formalisms 
such as Petri Nets and Formal Specification Techniques (FST). 

In this way our approach focuses on ascribing behavioral diagrams of UML 
(mainly StateCharts) with formal semantics in terms of temporal nets in order to allow 
both the verification of consistency of the different dynamic diagrams and the 
analysis of timeliness and performance of an UML model.  

In this paper we deal with UML StateCharts that are state machines increasing the 
modeling power of classical state transition diagrams by introducing superstates and 
the hierarchical decomposition of superstates. On the other hand, the target formalism 
is a derived Petri net [1] enhanced with time intervals to represent timing information 
about event transmission delays. We proceed with our method by steps to overcome 
the arising difficulties relating to the boundary-crossing arcs that transgress the good 
compositional properties of StateCharts like those described in [16]. 

The paper is structured as follows: The next section presents the related work and 
the motivation of our work. Section 3 shows the basic features of UML StateCharts 
and in section 4 we present the interval timed Petri nets. Then in section 5, the 
patterns of our translation method are given for more comprehensibility and section 6 
presents the main algorithms which map StateCharts into ITPN formalism. Finally a 
conclusion is given in section 7 where some remarks and future works are outlined. 

2   Motivation and Related Work 

The UML specification document [13] provides the description of any UML diagram 
in three parts: the abstract syntax, the well-formedness rules for the abstract syntax 
and then its semantics. The well-formedness rules are formulated in the Object 
Constraint Language OCL and the semantics is given in a natural language.  

Thus the architects of UML use the meta-modeling level to describe UML using 
class diagrams and OCL to capture the static relationship between modeling concepts. 
However this approach is not adequate since class diagrams and OCL are too little 
precise to describe the language semantics [6]. Furthermore using natural language or 
OCL makes it hard to discover inconsistencies among various diagrams of an UML 
model. Moreover the lack of precise semantics of UML can lead to a number of 
problems relating to readability and interpretation, use of rigorous design process, 
rigorous semantic analysis and tool support limited only to syntactic concerns [6], [8].  

Hence many proposals are issued giving formal meaning to UML Models in order 
to overcome the above problems and achieve their analysis by means of verification 
and validation tools. Among them we distinguish two families of approaches: 

The first family includes approaches that improve the meta-model of UML to 
overcome the ambiguities of standard UML semantics. For instance the authors of [7] 
add Dynamic Meta Modeling rules for the specification of UML consistency 
constraints and provide concepts for an automated testing environment. 

Another work [15] exploits the profile extension mechanism [14] to add definitions 
of some stereotypes and a set of UML diagrams that enable specification of real-time 
systems and their properties. To specify properties of such systems, specification-
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classes are defined having predefined constraints presented in an extended variant of 
Timed Computation Tree Logic (TCTL). 

Likewise, [3] proposes a formalization of an extension of UML state diagrams for 
specification of real-time behavior. This enhancement is achieved by the timed 
statecharts formalism of Kesten and Pnueli. But the next translation step into timed 
automata is not defined to take advantage of their analysis tools like model-checkers. 

The second family defines mappings from UML constructs into rigorous 
formalisms such as Petri nets and Formal Specification Techniques (FST) to 
accomplish consistency checking. This way, the approach of [8] exploits a formal 
notation like Z instead of OCL to formalize UML Components so that the usual 
facilities for Z become available for type checking and proving properties about 
components. But the main disadvantage of using Z is that faithfully mapping the 
UML semantics to Z can result in very verbose and cumbersome specifications. 

In a similar work [17] the author proposes a mapping using the incremental two-
way translation between UML and SDL concepts. The translation of a subset of UML 
state diagrams to the SDL ones proceeds by flattening a fragment of nested states. 
Nevertheless, several suitable concepts for reactive systems are abandoned like 
concurrent hierarchical states, history states and boundary-crossing transitions of 
which handling needs complex redefinitions of the translation. 

In a same way, the approach of [5] defines a mapping from UML models 
consisting of use case, class and interaction diagrams to their equivalent in E-LOTOS 
to form a single formal model in E-LOTOS. However the synchronous 
communication mode of LOTOS compels adoption of the zero-time semantics and 
excludes many situations where asynchronous communication is necessary.  

There are also works based on graphs as target models, like that of [9] 
transforming a subset of UML state diagrams into graphs via rewriting rules. 
Likewise the authors of [4][2][10][11] indicate too dynamic semantics of fragments of 
UML models based on enhanced Petri nets (respectively high-level Petri nets, object 
Petri Nets and Generalized Stochastic Petri Nets). Draft heuristics are given in both 
these papers to transform parts of the UML models into the target formalism. 

Another alike paper [12] extends UML with performance annotations (paUML) to 
deal with the performance indices in mobile agent systems that are modeled in 
conjunction with design patterns. Then the paUML models are semi-automatically 
translated to generalized stochastic Petri nets (GSPN). 

In a particular way, the author of [18] defines a toolkit of specification techniques 
for requirements and design engineering (TRADE) where some choices close to the 
Statemate semantics of StateCharts are adopted to define transition system semantics 
for UML specifications.  

However, the works mentioned above (including GSPN-based ones) deal only with 
a subset of state diagrams close to particular application domains and the translation 
rules are not well formalized. Moreover discarded concepts such as concurrent 
composite states and history vertices are important for modeling reactive and 
concurrent systems. Also events queuing patterns do not fit for situations where one 
event may trigger many transitions at once in various orthogonal regions.  

Accordingly we define in this paper a new translation method using timed Petri 
nets as target model. Instead of using time tag over transitions as done in [10], we 
prefer tag each event token with a time interval because this seems more faithful to 
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model any dispatching delay. Our method allows also enabling many transitions with 
respect to the same trigger event.  Furthermore, we deal with all kinds of hierarchical 
states and the most of pseudo-states like history ones. Obviously, introducing these 
concepts both with boundary-crossing arcs raises many problems we resolve by 
means of our enhanced model so that UML semantics [13] remain preserved.   

Once the stateChart of an UML model is translated into a timed Petri net, we could 
achieve a consistency validation of the dynamic view with respect to sequence 
diagrams. The methodology may consist in checking whether event sequences are 
consistent with those of the reachability graph of the resulting net. Also it may find 
out whether and how temporal constraints of events paths could be fulfilled with 
respect to time intervals on the arcs of the reachability graph. 

3   UML StateChart Features 

The UML State Machines are an object-based variant of HAREL StateCharts that can 
model discrete behavior of objects through finite state-transition systems [13].  

A StateChart (called also state diagram) shows the sequences of states that an 
object goes through during its lifetime in response to events, together with its 
response to those events. Note that an event can be a (asynchronous) signal, 
(synchronous) operation invocation, a time passing or a condition change. 

A state is a condition or situation during the life of an object during which it 
satisfies some condition, performs some activity or waits for some event. Here an 
event is an occurrence of stimulus that can trigger a state transition. Note that a state 
may be either simple or composite. Any state enclosed within a composite state is 
called a substate of that composite state. It is called a direct substate when it is not 
contained by any other state; otherwise it is referred to as a transitively nested 
substate. When substates can execute concurrently, they are called orthogonal regions. 

So a transition (arc) is a relationship between two states indicating that an object in 
the first (source) state will perform certain actions and enter the second (target) state 
when a specified event occurs and specified conditions are satisfied.  

In general a state has several parts: 

− “Entry/exit” actions are executed on entering and exiting the state, respectively. 
− “Do” activity is executed while being in a state. It stops itself, or the state is 

exited, whichever comes first. 
− Substates represent the nested structure of a state, involving sequentially or 

concurrently active substates connected via internal transitions. 

When dealing with composite and concurrent states, the simple term “current state” 
can be quite confusing because more than one state can be active at once. If the 
control is in a simple state then all the composite states that either directly or 
transitively contain this simple state are also active. 

Furthermore, since some of the composite states in this hierarchy may be 
concurrent, the current active state is actually represented by a tree of states starting 
with the single top state at the root down to the individual simple states at the leaves. 
We refer to such a state tree as a state configuration.  
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Also any transition originating from the boundary of composite state is called a 
high-level or group transition. If triggered, it results in exiting of all the substates of 
that composite state executing their exit actions starting with the innermost (deepest) 
states in the active state configuration. 

3.1   Some Preliminary Expansion Rules 

The pseudo-states are not states but only transient vertices used for more convenience 
when modeling the state machine graph. Thus, in order to simplify our translation 
method we remove all pseudo-states. But before erasing them, expansion rules below 
must be done with respect to the well-formedness rules defined in [13]:  

• Any composite state containing a shallow history pseudo-state, should be labeled 
with the “history” tag.  

• Any state containing a deep history pseudo-state, is labeled with the “history” tag 
and all its direct and transitively nested substates are also labeled with the 
“history” tag. This rule guarantees the handling of the history property in all 
transitively nested substates of any composite state owning a deep history 
pseudo-state.  

• Any target state of a transition originating from an initial pseudo-state, is labeled 
with the “initial” tag. 

• Target states of a transition originating from a fork pseudo-state are labeled with 
the “initial” tag. Obviously each initial state must belong to one orthogonal region 
of a concurrent composite state. The transition arc incoming to the fork vertex 
will be replaced by an incoming transition arc to the edge of the composite state  

• All substates (in different orthogonal regions of a composite state) of which 
transitions merge into a join (terminator) pseudo-state, are labeled with the “final” 
tag. The transition arc outgoing from a join vertex to one target state, will be a 
triggerless outgoing arc from the edge of the composite state to the target state. 

3.2   Mathematical Structure of a StateChart 

Consequently to this previous operation and before defining the translation method of 
a state machine D into its equivalent Petri net, we use for more convenience the below 
mathematical structure to model the StateChart D.  

A StateChart is a tuple: D = <S, K, Tag, C, TA, S0, L, E, G, A> where: 

− S : set of states with the topmost state S0. 
− K : S {Simple State, Sequential Composite State, Concurrent Composite 

State}. 
− Tag : S {Initial, Final, History}. 
− C : S  2S is a mapping that gives to each composite state its nested states. 

Note that s⊄C*(s) where C*(s) = ∪iC
i(s) and Ci>0(s) = ∪{Ci-1(sj) for sj∈C(s)}. 

This mapping defines a partial order relation (⊂) among states we can depict as a tree.  

− TA ⊆SxS: Set of transition arcs. 
− L is a labeling mapping: TA ExGxA where E is the set of events, A is the set 

of actions and G is the set of guards. 
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4   Target Model of Translation  

The target model of the translation is a kind of interval timed Petri net denoted by 
ITPN [1].  A marked ITPN is a tuple R = <P, T, Pre, Post, L1, L1, Prior, MI > where: 

− P is the places set and T is the transitions set. 
− Pre: T 2P is a backward incidence function giving the inplaces (input places) 

of transitions and Post:  T 2P x INT  is a forward incidence function giving the 
outplaces (output places) of transitions with the corresponding delay intervals. 

− INT = { [t1,t2] ∈ ℜ≥0 X ℜ≥0 / t1≤ t2 } the set of time intervals. 
− L1 and L2 are labeling functions. L1: P EVT (EVT is the set of events) and L2: 

T ACT (ACT is the set of actions). 
− Prior ⊆ T x T is a priority relationship between transitions in conflict.  
− MI :  P  ℵ  is the initial marking of the net at instant 0 from system starting. 

A transition “t” is enabled within a marking M if the required tokens in inplaces 
are available: ∀p∈Pre(t) : M(p)=1. Because the arcs are weighted with 1, when a 
transition “t” fires, a new marking M’ is produced as follows: M’ = M∪Post(t)–Pre(t). 

“t” consumes a token in each of its inplaces and generates one in each of its 
outplaces. However the timing policy of this ITPN requires any transition to be fired 
as soon as it is enabled. The produced tokens become available in outplaces only after 
freeze-up delays that are sampled respectively from the time intervals relating to the 
arcs joining the transition “t” to its outplaces. If there’s no time interval on an arc, we 
consider the default interval [0,0]. 

The priorities between transitions aim at setting in order the simultaneous 
executions of several boundary-crossing arcs originating from transitively nested 
substates of a same superstate. According to [13] the priority level decreases from 
innermost substates down to the outermost ones such that when triggered at once, exit 
actions from the former substates execute before those of the former ones. 

In the next sections we denote respectively by entry and exit places some initial 
and final places in a Petri net component. These particular places provide the links to 
connect together subnets relating to substates of any composite state. 

In addition, each action will be mapped into an event raise, so that it makes it 
possible to join any net transition triggering one event to inplaces of another transition 
triggered by this specific event. 

5   Transformation Patterns 

Below we present the main patterns about different cases of translation where we use 
“transition arcs” to mean UML transitions in contrast with Petri net transitions.  

5.1   Transition Arc Between Two Simple States  

Given one transition arc between two simple states S1 and S2 belonging to the same 
containing state, we distinguish two cases requiring different treatments: 

1. The trigger event may be a call event or signal event, 
2. The trigger event may be a time event. 
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Case 1: The trigger event is a call event or signal event.  The transition arc is mapped 
here into a net transition as follows (Fig.1): 

 
 
 
 
 
 
 
 
 

Fig. 1. Arc labeled by a call/signal event Fig. 2. Connecting trigger event places 

The source state S1 is translated into an inplace of act depicting the incoming 
control flow and the target state S2 is related to an outplace depicting the outgoing 
control flow. For the trigger event of the transition act, we generate another inplace 
called event place that depicts the event flow. This special place would be an outplace 
of any transition raising the relating event e1. 

In the same way, the action act labeling the net transition may consist in generating 
some event e2 used by other transitions in the StateChart. Hence we should link later 
our net transition act to all (event) places labeled with the trigger event e2. 

Note that the abort transition models the possibility to discard the event e1 if the 
state machine in not yet in S1 with respect to UML semantics. Since any transition 
must fire whenever it becomes enabled, we must make the priority of the transition 
act superior than that of the abort transition (see Fig.2).  

Furthermore, we can label with a time interval any outgoing arc from a net 
transition to a trigger event place. This interval models well the minimal and maximal 
time delays between the queuing and dispatching instants of the event. The variable 
transmission delays depend on the properties of the communication medium and other 
factors. For instance the possibility of event loss can be depicted by an interval [x,∞[ 
where x denotes the minimal delay to deliver that event for processing. However, if 
we would model the synchronous communication we can do it by using the only 
interval [0,0] so that trigger events become available as soon as they are raised.  

Case 2: The trigger event is a time event (when d). The translation of a time event arc 
into a net transition needs also an event inplace we should join as an outplace to the 
transition “T” which produces a token in the related place of S1 (Fig.3). 

However the net arc between “T” and the event place would be tagged with a time 
interval [d,d]. So if “T” fires, it produces a token in each of the two places relating 
respectively to the state S1 and the event e.  Here the place S1 is marked immediately, 
whereas the place e receives its token after d time units. Once this token becomes 
available and if S1 is still marked then the transition act is fired. Otherwise, the abort 
transition is performed consuming the time event token (Fig.3). Note that other 
transitions outgoing from S1 may fire so that the transition act becomes disabled. 
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Fig. 3. Arc labeled by a time event 

5.2   Transition Arc from a Simple State to a Composite State Without a History 
Tag 

When the trigger event e1 is dispatched, the system processes the transition action act 
immediately if the state machine is in the suitable state S1 that has an outgoing arc 
triggered by e1. Otherwise, this event e1 is discarded.  

As the arc tagged with e1 goes to the edge of the composite state S2, the outplace of 
the act transition is the initial place of the related net to S2 if this one is sequential 
(Fig.4). But if S2 is a concurrent state (Fig.5), all places relating to respectively initial 
states of concurrent regions of S2 will be outplaces of the act transition. Hence when 
firing this transition, a token is produced in the initial place of each region of the state 
S2, making it possible to activate both all those concurrent regions in the same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Sequential composite state Fig. 5. Concurrent composite state 

5.3   Transition Arc from a Composite State Without History Tag  

In Fig.6 there are three kinds of transition arcs exiting from the state X. 
The simple one is a triggerless transition outgoing to the state G. In this case, we 

connect the subnet relating to the final substate D of X with the subnet relating to the 
target state G (the subnets of simple states are single places). 

The second kind is a high-level transition outgoing from the edge of X to the state 
E. Here we have to connect each one of subnets relating to the direct substates of X 
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with the place of G via a transition p triggered by the event e2. However instead of 
duplicating three times the transition p in X for each substate of which place becomes 
its inplace, it is more suitable to use (in Fig.6) all places related to X/B, X/C, X/D as 
optional inplaces for a single transition p that is triggered by e2. This feature is 
depicted by dashed lines joining the inplaces (B, C and D) to the transition p.  

The third transition is an exit arc from only one direct substate C to the new target 
state F. So we have to connect only the subnet of C with the subnet relating to F. 

Note that when exiting one region to somewhere outside its concurrent composite 
state, the other orthogonal regions of X should be also disabled [13]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.   Source state of an arc is a sequential composite state 

5.4   Transition Arc from a Simple State to a Composite State with a History Tag 

In Fig.7, the state S2 is a sequential composite state with the history tag. So when this 
state is exited and then reentered again, the system should return to its most recent 
active configuration; that’s the state configuration that was active when the composite 
state was last exited. 

Therefore we use a “thread” place PH as entry place to model control passing 
between substates of S2.  

Remind that an entry place is not marked at start but during net execution it may 
receive a token from a previous transition so that it activates S2.  

Moreover the place PS21 relating to the first substate S21 will be initially marked. 
When firing some internal transitions in S2, the token of PS21 moves to the next places 
relating to substates of S2 making it possible to determine every time the current 
marked place and consequently the related active substate. 

Hence if the system leaves S2 (removing PH token) while a token is in an 
intermediate place and if it returns to S2 (renewing a token in PH), the recent active  
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Fig. 7.   Sequential composite state with history tag 

 
 
 
 
 
 
 
 
 

Fig. 8. Concurrent composite state with history tag 

configuration is restored because the intermediate place remains marked until the 
control of S2 is restored. However if a triggerless exit transition fires, the PH token is 
finally consumed whereas a new token is produced in the initial place PS21. 

In Fig.8, S2 is a concurrent composite state with two orthogonal regions of which 
one is labeled with the history tag. Here we apply to each region the suitable handling 
method among those we have presented above. It is obvious that the firing of act1 
transition produces a token in the appropriate entry place of each region. Whenever 
the region is tagged with “History”, we consider its thread place PH as an entry place. 
Otherwise, the place relating to the first substate of a region is taken as entry place. 

5.5   Transition Arc from a Composite State with a History Tag to Other States 

To simplify the resulting net in Fig.9, we do not add the transitions that represent 
event discarding. The dashed lines mean that the transitions p and q should have Y1, 
Y2 and Y3 as optional inplaces. We recall that exit transitions of orthogonal regions 
must synchronize. So the exit arc, which is event triggerless, requires joining the final 
place of each region to that transition q. In addition we join X/PH to the transition q 
which firing renews a token only in the initial place X1 of the history tagged region. 
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Fig. 9. Concurrent composite state with history tag 

If the exit transition is a compound one (i.e. e2/p) outgoing from the edge of a 
composite state, then we use as inplace the thread place of the history tagged region 
and as optional places all the places of the other orthogonal region without history tag.  

6   Outlines of the Translation Algorithms 

In the first step of the translation, we discard the boundary-crossing arcs that 
transgress the encapsulation concept of states [16]. Note that high-level transitions are 
also boundary-crossing transitions which are handled in the same manner. 

As handling boundary-crossing arcs together with history vertices is too complex, 
we prefer go by steps and defer their treatment  to the second step of the translation.  

Once we obtain all related nets of a whole system, we combine them by means of 
the parallel operator. Every transition raising an event must have as outplace each one 
labeled with this event. Afterward, we could tag these added arcs with time intervals 
modeling dispatching delays of events or time constraints on StateCharts arcs.  

6.1   First Step of Translation  

Given some state machine D that consists of one topmost level state S0. We discard all 
boundary-crossing arcs and then we construct the related net as follows: 

Let S1,…,SN be the direct substates of S0 that may be connected together either 
sequentially or concurrently. First we construct the net |[Si]| relating to each substate 
Si by applying recursively the same algorithm1. Then we use one of the two 

   H 
 
 
 
 
 
 
 
X                              Y 

1 

2 

A 

E 

3 

e3/q 
e2/p 

e1/r 

1’

2’ 

3’ 

F 

• 
X1

X2 

E

X3 
q 

p 

X/PH 

e2 

e3 

F 

e1 

Y1 

Y2 

• 
A

Y3 

r 



 A Formal Semantics of UML StateCharts by Means of Timed Petri Nets 49 

 

algorithms Algo1-Seq and Algo1-Par to combine together the resulting nets |[Si]| by 
means of one of two connecting operators; the used operator may be either a parallel 
composition connector || (if S0 is a concurrent state) or a sequential composition ⊗ (if 
S0 is a sequential state). 

If  K(S0) = Concurrent then |[S0]| = |[S1]|  ||… || |[SN]|.  
If  K(S0) = Sequential  then |[S0]| = |[S1]|  ⊗… ⊗ |[SN]|.  

 

The same approach is then employed recurrently to each substate whenever this 
one is a composite state. The sketch of algorithm1 is a follows: 

Algorithm1 (S : IN UML State Machine)  |[S]| : ITPN 
Begin 

if S is a simple state then  Algo1-Simple-State (S, N) 
else begin 

 let Subnets-List := ∅;       // Subnets relating to  
 for each substate SSi of S // direct substates of S 

  do begin  N
i
 := Algorithm1(SSi);  

        Add(Subnets-List, N
i
); 

       end 
 if K(S)=Sequential then Algo1-Seq(S, Subnets-List);  
 if K(S)=Concurrent then Algo1-Par(S, Subnets-List); 
   end 

end Algorithm1. 

Algo1-Simple -State handles only simple states by translating each one “S” of them 
into one place PS. If S has not entry/exit actions, PS becomes both an entry and a final 
place of that related subnet |[S]|. Otherwise, the simple state with entry/exit actions is 
translated into three places, PEntry, PS and PExit that are linked by means of the 
entry/exit transitions as depicted in Fig.10.  

 
 
 
 

Fig. 10.   Entry/exit actions handling in a simple state 

The same approach is also applied to a composite state (both in Algo1-Seq and 
Algo1-Par) by substituting Ps with the subnet |[S]| related to this state S considered 
without its entry and exit actions.  PEntry is linked by means of the act1 transition to the 
initial places of the subnet |[S]|, namely those which would receive the tokens to 
initiate the activity in that part of the system. Likewise, all final places of the subnet 
|[S]| have to be linked to PExit by means of the transition act2. 

Below we give the core of the subroutines Algo1-Seq and Algo1-Par : 

Algo1-Seq (S: StateChart; Subnets-List: List of ITPN)  ITPN 
Begin 

  for each arc Arc between SS
i
 and SS

j
 ∈ Substates(S) 

   do if SS
i
 is a simple state or Arc is triggerless then  

begin   Add a transition T; 
Join |[SS

i
]| & |[SS

j
]|∈ Subnets-List via T; 

Label T with the action name of Arc; 
Add an inplace of T that is labeled with    

the trigger event name if it exits; 

S 
Entry action act1                 
Exit action act2 

act1 act2 PS PEntry PExit 
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end 
  if S is history state  then  add a thread place P

H
 ; 

  Link P
H
 at the same time as inplace and outplace of the 

each transition of all substates of S; 
  Handle the entry and exit actions if they exist. 

end Algo1-Seq. 

Note that if the exit action exists in a history tagged state S then we should add in 
|[S]| an exit transition which is joined to PH only as inplace such that when Texit fires it 
consumes the PH token. Thus any activity in |[S]| will be disabled. We should also 
reset the net by joining Texit to the initially marked place of the first substate of S. 

Algo1-Par (S: StateChart; Subnets-List: List of ITPN)  ITPN 
Begin 

Juxtapose together all regions nets ∈ Subnets-List; 
Link each transition generating an event e to all event 
places labeled with e as outplaces; 

Add a fork place P
entry

; 
Join P

entry
 to the entry places of subnets through an entry 

transition T
entry

; 
Label T

entry
 with the entry action name if it exits; 

Add a join place P
exit

; 
Join P

exit
 to the final places of subnets through an exit 

transition T
exit

; 
Label T

exit
 with the exit action name if it exits; 

end Algo1-Par. 

6.2   Second Step of Translation  

In this step we treat boundary-crossing arcs which triggering causes exiting also the 
concerned superstates starting from the innermost one in the active configuration. 

We recall that high-level transitions belong also to this category of arcs. Indeed a 
high-level transition originates from the boundary of a composite state S and so it can 
occur wherever the substate the control is in. Therefore we expand any transition of 
this kind into a group of simple boundary-crossing arcs where each one of them 
originates from one simple substate of the composite state. 

For each boundary-crossing arc Arc, Algorithm2 generates a transition T with an 
inplace labeled with the triggering event of Arc. Then it simply joins T to the entry 
place of the subnet related to the target state of Arc.   

However it is more difficult to cope with the source state (S) of Arc. Obviously we 
join its related place Ps to T as inplace to disable |[S]| when Arc occurs. Especially T 
will have a list of labels, which contains at least the exit action name of S and the 
name of the action on Ac. 

The next subroutine of Algorithm2 depends on whether the superstates of S have a 
history tag. When the state S is exited, the next procedure assures that any superstate 
of S of which the superstate is history tagged, should become active when their 
outermost state is reentered later.  The main idea is to regenerate a token through Arc 
in the entry place of any superstate S’ that is itself enclosed within a history tagged 
state. Obviously the entry place depends on whether S’ is history tagged (Fig.11). 

Handle-Boundary-Crossing-Arc (Arc: IN OUT StateChart Arc)  
Begin 
S’:= Source state of Arc;    // S’ is a simple state 
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S”:= SuperState(S’); 
while S” does not contain the target state of Arc 

do begin 
Add to Label(T) the exit action name of S”; 
if S” has a history tag then 

if S’ has not a history tag  
then join T to the entry place of |[S’]| 
else join T to the thread place of |[S’]|; 

S’ := S”;   S” := SuperState(S”); 
end 

end Handle-Boundary-Crossing-Arc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.  Boundary-crossing arcs 

Remark. Whenever one region of a concurrent state is exited by a boundary-crossing 
arc, all of orthogonal regions should also be exited. Therefore we add as optional 
inplaces some adequate places of the other orthogonal regions to the exit transition 
which becomes enabled only when its standard inplaces are marked. But when it fires, 
tokens in both usual and optional inplaces are consumed wherever the latter ones are 
available. Hence even if an optional inplace is not marked, the enabled transition 
fires. Here, thread places of the orthogonal regions are joined as optional inplaces to 
the exit transition which firing disables the subnets of the other regions.  

7   Conclusion 

This paper presents a new approach towards the formalization of UML by translating 
the StateCharts into a rigorous language, namely Interval Time Petri Nets (ITPN). We 
enhanced the previous formalism with some suitable concepts so that our method 
deals with both all kinds of composite states and pseudo-states and allows us to model 
the various dispatching delays of events and timing information on StateChart arcs. 

Once an UML State diagram is converted into a Petri net, we can make use of existing 
tools for Petri net analysis [1] or check the semantically and temporal consistencies with 
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reference to sequences diagram.  In this setting, the intended methodology consists of 
generating the reachability graph from the related Petri net of any UML model and mapping 
the sequence diagram into a set of execution paths. Afterward, one can find out whether our 
graph embeds all these paths and whether timing constraints on events sequences are 
fulfilled considering the time intervals on graph transitions. 

Similarly our approach can also be generalized to the activity diagrams since they 
are based on UML state machines. However some improvements would be performed 
to take into account some specific aspects of this kind of UML diagrams.   
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Abstract. We develop a unifying theory of message-passing automata
(MPAs) and MSC languages. We study several variants of regular as well
as product MSC languages, their closure under finite union and their
intersection. Furthermore, we analyse the expressive power of several
variants of MPAs and characterize the language classes of interest by the
corresponding classes of MPAs.

1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [ITU99]) is widely
used in industry to formalize such typical behaviors.

A message sequence chart defines a set of processes and a set of communi-
cation actions between these processes. In the visual representation of an MSC,
processes are drawn as vertical lines and interpreted as time axes. A labeled
arrow from one line to a second corresponds to the communication event of
sending a message from the first process to the second. Collections of MSCs are
used to capture the scenarios that a designer might want the system to follow
or to avoid. Figure 1 shows four simple MSCs.

The next step in the design process is to come up with a high-level model of
the system to be. Such a model is usually formalized as a state machine or as
an automaton. In the setting of MSCs, where the notion of distributed processes
is central, one asks for distributed automata models. The components of such
a distributed automaton should communicate by message passing to reflect the
message flow indicated by MSCs. Thus, we are after message-passing automata
(MPA) realizing or implementing the behavior given in form of scenarios.

In the setting of finite words, there has been an extensive study of several
classes of languages and corresponding characterizations by means of automata.
Algebraic and logical characterizations have been obtained as well.

In the setting of MSCs, however, a correspondence of languages and char-
acterizing automata models or characterizing logical specifications is still at the
beginning. In this paper, we provide a comprehensive study of MSC languages
and message-passing automata. Our work can be summarized in two pictures,
Figure 2 and Figure 3, which we explain in the rest of this introduction.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 53–67, 2005.
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Fig. 1. The language of a finite MPA

When realizing communicating systems, two dimensions are important:
finiteness and independence.

Finiteness. Most often, the intended system is required to have a finite set of
(control) states. In the case of words, regular languages admit a characterization
in terms of finite state machines. In general, the notion of regularity aims at
finite representations. Thus, as in the word case, one is interested in regular
MSC languages. While for the word case a consensus is reached for the notion
of a regular language, this is not the case for MSC languages.

There have been several proposals for the right notion of regularity for MSC
languages. Henriksen et al. started in [HMKT00], proposing that an MSC lan-
guage is regular when its set of linearizations is regular. We denote this class of
languages by R (see Figure 2).

One could likewise argue to call a set of MSCs regular, when it is definable
by monadic second-order (MSO) logic (adjusted to MSCs), since this important
property for verification holds for regular sets of words. This view was also
pursued in [HMKT00] and it is shown that this class coincides with R when
formulas are supposed to define bounded MSC languages. Intuitively, an MSC
language is bounded iff its structure exhibits a bound on the number of send
events that have not been received yet by the receiving process. For example,
the MSC language {M1}∗ (where M1 is taken from Figure 1) is not bounded
and hence not regular. It induces the set of MSCs that send arbitrarily many
messages from process 1 to process 2. The set of all its linearizations gives rise to
the set of all words that have the same number of send and receive events, where,
for every prefix, the number of send events is larger or equal to the number of
receive events. This language is not regular, since, intuitively, we would need an
unbounded counter for the send events. In [GMK04], a more general notion of
regularity was studied, which gives rise to existentially bounded MSC languages.
Those languages require any MSC to exhibit at least one linearization that is
compatible with a fixed channel capacity.

Independence. On the other hand, the systems exemplified by MSCs are dis-
tributed in nature and the notion of a process is central. It is therefore natural
to consider every process to be represented as a single state machine or tran-
sition system. Furthermore, one defines a notion of communication, describing
the way these parallel systems work together.

Languages defined by finite transition systems working in parallel are known
as product languages and were initially studied in [Thi95] for Mazurkiewicz
traces. That paper discusses finite-state systems. There is a common initial state
and two different notions of acceptance condition. Either the acceptance condi-
tion is local, i.e. every process decides on its own when to stop, or it is global,
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Fig. 2. The hierarchy of regular and product MSC languages

which allows to select certain combinations of local final states to be a valid
point for termination. It is clear that (provided the system has a single initial
state) the latter notion of acceptance is more expressive than local acceptance.

In the context of MSC languages, [AEY00] studied classes of MSCs taking
up the idea of product behavior. Languages of MSCs are required to be closed
under inference. The idea can be described looking at the setting in Figure 1.
When realizing the behavior described by M2 and by M3, it is argued that the
behavior of M4 is also a possible one: Since processes 1 and 2 do not synchronize
with processes 3 and 4, the four processes do not know whether the behavior of
M2 should be realized or that of M3. We call the class of MSC languages that
is closed under such inference weak product MSC languages and denote it by P0

(see Figure 2). Note that, in [AEY00], no finiteness condition was studied.
In simple words, product languages respect independence.

Extensions. Let us study extensions of the two existing approaches. When think-
ing about an automata model realizing MSC languages, the allowance of different
initial states or global final states will give us classes of languages closed under
finite union. For example, one could realize exactly the set consisting of M2 and
M3 (without M4). Thus, when considering finite unions of sets of P0 languages,
one obtains the richer class of product MSC languages, denoted by P . Combining
the ideas of independence and finiteness, we get RP0 or RP .

The drawback of the regularity notion used for R is that the simple language
{M1}∗ is not regular, as mentioned before. Let us once again turn to the logical
point of view. Recall that MSO logic interpreted over bounded MSCs captures
regular and, thus, bounded behavior. It was shown in [BL04] that MSO logic
interpreted over the whole class of MSCs turns out to be too expressive to be
compatible with certain finite message-passing automata as introduced beneath.
These automata, though they employ finite state spaces for each process (but
not globally), are capable of generating unbounded behavior using a priori un-
bounded channels. In [BL04], existential MSO, a fragment of MSO was shown to
be expressively equivalent to finite message-passing automata. We therefore in-
troduce the class of EMSO-definable languages (E), which lifts the boundedness
restriction without abandoning the existence of a finite automata-theoretic coun-
terpart. Together with independence, we obtain the class EP or, when starting
from RP0, the class, EP0.
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Fig. 3. A Hierarchy of MSC Languages

This completes the explanation of the languages shown in Figure 1, and, one
main result of the paper is to show that languages actually form the hierarchy
that is suggested in the figure.

Automata Models. So let us exhibit corresponding machine models and call our
attention to Figure 3. We study several variants of message-passing automata
(MPA), which consist of components that communicate through channels. All
studied systems have a single initial state. We use (variations of) n-bMPAf

� to
indicate several classes of MPAs. Dropping the requirement that the local state
spaces are finite is indicated by the missing superscript f . When considering
finite unions of languages, we have to move towards global acceptance conditions
(rather than local), indicated by a missing �.

When extending the expressiveness from regularity to EMSO-definable lan-
guages, we drop the boundedness condition of MSCs. This is represented in
Figure 3 by a missing b. It can be shown that, when realizing regular languages,
one needs so-called synchronization messages that are used to tell other compo-
nents which transition was taken. They are used in [HMKT00] and [GMSZ02] to
extend expressiveness. We show that the more of these messages are allowed, the
more expressive power we have. The restriction to n synchronization messages
is described by a preceding n- in Figure 3.

MPAs are subject to active research. However, there is no agreement which
automata model is the right one to make an MSC language implementable:
While, for example, [GMSZ02] is based on MPAf

�, [AEY00, Mor02] focus on
1-MPA�. In [HMKT00], though a priori unbounded channels are allowed, the
bounded model bMPAf

� suffices to implement regular MSC languages. We pro-
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vide a unifying framework and classify automata models according to their state-
space, synchronization behavior, acceptance mode, and, on a rather semantical
level, whether they generate bounded or unbounded behavior.

Our second main result is to show the correspondence indicated in Figure 3.

2 Preliminaries

Let us recall some basic definitions and let Σ be an alphabet. A finite Σ-labeled
partial order is a triple P = (E, ≤, �) where E is a finite set, ≤ is a partial-order
relation on E, i.e., it is reflexive, transitive, and antisymmetric, and � : E → Σ
is a labeling function. For e, e′ ∈ E, we write e � e′ if both e < e′ and, for
any e′′ ∈ E, e < e′′ ≤ e′ implies e′′ = e′. A linearization of P is an extension
(E, ≤′, �) of P such that ≤′ ⊇ ≤ is a linear order. As we will identify isomorphic
structures in the following, a linearization of P will be seen as a word over Σ.
The set of linearizations of P is denoted by Lin(P).

Let us fix a finite set Proc of at least two processes, which communicate with
one another via message passing.1 Communication proceeds through channels
via executing communication actions. We denote by Ch the set {(p, q) | p, q ∈
Proc, p �= q} of reliable FIFO channels. Given a process p ∈ Proc, we further-
more set Cp to be {send(p, q) | (p, q) ∈ Ch} ∪ {rec(p, q) | (p, q) ∈ Ch}, the set of
actions of process p. The action send(p, q) is to be read as “p sends a message to
q”, while rec(q, p) is the complementary action of receiving a message sent from
p to q. Accordingly, we set Com := {(send(p, q), rec(q, p)) | (p, q) ∈ Ch}. More-
over, let C stand for the union of the Cp. Observe that an action pθq (θ ∈ {!, ?})
is performed by process p, which is indicated by P (pθq) = p. A message sequence
chart (MSC) (over Proc) is a tuple (E, {≤p}p∈Proc, <c, �) such that

– E is a finite set of events,
– � is a mapping E → C,
– for any p ∈ Proc, ≤p is a linear order on Ep := �−1(Cp),
– <c ⊆ E × E such that both, for any e ∈ E, there is e′ ∈ E satisfying e <c e′

or e′ <c e and, for any (e1, e
′
1) ∈ <c, there are p, q ∈ Proc satisfying

• �(e1) = send(p, q)
• �(e′1) = rec(q, p)
• for any (e2, e

′
2) ∈ <c with �(e1) = �(e2), it holds e1 ≤p e2 iff e′1 ≤q e′2,

– ≤ :=
(
<c ∪ ⋃

p∈Proc ≤p

)∗
is a partial-order relation on E.

The set of MSCs is denoted by MSC. (As Proc will be fixed in the following,
a corresponding reference is omitted.) Let M = (E, {≤p}p∈Proc, <c, �) ∈ MSC.
The behavior of M might be split into its components M � p := (Ep, ≤p, �|Ep

),
p ∈ Proc, each of which represents the behavior of one single agent and can be
seen as a word over Cp. In turn, given a collection of words wp ∈ C∗

p , there is
at most one MSC M such that, for any p ∈ Proc, wp = M � p. We will write
Lin(M) to denote Lin((E, ≤, �)), which extends to sets of MSCs as usual. Given
1 In proofs, we sometimes silently assume the existence of more than two processes.



58 B. Bollig and M. Leucker

a set of words L′ ⊆ C∗, we say L′ is an MSC word language if L′ = Lin(L) for
some L ⊆ MSC. In turn, a set L ⊆ MSC is uniquely determined by Lin(L).

Let B ≥ 1. We call a word w ∈ C∗ B-bounded if, for any prefix v of w
and any (p, q) ∈ Ch , |v|send(p,q) − |v|rec(q,p) ≤ B where |v|σ denotes the number
of occurrences of σ in v. An MSC M ∈ MSC is called B-bounded if, for any
w ∈ Lin(M), w is B-bounded. The set of B-bounded MSCs is denoted by MSCB.
An MSC language L ⊆ MSC is called B-bounded if L ⊆ MSCB. Moreover, we
call L bounded if it is B-bounded for some B. In other words, boundedness
is safe in the sense that any possible execution sequence does not claim more
memory than some given upper bound (whereas existential boundedness, which,
however, is not considered in this paper, allows an MSC to be executed even if
this does not apply to each of its linear extensions [GMK04]).

3 Implementable MSC Languages

3.1 Regular MSC Languages

There have been several proposals for the right notion of regularity for MSC
languages. In their seminal work [HMKT00, HMK+04], Henriksen et al. con-
sider an MSC language to be regular if its set of linearizations forms a regular
word language. For example, the MSC language {M1}∗ (where M1 is taken from
Figure 1), which allows to concatenate M1 arbitrarily often2, is not bounded
and hence cannot be regular. It induces the set of MSCs that send arbitrarily
many messages from process 1 to process 2. The corresponding set of lineariza-
tions gives rise to a set of words that show the same number of send and receive
events. This language is not recognizable in the free word monoid. In contrast,
the language {M1 ·M2}∗ is regular, as its word language can be easily realized by
a finite automaton. Thus, regularity aims at finiteness of the underlying global
system, which incorporates the state of a communication channel.

Definition 1 ([HMKT00]). A set L ⊆ MSC is called regular if Lin(L) is a
regular word language over C.

The class of regular MSC languages is denoted by R.

Corollary 1 ([HMKT00]). Any regular MSC language is bounded.

As mentioned above, {M1}∗ with M1 again taken from Figure 1 is not regular.
However, it is existentially-bounded [GMK04] and, as we will see in the next
section, there is a simple finite message-passing automaton accepting {M1}∗.
Thus, we are looking for another, extended notion of regularity.

3.2 (E)MSO-Definable MSC Languages

Formulas from monadic second-order (MSO) logic (over Proc) involve first-order
variables x, y, . . . for events and second-order variables X, Y, . . . for sets of events.
2 Here, concatenation is meant to be asynchronous.
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They are built up from the atomic formulas �(x) = σ (for σ ∈ C), x ∈ X , x �p y
(for p ∈ Proc), x <c y, and x = y and furthermore allow the connectives ¬, ∨,
∧, →, ↔ as well as the quantifiers ∃, ∀, which can be applied to either kind of
variable. Formulas without free variables, which do not occur within the scope of
a quantifier, are called sentences. Given an MSC M = (E, {≤p}p∈Proc, <c, �) and
an MSO sentence ϕ, the validity of the satisfaction relation M |= ϕ is defined
canonically with the understanding that first-order variables range over events
from E and second-order variables over subsets of E. The language of ϕ, denoted
by L(ϕ), is the set of MSCs M with M |= ϕ. The class of subsets of MSC that can
be defined by some MSO sentence ϕ is denoted by MSO. An important fragment
of MSO logic is captured by existential MSO (EMSO) formulas, which are of
the form ∃X1 . . . ∃Xnϕ where ϕ does not contain any set quantifier. In many
cases, the restriction to EMSO formulas suffices to characterize recognizability
in terms of automata, e.g., in the domains of words, trees, and Mazurkiewicz
traces. Sometimes, however, we even have to restrict to EMSO formulas not
to exceed recognizability in terms of automata, because full MSO logic is too
expressive in general. In fact, the latter applies to MSCs [BL04]. The class of
EMSO-definable MSC languages will be denoted by E .

3.3 Product MSC Languages

Languages defined by finite transition systems working in parallel are known
as product languages and were initially studied by Thiagarajan in [Thi95] in
the domain of Mazurkiewicz traces where distributed components communicate
executing actions simultaneously rather than sending messages. Taking up the
idea of product behavior, [AEY00] considers MSC languages that are closed
under inference, which can be described by the setting depicted in Figure 1.
Attempting to realize the MSC language {M2, M3}, one might argue that the
behavior of M4 is a feasible one, too. As processes 1 and 2 do not get in touch with
processes 3 and 4, it is not clear to a single process whether to realize the behavior
of M2 or that of M3 so that, finally, M4 might be inferred from {M2, M3}. We
call a set of MSCs that is closed under such an inference a weak product MSC
language. Let us be more precise and, given L ⊆ MSC and M ∈ MSC, write
L �Proc M if ∀p ∈ Proc : ∃M ′ ∈ L : M ′ �p = M �p.

Definition 2. A set L ⊆ MSC is called a weak product MSC language if, for
any M ∈ MSC, L �Proc M implies M ∈ L [AEY00]. The finite union of weak
product MSC languages is called a product MSC language.

We let P0 and P denote the classes of weak product languages and, respectively,
product languages.

In other words, an MSC language L is a weak product MSC language if every
MSC that agrees on each process line with some MSC from L is contained in
L, too. Getting back to Figure 1, M4 agrees with M2 on the first two process
lines and with M3 on the remaining two. Thus, M4 belongs to any weak product
language containing both M2 and M3. As global knowledge of an underlying
system, one often allows several global initial or final states. This is the reason for
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(cf. Lemma 10)

Fig. 4. Strictness and incomparability in the hierarchy

considering finite unions of weak product languages. For example, {M2, M3} is a
product MSC language, while {M4}∗ is not. Let us bring together the concepts
of product behavior and regularity.

Definition 3. We call R ∩ P0 the class of weak regular product MSC languages
and denote it by RP0. Furthermore, an MSC language L is a regular product
MSC language, denoted by L ∈ RP, if it is the finite union of sets from RP0.

Let us now extend our study towards product languages in combination with
EMSO-definable languages. As the class of EMSO-definable languages turned
out to capture exactly the class of languages implementable in terms of a fi-
nite message-passing automaton, we rather concentrate on EMSO-definable lan-
guages than on MSO-definable ones [BL04].

Definition 4. We call E ∩ P0 the class of weak EMSO-definable product MSC
languages and denote it by EP0. An MSC language L is an EMSO-definable
product MSC language (L ∈ EP) if it is the finite union of sets from EP0.

Theorem 1. The classes of languages proposed so far draw the picture shown
in Figure 2. The hierarchy is strict.

Proof. R ⊆ E has been shown, for example, in [BL04]. The other inclusions
are straightforward. It remains to show strictness and incomparability. Consider
the MSCs M2 and M3 from Figure 1. For a (crossed) arrow from a class of
MSC languages C1 to a class C2 in Figure 4, the tabular aside specifies an MSC
language L with L ∈ C1 and L �∈ C2.

3.4 Product MSC Languages vs. Product Trace Languages

Product languages have been introduced first in the framework of (Mazurkiewicz)
traces. So let us compare traces and MSCs in the scope of regular MSC languages
and justify that, in this respect, we have chosen the same terminology for traces
and MSCs. In particular, we raise the hope that results and logics regarding



A Hierarchy of Implementable MSC Languages 61

product trace languages are amenable to MSCs, such as the local temporal logic
PTL, which is tailored to systems that support product behavior [Thi95].

Like MSCs, traces preserve some partial-order properties of a distributed
system. Given a set [K] := {1, . . . , K} of agents, K ≥ 1, they are based on a dis-
tributed alphabet (Σ1, . . . , ΣK), a tuple of (not necessarily disjoint) alphabets.
Elements from Σi are understood to be actions that are performed by agent i.
Let in the following Σ̃ = (Σ1, . . . , ΣK) be a distributed alphabet, let Σ stand
for the union of alphabets Σi, and let, for a ∈ Σ, loc(a) := {i ∈ [K] | a ∈ Σi}
denote the set of agents that are involved in the action a. A distributed alphabet
Σ̃ determines a dependence relation DΣ̃ = (Σ, D) where D = {(a, b) ∈ Σ × Σ |
loc(a) ∩ loc(b) �= ∅} is a reflexive and symmetric binary relation on Σ. Thus,
actions a and b are understood to be dependent if they can both be performed
by one and the same sequential agent.

A (Mazurkiewicz) trace over Σ̃ is a Σ-labeled partial order (E, ≤, �) such
that, for any e, e′ ∈ E, e � e′ implies (�(e), �(e′)) ∈ D and (�(e), �(e′)) ∈ D
implies e ≤ e′ or e′ ≤ e. The set of traces over Σ̃ is denoted by TR(Σ̃). As in
the MSC case, the behavior of a trace T ∈ TR(Σ̃) can be split into components
T � i := (Ei, ≤ ∩ (Ei × Ei), �|Ei

) (where Ei := �−1(Σi)), each of which can be
seen as a word over Σi and represents the behavior of one single agent. Also,
given a collection of words wi ∈ Σ∗

i , there is at most one trace T such that,
for any i ∈ [K], wi = T � i. A set L ⊆ TR(Σ̃) is called regular if Lin(L) is a
regular word language over Σ. The class of regular trace languages over Σ̃ is
denoted by R

TR(Σ̃). Let L ⊆ TR(Σ̃) and T ∈ TR(Σ̃). Similarly to MSCs, we
write L �Σ̃ T if, for any i ∈ [K], there is T ′ ∈ L such that T ′ � i = T � i. A
set L ⊆ TR(Σ̃) is called a weak product trace language (over Σ̃) (L ∈ P0

TR(Σ̃)
)

if, for any T ∈ TR(Σ̃), L �Σ̃ T implies T ∈ L. A set L ⊆ TR(Σ̃) is called a
product trace language (L ∈ P

TR(Σ̃)) if it is the finite union of weak product trace
languages [Thi95]. The classes RP0

TR(Σ̃)
and RP

TR(Σ̃) are defined as expected.
We now recall in how far bounded MSC languages can be seen as trace

languages over an appropriate alphabet [Kus03]. Let B be a positive natu-
ral. We define DB to be the dependence alphabet (C × {1, . . . , B}, DB) where
(σ1, n1)DB(σ2, n2) if P (σ1) = P (σ2) or ((σ1, σ2) ∈ Com ∪Com−1 and n1 = n2).
Setting Co to be {(σ, τ, n) | (σ, τ) ∈ Com, n ∈ {1, . . . , B}}, let Σ̃B be the
distributed alphabet (Cγ)γ∈Proc∪Co where, for p ∈ Proc, Cp := Cp × {1, . . . , B}
and, for (σ, τ, n) ∈ Co, C(σ,τ,n) := {(σ, n), (τ, n)}. Note that, given B ≥ 1,
DΣ̃B

= DB. To an MSC M = (E, {≤p}p∈Proc, <c, �) ∈ MSCB, we assign the
Mazurkiewicz trace TrB(M) := (E, ≤, �′) where for each e ∈ E, we define �′(e)
to be the new labeling (�(e), |{e′ ∈ EP (�(e)) | e′ ≤ e}| mod B). According to
[Kus03], TrB(M) is a trace over Σ̃B for any M ∈ MSCB. Note that the map-
ping TrB : MSCB → TR(Σ̃B) is injective. It is canonically extended towards
MSC languages. Thus, involving some relabeling, an MSC language L ⊆ MSCB

can be converted into some trace language TrB(L) ⊆ TR(Σ̃B).
To make clear in the following when we address a class of MSC languages

rather than trace languages, we write, for example, RMSC instead of simply R.
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Lemma 1 ([Kus02]). For any B ≥ 1 and any L ⊆ MSCB, L ∈ RMSC iff
TrB(L) ∈ R

TR(Σ̃B).

We now show that the above correspondence carries over to product behavior.

Lemma 2. For any B ≥ 1 and L ⊆ MSCB, L ∈ RP0
MSC iff TrB(L) ∈

RP0
TR(Σ̃B)

.

Proof. According to Lemma 1, TrB and its inverse both preserve regularity.
“only if”: Suppose L ⊆ MSCB to be a weak regular product MSC language.

Recall that TrB(L) is a regular trace language over Σ̃B = (Cγ)γ∈Proc∪Co . More-
over, let T ∈ TR(Σ̃B) such that, for any γ ∈ Proc ∪ Co, there is a trace
Tγ ∈ TrB(L) satisfying Tγ � γ = T � γ. Then, T ∈ TrB(MSCB) and, in par-
ticular, we have Tp � p = T � p and, thus, Tr−1

B (Tp) � p = Tr−1
B (T ) � p for any

p ∈ Proc, which implies Tr−1
B (T ) ∈ L and T ∈ TrB(L).

“if”: Suppose L ⊆ MSCB to generate a weak regular trace language over
Σ̃B, i.e., TrB(L) ∈ RP0(Σ̃B), and let M ∈ MSCB such that, for any p ∈ Proc,
there is Mp ∈ L with Mp � p = M � p. Trivially, we have that, for any p ∈ Proc,
TrB(Mp) � p = TrB(M) � p. Moreover, for any γ = (send(p, q), rec(q, p), n) ∈
Co, TrB(Mp) � γ = TrB(M) � γ (note that also TrB(Mq) � γ = TrB(M) � γ).
This is because, in the trace of a B-bounded MSC, the n-th receipt of a message
through (p, q) is ordered before sending from p to q for the (n + B)-th time.
Altogether, we have TrB(M) ∈ TrB(L) and, consequently, M ∈ L. �

Corollary 2. For any B ≥ 1 and any L ⊆ MSCB, L ∈ RPMSC iff TrB(L) ∈
RP

TR(Σ̃B).

4 Message-Passing Automata

We now introduce and study message-passing automata (MPAs), our model of
computation, which is is close to a real-life implementation of a message-passing
system. MPAs can be considered to be the most common computation model
for MSCs. An MPA is a collection of state machines that share one global initial
state and several global final states. The machines are connected pairwise with a
priori unbounded reliable FIFO buffers. The transitions of each component are
labeled with send or receive actions. Hereby, a send action p!q puts a message
at the end of the channel from p to q. A receive action can be taken provided
the requested message is found in the channel. To extend the expressive power,
MPAs can send certain synchronization messages. Let us be more precise:

Definition 5 (Message-Passing Automaton). A message-passing automa-
ton (MPA) is a structure A = ((Ap)p∈Proc, D, sin , F ) such that

– D is a nonempty finite set of synchronization messages,
– for each p ∈ Proc, Ap is a pair (Sp, Δp) where Sp is a nonempty set of

(p-)local states and Δp ⊆ Sp ×Cp ×D ×Sp is the set of (p-)local transitions,
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send(1, 2), a

rec(2, 1), b

rec(1, 2), a

send(2, 1), asend(1, 2), b rec(1, 2), a

rec(2, 1), a send(2, 1), a

A1: A2:

Fig. 5. A message-passing automaton

– sin ∈ ∏
p∈Proc Sp is the global initial state, and

– F ⊆ ∏
p∈Proc Sp is a finite set of global final states.

An MPA A = ((Ap)p∈Proc, D, sin , F ), Ap = (Sp, Δp), is called

– an N -MPA, N ≥ 1, if |D| = N ,
– finite if, for each p ∈ Proc, Sp is finite, and
– locally-accepting if there are sets Fp ⊆ Sp such that F =

∏
p∈Proc Fp.

The class of MPAs is denoted by MPA, the class of finite MPAs by MPAf .
Furthermore, for a set C of MPAs, we denote by N -C the class of N -MPAs A
and by C� the class of locally-accepting MPAs A with A ∈ C, respectively. A
locally-accepting finite 2-MPA with set of synchronization messages {a, b} is
illustrated in Figure 5.

In defining the behavior of an MPA, we adopt the view taken, for example,
in [HMKT00, Mor02, GMSZ02], who suppose an MPA to run on linearizations
of MSCs rather than on MSCs to reflect an operational behavior. Usually, such
a view relies on the global transition relation of A, which, in turn, defers to the
notion of a configuration. Let us be more precise and consider an MPA A =
((Ap)p∈Proc, D, sin , F ), Ap = (Sp, Δp). The set of configurations of A, denoted
by ConfA, is the cartesian product SA × CA where CA := {χ | χ : Ch → D∗} is
the set of possible channel contents of A. Now, the global transition relation of
A, =⇒A ⊆ ConfA × C × D × ConfA, is defined as follows:

– ((s, χ), send(p, q), m, (s′, χ′)) ∈ =⇒A if (s[p], send(p, q), m, s′[p]) ∈ Δp, χ′ =
χ[(p, q)/m · χ((p, q))] (i.e., χ′ maps (p, q) to m · χ((p, q)) and, otherwise,
coincides with χ), and for all r ∈ Proc \ {p}, s[r] = s′[r].

– ((s, χ), rec(p, q), m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that
(s[p], rec(p, q), m, s′[p]) ∈ Δp, χ((q, p)) = w · m, χ′ = χ[(q, p)/w], and for all
r ∈ Proc \ {p}, s[r] = s′[r].

Let χε : Ch → D∗ map each channel onto the empty word. When we set (sin , χε)
to be the initial configuration and F ×{χε} to be the set of final configurations,
A defines in the canonical way an MSC word language Lw(A) ⊆ C∗. The cor-
responding MSC language will be denoted by L(A) and is called the language
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of A. Given a class C of MPAs, let furthermore L(C) := {L ⊆ MSC | there is
A ∈ C such that L = L(A)} denote the class of languages of C.

For configurations (s, χ), (s′, χ′) ∈ ConfA, we write (s, χ) =⇒A (s′, χ′) if
((s, χ), σ, m, (s′, χ′)) ∈ =⇒A for some σ ∈ C and m ∈ D. We call a configu-
ration (s, χ) ∈ ConfA reachable from another configuration (s′, χ′) ∈ ConfA if
(s′, χ′) =⇒∗

A (s, χ). Moreover, we say (s, χ) ∈ ConfA is productive if there is a
final configuration that is reachable from (s, χ).

For B ≥ 1, an MPA A is called B-bounded if, for any (p, q) ∈ Ch and any con-
figuration (s, χ) that is productive and reachable from the initial configuration,
it holds |χ((p, q))| ≤ B. According to [HMKT00], who use a slightly different
notion of bounded MPAs, we call an MPA A strongly-B-bounded for some B ≥ 1
if, for any (p, q) ∈ Ch and any configuration (s, χ) that is reachable from the
initial configuration, |χ((p, q))| ≤ B. Furthermore, A is called (strongly) bounded
if it is B-bounded (strongly-B-bounded, respectively) for some B ≥ 1. Given a
class C of MPAs, let bC (sbC) denote the set of (strongly, respectively) bounded
MPAs A with A ∈ C.

Sometimes, it is more convenient to consider MPAs with a set of global initial
states instead of one global initial state. So let an extended MPA be an MPA
A = ((Ap)p∈Proc, D, Sin , F ) where, though, Sin ⊆ ∏

p∈Proc Sp is a finite set of
global initial states. The language of A is defined analogously to the MPA case.

Lemma 3. Let N ≥ 1 and L be an MSC language. Then L is the language of a
(bounded/finite/bounded and finite) N -MPA iff it is the language of an extended
locally-accepting (bounded/finite/bounded and finite, respectively) N -MPA.

Proof. “only if”: Let A = ((Ap)p∈Proc , D, sin , F ), Ap = (Sp, Δp), be an MPA.
For each state s ∈ F , introduce a global initial state running a distinct copy
A(s) of A with local state spaces Ss

p (in the following, a copy of a local state
s ∈ Sp in A(s) is denoted by ss). The set of global final states is henceforth the
cartesian product

∏
p∈Proc

⋃
s∈F {s[p]s}. The resulting MPA is locally-accepting

and, obviously, recognizes the same language as A without having affected the
number of messages, boundedness, or finiteness properties.

“if”: Let A = ((Ap)p∈Proc, D, Sin , F ), Ap = (Sp, Δp), be an extended MPA
where F is the product

∏
p∈Proc Fp of sets Fp ⊆ Sp. The basic idea is to create

a copy Ss0
p = Sp × {s0} of Sp for any global initial state s0 ∈ Sin . Starting

in some new global initial state sin and switching to some state (s, s0) now
settles for simulating a run of A from s0 by henceforth allowing to enter no
other copy than Ss0

p . In a global final state, it is then checked whether the other
processes agree in their choice of s0. More formally, we may have local transitions
((s, s0), σ, m, (s′, s0)) with s0 ∈ Sin if (s, σ, m, s′) is a local transition of A.
Moreover, we add kind of initial transitions (sin [p], σ, m, (s, s0)) if (s0[p], σ, m, s)
is some p-local transition of A with s0 ∈ Sin . It remains to reformulate the
acceptance condition: s is a global final state if there is s0 ∈ Sin such that, for
any p ∈ Proc, either s[p] = sin [p] and s0[p] ∈ Fp or s[p] ∈ Fp × {s0}. �

Lemma 4 ([AEY00]). P0 = L(1-MPA�)
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Corollary 3. P = L(1-MPA)

Proof. “⊇”: According to Lemma 3, a 1-MPA can be transformed into an equiv-
alent extended locally-accepting 1-MPA ((Ap)p∈Proc, D, Sin , F ), which then rec-
ognizes

⋃
s∈Sin L(((Ap)p∈Proc, D, s, F )). The assertion follows from Lemma 4 and

Definition 2.
“⊆”: Similarly, any MSC language L ∈ P is the union of finitely many

languages L1, . . . , Lk ∈ P0, which, according to Lemma 4 are recognized by
locally-accepting 1-MPAs A1, . . . ,Ak (each employing, say, a as synchroniza-
tion message) with global initial states s1, . . . , sk and sets of global final states
F 1, . . . , F k, respectively, where, for each i ∈ {1, . . . , k}, F i =

∏
p∈Proc F i

p for
some F i

p ⊆ Si
p (let hereby Si

p be the set of p-local states of Ai). Without loss of
generality, A1, . . . ,Ak have mutually distinct local state spaces. The extended
locally-accepting 1-MPA recognizing L processwise merges the state spaces and
transitions of A1, . . . ,Ak, employs {s1, . . . , sk} being the set of global initial
states, and, similarly to the proof of Lemma 3, sets the set of global final states
to be

∏
p∈Proc

⋃
i∈{1,...,k} F i

p. The assertion then follows from Lemma 3. �

Lemma 5. RP0 = L(1-bMPAf
�)

Proof. “⊇”: This direction directly follows from Lemma 4 and Lemma 7 below.
“⊆”: Let L ∈ RP0 and, for p ∈ Proc, Ap = (Sp, Δp, s

in
p , Fp) be a finite

automaton over Cp satisfying L(Ap) = L � p := {M � p | M ∈ L}. Consider
the MPA A = ((A′

p)p∈Proc, D, sin , F ) with D = {a}, sin = (sin
p )p∈Proc , F =∏

p∈Proc Fp, and A′
p = (Sp, Δ

′
p) where, for any s, s′ ∈ Sp and σ ∈ Cp, (s, σ, a, s′) ∈

Δ′
p if (s, σ, s′) ∈ Δp. We claim that both A ∈ 1-bMPAf

� and L(A) = L. First, it
is easy to see that L ⊆ L(A). Now assume an MSC M to be contained in L(A).
For each p ∈ Proc, M � p ∈ L(Ap) = L � p so that there is an MSC M ′ ∈ L with
M ′ � p = M � p. From the definition of P0, it then immediately follows that M
is contained in L, too. Clearly, A is finite, locally-accepting, and bounded. �

Lemma 6. RP0 � L(1-sbMPAf
�)

Proof. It remains to show strictness. Let L = {M1}∗ ∪ {M2}∗ with M1 and M2

given by Figure 6, and suppose there is an MPA A ∈ 1-MPAf
� with L(A) = L.

Then, for each natural n ≥ 1, the word

send(1, 2)2
(
send(3, 1) rec(1, 2) send(1, 2)2 rec(2, 1) send(2, 3) rec(3, 2)

)n

from C∗ leads from the initial configuration of A via =⇒A to some configuration
(s, χ) with χ((1, 2)) = n+3. Thus, A cannot be strongly-bounded. Nevertheless,
L is contained in RP0 and 2-bounded. �

Corollary 4. RP = L(1-bMPAf )

Lemma 7 ([HMKT00]). R = L(bMPAf ) = L(sbMPAf )
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Fig. 6. Universal boundedness vs. strong boundedness
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Fig. 7. M(3, 2)
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{ }
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Fig. 8. MSC M(i)

In [BL04], it has been shown that any EMSO-definable MSC language is
implementable as a finite MPA and vice versa.

Lemma 8 ([BL04]). E = L(MPAf )

Lemma 9. We have the following strict inclusion:

(a) L(1-MPAf
�) � EP0

(b) L(1-MPAf ) � EP

Proof. Inclusion of (a) follows from Lemma 4 and Lemma 8. Inclusion of (b)
then proceeds as the proof for Corollary 3. Let us turn towards strictness. For
naturals m, n ≥ 1, let the MSC M(m, n) be given by its projections accord-
ing to M(m, n) � 1 = send(1, 2)m (rec(1, 2) send(1, 2))n and M(m, n) � 2 =
(rec(2, 1) send(2, 1))n rec(2, 1)m. The MSC M(3, 2) is depicted in Figure 7.
Now consider the EMSO-definable MSC language L = {M(n, n) | n ≥ 1}, which
is recognized by the finite locally-accepting 2-MPA from Figure 5. We easily
verify that L is a weak product MSC language. However, L is not contained
in L(1-MPAf ). Because suppose there is A = ((Ap)p∈{1,2}, D, sin , F ) ∈ 1-MPAf

with L(A) = L. As A is finite, there is n ≥ 1 and an accepting run of A on
M(n, n) such that A1, when reading the first n letters send(1, 2) of M(n, n) � 1,
goes through a cycle, say of length i (≥ 1), and A2, when reading the last n let-
ters rec(2, 1) of M(n, n) � 2, goes through another cycle, say of length j (≥ 1).
But then there is also an accepting run of A on M(n + (i · j), n) �∈ L. �

Lemma 10. For each N ≥ 1, L((N + 1)-bMPAf
�) \ L(N -MPA) �= ∅.
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For N ≥ 1, consider the MSC language LN+1 = {M(i) | i ∈ {1, . . . , N2 + 1}}∗
where M(i) is depicted in Figure 8. Though LN+1 is realizable by means of N +1
synchronization messages, N messages turn out to be insufficient.

Lemma 11. L(1-bMPAf ) \ L(MPA�) �= ∅
Proof. Let Lf consist of the MSCs M1 and M2 given by Figure 1. Then Lf

is contained in L(1-bMPAf ) \ L(MPA�).In contrast, a bounded finite 1-MPA
recognizing Lf has some global knowledge employing global final states. �

Theorem 2. The classes of MSC languages proposed in Sections 3 and 4 draw
the picture given by Figure 3.

We did not pay special attention to the relation between (weak) EMSO-
definable product languages and the classes of languages defined by (locally-
accepting) finite N -MPAs for N ≥ 2, which is indicated by the light-gray line
in Figure 3. We believe that it is possible to show incomparability respectively
witnessed by a language depending on N and similar to the suggested one.
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Abstract. The two main hindrances for a wider application of the model
checking approach for verification of concurrent and distributed systems
are the state explosion problem and its limitation in handling infinite
state systems. We consider a class of infinite state systems given by cer-
tain types of Transition Diagrams (TDs), called simple TDs, that employ
commutative functions for updating variables. For such systems, we pre-
sented model checking methods that combine bi-simulation reductions
with static analysis. The new methods are extensions of earlier methods
where static analysis was not employed. These methods can be applied
to a wider class of systems.

1 Introduction

The two main hindrances for a wider application of the model checking approach
for verification concurrent and distributed programs are the state explosion prob-
lem and its limitation in handling infinite state systems. In our earlier work [7],
we considered a class of infinite state systems given by certain types of Tran-
sition Diagrams (TDs), called simple TDs, that employ commutative functions
for updating variables. For these systems, we presented model checking methods
that use reductions with respect to a class of bi-simulation relations which can
be checked on-the-fly. Experimental results showing the effectiveness of these
approaches were also given. In this paper, we further extend these methods by
combining them with static analysis to define larger bi-simulation relations. We
give some applications of these results.

We assume that the concurrent program is given by a Transition Diagram
(TD) [4] which is an edge labeled directed graph. Each edge label consists of a
condition, called guard, and an action which is a concurrent assignment of values
to variables. A TD is called a simple TD if the expression that is assigned to a
variable x is either a constant, or a variable, or of the form f(x) where f is a
unary function. Further more, we require that the functions, that are used, are
mutually commutative, that is, for any two functions f, g, fg = gf . We consider
only simple TDs. It should be noted that such TDs are as powerful as Turing
machines.
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In [7], we defined an infinite sequence of non-decreasing bi-simulations, for
simple TDs. These bi-simulations, denoted as ∼k for each k ≥ 0, are defined
over the symbolic state graph of the TD. Some of the techniques of [7] were
implemented and applied to some practical protocols such as the sliding window
protocol, producer-consumer protocols, etc.

In this paper, we extend the methods of [7] by combining them with sim-
ple techniques from static analysis. The combination of these techniques allows
us to model check a wider class of programs, i.e., TDs. In the definition of ∼k

introduced in [7], we defined two symbolic states s and t to be equivalent with
respect to ∼k if the predicates obtained by instantiating certain predicate tem-
plates in these two states are equivalent; these templates are derived from the
guards of the transitions of the TD and also from the temporal formula that one
wants to check. The equivalence of the predicates assumes an implicit universal
quantification over their free variables. We show that by analyzing the TD in
advance, the domain over which the universal quantifiers range can be reduced.
We actually give methods for obtaining constraints that restrict the domains of
the quantifiers. This allows more states to be considered equivalent.

We give some applications of the above results. First, we consider simple TDs
over integer domains where the functions updating the variables increment or
decrement them by some constants. For such TDs, we show that we can define
bi-simulations directly on their standard reachability graphs. For many integer
TDs, we show that our method can be used to obtain finite quotient structures.
We believe that our results can be applied to analyze real examples involving
processes communicating through queues at certain level of abstraction.

Finally, we also show how the commutative requirement for simple TDs can
be relaxed.

The paper is organized as follows. Section 2 briefly reviews the approach
given in [7] and defines the notation. Section 2 also proves additional properties
of the bi-simulations that were defined in [7]. Section 3 gives methods that com-
bine static analysis and bi-simulations. Section 5 shows how the commutativity
requirement can be relaxed. Section 6 disusses related work.

2 Background and Notation

2.1 Transition Diagram

A TD is a triple G = (Q, X, E) such that Q denotes a set of nodes, X is a
set of variables, and E is a set of transitions which are quadruples of the form
〈q, C, Λ, q′〉 where q, q′ ∈ Q, C is a condition involving the variables in X and Λ
is a set of assignments of the form x := ρ where x ∈ X and ρ is an expression
involving the variables in X . For a transition 〈q, C, Λ, q′〉, we call C the condition
part or guard of the transition and Λ the action part of the transition and we
require that Λ contains at most one assignment for each variable.

For any node q of G, we let guards(q) denote the set of guards of transitions
from the node q. We also let guards(G) denote the set of guards of all transitions
of G.
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The semantics of a TD is defined in the usual way. A state of a TD G =
(Q, X, E) is a pair (q, h) where q ∈ Q, called location, and h is an evaluation of
X . A transition e = (q1, C, Λ, q2) is enabled in the state (q, h) if q = q1 and the
condition C is satisfied by h. Let s = (q, h) be a state and e = (q1, C, Λ, q2) be
a transition that is enabled in s. The transition e can be executed in the state s
to obtain a successor state which is defined in the usual way.

A path in G from node q to node r is a sequence of transitions starting with
a transition from q and ending with a transition leading to r such that each
successive transition starts from the node where the preceding transition ends.
The left part of figure 1 shows a TD with 3 nodes. Notice that the transitions
t1 and t2 both have empty guards meaning that they are always enabled.

2.2 Kripke Structures, Bi-simulation, etc.

A labeled Kripke structure H over a set of atomic propositions AP and over a
set of labels Σ is a triple (S, R, L) where S is a set of states, R ⊆ S × Σ × S
and L : S → 2AP associates each state with a set of atomic propositions. The
Kripke structure H is said to be deterministic if for every s ∈ S and every α ∈ Σ
there exists at most one s′ ∈ S such that (s, α, s′) ∈ R.

For the Kripke structure H = (S, R, L), an execution/computation σ is an
infinite sequence s0, e0, s1, e1, ..., si, ei, ... of alternating states and labels in Σ
such that for each i ≥ 0, (si, ei, si+1) ∈ R. A finite execution/computation is
a finite sequence of the above type ending in a label in a state. Corresponding
to a finite execution σ = s0, e0, s1, ..., sm let trace(σ) denote the finite sequence
L(s0), e0, ..., L(si), ei, ...L(sm). The length of a finite trace is the number of tran-
sitions in it. For any integer k > 0, let Finite T racesk(H, s) denote the set of
finite traces of length k from s.

Let H = (S, R, L) and H ′ = (S′, R′, L′) be two structures over the same set
of atomic propositions AP and the same set Σ of labels. A relation B ⊆ S×S′ is
a bi-simulation between H and H ′ iff for all s ∈ S and s′ ∈ S′, if (s, s′) ∈ B, then
L(s) = L′(s′) and the following conditions hold: (a) for every (s, α, s1) ∈ R, there
exists a state s′1 ∈ S′ such that (s′, α, s′1) ∈ R′ and (s1, s

′
1) ∈ B; (b) similarly,

for every (s′, α, s′1) ∈ R′, there exists a state s1 ∈ S such that (s, α, s1) ∈ R
and (s1, s

′
1) ∈ B. A sub-bi-simulation between H and H ′ is any subset of a

bisimulation relation between H and H ′.
Suppose G = (Q, X, E) is a TD and u is a state. The semantics of G starting

from the state u can be defined by a Kripke structure Reach(G, u) = (S, R, L)
over the set of atomic propositions AP and the set of labels E as follows: S
is the set of reachable states obtained by executing the TD G from u; R is
the set of triples (s, e, s′) such that the transition e ∈ E is enabled in state s
and s′ is obtained by executing e in state s; for any s ∈ S, L(s) is the set of
atomic propositions in AP that are satisfied in s. Computations of the TD G
are computations of Reach(G, u). Let π = e0, e1, ..., em−1 be a path in G from
node q and let s0 = (q, h0) be a state. We say that π is feasible from s0 if there
exists a finite computation of the form s0, e0, s1, ..., em−1 in the Reach(G, s0).
In this case, we say that sm is the state obtained by executing the path π from
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s0. For the TD given in 1, it is easy to see that the reachability graph from the
state (0, h), where h assigns 0 to all the variables, is infinite since x, y can grow
arbitrarily large.

Let B be any sub-bi-simulation relation from Reach(G, u) to itself. Instead
of constructing Reach(G, u), we can construct a smaller structure using the
relation B. We incrementally construct the structure by executing G starting
from u. Whenever we get a state w by executing a transition from an already
reached state v, we check if there exists an already reached state w′ such that
(w, w′) or (w′, w) is in B; if so, we simply add an edge to w′ otherwise we
include w into the set of reached states and add an edge to w. This procedure is
carried until no more new nodes can be added to the set of reached states. We
call the resulting structure the reduction of Reach(G, u) with respect to B. This
reduction has the property that no two states in it are related by B. The number
of states in this reduction may not be unique and may depend on the order of
execution of the enabled transitions. However, if B is an equivalence relation
then the number of states in the reduction is unique and equals the number of
equivalence classes of S with respect to B.

We use the temporal logic CTL* [1] to specify properties of Reach(G, u).
Each atomic proposition in the formulas is a predicate involving variables in
X or the special variable lc which refers to the nodes of G. We let AP be the
set of predicates that appear in the temporal formula that we want to check.
The atomic propositions refering to lc are of the form lc = q where q is a node
of G. For any formula or predicate p, we let var(p) denote the set of variables
appearing in it.

If K is a reduction of Reach(G, u) with respect to a sub-bisimulation relation
then a state which is present in both Reach(G, u) and K satisfies the same set
of CTL* formulas in both structures. Also, any two states in Reach(G, u), that
are related by a sub-bi-simulation, satisfy the same set of CTL* formulas.

2.3 Symbolic Graph

For an expression Φ, we use Φ{β/α} denote the expression obtained from Φ by
substituting β for α.

Let G = (Q, X, E) be a TD, u = (q0, h0) be the initial state of G.
Sym Reach(G, u) = (S′, R′, L′), called symbolic graph, is a Kripke structure
obtained by the symbolic execution of G starting from u. Each state s in S′,
called a symbolic state, is a triple of the form (s.lc, s.val, s.exp) where s.lc ∈ Q,
s.val is an evaluation of the variables in X and s.exp is a function that assigns
each variable x an expression which involves only the variable x itself. Intuitively,
s.lc denotes the node in Q where the control is, s.val(x) denotes the latest con-
stant assigned to x and s.exp(x) denotes the composition of functions that were
applied to x since then. It is easy to see that a symbolic state s corresponding
to the actual state (s.lc, h) where h(x) = s.exp(x){s.val(x)/x} for each x ∈ X .
We let act state(s) denote the actual state corresponding to the symbolic state
s. Each member of R′ is a triple of the form (s, e, s′) where s ∈ S and e ∈ E that
is enabled in s and s′ ∈ S is the successor of s after the execution of e. L′ is a
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labeling function that associates with each symbolic state s, the set of predicates
in AP ∪guards(G) that are satisfied in the corresponding actual state. Note that
the predicate lc = q is satisfied in a symbolic state s, if s.lc = q. We say that a
transition e is enabled in a symbolic state s if it is enabled in the corresponding
actual state, i.e., in the state act state(s).

The successor states of a symbolic state s are defined as follows. Assume
that a transition e = (q, C, Λ, q′) is enabled in s. The new symbolic state s′

obtained by executing e from s is defined as follows: s′.lc = q′ and for each
variable x, if there is no assignment to x in Λ then s′.val(x) = s.val(x) and
s′.exp(x) = s.exp(x). If there is an assignment of the form x := c where c is a
constant then s′.val(x) = c and s′.exp(x) = x. If there is an assignment of the
form x := ψ(x) in Λ then s′.val(x) = s.val(x) and s′.exp(x) = ψ(s.exp(x)); that
is the value remains unchanged and the new expression is obtained by applying
the function ψ to the old expression. If there is an assignment of the form x := y
in Λ then s′.val(x) = s.val(y) and s′.exp(x) = s.exp(y){x/y}; that is the value of
s.val(y) is copied and the expression of y in s is also copied after replacing every
y by x in the expression. If s′ is obtained by executing an enabled transition e
from a state s in S′, then s′ is a state in S′ and (s, e, s′) ∈ R′.

0

1

2

t3: a≤y → y++

s1

s0 s2

s3

(0, 0 0 0 0
a b x y )

(1, 0 0 0 0
a b x+1 y )

(0, 0 0 0 0
a b x+1 y+1 )

(2, 0 0 0 0
a b x+1 y )t4: b≤y → x:=0; y:=0

t2: b:=x; x++

t1: a:=x; x++

Fig. 1. Example of a TD and its reduced symbolic state graph with respect to ∼0

For the TD given in the left part of figure 1 with initial value a = b = x =
y = 0, the right part of figure 1 gives part of its symbolic state graph. The initial
state s0 is (0, 0 0 0 0

a b x y ), where the first 0 denotes the node, the vectors (0, 0, 0, 0)
and (a, b, x, y) represent the functions s0.val and s0.exp respectively.

It should be noted that an actual state may be represented by several sym-
bolic states which are obtained by different execution paths in our symbolic state
graph.

2.4 Predicate Templates and Definition of ∼0

Let π be a path in G. Such path denotes a possible execution in G. For the
path π, we define a function dependsπ from X to X ∪ {∗} as follows. In-
tuitively, if dependsπ(x) is a variable, say y, this means the value of x af-
ter the execution of π depends on the value of y before the execution of π.
We define dependsπ inductively on the length of π. If π is a single transi-
tion 〈q, C, Λ, q′〉 then dependsπ(x) is given as follows: if Λ has the assignment
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x := y then dependsπ(x) = y; if Λ has no assignment to x or has an as-
signment of the form x := ψ(x) then dependsπ(x) = x; when x is assigned a
constant, dependsπ(x) = ∗. If π is the path consisting of π1 followed by π2 then
dependsπ is defined as follows: for each x ∈ X , if dependsπ2(x) is a variable then
dependsπ(x) = dependsπ1(dependsπ2(x)), otherwise dependsπ(x) = ∗.

A predicate template is a pair (p, f) where p is a predicate and f is function
from X to X ∪ {∗}. With each node q we associate a set ptemplates(q) defined
as follows: ptemplates(q) = {(p, dependsπ) : π is a path from node q to some
node r and p ∈ guards(r)∪AP }. An efficient method to compute ptemplates(q)
without examining all the paths from q is given in [7].

Now we define the instantiation of a predicate template in a symbolic state.
Suppose s is a state of the symbolic state graph Sym Reach(G, u), (p, f) is a
predicate template and x1, x2, · · · , xn are variables appearing in p. Let p′ be
the predicate obtained by replacing every occurrence of the variable xi (for
1 ≤ i ≤ n), for those xi such that f(xi) �= ∗, by the expression s.exp(yi){xi/yi}
where yi is the variable f(xi). Note that the variables xi for which f(xi) = ∗
are not replaced. We define (p, f)[s] to be p′ as given above.

Definition 1. Define relation ∼0 as follows: For any two states s and t, s ∼0 t
iff s.lc = t.lc, s.val = t.val and for each (p, f) ∈ ptemplates(s.lc), (p, f)[s] ≡
(p, f)[t] is a valid formula.

The following theorem is proved in [7] and its proof crucially depends on the
commutativity requirement.

Theorem 1. ∼0 is a bi-simulation on the symbolic state graph Sym Reach(G, u).

2.5 Extended Predicate Templates and ∼k

In order for two symbolic states s and t to be related by ∼0, we required that
s.lc = t.lc and for every guard p of a transition from a node r that is reachable
from s.lc in the TD and for every template (p, f) ∈ ptemplates(s.lc), we required
that the instantiations of (p, f) in s and t be equivalent. This requirement can be
relaxed as follows. If none of the paths leading to r is feasible then, in the above
requirement, we do not need to consider templates of the form (p, f) where p is
a guard of some transition from r′. Now we define a bi-simulation relation ∼k

in which we relax the equivalence condition. Roughly speaking, in the definition
of ∼k, we require s and t to be equivalent with respect to guards of node r only
when there exists a path of length at least k leading to r which is feasible for
both s and t.

Let π be a path in G, |π| be the length of π and p be any predicate. Also, let
π′◦π′′ denote the path π′ followed by π′′. Now we define the weakest precondition
of p with respect to π, denoted by WP (π, p) as follows.

WP (π, p) =

⎧⎪⎨
⎪⎩

p if |π| = 0
p{ρi/xi} if |π| = 1 ∧ the assignments are xi := ρi

WP (π′, WP (e, p)) if π = π′ ◦ e
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It has been shown [7] that if path π of G is feasible from state s, and s′ is the
state obtained by executing π from s, then s′ satisfies p iff s satisfies WP (π, p).

Suppose π = e0 ◦ e1 ◦ ..., ek−1 be a path in G and for 0 ≤ i < k, Ci is the
guard of the transition ei. For each i, 0 < i ≤ k, let π(i) denote the prefix of π
consisting of the first i transitions, i.e., the path from e0 to ei−1. Define Cond(π)
to be the predicate C0 ∧ ∧

0<i<k WP (π(i), Ci). It has be shown [7] that a path
π of G is feasible from state s iff s satisfies the predicate Cond(π).

The set extended templates(q, k) is defined to be the set of triples which are
of the form (Cond(π′′), WP (π′′, p), dependsπ′) where π′, π′′ are paths such that
π′π′′ (i.e., π′ followed by π′′) is a path from q to some node r, the length of
π′′ is k and p ∈ guards(r) ∪ AP . Similar to ptemplates(q), we have an efficient
method to compute extended templates(q, k) without examining all the paths
from q. Note that unlike ptemplates(q), extended templates(q, k) are triples.

Definition 2. Define relation ∼k on the states of Sym Reach(G, u) as follows.
∼k is the set of all pairs (s, t) where s, t are states of Sym Reach(G, u) such
that:

1. s.lc = t.lc and s.val = t.val
2. Finite T racesk(s) = Finite T racesk(t) and
3. for every (p1, p2, f) ∈ extended templates(s.lc, k) the formula ((p1, f)[s] ∧

(p1, f)[t]) ⊃ ((p2, f)[s] ≡ (p2, f)[t]) is a valid formula.

Theorem 2, 3 and 4 are from [7].

Theorem 2. For each k > 0, ∼k is a bi-simulation relation.

Theorem 3. For every k ≥ 0, every TD G, and for every set AP of atomic
predicates, ∼k⊆∼k+1.

Theorem 4. For every k ≥ 0, there exists a TD G and a set of atomic predicates
AP for which the above containment is strict, i.e. ∼k⊂∼k+1.

2.6 Relationships Among the Bisimulation Relations

In this sub-section we state theorems strengthing previously stated results. We
can strengthen theorem 4 as follows.

Theorem 5. Given any integer k ≥ 0, there exists a TD such that ∼k+1 gives
finite quotient structure while ∼k does not.

Theorem 6. There exists a TD for which ∀k > 0, ∼k⊂∼k+1.

3 Using Static Analysis to Constrain the Quantifiers’
Range

Recall that in the definition of ∼0, for s ∼0 t, we require that for each template
(p, f) ∈ ptemplates(s.lc), (p, f)[s] ≡ (p, f)[t]. It should be noted that there is an
implicit universal quantification on variables when we assert the validity of the
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x + + x ≥ 10

q2q0

x := x − 3

q1

Fig. 2. Example of a TD which can get finite reduction by a simple static analysis

equivalence (p, f)[s] ≡ (p, f)[t]. This universal quantification can be restricted to
range over a smaller set of values in some cases. By this change, we get another
bi-simulation relation which is larger than ∼0.

Example: Consider figure 2 which is a TD over a single integer variable x. The
transition from q1 to q2 has null action and the guards of all other transitions are
”true”. The initial state is u = (q0, h) where h(x) = 0. For this TD, it can be shown
that ∼0 is the identity relation and hence the reduction of Sym Reach(G1, u) with
respect to ∼0 is infinite. By a simple static analysis, one can show that the value
of x, when control is at node q1, is greater than or equal to −3. We show below
that, the quantifier over x correspoding to the predicate template for the predicate
x ≥ 0 can be restricted to the values of x ≥ −3. Using this modification, we define
another bi-simulation ∼′

0 which gives a finite reduction for Sym Reach(G1, u); the
number of states in this reduction is 13.

Now consider simple TD G and any state s in Sym Reach(G, u). Let (p, f)
be any predicate template in ptemplates(s.lc) such that p ∈ guards(G) ∪ AP .
Let {x1, ..., xn} be all the variables in var(p) and Qp ⊆ Q be as defined below:
if p ∈ AP then Qp = Q, otherwise Qp is the set of all nodes q in G such that
p ∈ guards(q).

Let G′ be the TD obtained from G by replacing all guards in its transitions
by the constant predicate True. Now let Tp,s be the set {h : h is a valuation
and for some q ∈ Qp the state (q, h) is reachable from the state (s.lc, s.val) in
Reach(G′, u)}. Essentially, Tp,s is the set of valuations for the variables in X
when the control is at some node in Qp when the TD G′ is executed starting
from the state (s.lc, s.val). Let gp,s be a formula, with free variables from X ,
that defines the set Tp,s, i.e., Tp,s is exactly the set of valuations that satisfy the
constraint given by gp,s. (Note that we are assuming that the assertion logic is
expressive enough to express this set). Essentially, gp,s defines a constraint on
the values of the variables when the control is at some node in Qp. Let ∼′

0 be
the set of (s, t) such that s, t are symbolic states, s.lc = t.lc, s.val = t.val,
and for all (p, f) ∈ ptemplates(s.lc) the formula gp,s ⊃ ((p, f)[s] ≡ (p, f)[t]) is
valid. Thus we see that the quantifiers over the variables in X are restricted
to the valuations that satisfy gp,s, i.e., to the valuation in Tp,s. Observe that
Tp,s = Tp,t; thus it does not matter whether we use s or t for obtaining these
sets and the formulas gp,s. Note that if we replace gp,s by True then we get ∼0.
From this, it should be easy to see that ∼′

0 ⊇ ∼0.

Theorem 7. ∼′
0 is a bi-simulation on symbolic state graph Sym Reach(G, u).

Proof: Assume that s ∼′
0 t. Clearly, s.lc = t.lc and s.val = t.val. Let p ∈ (AP ∪

guards(s.lc)). From the definition of ptemplates(s.lc), we see that (p, fid) ∈
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ptemplates(s.lc). By the definition of ∼′
0, gp,s ⊃ (p, fid)[s] ≡ (p, fid)[t] is valid.

The tuple of values of variables defined by s.val belongs to Tp,s and hence it
satisfies the formula gp,s. As a consequence, the two predicates (p, fid)[s] and
(p, fid)[t] evaluate to the same truth value, when the variables in them are sub-
stituted by the values given by s.val(x). It is also not difficult to see that these
truth values, respectively, are the truth value of the predicate p in the actual
states act state(s) and act state(t). It is easy to see that the symbolic state s sat-
isfies p iff t satisfies p. Since this property holds for every p ∈ (AP ∪guards(s.lc)),
it is easily seen that L′(s) = L′(t) and every transition e from node s.lc is en-
abled in s iff it is enabled in t. Now assume (s, e, s′) ∈ R′ which means there
is an enabled transition e in s and s′ is reached after the execution of e. From
above analysis, we know that e is also enabled in t. Let t′ be the symbolic state
obtained by executing e from t. We show that s′ ∼′

0 t′. Obviously, s′.lc = t′.lc
and s′.val = t′.val.

Now, we show that for all (p, f ′) ∈ ptemplates(s′.lc), gp,s′ ⊃ ((p, f ′)[s′] ≡
(p, f ′)[t′]) is a valid formula. Consider a template (p, f ′) ∈ ptemplates(s′.lc).
From the definition of ptemplates(s.lc), it is seen that there exists a (p, f) ∈
ptemplates(s.lc) satisfying the following conditions for every x in var(p). These
conditions are divided into five cases. The first case is when f ′(x) = ∗; in this
case, f(x) = ∗ and the variable x in p remains unchanged when we obtain
(p, f)[s] and (p, f ′)[s′] from p. In the other cases f ′(x) �= ∗, i.e., f ′(x) is a
variable. Let f ′(x) be the variable y. The remaining cases depend on whether
there is an assignment to y in the action part of e and if so, what is assigned to
it. The second case is when there is no assignment for the variable y. In this case,
f(x) = y and s′.exp(y) = s.exp(y); hence the expressions substituted for x in p to
obtain (p, f)[s] and (p, f ′)[s′] are identical. The third case is when y is assigned a
constant; in this case, f(x) = ∗ and from the construction of Sym Reach(G, u),
we see that s′.exp(y) = y and hence the expressions substituted for x in p to
obtain (p, f)[s] and (p, f ′)[s′] are both x itself. The fourth case is when y is
assigned a variable z; in this case, f(x) = z and s′.exp(y) = s.exp(z){y/z};
from this it should be easy to see that the expressions substituted for x in p to
obtain (p, f)[s] and (p, f ′)[s′] are identical.

In all above four cases, we see that the same expression is substituted for
x in p to obtain both (p, f)[s] and (p, f ′)[s′]. The fifth and last case is when
there is an assignment of the form y := ψ(y) where ψ is a unary function;
in this case, f(x) = y and s′.exp(y) = ψ(s.exp(y)); since the function ψ is
commutative with the functions appearing in s.exp(y), it is easy to see that
s′.exp(y) = s.exp(y){ψ(y)/y}; it should be noted that the variable x in p is sub-
stituted by s.exp(y){x/y} and by s′.exp(y){x/y} respectively to obtain (p, f)[s]
and (p, f ′)[s′]. From the above observations, we see that the expression substi-
tuted for x in p to obtain (p, f ′)[s′] is s.exp(y){ψ(x)/y}. Let x1, ..., xn be the
variables in var(p) to which this last case applies. For each i = 1, ..., n, let
f ′(xi) = yi and yi := ψi(yi) be the assignment to yi in the action part of e.

From the above observations, we see that the expression substituted for xi in
p to obtain (p, f)[s] is s.exp(yi){xi/yi}, while the expression substituted for x in
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p to obtain (p, f ′)[s′] is s.exp(yi){ψi(xi)/yi}. Using this fact for each i = 1, ..., n
and the fact that in all the first four cases the same expressions are substituted
for x in p to obtain both (p, f)[s] and (p, f ′)[s′], it is not difficult to see that
(p, f ′)[s′] = (p, f)[s]{ψ1(x1)/x1, ..., ψn(xn)/xn}. By the same argument, we see
that (p, f ′)[t′] = (p, f)[t]{ψ1(x1)/x1, ..., ψn(xn)/xn}.

Now we relate the sets Tp,s, Tp,s′ , and consequently, the formulas gp,s, gp,s′ .
Recall that Tp,s denotes the set of valuations for variables in X when control is
in some location in Qp in a computation of the TD G′ starting from the state
(s.lc, s.val). Using the same argument as given above, it is easy to see that for
every h′ ∈ Tp,s′ there exists a h ∈ Tp,s satisfying the following condition: for
1 ≤ i ≤ n, h(xi) = ψi(h(xi)); for every z ∈ X − {xi : 1 ≤ i ≤ n}, h(z) = h′(z).
From this it follows that the formula gp,s′ ⊃ gp,s{ψ1(x1)/x1, ..., ψn(xn)/xn} is a
valid formula.

Since, gp,s ⊃ (p, f)[s] ≡ (p, f)[t] is valid, its validity holds even when we re-
place each xi by ψ(xi) for i = 1, ..., n. When this replacement is done, we get that
gp,s{ψ1(x1)/x1, ..., ψn(xn)/xn} ⊃((p, f ′)[s′] ≡ (p, f ′)[t′]) is valid. Since gp,s′ ⊃
gp,s{ψ1(x1)/x1, ..., ψn(xn)/xn} is a valid formula, we see that gp,s′ ⊃((p, f ′)[s′] ≡
(p, f ′)[t′]) is a valid formula. �

Now consider the the example TD G1 given by figure 2. Let u = (q0, h) where
h(x) = 0. Let p be the guard x ≥ 10 which is the guard of the transition from q1

to q2. Let s and t be two states in Sym Reach(G1, u) with s.lc = q0, t.lc = q0,
s.exp(x) = x + c and t.exp(x) = x + d. Observe that c, d ≥ 0. It should be
easy to see that gp,s is the constraint x ≥ −3. The template (x ≥ 10, fid) is
the only non-trivial predicate template in ptemplates(q0). From our definition
of ∼′

0, it is easily seen that s ∼′
0 t iff the formula x ≥ −3 ⊃ (x + c ≥ 10 ≡

x + d ≥ 10) is a valid formula. This gives us 13 equivalence classes and hence
the reduction of Sym Reach(G, u) has 13 states. (Note that in the definition of
∼0, the equivalence (x + c ≥ 10 ≡ x + d ≥ 10) is required to hold for all values
of x including all negative values; due to this reason, ∼0 is an identity relation
as pointed out at the beginning of the section).

The above defintion of ∼′
0 can be naturally extended to ∼i for every i ≥ 0

giving us the relations ∼′
i.

In the above definitions, we see that the formula gp,s depends on p, s.lc
and s.val. Note that the set of possible values of s.val can be determined from
static analysis of G. Essentially, for any variable x, s.val(x) is a constant that is
assigned to x in the action part of some transition. Since we ignore all the guards
when we compute Tp,s, it is not difficult to see that Tp,s or gp,s can be computed
by static analysis of G. The number of values of s.val can be exponential. Many
times we can get a constraining formula gp,s which is independent of s.val. For
example, consider the example given in figure 3, a possible gp,s can be (x1 ≥
0 ∧ x2 ≥ 0) for every predicate p and state s since all the updating functions
increment variables.

Now, we consider the TD G given in figure 3 with initial state (q0, h) where
h(x1) = h(x2) = 0. We show that ∼0⊂∼′

0⊂∼′
1 for this TD. First, it is easy

to see that ptemplates(q0) = {(x1 = 0, fid), (x2 = 0, fid), (x1 ≥ 20, fid), (x2 ≥
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x2 + +

q1

q2

q3q0

x1 ≥ 20 →

x2 ≥ 20 →

x2 = 0 →

x1 + +

x1 = 0 →

Fig. 3. Example of a TD for which ∼0⊂∼′
0⊂∼′

1

20, fid)}. For every state s in Sym Reach(G, u) and for every guard p, gp,s is
the constraint (x1 ≥ 0 ∧ x2 ≥ 0). Also, for any state s in Sym Reach(G, u) such
that s.lc = q0 it is the case that s.val(x1) = s.val(x2) = 0. Let s, t be any two
states such that s.lc = t.lc = 0. Let s.exp(x1) = x1 + c1 and s.exp(x2) = x2 + c2;
similarly, let t.exp(x1) = x1+d1 and s.exp(x2) = x2+d2. Now, s and t are related
by ∼′

0 if the values c1, c2, d1, d2 are all ≥ 20. (As in the previous example, the
relation ∼0 is simply the identity relation).

Now consider the relation ∼′
1. From the definitions, it can be seen that

extended templates(q0, 1) = {(x2 = 0, x1 ≥ 20, fid), (x1 = 0, x2 ≥ 20, fid), (true,
x1 = 0, fid), (true, x2 = 0, fid)}. By a detailed combinatorial analysis, it can be
shown that the set of states in Sym Reach(G, u) form into 212 − 21 classes with
respect to ∼′

0 and 42 classes with respect to the bi-simulation ∼′
1. In a more

general case, if the constant in the transitions entering node q3 is c then the set
of states of the form (q0, h) will be divided in to (c + 1)2 − (c + 1) and 2(c + 1)
classes with respect to the bi-simulations ∼′

0, ∼′
1 respectively. Thus in the gen-

eral case, the total number of states in the reductions with respect to ∼′
0, ∼′

1 are
given by (c + 1)2 + 2(c + 1) and 3(c + 1) + 3 respectively. Thus ∼′

1 gives more
reduction. In general, we can generalize the example by introducing n arbitrary
variables where ∼′

1 has much more reduction than ∼′
0.

The above analysis assumes that the set Tp,s is definable by a formula gp,s.
This would require that the logic used for obtaining the formula is expressive
enough. This may not always be the case. Even if the logic is expressive enough,
computing a formula that exactly defines Tp,s may be expensive. On the other
hand, it may be easier to compute a formula that defines a super set of Tp,s.
Let fp,s be a formula that defines any superset of Tp,s. Let ∼′′

0 be the relation
obtained by replacing the formula gp,s by the formula fp,s in the definition of
∼′

0. Since gp,s ⊃ fp,s is a valid formula, it is easy to see that ∼′′
0⊆∼′

0 and hence
∼′′

0 is a sub-bi-simulation relation. As indicated in sub-section 2.2, we can use
∼′′

0 to construct a reduction of Sym Reach(G, u) and perform model checking
on this reduction.

4 Transition Diagrams over Integer Domains

The use of symbolic graphs can be avoided for certain cases. Consider transition
diagrams where the variables are integer variables and the functions updating
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them either increment or decrement them by some constants. Let fc(x) be the
function x + c where c is a constant. Obviously for any two constants c and d,
the functions fc and fd are commutative.

Without constructing the symbolic state graph, we can directly define a bi-
simulation on the standard reachability graph Reach(G, u). Recall that each
state of Reach(G, u) is of the form (q, h) where q ∈ Q and h assigns values
to variables in X . Let s = (q, h) be a state in Reach(G, u). For a predicate
template (p, f), define (p, f)[s] to be the predicate obtained by replacing each
occurrence of a variable x in p by x + h(f(x)) if f(x) is a variable. We don’t
replace x if f(x) = ∗. Let ≈0 be the set of pairs of states (s, t), where s = (q, h)
and t = (q, h′) for some q ∈ Q, such that for each (p, f) ∈ ptemplates(q),
(p, f)[s] ≡ (p, f)[t] is valid. This construction can be employed for a general case
where ”+” is any commutative and associative binary operator over the domain
of the variables.

Theorem 8. ≈0 is a bi-simulation on Reach(G, u). �

Now we show, how to efficiently check if s ≈0 t for a TD G where each
predicate p ∈ guards(G) ∪ AP is linear, i.e. is of the form Σ1≤i≤naixi > d′

where xi ∈ X and a1, ..., an are integer constants. Let s = (q, h) and t = (q, h′)
be any two states. Let I = {i : 1 ≤ i ≤ n and f(xi) �= ∗}. It is not difficult to
see that (p, f)[s] ≡ (p, f)[t] is valid if Σi∈Iaih(f(xi)) = Σi∈Iaih

′(f(xi)). This
condition can be checked efficiently. It is easy to see that checking equivalence
can also be done efficiently when p is of the form (Σ1≤i≤naixi) modc = c′ where
c, c′ are constants. Thus, if for every predicate p of the form Σ1≤i≤naixi > d′ in
guards(G) ∪ AP , the set {Σi∈Iaih(f(xi)) : s = (q, h) is a state in Reach(G, u)
and (p, f) ∈ templates(q) and I = {i : f(i) �= ∗}} is finite then ≈0 has a finite
quotient.

A subclass of integer domain TDs are those in which the variables range over
natural numbers; this occurs if all the constants in the transitions are positive
and the initial state u assigns only positive values to the variables. Furthermore,
we require that each predicate p is a linear predicate and the coefficients of
variables in the predicate are all positive. Let s = (q, h) and t = (q, h′) be two
states. Now consider any template (p, f) in ptemplates(s.lc) where p is given
by Σ1≤i≤naixi > d′. Let I = {i : f(xi) �= ∗}. It is not difficult to see
that (p, f)[s] ≡ (p, f)[t] is valid if either the two values Σi∈Iaih(f(xi)) and
Σi∈Iaih

′((f(xi)) are equal, or both of them are greater than d′.

4.1 Static Analysis for Integer TDs

Using Linear Equations for Static Analysis
For any state s, any (p, dependsπ) ∈ ptemplates(s.lc), we define Tp,s to be the
set of all h such that, for some q ∈ Qp, the state (q, h) is reachable from the
state (s.lc,0) in the Reach(G′, u). Here Qp is the set of nodes as given in the
beginning of the previous section and 0 is the valuation that gives zero value to
all the variables. Note that in the above definition we are considering execution
from the state (s.lc,0) not from the state (s.lc, s.val) as in the previous section.
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Therefore, Tp,s does not depend on the values of the variables in s. This set only
depends on p, i.e., Qp and on s.lc. As given in the previous subsection, using
formulas that define the sets of Tp,s, we can define a bi-simulation ≈′

0 that is
bigger than ≈0. Such formulas can be obtained by static analysis.

For each i > 0, we define the bi-simulations ≈i and ≈′
i just like ∼i and ∼′

i

excepting that these are defined on the structure Reach(G, u) (they are defined
on the same lines as ≈0 and ≈′

0).
Now we consider a subclass of integer domain TDs in which every assignment

of a variable either increments or decrements it by a constant, i.e., a variable is
not assigned another variable or a constant. We call such a TD as a restricted TD.
Now we give a general procedure for obtaining formulas that define supersets
of the sets Tp,s as defined above. Observe that these formulas only depend on
p and s.lc. Actually, for each q ∈ Q and for each r ∈ Q, we give a formula fq,r

that defines a superset of all valuations h such that the state (r, h) is reachable
from (q,0) in Reach(G, u).

General Procedure for fq,r: Now we give a general procedure to compute
fq,r for a restricted TD G where q, r are nodes in G. let π be a path from q to
r, for every transition e, let ye to denote the number of times e is traversed in
the path π. For every node u, let d+(u) denote the set of edges starting at u,
d−(u) denote the set of edges ending in u. Then for every node u �= q, r, we will
have Σe∈d+(u) ye = Σe∈d−(u) ye. Also we will have Σe∈d+(q) ye = Σe∈d−(q) ye + 1
and Σe∈d+(r) ye = Σe∈d−(r) ye − 1. Note that above equations are satisfied by
any path from q to r. Let w(xi, e) denote the value by which xi is increased in
the transition e. In the case xi is not updated in e, let w(xi, e) = 0. Now Let
xi = Σyew(xi, e). Let gq,r be the conjunction of all above equations. For any
p ∈ (AP ∪ guards(G)) and state s, let ep,s be the disjunction of all gp.lc,r such
that r ∈ Qp. It should be easy to see that ep,s defines a superset of Tp,s. As in
section 3, we can use the formulas ep,s to define a sub-bi-simulation relation ≈′′

0

similar to ∼′′
0 , and use it to construct a reduction of Reach(G, u).

The above procedure, given for restricted TDs, can be extended to any simple
TD with minor modifications.

Using Shortest Path Algorithms
Now, we give a more efficient method for using static analysis in any restricted
TD G in which every guard of a transition is a conjunction of conditions of the
form x# c where # is a relation operator and c is a constant. A cycle in G is
a simple path starting and ending in the same node. We say that a cycle is a
positive cycle or a negative cycle for a variable x if the sum of all the changes
of the value of x along this cycle is positive(> 0) or negative (< 0) respec-
tively. For any path π in G and variable x, let weight(π, x) denote the sum of
the changes in value of x along π. For any pair of nodes q, r and variable x,
let low(q, r, x), high(q, r, x) be the minimum or maximum of weight(π, x) of all
paths π from q to r respectively. It is easy to see that if there is a path from q
to r passing through a negative cycle for x, then low(q, r, x) is −∞; otherwise
low(q, r, x) is a finite number. Similar relation holds for high(q, r, x) and posi-
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tive cycles. Note that the value low(q, r, x) or high(q, r, x) can be computed in
polynomial time using shortest path algorithm over graphs [2]. For nodes q, r,
fq,r = ∧x∈X low(q, r, x) ≤ x ≤ high(q, r, x). As in the earlier paragraph, for any
p ∈ (AP ∪ guards(G)) and state s, let ep,s be the disjunction of all fs.lc,r such
that r ∈ Qp and ≈′′

0 be the corresponding sub-bi-simulation relation. It can be
shown that if for every node q and for every variable x, all the paths from the
initial node to q pass through only positive cycles for x or all such paths pass
through only negative cycles, the reduction of Reach(G, u) with respect to ≈′′

0

is finite.

5 Relaxing the Commutativity Requirement

So far in this paper, we required that the set of all functions applied to variables
of the same type are mutually commutative. This requirement can be relaxed
as follows. Recall that for any path π in the G, dependsπ is a function that
specifies dependencies of values of the variables at the end π to their values at
the beginning of π. Now we introduce a binary relation depends on on variable-
node pairs, i.e., pairs of the form (x, r) where x ∈ X and r is a node in G. The
pair (y, r) depends on the pair (x, q) if there exists a path π in G from node q to
r such that dependsπ(y) = x. It is easy to see that for the TD given in Figure 4,
(x, q2) depends on (x, q1) while (x, q3) does not depends on (x, q2) because the
only transition from q2 to q3 assigns a constant to x. On the other hand, if t2 did
not have this assignment for x then (x, q3) depends on (x, q2), and in addition
if we had x := y as the assignment in t1 then (x, q3) depends on (y, q1).

t1:p1→ x:=g1(x)q1 q2 q3 q4

t4: p4 →t3:p3→ x:=g2(x)
t2:p2→ x:=c

Fig. 4.

Using the relation depends on, we specify the less restrictive commutative
requirement. Let Π be the set of all functions that are applied to variables in
the transitions of G. Let {Π1, ..., Πm} be the finest partition of Π which satisfies
the following condition: two functions ψ1 and ψ2 are in the same set Πi if there
exist pairs (y, r) and (x, q) such that (y, r) depends on (x, q) and there exist
transitions (q′, C1, Λ1, q), (r, C2, Λ2, r

′) such that the assignment x := ψ1(x) is in
Λ1 and the assignment y := ψ2(y) is in Λ2. It is easy to see that the partition can
be computed efficiently from G using standard graph algorithms. Consider the
example of Figure 4, the functions g1, g2 are in the different sets of the partition
and hence they need not be commutative. On the other hand, if t2 did not have
any assignment for x then both g1, g2 would be in the same set of the partition
and they would need to be commutative. Now, the commutativity requirement
is relaxed by requiring that any two functions f, g ∈ Π be commutativity only
if they belong to the same set in the partition, i.e., if f, g ∈ Πi for some i,
1 ≤ i ≤ m.
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6 Discussion and Related Work

As indicated in the introduction, this work is an extension of our earlier work [7].
We have essentially extended that work by combining it with static analysis. The
static analysis techniques employed here involve the variable value range analysis.
Such techniques have been employed earlier in static analysis of programs [6].
Our innovative idea is to combine them with bi-simulation reductions and to
employ them in model checking.

The paper [7] discusses the relationship of the original work presented there
with the approach given in [5] and with other works based on bi-simulation
reduction given in [3]. It is to be noted that none of these works employ static
analysis.
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Fast Generic Model-Checking for Data-Based Systems

Dezhuang Zhang and Rance Cleaveland

Abstract. This paper shows how predicate equation systems (PESs) may be used
to solve model-checking problems for systems, such as those involving real-time
or value passing, that manipulate data. PESs are first defined and the encoding
of model-checking problems described; then generic global and local approaches
for solving PESs are given. Real-time model checking is then considered in de-
tail, and a new, efficient on-the-fly technique for real-time model checking based
on proof search in PESs is developed and experimentally shown to significantly
outperform existing approaches when system specifications or formula specifica-
tions contain errors and to be competitive when both are correct.

1 Introduction

Temporal-logic model checkers [8, 9, 24] automatically establish whether or not a sys-
tem satisfies a specification given as a formula in temporal logic. The model-checking
problem has been studied most intensively in the area of finite-state systems but also
for real-time systems and systems involving integer-valued variables. An interesting
insight to emerge in the area of finite-state model checking is that model-checking
questions can be reduced to solving systems of propositional equations [2, 11] called
boolean equation systems. This observation leads to a uniform framework for under-
standing a number of different model-checking techniques, including so-called sym-
bolic approaches [7]. It has also served as a basis for new algorithms, including effi-
cient on-the-fly model-checkers for the mu-calculus [2] and symbolic algorithms based
on Gaussian elimination [22].

The goal of this paper is to develop a similar framework for model checking of data-
based systems that manipulate values and thus may not be finite-state. The proposed
formalism, predicate equation systems (PESs), generalizes boolean equation systems to
full first-order logic. We indicate how different model-checking techniques for systems
that process data, including Presburger systems [6] and real-time model checking [18],
may be cast in terms of PESs, and we also discuss how generic model-checking tech-
niques may be derived based on PESs. We then use a proof system for PESs as a basis
for deriving a new, very efficient on-the-fly technique for model-checking real-time sys-
tems. Experimental data is presented suggesting that our prototype implementation sig-
nificantly outperforms existing real-time model checkers when system specifications or
formulas contain errors (the most likely scenario) and is competitive with these check-
ers when specifications and formulas are correct. Thus, in addition to serving as a uni-
form framework for describing existing model-checking routines, PESs also open new
avenues for model checking as well.

2 Defining Predicate Equation Systems

Predicate equation systems consist of systems of simultaneous equations whose right-
hand sides are first-order formulas. This section defines PESs and other terminology
and notation used in the rest of the paper.
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If Q and X are sets, then the set QX consists of all functions mapping X to Q. We
assume that if f ∈ QX and f ∈ QX ′

then X = X ′, and we write dom(f) = X for

the domain of f . We sometimes write QX as X → Q. If f ∈ QX and f ′ ∈ Q′X
′

, then
f [f ′] represents the function in (Q∪Q′)(X∪X ′) defined as follows.

(f [f ′])(x) =
{

f ′(x) if x ∈ X ′

f(x) otherwise

Also, if f ∈ QX and X ′ ⊆ X , then f�X ′ denotes the function in QX ′

defined by
(f�X ′)(x) = f(x) if x ∈ X ′. Finally, if X = {x1, . . . , xn} and {q1, . . . , qn} ⊆ Q
then (x1 := q1, . . . , xn := qn) represents the function that maps each xi to qi.

2.1 Basic Data Theories

The predicate calculus we consider is parameterized with respect to the basic data the-
ory used to specialize the domain of discourse.

Definition 1. Let D be a set of data values and X a set of data variables. A basic data
theory over X and D is a tuple 〈BExp,DExp, fv, 〈−〉, |=, |−|〉, where:

1. BExp is a set of data predicates;
2. DExp is a set of data expressions;
3. fv : (BExp ∪ DExp) → 2X is the free-variable mapping;
4. 〈−〉 : (BExp ∪ DExp) × DExpX → (BExp ∪ DExp) is the substitution function

(notation: b〈f〉 for 〈−〉(b, f));
5. |= ⊆ DX × BExp is the interpretation relation (notation: ρ |= b for |= (ρ, b));
6. |−| : DExp ×DX → D is the evaluation function (notation: |b|ρ for |−|(b, ρ))

and such that the following hold.

1. (b〈f〉)〈g〉 = b〈f � g〉, where (f � g)(x) =
{

g(x) if x ∈ dom(g) − dom(f)
f(x)〈g〉 otherwise

2. |e〈f〉|ρ = |e|ρ[|f |ρ], where |f |ρ is defined by: (|f |ρ)(x) = |f(x)|ρ.

In 〈BExp,DExp, fv, 〈−〉, |=, |−|〉, BExp is a set of atomic predicates about data values;
DExp is a set of data-valued expressions; fv(b) the set of free data variables in b; and
b〈f〉 is the result applying substitution f to expression b. If ρ |= b then ρ makes b true,
while |e|ρ is the result of evaluating e in ρ. If I = {x1, . . . , xn} ⊆ X is a finite subset
of X we use the term assignment for the function (x1 := e1, . . . xn := en) in DExpI .
We often use x := e to represent an assignment and call elements of DX data states.

2.2 The Predicate Calculus

The predicate calculus is used to define the right-hand sides of predicate equation sys-
tems. Our account of the predicate calculus is parameterized with respect to a set X
of predicate variables, a set D of data values, a set X of data variables, and a basic
data theory B = 〈BExp,DExp, fv, |=, |−|〉 over X and D. The formulas are given as
follows, where b ∈ BExp, X ∈ X, x ∈ X , and A is an assignment.

φ ::= b | ¬b | φ1 ∨ φ2 | φ1 ∧ φ2 | X | φ[A] | ∃x.φ | ∀x.φ (1)
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The operators are standard, except for X and φ[A]. As formulats may contain predicate
variables, substitution, φ[A], which is usually a meta-operation, must be included as an
operator in the language (since, e.g., X [x := e] cannot be rewritten). The definition
fdv(φ) of free (data) variables in φ is given in the usual manner, based on the definition
of fv given in the basic data theory; the definition fpv(φ) of free predicate variables is
standard. We call a formula φ predicate-closed if fpv(φ) = ∅ and closed if fpv(φ) =
fdv(φ) = ∅. We often call formulas generated by the above grammar predicates.

Predicates are interpreted with respect to a data state ρ and a predicate state θ ∈

(2(DX ))X mapping predicate variables to sets of data states. We write ρ |=θ φ to denote
that formula φ holds in data state ρ and predicate state θ. The definition is as follows.

ρ |=θ b iff ρ |= b (i.e. wrt basic data theory)
ρ |=θ ¬b iff ρ �|= b
ρ |=θ φ1 ∨ φ2 iff ρ |=θ φ1 or ρ |=θ φ2

ρ |=θ φ1 ∧ φ2 iff ρ |=θ φ1 and ρ |=θ φ2

ρ |=θ X iff ρ ∈ θ(X)
ρ |=θ φ[A] iff ρ[|A|ρ] |=θ φ
ρ |=θ ∃x.φ iff for some d ∈ D, ρ[x := d] |=θ φ
ρ |=θ ∀x.φ iff for all d ∈ D, ρ[x := d] |=θ φ

We use [[φ]]θ to represent the set {ρ | ρ |=θ φ}. If a formula φ is predicate-closed, then
[[φ]]θ = [[φ]]θ′ for any θ and θ′; in this case we write [[φ]] for this common value. Finally,
while negation is restricted in the logic, every predicate-closed formula φ has a formula
not(φ) that is semantically equivalent to φ’s negation.

2.3 Predicate Equation Systems

Predicate Equation Systems (PESs) consist of blocks of equations of the form X = φ,
where X is a predicate variable and φ is a predicate. Such a system is intended to define
a mutually recursive family of predicates, one for each equation. Since a given equation
can have several solutions, blocks in PESs are equipped with an indication as to whether
the “least” (most restrictive) “greatest” (most permissive) solution is intended.

Definition 2. A predicate equation block has form 〈p, E〉, where p ∈ {μ, ν} is the
parity indicator and E = 〈E1, . . . , En〉 is a finite sequence of equations of form Xi =
φi, with the Xi distinct predicate variables and each φ a predicate.

In predicate block 〈p, E〉 p determines whether the “greatest” or “least” solution
of the equations is intended. We write lhs(B) = {X1, . . . , Xn} for the left-hand-side
variables in block B and rhs(B) = {φ1, . . . , φn} for the right-hand-side predicates.

Definition 3. A predicate equation system (PES) is a finite sequence 〈B1, . . . , Bn〉 of
predicate equation blocks with the property that if i �= j, then lhs(Bi) ∩ lhs(Bj) = ∅.

The notions of lhs and rhs can be extended in the obvious manner to PESs. We call a
PES P predicate-closed if

⋃
φ∈rhs(P ) fpv(φ) ⊆ lhs(P ).

PESs are interpreted using fixpoints of monotonic functions defined over the com-
plete lattice given by 2(DX ) (i.e. the lattice of sets of data states, ordered by set inclu-
sion). Given a predicate environment θ, a predicate φ containing free predicate variable
X may be seen as a function fθ over this lattice as follows: fθ(S) = [[φ]]θ[X:=S]. A
complete account of fixpoint equation systems is given in [30], and the semantics of
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PESs may be seen as an instance of this, where the lattice Q is taken to be 2(DX ). Given
a “starting” environment θ, the semantics, [[P ]]θ , of PES P is an environment θ′ that,
for any equation X = E of P , satisfies: θ′(X) = |E|θ′[X:=θ′(X)]. and is appropri-
ately extremal. Note that if P is predicate-closed, then [[P ]]θ(X) = [[P ]]θ′(X) for any
X ∈ lhs(P ) and θ, θ′. Based on this observation, it follows that if φ is a predicate,
P is predicate-closed, and fpv(φ) ⊆ lhs(P ), then [[φ]][[P ]]θ = [[φ]][[P ]]θ′

for any θ, θ′.
In this case we write [[φ]]P for this common value, and if σ ∈ [[φ]]P we represent this
notationally as σ |=P φ.

3 Transition Systems and the Modal Mu-Calculus

A goal of this paper is to reduce model checking to computing solutions of PESs. The
basic approach consists of showing how, given a symbolic system model and a formula
in the first-order mu-calculus, a PES may be generated whose “solutions” are answers
for the model-checking problem. This section lays the foundation for this approach by
introducing our system model, parameterized symbolic transition graphs with assign-
ment (PSTGAs), and our temporal logic, the first-order mu-calculus.

3.1 Concrete Transition Systems

Fix a set of data values D, a set of data variables X , and a set Λ of communication port
names not containing a distinguished value τ . The set of concrete actions Actc is given
as Actc = {λ!d | λ ∈ Λ, d ∈ D}∪{λ?d | λ ∈ Λ, d ∈ D}∪{τ}. Actions have the usual
interpretation: λ!d represents the emission of value d on port λ, and λ?d the receipt of
value d on λ. τ denotes the internal action.

Definition 4. A concrete transition system (CTS) is a tuple 〈Σ, V →c, ΣI〉, where Σ

is the set of states, V : Σ → DX the valuation function, →c⊆ Σ × Actc × Σ the
transition relation, and ΣI ⊆ Σ the set of start states.

A CTS models the behavior of a system. We write σ
a
→c σ′ for 〈σ, a, σ′〉 ∈→c.

3.2 The First-Order Modal Mu-Calculus

To specify system properties, we use first-order modal mu-calculus [29] and modal
equation systems (MESs). The former enhances the predicate calculus with modal op-
erators; MESs are like PESs whose right-hand sides of MESs are mu-calculus formulas.
Fix basic data theory 〈BExp,DExp, fv, 〈−〉, |=, |−|〉 and set Λ of port names. Then first-
order mu-calculus formulas have the following form, where e ∈ DExp and λ ∈ Λ.

φ ::= 〈operators from Equation 1〉 | 〈τ〉φ | [τ ]φ | 〈λ!e〉φ | [λ!e]φ | 〈λ?e〉φ | [λ?e]φ

The notions fpv and fdv of free formula / data variables may be adapted in the obvious
manner. We call a mu-calculus formula φ formula-closed if fpv(φ) = ∅.

The semantics of modal mu-calculus formulas is given with respect to a CTS C =
〈Σ, V,→c, ΣI〉, and takes the form of a relation 〈σ, ρ〉 |=C,θ φ, which, given an en-

vironment θ ∈ (2(Σ×(DX )))X mapping predicate variables to sets consisting of states
paired with alternative data assignments (used to handle bound variables), determines
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whether or not CTS state σ paired with ρ satisfies φ. This relation is given as follows
(obvious cases omitted).

〈σ, ρ〉 |=C,θ X iff 〈σ, ρ〉 ∈ θ(X)
〈σ, ρ〉 |=C,θ ∃x.φ iff for some d, 〈σ, ρ[x := d]〉 |=C,θ φ

〈σ, ρ〉 |=C,θ 〈τ〉φ iff there is σ′ s.t. σ
τ
→c σ′ and 〈σ′, ρ〉 |=C,θ φ

〈σ, ρ〉 |=C,θ [τ ]φ iff for all σ′ s.t. σ
τ
→c σ′, 〈σ′, ρ〉 |=C,θ φ

〈σ, ρ〉 |=C,θ 〈λ!e〉φ iff there is σ′ s.t. σ
λ!d
→c σ′, |e|V (σ)[ρ] = d, and 〈σ′, ρ〉 |=C,θ φ

〈σ, ρ〉 |=C,θ 〈λ?e〉φ iff there is σ′ s.t. σ
λ?d
→ c σ′, |e|V (σ)[ρ] = d, and 〈σ′, ρ〉 |=C,θ φ

Note that the semantics of the modal operators are different from the ones given in [21,
26]. Here, in 〈λ?x〉φ the x in φ is not bound, while in the other work this is the case.
Our logic only permits variables to be bound using ∀ and ∃.

We sometimes write σ |=C,θ φ if 〈σ, ∅〉 |=C,θ φ, where ∅ is the empty data as-
signment. We also define [[φ]]C,θ = {〈σ, ρ〉 | 〈σ, ρ〉 |=C,θ φ}. We may now apply the
general fixpoint-equation system theory in [30] to define the semantics of mu-calculus
equation systems (MESs). The lattice in question is 2(Σ×A(D,X )) ordered by set inclu-
sion, where A(D,X ) =

⋃
I⊆X DI is the set of assignments; the semantics, [[M ]]C,θ, of

mu-calculus equation system M is an environment mapping each X ∈ lhs(M) to a set
of state / assignment pairs that is the appropriate solution for the equation defining X .

We also adapt the definitions of formula/predicate-closed-ness from PESs in the
obvious manner. If MES M is formula-closed then [[M ]]C,θ(X) = [[M ]]C,θ′(X) for any
X ∈ lhs(M) and θ, θ′, and we write [[M ]]C for this value. It also follows that if M is
formula-closed and φ is such that fpv(φ) ⊆ lhs(M), then [[φ]][[M ]]C,θ

= [[φ]][[M ]]C,θ′
for

any θ, θ′. When this holds we use [[φ]]C,M for this value, and we write 〈σ, ρ〉 |=C,M φ
if 〈σ, ρ〉 ∈ [[φ]]C,M , and σ |=C,M φ if 〈σ, V (σ)〉 ∈ [[φ]]C,M .

3.3 Parameterized Symbolic Transition Graphs with Assignment

Our symbolic system model, Parameterized Symbolic Transition Graphs with Assign-
ment (PSTGAs), extends the STGA formalism of [21] with a facility for parameterized
transitions. This enables them to encode a range of other symbolic system formats, in-
cluding the value-passing CCS in [10], Linear Process Equations [16], the event-action
language in [6], and timed automata [18].

Fix value set D, variable set X , and data theory 〈BExp,DExp, fv, 〈−〉, |=, |−|〉 over
D and X . Let Φ be the associated set of predicate-calculus formulas. Also fix a set Λ of
communication port names not containing the distinguished name τ , and define the set
of symbolic actions Acts = {λ?x | c ∈ Λ, x ∈ X} ∪ {λ!e | c ∈ Λ, e ∈ DExp} ∪ {τ}.

Definition 5. A PSTGA is a tuple G = 〈S, I, R, SI , InitC〉, where:

1. S is a finite set of control locations;
2. I ⊆ X is a finite set of assignable data variables;
3. R ⊆ S × (X − I) × Φ × Φ× A(B, I) ×Acts × S is a finite set of parameterized

transitions satisfying: if 〈s, k, κ, β, A, λ?x, s′〉 ∈ R then x ∈ I;
4. SI ⊆ S are the initial locations; and
5. InitC ∈ BExp is the initial condition.

In PSTGA G = 〈S, I, R, SI , InitC〉, SI contains the possible starting locations and
InitC the initial condition on data variables. Based on the current control location and
data state, transitions may fire, with data variables and control locations being updated.
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With this intuition in mind, let us more closely examine the structure of parame-
terized transitions in a PSTGA. Each transition is a tuple 〈s, k, κ, β, A, α, s′〉, where
s and s′ are the source and target control location, respectively. The k and κ are used
to parameterize, or “index”, the transition. Roughly speaking, each value d, that, when
substituted for k, makes κ “true”, defines a transition, in the STGA sense, consisting of:
a boolean guard β〈k := d〉 determining when the transition can “fire”; an assignment
Ak

d = (A�(k := d))�dom(A) to variables in I; and a communication action α[k := d]
(defined as the replacement of free occurrences of data variable k in the action expres-
sion by d). STGA transitions, in contrast, omit k and κ. The utility of our more complex
model will become apparent when we consider timed automata.

Semantically, a PSTGA G = 〈S, I, R, SI , InitC〉 is interpreted as a CTS CG =
〈Σ, V,→c, ΣI〉 as follows.

1. Σ ⊆ S ×DX . Note that in 〈s, ρ〉, ρ provides values to the data variables.
2. V (〈s, ρ〉) = ρ.
3. 〈s, ρ〉

a
−→c 〈s′, ρ′〉, iff there is 〈s, k, κ, β, A, α, s′〉 ∈ R, d′ ∈ D, and ρ′′ with:

(a) ρ |= κ[k := d′], ρ |= β[k := d′], ρ′′ = ρ′[k := d′][|Ak
d|ρ], and

(b) either: (i) a = τ and ρ′ = ρ′′; or (ii) a = λ!d, α[k := d′] = λ!e, |e|ρ = d, and
ρ′ = ρ′′; or a = λ?d, α[k := d′] = λ?x, and ρ′ = ρ′′[x := d].

4. σI = {〈sI , ρ〉 | sI ∈ SI , ρ |= InitC}

PSTGAs and the Mu-Calculus. The definition of CG implies an immediate interpre-
tation of the mu-calculus with respect to PSTGA G. In addition to the other nota-
tions defined for the mu-calculus, we also introduce the following. Let φ be a mu-
calculus formula, and s a control location in PSTGA G, and let θ be a mapping of
mu-calculus formula variables to sets of states in CG paired with assignments. Then
[[φ]]θ(s) = {ρ | 〈〈s, ρ〉, ρ〉 ∈ [[φ]]CG,θ}. That is, the “semantics” of a control location s
vis à vis a formula is the set of data states that, when combined with s, make the formula
“true”. Similarly, if M is a formula-closed MES, and φ is a mu-calculus formula with
fpv(φ) ⊆ lhs(M), we write [[φ]]G,M (s) for {ρ | 〈〈s, ρ〉, ρ〉 ∈ [[φ]]CG,M}. In this case,
we also say that a PSTGA G satisfies a mu-calculus formula φ with respect to equation
system M (written G |=M φ) if for all sI ∈ SI , {ρ | ρ |= InitC} ⊆ [[φ]]G,M (sI).

4 From Model Checking to Predicate Equation Systems

The model-checking problem for PSTGAs is: given PSTGA G, formula-closed MES
M and X ∈ lhs(M), does G |=M X? This section shows how to translate this question
into an equivalent one involving PESs. The key problem to be addressed is the symbolic
representation of the set [[X ]]G,M (sI) for every sI ∈ SI . This is achieved by construct-
ing a PES equation for each state in G and equation in M . Formally, we define a func-
tion F that, given a PSTGA G and formula-closed mu-calculus equation system M ,
yields a predicate-closed PES F (G, M). F is applied on a block-by-block basis; that
is, F (G, 〈B1, . . . , Bn〉) = 〈F (G, B1), . . . , F (G, Bn)〉. F (G, B) = F (G, 〈p, E〉) in
turn yields a predicate equation block of form 〈p, E ′〉, where for each equation X = φ

in E and control location s in G, there is an equation of form Ys,X = F (s, φ) in E′.
F (s, φ) is defined in Figure 1.

Theorem 1. Let G = 〈S, I, R, SI , InitC〉 be a PSTGA, and let M be a closed MES.
Then for any s ∈ S and any X ∈ lhs(M), [[X ]]G,M (s) = [[Ys,X ]]F (G,M).
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F (s, b) = b F (s,¬b) = ¬b
F (s, φ1 ∨ φ2) = F (s, φ1) ∨ F (s, φ2) F (s, φ1 ∧ φ2) = F (s, φ1) ∧ F (s, φ2)
F (s,X) = Ys,X F (s,∃x.φ) = ∃x.F (s, φ)
F (s,∀x.φ) = ∀x.F (s, φ) F (s, φ[x := e]) = F (s, φ)[x := e]
F (s, 〈τ 〉φ) =

W
{∃k.κ ∧ β ∧ F (s′, φ)[A] | 〈s, k, κ, β, A, τ, s′〉 ∈ R}

F (s, [τ ]φ) =
V
{∀k.(κ ∧ β) → F (s′, φ)[A] | 〈s, k, κ, β, A, τ, s′〉 ∈ R}

F (s, 〈c!e〉φ) =
W
{∃k.κ ∧ β ∧ F (s′, φ)[A] | 〈s, k, κ, β, A,α, s′〉 ∈ R ∧ (α = c!e)}

F (s, [c!e]φ) =
V
{∀k.(κ ∧ β) → F (s′, φ)[A] | 〈s, k, κ, β, A, α, s′〉 ∈ R ∧ (α = c!e)}

F (s, 〈c?e〉φ) =
W
{∃k.κ ∧ β ∧ F (s′, φ)[A][x := e] | 〈s, k, κ, β, A, α, s′〉 ∈ R ∧ α = c?x}

F (s, [c?e]φ) =
V
{∀k.κ ∧ β → F (s′, φ)[A][x := e] | 〈s, k, κ, β, A, α, s′〉 ∈ R ∧ α = c?x}

Fig. 1. Translation Function for PESs

5 Encoding Real Time Model Checking Via PESs

Different model-checking problems may be uniformly captured in terms of PESs, from
boolean equation systems (BESs) [2, 23] and Presburger systems [6] to real-time model
checking [18]. To illustrate this we detail an encoding of real-time model checking.

The framework we consider is given in [18], which models real-time systems using
so-called guarded-command real-time programs (which are expressively equivalent to
the better-known timed-automaton formalism) and uses the timed modal mu-calculus to
define properties. Let R+ be the set of nonnegative real numbers, C = {x1, . . . , xn} be
a finite set of clock variables, and P be a finite set of boolean variables. The set of state
predicates is defined by the following grammar, where p ∈ P , x, y ∈ C, and c, d ∈ N
are nonnegative integer constants.

φ := p | x ≤ d | c ≤ y | x + c ≤ y + d | ¬φ | φ1 ∨ φ2

A (clock) state ρ ∈ (R+)(C∪P) satisfies: ρ(p) ∈ {0, 1} if p ∈ P (here 0 is interpreted
as “false”, and 1 as “true”). If ρ is a state and δ ∈ R+ then ρ + δ is the new state
ρ[x1 := ρ(x1) + δ, . . . , xn := ρ(xn) + δ]. State predicates are interpreted with respect
to states in the usual fashion; we write ρ |= φ when this is the case. Then a real-time
program has form R = 〈G, φ〉, where:

– G is a finite set of guarded commands of form ψ → A, with ψ a state predicate and
A an assignment of form v1 := e1, . . . , vn := en. If vi ∈ P , then ei must either be
0 or 1; if vi ∈ C, then ei must either be 0 (reset) or v (no change).

– State predicate φ, the invariant, is past-closed: if ρ + δ |= φ then ρ |= φ.

In state ρ program R executes as follows. If a ψ → A is such that ρ |= ψ, then the
assignment A is “executed” in the usual manner, updating ρ to ρ′, provided that ρ′ |= φ
also. In addition, provided ρ + δ |= φ, R may “idle”.

The syntax of the timed mu-calculus extends the state-predicate language.

φ ::= 〈state-predicate operators 〉 | X | φ1 � φ2 | z.φ | μX.φ

The new operators include capabilities for recursive definition ( X, μX.φ), a modal
operator (φ1 � φ2), and the freeze quantifier (z.φ), which sets “specification clock” z
to 0. The formula φ1 � φ2 has the following meaning: φ1 ∨ φ2 holds as time elapses,
until a guarded-command fires, at which point φ2 holds.

Our translation of timed model-checking into PESs converts a real-time-program /
timed-mu-calculus formula into a PSTGA (the formula is needed for the specification
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clocks). Then the timed mu-calculus formula is translated into a MES, and our generic
generator applied. Let R = 〈G, φ〉 be a real-time program and γ be a timed mu-calculus
formula, with §(γ) = {s1, . . . , sm} the names of the specification clocks used in γ. To
define a PSTGA, we introduce the following basic data theory (take D = R+).

– X = C ∪ §(γ) ∪ P ∪ {k}, where k �∈ C ∪ §(φ) ∪ P
– BExp = {p = 1 | p ∈ P} ∪ {x + c ≤ y + d | x, y ∈ C, c, d ∈ N}
– DExp = {0, 1} ∪ {x + k | x ∈ C ∪ §(γ)}
– fv, 〈−〉, |=, |−| defined in the usual manner

We now define the PSTGA GR,γ = 〈S, I, R, SI , InitC〉 associated with R and φ as
follows. We take S = {s} (i.e. there is one control location) and I = C ∪ §(γ). For
each ψ → A ∈ G, R contains a transition 〈s, k, k = 0, ψ, A, τ, s〉, a τ -labeled transition
corresponding to each guarded command in R. Note that k cannot appear free in ψ or
A. There is also a parameterized transition of form 〈s, k, φ[x1 := x1 + k, . . . , xn :=
xn + k], tt, [x := x + k], t!k, s〉. The notation x := x + k is shorthand for x1 :=
x1 + k, . . . , xn := xn + k, etc. This transition models the ability of time to advance,
so long as the state invariant remains true. The action label t!k uses a special port t on
which the delay k is written. Finally, we set SI = {s} and InitC = φ ∧

∧
x∈X x = 0.

The translation of the timed mu-calculus formula γ is omitted; we only comment
on φ1 � φ2 and z.φ. The former is given as ∃δ.〈t!δ〉〈τ〉φ2∧∀ε.ε ≤ δ → 〈t!ε〉(φ1∨φ2).
The latter is φ[z := 0]. Once all instances of these operators have been eliminated, the
resulting formula can be easily converted into an MES.

6 Generic Algorithmic Approaches

The previous section suggested how model-checking problems can be encoded as PESs.
This section discusses algorithmic issues involved in computing solutions to PESs and
their relation to the specific algorithms given by researchers studying the aforemen-
tioned problems.

Global Approaches. The paper [30] gives an iterative strategy for computing the solu-
tion to fixpoint equation systems that is based on the following technique for computing
solutions to basic blocks.

1. Assign each lhs variable the correct extremal value (� for ν, ⊥ for μ).
2. “Iterate” by evaluating the right-hand side of each equation using the current as-

signment to derive a new assignment. Terminate when there is no change.

For PESs, this strategy has an obvious symbolic implementation: for a ν-block, initial-
ize each lhs predicate variable to tt, then iterate by replacing the lhs variables by their
definitions in rhs predicates and checking if the old predicates imply the new ones; ter-
minate if they do. Note that in general, this strategy might not terminate. First, the basic
data theory may not decidable, so checking formula equivalence cannot be automated.
Second, the number of iterations needed may not be finite. Traditional global finite-state
model checkers use this strategy, as do both [6] and [18]. In [6], the authors note that,
even though Presburger arithmetic is decidable, their procedure may not terminate. In
contrast, the restrictions in state predicates in [18] do guarantee termination.

The paper [12] restricts the allowed form of predicates mentioned in [6] so that the
only basic comparisons allowed mirror those of [18], albeit for integers rather than real
numbers. In this case, the iterative fixpoint calculation is guaranteed to terminate. This
fact, together with the PES formulation of real-time model-checking, therefore sug-
gests a novel symbolic approach to discrete-time model checking. Rather than expand
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Fig. 2. A Gentzen-like Proof System for PESs

a discrete-time model into a CTS by “exploding” delays into sequence of clock ticks,
mirror the definitions of timed-automata / real-time programs, albeit in the setting of
integers, then use the symbolic approach here combined with the observation of [12].

Local Approaches. Significant attention has been paid to local, or on-the-fly, approaches
to finite-state model checking. In the setting of BESs, this amounts to computing the
solution of a single (propositional) variable rather than the values of all variables. In the
case of data-based model checking, on-the-fly techniques have received little attention,
although in the case of real-time model checking the subject is discussed in [27]. In the
remainder of this section, we present a local model-checking framework for PESs that
is based on a Gentzen-style, goal-directed proof system related to ones given in [5, 19].

The proof rules operates on sequents of the form: Φ � ψ, where Φ = {φ1, . . . φn}
is a set of predicate-closed formulas, and ψ is a predicate. We interpret Φ � ψ as the
formula

∧
Φ → ψ. The rules for the proof system are given in Figure 2 and follow

the following syntactic conventions: φ, φi are predicate closed, while ψ, ψi need not
be; Φ, φ is short-hand for Φ∪ {φ}. Conclusions are also written above subgoals, which
are separated by a “;”. Rules ∨1 − ∧ are familiar from the predicate calculus; note that
instead of left- and right- rules for each construct as in [28], we rely on rule S combined
with the fact that the not function “drives” negations inside. The remaining rules are for
the substitution operator and predicate variables.

The rules also share an implicit side condition: they may only be applied to non-leaf
sequents in a sequent. These are defined as follows.

Definition 6. Let σ be a sequent of form Φ �P ψ.

1. Let φ be a predicate-closed formula and A
def= [x̄ := ē] an assignment. Then the

strongest postcondition, post(φ, A), of φ wrt A is defined as

post(φ, x̄ := ē) def= ∃v̄.(x̄ = (ē[x̄ := v̄]) ∧ φ[x̄ := v̄])
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2. σ is a (successful) leaf if one of the following conditions holds. (a). ψ ∈ BExp or
ψ = ¬b for some b ∈ BExp (successful if [[

∧
Φ → ψ]] = DX ). (b). ψ ∈ Φ (always

successful). (c). ψ = X [A] (A may be empty) with parity p, and there is another
sequent σ′ of form Φ′ �P X [A′] on the path from the root node of the proof to σ
with the property that no σ′′ �P X ′′[A′′] such that X ′′ has parity different than p
and X ′′ is defined in an earlier block in the PES than X , and post(Φ, A) logically
implies post(Φ′, A′). Such a leaf is successful if the parity of X is ν.

A proof built using these rules is valid if and only if it is finite, every path ends in a leaf,
and every leaf is successful. The following is true.

Theorem 2. The proof rules in Figure 2 are sound: if Φ � ψ has a valid proof wrt PES
P then [[Φ → ψ]]P = DX .

In general, the proof rules are not complete; proofs may require the Cut rule, and
the data theory may not be expressive enough to define the necessary property. One
must also be able to determine the validity of implications in the basic data theory.
One may identify data theories for which completeness does hold. For example, we
conjecture the following: If any predicate is semantically equivalent to a finite boolean
combination of data predicates, the proof system for this data theory is complete.

7 On-the-Fly Real-Time Model Checking

This section shows how ideas from the previous section may be used to develop a novel
efficient on-the-fly model-checking algorithm for real-time systems. The essential idea
is to search for proofs of PESs using the proof rules given there.

Three key challenges exist for efficient proof search. The first involves computing
implications in the basic data theory (here, the theory of clock constraints). For real-time
model checking, efficient data structures for this problem have been proposed, includ-
ing difference-bound matrices (DBMs) [14], constraint-decision diagrams (CDDs) [20]
and clock restriction diagrams (CRDs) [31]. Because of ease of implementation, our
prototype uses DBMs. The second challenge is to reuse sequents whose truth has been
previously established, which we achieve by sequent caching. The third challenge is to
devise derived proof rules from the generic ones to afford efficient proof generation.
The generic rules are intended for arbitrary predicates; for specific applications, like
real-time model checking, special forms of predicates predominate, and developing
special-purpose proof rules can speed proof search significantly. In the case of real-
time model checking, for example, quantifiers only appear in formulas of the form
∃k.φ[xi := xi + k] or ∀k.φ[xi := xi + k], where the xi are clocks. Instead of using
the generic rules for quantifiers, we use rules specialized for these formulas. Note that
these rules are derived from the generic ones, and hence are guaranteed to be sound.
This, plus an additional argument (omitted here) establishing the completeness of these
derived rules for real-time, ensures the correctness of our algorithm.

A final observation is in order. A significant difficulty in automating proof search
involves the Cut rule: automatically inferring the “cutting predicates” is non-obvious.
In our approach, we defer the computation of these predicates by introducing place-
holders for them and using a “backward” analysis of the proof tree to infer values for
these placeholders. This strategy is inspired by the splitting technique used in [27].

We now give the derived rules used in our algorithm by first introducing two derived
operators, where pre(φ, A) def= φ[A] is the weakest precondition operator.
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– pret(φ) def= ∃k.pre(φ, x̄ := x̄ + k), time predecessor of φ.

In the rules that follow, s, s′ are placeholders.

(1)
Φ �P ∀k.ψ[x̄ := x̄ + k]

suct(Φ) �P ψ
(2)

Φ, s �P ∀k.ψ[x̄ := x̄ + k]
suct(Φ), s′ �P ψ ; suct(Φ ∧ s) �P suct(Φ) ∧ s′

(3)
Φ �P pret(ψ)

suct(Φ), s �P ψ ; Φ �P pret(s)
(4)

Φ, s �P pret(ψ)
suct(Φ), s′ �P ψ ; s �P pret(s′)

(5)
Φ �P ψ[A]

post(Φ, A) �P ψ
(6)

Φ, s �P ψ[A]
post(Φ, A), s′ �P ψ ; s �P pre(s′, A)

(7) Φ, s �P ϕ

⎧⎨
⎩

if Φ → ϕ a tautology, s
def= true

if Φ → ϕ a contradiction, s
def= false

otherwise s
def= ϕ

Rules (1)–(4) are specialized for real-time from the general quantifier elimination rules.
Rules (5) and (6) are used for the time reset operation. Rule (7) is used to determine the
values of placeholders. Recall that Φ, φ, ϕ are predicate-closed, while ψ need not to be.

The algorithm uses a generic, depth-first search technique, with caching; the proof
rules above are used to generate sequents needed to be proved next in order for the goal
sequent to be true. When a sequent is generated, the cache is first checked to see if it is
implied by something in the cache; then the leaf is examined to see if it is a leaf, and
if not, rules are then recursively applied to it. The same basic algorithm can easily be
adapted to other settings by changing the proof rules uses.

Experimental Evaluation. We have implemented a prototype, which we call CWB-RT,
of the abovementioned algorithm. The effort took approximately one month, with a
week devoted to DBM implementations and the rest to building the proof-search in-
frastructure. C++ was used as the implementation language. To assess the performance
of CWB-RT, we ran it on several examples taken from the literature and compared the
results with those from the most recent available versions of Kronos (2.5i.2), UPPAAL
(3.4.7, with both breadth-first (-b) and depth-first (-d) search options) and RED (5.3,
with both forward and backward analysis). The experimental platform used was an In-
tel Pentium IV 2.8GHz with 2GB memory running Linux. The systems are listed below,
together with properties (a) that should hold of correct implementations and properties
(b) containing a bug that should not hold of correct implementations. The “formula
bugs” include both logical errors and errors that could result from typographical mis-
takes (i.e. typing “2” rather than “1” by accident).

1. Fischer’s timed Mutual Exclusion (MUX) [1, 31]. We verify that (a). at any time, no
more than one process is in its critical section. (b). at most four processes could be
in their waiting states at the same time.

2. FDDI token-ring mutual exclusion protocol [13, 31]. We want to verify that (a).
at any moment, at most one station is holding the token. (b). station i is in its
asynchronous mode at time 20 ∗ i of the network clock.

3. Scheduling problem of real-time operating system (PATHOS) [3, 31]. The property
verified is that (a). no deadlines will be missed. (b). no new deadlines (2units ahead
of time) will be missed.

– suct(φ) def= ∃k.post(φ, x̄ := x̄ + k), time successor of φ.
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5. Bounded liveness of a leader-election algorithm (LBOUND) [31]. We verify that
(a). after 2�log2m� time units, where m is the number of processes, the algorithm
will terminate. (b). after 3 time units, the algorithm will terminate.

6. CSMA/CD benchmark [31, 32]. We check that (a). at any moment, at most one
process is in the transmission mode for no less than 52 time units. (b). a third
process could retry to send while two are already in the transmission status.

One of the motivations for on-the-fly model checking is that bugs can be caught
much more quickly than with global approaches since computation can be short-circuited
when errors are found. We tested this hypothesis in two ways. First, for each buggy for-
mula (b) and correct system specification, we collected comparative performance data
for the model checkers in question. These figures in Table 1 indicate that CWB-RT
performs much better than the other tools in this case.

Table 1. Performance data when correct systems fail buggy (i.e. (b)) properties. The numbers in
the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M” means “out-of-memory”.

CWB-RT Kronos UPPAAL UPPAAL RED 5.3 RED 5.3
Example 2.5i.2 3.4.7 (-b) 3.4.7 (-d) (forward) (backward)
MUX-20-b 7.83s O/M O/M 24.55s O/M O/M
MUX-40-b 372.81s O/M O/M 1139.57s O/M O/M
MUX-50-b 2653.00s O/M O/M O/M O/M O/M
FDDI-30-b 0.20s O/M O/M O/M 22.85s 15.96s
FDDI-40-b 0.58s O/M O/M O/M 92.92s 78.57s
FDDI-60-b 2.76s O/M O/M O/M 1788.43s 1053.06s
PATHOS-7-b 10.58s O/M O/M O/M O/M 3582.55s
PATHOS-8-b 48.32s O/M O/M O/M O/M O/M
PATHOS-9-b 212.66s O/M O/M O/M O/M O/M
LEADER-10-b 0.00s O/M O/M O/M 21.32s 264.46s
LEADER-20-b 0.03s O/M O/M O/M O/M O/M
LEADER-120-b 26.50s O/M O/M O/M O/M O/M
LBOUND-10-b 0.01s O/M O/M O/M O/M O/M
LBOUND-40-b 1.92s O/M O/M O/M O/M O/M
LBOUND-120-b 284.42s O/M O/M O/M O/M O/M
CSMA/CD-20-b 0.02s O/M 6.11s 0.12s O/M O/M
CSMA/CD-40-b 0.15s O/M O/M 2.41s O/M O/M
CSMA/CD-100-b 3.81s O/M O/M 232.32s O/M O/M

We then studied situations in which correct formulas were used but buggy system
specifications given. The data we obtained is given in Table 2, where the error for MUX
originates in a misassignment to the global lock with the difference between the number
of processes and the process identifier; the destination of the transition from the asyn-
chronous state is misset to itself for the first station in FDDI; the error in PATHOS in-
volves an ommitted clock reset, which would be a typical programming error one might
observe; and the error in CSMA/CD is caused by missing a collision signal, thus it leads
to an incomplete system specification; the error in LBOUND is caused by setting the
parent to NULL in the requester-responder pair, and to the identifier complemented by
the number of processes in LEADER.

4. Safeness of a leader-election algorithm (LEADER) [31]. We check that (a).at any
time there is at least one process who is a child to no other processes. (b).at any
time there is at least three processes, each of which is a child to no other processes.
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Table 2. Performance data for buggy system specifications and correct (i.e. (a)) properties

CWB-RT Kronos UPPAAL UPPAAL RED 5.3 RED 5.3
Example 2.5i.2 3.4.7 (-b) 3.4.7 (-d) (forward) (backward)
MUX-14-e 1.32s O/M O/M O/M O/M O/M
MUX-16-e 13.00s O/M O/M O/M O/M O/M
MUX-18-e 257.02s O/M O/M O/M O/M O/M
FDDI-30-e 0.24s O/M 1.81s 2.54s 67.09s 14.15s
FDDI-40-e 0.70s O/M 6.09s 9.39s 351.09s 39.37s
FDDI-60-e 3.16s O/M 44.43s 63.26s 7066.18s 308.60s
PATHOS-5-e 0.51s O/M 1.02s 109.56s 215.04s 24.33s
PATHOS-6-e 19.71s O/M 354.40s O/M O/M 250.64s
PATHOS-7-e 2283.13s O/M O/M O/M O/M O/M
LEADER-60-e 0.02s O/M 21.18s 21.04s O/M O/M
LEADER-70-e 0.03s O/M O/M O/M O/M O/M
LEADER-150-e 0.26s O/M O/M O/M O/M O/M
LBOUND-10-e 0.00s O/M O/M 62.33s O/M O/M
LBOUND-20-e 0.02s O/M O/M O/M O/M O/M
LBOUND-120-e 1.16s O/M O/M O/M O/M O/M
CSMA/CD-10-e 65.19s O/M O/M O/M 2057.94s 2389.87s
CSMA/CD-11-e 200.50s O/M O/M O/M O/M O/M
CSMA/CD-12-e 670.95s O/M O/M O/M O/M O/M

preceding case is due to the combined forward / backward analysis of our algorithm.
The logical infrastructure of our algorithm is useful to detect errors quickly while most
of other tools are devoted to compute a fixpoint before it could find an error.

An often-mentioned criticism of on-the-fly model checking is that when system
specifications and formulas are both correct, these algorithms perform very poorly. To
test the validity of this statement, we ran CWB-RT on all (a) properties for correct ver-
sions of the case studies. The performance figures are given in Table 3 and tend to refute
the assertion just given. Specifically, it can be seen that CWB-RT generally outperforms
Kronos and is often better, though sometimes worse, than UPPAAL3.4.7. RED5.3 gen-
erally outperforms CWB-RT on these examples, although it should be noted that while
Kronos [32] was implemented with DBMs, as CWB-RT is, UPPAAL [4] use CDDs
and RED5.3 CRDs [31]. We conjecture that CWB-RT would see considerable perfor-
mance improvement if we used CDDs / CRDs in place of DBMs. Also, CWB-RT’s
competitiveness does suggest that our proof-search strategy, which combines forward
(proof search) and backward (sequent caching) analysis, offers peformance improve-
ments over the “pure forward” or “pure backward” strategies favored by these tools.

8 Conclusions

In this paper we have presented predicate equation systems (PESs) as a generic model-
checking framework for data-based systems. We illustrated the flexibility of PESs by
showing model-checking problems for real time may be captured uniformly using them,
and we developed generic global and local approaches to computing solutions of PESs.
Finally, we developed a new model-checking algorithm for real-time based on proof
search in the setting of PESs and gave experimental data showing that the algorithm is
competitive with, and often superior to, existing approaches.

Again, the figures show that CWB-RT significantly outperforms the other tools on
these case studies. We conjecture that CWB-RT’s superior performance in this and the
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Table 3. Performance data for correct systems and properties (i.e. (a) properties)

CWB-RT Kronos UPPAAL UPPAAL RED 5.3 RED 5.3
Example 2.5i.2 3.4.7 (-b) 3.4.7 (-d) (forward) (backward)
MUX-5-a 0.23s 0.48s 0.77s 4.12s 4.67s 1.36s
MUX-6-a 4.03s O/M 68.87s 927.79s 66.89s 3.92s
MUX-7-a 115.53s O/M O/M O/M 778.48s 10.32s
FDDI-20-a 0.21s O/M O/M O/M 2.02s 2.25s
FDDI-40-a 2.29s O/M O/M O/M 16.91s 24.39s
FDDI-60-a 11.03s O/M O/M O/M 60.07s 85.99s
PATHOS-4-a 4.19s O/M 0.21s 0.14s 10.15s 6.07s
PATHOS-5-a 2824.96s O/M 2.14s 55.27s 353.98s 360.06s
PATHOS-6-a O/M O/M O/M O/M 12053.26s 31190.21s
LEADER-6-a 0.24s O/M 1.32s 1.53s 0.43s 1.28s
LEADER-7-a 12.74s O/M 136.29s 142.02s 1.18s 3.73s
LEADER-8-a 1888.35s O/M O/M O/M 2.97s 9.80s
LBOUND-6-a 0.35s O/M 2.53s 1.64s 67.70s 33.17s
LBOUND-7-a 15.22s O/M 145.86s 153.59s 453.58s 193.68s
LBOUND-8-a 2431.69s O/M O/M O/M 2933.81s 892.97s
CSMA/CD-6-a 3.89s 0.32s 2.55s 5.15s 709.12s 0.52s
CSMA/CD-7-a 56.62s O/M 218.81s 182.49s 12109.23s 1.26s
CSMA/CD-8-a 1584.76s O/M O/M O/M O/M 3.15s

Related Work. Both [23] and [25] propose model checkers for the value-passing mu-
calculus, although these algorithms only work for finite systems. Groote et al. [16]
define first-order boolean equation systems, which are very similar to our PESs. That
work does not consider proof systems or on-the-fly algorithms, however, and it did not
study the real-time model-checking problem. Tableau methods [26, 17] can be cast into
a local algorithms for PESs in a way simliar to [22]. Finally, [27] also gives an on-the-
fly algorithm for model-checking real-time systems and [15] proposes a computational
framework based on logic programming for verifying real-time systems. Our method is
different in being based on proof search; this basis permitted us to identify situations,
specifically in the checking of invariance properties, in which we can avoid clock-zone-
splitting operations that their algorithm requires. Consequently, we conjecture that our
algorithm will significantly outperform that one for checking safety properties.
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28. A. Szalas. Logic for computer science. lecture notes. URL http://www.ida.liu.se/∼andsz.
29. A. Szałas. On natural deduction in first-order fixpoint logics. Fundamenta Informaticae,

26:81–94, 1996.
30. L. Tan and R. Cleaveland. Evidence-based model checking. In CAV, LNCS 2404, 2002.
31. F. Wang. Efficient verification of timed automata with bdd-like data-structures. In VMCAI

2003, LNCS 2575, pages 189–205, 2003.
32. S. Yovine. Kronos: A verification tool for real-time systems. Software Tools for Technology

Transfer, 1:123–133, 1997.

Fast Generic Model-Checking for Data-Based Systems 97 



Logic and Model Checking
for Hidden Markov Models�

Lijun Zhang1, Holger Hermanns1,2, and David N. Jansen2

1 Department of Computer Science, Saarland University,
D-66123 Saarbrücken, Germany

2Department of Computer Science, University of Twente,
Enschede, The Netherlands

Abstract. The branching-time temporal logic PCTL∗ has been intro-
duced to specify quantitative properties over probability systems, such
as discrete-time Markov chains. Until now, however, no logics have been
defined to specify properties over hidden Markov models (HMMs). In
HMMs the states are hidden, and the hidden processes produce a se-
quence of observations. In this paper we extend the logic PCTL∗ to
POCTL∗. With our logic one can state properties such as “there is at
least a 90 percent probability that the model produces a given sequence
of observations” over HMMs. Subsequently, we give model checking al-
gorithms for POCTL∗ over HMMs.

1 Introduction

Hidden Markov models (HMMs) [17] were developed in the late 1960’s and have
been proven to be very important for many applications, especially speech recog-
nition [13], character recognition [22], biological sequence analysis [5], and pro-
tein classification problems [15]. Lately, HMMs receive increased attention in
the context of communication channel modelling [20] and of QoS properties in
wireless networks [9].

An HMM is a doubly embedded stochastic process with an underlying
stochastic process over some state space, which is hidden. The occupied state
can only be observed through another set of stochastic processes that produce a
sequence of observations. Given the sequence of observations, we do not exactly
know the occupied state, but we do know the probability distribution over the
set of states. This information is captured by a so-called belief state.

For a given HMM, one is often interested in the properties of the underlying
stochastic process. In addition, one is also interested to reason about properties
over the other set of stochastic processes which produce the observations. In this
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paper, we introduce a logic called POCTL∗, which consists of state formulas,
path formulas and belief state formulas. POCTL∗ allows us to specify properties
of interests over HMMs. We consider the property:

There is at least a 90 percent probability that the model produces
the sequence of observations O = (o0, o1, . . . , on).

This property can be expressed in POCTL∗ by P≥0.9(Xo0Xo1 . . .Xon
tt). As

indicated by Rabiner [17], this probability can be viewed as the score which
specifies how well a given model matches the observations. In Speech Recogni-

tion [13], we want to find out the most likely sentence (with the highest score)
given a language and some acoustic input (observations). Assuming that we
know that the HMM for the word “Need” produces the acoustic observations
O with probability at least 0.9, then we can almost conclude that this acoustic
input represents the word “Need”. In the protein classification problem, we want
to classify the new protein to one known class. The idea is to construct an HMM
for every known class, and calculate the score of the new protein under every
class. The new protein belongs to the class which matches it (produces it with
the highest probability).

On one hand, POCTL∗ is basically an extension of PCTL∗ where the next op-
erator is equipped with an observation constraint. On the other hand, POCTL∗

can also be considered as a variant of the temporal logic ACTL∗, presented by
De Nicola et al. [14], in which the usual next operator is extended to constrain
the action label of the transition.

The PCTL∗ model checking [2, 1, 11] problem can be reduced to the QLS
(quantitative LTL specification) model checking problem. For QLS model check-
ing, one constructs first a Büchi automaton for an LTL formula using well-known
methods [23, 21, 10], and then builds the product of the system and the con-
structed Büchi automaton. Finally, the QLS model checking problem can be
reduced to a probabilistic reachability analysis in the product system.

Following the same line, we shall present the POCTL∗ model checking algo-
rithm as follows. First, it will be reduced to the QOS (quantitative OLTL speci-
fication, where OLTL abbreviates Observational LTL) model checking problem.
The latter can be further reduced to a probabilistic reachability analysis in the
product automaton. To that end, we construct a Büchi automaton for a given
OLTL formula. The construction is an adaption of the one presented in [10].

2 Preliminaries

Rabin Automaton. A deterministic Rabin automaton [18, 2] is a tuple Rφ =
(Σ,Q, qin, δ, U) where Σ is a nonempty finite alphabet, Q is a finite set of states,
qin ∈ Q is the initial state, δ : Q × Σ → Q is the transition function, and
U = {(Pi, Ri) | i = 1, . . . , r} is the Rabin acceptance condition where Pi, Ri ⊆ Q.

We call an infinite sequence w = w1, w2, . . . over Σ a word over Σ. w induces
an unique path π = q0, q1, . . . in R where q0 = qin, and qi+1 = δ(qi, wi) for i =
0, 1, . . .. π is an accepting path if inf(π) ⊆ Pj and inf(π) ∩ Rj �= ∅ for some j ∈
{1, . . . , r} where inf(π) denotes the set of states that occur infinitely often in π.

Logic and Model Checking for Hidden Markov Models 99



Discrete-time Markov Chains. A labeled discrete-time Markov chain (DTMC)
is a tuple D = (S,P, L) where S is a finite set of states, P : S × S → [0, 1]
is a probability matrix satisfying

∑
s′∈S P(s, s′) ∈ {0, 1} for all s ∈ S, and

L : S → 2AP is a labeling function.

3 Hidden Markov Models

This section first recalls the concept of HMM, then defines belief states, paths
over HMM, and probability spaces for a given HMM.

3.1 Labeled Discrete-Time HMMs

An HMM [17] is a doubly embedded stochastic process with an underlying
stochastic process that is hidden, but can only be observed through another
set of stochastic processes that produce a sequence of observations. We add a la-
beling function to the standard definition of HMMs, in other words, we consider
an HMM as an extension of a labeled DTMC:

Definition 1 A labeled discrete-time HMM H is a tuple (S,P, L,Θ, μ, α) where

(S,P, L) is a labeled DTMC, Θ is a finite set of observations, μ : S×Θ −→ [0, 1]
is an observation function satisfying

∑
o∈Θ μ(s, o) = 1 ∀s ∈ S, and α is an initial

distribution on S such that
∑

s∈S α(s) = 1. �

The observation set Θ corresponds to the output of the model. By definition,
μ(s, ·) is a distribution on Θ, and μ(s, o) indicates the probability that the state
s produces the observation o. For the sake of brevity, we write μs(o) instead
of μ(s, o). The probability that the model starts with state s is α(s). In what
follows we use the term HMM to refer to a labeled discrete-time HMM. For
technical reasons, we assume there is no absorbing state in an HMM throughout
our discussion1.

3.2 Belief State

The observation depends stochastically and exclusively on the current state.
In general, the same observation could be emitted by several different states;
therefore, we are uncertain about the current state, but, we can summarize the
historical observations in a belief state (or information state) [12, 16] which is a
distribution over S. A belief state is not really a state of the HMM. Rather, it is a
way to describe what we know about the state, given the history of observations.
The set of all possible belief states is called the belief space, and is denoted by
B. We use St with St ∈ S to denote the state at time t, and Ot ∈ Θ to denote
the observation at time t. We write bt to denote the belief state at time t.
1 As indicated by Baier [2] (for concurrent probabilistic systems), this is a harmless

restriction since any system can be transformed into an “equivalent” system without
absorbing states. For an HMM H with absorbing states, we insert just a special state
† with a self-loop and transitions from any absorbing state in H to †.

.
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Definition 2 Let oi ∈ Θ where i = 0, . . . , t. The belief state bt at time t, is the

distribution over S at time t given the observation history o0, . . . , ot:

bt(s) = P (St = s|O0 = o0, . . . , O
t = ot,H) ∀s ∈ S �

Now given the historical observations o0, . . . , ot, the question is how to cal-
culate the belief state bn. The belief state at time 0 only depends on the initial
distribution and the first observation. The belief state at time t captures all of
our information about the past. As a result, we can inductively calculate the
current belief state bt based on the previous belief state bt−1 and the current
observation ot. This is illustrated in Figure 1.

s0 s1 s2 . . . st−1 st

o0 o1 o2 . . . ot−1 ot

α b0 b1 b2
. . . bt−1 bt

time: 0 1 2 . . . t − 1 t

hidden
states

obser-
vations

belief
states

Fig. 1. Updating belief states

We depict the states in gray circles to indicate that they are hidden. The
states together with the solid arrows between them represent the underlying
state evolvement. The dotted arrows between states and observations mean that
the observation ot is produced from the state st according to the observation
function μ. As a particular case, b0 is a function of o0 and the initial distribution
α. Applying the Bayesian rule and the definition of b0 we get: b0(s) = α(s)μs(o0)

K0
where K0 is a normalizing constant with value

∑
s∈S α(s)μs(o0).

The dashed arrows, between the current observation ot, previous belief state
bt−1 and the current belief state bt, mean that bt depends on ot and bt−1 for all
t = 1, . . . , n. Again, applying the Bayesian rule and the definition of bt we have:
bt+1(s) =

∑
st∈S bt(st)P(st,s)μs(ot+1)

Kt+1
where Kt+1 is a normalizing constant with

value:
∑

s∈S

(∑
st∈S bt(st)P(st, s)μs(ot+1)

)
. Hence, given the historical observa-

tions, we are able to calculate the current belief state.

3.3 Paths in HMM and Probability Spaces over Paths

Given H = (S,P, L,Θ, μ, α) , let si ∈ S and oi ∈ Θ for all i ∈ N. A path σ of H
is a sequence (s0, o0), (s1, o1) . . . ∈ (S × Θ)ω where μsi

(oi) > 0,P(si, si+1) > 0
for all i ∈ N and (S × Θ)ω denotes the set of infinite sequences of elements of
S × Θ.

.

Logic and Model Checking for Hidden Markov Models 101



For a path σ and i ∈ N, let σs[i] = si denote the (i + 1)st state of σ, and
σo[i] = oi denote the (i + 1)st observation of σ. Let σ[i] denote the suffix path
of σ starting with σs[i], i. e., (si, oi), (si+1, oi+1), . . .. Note that σ[0] = σ.

Let PathH denote the set of all paths in H, and PathH(s) denote the set of
paths in H that start in s. The superscript H is ommitted whenever convenient.
We define a probability space on paths of H using the standard cylinder con-
struction. For a path (s0, o0), (s1, o1), . . ., we define the basic cylinder set induced
by the prefix of this path as follows:

C((s0, o0), (s1, o1), . . . , (sn, on)) := {σ ∈ Path | ∀i ≤ n.σs[i] = si ∧ σo[i] = oi}

If it is clear from the context, we use just C to denote this cylinder set. C
consists of all paths σ starting with (s0, o0), (s1, o1), . . . (sn, on). Let Cyl contain
all sets C((s0, o0), . . . , (sn, on)) where s0, . . . , sn range over all state sequences
and o0, . . . , on range over all observation sequences. Let F be the σ-algebra on
Path generated by Cyl. Let i(s, s0) = 1 if s = s0, and i(s, s0) = 0 if s �= s0. The
probability measure2 Prs on F is defined by induction on n by Prs(C(s0, o0)) =
i(s, s0)μs0(o0) and, for n > 0:

Prs(C((s0, o0), . . . , (sn, on)))
= Prs(C((s0, o0), . . . , (sn−1, on−1))) · P(sn−1, sn)μsn

(on)

By induction on n, we obtain:

Prs(C((s0, o0), . . . , (sn, on))) = i(s, s0)μs0(o0)
n∏

i=1

P(si−1, si)μsi
(oi) (1)

Lemma 3 Let s ∈ S. The triple (Path,F ,Prs) on domain Path is a probability

space, where F is the σ-algebra generated by the set of basic cylinder sets Cyl,

and Prs is the probability measure which is described by Equation 1. �

Let b ∈ B be a belief state, and C ∈ Cyl be a basic cylinder set. We extend
the probability measure with respect to a belief state b by: Prb(C) =

∑
s∈S b(s) ·

Prs(C). Similar to Lemma 3, the triple (Path,F ,Prb) on domain Path is also a
probability space.

4 The Logic POCTL∗

This section presents the branching-time temporal logic Probabilistic Observa-
tion CTL∗ (POCTL∗) which allows us to specify properties over HMMs. We have
indicated in the introduction that for an HMM, one wants to specify properties
over the underlying DTMC and in addition, one is also interested in reasoning

2 We define here actually a probability function Prs on the set Cyl. For F is a σ-algebra
generated by Cyl, this probability function can be extended to a unique probability
measure on F .

.
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about properties over the other set of stochastic processes which produce ob-
servations. The logic PCTL∗ is interpreted over DTMCs to express quantitative
stochastic properties [2, 7, 6]. We extend PCTL∗ to POCTL∗ such that the next
operator is equipped with an observation constraint. In this way we can state
properties over the observations, e.g., Xoφ means that the next observation is o

and the subsequent path satisfies φ.
POCTL∗ can be also considered as a variant of the temporal logic ACTL∗

introduced by De Nicola et al. [14]. ACTL∗ is interpreted over Labeled Transi-
tion Systems (LTS) and has been proven to have the same power as CTL∗. In
ACTL∗ the usual next operator is extended to interpret the labeled action of
the transition (e.g., Xaφ means the next transition is labeled with an action a

and the subsequent path satisfies φ).

4.1 Syntax of POCTL∗

Let H = (S,P, L,Θ, μ, α) be an HMM with o ∈ Θ. The syntax of the logic
POCTL∗ is defined as follows:

Φ := a | ¬Φ | Φ ∧ Φ | ε

φ := Φ | ¬φ | φ ∧ φ | Xoφ | φ U≤n φ

ε := P�p(φ) | ¬ε | ε ∧ ε

where n ∈ N or n = ∞, 0 ≤ p ≤ 1 and �∈ {≤, <,≥, >}. �
The syntax of POCTL∗ consists of state formula, path formula and belief

state formula. As in CTL∗, we use Φ, Ψ for state formula and φ, ψ for path
formula. The formula ε is called belief state formula. In HMMs, we are uncertain
about the current state, but we always know the current belief state. Therefore,
we want to know if some (probabilistic) properties are valid in belief states. We
consider the example in the introduction:

There is at least a 90 percent probability that the model produces a
sequence of observations O = (o0, o1, . . . , on).

This can be expressed by a belief state formula ε = P≥0.9(Xo0Xo1 . . .Xon
tt).

Intuitively, a belief state b satisfies ε if the probability measure w. r. t. b, i. e.,
Prb, of the set of paths satisfying Xo0Xo1 . . .Xon

tt meets the bound ≥ 0.9. In
Speech Recognition [13], we want to find out the most likely sentence given a
language and some acoustic input. For example, if we know that the HMM for
the word “Need” produces the acoustic observations with probability at least 0.9,
we can almost conclude that this acoustic input represents the word “Need”. We
indicate that this property cannot be expressed by any sublogics of POCTL∗

that we shall define later.
For the sake of simplicity, we do not consider the exist operator. The formula

∃φ is almost equivalent to the probability formula P>0φ. The standard (i. e.,
unbounded) until formula is obtained by taking n equal to ∞, i. e., φ U ψ =
φ U≤∞ ψ. We use the abbreviations ∧,�,� which are defined in the same way
as for CTL∗. The timed variants of the temporal operators can be derived, e.g.,
�

≤nφ = tt U≤n φ, �
≤nφ = ¬�

≤n¬φ.
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4.2 Semantics of POCTL∗

Let H = (S,P, L,Θ, μ, α) be an HMM with s ∈ S and σ ∈ Path. The semantics
of POCTL∗ is defined by a satisfaction relation (denoted by |=) either between
a state s and a state formula Φ, or between a path σ and a path formula φ,
or between a belief state b and a belief state formula ε. We write H, s |= Φ,
H, σ |= φ and H, b |= ε if state s, path σ and belief state b satisfy state formula
Φ, path formula φ and belief state formula ε, respectively. If the model H is clear
from the context, we simply write s |= Φ, σ |= φ and b |= ε.

Let bs be the belief state with bs(s) = 1 and bs(s′) = 0 for s′ �= s. The
satisfaction relation |= is defined in Figure 2 where Prb{σ ∈ Path | σ |= φ}, or
Prb(φ) for short, denotes the probability measure of the set of all paths which
satisfy φ and start states weighted by b.

s |= a iff a ∈ L(s)

s |= ¬Φ iff s �|= Φ

s |= Φ ∧ Ψ iff s |= Φ ∧ s |= Ψ

s |= ε iff bs |= ε

σ |= Φ iff σs[0] |= Φ

σ |= ¬φ iff σ �|= φ

σ |= φ ∧ ψ iff σ |= φ ∧ σ |= ψ

σ |= Xoφ iff σo[0] = o ∧ σ[1] |= φ

σ |= φ U≤n
ψ iff ∃0 ≤ j ≤ n.(σ[j] |= ψ ∧ ∀i < j.σ[i] |= φ)

b |= P�p(φ) iff Prb{σ ∈ Path | σ |= φ} � p

b |= ¬ε iff b �|= ε

b |= ε ∧ ε
′ iff b |= ε ∧ b |= ε

′

Fig. 2. Semantics of POCTL∗

A path satisfies the new operator Xoφ if it starts with the observation o and
the suffix3 σ[1] satisfies φ. Let Ω be a set of observations, i. e., Ω ⊆ Θ. We use
the abbreviation XΩφ for

∨
o∈Ω Xoφ to shorten our notations.

By the definition of XΩφ, we obviously have σ |= XΩφ iff σo[0] ∈ Ω ∧σ[1] |=
φ. The usual next operator can be described as Xφ ≡ XΘφ. Thus, the logic
PCTL∗ can be considered as a sublogic of POCTL∗.

3 This suffix σ[1] is well-defined for we have previously assumed that the model does
not contain any absorbing states.

4.3 The Sublogics

An LTL formula together with a bound (QLS formula) can be interpreted over
probabilistic models [2]. Recall that the logic PCTL∗ is a combination of PCTL
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and QLS. In PCTL, arbitrary combinations of state formulas are possible, but
the path formulas consists of only the next and until operators. The logic LTL al-
lows arbitrary combinations of path formulas but only propositional state formu-
las. This section introduces the sublogics POCTL, OLTL and QOS of POCTL∗.
They can also be considered as extensions of the logics PCTL, LTL and QLS
where the next operator is equipped with an observation (or a set of observa-
tions) constraint.

POCTL. We define the logic POCTL as a sublogic of POCTL∗ by imposing the
restriction on POCTL∗ formulas that every next and until operator (X,U≤n)
should be immediately enclosed in the probabilistic operator P. The syntax of
state and belief state formulas is the same as POCTL∗, and the path formulas
are given by:

φ := XΩΦ | Φ U≤n Φ

where Ω ⊆ Θ.
Since we have Xφ ≡ XΘφ, the logic PCTL is naturally a sublogic of POCTL.

POCTL is a proper sublogic of POCTL∗. For example, we let a, a′ ∈ AP , then
the formulas P<p(XXa) and P<p(aU (Xa′)) are not valid POCTL formulas, but
are valid POCTL∗ formulas.

OLTL. In OLTL, we allow arbitrary combinations of path formulas, but only
propositional state formulas. Formally, OLTL formulas are the path formulas
defined by:

φ := a | ¬φ | φ ∧ φ | Xoφ | φ U≤n φ

QOS. Now we extend QLS to QOS (quantitative OLTL specification) which
shall contribute to POCTL∗ model checking.

OLTL OCTL∗ OCTL

QOS POCTL∗ POCTL

Fig. 3. Relationship of the logic POCTL∗ and its sublogics

A QOS formula is a pair (φ,� p) where φ is an OLTL formula, �∈ {≤, <

,≥, >} and p ∈ [0, 1]. Let H = (S,P, L,Θ, μ, α) be an HMM with s ∈ S. The
semantics of the QOS formula is given by:

H, s |= (φ,� p) ⇐⇒ Prs(φ) � p
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4.4 Specifying Properties in POCTL∗

First, we indicate that we cannot calculate an exact probability by a POCTL∗

formula, however, we can specify a bound on the probability measure instead.
Actually, we do not need the exact values in most cases. To illustrate the ex-
pressiveness of POCTL∗, we consider following properties:

– The probability that the next observation is head and then the model goes
to state fair meets the bound < 0.2.

P<0.2(Xheadatfair )

This formula can be considered as a state formula or a belief state formula.
A state (belief state) satisfies this formula if the probability calculated using
the measure w. r. t. the state (belief state) meets the bound < 0.2.

– The probability is at most 0.05, that we eventually get an observation head

and then move to state fair , whereas at any moment before we are either in
state u1 or state u2.

P≤0.05((atu1 ∨ atu2) U Xheadatfair )

– With probability at least 0.9, the model generates the observation sequence
(o0, o1, . . . , on).

P≥0.9(Xo0Xo1 . . .Xon
tt)

– The probability that the state sequence (s0, s1, . . . , sn) produces the obser-
vation sequence (o0, o1, . . . , on) is at most 0.1.

P≤0.1(s0 ∧ Xo0(s1 ∧ Xo1(. . . (sn ∧ Xon
tt) . . .)))

where s denotes the atomic proposition that the system is now in state s.

5 Model Checking

In this section, we present model checking algorithms for the logics POCTL∗,
POCTL and QOS. The model checking algorithm for POCTL∗ follows the same

The logics OCTL∗ and OCTL can be defined as extensions of CTL∗ and
CTL, in which the next operator is equipped with an observation, and a set
of observations respectively. The semantics of the sublogics are intuitively clear
from the interpretation of POCTL∗.

Relationship of POCTL∗ and Its Sublogics. Figure 3 shows an overview of the
relationship of the logic POCTL∗ and its sublogics. There is an arrow from a
logic A to another logic B if A is a proper sublogic of B. The logics in the upper
part can be considered as the probabilistic counterpart of the corresponding one
in the lower part.
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lines as the one for PCTL∗ [2, 7, 6]. It will first be reduced to the QOS model
checking problem. The latter can further be reduced to a probabilistic reacha-
bility analysis. To that end, we construct a Büchi automaton for a given OLTL
formula. The POCTL model checking algorithm can be adapted from the one
presented by Hansson & Jonsson [11].

5.1 POCTL∗ Formulas

Let H = (S,P, L,Θ, μ, α) be an HMM with s ∈ S, and Φ be a POCTL∗ formula.
The POCTL∗ model checking problem is to check whether H, s |= Φ (or s |= Φ

for short). The model checking algorithm for POCTL∗ is an adaption of the one
presented in [2] for PCTL∗.

The algorithm is based on a recursive procedure that computes the sets
Sat(Ψ) for all state subformulas Ψ of Φ. The cases where Ψ is an atomic propo-
sition or a negation or a conjunction is given by: Sat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ1) = S\Sat(Ψ1) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2).

The case that Ψ is the probabilistic operator P�p(φ) is more involved. By
the semantics, it is equivalent to check whether Prbs

(φ) meets the bound � p,
i. e., whether Prs(φ) � p. Let Ψ1, . . . , Ψk be the maximal state subformulas of φ.
The sets Sat(Ψi) can be calculated recursively. Then, we replace Ψ1, . . . , Ψk by
the new atomic propositions n1, . . . , nk and extend the label of state s by ni if
ni ∈ Sat(Ψi).

We replace the subformulas Ψ1, . . . , Ψk by new atomic propositions n1, . . . , nk.
The so obtained path formula φ′ is an OLTL formula, and obviously we have
Prs(φ) = Prs(φ′). Now we apply the QOS model checking algorithm to calculate
Prs(φ′), which will be discussed in Section 5.3. Hence, the complexity of the
POCTL∗ model checking algorithm is dominated by the one for QOS.

Belief State. Now, we show how to check whether a belief state b satisfies a belief
state formula ε, i. e., b |= ε. The most interesting case is ε = P�p(φ) where φ is
a POCTL∗ path formula. By definition,

b |= P�p(φ) ⇐⇒ pb(φ) � p ⇐⇒
∑
s∈S

b(s)Prs(φ) � p

therefore, it is sufficient to calculate Prs(φ) for all s ∈ S.

5.2 POCTL Formulas

Let H = (S,P, L,Θ, μ, α) with s ∈ S, and Φ be a POCTL formula. The algo-
rithm to check whether s |= Φ can be adapted from the one presented by Hansson
& Jonsson [11]. In case Φ is of the form a,¬Φ′, Φ1∧Φ2,P(Φ1U

≤nΦ2),P(Φ1UΦ2),
the set Sat(Φ) can be determined using the same strategy as for PCTL. Let
p ∈ [0, 1], Ω ⊆ Θ and �∈ {≤, <,≥, >}. We only need to consider the case that
φ = P�p(XΩΦ′). We observe that

ps(XΩΦ′) = μs(Ω) ·
∑

s′∈Sat(Φ′)

P(s, s′)
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where μs(Ω) =
∑

o∈Ω μs(o) and the set Sat(Φ′) = {s ∈ S | s |= Φ′} can be
recursively evaluated. Thus, s |= P�p(XΩΦ′) iff ps(XΩΦ′) � p.

5.3 QOS Formulas

This section presents the model checking algorithm for QOS formulas. We in-
troduce two methods, an automaton based approach, which is based on the
algorithm introduced by Baier et al [2, 4], and a direct method, where we reduce
the problem to a PCTL∗ model checking problem over a DTMC, and apply the
efficient algorithm presented by Courcoubetis et al [7].

An automaton based approach. The input is H = (S,P, L,Θ, μ, α) with s ∈
S and a QOS formula (φ,� p) where p ∈ [0, 1]. We shall check whether H, s |=
(φ,� p). We first construct a Büchi automaton Aφ for φ. This construction is an
extension of the one presented by Gerth et al. [10] (for space reason, we present
it in [24, Appendix A]). By the result of Safra [18, 19], the Büchi automaton can
be translated to a deterministic Rabin automaton. Let Rφ = (Σ,Q, qin, δ, U)
denote the Rabin automaton for φ. (Note that Σ = P(AP )×Θ.) Next, we build
the product automaton H×Rφ. Finally, the problem to calculate the measure of
paths in PathH(s) satisfying φ is reduced to a probabilistic reachability analysis
in the product automaton. The method we shall present is an adaption of the one
introduced by Bianco & de Alfaro [4], where we follow the presentation in [2].

The product automaton H × Rφ = (S′,P′, L′) is given by: S′ = S × Q,
P′((s, q), (s′, q′)) = P(s, s′) · μs′(o) if q′ ∈ δ(q, (L(s′), o)) and 0 otherwise.

For s ∈ S and o ∈ Θ, we define sR = (s, δ(qin, (L(s), o))). Let σ denote
the path (s0, o0), (s1, o1) . . . in H. Since Rφ is a deterministic automaton, we
define the unique induced path σR(s0, q0), (s1, q1), (s2, q2) . . . in H × Rφ, where
q0 = δ(qin, (L(s0), o0)), qi+1 = δ(qi, (L(si+1), oi+1)).

Theorem 4 Let P ′
i = S×Pi and R′

i = S×Ri. We define U ′ = ∪1≤j≤rU
′
j, where

U ′
j is the largest subset of P ′

j such that, for all u′ ∈ U ′
j: reachH×Rφ(u′) ⊆ U ′

j

and reachH×Rφ(u′) ∩ R′
j �= ∅. Then,

PrHs (φ) =
∑
o∈Θ

μs(o) · PrH×Rφ

sR
(reach(U ′))

where sR = (s, δ(qin, (L(s), o))), and PrHs (φ) = Prs{σ ∈ PathH(s) | σ |= φ} and

reach(U ′) denote the set of path which can reach U ′, i. e. {σ′ ∈ PathH×Rφ(sR) |
∃i such that σ′[i] ∈ U ′}.

Proof. Let C((s, o0), (s1, o1), . . . , (sn, on)) be a basic cylinder set in H such that
every path σ in C satisfies φ. The measure of C is μs(o0)

∏n
i=1 P(si−1, si)μsi

(oi).
The induced unique cylinder set in H × Rφ is C′((s, q0), (s1, q1), . . . , (sn, qn))
where q0 = δ(qin, (L(s), o0)) and qi+1 = δ(qi, (L(si+1), oi+1)) for i = 1, . . . , n.
Obviously, σR is in C′. Since σ satisfies φ, the path π = qin, q0, . . . , qn, . . .

must be an accepting path. Hence, there exists an i such that inf(π) ⊆ Pi and

.
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inf(π)∩Ri �= ∅. By the definition of U ′, σR must contain at least one state which
belongs to U ′.

By construction of H × Rφ, the measure of C′ is simply∏n
i=1 P(si−1, si)μsi

(oi). Since C is an arbitrary cylinder set of interest,
the above result is true for all o0 ∈ Θ. Let C1, C2 be two different cylinder sets
in H. Obviously, either one cylinder set includes another, or they are disjoint.
Hence, summing up over all possible observations, we are done. �

Complexity. In [24, Appendix A] we show that the Büchi automaton for the
OLTL formula is exponential in the size of the formula. By the results of
Safra [18, 19], the deterministic Rabin automaton for φ is double exponential
in the size of the formula. So the overall complexity of the product automaton is
linear in the size of the model, and double exponential in the size of the formula.

It thus remains to compute the reachability probability PrH×Rφ

sR
(reach(U ′))

in the product automaton. To obtain this quantity, we can apply the method
presented by de Alfaro [8, page 52]. The complexity is polynomial in the size of
the product automaton.

A direct approach. The main idea of this approach is to construct a DTMC
from the HMM, and transform the QOL formula φ to a QLS formula. Then, the
original problem can be reduced to DTMC model checking problem.

We extend the set of atomic propositions by AP ′ = AP ∪ {Ω | Ω ⊆ Θ}.
Given H = (S,P, L,Θ, μ, α) and a QOS formula (φ,� p), we define the DTMC
D = (S′,P′, L′) where S′ = S × Θ, P′((s, o), (s′, o′)) = P(s, s′) · μs′(o′) and
L′(s, o) = L(s) ∪ {Ω ⊆ Θ | o ∈ Ω}. Furthermore, we define a QLS formula
(φ′,� p) as follows: Let XΩψ be a subformula of φ, we replace it by Ω ∧ Xψ,
where Ω is a new atomic proposition. We proceed this process repeatedly until
there is no next formula indexed with observations.

Lemma 5 pHs (φ) =
∑

o∈Θ μs(o) · pD(s,o)(φ
′)

Proof. Similar to Lemma 4. �

Complexity. The constructed DTMC can be, in the worst case, O(|S|2|Θ|2). We
need still to calculate the probability measure of {σ ∈ PathD | σ |= φ′} in the
DTMC. The optimal algorithm for that is given by Courcoubetis et al [7], and
the complexity is polynomial in the size of the model, and exponential in the
size of the formula.

In comparison to the other method, this method is single exponential in the
size of the formula, but the DTMC suffers from the size O(|S|2|Θ|2).

5.4 Improving the Efficiency

In this section, we discuss some efficiency issues for some special POCTL∗ for-
mulas. After that we give some further improvements.

.
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The Formula s0 ∧ Xo0(s1 ∧ Xo1(. . . (sn ∧ Xon
tt) . . .)). For state s ∈ S, we let s

denote also the atomic propositions which asserts that the model resides in state
s. Given a basic cylinder set C((s0, o0), . . . , (sn, on)), we define a formula φ =
s0∧Xo0(s1∧Xo1(. . . (sn∧Xon

tt) . . .)) which is called the characteristic formula of
this basic cylinder set. Obviously, {σ ∈ Path | σ |= φ} = C((s0, o0), . . . , (sn, on)).
Hence, to check whether s |= P�p(φ) boils down to checking whether the prob-
ability measure of the basic cylinder set, i. e., Prs(C), meets the bound � p.

The Formula Xo0Xo1 . . .Xon
tt. We define a path formula φ = Xo0Xo1 . . .Xon

tt

given the cylinder set C(o0, . . . , on) = {σ ∈ Path | ∀i ≤ n.σo[i] = oi}. Obviously,
{σ ∈ Path | σ |= φ} = C(o0, . . . , on), which implies that to check whether α |=
P�p(φ) boils down to checking whether

∑
s∈S α(s) Prs(C) meets the bound � p.

The value Prs(C) can be calculated using Forward-Backward method presented
in [17], with complexity O(|S|2n).

Building the Automaton by Need. The set of states of the product automaton
contains all pairs (s, q) ∈ S×Q. In case Φ is a simple probabilistic operator, i. e.,
P�p(φ) where there is no probabilistic operator in φ, we only need the states
of the product automaton which are reachable from initial states sR. So in this
case we can construct the states of the product automaton as needed.

Reducing to POCTL Model Checking. Since the POCTL model checking algo-
rithm is more efficient, we can use it to deal with QOS formulas of the form
(φ U ψ,� p) (or (φ U≤n ψ,� p)) where φ and ψ are POCTL∗ path formulas
which can be verified recursively.

6 Conclusion and Future Work

6.1 Conclusion

In this paper, we have defined probability spaces (w. r. t. state and belief state)
for a given HMM. We have presented the temporal logic POCTL∗ with which
we can specify state-based, path-based and belief state-based properties over
HMMs. With POCTL∗ one can specify properties not only over the underlying
DTMC, but also over the set of processes producing observations. Finally, we
have focused on the POCTL∗ model checking algorithm. The most interesting
case is to deal with the probabilistic operator, and we have shown that this can
be reduced to QOS model checking. Then, the QOS model checking problem
is reduced to a probabilistic reachability analysis in the product automaton of
the HMM and a deterministic Rabin automaton. The complexity of our model
checking algorithm is polynomial in the size of the model and exponential in the
length of the formula.

6.2 Future Work

In this section, we consider some interesting directions for future work.
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(HMDP) [4, 8] where probabilistic and nondeterministic choices coexist. In an
HMM, a successor of a state s is selected probabilistically according to the
transition matrix. On the contrary, in an HMDP, for a state s, one first selects
a probabilistic distribution over actions nondeterministically. Then, a successor
can be chosen probabilistically according to the selected distribution over actions.

The nondeterminism is resolved by schedulers [3] (called strategy in [4, 8],
adversary in [2]). A scheduler η assigns a distribution over actions to a finite
sequence of states (history). Given a scheduler η, one can select a successor of
a state probabilistically, as in an HMM. Moreover, we can get a probability
measure [4] Prη

s w. r. t. the scheduler η and a state s. Thus, the logic POCTL∗

can be extended to interpret properties over HMDPs in the following way:

s |= P�p(φ) iff ∀η.Prη
s{σ ∈ Pathη | σ |= φ} � p

Since a belief state is a distribution over states, we can extend the probability
measure w. r. t. s and η to the one w. r. t. a belief state and η. The semantics
that a belief state satisfies a belief state formula can also be defined in a similar
way. The model checking algorithm can be adapted from the one presented by
de Alfaro for PCTL∗ formulas over MDPs.

HMDP with Fairness. Baier [2] extended the logic PCTL∗ to interpret properties
over concurrent probabilistic systems (similar to MDPs) with fairness assump-
tions. She also presented a PCTL∗ model checking algorithm over concurrent
probabilistic systems with fairness assumptions which is adapted from the one
by de Alfaro. It could be extended to a POCTL∗ model checking algorithm over
HMDPs with fairness assumptions.

Acknowledgements. The authors are grateful to Christel Baier (University of
Bonn) and Frits Vaandrager (Radboud University Nijmegen) for helpful com-
ments at an early state of the work presented in this paper.
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Abstract. In this paper, we present a complete bounded model checking
algorithm for the universal fragment of μ-calculus. The new algorithm
checks the completeness of bounded proof of each property on the fly and
does not depend on prior knowledge of the completeness thresholds. The
key is to combine both local and bounded model checking techniques
and use SAT solvers to perform local model checking on finite Kripke
structures. Our proof-theoretic approach works for any property in the
specification logic and is more general than previous work on specific
properties. We report experimental results to compare our algorithm
with the conventional BDD-based algorithm.

1 Introduction

Due to the limitation of BDD-based model checking on large designs, SAT-based
bounded model checking has become a supplementary verification technique in
recent years [1, 2]. Different from model checking [3, 4], bounded model checking
focuses on catching design flaws within a bounded number of steps, and therefore
does not guarantee the design to be free from errors. Naturally, one wonders
whether bounded model checking can be extended to be complete.

There is a bound (called completeness threshold) such that the absence of
flaws within the completeness threshold implies the satisfiability of the prop-
erty [1, 5]. One often uses over-approximations of the completeness threshold in
practice since computing the exact value is hard. But redundant computation in-
curred by approximations may impede the performance. Promising alternatives
are available for checking linear properties, where the completeness of bounded
model checking can also be determined dynamically [6–9]. However, the dynamic
completeness criteria for branching-time properties are still missing.

In this paper, we propose a new framework for proving temporal properties
by bounded model checking. Similar to [6–9], our algorithm determines the com-
pleteness of bounded model checking on the fly to avoid redundant computation.
We use the universal fragment of propositional μ-calculus as the formalism for
property specification. With the standard embedding [10–12], linear- and frag-
ments of branching-time temporal logics are subsumed by our framework. Our
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technique therefore opens up opportunities for developing new complete bounded
model checking algorithms.

The key concept is to combine bounded and local model checking techniques.
Local model checking (also known as tableau-based model checking) tries to find
a proof for the property by exploring neighboring states [13–15]. The proof search
in local model checking algorithms is not unlike those of bug hunting in bounded
model checking: a flaw is nothing but a “local” proof of the negation of the given
property. The completeness of the proof rules in local model checking ensures
that a flaw can always be found in finite models, should one exist.

We therefore propose an algorithm that reduces the proof search in local
model checking to Boolean satisfiability. Since the negation of any formula in
the universal fragment of μ-calculus belongs to the existential fragment of μ-
calculus, we look for design flaws by finding proofs for arbitrary formula in the
fragment. For any formula in the fragment, we construct a Boolean formula
for it. The satisfiability of the Boolean formula is shown to be equivalent to the
existence of a bounded proof in local model checking. Additionally, we show that
the unsatisfiability of a similar Boolean formula implies the absence of proofs.
The latter formula allows our algorithm to check the completeness criterion
dynamically. Since the criterion is proof-theoretic, it is valid for all properties
in the specification logic. Our technique gives a proof-theoretic interpretation of
the completeness criteria and is more general than those in [6, 7, 9].

A major advantage of our technique is to verify many more properties by
the use of standard encodings. For instance, ∀CTL [10, 12] and the universal
fragment of Fair CTL [16] can be verified by embedding them into the universal
fragment of μ-calculus. Our framework gives a unified theory of completeness
criteria, which cannot be found in previous works. Additionally, the verification
of linear-time temporal logic can be reduced to checking fairness constraints by
the automata-theoretic technique [11]. Our technique is also applicable for linear
properties.

The remainder of this paper is organized as follows. After discussing related
work in Section 1.1, preliminaries are given in Section 2. Section 3 recalls the local
model checking proof rules. The main technical results are shown in Section 4.
Experimental results are presented in Section 5. Finally, in Section 6, we present
our conclusions and discuss the future work.

1.1 Related Work

The inductive method was originally proposed as a heuristic for proving prop-
erties in bounded model checking. Later, it was improved and made complete
for safety [6, 7] and liveness [17] properties. In the complete inductive method,
if the induction proves the property or the completeness criterion is met, the
algorithm reports that the property is satisfied. Otherwise, it looks for design
flaws within the current bound.

A more direct approach for LTL model checking is reported in [9]. The au-
thors give characterizations for LTL formulae of the form ¬Gp, ¬FG¬p, and
¬Fp. Using the automata-theoretic technique developed in [11], the LTL model

114 B.-Y. Wang



checking problem is reduced to verifying FG¬p and solved in [9]. For special
cases such as Gp and Fp, [9] shows how to verify these properties directly.

State traversal can be simulated by exploiting conflict analysis in SAT solvers
as well [8]. Given two conflicting Boolean formulae A and B, an interpolant P of
A and B is a formula that is implied by A but conflicts with B. If A represents
the initial states and B represents the set of states that violate the property,
their interpolants can be understood as under-approximations of “bad” states.
The interpolation is then combined with bounded model checking to verify linear
temporal properties in [8].

The reduction of proof search in local model checking to satisfiability can
also be found in [18, 19], in which the authors reduce the local model checking
problem to Presburger arithmetic for infinite-state systems. Due to the undecid-
ability of the μ-calculus model checking problem on infinite-state systems, the
completeness of the algorithms in [18, 19] is not the main concern of the authors.
For the invariant and inevitable properties on finite-state systems, the present
work extends and subsumes the complete algorithms in [20].

To the best of our knowledge, estimating the completeness threshold is still re-
quired in order to prove fragments of branching-time temporal logics in bounded
model checking [1]. Ideally, one would like to apply the techniques in [6–9] to de-
velop similar on-the-fly completeness criteria for branching-time temporal logics.
However, the techniques used in [6–9] are based essentially on closely examining
paths of interest. It is unclear whether the approach would work for branching-
time temporal logics. Additionally, our proof-theoretic approach gives general
completeness criteria for fragments of branching-time temporal logics, not only
particular temporal properties.

2 Preliminaries

We use the universal fragment of μ-calculus as the specification logic for temporal
properties [21]. A μ-calculus formula ψ is defined recursively as follows.

– Propositional variables (PV): X, Y, Z, . . .;
– Atomic propositions (AP): p, q, . . .;
– Boolean operators: ¬ψ, ψ ∧ ψ′;
– The modal existential next-state operator: ♦ψ;
– The least fixed-point operator: μX.ψ, where the bound propositional variable

X occurs positively in ψ.

As usual, derived operators such as the disjunctive operator ψ ∨ ψ′ (≡ ¬(¬ψ ∧
¬ψ′)), the modal universal next-state operator �ψ (≡ ¬♦¬ψ) and, the greatest
fixed-point operator νX.ψ (≡ ¬μX.¬ψ[¬X/X ], where ¬ψ[¬X/X ] is obtained
by substituting ¬X for X in ¬ψ) are used. A μ-calculus formula ψ is normal

if all negations only apply to atomic propositions. The universal fragment of
μ-calculus (denoted ∀μ-calculus) formulae are those without modal existential
next-state operators in their normal forms. Similarly, ∃μ-calculus formulae are
those without modal universal next-state operators. By α-conversion, it suffices
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to consider μ-calculus formula ψ whose nested bound propositional variables are
distinct.

Let B = {false, true} be the Boolean domain and N the natural numbers
(non-negative integers). A state (denoted by r̄, s̄, t̄, . . .) is a Boolean vector of
size n > 0. Let V be a set of Boolean variables, and ū, v̄, w̄ ∈ V n be vectors of
Boolean variables of size n. Equivalently, we may think of a state as a valuation

[[ū]]ρ for ū, where ρ ∈ V → B is an assignment of Boolean variables. A Kripke

structure is a tuple K = (Bn, I,→, L), where I ⊆ Bn is the set of initial states,
→⊆ Bn × Bn is the total transition relation, and L : Bn → 2AP is the labeling
function that maps each state to the atomic propositions satisfied in that state.
We write s̄ → t̄ for (s̄, t̄) ∈→.

Let ε ∈ PV → 2B
n

be an environment for propositional variables. Given
a propositional variable X and a set of states R, the environment ε[X �→ R]
assigns X to R, but keeps other propositional variables Y assigned to ε(Y ). The
semantic function [ψ]ε ⊆ Bn for the μ-calculus formula ψ and the environment
ε is defined as follows.

[X ]ε = ε(X)
[p]ε = {s̄ ∈ Bn : p ∈ L(s̄)}

[¬ψ]ε = Bn \ [ψ]ε
[ψ ∧ ψ′]ε = [ψ]ε ∩ [ψ′]ε

[♦ψ]ε = {s̄ ∈ Bn : ∃t̄ ∈ Bn.s̄ → t̄ and t̄ ∈ [ψ]ε}

[μX.ψ]ε =
⋂

{R ⊆ Bn : [ψ](ε[X �→ R]) ⊆ R}.

The characteristic functions of p, I, and → are denoted by χp, χI , and χ→

respectively. Let ū and ū′ be vectors of Boolean variables representing current
and next states respectively. Then χp(ū) is satisfied by ρ if and only if [[ū]]ρ is
a state satisfying the atomic proposition p. Similarly, χI(ū) is satisfied by an
assignment ρ if and only if the state [[ū]]ρ is an initial state, and χ→(ū, ū′) is
satisfied by ρ if and only if the state [[ū]]ρ is followed by [[ū′]]ρ in K.

Let ψ be a μ-calculus formula, K = (Bn, I,→, L) a Kripke structure and s̄

a state. We write K, s̄ |= ψ if s̄ ∈ [ψ]∅; if K, s̄0 |= ψ for all initial states s̄0 ∈ I,
we denote it by K |= ψ. The model checking problem is to determine whether
K |= ψ.

In [13–15], several tableau-based μ-calculus model checking algorithms were
developed. The proof rules in [13, 14] were simplified in [22, 15] by extending
fixed point operators to:

σX{r̄0 · · · r̄m}Φ,

where σ can be either of the fixed point operators and r̄0, . . . , r̄m are states. Intu-
itively, r̄0, . . . , r̄m record visited states in the fixed-point formulae. The semantics
of the new operators are defined accordingly:

[μX{r̄0 · · · r̄m}ψ]ε =
⋂

{R ⊆ Bn : [ψ](ε[X �→ R]) \ {r̄0 · · · r̄m} ⊆ R}

[νX{r̄0 · · · r̄m}ψ]ε =
⋃

{R ⊆ Bn : R ⊆ [ψ](ε[X �→ R]) ∪ {r̄0 · · · r̄m}} .
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The extended μ-calculus uses extended fixed point operators instead. Note that
σX{}ψ ≡ σX.ψ; hence, any μ-calculus formula can be transformed into an
equivalent extended μ-calculus formula syntactically.

3 Proof Rules

Different from global model checking algorithms in [10, 12, 4], the algorithms
developed in [13–15,22] search for a proof for the given μ-calculus property at
an initial state by exploring the Kripke structure locally. It is noted that the
worst-case complexity of the tableau-based algorithms remains the same as the
conventional algorithms [13]. However, the proof-theoretic algorithms would be
more efficient if the property could be proved locally.

Figure 1 shows the proof rules for ∃μ-calculus model checking. Given a Kripke
structure K, a state s̄, and a μ-calculus formula ψ, a judgment is of the form
K, s̄ � ψ. Given a judgment, a proof is a tree constructed according to the proof
rules in Figure 1. Note that the rules (¬¬), (∨L), (∨R), (¬∨), (∧), (¬∧L), (¬∧R),
(♦), (¬�), (σ-Unroll), and (¬σ-Unroll) reduce the current judgment to one or
more judgments to be justified later. We therefore say a proof is full if all of its
leaves are instances of the rules (AP), (¬AP), (ν-Term), or (¬μ-Term).

Since we are interested in constructing Boolean formulae for ∃μ-calculus in
this work, Figure 1 omits the corresponding rules for the universal modal oper-
ator, which are given in [13–15]. The full proof rules are sound and complete for
finite Kripke structures:

Theorem 1. ([13–15]) Let K = (Bn, I,→, L) be a Kripke structure, s̄ ∈ Bn,

and ψ a μ-calculus formula. Then

K, s̄ � ψ has a full proof if and only if K, s̄ |= ψ.

4 Proof Search by SAT

To motivate our reduction of proof search to Boolean satisfiability, consider the
safety property AGp. Suppose a flaw satisfying EF¬p(≡ ¬AGp ≡ μX{}¬p∨♦X)
is found in one step. The corresponding Boolean formula generated by one of
the complete inductive methods in [6] is

χI(v̄0) ∧ χ→(v̄0, v̄1) ∧ ¬χp(v̄1) ∧
∧

0≤i<j≤1

v̄i �= v̄j . (1)

Let the satisfying Boolean assignment be ρ. The following full proof for the judg-
ment K, [[v̄0]]ρ � μX{}¬p∨♦X can be constructed by the proof rules in Figure 1,
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p ∈ L(s̄)

K, s̄ � p
(AP)

p �∈ L(s̄)

K, s̄ � ¬p
(¬AP)

K, s̄ � ψ

K, s̄ � ¬¬ψ
(¬¬)

K, s̄ � ψ

K, s̄ � ψ ∨ ψ′
(∨L)

K, s̄ � ψ′

K, s̄ � ψ ∨ ψ′
(∨R)

K, s̄ � ¬ψ K, s̄ � ¬ψ′

K, s̄ � ¬(ψ ∨ ψ′)
(¬∨)

K, s̄ � ψ K, s̄ � ψ′

K, s̄ � ψ ∧ ψ′
(∧)

K, s̄ � ¬ψ

K, s̄ � ¬(ψ ∧ ψ′)
(¬∧L)

K, s̄ � ¬ψ′

K, s̄ � ¬(ψ ∧ ψ′)
(¬∧R)

K, t̄ � ψ s̄ → t̄

K, s̄ � ♦ψ
(♦)

K, t̄ � ¬ψ s̄ → t̄

K, s̄ � ¬�ψ
(¬�)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ � νX{r̄0 · · · r̄m}ψ
(ν-Term)

K, s̄ � ψ[νX{r̄0 · · · r̄ms̄}ψ/X] s̄ �∈ {r̄0 · · · r̄m}

K, s̄ � νX{r̄0 · · · r̄m}ψ
(ν-Unroll)

K, s̄ � ¬ψ[νX{r̄0 · · · r̄ms̄}ψ/X] s̄ �∈ {r̄0 · · · r̄m}

K, s̄ � ¬νX{r̄0 · · · r̄m}ψ
(¬ν-Unroll)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ � ¬μX{r̄0 · · · r̄m}ψ
(¬μ-Term)

K, s̄ � ¬ψ[μX{r̄0 · · · r̄ms̄}ψ/X] s̄ �∈ {r̄0 · · · r̄m}

K, s̄ � ¬μX{r̄0 · · · r̄m}ψ
(¬μ-Unroll)

K, s̄ � ψ[μX{r̄0 · · · r̄ms̄}ψ/X] s̄ �∈ {r̄0 · · · r̄m}

K, s̄ � μX{r̄0 · · · r̄m}ψ
(μ-Unroll)

Fig. 1. Proof Rules

where Γ and Δ stand for [[v̄1]]ρ �∈ {[[v̄0]]ρ} and [[v̄0]]ρ → [[v̄1]]ρ respectively:

p �∈ L([[v̄1]]ρ)

K, [[v̄1]]ρ � ¬p
(¬AP)

K, [[v̄1]]ρ � ¬p ∨ ♦μX{[[v̄0 ]]ρ[[v̄1]]ρ}¬p ∨ ♦X
(∨L)

Γ

K, [[v̄1]]ρ � μX{[[v̄0 ]]ρ}¬p ∨ ♦X
(μ-Unroll)

Δ

K, [[v̄0]]ρ � ♦μX{[[v̄0 ]]ρ}¬p ∨ ♦X
(♦)

K, [[v̄0]]ρ � ¬p ∨ ♦μX{[[v̄0 ]]ρ}¬p ∨ ♦X
(∨R)

K, [[v̄0]]ρ � μX{}¬p ∨ ♦X
(μ-Unroll)
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It is easy to see that the Boolean formula χ→(v̄0, v̄1) in (1) corresponds
to the second antecedent of the rule (♦), and the formula

∧
0≤i<j≤1 v̄i �= v̄j

to the second antecedent of the rule (μ-Unroll). Finally, the antecedent of rule
(¬AP) is discharged by the satisfiability of ¬χp(v̄1). Roughly, there is a Boolean
subformula for each application of the proof rule (¬AP), (♦), and (μ-Unroll)
respectively. We generalize the idea and construct a Boolean formula for each
rule in Figure 1 so that the satisfiability of the Boolean formula is equivalent to
the existence of subproofs.

A syntactic extension of μ-calculus formulae is needed in the following pre-
sentation. Consider the formula σX{r̄0 · · · r̄m}ψ, where r̄0 · · · r̄m are states. Since
states r̄i’s are denoted by variable vectors v̄i’s to be determined by SAT solvers,
we allow the syntactic extension σX{v̄0 · · · v̄m}ψ in our construction. Formulae
constructed by Boolean operators, modal operators, and the syntactic exten-
sion of fixed point operators are called schematic μ-calculus formulae. If ρ is an
assignment to Boolean variables, define

[[p]]ρ = p

[[X ]]ρ = X

[[¬ϕ]]ρ = ¬[[ϕ]]ρ
[[ϕ ∨ ϕ′]]ρ = [[ϕ]]ρ ∨ [[ϕ′]]ρ
[[ϕ ∧ ϕ′]]ρ = [[ϕ]]ρ ∧ [[ϕ′]]ρ

[[♦ϕ]]ρ = ♦[[ϕ]]ρ
[[�ϕ]]ρ = �[[ϕ]]ρ

[[σX{v̄0 · · · v̄m}ϕ]]ρ = σX{[[v̄0]]ρ · · · [[v̄m]]ρ}[[ϕ]]ρ.

The mapping [[•]]ρ assigns states to variable vectors appearing in a schematic μ-
calculus formula and thereby yielding an extended μ-calculus formula. We say an
extended μ-calculus formula ψ is an instance of a schematic μ-calculus formula
ϕ if there is an assignment ρ such that [[ϕ]]ρ = ψ.

Let K = (Bn, I,→, L) be a Kripke structure, ū ∈ V n and d ∈ N. Figure 2
shows the translation rules to construct a Boolean formula ΘK(ū, ϕ, d) for any
schematic ∃μ-calculus formula ϕ. Intuitively, the vector of Boolean variables
ū corresponds to the current state, ϕ the sub-property to be fulfilled at the
current state, and d the bound of unrolling. The translation ensures that the
satisfiability of the Boolean formula ΘK(ū, ϕ, d) witnessed by the assignment ρ

is equivalent to the existence of proof for [[ϕ]]ρ at state [[ū]]ρ. For Boolean and
next-state modal operators, consider the rule (¬�) as an example. If there is a
proof for [[¬�ϕ]]ρ at state [[ū]]ρ, then there is a proof for [[¬ϕ]]ρ at state [[ū′]]ρ for
some [[ū′]]ρ with [[ū]]ρ → [[ū′]]ρ. The corresponding Boolean formula is therefore
χ→(ū, ū′) ∧ ΘK(ū′,¬ϕ, d). Other rules can be derived similarly.

For proof of correctness, note that the unrolling of fixed-point subformulae
increases the length of a formula. Induction on the lengths of formulae would
not work. The following definition is needed in our doubly-inductive proof:
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ΘK(ū, νX{v̄0 . . . v̄m}ϕ, d) =
j

(
Vm

k=0 ū �= v̄k) ⇔ ci if d = 0
(
Wm

k=0 ū = v̄k) ∨ ΘK(ū, ϕ[νX{v̄0 . . . v̄mū}ϕ/X], d − 1) if d �= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬νX{v̄0 . . . v̄m}ϕ, d) =
j

(
Vm

k=0 ū �= v̄k) ∧ ci if d = 0
(
Vm

k=0 ū �= v̄k) ∧ ΘK(ū,¬ϕ[νX{v̄0 . . . v̄mū}ϕ/X], d − 1) if d �= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, μX{v̄0 . . . v̄m}ϕ, d) =
j

(
Vm

k=0 ū �= v̄k) ∧ ci if d = 0
(
Vm

k=0 ū �= v̄k) ∧ ΘK(ū, ϕ[μX{v̄0 . . . v̄mū}ϕ/X], d − 1) if d �= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬μX{v̄0 . . . v̄m}ϕ, d) =
j

(
Vm

k=0 ū �= v̄k) ⇔ ci if d = 0
(
Wm

k=0 ū = v̄k) ∨ ΘK(ū,¬ϕ[μX{v̄0 . . . v̄mū}ϕ/X], d − 1) if d �= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, p, d) = χp(ū)

ΘK(ū,¬p, d) = ¬χp(ū)

ΘK(ū,¬¬ϕ, d) = ΘK(ū, ϕ, d)

ΘK(ū, ϕ ∧ ϕ
′

, d) = ΘK(ū, ϕ, d) ∧ ΘK(ū, ϕ
′

, d)

ΘK(ū,¬(ϕ ∧ ϕ
′), d) = ΘK(ū,¬ϕ, d) ∨ ΘK(ū,¬ϕ

′

, d)

ΘK(ū, ϕ ∨ ϕ
′

, d) = ΘK(ū, ϕ, d) ∨ ΘK(ū, ϕ
′

, d)

ΘK(ū,¬(ϕ ∨ ϕ
′), d) = ΘK(ū,¬ϕ, d) ∧ ΘK(ū,¬ϕ

′

, d)

ΘK(ū, ♦ϕ, d) = χ→(ū, ū
′) ∧ ΘK(ū′

, ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

ΘK(ū,¬�ϕ, d) = χ→(ū, ū
′) ∧ ΘK(ū′

,¬ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

Fig. 2. Translation Rules

Definition 1. Let Γ be a full proof. The unrolling depth of a leaf is the number

of unrolling rules applied along the path from the root of Γ to the leaf. The

unrolling depth of Γ is the maximum over the unrolling depths of all leaves.

Since the proof of ¬(ψ ∨ ψ′) is established by the proofs of ¬ψ and ¬ψ′,
naive structural induction is not applicable in the inner induction. Instead, the
following ordering of extended μ-calculus formulae is used:

Definition 2. Let ψ be an extended μ-calculus formula, then define

ω(p) = ω(X) = ω(σX{r̄0 · · · r̄m}ψ) = 0
ω(¬ψ) = ω(♦ψ) = ω(�ψ) = ω(ψ) + 1

ω(ψ ∨ ψ′) = ω(ψ ∧ ψ′) = max(ω(ψ), ω(ψ′)) + 1
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Since the functionω(•)canbe extended to schematic μ-calculus formulae straight-
forwardly, we abuse the notation and write ω(ϕ) when ϕ is a schematic μ-calculus
formula as well.

Our results can be demonstrated in three steps. First, we consider proofs
without unrolling fixed-point subformulae (Lemma 1 and 2). Using atomic propo-
sitions and fixed-point subformulae as the basis of inner induction, it can be
shown that the existence of proofs is equivalent to the satisfiability of a Boolean
formula(ΩK(ū, ψ, d)inTheorem2).Finally,the unsatisfiability of another Boolean
formula (ΛK(ū, ψ, d) in Theorem 3) can be shown to imply the absence of proofs.1

Lemma 1.Consider any schematic ∃μ-calculus formula ϕ recursively constructed

by ¬¬ϕ′, ϕ′ ∧ϕ′′,¬(ϕ′ ∧ϕ′′), ϕ′ ∨ϕ′′,¬(ϕ′ ∨ϕ′′), ♦ϕ′, or ¬�ϕ′. Let ū ∈ V n be a

vector of Boolean variables and d ∈ N. Suppose

– for all ϕ′ with ω(ϕ′) < ω(ϕ), if ΘK(ū, ϕ′, d) is satisfied by some Boolean

assignment ρ′, then there is a full proof of unrolling depth d for ψ′ = [[ϕ′]]ρ′

at s̄′ = [[ū]]ρ′; and

– ΘK(ū, ϕ, d) is satisfied by some Boolean assignment ρ.

Then, there is a full proof of unrolling depth d for ψ = [[ϕ]]ρ at s̄ = [[ū]]ρ.

1 For the proofs of technical results, please see [23].

Lemma 2. Consider any extended ∃μ-calculus formula ψ recursively constructed

by ¬¬ψ′, ψ′ ∧ ψ′′,¬(ψ′ ∧ ψ′′), ψ′ ∨ ψ′′,¬(ψ′ ∨ ψ′′), ♦ψ′, or ¬�ψ′. Let ϕ be a

schematic ∃μ-calculus formula, ū ∈ V n a vector of Boolean variables, and d ∈ N.

Suppose

– ψ is an instance of ϕ;

– for all ψ′ with ω(ψ′) < ω(ψ), if there is a full proof of unrolling depth d for

ψ′ at s̄′ and ψ′ is an instance of ϕ′, then ΘK(ū, ϕ′, d) is satisfied by some

Boolean assignment ρ′ with [[ϕ′]]ρ′ = ψ′ and [[ū]]ρ′ = s̄′; and

– there is a full proof of unrolling depth d for ψ at s̄.

Then, Θ(ū, ϕ, d) is satisfied by some Boolean assignment ρ with [[ϕ]]ρ = ψ and

[[ū]]ρ = s̄.

Lemmas 1 and 2 establish the correspondence between the satisfiability of
Boolean formulae and proofs without further unrolling. The following lemma
states that the required schematic μ-calculus formula ϕ in Lemma 2 does indeed
exist.

Lemma 3. Given a proof of an ∃μ-calculus formula at state s̄0, if a judgment

K, s̄ � ψ occurs in the proof, there is a schematic ∃μ-calculus formula ϕ such

that ψ is an instance of ϕ.

For the translation of fixed-point formulae, consider νX{v̄0 · · · v̄m}ϕ as an
example. If there is a proof of unrolling depth d for [[νX{v̄0 · · · v̄m}ϕ]]ρ at [[ū]]ρ,
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then either [[ū]]ρ = [[v̄k]]ρ for some 0 ≤ k ≤ m, or [[ū]]ρ �= [[v̄k]]ρ for all 0 ≤ k ≤ m

and there is a proof of unrolling depth d − 1 for [[ϕ[νX{v̄0 · · · v̄mū}ϕ/X ]]]ρ at
[[ū]]ρ. Thus, we have

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, d) =
m∨

k=0

ū = v̄k ∨ ΘK(ū, ϕ[νX{v̄0 · · · v̄mū}ϕ/X ], d− 1).

Now suppose the number of unrolling has reached the limit (d = 0). The proof of
[[νX{v̄0 · · · v̄m}ϕ]]ρ may be full at [[ū]]ρ, or need be justified by further unrolling.
In the translation rule

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, 0) = (
m∧

k=0

ū �= v̄k) ⇔ ci,

the fresh variable ci indicates which of the two cases occurs. If ci is set to false,
then

∨m
k=0 ū = v̄k must be true and the proof would be full at [[ū]]ρ. On the other

hand, if ci is true, it implies that
∧m

k=0 ū �= v̄k. The proof need be justified by
further unrolling.

We call the fresh Boolean variable ci used in the translation of σX{v̄0 · · · v̄m}ϕ
(or ¬σX{v̄0 · · · v̄m}ϕ) an expansion variable. The following theorem states that
the existence of proofs and the satisfiability of certain Boolean formulae are
equivalent.

Theorem 2. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃μ-calculus for-

mula, and c0, . . . , c� the expansion variables in ΘK(ū, ψ, d). Define ΩK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
�∧

i=0

¬ci.

– If ΩK(ū, ψ, d) is satisfied by ρ, then there is a full proof of unrolling depth d

for ψ at s̄ = [[ū]]ρ.
– If there is a full proof of unrolling depth d for ψ at s̄, then ΩK(ū, ψ, d) is

satisfied by ρ with [[ū]]ρ = s̄.

With a predetermined completeness threshold CT for the ∃μ-calculus formula
ψ and Kripke structure K, the satisfiability of ΩK(ū, ψ, CT ) is equivalent to the
existence of a full proof for ψ by Theorem 2. Hence, we have a complete algorithm
for ∀μ-calculus properties using completeness thresholds. Since ∀μ-calculus is
more expressive than ∀CTL, our construction subsumes those in [1].

Determining exact completeness thresholds, however, is hard. We prefer an
algorithm that does not use completeness thresholds, but determines the com-
pleteness of proofs on the fly. Recall that the expansion variables ci’s are false

in Theorem 2. This indicates that proofs do not need further unrolling. If we
assume the subproofs of all unjustified fixed-point subformulae indeed exist by
setting expansion variables to true, the unsatisfiability of the modified Boolean
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Theorem 3. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃μ-calculus

formula, and c0, . . . , c� the expansion variables in ΘK(ū, ψ, d). Define ΛK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
�∧

i=0

ci.

If there is a full proof of unrolling depth greater than d for ψ at the state s̄, then

ΛK(ū, ψ, d) is satisfied by some Boolean assignment ρ with [[ū]]ρ = s̄

Theorems 2 and 3 are summarized by the algorithm in Figure 3. The al-
gorithm searches proofs incrementally. In each iteration, it first checks whether
there is a full proof. If so, it reports “K, [[ū]]ρ � ¬ψ” where ρ is a satisfying assign-
ment. Otherwise, it checks whether full proofs may exist with more unrolling.
If not, it reports “ψ is satisfied.” Else, the loop is repeated by incrementing the
number of unrolling. Observe that the expansion variable ci forces the condition∧m

k=0 ū �= v̄k in ΘK(ū, ψ, d) to be satisfied for each unrolling of fixed-point sub-
formula. Since the number of states is finite,

∧m
k=0 ū �= v̄k will be unsatisfiable

after a finite number of unrolling. By Theorem 3, we conclude that there is no
full proof.

Analysis. By generalizing the formula σX{}(♦X∨σY {}♦(Y ∨X)), it is easy to
see that our construction requires O(n2d) Boolean variables in general. However,

formula implies the absence of proof with additional unrolling. The following
theorem gives us a completeness criterion in the flavor of [6, 9]:

Let ψ be an ∀μ-calculus formula
d ← 0
loop

if I(ū) ∧ ΩK(ū,¬ψ, d) is satisfied by ρ then
report “K, [[ū]]ρ � ¬ψ”

if I(ū) ∧ ΛK(ū,¬ψ, d) is unsatisfiable then
reports “ψ is satisfied”

d ← d + 1
end

Fig. 3. An Algorithm for Checking ∀μ-Calculus Properties

if we consider ∀CTL properties, it can be shown that our algorithm requires
O(ndκ) Boolean variables where κ is the maximal depth of nested temporal
operators in the ∀CTL property.

q p

s0 s1 2s

Fig. 4. A Simple Kripke Structure
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As an example, consider the sample Kripke structure in Figure 4. The labels
p and q denote L(s0) = {q}, L(s2) = {p}, but L(s1) = ∅. Let Ψ stand for νY {}p∧
�Y . Suppose we wish to check whether ¬q ∨ (μX{}Ψ ∨ �X) is satisfied by the
Kripke structure. The corresponding Boolean formula for ¬(¬q∨(μX{}Ψ∨�X))
is: (for detailed derivation, please see [23])

ΘK(ū,¬(¬q ∨ (μX{}Ψ ∨ �X)), 2))
= χq(ū) ∧ (¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ �= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ((x̄ �= u ∧ x̄ �= v̄) ⇔ c′′)))))

It is easy to see that there is no satisfying assignment for ΩK(ū,¬(¬q∨(μX{}Ψ∨
�X)), 2). By Theorem 2, there is no counterexample at unrolling depth 2. On the
other hand, take the assignment ρ, where [[ū]]ρ = s0, [[v̄]]ρ = s1, [[x̄]]ρ = s2, and
[[c]]ρ = [[c′]]ρ = [[c′′]]ρ = true. It is straightforward to verify that ρ is a satisfying
assignment for ΛK(ū,¬(¬q∨(μX{}Ψ∨�X)), 2). Hence there may be a full proof
of unrolling depth greater than 2 for ¬(¬q ∨ (μX{}Ψ ∨ �X)) by Theorem 3.

5 Experimental Results

We are interested in the analysis of an n-process agreement protocol. Initially,
process i has a random local bit vi. All processes collect and distribute informa-
tion with one another concurrently. At the end of the protocol, they will have
the same value assigned to their local bits. In case of system failure, the faulty
process stops updating its local bit nor exchanging information with others.

In addition to the local bit vi, a program counter pci is used to indicate the
current status (normal, failed, or decided) of process i. Firstly, we are interested
in knowing whether all processes have agreed on their private bits when they all
make their decisions. We therefore check that the following predicate is indeed
invariant in the protocol:

goodn
�
= (

n∧
i=1

pci = decided) ⇒ ((
n∧

i=1

vi) ∨ (
n∧

i=1

¬vi))

Secondly, we verify the following CTL property in the protocol:

upn
�
= AG(v1 ⇒ AF((

n∧
i=1

pci = decided) ⇒ (
n∧

i=1

vi)))

The property upn states that if the local bit of process 1 is true, then all com-
putation paths will eventually make all local bits to be true when all processes
decide. It is impossible to turn them back to be false in the protocol.

Thirdly, we verify that either all processes decide their local bits or some of
them have failure almost surely along all computation. It can be specified by the
following LTL formula:
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In other words, no process can stay in a normal but undecided state forever. A
weaker but similar property can be specified in Fair CTL. We now consider fair
paths where no process is in the failed state infinitely often (Ψ =

∧n

i=1 F∞(pci �=
failed) in [10]). We would like to know whether all parties will decide their local
bits eventually for all computation. In FCTL, we can specify the property as
follows.

fctl stablen
�
= AΨF

n∧
i=1

pci = decided

It is straightforward to rewrite the properties goodn, upn, and fctl stablen

in ∀μ-calculus by standard encoding. For the LTL property ltl stablen, we apply
the technique reported in [12, 24] and verify the existence of fair paths satisfying
a ∀μ-calculus formula. Observe that the completeness criteria for these properties
are uniformly obtained by our framework. Once the property is rewritten as a
∀μ-calculus formula, our proof-theoretic technique is able to verify it by any SAT
solver.

Figure 5 compares the performance of our algorithm with the conventional
BDD-based μ-calculus model checking algorithm. In our experiments, we use

ltl stablen
�
= ♦(�((

n∧
i=1

pci = decided) ∨ (
n∨

i=1

pci = failed)))

the CUDD package (release 2.4.0) with the sifting algorithm to implement the
BDD-based algorithm. The zchaff SAT solver (release November 15th, 2004) is
used as our SAT solver. All experiments were conducted on a Linux workstation
(Pentium 4 2.8GHz with 2 GB memory).

Our experiments show that BDD-based algorithms perform consistently for
different properties. If the BDD model representation can be built, these four
properties can be verified with similar cost. On the other hand, the performance
of SAT-based algorithm differs significantly in these properties. This is due to the
fact that our algorithm requires different number of variables for these properties.
It therefore does not perform so uniformly for various properties.

goodn upn ltl stablen fctl stablen

n BDD SAT BDD SAT BDD SAT BDD SAT

3 0.13 0.77 0.19 0.99 0.2 2.33 0.11 7.36

4 1.2 1.44 1.06 4.09 2.80 10.76 1.36 31.00

5 11.91 3.86 10.55 9.45 17.21 29.12 12.95 112.82

6 17.44 9.43 15.09 34.94 15.19 61.12 9.69 232.63

7 timeout 18.23 timeout 75.86 timeout 157.21 timeout 553.02

(verification time in seconds)

Fig. 5. Experimental Results

CUDD runs out of time with the sifting algorithm. The data is obtained without
dynamic variable ordering.

2

2 2 2 2
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For the invariant property goodn, our SAT-based algorithm is better than
BDD-based algorithm for n ≥ 5. For branching-time properties (upn, ltl stablen,
and fctl stablen), the BDD-based algorithm cannot finish in 10 minutes for
n = 7. With our algorithm, we are able to verify all these properties within
10 minutes. Surprisingly, our SAT-based algorithm performs better than BDD-
based algorithm for some branching-time properties in this experiment.

6 Conclusion and Future Work

A complete SAT-based ∀μ-calculus model checking algorithm is presented in the
paper. Unlike previous works on proving branching-time temporal logics, our
algorithm does not depend on completeness thresholds. Instead, it determines
the completeness of proofs on the fly. The novelty of the new algorithm is that it
combines both local and bounded model checking, and essentially reduces proof
search in local model checking to Boolean satisfiability.

Our technique uses a proof-theoretic approach to develop completeness cri-
teria. We feel our technique may give new insights into devising complete SAT-
based model checking algorithms. Currently, it is unclear whether induction or
interpolation can be applied in our framework. It would be interesting to have
proof-theoretic interpretations of these heuristics as well.

Our experimental results suggest that our algorithm may perform better than
a typical BDD-based model checker in some cases. In the future, we would like
to conduct more experiments to support our preliminary findings.

Acknowledgments. The author would like to thank anonymous reviewers for
their constructive comments and suggestions in improving the paper.
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Abstract. We present an improved method for analyzing route estab-
lishment in ad hoc routing protocols. An efficient abstraction for Propa-
gating Localized Broadcast with Dampening (PLBD) is developed.
Applying this result we are able to verify networks and topology changes
for ad hoc networks up to the limits currently envisaged for operational
mobile ad hoc networks (MANETS). Results are reported for route dis-
covery in the Lightweight Underlay Network Ad hoc Routing protocol
(LUNAR) using UPPAAL and we provide an outline of how similar ver-
ifications can be conducted for DSR.

Keywords: Mobile ad hoc networks, routing protocols, formal verifi-
cation, model checking, UPPAAL, LUNAR, DSR.

1 Introduction

Delivering data in an ad hoc network with mobile nodes requires new protocols.
Traditional routing protocols are incapable of routing data packets efficiently in
this type of situation, motivating emergence of new protocol proposals. Valida-
tion of these new protocols is principally through simulation. Simulation often
fails to discover subtle design errors, and therefore formal verification is a promis-
ing approach.

In this work, we verify correct operation of the LUNAR [1] protocol route
establishment in realistic general scenarios using a network diameter of up to
eleven hops. We further describe how the route discovery phase in the DSR [2]
protocol can be verified in a similar way. We have aimed for the modeling to be
fairly straightforward and for the verification procedure to require a minimum
amount of user interaction. The verification properties are formulated at a high
and easily assimilated level, e.g. “route possible to set up”.

The operation responsible for most of the complexity in the verification of a
LUNAR network scenario is Propagating Localized Broadcast with Dampening
(PLBD). PLBD is used in the route discovery phase where a node tries to find
a path to another node in the network. Each PLBD phase that is initiated at
a node contains a globally unique identifier in order for nodes to keep track of
which PLBD:s they have seen. As the name implies, the broadcast propagates
through the network, which causes many message exchanges between nodes.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 128–142, 2005.
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This in turn yields many possible interleavings and leads to exponential growth
in verification complexity with regard to increasing number of nodes as well as
topological changes in the network.

We show that in any network topology where nodes are positioned so that at
a certain time it is possible to transmit a message over a link chain between two
nodes, the PLBD reaches the intended receiver. Furthermore, we show that if
there is at least one such path available then there is always a fastest path. This
means that a PLBD initiated by a sender will reach the receiver first along this
path. Moreover, all the nodes along the path are the first to receive the PLBD.
In LUNAR, network nodes only react to the first specific PLBD they receive;
subsequent ones are dropped. Therefore, we model reactions on the first PLBD
packet of each type and can safely ignore the rest.

Using this technique, we can model LUNAR with timed automata and per-
form verifications for realistic network sizes using the UPPAAL [3] tool. Varia-
tions on the PLBD operation are also used for route discovery in other ad hoc
routing protocols; one example is the DSR protocol. The DSR variant of PLBD
differs in that other nodes than the intended receiver can respond to a route
discovery, if they happen to possess a cached route to the destination. There-
fore, instead of studying just the fastest path, we need to study a number of
disjoint paths. This increases the verification complexity, but the saving is still
substantial in comparison to studying all possible packet interleavings.

The remainder of this paper is organized as follows. Section 2 covers pre-
liminaries needed to assess the subsequent sections. Section 3 describes our new
verification strategy in general and Section 4 provides more detail regarding the
actual modeling of LUNAR. Verification results are presented in Section 5. Sec-
tion 6 describes how the DSR protocol can be verified in a similar way, and
Section 7 gives an overview of related efforts in verifying MANET protocols. Fi-
nally, Section 8 contains conclusions and describes opportunities for future work
in the area.

2 Preliminaries

2.1 Previous Work

In previous work [4] our result was to formally verify important properties of
ad hoc routing protocols acting in realistic network scenarios. The scenarios we
used are repeated in Figure 1 for clarity. We studied the LUNAR protocol since
it combines simplicity with the key properties of more complex ad hoc routing
protocols. The protocol was modeled by seeing each node in the network as a
separate entity. Each propagating broadcast then hugely increased the complex-
ity because of the possible interleavings of messages. When using this approach
we quickly ran out of memory due to verification state space explosion. We were
unable to verify networks with more than six participating nodes and very sim-
ple topology changes. Here, we refine our method and extend it to verifying
significantly larger networks.
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Fig. 1. Example classes of topology changes used in previous work

2.2 The Propagating Localized Broadcast with Dampening (PLBD)
Operation

The reason for the state space explosion in the verification of LUNAR is the
propagating localized broadcast operation (aka flooding) which works as follows:

– The broadcast is referred to as “localized” since each broadcast in a wireless
network only reaches direct neighbors of the transmitting node and not nodes
outside transmission range.

– Each node that initiates such a broadcast, tags the broadcast packet with a
unique identifier (called the “series selector” in LUNAR).

– At each receiving node the broadcast identifier is compared with a local list
to see if this particular packet has been seen before. If that is the case, the
packet is just ignored. This mechanism prevents broadcast loops arising in
the network.

– If the packet has not been seen before, and the receiving node is not the
intended destination, the identifier is stored after which the packet is re-
broadcast. Each neighbor, who has not seen the packet before will receive it
together with neighbors that may already have seen the packet.

– The intended destination node also stores the identifier when and if it receives
the packet, in order to be able to discard subsequent copies it might receive.

In our verification, we assume that this mechanism works, i.e. PLBD can be
used as a primitive operation. In making this choice we run the risk of failing
to detect subtle operational errors in the PLBD operation, potentially causing
failure of the routing protocol. However, this risk is minimized by the analysis
of the PLBD process needed to formulate the model.

When using PLBD, the only possible paths that packets can follow from a
source to a destination are disjoint. That is, if the destination node receives
a number of copies of the same PLBD, these must all have been transmit-
ted through completely disjoint transmission chains. If two transmission chains
should coincide at a node, then, since we assume that only one packet at a time
can be delivered to each node, one of the packets would have been dropped and
the other propagated. Different variants of PLBD have been proposed and used
in other protocols [5]. The goal of these is to minimize the number of rebroadcasts
needed to reach all connected nodes.
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2.3 Brief Description of Ad Hoc Routing and LUNAR

A mobile ad hoc network (MANET) is a transient network that is set up to serve
a temporary need, e.g. the exchange of files at a conference. It is assumed that
nodes are mobile and that their location can change frequently. Therefore, node
connectivity can also vary heavily. In the networks we study, multiple hops are
possible between a source and a destination. This, in contrast to a fully connected
network, means that nodes outside direct transmission range can be reached by
traversing other intermediate nodes. In order to realize this, a routing protocol
must be running on each node to forward packets from source to destination.

We study a basic version of the LUNAR protocol and use our earlier pseudo
code description [6] to aid us in the modeling. The situation in which we wish
to verify correct operation arises when one network node, S, has an IP packet
to deliver to another node, D, but there is no route to that node available. In
this situation the LUNAR route formation process is initiated at node S, which
sends out a route request (RREQ) for the sought node using PLBD. On every
retransmitting node, return information for the reply is temporarily stored. If the
RREQ reaches D, that node will initiate a unicast route reply (RREP) destined
for the node from which it received the RREQ. This node, as well as subsequent
ones use the stored return information to re-address the unicast RREP for its
next hop. On every step of the way back to node S, relays are also set up for
label switching of wrapped IP packets later traveling along the found route. If
node S does not receive a RREP within a certain time, it will issue a number
of retries (using new PLBD identifiers). After that, the protocol will not take
action until there is another IP packet that needs to be delivered.

2.4 General Assumptions

We use the following assumptions throughout this work.

– Unique id:s. It is possible for each network node to generate unique identi-
fiers in isolation from the other nodes. In practice this can be implemented
by appending the MAC address of a node to a monotonically increasing
sequence number.

– Sequential delivery. Each node in the network can only receive and handle
one message at a time. This means that we assume that relatively standard
hardware is used in an actual implementation with no parallel processing
of messages sent on different channels. Packets thus arrive at each network
node in a strict time order.

– Bidirectional links. Only bidirectional links are possible in the network. Since
802.11 requires a bidirectional frame exchange as part of the protocol [2]
this is not a significant limitation. It is, however, relevant since it affects the
caching strategy of DSR.

– No persistent memory on nodes. If they go down, they lose their current
route caches etc.
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3 A Refined Modeling Strategy

3.1 Correct Operation of an Ad Hoc Routing Protocol

The definition of correct operation of an ad hoc routing protocol is taken from
our previous work [4].

Definition 1. Correct operation of an ad hoc routing protocol
If there at one point in time exists a path between two nodes, then the protocol
must be able to find some path between the nodes. When a path has been found,
and for the time it stays valid, it shall be possible to send packets along the path
from the source node to the destination node.

We said that “a path exists between two nodes”, meaning that the path is
valid for some time longer than what is required to complete the route formation
process. A route formation process is the process at the end of which a partic-
ular routing protocol has managed to set up a route from a source node to a
destination node, possibly traversing one or more intermediate nodes.

In the following, we will need a more detailed definition of path existence
which pertains only to the unidirectional case. The reason is to be specific about
what nodes are connected at different time periods for use in the proofs that
follow.

Definition 2. Existence of a unidirectional path
Assume nodes X0 = S, X1, . . . , XN = D (where N ≥ 1). At time τ0 a unidirec-
tional path exists from network node S to D if, for all n ∈ [0, N − 1], between
times τn and τn+1 node Xn has connectivity and can transmit to node Xn+1.
Furthermore, between these times, node Xn does not have connectivity to any of
the nodes Xm : m ∈ [n + 2, N ].

We require that (τn+1 − τn) = Tn : n ∈ [0, N − 1] where Tn is the time re-
quired by node Xn to transmit a message to any (or all) of its neighboring nodes
(i.e. over one hop), plus the time for the receiving node(s) to handle the packet
and prepare for possible retransmission.

Note that we do not limit ourselves to unicast transmission. In the case
of LUNAR, the first phase of the route formation process is to send a route
discovery along a path from source to destination. We only require this path to
be unidirectional. For LUNAR, our previous definition of path existence thus
implies Definition 2. Therefore, if the preconditions of Definition 1 hold, then we
know there is a unidirectional path at that point in time. In our verification, we
will (as before) also make sure that these conditions hold.

3.2 Focusing on the Packet Transformation

We here describe a remedy for the state space explosion problem whilst still
being able to model check scenarios of interesting proportion.

In LUNAR, two types of message transfer are used: unicast and PLBD. This
is the case for other (reactive) ad hoc routing protocols as well, although some in
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addition use regular broadcast e.g. for neighbor sensing. Here, instead of being
node centered, we focus on the packet. The idea is that every full (route setup
- initial IP packet delivery) session begins with the source node, S, sending out
a PLBD packet containing a RREQ for a particular destination, D. When this
packet hits one or more other nodes, it can be viewed as being transformed into
new packets. Once one of the rebroadcast packets reaches D (provided there is
connectivity), this node will generate a RREP unicast packet destined for the
node from which it received the RREQ. The RREP then traverses back through
the network to S, all the time rewriting addresses. When the last RREP reaches
S, it can send its initial IP packet along the found path.

The transformation is probably most easily seen in the case of the unicast
chains: one packet comes into a node and another leaves. In the case of broadcast,
we would like to be able to ignore all receiving nodes except one, which can then
act as a message transformer.

3.3 Disregarding Unimportant Broadcast Receivers

To be able to motivate our claim that we can, at each step, disregard packets
received by all broadcast receivers but one, whilst still being able to show im-
portant properties of the protocol we will need Theorem 2 below. First, however,
we need a theorem that guarantees that we find a path if we use PLBD.

Theorem 1. Existence of a PLBD path
In a finite mobile network, if there at time τ0 exists a possible unidirectional path
between two nodes S and D, according to Definition 2, then a PLBD initiated
from node S at this time will reach node D. The PLBD path is then the inverse
of the following sequence of nodes: Node D, the node that broadcast the PLBD
to D, and so on all the way back to node S.

Proof. See Figure 2 for an illustration. A PLBD with unique identifier β initiated
by node S at time τ0 will reach the direct neighbors of S. According to Definition
2 these direct neighbors either contain node D, or some intermediate node X1.
If node D was reached directly, it cannot have seen the PLBD with identifier β
before and will receive the packet.

If node D was not in the direct neighbor set of S, then we know (according
to our definition) that one of the other nodes in this set, say X1, will receive the
PLBD and, at time τ1 be able to retransmit it to its neighbors. These neighbors

S

N−1
X2X1 ...

D

X

Fig. 2. Localized broadcast traversing network
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Fig. 3. LUNAR MSC with RREQ PLBD only along fastest path

may partially overlap the neighbor set of node S, but, according to Definition 2
the set will either contain node D or at least one other node, X2, that has not
previously seen this PLBD (with id β).

Continuing in this fashion, since the network is finite, we will eventually have
transmitted to the final connected node(s) that had not yet heard the PLBD
with identifier β. According to our definition, node D will then also be among
the nodes that have received this PLBD.

Definition 3. Fastest path
A path ξ between two nodes S and D is faster than another path ρ at some point
in time, if, at this time it is possible to deliver a packet from S to D faster along
path ξ than along path ρ. A path χ is the fastest path between two nodes at some
point in time, if, at this time it is faster than all other paths between the two
nodes.

Theorem 2. Uniqueness of a PLBD path
If there at one point in time exists at least one PLBD path, from one network
node to another one, then during the same time there must exist exactly one
PLBD path.

Proof. Because the number of loop free paths in a finite graph is finite, the
number of paths between two nodes, S and D, in a finite network is also finite.
Then, if packets are sent from node S along all (disjoint) paths, one of them will
be the first to reach node D, namely the one sent along the fastest path. The
fastest path will also be the unique path, since node D will henceforth disregard
all PLBD packets it receives containing that particular identifier.

Thus, to recapitulate, PLBD:s can effectively be studied as propagating uni-
casts. We illustrate this for LUNAR in Figure 3, describing the protocol with
the help of a message sequence chart. We can see that, for the case of LUNAR,
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it is completely packet driven and in essence only reacts to incoming packets by
updating internal tables and generating a new unicast or PLBD packet. If we
always study the fastest path for every PLBD we cannot get any interference
from other copies of the same broadcast packet since these will be dropped ev-
erywhere but along the fastest path according to our assumptions. Nodes that
are not on the fastest path will therefore not be part of a chain forwarding the
packet all the way to the intended destination node. Thus, we have fully moti-
vated our packet transformation model and can go on to describing the model
itself. What we essentially do is to reduce it from a parallel to a sequential one
whereby complexity is significantly reduced.

4 Modeling Approach

4.1 The UPPAAL LUNAR Model and Verification Properties

UPPAAL [3] is a tool for simulation and verification of systems modeled as timed
automata. Verification properties are passed to the system as Linear Temporal
Logic (LTL) formulae. We have chosen to use UPPAAL in our work because
of its powerful model checking capabilities and because we can use time in our
models in a straightforward way. This further enables us to extract time bounds
for route formation and initial IP packet delivery.

The LUNAR timed automata model includes a template (lunar message)
which models a packet in transit between two nodes. We use a system definition
with three processes, representing the initial route discovery and two retries.
Thus, a delay is passed as a parameter in order to model the timeout triggered
resend. As in previous work we do not model any expanding ring search, but use a
timeout value of 75 ms corresponding to three times the ring timeout in current
LUNAR implementations and settle for two resends. Time only passes when
messages are transmitted between network nodes, and we have used a range of
[2,4] ms to model this delay. This represents four to eight times the theoretical
delay lower limit (DLL) for the basic access mechanism of IEEE 802.11b [7].
Note that intermittent transmission failures on lower layers (e.g. due to packet
collisions) are treated as link breakages in our model. In addition to the general
assumptions in Section 2.4 we assume route caches to be initially empty.

Our model is to some extent less abstract than in previous work since we
now model the selector tables explicitly. This is done through arrays (since there
are no more complex data structures available), but it is still feasible since we
gain state space usage from the PLBD abstraction. When a packet arrives at a
node it needs to be switched so as to use new selectors. These are modeled using
global arrays that for each node (MAC address) map selector value to a (MAC
address, selector) pair.

Along the path of a PLBD, symbolic addresses of the intermediate nodes
are generated as we go. These can be seen as pointers to the real addresses.
Therefore, we select them from a limited range of numbers, e.g. [0,8] if we admit
a maximum of 9 intermediate nodes along the fastest path. For each new route
request the symbolic addresses are selected from different ranges, even though



136 O. Wibling, J. Parrow, and A. Pears

they may in reality point to the same node. Errors due to subtle faults in the
algorithm that allocates selectors might elude our analysis as a result of this
assumption.

We choose to verify deadlock freedom as well as route formation and initial
IP packet delivery. These are verified by checking that we can eventually get
to the snd node rec lunar rrep (sender node received LUNAR RREP) and
message del (IP packet delivered) states along all execution paths. To extract
the time bounds, a global timeout is used and experimentally tuned for the upper
range. For the lower range we instead use LTL formulae to check possibility for
route formation and initial IP packet delivery along at least one execution path.

4.2 Correspondence Between Scenarios

Instead of specifying each individual scenario exactly, we are now able to pa-
rameterize on the following:

– Maximum network diameter (number of hops), dmax. The maximum number
of possible intermediate nodes on the unique PLBD path between source and
destination, plus one.

– Number of possible link failures, f , during playout of the scenario. Note
that these represent critical link failures in the sense that we model them by
dropping a packet nondeterministically along the fastest path.

– (Minimum network diameter, dmin ≤ dmax; but this value should be set to
1 to allow for all possibilities of communicating nodes’ positions. The only
time we use a different value is when checking correspondence to previous
scenarios where positions of source and destination nodes were specified.)

The scenarios we can study using the new model encompass all the ones
in our previous work (shown in Figure 1). Our definition does not require the
routing protocol to find a route (or send an initial IP packet along the route) if
all paths are broken. We can include link breaks if we make sure that the protocol
is given the chance to find a path along some other route, in accordance with the
requirement of Definition 2. The inclusion of link breaks is important in order
to verify that the protocol copes with those situations as well, in the case of
LUNAR by initiating another route discovery after a timeout.

Scenario (g) in previous work corresponds to setting up our new model with
minimum and maximum path lengths of three and with one possible link break.
This is because in scenario (g) there is one link break that can occur at any time.
The minimum and maximum path lengths are three, both before and after the
link break. As an illustration see Figures 4 and 5 which show two possibilities
for the packet traversal. Here, solid lines denote packets that are delivered, and
dotted lines denote packets that are dropped because the receiver has already
seen that particular PLBD identifier. Other traversals are possible and node E
may go down at other times, but because of the dampening, it should be quite
clear that the maximum path length will be three regardless of the order in
which packets are delivered.

We validate that this is correct with our new model by extracting a bound
on initial message delivery time, which is [18,111] just as in our previous work.
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Fig. 4. Stepwise traversal of scenario (g) - Route setup initiated before link break
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Fig. 5. Stepwise traversal of scenario (g) - Route setup initiated after link break

Using the same reasoning, we can easily translate all the previous scenarios to
parameters in our new model.

5 Verification Results and Analysis

We have performed verification of LUNAR networks for the properties of interest
(see Section 4.1). For general networks, i.e. where dmin = 1, we are able to verify
route setup up to a diameter (dmax) of eleven hops, when using f = 1. For
the same value of f we can verify initial IP packet delivery using dmax = 8
before running out of memory. This greatly surpasses the network size for which
LUNAR is meant to operate (3 hops), this limit being due to the so called
ad hoc network horizon [1]. Each verification takes less than a few minutes
on a Macintosh PowerBook G4 laptop computer with a 1.33 GHz processor
and 1.25 GB of memory. We also include some measurements from using the
same processing power and verification software configuration as in our previous
work. These data are presented in Table 1 together with our previous results to
illustrate how substantial the performance increase is.

Due to space constraints, we are here only able to include one of our result
plots. Figure 6 shows bounds on route formation and initial IP packet delivery
times for the case when dmin = dmax and f = 1. The same results as in corre-
sponding scenarios of our previous work are obtained. As mentioned, we can also

Table 1. Comparison of UPPAAL verification results

Explicit broadcast modeling Using broadcast abstraction

Scenario States Time Search States Time Search
searched used completed searched used completed

(a) 15072 3.89 s Yes 487 < 1 s Yes
(e) 123196 57.91 s Yes 487 < 1 s Yes
(g) 2.01e+06 11:43 min:s Yes 910 < 1 s Yes
(h) 2.97e+07 1:59 h:min No 910 < 1 s Yes
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verify the more general case where dmin = 1, and the difference in time bounds
is that they then reach down to 4 ms for the route setup time and to 6 ms for
the initial message delivery. The reason is that the most extreme case then is
when source and destination are in direct contact, whereby the route setup can
be completed in two transmissions. With this setting of dmin the verification
also includes all intermediate situations, which increases the complexity.
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Fig. 6. Example plot showing time ranges extracted

Thus, since we are able to use a rather high number for the network diameter
we are in fact able to study all networks of practical significance even though we
have not produced a general proof. Our results are general in the sense that any
mobility model can be accommodated. We only require that it, at some point,
yields a network configuration with a unidirectional path between a given pair
of nodes. Link breakages affect the initial state of route caches in the network.
It is therefore important to study if different settings for f cause the protocol to
behave differently. When increasing f from 1 to 2, and using dmin = 1, we can
verify route setup up to dmax = 8 and initial IP packet delivery up to dmax = 6.
Introducing more link breaks thus reduces the maximum network diameter that
can be used. Due to the routing protocol structure of LUNAR its worst case
behavior is captured by admitting the same number of link breaks as resends.
The protocol cannot be expected to guarantee successful route discovery if more
link breaks occur, since all retries may then be lost. Given that we only model
two LUNAR resends (see Section 4.1) we therefore choose to set the limit at
f ≤ 2 in this study.

We can perform verification of all the scenarios studied in previous work, but
considerably faster. Furthermore, we are able to study more general network con-
figurations of much greater size. In a related project we are currently performing
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real world experimental evaluation of a number of ad hoc routing protocols.
There, scenarios with a maximum of four nodes are used and even then, we note
trouble in forming multi-hop paths which causes severe performance penalties
for TCP [8].

6 Comparison of Route Discovery in DSR and LUNAR

DSR [2] and LUNAR can both be considered as on-demand protocols because
neither of them relies on any kind of periodic packets to be exchanged between
nodes. In the basic route discovery phase, the two protocols operate in a similar
way. However, there are some important differences:

– DSR is a source route protocol which means that the RREQ packet includes
addresses of all the nodes passed along the path from source to destination.
This list is then returned to the source node and used as header for each
IP packet that is subsequently to be routed. At each step, nodes use the
next address in the header as new destination. In the case of LUNAR, label
switching is instead used in nodes for the rewriting of addresses.

– LUNAR only stores the first response received from a route discovery. In
DSR, on the other hand, a node may learn and cache multiple routes to any
destination. This is also possible through overhearing routing information
from packets sent by others as opposed to in LUNAR where nodes only use
information they have themselves requested.

– In DSR, nodes which are not themselves the sought destination may an-
swer with one of their routes. The answer will contain the list of addresses
traversed thus far concatenated with the cached route. Loop segments are
identified and removed, and a node cannot return a route in which it is not
itself included.

In a DSR model we need to account for these differences properly. Instead
of one destination for the PLBD, we need to study a set of answering nodes, D.
As an upper bound for this set we have the number of disjoint paths originating
from network node S. We can, however, settle for all those that reach a neighbor
of D, since the others will not be valid at the time of the RREQ. In the DSR
draft it is said that the number of hops will often be small (e.g. perhaps 5 or 10
hops). It is also stated that the DSR protocol is designed mainly for mobile ad
hoc networks of up to about 200 nodes. In a finite network, the set of answering
nodes is also finite. The maximum value will be the total number of nodes in
the network minus one (the sending node). This case appears if S and D are
directly connected and all other nodes are also connected to both the source and
destination. The implication for verification is, however, not as severe as it may
first seem since no path can then be longer than two hops.

7 Related Work

Chiyangwa and Kwiatkowska [9] have studied timing properties of AODV [10]
using UPPAAL. Their model uses a linear topology with specialized sender, re-
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ceiver and intermediate nodes. The authors investigate how network diameter af-
fects the protocol. They report that at 12 intermediate nodes, the recommended
setting for route lifetime starts to prevent long routes from being discovered.
They propose adaptive selection of this parameter to compensate for the behav-
ior in large networks. This work is related to ours, but the linear scenario type
contains a static number of nodes and its motivation is to discover a maximum
diameter. Apart from providing a formal motivation to a single network path,
our methodology encompasses a variety of topologies. Their method involves
constructing a specialized model where we use the same protocol instance at
each node which simplifies the modeling process.

Obradovic et al [11] have used the SPIN [12] model checker and the HOL
[13] theorem prover to verify route validity and freedom from routing loops in
AODV. They used conditions on next node pointers, sequence numbers and hop
counters to form a path invariant on pairs of nodes (on the path from source to
destination). Three lemmas were then verified using SPIN after which HOL was
used to prove that the three lemmas imply the path invariant theorem (using
standard deductive reasoning). The approach requires a significant amount of
user interaction and is not directly applicable to other protocols.

Das and Dill [14] also prove absence of routing loops in a simplified version
of AODV. The strategy is similar to that of Obradovic et al, but more auto-
mated. They use predicate abstraction and can discover most of the quantified
predicates automatically by analyzing spurious abstract counter-example traces,
albeit with some mechanical human involvement. The initial predicate set is for-
mulated in a manual step where conditions on next node pointers, hop counters,
and existence of routes are constructed. The method successfully discovers all
required predicates for the version of AODV considered. Proficiency in formal
verification is required in order to make general use of their method.

de Renesse and Aghvami [15] have used SPIN to model check the ad hoc
routing protocol WARP. They use a general 5-node topology, and provide a non-
exhaustive verification (using the approximating bitstate hashing mode [12]),
covering 98% of the state space.

Xiong et al [16,17] have modeled AODV using Petri nets. A topology ap-
proximation mechanism describes dynamic topology changes. They report on a
looping situation found during a state space search of a general ten node topol-
ogy. Their broadcast model uses an average number of messages based on the
average degree and the total number of nodes in the graph. The resulting PLBD
implementation is less abstract than ours and models redundant packet trans-
fers between nodes not on the fastest path between the sender and receiver.
In contrast to our approach link failure effects are also not included in their
model as they assume unicast transmissions to be globally receivable regardless
of topology.

With our method we can use the same protocol instance for each symbolic
node and easily verify high level properties of ad hoc routing protocols, such as
“initial IP packet delivered”. We do not put strict requirements on the topologies,
but admit for general networks of a certain diameter and a given number of link
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breakages. The modeling and verification processes are thus quite simple and
applicable to a range of different protocols.

8 Conclusions and Future Work

We have developed a new efficient method for modeling PLBD, one of the oper-
ations in ad hoc routing protocols most responsible for state space explosion in
previous approaches. We applied the technique, verifying the operation of route
establishment in the ad hoc protocol LUNAR, and derived upper and lower time
bounds for both route establishment and first packet delivery over the resulting
route. We verified route setup in networks of up to eleven hops in diameter, well
over the envisioned upper limit for practical application of ad hoc routing in
realistic scenarios.

For our future work we intend to perform the same verification for the DSR
protocol, which we have only sketched here. We want to see if there are other
protocols that utilize primitive operations, responsible for much of the complex-
ity, which can be abstracted away from in order to enable for verification in
realistic networks. These analyses can further be used to compare the quality of
competing protocols.
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Abstract. A new protocol designed for real-time applications, the Data-
gram Congestion Control Protocol (DCCP), is specified informally in a
final Internet Draft that has been approved as an RFC (Request For
Comment). This paper analyses DCCP’s connection management pro-
cedures modelled using Coloured Petri Nets (CPNs). The protocol has
been modelled at a sufficient level of detail to obtain interesting results
including pinpointing areas where the specification is incomplete. Our
analysis discovers scenarios where the client and server repeatedly and
needlessly exchange packets. This creates a lot of unnecessary traffic,
inducing more congestion in the Internet. We suggest a modification to
the protocol that we believe solves this problem.

Keywords: DCCP, Internet Protocols, Coloured Petri Nets, State space
methods.

1 Introduction

Streaming media applications and online games are becoming increasingly pop-
ular on the Internet. Because these applications are delay sensitive, they use the
User Datagram Protocol (UDP) rather than the Transmission Control Protocol
(TCP). The users then implement their own congestion control mechanisms on
top of UDP or may not implement any control mechanism at all. The growth of
these applications therefore poses a serious threat to the Internet. To tackle this
problem, an Internet Engineering Task Force (IETF) working group is develop-
ing a new transport protocol, called the Datagram Congestion Control Protocol
(DCCP) [5–8]. The purpose of DCCP is to support various congestion control
mechanisms that suit different applications. It therefore could replace TCP/UDP
for delay sensitive applications and become the dominant transport protocol in
the Internet. Hence we consider that it is important to verify DCCP as soon as
possible, to remove errors and ambiguities and ensure its specification is com-
plete before implementation.

In this paper, Coloured Petri Nets (CPNs) [4] are used to model and analyse
DCCP’s connection management procedures. We chose CPNs because they are

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 143–158, 2005.
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used widely to model and analyse concurrent and complex systems [1,4] including
transport protocols like TCP [2,3]. We have previously applied our methodol-
ogy [2] to earlier versions of DCCP. We demonstrated [11] that a deadlock occurs
in DCCP version 5 [6] during DCCP connection setup. Further work [9] upgraded
the model to version 6 [7] and also discovered undesired terminal states. These
models [11,9] were incomplete, in that they did not include DCCP’s synchroni-
sation procedures, which are used in conjunction with connection management.

As far as we are aware, this paper describes the first formal specification of
DCCP’s connection establishment, close down and synchronisation procedures
for version 11 [8] of the specification. Further, using a set of initial configurations,
we incrementally analyse the connection management procedures including the
synchronization mechanism. Although no deadlock or livelock is found, we dis-
cover some chatter in the protocol where both ends repeatedly exchange packets,
creating a lot of unnecessary traffic. We canvass a possible solution to this prob-
lem. A further contribution of this paper is the identification of areas where the
specification is incomplete.

This paper is organised as follows. To make the paper self-contained, section
2 summarises DCCP’s connection management procedures. The CPN model
of DCCP is illustrated in section 3, which starts with a statement of scope and
modelling assumptions, and closes with a discussion of areas of incompleteness in
the specification. Section 4 presents our analysis results and section 5 summarises
our work.

2 Datagram Congestion Control Protocol

DCCP [8] is a connection oriented protocol designed to overcome the problem
of uncontrolled UDP traffic. The connection management procedures have some
similarities with TCP, with some states being given the same names. However,
DCCP’s procedures are substantially different from those of TCP. For example,
connection establishment uses a 4-way handshake (rather than 3), there is no
notion of simultaneously opening a connection, connection release is simpler, as
it does not aim to guarantee delivery of data in the pipeline, and the use of
sequence numbers is quite different. There is also a procedure which allows a
server to request that the client closes the connection and waits for 2 Maximum
packet lifetimes (MPL) to ensure all old packets are removed, before a new
instance of the connection can be established, rather than the server having
to wait for this period. Further, DCCP includes procedures for resynchronizing
sequence numbers. This section summarises the key features of DCCP connection
management that we wish to model and analyse.

2.1 DCCP Packet Format

Like TCP, DCCP packets comprise a sequence of 32 bit words as shown in Fig.
1. The DCCP header contains 16 bit source and destination port numbers, an 8
bit data offset, a 16 bit checksum and sequence and acknowledgement numbers
in a very similar way to TCP. However, there are significant differences. DCCP
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Res Type = Reserved Sequence Number (high bits)

1

Sequence Number (low bits)

Reserved Acknowledge Number 
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Acknowledge Number (low bits)

Options and Padding

Application Data

Fig. 1. DCCP Packet Format

defines 10 packets that are encoded using a 4 bit Packet Type field, rather
than the control bits used in TCP (for SYN, FIN, RST, ACK). The packets
are: Request, Response, Data, DataAck, Ack, CloseReq, Close, Reset, Sync and
SyncAck. Sequence (and acknowledgement) numbers are 48 bits long (instead
of 32 bits) and number packets rather than octets. The sequence number of a
DCCP-Data, DCCP-Ack or DCCP-DataAck packet may be reduced to 24 bits
by setting the X field to 0. CCVal, a 4 bit field, contains a value that is used by
the chosen congestion control mechanism [8]. Checksum Coverage (CsCov), also
a 4 bit field, specifies how much of the packet is protected by the 16 bit Checksum
field. Finally, the Options field can contain information such as Cookies and time
stamps but also allows DCCP applications to negotiate various features such as
the Congestion Control Identifier (CCID) and the size (width) of the Sequence
Number validity window [8].

2.2 Connection Management Procedures

The state diagram, shown in Fig. 2, illustrates the connection management pro-
cedures of DCCP. It comprises nine states rather than TCP’s eleven states.
The typical connection establishment and close down procedures are shown
in Fig. 3. Like TCP, a connection is initiated by a client issuing an “active
open” command. We assume that the application at the server has issued a
“passive open” command. After receiving the “active open”, the client sends a
DCCP-Request packet to specify the client and server ports and to initialize
sequence numbers. On receiving the DCCP-Request packet, the server replies
with a DCCP-Response packet indicating that it is willing to communicate with
the client. The response includes the server’s initial sequence number and any
features and options that the server agrees to. It also directly acknowledges re-
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+---------------------------+ +---------------------------+
| v v |
| +----------+ |
| +-------------+ CLOSED +------------+ |
| | passive +----------+ active | |
| | open open | |
| |  snd Request | |
| v  v |
| +----------+ +----------+ |
| | LISTEN | | REQUEST | |
| +----+-----+ +----+-----+ |
| | rcv Request rcv Response | |
| | snd Response snd Ack | |
| v  v |
| +----------+ +----------+ |
| | RESPOND | | PARTOPEN | |
| +----+-----+ +----+-----+ |
| | rcv Ack/DataAck rcv packet | |
| |  | |
| |  +----------+ | |
| +------------>| OPEN |<-----------+ |
| +--+-+--+--+ |
| server active close | | | active close |
| snd CloseReq | |  | or rcv CloseReq |
| | | |  snd Close |
| | | |  |
| +----------+ | | |  +----------+ |
| | CLOSEREQ |<---------+ | +--------->| CLOSING | |
| +----+-----+ | +----+-----+ |
| | rcv Close | rcv Reset | |
| | snd Reset | | |
|<---------+ | v |
| | +----+-----+ |
| rcv Close | | TIMEWAIT | |
| snd Reset | +----+-----+ |
+-----------------------------+ | |

+-----------+
2MSL timer expires

Fig. 2. DCCP State Diagram [8]

ceiving the DCCP-Request. Note that acknowledgements are not cumulative.
The client sends an DCCP-Ack or DCCP-DataAck packet to acknowledge the
DCCP-Response packet and enters PARTOPEN (this is a new state introduced
in version 6 of the protocol). On receiving an acknowledgement from the client,
the server enters the OPEN state and is ready for data transfer. At the client,
after receiving one of a DCCP-Data, DCCP-DataAck, DCCP-Ack or DCCP-
SyncAck packet, the client enters OPEN indicating that the connection is estab-
lished. During data transfer, the server and client may exchange DCCP-Data,
DCCP-Ack and DCCP-DataAck packets (for piggybacked acknowledgements).

Fig. 3 (b) shows the typical close down procedure. The application at the
server issues a “server active close” command. The server sends a DCCP-
CloseReq packet and enters the CLOSEREQ state. When the client receives
a DCCP-CloseReq packet, it must generate a DCCP-Close packet in response.
After the server receives a DCCP-Close packet, it must respond with a DCCP-
Reset packet and enter the CLOSED state. When the client receives the DCCP-
Reset packet, it holds the TIMEWAIT state for 2 MPL1 before entering the
CLOSED state.

Alternatively, either end will send a DCCP-Close packet to terminate the
connection when receiving an “active close” command from the application.
The end that sends the DCCP-Close packet will hold the TIMEWAIT state

1 Maximum packet lifetime time (MPL) = Maximum Segment Lifetime (MSL) in
TCP.
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Fig. 3. Typical Connection Establishment and Release Scenarios
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CLOSED 
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      (seq= n+1, ack= m)  TIMEWAIT(2 MPL)
                     .      

             . 
                     CLOSED       

(b)

Fig. 4. Alternative Close Down Procedures

as shown in Fig. 4. Beside these three closing procedures, there are another 2
possible scenarios concerned with simultaneous closing. The first procedure is
invoked when both users issue an “active close”. The second occurs when the
client user issues an “active close” and the application at the server issues the
“server active close” command.

2.3 Retransmission and Back-Off Timers

Besides the timer (2MPL) in the TIMEWAIT state, DCCP defines two further
timers: Retransmission and Back-off. When the sending client does not receive
an answer, the timeout period that it waits before retransmitting a packet is de-
termined by the Retransmission Timer (typically 2RTT2). After retransmitting
for a period (typically 4MPL), it sends a DCCP-Reset and enters the CLOSED
state. This timeout period is determined by the Back-off Timer. Generally, if the

2 RTT = Round Trip Time.
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Table 1. Validity Condition for Sequence and Acknowledgement Numbers

Packet Type Sequence Number Check Acknowledgement Number Check
Request SWL ≤ seqno ≤ SWH N/A
Response SWL ≤ seqno ≤ SWH AWL ≤ ackno ≤ AWH

Data SWL ≤ seqno ≤ SWH N/A
Ack SWL ≤ seqno ≤ SWH AWL ≤ ackno ≤ AWH

DataAck SWL ≤ seqno ≤ SWH AWL ≤ ackno ≤ AWH
CloseReq GSR < seqno ≤ SWH GAR ≤ ackno ≤ AWH

Close GSR < seqno ≤ SWH GAR ≤ ackno ≤ AWH
Reset GSR < seqno ≤ SWH GAR ≤ ackno ≤ AWH
Sync SWL ≤ seqno AWL ≤ ackno ≤ AWH

SyncAck SWL ≤ seqno AWL ≤ ackno ≤ AWH

server does not receive a timely response (typically 4MPL), it sends a DCCP-
Reset and enters CLOSED. This timeout period is also governed by the Back-off
Timer. However when in CLOSEREQ if no response is received within 2 RTT,
the server retransmits DCCP-CloseReq. Retransmissions typically occur for 4
MPL but if no response is received, a DCCP-Reset is sent and the server en-
ters the CLOSED state. The sequence number of every retransmitted packet is
always increased by one.

2.4 Variables and Sequence Validity

For each connection, DCCP entities maintain a set of state variables. Among
those, the important variables are Greatest Sequence Number Sent (GSS), Great-
est Sequence Number Received (GSR), Greatest Acknowledgement Number Re-
ceived (GAR), Initial Sequence Number Sent and Received (ISS and ISR), Valid
Sequence Number window width (W) and Acknowledgement Number validity
window width (AW). Based on the state variables, the valid sequence and ac-
knowledgement number intervals are defined by Sequence Number Window Low
and High [SWL,SWH], and Acknowledgement Number Window Low and High
[AWL,AWH] according to the equations of pages 40–41 of the DCCP Defini-
tion [8]. Additionally the SWL and AWL are initially not less than the initial
sequence number received and sent respectively.

Generally, received DCCP packets that have sequence and acknowledgement
numbers inside these windows are valid, called “sequence-valid”. Table 1 shows
the window ranges for each packet type. The DCCP-CloseReq, DCCP-Close and
DCCP-Reset are valid only when seqno > GSR and ackno ≥ GAR.

However, there are some exceptions to Table 1, depending on state. According
to the pseudo code (see [8] pages 54–58), no sequence validity check is performed
in the CLOSED, LISTEN and TIMEWAIT states. In the REQUEST state, only
the acknowledgement numbers of the DCCP-Response and DCCP-Reset packets
are validated. Other packet types received are responded to with a DCCP-Reset.
The acknowledgement number of a DCCP-Reset received in the REQUEST state
is validated using [AWL,AWH] instead of [GAR,AWH].
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2.5 DCCP-Reset Packets

An entity in the CLOSED, LISTEN or TIMEWAIT state ignores a DCCP-Reset
packet while replying to any other unexpected packet types with DCCP-Reset. In
other states on receiving a sequence-valid DCCP-Reset packet, the entity goes
to TIMEWAIT for 2MPL and then enters the CLOSED state. If the DCCP-
Reset packet received is sequence-invalid, the entity responds with a DCCP-
Sync. However a sequence-invalid DCCP-Response or DCCP-Reset received in
the REQUEST state will be responded to with a DCCP-Reset instead of a
DCCP-Sync. When the client is in the REQUEST state, it has not received an
initial sequence number (no GSR). In this case the acknowledgement number of
the DCCP-Reset is set to zero.

2.6 Resynchronizing Sequence Numbers

Malicious attack or a burst of noise may result in state variables and sequence
and acknowledgement number windows being unsynchronized. The DCCP-Sync
and DCCP-SyncAck packets are used to update GSR and to resynchronize
both ends. When receiving a sequence-invalid packet, an end must reply with
a DCCP-Sync packet. It does not update GSR because the sequence number
received could be wrong. However the acknowledgement number in the DCCP-
Sync packet is set equal to this invalid received sequence number. After re-
ceiving a sequence-valid DCCP-Sync, the end must update its GSR variable
and reply with a DCCP-SyncAck. It does not update GAR. After receiving
a sequence-valid DCCP-SyncAck, an end updates GSR and GAR. An end ig-
nores sequence-invalid DCCP-Sync and DCCP-SyncAck packets, except in the
CLOSED, TIMEWAIT, LISTEN and REQUEST states where a DCCP-Reset
is sent in response.

3 Modelling DCCP’s Connection Management
Procedures

3.1 Modelling Scope and Assumptions

Our model comprises all the state transitions of Fig. 2, including the following
details from the DCCP Definition [8]: the pseudo code of section 8.5 (pages 54–
58); the narrative description of DCCP’s event processing in section 8 (pages
48–54); and packet validation in section 7 (pages 38–44). We also make the fol-
lowing assumptions regarding DCCP connection management when creating our
CPN model.

1. We only consider at single connection instance while ignoring the proce-
dures for data transfer, congestion control and other feature options. A DCCP
packet is modelled by its packet type, sequence number and acknowledgement
number. Other fields in the DCCP header are omitted because they do not affect
the operation of the connection management procedure.

2. Sequence numbers are assumed not to wrap.
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Fig. 5. Hierarchy Page

3. We do not consider misbehaviour or malicious attack.
4. Reordered or lossy channels may mask out possible deadlock, such as

unspecified receptions. Thus we incrementally study [2] the CPN model with
the following channel characteristics: FIFO without loss, reordered without loss,
FIFO with loss, and reordered with loss. However due to space limitations, we
only discuss the case when the communication channels can delay and reorder
packets without loss.

5. We set the window size to 100 packets because it is specified as the initial
default value in the specification (page 31 of DCCP [8]).

6. Without loss of generality, we only use DCCP-Ack and not DCCP-DataAck
in order to reduce the size of the state space.

3.2 Structure

The structure of our DCCP CPN model has been influenced by our earlier
work [3,11]. It is structured into four hierarchical levels shown in Fig. 5, and com-
prises 6 places, 27 substitution transitions, 63 executable transitions and 9 func-
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CB

Client_State

1‘(CLOSED, 0,
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Fig. 6. The DCCP Overview Page

1 color PacketType1 = with Request | Data;

2 color PacketType2 = with Sync | SyncAck | Response | Ack | DataAck

| CloseReq | Close | Rst;

3 var p_type1:PacketType1;

4 var p_type2:PacketType2;

5 color SN = IntInf with ZERO..MaxSeqNo; var sn:SN;

6 color SN_AN = record SEQ:SN*ACK:SN; var sn_an:SN_AN;

7 color PacketType1xSN = product PacketType1*SN;

8 color PacketType2xSN_AN = product PacketType2*SN_AN;

9 color PACKETS = union PKT1:PacketType1xSN+PKT2:PacketType2xSN_AN;

Fig. 7. Definition of DCCP PACKETS

tions. The first level is named DCCP. This level calls a page named DCCP CM
(DCCP connection management) twice (for the client and the server). This al-
lows one DCCP entity to be defined and instantiated as either a client or server,
greatly simplifying the specification and its maintenance. This has proven to be
very beneficial due to there being 6 revisions since we first modelled DCCP [11].
The third level has ten pages, describing the procedures that are followed in each
DCCP state. Processing common to several states is specified in the Common
Processing page. For convenience of editing and maintaining the model, we group
the transitions that have common functions into the fourth level pages. Signifi-
cant effort has gone into validating this model against the DCCP definition [8]
by using manual inspection and interactive simulation [2].

3.3 DCCP Overview

The top level, corresponding to DCCP#1 in the hierarchy page, is the DCCP
Overview Page shown in Fig. 6. It is a CPN diagram comprising 6 places (repre-
sented by ellipses), two substitution transitions (represented by rectangles with
an HS tag) and arcs which connect places to transitions and vice versa. The
client is on the left and the server on the right and they communicate via two
channels, shown in the middle of Fig. 6. We model unidirectional and re-ordering
channels from the client to the server and vice versa by places named Ch C S
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1 color STATE = with CLOSED | LISTEN | REQUEST | RESPOND |

PARTOPEN | S_OPEN | C_OPEN | CLOSEREQ | CLOSING | TIMEWAIT;

2 color RCNT = int; var rcnt:RCNT; (*Retransmit Counter *)

3 color GS = record GSS:SN*GSR:SN*GAR:SN; var g:GS;

4 color ISN = record ISS:SN*ISR:SN; var isn:ISN;

5 color CB = product STATE*RCNT*GS*ISN;

6 color COMMAND = with p_Open | a_Open | server_a_Close | a_Close;

Fig. 8. DCCP’s Control Block and User Commands

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

RcvSyncAckIn
PARTOPEN

RcvSyncAck

[state = RESPOND orelse state = C_OPEN 
orelse state = S_OPEN orelse state = CLOSEREQ 
orelse state = CLOSING]

RcvSync

[state = RESPOND orelse
state = S_OPEN orelse
state = C_OPEN orelse
state = PARTOPEN orelse
state = CLOSEREQ orelse
state = CLOSING]

(PARTOPEN,rcnt,g,isn)

if PktValid(SyncAck,sn_an,g,isn) then
(C_OPEN, 0,{GSS=#GSS(g),
GSR=#SEQ(sn_an), GAR=Update(#GAR(g),
#ACK(sn_an))}, isn)
else (PARTOPEN,rcnt,g,isn)

PKT2(SyncAck,sn_an)

(state,rcnt,g,isn)

if PktValid(SyncAck,sn_an,g,isn) then
(state,rcnt,{GSS=#GSS(g),
GSR=#SEQ(sn_an), GAR=Update(#GAR(g),
#ACK(sn_an))},isn) else (state,rcnt,g,isn)

PKT2(SyncAck,sn_an)

if PktValid(Sync, sn_an, g, isn) then
1‘PKT2(SyncAck,{SEQ=incr(#GSS(g)),
ACK=#SEQ(sn_an)})
else empty

PKT2(Sync,sn_an)

(state, rcnt, g, isn)

if PktValid(Sync,sn_an,g,isn) then
(state,rcnt,{GSS=incr(#GSS(g)),
GSR=#SEQ(sn_an), GAR=#GAR(g)}, isn)
else (state,rcnt,g, isn)

Fig. 9. The Sync Rcv Page

and Ch S C which are typed by PACKETS. Fig. 7 declares PACKETS (line 9)
as a union of packets with and without acknowledgements.

Places, Client State and Server State, typed by CB (Control Block), store
DCCP state information. Fig. 8 defines CB (line 5) as a product comprising
STATE, RCNT (Retransmit Counter), GS (Greatest Sequence Number) and ISN
(Initial Sequence Number). Places named App Client and App Server, typed by
COMMAND, model DCCP user commands. Fig. 8 also defines COMMAND
(line 6). Tokens associated with these places shown on the top of ellipses, for
example “a Open”, are called initial markings. They represent the initial state
of the system.

3.4 Second, Third and Fourth Level Pages

The substitution transitions DCCP C and DCCP S in Fig. 6 are linked to the
second level page named DCCP CM (as shown in Fig. 5). DCCP CM is orga-
nized into a further ten substitution transitions linked to the third level pages,
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1 fun incr(sn:SN) = if (sn = MaxSeqNo) then ZERO else IntInf.+(sn, ONE);

2 fun Update(new:SN,old:SN) = if (IntInf.>(new,old)) then new else old;

3 val W = IntInf.fromInt(100); val AW = IntInf.fromInt(100);

4 fun SeqValid(p_type2:PacketType2, s2:SN_AN, g:GS, isn:ISN) =

5 let (* Sequence Number Validity *)

6 val SWL=IntInf.max(IntInf.-(IntInf.+(#GSR(g),ONE),

7 IntInf.div(W,IntInf.fromInt(4))),#ISR(isn));

8 val SWH=IntInf.+(IntInf.+(#GSR(g),ONE),

9 RealToIntInf 4((IntInfToReal 4 W)*3.0/4.0+0.5));

10 in case p_type2 of Response => IntInf.>=(#SEQ(s2),SWL)

11 andalso IntInf.<=(#SEQ(s2),SWH)

12 | Ack => IntInf.>=(#SEQ(s2),SWL) andalso IntInf.<=(#SEQ(s2),SWH)

13 | DataAck => IntInf.>=(#SEQ(s2),SWL) andalso IntInf.<=(#SEQ(s2),SWH)

14 | CloseReq => IntInf.>(#SEQ(s2),#GSR(g)) andalso IntInf.<=(#SEQ(s2),SWH)

15 | Close => IntInf.>(#SEQ(s2),#GSR(g)) andalso IntInf.<=(#SEQ(s2),SWH)

16 | Rst => IntInf.>(#SEQ(s2),#GSR(g)) andalso IntInf.<=(#SEQ(s2),SWH)

17 | Sync => IntInf.>=(#SEQ(s2),SWL)

18 | SyncAck => IntInf.>=(#SEQ(s2),SWL)

19 | _ => false

20 end;

21 fun AckValid(p_type2:PacketType2, s2:SN_AN, g:GS, isn:ISN) =

22 let (* Acknowledgement Number Validity*)

23 val AWL = IntInf.max(IntInf.-(IntInf.+(#GSS(g),ONE),AW),#ISS(isn));

24 val AWH = #GSS(g);

25 in case p_type2 of Response => IntInf.>=(#ACK(s2),AWL)

26 andalso IntInf.<=(#ACK(s2),AWH)

27 | Ack => IntInf.>=(#ACK(s2),AWL) andalso IntInf.<=(#ACK(s2),AWH)

28 | DataAck => IntInf.>=(#ACK(s2),AWL) andalso IntInf.<=(#ACK(s2),AWH)

29 | CloseReq =>IntInf.>=(#ACK(s2),#GAR(g)) andalso IntInf.<=(#ACK(s2),AWH)

30 | Close => IntInf.>=(#ACK(s2),#GAR(g)) andalso IntInf.<=(#ACK(s2),AWH)

31 | Rst => IntInf.>=(#ACK(s2),#GAR(g)) andalso IntInf.<=(#ACK(s2),AWH)

32 | Sync => IntInf.>=(#ACK(s2),AWL) andalso IntInf.<=(#ACK(s2),AWH)

33 | SyncAck => IntInf.>=(#ACK(s2),AWL) andalso IntInf.<=(#ACK(s2),AWH)

34 | _ => false

35 end;

36 fun PktValid(p_type2:PacketType2, s2:SN_AN, g:GS, isn:ISN) =

37 SeqValid(p_type2:PacketType2,s2:SN_AN,g:GS,isn:ISN)

38 andalso AckValid(p_type2:PacketType2,s2:SN_AN, g:GS, isn:ISN);

Fig. 10. Functions used in the Sync Rcv Page

representing the processing required in each DCCP state. We group the tran-
sitions that have common functions into the fourth level pages. In particular,
we model the behaviour of DCCP in the RESPOND, PARTOPEN, OPEN,
CLOSEREQ and CLOSING states when receiving DCCP-Reset and DCCP-
Sync packets into pages named Reset Rcv and Sync Rcv pages under the Com-
mon Processing page in the third level. The RcvOthPkt page models DCCP’s
behaviour in the OPEN, CLOSEREQ and CLOSING states when receiving pack-
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ets other than DCCP-CloseReq, DCCP-Closing, DCCP-Reset, DCCP-Sync and
DCCP-SyncAck. Space limits prevent us from including all pages, but a repre-
sentative example is given in Fig. 9. The figure shows the level of detail required
to capture the procedures to be followed by both the client and the server when
receiving the DCCP-Sync and DCCP SyncAck packets. Fig. 10 shows functions
incr(), Update() and PktValid() used in the Sync Rcv page.

3.5 Incompleteness in the Specification

User commands appear in the state diagram of Fig. 2 but the specification [8]
does not provide any detail. As stated in version 5 [6], the application may try to
close during connection establishment. Thus an “active close” command could
occur in the REQUEST, RESPOND, PARTOPEN and OPEN states. Similarly,
at the server, a “serve active close” command could also occur in the RESPOND
and OPEN states. We assume this to be the case in our model, but do not analyse
it in this paper.

When the server enters the RESPOND state, it has no information about
GAR which is needed to validate the acknowledgement number of DCCP-
CloseReq, DCCP-Close and DCCP-Reset. We believe that the specification does
not currently cater for the situation when the server receives one of these pack-
ets in the RESPOND state. This may happen when the client’s user issues an
“active close” command while it is in the REQUEST state. The solution to this
problem needs further investigation and we do not analyse these scenarios in
this paper.

4 Analysis of DCCP CPN Model

4.1 Initial Configuration

Using an incremental approach [2] we analyse different connection management
scenarios by choosing a number of different initial markings. This is to gain con-
fidence in the model and to provide insight into DCCP’s behaviour. In this paper
we limit the maximum number of retransmissions to one to make the generation
of the state space tractable. We analyse the DCCP model using Design/CPN
4.0.5 on a Pentium-IV 2 GHz computer with 1GB RAM. Initial markings of each
scenario are shown in Table 2.

Case I is for connection establishment. The client and server are both
CLOSED with ISS set to five. The client issues an “active Open” command
while the server issues a “passive Open” command. There are five scenarios of
connection termination when both ends are in the OPEN state. Cases II, III and
IV model the case when only one end issues a close command. Cases V and VI
represent the simultaneous close scenarios when both ends issue close commands
at the same time. Each end has the initial values of GSS, GSR and GAR shown
in Table 2, and the channels are empty.
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Table 2. Initial Configurations

Case App Client App Server Client State Server State
I 1‘a Open 1‘p Open CLOSED CLOSED

GSS=0,GSR=0,GAR=0 GSS=0,GSR=0,GAR=0
ISS=5,ISR=0 ISS=5,ISR=0

II 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

III 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

IV 1‘Server OPEN SOPEN
a Close GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

V 1‘a Close 1‘a Close OPEN OPEN
GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

VI 1‘a Close 1‘Server OPEN OPEN
a Close GSS=200,GSR=200,GAR=200 GSS=200,GSR=200,GAR=200

4.2 State Space Results

Table 3 summarizes the state space statistics. The last column shows the number
of terminal states which have the same pair of states but different value of GSS,
GSR and GAR. In all cases nothing is left in the channels.

In case I, connection establishment, there are three different types of terminal
states. The first type is desired when both ends are in OPEN. The second type
is when both ends are CLOSED. This can occur when the request or response
is sufficiently delayed so that the Back-off timer expires, closing the connection.
The third type is when the client is CLOSED, but the server is in the LISTEN
state. This situation can happen when the server is initially CLOSED and thus
rejects the connection request. After that the server recovers and moves to the
LISTEN state. Although we are unable to obtain the full state space for case
VI because of state explosion, we can obtain partial state spaces. Case VI a) is
when there is no retransmission. Case VI b) is when only one DCCP-Close is
retransmitted. Case VI c) is when only one DCCP-CloseReq is retransmitted.
Cases II, III, IV, V, VI a), VI b) and VI c) have only one type of terminal state
when both ends are in CLOSED.

The Strongly Connected Component (SCC) graphs of all cases (except case
VI) were generated. The size of each SCC graph is the same as the size of the
state space. This indicates that there are no cycles and hence no livelocks in the
state spaces.

4.3 DCCP Chatter During Connection Establishment

Further analysis of case I shows that the state space size grows almost linearly
with ISS, as illustrated in Table 4. We have investigated how ISS affects the
state space size and found an interesting result. Fig. 11 shows a trace illustrat-
ing chatter for the case when ISS=2. The values in brackets, for instance (7,2,3),
are (GSS,GSR,GAR). The server, in the CLOSED state, repeatedly sends a
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Table 3. State Space Results

Case Nodes Arcs Time Dead Markings
(sec) Client State Server State Number

I 171,040 457,535 1,067 OPEN OPEN 67
CLOSED CLOSED 1,153
CLOSED LISTEN 4

II 73 119 0 CLOSED CLOSED 8
III 73 119 0 CLOSED CLOSED 8
IV 30,787 76,796 62 CLOSED CLOSED 645
V 3,281 8,998 3 CLOSED CLOSED 64
VI >545,703 >1,475,936 >152,200 CLOSED CLOSED >702

VI a) 437 828 0 CLOSED CLOSED 33
VI b) 3,324 8,381 3 CLOSED CLOSED 89
VI c) 33,644 85,926 74 CLOSED CLOSED 642

Table 4. Growth of the State Space as a Function of ISS

ISS Nodes Arcs Time Dead Markings
(sec) Client State Server State Number

1 86,058 225,485 325 OPEN OPEN 67
CLOSED CLOSED 733
CLOSED LISTEN 4

2 104,464 275,540 457 OPEN OPEN 67
CLOSED CLOSED 823
CLOSED LISTEN 4

3 124,763 330,900 596 OPEN OPEN 67
CLOSED CLOSED 923
CLOSED LISTEN 4

4 146,955 391,565 785 OPEN OPEN 67
CLOSED CLOSED 1,022
CLOSED LISTEN 4

5 171,040 457,535 1,067 OPEN OPEN 67
CLOSED CLOSED 1,153
CLOSED LISTEN 4

sequence-invalid DCCP-Reset packet while the client in PARTOPEN repeat-
edly responds with DCCP-Sync. The sequence and acknowledgement numbers
in both packets increase over time until the sequence number of the DCCP-
Reset received is greater than the client’s GSR and becomes sequence-valid
according to Table 1. Fig.11 shows the sequence number of the DCCP-Reset
generated increases from zero to three while the client’s GSR is equal to two.
When receiving the sequence-valid DCCP-Reset (with seq=3), the client enters
the TIMEWAIT state and then CLOSED after 2 MPL. A similar situation hap-
pens when the server enters the LISTEN state after sending the DCCP-Reset
with sequence number zero. This behaviour creates unnecessary traffic, adversely
affecting congestion in the Internet. It will be particularly severe if the initial
sequence number is even moderately large, which will often be the case.
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    Client        Server 
CLOSED            CLOSED  

   [active open]                [passive open]   
    REQUEST  Request (seq =2)        LISTEN  

 (GSS,GSR,GAR)            (GSS,GSR,GAR) 
      Request (seq =3) 

REQUEST                (x,3,x) 
   (3,x,x)  Response(seq =2,ack =3) 

   RESPOND
PARTOPEN   Ack (seq = 4,ack=2)      (2,3,x)      

      (4,2,3)            Time Out 
          Rst (seq =3, ack =3)

               CLOSED      
          Rst (seq = 0, ack = 2)               
        Sync (seq = 5,ack=0)   

 (5,2,3) 
   Rst (seq = 1, ack = 5)      CLOSED
    Sync (seq = 6,ack=1) 

       (6,2,3)   
   Rst (seq = 2, ack = 6)      CLOSED 

       Sync (seq = 7,ack=2) 
 (7,2,3) 

  Rst (seq = 3, ack = 7)      CLOSED 
 TIME-WAIT    

CLOSED
Rst (seq = 3, ack = 4) 

Fig. 11. Repeatedly Exchanged Messages for Case I with ISS=2

This problem is caused by the invalid DCCP-Reset packet having sequence
number zero. Because there are no sequence number variables in the CLOSED
or LISTEN state, according to the specification [8] section 8.3.1, the sequence
number of the DCCP-Reset packet generated in the CLOSED and LISTEN
states is the received acknowledgement number plus one. If there is no received
acknowledgement number because the received packet type is DCCP-Request
(or DCCP-Data), the sequence number of the DCCP-Reset packet is set to zero
and the acknowledgement number is set to the received sequence number.

In versions 5 and 6 of the draft specification[6,7], the DCCP-Reset packet with
sequence number zero is specified as a valid packet. However, our previous work
[9,11] shows that this valid DCCP-Reset causes deadlocks where the server is in
the CLOSED state and the client is in OPEN. Since draft specification version 7,
a DCCP-Reset with sequence number zero is no longer considered a valid packet.
A solution may be to ignore an incoming packet without an acknowledgement
number when received in the CLOSED or LISTEN state. This is because every
state (except CLOSED and LISTEN) has a Back-off timer, which will guarantee
that the other end will eventually go to the CLOSED state.

5 Conclusion

This paper has illustrated a formal specification and has provided an initial
but detailed analysis of DCCP’s connection management procedures. Signifi-
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cant effort has been spent on ensuring that the CPN specification accurately
captures the pseudo code and narrative description in the final Internet Draft
version 11 [8]. This has revealed areas in the specification which we believe to
be incomplete as discussed in section 3.5. Our analysis has discovered scenarios
where the client keeps sending DCCP-Sync packets in response to the server
sending sequence-invalid DCCP-Reset packets. This may have an adverse effect
on congestion in the Internet, if the initial sequence number chosen is even mod-
erately large. Future work will involve modifying the procedures to eliminate
this problem and verifying that the revised model works correctly. We need to
analyse our model when an application closes during connection establishment
as was discussed in section 3.5. We would also like to extend our work to include
Option/Feature negotiation.
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Abstract. We study the problem of thread allocation in asynchronous
distributed real-time and embedded systems. Each distributed node han-
dles a limited set of resources, in particular a limited thread pool. Differ-
ent methods can be invoked concurrently in each node, either by external
agents or as a remote call during the execution of a method. In this pa-
per we study thread allocation under a WaitOnConnection strategy, in
which each nested upcall made while a thread is waiting must be made
in a different thread.

Westudyprotocols that control the allocation of threads toguaranteethe
absence of deadlocks. First, we introduce a computational model in which
we formally describe the different protocols and their desired properties.
Then, we study two scenarios: a single agent performing sequential calls,
and multiple agents with unrestricted concurrency. For each scenario we
present (1) algorithms to compute the minimum amount of resources to
avoid deadlocks, and (2) run-time protocols that control the allocation
of these resources.

1 Introduction

In this paper we present a computational model for thread allocation in dis-
tributed real-time and embedded (DRE) systems. The model is targeted at
component middleware architectures in which components make remote two-way
method calls to other components. In particular, we consider the case where a
remote method call f by component A to component B may result in one or
more method calls from B (or other components) to A before f returns. These
method calls are known as “nested upcalls”.

Nested upcalls can occur in the context of a variety of middleware con-
currency architectures, including the Leader/Followers [16] approach used in
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TAO [15, 10] and the Half-Sync/Half-Async [16] approach used in the variant of
nORB [4] used to integrate actual and simulated system components [18]. These
kinds of middleware have been used in turn to build a wide range of DRE systems
for applications ranging from avionics mission computing information systems [6]
to active damage detection using MEMS vibration sensor/actuators [20].

Ensuring the safety and liveness of concurrent nested upcalls in middleware
for DRE systems is thus an important and compelling problem. In current prac-
tice, middleware concurrency architectures are realized in software frameworks
designed according to documented best practices, but it is still possible for un-
foreseen factors introduced during the design to result in safety and liveness
violations [17]. Hence, a more formal basis can have a significant impact on the
correctness of these systems, which motivates the work presented here.

There are two main strategies to deal with nested upcalls. The first is known
as WaitOnConnection, where component A holds on to the thread from which
method call f was invoked. With this strategy any nested calls to A will have to
acquire a new thread to run. The second approach relies on the use of a reactor,
a well-known technique for multiplexing asynchronously arriving events onto
one or more threads [16]. This approach is known as WaitOnReactor , in which
component A releases the thread after the method call is made. To preserve the
semantics of the two-way call, it maintains a stack to keep track of the order
in which methods were invoked, such that they can be exited in reverse order.
Both approaches have advantages and disadvantages. A disadvantage of the first
approach is that threads cannot be reused while the reactor is waiting for the
method to return, which can lead to deadlock. A disadvantage of the second
approach is that the stack must be unwound in last-in-first-out order, resulting
in blocking delays for the completion of methods initiated earlier, which can
lead to deadline violations. This may be especially problematic in systems with
multiple agents.

In other complementary research [19] we have examined safety and liveness
for the WaitOnReactor approach. In this paper we only consider the WaitOn-

Connection approach, and focus on deadlock avoidance in that context. We
assume we are given a set of reactors R, hosting components of the system, and
a set of call-graphs G, representing the possible call sequences that components
can invoke. We also assume that each call graph may be invoked multiple times
concurrently. The goals are: (1) to determine what minimum number of threads
is necessary in each reactor to avoid deadlock; and (2) to construct protocols
that are deadlock free and make efficient use of the threads available (that is,
they do not unnecessarily block invocations). We will consider two cases: (1) the
number of concurrent processes is fixed in advance (which is common in DRE
systems), and (2) the number of concurrent processes is not bounded (such as
in network services).

Related Work Deadlocks have been studied in many contexts. In computer
science, one of the first protocols for deadlock avoidance was Dijkstra’s Banker’s
algorithm [5], which initiated much follow-up research [7–9, 1], and which is
still the basis for most current deadlock avoidance algorithms. In the control

.
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community, deadlock avoidance mechanisms have been studied in the context
of Flexible Manufacturing Systems (FMSs) [14, 3, 21, 13]. In contrast with the
Banker’s algorithm, in which only the maximum amount of resources is taken
into account, protocols for FMSs take into account more information about the
processes to maximize concurrency without sacrificing deadlock freedom.

In the distributed systems community (see, for example, [11]), general solu-
tions to distributed deadlock tend to be considered impractical. For example,
global consistency and atomicity would be a prerequisite for a “distributed ver-
sion” of the Banker’s algorithm. Most approaches so far have focused on deadlock
detection and roll-back (e.g. in distributed databases) and deadlock prevention
by programming discipline (e.g. by observing a partial order on locks acquired).

The protocols presented in this paper can be viewed as a practical solution to
the case where extra information is available in the form of call graphs, which is
common in DRE systems. We show that the incorporation of this information en-
ables efficient “local” protocols (that is, no communication between distributed
nodes is required at runtime) that guarantee absence of deadlock.

2 Computational Model

We define a system S as a tuple 〈R,G〉 consisting of a set of reactors R :
{r1, . . . , rk} and a set of distinct call graphs G : {G1, . . . , Gm}.

Definition 1 (Call-graph). Given a set of method names N , a call-graph is

a finite tree 〈V = (N × R), E〉 with nodes consisting of a method name and a

reactor. A node (f, r) denotes that method f runs in reactor r. An edge from

(f1, r1) to (f2, r2) denotes that method f1, in the course of its execution may

invoke method f2 in reactor r2.

For ease of exposition we assume that methods of child nodes are hosted in
a different reactor than their parent nodes. Local calls can always be run in the
same thread, implemented as conventional method calls, and are not considered
here. We use the notation f :r to represent that method f runs in reactor r.

Example 1. Figure 1 shows an example of a call-graph. The methods fi run in
reactor r, the method g runs in reactor s, and the methods hi run in reactor t.
Method f1 may invoke the remote methods g and h1.

We assume that each reactor r has a fixed number of pre-allocated threads.
Although in many modern operating systems threads can be spawned dynami-
cally, many DRE systems pre-allocate fixed sets of threads to avoid the relatively
large and variable cost of thread creation and initialization. We assume that each
reactor r has a set of local variables Vr that includes the constant Tr ≥ 1 de-
noting the number of threads present in r, and a variable tr representing the
number of available threads.

A protocol for controlling thread allocation is implemented by code executed
in a reactor before and after each method is dispatched. This code can be de-
pendent on the call graph node. The structure of a protocol is shown in Figure 2
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Fig. 2. Protocol schema

for a node n = f :r. The entry and exit sections implement the thread allocation
policy. Upon invocation, the entry section typically checks thread availability by
inspecting local variables Vr of reactor r and assigns a thread if one is available.
The method invocation section executes the code of f ; it terminates after all its
descendants in the call graph have terminated and returned. The exit section
releases the thread and may update some local variables in reactor r.

Multiple instances of these protocols may execute concurrently, one for each
invocation. Each instance is called a task . Thus the local variables of the reactor
are shared between tasks running in the same reactor, but are not visible to
tasks that reside in other reactors.

The global behavior of a system S is represented by sequences of (global)
states, where a state σ : 〈P , sR〉 contains a set of tasks together with their local
states, P , and a valuation sR of the local variables in all reactors. To describe a
task state we use the notion of labeled call graph:

Definition 2 (Labeled Call Graph). Let �0, �1, �2, and �3 be protocol location

labels representing the progress of a task, as illustrated in Figure 2. A labeled

call graph (G, γ) is an instance of a call graph G ∈ G and a labeling function

γ : NG �→ {⊥, �0, �1, �2, �3} that maps each node in the call graph to a protocol

location, or to ⊥ for method calls that have not been performed yet.

Then, formally, the state of a task is modeled as a labeled call graph. A subtree
of a labeled call graph models the state of a sub-task . When the context of the
subtree is not relevant, we will write task to refer to the corresponding sub-task.
A task is active if its root is labeled �1 or �2, waiting if it is labeled �0, and
terminated if it is labeled �3. We use upper-case letters P, Q, P1, . . . to denote
tasks and lower case letters n, n1, . . . to denote call-graph nodes. To simplify the
presentation, given a task P = (G, γ) we use γ(P ) as an alias of γ(root(P )). We
also say that task P is in location � if γ(P ) = �.

A system S : 〈R,G〉 gives rise to the state transition system (see [12])
Ψ : 〈V, Θ, T 〉 consisting of the following components:

– V : {I} ∪ VR: a set of variables, containing the variable I denoting a set
of labeled call graphs (tasks and their state), and the local variables VR =⋃

r∈R Vr of each reactor.
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– Θ : I = ∅ ∧
∧

r∈R Θr: the initial condition, specifying initial values for the
local reactor variables and initializing the set of tasks to the empty set.

– T : a set of state transitions consisting of the following global transitions:
1. Creation: A new task P , with γ(n) = ⊥ for all nodes n in its call graph,

is added to I:
τ1 : I ′ = I ∪ {P} ∧ pres(VR)

where pres(VR) states that all variables in VR are preserved.
2. Method invocation: Let P ∈ I and Q be a sub-task of P such that

either (a) Q = P or (b) γ(Q) = ⊥ and its parent node is in �1. A function
invocation changes the annotation of Q to �0:

τ2 : γ(Q) = ⊥ ∧ γ′(Q) = �0 ∧ pres(VR)

3. Method entry: Let Q be a waiting task whose enabling condition is
satisfied. The method entry transition marks Q as �1 and updates the
local variables in its reactor according to the protocol of the node n =
root(Q). Formally, let Enn(Vr) be the enabling condition of the entry of
the protocol of Q, and Actn(Vr , V

′
r ) represent the change in variables of

reactor r after the entry is executed; then:

τ3 : γ(Q) = �0 ∧ Enn(Vr) ∧ γ′(Q) = �1 ∧ Actn(Vr, V
′
r ) ∧ pres(VR − Vr)

4. Method execution: Let Q be a task in �1 such that all its descendants
are labeled ⊥ or �3. This transition denotes the termination of Q. The
status of Q is updated to �2:

τ4 : γ(Q)= �1∧
∧

R∈descs(Q)

(γ(R)=⊥∨γ(R) = �3)∧ γ′(Q) = �2∧ pres(VR)

5. Method exit: Let Q be a task in �2; the method-exit transition moves
Q to �3 and updates the variables in its reactor according to the exit of
the protocol for n = root(Q). Formally, let Outn(Vr , V

′
r ) represent the

transformation that the exit protocol for n performs on the variables of
reactor r; then

τ5 : γ(Q) = �2 ∧ γ′(Q) = �3 ∧ Outn(Vr , V
′
r ) ∧ pres(VR − Vr)

6. Deletion: A task P in �3 is removed from I:

τ6 : γ(P ) = �3 ∧ I ′ = I − {P}

7. Silent: All variables are preserved: τ7 : pres(V )

All transitions except Creation and Silent are called progressing transi-
tions, since they correspond to the progress of some existing task. The system as
defined is a nondeterministic system. It assumes an external environment that
determines creation of new tasks, and a scheduler that selects which task pro-
gresses. In particular, the scheduler decides which task in the entry transition
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proceeds to the method section. If any progressing transition can occur, then
some progressing transition will be taken in preference to any non-progressing
transition. Therefore, unless the system is deadlocked, an infinite sequence of
silent transitions cannot occur because a progressing transition will occur even-
tually. If in state σ there are k active tasks corresponding to methods in reactor
r, then we say that there are k threads allocated in r.

Definition 3 (Run). A run of a system Ψ is a sequence of σ0, σ1, . . . of states

such that σ0 is an initial state, and for every i, there exists a transition τ ∈ T
such that σi+1 results from taking τ from σi.

3 Properties

In this section we formally define some properties to study the correctness of the
protocols. Most properties will be presented as invariants. Figure 3(a) illustrates
the simplest possible protocol, Empty-P, in which the entry and exit sections
do nothing with the reactor variables.

Definition 4 (Invariant). Given a system S, an expression ϕ over the system

variables of S is an invariant of S if it is true in every state of every run of S.

An expression can be proven invariant by showing that it is inductive or
implied by an inductive expression. An expression ϕ is inductive for a transition
system S : 〈V, Θ, T 〉 if it is implied by the initial condition, Θ → ϕ, and it is
preserved by all its transitions, ϕ ∧ τ → ϕ′, for all τ ∈ T .

Definition 5 (Adequate). A protocol is adequate if the number of threads al-

located in every reactor r never exceeds the total number of threads in r, Tr.

Adequacy is a fundamental property, required in every reasonable protocol, since
no more resources than available can possibly be granted. Adequate-P is a
simple adequate protocol, shown in Figure 3(b), in which the entry section (�0)
blocks further progress until the guard expression 1 ≤ tr evaluates to true. Its
adequacy is a consequence of the following invariants:

ψ1 : ∀r ∈ R . tr ≥ 0
ψ2 : ∀r ∈ R . Tr = tr + at �1,r + at �2,r

where, at �1,r and at �2,r denote the total number of active sub-tasks in reactor
r. It is easy to show that ψ1 and ψ2 are inductive.

Definition 6 (Deadlock). A state σ is a deadlock if some task is in �0, but

only non-progressing transitions are enabled.

If a deadlock is reached, the tasks involved cannot progress. Intuitively, each of
the tasks has locked some resources—threads in our case—that are necessary for
other tasks to complete, but none of them has enough resources to terminate.
The following example shows that Adequate-P does not guarantee absence of
deadlock.
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(a) The protocol Empty-P (b) The protocol Adequate-P

Fig. 3. Protocols Empty-P and Adequate-P for node n = (f :r)

Example 2. Consider the system S : 〈{r, s}, {G1, G2}〉 with two reactors r and
s, and two call graphs

G1 : n11 : 〈f :r〉 n12 : 〈g2 :s〉 and G2 : n21 : 〈g :s〉 n22 : 〈f2 :r〉 .

Both reactors have one thread (Tr = Ts = 1). Assume the protocol for all nodes
is Adequate-P. Let σ : 〈{P1, P2}, tr = 0, ts = 0〉 be a state with two tasks:
P1 an instance of G1 with γ(n11) = �1 and γ(n12) = �0, and P2 an instance of
G2 with γ(n21) = �1 and γ(n22) = �0. It is easy to see that σ is a deadlock:
no progressing transition is enabled. Furthermore, σ is reachable from an initial
state and hence appears in some run.

In a deadlock state, independent of the protocol used, any task that is active
must have a descendant task that is waiting for a thread, as expressed by the
following lemma.

Lemma 1. In a deadlock state, any active task has a waiting descendant.

Proof. Let σ be a deadlock state and P an active task. Then γ(P ) = �1, since
for γ(P ) = �2, transition τ5 is enabled, contradicting deadlock. We prove that P

has at least one waiting descendant by induction on the position of P in the call
graph. For the base case, let P correspond to a leaf node. But then transition τ4 is
enabled, contradicting deadlock. Thus a leaf node cannot be active in a deadlock
state. For the inductive case, let Q1, . . . , Qn be the descendants of P . If some Qi

is waiting we are done. If some Qi is active, by the inductive hypothesis, it has a
waiting descendant, and hence P has a waiting descendant. Otherwise for all Qi,
γ(Qi) = ⊥ or γ(Qi) = �3. But then τ4 is enabled, contradicting deadlock. ��

Another desirable property of thread allocation protocols is absence of star-
vation, that is, every task eventually progresses. A task P starves in a run of a
system if, after some prefix run, the labeling of P never changes thereafter. A
system prevents starvation if no task starves in any of its runs.

Deadlock implies starvation, but the converse does not hold. For example, if
other tasks are scheduled in preference to it throughout the run, but the task
could have made progress had it been scheduled, that constitutes starvation
but not deadlock. This raises the question of schedulers to enforce particular
(possibly application-specific [2]) policies for process scheduling, but a detailed
consideration of that issue is outside the scope of this paper.
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4 Deadlock- voidance Protocols

This section introduces several protocols and studies whether they prevent dead-
locks in different scenarios. The protocols have the structure shown in Figure 2,
where the entry and exit sections may be different for different nodes in the
call graph. More precisely, the protocols are parameterized by an annotation
of the call graphs, α : V �→ N+, that maps nodes of all call graphs to the
positive natural numbers. Intuitively, the annotation provides a measure of the
resources—threads in our case—needed to complete the task corresponding to
the node. We consider two annotations: height and local height. Height of a node
in a call graph is the usual height of a node in a tree. Local height only takes
into account nodes in the same reactor.

Definition 7 (Height). Given a call graph G, the height of a node n in G,

written h(n), is

h(n) =

{
1 if n is a leaf, and

1 + max{h(m) | n → m} otherwise.

where n → m denotes that m is a child node of n.

Definition 8 (Local Height). Given a call graph G, the local height of a node

n = f :r in G, written lh(f :r) is

lh(f :r) =

{
1 if f :r is a leaf, and

1 + max{lh(g :s) | f :r →+ g :s and r = s} otherwise.

where n →+ m denotes that m is a descendant of n.

Example 3. Figure 4 shows a call-graph (left) and its local height (center) and
height (right) annotations. Here, n = f1 : r has local height 2, since f1 may
indirectly call f2 in the same reactor through a nested call.

4.1 Single Agent

We first consider the scenario of a single agent sequentially activating tasks, also
studied in [17]. This scenario represents an environment that cannot make any

h1 :t

f1 :r h2 :t

g :s

f2 :r

1

2 1

1

1

1

3 1

2

1

Fig. 4. Sample call graph (left) and its local-height (center) and height (right) anno-
tations
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Fig. 5. The protocol Basic-P for call-graph node n = (f :r)

concurrent calls. In terms of our model, this corresponds to systems in which
the number of tasks in any state is at most 1, that is, systems for which |I| ≤ 1
is an invariant. In this scenario the following theorem establishes a necessary
and sufficient condition to guarantee absence of deadlocks.

Theorem 1 (from [17]). To perform a call with local-height n with absence of

deadlock, at least n available threads in the local reactor are needed.

Theorem 1 provides a simple, design-time method to compute the minimum
number of threads, Tr, needed in each reactor r to guarantee absence of dead-
lock: Tr must be at least the maximum local height for any node in any call
graph whose method call resides in r. The condition is necessary, because if it is
violated a deadlock will occur, independent of the protocol used. The condition
is sufficient, because if it is met, no deadlock will occur. Thus, in the single agent
case the trivial protocol Empty-P, shown in Figure 3(a), will guarantee absence
of deadlock, provided all reactors have the required number of threads.

4.2 Multiple Agents: Generic Protocols

In case of multiple agents performing multiple concurrent calls, the condition
expressed in Theorem 1 is necessary but not sufficient to guarantee the absence
of a deadlock (using Empty-P) as illustrated by the following example.

Example 4. Consider again the system of Example 2. This system satisfies the
condition of Theorem 1: the local heights of the nodes are lh(n11) = lh(n12) =
lh(n21) = lh(n22) = 1 and Tr = Ts = 1. A deadlock is produced however, if P1,
an instance of G1, takes the thread in r and P2, an instance of G2, takes the
thread in s.

Indeed, it can be shown that no number of pre-allocated threads in reactors
r and s in the above example can prevent deadlock in the presence of an un-
bounded number of multiple concurrent calls. Thus more sophisticated protocols
are needed to control access to the threads.

We propose two such protocols: Basic-P and Efficient-P, both parame-
terized by the annotation function α : V �→ N+. In this section we present some
properties for generic annotations α; in the next section we analyze deadlock
avoidance and resource utilization for some specific height annotations.

The first protocol, Basic-P, is shown in Figure 5. The reactor variable tr

is used to keep track of the threads currently available in the reactor. In the
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entry section access is granted only if the number of resources indicated by the
annotation function at that node, α(n), is less than or equal to the number of
threads available. When access is granted, tr is decremented by one, reflecting
that one thread has been allocated. Note that not all resources requested are
reserved.

The second protocol, Efficient-P, shown in Figure 6, exploits the obser-
vation that every task that needs just one resource can always, independently
of other tasks, terminate once it gets the resource. The protocol has two reac-
tor variables, tr and pr, where tr, as in Basic-P, keeps track of the number of
threads currently available, and pr tracks the threads that are potentially avail-
able. The difference with Basic-P is that the number of potentially available
threads is not reduced when a thread is granted to a task that needs only one
thread. With Efficient-P fewer tasks are blocked, thus increasing potential
concurrency and improving resource utilization.

Example 5. Consider the system S : 〈{r, s}, {G1, G2}〉 with Tr = Ts = 2 and

G1 : n11 : 〈f1 :r〉 and G2 : n21 : 〈f2 :r〉 n22 : 〈g :s〉 .

with annotations α(n11) = α(n22) = 1 and α(n21) = 2. Assume the following
arrival of tasks: P1: an instance of G1 and P2 an instance of G2. With Basic-
P, P2 is blocked until P1 is finished and has released the thread, while with
Efficient-P, P2 can run concurrently with P1.

To study the properties of different annotations, we first establish some prop-
erties that hold for Efficient-P for any annotation α. We first introduce some
notation and abbreviations. Let at �i j ,r denote the number of tasks in a reactor
r that are at location �i j . Then the number of active tasks P with annotation

α(P ) = 1 in r is equal to act1 ,r
def= at �1 1 ,r + at �2 1 ,r , and the number of

tasks in r with α(P ) > 1 is act>1 ,r
def= at �1 2 ,r + at �2 2 ,r . Let act>k ,r denote

the number of tasks in r with annotation greater than k. With initial condition
Θr : tr = pr ∧ Tr = tr, it is easy to verify that the following are inductive
invariants for all reactors.

ϕ1 : tr ≥ 0
ϕ2 : pr ≥ 1
ϕ3 : pr = tr + act1 ,r

ϕ4 : Tr = pr + act>1 ,r

The following lemmas apply to all reactors.

Lemma 2. If tr = 0 then there exists at least one active task with annotation

1 in r, that is, ϕ5 : tr = 0 → act1 ,r ≥ 1 is an invariant.

Proof. Follows directly from ϕ2 and ϕ3. ��

The same properties hold for Basic-P, but we will not prove them here.
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n ::

2

6
6
6
6
4

�0 1 :

»
when 1 ≤ tr do

tr--

–

�1 1 : f()
�2 1 : tr++

�3 1 :

3

7
7
7
7
5

n ::

2

6
6
6
6
4

�0 2 :

»
when α(n) ≤ pr ∧ 1 ≤ tr do

〈pr--, tr--〉

–

�1 2 : f()
�2 2 : 〈tr++, pr++〉
�3 2 :

3

7
7
7
7
5

If α(n) = 1 If α(n) > 1

Fig. 6. The protocol Efficient-P for node n = (f :r)

Lemma 3. The number of active tasks P with annotation α(P ) > k, for 0 ≤
k ≤ Tr, is less than or equal to Tr − k, that is, ϕ6 : act>k ,r ≤ Tr − k is an

invariant.

Proof. To show that ϕ6 is an invariant, it suffices to show that in a state where
act>k ,r = Tr − k, a waiting task Q with α(Q) > k cannot proceed. For k = 0 we
have act>0 ,r = Tr. By ϕ3 and ϕ4, Tr = tr + act>1 ,r + act1 ,r = tr + act>0 ,r , and
thus tr = 0. Consequently, the transitions for both �0 1 and �0 2 are disabled for
Q. For k > 0, note that act>k ,r ≤ act>1 ,r , and thus in a state where act>k ,r =
Tr − k, we have Tr − k ≤ act>1 ,r . By ϕ4, pr = Tr − act>1 ,r , and thus pr ≤ k.
Consequently, transition �0 2 is disabled for k, as by assumption α(Q) > k. ��

Lemma 4. If a task P is in location �0 2 in r and the transition for �0 2 is not

enabled for P , then there is an active task Q in r with annotation α(Q) ≤ α(P ).

Proof. Note that α(P ) > 1. Transition �0 2 is disabled for P if tr = 0 or if α(P ) >

pr. If tr = 0, then by Lemma 2 there exists an active task Q with annotation
1, and hence α(Q) < α(P ). If α(P ) > pr then by ϕ4, act>1 ,r > Tr − α(P ).
However, by Lemma 3, act>α(P),r ≤ Tr −α(P ). Thus there must at least be one
active task Q in r such that α(Q) ≤ α(P ). ��

4.3 Protocols Based on Height and Local Height

In Section 4.2 we introduced the protocol Efficient-P for a generic call graph
annotation α that provides a measure of the number of resources required to
complete the task. In this section we analyze two such measures: local height
(Def. 8) and height (Def. 7). Local height requires the least resources. Unfortu-
nately it does not guarantee freedom of deadlock. We prove that using height
does guarantee absence of deadlock. However, for many designs it is too conser-
vative in its requirements for resources. Therefore in Section 4.4 we propose a
less conservative annotation, based on the combination of all graphs rather than
on individual call graphs, that still guarantees deadlock freedom.

Local Height Using local height, as defined in Def. 8 for α in the protocols
Basic-P and Efficient-P does not guarantee absence of deadlock. A simple
counterexample is provided by Example 4 for both protocols.

.
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Height We will now prove that using height, as defined in Def. 7 for α guarantees
absence of deadlock. We assume that for every reactor the number of threads Tr

is greater than or equal to the highest annotation of any node that runs in r in
any call graph in the system. We first prove one more auxiliary lemma.

Lemma 5. With the use of Efficient-P with the height annotation, every task

P with h(P ) = 1 can complete.

Proof. Note that P can always progress when it is active, since it is a leaf node.
Thus it is sufficient to show that it can eventually progress when it is waiting
at �0 1. If tr ≥ 1 it can obviously progress. If tr = 0, then by Lemma 2, there
exists an active task Q in r with h(Q) = 1. This task can terminate, thereby
incrementing tr, and thus unblocking P . ��

Theorem 2. Efficient-P with height annotation guarantees absence of dead-

lock.

Proof. By contradiction, suppose that σ is a reachable deadlock state. Let P ∈ I

be a task in σ such that h(P ) is minimal in I. Consider two cases: (1) h(P ) = 1.
By Lemma 5, P can eventually progress, contradicting deadlock. (2) h(P ) > 1. If
P is active, then by Lemma 1 it must have a waiting descendant, contradicting
that P has minimal height. If P is waiting, then by Lemma 4 there exists an
active task Q with h(Q) ≤ h(P ). Again h(Q) < h(P ) contradicts the minimality
of P . If h(Q) = h(P ), then Q, being active, must have a waiting descendant by
Lemma 1, contradicting the minimality of P . ��

Thus, if every call graph is annotated with height and every reactor r is pro-
vided with at least as many threads as the maximum height of a node that runs
in r, then Efficient-P guarantees deadlock-free operation. The disadvantage
of using height as an annotation is that the number of threads to be provided
to each reactor can be much larger than is strictly necessary. This not only
wastes resources, it may also make some systems impractical, as illustrated by
the following example.

Example 6. Consider a system S : 〈R, {G1, . . . , Gm}〉. A simple way to force
invocations of G1, . . . , Gm to be performed sequentially is to introduce a new
reactor r— called the serializer—and to merge G1, . . . , Gm into a single call
graph by adding a root node n, and making G1, . . . , Gm its subtrees. When using
Efficient-P with the height annotation, the new node node n is annotated
with h(n) = max(h(G1), . . . , h(Gm)) + 1, which may be large. Now r needs to
be provided with this many threads, while one would have sufficed.

Clearly, using height may be wasteful of resources. In the next section we
propose a more efficient annotation that addresses this problem.

4.4 A More Efficient Annotation

Deadlock is caused by cyclic dependencies. Using Efficient-P with an annota-
tion without cyclic dependencies prevents deadlock. Example 4 showed that the

.
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G1 : r3 s2 r2 s1

G2 : s2 r2 s1 r1

(a) Annotated call graphs G1 and G2

r s r s

s r s r

(b) Resulting global call graph

Fig. 7. Global call graph for two call graphs G1 and G2

deadlock produced with local height as annotation was caused by the interaction
of multiple call graphs. Thus, a check for cyclic dependencies must consider the
union of all call graphs.

Definition 9 (Global Call Graph). Given a system S : 〈R, {G1, . . . , Gm}〉
with Gi : 〈Vi, Ei〉, where Vi, Vj are assumed to be disjoint for i �= j, and an-

notation function α :
⋃

i Vi �→ N, the global call graph for S and α, GS,α :
〈VS , ED, EA〉 consists of

– VS :
⋃

i Vi;

– ED:
⋃

i →
+
i , the union of the descendant relations of all call graphs, where

→+ is the transitive closure of Ei;

– EA: {(v1 : 〈f : r〉, v2 : 〈g : s〉) | α(v1) ≥ α(v2) and r = s} where v1 and v2

may belong to different call graphs Gi.

Example 7. Figure 7(b) shows the global call graph for two annotated call graphs
G1 and G2, where the solid lines indicate edges in ED (no composed edges are
shown) and the dotted lines indicate edges in EA.

Definition 10 (Dependency Relation). Given global call graph GS,α : 〈VS ,

ED, EA〉, v1 ∈ VS is dependent on v2 ∈ VS , written v1 � v2, if there exists a

path from v1 to v2 consisting of edges in EA ∪ED with at least one edge in ED.

A global call graph has a cyclic dependency if for some node v, v � v.

Theorem 3 (Annotation). Given a system S and annotation α, if the global

call graph GS,α does not contain any cyclic dependencies, then Efficient-P
used with α guarantees absence of deadlock for S.

Proof. We first observe that, in the absence of cyclic dependencies, the depen-
dency relation � is a partial order on the nodes in all call graphs, the proof
closely follows that of Theorem 2.

By contradiction, suppose that σ is a reachable deadlock state. Let P ∈ I be
a task in the set of tasks in σ such that P resides in reactor r and is minimal with
respect to �. Consider three cases: (1) P is active. Then, by Lemma 1, P must
have a waiting descendant Q, but then P � Q, contradicting the minimality
of P . (2) P is waiting and α(P ) = 1. Then tr = 0 (otherwise P could proceed,
contradicting deadlock), and by Lemma 2, there exists an active task Q in r with
annotation 1, and thus there exists an edge in EA from P to Q. But by Lemma 1,
Q has a waiting descendant R, and thus P � R, contradicting minimality of P .
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(3) P is waiting and α(P ) > 1. By Lemma 4, there exists an active task Q

with α(Q) ≤ α(P ), and, as for case (2) there exists a task R such that P � R,
contradicting minimality of P . ��

It is easy to see that the conditions posed by Theorem 3 require the annotation
to subsume local height. On the other hand, height clearly satisfies the con-
ditions. For many systems, however, the annotation can be significantly lower
than height. For example, in Example 6, the serializer node can safely be given
annotation 1, instead of the maximum height of all call graphs.

5 Conclusions and Future work

We have formalized thread allocation in DRE systems and proposed several
“local” protocols that guarantee absence of deadlock with respect to availability
of threads. We have assumed static call graphs, which are the norm in many
DRE systems.

These protocols are of practical as well as theoretical interest: they can be
implemented (1) transparently, e.g., by using the protocols to filter which en-
abled handles in a reactor’s handle set will be dispatched in each iteration of a
reactor’s event loop [16]; (2) efficiently, e.g., by storing pre-computed call graph
annotation constants and references to protocol variables for each method in a
hash map, to allow constant time lookup at run-time; and (3) effectively, e.g.,
by checking for cyclic dependencies in annotations, as we have done previously
for scheduling dependencies between avionics mission computing operations [6].

As future work we will examine optimizations where the protocol can reduce
pessimism dynamically at run-time, e.g., upon taking particular branches that
require fewer threads than other alternatives. This will involve (1) maintaining a
representation of the call graph and its annotations, as objects register and de-
register with each reactor at run-time; (2) distributed consistent communication
of relevant changes to the graph, annotations, and task progress variables; and
(3) re-evaluation of safety and liveness properties at each relevant change.
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Abstract. Mobile systems explore the interplay between locality and connectiv-
ity. A subsystem may have a connection to a remote subsystem and use this for
communication. Alternatively, it may be necessary or desirable to move the sub-
system close to the other in order to communicate. This paper presents a Petri Net
formalisation of mobile systems so as to harness the intuitive graphical represen-
tation of Petri Nets and the long history of associated analysis techniques.

The proposed formalism starts with modular Petri Nets, where a net is divided
into modules which can interact via place and transition fusion. The first change
is that the flat module structure is replaced by fully nested modules, called lo-
cations. The nesting of locations provides a notion of locality while their fusion
context determines their connectivity. The transitions constituting a location are
constrained so that we can determine when a location is occupied by a subsystem,
and when the subsystem shifts from one location to another.

The colourless version of the formalism is conceptually simpler, while the
coloured version caters for more dynamic configurations and helps identify iso-
lated subsystems for which garbage collection may be appropriate.

1 Introduction

There has been considerable interest in mobility and mobile agent systems. Here, com-
ponents or subsystems migrate from one location to another. When present at a location,
the subsystem can interact more readily with co-located subsystems, and less readily (if
at all) with remote subsystems. In formalising mobile systems, it is important to be
able to evaluate their correctness, the security implications, and the efficiency gains of
moving subsystems to avoid latency costs of complex communication protocols.

Mobile systems expose the interplay between locality and connectivity [17]. Con-
nectivity allows one subsystem to interact with another by virtue of having a connection
or reference. In a distributed environment, the access from one subsystem to another via
a reference is constrained by locality or proximity. It is desirable to capture mobility in
a Petri Net formalism, so as to build on the intuitive graphical representation of Petri
Nets, the long history of associated analysis techniques [18,19], and to be able to rea-
son about causality and concurrency [6]. However, a simple and general (even elegant)
formulation has proved elusive. This paper is an attempt to address this deficiency.

In our presentation, we consider that an appropriate point of departure is that of
Modular Petri Nets [3,4]. Here, a net is made up of a number of subnets, which interact

� Supported by an Australian Research Council (ARC) Discovery Grant DP0210524.
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in the standard Petri Net way by place and transition fusion. (This makes it possible
to model both asynchronous and synchronous interaction, respectively.) It is common
to distinguish between nets and systems, where nets capture the structure, and where
systems augment the net with the state or marking. We find it convenient to distinguish
between subnets, locations and subsystems. A subnet is a Petri Net that captures the
structure of a module. It can be considered as a type or class for a set of instances.
A location is a subnet in a particular fusion environment. In other words, a location
can be considered to be a type with a range of possible interaction capabilities. Finally,
a subsystem is a location with a non-empty marking. In other words, it represents an
instance of a subnet with a range of interaction capabilities.

Thus, we first extend modular nets with the notion of locations, which are subnets
with a specific fusion environment. Locations are nested and thus capture the notion of
locality or proximity. The fusion environment determines the connectivity or interaction
possibilities for a subsystem. Secondly, modular nets are extended with the capability
of shifting locations, which is represented by having transitions with arcs incident on
locations. In other words, a subsystem resident in one location can be shifted to another
location by firing such a transition. This implies that it is possible to manipulate the
marking of a location as a unit.

By analogy with Petri Net theory, it is convenient to distinguish colourless and
coloured varieties of mobile systems, which are respectively based on colourless and
coloured versions of modular nets [3,4]. In the colourless version, each location may
have at most one resident subsystem — the so-called unfolded representation. In the
coloured version, multiple subsystems can be resident at a given location, but then the
place markings will need to distinguish which tokens belong to which subsystem. This
is a so-called folded representation — it requires that each token is associated with a
subsystem by including a data value called an identifier.

The paper is organised as follows: Section 2 presents a motivating example of a
simple mail agent system. Section 3 presents the formal definitions for a colourless
version of mobile systems, while Section 4 presents a coloured version. Section 5 con-
siders possible variations of the formalism and compares it with other approaches in the
literature. Section 6 presents the conclusions and avenues for further work.

2 Example

We informally introduce the proposed concepts by considering a simple mail agent
(shown in Fig. 1) and its associated system (shown in Fig. 2). A Petri Net (as in Fig. 1)
consists of places, transitions and arcs, together with annotations of these. The places
are depicted as ovals and can hold tokens, which then determine the state of the system.
The transitions are depicted as rectangles, and determine the possible changes of state.
The arcs indicate how the transitions affect the places. In a colourless net, each place
holds a number of undifferentiated tokens, and the arcs indicate how many tokens are
consumed or generated. So, if an arc from a place to a transition is annotated by the
number 2, then that transition can occur only if two tokens in the place can be consumed.

In the example of Fig. 1, there are three places and six transitions. The initial mark-
ing shows that place empty is marked while the places has1 and has2 are not. In this
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gen2 gen1 rem1 rem2

has1

moveB

moveA

has2

empty

Fig. 1. Subnet for the Agent processes

state, either transition gen1 or gen2 can fire — so far, the choice is non-deterministic.
This subnet is meant to represent a simple mail agent. With place empty marked, the
agent has no mail to deliver, while if place has1 or has2 is marked, then the agent has
mail to deliver to site 1 or site 2, respectively. The transitions gen1 and gen2 gener-
ate these mail messages, while transitions rem1 and rem2 consume (or deliver) them.
Transitions moveA and moveB are used to constrain or allow movement of the agent.

The composite mail system is shown in Fig. 2. Each rounded rectangle is a location,
which is a subnet together with a fusion environment. The main or root location is
labelled System, and it contains three locations labelled Site0, Site1 and Site2. Within
each of these locations is a nested location for the mail agent, labelled Loc0, Loc1 and
Loc2, respectively. This example uses transition fusion but not place fusion, and this
fusion is indicated in one of three ways — by name correspondence, by a double line,
or by a line through the transition (which is used to indicate that it is blocked in this
location, i.e. fused to a disabled transition in the environment, which is then not shown
to avoid clutter).

At Site0, the agent resides in location Loc0. Its transitions gen1 and gen2 can occur,
while the others are blocked. These are fused (as indicated by name correspondence)
with transitions gen1 and gen2 of Site0. Thus, at Site0 it is possible to generate a mes-
sage destined for Site1 or Site2, in which case the corresponding place has1 or has2
of the agent will become marked. Once this has occurred, transition mov01 is enabled.
As indicated by the double lines, this transition is fused with the transition mov01 in
the location System, which is also fused with the transition mov01 in location Site1. The
transition mov01 in location Site0 has a broad input arc incident on location Loc0, while
transition mov01 in location Site1 has a broad output arc incident on location Loc1. This
is shorthand for shifting the location of a subsystem — the broad input arc removes all
the tokens from the source location, and the broad output arc deposits the tokens into
the target location. We comment further on this below.

At Site1, the agent resides in location Loc1. Its transitions rem1, moveA and moveB
can occur, while the others are blocked. Transition rem1 in the agent is fused with the
similarly-named transition in Site1. This transition allows Site1 to accept a message
destined for here. The transition moveA/B in Site1 is fused with either transition moveA
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gen1 gen2

mov01

Site0

Site1

Site2

Loc1

gen2 gen1 rem1 rem2

has1

moveB

moveA

has2

empty

mov01

mov01

mov12

moveA/B

rem1

Loc2

gen2 gen1 rem1 rem2

has1

moveB

moveA

has2

empty

mov20

mov20

moveB

mov12

rem2

System

Loc0

gen2 gen1 rem1 rem2

has1

moveB

moveA

has2

empty

Fig. 2. Composite mail system

or moveB of the agent. This, in turn, is fused with the transition mov12 of the root
instance, and a similarly named transition at Site2. Site2 has a similar structure, and
transition rem2 causes the message destined for this site to be removed.

A location is occupied if at least one of the local places is marked. Thus, in our
example, the initial marking indicates that locations System, Site0, Site1, Site2 and Loc0
are occupied, while locations Loc1 and Loc2 are not. In order to ensure that transitions
are only enabled for occupied locations, we insist that such transitions have at least one
input and one output arc incident on a local (as opposed to a fused) place. Hence, all
the side conditions shown in the figure — a side condition is a place with both an input
and an output arc incident on an adjacent transition.

The transitions like mov01 which shift the location of a subsystem (or more gener-
ally consume a subsystem at a location or generate a subsystem at a location) are shown
with a broad arc. This is a shorthand notation for indicating that all the tokens in the
local places are consumed. Where a consume is paired with a corresponding generate,
it is assumed that the marking is shifted from one location to another. This description
is informal, and the notation is syntactic sugar. It is made precise by identifying vacate
and occupy transitions. Vacate transitions (if enabled) will have the effect of clearing
the marking of its location, i.e. they have input arcs but no output arcs. Dually, occupy
transitions (if enabled) will have the effect of setting the marking of its location, i.e.
they have output arcs but no input arcs. It is expected that such vacate and occupy tran-
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sitions will normally be fused with environment transitions, and that a vacate transition
fused directly or indirectly with an occupy transition will have the effect of shifting the
subsystem. The broad arcs incident on a location are thus syntactic sugar for a number
of such vacate and occupy transitions — one for every possible marking of the location.
This has theoretical implications which we consider in Section 3.

It is worth noting that for Site0, the shifting of the agent is determined solely by the
site, whereas for Site1 and Site2 the agent collaborates with the shift transition.

3 Modular Petri Nets for Mobility

In this section we present a definition of mobile systems in terms of Modular Petri Nets.
In Section 4 we present a definition in terms of Modular Coloured Petri Nets.

Definition 1 (Multiset). A multiset over set S is a mapping m : S → N, where m(s)
gives the number of occurrences of s. The set of all multisets over set S is denoted μ(S).

Definition 2 (Petri Net). A Petri Net (PN) is a tuple PN = (P, T, W ) where:

1. P is a finite set of places.
2. T is a finite set of transitions with P ∩ T = ∅.
3. W : (P × T ) ∪ (T × P ) → N is an arc weight function.

The arc weight function W indicates the number of tokens consumed or generated
by the firing of the transition. If an arc weight is zero, the arc is not drawn.

Definition 3 (PN Markings and Steps). For a Petri Net PN, a marking is a mapping
M : P → N, i.e. M ∈ μ(P ), and a step is a mapping Y : T → N, i.e. Y ∈ μ(T ). A
Petri Net System is a Petri Net together with an initial marking.

The example of Fig.1 is a Petri Net System where the arcs shown have a weight of 1
and the arcs which have not been drawn have a weight of 0. Further, the initial marking
of place empty is one token, while other places hold no tokens.

Definition 4 (PN Behaviour). For a Petri Net PN, a step Y is enabled in marking M ,
denoted M [Y 〉, if ∀p ∈ P : Σt∈Y W (p, t) ≤ M(p). If step Y is enabled in marking M ,
then it may occur, leading to marking M ′, denoted M [Y 〉M ′, where ∀p ∈ P : M ′(p) =
M(p) − Σt∈Y W (p, t) + Σt∈Y W (t, p). We write [M〉 for the markings reachable from
M by the occurrence of zero or more steps.

The above definitions are quite conventional. They capture the requirement that a
place must have sufficient tokens to satisfy all consume demands of the step, and that
when the step occurs, a place receives tokens from all generate actions. We now depart
from convention by defining locations and mobile systems. These have been motivated
by Modular Petri Nets [4], but here we retain the nested structure of the modules, which
we call locations, and thereby capture the notion of locality.

Definition 5 (PN Location). A Petri Net Location is a tuple L = (SL, PL, TL, WL)
where:
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1. SL is a finite set of locations. We define loc(L) =
⋃

s∈SL
loc(s) ∪ {L}. We require

∀s ∈ SL : loc(s) ∩ {L} = ∅.
2. (PL, TL, WL) is a Petri Net. We define plc(L) =

⋃
s∈SL

plc(s) ∪ {PL} and
trn(L) =

⋃
s∈SL

trn(s) ∪ {TL}.

Thus, locations are properly nested nets. Locations are unique, as are places and
transitions (which are differentiated by the location in which they reside). We can define
markings, steps and behaviour for individual locations just as for Petri Nets, but we
defer such definitions to mobile systems.

Definition 6 (Mobile System). A Mobile System is a tuple MS = (L0,PF ,TF , M0)
where:

1. L0 is a location, called the root location. We define P = plc(L0) and T = trn(L0).
2. PF is a set of place fusion sets where

⋃
pf∈PF pf = P and ∀pf 1, pf 2 ∈ PF :

pf 1 ∩ pf 2 
= ∅ ⇒ pf 1 = pf 2.
3. TF is a set of transition fusion sets where

⋃
tf ∈TF tf = T and ∀tf 1, tf 2 ∈ TF :

tf 1 ∩ tf 2 
= ∅ ⇒ |tf 1| = |tf 2|.
4. M0 is the initial marking of the location.

The set of place fusion sets covers all places and the fusion sets cannot partially
overlap. This is in contrast to the definition of Modular Petri Nets [4], where the transi-
tive closure of the fusion sets is used to determine the equivalence classes over places,
which are then called place instance groups. Our approach means that each place fusion
set corresponds to one place instance group. Similarly, the set of transition fusion sets
is required to cover all transitions and if one transition occurs in more than one transi-
tion fusion set then these sets must have the same size. Again, this is more restricted
than that of Modular Petri Nets, but it is not a theoretical restriction given that every
transition can be duplicated so there is one duplicate per occurrence in a fusion set.

Definition 7 (MS Markings and Steps). For mobile system MS, a marking is a map-
ping M : P → N, where ∀pf ∈ PF : ∀p1, p2 ∈ pf : M(p1) = M(p2) = M(pf ), and
a step is a mapping Y : T → N, where ∀tf ∈ TF : ∀t1, t2 ∈ tf : Y (tf ) = Y (t1) =
Y (t2).

In a mobile system, as in modular nets, the markings of fused places are identical,
and the multiplicity of fused transitions in a step are identical. This justifies defining the
markings and steps of such a system in terms of place fusion sets and transition fusion
sets. It is then appropriate to extend the definition of the arc weight function W to apply
to place fusion sets and transition fusion sets, i.e.

∀(f1, f2) ∈ (PF × TF ) ∪ (TF × PF ) : W (f1, f2) = Σx∈f1,y∈f2W (x, y)

Definition 8 (MS Behaviour). For a mobile system MS, a step Y is enabled in marking
M if ∀pf ∈ PF : Σtf∈Y W (pf , tf ) ≤ M(pf ). If step Y is enabled in marking M ,
then it may occur, leading to marking M ′ where ∀pf ∈ PF : M ′(pf ) = M(pf ) −
Σtf∈Y W (pf , tf ) + Σtf∈Y W (tf , pf ).
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Definition 9. For a Mobile System MS we classify places and transitions as follows:

1. LP = {p ∈ P | ∃pf ∈ PF : pf = {p}} is the set of local places.
2. EP = P − LP is the set of exported places.
3. LT = {t ∈ T | ∃tf ∈ TF : tf = {t}} is the set of local transitions.
4. ET = T − LT is the set of exported transitions.
5. VT = {t ∈ T | ∃p ∈ LP : W (p, t) > 0 ∧ ∀p ∈ P : W (t, p) = 0} is the set of

vacate transitions.
6. OT = {t ∈ T | ∃p ∈ LP : W (t, p) > 0 ∧ ∀p ∈ P : W (p, t) = 0} is the set of

occupy transitions.
7. RT = {t ∈ T | ∃p1, p2 ∈ LP : W (t, p1) > 0∧W (p2, t) > 0} is the set of regular

transitions.

We distinguish local as opposed to exported places and transitions — exported en-
tities are fused to at least one other. With the notion of mobility, we are interested in
whether a transition interacts with local places, since this determines if the location is
occupied. Accordingly, we classify transitions by their interaction with local places.

Definition 10 (Well-formed). A Mobile System MS is well-formed if:

1. All transitions are vacate, occupy or regular transitions, i.e. T = VT ∪OT ∪RT .
2. Vacate transitions empty a location for all reachable markings, i.e. ∀L ∈ loc(L0) :

∀t ∈ VT ∩ TL : ∀M ∈ [M0〉 : M [t〉M ′ ⇒ ∀p ∈ LP ∩ plc(L) : M ′(p) = ∅.
3. Occupy transitions fill a location for all reachable markings, i.e. ∀L ∈ loc(L0) :

∀t ∈ OT ∩ TL : ∀M ∈ [M0〉 : M [t〉M ′ ⇒ ∀p ∈ LP ∩ plc(L) : M(p) = ∅.

The above definition of a well-formed mobile system is the key definition that sup-
ports mobility. We identify a location as being occupied if a local place is marked. A
vacate transition has the effect of transforming an occupied location (and its nested
locations) to unoccupied, while an occupy transition has the effect of transforming an
unoccupied location (and its nested locations) to occupied. A regular transition has the
effect of ensuring that an occupied location stays occupied.

The requirement that all transitions fall into one of these three categories ensures
that occupy transitions are the only ones that can become enabled if the location to
which they belong is unoccupied. The requirements that vacate transitions make a lo-
cation unoccupied and that occupy transitions make a location occupied apply to all
reachable markings. It is therefore debatable whether these should be classified as re-
quirements for being well-formed or well-behaved. Our choice of terminology reflects
our intention that these conditions should be determined from the structure of the net,
without the need for reachability analysis. Essentially, the problem is one of incorporat-
ing clear and set arcs [12] — the nature of these arcs determines whether reachability
and boundedness are decidable for this form of Petri Net [7]. If all places in all locations
are bounded, then it will be possible to incorporate complementary places and there will
be a finite number of possibilities for the clear and set arcs, and hence for clearing and
setting the marking of the location. If there are unbounded places, then we will need the
generalised form of clear and set arcs [12] which make reachability and boundedness
undecidable [7].
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We refer to a location together with a non-empty marking as a subsystem. By incor-
porating vacate and occupy transitions, the above formalism is sufficient for studying
mobility — fusing a vacate transition in one location with an occupy transition in an-
other corresponds to shifting the location of a subsystem. For notational convenience,
we introduce the broad arcs incident on locations, as in Section 2. These are a shorthand
for sets of vacate and/or occupy transitions — one for each possible reachable marking
of the location. They summarise the possibility of shifting the location of a subsystem
whatever its current state. Again, with bounded places, the possible alternatives can be
enumerated. With unbounded places, the generalised clear and set arcs are required.

Definition 11 (Isolated subsystem). Given a Mobile System MS in marking M, a tran-
sition sequence t1t2...tn is a causal sequence if there are markings M1, M2, ...Mn

such that M [t1〉M1[t2〉M2...[tn〉Mn and ∀k ∈ 1..(n − 1) : ∃p ∈ P : W (tk, p) >
0 ∧ W (p, tk+1) > 0. Given a Mobile System MS, a subsystem resident in location L
is isolated in marking M if there is no causal sequence t1t2...tn with t1 ∈ TL and
tn ∈ TL0 .

The definition of a causal sequence is derived from causal nets [5]. It captures the
notion of causal dependency between transitions t1 and tn, since the output of each
transition is consumed by the subsequent transition. We then say that the subsystem in
location L is isolated if there is no such causal sequence with t1 in location L and tn in
the root location. In other words, the firing of transitions of the subsystem in location L
cannot affect, directly or indirectly, the root location.

If we are only interested in studying the behaviour of the root location, we can
reduce the size of the state space by eliminating isolated subsystems. For the moment,
this observation seems somewhat pointless because we need the reachability graph to
determine whether a location is isolated. We revisit this issue in the coloured version of
mobile systems.

4 Modular Coloured Petri Nets for Mobility

We now extend the definition of mobile systems to incorporate colour, i.e. data val-
ues. One of the benefits of doing so — just as for coloured nets — is to have a more
concise notation. It will now be possible to have multiple subsystems resident in the
one location, provided that the elements of the subsystems are differentiated by the use
of identifiers, a special kind of data value from a set ID. Local places will have tokens
tagged by the subsystem identifier, and local transitions will have firing modes similarly
tagged. Fused places will have tokens tagged by the identifiers of all subsystems with
one of the fused places, and similarly, fused transitions will have firing modes tagged
by identifiers of all participating subsystems. Thus, we dictate that tokens and transi-
tion firing modes have colour sets which are tuples, the first element of which is the
multiset of identifiers which determine the subsystem(s) to which they belong. We use
a projection function π1 to select the first element of such tuples. The constraints on the
consistent use of identifiers are found in Definition 20.

Definition 12 (Coloured Petri Net). A Coloured Petri Net (CPN) is a tuple CPN =
(Σ, P, T, θ, W ) where:
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1. Σ is a set of colour sets (or types).
2. P is a finite set of places.
3. T is a finite set of transitions with P ∩ T = ∅.
4. θ : P ∪ T → Σ is a colour function giving the colour set associated with each

place and transition.
5. W : (P × T ) ∪ (T × P ) → Σ → Σ is an arc weight function where

W (p, t), W (t, p) ∈ μ(θ(t)) → μ(θ(p)).

The definition of CPNs is simplified to that of [3]. As in Definition 2, we combine
the specification of arcs and their inscriptions into one entity, namely the arc weight
function W . We use θ to specify the colour set associated with each place. Symmet-
rically, we also use θ to specify the colour set associated with each transition — the
values of this colour set determine the allowable firing modes of the transition, thus
making it superfluous to specify a transition guard.

Definition 13 (CPN Markings and Steps). For a Coloured Petri Net a marking is a
mapping M : P → Σ, where M(p) ∈ μ(θ(p)), and a step is a mapping Y : T → Σ,
where Y (t) ∈ μ(θ(t)). A Coloured Petri Net System is a Coloured Petri Net together
with an initial marking.

Definition 14 (CPN Behaviour). For a Coloured Petri Net CPN, a step Y is enabled
in marking M if ∀p ∈ P : Σ(t,c)∈Y W (p, t)(c) ≤ M(p). If step Y is enabled in
marking M , then it may occur, leading to marking M ′ where ∀p ∈ P : M ′(p) =
M(p) − Σ(t,c)∈Y W (p, t)(c) + Σ(t,c)∈Y W (t, p)(c).

Given our use of transition firing modes, the elements of a step are transition-mode
pairs, rather than transition-binding pairs, as in [3]. Otherwise, the above definitions are
quite conventional.

Definition 15 (Coloured Location). A Coloured Location is a tuple
CL = (SCL, ΣCL, PCL, TCL, θCL, WCL) where:

1. SCL is a finite set of locations. We define loc(CL) =
⋃

s∈SCL
loc(s) ∪ {CL}.

2. (ΣCL, PCL, TCL, θCL, WCL) is a Coloured Petri Net. We define
plc(CL) =

⋃
s∈SCL

plc(s) ∪ {PCL} and trn(CL) =
⋃

s∈SCL
trn(s) ∪ {TCL}.

Coloured locations, like colourless locations of Definition 5, are modules which
retain the nesting structure. As before, we can define markings, steps and behaviour for
individual coloured locations, but we defer such definitions to coloured mobile systems.

Definition 16 (Coloured Mobile System). A Coloured Mobile System is a tuple
CMS = (CL0,PF ,TF , M0) where:

1. CL0 is a coloured location, called the root location. We define P = plc(CL0) and
T = trn(CL0).

2. PF is a set of place fusion sets where
⋃

pf∈PF pf = P and ∀pf 1, pf 2 ∈ PF :
pf 1 ∩ pf 2 
= ∅ ⇒ pf 1 = pf 2.

3. TF is a set of transition fusion sets where
⋃

tf ∈TF tf = T and ∀tf 1, tf 2 ∈ TF :
tf 1 ∩ tf 2 
= ∅ ⇒ |tf 1| = |tf 2|.

4. M0 is the initial marking of the location.
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As in Definition 6, the set of place fusion sets covers all places and the fusion sets
do not partially overlap. Thus, each place fusion set corresponds to a place instance
group of [3]. Similarly, the set of transition fusion sets covers all transitions and if one
transition occurs in more than one fusion set, then the sets must have the same size.

Definition 17 (CMS Markings and Steps). For a Coloured Mobile System CMS, a
marking is a mapping M : P → Σ, where M(p) ∈ μ(θ(p)) and ∀pf ∈ PF : ∀p1, p2 ∈
pf : M(p1) = M(p2) = M(pf ), and a step is a mapping Y : T → Σ, where
Y (t) ∈ μ(θ(t)) and ∀tf ∈ TF : ∀t1, t2 ∈ tf : Y (tf ) = Y (t1) = Y (t2).

In a coloured mobile system, as in coloured modular nets, the markings of fused
places are identical, and the multiplicity of fused transitions in a step are identical. As
for colourless mobile systems, this justifies defining the markings and steps of such a
system in terms of place fusion sets and transition fusion sets. It is also appropriate to
extend the definition of the arc weight function W to apply to place fusion sets and
transition fusion sets in the same way as for colourless mobile systems.

Definition 18 (CMS Behaviour). For a coloured mobile system CMS, a step Y is en-
abled in marking M if ∀pf ∈ PF : Σ(tf ,c)∈Y W (pf , tf )(c) ≤ M(pf ). If step Y is
enabled in marking M , then it may occur, leading to marking M ′ where ∀pf ∈ PF :
M ′(pf ) = M(pf ) − Σ(tf ,c)∈Y W (pf , tf )(c) + Σ(tf ,c)∈Y W (tf , pf )(c).

Definition 19. For a Coloured Mobile System CMS we define:

1. LP = {p ∈ P | ∃pf ∈ PF : pf = {p}} is the set of local places.
2. EP = P − LP is the set of exported places.
3. LT = {t ∈ T | ∃tf ∈ TF : tf = {t}} is the set of local transitions.
4. ET = T − LT is the set of exported transitions.
5. VT = {t ∈ T | ∃p ∈ LP : ∀c ∈ θ(t) : W (p, t)(c) > ∅ ∧ ∀p ∈ P : ∀c ∈ θ(t) :

W (t, p)(c) = ∅} is the set of vacate transitions.
6. OT = {t ∈ T | ∃p ∈ LP : ∀c ∈ θ(t) : W (t, p)(c) > ∅ ∧ ∀p ∈ P : ∀c ∈ θ(t) :

W (p, t)(c) = ∅} is the set of occupy transitions.
7. RT = {t ∈ T | ∃p1, p2 ∈ LP : ∀c ∈ θ(t) : W (t, p1)(c) > ∅ ∧ W (p2, t)(c) > ∅}

is the set of regular transitions.

As in Definition 9, we distinguish local versus exported places and transitions, and
we classify transitions by their interaction with local places.

Definition 20 (Consistent). A Coloured Mobile System CMS is consistent if:

1. The colour set for a place is given by a tuple with the first element being a multiset
of identifiers, the size being determined by the size of the relevant fusion set, i.e.
∀pf ∈ PF : ∀p ∈ pf : θ(p) = μ(ID) × ... ∧ |π1(θ(p))| = |pf |.

2. The colour set for a transition is given by a tuple with the first element being a
multiset of identifiers, the size being determined by the size of the relevant fusion
set, i.e. ∀tf ∈ TF : ∀t ∈ tf : θ(t) = μ(ID) × ... ∧ |π1(θ(t))| = |tf |.

3. The firing mode of each transition shares an identifier with the consumed tokens,
i.e. ∀p ∈ P : ∀t ∈ T : ∀c ∈ θ(t) : ∀c′ ∈ W (p, t)(c) : π1(c) ∩ π1(c′) 
= ∅.
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4. The firing mode of each transition shares an identifier with the generated tokens,
i.e. ∀p ∈ P : ∀t ∈ T : ∀c ∈ θ(t) : ∀c′ ∈ W (t, p)(c) : π1(c) ∩ π1(c′) 
= ∅.

5. Distinct subsystems have distinct identifiers, i.e. ∀M ∈ [M0〉 : ∀CL1,CL2 ∈
loc(CL0) : ∀p1 ∈ LP ∩ CL1 : ∀p2 ∈ LP ∩ CL2 : ∀c1 ∈ M(p1) : ∀c2 ∈
M(p2) : CL1 
= CL2 ⇒ π1(c1) ∩ π2(c2) = ∅.

6. The consumed tokens provide all the identifiers found in the transition firing modes,
i.e. ∀t ∈ T : ∀c1, c2 ∈ θ(t) : (∀p ∈ P : W (p, t)(c1) = W (p, t)(c2)) ⇒ c1 = c2.

As discussed earlier, we use identifiers from the set ID ∈ Σ to differentiate the
multiple subsystems resident in the one location and we require that those identifiers be
used consistently. Since tokens in a fused place belong to multiple subsystems, they are
identified by all the associated subsystem identifiers. The same applies to fused transi-
tions, and hence points 1 and 2 above. (We use multisets of identifiers so as to handle
fusion of places and transitions from the same subsystem.) Furthermore, the firing of a
transition should only remove or generate tokens for matching subsystems, and hence
points 3 and 4. Finally, we do not wish to allow transitions to invent identifiers, which
may or may not be associated with existing subsystems. Therefore, we require that a
transition’s firing mode is solely determined by the consumed tokens, which is point
6 above. We now define well-formed nets by extending the constraints on vacate and
occupy transitions to cater for coloured nets.

Definition 21 (Well-formed). A Coloured Mobile System CMS is well-formed if:

1. All transitions are vacate, occupy or regular transitions, i.e. T = VT ∪OT ∪RT .
2. Vacate transitions empty a location of a subsystem for all reachable markings, i.e.

∀CL ∈ loc(CL0) : ∀t ∈ VT ∩ TCL : ∀M ∈ [M0〉 : M [(t, c)〉M ′ ⇒ ∀p ∈
LP ∩ plc(CL) : ∀c′ ∈ M ′(p) : π1(c) ∩ π1(c′) = ∅.

3. Occupy transitions fill an empty location with a subsystem for all reachable mark-
ings, i.e. ∀CL ∈ loc(CL0) : ∀t ∈ OT ∩TCL : ∀M ∈ [M0〉 : M [(t, c)〉M ′ ⇒ ∀p ∈
LP ∩ plc(CL) : ∀c′ ∈ M(p) : π1(c) ∩ π1(c′) = ∅.

Definition 22 (Isolated subsystem). Given a Coloured Mobile System CMS in mark-
ing M, a transition sequence (t1, c1)(t2, c2)...(tn, cn) is a causal sequence if there
are markings M1, M2, ...Mn such that M [(t1, c1)〉M1[(t2, c2)〉M2...[(tn, cn)〉Mn and
∀k ∈ 1..(n − 1) : ∃p ∈ P : W (tk, p)(ck) ∩ W (p, tk+1)(ck+1) 
= ∅. Given a Coloured
Mobile System CMS, a subsystem resident in location CL is isolated in marking M if
there is no causal sequence (t1, c1)(t2, c2)...(tn, cn) with t1 ∈ TCL and tn ∈ TCL0 .

The definition of an isolated subsystem is simply a coloured version of Defini-
tion 11. However, with the use of colours and the differentiation of subsystems by iden-
tifiers, it is possible to approximate the identification of isolated subsystems. Suppose
that a subsystem with identifier id is resident in location CL. Suppose further that there
is no place outside CL holding tokens which include the value id. Then the subsystem
is isolated and can be eliminated provided we are only interested in the behaviour of the
root location.

This follows from the fact that there can only be an appropriate causal sequence if
location CL can fire a fused transition or can access tokens from a fused place. In the
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former case, the fusion partner will have to have a firing mode which includes id, which
in turn will need to come from a consumed token (points 2, 4, 6 from Definition 20).
In the case of fused places, the accessed token will need to have an identifier which
includes id (point 1 of Definition 20). Both of these are excluded if there is no place
outside of CL which holds tokens including the value id.

The above is essentially garbage collection for mobile systems. It provides a suffi-
cient condition for a subsystem being isolated, but it is not a necessary condition.

5 Variations and Related Work

The above Petri Net formalisms for mobile systems can be varied in a number of ways.
As is common with Petri Nets, this formulation appears to be rather static — the num-
ber of locations and the communication partners at each location are determined in
advance. However, a more dynamic version can be achieved by suitable use of colours
or types. Firstly, we could annotate transitions with expressions of the form v = new
S(arguments) and v.connect(arguments). These would, respectively, generate a new in-
stance of subnet S and move the subsystem identified by v, with the arguments in both
cases indicating the new fusion context. However, the possible fusion contexts can be
enumerated in advance by analysing the syntax of those calls. Secondly, we could use
synchronous channels [2] to determine communication partners dynamically — it has
been shown that synchronous channels are semantically equivalent to the standard tran-
sition fusion that we adopted [2]. Thirdly, we could use colours not just to distinguish
multiple subsystems resident in the one location but also to fold multiple locations (with
similar fusion contexts) onto one, with colours identifying the different locations.

The formulation above can be interpreted as a variant of Object-Based Petri Nets
(OBPNs) where the subnets correspond to classes and the subsystems correspond to
instances. An earlier formulation of OBPNs [13], with a view to capturing inheritance,
constrained classes to interact either by place fusion or transition fusion. The current
proposal allows both. There, explicit destruction of objects was assumed — here we al-
low for garbage collection. There, catering for multi-level activity was rather complex
— here we have a simpler formulation based on Modular Petri Net semantics. A sim-
plifying factor is that shifting the location of a subsystem is not combined with other
internal activity, since vacate and occupy transitions cannot, respectively, generate and
consume tokens. However, such an extension could be incorporated.

The Nets-within-Nets paradigm proposed by Valk has been the focus of a significant
effort in terms of object-oriented design and mobility [8,9,10,20]. The fundamental
notion is that there are (at least) two levels of Petri Nets — the system net provides the
most abstract view of the system. The tokens resident in the places of the system net may
be black tokens (with no associated data) or representations of object nets. The two-level
hierarchy can be generalised to an arbitrary number of levels, but that is not necessary
for our purposes. Three different semantics have been proposed for the nets-within-nets
paradigm — a reference semantics (where tokens in the system net are references to
common object nets), a value semantics (where tokens in the system net are distinct
object nets), and a history process semantics (where tokens in the system net are object
net processes) [20]. The reference semantics (as supported by the Renew tool [11])
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has been used to model mobile agent systems [8,9]. However, a reference semantics
provides a global reference scope, so that connectivity is enhanced but locality becomes
meaningless. These authors have acknowledged that a value semantics is really required
for mobility [10]. Then, locality is meaningful but connectivity is more constrained —
an object net residing in a system place can primarily synchronise with the system
transitions adjacent to the place. In other words, the object net token has to be removed
from the place in order to interact with it. The interaction between co-resident tokens
has more recently been added using another form of synchronous channel. However,
the notation in Renew suggests that the interaction is achieved by the two object nets
being accessed as side conditions of a system net transition.

Our proposal has certain points of contact with the nets-within-nets paradigm. The
notation of having arcs incident on locations is akin to system net places containing
object nets which can be removed (or added) by adjacent system net transitions. How-
ever, our locations have a more general fusion context. We have also refined the results
of [10] in noting that if locations have bounded places, then we obviate the need for
generalised clear and set arcs for shifting subsystem locations, and hence reachability
and boundedness can remain decidable.

There have been a number of calculi proposed for working with mobility. Mobility
was one of the key motivations behind the π-calculus [16]. However, the π-calculus did
not explore the interplay between connectivity and locality — it had a flexible method
for exchanging names and thus modifying connectivity, but there was no sense in which
the connectivity was limited by locality. (The scope rules simply limited the accessibil-
ity to names.)

The ambient calculus [1] identifies ambients as a sphere of computation. They are
properly nested which then determines locality. Capabilities are provided for entering,
leaving and dissolving ambients. Movement across ambient boundaries can be subjec-
tive — the process in the ambient decides to employ the capability — or objective —
the process outside the ambient dictates the move. As in the π-calculus, connectivity is
provided by the ability to communicate capabilities or names over channels.

The seal calculus [21] identifies seals as agents or mobile computations. Here, seal
boundaries are the main protection mechanism and seal communication is restricted to
a single level in the hierarchy. Mobility is not under the control of a seal but of its parent
— thus subjective moves of the ambient calculus are not supported.

The capabilities of the above calculi can be broadly mapped into the formalisms
of this paper which can make it possible to specify and reason about causality and
concurrency, as in [6]. Ambients and seals can be mapped to locations. We can cater for
synchronous and asynchronous communication. Moves are objective, and fusion can be
constrained to the enclosing location as in the Seal calculus.

6 Conclusions

This paper has proposed a Petri Net formalism suitable for studying mobility, and
specifically the interplay between locality and connectivity. It has extended Modular
Petri Nets with the notion of nested modules called locations. The nesting of modules
determines locality while the fusion context of each module determines connectivity.
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Locations are constrained so that the firing of their transitions depends on the loca-
tions being occupied. Another key extension is the identification of vacate and occupy
transitions, which change the occupied status of locations. For notational convenience,
we add arcs incident on locations to represent multiple vacate and occupy transitions.
We have also identified isolated subsystems which cannot affect, either directly or in-
directly, the root location. The analysis of the system could be simplified by removing
such isolated subsystems from further consideration. In the coloured version of mobile
systems, the question of isolated subsystems can be resolved with techniques similar to
garbage collection for object-oriented systems.

The proposed Petri Net formalism for mobility is quite simple and general even
though the changes to Modular Petri Nets are not extensive. Consequently, it will be
relatively simple to study mobile systems using currently available modular analysis
tools such as Maria [15], which already has support for nested modules. With a bit
more effort, it is also possible to map these mobile systems into Hierarchical Coloured
Petri Nets and analyse them in the tool Design/CPN [14].

Future work will explore front ends to existing tools in order to facilitate the mod-
elling of mobile systems, as well as their analysis. We are also interested in exploring
the analysis possibilities for realistic case studies.
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10. M. Köhler and H. Rölke. Properties of Object Petri Nets. In J. Cortadella and W. Reisig,
editors, International Conference on the Application and Theory of Petri Nets, volume 3099
of Lecture Notes in Computer Science, pages 278–297, Bologna, 2004. Springer-Verlag.

11. O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler, D. Moldt, H. Rölke, and
R. Valk. An extensible editor and simulation engine for Petri nets: Renew. In J. Cortadella
and W. Reisig, editors, 25th International Conference on Application and Theory of Petri
Nets (ICATPN 2004), volume 3099 of Lecture Notes in Computer Science, pages 484–493,
Bologna, Italy, 2004. Springer.

12. C. Lakos and S. Christensen. A General Systematic Approach to Arc Extensions for
Coloured Petri Nets. In R. Valette, editor, 15th International Conference on the Applica-
tion and Theory of Petri Nets, volume 815 of Lecture Notes in Computer Science, pages
338–357, Zaragoza, 1994. Springer-Verlag.

13. C.A. Lakos. From Coloured Petri Nets to Object Petri Nets. In G. De Michelis and M. Diaz,
editors, 16th International Conference on the Application and Theory of Petri Nets, volume
935 of Lecture Notes in Computer Science, pages 278–297, Torino, Italy, 1995. Springer.

14. C.A. Lakos. State Space Exploration of Object-Based Systems. Technical Report TR05-01,
Department of Computer Science, University of Adelaide, April 2005.
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v vT

v, v′ vT .v′

v INP v ||v||
||v|| = {p ∈ P | v(p) > 0}

P T
P ∪ T N =

〈P, T, Pre, Post〉 Pre
Post Pre Post (P × T ) −→ IN Pre(t)
Post(t) t Pre Post
W = Post − Pre N p

t •p = {t ∈ T |Post(p, t) > 0} •t = {p ∈
P |Pre(p, t) > 0} p• = {t ∈ T |Pre(p, t) > 0}
t• = {p ∈ P |Post(p, t) > 0} X

X •X•

X
•X(N)

X•(N) •X•(N)
P −→ IN Σ = 〈N, m0〉

m0 N m t
m t−→ m(p) ≥ Pre(p, t) p ∈ •t

m′ m′(p) = m(p) + W (p, t)
p ∈ P m t−→m′
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σ = t1 . . . tn
T ∗ T∞

T Tω T Tω = T ∗∪T∞

(N, m0) L∗(〈N,m0〉) = {σ ∈ T ∗ |m0
σ−→}

L∞(〈N,m0〉) = {σ ∈ T∞ |m0
σ−→} Lω(〈N, m0〉) = L∗(〈N,m0〉) ∪

L∞(〈N, m0〉) [N,m0〉 = {m ∃σ ∈ T ∗ m0
σ−→m}

〈N,m0〉
N = 〈P, T, Pre, Post〉 N ′ N

(P ′, T ′) P ′ ⊆ P T ′ ⊆ T N ′ = 〈P ′, T ′, P re′, Post′〉
∀(p, t) ∈ P ′ × T ′ Pre′(p, t) = Pre(p, t) Post′(p, t) = Post(p, t) m

N N ′

∀p ∈ P ′ m′(p) = m(p) m P ′ m�P ′

v INP v
v.W = 0 v m σ−→m′

vT .m′ = vT .m

σ σ ∈ Tω λ
t T |σ|t

t σ |σ|t = ∞ |σ|t = k k
t σ X

|σ|X =
∑

t∈X |σ|t |σ| σ

•σ = ∪t,[|σ|t>0]
•t σ• = ∪t,[|σ|t>0] t• •σ• = •σ ∪ σ•.

σ inf(σ)
σ X ⊆ T

σ X
�: Tω × 2T −→ Tω

λ�X = λ
∀σ ∈ Tω t ∈ T t ∈ X (t.σ)�X = t.σ�X (t.σ)�X = σ�X

∀Γ ⊆ Tω Γ�X = {σ�X σ ∈ Γ}

N
N1 N2 TI

N = 〈P, T, Pre, Post〉
TI T N N1 =

〈P1, T1 = T11 ∪ TI , P re1, Post1〉 N2 = 〈P2, T2 = T21 ∪ TI , P re2, Post2〉
TI

P = P1 ∪ P2 T = T1 ∪ T2

P1 ∩ P2 = ∅ T11 ∩ T21 = ∅

(m0
t1−→m1

t2−→m2−→ . . . tn−→mn) m0
σ−→mn
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Nd = 〈N1, TI , N2〉
N N1 N2 TI

TI

∀i ∈ {1, 2} ∀(p, t) ∈ Pi × Ti Prei(p, t) = Pre(p, t) Posti(p, t) =
Post(p, t)
∀i, j ∈ {1, 2} i �= j ∀(p, t) ∈ Pi × (Tj \ TI) Pre(p, t) = Post(p, t) = 0
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Vdec

N v ∈ Vdec

a
(v)
1 , a

(v)
2 a

(v)
i Nj

v
N̂i Vdec

p 1p

INP

p

Nd = 〈N1, TI , N2〉
N Ni = 〈Pi, Ti, P rei, Posti〉

({i, j} = {1, 2}) N̂i = 〈P̂i, T̂i, P̂ rei, P̂ osti〉

• T̂i = Ti

• P̂i Pi ∪ Aj Aj = {a(v)
j |v ∈ Vdec}

Φ P ∪ A1 ∪ A2 INP∪A1∪A2

∀p ∈ P,Φ(p) = 1p ∀a
(v)
i ∈ Ai, Φ(a(v)

i ) = Σp∈Pi
v(p).1p

• ∀p ∈ P̂i,∀t ∈ T̂i P̂ rei(p, t) = Pre(t)T .Φ(p) P̂ osti(p, t) = Post(t)T .Φ(p)

1.
2.
3.

1 2

1

Φ(Abs1) = 1Idle+1Fail+1Wserv +1Mess

Pre(Abs1, Send) = 1
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Nd = 〈N1, TI , N2〉 N

N̂i i = 1, 2 m N

Φi N̂i ∀p ∈ Pi, Φi(m)(p) = mT .Φ(p)

Nd = 〈N1, TI , N2〉
〈N, m〉 N̂i i = 1, 2

∀σ ∈ T ∗ m σ−→m′ Φi(m)
σ�T̂i−→Φi(m′)

σ = t

t ∈ T̂i

m σ−→m′ ⇒ m ≥ Pre(t) ⇒ ∀p ∈ P̂i,m
T .Φ(p) ≥ Pre(t)T .Φ(p)

Φ(p) ⇔ ∀p ∈ P̂i, Φi(m)(p) ≥ P̂ rei(p, t) Φi(m) t−→
m′ = m − Pre(t) + Post(t) ⇒ ∀p ∈ P̂i,m

′T .Φ(p) = mT .Φ(p) − Pre(t)T .Φ(p) +
Post(t)T .Φ(p) ⇔ ∀p ∈ P̂i, Φi(m′)(p) = Φi(m)(p) − P̂ rei(p, t) + P̂ osti(p, t)

Φi(m) t−→Φi(m′)
t �∈ T̂i

∀p ∈ Pi, p �∈ •t• Φi(m′)(p) = m′(p) = m(p) = Φi(m)(p)
v ∈ Vdec v m′T .(Φ(a(v)

i ) + Φ(a(v)
j )) = mT .(Φ(a(v)

i ) + Φ(a(v)
j ))
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Nd = 〈N1, TI , N2〉
〈N, m〉 N̂i i = 1, 2

Lω(N,m)�T̂i
⊂ Lω(N̂i, Φi(m))

{σ�T̂i
|σ ∈ L∞(N,m) Inf(σ) ∩ T̂i �= ∅} ⊂ L∞(N̂i, Φi(m))

(N, m) ⇒ ∃i (N̂i, Φi(m))

(N̂2, m̂2) (N̂1, m̂1)
(N̂1, m̂1)

(N̂2, m̂2)

〈N̂1, m̂1〉 〈N̂2, m̂2〉
〈N,m〉

〈N̂2, m̂2〉 〈N̂1, m̂1〉 Lω
�TI

(〈N̂1, m̂1〉) ⊆ Lω
�TI

(〈N̂2, m̂2〉)

〈N̂1, m̂1〉 〈N̂2, m̂2〉
〈N, m〉 〈N̂2, m̂2〉

〈N̂1, m̂1〉
∀σ1 ∈ T̂1

∗
m̂1

σ1−→m̂
′
1 ⇒ ∃σ ∈ T ∗ ∃m

′ ∈ INP

σ�T1 = σ1 m σ−→m
′

Φ1(m
′
) = m̂

′
1

σ1 = σ0
1 .t1. · · · .tk.σk

1 ∀m, σm
1 ∈ T11 tm ∈ TI

σ2 (N̂2, m̂2)
σ2 = σ0

2 .t1. · · · .tk.σk
2 ∀m,σm

2 ∈ T21

σ = σ0
1 .σ0

2 .t1. · · · .tk.σk
1 .σk

2

σ

Φi(m′)(a(v)
j ) − Φi(m)(a(v)

j ) = m′T .Φ(a(v)
j ) − mT .Φ(a(v)

j )

= m′T .Φ(a(v)
i ) − mT .Φ(a(v)

i ) = Σp∈Pi
v(p).(m′(p) − m(p)) = 0

p �∈ •t•

Φi(m′) = Φi(m)
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t ∈ TI

p ∈ •t p ∈ Pi i ∈ {1, 2}
Φi(m′′) t−→ m′′(p) = Φi(m′′)(p) ≥ Pre(p, t) m′′ t−→

t ∈ Ti1 i ∈ {1, 2}
p ∈ •t t ∈ Ti1 p ∈ Pi

Φi(m′′) t−→ m′′(p) = Φi(m′′)(p) ≥ Pre(p, t) m′′ t−→

Nd = 〈N1, TI , N2〉
N N̂i i = 1, 2

Nd N̂int =
〈P̂int, T̂int, ̂Preint, ̂Postint〉 i, j ∈ {1, 2} i �= j

• T̂int = TI

• P̂int A1 ∪ A2 Ai = {a(v)
i |v ∈ Vdec} N̂i

• ∀a ∈ Ai ∀t ∈ T̂int
̂Preint(a, t) = P̂ rej(a, t) ̂Postint(a, t) = P̂ ostj(a, t)

∀i ∈ {1, 2}
Lω
�TI

(N̂i, m̂i) ⊆ Lω(N̂int, m̂int)

Nd = 〈N1, TI , N2〉
〈N, m〉 N̂i i = 1, 2 N̂int

σ′.t σ σ′ m σ′
−→m′′

∀i ∈ {1, 2}, m̂i = Φi(m)
σ′
�T̂i−→Φi(m′′)

∀i ∈ {1, 2}, (σ′.t)�T̂i
σi Φi(m′′)

t�T̂i−→
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〈N̂i, m̂i〉 〈N̂int, m̂int〉 ⇒ 〈N̂i, m̂i〉
〈N̂j , m̂j〉 j ∈ {1, 2} j �= i

Lω
�TI

(N̂i, m̂i) ⊆ Lω(N̂int, m̂int) i ∈ {1, 2}

〈N̂i, m̂i〉
〈N̂int, m̂int〉

〈N̂i, m̂i〉

N̂i, m̂i

N̂i, m̂i

〈N̂int, m̂int〉

〈N̂i, m̂i〉 〈N̂int, m̂int〉

〈N̂int, m̂int〉 〈N̂i, m̂i〉

〈N̂i, m̂i〉

Hint 〈N̂int, m̂int〉

Synch
Hint s Hint

Synch[s]

198 K. Klai, S. Haddad, and J.-M. Ilié
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st 〈S, s, f〉
〈N̂i, m̂i〉 〈N̂int, m̂int〉

〈N̂i, m̂i〉 〈N̂int, m̂int〉
sint = m̂int s′int

f i f int Obs = TI Unobs = T̂i \ Obs
Si S′

i Hint Synch
st(〈Set, state, Events〉)

Si Saturate({m̂i}, Unobs
f int = firable({sint}, Obs) f i = firable(Si, Obs)

¬(f i ⊇ f int)

Hint = {sint} Synch[sint] = {S}
st. (〈Si, sint, f

int〉)

st. (〈Si, sint, f
int〉)

t ∈ f int

S′
i = Img(Si, t) S′

i = (S′
i, Unobs)

s′int = Img({sint}, t)
s′int �∈ Hint

Hint = Hint ∪ {s′int}; Synch[s′int] = ∅

∃/ S ∈ Sync[s′int] S ⊆ S′
i

S ∈ Synch[s′int] S′
i ⊆ S

Sync[s′int] = Sync[s′int] \ {S}

Sync[s′int] = Sync[s′int] ∪ {S′
i}

f i = firable(S′
i, Obs)) f int = firable(s′int, Obs)

¬(f i ⊇ f int)

st. (〈S′
i, s

′
int, f

int〉)

st == ∅

img(S, t)
S t firable(S, o)

S o o
S saturate(S, u)

S u
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S u
S

u

Hint Synch st
Si 〈N̂i, m̂i〉 f int

sint 〈N̂int, m̂int〉
Si f int

〈Si, sint, f
int〉

〈Si, sint, f
int〉

t f int s′int sint

〈N̂int, m̂int〉 S′
i Si 〈N̂i, m̂i〉

Sync[s′int]
〈N̂i, m̂i〉 s′int 〈N̂int, m̂int〉

S′
i s′int

Sync[s′int] Sync[s′int]
S′

i

N
N̂1 N̂2

N N̂1

N̂2

〈N̂1, m̂1〉 〈N̂2, m̂2〉

〈N, m〉 ⇔ 〈N̂1, m̂1〉 〈N̂2, m̂2〉
⇒ 〈N,m〉 m̂1

′

〈N̂1, m̂1〉 t T̂1

200 K. Klai, S. Haddad, and J.-M. Ilié
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t m̂1
′ 〈N̂2, m̂2〉

〈N̂1, m̂1〉 σ
m′ m σ−→m′ Φ1(m′) = m̂1

′

〈N, m〉 σ′ t
m′ m′′

σσ′ 〈N, m〉
σσ′

�T̂1
〈N̂1, m̂1〉

Φ1(m′′) σ′
�T̂1

t

m̂1
′

〈N̂2, m̂2〉
⇐ 〈N̂1, m̂1〉 〈N̂2, m̂2〉

m′ 〈N,m〉 t T
t

m′

t
T̂1 σ1

〈N̂1, m̂1〉 m̂′
1 = m′

�T̂1

σ′
1 t

m′
1 〈N̂1, m̂1〉 〈N̂2, m̂2〉

〈N̂1, m̂1〉 σ′ 〈N,m′〉
σ′
�T̂1

= σ′
1 t

〈N, m〉
〈N,m〉 Nd = 〈N1, TI , N2〉

N 〈N̂1, m̂1〉 〈N̂2, m̂2〉
〈N̂1, m̂1〉 〈N̂2, m̂2〉
〈N, m〉 ⇔ 〈N̂1, m̂1〉 〈N̂2, m̂2〉

⇐
⇒ 〈N, m〉 〈N̂i, m̂i〉

i ∈ {1, 2}
ξi = m̂i

0 ti
1−→m̂i

1 ti
2−→ . . . p ∈ P̂i ∀ m̂i

k ∈ ξi, ∃ m̂i
l ∈ ξi

l > k m̂i
k(p) < m̂i

l(p) 〈N̂j , m̂j〉 j ∈ {1, 2} j �= i

〈N̂i, m̂i〉 ξ = m0
σ1−→m1

σ2−→ . . . 〈N,m〉 ξ�T̂i
= ξi

∀k = 1, 2, . . . m̂i
k = Φi(mk)

p �∈ Aj

p ∈ P ∀ mk ∈ ξ ∃ ml ∈ ξ l > k mk(p) < ml(p)
〈N,m〉

p ∈ Aj v
∀ mk ∈ ξ ∃ ml ∈ ξ l > k vT .mk < vT .ml

||v||
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ξ v
〈N, m〉

N f
N f

f
t ∈ T̂1

〈N, m〉
(N̂1, m̂1) (N̂2, m̂2)

Nd = 〈N1, TI , N2〉 〈N,m〉
〈N̂1, m̂1〉 〈N̂2, m̂2〉 t

T̂1 〈N̂2, m̂2〉 〈N̂1, m̂1〉
∃σ ∈ Lω(N, m) t ∈ inf(σ) ⇐⇒ ∃σ1 ∈ Lω(N̂1, m̂1) t ∈ inf(σ1)

=⇒ σ ∈ Lω(N, m) 〈N,m〉 t ∈ inf(σ)
σ1 = σ�T̂1

m̂1
σ1−→

t ∈ T̂1 t ∈ inf(σ1)
⇐= σ1 ∈ Lω(N̂1, m̂1) m̂1

σ1−→m̂1
′

t ∈ inf(σ1)
σ ∈ Lω(N, m) σ1 = σ�T̂1

t ∈ inf(σ1) t ∈ inf(σ)

N f
f f T̂i i ∈ {1, 2}

f N f N̂i

f N̂i

f N̂i N̂i N̂j
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Abstract. In this paper, we present a novel conformance test suite derivation 
method. Similar to the HIS method, our method uses harmonized state 
identifiers for state identification and transition checking and can be applied to 
any reduced possibly partial deterministic or nondeterministic specification 
FSM. However, in contrast with the HIS method, in the proposed method 
appropriate state identifiers are selected on-the-fly (for transition checking) in 
order to shorten the length of the obtained test suite. Application examples and 
experimental results are provided. These results show that the proposed method 
generates shorter test suites than the HIS method. Particularly, on average, the 
ratio of the length of the test suites derived using the proposed method over the 
length of corresponding suites derived using the HIS method is 0.66 (0.55) 
when the number of states of an implementation equals to (is greater than) the 
number of states of the specification. These ratios are almost independent of the 
size of specifications.  

Many FSM-based test derivation methods have been developed for conformance 
testing of communication protocols and other reactive systems [2,3,10,12,14,15,17]. 
Well-known methods are called the W [2, 14], partial W (Wp) [3], HIS [10,17], and 
generalized Wp (GWp) [7, 8] test derivation methods. For related surveys the reader 
may refer to [1,6,13,16]. In [2,3,10,14,15,17] testing methods, one usually assumes 
that not only the specification, but also the implementation can be modeled as a 
deterministic FSM, while in [7,8] the specification and the implementation are 
modeled as non-deterministic FSMs (NFSMs). If the behavior of a (deterministic/non-
deterministic) implementation FSM is different than the specified behavior, the 
implementation contains a fault. 

The above methods, each provides the following fault coverage guarantee: If the 
specification can be modeled by a (reduced) FSM with n states and if a corresponding 
implementation can be modeled by an FSM with at most m states, where m is larger 
or equal to n, then a test suite can be derived by the method (for this given m) and the 
implementation passes this test suite if and only if it conforms (i.e. is equivalent) to 
the specification. A test suite is called m-complete [11] if it detects any 
nonconforming implementation with at most m states. Guessing the bound of m is an 
intuitive process based on the knowledge of a specification, the class of 
implementations which have to be tested for conformance and their interior structure 
[1]. All of the above methods assume that a reliable reset is available for each 
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implementation under test (written as ‘r’). This implies that a test suite can be 
composed of several individual test cases, each starting with the reset operation. 

The HIS, Wp, and UIOv methods are modifications of the so-called W method. All 
these methods have two phases. Tests derived for the first phase check that each state 
presented in the specification also exists in the implementation, while tests derived for 
the second phase check all (remaining) transitions of the implementation for correct 
output and ending state as defined by the specification. For identifying the state 
during the first phase and for checking the ending states of the transitions in the 
second phase, certain state distinguishing input sequences are used. The only 
difference between the above methods is how such distinguishing sequences are 
selected. In the original W method, a so-called characterization set W is used to 
distinguish the different states of the specification. The Wp method uses the W set 
during the state identification phase (the first phase) while only an appropriate subset, 
namely a corresponding state identifier, is used when checking the ending state of a 
transition. In the UIOv method, which is a proper sub-case of the Wp method, the 
ending state of a transition is identified by the output obtained in response to a single 
input sequence. Such a Unique Input/Output sequence, called UIO, allows 
distinguishing the expected ending state from all other states of the specification. 
However, a UIO sequence may not exist for some states of a given specification FSM. 
Moreover, a W set also may not exist for a partially specified specification [16,17]. In 
this case, only the HIS method can be used where a family of state identifiers 
[9,10,16] is used for state identification as well as for transition checking. 

The GWp method is a generalization of the Wp method to the case when the 
system specification and implementation are modeled as non-deterministic FSMs. For 
nondeterministic FSM implementations, in order to guarantee a full-fault detection 
power, the GWp method assumes that all possible observations of the non-
deterministic implementation to a given test can be obtained by repeatedly executing 
this test. This assumption is called the complete testing assumption [7,8]. The GWp 
method uses a characterization set W to distinguish the different states of the 
specification. However, a W set may not exist for partially specified NFSMs. In this 
case, only the generalized HIS method [8] can be used where a family of harmonized 
state identifiers is used instead of a characterization set for state identification and 
transition checking. 

The length of a derived test suite essentially depends on how a family of state 
identifiers is selected. In the above methods, for every state of the specification FSM, 
only one state identifier is selected (in advance) for testing all the incoming transitions 
of the state. In this paper, we propose an improved method that for every incoming 
transition of a state selects (on-the-fly) an appropriate state identifier that shortens the 
length of the resulting test suite. Our method generalizes the method (called H 
method) originally proposed for complete deterministic FSMs [5]. First we extend the 
H method for partial deterministic machines and we present more detailed sufficient 
conditions for having a complete test suite when the system specification and 
implementation have equal number of states. Then, we experiment with the extended 
H (hereafter also called as H method) method in order to compare the length of its test 
suites with test suites derived using the HIS method. The experiments are conducted 
for the case when m = n and for the case when m > n. Experiments with the case when 
m = n show that on average, the ratio of the length of H over the length of the HIS test 
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suites is 0.66 and experiments with the case when m = n + 1 and m = n + 2 show that 
on average this ratio is 0.55. Moreover, the experiments show that these ratios are 
almost independent of the size of the specification machines. Finally, we extend the H 
test derivation method for partial nondeterministic machines. We note that the H 
method, as the HIS, generates complete test suites and is applicable to any complete 
or partial reduced specification machine. 

This paper is organized as follows. Section 2 defines notations for describing finite 
state machines. Section 3 includes the H method for deterministic partial FSMs and 
Section 4 includes related experimental results. Section 5 includes the generalization 
of the H method for non-deterministic partial machines and Section 6 concludes the 
paper. 

2  Finite State Machines 

A non-deterministic finite  state  machine  (NFSM) is an initialized non-deterministic 
Mealy machine that can be formally defined as follows. A non-deterministic finite 
state machine M is a 6-tuple S, X, Y, h, DM, s0 , where S is a finite nonempty set of 
states with s0 as the initial state; X and Y are input and output alphabets; DM is the 
specification domain that is a subset of S X; and h: DM  2S Y\  is a behavior 
function where 2S Y is the set of all subsets of the set S Y. The behavior function 
defines the possible transitions of the machine. Given a present state si and an input 
symbol x, each pair (sj,y) h(si,x) represents a possible transition to the next state sj 
with the output y. 

An NFSM M is observable if for each pair (s, x)  DM and each output y there is at 
most one state s’  S such that (s , y)  h(s, x). In this paper, we consider only 
observable NFSMs. Each NFSM is known to have an observable FSM with the same 
behavior [7, 8]. If DM = S X then M is said to be a complete FSM; otherwise, it is 
called a partial FSM. In the complete FSM we omit the specification domain DM, i.e. 
complete FSM is 5-tuple M = S, X, Y, h, s0 . If for each pair (s, x)  DM it holds that 
|h(s, x)| = 1 then FSM M is said to be deterministic. In the deterministic FSM (DFSM) 
M instead of behavior function h we use two functions, transition function M: DM  
S and output function M: DM  Y.  

We use the notation “(si-x/y->sj)” to indicate that the FSM M at state si responds 
with an output y and makes the transition to the state sj when the input x is applied. 
State si is said to be the starting state of the transition, while sj is said to be the ending 
state of the transition. If we are not interested in the output we write “si-x->sj” when 
an input x is applied at state si. 

The concatenation of sequences v1 and v2 is the sequence v1.v2. For a given 

alphabet Z, Z* is used to denote the set of all finite words over Z including the empty 
word  while Zm denotes the set of all the words of length m. Let V be a set of words 
over alphabet . The prefix closure of V, written Pref(V), consists of all the prefixes 
of all words in V, i.e. Pref(V) = {  |  ( .   V)}. The set V is prefix-closed if 
Pref(V) = V.  

As usual, the behavior function h of a FSM M can be extended to the set X* of 
finite input sequences. Given state s and input sequence x1…xk, the pair (s , y1…yk)  
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h(s, x1…xk) if and only if there exists states s1 ,…, sk+1  such that s1  = s and (sj+1 , yj)  
h(sj ,xj) for each j = 1, …, k. In this case, the sequence x1 … xk is called a defined input 
sequence at state s. The set of all defined input sequences at state s of M is denoted 
DISM(s); while the set of defined input sequences at the initial state is denoted DISM, 
for short. 

Given an input sequence  = x1 … xk and an FSM M, we let the set outM(s, ) 
denote the set of output projections (i.e. responses) of M to the input . Formally, 
outM(s, ) = { | s’   S [(s’, )  h(s, )]}. If M is deterministic then |outM(s, )|  1. 
The FSM is called connected if for each state s S there exists an input sequence s 
that takes the FSM from the initial state to state s. The sequence s is called a transfer 
sequence for the state s. We further consider only connected FSMs. A set Q of input 
sequences is called a state cover set of FSM M if for each state si of S, there is an 
input sequence i Q such that s1- i->si. A state cover set exists for every connected 
FSM. We further consider prefix-closed state cover sets, i.e., we include the empty 
sequence  in Q. 

Let M = (S, X, Y, hM, DM, s1) and I = (T, X, Y, hI, DI, t1) be two FSMs. In the 
following sections M usually represents a specification while I denotes an 
implementation. We say that state t of I is quasi-equivalent to state s of M [4, 10, 8], 
written t  s, if DISM(s)  DISI(t), and for each input sequence   DISM(s) it holds 
that outM(s, ) = outI(t, ). In other words, FSM I at state t can have “more defined” 
behavior than FSM M at state s. However, for each defined input sequence at state s, 
the output responses of FSMs M and I coincide. FSM I is quasi-equivalent to M if t1  
s1. We also say that states s and t are distinguishable, written s  t, if there exists an 
input sequence   DISM(s)  DISI(t) such that outM(s, )  outI(t, ); the sequence 

 is said to distinguish the states sj and ti. Two FSMs M and I are said to be 
distinguishable if their initial states are distinguishable. An FSM is said to be reduced 
if its states are pair-wise distinguishable. 

When testing NFSMs, the specification M of the given system is assumed to be a 
partial/complete non-deterministic finite state machine while an implementation I of 
M is assumed to be a complete and non-deterministic. However, it is assumed that the 
specification M has so-called harmonized traces [10] such that for each input 
sequence = x1…xk defined at the initial state and each two pairs (s , y1…yk), (s , 
y1…yk)  hM(s 1, x1…xk) the sets of defined input sequences at states s  and s  
coincide. The reason is a test suite is derived in advance and each input sequence is 
applied independently of the output response of an implementation at hand. When 
testing DFSMs, the specification M of the given system is assumed to be a 
deterministic partial/complete finite state machine while an implementation I of M is 
assumed to be complete and deterministic. 

We say that implementation I conforms to the specification M if and only if FSM I 
is quasi-equivalent to M. In other words, for each input sequence that is defined in the 
specification the output responses of M and I coincide [4,16,8]. Otherwise, I is called 
a nonconforming (or faulty) implementation of M. In this case, an input sequence  
that distinguishes initial states of FSMs I and M is said to distinguish the 
implementation I from the specification M or  is said to detect the faulty 
implementation I. 
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Given the input alphabet X, we denote Jm(X) the set of all complete deterministic 
machines over the input alphabet X with up to m states. Given a deterministic 
specification FSM M, a test suite TS is a finite set of finite input sequences of the 
FSM M. A test suite TS is m-complete for the specification FSM M if for each 
implementation I  Jm(X) that is distinguishable from M, there exists a sequence in TS 
that distinguishes M and I.  

3  An Improved Test Generation Method 

Given  a deterministic  reduced possibly partial specification FSM M with n states, 
in this section, we first establish sufficient conditions for having an m-complete test 
suite. This is done for the cases when m > n and when m = n. Based on these 
conditions, in the following two subsections we present a novel test derivation method 
with related experimental results. In Section 5, we generalize the method for the case 
when the specification and implementation machines are non-deterministic. 

Given a  reduced  deterministic  specification machine M with n states, the following 
theorem establishes sufficient conditions for a given test suite to be m-complete 
assuming that m  n. The theorem extends a related theorem given in [5] for partial 
deterministic specification machines. 
 
Theorem 1. Given a reduced deterministic specification M with n states and a state

 cover set Q of M, let TS be a  finite set of defined finite input  sequences of M that 
contains the set of sequences Q.Xm-n+1  DISM. The test suite TS is m-complete if the 
following conditions hold: 

 
1. For  each  two (different)  states of M reachable through sequences  and   in 

Q, TS has sequences .  and .  where  is a distinguishing sequence of the 
states M(s1, ) and M(s1, ) reachable by the sequences  and , 
respectively. 

2. For each  sequence . ,   Q,  = m – n + 1, and each non-empty prefix 1 
of  that takes the specification FSM M to state s from state M(s1, ), TS has 
the sequences . 1.  and . ,  where   Q and M(s1, )  s, and  is a 
distinguishing sequence of states M(s1, 1) and M(s1, ). 

3. For  each  sequence . ,   Q,  = m – n + 1,  and  each two non-empty 
prefixes 1 and 2 of  that take the specification FSM M from state M(s1, ) 
to two different states, TS has sequences . 1.  and . 2. , where  is a 
distinguishing sequence of states M(s1, 1) and M(s1, 2). 

 
Proof.  Consider  a test suite TS that satisfies the conditions of the theorem and 
assume that there exists a complete FSM I = T, X, Y, I, I, t1   with m states that is 
distinguishable from the specification FSM M = S, X, Y, M, M, DM, s1  but for each 
input sequence of the set TS, the output responses of M and I to the input sequence 

3.1   Sufficient Conditions for an M-Complete Test Suite 
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coincide. Let P be the set of states that are reachable in I via sequences of the state 
cover set Q, and  be a shortest input sequence from some state I(t1, j) of the set P 
that distinguishes states M(s1, j) and I(t1, j). By definition, TS has a sequence j  
where has length m – n + 1 and  is a prefix of   

Consider the set R of sequences that is the union of sequences in the state cover set 
and the set of sequences j ’ over all non-empty prefixes ’ of The number of such 
sequences equals to n + (m – n + 1) = m + 1 and since I has at most m states there are 
two sequences in the set that take FSM I from the initial state to the same state. Let R 
= { 1, …, n, …, m+1} where i = j i for i = n + 1, …, m + 1, and I(t1, i) = I(t1, 

r). 
Considering i and r, there are three possible cases: i, r  n; i  n < r; or i, r > n.  
1) i, r  n. In this case, i, r  Q and the set TS has sequences i  and r  where 

distinguishes states M(s1, i) and M(s1, r). Thus, this case is not possible for FSM 
I that passes the test TS. 

2) i  n < r. In this case, i  Q and the trace  where  is obtained from  by 
deleting the prefix r, distinguishes states M(s1, i) and I(t1, r). The latter 
contradicts the fact that the trace  that contains  as a prefix is a shortest trace with 
such feature.   

3) i, r > n. In this case, the trace  could be shortened by deleting the part between 
two states M(s1, i) and M(s1, r). 

Thus, given an FSM I with at most m states that is not quasi-equivalent to M, there 
exists an input sequence of the test TS such that output response of I to the sequence is 
different from that of the specification FSM M, i.e., TS is m-complete.  

 
According to Theorem 1, given a state s of M, different state identification 

sequences can be used when checking different incoming transitions of state s. When 
m = n, Theorem 1 can be refined and the following theorem establishes sufficient 
conditions for a given test suite to be n-complete. 

Theorem 2. Given a  reduced deterministic specification M with n states and state
 cover set Q  of  M, let TS be a finite set  of  defined  finite  input sequences of M that 
contains the set Q.X  DISM. The set TS is n-complete if the following conditions 
hold: 

1. For each two different states of M reachable through sequences  and  in 
Q, TS has the sequences .  and .  where  is a distinguishing sequence 
of the states M(s1, ) and M(s1, ). 

2. For each defined transition (s, x) of the specification M, TS has a sequence 
.x with the following properties:  

a) M(s1, ) = s. 
b) For each state reachable through a sequence   Q such that state 

M(s1, )  s, TS has sequences .  and .  where  is a distinguishing 
sequence of states s and M(s1, ).   

c) For each state reachable through sequence   Q such that state 
M(s1, )  M(s, x), TS has sequences .x.  and . , where  is a 

distinguishing sequence of states M(s, x) and M(s1, ).  
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In the following section, we consider a simple application example that shows how 
test suites derived by other methods can be shortened by use of Theorems 1 and 2. We 
also illustrate by an example that the conditions stated in Theorems 1 and 2 are not 
necessary conditions.  

3.2 Application Example 

Consider  the specification FSM shown in Fig. 1. We derive a 4-complete test suite 
based on the HIS method [10, 17] using Q = { , a, b, c} as a state cover set and F = 
{H1, H2, H3, H4} with H1 = {a, bb}, H2 = {a, b}, H3 = {a}, H4 = {a, bb}, as a 
separating family of state identifiers. For state identification, we use the sequences: 
r. .H1 + r.a.H3 + r.b.H4 + r.c.H2. For testing transitions we use the sequences: r.a.H3 + 
r.b.H4 + r.c.H2 + r.a.a.H2 + r.a.b.H1 + r.b.a.H3 + r.b.b.H2 + r.b.c.H3 + r.c.a.H4 + 
r.c.b.H3. We replace the H’s in the above sequences by their corresponding values and 
then remove from the obtained set those sequences that are proper prefixes of other 
sequences. The obtained 4-complete test suite TSHIS  = {raaa, raab, raba, rabbb, 
rbaa, rbba, rbbb, rbca,  rcaa, rcabb, rcba} with total length 46. However, due to 
Theorem 1, we do not need to append sequence r.aa with a, as b already distinguishes 
state 2 = M(1, aa) from any other state reachable through the sequences of the state 
cover set. For the same reason, without loss of the completeness of the test suite the 
following sequences can be deleted from TSHIS: rbba and rcaa. Moreover, transition 
4–b-> 2 can be checked by the sequences rcabb, while transition 2 – b –> 3 can be 
checked by the sequence raaba; thus, the sequence rcba and rbbb can be deleted from 
the test suite. As a result, we obtain a 4-complete test suite {raaba, raba, rabbb, rbaa, 
rbca, rcabb} with total length 27. 

We further show that the conditions of Theorems 1 and 2 are not necessary 
conditions. The reason is that two states can be implicitly distinguished if their 
successor states under some input are different. Consider the FSM B shown in Fig. 2.  

 
 1 2 3 

a 2/0 1/1 2/1 

b 3/0 1/1 3/1 

Fig. 2. Specification FSM B

 1 2 3 4 

a 3/1 4/1 2/0 3/1 

b 4/0 3/1 1/0 2/0 

c 2/1 - - 3/1 

Fig. 1. Specification FSM M
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sequences of the set r.Q.{a, b}. We first observe that states 2 and 3 that are reachable 
through sequences a and b in Q are not distinguished with suffixes aa, bb and aba, 
bab applied after ra and rb in the test suite. Nevertheless, if an implementation at 
hand passes the test suite TS1 then the states reachable after the sequences ra and rb 
are different. Otherwise, the states reachable after the sequence raa (rab) and after the 
sequence rba (rbb) coincide and thus we have four different output responses to the 
sequences r.a and r.b:   

 
 a b 

t1 0 0 

B(t1, a) = B(t1, b) 1 1 

B(t1, a.a) = B(t1, b.a) 0 1 

B(t1, a.b) = B(t1, b.b) 1 0 
 

If an implementation I has at most three states and passes TS1, we can draw the 
following conclusions: 

a) States t2 = I(t1, a) and t3 = I(t1, b) of I are two different states; 
b) Input a distinguishes the initial state of I from the other states of I; 
c) I(t2, a) = I(t2, b) = t1. 

Thus, I(t3, a) = t2 since I(t3, ba) = 11, and I(t3, b) = t3 since I(t2, ab) = 10 and 
I(t2, a) = t1. Therefore, any implementation that passes TS1 is equivalent to the given 

specification FSM B, i.e., TS1 is a 3-complete test suite. 
As demonstrated by the above example, the possibility to distinguish two states 

based on their successor states depends on the number of states of an implementation 
at hand. Based on this, more rigorous analysis is needed to determine related 
conditions that can be used for shortening the length of a test suite. 

3.3 Test Derivation Method 

Let A  be a specification FSM, A = (S,X,Y, , ,s0), where |S|=n. Below we present a 
test generation method that derives an m-complete test suite for A, where m  n. 
 
Algorithm 1.  Test Generation Method 
Input : A reduced deterministic specification FSM M = (S,X,Y, , ,DM,s0) with n 

states,  a prefix-closed state cover set Q of M, and an upper bound m on the 
number of states of an implementation FSM of M, where m  n.  

Output :  An m-complete test suite TS  
Step 1. Derive the set of sequences TS = QPref(Xm-n+1)  DISM 
Step 2. For each two sequences i and j of the state cover set Q check if the set TS 

has sequences i.  and j.  such that  distinguishes states (s0, i) and 
(s0, j) in the specification FSM. If there are no such sequences select a 

The FSM B has the set Q = { , a, b} as a state cover. We consider the test suite TS1 
of all prefixes of the set {raaa, rabb, rbaba, rbbab}; the set TS1 contains all the 
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Step 3. For each sequence i.   QPref(X m-n+1)  DISM, i  Q, let si be the state 
reachable from the initial state of M by the sequence i. Check if the set TS 
has sequences i. .  and j.  , j  Q, (s0, j)  s, such that  
distinguishes states (s0, i. ) and (s0, j) in the specification FSM. If 
there are no such sequences select sequence  that distinguishes states 
(s0, i. ) and (s0, j) and add to TS sequences i. .  and j. . 

Step 4. For each sequence i.   QPref(X m-n+1)  DISM, i  Q, and each two non-
empty prefixes 1 and 2 of the sequence , check if the set TS has 
sequences i. 1.  and i. 2.  such that  distinguishes states (s0, i. 1) 
and (s0, i. 2) in the specification FSM. If there are no such sequences 
select sequence  that distinguishes states (s0, i. 1) and (s0, i. 2) and 
add to TS sequences i. 1.  and i. 2. . 

Due to Theorem 2, the following statement holds. 

Theorem 3. The  set of  input  sequences TS obtained with  Algorithm 1  is  an m-
complete test suite for the given specification FSM M. 

Intuitively, the above method uses an appropriate sequence for testing each 
transition of the implementation. The prefix of the sequence takes the implementation 
to the starting state of the tested transition and its suffix distinguishes the expected 
final state of the tested transition from all other states of the specification using an 
appropriate state identification sequence. Unlike the HIS method, the identification 
sequence of the starting state of the tested transition has to be harmonized only with 
other state identification sequences of the states of the state cover set Q and of the 
states reachable from the initial state by the prefix of the sequence. Moreover, for the 
same state of the specification, we can use different state identification sequences 
when testing different transitions. 

To illustrate the method we derive a 5-complete test suite for the specification 
FSM in Figure 1. We first use the HIS method to obtain an 5-complete test suite and 
obtain the set {raaaa, raaabb, raaba, rabaa, rabba, rabbbb, rabca, rabcb, rbaaa, 
rbaab, rbaba, rbabbb, rbbaa, rbbabb, rbbba, rbcaa, rbcab, rbcba, rbcbbb,  rcaaa, 
rcaba, rcabb, rcaca,  rcbaa, rcbab, rcbba, rcbbbb} with total length 141. We use 
state identifiers {a} and {b} to check states 3 and 2, as both of them are applied after 
sequences of the state cover set Q, state identifier bb to check state 4, state identifiers 
{a, bb} to check state 1, and obtain the test suite {raaabb, raaba, rabaa, rabbbb, 
rabcb, rbaab, rbaba, rbabbb, rbbabb, rbbba,  rbcab, rbcba, rbcbbb, rcaaa, rcabb, 
rcaca,  rcbab, rcbba, rcbbbb} that is 5-complete and has total length 101. 

4  Experimental Results 

In  this  section we experiment  with  the HIS and H methods in order to compare the 
length of their test suites.  Table 1 provides a comparison between the length of the 
test suites obtained by these methods for the case when the number of states of an 

sequence  that distinguishes states (s0, i) and (s0, j) and add to TS 
sequences i.  and j. . 
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Each row of Tables 1 (2) corresponds to a group of 50 randomly generated 
completely specified reduced specifications. For each of these specifications we use 
the HIS and H methods to derive corresponding test suites. Then, we calculate the 
average length of the test suites generated for each group using each of these methods 
as shown in Columns IV and V (V and VI), respectively.  
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Fig. 3. Rations of average length H/HIS Test Suites when m = n for the experiments in Table 1  

Figure 3 depicts the ratios of length of the test suites of the H method over the 
length of the HIS based test suites for the experiments shown in Table 1. On average, 
the H test suites are 0.66 percent of the HIS test suites. Moreover, according to the 
experiments this ratio is almost independent of the size of the specification.   

 
 

implementation of a given system equals to the number of states of the given 
specification (i.e. m = n) and Table 2 provides a comparison for the case when m > n. 
The comparison in Tables 1 and 2 is based on randomly generated completely 
specified reduced deterministic specifications with a varying number of states (n).  

Table 1. A summary of experiments for the case when number of inputs/outputs equals to 10 
and m=n
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10 50 52 208 58949 28813 

Table 2. A summary of experiments for the case when number of inputs/outputs equals 4 and 
m=n+1 and m=n+2
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Fig. 4. Ratios of average length H/HIS Test Suites when m=n+1 and m=n+2
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5  Generalizing the H ethod for Nondeterministic Machines  

When the specification FSM M  is  reduced, possibly partial, nondeterministic with 
harmonized traces, the fault domain Rm(X) contains all complete observable NFSM 
implementations of M, defined over the input alphabet X of M, with at most m states. 
A test suite TS is m-complete for M if for each implementation I  Rm(X) that is 
distinguishable from M, there exists a sequence in TS that distinguishes M and I. 

Due to the complete testing assumption [7, 8], the procedure used for deriving an 
m-complete test suite for deterministic machines can be adapted for deriving an m-
complete test suite for nondeterministic machines. First, we derive a state cover set of 
the NFSM specification M =(S, X, Y, hM, DM, s1) [7, 8]. However, in this case, 
differently from deterministic FSMs, the number of sequences in a state cover set can 
be less than the number of states n of the specification machine. This is due to the fact 
that the specification machine in response to a single defined input sequence, 
repeatedly applied at the initial state, can reach several states and produce in response 
different output sequences. 

For each state si  S, we consider the sequences i.Xm-n+1  DISM(si), where i  Q 
is the sequence of Q that takes the NFSM specification to state si from the initial state 
and DISM(si) is the set of all defined input sequences at state si. We let Q.Xm-n+1  
DISM denote the set of all obtained sequences. Since the specification FSM has 
harmonized traces, the sets of defined input sequences of the states reachable by any 
initially defined input sequence coincide. For every sequence i  Q, we denote Si  
S the subset of states for which we use i  Q. The subsets Si form a partition of the 
set S. 

As an application example of the HIS method [8], consider the NFSM M shown in 
Fig. 5. M admits the set { , a, b} as a state cover set. The NFSM M is reduced; state 3 
can be distinguished from all other states by the input sequence a, state 2 can be 
distinguished from all other states by the input sequence aa, and states 1 and 4 can be 
distinguished by the input sequence b. Moreover, M has harmonized traces since it 
has the same set of defined inputs at states 2 and 3. Let m = 4. Then the set Q.Xm-n+1  
DISM = {a, b, c, aa, ac, ba, bb, bc}. 

The FSM M has the following sets of harmonized state identifiers, H1 = {aa, b}, H2 
= {aa}, H3 = {a} and H4 = {aa, b}. For each sequence in the set Q.Xm-n+1  DISM, we 
determine the states reached by this sequence and append the sequence with 
corresponding sets of harmonized state identifiers. The union of all obtained test 
sequences is the 4-complete test suite TSHIS = {raaaa, racaa, racb, rbaaa, rbbaa, 
rbbb, rbcaa, rcaa, rcb} which is of length 40. Here we note that state 1 has also the 
sequence cc as a state identifier which is shorter than the sequences of H1, but cc is 
not used since it is not harmonized with the identifiers of all other states. We note that 
the GWp [7] method can not be applied to this example since M does not have a 

Figure 4 depicts the ratios of length of the test suites of the H method over the 
length of the HIS based test suites for the experiments depicted in rows 1 to 5 and 
rows 6 to 10 of Table 2. On average, the H test suites are 0.55 percent of the HIS test 
suites. Moreover, according to the experiments this ratio slightly decreases as the size 
of the specification increases.  

M

characterization set. States 1 and 4 of M can be distinguished only by an input 
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 1 2 3 4 

a 3/1; 2/0 2/1; 3/0 2/0 3/1; 2/0 

b 4/0,1 - - 1/1 

c 1/1 1/0 1/0 2/1 

Fig. 5. Partial NFSM specification M  

Similar to Theorem 1, the following theorem allows us to use non-harmonized 
state identifiers when deriving an m-complete test suite. 

Theorem 4.  Given  a  set TS  of defined input sequences of the specification NFSM 
M, let TS contain the set Q.Xm-n+1  DISM. The set TS is m-complete if 

- For  each  two  sequences i and j  Q, for each two states si  Si and sj  Si,  
the set TS has sequences i  and j   where  distinguishes states si and sj; 

- For each  sequence  i.   Q.(X m-n+1)  DISM, i  Q, each state  si  Si, and 
each state s reachable from state si via the sequence   and each state sj  Sj, sj  s 
and j  Q the set TS has sequences i.  and j. , where   distinguishes state s 
from state sj. 

- For each sequence  i. ,  i  Q,  = m – n + 1, each  state si  Si and each 
two non-empty prefixes 1 and 2 of  that take the specification FSM M from 
state si to the subsets of states P1 and P2, for each two states s1  P1 and s2  P2, 
TS has sequences . 1.  and . 2. , where  is a distinguishing sequence of states 
s1 and s2. 

In other words, similar to the case of deterministic FSMs, we do not need to derive 
in advance state distinguishing sequences for the specification FSM. These sequences 
can be derived on-the-fly starting with the set Q.Xm-n+1  DISM. Moreover, different 
state identifiers can be used for checking incoming transitions of states. These 
identifiers do not have to be harmonized with the identifiers of all other states. In our 
working example, we observe that the state identifier {cc} can be used for identifying 
state 1 despite of the fact that this identifier is not harmonized with the identifiers of 
all other states. Due to the above theorem, the test suite TS2 = {raaaa, raccc, rbaaa, 
rbbcc, rbcaa, rbcc, rccc} of length 33 is also 4-complete.  

 
Algorithm 2.  Test Generation Method 
Input : The reduced nondeterministic specification FSM M = (S,X,Y, , ,DM,s0) with n 

states and harmonized traces, a prefix-closed state cover set Q of M, and an 
upper bound m on the number of states of an implementation FSM, where 
m  n.  

sequence b or by an input sequence with the head symbol c. However, by direct 
inspection, one can observe that states 2 and 3 can not be distinguished with these 
sequences.  
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Step 3. For each sequence i.   QPref(X m-n+1)  DISM, i  Q, each state si  Si, 
each state s reachable from si via sequence  and each state sj  Sj, j  Q, 
check if the set TS has sequences i. .  and j. , sj  s, such that  
distinguishes states sj and s in the specification FSM. If there are no such 
sequences select sequence  that distinguishes states sj and s and add to TS 
sequences i. .  and j. . 

Step 4. For each sequence i.   QPref(X m-n+1)  DISM, i  Q, each state si  Si, 
and each two non-empty prefixes 1 and 2 of the sequence , let P1 and P2 

be the sets of states reachable from state si via sequences 1 and 2. For 
each two states s1  P1 and s2  P2, check if the set TS has sequences 

i. 1.  and i. 2.  such that  distinguishes states s1 and s2 in the 
specification FSM. If there are no such sequences select sequence  that 
distinguishes states s1 and s2 and add to TS sequences i. 1.  and i. 2. . 

 
Due to Theorem 4, the following statement holds. 

Theorem 5 The set  of  input sequences TS obtained using Algorithm 2 is an m-
complete test suite for the given specification FSM M. 

6  Conclusion 

An improved HIS based test derivation method has been presented in this paper. The 
method can be applied for any reduced possibly partial and nondeterministic 
specification machine. In comparison with the HIS method, in the proposed method 
state identifiers are derived on-the-fly and different state identifiers can be used when 
checking different incoming transitions of a state. Experimental results show that the 
proposed method returns shorter test suites than the HIS method. In particular, on 
average, the length of a test suite derived using the H method is 0.66% (0.55%) of the 
length of a test suite derived using the HIS method when the number of states of an 
implementation equals to (is greater than) the number of states of the specification. 
The length of a test suite returned by the proposed method essentially depends on the 
order in which transitions are checked. Accordingly, currently, we are incorporating 
into our method an optimization procedure that determines an order that provides a 
shortest length test suite. 

Output :  An m-complete test suite TS  
Step 1. Derive the set of sequences TS = QPref(Xm-n+1)  DISM and fix for each i  

Q the subset Si of states for which we use the sequence i. 
Step 2. For each two sequences i and j of the state cover set Q and each two states 

si  Si and sj  Sj, check if the set TS has sequences i.  and j.  such that 
 distinguishes states si and sj in the specification FSM. If there are no such 

sequences select a sequence  that distinguishes states si and sj and add 
into TS sequences i.  and j. . 

.
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Abstract. The introduction of multiple remote testers to apply a test or
checking sequence in a test architecture brings out the possibility of con-
trollability and observability problems. These problems often require the
use of external coordination message exchanges among testers. In this
paper, we consider constructing a test or checking sequence from the
specification of the system under test such that it will be free from these
problems and will not require the use of external coordination messages.
We give an algorithm that can check whether it is possible to construct
subsequences from a given specification that eliminate the need for using
external coordination message exchanges, and when it is possible actu-
ally produces such subsequences.

Keywords: Finite state machine, testing, test architecture, observabil-
ity, controllability.

1 Introduction

In a distributed test architecture, a tester is placed at each port of the system un-
der test (SUT) N to apply an input sequence constructed from the specification
M of N . When N is a state based system whose externally observable behaviour
is specified as a finite state machine (FSM) M , the input sequence applied to N
is called a test sequence [13,14] or a checking sequence [6,8,10]. The application
of a test/checking sequence in the distributed test architecture introduces the
possibility of controllability and observability problems. These problems occur
if a tester cannot determine either when to apply a particular input to N , or
whether a particular output from N has been generated in response to a specific
input, respectively [12].

It is nesessary to construct a test or checking sequence that causes no con-
trollability or observability problems during its application in a distributed test
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architecture (see, for example, [1,5,7,9,11,15–17]). For some specifications, there
exists such an input sequence in which the coordination among testers is achieved
indirectly via their interactions with N [14,12]. However, for some other speci-
fications, there may not exist an input sequence in which the testers can coor-
dinate solely via their interactions with N [1,15]. In this case it is necessary for
testers to communicate directly by exchanging external coordination messages
among themselves over a dedicated channel during the application of the input
sequence [2].

It is argued that both controllability and observability problems may be over-
come through the use of external coordination messages among remote testers
[2]. However, there is often a cost associated with the use of such messages which
is composed of the cost of setting up the infrastructure required to allow the ex-
change of such messages and the cost of delays introduced by exchanging these
messages. It is thus desirable to construct a test or checking sequence from the
specification of the system under test such that it will not cause controllability
and observability problems and will not require the use of external coordination
message exchanges.

In [4] we have given a necessary and sufficient condition so that each transi-
tion involved in a potentially undetectable output shift fault can be independently
verified at port p. By verified at port p, we mean we are able to conclude that
the output of this transition at port p is correct according to the correct out-
put sequence of a certain transition path. By indepedently, we mean that the
above conclusion on the output at port p of each transition does not rely on the
correctness of any other transitions. Independence here can be helpful for fault
diagnoses: in the case that the system under test contains only undetectable
output shift faults, we will be able to identify them. In [3] we have given a nec-
essary and sufficient condition so that each transition involved in a potentially
undetectable output shift fault and has a non-empty output at port p can be
independently verified at port p. Based on this we can conclude that each tran-
sition involved in a potentially undetectable output shift fault can be verified
at port p. In this way, we have a weaker condition than that of [4] but we will
no more be able to diagnose the undetectable output shift faults: in the case
that the system under test contains only undetectable output shift faults, we
can only identify those incorrect non-empty outputs at port p. In this paper, we
do not consider the fault diagnosis problem and we show that in this context,
we can have more specifications than those satisfying the conditions in [4] or
[3] with which we can construct a subsequence for each transition involved in
a potentially undetectable output shift fault so that we can conclude that the
outputs at port p of these transitions are correct according to the correct out-
put sequences of the constructed subsequences. We present an algorithm that
identifies whether a given specification falls in this category and when it does so
constructs the subsequences.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminary terminology. Section 3 gives a formal definition of the problem and
identifies the condition that the specification of the system under test is checked
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against. Section 4 presents an algorithm for constructing subsequences that elim-
inate the need for using external coordination messages, proves the correctness
of the algorithm, and gives its computational complexity. Section 5 discusses the
related work. Section 6 gives the concluding remarks.

2 Preliminaries

An n-port Finite State Machine M (simply called an FSM M) is defined as
M = (S, I, O, δ, λ, s0) where S is a finite set of states of M ; s0 ∈ S is the initial
state of M ; I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i, and Ii ∩ Ij = ∅

for i, j ∈ [1, n], i �= j; O =
∏n

i=1(Oi ∪ {−}), where Oi is the output alphabet of
port i, and − means null output; δ is the transition function that maps S × I
to S; and λ is the output function that maps S × I to O. Each y ∈ O is a
vector of outputs, i.e., y =< o1, o2, ..., on > where oi ∈ Oi ∪ {−} for i ∈ [1, n].
We use ∗ to denote any possible output, including −, at a port and + to denote
non-empty output. We also use ∗ to denote any possible input or any possible
vector of outputs. In the following, p ∈ [1, n] is a port. A transition of an FSM
M is a triple t = (s1, s2; x/y), where s1, s2 ∈ S, x ∈ I, and y ∈ O such that
δ(s1, x) = s2, λ(s1, x) = y. s1 and s2 are called the starting state and the ending
state of t respectively. The input/output pair x/y is called the label of t and t

will also be denoted as s1
x/y−−−→ s2. p will denote a port and we use y |p or t |p

to denote the output at p in output vector y or in transition t respectively. We
use T to denote the set of all transitions in M .

A path ρ = t1 t2 . . . tk (k ≥ 0) is a finite sequence of transitions such that
for k ≥ 2, the ending state of ti is the starting state of ti+1 for all i ∈ [1, k − 1].
When the ending state of the last transition of path ρ1 is the starting state
of the first transition of path ρ2, we use ρ1@ρ2 to denote the concatenation of
ρ1 and ρ2. The label of a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk)
(k ≥ 1) is the sequence of input/output pairs x1/y1 x2/y2 . . . xk/yk which is an
input/output sequence. The input portion of a path (s1, s2, x1/y1) (s2, s3, x2/y2)
. . . (sk, sk+1, xk/yk) (k ≥ 1) is the input sequence x1x2 . . . xk. We say t is con-
tained in ρ if t is a transition along path ρ.

When ρ is non-empty, we use first(ρ) and last(ρ) to denote the first and last
transitions of path ρ respectively and pre(ρ) to denote the path obtained from
ρ by removing its last transition.

We will use 2-port FSMs to show some examples. In a 2-port FSM, ports
U and L stand for the upper interface and the lower interface of the FSM. An
output vector y = 〈o1, o2〉 on the label of a transition of the 2-port FSM is a
pair of outputs with o1 ∈ O1 at U and o2 ∈ O2 at L.

Given an FSM M and an input/output sequence x1/y1 x2/y2 . . . xk/yk of M
a controllability (also called synchronization) problem occurs when, in the labels
xi/yi and xi+1/yi+1 of two consecutive transitions, there exists p ∈ [1, n] such
that xi+1 ∈ Ip, xi �∈ Ip, yi |p= − (i ∈ [1, k−1]). If this controllability problem oc-
curs then the tester at p does not know when to send xi+1 and the test/checking
sequence cannot be applied. Consecutive transitions ti and ti+1 form a synchro-
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nizable pair of transitions if ti+1 can follow ti without causing a synchronization
problem. Any path in which every pair of transitions is synchronizable is called
a synchronizable path. An input/output sequence is synchronizable if it is the
label of a synchronizable path.

We assume that for every pair of transitions (t, t′) there is a synchronizable
path that starts with t and ends with t′. If this condition does not hold, then
the FSM is called intrinsically non-synchronizable [1].

A same-port-output-cycle in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2)
. . . (sk, sk+1, xk/yk) (k ≥ 2) such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and
there exists a port p with yi |p �= − and xi �∈ Ip for all i ∈ [1, k]. An isolated-
port-cycle in an FSM is a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk)
(k ≥ 2) such that s1 = sk+1, si �= si+1 for i ∈ [1, k], and there exists a port p
with yi |p= − and xi �∈ Ip for all i ∈ [1, k].

A transition t is involved in a potentially undetectable output shift fault at
p if and only if there exists a transition t′ and a transition path ρ such that at
least one of the following holds.

1. tρt′ is a synchronizable path, no transition in ρt′ contains input at p, the
ouputs at p in all transitions contained in ρ are empty, and t |p= − ⇔ t′ |p �=
−. In this case an undetectable output shift fault can occur between t and
t′ in tρt′. If t |p= − we call it a backward output shift fault and if t |p �= −
we call it a forward output shift fault.

2. t′ρt is a synchronizable path, no transition in ρt contains input at p, the
ouputs at p in all transitions contained in ρ are empty, and t |p= − ⇔ t′ |p �=
−. In this case an undetectable output shift fault can occur between t and
t′ in t′ρt. If t |p= − we call it a forward output shift fault and if t |p �= − we
call it a backward output shift fault.

When ρ is empty, we also say that t is involved in a potentially undetectable
1-shift output fault.

The observability problem occurs when we have potentially undetectable
output shift faults in the specification of the FSM.

We will use Tp to denote the set of transitions that are involved in potentially
undetectable output shift faults at p. Let T ′

p = Tp ∩ {t | t|p �= −}. T ′
p denotes

the set of transitions that are involved in potentially undetectable output shift
fault at p and whose output at p are non-empty.

A relation R between elements of a set A and elements of a set B is a subset
of A×B. If (a, b) is an element of relation R then a is related to b under R and
we also write aRb. The set of elements related to a ∈ A under R is denoted R(a)
and thus R(a) = {b ∈ B|(a, b) ∈ R}.

Given a set A, a relation R between A and A is a partial order if it satisfies
the following conditions.

1. For all a ∈ A, aRa.
2. If aRa′ and a′Ra then a = a′.
3. If a1Ra2 and a2Ra3 then a1Ra3.
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3 Verifiability of Outputs

To verify the output of transition t at port p, we search for a path ρ containing
t such that

– ρ is synchronizable;
– we are able to determine the output sequence of ρ at p from applying the

input portion of ρ from the starting state of ρ;
– from the correct output sequence of ρ at p we can determine that the output

of t at p is correct.

We require that first(ρ) and last(ρ) have input at p in order to identify a cer-
tain output sequence: no matter how ρ is concatenated with other subsequences,
we can always determine the output sequence produced at p in response to the
first |pre(ρ)| inputs of ρ since this output sequence is immediately preceded and
followed by input at p.

To determine the correct output of (t, p) from the correct output sequence of
ρ at p, we require that

– If the output of (t, p) is nonempty, then all the outputs at p in pre(ρ) are
either also nonempty or already known to be correct.

– If the output of (t, p) is empty, then all the outputs at p in pre(ρ) are either
also empty or already known to be correct.

Example 1. In the given specification in Figure 1, there is an undetectable output
shift fault in t1t3 at port U , because the input of t3 is not at U while there is a
potential output shift of o from t3 to t1. We are interested in constructing a path
to verify that the output of transition t1 and that of t3 at this port are correct.

ρ1 = t1t2 is such a synchronizable path for t1: it has input at U in t1 (first(ρ))
and input at U in t2 (last(ρ)), and according to the output at U between these
two inputs when ρ1 is applied as a subsequence, we are able to verify that the
output of t1 at U is correct.

If we know that the output of t1 at U is correct, then ρ2 = t1t3t1 is also a
desirable synchronizable path for t2: it has input at U in t1 (for both first(ρ)
and last(ρ)), and according to the output at U between these two inputs when
ρ2 is applied as a subsequence, we are able to verify that the output of t2 at U
is correct since we already know that the output of t1 at U is correct.

s2

t1: (s1, s2, i1/<-,+>)

i3 is input at L

t2: (s2, s1, i2/<+,+>)

t3: (s2, s1, i3/<o,+>)
i1, i2 are input at U

i1/<-,+>

i2/<+,+>

i3/<o,+>

s1

Fig. 1. An example where Tp is verifiable at U
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Formally, we introduce the following concept.

Definition 1. Let t be a transition, and v a set of transitions in M . ρ is an
absolute verifying path upon v for (t, p) if

– ρ is a synchronizable path;
– t is contained in pre(ρ);
– first(ρ) and last(ρ) and only these two transitions in ρ have input at p;
– t �∈ v and for all t′ contained in pre(ρ), either t′ ∈ v or t′ |p= − ⇔ t |p= −.

Note that given t and ρ we will typically consider a minimal set v that satisfies
the above conditions: if t′ |p= − ⇔ t |p= − then t′ �∈ v.

Example 2. In Example 1,

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

Directly from this definition, we have:

Proposition 1. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set, then ρ is an absolute verifying path upon v for (t′, p) for any
t′ contained in pre(ρ) such that t′ |p= − ⇔ t |p= −.

Proposition 2. Let v be a set of transitions in M , ρ an absolute verifying path
upon v for (t, p). If for every transition t′ in v, the output at p of t′ in the SUT
is correct, then the correct output sequence at p in response to the first |pre(ρ)|
inputs of ρ implies the correct output of (t,p).

Proof. Suppose t |p �= − (The proof for the case when t |p= − is analogous).
Suppose that m inputs from pre(ρ) lead to non-empty output at p in M .

Thus, if we observe the correct output sequence in response to the first |pre(ρ)|
inputs of ρ then we must observe m outputs at p in response to these inputs.

Since t |p �= −, and ρ is an absolute verifying path upon v for (t, p), we know
by definition that for all t′ in ρ′ such that t′ |p= −, the output of t′ at p is correct
(and so is −) in the SUT. So, we know that the corresponding |pre(ρ)|−m inputs
in pre(ρ) lead to empty output at p. Thus we can map the observed outputs at
p, in response to the input portion of pre(ρ), to the inputs that caused them and
so if the correct output sequence is observed then the output of p at t must be
correct.

To verify the output of (t, p), we try to find a path ρ that is an absolute
verifying path upon v for (t, p) for some set v such that the output at p for
every transition in v is verified. So in general, we search for an acyclic digraph
of transitions such that each transition in this digraph has an absolute verifying
path upon a set of transitions that appear as its successors in the digraph. Such
an acyclic graph can be represented as a partial order in the following way.
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Definition 2. Suppose that U is a set of transitions of M , R is a relation from
U to U , and P is a function from U to synchronizable paths of M . Let p be
any port in M . The set U of transitions is verifiable at p under R and P if the
following hold.

(a) For all t ∈ U , P(t) is an absolute verifying path upon R(t) for (t, p);
(b) R∪ {(t, t)|t ∈ U} is a partial order.

Where such R and P exist we also say that U is verifiable at p.

Suppose that U is verifiable at p under R and P and we observe correct
output sequence corresponding to the first |pre(P(t))| output of P(t) for each
t ∈ U . Then according to Proposition 2, we know that the output of t at p is
correct for each t ∈ U . So our goal is to find a set U that is verifiable at p such
that Tp ⊆ U .

Example 3. In Example 1, for port U , we have TU = {t1, t3}. TU is verifiable at
U because

– t1t2 is an absolute verifying path upon ∅ for (t1, U).
– t1t3t1 is an absolute verifying path upon {t1} for (t3, U).

So let P(t1) = t1t2, P(t3) = t1t3t1, R(t1) = ∅, R(t3) = {t1} (i.e. R =
{(t3, t1)}), then Tp = {t1, t3} is verifiable at U under P and R.

Proposition 3. If ρ is an absolute verifying path upon v for (t, p) and v is a
minimal such set then v ⊆ Tp.

Proof. Let ρ = t1 . . . tk (for k ≥ 2) where t = ti for some i ∈ [1, k − 1]. Suppose
ti |p �= − (the case for ti |p= − is analogous). Consider an arbitrary transition
t′ ∈ v: it is sufficient to prove that t′ ∈ Tp.

By the minimality of v we have t′ is contained in pre(ρ) and so t′ = tj for
some j ∈ [1, k− 1]. Since ρ is an absolute verifying path upon v for (ti, p), ti �∈ v
and so j �= i. Suppose i < j (the case for i > j is analogous).

Since tj ∈ v, by the minimality of v we have that tj |p= −. Now as i < j,
ti |p �= −, tj |p= −, there exists some maximal l with i ≤ l < j such that
tl |p �= −. Let ρ′ = tl . . . tj . By Definition 1, no transition in ρ′ has input at p. By
considering ρ′ we see that tj ∈ Tp.

This result allows us to consider only transitions in Tp for U .

Proposition 4. Suppose M is an FSM that is not intrinsically non-
synchronizable, p is a port of M and U is a set of transitions verifiable at port
p. If T ′

p ⊆ U or Tp − T ′
p ⊆ U , then Tp is verifiable at p.

Proof. Suppose U is verifiable under R and P and that R is a minimal such
relation (i.e. U is not verifiable using a relation that contains fewer pairs).

First, consider the case that T ′
p ⊆ U . According to Theorem 2 in [3], there

exists an absolute verifying path upon T ′
p for (t, p) for every t �∈ T ′

p . Since T ′
p ⊆ U ,

there exists ρ′p,t, the absolute verifying path upon T ′
p for (t, p), for t ∈ Tp − U .

Now define relation R′ and function P ′ in the following way.
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1. R′ = R∪ {(t, t′)|t ∈ Tp − U ∧ t′ ∈ T ′
p}

2. P ′ = P ∪ {(t, ρ′p,t)|t ∈ Tp − U}
It is easy to check that Tp is verifiable at p under R′ and P ′ as required.
Now consider the case that T − T ′

p ⊆ U . Similar to Theorem 2 in [3], we
can prove that there exists an absolute verifying path upon Tp −T ′

p for (t, p) for
every t �∈ T − T ′

p . The proof is then similar to that for the case where T ′
p ⊆ U .

4 Algorithm

To calculate T ′
p and Tp − T ′

p , we can first determine all transitions involved in
potentially undetectable 1-shift output fault. This can be done by comparing

every two transitions s1
x1/y1−−−−→ s2 and s2

x2/y2−−−−→ s3 where x2 is not at p. If y1

has nonempty output at p while y2 does not, or vice versa, then t1 and t2 are
involved in potentially undetectable 1-shift output fault and we can put them
into T ′

p and Tp − T ′
p respectively. In particular, for the purpose of the next step

of the calculation, we can mark those transitions put into Tp−T ′
p as backward or

forward to indicate whether it is involved in a potentially undetectable backward
or forward output shift. This step takes O(v2) time where v is the number of
transitions in the given specification. At the end of this step, the set T ′

p calculated
is what we want. Then we can calculate all of the other transitions in Tp − T ′

p

that have empty output at p and are involved in potentially undetectable output

fault. We can keep adding transitions s1
x1/y1−−−−→ s2 into Tp − T ′

p if the output of
y1 at p is empty and one of the following holds:

– There exists s2
x2/y2−−−−→ s3 in Tp −T ′

p marked as backward and x2 is not at p.
In this case, the added transition is also marked as backward.

– There exists s3
x2/y2−−−−→ s1 in Tp − T ′

p marked as forward and x1 is not at p.
In this case, the added transition is also marked as forward.

This step also takes O(v2) time.
Next, we consider an algorithm:

– to check if Tp is verifiable at p. According to Proposition 4, this amounts
to check if there exists U such that U is verifiable at p and T ′

p ⊆ U or
Tp − T ′

p ⊆ U ;
– when Tp is verifiable at p, construct absolute verifying paths for each tran-

sition in Tp.

Figure 2 gives such an algorithm. Here, U is a set of transitions that is
verifiable at p. It is initially set to empty. We search for transitions to be added
into U and try to make U ⊇ Tp. According to Proposition 3, we only need to
consider transitions in Tp to be added into U , so in fact, we seek a set U such
that U = Tp.

If we succeed, we have an absolute verifying path ρp,t kept in P(t) for each
t ∈ U . Of course, if we do not need the absolute verifying paths but just want to
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1: input: M and a port p of M
2: output: answer if Tp is verifiable at p, and if so, provide ρp,t for each transition t

in Tp

3: U := ∅
4: for all t ∈ Tp do
5: P(t) := null
6: end for
7: if Tp = ∅ then
8: success := true
9: goto line 27

10: end if
11: success := false
12: checkset := Tp

13: checkset′ := ∅
14: while checkset �= ∅ ∧ checkset′ �= checkset do
15: checkset′ := checkset
16: if we can find an absolute verifying path ρp,t upon U for (t, p) for some t ∈

checkset then
17: for t′ contained in pre(ρp,t) such that (t′ �∈ U) and (t′|p = − ⇔ t|p = −) do
18: add t′ to U
19: P(t′) := ρp,t

20: end for
21: checkset := Tp − U
22: if checkset := ∅ then
23: success := true
24: end if
25: end if
26: end while
27: if success then
28: output(“success”, P)
29: else
30: output(“no such set of sequences exists.”)
31: end if

Fig. 2. Algorithm 1: generating a set of paths

check whether Tp is verifiable at p, the algorithm can be easily modified so that
it stops whenever Tp ⊆ U or T ′

p ⊆ U (Proposition 4).
If Tp is empty, then we do not need to do anything (lines 7-10). If Tp �= ∅,

then we start to check if there exists a transition t ∈ Tp that has an absolute
verifying path (upon ∅) for (t, p). We use checkset to denote the current set
of transitions that we need to search for absolute verifying paths and initially
checkset = Tp. Thus if checkset becomes ∅ then we terminate the loop and the
algorithm has found a sufficient set of paths. At the end of an iteration the set
checkset′ denotes the value of checkset before the iteration of the while loop and
thus if there is no progress (checkset′ = checkset at this point) the algorithm
terminates with failure.

Whenever we find an absolute verifying path ρp,t upon U , we can add t′

to U for all t′ contained in pre(ρ) and t′ |p= − ⇔ t|p = −. This is based on
Proposition 1. At the same time, we update checkset.



228 J. Chen, R.M. Hierons, and H. Ural

To find an absolute verifying path ρ upon U for (t, p), we can construct G[t,U ]
which is obtained from G by removing all edges except those corresponding to
a transition t′ in one of the following cases:

– t′ has input at p;
– t′ |p= − iff t |p= −;
– t′ ∈ U .

We then search for a synchronizable path in G[t,U ] that contains t, starts
with input at p, and ends with input at p. We can search for such a path similar
to standard algorithms (e.g. find all vertices reachable from all ending vertex of
edges representing t and all vertices that get us to the starting vertex of edges
representing t). Note that we do not need to consider cycles in G[t,U ]: if there
exists an absolute verifying path with a cycle then there is such a path that has
no cycles.

The following two results show that Algorithm 1 is correct.

Theorem 1. Suppose that Algorithm 1 outputs “success” and P. Then there
exists a relation R such that Tp is verifiable at p under R and P.

Proof. Define a relation R in the following way. Given a transition t ∈ Tp consider
the iteration in which t is added to U and let Ut denote the value of U at the
beginning of this iteration. Then, since we could add t to U on this iteration,
there is an absolute verifying path upon Ut for (t, p). Thus, we let R be the
relation such that for all t ∈ Tp, R(t) = Ut. Clearly Tp is verifiable at p under R
and P as required.

Theorem 2. Suppose that Algorithm 1 does not output “success”. Then Tp is
not verifiable at p.

Proof. Proof by contradiction: suppose that there exists R and P such that Tp

is verifiable at p under R and P and that Algorithm 1 terminates with a set U
such that Tp �⊆ U .

Define a function depth from Tp to the integers in the following way. The
base case is depth(t) = 1 if R(t) = {t}. The recursive case is if R(t) �= {t} then
depth(t) = 1 + maxt′∈R(t)\{t}depth(t′). Let t denote an element of Tp \ U that
minimises depth(t). But, every element of R(t) is in U and thus there exists
an absolute verifying path upon R(t) for (p, t). This contradicts the algorithm
terminating with set U such that Tp �⊆ U as required.

Now we turn to the complexity of the algorithm.
Let m = |Tp| be the number of transitions involved in output shift faults at p.

For each while-loop (line 14-26), we construct an absolute verifying path upon U
for one of the transitions in checkset, and we can remove at least one transition
from checkset. As initially |checkset| = m, the while-loop will be executed at
most m times.

Within each while-loop in lines 14-26, we need to check if we can find an
absolute verifying path ρp,t upon U for (t, p) for some t ∈ checkset. This can
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be realized by trying to construct ρp,t for each t ∈ checkset until such a ρp,t is
found. This takes at most |checkset| times of effort for each attempt.

For each attempt to construct an absolute verifying path upon U for a given
transition t, it takes O(wv) times to construct a path where w is the number of
the states in M and v is the number of transitions in M .

For the for-loop in lines 17-20, we can keep a set α of all transitions t′

contained in pre(ρp,t) such that t′ �∈ U and t′|p = − ⇔ t|p = − during the
construction of ρp,t. This does not affect our estimated time O(wv). After we
have found such an ρp,t successfully, we can move all transitions in α from
checkset to U . For each such move, there will be one less while-loop executed,
and thus the time for the operation of the for-loop in lines 17-20 can be ignored.

In summary, the time complexity of Algorithm 1 is O(m2wv).

5 Relationship with Previous Work

To make sure that each transition involved in a potentially undetectable output
shift fault can be independently verified at port p, we need to have ρ1@t@ρ2 as an
absolute verifying path upon ∅ for (t, p) for all transition t involved in a poten-
tially undetectable output shift fault. If ρ1@t@ρ2 is an absolute verifying path
upon ∅ for (t, p), then ρ1@t and t@ρ2 correspond to the absolute leading path
and absolute trailing path respectively defined in [4], where we have presented
a necessary and sufficient condition to guarantee the existence of absolute lead-
ing path and absolute trailing path for (t, p) for each t involved in a potentially
undetectable output shift fault:

Given an FSM with no same-port-output-cycles or isolated-port-cycles, for
any transition t involved in a potentially undetectable 1-shift output faults, there
is an absolute leading path and an absolute trailing path for (t, p) if and only if

for any pair of transitions s1
∗/∗−−−→ s and s

∗/∗−−−→ t1 in the FSM,

a if there exists a potential undetectable forward shift of an output at port p,
then there exists at least one transition to s with a null output at port p, and
at least one transition from s with either an input or a non-empty output at
port p.

b if there exists a potential undetectable backward shift of an output at port p,
then there exists at least one transition to s with a non-empty output at port
p, and at least one transition from s with either an input or a null output at
port p.

This result is presented in terms of 1-shift output faults while it holds also
for general output shift faults.

Apparently, when the above condition holds, there exists an absolute veri-
fying path upon ∅ for (t, p) for every t ∈ Tp, and thus Tp is verifiable. In other
words, we presented in [4] a condition to guarantee that for each t ∈ Tp, there
exists an absolute verifying path upon ∅ for (t, p), and this condition is sufficient
for Tp to be verifiable.

In [3], we have given a weaker condition than the one in [4]:
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s1

s2 s3

i5/<o3,*>

i2/<-,*>i1/<o1,*>

i4/<o2,*>

i3/<-,*>

i2, i5 are input at L

t1: (s1, s2, i1/<o1,*>)

t2: (s2, s3, i2/<-,*>)
t3: (s1, s2, i3/<-,*>)
t4: (s1, s3, i4/<o2,*>)

t5: (s3, s1, i2/<o3,*>)

i1, i3, i4 are input at U

Fig. 3. Example to show the relationship with previous work

Theorem 3. Let M be a given FSM which is not intrinsically non-
synchronizable and has no same-port-output-cycles. Let p be any port of M .

(i) (t0, p) has an absolute leading path for every t0 ∈ T ′
p , if and only if

∀t = s1
x/y−−−→ s2 ∈ T ′

p , x �∈ Ip implies ∃s3
x′/y′

−−−−→ s1 ∈ T synchonizable with t
such that y′|p �= −;

(ii) (t0, p) has an absolute trailing path for every t0 ∈ T ′
p , if and only if

∀t = s1
x/y−−−→ s2 ∈ T ′

p , ∃s2
x′/y′

−−−−→ s4 ∈ T synchonizable with t such that
x′ ∈ Ip ∨ y′ |p �= −.

The above theorem gives a condition and declares that under this condition,
it is guaranteed the existence of absolute leading path and absolute trailing path
for (t, p) only for all those transitions involved in potentially undetectable output
shift and have non-empty output at p. So it guarantees that for each transition
t of this category, (t, p) has an absolute verifying path upon ∅.

Then it is proved there that for other transitions t′ involved in potentially
undetectable output shift but with empty output at p, there is an absolute
verifying path upon T ′

p for (t′, p):

Theorem 4. Given any FSM M that is not intrinsically non-synchronizable
and port p, every t �∈ T ′

p has an absolute verifying path upon T ′
p .

According to these two theorems, the condition in Theorem 3 is sufficient for
Tp to be verifiable.

On the other hand, the conditions in [4,3] are not necessary for Tp to be
verifiable.

Example 4. In Example 1 we have shown that Tp is verifiable at U . However,
the conditions in [4,3] do not hold. This is because for (t3, U), t3 does not have
input at U and there is no transition ending at s2 with non-empty output at U .

The following shows another example where Tp is verifiable at U while the
conditions in [4,3] do not hold.

Example 5. In Figure 3, there are undetectable output shift faults at port U in
t1t2 and in t2t5. TU = {t1, t2, t5}. T ′

U = {t1, t5}.
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The conditions in [4,3] do not hold because for (t1, U), there is no transition
starting from s2 that has either input at U or non-empty output at U .

However, TU is verifiable at U :

– t4t5t1 is an absolute verifying path upon ∅ for (t5, U).
– t3t2t5t1 is an absolute verifying path upon {t5} for (t2, U).
– t1t2t5t1 is an absolute verifying path upon {t2, t5} for (t1, U).

6 Conclusion

This paper has presented a sound procedure to check for the possibility of con-
structing a test/checking sequence that will not cause controllability and observ-
ability problems and will not require external coordination message exchanges
among remote testers during its application in a distributed test architecture.
This is realized by constructing a path that can help checking the output of a
transition t at a certain port p, for each transition t involved in a potentially
undetectable output shift fault. The effectiveness of this path on checking the
output of transition t at port p must not be affected by controllability and ob-
servability problems. The correct output of transition t at port p is actually
derived from the correct output sequence when applying the input portion of
this path during the test. It remains as an interesting problem to produce an
efficient test or checking sequence from an FSM, that is guaranteed to determine
the correctness of the SUT for the considered fault model.
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Abstract. IPsec (IP security) will function correctly only if its security policies 

satisfy all the requirements. If the security policies cannot meet a set of 

consistent requirements, we said there are policy conflicts. In this paper, we 

analyze all situations which could possibly lead to a policy conflict and try to 

resolve all of them. We induce only two situations which could cause conflicts 

and also propose an algorithm to automatically generate conflict-free policies 

which satisfy all requirements. We also implement our algorithm and compare 

the results of simulation with the other approaches and show that it outperforms 

existing approaches in the literature. 

1   Introduction 

IPsec (IP security) provides authentication and confidentiality and is widely used in 

building a VPN (Virtual Private Network) of an organization or a business. Because 

that IPsec implements security services at IP layer and directly protects all the packets 

to achieve its security goal, the applications at upper layer do not need to make any 

change. According to the security requirements of an organization, security policies 

are configured on every security gateway or router in the VPN to enforce the required 

protections. Security requirements are goals we want to reach, and security policies 

which are configured in all involved computers are the detailed methods to reach 

those requirements.  

 

Fig. 1. An encryption requirement example 

Basically, security policies are generated according to the security requirements. 

Correctly producing security policies from requirements is an important issue, 

because if there is an error setting on one of these gateways or routers, packets will be 
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dropped and the whole network will be blockaded, or the security will be breached. 

For example, in Fig. 1, we have a simple network topology of four nodes, A, B, C, 

and D, and we also have one encryption requirement which is to protect the traffic 

from node A to node D, including the network links A to B, B to C, and C to D. Node 

A is the gateway of domain 10.1.2.1/24, node B is the gateway of domain 10.1.1.1/16, 

node C is the gateway of domain 10.2.1.1/16, and node D is the gateway of domain 

10.2.2.1/24. The form of requirement we used in this paper is defined in [1]. For more 

explanations, the readers can refer to Section 3. 

 

 

Fig. 2. Four different configurations of security policies that satisfy our requirement 

There are many possible ways to generate security policies to satisfy our 

requirements. For example, in Fig. 2, we show four different configurations of 

security policies to satisfy the requirement of Fig. 1. Security policies decide how the 

IPsec tunnels will be build. In (a) of Fig. 2, the policy builds an encryption tunnel 

directly from node A to node D. Therefore, all the packets which are subject to our 

requirement will be protected from this tunnel, and we can say this policy satisfies 

our requirement. In (b) of Fig. 2, two security policies were generated. One is to 

protect the traffic from node A to node B, and the other is to protect the traffic from 

node B to node D. Obviously, the packets subject to our requirement will go through 

the first tunnel from A to B, and then go through the second tunnel from B to D. 

Assume the node B is trusted and data decryption is permitted on this node, we can 

see these two security policies satisfy our requirement. In (c) and (d) of Fig. 2, the 

security policies also satisfy our requirement. 

However, there may be some conflicts between policies, and not every possible 

configuration of security policies will satisfy the requirements. This issue was first 

addressed in [1]. Therefore, we bring up a policy-generation algorithm to produce 

security policies to satisfy all the requirements, and try to minimize not only the 

number of total tunnels but also the number of tunnels passed by all possible traffic. 

The reason to minimize the number of total tunnels is that if there are more tunnels, 

the network topology will be more complicated, and the network management and 

analysis will be more difficult, too. On the other hand, if there are fewer tunnels 

which are passed by all possible traffic, we can save more computational power and 

improve the efficiency of the entire network. In this paper, we present our algorithm 

for automatic generation of conflict free policies, and compare the results with other 

three algorithms which are proposed by the predecessors. 

The rest of the paper is organized as follows. The policy conflict problem is 

described in Section 2. Related works are addressed in Section 3. In Section 4, we 

present the proposed algorithm for generating conflict-free IPsec policies. Some 

simulation results are given in Section 5, and finally we make a conclusion of this 

paper in Section 6. 
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2   Policy Conflict Problem 

The cause of a policy conflict is more than one policies have certain kind of 

intersection. More precisely, a conflict happens when the packets in one tunnel pass 

through a network node (a security gateway, a router, or any IPsec-enabled machine), 

but the packets are pulled down into another tunnel by the policy of that network 

node. Only in such situation, the policy conflict might have a chance to happen. 

Although not every intersection of tunnels will lead to a policy conflict, we can 

simplify the problem to consider only two tunnels and all kinds of intersection 

relationships between them. Since a policy conflict might happen only when packets 

in the first tunnel are pulled down into the second tunnel, we only need to consider the 

linear network area between the starting node and the end node of the second tunnel, 

and all the nodes of the first tunnel in this linear network area. Therefore, we only 

need to consider one-dimensional relationships between two tunnels. Here we refer to 

a tunnel as “first” or “second” depends on the order the packets encounter them. If 

two tunnels have no one dimensional intersection relationship, they will not conflict 

with each other. 

For example, in Fig. 3, although the two tunnels are in two-dimensional, we could 

consider their one dimensional intersection part, which is the three points 2, 4, and 3. 

The point 2 and point 3 are the starting point and the end point of the second tunnel, 

so both of them are always on the same line. As for the point 4, it is the last node of 

the first tunnel in the line segment between point 2 and point 3. 

Fig. 4 lists all intersection relationships between two tunnels in one-dimension, and 

we will analyze these relationships to find in what situations there will be policy 

conflicts. We omit other situations in which two tunnels do not intersect with each 

other. In the case (A) of Fig. 4, the upper tunnel and the lower tunnel have the same 

starting point and the same end point, and there will be no policy conflicts. In the case 

(B), the upper tunnel is the first tunnel and it starts at the same point where the second 

(lower) tunnel starts, and the traffic will be encapsulated twice at this starting point 

and decapsulated at the end point of the second tunnel. When the traffic is 

decapsulated at the end point of the second tunnel, it will be sent back to the end point 

of the first tunnel, and there might be a policy conflict because of the sending-back 

phenomenon. 

In the case (C), the traffic is encapsulated at the starting point of the first (lower) 

tunnel. When the traffic travel the network to the starting point of the second (upper) 

tunnel, the traffic will be encapsulated again and sent to the end point of the second 

tunnel, which is also the end point of the first tunnel. So, the traffic will be 

decapsulated twice at the most right node, which is the end point of both of tunnels, 

and there will be no policy conflicts here. In the case (D), the traffic is encapsulated 

twice at the most left node, which is the starting point of both of tunnels, and then the 

traffic will be decapsulated and leave the second (lower) tunnel at the middle node, 

which is the end point of the second tunnel. Finally, the traffic is sent to the end point 

of the first (upper) tunnel and decapsulated there. In this case, there will be no policy 

conflicts, either. In the case (E), the traffic is encapsulated in the starting point of the 

first (upper) tunnel. At the middle node, which is the starting point of the second 

(lower) tunnel, the traffic will be encapsulated again at this middle node. Then, the 

traffic will be directly sent to the most right node, which is the end point of the second 
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tunnel, and the traffic will be decapsulated and sent back to the end point of the first 

tunnel. After arriving at the end point of the first tunnel, the traffic will leave the first 

tunnel and be sent to the most right node. Therefore, in the case (E), the policy 

conflict might happen. In the case (F), at first, the traffic is encapsulated by the longer 

(upper) tunnel, and then the traffic will encounter the shorter (lower) tunnel. The 

traffic will leave the shorter tunnel first and then leave the longer tunnel in the end. 

The length of a tunnel is defined as the hop count it passed. We make a summary of 

all the cases in which the policy conflict might happen in Fig. 5. There are only two 

situations which might cause the policy conflicts. The situation (1) has not been 

addressed yet in other papers before. The proposed algorithm could handle these two 

situations and generate conflict-free policies to meet the security requirements. 

 

 

Fig. 3. An example: the intersection of two tunnels 

 

Fig. 4. All intersection relationships between two tunnels 

 

Fig. 5. Two situations which cause the policy conflicts 

3   Related Works 

In this section, we describe the definitions and syntax for security requirements and 

security policies we used in this paper. Security requirements are high-level goals we 

want to achieve, and security policies are actually configured at all related machines 

in a virtual private network. We also describe three existing algorithms which 

automatically generate security policies for the requirements. These algorithms were 

described in [2] and [3]. 

3.1   Security Requirements 

In [1],  the authors  clearly defined  two levels of security policies, which are the 

requirement level and the implementation level. A security policy set is correct if and 

only if it satisfies all the requirements. A requirement R is a rule of the following 

form: If condition C then action A: 

R = C  A 
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There are four kinds of requirements in [1]: 

• Access Control Requirement (ACR): 

flow id  deny | allow 

• Security Coverage Requirement (SCR): 

flow id  enforce (sec-function, strength, from, to, [trusted-nodes]) 

• Content Access Requirement (CAR): 

flow id, [sec-function, access-nodes]  deny | allow 

• Security Association Requirement (SAR): 

flow id, [SA-peer1, SA-peer2]  deny | allow 

flow id is used to identify a traffic flow, and is composed of 5 to 6 sub-selectors 

including src-addr, dst-addr, src-port, dst-port, protocol, and optional user-id. A 

requirement is satisfied if and only if all packets selected by the condition part 

execute the action part of the requirement. 

3.2   Security Policies 

For different implementations of IPsec, there are different ways to specify these 

policies. For convenience, we choose the syntax specified in setkey of the IPsec-

Tools project [5] to describe a security policy in this paper. The IPsec-Tools project is 

a port of KAME’s IPsec utilities to Linux-2.6 IPsec implementation. It supports 

NetBSD and FreeBSD as well. The setkey is a tool of the IPsec-Tools project to 

manipulate IPsec policies. According to the manual of setkey, the syntax to describe a 

security policy is as the following: 

src_range dst_range upperspec policy; 

src_range and dst_range are selections of the secure communication specified as 

IPv4/v6 address or address range, and it may accompany TCP/UDP port specification.

upperspec is the upper-layer protocol to be used, such as TCP, UDP, or ICMP, and it 

can be specified as any for “any protocol.” policy uses the format: 

-P direction [priority specification] discard/none/ipsec protocol/mode/src-dst/level [...] 

For instance, the configuration (a) of Fig. 2, which builds a tunnel from node 

10.1.2.1 to node 10.2.2.1, has the policies as follows. 

At node 10.1.2.1 (the gateway of domain 10.1.2.1/24): 

10.1.2.1/24 10.2.2.1/24 any -P out ipsec esp/tunnel/10.1.2.1-10.2.2.1/require; 
At node 10.2.2.1 (the gateway of domain 10.2.2.1/24): 

10.1.2.1/24 10.2.2.1/24 any -P in ipsec esp/tunnel/10.1.2.1-10.2.2.1/require; 

3.3   The Bundle Approach 

The bundle approach is the first algorithm for solving the IPsec policy-conflict 

problem, and it was proposed in [2]. The bundle approach has two phases. First, it 
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requirement. However there might be solution using bundle approach. Therefore, the 

paper suggested a combined approach which uses the direct approach first and if it 

cannot find the solution, uses the bundle approach instead. The solution for the three 

requirements example is shown in Fig. 8. 

 

 

Fig. 8. The solution of direct approach for the three requirements example 

3.5   The Ordered-Split Algorithm 

The ordered-split algorithm was proposed in [3]. It handles the requirements of 

authentication and the requirements of encryption separately. It first converts original 

requirements into tie-free requirement sets and then generates minimal size canonical 

solutions for the new requirements. A canonical solution is defined as a solution with 

no two tunnels start at the same place or end at the same place. A Tie-free 

requirement set is defined as a requirement set with no two requirements share the 

same from values and the same to values. The from and to values of one requirement 

determine the network area which needs to be proteced. According to the simulation 

and analysis of [3], this algorithm generates fewer tunnels than the bundle/direct 

approach and the enhanced bundle/direct approach. The solution for the three 

requirements example is shown in Fig. 9. There are three tunnels in this solution, and 

the middle tunnel will provide both the encryption and authentication. 

 

 

Fig. 9. The solution of the ordered-split algorithm for the three requirements example 

These algorithms are used to find correct security policy sets and minimize the 

total number of tunnels. As we said before, if the total number of tunnels is small, the 

network topology will be simpler and the policy management will be much easier. 

Generally speaking, if there are fewer tunnels, there would be fewer tunnels packets 

are needed to pass. The total computational cost will decrease, and all the security 

requirements are still satisfied. However, a question is, if two security policy sets 

have the same number of total tunnels, which policy set is a better solution? The 

answer is the policy set which has longer average tunnel length will be a better 

choice. It is because that we will need the tunnel length to be as long as possible in 

order to avoid traffic being encapsulated and decapsulated many times. In this paper, 

we present a policy-generation algorithm achieve these goals: (1) generates correct 

security policies, (2) minimizes total number of tunnels, and (3) makes every tunnel 

as long as possible. 
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4   Policy-Generation Algorithm 

Our algorithm will handle the two situations which cause policy conflicts, and will 

generate the correct security policies according to the security requirements. In Fig. 5, 

the situation (1) is a kind of nested tunnels and can be avoided if we always set the 

priority of the longer tunnel higher than the priority of the shorter tunnel. In other 

words, if there are more than two tunnels which start at the same point, we will set the 

policies at the starting point so that a longer tunnel will always be processed earlier 

than a shorter one. In most implementations of IPsec, the priorities of security policies 

at a network node are decided by the order with which we specify. If we always 

process a longer tunnel first, we will never encounter the situation (1) in Fig. 5. This 

is the reason for our algorithm to keep the policies in the descending order regarding 

the lengths. 
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Fig. 10. Two possibilities of situation (2) in Fig. 5 

 

Table 2. The policy generation algorithm 

1  PolicyList 

2  Policy_Gen_Algorithm(Graph Network, ReqList Reqs) { 

3      PolicyList      policies; 

4      policies = Directly_Build_A_Tunnel_For_Each_Requirement(Network, Reqs); 

5      Sort_By_Length_Descending(policies); 

6      Resolve_If_Tunnel_Overlapped(policies); 

7      Delete_Redundant_ Tunnels(policies); 

8      return policies; 

9  } 

 

Table 2 lists our algorithm. First, the algorithm takes the Network, and Reqs as its 

arguments. The network is a general graph structure and represents the entire 

network. We need to know the entire network topology to build each tunnel. And 

Reqs represents the list of security requirements. At first, according to the network 

range given by the requirements, we directly build a tunnel (policy) for each 

requirement. And then, all tunnels are sorted in the descending order with respect to 

their lengths.. The reason for doing this is to avoid the situation (1) in Fig. 5, which 

may incur a policy conflict. Then, we check if there are overlapped tunnels and 

resolve them. In Fig. 10, cp means the current policy we want to check and ep means 

the existing policy which is build. The resolving process is simple, because now we 

only need to worry about the situation (2) in Fig. 5. There are two possibilities: one is 
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ep is the “second” tunnel. A tunnel is “first” or “second” depends on the order with 

which the packets encounter. The expressions (A) and (B) in the bottom of Fig. 10 

represent the logical relationships between cp and ep. If a policy conflict happens, we 

will cut the overlapped tunnel into two pieces. We cut cp because the length of cp is 

always less than or equal to the length of each existing policy ep. We want to keep all 

tunnels as long as possible, so we cut a short tunnel. In practice, we can check the 

trusted_nodes attribute of the requirements to see if the cutting node is trusted. In the 

final phase of our algorithm, we delete all the redundant long tunnels. A tunnel is 

redundant if there exist another tunnels with the same beginning point and the end 

point. Fig. 11 shows an example of redundant tunnels. 

 

Fig. 11. An example of redundant tunnels 

We take the example in Fig. 6 and Table 1 to illustrate our algorithm and compare 

it with other three algorithms. At first, we directly build three tunnels for the three 

requirements individually, and sort them regarding their length. The result is shown in 

Fig. 12. In the second phase, we check if there are any overlapped tunnels like the 

situation (2) of Fig. 5 and resolve these tunnels. The result of this checking process is 

shown in Fig. 13. Finally, we delete all redundant tunnels and get the final solution 

shown in Fig. 14. 

 

 

Fig. 12. Directly build a tunnel for each requirement 

 

Fig. 13. Check the overlapped tunnels and resolve them 

 

ep is “first” tunnel and cp is the “second”, and the other is cp is the “first” tunnel and 

 

Fig. 14. The final solution for the three requirements example by our algorithm 

We compare the four solutions for the three requirements example in the Table 4. 

The “tunnels passed” is the accumulated number of tunnels which are passed by the 

six possibilities of the traffic with the same direction (from left to right) listed in 

Table 3. 
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Table 3. The six possibilities of the traffic 

From To 
10.1.2.1/24 10.1.1.1/16 - 10.1.2.1/241 

10.1.1.1/16 10.2.1.1/16 

10.2.1.1/16 - 10.2.2.1/24 10.2.2.1/24 

10.1.2.1/24 10.2.1.1/16 

10.1.1.1/16 10.2.2.1/24 

10.1.2.1/24 10.2.2.1/24 

 

Table 4. Comparison of four solutions 

 Number of Tunnels Tunnels Passed 

Bundle 10 36 

Direct 4 13 

Ordered-Split 3 10 

Ours 3 9 

 

We give the other example in Table 5 and Fig. 15. There are four security 

requirements in this example. We use a concise form to describe a requirement. We 

use the node identifier number to replace the IP address, and we use the notations E 

and A to represent the encryption and authentication. Our solution is shown in Fig. 16. 

Fig. 17 is the solution by using the direct approach. There is one problem may occur 

in this solution. At node 4, there are three tunnels and the processing order of these 

three tunnels is undefined in the direct approach. So it is possible to cause a policy 

conflict if the situation (1) in Fig. 5 happened. In fact, [2] and [3] did not consider this 

kind of the policy conflict. When we compare our algorithm with the algorithms in [2] 

and [3], we assume the situation (1) in Fig. 5 will not cause a conflict. In the end, Fig. 
18 shows the solution by using the ordered-split algorithm, and we eliminate the 

tunnel which is an authentication tunnel from node 2 to node 7, because the other 

short tunnels T2, T3, T4, and T5 already provide both the encryption and 

authentication. 

1 The minus operator means that the network domain 10.1.2.1/24 is excluded. 

Table 6 shows the results of these algorithms. By using the direct approach, if we 

send traffic from node 3 to node 7, the traffic will pass through the tunnels T6, T3, 

Table 5. An example of four requirements 

Req1 (3, 7)  (E, 3, 7) 

Req2 (1, 4)  (E, 1, 4) 

Req3 (2, 7)  (A, 2, 7) 

Req4 (2, 5)  (E, 2, 5) 
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7
 

Fig. 15. An example of four requirements 

 

Fig. 16. The solution for the example of Fig. 15 by using our algorithm 

1
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7
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Fig. 17. The solution for Fig. 15 by using the direct approach  

 

Fig. 18. The solution for Fig. 15 by using the ordered-split algorithm 

Table 6. The compare of three algorithms 

 
Total Number 
of Tunnels 

Accumulated Number 
of Tunnels Passed 

Direct 7 52 

Ordered-Split 5 45 

Ours 5 40 

 

T5, and T7 in Fig. 17. By using the ordered-split algorithm, the same traffic will pass 

through the tunnels T3, T4, and T5 in Fig. 18. And by using our algorithm, the same 

traffic will pass through the tunnels T2, T3, and T6 in Fig. 16. The rest may be 

deduced by analogy. We calculate the accumulated number of tunnels passed by all 

Automatic Generation of Conflict-Free IPsec Policies 243 



5   Simulation 

From the previous section, we observed that our algorithm has fewer tunnels and less 

waste of computational power when comparing to the ordered-split algorithm, which 

is better than the bundle/direct approach according to the analysis of [3]. Therefore, 

we implemented the ordered-split algorithm and our algorithm in C++, and compare 

the results of these two algorithms for various scenarios. We will focus on the total 

number of tunnels and the number of tunnels passed by all possible traffic. If there are 

fewer tunnels, the network topology will be simpler, and the network management 

and analysis will be easier, too. On the other hand, if there are fewer tunnels passed 

by all possible traffic, we can avoid unnecessary encryptions/decryptions. Therefore 

our algorithm consumes less computation power and improves the efficiency of the 

entire network. 
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Fig. 19. The average numbers of policies in the network of 20 routers 

 

 

                                                           

possible traffic with the direction from left to right. The fewer the accumulated 

number of tunnels is, the less computation power is consumed. As we can see, our 

algorithm has fewer accumulated number of tunnels. 

 

 

 

 

Fig. 19 compares the result of our algorithm and order-split algorithm (shown as 

OSA in the graph) in the network of 20 routers. The X-axis is the average number of 

policies, and the Y-axis is the number of requirements. Our simulation program 

randomly generates 10,000 cases and calculates the average values produced by both 

algorithms. We can see our algorithm generates fewer tunnels than the ordered-split 

algorithm. Fig. 20 shows the average number of tunnels passed by all possible traffic 

in the network of 20 routers. The X-axis of Fig. 20 is the number of requirements, and 

the Y-axis is the average number of tunnels passed by traffic. Fig. 21 and Fig. 22 

show the comparison in the network 50 routers. In practice, a VPN of a business or an 

organization seldom has more than 50 routers. By observing every simulated case, we 

can see that our algorithm generates fewer tunnels and requires fewer computational 

costs than the ordered-split algorithm. 
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Fig. 20. The average number of tunnels passed by traffic in the network of 20 routers 
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Fig. 21. The average numbers of policies in the network of 50 routers 
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Fig. 22. The average number of tunnels passed by traffic in the network of 50 routers 
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6   Conclusions and Future Work 

In this paper, we analyzed what situations would cause the policy conflicts. And we 

induced only two situations would cause conflicts. Then, we proposed an algorithm to 

automatically generate conflict-free policies and satisfy all the security requirements. 

Our algorithm generates fewer tunnels and save more computational power than other 

existing approaches in the literature. Our algorithm is “off-line,” and there might be 

more improvement to speed up this algorithm. In the future, we can try to find a 

solution to resolve the policy conflict problem online. Besides, the delivery of policies 

is still a problem. If we have generated correct and efficient policies, how do we 
deliver them to each network node and configure them? Every security gateway, 

router, or network device may have different implementation of IPsec, and we need 

different ways to configure them. Therefore, it is our future work to develop a 

uniform interface of delivering and configuring policies. 
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Abstract. Attacks on computer networks are moving away from simple vulner-
ability exploits. More sophisticated attack types combine and depend on aspects 
on multiple levels (e.g. protocol and network level). Furthermore attacker  
actions, regular protocol execution steps, and administrator actions may be in-
terleaved. Analysis based on human reasoning and simulation only has a slim 
chance to reveal attack possibilities. Formal methods are in principle well-
suited in this situation. Since complex scenarios have to be considered, how-
ever, high efforts are needed for modeling. Furthermore, automated analysis 
tools usually fail due to state space explosion. We propose a novel approach for 
modeling and analyzing such scenarios. It combines the high-level specification 
language cTLA with a computer network framework, optimization strategies, a 
translation tool, and the SPIN model checker. As a proof of feasibility we apply 
our approach to a multi-LAN scenario. 

1   Introduction 

Current trends [Ver04] show an increasing number of attacks. Especially attacks that 
are more sophisticated than just simple vulnerability exploitations are on the rise. Fre-
quently, commonly deployed protocols and services are misused. This is facilitated by 
the fact that many basic protocols and services have long known security problems 
(cf. [Bel89]). 

In the analysis of such attacks, multiple levels have to be considered simultane-
ously. For example, an attack on a routing protocol in a multi-LAN scenario may be 
feasible only with a specific update packet propagation. Propagation in turn depends 
on low level aspects like network topology and connectivity besides the protocol level 
flooding algorithm used. Furthermore, attacker position and administrator actions may 
matter as well. Multi-level attacks are attacks which combine and depend on aspects 
on multiple levels. Because of the complexity involved with simultaneously regarding 
multiple levels, manual analysis of such attack types is very difficult. Simulation 
techniques tend to provide good coverage only for very small systems. Thus the like-
lihood of finding potential attack sequences by means of simulation in a more exten-
sive system is very low. 

In this context we recognize the need for a suitable approach to formal modeling 
and automated analysis of complex attack types, especially multi-level attacks, in 
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computer networks. We aim to learn about attack processes, their impacts on the net-
work components and their inferences with network administration processes. This 
shall help to predict relevant attack scenarios and provide means for the clear descrip-
tion of attacks, advice and countermeasures. 

For our network modeling and attack analysis we resort to formal techniques. We 
combine the flexible and modular specification technique cTLA [HK00] with the 
model checker SPIN [Hol03], which is currently one of the most powerful and elabo-
rated automated process system verification tools. cTLA supports the efficient and 
structured description of broad models. Using cTLA2PC, our translation tool, the 
cTLA specifications are transformed to the more low level process system description 
language Promela, which is input to the automated model checker SPIN. 

We successfully applied a preliminary version of our approach to the analysis of 
low-level ARP attacks and administrator actions in a single LAN scenario [RPK04]. 
When starting with larger and more complex examples we, however, experienced 
high model development efforts. Initial analysis runs showed serious state explosion 
effects exceeding given memory limits. Therefore we developed further enhance-
ments of our approach with respect to two aspects: First, we developed a cTLA-based 
modeling framework. It defines suitable network model architecture principles and 
supplies corresponding re-usable model elements thus supporting the efficient devel-
opment of models. Second, we investigated SPIN’s automated model evaluation pro-
cedure in order to develop model optimizations. SPIN performs model evaluation by 
means of the computation of the set of reachable system states. This corresponds to 
the execution of all possible system behavior steps. Thus SPIN executes the model, 
and suitable model optimization conceptions can be adopted from the field of efficient 
protocol implementation (cf. [Svo89]). In particular, activity thread approaches – 
coarsening the execution step granularity – and buffer management approaches – re-
ducing the size of interface parameters – were applied. Furthermore, cTLA2PC has 
been optimized to produce Promela code with less possible execution traces and to 
save state components. After these refinements, the modeling and automated analysis 
of the example scenario described in this paper became possible. 

This paper reports on our refined formal modeling and analysis approach. Its main 
focus is the presentation of the modeling framework and the model optimizations. 
Section 2 deals with related work. The modeling framework is described in section 3. 
Section 4 outlines the cTLA modeling language. Subsequently, as a proof of feasibil-
ity, a medium size example scenario is considered in section 5. Section 6 gives an 
overview of optimizations on different levels and describes the results of the auto-
mated scenario analysis with SPIN. Concluding remarks are given in section 7. 

2   Related Work 

Approaches for the formal analysis and verification of security properties can gener-
ally be structured in program and protocol verification. Program verification shall en-
hance the trustworthiness of software systems (e.g. [BR00]). Protocol verification 
shall detect vulnerabilities of cryptographic protocols (e.g. [Mea95]). In both fields, a 
variety of basic methods are applied including classic logic and algebraic calculi (e.g. 
[KK03]), special calculi (e.g. [BAN89]), and process system modeling techniques 
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(e.g. [LBL99]). Moreover the approaches differ with respect to tool support. Many 
tools take advantage of existant more general analysis tools like Prolog, expert system 
shells, theorem provers, algebraic term rewriting systems, and reachability analysis 
based model checkers like SPIN (e.g. [RRC03]). Some powerful tools combine sev-
eral analysis techniques [Mea96]. 

Formal modeling and analysis of network attack sequences combining aspects on 
different levels – e.g. protocol and network level – is a relatively new field. 
Ramakrishnan and Sekar [RS02] report on the analysis of vulnerabilities resulting 
from the combined behavior of system components. They consider a single host only, 
however. A process model is used which is specified in a Prolog variant. In the focus 
are simple security properties, expressed by labeling states safe and unsafe. A custom 
model checker built on top of a Prolog programming environment searches execution 
sequences which lead to unsafe states and correspond to vulnerability exploitations. 
Noel et al [NBR02] report on topological vulnerability analysis, i.e. checking net-
works of hosts for vulnerability combinations. A network is statically modeled by a 
set of tables representing hosts, predefined vulnerabilities, attacker access levels per 
host, and a connectivity matrix. The analysis investigates the possible combinations of 
the given vulnerabilities and their stepwise propagation in the network using SMV 
[Ber01]. Protocol level aspects, however, can only be modeled in a very limited way 
using symbolic constants in the connectivity matrix. 

With respect to the simplification of models, our work is on the one hand related to 
techniques for efficient protocol implementation which were developed about 20 
years ago in the course of the upcoming high-speed communication. In particular we 
learned from the activity thread implementation model which schedules activities of 
different protocol layers in common sequential control threads [Svo89], and from in-
tegrated layer processing which combines operations of different layers [AP93]. On 
the other hand, approaches for direct SPIN model reductions have to be mentioned. 
Particularly, Ruys [Ruy01] introduces low-level SPIN-specific optimizations. Partial 
order reductions, proposed by Alur et al. [ABH97], have a strong relationship to the 
activity thread implementation model providing the basis for the elimination of non-
deterministic execution sequences. 

3   Framework 

Designing computer network specifications suitable for automated analysis is diffi-
cult. Particularly, the right abstraction level must be chosen. On the one hand, relevant 
details of a given scenario have to be captured. On the other hand, detailed models 
naturally have a very large state vector. Furthermore, the number of potential states 
grows exponentially with the state-vector size. Thus even a small addition to the 
model can lead to a prohibitive increase in the number of states. This effect is known 
as state space explosion. Automated analysis is rendered impossible because given 
time and memory constraints are quickly exceeded. 

We aim to support the design process for computer network specifications in a way 
which fosters reuse of tried and tested abstractions and simplifies key design deci-
sions. In the world of object-oriented programming patterns and frameworks are used 
for this task (cf. Gamma’s definition in [GHJ95, pp. 26-27]). Thus we decided to 
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carry over the framework concept to computer network specifications. While design-
ing computer network specifications for different scenarios, we identified common 
architectural elements. These elements form the basis of the cTLA computer network 
modeling framework. It defines both basic structure, i.e. typical elements like nodes, 
interfaces and media with their coupling, and basic behavior, i.e. sending and receiv-
ing actions, of computer networks. A specific model has to add its own elements (e.g. 
RIP capable nodes), but the overall architecture is given by the framework. 

 

Fig. 1. Framework’s large scale network view 

3.1   Fundamentals 

Our framework is based on the large scale view of computer networks exemplified by 
Figure 1. It shows two zones, each containing several nodes. The nodes inside a zone 
can directly communicate with any other node in the same zone. Zones can also be in-
terpreted as network broadcast segments or subnets. All active network elements are 
modeled by nodes. Nodes communicate using interfaces. A node is said to belong to a 
zone if it has an interface in the zone. Interfaces transmit packets over media. Media 
is partitioned according to the zones. The two zones are connected by a transfer node. 
A transfer node is a special node with at least two interfaces in two different zones. It 
enables inter-zone communication. A node with just one interface is a host node. 

On a small scale or node-oriented view packets are processed, sent and received 
through actions. Inside a node, the packet processing is structured into layers. A valid 
packet that is received from media by an interface is stored in the interface's receive 
buffer and then processed through the layers (action rpcs). A packet which shall be 
sent is processed (action spcs) the other way around, down the layers until it has 
reached the interface level. A node’s snd and media’s in actions respectively node’s 
rcv and media’s out actions are coupled. If media does not already contain a packet 
from the zone it can be sent (i.e. moved from the node’s to media’s packet buffer). 
The exact layer and address types used in a node vary depending on the specific node 
and scenario. 

Most of today's computer networks employ the internet standard protocols. Thus 
our framework particularly supports TCP/IP based node types. 
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3.2   Architecture 

An overview of the framework as a UML class diagram is depicted in Figure 2. The 
most current version of the framework’s elements can be retrieved via our web site 
[Rot04]. 

According to the syntactical level of the elements, the framework is structured into 
the packages Enumerations & Functions (1),  Data Types (2), and Process Types (3). 
The package Enumerations & Functions is used to define the network topology, ini-
tial address assignment and protocols desired for a model. For example, the enumera-
tion ZoneIdT contains the model’s zones, the function fSrcToIa assigns the initial 
addresses and the enumeration ProtocolT lists the required protocols. 

The package Data Types contains common date types for interfaces, packets and 
buffers used throughout the framework. For instance, the type InterfaceT combines 
attributes of an interface, PacketT is used to represent a packet and PacketBufT de-
fines a buffer for packets. 

 

+rcv(Zoll pkt : PacketT)
+rbc(Zoll zid : ZoneIdT, Zoll pkt : PacketT)
-rpcs()

-itf : HostIpNode(NID: NodeIdT)
HostIpNode(NID: NodeIdT)

-pt
-dat

«type»
PacketT

+UNKNOWN_ZONE
+Z1_ID
+...

«enumeration»
ZoneIdT

+rcv(Zoll pkt : PacketT)

NonPromHostIpNode(NID: NodeIdT)

+snd(Zoll pkt : PacketT)
-spcs()

ActiveHostIpNode(NID: NodeIdT)

-snd_ip(Zoll dia : IpAddressT)

ActiveNonPromHostIpNode(NID: NodeIdT)

+UNKNOWN_NODE
+H1_ID
+...
+R1_ID
+...

«enumeration»
NodeIdT

+in(Zoll zid : ZoneIdT, Zoll pkt : PacketT)
+out(Zoll zid : ZoneIdT, Zoll pkt : PacketT)

-buf : PacketBufT
Media

-usd : bool
-pkt : PacketT

«type»
PacketBufT

-usd : bool
-rpa
-spa
-ia : IpAddressT

«type»
InterfaceT

+rcv(Zoll iid : InterfaceIdT, Zoll pkt : PacketT)
+rbc(Zoll zid : ZoneIdT, Zoll pkt : PacketT)
+snd(Zoll iid : InterfaceIdT, Zoll pkt : PacketT)
-rpcs(Zoll iid : InterfaceIdT)
-spcs(Zoll iid : InterfaceIdT)
-fwd(Zoll iid : InterfaceIdT)

-ifs : InterfaceT

RouterIpNode(NID: NodeIdT, MII: InterfaceIdT)

+UNKNOWN_IF
+H1_I1_ID
+...
+R1_I1_ID
+...

«enumeration»
InterfaceIdT

+INVALID_IA
+BC_IA
+H1_I1_IA
+...
+R1_I1_IA
+...

«enumeration»
IpAddressT

+UNKNOWN_HA
+BC_HA
+H1_I1_HA
+...
+R1_I1_HA
+...

«enumeration»
HardwareAddressT

+PT_IP
+PT_RIP
+...

«enumeration»
ProtocolT

-pkt : PacketT
-act : RpaActionT

«type»
RpaSystemBufT

+RPA_NONE_EMPTY
+RPA_RPCS
+...

«enumeration»
RpaActionT

+map(Zoll n : NodeIdT, Zoll i : InterfaceIdT) : ZoneIdT

«function»
fSrcToZone +map(Zoll ia : IpAddressT) : ZoneIdT

«function»
fIaToZone

+map(Zoll n : NodeIdT, Zoll i : InterfaceIdT) : HardwareAddressT

«function»
fSrcToHa

+SPA_NONE_EMPTY
+SPA_SPCS
+...

«enumeration»
SpaActionT

Enumerations & Functions

Data Types

Process Types

-pkt : PacketT
-act : SpaActionT

«type»
SpaSystemBufT

 

Fig. 2. Framework structure 

Finally, the package Process Types provides process types media and nodes. For 
example process type RouterIpNode contains the behavior of a IP transfer node and 
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HostIpNode represents a IP host node. Through inheritance behavior is specialized. 
For example, ActiveHostIpNode adds behavior for the processing and sending of 
packets. 

From a functional viewpoint framework elements of several packages usually col-
laborate to model a conception. For example, a scenario’s network topology is mod-
eled by several functions (e.g. fSrcToZone) and enumerations (e.g. ZoneIdT), to-
gether with appropriate handling by processes (e.g. Media, HostIpNode, 
RouterIpNode) and their actions (e.g. out, rcv). 

Another example is packets and their processing. Packets are sent to and received 
from Media by nodes using interfaces. Interfaces are represented through the Inter-
faceIdT data type, their send and receive buffer's with the PacketBufT data type. 
Packets themselves are mapped to the PacketT data type. A packet’s interpretation 
depends on its protocol type (PacketT.pt, ProtocolT enumeration). Packets cur-
rently in processing at a node are stored between layers using the SystemBufT data 
type. The processing actions are defined via the ActionT enumeration, usually de-
pending on the protocol type. Similarily addressing depends on intertwined frame-
work elements as well: functions (e.g. fSrcToIa), enumerations (e.g. IpAddressT), 
data types (e.g. PacketT) and node process types.  

4   cTLA 

Compositional TLA (cTLA) is based on Lamport’s temporal logic of actions (TLA) 
[Lam94]. Explicit notions of modules, process types and composition of process types 
[HK00] are added, however. The following section gives a short overview of the 
cTLA 2003 process types, a more detailed description is contained in [RK03]. 

The simple process type defines a state transition system directly. The state space is 
spanned by the local variables of the process type. For example, in HostIpNode the 
variable itf is a user defined record type containing the network interface’s attrib-
utes. The set of initial states is defined by the Init-predicate (cTLA keyword INIT). 
The actions, keyword ACTIONS, directly constitute the next-state relation. Syntacti-
cally, actions are predicates over state variables (referring to the current state, e.g. v), 
so-called primed state variables (referring to the successor state, e.g. v’), and action 
parameters. Parameters support the communication between processes. 

An internal action defines a set of state transitions in exactly the same way as a 
normal action. Internal actions, however, cannot be coupled with actions of other 
processes. Thus in the composed system each internal action is accompanied by stut-
tering steps of all other system components. 

A process extension type (keyword EXTENDS) specializes or augments other proc-
ess types. This resembles inheritance in object-oriented programming. For example, 
the ActiveHostIpNode process type uses this mechanism to add the action snd to 
HostIpNode. The state space is spanned by the vector of all state variables of the ex-
tended processes plus extra state variables defined by the extending process. Init- 
predicates and actions are merged through logical conjunction. 

The process composition type describes systems which are composed from subsys-
tems (keyword CONTAINS). These subsystems may in turn be further subsystems or 
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sets of process instances. For example, the system process IpMultiLevelExample 
of the example scenario is defined using process composition. Its actions are conjunc-
tions of contained processes’ actions which have to be performed jointly in order to 
realize an action of the system. Each process can contribute to a system action by at 
most one process action. If a process does not contribute to a system action, it per-
forms a stuttering step. In cTLA 2003 [RK03] process stuttering steps do not have to 
be explicitly listed on the right hand side of system actions. 

The state transition system which models an instance of a process composition type 
is defined indirectly. The state space of the composed process is spanned by the vec-
tor of all state variables of the contained processes. Its Init-predicate is the conjunc-
tion of the Init-predicates of the contained processes. The next-state relation is the 
disjunction of the system actions defined in the composing process itself. 

The TLA formula describing a cTLA process system is equivalent to a conjunction 
of the process formulas and consequently a system implies its constituents.  

5   Example Scenario 

To demonstrate the feasibility of our approach, we describe the formal modeling and 
analysis of an example scenario. It consists of multiple hosts in different LANs which 
are interconnected by routers as depicted in Figure 3. In particular, the routers R1, 
R2, R3 are connected in a triangle fashion forming an internal backbone. We aim to 
model and analyze this scenario for attack sequences along the lines of the routing 
and tunneling protocol attack ideas described at the Blackhat Europe Conference 
[BHE01]. All hosts are TCP/IP nodes. The routers additionally run RIP, which is still 
one of the most widely used interior gateway routing protocols. 
 

 

Fig. 3. Example scenario 

5.1   Protocol Modeling 

The TCP/IP modeling is inherited from the framework’s HostIpNode and 
RouterIpNode process types. So it suffices to implement RIP handling with a new 
process type. RipRouterIpNode extends process type RouterIpNode – which can 
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only statically route – with actions for handling RIP updates and updating the routing 
table dynamically. 

We only give a short overview of RIP here, a more detailed description is given by 
Perlman [Per00]. Each router uses a routing information base (RIB) to store entries of 
the form (dst, nho, itf, met). The field dst contains the final destination and 
nho the IP address of the next-hop, i.e. the next router on the way to the destination. If 
the current router is directly connected to the final destination’s network, this field 
contains a special value (NHO_DIRECT in our modeling). The itf field contains the 
interface connected to the next-hop or the final destination’s network. The met field 
is used for storing a cost metric, usually the number of hops, from the current router 
to the final destination. A metric of 1 denotes that the current router is directly con-
nected to the final destination’s network. On the other hand, a metric of 16 := 
MET_INF means infinite cost.  

RIP works with two stages, input processing and output processing. Input process-
ing handles received RIP update packets. The critical element of a RIP update packet 
is the pair (dst’, met’). A RIP update packet may contain several such pairs. For 
our modeling, however, without loss of generality, we assume that all update packets 
contain only one pair. The fields describe the best route (in terms of metric) to the 
destination as known by the router from which the packet originated. If the update 
packet passes basic sanity checks the packet is considered for updating the router’s 
RIB. Usually the RIB will only be updated if the update packet’s metric is better than 
the existing metric. A packet from the next-hop of an already existing route, however, 
is allowed to update the RIB even if the new metric is worse. 

If a RIB entry has been changed (no matter which case applied), its route change 
flag is set. Output processing will then send a triggered update. We only model trig-
gered updates, because regular updates are mainly useful for debugging purposes. 

All updates are sent observing the split horizon principle. That means the updates 
are sent to all neighboring routers with the exception of the router from which this 
route was received (i.e. the next-hop nho). 

5.2   Network and System Modeling 

We compose our system model using the framework’s basic process types (e.g. Me-
dia) and the specific process types required for the example scenario (e.g. 
RipRouterIpNode). To simplify our modeling, the “straight through” routers Rx 
and Ry are not represented by RipRouterIpNode instances. We just represent them 
in the metric of the others routers. Furthermore, we select fixed host roles. HA models 
the attacker host, H1 is the victim and H2 its intended communication partner. The  
attacker HA is modeled by type RipAttackerHostIpNode which extends  
ActiveHostIpNode with the ability to create and send fake RIP update packets. Ac-
tiveHostIpNode is a basic TCP/IP processing node from the framework based on 
HostIpNode. The victim (H1) is represented by type ActiveNonPromHostIpNode 
and H2 by NonPromHostIpNode type, both directly from the framework. 

For each analysis run, we pick fixed locations for HA, H1, and H2. For example, 
the attacker, HA, is located in LAN 3, the victim, H1, is placed in LAN1 and H1’s 
communication partner, host H2, is a member of LAN 2 (cf. Figure 3). 
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We label each node’s interfaces (e.g. i1, i2, i3) and define the assigned IP ad-
dresses. For each router, the initial routing tables have to be defined. For example, R1 
is directly connected (i.e. metric 1) to zones ZBB12 and ZBB13 over interfaces 2 re-
spectively 3. The route to Z2 is given indirectly via next-hop R2 (interface 2) with 
metric 4 (i.e. R1, R2, Rx, Ry). We start with fully initialized routing tables. Finally, 
the cTLA modeling is completed with the definition of the system process type Ip-
MultiLevelExample. 

We still have to define the security property to be analyzed. Promela includes assert 
statements for the SPIN model checker. For simplicity, we check the following confidenti-
ality property: assert( (ha_itf.rpa.pkt.dat_ida == HA_I1_IA) ); 

It expresses that host HA only receives packets which are destined for it. After 
translation of the scenario model to Promela with cTLA2PC, this assertion has to be 
inserted into the Promela representation of the rcv_ha action (i.e. host HA’s non 
broadcast packet receive action). Broadcast packets can not trigger the assertion, be-
cause they are received by the rbc action instead of rcv_ha. 

6   Optimizations and Analysis Results 

After translation to Promela the example system had an initial state vector size of 
about 630 bytes. That was still too large for successful analysis. In SPIN’s full state-
space search verification modes memory limits were exceeded quickly. Approxima-
tive verification modes did not produce any result in reasonable time. Thus we devel-
oped further optimization strategies. 

6.1   Optimizations 

Optimizations are generally feasible on several levels: Scenario level (1), cTLA level 
(2), Promela level (3), and on the verifier level through special SPIN verification op-
tions (4). 

At the scenario level, abstractions are often most helpful. As described in section 5, 
fixed roles and attacker positions may suffice for each analysis run. Furthermore it 
may be possible to simplify the modeled protocols (e.g. by allowing only one update 
pair in each update packet). Such high-level optimizations often yield state space sav-
ings even before the specification design is started. 

Regarding the second point, the modeling may be optimized at the cTLA level. For 
example, we are able to represent the nodes using fewer buffers and actions per layer 
with a smarter approach. Our framework’s node modeling follows the activity thread 
approach known from efficient protocol implementation [Svo89]. Actions and work-
ing buffers of different layers which process the same packet can be combined. This 
approach requires less state space than a naive layer-by-layer modeling. Because of 
the framework, this cTLA level optimization is inherited by our modeling as well. At 
this stage, the example scenario modeling has the afore-mentioned state vector of 
about 630 bytes. This is our starting point for further optimizations. 

Action parameters can be optimized on the cTLA level, too. First, an equivalent flat 
system, which contains only a system process and system actions has to be generated. 
This expansion can be done with the cTLA2PC tool. Generally, cTLA action parame-
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ters correspond to existentially quantified variables. But in the flat system, for most 
action parameters value determining equalities exist. This is due to the fact that all 
system actions are coupled process actions. Input parameters of one underlying action 
are output parameters of another. Therefore, it is possible to replace these input pa-
rameters with the corresponding symbolic output value. This “paramodulated” cTLA 
version usually leads to a noticeable smaller state vector. For example, the example 
scenario after this step has a state-vector of about 580 bytes. 

To enable model checking with SPIN, we translate the cTLA specification to Pro-
mela using the cTLA2PC tool. Thus we can optimize our scenario modeling at the 
Promela level as well. A comprehensive summary of low-level Promela/SPIN op-
timizations is described by Ruys [Ruy01]. For instance, SPIN’s built-in bit-arrays 
should be avoided. Mapping bit-arrays into bytes using macros decreases the required 
state space for such variables up to a factor of eight. cTLA2PC supports several such 
optimizations through specific switches during the translation process. With these op-
timizations the state-vector for our scenario decreases to about 320 bytes. 

Furthermore, we acquire extra information from the cTLA origin of the Promela 
model. Thus more advanced optimizations are possible. From the cTLA specification 
we have a structuring of the model into parametrized system actions. The execution of 
these actions can be arbitrarily interleaved, but each action is atomic. So a single 
Promela process embedding all actions in a non-deterministic do-loop suffices. Be-
cause cTLA actions are deterministic, each action is embraced by the Promela 
d_step keyword. This optimization does not improve the state-vector, but reduces 
the required search depth for a specific sequence. 

For the action parameters, we at first used input generator processes. For each pa-
rameter type input generator processes according to the maximum multiplicity of the 
parameter are needed. Each input generator sets a matching global variable to a ran-
dom value. Because a model checker has to take each potential execution path into 
account, all possible parameter values are covered. The input generator approach 
works fine, but so far automated analysis efforts of the scenario described in this pa-
per failed. We estimated that an attack sequence for the scenario would require about 
32 steps, including about 10 input generator steps (i.e. value settings). But test runs of 
our model showed that SPIN exceeded 3 GB of memory (i.e. the practical x86 per 
process memory limit) after reaching search depth 23. 

Thus we invented a totally different approach to handle parametrized actions. No 
input generators and no parameter variables are used. Instead, all parametrized actions 
are completely “unrolled”. This means that each parametrized action is replaced by 
copies with fixed parameters for all possible parameter values. Because all variable 
types in cTLA (and in finite-state specification languages) are finite, this is accom-
plishable. 

Of course, the unroll approach leads to a lengthy Promela level specification, but 
SPIN copes much better with such a specification than with a specification using the 
input generator approach. The size of the state-vector is not reduced very much, but 
the number of processes, actual transitions and the search depth required for a specific 
sequence are distinctly smaller, because no input generator steps exist.  

Finally, SPIN supports different options during verification. For example, different 
verification modes (i.e. full state space search, approximative bit-state hashing) and 
state-vector representation schemes (i.e. compression, graph encoding) are available. 
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In our experience, these options offer only modest improvements relative to the de-
fault settings and each other. Thus most of the time the feasibility of automated analy-
sis does not depend on the right choice of SPIN options, but much more on careful op-
timizations of the modeling. 

6.2   Results 

Following the optimizations described above we were able to reduce the state-vector 
for the example scenario to about 50% of its initial size (316 vs 630 bytes). Because 
input generator steps are no longer needed (unroll optimization), the depth required 
for a specific sequence is reduced as well. 

Automated analysis of a scenario with SPIN requires that properties which shall 
not be violated (i.e. invariants) are included in the Promela specification. Then, SPIN 
can check if a sequence leading to a violation of such a property exists. The violation 
is saved to a trail file. Using SPIN’s guided simulation feature this trail file can be ex-
panded to the sequence of executed Promela statements. A special feature of 
cTLA2PC (option --trace-points) helps to map the Promela statements back to 
actions in the original model. 
 
pan: assertion violated (ha_itf.rpa.pkt.dat_ida==11) (at depth 

21) 
pan: wrote ip-multilevel-example-veri-flat-para.promela.trail 
(SPIN Version 4.2.0 -- 27 June 2004) 
[…] 
State-vector 316 byte, depth reached 21, errors: 1 
5.5768e+06 states, stored 
5.5768e+06 nominal states (stored-atomic) 
4.28228e+08 states, matched 
4.33804e+08 transitions (= stored+matched) 
[…] 

Listing 1. SPIN verifier output (assertion violated!) 

We analyzed the described modeling for assertion violations using SPIN on a stan-
dard PC system. After about 40min and requiring slightly under 1 GB of RAM SPIN 
found an attack sequence of depth 21 (cf. Listing 1) violating the specified confiden-
tiality property. 

Using SPIN’s guided simulation feature and mapping of the results back to cTLA 
actions identified the attack sequence depicted in Figure 4 (slightly simplified for 
clarity). The discovered attack sequence corresponds nicely with the routing and tun-
neling protocol attack ideas from the Blackhat Europe Conference [BHE01]. In a nut-
shell, after system initialization the host H1 submits a packet destined for host H2 to 
its router R1. Then, the attacker HA broadcasts a RIP update packet advertising a new 
route to zone Z2 with metric 1 from HA. This packet is then accepted and processed 
by router R3, which updates its routing table (new route to Z2 via HA has metric 2 = 
HA’s metric + 1, existing route via R2 has metric 4) and prepares triggered RIP up-
dates to the other zones (without the originating zone because of the split horizon 
principle). R3 then broadcasts the triggered update packet to zone ZBB13. R1 re-
ceives and processes the packet and updates its routing table (the new route to Z2 with 
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metric 3 via R3 is better than the existing route with metric 3 via R2). Then R1 for-
wards the packet from H1 according to the changed table (next-hop R3) and sends it. 
R3 receives the packet and forwards it to its next-hop, the attacker, HA. Thus HA re-
ceives a packet from H1 to H2, violating the assertion. 
 

 

Fig. 4. Attack sequence found by SPIN 

Attack sequences depend on the attacker position, update propagation, and initial 
routing tables which in turn depend on low-level network topology aspects. For ex-
ample, an attack sequence like the one shown in Figure 4 is not possible if H2 is con-
nected directly to R2. First, the initial routing tables have other metrics. Second, the 
metric of the forged RIP update packet from HA is increased by each router on its 
way to R3. Thus the new route would not be better than the existing route, and R3’s 
routing table would not be updated. 

Because of the breadth first search the described sequence is minimal. Thus only 
necessary steps are included. Further variants are possible. For example, R3 will usu-
ally broadcast the triggered update packet to R2 as well. Because this step is not re-
quired for the violation of the stated confidentiality property, it is not included in the 
21 step sequence. 

Practical tools to facilitate attacks on routing protocols are widely available, e.g. 
[FX01]. More secure protocols (e.g. S-RIP [WKO04]) have been suggested but are 
rarely deployed. Widespread deployment is hindered by the usually required compu-
tationally expensive cryptographic operations. Furthermore, interoperability is a key 
requirement in heterogeneous networks but standardization of new protocols is a 
lengthy process.  

7   Concluding Remarks 

Attack types combining and depending on aspects on multiple levels, especially pro-
tocol and network levels, form an interesting class of advanced network attack types. 
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They can be modeled and analyzed by means of formal process systems. The pre-
sented approach combines the high level specification language cTLA with a model-
ing framework, a translator tool (cTLA2PC), model optimization strategies, and the 
well-known model checker SPIN. Our results show that the analysis of practically 
relevant attack types in medium size scenarios is feasible. 

Current work aims to a further enhancement of our approach which shall eventu-
ally enable the automated prediction of new network attack strategies. For that pur-
pose framework extensions and additional model optimization strategies are under 
development. Moreover, model development and analysis experimentation will be 
supported by a workbench assembling the tool set. Another interesting aspect to be 
studied further is the integration of logical deduction-based analysis procedures which 
can exploit TLA’s symbolic logic proof techniques. 
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Abstract. Timed Statecharts, which can efficiently specify explicit dense time, 
is an extension to the visual specification language Statecharts with real-time 
constructs. We give a definition of timed Statecharts that specifies explicit tem-
poral behavior as timed automata does. It is very difficult to verify directly 
whether timed Statecharts satisfies the required properties. However, by com-
piling it into timed automata, timed Statecharts may be checked using UPPAAL 
tool. In the paper, the state of timed Statecharts is represented by inductive 
term, and a step semantics of timed Statecharts is briefly described. The transla-
tion rules are shown by a compositional approach for formalizing the timed 
Statecharts semantics directly on sequences of micro steps. Timed automata 
corresponding to timed Statecharts was also discussed. 

1   Introduction 

Statecharts [1] is a visual language for specifying the behavior of complex reactive 
system. The formalism extends traditional finite state machines with notions of hier-
archy, concurrency, and priority. In short, one can say: Statecharts = state-diagrams + 
depth + orthogonality + broadcast-communication. Now there also exists many re-
lated specification formalisms such as Modecharts [2] and RSML [3]. Statecharts is 
the most important UML component specifying complex reactive system such as 
communication protocol and digital control unit. 

Statecharts, a synchronous visual modeling language, adopts fictitious clock model 
that only requires the sequence of integer times to be non-decreasing. All components 
are driven by common global clocks, called tick clock. However, it is not sufficient to 
specify time-critical systems with fictitious clock. Statecharts has to face the problems 
that it can’t specify the required temporal behavior as timed automata does. In order 
to efficiently specify explicit dense time, Statecharts is extended with real-time con-
structs, including clocks, timed guards and invariants. The advantages of modeling 
complex reactive behavior with Statecharts are combined with the advantages of 
specifying temporal behavior with timed automata, resulting in the real-time exten-
sion of Statecharts; we call it timed Statecharts. 

 

Model checking [4] is an automatic technique for verifying finite state reactive sys-
tems. In order to verify whether a timed Statecharts model satisfies the required prop-
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erties, we present a model checking algorithm for timed Statecharts. Just as verifying 



Statecharts, we first flat timed Statecharts and then apply a model checking tool to 
verify the resulting model. The translation rules that compile timed Statecharts into an 
equivalence timed automata are discussed by a compositional approach which formal-
izes the timed Statecharts semantics directly on sequences of micro steps and de-
scribes parallel behavior by process algebra. 

Relate work In the past two decades, model checking, which was first introduced for 
ordinary finite-state machines in Clarke and Emerson [5], has emerged as a promising 
and powerful approach to fully automatic verification of systems. Given a state 
transition system and a property, model checking algorithms exhaustively explore the state 
space to determine whether the system satisfies the property. The result is either a claim 
that the property is true or else a counterexample failing to the property. 

It was very successful for the Statecharts language to specify reactive systems by 
its intuitive syntax and semantics. Since the original formalism of Harel, the theory of 
Statecharts has been under an extensive research and many different semantic ap-
proaches evolved from the academic world [6][7][8][9][10][11]. But for timed State-
charts, only hierarchical timed automata with an operational semantic to analyze 
timed Statecharts was discussed in [18][19]. 

Extended Hierarchical Automata, as the structural basis of Statecharts semantics, 
were introduced in [12] for Statemate and in [13] for UML. It translates Statecharts 
into PROMELA that is the input language of the SPIN model checker to perform the 
verification. Gnesi [14] uses a formal operational semantics for building a labeled 
transition system which is then used as a model to be checked against correctness 
requirements expressed in the action based temporal logics ACTL. In their reference 
verification environment JACK, automata are represented in a standard format, which 
facilitates the use of different tools for automatic verification. Pap [15] describes 
methods and tools for automated safety analysis of UML Statecharts specifications. 
Chan [16] and Schmidt [17] also contribute to mode checking for Statecharts. David 
[18] gives a formal verification of UML Statecharts with real-time extensions using 
hierarchical timed automata, while our method is to translate directly timed State-
charts to flat timed automata that can be used in UPPAAL.  

The remainder of this paper is organized as follows. The next section introduces 
timed automata and its operational semantics, and section 3 defines timed Statecharts 
and its terms. Section 4 formulates a step semantics. Section 5 formalizes our compo-
sitional semantics and gives our translation rules from timed Statecharts to timed 
automata. Finally, section 6 provides our conclusions. 

2 Timed Automata 

Timed automaton [20] is an extended automaton to model the behavior of real time 
system over time. We consider a variant of timed automata without accepting states. 
The next subsection gives the operational semantics of the automata.  

DEFINITION 1. (Clock) A  clock is a variable  ranging over R+,  the set of non-
negative real numbers. 
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Let C be a finite set of variables called clocks. A clock valuation is a function that 
assigns a non-negative real-value to every clock. The set of valuations of C, denoted 



VC, is the set [C R+] of total mappings from C to R+. Let v VC and t R+, the clock 
valuation v+t denotes that every clock is increased by t with respect to valuation v. It 
is defined by (v+t)x=v(x)+t for every clock x C. 

DEFINITION 2. (Clock constraints) For set C of clocks with x, y C, the set C  of 
clock constraints over C is defined by 

 ::= x c | x y c | ¬   | (  ) 

where c R+ and {<, } 
Clock constraints are evaluated over clock valuations. For x, y C, v VC and let , 

C we have 

 v   x  c            iff  v(x) c 
 v   x y  c        iff  v(x) v(y) c 
 v ¬                    iff  v  
 v                 iff  v  and v  

DEFINITION 3.  (Timed automaton) A  timed automaton  is a tuple TA = (S, C, s0, L, 
Inv, ) where: S is a finite set of states, C a finite set of time clocks, s0 S an initial 
state, L a set of labels, Inv: S C a function that associates a timing constraint to 
each state, called state invariant, S (L C 2C {true, false}) S a set of transi-
tions, where a transition t=(s, e, g, r, u, s ) connects a source state s and a target state 
s  with label e, timing constraint guard g, clock resets r and urgency flag u. 

The function Inv associates a time constraint to each state s S, i.e., the automaton 
can stay in the state only while the current time clock valuation satisfies Inv(s). The 
state invariant forces the automaton to translate before it becomes false, so that it 
avoids the automaton to get stuck at the state s. when the time constraint g associated 
to the edge is satisfied by current values of time clocks, the automaton may perform a 
translation.  

The transition system underlying timed automaton TA, denoted M(TA), be defined 
as (Q, q0, ) where: 

 Q={(s, v) S VC | v=Inv(s)}; 
 q0=(s0, v0) where v0(x)=0 for x C; 
 The transition relation of timed automaton t Q (L C 2C {true, false}) Q, 

which describes how to evolve from one state to another, is defined by the follow-
ing rules: 
 (si, v)  (s*

j, reset R in v) if the following conditions hold: 
i. t =<si, E, A, G, R, u, j>; 
ii. E are satisfied; 
iii. v  G;  
iv. (reset R in v)  Inv(sj); 

 (si, v) (sd
i, v+d), for positive real d, if the following condition holds: 

i. d d, v+d   Inv(si); 
ii. ¬urgent(t), the urgency flag of transition t  is false. 
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where clock valuation reset R in v, valuation v with clock x reset, is define by: 

( )    if  
(    )( )

0         if  0
v y x y

x v y
x

reset in  

3   Timed Statecharts 

In this section we firstly define the formal syntax of timed Statecharts and give a 
simple example of a timed Statecharts, and then represent timed Statecharts state not 
visually but by terms. A timed Statecharts is in fact a Statecharts equipped with a set 
of real-valued clocks. Clocks are used to precisely measure the elapse of time be-
tween events. 

3.1  Timed Statecharts Definition  

DEFINITION 4. (Time Statecharts) A timed Statecharts is an eight tuple TS=(N, N0, , 
type, C, I, L, T), where: 

1. a finite set N of states. 
2. a subset N0 N of initial states. 
3.  : N 2N, (n) gives the sub-states of n which are called sons of n,  defines a 

tree structure. 
4. type: N {AND, OR, BASIC} is the type function. 
5. a finite set C of clocks. 
6. Inv: N C, a function that assigns to each state an invariant. 
7. A set of transition labels L, partitioned into two disjoint sets L=LT LE, where 

LT C 2C U represents a set of clock constraints label, where U={true, false} is 
a set of urgency flag; and LE Event Cond Action a set of unclock constraints la-
bel, where Event is a set of event, Cond a set of condition, Action a set of action.. 

8. T N L N is a set of transition relation, where a transition t=(n, e, c, a, g, r, u, n ) 
connects two states n and n , and have a source state n, a target state n , a event e, 
a condition c, a action a, a guard g, an clock resets r and an urgency flag u.  
Properties of  which assure the well-formed tree structure are: 

 disjoint super-states: if n  n  then (n) (n )= ; 
 no recursion: if n *(n) then n (n ); 
 root has no ancestor: n N, root (n); 
 basic nodes are empty: type(n)=BASIC (n)= ; 
 sub-states of AND are not BASIC: type(n)=AND  n1 (n) ( n1) ; 
 if type(n)=AND then there is no n1  n2 for all n1, n2 (n); 

A traditional Statecharts models the system as being in a number of states that de-
scribe its operations. A state can be considered a point in the computation. States are 
denoted by rectangles with rounded corners and transitions as arrows. A state can be 
BASIC, AND or OR. If a state is BASIC, it has no sub-states, called BASIC-state. An 
OR-state has sub-states and exactly one of them is active at a certain point of time. 
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Figure 1 shows a simple example of a timed Statecharts. The state labeled n1 is 
split into two concurrent sub-states n2 and n3 by the dashed line through its middle. n1 
is called an AND-state because it has these orthogonal components. n2 is decomposed 
into sub-states labeled n4 and n5  to indicate that the model can be in only one of those 
states at any time, so n2 is an OR-state. When a state is not decomposed into AND or 
OR-states, it is called a BASIC state. The State n4 has the time invariant x<5, invariant 
of the n5 is x>1(x denotes clocks), and the two States are connected by transition t1. In 
the simple case transitions are connected directly with a source and a target state. The 
transition t1 is triggered by event a and timed constraint x>3. 

If a state is entered, one direct sub-state is entered in the OR case and all direct 
sub-states are entered in the AND case. Exiting a state is analogous. AND, OR and 
BASIC states form a tree structure and this hierarchy allows for stepwise refinement 
of the behavior of complex systems. All states in the largest rounded corners rectan-
gle come into being a hierarchical structure as a tree that is shown Fig. 2. State n1 is 
an ancestor of State n2 and n3, while State n2 and n3 is an offspring of State n1. 

3.2  Statecharts Terms 

For description  convenience  we  assume that  state  and transition name of timed 
Statecharts are unique, clock invariants of OR-state and AND-state are always true, 
and also ignores interlevel transitions, i.e. transitions crossing borderlines of states. 
Timed Statecharts is represent by terms, as done in [6]. Formally, suppose N be a set 
of names for timed Statecharts states, T  a set of names for timed Statecharts transi-
tions,  a countable set of timed Statecharts events, G a set of clocks constraints, R a 
set of clocks resets, an U={true, false} represent a set of urgent flag. Inv is a set of 
invariant over timed Statecharts states. With every event e , we associate a negated 
counterpart ¬e and ¬¬e=def e as well as ¬ E=def {¬e |e E} for E {¬e |e }. The set 
SC of timed Statecharts terms is then defined by the following inductive rules. 

BASIC-state: If n N, Inv, then s=[n, ] is a timed Statecharts term. 

An AND-state has OR sub-states, and all of them are active if the parent state is ac-
tive.  
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Fig. 1. A simple example of a timed Statecharts       Fig. 2. A state hierarchical structure  



 

OR-state: Suppose n N, and that s1,…,sk are timed Statecharts terms for k>0, with 
s =def (s1,…,sk). Also let  =def {1,…,k} and l , with T T 2 2 G R U . 
Then s = [n: s ;l;T] is a timed Statecharts term. Here s1,…,sk are the sub-states of s, set 
T contains the transitions connecting these states, s1 is the default state of s, and sl is 
the currently active sub-state of s. 

AND-state: If n N, if s1,…,sk are timed Statecharts terms for k > 0, and s =def 
(s1,…,sk), then s = [n: s ] is a timed Statecharts term, where s1,…,sk are the parallel sub-
states of s. 

s1 = [n1: (s1, s2)] 
s2 = [n2: (s4, s5); 1; {t1, 1, {a}, {b}, 2}] 
s3 = [n3: (s6, s7); 1; {t3, 1, {b}, {c}, 2}] 
s6 = [n6: (s8, s9); 1; {t2, 1, {a ¬b}, {c}, 2}]
s4= [n4,x<5] s5=[n5,x>1]  s7=[n7,x>4]  
s8=[n8] s9=[n9] 

 

Transitions of OR-states [n: s ;l;T] are those of the form =<t, i, E, A, G, R, u, j>, 
where (i) t is the name of t̂ , name( ) =

t̂
t̂ def t , (ii) source( ) =t̂ def  si is the source state 

of , (iii) ev( ) =t̂ t̂ def E is the trigger of , (iv)act( ) =t̂ t̂ def A is the action of , 
(v)guard( ) =

t̂
t̂ def G is the clock constraints of , (vi) reset( ) =t̂ t̂ def R is the clock re-

sets of , (vii) urgent( ) =t̂ t̂ def u is the urgency flag of , and (viii) target( ) =t̂ t̂ def sj is 
the target state of . The timed Statecharts term corresponding to the time Statecharts 
depicted in Fig. 1 is term s

t̂
1, which is defined in Fig. 3. 

4   A Step Semantics of Timed Statecharts 

The  transition  relation  of  timed  Statecharts T  t̂ 2 2 G R U , which 
describes how to evolve from one state to another, is defined by the following rules. 

 (si,v)  ( s*
j, reset reset ( ) in v) if the following conditions hold: t̂

i. =<t, i, E, A, G, R, u, j>; t̂
ii. ev( ) are satisfied; t̂
iii. guard( )  G;  t̂
iv. (reset reset ( ) in v)  Inv(st̂ j); 
v. act( )are generated. t̂

 (si,v) (sd
i, v+d), for positive real d, if the following condition holds: 

i. d d, v+d   Inv(si); 
ii. ¬urgent( ), the urgency flag of transition  is false. t̂ t̂

For BASIC-states of timed Statecharts, the transition relation is similar to the transi-
tion relation of timed automaton. However, in practice, we have to consider other prop-
erty for timed Statecharts, such as hierarchy, concurrency and priority. Before defining 
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translation rules for timed Statecharts based on its operational semantics, we discuss 
classical Statecharts semantics as proposed by Pnueli and Shalev [7]. 

We sketch the semantics of timed Statecharts terms adopted in [8], which is a 
slight variant of the classical Statecharts operation semantics. A timed Statecharts s 
reacts to the arrival of some external events by triggering and clock constraints en-
abled micro steps in a chain-reaction manner. When this chain reaction comes to a 
halt, a complete macro step has been performed. More precisely, a macro step com-
prises a maximal set of micro steps, or transitions, that (i) are relevant, (ii) are mutu-
ally consistent, (iii) are triggered by events E  offered by the environment or gen-
erated by other micro steps, (iv) satisfy clock constraints G G, (v) satisfy invariant of 
target state, (vi) are mutually compatible, and (vii) obey the principle of causality. 
Finally, we say that transition t is enabled in s s  with respect to event set E, clock 
constraints G and transition set T, if t En(s, E, G, T, s ), s target(T), which is de-
fined as follows. 

En(s, E, G, T) =def relevant(s) consistent(s, T) (¬invariant(s) (invariant(s) 
urgent(T))) invariant(s ) triggered(s,(E t T act(t)) G)  

where:  

 relevant(s) is the set of transitions whose source is in the set s; 
 consistent(s, T) is the set of transitions that do not conflict with anything in T; 
 invariant(s) represents that state s satisfy invariant; 
 urgent(T) represents that the urgency flag of transition T is true; 
 triggered(s,(E G) is the set of transitions whose triggers are satisfied by the 

event set E and clock constraint G. This is where global in consistency is elimi-
nated; 

 act(t) is the set of events generated by transition t. 

Given a time Statecharts term s, a set E of events, and a set G of clock constraints, 
the non-deterministic step-construction function presented in Fig. 4 computes a set T* 
of transitions. By executing the transitions in T*, timed Statecharts term s may evolve 
in the single macro step s s  to timed Statecharts term s , producing the events 
A = act(t) and clock reset R= reset(t). term s  can be derived from s by 
updating the index l in every OR-state [n:

,
,

E G
A R

*t T *t T

s ;l;T] of s satisfying t T* for some t T. 

function step_construction(s, E); 
var T:= ; 
begin 
  while T En(s,E,G,T) do 
     choose  t En(s,E,G,T)\T; 
     T := T {t}; 
  od; 
  return T 
end 

 

Model Checking for Timed Statecharts 267 

 
Fig. 4. A step-construction function 

 



 

5   Model Checking for Timed Statecharts 

A macro step of Timed Statecharts comprises a maximal set of micro steps. We di-
rectly define the semantics on sequences of micro steps, and use timed automaton as 
the semantics domain. Given a timed Statecharts TS, we translate TS to timed auto-
mata TA by a mapping : TS TA, where TA-states model timed Statecharts terms, 
TA-labels describe unclock constraints labels LE(i.e. event/action) of timed State-
charts, TA-clocks denote timed Statecharts clocks, TA-clock constraints express 
timed Statecharts clock constraints, TA-state invariants model timed Statecharts in-
variants, and TA-transitions is sequences of timed Statecharts micro steps. 

For convenience, we define l ss =def (s1,…,sl-1,s ,sl+1,…, sk) for all 1 l k and s SC. 
Furthermore, we need function default: SC SC which sets the default state for 
given a Statecharts term s. default([n, ])=def[n, ], default([n: s ;l;T]) =def default(s1), 
default([n: s ]) =def 1 i k default(si). Defining for function : SC N, : SC Inv, 
which sets the state and the invariant for given a Statecharts terms s. (i) 

([n, ])={{n}}, ([n, ])={{ }}; (ii) ([n: s ;l;T])= 1 i k {{n} qi | qi (si)}, 
([n: s ;l;T])= {r1 i k i | ri (si)}; (iii) ([n: s ])={{n} 1 i k qi | qi (si)}, 
([n: s ])={ 1 i k ri | ri (si)}. 

However, it is practical and important to consider history states in OR-states. For 
recording a history state, we additionally define a flag of history state {none, deep, 
shallow}. None means that history states are not considered. Deep means that the old 
active state of the or-state and the old active states of all its sub-states are restored. 
Shallow means that only the active state of the or-state is restored and that its sub-
states are reinitialized as usual. The modification of function default that just has to 
replace function default(s) by function default( , s) is done by integrated a history 
mechanism. The terms default(none, s) and default(deep, s) are simply defined by 
default(s) and s, respectively. The definition of default(shallow, s) can be done along 
the structure of timed Statecharts terms as follows.  

default(shallow, [n, ]) =def [n, ] 
default(shallow, [n: s ;l;T]) =def  [n: [ default ( )]lls s ;l;T]  
default(shallow, [n: s ]) =def default(shallow, s ) 
Transition relation  is defined by using SOS rules by Plotkin [21] as follows. 

    
       (  )

premisename
conclusion

side condition
 as well as (  )

    
premisename side condition

conclusion
 

In this subsection, operational semantics of timed Statecharts transition in BASIC-
states, AND-states and OR-states was defined. There are three rules about BASIC-
states: BAS-1 rule describes the execution from one BASIC-state to another, where 
source(t)=[n, ], target(t)=[n , ], if the event ev(t), the clock constraints guard(t) of 

5.1   Translation Rules for Time Statecharts Based on Operational Semantics 
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t T and the invariants of the target state are satisfied, the transition be enabled, and 
the actions act(t) and the clock reset reset(t) are done. 

ev( ),guard( )
act ( ),reset ( ) name( )

En([ , ], , , ,[ , ])
[ , ] [ , ]

,source( ) [ , ],
                     target( ) [ , ],

(  reset( )  ) |

t t
t t t

n E G T n
n n

t T t n
t n

t v

BAS -1

reset in

 

BAS-2 rule describes the execution from one BASIC-state to one AND-state 
which is its brother. As noted above, for all super states (i.e. OR-state and AND-
state), their state invariants are always true, but when an OR-state is entered, one 
direct sub-state is entered, and until a BASIC-state. So we need to consider state 
invariant which can get from function . BAS-2 rule defines as follows. 

ev( ),guard( )
[ default ( , )]act ( ),reset ( ) name( )

En([ , ], , , ,[ : ; ; ])
[ , ] [ : ; ; ]

           , source( ) [ , ],
                            target( ) [ : ; ; ],

(  reset(

l

t t
l st t t

n E G T n s l T
n n s

t T t n
t n s l T

l T
BAS - 2

reset )  ) | ([ : ; ; ])t v n s l Tin

 

BAS-3 rule demonstrate the delay of BASIC-states, where v+d stands for the cur-
rent clock assignment plus the delay for all the clocks, we have 

( ) | ([ , ]) urgent( )
([ , ], ) ([ , ], )

                , | ([ , ])

d

v d Inv n t
n v n v d

d d v d Inv n

BAS - 3
 

There are also three rules about OR-states: one rules describes the execution of a 
timed Statecharts transition t T of an OR-state [n: s ;i;T]. It defines that the OR-state 
with currently active sub-state si may change to OR-state [n: [ default ( , )]lls s ;l;T] with 
currently active sub-state sl as rule OR-1.  

ev( ),guard( )
[ default ( , )]act ( ),reset ( ) name( )

En([ : ; ; ], , , ,[ : ; ; ])
[ : ; ; ] [ : ; ; ]

       ,source( ) [ : ; ; ],
                             target( ) [ : ; ; ],

(

l

t t
l st t t

n s i T E G T n s l T
n s i T n s l T

t T t n s i T
t n s l T

OR -1

re  reset( )  ) | ([ : ; ; ])t v n s l Tset in

 

Other rule that describes from the OR-state [n: s ;l;T] to BASIC-state, is not dis-
cussed particularly due to similar to BAS-1 rule. Another rule describes that the OR-
state [n: s ;l;T] with currently active sub-state sl may change with same label to the 
OR-state [n: [ ]ll ss ;l;T] with currently active sub-state ls  as rule OR-2. 
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It is indispensable for transition rule of Statecharts AND-states to consider many 
enabled transitions to execute in parallel as rule AND. For AND-state’s parallel de-
scription, we firstly introduce process algebra. Process algebra [22] is a powerful 
formal method for depicting algebra structure and analyzing parallel system. Basic 
process algebra (BPA) is a core in all process algebra theory. Basic process terms are 
built from atomic actions, alternative composition and sequential composition.  

 An atomic action represents indivisible behavior, including event and action. 
 The symbol · denotes sequential composition. The process term p q executes p, 

and upon successful termination proceeds to execute q; 
 The symbol + denotes alternative composition. The process term p+q executes 

behavior of either p or q. 

By appending merge ||, left merge  and communication merge , BPA is extended 
to express process communication in parallel system. The merge || executes the two 
process terms in its arguments in parallel, the left merge  executes an initial transi-
tion of its first argument, and the communication merge  executes a communication 
between initial transitions of its arguments. The process term p||q executes p and q in 
parallel; analogously, p q executes restrictedly p in an initial transition; p q executes a 
communication p and q. 

AND-state of Statecharts specifies the parallel behavior of reactive system. In Fig. 
1, the AND-state n1 comprises two concurrent sub-states n2 and n3. Suppose the state 
configuration is currently in n4 and n8, if the event a and b occurs, the transition t1 and 
t3 is enabled. Because transitions can be taken in the sub-states of an AND-state si-
multaneously, the transition t1 and t3 is executed in parallel, as written t1||t3. Based on 
parallel axiom of process algebra, merge t1 || t3 = (t1 t3+ t3 t1) + t1  t3. 

1

1

,
,
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1 |

( : )
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When AND-state includes k OR sub-states, an execution of k transitions in parallel 
need be considered. As above-mentioned, we can define AND rule, which an execu-
tion of |M| transitions in parallel in all sub-states sm of AND-state [n: s ] may be 
specified to [n: 1s ]||…||[n: | |Ms ] by merge of process algebra. 

,
,

,
, [ ]

[ : ; ; ] [ : ; ; ]
l
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l lA R L

E G
A R l sL

s s

n s l T n s l T
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R1,…,Rm  R, such that (i) s s1 1
1 1

,
,

E G
A R 1 2 2

2 2

,
, ...E G

A R
,
,

m m

m m

E G
A R sm s , (ii) E1

m
i i E and 

A1
m
i i E= , (iii) A=act(sm) , (iv) 1

m
i Gi G, (v) (reset Ri in v) i, 0<i m, (vi)  

sm+1, Em+1, Am+1, Gm+1, Rm+1, sm 1 1

1 1

,
,

m m

m m

E G
A R  sm+1, where Em+1 E  and Am+1 E= . If 

timed Statecharts term s satisfies event E, clock constraints G, We may say, s may 
evolve in the single macro step s s  to timed Statecharts term s , generate ac-
tion A and reset clock R. 

,
,

E G
A R

5.3  Translate Time Statecharts into Timed Automata 

Given timed Statecharts, it can be translated into timed automata by a mapping : 
TS TA. To define the mapping function , we firstly suppose a timed Statecharts p 
by terms,, and define the entities S(p), C(p), L(p), p and Inv(p), which mean respec-
tively the states set, the clock set, the label set, the set of transition relation and the 
state invariant function of TA (p), where: 

 S(p) is a set of state configurations of Statecharts term p. The definition of S(p) 
can be done as follows. 
i. S([n, ])={{ ([n, ])}}={{n}} 
ii. S([n: s ;l;T])= {{ ([n:1 i k s ;l;T])} qi | qi S(si)} 
iii. S([n: s ])={{ ([n: s ])} 1 i k qi | qi S(si)} 

 C(p)=C a set of the timed Statecharts clocks; 
 L(p)=  represents the set of timed Statecharts event and action, written 

event/action;  
2 p p 2 p

 p S(p)×L(p)×G×R×S(p) that operation rules have already been discussed in the 
above, represent the sequence macro step of Statecharts. Assume a translation 
e=(s, L, G, R, s ) connects two states s and s , describes s s1 1

1 1

,
,

E G
A R 1 2 2

2 2

,
, ...E G

A R  
s,

,
m m

m m

E G
A R m s , where L=E1 E2 … Em/A1 A2 … Am, G=G1 G2 … Gm, 

R=R1 R2 … Rm;  
 Inv(p): S(p) C, a function that assigns to each state an invariant, where 

Inv([n, ])= ([n, ]), Inv([n: s ;i;T]) = ([n: s ;l;T]), Inv([n: s ])= ([n: s ]) 
 ( p) expresses the initial term set of timed Statecharts. We may define 

([n, ])={n}, ([n: s ;i;T])={n} s1, ([n: s ])={n} 1 i k si. 

Considering our example of timed Statecharts of Fig. 1, its translation TA of timed 
Statecharts is depicted in Figure 5. 

5.2  Macro Step 

The above rules realize a compositional semantics of timed Statecharts on sequences 
of the micro steps. However, we consider even more the classical macro-step seman-
tics of timed Statecharts. Let s, s SC, E, A , G G and R R, we write s s  and 
say s may perform a macro step with input E, output A, clock constraints G and clock 
reset R to s , if s1,…,sm SC, E1,…,Em ¬ ,  A1,…,Am ,  G1,…,Gm  G, 
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similar to [12] is lift interlevel transitions to the uppermost states that are exited and 
entered when transitions is taken. Let sr(t) (called source restriction) is a set of states 
which were the original states of the transition t, and td(t) (called target determinator) 
is a set of states that were entered originally. 

(n4,n8,x<5) a, x>3 (n5,n8,x>1)
b

a,  b

(n5, n9,x>1)(n4,n9,x<5)

a,  b

a, x>3

c

c

b

(n5,n7,x>4)

a, b, x>4
b,c

b, x>4
c

a, b, x>4
b,c

b, x>4
c

(n4,n7,4<x<5)

b, x>4 c

a, x>3
b

b, x>4
c

By transition label extensions added sr(t) and td(t), interlevel transitions can be 
compiled into non-interlevel transitions. 

In the following, we will describe how to eliminate clock invariants for super state 
of timed Statecharts. Assume that two state of timed Statecharts n1, n2 N, n1 be a 
super state, i.e. type(n1)=AND or type(n1)=OR, and n2 may be a arbitrary type, in-
cluding AND, OR and BASIC, and let n2 (n1). According to the priority of transi-
tions for timed Statecharts, we define the priority of state invariant that if sub-state n2 
invariant is satisfied but father-state n1 invariant is not, then the current state configu-
ration can not be in n2, i.e. clock invariant of state n1 is prior to clock invariant of sub-
state n2. In order to let that clock invariants of OR-state and AND-state always are 
true, only clock invariant of sub-states n2 need be updated such as 
Inv(n2)=Inv(n2) Inv(n1). More precisely, we define formally as follows. 
 n N, and type(n)=AND or type(n)=OR, Inv(n)=true; 
 n N, n k(root), type(n)=BASIC, Inv(n)=Inv(n)  1 i k  -i(n). 

where root is a unique root state and has no ancestor. k(root)= ( k-1(root)),  -1 that 
gives the father-state is a inverse of , and  -k(n) =  -1(  -(k-1)(n)). 

Given a timed Statecharts TS, and TCTL formulae , the model checking timed 
Statecharts problem that we are interested in is to check whether TS satisfies , ab-
breviated TS |= . According to the last translation rules, the equivalence model TA 

Without loss of generality, we wish to consider interlevel transitions and clock in-
variants of OR-state and AND-state for timed Statecharts. Harel considers interlevel 
transitions as important concept of the language [1]: “…as our methods does not 
necessarily advocate layer-by-layer development; it is more flexible and encourages 
interlevel connections too, whenever appropriate.” Hence we can not rule them out. 
This intricacy is mainly caused by interlevel transitions, but we wish to describe inter-
level transitions but have simple operational semantics. It is feasible and practical to 
change from interlevel transitions to non-interlevel transitions. Our approach that is 
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Fig. 5. Translation Timed Automata for timed Statecharts in Fig. 1 

 
 



 

2. The model checking problem for TCTL, deciding whether TA, s0|= , can be 
solved by constructing the region automaton (TA) under the time equivalence 
classes under ; 

3. Apply the CTL model checking procedure on (TA). 

Actually, the problem for model checking timed Statecharts can be converted to the 
classical problem for model checking timed automata [23][24]. 

6  Conclusion 

Timed Statecharts is an extension of the visual specification language Statecharts 
with real-time constructs, and can efficiently specify explicit dense time. The timed 
Statecharts serves better the modeling of complex reactive real-time systems. The 
paper presented a new approach for formalizing timed Statecharts semantics, which is 
centered on the compositional principle. Based on timed Statecharts term syntax and 
formal operational semantics, and description of parallel behavior by process algebra, 
each timed Statecharts is mapped to a timed automaton. This makes it possible to 
translate our hierarchical structure to a flat one and thus provide a framework for 
formal verification of a real-time extension of Statecharts. 
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Abstract. A heuristic-based symbolic model checking algorithm,
BDD-IDA∗ that efficiently falsifies invariant properties of a system
is presented. As in bounded model checking, the algorithm uses an
iterative deepening search strategy. However, in our case, the search
strategy is guided by a heuristic that is computed from an abstract
model, which is derived from the concrete model by a synthesis tech-
nique. Synthesis involves eliminating so-called weak variables from the
concrete specification, where the weak variables are identified by a data-
dependency analysis. Unique to this work is the use of the depth-first
IDA∗ search algorithm in a BDD setting, and the automatic synthesis
of the heuristic. The performance of the approach on a large number
of small examples is compared with standard BDD-based approaches.
Experiments on a variety of real-world models from different domains
are also conducted. The approach reveals a consistent improvement on
all models, and in some cases a speed-up of 2 orders of magnitude is
obtained.

Keywords: Formal verification, symbolic model checking, heuristic
search, data abstractions, model approximations.

1 Introduction

Model checking [7] is often used in preference to theorem proving for the verifica-
tion of properties in finite-state systems because of its high level of automation as
well as its ability to produce counter-examples when a given property is found
not to hold. The safety properties of a system can often be captured by one
or more system invariants that characterise the set of states within which the
system must reside. This process of checking invariants is also called a reacha-
bility analysis. The aim of a reachability analysis is to detect error states, where
the paths leading to these states determine counter-examples to the invariant.
Counter-examples provide valuable information to system developers about po-
tential design errors in a system. In this work we are more focussed on falsification
of invariants than verification.

This work is based on the symbolic model checking approach [15] in which
symbolic data structures called binary decision diagrams (BDDs) [2] are used
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to represent a finite-state space. Invariant checking in symbolic model checking
is usually done by either BDD-based or SAT-based algorithms. The BDD-based
algorithm, BDD-BFS, conducts a breadth-first search on the system state space
and records all reachable states. The goal for the search algorithm usually cap-
tures those states in which the invariants are violated. Being ‘blind’, BDD-BFS
is an inefficient way to find error states as typically many regions of the state
space will needlessly be searched. A BFS strategy is more suited to correct mod-
els and is wasteful of space as generally all reachable states need to be stored. As
well, for large systems, the sizes of BDDs in BDD-BFS can grow exponentially,
making state space exploration almost impossible in realistic cases.

An alternative symbolic model checking approach is called bounded model
checking[1]. Bounded model checking translates the bounded semantics of the
invariant into Boolean expressions and uses SAT procedures to determine their
satisfiability. By incrementally increasing the bound, the algorithm iteratively
deepens the state space exploration. If an error state is encountered at some
level, the algorithm will terminate and report a counter-example. In general,
SAT-based algorithms tend to detect counter-examples quicker than BDD-BFS
due to the inherent DFS search strategy that SAT solvers use [5] if the counter-
examples are short. SAT-based approaches, however, can be handicapped by a
huge number of clauses that need to be input to the SAT solver. In our work, we
combine aspects of both techniques by using BDDs to represent the state space
and a heuristic DFS strategy to locate error states.

Because a BDD-based, depth-first search (BDD-DFS) strategy is not natu-
rally layered like BFS, it requires a special mechanism to partition each BDD
frontier during the search. The integration of BDD-DFS with heuristic search
provides this mechanism: the heuristic values of states are not only used to es-
timate the distances to the goal, they are also used to partition the frontier
into sub-frontiers. Each sub-frontier, represented by a single BDD, is treated by
BDD-DFS as a single node in the search graph.

Our integration of heuristics and symbolic data is yet another development
in the growing field of guided model checking [10,17,19,20] whose aim is to apply
‘smart’ technology to model verification. In previous work [17], we integrated the
A∗ search algorithm into a symbolic model checker. In this paper, we instead use
a ‘more efficient’ version of A∗ called IDA∗ (iterative deepening A∗), designed
to minimise memory usage. A∗ is in essence a mixture of BFS and DFS. If the
heuristic is informative, the search is more like DFS, otherwise, with poor di-
rection, the search works on a broad front. The tendency to mimic BFS when
poorly informed means that A∗ can have exponential memory requirements. In
1985, Korf [13] devised IDA∗ that is basically DFS, but has some BFS charac-
teristics. He found this algorithm was often better than A∗ in solving hard AI
problems [14].

The new, integrated algorithm we develop is called BDD-IDA∗. The advan-
tages of using BDD-IDA∗ are:

1. The iterative and bounded DFS strategy in IDA∗ detects so-called shallow
and corner bugs that are difficult to detect by unbounded DFS.
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2. In BFS, the frontier is layered. In A∗, the frontier is typically ‘onion shaped’
because of the action of the heuristic (biasing the search towards a particular
path that leads to a goal state). Pruning of the search space in fact occurs
before the bound is reached, so the frontier is more pointed to the goal for
each iteration.

3. IDA∗ has the same linear (in the search depth) space complexity as DFS.
(But note, as we use BDDs to represent sets of states, the actual space
requirement can be exponential in the number of states.)

A second important feature of our work is that we have extended the idea
presented in earlier work [17] of using an abstract version of the concrete model
as a heuristic (the so-called pattern database). In that work we did not address
the problem of how to obtain the abstract model. In this work, we address
this issue and present an automatic method to generate abstract models that
is based on a data-dependency analysis of the concrete model specification. In
this analysis, we determine the strength of each variable. This information is
used by the heuristic generator to eliminate those variables that are considered
less relevant (or weak), and thereby reduce the size of the model. We refer to
this technique as heuristic synthesis. Being able to automatically determine a
heuristic frees the system designer/verifier from this task, and makes the guided
model checker fully automatic.

In summary, a number of model-checking and artificial intelligence ap-
proaches have been combined to produce an integrated, fully automatic frame-
work that allows more efficient property falsification than alternative approaches.
The rest of paper is organised as follows. Section 2 reviews the guided model
checking framework we use and presents the BDD-based IDA∗ algorithm. In
Section 3 the three-phase heuristic synthesis procedure based on abstractions is
illustrated. We describe the tool that we have developed and the experiments
in Section 4. Section 5 discusses related work from the literature and Section 6
concludes this work.

2 Guided Model Checking and Symbolic IDA∗

The general framework for our abstraction-guided approach is based on work
presented in [17]. We depict our approach in Figure 1. The process starts with
the concrete model. In the first step we generate, automatically, a data abstrac-
tion of the concrete model using a data dependency analysis. The abstract model
is taken as input by a standard model checker that uses a BFS search algorithm.
If the model checker verifies the abstract model successfully, we terminate. If
the abstract model fails the verification, we construct a heuristic using the ab-
stract model. The guided model checking algorithm is then invoked to check the
concrete system using the heuristic as guide. The outcome of the guided model
checker is either that the concrete model is verified, or that a counter-example
(CX in the figure) is produced. The approach in this paper differs from [17] in
two aspects. 1) We use an automatic heuristic synthesis procedure, and 2) as
our primary focus is on falsification and not verification, we use a DFS-based
heuristic search algorithm, IDA∗, and modify it to use BDDs.
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Fig. 1. The abstraction-guided model checking framework

The algorithm, called BDD-IDA∗, is based on the explicit IDA∗ algorithm.
The algorithm takes four inputs. The inputs S0 and G of the algorithm are BDDs
representing the initial set of states and the goal, i.e. set of “bad” states. The
input BDD R is the transition relation. Note that we denote the calculation of
the image of a given set of states S by R(S). The input σ is a heuristic that will
be illustrated in next section. Finally, the input Bound determines the search
depth. We use an explicit stack where each element in the stack is of the form
(g, h,S). The integer g indicates the actual number of transitions from S0 to
S and h the heuristic estimation of number of transitions from S to G. In line
10, the algorithm calls the procedure SplitAndPush. This procedure uses the
heuristic σ to partition a set of states S (that constitute the frontier of the IDA∗

search) into subsets, and together with their associated costs g and h, pushes
each subset onto the stack. We show this procedure in the next session.

Procedure BDD-IDA∗ (S0,R,G, σ,Bound)
1 stack.push() ← (0, 0,S0)
2 counter ← 1
3 while (counter ≤ Bound) do
4 while (stack �= φ) do
5 (g, h,S) ← stack.pop()
6 if (S ∧ G �= φ)
7 return Bound
8 if (h + g < counter)
9 S ← R(S)
10 SplitAndPush(g,S, σ)
11 counter ← counter + 1
12 stack.push() ← (0, 0,S0)
13 return NoErrorInBound
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Note that we do not memorise the set of reachable states in the algorithm as we
are only interested in the falsification of invariant properties.

3 Heuristic Synthesis

In this section we will outline how the heuristic σ is synthesised. It is a three-
phase process. (1) Abstraction: a data dependency analysis is used to auto-
matically define an abstraction function for the concrete model. (2) Approxi-
mation: an approximation of the abstract model is then computed in order to
avoid the computational penalty for exact abstraction. (3) Heuristic Construc-
tion: a standard BDD-BFS algorithm is used to compute all reachable fron-
tiers in the approximate model. The result of this synthesis is a set of BDDs
σ = {B1, B2, . . . , Bn} where each Bi represents a set of states in the abstract
model with the same heuristic value.

Phase 1: Abstraction

Let M = (S, R, S0) denote a concrete model where S is a set of states, S0 ⊆ S
is a set of initial states and R is the transition relation. Let H : S → Ŝ be
a surjection that maps the concrete state space onto an abstract space Ŝ with
|Ŝ| ≤ |S|. H therefore induces an abstract model that is defined as follows.

Definition 1 (Abstraction). The abstraction of M w.r.t. H is denoted by M̂ =

(Ŝ, R̂, Ŝ0), where

– Ŝ = {ŝ|s ∈ S ∧ ŝ = H(s)}
– Ŝ0 = {ŝ|ŝ ∈ Ŝ ∧ ŝ = H(s) ∧ s ∈ S0}
– R̂ ⊆ Ŝ × Ŝ is a transition relation, where (ŝ1, ŝ2) ∈ R̂ iff ŝ1 = H(s1) ∧ ŝ2 =

H(s2) ∧ ∃s1∃s2(s1, s2) ∈ R

In symbolic model checking, S0 and R of M are usually represented by two
first-order formulas, F0(x1, x2, ..., xn) and FR(x1, x2, ..., xn, x′

1, x
′
2, ..., x

′
n), where

{x1, x2, ..., xn} and {x′
1, x

′
2, ..., x

′
n} are variables that represent the current state

and next state of the model. Without loss of generality we assume all variables
range over same domain D, hence the state set of M is S = D×D× ...×D. Let
{x̂1, x̂2, ..., x̂n} and {x̂′

1, x̂
′
2, ..., x̂

′
n} be variables that represent the current state

and next state of M̂ . We denote H(xi) = x̂i iff H maps every value of xi to an
abstract value of x̂i. Let F̂0 and F̂R denote the formulas that represent Ŝ0 and
R̂ respectively. Using the quantification on F0 and FR, we construct Ŝ0 and R̂
by evaluating the following formulas.

1. F̂0 = ∃x1...∃xn(H(x1) = x̂1 ∧ ... ∧ H(xn) = x̂n ∧ S0(x1, ..., xn))
2. F̂R = ∃x1...∃xn∃x′

1...∃x′
n(H(x1) = x̂1 ∧ ... ∧ H(xn) = x̂n ∧ H(x′

1) = x̂′
1 ∧

... ∧ H(x′
n) = x̂′

n ∧R(x1, ..., xn, x′
1, ..., x

′
n))

To build the abstraction from a concrete model, we first need to define H .
In BDD-based symbolic model checking, every variable of the concrete model is
encoded using a set of Boolean variables. Let V be a set of Boolean variables



280 K. Qian, A. Nymeyer, and S. Susanto

that encode all the variables in M . Following [5,17], we define H by restricting
a subset Vinv ⊂ V to a single-element domain, i.e. H(F) = ∃v0...∃vmF for
all vi ∈ Vinv , where F is formula representing a set of concrete states. This
abstraction essentially makes the variables in Vinv invisible. Note that in our
earlier work [17], the user had to provide Vinv to build the abstract model;
possibly a difficult task. In this paper we describe an automated method to
generate Vinv that is based on a data dependency analysis.
Data Dependency Analysis. The aim of this analysis is to estimate the
strength of each variable vi in V , and remove weak variables to form an ab-
stract model. The analysis is based on the cone of influence (COI) abstraction
techniques [7]. Let Vp ⊆ V be a set of variables that appears in the specification
ϕ. The COI of Vp, denoted by C, is the minimal set of variables such that:

– Vp ⊆ C
– if for some vi ∈ C its next(vi) depends on vj , then vj ∈ C

If |C| < |V |, then we construct a reduced model M ′ that only contains variables
in C. It is proved in [7] that the reduced and original models form a bi-simulation
relation w.r.t. all CTL specifications that only have variables from Vp, i.e. M ′ |=
ϕ ↔ M |= ϕ. As a result, model checking can be performed on the reduced
model. Of course, every variable in C must be included, otherwise the reduced
model is not bi-similar.

We use abstraction only to synthesise the heuristics that guide the model
checker of the concrete model, so we do not need to restrict ourself to removing
only the variables outside of C (unlike [7]). Although all variables in C can
influence the variables in ϕ, the degree of influence will not normally be the
same. Some variables in Vp are more strongly influenced by variables in C − Vp

than others. To determine the subset of variables of V on which the truth of ϕ
is heavily reliant, we build a dependency tree. Let D(v) be the positive integer
denoting the distance from v to the root of the dependency tree. The smaller
D(v) is, the stronger the influence of v on ϕ. The following algorithm computes
D(v) for all v ∈ C.

initialise i := 0, C := Vp and Vt := Vp;
while C changes do

i := i + 1;
for each vi ∈ Vt, compute all its dependable variables;

put those who are not in C into Vtt;
assign D(v) := i for all v ∈ Vtt;
assign C := C ∪ Vtt and Vt := Vtt;

To determine Vinv we need to set the threshold d for D(v), and compute Vinv :=
(V −C)

⋃{v|v ∈ C ∧D(v) ≥ d}, where (V −C) are all variables that are outside
of the COI. (In our tool the value of d is a run-time option.)

Phase 2: Approximation

Having defined H , we need to evaluate F̂0 and F̂R in order to compute Ŝ0 and
R̂ for M̂ . We could evaluate them directly, i.e. quantifier elimination. For asyn-



Abstraction-Guided Model Checking 281

chronous systems, F̂R is usually made up of a disjunction of transition blocks and
existential quantification can distribute over them. Synchronous models however
consist of conjunctions of small transition blocks and existential quantifiers do
not distribute over them. This means that we need to build a monolithic BDD
for the formulae F0 and FR and then perform quantifier elimination on them.
This is computationally very expensive, especially in the case of F̂R.

This problem can be avoided if we allow the existential quantifiers to dis-
tribute over the conjunctions. In other words, we want to push the quantification
to the small transition blocks. This computation can be relatively easy because
the blocks are often small. But of course the resulting model is not M̂ anymore,
but an approximation of it, which we denote M̂app. It is proved in [6] that this
approximation does not cause the loss of any initial states and transitions, i.e.
M̂app simulates M̂ (see [6] or [16] for the definition of a simulation relation for
Kripke structures). By transitivity of the simulation relation, M̂app simulates M

because M̂app simulates M̂ and M̂ simulates M [16]. In order to show the cor-
rectness of the mechanism, we need to show that M̂app contains the information
that we can use to estimate the length of counter-examples of M . This we do in
the following lemma.

Lemma 1. If a state s ∈ S is reachable in M from any state in S0, then its
abstract counterpart ŝ is also reachable in M̂app from any state in Ŝ0.

The proof of this lemma is omitted. In essence, this lemma implies that if a
counter-example is present in the original model, it must be manifest in the
abstract model M̂ as well as in the approximation M̂app. Note that both the ab-
straction and approximation do not ‘lose’ any transitions of the original system,
although internal transitions with one abstract state are not visible in M̂ . Thus,
the admissibility of the approach will therefore not be affected (see [17]). This
guarantees the resulting counter-example will be the shortest.

Phase 3: Constructing a Heuristic

The purpose of a heuristic is to estimate the number of transitions from each
concrete state to a goal state (or error state). The heuristic value for each state
s ∈ S in M is simply the number of transitions from ŝ = H(s) to the ab-
stract goal state in M̂app. This type of heuristic is usually referred to as a
pattern database [8,11,17], where pattern is another term for abstraction. The
term database means the heuristic is a memory-based heuristic that can be
handled by a hash table, where the indices represent abstract states and the
entries are heuristic values. As in our earlier work [17], we use a set of BDDs
to store the heuristic, called symbolic pattern databases (SPDB) and denoted
by σ = {B1, B2, ..., Bn}. Note that the set of states represented by these BDDs
are disjoint, i.e. B1 ∧ B2 ∧ ... ∧ Bn = φ. Each Bi represents a set of abstract
states that have the same heuristic value, and hence have the same number of
transitions to the abstract goal state. A SPDB can be constructed using both
backward and forward blind BFS search in M̂app:
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Backward Construction. Use a BDD-based BFS strategy to explore M̂app,
and start at the abstract goal. Put each frontier-BDD into the heuristic hash
table with the number of iterations as the entry in SPDB. Terminate if an
abstract initial state is encountered.

Forward Construction. Instead, start at an abstract initial state, and store
each frontier temporarily. If the search detects the abstract goal, then ex-
tract the path backward from the goal to the initial state. The set of BDDs
that comprises the path is a forward SPDB. This process is the same as
the counter-example extraction in standard invariant checking. The paths
generated here are a subset of the paths extracted by backward SPDB.

It is of course possible that the heuristic synthesis procedure cannot find a trace
in the approximation M̂app. In that case the original model M does not have a
counter-example (by Lemma 1).

Splitting the BDD. Let σ = {B1, B2, . . . , Bn} be the heuristic (SPDB) that is
synthesised by the the 3-phase process described above. The following algorithm
splits a BDD into several BDDs that are the disjoint subsets of the original set
of states. In order to contain the BDD size after splitting, we use the restrict
operator on BDDs, denoted by ↓. Note the subscript i of each Bi indicates the
number of transitions Bi to the error state in the abstract model. The heuristic
of a concrete state is simply the value of i of its corresponding abstract state and
is used by BDD-IDA∗ to prioritise the state space search and hence for efficient
error detection.

Procedure SplitAndPush (Cost,S, σ)
for each Bi ∈ σ do

I ← S ↓ Bi

if (I �= φ)
stack.push() ← (Cost + 1, i, I)
S ← S ∧ I

if (S �= φ)
stack.push() ← (Cost + 1,∞,S)

4 The GOLFER Tool and Experiments

The algorithms described above have been implemented in an model checker
called GOLFER. The tool GOLFER incorporates the heuristic search algorithms
A∗, IDA∗ and weighted A∗, and will construct a SPDB as part of heuristic
synthesis using the abstraction/approximation techniques described above.

GOLFER is built on top of the open-source model checker NuSMV [4], and
offers almost all the BDD-based verification facilities included in the system. It
allows, for example, the user to choose an input ordering and transition-partition
heuristics. Additionally, we have implemented a frontier-partition heuristic that
is important in the guided model checking algorithm. As well as the automatic
abstraction construction that uses the data dependency analysis, GOLFER al-
lows the user to input the abstraction H as a file of variable strength values.
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The work is of course on-going and the current version of GOLFER consists of
about 3200 lines of C code (not including the NuSMV code).

To evaluate the ideas presented in this paper we have experimentally com-
pared the performance of BDD-IDA∗ in GOLFER and the standard algorithms
in NuSMV (namely BDD-BFS and a SAT-based bounded model checking al-
gorithm). Note that in our experiment both BDD-IDA∗ and BDD-BFS use the
same transition partition method of NuSMV for each model. We compare the
run-time and memory usage for these methods. These approaches all operate in
a fully automated manner, without any user interference except that we need to
set up a bound for our algorithm and the SAT-based algorithm. In the experi-
ment we set the bound to 50 and use the zChaff solver for the SAT algorithm.
We first compare the performance of GOLFER and NuSMV on a simple game.
We then follow with more realistic models. In the experiment we used known
good BDD variable orderings for both BDD-IDA∗ and BDD-BFS when they
were available. We also tried random orderings and found both algorithm has
similar sensitivity to the same ordering. All experiments were carried out using
shell scripts. The timeout operation (set to 2 hours) was implemented by a perl
script. All experiments were conducted in a shared Intel X86 machine (CPU P4
933MHz) running Linux with 6G RAM.

The Sliding-Tile Puzzle. consists of a board of n × n squares occupied by
n2 − 1 tiles. Each tile exactly fits on one square and is labelled by a number
ranging from 1 to n2 − 1. Starting in some given initial configuration of the
tiles on the board, the aim of the game is to move the tiles one at a time by
utilising the empty square until some given goal configuration is reached. Each
state of the puzzle has between 2 and 4 successors, hence the branching factor
for the search graph is small. In the experiment, we use a 3×3 board and 8 tiles.
We encode the puzzle in the SMV input language and randomly generate 500
solvable initial configurations. We show the results for our algorithm BDD-IDA∗

and the standard BDD-BFS approach in NuSMV in Figure 2. (The SAT-based
approach is not included at this stage as it is not competitive on small models.)

In Figure 2 we group, average and order the data for the runs that result
in the same solution depth. Generally, but not always, the shorter the solution

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30

A
ve

ra
ge

 R
un

 T
im

e 
(s

) 

Solution Depth

BDD-IDA*
BDD-BFS 

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5  10  15  20  25  30

A
ve

ra
ge

 M
em

or
y 

U
sa

ge
 (

B
)

Solution Depth

BDD-IDA*
BDD-BFS 

Fig. 2. Run-time and memory usage for IDA∗ and BFS for the sliding-tile puzzle
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depth, the faster the model checker finds the solution. Most solutions for the 500
starting configurations were in the range 17 to 27. Within this solution range
BDD-IDA∗ outperforms BDD-BFS in both time and memory. For configurations
with shorter solutions, BDD-BFS is generally faster than BDD-IDA∗ because of
the overhead of the abstraction process in BDD-IDA∗, which dominates when
the goal configuration is just a few transitions away. For configurations with the
longest solutions, BDD-IDA∗ and BDD-BFS perform similarly. It is not clear
why this is the case. It is true that there are few long solutions, so the sparseness
of data may be contributing to this behaviour. However, we have observed the
heuristic is quite poor for these configurations. If we manually generate a better
heuristic for these configurations, we found that BDD-IDA∗ performed much
better than BDD-BFS. We therefore feel that the data dependency analysis
may be responsible, and conjecture that abstracting the system by eliminating
supposedly weak variables loses validity in the longest runs. This may be an
artifact of the particular data-dependency analysis that we have used.

While this data provides an interesting comparison between the 2 methods,
one needs to remember that these methods are certainly not the best way to
solve this kind of puzzle. An explicit-state model checker for example could be
made to solve these puzzles faster than any of the above methods.

Real-World Examples. We applied the BDD-IDA∗ and BDD-BFS to the 8
models listed in Table 1. In this table, we show the type of model and the size
of the SMV specification in each case. Some of the models can be found from

Table 1. Model used in the experimentation

Name Description Type Lines SMV code
dme distributed mutual exclusive ring circuit 102
leader concurrent leader election protocol 129
mutex mutual exclusion protocol 116
ns Needham-Schroeder public key protocol protocol 319
peter Peterson’s mutual exclusion algorithm protocol 126
sr sender receiver protocol protocol 106
tarb tree arbiter circuit 142
tcas traffic collision avoiding system controller 3269

Bwolen Yang’s collection of SMV models. If a model is parameterised, the value
of the parameter is indicated by a numerical suffix in the name of the model.
We sometimes also used the same model with different invariants. These models
contain a parenthesised ‘p’ suffix in the model name.

The experimental results for comparing BDD-IDA∗and BDD-BFS are shown
in Table 2. For each model, we show the number of Boolean variables (#Vars)
that are used to encode the model, the length of the counter-examples (CX),
and the run-time and the number of BDD nodes for each of the methods (when
possible). The table shows that BDD-IDA∗ consistently outperforms BDD-BFS
in all but one case, peter-3. Note that the run-times for BDD-IDA∗ include the
time for heuristic synthesis. We believe that the poor performance in the case
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Table 2. Experimental results for BDD-IDA∗, BDD-BFS

Run-time # BDD Nodes

Model # Vars CX BDD-IDA∗ BDD-BFS BDD-IDA∗ BDD-BFS
dme6 240 28 78.46 – 655163 –
dme8 320 30 7033.99 – 4499580 –

leader-3 85 16 1.01 1.65 305231 535585
leader-4 128 18 11.07 40.33 228193 223136
leader-5 168 20 111.62 502.18 981095 2335851
leader-6 200 22 1123.79 5486.61 3945215 4988551

mutex-16 141 10 0.66 11.13 208967 439208
mutex-20 175 10 1.01 36.13 320392 598775
mutex-24 207 10 1.56 87.59 461404 2486530
mutex-28 239 10 2.30 208.93 158186 4898940

ns (p1) 87 14 0.90 13.14 183538 117207
ns (p2) 133 14 7.43 341.80 103938 1267943

peter-3 72 26 0.59 0.42 151819 144783
peter-4 103 42 10.06 54.87 278411 542995

sr-11 273 14 0.44 67.14 177872 237768
sr-12 297 14 0.70 95.83 211911 262272

tarb-15 244 24 15.29 431.64 258489 6743882
tarb-17 276 24 32.11 712.31 464059 12649365
tarb-19 308 24 28.46 561.77 626627 11079508

tcas (p1) 292 12 4.44 25.07 190876 617102
tcas (p2) 292 16 3.43 92.11 536990 2918189
tcas (p3) 292 24 9.45 2364.88 328944 17165753
tcas (p4) 292 18 116.37 250.39 1745925 10673258
tcast (p1) 292 12 5.34 27.94 230336 623381
tcast (p2) 292 18 38.05 275.91 623307 6224724
tcast (p3) 292 16 4.37 107.33 562949 1625174
tcast (p4) 292 16 4.97 93.85 552857 1620110

Table 3. Experimental results for BDD-IDA∗, BDD-BFS and SAT

Run-time
Model BDD-IDA∗ BDD-BFS SAT
dme6 78.46 – 176.37
dme8 7033.99 – 521.77

ns (p2) 7.43 341.80 192.80

tarb-15 15.29 431.64 121.61
tarb-17 32.11 712.31 156.45
tarb-19 28.46 561.77 195.11

of peter-3 is an artifact of its smallness: the run-time is short and the automatic
heuristic synthesis is an overhead that BDD-BFS does not have. In the cases
mutex and tcas, BDD-IDA∗ can be up to 2 orders of magnitude faster. In most
cases, less BDD nodes are used, sometimes an order of magnitude less. In the few
cases where more BDD nodes were used, it was the same order of magnitude.

We cannot see from this data how much of the improved run-times comes
from the ‘falsification superiority’ of DFS over BFS (note the very different BDD-
partitioning schemes used in both strategies clouds this issue somewhat as well),
and how much is a result of the guided search. We have used the same run-time
options in all cases. In a few cases, we did notice that by changing certain run-
time options such as the threshold of partition size or partition heuristics, we
could improve the performance for BDD-BFS. However, we could never make it
perform better than BDD-IDA∗. We have not tried to fine-tune the partitioning
scheme used in BDD-IDA∗. Placing this work in context we should note that
all the models contain at most a few invariant properties, and we know these
properties are false. The experimental context is hence somewhat artificial and
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BDD-IDA∗may not produce such performance improvements when used to verify
models containing many properties. Furthermore, BDD-IDA∗ detects counter-
examples. If the algorithm does not return before the timeout then we cannot
say whether a counter-example exists or not.

We also compared the run-time of BDD-IDA∗, BDD-BFS and SAT methods
and the results are shown in Table 3. Note that we only do so if the SAT has
better performance than BDD-BFS. Of 6 models we have experimented, BDD-
IDA∗detects error faster than SAT in 5 models. For model “dme8”, our BDD-
IDA∗ runs much slower than SAT for some unknown reason.

Optimality. The performance of BDD-IDA∗ is dependent on the quality of the
heuristic. Suppose the heuristic cost for a BDD is h∗ and the exact cost h, then
the quality is determined by the smallness of | h∗ − h |. We in fact don’t care
whether h∗ over- or under-estimates the real cost, but if it does over-estimate the
cost, then we cannot guarantee that the algorithm will find the shortest counter-
example. In model checking this is not normally an issue, but in general, and
in particular in artificial intelligence, it can be a very serious issue. In fact, the
heuristic synthesis procedure used in this work always results in a heuristic that
under-estimates the cost because it is based on homomorphic abstractions [17].
To improve the effectiveness of the heuristic, we could instead use the heuristic
cost a× h∗ instead of h∗, where a > 1 is a constant factor that can be tuned for
specific applications. We could go a step further and use the total cost formula
f∗ = b × g + a × h∗ where a, b are constant values and g is the exact cost from
the initial BDD (or state) to the current BDD (state). This may speed up the
search dramatically, but optimality can no longer be guaranteed.

5 Related Work

The main work in BDD-based guided model checking uses prioritised traversal
techniques. In [3] Cabodi et. al. proposed a mixed forward-backward prioritised
traversal algorithm that checks invariant properties. This work is closely related
to our approach as both share the idea of using prioritised traversal as well as
abstractions and approximations. However, Cabodi et. al. differ in the way they
combine these aspects:

– They construct an approximation of the concrete model and use it to ap-
proximate the forward reachable state set, which is then used to prioritise
the backward traversal of the state space. They use a best-first search algo-
rithm. We use approximation for the computationally-intensive abstraction
process. The heuristic synthesis in our approach is goal-oriented and BDD-
IDA∗ also takes the real cost into account. As well, the state space search
of our approach is iterative deepening which characterises the SAT-based
search strategy.

– They study only forward-backward traversal orders, which are more suited
to circuits than communication protocols (for example) because traversals
in both directions may not be possible even in the abstract model due to
high branching factors. In our work we do not restrict ourselves in this way.
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During the approximation phase, we do not have to traverse from the target
to the initial states. Because our approximation is target-oriented, partial
approximation traversal also serves as a heuristic for estimating the length
of partial counter-examples.

In [18,12] prioritised traversal algorithms are proposed based on BDD partition-
ing (or subsetting). A so-called “high-density” reachability analysis is used as a
BDD optimisation technique to traverse the state space of the system, and the
density of a BDD is defined to be the ratio of states the BDD can represent over
its size. The BDD with higher density will gain higher priority in the state space
traversal. This technique only aims at optimising the size of BDDs and offers
no guidance to the model checking algorithm in the search for error states. In
our work, heuristics are synthesised from the abstract model, and provide direct
information about potential error states in the model. The above approaches use
the VIS language and we use SMV. It would be possible combine our work with
the above approaches, but there would be difficulties.

Most work in guided model checking is based on the explicit-state representa-
tion [9,20,21]. The first work on guided model checking in [22] applies prioritised
state space exploration to model checking and proposes practical heuristics to
guide the search. Heuristic search algorithms such as A∗ and IDA∗ have also
been used in explicit-state model checking in HFS-SPIN [9], recently Hopper
(implemented on top of Murϕ) [20] and FLAVERS [21]. All this work shows
that the heuristic search algorithm can enhance the model checker’s ability to
detect counter-examples. The role of BDDs, particularly in combination with
IDA∗, is an important aspect of our work of course, as is the use of heuristic
synthesis, which none of these authors above have addressed.

6 Conclusion and Future Work

In this work we have presented a fully automatic, symbolic, abstraction-guided
model checker that builds its own abstract model, and uses this model as heuris-
tic to guide the model checker. The main contribution of this work is its inte-
gration of:

• a data dependency analysis that is used to build an abstract model
• IDA∗ with heuristic synthesised from the abstract model, and
• a BDD partitioning algorithm in BDD-IDA∗ based on the heuristic.

The heuristic, which plays a vital role in guided search, is ‘double-dipped’ in
this research: it not only guides the IDA∗ search strategy, it also provides a
mechanism to partition the search space (i.e. BDDs). While it is true that the
internal BDD operations are more complex than standard BDD-BFS, this is
hidden from the user.

The ‘bug-hunting’ ability of DFS has long been recognised, as is attested by
the huge popularity of SPIN. But SPIN is not symbolic of course, and is not
guided, and being conventional DFS, is not always able to find the nearest bugs,
which BFS does so well. The GOLFER tool adds a functionality to NuSMV that
is all of the above, without the expense of BFS.
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There is of course much work to be done. Foremost will be gaining a better
understanding of the best type of data analysis to use to build the abstract
model. It is not clear whether other notions of weak and strong may be more
appropriate in determining whether a variable is important or not in guiding the
search algorithm. For example, the current notion of eliminating weak variables
does not work when all variables are equally related to the property variables.
One direction for future research in this area is machine learning. Extending the
framework to search for counter-examples for liveness properties is also an useful
step to take.

Finally, in the abstraction-refinement framework Clarke et al. [5] uses ab-
straction in a very different way to us (we use it only to compute a heuristic).
Nevertheless, the efficient way we detect counter-examples, which play an im-
portant role in refinement, could be usefully employed in that framework.

Acknowledgement. We would like to thank all anonymous referees for their
corrections and suggestions.

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS ’99: Proceedings of the 5th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, pages 193–207. Springer-
Verlag, 1999.

2. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transaction, C-35(8):677–691, Aug 1986.

3. G. Cabodi, S. Nocco, and S. Quer. Mixing forward and backward traversals in
guided-prioritized bdd-based verification. In Proceedings of the 14th International
Conference Computer Aided Verification, Copenhagen, Denmark, July 27-31, vol-
ume 2404 of LNCS, pages 471–484. Springer, 2002.

4. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In Proceedings of the 11th International Conference on Computer
Aided Verification, Trento, Italy, July 6-10, volume 1633 of LNCS, pages 495–499.
Springer, 1999.

5. E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-
refinement using ILP and machine learning techniques. In Proceedings of the 14th
International Conference on Computer Aided Verification, Copenhagen, Denmark,
July 27-31, volume 2404 of LNCS, pages 265–279. Springer, 2002.

6. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994.

7. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
8. J. C. Culberson and J. Schaeffer. Searching with pattern databases. In Proceedings

of the 11th Biennial Conference of the Canadian Society for Computational Studies
of Intelligence, Toronto, Ontario, Canada, May 21-24, volume 1081 of LNCS, pages
402–416. Springer, 1996.

9. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking
with HSF–SPIN. In Model Checking Software, 8th International SPIN Workshop,
Toronto, Canada, May 19-20, Proceedings, volume 2057 of LNCS, pages 57–79.
Springer, 2001.



Abstraction-Guided Model Checking 289

10. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model
checking in the validation of communication protocols. Technical report, Albert-
Ludwigs-Universitt Freiburg, 2001.

11. S. Edelkamp and A. Lluch-Lafuente. Abstraction databases in theory and model
checking practice. In Proceedings of Workshop on Connecting Planning Theory
with Practice, International Conference on Automated Planning and Scheduling
(ICAPS), Whistler, Canada, 2004.

12. R. Fraer, G. Kamhi, B. Ziv, M. Y. Vardi, and L. Fix. Prioritized traversal: Effi-
cient reachability analysis for verification and falsification. In Proceedings of 12th
International Conference on Computer Aided Verification, volume 1855 of LNCS,
pages 389–402. Springer, 2000.

13. R. Korf. Iterative-deepening A*: An optimal admissible tree search. In Ninth
International Joint Conference on Artificial Intelligence(IJCAI-85), pages 1034–
1036, LA,California,USA, 1985. Morgan Kaufmann.

14. R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, July
1993.

15. K. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston, MA,
1993.

16. K. Qian and A. Nymeyer. Abstraction-based model checking using heuristical
refinement. In Proceedings of the 2nd Internation Symposium on Automated Tech-
nology for Verification and Analysis (ATVA’04), to appear, LNCS. Springer, 2004.

17. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Proceedings of the 10th Internation Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Barcelona,
Spain,, volume 2988 of LNCS, pages 497–511. Springer, 2004.

18. K. Ravi and F. Somenzi. High-density reachability analysis. In ICCAD ’95: Pro-
ceedings of the 1995 IEEE/ACM International Conference on Computer-Aided De-
sign, pages 154–158. IEEE Computer Society, 1995.

19. A. Santone. Heuristic search + local model checking in selective mu-calculus. IEEE
Transactions on Software Engineering, 29(6):510–523, 2003.

20. K. Seppi, M. Jones, and P. Lamborn. Guided model checking with a bayesian meta-
heuristic. In Proceedings of the Fourth International Conference on Application of
Concurrency to System Design (ACSD’04), pages 217–226. IEEE, 2004.

21. J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S. Leue. Heuristic-guided
counterexample search in flavers. In SIGSOFT ’04/FSE-12: Proceedings of the
12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software
Engineering, pages 201–210. ACM Press, 2004.

22. C. H. Yang and D. L. Dill. Validation with guided search of the state space. In
Proceedings of the 35th Conference on Design Automation, Moscone Center, San
Francico, California, USA, June 15-19, pages 599–604. ACM Press, 1998.



Modeling and Verification of Safety-Critical Systems
Using Safecharts

Pao-Ann Hsiung and Yen-Hung Lin

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

hpa@computer.org

Abstract. With rapid development in science and technology, we now see the
ubiquitous use of different types of safety-critical systems in our daily lives such
as in avionics, consumer electronics, and medical systems. In such systems, un-
intentional design faults might result in injury or even death to human beings.
To make sure that safety-critical systems are really safe, there is need to verify
them formally. However, the verification of such systems is getting more and
more difficult, because the designs are becoming very complex. To cope with
high design complexity, currently model-driven architecture design is becom-
ing a well-accepted trend. However, conventional methods of code testing and
standards conformance do not fit very well with such model-based approaches.
To bridge this gap, we propose a model-based formal verification technique for
safety-critical systems. In this work, the model checking paradigm is applied to
the Safecharts model which was used for modeling, but not yet used for verifica-
tion. Our contributions are five folds. Firstly, the safety constraints in Safecharts
are mapped to semantic equivalents in timed automata for verification. Secondly,
the theory for safety constraint verification is proved and implemented in a com-
positional model checker (SGM). Thirdly, prioritized transitions are implemented
in SGM to model the risk semantics in Safecharts. Fourthly, it is shown how the
original Safecharts lacked synchronization semantics which could lead to safety
hazards. A solution to this issue is also proposed. Finally, it is shown that priority-
based approach to mutual exclusion of resource usage in the original Safecharts
is unsafe and corresponding solutions are proposed here. Application examples
show the feasibility and benefits of the proposed model-driven verification of
safety-critical systems.

1 Introduction

Safety-critical systems are systems whose failure most probably results in the tragic
loss of human life or damage to human property. There are numerous examples of these
mishaps. The accident at the Three Mile Island nuclear power plant in Pennsylvania on
28th March, 1979 is just one unfortunate example. Moreover, as time goes on, there are
more and more cars, airplanes, rapid transit systems, medical facilities, and consumer
electronics, which are all safety-critical systems appearing in our daily lives. When
some of them malfunction or fault, a tragedy is inevitable. The natural question that
comes to mind is that can we use these systems without 100% warranty? Obviously,
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the answer is negative. That’s why we need some methodology to exhaustively verify
safety-critical systems.

Traditional verification methods such as simulation and testing can only prove the
presence of faults and not their absence. Simulation and testing [11] both involve mak-
ing experiments before deploying the system in the field. While simulation is performed
on an abstract model of a system, testing is performed on the actual product. In the case
of hardware circuits, simulation is performed on the design of the circuit, whereas test-
ing is performed on the fabricated circuit itself. In both cases, these methods typically
inject signals at certain points in the system and observe the resulting signals at other
points. For software, simulation and testing usually involve providing certain inputs and
observing the corresponding outputs. These methods can be a cost-efficient way to find
many errors. However, checking all of the possible interactions and potential pitfalls us-
ing simulation and testing techniques is rarely possible. Conventionally, safety-critical
systems are validated through standards conformance and code testing. Using such veri-
fication methods for safety-critical systems cannot provide the desired 100% confidence
on system correctness.

In contrast to the traditional verification methods, formal verification is exhaustive
and provides 100% guarantee. Further, unlike simulation, formal verification does not
require any testbenches or stimuli for triggering a system. More precisely, formal veri-
fication is a mathematical way of proving a system satisfies a set of properties. Formal
verification methods such model checking [4] are being taken seriously in the recent
few years by several large hardware and software design companies such as Intel, IBM,
Motorola, and Microsoft, which goes to show the importance and practicality of such
methods for real-time embedded systems and SoC designs. For the above reasons, we
will thus employ a widely popular formal verification method called model checking
for the verification of safety-critical systems that are formally modeled.

In the course of developing a model-based verification method for safety-critical
systems, several issues are encountered as detailed in the following. First and fore-
most, we need to decide how to model safety-critical systems. Our decision is to adopt
Safecharts [4] as our models. Safecharts are a variant of Statecharts, especially for use
in the specification and the design of safety-critical systems. The objective of the model
is to provide a sharper focus on safety issues and a systematic approach to deal with
them. This is achieved in Safecharts by making a clear separation between functional
and safety requirements. Other issues encountered in designing the formal verification
methodology for model-based safety-critical systems are as follows:

1. How to transform Safecharts into a semantically equivalent Extended Timed Au-
tomata (ETA) model that can be accepted by traditional model checkers? How can
the transformation preserve the safety semantics in Safecharts?

2. What are the properties that must be specified for model checking Safecharts?

3. Basic states in Safecharts have a risk relation with each other specifying the com-
parative risk/safety levels. How do we represent such information in ETA for model
checking?

4. Safecharts have safety loopholes due to the lack of synchronization mechanisms. A
motivational example will be given in Section 4.4.
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5. The current semantics of Safecharts states that mutual exclusion of resource usages
can be achieved through priority. This is clearly insufficient as priorities cannot
ensure mutual exclusion.

The remaining portion is organized as follows. Section 2 describes the background
form our model including a comparison between conventional validation, such as simu-
lation and testing, and formal verification. Basic definitions used in our work are given
in Section 3. Section 4 will formulate each of our solutions to solving the above de-
scribed problems in formally verifying safety-critical systems modelled by Safecharts.
The article is concluded and future research directions are given in Section 6.

2 Related Work

A commonly-used method to demonstrate the safety of a system is proof by contra-
diction [13]. In this method, we assume that the unsafe states, identified by hazard
analysis, can be reached by executing the program. We then systematically analyze the
code and show that the pre-conditions for a hazardous state are contradicted by the
post-conditions of all program paths leading to that state. If this is the case, the initial
assumption of an unsafe state is incorrect. If this is repeated for all identified hazards,
then the system is safe. However, to find and list all possible hazards of safety-critical
systems is difficult. For example, a system may fail due to an unpredicted hazard that
may lead to a serious tragedy. This is not allowed, and that’s why we propose a more
formal method to verify safety-critical systems that are modeled by Safecharts and ver-
ified by model checking as introduced in the rest of this Section.

Safecharts [4] is a variant of Statecharts intended exclusively for safety-critical
systems design. With two separate representations for functional and safety require-
ments, Safecharts brings the distinctions and dependencies between them into sharper
focus, helping both designers and auditors alike in modeling and reviewing safety fea-
tures. Safecharts incorporates ways to represent equipment failures and failure handling
mechanisms and uses a safety-oriented classification of transitions and a safety-oriented
scheme for resolving any unpredictable nondeterministic pattern of behavior. It achieves
these through an explicit representation of risks posed by hazardous states by means of
an ordering of states and a concept called risk band. Recognizing the possibility of gaps
and inaccuracies in safety analysis, Safecharts do not permit transitions between states
with unknown relative risk levels. However, in order to limit the number of transitions
excluded in this manner, Safecharts provides a default interpretation for relative risk
levels between states not covered by the risk ordering relation, requiring the designer
to clarify the risk levels in the event of a disagreement and thus improving the risk
assessment process.

Timed Computation Tree Logic (TCTL) is a timed extension of the well-known tem-
poral logic called Computation Tree Logic (CTL) which was proposed by Clarke and
Emerson in 1981. We will use TCTL to specify system properties that are required to
be satisfied.

Model checking [2,3,12] is a technique for verifying finite state concurrent systems.
One benefit of this restriction is that verification can be performed automatically. The
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procedure normally uses an exhaustive search of the state space of a system to deter-
mine if some specification is true or not. Given sufficient resources, the procedure will
always terminate with a yes/no answer. Moreover, it can be implemented by algorithms
with reasonable efficiency, which can be run on moderate-sized machines. The process
of model checking includes three parts: modeling, specification, and verification. Mod-
eling is to convert a design into a formalism accepted by a model checking tool. Before
verification, specification, which is usually given in some logical formalism, is neces-
sary to state the properties that the design must satisfy. The verification is completely
automated. However, in practice it often involves human assistance. One such manual
activity is the analysis of the verification results. In case of a negative result, the user
is often provided with an error trace. This can be used as a counterexample for the
checked property and can help the designer in tracking down where the error occurred.
In this case, analyzing the error trace may require a modification to the system and a
reapplication of the model checking algorithm.

Our safety-critical system model and its model checking procedures are imple-
mented in the State-Graph Manipulators (SGM) model checker [14], which is a high-
level model checker for both real-time systems as well as systems-on-chip modeled by
a set of timed automata.

3 System Model, Specification, and Model Checking

Before going into the details of how Safecharts are used to model and verify safety-
critical systems, some basic definitions and formalizations are required as given in this
Section. Both Safecharts and their translated ETA models will be defined. TCTL and
model checking will also be formally described.

Definition 1. Statechart
Statecharts are a tuple F = (S, T , E , Θ,V , Φ), where S is a set of all states, T is a set
of all possible transitions, E is a set of all events, Θ is the set of possible types of states
in Statecharts, that is, Θ = {AND, OR, BASIC}, V is a set of integer variables, and
Φ ::= v ∼ c | Φ1 ∧ Φ2 | ¬Φ1, in which v ∈ V , ∼ ∈ {<,≤, =,≥, >}, c is an integer,
and Φ1 and Φ2 are predicates. Let Fi be an arbitrary state in S. It has the general form:

Fi = (θi, Ci, di, Ti, Ei, li)

where:

– θi : the type of the state Fi; θi ∈ Θ.
– Ci : a finite set of direct substates of Fi, referred to as child states of Fi, Ci ⊆ S.
– di : di ∈ Ci and is referred to as the default state of Fi. It applies only to OR states.
– Ti : a finite subset of T , referred to as explicitly specified transitions in Fi.
– Ei : the finite set of events relevant to the specified transitions in Ti; Ei ⊆ E .
– li : a function Ti → E × Φ × 2Ei , labelling each and every specified transition in

Ti with a triple, 2Ei denoting the set of all finite subsets of Ei. ��
Given a transition t ∈ T , its label is denoted by l(t) = (e, fcond, a), written

conventionally as e[fcond]/a. e, fcond and a in the latter, denoted also as trg(t) =
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e, con(t) = fcond, and gen(t) = a, represent respectively the triggering event, the
guarding condition and the set of generated actions.

Definition 2. Safechart
Safecharts Z extend Statecharts by adding a safety-layer. States are extended with a
risk ordering relation and transitions are extended with safety conditions. Given two
comparable states s1 and s2, a risk ordering relation� specifies their relative risk levels,
that is s1 � s2 specifies s1 is safer then s2. Transition labels in Safecharts have an
extended form:

e[fcond]/a[l, u)Ψ [G]

where e, fcond, and a are the same as in Statecharts. The time interval [l, u) is a real-
time constraint on a transition t and imposes the condition that t does not execute until
at least l time units have elapsed since it most recently became enabled and must ex-
ecute strictly within u time units. The expression Ψ [G] is a safety enforcement on the
transition execution and is determined by the safety clause G. The safety clause G is a
predicate, which specifies the conditions under which a given transition t must, or must
not, execute. Ψ is a binary valued constant, signifying one of the following enforcement
values:

– Prohibition enforcement value, denoted by �. Given a transition label of the form
� [G], it signifies that the transition is forbidden to execute as long as G holds.

– Mandatory enforcement value, denoted by �. Given a transition label of the form
[l, u) � [G], it indicates that whenever G holds the transition is forced to execute
within the time interval [l, u), even in the absence of a triggering event. ��
The Safecharts model is used for modeling safety-critical systems, however the

model checker SGM can understand only a flattened model called Extended Timed Au-
tomata [6] as defined in the following.

Definition 3. Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η over C and D is defined as: η := false | x ∼ c | x − y ∼ c | d ∼ c |
η1 ∧ η2 | ¬η1, where x, y ∈ C, ∼ ∈ {≤, <, =,≥, >},c ∈ N , d ∈ D, and η1, η2 are
mode predicates. ��

Let B(C, D) be the set of all mode predicates over C and D.

Definition 4. Extended Timed Automaton
An Extended Timed Automaton (ETA) is a tuple Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti,

ψi, τi, ρi) such that: Mi is a finite set of modes, m0
i ∈ Mi is the initial mode, Ci is

a set of clock variables, Di is a set of discrete variables, Li is a set of synchroniza-
tion labels, and ε ∈ Li is a special label that represents asynchronous behavior (i.e. no
need of synchronization), χi : Mi  → B(Ci, Di) is an invariance function that labels
each mode with a condition true in that mode, Ti ⊆ Mi × Mi is a set of transitions,
λi : Ti  → Li associates a synchronization label with a transition, τi : Ti  → B(Ci, Di)
defines the transition triggering conditions, and ρi : Ti  → 2Ci∪(Di×N ) is an assignment
function that maps each transition to a set of assignments such as resetting some clock
variables and setting some discrete variables to specific integer values. ��
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A system state space is represented by a system state graph as defined in
Definition 5.

Definition 5. System State Graph
Given a system S with n components modelled by Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti,

ψi, τi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph represented by
A1 × . . . ×An = AS = (M, m0, C, D, L, χ, T, ψ, τ, ρ), where:

– M = M1×M2× . . .×Mn is a finite set of system modes, m = m1.m2. . . . .mn ∈
M ,

– m0 = m0
1.m

0
2. . . . .m

0
n ∈ M is the initial system mode,

– C =
⋃

i Ci is the union of all sets of clock variables in the system,
– D =

⋃
i Di is the union of all sets of discrete variables in the system,

– L =
⋃

i Li is the union of all sets of synchronization labels in the system,
– χ : M  → B(

⋃
i Ci,

⋃
i Di), χ(m) = ∧iχi(mi), where m = m1.m2. . . . .mn ∈

M .
– T ⊆ M×M is a set of system transitions which consists of two types of transitions:

• Asynchronous transitions: for each e ∈ T , ∃i, 1 ≤ i ≤ n, ei ∈ Ti such that
ei = e

• Synchronized transitions: ∃i, j, 1 ≤ i �= j ≤ n, ei ∈ Ti, ej ∈ Tj such that
ψi(ei) = (l, in), ψj(ej) = (l, out), l ∈ Li ∩Lj �= ∅, e ∈ T is synchronization
of ei and ej with conjuncted triggering conditions and union of all transitions
assignments (defined later in this definition)

– ψ : T  → L × {in, out} associates a synchronization label and a direction of com-
munication with a transition, which represents a blocking signal that was synchro-
nized, except for ε ∈ L, ε is a special label that represents asynchronous behavior
(i.e. no need of synchronization),

– τ : T  → B(
⋃

i Ci,
⋃

i Di), τ(e) = τi(ei) for an asynchronous transition and
τ(e) = τi(ei) ∧ τj(ej) for a synchronous transition, and

– ρ : T  → 2
⋃

i Ci∪(
⋃

i Di×N ), ρ(e) = ρi(ei) for an asynchronous transition and
ρ(e) = ρi(ei) ∪ ρj(ej) for a synchronous transition. �

Definition 6. Safety-Critical System
A safety-critical system is defined as a set of resource components and consumer com-
ponents. Each component is modeled by one or more Safecharts. If a safety-critical
system H has a set of resource components {R1, R2, . . . , Rm} and a set of consumer
components {C1, C2, . . . , Cn}, H is modeled by {ZR1 ,ZR2 , . . . ,ZRm ,ZC1 ,ZC2 , . . . ,
ZCn}, where ZX is a Safechart model for component X . Safecharts ZRi and ZCj are
transformed into corresponding ETA ARi and ACj , respectively. Therefore, H is se-
mantically modeled by the state graph AR1 × . . .×ARm×AC1 × . . .×ACn as defined in
Definition 5. ��

For both hardware and software systems, a property or requirement can be spec-
ified in some temporal logic. The SGM model checker chooses TCTL as its logical
formalism, as defined below.
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Definition 7. Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following syntax:

φ ::= η | EGφ′ | Eφ′U∼cφ
′′ | ¬φ′ | φ′ ∨ φ′′,

where η is a mode predicate, φ′ and φ′′ are TCTL formulae, ∼ ∈ {<,≤, =,≥, >}, and
c ∈ N . EGφ′ means there is a computation from the current state, along which φ′ is
always true. Eφ′U∼cφ

′′ means there exists a computation from the current state, along
which φ′ is true until φ′′ becomes true, within the time constraint of ∼ c. Shorthands
like EF, AF, AG, AU, ∧, and → can all be defined [5]. ��
Definition 8. Model Checking
Given a Safechart Z that represents a safety-critical system and a TCTL formula, φ,
expressing some desired specification, model checking [2,3,12] verifies if Z satisfies φ,
denoted by Z |= φ.

Model checking can be either explicit using a labeling algorithm or symbolic using
a fixpoint algorithm. Binary Decision Diagram (BDD) and Difference Bound Matrices
(DBM) are data structures used for Boolean formulas and clock zones [3], respectively.

��
4 Model Checking Safecharts

Safecharts have been used to model safety-critical systems, but the models have never
been verified. In this work, we propose a method to verify safety-critical systems mod-
elled by Safecharts. Our target model checker is State Graph Manipulators (SGM)
[14,6], which is a high-level model checker for both real-time systems, as well as,
Systems-on-Chip modelled by a set of extended timed automata. As mentioned in Sec-
tion 1, there are several issues to be resolved in model checking Safecharts.

Basically, a system designer models a safety-critical system using a set of Safecharts.
After accepting the Safecharts, we transform them into ETA, while taking care of the
safety characterizations in Safecharts, and then automatically generate properties corre-
sponding to the safety constraints. The SGM model checker is enhanced with transition
priority, synchronization, and urgency. Resource access mechanisms in Safecharts are
also checked for satisfaction of modeling restrictions that prevent violation of mutual
exclusion. Finally, we input the translated ETA to SGM to verify the safety-critical sys-
tem satisfies functional and safety properties. Each of the issues encountered during
implementation and the corresponding solutions are detailed in the rest of this section.

4.1 Flattening Safecharts and Safety Semantics

Our primary goal is to model check Safecharts, a variant of Statecharts. However,
Safecharts cannot be accepted as system model input by most model checkers, which
can accept only flat automata models such as the extended timed automata (ETA) ac-
cepted by SGM. As a result, the state hierarchy and concurrency in Safecharts must
be transformed into semantically equivalent constructs in ETA. Further, besides the
functional layer, Safecharts have an extra safety layer, which must be transformed into
equivalent modeling constructs in ETA and specified as properties for verification.
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There are three categories of states in Safechart: OR, AND, and BASIC. An
OR-state, or an AND-state, consists generally of two or more substates. Being in an
AND-state means being in all of its substates simultaneously, while being in an OR-
state means being in exactly one of its substates. A BASIC-state is translated into an
ETA mode. The translations for OR-states and AND-states are performed as described
in [8].

Safety Semantics . The syntax for the triggering condition and action of a transition in
Safecharts is:

e[fcond]/a[l, u)Ψ [G],
where e is the set of triggering events, fcond is the set of guard conditions, a is the set
of broadcast events, [l, u) is the time interval specifying the time constraint, Ψ means
the execution conditions for safety constraints, and G is the set of safety-layer’s guards.
In Safecharts, e[fcond]/a appears in the functional layer, while [l, u)Ψ [G] may appear
in the safety layer. The two layers of Safecharts can be integrated into one in ETA as de-
scribed in the following. However, we need to design three different types of transitions
[1]:

– Eager Evaluation (ε) : Execute the action as soon as possible, i.e. as soon as a guard
is enabled. Time cannot progress when a guard is enabled.

– Delayable Evaluation (δ) : Can put off execution until the last moment the guard
is true. So time cannot progress beyond a falling edge of guard.

– Lazy Evaluation (λ) : You may or may not perform the action.

The transition condition and assignment e[fcond]/a[l, u)Ψ [G] can be classified into
three types as follows:

1. e[fcond]/a
There is no safety clause on a transition in Safechart, thus we can simply transform
it to the one in ETA. We give the translated transition a lazy evaluation (λ).

2. e[fcond]/a � [G]
There is prohibition enforcement value on a transition t. It signifies that the transi-
tion t is forbidden to execute as long as G holds. During translation, we combine
them as e[fcond ∧ ¬G]/a. We give the translated transition a lazy evaluation (λ).
The transformation is shown in Fig. 1.

3. e[fcond]/a[l, u) � [G]
There is mandatory enforcement value on a transition t. Given a transition label of
the form e[fcond]/a[l, u) � [G], it signifies that the transition is forced to execute
within [l, u) whenever G holds. We translate functional and safety layers into a
transition t1 and a path t2, respectively. t1 represents e[fcond]/a, which means t1
is enabled if the triggering event e occurs and its functional conditional fcond is
true. We give t1 a lazy evaluation (λ). Path t2 is combined by two transitions, tε
and tδ. Transition tε is labeled [G]/timer := 0, where timer is a clock variable
used for the time constraint, and we give tε an eager evaluation (ε). When G holds,
tε executes as soon as possible, and tε’s destination is a newly added mode, named
translator(t). tδ’s source is translator(t), and its destination is t’s destination. tδ’s
guard is [timer ≥ l∧ timer < u]. However, we give tδ a delayable evaluation (δ),
which means it can put off execution until the last moment the guard is true. The
procedure of translation is shown in Fig. 2.
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4.2 Property Specification for Safecharts

In the safety-layer of Safecharts, there are two types of safety conditions on a transition,
one is prohibition and the other is mandatory. After parsing the Safechart models of
a safety-critical system, corresponding properties are automatically generated without
requiring the user to specify again. Such properties are used to verify if the safety-layers
work or not. As described in the following, to ensure that the safety constraints are
working, two categories of properties are generated automatically for model checking.

1. AG((src(t) ∧ G) → ¬EX(des(t)))
If a transition t in Safechart has prohibition condition � [G] in its safety-layer, it
means that such transition is forbidden to execute as long as G holds. As shown
in Fig. 1, t’s source is src(t), and its destination is des(t). Due to � [G], src(t) is
not allowed to translate to des(t) as long as G holds. If such property is tenable in
our system state graph, which means that there is no transition from src(t) to des(t)
executing whenever G holds, then we can know that the safety-critical system won’t
become dangerous while G holds.

2. AG((src(t)∧G → ¬EX(¬translator(t))) and AG(translator(t)∧timer < u)
If a transition t in Safechart has [l, u) � [G] in its safety-layer, it means that such
transition is enabled and forced to execute within [l, u) whenever G holds. As men-
tioned in former sections, we add two transitions for the safety-layer’s behavior,
namely tε and tδ , and a mode, translator(t) between them.
From Fig. 2, when G holds, tε must be executed as soon as possible due to its eager
evaluation and the next active mode must be translator(t). Moreover, we know
that if the mode translator(t) is active, then the next active state must be des(t)
within the time limit timer ≥ l∧ timer < u. If this constraint is violated, then the
safety condition will not be satisfied.

4.3 Transition Priority

When modeling safety-critical systems, it is important to eliminate any non-deterministic
behavior patterns of the system. Non-determinism arises if the triggering expressions
of two transitions starting from a common state are simultaneously fulfilled. Because
of its concern with safety-critical systems, Safecharts remove non-determinism in all
cases except when there is no safety implication. In a Safechart model, a list of risk
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Fig. 3. Risk graph with risk band

relation tuples is used to represent a risk graph [10]. Non-comparable conditions may
still exist in a risk graph. An example [9] is given in Fig. 3, where, relative to other
states, the state O may have received less attention in the risk assessment, resulting in
it becoming non-comparable with other states in the graph, namely, the states N and
P . Consequently, Safecharts do not allow any transition between them, for instance, a
transition such as O 	 P .

As a solution to the above problem, the authors of Safecharts proposed risk band
[9], which can be used to enumerate all states in a risk graph to make precise their
relative risk relations that were not explicitly described. To adopt this method, we im-
plemented transition priorities based on the risk bands of a transition’s source and des-
tination modes. According to a list of risk relations, we can give modes different risk
bands, as depicted in Fig. 3, where the maximum risk band, maxrb, is 6. We assign
each transition a priority as follows:

pri(t) = maxrb − (rbsrc(t) − rbdes(t)),

where pri(t) is the priority assigned to transition t, rbsrc(t) is the risk band of transi-
tion t’s source mode, and rbdes(t) is the risk band of transition t’s destination mode.
Moreover, the smaller the value of pri(t) is, the higher is the priority of transition t. In
Fig. 3, pri(t4) is 4, and pri(t6) is 3. Obviously, when t4 and t6 are both enabled, t6
will be executed in preference to t4. With risk bands, we can give a transition leading
to a lower risk band state a higher priority.

For implementing transition priorities into the SGM model checker, the triggering
guards of a transition are modified as follows [1].

τ ′(ti) = τ(ti) ∧
∧
j≥i

¬τ(tj),

where τ(ti) and τ(tj) are the guard conditions of transitions ti and tj , j ≥ i means that
tj’s priority is higher than or equal to ti’s, and τ ′(ti) is the modified guard condition of
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route[x] 
 
route[y] 

Fig. 4. Routes and signals

ti. This application results in allowing ti executed only if there is no enabled transition
tj which has priority over ti.

4.4 Transition Urgency and Synchronization

Safecharts have a safety/security loophole due to the lack of synchronization mecha-
nisms. A motivation example is the railway signal system illustrated in Fig. 4, where a
route can be requested, evaluated, and set when the required signals on a route are op-
erating without faults and are in the free state. The Safecharts for route[x] and signal[i]
are given in Fig. 5 and Fig. 6, respectively. A signal breaks down when either its lamp
or its sensor fails. The signal mode is changed from OPR to FAULTY upon receiving
either εl (lamp fail event) or εs (sensor fail event). However, this mode change is not
synchronized with εl or with εs, thus in-between these two actions, a route could have
been evaluated and set, although the signal is faulty which is not detected because the
signal’s mode has not been changed as yet. Due to this lack of synchronization, safety
loopholes exists in Safecharts. The route once set could allow a train to pass through
a faulty signal endangering human lives as well as damaging properties. Safety-based
resolution of non-determinism as proposed in [9,10,11] also does not solve this syn-
chronization issue because non-determinism is resolved only among transition of the
same Safechart and not among different Safecharts.

 

route[x] 

SET 

EVALUATE_REQ 

NOT_SET 

Return_route[0,2] [signal[i] in   signal[i] in FREE signal[k] 
FAULTY  signal[k] in FAULTY]   in FREE [signal[i] in FAULTY 
/ release_i, release_k              signal[k] in FAULTY] 
                              / allocate_i, allocate_k 
 
 

reject_route [signal[i] in    
FAULTY  signal[k] in      request_route 
FAULTY]  

Fig. 5. Safechart for route[x]
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Fig. 6. Safechart for signal[i]

To solve the above problem, we propose the use of transition urgency as detailed in
the following.
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 route[x] 

SET 

EVALUATE_REQ 

NOT_SET 

Return_route[0,2] [signal[i] in   signal[i] in FREE ∧ signal[k] 
FAULTY ∨ signal[k] in FAULTY]   in FREE ∧ regi=x ∧ regk=x 
/ release_i, release_k             [signal[i] in FAULTY ∨ 
                              signal[k] in FAULTY] 

/ allocate_i, allocate_k 

reject_route ∨ regi  x ∨ regk  x 
[signal[i] in FAULTY

∨ signal[k] in FAULTY] 
 

request_route 
/ regi := x, regk := x 

Fig. 7. Safechart for route[x] with mutual exclusion

Transition Urgency. As mentioned in Section 4.1, there are three types of transi-
tions: eager evaluation (ε), delayable evaluation (δ), and lazy evaluation (λ). Transi-
tions concerned with safety are given eager evaluation (ε) to ensure that when some
malfunction or repair events happen, they can be executed first to reflect the correct
status of a real-time system. In the railway signalling example, the model designer must
give the transition with malfunctioning event ε an eager evaluation ε. As soon as the
event ε occurs, the signal’s MODE is immediately changed to FAULTY. Thus route
will not acquire the usage of signal, due to the safety-layer prohibiting guard condition
signal[i] in FAULTY ∨ signal[k] in FAULTY.

To eliminate the safety-loopholes in Safecharts and avoid errors due to the loop-
holes, the above method must be used to extend Safecharts. We have implemented the
proposed method in our Safecharts verification framework based on SGM.

4.5 Resource Access Mechanisms

Safecharts model both consumers and resources. However, when resources must be
used in a mutually exclusive manner, a model designer may easily violate the mutual
exclusion restriction by simultaneous checking and discovery of free resources, fol-
lowed by their concurrent usages. A motivation example can be observed in the railway
signalling system as illustrated in Fig. 4, Fig. 5, and Fig. 6, where signal[k] must be
shared in a mutually exclusive way between route[x] and route[y]. However, each route
checks if signal[k] is free and finds it free, then both route will be SET, assuming all
signals are fault-free. This is clearly a modeling trap that violates mutually exclusive
usages of resources. A serious tragedy could happen in this application example as two
intersecting routes are set resulting in perhaps a future train collision.

From above we know that when consumers try to acquire resources that cannot be
used concurrently, it is not safe to check only the status of resources. We need some kind
of model-based mutual exclusion mechanism. A very simple policy would be like Fis-
cher’s mutual exclusion protocol [7]. For each mutually exclusive resource, a variable is
used to record the id of the consumer currently using the resource. Before the consumer
uses the resource, it has to check if the variable is set to its id. Fig. 7 is a corrected vari-



302 P.-A. Hsiung and Y.-H. Lin

ant of the route Safechart from Fig. 5. When route[id] transits into EVALUATE REQ,
it sets variable reg to its id. When route[x] tries to transit into the SET mode to acquire
the usage of resource, it needs to check if reg is still its id. If reg is still x, then route[x]
acquires the usage of the resource. Other mechanisms such as atomic test-and-set per-
formed on a single asynchronous transition can also achieve mutual exclusion.

5 Application Examples

The proposed model-based verification methodology for safety-critical systems was
applied to several variants of the basic railway signaling system, which was illustrated in
Fig. 4. The basic system was used to check the feasibility of the proposed methodology.
The variants were used to check the scalability and efficiency of the methodology.

The basic system consists of two routes: route[x] and route[y], where route[x] re-
quires signal[i] and signal[k], and route[y] requires signal[j] and signal[k]. The numbers
and sizes of the Safecharts and the generated ETA are given in Table 1. As illustrated
in Figs. 8 and 9, for each route Safechart, one ETA is obtained and for each signal
Safechart, five ETA are generated. Thus, in the full system consisting of 5 Safecharts,
17 ETA are generated. It can be observed that the number of ETA modes, 40, is lesser
than the number of Safecharts states, 56. The reason for this reduction is that hierarchi-
cal states do not exist in ETA. The synchronization and the mutual exclusion issues were
both solved for this railway system as described in Sections 4.4 and 4.5, respectively.
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Table 1. Results of the Railway Signaling System

Component Safecharts ETA
Name # # |S| |T | # |M | |T |
route 2 1 4 4 1 5 13
signal 3 1 16 10 5 10 12

full system 5 5 56 38 17 40 62

Table 2. Results of Application Examples

System Safecharts ETA |φ| Issues Solved Time Mem
|R| |S| # |S| |T | # |M | |T | Sync ME (μs) (MB)

A 2 3(1) 5 56 38 17 40 62 16 3 1 230 0.12
B 2 4(1) 6 72 48 22 50 78 19 4 1 292 0.12
C 2 4(2) 6 72 48 22 50 82 22 4 2 337 0.13
D 3 4(1) 7 76 52 23 55 87 24 4 1 326 0.14
E 3 5(2) 8 92 62 28 65 111 33 5 2 515 0.14
F 4 5(1) 9 96 66 29 70 112 32 5 1 634 0.14

|R|: total num of routes, |S|: total num of signals (num of shared signals), |φ|: num of
properties generated Sync: Num of synchronization issues solved, ME: Num of
mutual exclusion issues solved

A number of variants of the basic railway signaling system were used for validat-
ing the proposed method’s scalability and efficiency. Varying the number of routes and
the number of signals in each route increases the complexity and the concurrency of
the system. However, we can observe from the verification results in Table 2 that the
amount of time and memory expended for verification do not increase exponentially
and are very well acceptable. The number of properties to be verified also increase and
thus their automatic generation is also a crucial step for successful and easily accessible
verification of safety critical systems. The number of issues solved imply how the pro-
posed solutions in this work are significant for the successful verification of complex
systems modeled by Safecharts.

6 Conclusions

Nowadays, safety-critical systems are becoming more and more pervasive in our daily
lives. To reduce the probability of tragedy, we must have a formal and accurate method-
ology to verify if a safety-critical system is safe or not. We have proposed a formal
method to verify safety-critical systems. Our methodology can be applied widely to
safety-critical systems with a model-driven architecture. We hope our methodology can
have some real contribution such as making the world a safer place along with the de-
velopment of science and technology.

.
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Structure Preserving Data Abstractions

for Statecharts
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Abstract. Hierarchical automata (HAs) represent a structured model
of statecharts previously formalized in Isabelle/HOL. The present work
extends this framework by an abstraction technique for HAs defined on
infinite data spaces. This structure preserving abstraction enables the
connection of the framework to the model checker SMV. This paper re-
ports on the following results (a) We discuss abstractions of sequential
automata, from which HAs are composed. Here we focus on the spe-
cial problems of synchronous models and examine the feasibility of con-
structions for over- and underapproximations in order to preserve CTL
properties. (b) Based on this results we describe a compositional ab-
straction technique, which can be applied to HAs. (c) We extend the
formalization of HAs in Isabelle/HOL by suitable operators to construct
abstractions inside the logic. (d) We present an efficient implementation
of the abstraction process outside of the logic, which is integrated in the
formalization by the oracle interface of Isabelle.

1 Introduction

In earlier work we already proposed a formalization of Hierarchical Automata
(HAs) [KH00,HK01] in Isabelle/HOL [Pau94]. The motivation for this project has
been, and still is, to provide a mechanized support for statecharts [HN96]. As
Mikk [Mikk00] has already correctly observed, a formal treatment of statecharts
needs an ameliorated calculus with an improved hierarchical structure that fa-
cilitates the analysis of (a) the typical hierarchical states of statecharts and (b)
the consequently intricate structure of inter-level transitions. In the formalism of
HAs these obvious problems can nicely be resolved. Therefore, we have adopted
the HAs as well as a basis for the formalization in Isabelle/HOL.

The second major goal of the formalization of statecharts is to provide mech-
anized support for statecharts containing data. Therefore, in addition to the
original formalization [KH00,HK01] we have furthermore suggested an extension
in which finite HAs, i.e. HAs containing only finite data can already be verified
by a connected model checker SMV efficiently [HK03]. However, the crux with
data contained in a state transition model like statecharts or HAs, respectively,
is that the state space can become infinite. Hence, the ultimate goal of the for-
malization of statecharts in Isabelle/HOL that has now been achieved has been

,
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to integrate the formalization with the well-known technique of abstract inter-
pretation [CC77] in order to make any data containing statecharts amenable to
automatic verification with the support of a connected model checker. To enable
reasoning in the formalization at the concrete and abstract level and to improve
readability we devise an abstraction in which the result of the abstraction is
again a hierarchical automaton.

The basic idea of the integration of Isabelle/HOL with the SMV model checker
(and in principle any model checker that is suitably adjusted to check finite HAs)
is to host the HAs in an Isabelle/HOL embedding and control the abstraction
process there. The connection to the model checker is realized via Isabelle’s oracle
interface. Although in principle feasible – as shown in this paper – to express a
general abstraction operator based on Galois connections inside the Isabelle/HOL

model, we provide in addition for practical purposes an ML implementation for
the construction of the HA abstraction.

The most advanced result presented in this paper is the construction of an
abstraction process for infinite HAs. The techniques used in the abstraction
are based on earlier work [SS99,Dam96], but we go further than that as we do
not consider just simple flat transition systems but realistic hierarchical state
transition models as they are used in software engineering. For example, UML

integrates state-machines that are basically the same as statecharts. Moreover
in contrast to [SS99] the abstraction in the formalization inside Isabelle is not re-
stricted to just boolean abstractions. Finally, this formalization is complemented
with an implementation following the outline of [SS99] but lifted to hierarchi-
cal automata. The resulting integrated framework including model checking is
better suited for handling case studies.

2 Abstraction of Sequential Automata

In [HK01,Mikk00] Sequential Automata (SAs) are the basic building block of
HAs. They are similar to simple transition systems. The syntactic structure of
an HA is described as a tree-like structure containing the SAs. This syntactic
representation of HAs is complemented by a semantical model in our framework.
Each level of hierarchy of an HA is represented by one SA.

In this section we propose a property preserving abstraction technique for SA,
that are defined on infinite data spaces. The result of the abstraction is again an
SA. In the next section we reuse this basic theory to explain the compositional
abstraction for HAs.

2.1 Property Preservation and Galois Connections

The framework of [HK01] includes a formalization of CTL [CE81], which is in-
terpreted on HAs and on SAs respectively. In the present work, we investigate
property preserving abstraction for SAs in order to preserve CTL formulas. In the
literature we can find basically two approaches: over- and underapproximation.
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(P.A,⇒)

(P.C,⇒)

(P.A,⇒)

(P.C,⇒)

α+ γ α- γ

Fig. 1. Galois Connections for Over- and Underapproximation of Predicates

In an overapproximation the abstract model can contain new behaviour, but
old behaviour cannot be lost. That is, properties of the universal fragment of
CTL (∀CTL), that are valid on all paths of the overapproximated abstract model,
must hold on the paths of the concrete model. In contrast, in an underapproxima-
tion new behaviour cannot be added, but old behaviour can be lost. Accordingly
properties of the existential fragment of CTL (∃CTL) are preserved by under-
approximated abstract models. In the work of Dams [Dam96] two automata
representing these different kinds of abstractions are generated. Depending on
the property that has to be verified the appropriate model has to be chosen.

In recent work [HJS01] the information for over- and underapproximation is
represented in one so called modal transition system by may and must transi-
tions. For verifying these transition systems special model checkers are proposed.
Compared to a traditional symbolic model checker like SMV [McM93] such tools
are inefficient. Moreover in our framework we like to generate SAs as abstrac-
tions, whose semantics is defined on traditional transition systems. Consequently,
we chose to base our framework on the work of Dams and adapt his abstraction
process to SAs. We must restrict the process to overapproximations, because
SAs will not allow a reduction by underapproximation. Details are explained in
the following subsection.

The theoretical basis for over- and underapproximations are galois connec-
tions [MSS86]. For complete lattices, C and A, a pair of monotone maps, α: C→ A
and γ: A→ C define a galois connection, written gc (A,C,α,γ), iff α ◦ γ ≤ idA
and idC ≤ γ ◦α. Furthermore the maps in a galois connection satisfy the follow-
ing adjunction theorems, which allows to define α by γ and vice versa using the
generalized meet and join (

∨
,
∧

) that exist in complete lattices.

α.c =
V

{ a: A | c≤ γ.a }
γ.a =

W
{ c: C |α.c≤ a }

Figure 1 represents two instantiated galois connections relating spaces of abstract
and concrete predicates. Accordingly the elements are ordered by ⇒. On the
left hand side of the figure we define a galois connection gc (P.A,P.C,α+,γ) for
overapproximation to weaken concrete predicates by the abstraction α+, which
is reflected in the following galois property.

pc ⇒ γ.α+.pc
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S1 S1S2 S2
[Gc]/ Uc

[¬Gc]/ Dc := Dc

[α+.Gc]/α+.Uc

[α+.Gc ∧α+.¬Gc]/ Da := Da

[¬α+.Gc]/ Da := Da

Fig. 2. Implicit Behaviour and Overapproximation of an SA

Correspondingly on the right hand side, a galois connection gc (P.C,P.A,γ,α-)
for underapproximation is given, in order to strengthen concrete predicates by
the abstraction α-, which is reflected in the following galois property.

γ.α-.pc ⇒ pc

A special effect is, that overapproximations can be expressed by underapproxi-
mations.

α+.¬pc ⇔¬α-.pc

We use this property for the definition of the construction operators and also
to reduce the complexity in the ML implementation of an abstraction algorithm.
Furthermore, we are going to use the fact that the strongest postcondition SP
and the weakest precondition WP form a galois connection gc (P.A,P.C,SP,WP)
to define the construction operators in Section 4.

The ML implementation of our abstraction technique is a predicate abstrac-
tion similar to the work of [SS99]. Usually the abstraction function α is defined
for predicate abstractions by γ using the adjunction theorems (see above). We
need this property in Section 5.

2.2 Generating Overapproximations for SAs

This paper is based on a formalization of statecharts as HAs [HK01,HK03]. It
includes a formalization of SAs. The semantics of SAs is there a special case of the
semantics of HAs, because SAs can be viewed as HAs without hierarchy. Based on
this formalization we introduce an abstraction technique for overapproximation
of SAs. Statecharts and consequently HAs – as the communication principles
stay the same – belong to the family of synchronous languages. So the used
formalization as HAs and SAs reflects the properties of synchronous languages
and has to be respected in the abstraction process. One special property of
synchronous languages is, that in each semantical status – synchronized by a
global clock – the system performs a defined calculating step. Semantical statuses
of SAs where no transitions fire, perform a trivial calculating step, in which the
data variables are assigned to the previous value. This effect can be interpreted
as complementation by implicit transitions.
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On the left hand side in Figure 2 this is depicted by a dashed self-transition,
where the guard ¬Gc is constructed as the negated guard of the exiting transi-
tion. In general, this guard must be constructed as the conjunction of negated
guards of all exiting transitions. Overapproximating an SA we construct an iden-
tical structured SA. We adopt the control states and abstract the transitions.
Abstracting transitions we abstract guards and updates separately.

In general it is impossible to construct a guard in the abstraction by the given
predicates exactly. Firstly, we propose to weaken a guard Gc by α+using over-
approximation. Building such weaker guard adds new behaviour to the model,
however it deletes some implicit behaviour simultaneously caused by the special
semantics of synchronous languages. The reason is, that the guard of the implicit
transition ¬α+.Gc will be automatically stronger. Therefore, secondly we must
add a suitable self transition, to adjust this unwanted effect. The guard of this self
transition must be constructed by a conjunction of the overapproximated guard
of Gc and the negated underapproximated guards of all exiting transitions. On
the right hand side of Figure 2 this procedure is illustrated.

Abstracting the example only one exiting transition has to be considered.
Firstly, we abstract the guard Gc by α+and introduce a self-transition. The guard
of this self-transition is constructed by a conjunction of the overapproximated
guard of the exiting transition α+.Gc and the negation of the underapproximated
guard of the exiting transition ¬α-.Gc. The latter can be expressed by α+using
the theorem of subsection 2.1, so that finally we obtain the following guard for
the self-transition.

[α+.Gc ∧α+.¬Gc]

Building traditional overapproximation of updates [SS99] is compatible with
SAs, because a weaker update adds new behaviour to the system, but old be-
haviour cannot be lost. Accordingly on the right hand side of Figure 2 the update
is overapproximated by α+. However, in general, abstracting updates results in
non-constructive predicates, so that the action language of SAs is violated. More
precisely for each Uc we obtain in general more than one abstract update by α+.

We must restrict to overapproximation, because SAs will not allow a reduc-
tion by underapproximation. This is caused by the special semantics of syn-
chronous languages, which can be interpreted as a complementation by implicit
transitions. This complementation restricts the possibility for reduction of the
behaviour fundamentally. Consider the example in Figure 2 on the left hand
side. If we propose to build a stronger guard of Gc by α-, we obtain a weaker
guard for the implicit transition consequently. That is, we add new behaviour
to the abstract model, which is unsound for underapproximation. Hence, for the
example on the left hand side of Figure 2 we cannot build an underapproxmia-
tion, where the abstract model is again an SA. The only way out is to reduce
nondeterministic branches to deterministic ones, however this is not sufficient as
a general procedure. Consequently the result of an underapproximation cannot
usually be expressed by an SA.
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[G1c]/ U
1
c [G2c]/ U
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c

[¬G1c ∧ (¬G2c ∨¬In S3)]/
Dc := Dc

[¬G2c ∧ (¬G1c ∨¬In S1)]/
Dc := Dc

Fig. 3. Implicit Concrete Behaviour of HAs

3 Abstraction of Hierarchical Automata

In this section we introduce the lifting of the abstraction process to the level of
HA. A HA is constructed from a finite set of SAs and a composition function
CF that describes the hierarchical relation between those SAs. The first sub-
section 3.1 gives a brief introduction to semantical characteristics of HAs. In
the following subsection we describe how we can handle global information of
update-function locally by a generic parameter. The last subsection presents a
structure preserving overapproximation for HAs.

3.1 Semantical Characteristics of HAs

The literature contains several accounts addressing the rather complex semantics
of statecharts [HN96,Mikk00]. For a better understanding of the abstraction
theory the interpretation of implicit behaviour as well as the partitioning of
the data space are introduced in some detail as they play a central role for
abstraction.

Implicit Concrete Behaviour: Implicit behaviour occurs in synchronous
modelling languages whenever a transition cannot fire at the beginning of a
clock cycle. In this situation the statechart executes a trivial calculation step
that restores the data state. In Section 2 the implicit behaviour has been rep-
resented in the model by a dashed arrow (cf. Figure 2). This special transition
only fires if no other transition of the model is enabled. As is shown in Figure
3 we can model the implicit behaviour of a HA explicitly in a similar fashion.
Note, however, that with respect to compositional abstraction, the guard of the
self-transition depends on context information that lies outside the SA in which
the self-loop is defined. Considering the SA on the left hand side of the Figure,
we observe that the guard of the implicit self-transition of the control state S1
holds, if and only if the guard G1c of the transition exiting S1 does not hold. In
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addition a predicate of the parallelly composed SA must hold. Either the control
state S3 is not active or the guard of the transition exiting S3 is not valid. More
generally, in all parallelly composed SAs there must not be any transition that
is enabled.

The modelling of implicit behaviour of HAs shown in Figure 3 may become
complicated, because usually we have more than one local state in an SA. The
concept of generic update functions – presented in the next subsection – can
avoid this effect, because they abstract from the dependencies between parallelly
composed SAs (cf. Figure 4). Additionally generic update functions can model
partial updates, which is not supported by the modelling of Figure 3.

Partitions on Data Spaces and Partial Update-Functions: In general,
the data space of an HA consists of a finite number of disjoint partitions. Update-
functions can be defined in such a way that they do not write on all partitions.
The semantics of HAs determines the values of partitions after transition execu-
tion also in cases in which a transition does not write on the partition.

That is, the update-functions are partial. More precisely, in one step of cal-
culation of HA transitions of several SAs that are composed in parallel can be
executed synchronously. If a transition does not write on a partition, it is first
examined whether there is another synchronously executed transition writing
on this partition. If this is the case, the value of the synchronously executed
transition is selected. In case of a concurring write of several transitions on one
partition (so-called racing) the resulting conflict is resolved by introducing a
non-determinism (interleaving semantics). In contrast, if there is no transition
writing on a partition, the semantics assigns to this partition the value prior to
execution of the transition.

Note, that there already exists a complete formal semantics of HAs includ-
ing data spaces in Isabelle/HOL [HK03]. Furthermore there the idea of generic
update-functions is presented, which we will introduce in the next subsection.

3.2 Generic Update-Functions in an HA-Context

When considering SAs as constituents of an HA the individual data spaces of
the SA have to be embedded into the global data space of the HA. There are
two entities of an SA and its abstraction that are influenced by this embedding:
the update-functions given in the action parts of the transitions of an SA and
the self-loops that are added to the states of the SA during the abstraction. The
embedding of an SA is simply given by adding an additional context parame-
ter to the update-functions of the SA representing the remainder of the global
data space. The effect of the update-functions is extended in the embedding
by explicitly assigning those context parameter to their pre-state. We call these
update-function generic as they abstract over context information and can thus
be used for arbitrary contexts.

In Figure 4 we see the left SA of Figure 3. Differing from Figure 3 we used a
generic update-function here. In this example we assume that the data space is
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S1 S2
[Gc]/λ (DGc1, D

G
c2). (Dc1, Dc2) := (DGc1, Uc2 Dc2)

[¬Gc]/λ DGc. Dc := DGc

Fig. 4. Implicit Behaviour of SAs Including a Generic Update-Function

divided into two partitions represented by the Cartesian product1. We further
assume that the update-function writes just on the second partition Dc2 using
the update-function Uc2. The update-function Uc2 works on partitions and is
derived from an update-function Uc that operates on the entire data space. The
generic update-function abstracts over a context parameter (DGc1, DGc2) that has a
partitioning identical to the data space. The generic parameter DGc1 is passed on
to the first partition of the data space. Here, the well-formedness of the update-
function requires that DGc1 must not be modified as this would lead to a kind of
micro-step semantics that we do not intend.

Generic update-functions may be employed similarly for the description of
implicit behaviour. In Figure 4 we use in contrast to Figure 3 a modified label to
annotate the dashed self-transition. Using a generic update-function the guard
can be weakened and may now be defined only using the information ¬Gc locally
available in the SA. The self-transition cannot describe more implicit behaviour,
because the reachable data states in the post state coincide with data states
of possibly synchronously firing transitions due to the generic parameter of the
update-function.

When introducing the overapproximations for SAs in the Section 2 we as-
sumed that update-functions always write on all partitions of the data space.
The aim of the next subsection 3.3 is to adapt the given abstraction concept to
generic update-functions that do not write on the entire data space, but only
some of its partitions.

3.3 Overapproximations for HAs

The idea for the abstraction of the HA is to divide the HA into its defining
SAs, define the abstraction functions for each of the SAs and compose the set of
individual abstractions to an abstraction function for the HA.

The resulting abstraction method for HA preserves properties of the concrete
HA in the constructed abstract HA because it respects the structure of the HA
and the constituting SAs are adjusted prior to composition in such a way that
they are properly embedded into the data space of the HA.

The latter step – realized by an extension of each update-function of an SA
by a context parameter as explained in the last subsection – allows to abstract

1 In our Isabelle theory of abstraction partitions are realized as a list of sum types (cf.
Section 4).
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S1 S2
[α+.Gc]/ λ (DGa1, D

G
a2). (Da1, Da2) := (DGa1, (α

+
2.Uc2) Da2)

[α+.Gc ∧α+.¬Gc]/λ DGa. Da := DGa

[¬α+.Gc]/λ DGa. Da := DGa

Fig. 5. Abstraction of SAs Including a Generic Update-Function

SAs separately. However we need a technique for dealing with the generic context
parameters.

We suggest two possibilities for the abstraction of generic update-functions.
In the first näıve approach the generic context parameter of the update-

function is not preserved during abstraction. This abstraction is rather rough. It
assumes that in partitions, on which locally no write occurs, to which the context
parameter has been passed on, arbitrary behaviour may occur. In Section 4 we
define an operator that constructs such an abstraction.

The elaborated approach to the abstraction of generic update-functions is to
preserve the generic parameter during abstraction. This is only possible if the
given abstraction-function preserves the structure of the data space and each
data partition of the concrete system is mapped independently of other parti-
tions onto exactly one partition of the abstract data space. Figure 5 shows such
an abstraction for the example introduced in Figure 4. In this example the
concrete generic parameters (DGc1, DGc2) are replaced by corresponding abstract
representations (DGa1, D

G
a2). The update-function Uc2 can be overapproximated by

α+2. Note, however, that α+2 can only be calculated precisely if the abstraction
function respects, as described above, the structure of the data space. Other-
wise the elaborated approach is not applicable and we have to use again the
näıve alternative. Furthermore, α+2 calculates in general more than one abstract
update-function.

4 Calculating Abstractions in Isabelle

The concepts presented in the previous section have been transformed into a
theory of abstraction for the theorem prover Isabelle. This new theory extends
the existing theory of HAs by calculating operators that enable the construction
of an abstract HA from a concrete HA and an abstraction function.

4.1 Calculating Overapproximated SAs

In order to construct the abstraction of an SA inside the logic, we define in
Isabelle/HOL (suitable) calculating operators that – given a concrete SA SAc and
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an abstraction function R — construct an abstract SA using overapproximation.
The construction operator AbsBy+

SA is defined in Isabelle as follows.

SAc AbsBy
+
SA R ≡df let (sc,ic,tsc) = SARep SAc;

sa = sc;

ia = ic;
tsa = tsc AbsBy

+
Ts R

in SACons(sa,ia,tsa)

First the concrete SA SAc is transformed into its representation. Thereby its
concrete components, like the set of control states sc, the initial set of control
states ic and the transition relation tsc become accessible. Since we want to
construct a structure preserving abstraction for the SA, we adopt the structural
information from sc and ic as they are.

Abstracting the transition relation by the construction operator AbsBy+

Ts each
transition of tsc is abstracted separately. According to the presented procedure
in Figure 2 we abstract a transition tc in two steps. Firstly, we build an abstract
transition replacing guard and update-function of tc by corresponding overap-
proximated counterparts. Secondly, we generate a self transition on the source
state of tc, which is labeled by the negation of the underapproximated guard of
tc and an update-function, that assigns the previous value to the data variables.
Note, that the construction of the self transition could be more precise, because
we ignore the guards of other exiting transitions in the source state of tc. The
core of the construction lies on one side in the abstraction of the guard with
the operator AbsBy+

G and on the other side in the abstraction of the update-
function with the operator AbsBy+

U. The following constant definition introduces
the construction operator for the abstraction of a guard.

Gc AbsBy
+
G R ≡df λ da. ∃ dc. (Gc dc)∧ (R dc)= da

The definition corresponds to a strongest postcondition and weakens the property
Gc. The weakening can be proved as the following theorem. The proof is by
stepwise simplification.

(Gc dc) ⇒ (Gc AbsBy
+
G R) (R dc)

⇔ (Gc dc) ⇒ ∃ d. (Gc d)∧ (R d)=(R dc)

⇔ (Gc dc) ⇒ (Gc dc)∧ (R dc)=(R dc)

In addition to the overapproximation of a guard we need to calculate the over-
approximation of an update-function. First we consider the formal description
of an operator that defines such an abstraction.

Uc AbsBy
+
U R ≡df { Ua.∀ da.∃ dc. da = (R dc)∧ R(Uc dc)= Ua(R dc) }

The result of this overapproximation of a concrete update-function Uc is a finite
set of abstract update-functions containing at least one element. The defini-
tion given above simulates the behaviour of an abstract update-function by the
behaviour of a concrete update-function. Figure 6 illustrates graphically the en-
coded simulation property. Similar to the overapproximation of guards, the
abstraction of an update-function may as well be described using the strongest
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da d′
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dc d′
c

RR

Ua

Uc

Fig. 6. Simulation Property for Abstraction of Update-Functions

postcondition. To this end, update-functions are interpreted as binary predicates
defined over the pre-states and post-states of the data. Such a predicate may be
derived directly from an update-function U using the operator UP.

UP U ≡df λd d′. d′ =(U d)

The operator AbsBy+

UP defines how the abstraction of a concrete update-function
Uc can be expressed as an abstract binary predicate

Uc AbsBy
+
UP R ≡df λ da d′

a. ∃ dc d′
c. (Uc dc)= d′

c ∧ (R dc)= da ∧ (R d′
c)= d′

a

The fact that the operators AbsBy+

U and AbsBy+

UP describe equivalent abstract
behaviour is proved in Isabelle by the following theorem.

Surj R ⇒ (Uc AbsBy
+
UP R =

W
UP ‘ (Uc AbsBy

+
U R))

This equivalence holds under the assumption that the abstraction function R is
surjective. To be able to compare the operators with each other we first transform
the set of abstract update-functions in a set of abstract binary predicates using
the operator UP. Finally, the disjunction of all those predicates is equivalent to
the predicate constructed using the operator AbsBy+

UP.

4.2 Calculating Overapproximated HAs

In order to provide a construction for HAs as well, we reuse the operator AbsBy+

SA

introduced in the previous section and extended corresponding to Figure 5. The
operator AbsBy+

HA implements this idea as follows.

HAc AbsBy
+
HA R ≡df let (dc,sasc,esc,cfc) = HARep HAc;

da = R dc;

sasa = (λ sac.sac AbsBy
+
SA R) ‘ SAc;

esa = esc;

cfa = cfc

in HACons(da,sasa,esa,cfa)

First we transform the concrete HA HAc into its representation to gain access
to the concrete components, like the initial data state dc, the finite set of SAs
sasc, the set of events esc, and the composition function cfc. Since we want to
construct a structure preserving abstraction for the HA, we adopt the structural
information of esc and cfc as they are. In contrast, the two other components
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that involve data, have to be abstracted in a suitable fashion. To this end we
abstract the initial data state of the HA using the abstraction-function R. To
abstract the SAs the operator AbsBy+

SA is applied to each element of the set
sasc. Note, however, that the operator AbsBy+

SA has been adapted accordingly to
enable in addition the abstraction of partial update-functions. The abstraction
of partial update-functions is now discussed in more detail.

An update-function is a function that calculates a new data value from the
data value prior to execution of a transition. This leads to the following poly-
morphic type definition in the Isabelle/HOL formalization.

δ update≡df δ → δ

As described in Section 3 the polymorphic type δ2 may consist of finitely many
disjoint partitions. Furthermore, update-functions can only write on specific par-
titions of the global data space. In Isabelle/HOL all functions are total. Therefore,
we had to develop an appropriate model of updates on partitions on which no
write is performed that respects the statecharts semantics. To this end we extend
the type of the update-function by an additional data parameter. That is, we
define a kind of generic update-function as follows.

δ update≡df [δ,δ]→ δ

Wellformedness of the update-function requires that the values of a partition
contained in a generic parameter may only be passed on but must not be altered.
In the semantics of HAs this parameter may be instantiated and evaluated by the
context information that is then available. In this step it is checked whether syn-
chronously firing transitions write on the partition. If there is no write, the old
value that has been valid prior to the transition’s execution is assigned. In addi-
tion we define an resolution for write conflicts (racing) using non-determinism in
the semantics. A precise semantical foundation for update-functions is provided
by earlier work [HK03].

The problem with compositional abstraction is that, in general, only local
information is available, and therefore a technique is needed to abstract a generic
update-function. For the abstraction of generic update-functions it is important
to define a solution in which the abstract update-function is also well-formed.
We suggest two solutions.

The first näıve solution does not permit generic parameters in an abstract
update-function. When calculating abstract updates the post-state of any data
partition may only depend on locally determined data values. Information passed
by the generic data parameter may not be used for the calculation of the post-
state. This may, in certain cases, lead to a rather rough approximation. More
precisely, if we ignore the generic parameter for the abstraction, we get in a
first step a set of concrete non-generic update-functions describing the possible
effects.

Updates UGc ≡df { Uc.∃ dg
c. Uc = (λ dp

c. UGc dg
c dp

c) }

2 Defined using Isabelle/HOL’s datatype package.
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The following constant definition AbsBy+

UG constructs from this set of update-
functions a set of non-generic abstract update-functions.

UGc AbsBy
+
UG R ≡df

S
((λ uc.uc AbsBy

+
U R) ‘ (Updates UGc))

The näıve approach is feasible in cases where all concrete update functions write
on the entire data space, because in this case the operator Updates yields just
one function. However, in cases where generic update-functions write only on
parts of the data space, the näıve approach leads to approximations that lack
precision.

The presentation of the formalization of the elaborated solution is omitted
here, but we give an outline. This approach requires that the abstraction func-
tion R is constructed such that for each partition there is a suitable abstraction
that maps this partition independent of other partitions onto an abstract data
partition. On one side, this procedure preserves the structure of the data space.
On the other side, it enables the simulation of the behaviour of concrete generic
update-functions by the behaviour of abstract generic update-functions. To this
end, the previous polymorphic type δ is refined into a list of sum-types where
each element of the list describes a partition of the data space. Based on this
structured data-type, we can formalize the requirement on the abstraction func-
tion stated above and define a corresponding operator for the construction of
generic update-functions.

5 Implementation of the Abstraction Process

Besides the Isabelle definitions of operators for the construction of overapprox-
imated HAs from a given HA and an abstraction function, we have in addition
implemented an abstraction algorithm that is connected via the so-called oracle-
interface of Isabelle to our Isabelle theory. This algorithm has been developed
as a diploma thesis. It adapts the algorithm for predicate abstraction of tran-
sition systems suggested by Shankar and Säıdi [SS99] to HAs. In this kind of
abstraction data variables of a transition system, that are declared on infinite
data domains, are interpreted abstractly by a finite number of characteristic
predicates. Adapting this algorithm to HAs for each partition of the data space
predicates will be defined independently. These predicates must be defined by an
expert and will be given as an input to the abstraction process. In the construc-
tion of the abstract data space, concrete data variables on infinite domains are
replaced by a finite number of boolean variables. Each boolean variable encodes
whether a corresponding characteristic predicate is satisfied or not. Accordingly
the concretization function γ of the galois connections for predicate abstrac-
tion is given by a substitution, that replaces in an abstract formula the boolean
variables by the corresponding predicates. Usually the abstraction function α
is defined by γ using the adjunction theorems (cf. Section 2). So we obtain for
over- and underapproximation the following abstraction functions.

α+.pc =
V

{ pa: P.A | pc ⇒ γ.pa }
α-.pc =

W
{ pa: P.A | γ.pa ⇒ pc }
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In practice it is not feasible to calculate all formulas of P.A. So we must restrict
ourselves to representative formulas. [SS99] proves that it is sufficient for cal-
culating an overapproximation, to show pc ⇒ γ.pa for all disjunctions, that can
build on the introduced boolean variables. So the complexity can be reduced
to at most 3k − 1 proof obligations, where k represents the number of boolean
variables used to represent the predicates.

As a result of the implementation we found that already for small examples
the number of abstract update functions calculated for one concrete update-
function is rather high. This problem can be controlled if the predicates used for
the abstract interpretation of a partition are chosen such that they are mutually
exclusive and do not overlap.

6 Conclusions

In this paper we have presented a concept for the abstraction of statecharts
containing data. The concept is based on a formalization in the generic interac-
tive theorem prover Isabelle/HOL. Following the approach of [Mikk00], we use
a representation of statecharts as hierarchical automata. The methodology of
building the abstraction is similar to earlier work on abstract interpretation of
transition systems by Cousot and Dams. However, the novelty here is that the
existing concepts are transferred to the formalism of statecharts that (a) enable
to structure the state space and (b) contain data. While there is some work
on mechanical analysis of transition systems containing data using abstraction
techniques [MN95] and some mechanizations of statecharts, e.g. [BW98], we are
not aware of any work dedicated to the statecharts formalism combining theorem
proving and model checking.

The embedding in the theorem prover represents a semantical foundation
for data enriched statecharts enables the calculation of overapproximations, and
serves well as a logical framework for mechanically proved abstractions. We have
developed a structure preserving abstraction technique for HAs that can be
applied in a compositional manner. To this end we extended the abstraction
theory for transition systems to SAs. To keep our method compositional we use
a novel technique that respects context informations. For the analysis of case
studies we integrated an implementation of an algorithm for the abstraction
process outside Isabelle.

In contrast to other approaches of abstraction theories for model checking we
do not yet consider a complementary refinement process that is used to refine
too rough abstractions in order to regain better approximations. Currently we
plan to adapt our approach for detecting spurious counterexamples [CGJ+00] to
refine the abstraction in a suitable way.

We would like to thank Dr. J.Sanders from PRG Oxford for
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Abstract. We introduce a quantitative concept for bisimulations by in-
tegrating the notion of amortisation (cf. [3]). This allows us to make
behavioural comparisons between nondeterministic systems that are in-
herently non-terminating and to analyse the relative long-term costs of
deploying them. To this end, we conservatively extend CCS to include
a new set of cost-based actions and define a cost-based quantitative re-
lation called amortised bisimulation. We demonstrate the applicability
of our approach by two case studies. In both cases the cost of addi-
tional administration is shown to amortise. We furthermore show that
the amortised preorder for speed introduced in [6] is naturally expressible
in our setting.

1 Introduction

Bisimulation equivalence [7,8,11] has been developed as a notion of behavioural
equivalence for nondeterministic, conceptually nonterminating systems. Loosely
speaking, two systems are bisimilar (bisimulation equivalent) if each can simulate
the other where the roles of who is simulating whom can interchange at any
point of time. Bisimulation equivalence is a mathematically elegant, tractable
concept and several tools mechanising or assisting the decision process have
been developed (e.g. [2,5]).

However, bisimulation equivalence does not allow one to make any assessment
about the relative expenses of the two systems being compared. For example, one
would like to know whether one system (or a system’s component) is more cost
efficient than the other and to what extent. To make such assertions possible,
we suggest the notion of amortised bisimulations.

The main idea is to consider actions together with their costs and to modify
bisimulation equivalence in such a way that actions are matched with ”function-
ally equivalent” actions. The difference in their costs adds to the credit which
is accumulated during the mutual simulation. This accumulated credit is used
as a parameter in the definition of amortised bisimilarity. For a system p to
be considered less expensive than another system q, the amortised bisimulation
containing (p, q) should have nonnegative credit everywhere.

In more detail, we conservatively extend CCS to include a new set of
cost-based actions which cannot be hidden. We then define the cost-based quanti-
tative relation called amortised bisimulation. CCS along with its classical equiv-
alence relations of strong bisimilarity and observational equivalence on CCS

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 320–334, 2005.
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processes may be recovered by simply discarding the new actions from the ac-
tion set. We demonstrate the usefulness of amortised bisimulations by presenting
two case studies. In both cases we show that the cost of additional administration
gets amortised.

The first study (based on [9]) compares a model of communication called
shared messaging communication (SMC) with the conventional message-passing
(MP) model. The authors of the model show experimentally that when large data
items are to be transferred as part of inter-task communication, the SMC model
is more efficient than MP in terms of the communication costs involved. In fact,
the truth of the authors’ claims is intuitively quite straightforward. But those
results cannot generally be proven without integrating costs into the operational
model of the respective systems. We substantiate their claim by defining suitable
amortised bisimulations.

The second case study considers a proxy server and is somewhat different in
nature. Again, we use costs to describe the expense for long- and short-distance
communication. Whether a proxy system is more efficient than a system without
a proxy, however, depends on the frequency with which a page is updated relative
to that of the accesses to it. The expense involved in a proxy server pays off,
only if pages are more frequently accessed than updated. We therefore cannot
establish any efficiency result without modelling this frequency in some way. We
present a simplified model of the entire system comprising a client, a proxy server
and a web server and show that under these assumptions the proxy server can
reduce the communication costs involved in transferring a page. On the other
hand, when pages are more frequently updated than accessed, the proxy server
becomes a bottleneck and then it is more efficient to do without it.

While our notion of costs is fairly general, it applies when the cost is measured
in terms of time. We pick the amortised faster-than preorder described in [6] and
show that it may be captured in our framework.

2 Amortised Bisimulations

A labelled transition system (LTS) L is a 3-tuple 〈P,A,−→〉, where P is a set
of process states or processes, A is a (possibly countable) set of actions and
−→ ⊆ P ×A× P is the transition relation.

Our LTSs are generated by an extension of Milner’s CCS – see [8] for an
introduction –, where in addition to the normal set of actions Actτ = Act ∪{τ}
there is a set of priced actions CAct which have a cost assigned to them by
a function C : CAct → IN . Thus, the set of all actions is A = Actτ ∪ CAct ,
where Act , {τ} and CAct are assumed to be pairwise disjoint. Priced actions
differ from actions in Act – apart from carrying costs – in that they do not have
complements. We assume the usual CCS operators with their usual interleaving
operational semantics [8]. Specifically, we have action prefixing over A, (binary)
choice, (parallel) composition, restriction, relabelling (which is bijective by defi-
nition, cf. [7]) and process names (for recursion). With regard to CAct , a priced
action cannot synchronize with any other action, it cannot be restricted away
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and it cannot be renamed (∀a ∈ CAct : f(a) = a and f |Act : Act → Act ).
Priced actions therefore are always visible. We use ∼ to denote strong bisimi-
larity and ≈ for observational equivalence (which treat priced and non-priced
actions alike).

To capture the idea of ”functional equivalence” formally, we introduce the
relation ρ over priced actions. For example, consider the task of getting books
from a library where costs are measured in terms of time. There are costs for
getting to (and back from) the library (action get to lib) and costs for accessing
the book of interest (access book ). The walk to the local library might be short
but as its stock of books is not well sorted accessing them is more time consum-
ing than in the more distant, central library. Moreover, the book might not be in
the stock at all and can only be reserved (reserve book ) as it has to be ordered
by an inter-library loan. Formulated in CCS, we obtain the two processes:

Central Lib df
= get to libcen .access book cen .Central Lib

Local Lib df
= get to lib loc.(access book loc.Local Lib + reserve book .Local Lib)

where the costs of actions are C(get to libcen) = 2, C(access bookcen) = 1
and C(get to lib loc) = 1, C(access book loc) = 2 and C(reserve book ) = 4.
Clearly, get to lib loc and get to libcen are functionally equivalent and so are
access book loc and access bookcen . We also assume functional equivalence of
reserve book and access bookcen . Thus, all these pairs are in ρ. If we match
actions according to ρ then Central Lib and Local Lib describe functionally
equivalent processes. Moreover, given an initial credit of 1, Central Lib is more
cost efficient than Local Lib. The credit 1 is required to cover the expenses
for the longer walk to the central library and it amortises with the cheap ac-
cess of the book. So, in the setting of amortised bisimulations we can prove
Central Lib ≺ρ

1 Local Lib.
Formally, ρ ⊆ CAct τ × CAct τ and to allow a uniform treatment of actions,

we extend ρ and C to be defined over A with the following restrictions:

1. ρ restricted to Actτ is the identity relation.
2. C(a) = 0 for all a ∈ Actτ .

We call ρ a CAct -association and abbreviate C(a) to ca for all a ∈ A. In the
examples, we define ρ by stating its definition over CAct τ , only.

Definition 1. Let 〈P,A,−→〉 be a labelled transition system over A = Actτ ∪
CAct and let ρ be a CAct τ -association. A family (Ri)i∈IN of binary relations
over P is a strong amortised ρ-bisimulation, if for all i ∈ IN , (p, q) ∈ Ri:

1. p
a−→ p′ implies ∃q′, b [aρb and q

b−→ q′ and (p′, q′) ∈ Ri+cb−ca ],
2. q

b−→ q′ implies ∃p′, a [aρb and p
a−→ p′ and (p′, q′) ∈ Ri+cb−ca ],

where a, b ∈ A. Each relation Ri is called an i-slice of the amortised ρ-bisimulation.
We say p is amortised cheaper (more cost efficient) than q up to credit i, in no-
tation, p ≺ρ

i q, if (p, q) ∈ Ri for some amortised strong ρ-bisimulation (Ri)i∈IN .
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In case that i = 0 we simply write p ≺ρ q. The i-index gives the maximal credit
which p requires to bisimulate q. The credit cannot be higher than i as we do not
consider slices with a negative index.

To give a few simple examples, let a, b, d, e ∈ CAct , ca = cd = 1, cb = 2 and
ce = 3. Then a.b.0 ≺ρ e.d.0, a.b.0 ≺ρ b.a.0, a.b.0 �≺ρ a.b.0 and b.a.0 ≺ρ

1 a.b.0
where ρ = {(a, b), (b, a), (a, e), (b, d)}. The underlying amortised ρ-bisimulations
are easily exhibited by the reader. To ease terminology, if ρ is understood from
the context we simly omit mentioning it. Some facts on amortised bisimulations
are given next.

Proposition 2. Let (Ri)i∈IN be a family of relations satisfying the conditions
of Definition 1.

1. If CAct = ∅ then each i-slice Ri is a strong bisimulation.
2.
⋃

i∈IN Ri is a strong bisimulation.
3. (Sj)j∈IN , where for some constant l ∈ IN , Si+l = Ri and Sj = ∅ for all

j < l, is a strong amortised ρ-bisimulation.
4. (Tj)j∈IN , where Tj =

⋃
i≤j Ri, for all j ∈ IN , is a strong amortised ρ-

bisimulation.

In general, we could have relaxed the restriction to IN in Definition 1 by
allowing the family to be indexed over all the integers, provided a lower bound
l exists such that for all i < l, Ri = ∅ and p ≺ρ q if (p, q) ∈ Rl. In fact, for
convenience we will use negative indices in one example later and this is justified
in view of part 3 of the proposition above.

A few basic properties of ≺ρ
i are given in the next proposition.

Proposition 3. Let i, j ∈ IN .

1. (≺ρ
i )i∈IN is the component-wise largest strong amortised ρ-bisimulation.

2. ≺ρ
i ⊆≺ρ

i+1.
3. ∼ ◦ ≺ρ

i = ≺ρ
i = ≺ρ

i ◦ ∼, where ◦ denotes relational composition.
4. If ρ is reflexive then ≺ρ

i is reflexive and ∼⊆≺ρ
i .

5. If ρ is transitive then ≺ρ
i ◦ ≺ρ

j ⊆≺ρ
i+j.

In particular, ≺ρ is transitive if ρ is transitive.

To see that symmetry of ρ does not carry over to ≺ρ
i consider p = a.0, q = b.0,

ca = 1, cb = 2 and ρ = {(a, b), (b, a)}. We next list the congruence properties of
≺ρ

i with respect to CCS-operators.

Proposition 4. Let p ≺ρ
i q and r ≺ρ

j s where i, j ∈ IN .

1. a.p ≺ρ
k b.q whenever aρb and k ≥ i + ca − cb ≥ 0 where a, b ∈ A.

2. p + r ≺ρ
k q + s for k ≥ max{i, j}.

3. p | r ≺ρ
k q | s for k ≥ i + j.

4. p[f ] ≺ρ
k q[f ] for k ≥ i

5. p \ a ≺ρ
k q \ a for any a ∈ Act .
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Note, that the congruence result for parallel composition only holds due to the
fact that priced actions cannot communicate. As a corollary of this proposition
we obtain the congruence results for ≺ρ where i and j are chosen as 0.

We now consider the generalization of amortised bisimilarity to its weak
counterpart. A weak transition is defined as usual, just as â = a if a �= τ and
τ̂ = ε. However, via ρ we can map priced actions to τ and the weak matching has
to take these “visible τ -actions” into account. To formulate this, let ερ u (uρ ε,
respectively) denote that τρui for all i where u = u1 · · ·un, ui ∈ CAct . The cost
function C is extended to words by cu = cu1 + · · · + cun .

Definition 5. Let the preconditions be as in Definition 1. A family (Ri)i∈IN of
binary relations over P is a weak amortised ρ-bisimulation, if for all i ∈ IN ,
(p, q) ∈ Ri:

1. p
a−→ p′ implies ∃q′, b, u, v [aρb, ερ uv, q

ub̂v=⇒ q′ and (p′, q′) ∈ Ri+cub̂v−ca ],

2. q
b−→ q′ implies ∃p′, a, u, v [aρb, uvρ ε, p

uâv=⇒ p′ and (p′, q′) ∈ Ri+cb−cuâv
],

where a, b ∈ A and u, v ∈ CAct ∗. Process p is (weakly) amortised cheaper (more
cost efficient) than q up to credit i, p≺≺ρ

i q, if (p, q) ∈ Ri for some weak amortised
ρ-bisimulation (Ri)i∈IN . We write p≺≺ρ

i q if (p, q) ∈ Ri for some i-slice Ri.

The assertions of Proposition 3 remain valid for the weak case. Additionally,
we may replace ∼ by ≈ in clause 3 and clause 4. Finally, the congruence results
stated in Proposition 4 carry over apart from closure under + which is lost for
standard reasons.

3 The Amortised Faster-Than Preorder

In [6], Lüttgen and Vogler consider a timed version of CCS incorporating ur-
gent actions and a clock pulse action σ. They then define a preorder called the
amortised faster-than preorder as the largest relation with index 0 in a family
of bisimulation relations indexed by the natural numbers. In their treatment,
every action is visible (this includes σ as well as τ). Hence they work within a
strong bisimilarity setting. However, the conditions governing these bisimulation
relations is reminiscent of the treatment of sequences of internal actions in the
definition of weak bisimilarity. The number of clock actions executed up to a
given state thus gives the time of the next visible action.

Definition 6. [the amortised faster-than preorder] A family (Ri)i∈IN of
relations over P is a family of amortised faster-than relations if, for all i ∈ IN ,
(p, q) ∈ Ri and a ∈ A:

1. p
a−→ p′ implies ∃q′, k, l [q σ−→k a−→ σ−→l

q′ and (p′, q′) ∈ Ri+k+l].

2. q
a−→ q′ implies ∃p′, k, l [k + l ≤ i and p

σ−→k a−→ σ−→l
p′ and (p′, q′) ∈

Ri−k−l].
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3. p
σ−→ p′ implies ∃q′, k [k ≥ 1 − i and q

σ−→k
q′ and (p′, q′) ∈ Ri−1+k].

4. q
σ−→ q′ implies ∃p′, k [k ≤ i + 1 and p

σ−→k
p′ and (p′, q′) ∈ Ri+1−k].

Process p is amortised faster than q if there is a family (Ri)i∈IN of amortised
faster-than relations such that (p, q) ∈ R0.

We give two embeddings of the faster-than preorder in our setting. As men-
tioned before, Definition 6 has similarities with both weak and strong bisimula-
tion. Accordingly, we give two embeddings, one which characterizes the
amortised faster-than preorder as a weak amortised bisimulation while the sec-
ond identifies it with a strong amortised bisimulation.

In our first (straight forward) embedding we relate a clock pulse σ via ρ to
τ and vice versa. We further assume that this internal transition is different
from [6]’s τ as τ ’s are considered as visible there. Under these assumptions a

transition sequence p
σ−→k a−→ σ−→l

p′ coincides with p
σkaσl

=⇒ p′ in our setting
where ε ρ σk+l ρ ε. Thus, the faster-than preorder reduces to an instance of an
amortised weak bisimilarity.

Proposition 7. The amortised faster-than preorder is a weak amortised ρ-bisi-
mulation (≺≺ρ) where CAct = {σ}, cσ = 1 and ρ = {(τ, σ), (σ, τ), (σ, σ)}.

Note, that this amortised weak bisimulation also characterizes the weak
amortised faster-than preorder which, however, has not been defined in [6].

For the second embedding, we reformulate the faster-than preorder such that
the transition to be matched is a weak one in the sense that it may be preceded
and followed by a sequence of clock transitions.

Lemma 8. Characterization The faster-than preorder may be equivalently de-
fined by varying conditions (1) to (4) as follows.

1. p
σ−→k a−→ σ−→l

p′ implies ∃q′, m, n [k − m ≤ i and q
σ−→m a−→ σ−→n

q′

and (p′, q′) ∈ Ri−(k+l)+(m+n)].

2. q
σ−→m a−→ σ−→n

q′ implies ∃p′, k, l [k − m ≤ i and p
σ−→k a−→ σ−→l

p′

and (p′, q′) ∈ Ri−(k+l)+(m+n)].

3. p
σ−→k

p′ implies ∃q′, m [k − m ≤ i and q
σ−→m

q′ and (p′, q′) ∈ Ri−k+m].

4. q
σ−→m

q′ implies ∃p′, k [k − m ≤ i and p
σ−→k

p′ and (p′, q′) ∈ Ri−k+m].

For the embedding we need a refinement of the original definition of amortised
ρ-bisimulation such that the matching of actions can be cost dependent. By itself,
this seems to be a reasonable assumption as, for example, if one has accumulated
in the simulation a huge credit one can be more generous in choosing matching
actions which are expensive. To cover this aspect, we define ρ as a family ρ =
(ρi)i∈IN .

Definition 9. Let ρ = (ρi)i∈IN and be a family of binary relations on CAct τ . A
family of binary relations over P, indexed by IN , is a cost dependent amortised
ρ-bisimulation, if for all i ∈ IN , (p, q) ∈ Ri and a ∈ Act :
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1. p
a−→ p′ implies ∃q′, b [ aρib and q

b−→ q′ and (p′, q′) ∈ Ri+cb−ca ].

2. q
b−→ q′ implies ∃p′, a [ aρib and p

a−→ p′ and (p′, q′) ∈ Ri+cb−ca ].

Let p �
ρ
i q denote the largest such relations.

The amortised faster-than preorder of [LV05] is a special case of the cost
dependent set up.

Proposition 10. The faster-than preorder is an instance of a cost dependent
strong amortised ρ-bisimulation.

Proof. We define CAct = (IN ×Act × IN)∪ IN and based on that cost function
C and cost dependent relations ρi:

C(α) =
{

k + l if α = (k, a, l)
k if α = k

For each i ∈ IN , ρi ⊆ (IN × Act × IN)2 ∪ IN2. In its definition we distinguish
between two cases. If α = (k, a, l) and β = (m, b, n) then αρiβ if and only if
a = b, k−m ≤ i and (k + l)− (m + n) ≤ i. If, otherwise, α = k and β = m then
αρiβ if and only if k − m ≤ i.

In the transition system we consider, p
(k,a,l)−→ p′ if and only if p

σ−→k a−→ σ−→l
p′

and p
k−→ p′ if and only if p

σ−→k
p′. It is now easily verified, that with Definition

8 and the instantiations given, amortised faster-than preorder is equal to the
induced cost dependent amortised ρ-bisimulation.

In comparison, the weak amortised bisimulation certainly gives a more natu-
ral characterization of the faster-than preorder. In addition, the characterization
as a strong amortised bisimulation has the following two drawbacks. First, its
generalization to a weak faster-than preorder is not straight forward. Second, as
priced actions cannot communicate, the parallel composition of transition sys-
tems in our and in the setting of [6] would yield different composed systems.

4 Shared Messaging Communication vs. Message Passing

In [9] the authors suggest and investigate a model called shared messaging com-
munication (SMC) in which the advantages of message-passing (MP) and shared
memory are combined. This is to reduce the communication costs (both in terms
of communication latency and memory usage) of sending large payloads by al-
lowing tasks to communicate data through special shared memory regions. The
communication primitives are used only to send references (called tokens) to the
shared memory region.

The following is a brief description of the system.

1. Each task operates on its private address space as well as on special memory
regions which are used for inter-task communication.
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2. Tasks communicate data in blocks of predefined size through tokens, which
they are not allowed to copy or modify.

3. The system provides interfacial primitives for obtaining memory, compos-
ing a token and sending it. Correspondingly it also provides primitives for
receiving a token, consuming it and releasing memory.

The authors consider an asynchronous communication model with a buffer for
tokens. However, the basic principles and the motivation for the SMC model also
hold in the synchronous communication setting.

The experimental results provided by the authors suggest that message-
passing channels outperform shared messaging communication (due to the extra
overhead involved in obtaining and releasing memory) when the payloads in
communication are of small size. At higher sized payloads the SMC outperforms
pure message-passing, since in SMC only a token is sent, as opposed to the
message passing model where the entire contents of the message are sent.

We confirm these observations by proving (for our abstract processes) that
up to a given credit, SMC is indeed amortised cheaper than MP. The credit
given reflects the overheads of obtaining and releasing memory.

The following actions are necessary to control the access to the shared ad-
dress space.

gum give unused memory (to be bound to a token t)
uo usage over (of the memory given by the token t)
st send token
rt receive token
cps compose token: write the data to the shared memory specified by the token
csm consume token: read the contents of the memory specified by the token.

The communicational behaviour of a SMC process is described by SMC Process :

SMC Process df
= τ.Request Token + τ.Receive Token

Request Token df
= gum.Compose Token

Compose Token df
=
∑

k∈IN−{0}(cps .)kSend Token
Send Token df

= st .SMC Process
Receive Token df

= rt .Consume Token
Consume Token df

=
∑

k∈IN−{0}(csm .)kUsage Over
Usage Over df

= uo.SMC Process

The definition of Compose Token reflects the fact that depending on the size
of the data to be transferred, it needs to be split into packets – the number
of packets is given by the index k – which then are sent one by one. Similar
arguments apply for receiving the data.

We may model the behaviour of a MP process as follows.

MP Process df
= τ.Send Message + τ.Receive Message

Send Message df
=
∑

k∈IN−{0}(sm .)kMP Process
Receive Message df

=
∑

k∈IN−{0}(rm .)kMP Process
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Comparing SMC Process with MP Process , it is clear, that cps should be
matched with sm and csm with rm. The handling of tokens can be viewed as ad-
ministrative overheads which may be matched with an idle action on the message
passing side. For the sending of data, we therefore have the correspondence

SMC Process τ−→ gum−→ cps−→ · · · cps−→ st−→ SMC Process
MP Process τ−→ ε−→ sm−→ · · · sm−→︸ ︷︷ ︸

k times

ε−→ MP Process

and for receiving we have a respective matching. Clearly, sending or receiving
a token should involve lower costs than sending/receiving data packets. Thus
we associate with the former cost 1 and with the latter cost 2 (which could
have been any l > 1, allowing for a similar analysis). This yields the following
CAct -association ρ:

cost SMC MP cost
1 gum τ 0
1 uo τ 0
1 st τ 0
1 rt τ 0
0 cps sm 2
0 csm rm 2

Proposition 11. Let ρ and C as in the above table. Then SMC Process is
amortised cheaper than MP Process up to credit 1: SMC Process ≺≺ρ

1 MP Process.

Proof. As it seems natural to start a simulation with credit 0, let us also consider
bisimulation slices with index -1. So we have (SMC Process ,MP Process) ∈ R0

where (Ri)i∈IN∪{−1} is the weak amortised ρ-bisimulation given by

SMC Process MP Process condition on i
1. SMC Process MP Process i = 2j, j ≥ 0
2. Request Token Send Message i = 2j, j ≥ 0
3. Receive Token Receive Message i = 2j, j ≥ 0
4. Compose Token Send Message i = 2j − 1, j ≥ 0
5. (cps .)kSend Token (sm .)kMP Process i = 2j − 1, j ≥ 1
6. Consume Token Receive Message i = 2j − 1, j ≥ 0
7. (csm.)kUsage Over (rm .)kMP Process i = 2j − 1, j ≥ 1
8. Send Token MP Process i = 2j − 1, j ≥ 1
9. Usage Over MP Process i = 2j − 1, j ≥ 1

where a pair of processes of a line is contained in Ri if i satisfies the condition
of the last column.

By the monotonicity property, (SMC Process ,MP Process) ∈ R′
1 for the

amortised ρ-bisimulation (R′
i)i∈IN where R′

i = Ri−1 for all i ∈ IN . This es-
tablishes SMC Process $ρ

1 MP Process , i.e. SMC Process is more cost efficient
than MP Process up to credit 1.
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5 Web Access with and Without a Proxy Server

In most computing environments, it is fairly common to find a caching proxy
server in operation. Caching proxy servers improve the performance of web-
access within the network by caching most frequently accessed pages of a web
server with predominantly static content and serving them to the clients in the
network. The main communication overhead is restricted to receiving header
information from the web-site. This information is used to determine whether
the cached copy in the proxy is the latest or needs to be updated. Caching
proxies also improve the performance of the web server by reducing the number
of direct accesses to the web-site from distant clients for its content.

We model greatly simplified versions of the clients and the proxy server. We
show that the use of the proxy server reduces the volume of traffic between the net-
work and the web server, while still serving up-to-date information to each client.

Let d request header , d serve header d request page and d serve page be all
the visible actions. The prefix ‘d’ indicates direct access to the web server rather
than via a proxy. In the absence of a proxy server, a typical client D Client has
the following definition.

D Client df
= d request page.D Client ′

D Client ′ df
= d serve page .D Client

With the introduction of a proxy, the clients communicate only with the
proxy and are indeed set up to do just that. The actions involving communica-
tions of the clients with the proxy server are p request page and p serve page
which stand respectively, for requesting a page from the proxy and serving a
page from the proxy.

P Client df
= p request page.P Client ′

P Client ′ df
= p serve page.P Client

The proxy server requests the web server for the page and caches it when
it arrives (this initial request is done by i request page). For future requests, it
merely asks for the header and compares it with its cached version. It requests
the full page only if the header information is different. Again we simplify the
design by assuming it serves only one request at a time.

Proxystart
df
= p request page .First Copy

First Copy df
= i request page.Request Sent

Proxy df
= p request page .Client Wait

Client Wait df
= d request header .Check Update

Check Update df
= d serve header .Decide

DECIDE df
= τ.No Update + τ.Update

Update df
= d request page.Request Sent

No Update df
= p serve page.Proxy

Request Sent df
= d serve page .Cached

Cached df
= p serve page.Proxy
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For the complete system, we consider just one client as this suffices to demon-
strate the benefits of a proxy.1 The entire system with the proxy server is

P Systeminit
df
= (P Client | Proxystart)\ {p request page , p serve page}︸ ︷︷ ︸

=:ProxyInt

of which the main behaviour is given by

P System df
= (P Client | Proxy)\ProxyInt .

It is clear that the two systems P System and D System ,where

D System df
= D Client ,

are not observationally equivalent since P System may perform actions which
are not in the sort of D System. However they are both functionally equivalent
from the point of view of the client. To set up ρ, we inspect how the actions
of P System and D System correspond during one round of communication. In
case that no updating is required the correspondence is

P System τ−→ drh−→ dsh−→ τ−→ P System

D System ε−→ drp−→ dsp−→ ε−→ D System

while in case of an updating we have:

P System τ−→ drh−→ dsh−→ τ−→ drp−→ dsp−→ τ−→ P System

D System ε−→ drp−→ dsp−→ ε−→ ε−→ ε−→ ε−→ D System

Note, that D System is actually not capable of performing any τ -transition, so
it can match d request page and d serve page only by staying idle. Thus, we
define ρ as given via the following table.

cost P System abbr . D System cost
w1 i request page irp d request page w1

w2 d serve page dsp d serve page w2

w1 d request page drp τ 0
w2 d serve page dsp τ 0
u1 d request header drh d request page w1

u2 d serve header dsh d serve page w2

We set vi := wi − ui for i = 1, 2, u := u1 + u2, v := v1 + v2 and w := w1 + w2.
Thus, u gives the cost of a complete update round while v is the credit obtained
from one round without update. As the cost of getting a page is much higher
than that of getting a header, we have v > u (as we may assume w > u).
Furthermore, we require u �= 0.
1 Imagine a German living in India accessing the news Tagesschau every few minutes.
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As discussed in the introduction, it is necessary to model the relative frequen-
cies of update rounds against rounds without an update, in order to establish
any efficiency result. We proceed by introducing a decision maker DM . When-
ever the header of the page is provided by the web server, it has to be decided
whether the copy in the cache has to be updated or not. This decision is taken
by DM . Essentially, DM ’s decision is nondeterministic, but we assume that the
number of update-decisions (b̄-actions) is never higher than n times the number
of no-update decisions (ā-actions), for some fixed n. We then show for which n,
depending on the costs for long distance communications, the proxy system is
actually more efficient.

The decision maker is given by

DM df
= ā.(DM | b̄. · · · .b̄.︸ ︷︷ ︸

n times

0)

and to enable it to interact with Proxy we replace DECIDE by

Decide df
= a.No Update + b.Update .

The complete proxy-system now is

P System df
= (P Client | Proxy | DM )\ProxyInt ∪ {a, b}︸ ︷︷ ︸

=:H

where we do not introduce fresh names for the modified systems.

Proposition 12. Let u be the extra cost of one update of a page and v be the cost
saved if an update is not necessary. Assume that at any state of a computation,
the number of updates is never higher than n times the number of no-updates.
Then whenever n ≤ v

u , P System is more cost efficient than D System, that is

P Systeminit≺≺ρD System

where ρ and C are given in the table on page 330.

Proof. For a derivative p of DM let Δ(p) := max{n | ∃p′ : p
bn−→p′}. It is easily

verified that
p ∼ q if and only if Δ(p) = Δ(q).

Thus Δ(m) := {p | Δ(p) = m} is an equivalence class of bisimilar processes and
by the congruence properties for ≺≺ρ we do not have to distinguish between dif-
ferent representatives in the semantic analysis. This reduces the cases to inspect
in the proof considerably.

We define the weak amortised ρ-bisimulation (Ri)i∈IN as the smallest relation
satisfying the conditions described by the following table2.

2 For the sake of readability, we omit the restriction set H in the proxy system.
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P Systeminit D System condition on i
1. P Client | Proxystart | Δ(0) D Client i = 0
2. P Client ′ | First Copy | Δ(0) D Client i = 0
3. P Client ′ | Request Sent | Δ(0) D Client ′ i = 0

P System D System
4. P Client | Proxy | Δ(m) D Client i ≥ m · u
5. P Client ′ | Client Wait | Δ(m) D Client i ≥ m · u
6. P Client ′ | Check Update | Δ(m) D Client ′ i ≥ m · u + v1

7. P Client ′ | Decide | Δ(m) D Client i ≥ m · u + v
8. P Client ′ | No Update | Δ(m) D Client i ≥ m · u
9. P Client ′ | Update | Δ(m) D Client i ≥ m · u + w
10. P Client ′ | Request Sent | Δ(m) D Client i ≥ m · u + w2

11. P Client ′ | Cached | Δ(m) D Client i ≥ m · u

As an example, we verify the properties of a weak amortised ρ-bisimulation
(Definition 5) for case 7. All other cases are similar.

So assume ((P Client ′ | Decide | Δ(m))\H,D Client) ∈ Ri for some i ≥
m · u + v.

There are two transition possible for P System’s state.
One transition is

(P Client ′ | Decide | Δ(m))\H τ−→ (P Client ′ | No Update | Δ(m + n))\H

where the τ -action is due to DM ’s decision that no update is required. This
decision will release n more b̄’s in DM and therefore the new state of the decision
maker is Δ(m+n). D System can match the τ -move only by staying idle. Hence,
we have to show:

(∗) ((P Client ′ | No Update | Δ(m + n))\H,D Client) ∈ Ri

However as n ≤ v
u , we have v ≥ n · u. Thus,

i ≥ m · u + v ≥ (m + n) · u

and, thus, condition 8 is verified for (∗).

The other transition initially possible is – provided m > 0 –

(P Client ′ | Decide | Δ(m))\H τ−→ (P Client ′ | Update | Δ(m − 1))\H

where this τ -action is due to DM ’s decision to update. Again, D System stays
idle and it is easily verified that

((P Client ′ | Update | Δ(m − 1))\H,D System) ∈ Ri

by case 9.
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Now, assume D System performs the first move which can only be

D Client
d request page−→ D Client ′.

P System can always match this (going via state No Update) by

(P Client ′ | Decide | Δ(m))\H d request header
=⇒

(P Client ′ | Check Update | Δ(m + n))\H
with cost u1. We have to show that

((P Client ′ | Check Update | Δ(m + n))\H,D Client ′) ∈ Ri+v1

which follows from case 6 if i + v1 ≥ (m + n) · u + v1. However, (m + n) · u ≤
m · u + v ≤ i by the preconditions.

6 Conclusions

In this paper we have proposed amortised ρ-bisimulation as a behavioural re-
lation which admits quantitative assertions on the cost relationship of the pro-
cesses under comparison. To this end, we have enriched CCS by priced actions
and studied basic properties of the resulting calculus. Depending on the relation
ρ, which determines which actions can match which in the bisimulation game,
amortised ρ-bisimulations can coincide with bisimilarity or just give a relation
without preferred properties like reflexivity or transitivity. Though the latter
can be considered as undesirable, we have pursued the policy of developing a
calculus which would satisfy certain needs highlighted by the case studies. For
example, the proof that in the presence of a proxy server, in general, a system
is more cost efficient, would have been much less clear if ρ was deemed to be
reflexive. But even in that case study, we were able to use the proof techniques
of standard CCS. We therefore believe that the proposed theory may be useful
for similar verifications, though, of course, more case studies are required to test
its applicability. Another indicator, which makes us believe that our definitions
are “right” or “natural” is the fact that only after we had fixed our notion of
amortised bisimulations, we came across Lüttgen & Vogler’s work on amortised
faster-than preorders, which turned out just to be an instance of our more general
set-up.3 Aiming at expressing amortisation within bisimilarity it seems natural
to consider bisimulations with an extra cost component.

There are various questions regarding the algebraic properties of the compar-
ison relations that this work raises. For instance the properties of the ρ-relation
between actions (or action sequences) largely influences the corresponding nature
of the bisimilarity relation. The tradeoff between nice properties and wide ap-
plicability needs to be further studied. Another question we have not addressed

3 We acknowledge that our notation is highly influenced by [6].
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(and this is relevant in the context of CCS), is whether priced actions should
be allowed to communicate and synchronize, and if so what would be the costs
of such a communication and whether compatibility with parallel composition
could be achieved.

Behavioural equivalences and preorders have largely dominated the analysis
of the semantics of programs and systems. The literature does contain several
works ([1,6,10,4]) in which authors have compared the relative efficiencies of
systems by using time as a quantity to be captured behaviourally. The notion of
time is implicit also in the notion of computation and may be viewed as a cost
that may be captured behaviourally. However, the notion of cost in this paper
goes further. Costs are explicitly assigned to actions and cannot necessarily be
inferred from behaviour. The result is that the same behaviours under different
cost functions could yield radically different decisions as to the relative costs
of running competing systems. The analysis of long-term costs is important in
nondeterministic systems which theoretically may run forever. We hope to have
made a small step towards such an analysis.
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Abstract. We focus on techniques for proving behavioural equivalence between
systems in Dpi, a distributed version of the picalculus in which processes may mi-
grate between dynamically created locations, and where resource access policies
are implemented by means of capability types.

We devisea tractable collection of auxiliary proof methods, relying mainly onthe
use of bisimulations up-to β-reductions, which considerably relieve the burden of
exhibiting witness bisimulations. Using such methods we model simple distri-
buted protocols, such as crossing a firewall, a server and its clients, metaservers
installing memory services, and address their correctness in a relatively simple
manner.

1 Introduction

Bisimulations [Mil89], and the related bisimulation equivalence, have been proved to
be of central importance in the elaboration of semantic theories of processes, and in
developing verification techniques for them. The purpose of this work is to demonstrate
that they may be also employed for the verification of distributed systems, even when
the correctness depends on access control policies.

We focus on an abstract system description language called Dpi [HR02b], an exten-
sion of the well-known picalculus [MPW92,SW01]. In this language a system consists
of a collection of processes, or agents, distributed among different sites, where they
can use local resources; these resources are modelled using local versions of picalcu-
lus communication channels. Agents may migrate from site to site, generate new local
resources, or indeed new sites.

Following ideas originally formulated in [PS00], Dpi can be endowed with a sys-
tem of capability types, with which access policies to both resources and sites can be
expressed. Since the behaviour of systems is dependent on the access policy in force,
a new theory of semantic equivalence is required to take this dependency into account.
This was developed in [HR02a,HMR04], where the equivalence is expressed in the form
of triples

I |= M ≈bis N

Intuitively this means that the systems M and N exhibit the same behaviour, from the
point of view of a user constrained by the access policy I; formally, I is simply a
type environment, giving, for each resource and location, the capabilities which may be
exercised by the user.

In this paper we show that this relativised notion of system behaviour can be ef-
fectively employed to demonstrate the correctness of access protocols for distributed
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M,N ::= Systems
l�P� Located agents
M | N Composition
(new e : E) M Name Scoping
0 Termination

R,U ::= Processes, or Agents
u!〈V〉R Output
u?(X) R Input
goto v.R Migration
(newc c : C) R Local channel creation
(newloc k : K) R Location creation
if v1 = v2 then R else U Matching
R | U Parallelism
∗R Iteration
stop Termination

Fig. 1. Syntax for Dpi

systems. All the examples considered are simple; nevertheless, we feel that they at least
demonstrate the feasibility of this approach to system verification.

In the next section we review the language Dpi, its type system, and the relativised
notion of bisimulation equivalence. This is followed by an exposition of some use-
ful proof techniques, relying mainly on the use of bisimulations up-to in the spirit of
[SM92], which alleviate the burden of exhibiting witness bisimulations. This is then
followed by three sections, each considering a particular verification example. The final
section is about related and future work.

In this section we recall the essential features of the language Dpi; readers are referred
to [HMR04,HR02b,CHR05] for a more detailed description.

Syntax. The syntax of the language is given in Figure 1, and presupposes a set of
identifiers; there are two syntactic categories, for systems, and agents.

A typical system takes the form (new e : E)(l�P� | k�Q�) | l�R�. This represents a
system with two sites, l and k, with the agents P and R running at the former and Q at
the latter; moreover P and Q, although executing at different sites, share some private
information, e, of type E. The syntax for agents is an extension of that of the picalculus
[SW01]. There is input and output on local channels, parallelism, matching of values,
iteration, and a migration construct. For example, in the system l�P | goto k.Q� | k�R�,
the process Q can migrate from l to k, leading to the resulting system l�P� | k�Q | R�.
Finally, processes have the ability to create new instances of names (channels, newc,
and sites, newloc); their declaration types dictate the use to which these will be put.

The values V communicated along channels consist of tuples of simple values, v.
These, in turn, may be identifiers, u, or structured values, of the form u1@u2; the latter
are used to represent channels which are not local to the site at which the communi-
cation takes place. In turn, the input construct u?(X) R uses patterns, X, to deconstruct
incoming values; these may be taken to be values constructed from variables, in which
each variable has at most one occurrence.

Typing. Dpi is a capability based language, in the sense that the behaviour of processes
depends on the capabilities the various entities have received in their environment. For-
mally, these capabilities are represented as types, and the various categories of types we

2 DPI: A Synopsis
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Base Types: base ::= int | bool | unit | � | . . .
Value Types: A ::= base | C | C@loc | K

Local Channel types: C ::= r〈T〉 | w〈T〉 | rw〈T〉
Location Types: K ::= loc[c1 : C1, . . . , cn : Cn], n ≥ 0 (provided ci = c j implies i = j)

Transmission Types: T ::= (A1, . . . ,An), n ≥ 0

Fig. 2. Types for Dpi - informal

use are given in Figure 2. Apart from the standard base types, and the special top type
�, the main ones are

local channel types: these are ranged over by C and can take the form rw〈T〉, giving
the ability to both read and write values of type T, or the restricted supertypes r〈T〉
and w〈T〉;

non-local channel types: these take the form C@loc, and a value of this type is a struc-
tured value, c@l;

location types: these take the form loc[c1 : C1, . . . , cn : Cn]; receiving a value l of this
type gives access to the channels, or resources, ci at type Ci, for 1 ≤ i ≤ n.

The types come equipped with a subtyping relation, which is defined inductively,
from the standard requirements on channel types, and record subtyping on location
types loc[c1:C1, . . . cn:Cn] <: loc[c1:C1, . . . ck:Ck], whenever k ≤ n. Viewing types (in-
tuitively) as sets of capabilities, T1 <: T2 means that the capabilities of T2 are a subset
of those of T1.

The static typing of a system, Γ 	 M, indicates that M uses all its identifiers in
accordance with the types designated in the type environment Γ, which gives the type
of all the free names in M. Formally, a type environment Γ is a consistent list of entries,
which must take one of the following forms

– u : loc, indicating u is to be used as a location;
– u@w : C, indicating that w is already known to Γ as a location, and u is a local

channel at w with type C.

The typing of systems requires an auxiliary typing judgment for agents, Γ 	k P,
which needs to be parameterised relative to the current location k, because resources
are located: they may be available at one site and not another.

Behaviour. The behaviour of a system, that is the ability of its agents to interact with
other agents, depends on the knowledge these agents have of each other capabilities.

Definition 1 (Configurations). A configuration consists of a pair I � M, where

– I is a type environment which associates some type to every free name in M
– there is a type environment Γ such that Γ 	 M and Γ <: I

This latter requirement means that if I can assign a type TI to a name n, then Γ can
assign a type TΓ such that TΓ <: TI. Again, viewing types as sets of capabilities, this
means that TI, representing the knowledge of the external user, is a subset of TΓ, the
actual set of capabilities used to type the system M. 
�
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(m-in)

Iw(k, a) ↓ I 	k V : Iw(k, a)
I � k�a?(X) R� k.a?V−−−−→ I � k�R{|V/X|}�

(m-out)

Ir(k, a) ↓
I � k�a!〈V〉 P� k.a!V−−−−→ I, 〈V : Ir(k, a)〉@k � k�P�

(m-weak)

I, 〈e : E〉 � M (d̃:D̃)k.a?V−−−−−−−→ I′ � M′

I � M (e:E d̃:D̃)k.a?V−−−−−−−−−−→ I′ � M′ bn(e) � I
(m-open)

I, 〈e : �〉 � M (d̃:D̃)k.a!V−−−−−−−→ I′ � M′

I � (new e : E) M (e:Ed̃:D̃)k.a!V−−−−−−−−−−→ I′ � M′

(m-ctxt)

I � M μ−−→ I′ � M′

I � M | N μ−−→ I′ � M′ | N
I � N | M μ−−→ I′ � N | M′

bn(μ) � fn(N)

(m-new)

I, 〈e : �〉 � M μ−−→ I′, 〈e : �〉 � M′

I � (new e : E) M μ−−→ I′ � (new e : E) M′ bn(e) � μ

(m-comm)

I1 � M (ẽ:Ẽ)k.a?V−−−−−−−→ I′1 � M′
I2 � N (ẽ:Ẽ)k.a!V−−−−−−−→ I′2 � N′

I � M | N τ−−→ I � (new ẽ : Ẽ)(M′ | N′)

(m-comm)

I1 � M (ẽ:Ẽ)k.a!V−−−−−−−→ I′1 � M′
I2 � N (ẽ:Ẽ)k.a?V−−−−−−−→ I′2 � N′

I � M | N τ−−→ I � (new ẽ : Ẽ)(M′ | N′)

(m-move)

I � k�goto l.P� τ−−→β I � l�P�

(m-eq/neq)

I � k�if v1=v2 then P else Q� τ−−→β I � k�P� (v1=v2)
I � k�if v1=v2 then P else Q� τ−−→β I � k�Q� (v1�v2)

(m-split)

I � k�P | Q� τ−−→β I � k�P� | k�Q�
(m-l.create)

I � k�(newloc l : L) P� τ−−→β I � (new l : L) k�P�

(m-unwind)

I � k�∗P� τ−−→β I � k�∗P | P�
(m-c.create)

I � k�(newc c : C) P� τ−−→β I � (new c@k : C) k�P�

So we define the behaviour in terms of actions over configurations, that is

I � M μ−−→ I′ � M′ (1)

where the label μ can take any of the following forms

– τ: an internal action, requiring no participation by the user;
– (ẽ : Ẽ)k.a?V: the input of value V along the channel a, located at the site k. The

bound names in (ẽ) are freshly generated by the user;
– (ẽ : Ẽ)k.a!V: the output of value V along the channel a, located at the site k. The

bound names in (ẽ) are freshly generated by the environment.

The rules for defining these actions are given in Figure 3 and Figure 4, a slightly diffe-
rent but equivalent formulation to that given in [HMR04]. The guiding principle for (1)
to happen, is that M must be able to perform the action μ, and the user must have, in I,
the capability to participate in the action. The rules use some new notation for looking
up the types associated with channels in environments: the partial functions Ir(k, a)
and Iw(k, a) return the read, respectively write, type associated with the channel a at the
location k in I (of course these may not exist, and Iw(k, a) ↓, for example, indicates that
the write type is indeed defined). We extract names from entries in environments with
the function bn(−), defined by bn(u) = u and bn(u@w) = u; this is extended to actions
μ in the obvious manner. Notice also that we use the notation fn(−) for free variables.
Finally, we have labelled some internal actions in Figure 4 as β-actions, which will be
useful in the next section; but for the moment these labels can be ignored.

We now have a labelled transition system in which the states are configurations, and
we can apply the standard definition of (weak) bisimulation.

Fig. 3. External actions-in-context for DPI

Fig. 4. Internal actions-in-context for DPI
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(s-extr) (new e:E)(M | N) ≡ M | (new e:E) N, if bn(e) � fn(M)
(s-com) M | N ≡ N | M
(s-assoc) (M | N) | O ≡ M | (N | O)
(s-zero) M | 0 ≡ M

k�stop� ≡ 0
(s-flip) (new e:E) (new e′:E′) M ≡ (new e′:E′) (new e:E) M, if bn(e) � (e′:E′), bn(e′) � (e:E)

Fig. 5. Structural equivalence for Dpi

Definition 2 (Bisimulations). We say a binary relation over configurations is a bisi-
mulation if both it, and its inverse, satisfy the following transfer property

(IM � M) R (IN � N) (IM � M) R (IN � N)

implies

(IM′ � M′)

μ

�
(IM′ � M′) R (IN′ � N′)

μ̂

�

����������������������������������������������������

Here we use standard notation, see [MPW92], with μ==⇒ representing τ−−→∗ ◦ μ−−→◦ τ−−→∗,
and μ̂==⇒ meaning τ−−→∗, if μ is τ, and μ==⇒ otherwise. This allows a single internal move
to be matched by zero or more internal moves.

We let ≈bis denote the largest bisimulation between configurations. 
�
Rather than writing (I � M) ≈bis (I � N), we use the more suggestive notation I |=
M ≈bis N. This can be viewed as a relation between systems, parameterised over type
environments which represent user’s knowledge of system’s capabilities.

It is this bisimilarity ≈bis which is the object of our study: we aim to show that,
despite the complexity of its definition, tractable proof techniques can be developed for
it. Finally, we should remark this is not an arbitrarily chosen version of bisimulation
equivalence; in [HMR04] its definition is justified in detail: it is shown to be, in some
sense, the largest reasonable typed equivalence between Dpi systems.

The basic method for showing that two systems M and N are equivalent, relative to
an environment I, is to exhibit a parameterised relation R such that I |= M R N, and
demonstrate that it satisfies the requirements of being a bisimulation. In this section
we give a number of auxiliary methods, which can considerably relieve the burden of
exhibiting such relations. The following Theorem is proved in [HMR04], and justifies
a form of contextual reasoning.

Theorem 1 (Contextuality).

– I |= M ≈bis N and I 	 O imply I |= M | O ≈bis N | O
– I, 〈e : E〉 |= M ≈bis N implies I |= (new e : E) M ≈bis (new e : E) N 
�

We can also manipulate system descriptions. Let ≡ be the least equivalence rela-
tion which satisfies the rules in Figure 5, and is preserved by the constructs − | − and
(new e : E)(−); this is referred to as structural equivalence.

3 Proof Techniques
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Proposition 1. M ≡ N implies M ≈bis N. 
�
This means that we can employ the axioms in Figure 5 as equations for manipulations
of systems preserving the semantics. For example, we can omit the termination process
stop, because k�stop� ≡ 0 and M | 0 ≡ M.

Further equations can be obtained by considering the internal actions in Figure 4.
First observe that these actions do not change the environment of a configuration, and
therefore, for convenience, let us abbreviate I�M τ−−→I�M′ to the simplerI�M τ−−→M′.

Proposition 2. I � M τ−−→∗β N implies I |= M ≈bis N. 
�
This Proposition gives more valid equations for reasoning about systems. Typical exam-
ples, obtained just by examining those axioms in Figure 4 which describe β-actions,
include k�P |Q�≈bis k�P� | k�Q� and k�goto l.P�≈bis l�P� and k�(newc c : C) P�≈bis

(new c@k : C) k�P�.
But these β-labelled internal actions also provide us with a very powerful method

for approximating bisimulations.

Definition 3 (Bisimulations up-to-β). A binary relation between configurations is said
to be a bisimulation up-to-β if it, and its inverse, satisfy the following transfer property

(IM � M) R (IN � N) (IM � M) R (IN � N)

implies

(IM′ � M′)

μ

�
(IM′ � M′) Al ◦ R ◦ Ar (IN′ � N′)

μ̂

�

����������������������������������������������������

where Al is the relation ( τ−−→∗β ◦ ≡), and Ar is ≈bis; strictly speaking, these relations
are over systems, but they are lifted in the obvious manner to configurations. 
�
The idea of these approximate bisimulations is that to match an action (IM � M) μ−−→
(IM′ �M′) it is sufficient to find a β-derivative of the residual (IM′ �M′) τ−−→∗β (M′′) and
a matching action (IN � N) μ̂==⇒ (IN′ � N′) such that, up-to structural equivalence and
bisimilarity, respectively, the pairs (IM′ � M′′) and (IN′ � N′) are once more related.
Intuitively, a configuration can represent all the configurations to which it can evolve
using β-moves.

Proposition 3. If (I�M)R (I�N), R a bisimulation up-to-β, then I |= M ≈bis N. 
�

Let us consider the firewall example, first proposed in [CG98] and studied at length
in [GC99,LS00,MN03] within versions of Mobile Ambients. Intuitively, a firewall is a
domain to which access is restricted: only agents which are permitted, in some sense,
by the firewall, are allowed in. A simple example takes the form

F ⇐ (new f : F) f �P | ∗goto a.tell!〈 f 〉�

4 Crossing a Firewall
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Here f is the name of the firewall, which is created with the capabilities described
in the location type F, and P is some code which maintains the internal business of
the firewall. A typical example of the capabilities could be given by F = loc[info :
rw〈I〉, req : rw〈R〉], which allow reading to and writing from two resources info and
req in f . Then P could, for example, maintain appropriate services at the resources; of
course, it would also be able to use non-local resources it knows about in its current
environment.

The existence of the firewall is made known only to another domain, a, via the
information channel tell located there. An example is the following

A⇐ a�R | tell?(x) goto x.Q�

where a is informed of f by inputing on the local channel tell. If we consider an arbitrary
type environment Γ, we have the execution

Γ � F | A τ−−→∗ (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�) | a�R� (2)

so the code Q is allowed to execute locally within the firewall.
Notice that the resources to which Q has access within the firewall are controlled by

the capability type associated with the information channel tell. For example, suppose
in Γ the type associated with this channel is rw〈Fr〉, where Fr = loc[info : w〈I〉, req :
r〈R〉]. Then Fr is a supertype of the declaration type F: hence in (2), Q, having gained
entry into the firewall, can only write to resource info and read from req.

Let us now consider the correctness of this simple protocol, which allows access of
one agent, Q, to the firewall. Let Γ be any type environment such that

Γ 	 F | A (3)

Then one might expect to be able to derive

Γ |= F | A ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�) | a�R� (4)

But this happens not to be true, because of the implicit assumption that the information
channel tell in a can only be accessed by partners in the entry protocol, f and a. But, in
order for (3) to be true, we must have Γ 	a tell : rw〈Fr〉, and this allows other agents in
the environment access to tell. For example, consider

Rogue⇐ b�goto a.tell!〈b〉�
and suppose that the only type inference from Γ involving b is Γ 	 b : loc; so Γ is
not aware of any resources at b. Nevertheless Γ 	 Rogue, and therefore Contextuality
(Theorem 1) applied to (4) would give

Γ |= F | A | Rogue ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�) | a�R� | Rogue

But this is obviously not the case, as the left-hand system can reduce via a series of
τ-steps (representing the interaction between A and Rogue) to the state

Γ � F | a�R� | b�Q�
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Under reasonable assumptions about the code Q, the right-hand system has no corre-
sponding reduction to a similar state. On the left-hand side the code Q, now located at
b, can not run, while on the right-hand side, no matter what τ-steps are made, Q will be
able to execute at f . Thus (4) can not be true.

However, our framework allows us to amend the correctness statement (4) above,
taking into account the implicit assumption about the information channel tell. The
essential point is that the protocol works provided that only the firewall can write on tell.
This can be formalised by proving the equivalence between the two systems relative to
a restricted environment, one which does not allow write access to tell.

First some notation. Let us write Γ 	max
k V : T to mean

– Γ 	k V : T
– Γ 	k V : T′ implies T <: T′

In other words, T is the largest type which can be assigned to V . Now suppose I is a
type environment which satisfies

(i) I 	max
a tell : r〈F〉

(ii) I 	 a�R�
(iii) I 	 (new f : F) f �P�

The import of the first requirement, which is the most important, is that systems in the
computational context can not write on tell. The other requirements, which are mainly
for convenience, ensure that the residual behaviour at a and f is well-behaved, although
a side-effect is that they also can not write on tell. Under these assumptions, we prove

I |= F | A ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�) | a�R� (5)

First note that (up-to structural equivalence)

I � F | A τ−−→β F | At | a�R�
via (m-split) and (m-ctxt), where we use At as a shorthand for a�tell?(x) goto x.Q�.
So, by Propositions 1 and 2, it is sufficient to prove

I |= F | At | a�R� ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�) | a�R�

Here assumption (ii) comes in useful, as by Contextuality it is now sufficient to prove

I |= F | At ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�)
Then the left-hand side can be manipulated via the structural equivalence rule (s-extr),
thereby reducing the proof burden to

I|= (new f : F)( f �P | ∗goto a.tell!〈 f 〉� | At)≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q�)
and another application of Contextuality reduces this further to

I f |= f �P | ∗goto a.tell!〈 f 〉� | At ≈bis f �P | ∗goto a.tell!〈 f 〉 | Q�
where I f is a shorthand for I, 〈 f : F〉. Now let Fg represent f �∗goto a.tell!〈 f 〉�. Then
we have
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– I f � f �P | ∗goto a.tell!〈 f 〉� | At
τ−−→β f �P� | Fg | At

– I f � f �P | ∗goto a.tell!〈 f 〉 | Q� τ−−→∗β f �P� | Fg | f �Q�

So, further applications of Proposition 2, Contextuality and assumption (iii), give the
requirement

I f |= Fg | At ≈bis Fg | f �Q� (6)

This we establish directly by exhibiting a particular bisimulation.
We define the parameterised relation R by letting J |= M R N whenever

(a) J � M is a configuration and N is the same as M
(b) or J is I f and

– M has the form Fg | At | Πn (a�tell!〈 f 〉�)n

– N has the form Fg | f �Q� | Πn (a�tell!〈 f 〉�)n

where Πn (a�tell!〈 f 〉�)n, for some n ≥ 0, means n copies of a�tell!〈 f 〉� running in
parallel.

Proposition 4. The relation R defined above is a bisimulation up-to-β.

Proof. Suppose J |= M R N. Let us consider all possible actions from J � M. In fact,
it is sufficient to consider the case (b) above, when J and M and N are of the pre-
scribed form. The actions fall into one of three categories (for convenience we shorten
Πn (a�tell!〈 f 〉�)n with Πn).

– Here Fg is responsible, so the action takes the form I f �M τ−−→β f �∗goto a.tell!〈 f 〉 |
goto a.tell!〈 f 〉� | At | Πn. But I f � f �∗goto a.tell!〈 f 〉 | goto a.tell!〈 f 〉� | At | Πn

τ−−→β
Fg | a�tell!〈 f 〉� | At | Πn, and this can be matched, via clause (b), by I f � N τ−−→∗β
Fg | a�tell!〈 f 〉� | f �Q� | Πn, because Fg | a�tell!〈 f 〉� | At | Πn ≡ Fg | At | Πn+1 and
Fg | a�tell!〈 f 〉� | f �Q� | Πn ≡ Fg | f �Q� | Πn+1 and ≡ ⊆ ≈bis (Proposition 1).

– The second possibility is that the third component, Πn (a�tell!〈 f 〉�)n, is responsible
for the action, which must be a.tell! f . It is easy to see that I f � N can perform
exactly the same action, to a related configuration in clause (b).

– Finally, the middle component, At, might be involved in the action. Note that the
action can not be external, as the action a.tell?V (for some value V) is not allowed
by the environment. So it must be a communication, of the form I f � M τ−−→ Fg |
a�goto f .Q� | Πn−1. But the following β-steps can be carried out starting from this
configuration: I f � Fg | a�goto f .Q� | Πn−1

τ−−→∗β Fg | a�tell!〈 f 〉� | f �Q� | Πn−1 ≡
Fg | f �Q� | Πn, and this can be matched in clause (a) by the empty sequence of
internal actions from I f � N.

Symmetrically, it is easy to see that every action from J � N can be matched by one
fromJ �M, possibly preceded by a number of τ-actions: these latter are required when
f �Q� is responsible for the action to be matched. 
�

This, by using Proposition 3, completes our proof of (5) above.
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Note that the firewall F allows, in principle, multiple entries of agents from a. So,
for example, if R, in (5), had the form R′ | tell?(x) goto x.Q′, then the reasoning we have
just completed could be repeated, to prove

I |= F | a�R� ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q′�) | a�R′� (7)

Moreover, we know f can not appear in Q; therefore, (s-extr) from Figure 5 together
with (7) can be combined with (5), to prove

I |= F | A ≈bis (new f : F)( f �P | ∗goto a.tell!〈 f 〉 | Q | Q′�) | a�R′�

where the domain a has managed to send two separate agents into the firewall.

We consider in this section the canonical example of a server and its clients. A server
is a domain providing services to potentially arbitrary clients, as e.g. the following

S ⇐ s�∗req?(x, y@z)goto z.y!〈isprime(x)〉 | S ′�

which provides an iterated service at resource req, and internal code, S ′, to setup and
administrate the site. The channel req expects to receive a structured value of the form
(i, c@l). This is a pair, consisting of an integer i, and a return address c@l, that is the
name of a reply channel, c, together with the location of that channel, l. The server
then executes the procedure isprime(−) on the incoming value, i, sends a process to the
return site, and delivers the result on the return channel there. The procedure isprime
is not directly part of the language, but one can easily imagine an extension supporting
let expressions, in which case the body of the server would be better represented as
∗req?(x, y@z)let b = isprime(x) in goto z.y!〈b〉, thereby emphasising that the procedure
is executed at the server’s site.

Typical clients of the server are domains taking the form

Ci ⇐ ci�(newc r : R) goto s.req!〈vi, r@ci〉 |C′i�

These generate a private reply channel r at the declaration type R = rw〈bool〉, and send
a process to the server (whose address they need to know) asking for the primality of
an integer; concurrently, the agent C′i executes at the site.

As in the case of the firewall, the correctness of the protocol between the server
S and its clients Ci depends on the proper management of the access to the request
channel req: clients should only have write access, while the server only needs read
access. So the correctness of the protocol can be expressed as an equivalence between
two systems, relative to a restricted environment. Let I be a type environment satisfying

(i) I 	max
s req : w〈 int,w〈bool〉@loc 〉

(ii) I 	 s�S ′�
(iii) I 	 Ci

5 A Server and Its Clients
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The first requirement establishes the computational context can not read on req, while
the following points ensure that the residual behaviour at the server and the clients is
well-behaved, with the side-effect that neither S ′ nor C′i can read on req.

First, let us show that one client interacts correctly with the server

I |= S |C1 ≈bis S | c1�(newc r : R) r!〈isprime(v1)〉 |C′1� (8)

Note that (up-to-structural equivalence)

I � S |C1
τ−−→∗β (new r@c1 : R) S r | s�S ′� | s�req!〈v1, r@c1〉� | c1�C′1�

where we use S r as a shorthand for s�∗req?(x, y@z)goto z.y!〈isprime(x)〉�, and

I � S | c1�(newc r : R) r!〈isprime(v1)〉 |C′1� τ−−→∗β
(new r@c1 : R) S r | s�S ′� | c1�r!〈isprime(v1)〉� | c1�C′1�

By Propositions 1, 2, Contextuality, and assumptions (ii), (iii), it is therefore sufficient
to prove

Ir |= S r | s�req!〈v1, r@c1〉� ≈bis S r | c1�r!〈isprime(v1)〉�

where Ir is a shorthand for I, 〈r@c1 : R〉. We establish this equivalence by exhibiting a
particular bisimulation. Let R be the parameterised relation defined by lettingJ |= MR
N whenever

(a) J � M is a configuration and N is the same as M
(b) or J is Ir and

– M has the form S r | s�req!〈v1, r@c1〉� | Πn

– N has the form S r | c1�r!〈isprime(v1)〉� | Πn

where Πn is a shorthand for Πn (s�req?(x, y@z)goto z.y!〈isprime(x)〉�)n

(c) or J is I′r, where the domain of I′r is a superset of that of Ir, and

– M has the form S r | s�req!〈v1, r@c1〉� | Πn | Π j∈J (k j�d j!
〈
isprime(i j)

〉
�)

– N has the form S r | c1�r!〈isprime(v1)〉� | Πn | Π j∈J (k j�d j!
〈
isprime(i j)

〉
�)

such that I′r 	max
s req:w〈 int,w〈bool〉@loc 〉, and, for every j ∈ J: I′r 	k j

d j:w〈bool〉.
The notationΠ j∈J (k j�d j!

〈
isprime(i j)

〉
�) means (different) instances of systems run-

ning in parallel.

Proposition 5. The relation R defined above is a bisimulation up-to-β.

Proof. Suppose J |= M R N. The actions from J � M in the case (b) above fall into
one of three categories.

– First S r is responsible: Ir � M τ−−→∗β S r |Π1 | s�req!〈v1, r@c1〉� |Πn, and this can be
matched by Ir�N τ−−→∗βS r |Π1 |c1�r!〈isprime(v1)〉� |Πn, because both configurations
belong to R, clause (b), up-to structural equivalence.
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– The third component, Πn (s�req?(x, y@z)goto z.y!〈isprime(x)〉�)n, is responsible for
the action, which is either s.req?

〈
i j, d j@k j

〉
or (e:E)s.req?

〈
i j, d j@k j

〉
. These ac-

tions correspond to the delivery of (new) data by the environment (from which the
system is allowed to learn infinitely new names), and are followed by the action
(m-move). However, it is easy to see that Ir � N can perform exactly the same
actions, to a related configuration in clause (c).

– Finally, the middle component, s�req!〈v1, r@c1〉�, may be involved in the action,
which must be a communication: Ir �M τ−−→ S r | s�goto c1.r!〈isprime(v1)〉� |Πn−1.
Then the following β-steps can be carried out: Ir � S r | s�goto c1.r!〈isprime(v1)〉� |
Πn−1

τ−−→∗β S r |Π1 |c1�r!〈isprime(v1)〉� |Πn−1, and this configuration can be matched,
in clause (a), by the empty sequence of actions from Ir � N.

Symmetrically, every action performed by Ir �N can be matched by Ir �M; for exam-
ple, consider the output action by the 2nd component of N: Ir�S r |c1�r!〈isprime(v1)〉� |
Πn

c1.r!〈isprime(v1)〉−−−−−−−−−−−−→ Ir � S r | Πn. This can be easily matched by Ir � M, via clause (a),
using τ-steps followed by the same action.

Finally, it is not problematic to check that all configurations in R by virtue of clause
(c) can have their respective actions properly matched. 
�
This completes our proof of (8), that one client can interact correctly with the server.
Contextual reasoning can now be employed to generalise this result to an arbitrary num-
ber of clients. For example, let us show

I |= S |C1 |C2 ≈bis S | Πi∈{1,2} ci�(newc r : R) r!〈isprime(vi)〉 |C′i� (9)

Because of I 	 C2 (requirement (iii) above), Contextuality applied to (8) gives

I |= S |C1 |C2 ≈bis S | c1�(newc r : R) r!〈isprime(v1)〉 |C′1� |C2 (10)

Repeating the analysis of C1 on C2, we obtain

I |= S |C2 ≈bis S | c2�(newc r : R) r!〈isprime(v2)〉 |C′2�
But I 	 C1 (same requirement (iii)) also implies I 	 c1�(newc r : R) r!〈isprime(v1)〉 |
C′1�, and therefore by Contextuality we obtain

I |= S |C2 | c1�(newc r : R) r!〈isprime(v1)〉 |C′1� ≈bis

S | c2�(newc r : R) r!〈isprime(v2)〉 |C′2� | c1�(newc r : R) r!〈isprime(v1)〉 |C′1�
So we conclude (9) from (10), Proposition 1, and transitivity of ≈bis.

It is then a simple matter to extend this reasoning, using induction, to show that an
arbitrary number of clients can be handled

I |= S | Πi∈{1,...,n} Ci ≈bis S | Πi∈{1,...,n} ci�(newc r : R) r!〈isprime(vi)〉 |C′i�
6 Metaservers

In this section we describe a memory service by involving the newloc operator of Dpi,
which allows the creation of new instances of sites. A (meta)server contains a resource
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setup, where requests are received, and installs the service at a new site, thus providing
personalised treatment to its clients.

A first version of the server receives a return address, generates a new located me-
mory cell, and installs some code there, meanwhile delivering the new location name at
the reply address

S ⇐ s�∗setup?(y@z) (newloc m : M) goto m.Mem | goto z.y!〈m〉�
where Mem is the code running at the location m, and for instance can take the form

Mem⇐ (newc v : V) v!〈0〉 | ∗get?(y@z) v?(w) (goto z.y!〈w〉 | v!〈w〉)
| ∗put?(x, y@z) v?(w) (goto z.y! | v!〈x〉)

Here we are using the channel v as a restricted form of memory cell: the value it contains
(whose initial value is set to 0) disappears once it is read, therefore it has to be reinstated.
The two methods get and put can be seen as the canonical ways to access the cell,
therefore the declaration type of the new site can be set to M = loc[get : Tg, put :
Tp]. Notice that we have chosen this particular instantiation for the running code Mem
just for reasons of simplicity, as the proofs we are going to develop are, in principle,
independent of it.

Clients of the memory service generate a new reply channel, send a request to the
server, and wait for the server to deliver the new memory cell

Ci ⇐ ci�(newc r : R) goto s.setup!〈r@ci〉 | r?(x) Pi(x)�

where Pi(x) is parametric code which depends on (the name of) the new site, x, and
R = rw〈M〉.

An alternative, slightly different version of the server leaves to the clients the re-
sponsibility to create the memory cells, just installing the servicing code at the proffered
site

S ′ ⇐ s′�∗setup′?(x, y@z) goto x.Mem | goto z.y!�

Correspondingly, clients generate an acknowledgement channel and a new location,
send a request to the server, and await the server to acknowledge the service has been
installed

C′i ⇐ ci�(newc t : T) (newloc mi : M) goto s′.setup′!〈mi, t@ci〉 | t?Pi(mi)�

where T = rw〈unit〉.
We want now to relate the two different approaches, therefore connecting the be-

haviour of the two following systems, relative to a typing environment I
I |= S |C1 |C2 (11)

I |= S ′ |C′1 |C′2 (12)

Our goal is to establish that, from the point of view of the clients, under certain hy-
potheses the two kinds of servers S and S ′ lead to equivalent behaviour. This means
finding a suitable type environment I such that

I |= S |C1 |C2 ≈bis S ′ |C′1 |C′2 (13)
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It is immediate to notice that the correctness of this protocol requires that the com-
putational context should have neither write nor read access to the setup and setup′
channels. Thus, the equivalence can be proved relative to a restricted environment I,
satisfying

I 	max
s setup : � I 	max

s′ setup′ : �
Now, the internal actions allow to deduce a derivation from (11) and (12) to the systems

I |= S | Πi∈{1,2} (new mi:M)(mi�Mem� | ci�Pi(mi)�) (14)

I |= S ′ | Πi∈{1,2} (new mi:M)(mi�Mem� | ci�Pi(mi)�) (15)

Therefore we address (13) in three steps: first we prove that the two pairs of systems
(11),(14) and (12),(15) are equivalent, then we connect the systems (14) and (15) by a
technical lemma. That is

(i) I |= S | Πi∈{1,2} Ci ≈bis S | Πi∈{1,2} (new mi : M)(mi�Mem� | ci�Pi(mi)�)
(ii) I |= S ′ | Πi∈{1,2} C′i ≈bis S ′ | Πi∈{1,2} (new mi : M)(mi�Mem� | ci�Pi(mi)�)

(iii) I |= l�∗a?(x)P(x)� |Q ≈bis Q for every I,Q, l, a, P s. t. I 	max
l a:� and a � fn(Q)

The proof of the point (iii) is straightforward, as a witness bisimulation R can be
promptly defined by letting J |= M R N whenever

(a) J � M and J � N are configurations
(b) J is I and M has the form l�∗a?(x)P(x)� | Πn (l�a?(x)P(x)�)n | N
which can be easily proved to be a bisimulation up-to-β.

We argue below both the proof of (i) (the one of (ii) is completely similar) and how
to get the proof of (13) from those of (i), (ii), (iii). Let us start from the latter.

Using the equations (i) and (ii), the equivalence (13) can be reduced to

I |= S | Πi∈{1,2} Qi ≈bis S ′ | Πi∈{1,2} Qi (16)

where Qi denotes (new mi : M)(mi�Mem� | ci�Pi(mi)�). It is natural now to assume that
the conditions required by the lemma (iii) are satisfied by the code Qi (setup, setup′ �
fn(Qi), in the case). Hence, it is possible to apply that lemma to both the sides of the
equation (16), thus obtaining an identity.

Finally, we address the point (i). First notice that (up-to structural equivalence)

I � S | Πi∈{1,2} Ci
τ−−→∗β

(new r1@c1 : R, r2@c2 : R) S | Πi∈{1,2} (s�setup!〈ri@ci〉� | ci�ri?(x) Pi(x)�)

and S |Πi∈{1,2} Qi ≡ (new m1 : M,m2 : M) S |Πi∈{1,2} (mi�Mem�|ci�Pi(mi)�). Therefore,
by Propositions 1, 2, we reduce (i) to the following

I |= (new r1@c1 : R, r2@c2 : R) S | Πi∈{1,2} (s�setup!〈ri@ci〉� | ci�ri?(x) Pi(x)�) ≈bis

(new m1 : M,m2 : M) S | Πi∈{1,2} (mi�Mem� | ci�Pi(mi)�)

which we prove by exhibiting a particular bisimulation. Let us fix before some short-
hand notation

C!i � ci�ri!〈mi〉� C?i � ci�ri?(x) Pi(x)�
Mi � mi�Mem� S !i � s�setup!〈ri@ci〉�

CPi � ci�Pi(mi)� B � (new m1,m2 : M) S | Πn | M1 |CP1 | M2 |CP2
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and Πn � Πn (s�setup?(y@z) (newloc m : M) goto m.Mem | goto z.y!〈m〉�)n. We define
the relation R by letting J |= P R Q whenever J � P is a configuration and Q is the
same as P, or J is I and Q has the form B and P has the form

(a) (new r1@c1 : R, r2@c2 : R) S | Πn | S !1 | S !2 |C?1 |C?2

(b) or (new r1@c1 : R, r2@c2 : R,m1 : M) S | Πn | S !2 |C?2 | M1 |C!1 |C?1

(c) or (new r1@c1 : R, r2@c2 : R,m2 : M) S | Πn | S !1 |C?1 | M2 |C!2 |C?2

(d) or (new r2@c2 : R,m1 : M) S | Πn | S !2 |C?2 | M1 |CP1

(e) or (new r1@c1 : R,m2 : M) S | Πn | S !1 |C?1 | M2 |CP2

(f) or (new r1@c1 : R, r2@c2 : R,m1 : M,m2 : M) S | Πn | M1 |C!1 |C?1 | M2 |C!2 |C?2

(g) or (new r2@c2 : R,m1 : M,m2 : M) S | Πn | M1 |CP1 | M2 |C!2 |C?2

(h) or (new r1@c1 : R,m1 : M,m2 : M) S | Πn | M1 |C!1 |C?1 | M2 |CP2

Proposition 6. The relation R defined above is a bisimulation up-to-β. 
�
We omit the proof of this Proposition, as no extra critical aspects arise with respect
to the proofs detailed in the previous two sections. Summing up, we have shown (13)
under the following assumptions

– I 	max
s setup : � and I 	max

s′ setup′ : �
– setup � fn(Mem) and setup′ � fn(Mem)
– setup � fn(Pi) and setup′ � fn(Pi)

It is then possible to consider an arbitrary number of clients. The correctness of these
can once more be addressed using the techniques, such as Contextuality, discussed in
the previous sections.

Proofs of correctness of protocols or language translations are often carried out with
respect to contextual equivalences [GC99,LS00]. Nevertheless, the use of bisimulation-
based notions of equivalences enables such proofs to be considerably simplified. For
instance, in [MN03], two up-to proof techniques (up-to expansion and up-to context)
are borrowed from the picalculus and adapted to develop an algebraic theory and prove
the correctness of the perfect firewall protocol [CG98]. Our paper tries to contribute to
this second approach, using bisimulations, extending their application to situations in
which the environment plays a significant role in system behaviour.

In this document, we have defined and illustrated a collection of methods for pro-
ving bisimulation equivalences for distributed, mobile systems, modelled with the Dpi
calculus [HR02b]. In order to cope with bisimulation equivalence in Dpi [HMR04],
it is natural to look for bisimulations up-to in the spirit of [SM92]. More precisely, we
have introduced in our work bisimulations up-to β-reductions, which have been inspired
by a similar approach to concurrent ML [JR04]. This technique relieves the burden of
exhibiting witness bisimulations, and its feasibility has been proved to be successful,
combined with Contextuality, for addressing the verification of sample access proto-
cols, such as crossing a firewall, the interaction between a server and its clients, and
metaservers providing memory services.

7 Related and Future Work
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In the future, we plan to test further with the up-to β-reduction technique we have
devised, by dealing with more involved protocols, possibly in the spirit of [US01]. That
work uses a novel notion of coupled simulation that, despite not coinciding with any
contextual equivalence, allows the proof of correctness of a simple central-forwarding-
server algorithm.

We would like also to extend the results and techniques stated for Dpi to the more
involved SafeDpi [HRY04], which takes into account extra safety aspects of distributed
systems.

Acknowledgements. The authors would like to acknowledge the financial support of
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Deriving Non-determinism from Conjunction
and Disjunction

1 Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences,
South Fourth Street No.4, Zhong Guan Cun, 100080, Beijing, P.R. China

2 Lehrstuhl für Praktische Informatik II, Fakultät für Mathematik und Informatik,
Mannheim Universität, D7,27, 68163, Mannheim, Deutschland

Abstract. In this paper, we show that the non-deterministic choice “+”,
which was proposed as a primitive operator in Synchronization Tree Logic
(STL for short) can be defined essentially by conjunction and disjunction
in the μ-calculus (μM for short). This is obtained by extending the μ-
calculus with the non-deterministic choice “+” (denoted by μM+) and
then showing that μM+ can be translated into μM. Furthermore, we also
prove that STL can be encoded into μM+ and therefore into μM.

1 Introduction

Compositional methods allow one to build up a large system by composing exist-
ing systems with the defined constructors and reduce the problem of correctness
for a complex system to similar and simpler correctness problems for the sub-
systems. Because the complexity of large systems is normally untractable, it is
necessary that a method for developing these systems is compositional (verti-
cally or horizontally) in order to avoid combinatorial explosion in specifying and
verifying these systems.

It is widely agreed that modal and temporal logics such as the μ-calculus
[5] and Hennessy-Milner Logic (HML for short) [4], are an appropriate tool for
the specification and proof of reactive systems. In many cases, these systems
can be modelled by the term language T [{ε}, {+}, Act,X ] of an algebra with a
congruence relation ∼, where T [{ε}, {+}, Act,X ] is constructed from a constant
ε by using a set Act of unary operators, a binary operator + and recursion.
T [{ε}, {+}, Act,X ] is at the base of many process algebras, where Act repre-
sents a set of action names, + the non-deterministic choice and ε the system
performing no actions. The terms can be interpreted over trees labeled over Act -
synchronization trees - following the terminology of [8]. It is required that modal
logics L meet the condition of adequacy, namely,

∀t1, t2 ∈ T [{ε}, {+}, Act,X ] (t1 ∼ t2 iff ∀φ ∈ L(t1 |= φ iff t2 |= φ)).
� This work is supported in part by CNSF-60493200 and CNSF-60421001.
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I.e, the congruence ∼ and the equivalence relation induced by the logic agree.
For example, HML has the property, i.e., two CCS terms are equal up to strong
bisimulation if and only if they satisfy the same HML properties, see [4].

On the other hand, it is desirable that the logics have compositionality, i.e.
there exists a connection between the connectives of these logics and the con-
structors of programs so that one can reduce the problem of correctness for a
complex system to similar and simpler correctness problems for the subsystems.
It seems that many classic modal logics like the μ-calculus and HML do not have
such a property.

Motivated by the above two requirements, Graf and Sifakis proposed a modal
logic, called Synchronization Tree Logic (STL) [2]. The language of formulae of
STL is generated from the constants ε,% by using the boolean connectives, the
set 2Act of unary operators where Act is a set of actions, the binary operator +
and fixpoint operators. The operator + of the logic is an extension of the one + of
programs. P |= φ1 +φ2 means that there exist P1 and P2 such that P ∼ P1 +P2,
P1 |= φ1 and P2 |= φ2. Therefore, T [{ε}, {+}, Act,X ] is contained in STL, i.e.,
programs are formulae of the logic. In order to avoid confusions, we will use φP

to denote the formula corresponding to the program P . So, the verification of
an assertion P |= φ can be reduced to the syntax-directed proof of the validity
of the formula φP ⇒ φ.

It is clear that STL is more expressive than μM since it is not hard to encode
μM into STL, for example, [A]φ can be defined as ¬(A¬φSTL +%) and 〈A〉φ as
AφSTL + %, where A ⊆ Act and φSTL stands for the counterpart of φ in STL.
But for the converse direction, by our knowledge, it seems that until up to now
it is still open.

In this paper, we will study the issue of the definability of + in μM and give
an affirmative answer. We show that the choice + can be defined essentially by
conjunction and disjunction in μM. This is captured by extending μM with the
choice + to μM+ and then encoding μM+ into μM. Furthermore, we show that
STL can be translated into μM+, and we can thus claim that μM is as expressive
as STL.

The rest of this paper is organized as follows: Some basic notions are defined
in Section 2. Section 3 briefly reviews μM firstly, then extends it with the non-
deterministic choice + to μM+. Section 4 is devoted to encoding μM+ into μM.
STL and some related results are provided in Section 5. Section 6 is devoted to
translating STL into μM+. A short conclusion is given in Section 7.

2 Preliminaries

Consider a term language T built from the constants ε, τ , and a set X of pro-
cess variables by using a set Act of unary operators, a binary operator +, and
recursion.

Formally, T is formed according to the following rules:

– ε, τ ∈ T , X ⊆ T ,
– aP, P1 + P2, rec x.P ∈ T if a ∈ Act, x ∈ X , P, P1, P2 ∈ T .
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We denote by T [{ε}, {+}, Act,X ] the sub-language which consists of all the
well-guarded and closed terms in T , where rec x.P is well-guarded means that
any occurrence of the variable x in P is within the scope of an operator of Act.

For a given P ∈ T , the set of actions that occur in P is called its sort, denoted
S(P ), inductively defined by S(ε) =̂ ∅, S(τ) =̂Act, S(x) =̂ ∅, S(aP ) =̂ {a} ∪
S(P ), S(P1 + P2) =̂ S(P1) ∪ S(P2), S(rec x.P ) =̂ S(P ).

Intuitively, we consider that elements of T [{ε}, {+}, Act,X ] represent pro-
grams: Act is a set of atomic actions; + stands for non-deterministic choice; and
ε for the program performing no actions; τ can be conceived as a program that
behaves like chaos in CSP [3] which can do anything.

A structured operational semantics of T in Plotkin’s Style is defined as fol-
lows:

Act
aP

a→ P
Nd P1

a→ P ′
1

P1 + P2
a→ P ′

1, P2 + P1
a→ P ′

1

Rec P1[rec x.P1/x] a→ P ′
1

rec x.P1
a→ P ′

1

Chaos
τ

a→ Q
for any a ∈ Act and Q ∈ T .

A process term P ∈ T determines a labelled transition system, i.e., a tuple
T (P ) = (Σ, S(P ),→, P ), where Σ is the set of states which is reachable from
P , and P ∈ Σ is the initial state, →⊆ Σ × S(P ) × Σ is the set of transitions,
derived from the above operational semantics.

Remark 1. 1. Any transition system representing a term of T [{ε}, {+}, Act,X ]
is always finitely branching as only well-guarded terms are admitted;

2. The sort of each term of T [{ε}, {+}, Act,X ] is finite as so is its syntax.

Definition 1. A binary relation S over T [{ε}, {+}, Act,X ] is called a strong
bisimulation if (P,Q) ∈ S implies

– whenever P
a→ P ′ then, for some Q′, Q a→ Q′ and (P ′, Q′) ∈ S, for any

a ∈ Act; and
– whenever Q

a→ Q′ then, for some P ′, P a→ P ′ and (P ′, Q′) ∈ S for any
a ∈ Act.

Given two processes P,Q ∈ T [{ε}, {+}, Act,X ], P and Q are strongly bisimilar,
written P ∼ Q, if (P,Q) ∈ S for some strong bisimulation S.

It is shown in [7] that ∼ is a congruence on T [{ε}, {+}, Act,X ]. [1] proved
the following result, namely,

Lemma 1. For each P ∈ T [{ε}, {+}, Act,X ], there exists a process of the form
Σm

i=1Σ
iai
j=1aiPi,j such that P ∼ Σm

i=1Σ
iai
j=1aiPi,j, where ai �= aj if i �= j.

Note that an empty sum is abbreviated as ε.

3 The μ- alculus and Its Extension with “+”

In this section, we first briefly review the μ-calculus; then extend the logic with
the non-deterministic operator “+”. We denote by μM+ the extension.

C
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For easing to encode STL into μM, we use the slightly generalized version
of the μ-calculus (see [9]) in the sense that modalities on sets of actions are
adopted rather than modalities on a single action, although the two formalisms
are equivalent if the set of actions is assumed to be finite.

3.1 μM

Let Act be a set of atomic actions, ranged over by a, b, c, . . .. A,B, . . . stand for
the subsets of Act. Let tt be propositional constant as usual, and X be a set of
variables, ranged over by x, y, z, . . ..

Formulae of μM are generated by:

φ ::= tt | x | ¬φ | φ ∨ φ | 〈A〉φ | [A]φ | μx.φ,

where A ⊆ Act and x ∈ X .
The notions of scope, bound and free occurrences of variables, closed and open

formulae, etc. are the same as in first-order predicate logic, where μx is treated
as quantifier. We will use fn(φ) to stand for the variables that have some free
occurrence in φ, and bn(φ) for the variables that have some bound occurrence in
φ. We say that φ is positive ( negative ) in the variable x if every free occurrence
of x in φ occurs within the scope of an even (odd) number of negations ¬. A
formula φ is said positive (negative) if for every x ∈ bn(φ), its scope in φ is
positive (negative) in x. A formula φ is called strongly positive if it is positive
and each occurrence of x is within the scope of an even number of negations ¬
for any x ∈ fn(φ). For example, let φ1=̂x∨μx.¬¬x, φ2=̂¬y∨μx.¬¬x. It is clear
that φ1 and φ2 both are positive; however, φ1 is strongly positive as well, but
φ2 is not. We say that x is guarded in φ if every occurrence of x in φ is within
the scope of 〈A〉 or [A] for some A ⊆ Act. A formula φ is called guarded if each
variable in bn(φ) is guarded.

If A = {a}, we directly write 〈a〉φ and [a]φ instead of 〈{a}〉φ and [{a}]φ
respectively.

We denote by Lμ(Act) the language of formulae of μM that are positive and
guarded, by cLμ(Act) the set of all closed formulae in Lμ(Act). As [11] showed
that any formula φ ∈ μM is equivalent to a positive guarded formula φ′, we
theorefore only focus on Lμ(Act) and cLμ(Act) in what follows.

A valuation ρ is a mapping with the type ρ : X → 2T [{ε},{+},Act,X ], which
associates a set of processes with each propositional variable. ρ[x � A] agrees
with ρ except for assigning A to x.

Definition 2. The semantics of Lμ(Act) under a valuation ρ is given by a sat-
isfaction relation between T [{ε}, {+}, Act,X ] and Lμ(Act) relative to ρ, denoted
by |=ρ

μM, inductively defined as follows:
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P |=ρ
μM tt,

P |=ρ
μM x, iff P ∈ ρ(x),

P |=ρ
μM ¬φ iff P �|=ρ

μM φ,

P |=ρ
μM φ1 ∨ φ2 iff P |=ρ

μM φ1 or P |=ρ
μM φ2,

P |=ρ
μM 〈A〉φ iff ∃a ∈ A,∃P ′.P a→ P ′ and P ′ |=ρ

μM φ,

P |=ρ
μM [A]φ iff ∀a ∈ A,∀P ′.P a→ P ′ implies P ′ |=ρ

μM φ,

P |=ρ
μM μx.φ iff P ∈

⋂
{A | {Q | Q |=ρ[x�A]

μM φ} ⊆ A},

where P, P ′ ∈ T [{ε}, {+}, Act,X ] and A ⊆ T [{ε}, {+}, Act,X ].

Note that the restriction that all formulae of Lμ(Act) are positive guarantees
that the interpretation of a formula of the form μx.φ is well defined by the
Tarski-Knaster Theorem [10].

Since the meaning of a closed formula φ is independent of valuations, we will
abbreviate P |=ρ

μM φ as P |=μM φ for any valuation ρ.
The following derived operators are useful:

ff =̂ ¬tt,

φ1 ∧ φ2 =̂ ¬((¬φ1) ∨ (¬φ2)),
φ1 ⇒ φ2 =̂ (¬φ1) ∨ φ2,

φ1 ⇔ φ2 =̂ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1),
νx.φ =̂ ¬(μx.¬φ{¬x/x}).

Convention: In order to improve the readability, in the later, we assume the
binding precedence among the operators as “¬” > “∨” = “∧” > “μx” = “νx”
> “⇒” = “⇔”.

3.2 μM+

μM+ is an extension of μM with the non-deterministic choice “+”. Informally,
φ+ψ holds in a process P means that there exist P1 and P2 such that P ∼ P1+P2,
P1 satisfies φ and P2 meets ψ.

Given a set Act of atomic actions and a set X of variables, formulae of μM+

are generated as follows:

φ ::= tt | x | ¬φ | φ ∨ φ | 〈A〉φ | [A]φ | φ + φ | μx.φ,

where x ∈ X and A ⊆ Act.
Some notions for μM+ can be defined same as in μM. We will use L+

μ (Act)
to denote the language of formulae of μM+ that are guarded and positive and
cL+

μ (Act) to stand for the set of closed formulae in L+
μ (Act).
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Definition 3. A formula φ ∈ L+
μ (Act) is called strictly guarded, if each variable

x ∈ fn(φ)∪bn(φ) is guarded and does not occur in any sub-formula of the forms
x + ψ or ¬x + ψ.

Note that strictly guarded is stronger than guarded, for instance, 〈A〉(x + y)
is guarded, but not strictly guarded.

Definition 4. The semantics of L+
μ (Act) under a given valuation ρ is given by

a satisfaction relation between T [{ε}, {+}, Act,X ] and L+
μ (Act) relative to ρ,

denoted by |=ρ
μM+ . The definition of |=ρ

μM+ contains all clauses listed in Defini-
tion 2, in addition to including the following clause for interpreting “+”:

P |=ρ
μM+ φ1 + φ2 iff ∃P1∃P2.P ∼ P1 + P2, P1 |=ρ

μM+ φ1 and P2 |=ρ
μM+ φ2,

where P, P1, P2 ∈ T [{ε}, {+}, Act,X ].

Since the meaning of a closed formula φ is independent of valuations, we
will abbreviate P |=ρ

μM+ φ as P |=μM+ φ for any valuation ρ. A formula φ is
valid, written |=μM+ φ, if P |=ρ

μM+ φ for any P ∈ T [{ε}, {+}, Act,X ] and any
valuation ρ. Sometimes, we write φ directly instead of |=μM+ φ for simplicity.

It is clear that Lμ(Act) ⊆ L+
μ (Act) and cLμ(Act) ⊆ cL+

μ (Act).
Convention We will assume that “+” has a priority over all other binary oper-
ators, but “¬” has a higher priority to it. Given a set A ⊂ B, we will use Ā to
stand for the complement B − A.

3.3 Some Results on μM and μM+

From Definition 4, it is easy to see that “+” is monotonic. That is,

Proposition 1. If φ1 ⇒ φ2 and ψ1 ⇒ ψ2 then φ1 + ψ1 ⇒ φ2 + ψ2.

Definition 5. Given a set of process A ⊆ T [{ε}, {+}, Act,X ], A is bisimulation
closed if ∀P ∈ A and ∀Q ∈ T [{ε}, {+}, Act,X ], P ∼ Q implies that Q ∈ A. For
convenience, from now on, we will abbreviate bisimulation closed as B.C.. A
valuation ρ is B.C. if for all x ∈ X ρ(x) is B.C..

Regarding the above definition, we have the following results:

Lemma 2. If A1,A2 ⊆ T [{ε}, {+}, Act,X ] are B.C., then

1. Ā1,A1 ∩ A2 and A1 ∪ A2 are B.C.,
2. {P ∈ T [{ε}, {+}, Act,X ] | ifP

a→ P ′ and a ∈ A then P ′ ∈ A1} is B.C.,
3. {P ∈ T [{ε}, {+}, Act,X ] | ∃P ′ ∈ A1.∃a ∈ A.P

a→ P ′} is B.C.,
4. A1+A2 is B.C., where A1+A2 denotes the set {P | ∃P1 ∈ A1.∃P2 ∈ A2.P ∼

P1 + P2}.
For any set of processes A ⊆ T [{ε}, {+}, Act,X ], we can associate with it

the following subset:

Ad =̂ {P ∈ A | if P ∼ Q and Q ∈ T [{ε}, {+}, Act,X ] then Q ∈ A}.
The set Ad is the largest bisimulation closed set contained in A.
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Lemma 3. For any set A,Ai ⊆ T [{ε}, {+}, Act,X ] for i = 1, 2,
1. Ad is B.C., 2. Ad ⊆ A,
3. Ad = A if A is B.C., 4. Ad

1 ⊆ Ad
2 if A1 ⊆ A2,

5. Ad
1 + Ad

2 ⊆ Ad if A1 + A2 ⊆ A.

We use ρd to stand for the valuation defined by ρd(x) = ρ(x)d. By Lemma 3,
it is clear that ρd is B.C. for any valuation ρ. From now on, we will use BCV
to stand for the set of bisimulation closed valuations.

In the following, we will use |[ φ ]|ρ to denote the set of processes that meet φ

under the valuation ρ, i.e., |[ φ ]|ρ =̂ {P ∈ T [{ε}, {+}, Act,X ] | P |=ρ
μM+ φ}. We

will write ρ ⊆ ρ′ if ρ(x) ⊆ ρ′(x) for any x ∈ X .

Proposition 2. For any φ ∈ L+
μ (Act), if φ is strongly positive and ρ ⊆ ρ′, then

|[ φ ]|ρ ⊆ |[ φ ]|ρ′ .

Lemma 4. For any φ ∈ L+
μ (Act) which is strongly positive, any valuation ρ,

and A ∈ T [{ε}, {+}, Act,X ], then

1. If ρ is B.C., then |[ φ ]|ρ is B.C. as well;
2. |[ φ ]|ρd ⊆ Ad if |[ φ ]|ρ ⊆ A.

Proof. Similar to the proof for Proposition 3 in Section 5.4 in [9], simultaneously
proving these two statements by induction on φ, the proof is done. &

As [9] pointed out that each formula of cLμ(Act) defines a bisimulation in-
variant property, the following theorem indicates that every formula in cL+

μ (Act)
is bisimulation invariant as well. The forward direction of the theorem follows
immediately from the above lemma; the converse direction comes from the fact
cLμ(Act) ⊆ cL+

μ (Act).

Theorem 1. For any P,Q ∈ T [{ε}, {+}, Act,X ], P ∼ Q iff for each φ ∈
cL+

μ (Act), P |=μM+ φ iff Q |=μM+ φ.

The following lemmas can be proved by Definition 4.

Lemma 5.

(1) φ + ff ⇔ ff (2) tt + tt ⇔ tt
(3) [A]tt ⇔ tt (4) 〈A〉ff ⇔ ff
(5) φ + ψ ⇔ ψ + φ (6) (φ + ψ) + ϕ ⇔ φ + (ψ + ϕ)
(7) 〈A〉φ1 ∧ [A ∪ B]φ2 ⇒ 〈A〉(φ1 ∧ φ2) (8) φ + (ϕ ∨ ψ) ⇔ (φ + ϕ) ∨ (φ + ψ)
(9) 〈A〉φ1 ∨ 〈A〉φ2 ⇔ 〈A〉(φ1 ∨ φ2) (10) [A]φ1 ∧ [A]φ2 ⇔ [A](φ1 ∧ φ2)

(11) 〈A1 ∪ A2〉φ ⇔ 〈A1〉φ ∨ 〈A2〉φ (12) [A1 ∪ A2]φ ⇔ [A1]φ ∧ [A2]φ

Lemma 6.
(1) ¬[A]φ ⇔ 〈A〉¬φ
(2) ¬〈A〉φ ⇔ [A]¬φ
(3) [A1]φ1 ∧ [A2]φ2 ⇔ [A1 − (A1 ∩ A2)]φ1 ∧ [A1 ∩ A2](φ1 ∧ φ2)∧

[A2 − (A1 ∩ A2)]φ2
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4 Reducing cL+
μ (Act) to cLμ(Act)

In this section, we show that “+” is definable in μM by reducing cL+
μ (Act)

into cLμ(Act). The encoding is completed via the following three steps: firstly,
we prove that in some special cases, “+” can be defined by conjunction and
disjunction; then we show that the problem of eliminating “+” in a strongly
positive and strictly guarded formula φ can be reduced to one of the above
special cases; and finally we complete the encoding by proving that for any
φ ∈ cL+

μ (Act), there is a formula φ′ ∈ cL+
μ (Act) which is strictly guarded such

that φ ⇔ φ′.
We say that φ implies ψ w.r.t. bisimulation closed valuations, denoted by

φ
bc⇒ ψ, if |[ φ ]|ρ ⊆ |[ ψ ]|ρ for any ρ ∈ BCV . φ

bc⇔ ψ means φ
bc⇒ ψ and ψ

bc⇒ φ. It

is clear that φ ⇒ ψ implies φ
bc⇒ ψ, and φ

bc⇒ ψ iff φ ⇒ ψ if φ, ψ ∈ cL+
μ (Act).

In order to attain the first step, we need the following proposition:

Proposition 3. 1. For any P,Q ∈ T [{ε}, {+}, Act,X ], if P |=ρ
μM+ 〈A〉φ then

P + Q |=ρ
μM+ 〈A〉φ; and

2. If P |=ρ
μM+ [A]φ1 and Q |=ρ

μM+ [A]φ2 then P + Q |=ρ
μM+ [A](φ1 ∨ φ2).

The following lemma claims that in some special cases, “+” can be defined
essentially by conjunction and disjunction.

Lemma 7.

(
n∧

i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi) + (
k∧

i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi)

bc⇔
n∧

i=1

ni∧
j=1

〈Ai〉(φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈Ci〉(ϕi,j ∧ χi) ∧
m∧

i=1

[Bi](ψi ∨ χi)

where all conjuncts in the formula of the left side of bc⇔ are strongly positive,
n, k ≤ m, ∀1 ≤ i ≤ n.Ai ⊆ Bi, ∀1 ≤ i ≤ k.Ci ⊆ Bi, and for any 1 ≤ i, j ≤ m, if
i �= j then Bi ∩ Bj = ∅.

Proof. “ bc⇒” can be easily proved by Proposition 3 and Lemma 4. So, we only
give a sketch for the proof of the converse direction. Assume

P |=ρ
μM+

n∧
i=1

ni∧
j=1

〈Ai〉(φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈Ci〉(ϕi,j ∧ χi) ∧
m∧

i=1

[Bi](ψi ∨ χi), (1)

where ρ is B.C.. By Lemma 1, P ∼ Σl
i=1Σ

iai
j=1aiPi,j , where l ≥ m and for

any 1 ≤ i, j ≤ l, if i �= j then ai �= aj . So, we have Σl
i=1Σ

iai
j=1aiPi,j |=ρ

μM+∧n
i=1

∧ni

j=1 〈Ai〉(φi,j ∧ψi) by Lemma 4. This implies that for each 1 ≤ i ≤ n and
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1 ≤ j ≤ ni, there exist 1 ≤ ri ≤ l and 1 ≤ hj ≤ iari
such that ari

∈ Ai and
Pri,hj

|=ρ
μM+ φi,j ∧ ψi. Let P ′ =̂ Σn

i=1Σ
ni
j=1ari

Pri,hj
. It is obvious that

P ′ |=ρ
μM+

n∧
i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi. (2)

Similarly, we get that for each 1 ≤ i ≤ k and 1 ≤ j ≤ ki, there exist 1 ≤
ri ≤ l and 1 ≤ hj ≤ iari

such that ari
∈ Ci and Pri,hj

|=ρ
μM+ ϕi,j ∧ χi. Let

P ′′ =̂ Σk
i=1Σ

ni
j=1ari

Pri,hj
. It is easy to show that

P ′′ |=ρ
μM+

k∧
i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi. (3)

Then, we add each summand of Σl
i=1Σ

iai
j=1aiPi,j to P ′ or P ′′ according to the

following algorithm: For each 1 ≤ i ≤ l, if ai ∈ Bj for some j ∈ {1, . . . ,m} then
let I1=̂{h | Pi,h |= ψj} and I2=̂{h | Pi,h |= χj}; otherwise, I1=̂{1, . . . , iai} and
I2 = ∅. Since P |=ρ

μM+ [Bj ](ψj ∨χj), it is clear that I1 ∪ I2 = {1, . . . , iai}. Then,
let P ′ := P ′ +

∑
h∈I1

aiPi,h and P ′′ := P ′′ +
∑

h∈I2
aiPi,h. Because Bi ∩Bj = ∅

if i �= j, it is easy to show that (2) and (3) keep invariant for each cojoining.
Additionally, it is easy to see that P ′ + P ′′ ∼ P . Hence, from Lemma 4,

P |=ρ
μM+ (

n∧
i=1

ni∧
j=1

〈Ai〉φi,j ∧
m∧

i=1

[Bi]ψi) + (
k∧

i=1

ki∧
j=1

〈Ci〉ϕi,j ∧
m∧

i=1

[Bi]χi). &

Furthermore, applying the above lemma, we can complete the second step
by proving the following results:

Lemma 8. For any φ ∈ L+
μ (Act), if φ is strictly guarded and strongly positive,

then there exists φ′ in which no + occurs such that φ′ bc⇔ φ and φ′ is strictly
guarded and strongly positive.

Proof. By induction on the structure of φ. Here, we only list the proofs for some
interesting cases.

. φ = ¬ψ
Suppose ρ ∈ BCV and fn(φ) ⊆ {x1, . . . , xn}. Let ¬ρ be defined by ¬ρ(x) =
T [{ε}, {+}, Act,X ] − ρ(x) for any x ∈ X . By Lemma 2.1., ¬ρ is B.C.. It is
easy to see that |[ ϕ ]|ρ = |[ ϕ{¬x1/x1, . . . ,¬xn/xn} ]|¬ρ for any ϕ ∈ L+

μ (Act)
whose free variables are in {x1, . . . , xn}.
Since φ is strictly guarded and strongly positive, so is ψ{¬x1/x1, . . . ,¬xn/xn}.
By the induction hypothesis, there is ψ′ in which no + occurs such that
ψ{¬x1/x1, . . . ,¬xn/xn} bc⇔ ψ′ and ψ′ is strictly guarded and strongly posi-
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tive. Besides,

|[ φ ]|ρ = T [{ε}, {+}, Act,X ] − |[ ψ ]|ρ
= T [{ε}, {+}, Act,X ] − |[ ψ{¬x1/x1, . . . ,¬xn/xn} ]|¬ρ

= T [{ε}, {+}, Act,X ] − |[ ψ′{¬x1/x1, . . . ,¬xn/xn} ]|ρ
= |[ ¬ψ′{¬x1/x1, . . . ,¬xn/xn} ]|ρ

Hence, let φ′=̂¬ψ′{¬x1/x1, . . . ,¬xn/xn}. It is obvious that no + occurs in
φ′, φ′ is strictly guarded and strongly positive and φ

bc⇔ φ′.
. φ = 〈A〉φ1

As φ is strictly guarded and strongly positive, this implies the following two
cases:
1. φ1 is equivalent to a disjunction of some formulae of the form x1∧· · ·xn∧

χ1 ∧ · · · ∧ χ
, where n, � ≥ 0, x1, · · · , xn ∈ V ar, and for each 1 ≤ i ≤ �,
χi ∈ Lμ(Act) which is strictly guarded and strongly positive;

2. φ1 is strictly guarded and strongly positive.
In either of the two cases, by the induction hypothesis, it is easy to construct
a formula φ′ in which no + occurs such that φ′ is strictly guarded and φ′ bc⇔ φ.

. φ = φ1 + φ2

Since φ is strictly guarded and strongly positive, so are φ1 and φ2. By the
induction hypothesis, there exist φ′

i such that φ′
i is strongly positive and

strictly guarded, φ′
i

bc⇔ φi and no + occurs in φ′
i for i = 1, 2.

We consider the following two cases:

1. φ′
1

bc⇔ ff or φ′
2

bc⇔ ff . If so, let φ′=̂ff . By Lemma 5.(1), we have that
φ′

1 + φ′
2

bc⇔ ff . On the other hand, by Proposition 1, it follows that
φ

bc⇔ ff . Hence, φ′ is what we want.
2. φ′

1 � bc⇔ ff and φ′
2 � bc⇔ ff . Using the laws of Boolean Algebra, Lemma 5.9–12

and Lemma 6, we can transform φ′
1 and φ′

2 equivalently as follows:

φ′
1 ⇔

m1∨
i=1

(
m1,i∧
j=1

m1,i,j∧
h=1

〈A1,i,j〉φ1,i,j,h ∧
m′

1,i∧
j=1

[B1,i,j ]ψ1,i,j), (4)

φ′
2 ⇔

m2∨
i=1

(
m2,i∧
j=1

m2,i,j∧
h=1

〈A2,i,j〉φ2,i,j,h ∧
m′

2,i∧
j=1

[B2,i,j ]ψ2,i,j), (5)

where
. ∀1 ≤ i ≤ 2,∀1 ≤ j ≤ mi.(∀1 ≤ k1, k2 ≤ mi,j .k1 �= k2 ⇒ Ai,j,k1 ∩

Ai,j,k2 = ∅) ∧ (∀1 ≤ k1, k2 ≤ m′
i,j .k1 �= k2 ⇒ Bi,j,k1 ∩ Bi,j,k2 = ∅) ∧

(∀1 ≤ k1 ≤ mi,j ,∀1 ≤ k2 ≤ m′
i,j .Ai,j,k1 ⊆ Bi,j,k2 ∨ Ai,j,k1 ∩ Bi,j,k2 =

∅));
. B1,i1,j1 = B2,i2,j2 or B1,i1,j1 ∩ B2,i2,j2 = ∅ for all 1 ≤ i1 ≤ m1, 1 ≤

j1 ≤ m′
1,i1

, 1 ≤ i2 ≤ m2, 1 ≤ j2 ≤ m′
1,i2

;
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. for all i = 1, 2, 1 ≤ j1 ≤ mi, 1 ≤ k1 ≤ mi,j1 1 ≤ j2 ≤ m3−i, 1 ≤ k2 ≤
m′

3−i,j2
, Ai,j1,j2 ⊆ B3−i,j2,k2 or Ai,j1,j2 ∩ B3−i,j2,k2 = ∅.

By Lemma 5.5–8, we have

φ′
1 + φ′

2
bc⇔

m1∨
i1=1

m2∨
i2=1

(
m1,i1∧
j=1

m1,i1,j∧
h=1

〈A1,i1,j〉φ1,i1,j,h ∧
m′

1,i1∧
j=1

[B1,i1,j ]ψ1,i1,j) +

(
m2,i2∧
j=1

m2,i2,j∧
h=1

〈A2,i2,j〉φ2,i2,j,h ∧
m′

2,i2∧
j=1

[B2,i2,j ]ψ2,i2,j) (6)

Thus, according to Lemma 5 and Lemma 7, for each disjunct of the right
hand of (6), there is a formula ϕi,j that is equivalent to the disjunct w.r.t.
BCV , strictly guarded, strongly positive and no + occurs in it, where
1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. So, let φ′=̂

∨m1
i=1

∨m2
j=1 ϕi,j . It is easy to see

that φ′ meets the requirement.
. φ = μx.φ1

Since φ is strictly guarded and strongly positive, so is φ1. Therefore, by
the induction hypothesis, there exists φ′

1 in which no + occurs such that
φ′

1 is strictly guarded and strongly positive and φ′
1

bc⇔ φ1. By Lemma 4,
it is easy to see that μx.φ1

bc⇔ μx.φ′
1. Thus, let φ′=̂μx.φ′

1. &
Finally, in order to encode cL+

μ (Act) into cLμ(Act), we need to show the
following lemma:

Lemma 9. For any φ ∈ cL+
μ (Act), there exists φ′ ∈ cL+

μ (Act) such that φ′ is
strictly guarded and φ ⇔ φ′.

Proof. In order to prove the lemma, we need to show the following equations:
μx.φ1[ 〈A〉φ2[(x � φ3) + φ4]] ⇔ μx.φ1[ 〈A〉φ2[μy.(φ1[ 〈A〉φ2[y]] � φ3) + φ4]] (7)

νx.φ1[ 〈A〉φ2[(x � φ3) + φ4]] ⇔ νx.φ1[ 〈A〉φ2[νy.(φ1[ 〈A〉φ2[y]] � φ3) + φ4]] (8)

μx.φ1[ [A]φ2[(x � φ3) + φ4]] ⇔ μx.φ1[ [A]φ2[μy.(φ1[ [A]φ2[y]] � φ3) + φ4]] (9)

νx.φ1[ [A]φ2[(x � φ3) + φ4]] ⇔ νx.φ1[ [A]φ2[νy.(φ1[ [A]φ2[y]] � φ3) + φ4]] (10)

μx.φ1[ 〈A〉φ2[(¬x � φ3) + φ4]] ⇔ μx.φ1[ 〈A〉φ2[νy.(¬φ1[ 〈A〉φ2[y]] � φ3) + φ4]] (11)

νx.φ1[ 〈A〉φ2[(¬x � φ3) + φ4]] ⇔ νx.φ1[ 〈A〉φ2[μy.(¬φ1[ 〈A〉φ2[y]] � φ3) + φ4]] (12)

μx.φ1[ [A]φ2[(¬x � φ3) + φ4]] ⇔ μx.φ1[ [A]φ2[νy.(¬φ1[ [A]φ2[y]] � φ3) + φ4]] (13)

νx.φ1[ [A]φ2[(¬x � φ3) + φ4]] ⇔ νx.φ1[ [A]φ2[μy.(¬φ1[ [A]φ2[y]] � φ3) + φ4]] (14)

where ' ∈ {∧,∨}, φi[ ] stands for a formula with the hole [ ], the formula at
the left side of each equation is guarded.

We only prove (9) as an example, the others can be proved similarly.1

Since φ1[ [A]φ2[(x ' φ3) + φ4]] is guarded, by Knaster-Tarski Theorem, it is
clear that μx.φ1[ [A]φ2[(x'φ3)+φ4]] is the unique least solution of the equation

x = φ1[ [A]φ2[(x ' φ3) + φ4]] (15)

1 Note that in the proofs for (15)–(14), we need to let ¬y = (¬x � φ3) + φ4 in order
to guarantee the resulted formulae are still positive.
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Let y be a fresh variable and y = (x ' φ3) + φ4. It is easy to see the least
solution of (15) is equivalent to the x-component of the least solution of the
following equation system:

x = φ1[ [A]φ2[(x ' φ3) + φ4]]
y = (x ' φ3) + φ4

Meanwhile, it is easy to rewrite the above equation system to the following one

x = φ1[ [A]φ2[y]]
y = (φ1[ [A]φ2[y]] ' φ3) + φ4

It is not hard to derive the least solution of the above equation system as

(μx.φ1[ [A]φ2[μy.(φ1[ [A]φ2[y]] ' φ3) + φ4]], μy.(φ1[ [A]φ2[y]] ' φ3) + φ4.

Therefore, (9) follows.
Repeatedly applying (7)–(14), for any given formula φ ∈ cL+

μ (Act), we can
rewrite it to φ′ which is strictly guarded such that φ ⇔ φ′. &
Example 1. Let φ = μx.〈A〉x + μy.[C]¬(〈B〉¬y + ¬x) ∨ 〈C〉tt, where A ∩ B =
B ∩ C = A ∩ C = ∅. Applying the rewriting rule (13), it results that

φ ⇔ μx.〈A〉x +
μy.([C]¬(νz.¬(〈A〉x + μy′.([C]¬z ∨ 〈C〉tt)) + 〈B〉¬y) ∨ 〈C〉tt)

⇔ μx.〈A〉x + μy.([C]¬(νz.¬(〈A〉x + ([C]¬z ∨ 〈C〉tt)) + 〈B〉¬y) ∨ 〈C〉tt)
⇔ μx.〈A〉x + μy.([C]¬(νz.¬〈A〉x + 〈B〉¬y) ∨ 〈C〉tt)
⇔ μx.〈A〉x + μy.([C]¬(¬〈A〉x + 〈B〉¬y) ∨ 〈C〉tt)
⇔ μx.〈A〉x + μy.([C][B]y ∨ 〈C〉tt)
⇔ μx.〈A〉x ∨ (〈A〉x ∧ 〈C〉tt)
⇔ μx.〈A〉x,

where φ1 = 〈A〉x + μy.([ ] ∨ 〈C〉tt), φ2 = ¬([ ]), φ3 = tt, φ4 = 〈B〉¬y. &
Note that in the above example, we can also unfold μy.[C]¬(〈B〉¬y + ¬x) ∨

〈C〉tt first, then apply Lemma 7 and obtain the same result.
Directly from Lemma 9 and Lemma 8, we can conclude:

Theorem 2. ∀φ ∈ cL+
μ (Act), ∃φ′ ∈ cLμ(Act).φ ⇔ φ′.

In the later, we will use En to denote the above implicit translating function
from cL+

μ (Act) to cLμ(Act).

5 Synchronization Tree Logic

[2] proposed a logic, called Synchronization Tree Logic (STL) for the specification
and proof of programs, described by T [{ε}, {+}, Act,X ]. Formulae of STL can
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be obtained from the constants ε, % by using logical connectives, consistent
extensions of the operators a ∈ Act, + and fixpoint operators. Therefore, STL
contains T [{ε}, {+}, Act,X ], i.e., terms of T [{ε}, {+}, Act,X ] are formulae of
STL if we look recursive operators of T [{ε}, {+}, Act,X ] as greatest fixpoint
operators. Its semantics is defined by associating with a formula a set of terms
(synchronization trees) representing unions of congruence classes of the strong
congruence relation.

Given a set Act of atomic actions and a set X of variables, formulae of STL
are constructed by the rule:

φ ::= ε | % | x | ¬φ | Bφ | φ + φ′ | φ ∨ φ′ | μx.φ,

where x ∈ X and B ⊆ Act.
In what follows, we will use LSTL(Act) to stand for the set of formulae of

STL that are guarded and positive and cLSTL(Act) for the subset of LSTL(Act)
in which all formulae are closed.

Definition 6. Given a valuation ρ ∈ BCV , the semantics of LSTL(Act) is given
by a satisfaction relation between T [{ε}, {+}, Act,X ] and LSTL(Act) relative to
ρ, denoted by |=ρ

STL, inductively defined as follows:

P |=ρ
STL %,

P |=ρ
STL ε iff P ∼ ε,

P |=ρ
STL ¬φ iff P �|=ρ

STL φ,

P |=ρ
STL Bφ iff ∃I ⊆ N.I �= ∅, I is finite,

∀i ∈ I(∃ai ∈ B and ∃Pi.Pi |=ρ
STL φ), P ∼ Σi∈IaiPi,

P |=ρ
STL φ1 ∨ φ2 iff P |=ρ

STL φ1 or P |=ρ
STL φ2,

P |=ρ
STL φ1 + φ2 iff ∃P1, P2.P1 |=ρ

STL φ1, P2 |=ρ
STL φ2 and P ∼ P1 + P2,

P |=ρ
STL μx.φ iff P ∈

⋂
{A | A is B.C. and |[ φ ]|ρ[x�A] ⊆ A},

where A ⊆ T [{ε}, {+}, Act,X ], B ⊆ Act.

Some notions and derived operators can be defined similarly as in μM and
μM+. In what follows we will use ⊥ to denote ¬%. Note that in STL all valuations
are restricted to be in BCV .

[2] proved the following results:

Proposition 4. |[ φ ]|ρ is B.C., for any ρ ∈ BCV and φ ∈ LSTL(Act).

Proposition 5. For each P ∈ T [{ε}, {+}, Act,X ],

|[ φP ]| = {P ′ ∈ T [{ε}, {+}, Act,X ] | P ∼ P ′}.

More results on STL can be found in [2].
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6 Reducing cLSTL(Act) to cLμ(Act)

In this section, we define a function Tr : LSTL(Act) → L+
μ (Act) such that for

any φ ∈ LSTL(Act), P ∈ T [{ε}, {+}, Act,X ] and ρ ∈ BCV , P |=ρ
STL φ iff

P |=ρ
μM+ Tr(φ). Moreover, according to Theorem 2, for each φ ∈ cLSTL(Act)

and P ∈ T [{ε}, {+}, Act,X ], P |=μM+ Tr(φ) iff P |=μM En(Tr(φ)). Thus, this
completes the reduction from cLSTL(Act) to cLμ(Act).

Definition 7. The function Tr is inductively defined as follows: Tr(⊥) =̂ ff ,
Tr(%) =̂tt, Tr(x) =̂ x, Tr(ε) =̂ [Act]ff , Tr(¬φ) =̂¬Tr(φ), Tr(Bφ) =̂ [B]Tr(φ)∧
[B̄]ff∧〈B〉Tr(φ), Tr(φ1∨φ2) =̂ Tr(φ1)∨Tr(φ2), Tr(φ1+φ2) =̂ Tr(φ1)+Tr(φ2),
Tr(μx.φ) =̂ μx.Tr(φ).

Theorem 3. For any P ∈ T [{ε}, {+}, Act,X ] and φ ∈ LSTL(Act), Tr(φ) ∈
L+

μ (Act) and P |=ρ
STL φ iff P |=ρ

μM+ Tr(φ). Where ρ ∈ BCV .

Proof. Tr(φ) ∈ L+
μ (Act) is obvious by Definition 7, the proof for the second part

can proceed by induction on the structure of φ. &
The following theorem that follows directly from Theorem 3 and Theorem 2

indicates that applying Tr and En, STL can be translated into μM.

Theorem 4. For all P ∈ T [{ε}, {+}, Act,X ], φ ∈ cLSTL(Act), En(Tr(φ)) ∈
cLμ(Act) and P |=STL φ iff P |=μM En(Tr(φ)).

Corollary 1. For any P,Q ∈ T [{ε}, {+}, Act,X ], Q |=μM En(Tr(φP )) iff P ∼
Q.

Below we present an example to show how to translate a formula φ ∈
cLSTL(Act) into cLμ(Act), and indicate that for any P ∈ T [{ε}, {+}, Act,X ],
En(Tr(φP )) is exactly the characteristic formula of P up to ∼. Given an equiva-
lence or preorder $ over processes, the characteristic formula for a process P up
to it is a formula φP such that given a process Q, Q |= φP if and only if Q $ P .

Example 2. Suppose Act = {a, b, c}, P =̂rec x.(a b x+a c ε) and Q=̂rec x.[a (b x+
c ε)]. Thus, by Definition 7,

Tr(φP ) ⇔ νx.[〈a〉(〈b〉x ∧ [ ¯{b}]ff ∧ [b]x) ∧ [ ¯{a}]ff ∧ [a](〈b〉x ∧ [ ¯{b}]ff ∧ [b]x)]
+ [〈a〉(〈c〉[Act]ff ∧ [ ¯{c}]ff ∧ [c][Act]ff) ∧ [ ¯{a}]ff ∧ [a](〈c〉[Act]ff
∧ [ ¯{c}]ff ∧ [c][Act]ff)]

Moreover, we can get

En(Tr(φP )) ⇔ νx.〈a〉(〈b〉x ∧ [ ¯{b}]ff ∧ [b]x) ∧ 〈a〉(〈c〉[Act]ff ∧ [ ¯{c}]ff
∧ [c][Act]ff) ∧ [ ¯{a}]ff ∧ [a]((〈b〉x ∧ [ ¯{b}]ff ∧ [b]x)
∨ (〈c〉[Act]ff ∧ [ ¯{c}]ff ∧ [c][Act]ff))

It is easy to see that En(Tr(φP )) is exactly the characteristic formula of P and
Q �|=μM En(Tr(φP )) since P �∼ Q. &
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7 Concluding Remarks

In this paper, we investigated the definability of the non-deterministic operator
+ introduced in STL as a primitive in the μ-calculus. This was captured via
extending the μ-calculus with the non-deterministic operator + to μM+ first
and then showing that μM+ can be encoded into the modal μ-calculus.

Furthermore, we proved that STL can be translated into the modal μ-calculus
by encoding it into μM+. Thus, if Act is finite, we can get the decidability of
STL by the decidability of the μ-calculus [5]. In fact, we could translate other
STL-like modal logics into the μ-calculus, for example, it is easy to encode the
modal process logic presented in [6] into the μ-calculus according to the results
shown in this paper.

The converse procedure to translate Lμ(Act) into LSTL(Act) can be obtained
easily. Thus, we see that the μ-calculus is as expressive as STL.

In summary, the significance of this work lies in:

. We proved that the non-deterministic choice + is definable in the μ-calculus, so
that we can compare the expressiveness between the μ-calculus with process
algebra-like modal logics such as STL, for example, it was shown in this
paper that the μ-calculus is as expressive as STL.

. A connection between the connectives of the μ-calculus and the operators
of T [{ε}, {+}, Act,X ] has been established in this paper. This thus makes
it possible that syntax-directed proofs for programs defined in terms of
T [{ε}, {+}, Act,X ] can be done in the μ-calculus;

. We indirectly presented an algorithm to construct the characteristic formula
up to ∼ for a given finite-state process specified by T [{ε}, {+}, Act,X ] syn-
tactically and compositionally.
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Abstract. Scenario-driven requirement specifications are widely used to capture
and represent functional requirements. Use Case Maps (UCM) is being stan-
dardized as part of the User Requirements Notation (URN), the most recent
addition to ITU−T’s family of languages. UCM models allow the description
of functional requirements and high-level designs at early stages of the devel-
opment process. Recognizing the importance of having a well defined seman-
tic, we propose, in this paper, a concise and rigorous formal semantics for Use
Case Maps (UCM). The proposed formal semantics addresses UCM’s opera-
tional semantics and covers the key language functional constructs. These seman-
tics are defined in terms of Multi-Agent Abstract State Machines that describes
how UCM specifications are executed and eliminates ambiguities hidden in the
informal language definition. The resulting operational semantics are embedded
in an ASM-UCM simulation engine and are expressed in AsmL, an advanced
ASM-based executable specification language. The proposed ASM-UCM engine
provides an environment for executing and simulating UCM specifications. We
illustrate our approach using an example of a simplified call connection.

Keywords: Use Case Maps, user requirements notation, abstract state machines,
formal semantics, simulation, AsmL.

1 Introduction

In the early stages of common development processes, system functionalities are de-
fined in terms of informal requirements and visual descriptions. Scenario-driven ap-
proaches, although often semiformal, are widely accepted because of their intuitive
syntax and semantics.(Amyot and Eberlein [4] provide an extensive survey of fifteen
scenario notations)

Use Case Maps [12] is one of these scenario based languages that has gained mo-
mentum in recent years within the software requirements and specification community.
Use Case Maps (UCMs) can be applied to capture and integrate functional require-
ments in terms of causal scenarios representing behavioral aspects at a higher level
of abstraction, and to provide the stakeholders with guidance and reasoning about the
system-wide functionalities and behavior. Use Case Maps [19] are part of a new pro-
posal to ITU−T for a User Requirements Notation (URN) [18]. UCM notation has been
baptized URN−FR, while another and complementary component for non-functional

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 366–380, 2005.
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requirements is called URN−NFR. UCMs have been useful in a number of areas: De-
sign and validation of telecommunication and distributed systems [2,3], detection and
avoidance of undesirable feature interactions [13,21], evaluation of architectural alter-
natives [20], and performance evaluation [22].

However, the general lack of formalism and accuracy in requirement languages can
cause ambiguities and misinterpretations of the specifications expressed by these lan-
guages and limit their use. This ambiguity can be removed by adding formal semantics
to requirement specification languages. Moreover, this added formalism allows for a
verification of specifications and their properties .

Currently, the UCM abstract syntax and static semantics are informally defined in
an XML Document Type Definition [5]. However, to date the precise meaning of its
execution semantics has not been captured.

In this paper, we present a formal operational semantics of UCM language in terms
of Abstract State Machines(ASM) [16]. ASMs have been used to specify a wide va-
riety of programming languages in particular C++ [24] and Java [10], logic program-
ming languages such as Prolog [9] and its variants, and hardware languages such as
VHDL [8]. ASMs have been also used to define the operational semantics of UML
activity diagrams [7] and the formal definition of ITU−T standard SDL 2000 [15].

We tried to make this paper self-contained. In the next section, we provide an
overview of the Use Case Maps notation. In section 3, we briefly introduce the basic
concepts and notions of Abstract State Machines used in this paper. Section 4 gives the
ASM models for Use Case Maps. In section 5, we provide an ASM-UCM engine, writ-
ten in AsmL language [6], for simulating and executing UCM specifications. In section
6, we describe one possible scenario execution of the ASM model for the simplified call
connection introduced in section 2.3. Finally, section 7 contains a brief discussion and
a conclusion.

2 Use Case Maps Notation

2.1 Introduction

The Use Case Maps notation is a high level scenario based modeling technique used
to specify functional requirements and high-level designs for various reactive and dis-
tributed systems. UCMs expressed by a simple visual notation allows for an abstract
description of scenarios in terms of causal relationships between responsibilities (e.g.
operation, action, task, function, etc.) along paths allocated to a set of components.
These relationships are said to be causal because they involve concurrency, partial or-
dering of activities, and they link causes (e.g., preconditions and triggering events) to
effects (e.g. postconditions and resulting events). With the UCM notation, scenarios are
expressed above the level of messages exchanged between components, hence, they are
not necessarily bound to a specific underlying structure (such UCMs are called Un-
bound UCMs). One of the strengths of UCMs is their ability to integrate a number of
scenarios together (in a map-like diagram), and to reason about the architecture and
its behavior over a set of scenarios. UCM specifications may be refined into more de-
tailed models such as MSCs [20]. These detailed models may be transformed then into
concrete implementations (possibly through automated code generation).
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In the following section, we describe and illustrate the UCM core path notation. For
a detailed description of the language, the reader is invited to consult [12] and [23].

2.2 UCM Functional Notation

A basic UCM path contains at least the following constructs: start points, responsibil-
ities and end points. Start points. The execution of a scenario path begins at a start
point. A start point is represented as a filled circle representing preconditions and/or
triggering events. Responsibilities. Responsibilities are abstract activities that can be
refined in terms of functions, tasks, procedures, events. Responsibilities are represented
as crosses. End points. The execution of a path terminates at an end point. End points
are represented as bars indicating post conditions and/or resulting effects.

UCMs help in structuring and integrating scenarios in various ways− sequentially,
as alternatives (with OR-forks/joins as illustrated in Figure 1(a)) or concurrently (with
AND-forks/joins as illustrated in Figure 1(b)). OR-Forks. represent a path where sce-
narios split as two or more alternative paths. An OR-Fork has one incoming hyperedge
and two or more outgoing ones. Conditions (Boolean expression called guard) can be
attached to alternative paths. OR-Joins. capture the merging of two or more indepen-
dent scenario paths. AND-Forks. split a single control into two or more concurrent
control. AND-Joins. capture the synchronization of two or more concurrent scenario
paths.

(a) OR-Fork/Joins (b) Concurrent routes with AND-Fork/Joins

Fig. 1. Structuring Scenarios

When maps become too complex to be represented as one single UCM, a mech-
anism for defining and structuring sub-maps becomes necessary. Path details can be
hidden in sub-diagrams called plug-ins, contained in stubs (diamonds) on a path.

(a) Static stubs have only one plug-in (b) Dynamic stubs may have multiple
plug-ins

Fig. 2. Stubs and plug-ins
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2.3 Use Case Maps Example

Figure 3(a) shows a simplified call connection phase of a telephony system with one
user-subscribed feature, TeenLine feature. This UCM is a modified version of the model
originally introduced in [19]. The originating user can subscribe to the TeenLine feature
which restricts outgoing calls based on the time of day (i.e., hours when homework
should be the primary activity). This can be overridden on a per-call basis by anyone
with the proper personal identification number. The causal path is initiated through the
start point req. The dynamic stub Originating has two plug-ins:

- Default plug-in that represents how the basic call reacts in the absence of TeenLine
feature (Figure 3(c)).

- TeenLine plug-in (Figure 3(b)) checks the current time (chkTime) and, if in the
predefined range, requires a valid personal identification number (PIN) to be provided
in a timely fashion for the call initiation to continue. If an invalid PIN is provided, or if
a time-out occurs, then a denied reply is prepared (pd).

req
ring

Originating
upd

sig

[idle]

[busy ]
pb

vrfyIN1 OUT1

OUT2 prb
AND ( fork )

ConditionOR ( fork )

OR ( join )Segment Label

(a) Call initialization root map

in1

out2

out1
chkTime [notInRange ]

[inRange ]

pd

getPIN

[invalid ]

[valid ]

Timer

Time-out Path

(b) TeenLine plug-in

in1 out1

(c) Default plug-in

Fig. 3. UCM example

The stub selection policy is based on the global variable SubTL which determines
whether the originating user has subscribed to TeenLine feature:

- SubTL=true → TeenLine plug-in.
- SubTL=false → Default plug-in.

Other global variables of the specification include also getPIN and valid. The binding
relationship connects the stub path segments of the parent map to the start/end points
of the plug-in. In our example, the binding relationship for the TeenLine plug-in is :
{<TeenLine, IN1, in1>, <TeenLine ,OUT1, out1>,<TeenLine, OUT2, out2>} con-
nects the stub path segments of the parent map to the start/end points of the plug-in.
If the call is allowed, the system then verifies whether the called party is busy or idle
(vrfy). The idle path splits the control into two concurrent paths: Ringing (ring) and
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signaling (sig) the occurrence of a prepared ringback reply (prb). In the case that the
busy path is selected, it will result in the signaling of a prepared busy reply (pb).

3 Abstract State Machines

This section introduces some basic notions of ASM [16], that will be employed for the
construction of our UCM model. For a rigorous mathematical definition of the semantic
foundations of ASMs, we however refer to [11,16].

Abstract State Machines define a state-based computational model, where compu-
tations (runs) are finite or infinite sequences of states {Si} obtained from a given initial
state S0 by repeatedly executing transitions δi.

S0
δ1 �� S1

δ2 �� S2
. . . δn �� Sn

An ASM A is defined over a fixed vocabulary V, a finite collection of function names
and relation names. Each function symbol has a fixed arity n and type T1,. . .,Tn → T
where Ti and T are basic types. Names in V may be (1) Static: having the same (fixed)
interpretation in each computation state of A (2) Dynamic: where function names can
be altered by transitions fired in a computation step or, (3) External: its interpretation
is determined by the environment (thus, not controlled by the system).

Given a vocabulary, A is defined by its program P and a set of distinguished initial
states S0. The program P consists of transition rules and specifies possible state transi-
tions of A in terms of finite sets of local function updates on a given global state. Such
transitions are atomic actions. A transition rule that describes the modification of the
functions from one state to the next has the following form:
if Condition then <Updates> else <Updates> endif, where Updates is a set of function
updates f(t1,t2,. . .,tn):= t which are simultaneously executed when Condition is true.
A state transition is performed by firing a set of rules in one step. Each function update
changes a value at a specific location given by the left-hand-side of the update.

ASMs are multi-sorted based on the notion of universes. We presume the standard
mathematic universes of Booleans, integers, lists, etc. as well as the standard operations
on them such as the usual Boolean operations (∧, ∨ .etc.). A universe can be dynami-
cally extended with individual objects by:
extend Universe with v <Rule> end extend, where v is a variable which is bound by the
extend constructor.

The choose constructor defines an arbitrary selection of one element in a universe:
choose v in Universe <Rule> end choose, where v is non-deterministically selected
from the given universe. The choose constructor can be qualified by a condition.

A distributed ASM (called also Multi-Agent ASM) involves a collection of agents
that perform their computation concurrently. The agents are elements of a dynamic
universe AGENT that may grow and shrink over a run. Each agent a∈AGENT is viewed
as an object of class AGENT and can identify itself by means of a special nullary
function me:AGENT. The program of an agent a is a method of the class AGENT. The
state of a (given by all fields of a) evolves in sequential steps with each invocation of
its program. We assume that there is one program, prog, shared by all agents.
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4 ASM Models for Use Case Maps

The definition of the ASM formal semantics of UCM consists of associating each UCM
construct with an ASM which models its behavior. In this section, we associate an ASM
signature to each UCM construct then we assign execution rules to them.

4.1 Signature of UCM Constructs

The UCM maps are modeled using the abstract sets: StartPoint, EndPoint, Responsi-
bility, AND-Fork, AND-Join, OR-Fork, OR-Join, Stub and Timer. We define also the
abstract set HyperEdge that represents the set of hyperedges connecting UCM con-
structs.

Start Points are of the form StartPoint(PreCondition-set, TriggerringEvent-set,
StartLabel, in, out) where the parameter PreConditions-set is a list of conditions that
must be satisfied in order for the scenario to be enabled (if no precondition is specified,
then by default it is set to true). The parameter TriggeringEvents-set is a list that gives
the set of events that can initiate the scenario along a path. One event is sufficient for
triggering the scenario. The parameter StartLabel denotes the label of the start point. A
start point should not have an incoming edge except when connected to an end point
(called a waiting place). In such situation, we use the parameter in ∈ HyperEdge to rep-
resent the connection with an end point. The parameter out ∈ HyperEdge is the (unique)
outgoing hyperedge.

End Points are of the form EndPoint(PostCondition-set, ResultingEvent-set, End-
Label, in, out) where the parameter PostConditions-set is a list of conditions that must
be satisfied once the scenario is completed. The parameter ResultingEvent-set is a list
that gives the set of events that result from the completion of the scenario path. The
parameter EndLabel denotes the label of the end point; the parameter in ∈ HyperEdge
is the (unique) incoming hyperedge. End points have no target hyperedge except when
connected to a start point (i.e. a waiting place). In such a case, out ∈ HyperEdge repre-
sents such connection.

Responsibilities are of the form Responsibility(in, Resp, out) where in ∈ Hyper-
Edge is the incoming hyperedge, Resp is the responsibility to be executed (to be defined
by a set of simultaneous ASM function updates), and out ∈ HyperEdge is the outgoing
hyperedge. A responsibility is connected to only one source hyperedge and to one target
hyperedge.

OR-Forks are of the form OR-Fork(in, [Condi]i≤n, [outi]i≤n) where in denotes
the incoming hyperedge, [Condi]i≤n is a finite sequence of Boolean expressions, and
[outi]i≤n is a sequence of outgoing hyperedges.

OR-Joins are of the form OR-Join({ini}i≤n, out) where {ini}i≤n denotes the in-
coming hyperedges and, out is the outgoing hyperedge.

AND-Forks are of the form AND-Fork(in, {outi}i≤n) where in denotes the incom-
ing hyperedge, and {outi}i≤n is a sequence of outgoing hyperedges.

AND-Joins are of the form AND-Join({ini}i≤n, out) where {ini}i≤n denotes the
incoming hyperedges, and out is the outgoing hyperedge.

Timers are of the form Timer(in, TriggerringEvent-set, out, out timeout) where in
denotes the incoming hyperedge. The parameter TriggeringEvents-set is the list that
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gives the set of events that can trigger the continuation path (i.e. represented by out)
and the parameter out timeout ∈ HyperEdge denotes the timeout path.

Stubs have the form Stub({entryi}i≤n , {exitj}j≤m, isDynamic, [Condk]k≤l ,
[plugink]k≤l) where {entryi}i≤n and {exitj}j≤m denote respectively the set of the
stub entry and exit points. isDynamic indicates whether the stub is dynamic or static.
Dynamic stubs may contain multiple plug-ins, [plugink]k≤l whose selection can be
determined at run-time according to a selection-policy specified by the sequence of
Boolean expressions [Condk]k≤l. The sequence Cond is empty for static stubs (i.e.
isDynamic=false).

For each UCM construct we use a (static) function Param which, when applied to
constructs yields the parameter. For example in(StartPoint) yields the incoming hyper-
edge of the construct StartPoint. We often suppress parameters notationally.

We formalize UCM maps by an abstract set MAPS. It contains the root map (i.e.
the main UCM map) and all its submaps (i.e. plug-ins).

The nesting structure of a UCM specification is encoded in the following functions:

- UpMap: MAPS → MAPS ∪ {undef}, assigns to a plug-in its immediately enclos-
ing map, if any. We assume that this function yields undef for the root map which
is not enclosed in any map. Thus, UpMap(rootMap)=undef.

- StubBinding:{{entryi}∪{EndPoints}}× MAPS→{{StartPoints}∪{exitj}}
specifies how a plug-in ∈MAPS is bound to a stub. The path segments that are con-
nected to the stub need to be bound to the paths of the plug-ins in order to express
continuity. This is done through explicit binding. An entry hyperedge joins a stub
entry with a start point from the plug-in. An exit hyperedge joins a stub exit with
an end point from the same plug-in.

In the following section, we define the ASM rules that define the operational se-
mantics used to express the UCM control constructs.

4.2 ASM Rules of UCM Constructs

Let AGENT be the abstract set of agents a which move through their associated UCM
map, by executing the UCM construct at the current active hyperedge, i.e. the hyperedge
where the agent’s control lies.

Every agent can mainly be characterized by three dynamic functions:

- active: AGENT→HyperEdge represents the identifier of the active hyperedge lead-
ing to the next UCM construct to be executed.

- mode: AGENT→ {running, inactive}. An agent may be running in normal
mode or inactive once the agent has finished its computation.

- level: AGENT→MAPS gives the submap that the agent is currently traversing.

For the root map, it is required that there is an agent for each starting point, in
running mode with active hyperedges positioned on the corresponding start points of
the root map (i.e. active=in(StartPoint)). The creation of the initial ASM agents, their
initialization and the initialization of the global variables used in the scenario definitions
represent the initialization phase.



Abstract Operational Semantics for Use Case Maps 373

 

if CurrConstruct is StartPoint(PreCondition-set, TriggerringEvent-set,
StartLabel, in, out) then

if (EvaluatePreConditions & EvaluateTrigger) then me.active:= out
where:

- EvaluateTrigger: TriggerringEvent-set × {events} → Boolean; eval-
uates whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.

- EvaluatePreConditions: PreCondition-set → Boolean evaluates
whether all preconditions are satisfied.

Fig. 4. Rule Start Point

if CurrConstruct is Responsibility (in,Resp,out) then
Resp
me.active:= out

Fig. 5. Rule Responsibility

Typically, a running agent has to look at the target of its currently active hyperedge
to determine the next action. CurrConstruct denotes the current UCM construct to be
executed, i.e. the UCM construct where me.active=in(construct)∧me.mode=running.

In the following, we assign ASM execution rules to UCM constructs.

Start Points. If the control is on the hyperedge in(StartPoint), the PreCondition-set is
satisfied and there occurs at least one event from the triggeringEvent-set, then the start
point is triggered and the control passes to the outgoing hyperedge of the StartPoint
(Otherwise nothing happens and the control stays at the StartPoint). Figure 4 describes
the start point rule.

Responsibilities. Responsibilites represent atomic actions, not to be decomposable, and
their execution is not interruptible. If the control is on the hyperedge in(Responsibility)
then Resp is performed and the control passes to the outgoing hyperedge.

If the control is on the incoming hyperedge of an OR-Fork, the conditions are eval-
uated and the control passes to the hyperedge associated to the true condition. If more
than one condition evaluates to true (i.e. nondeterministic choice), the control passes
randomly to one of the outgoing hyperedges associated to the true conditions. Figure 6
illustrates the OR-Fork rule.

When one or many flows reach an OR-Join, the control passes to the outgoing hy-
peredge. Figure 7 illustrates the OR-Join rule.

Note:An UCM loop can be modeled as an OR-Fork followed by an OR-Join. Their
respective rules should be executed once encountered.

When the control is on an hyperedge entering an AND-Fork synchronization bar,
then the flow is split into two or more flows of control. The currently running agent
creates the necessary new subagents and sets their mode to running, then sets its mode
to inactive. Each new ASM subagent inherits the program for executing UCMs, and its
control is started on the associated outgoing hyperedge of the AND-Fork.

When many subagents running in parallel reach an AND-Join, their parallel flow
must be joined. When all incoming hyperedges become active, a new agent is created
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Cond 1

Cond i

Cond n

Out 1

Out i

Out n

in

if CurrConstruct is OR-Fork(in, [Condi]i≤n,[outi]i≤n)
then if NonDeterministicChoice([Condi]i≤n) then

me.active:= (choose outi in [outk]k≤l)
else if Cond1 then me.active:=out1

. . .
if Condn then me.active:= outn

where NonDeterministicChoice:{Cond}→Boolean is a dynamic
function that checks whether more than one condition evaluates to
true and [outk]k≤l is the sequence of hyperedges associated to sat-
isfied conditions.

Fig. 6. Rule OR-Fork

in 1

in i

in n

out if CurrConstruct is OR-Join({ini}i≤n, out) then
me.active:= out

Fig. 7. Rule OR-Join

if CurrConstruct is AND-Fork(in, {outi}i≤n) then
me.mode:=inactive
extend AGENT with a1, . . . , an

do for allai, 1 ≤ i ≤ n
ai.mode := running
ai.active := outi

Fig. 8. Rule AND-Fork

if CurrConstruct is AND-Join({ini}i≤n, out)
then if not (∀a1,. . . ,an ini = active(ai)) then

me.mode:= inactive
else me.mode:= inactive

extend AGENT with an+1

an+1.active:= out
an+1.mode:= running

Fig. 9. Rule AND-Join

and the control passes to the outgoing hyperedge. The last agent arriving to the AND-
Join will fire the rule. Inactive agents are deleted after each rule’s execution. For the
clarity’s sake, we have omitted the Garbage Collection from all our ASM rules.

Once the control reaches a stub, the control passes to the selected plug-in and the ex-
ecution continues following the UCM semantics. No extra agents are needed to execute
a Stub unless the selected plug-in contains a concurrent flow.

When the control reaches an end point, two cases should be considered, depending
on whether the end point is inside a plug-in or part of the root map:
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Entry={IN1}

Exit={OUT1,OUT2}

if CurrConstruct is Stub({entryi}i≤n,{exitj}j≤m, isDynamic,
[Condk]k≤l,[plugink]k≤l) then

if not(isDynamic) then add(plugin, me.level) to MapHierarchy
me.level := plugin
me.active := in(StubBinding(entryi, plugin)

else add(plugin, me.level) to MapHierarchy
me.level := SelectionPolicy(Condk)k≤l))
me.active := in(StubBinding(entryi , SelectionPolicy(

Condk)k≤l))
Where SelectionPolicy:{Cond} → MAPS is the selection policy
function.

Fig. 10. Rule Stub

 

if CurrConstruct is EndPoint(PostCondition-set,ResultingEvent-set, EndLa-
bel, in, out)then if UpMap(me.level) �=undef) then

me.active:= out(StubBinding(EndPoint, me.level))
elseif out �=undef then me.active := out

else me.mode:= inactive

Fig. 11. Rule End Point

if CurrConstruct is Timer(in, TriggerringEvent-set, out,
out timeout) then

if (Triggered) then me.active:= out
else me.active := out timeout

where Triggered: TriggerringEvent-set→Boolean determines
whether a trigger occurs within a predefined time frame.

Fig. 12. Rule Timer

1. End point is inside a plug-in: the control passes to the stub’s exit point bound to the
plug-in end point.

2. End point is part of the root map: the control passes to the out hyperedge if any
(e.g. a waiting place) otherwise the running agent is stopped.

The exit from nested maps should be performed in the correct order of the stub structure.
However, one control may exit the stub while another one is still inside the stub.

The timer rule is very similar to a basic OR-Fork rule with only two disjoint
branches (out and out timeOut).

5 ASM-UCM Simulation Engine

The ASM-UCM simulation engine is designed for simulating and executing UCM spec-
ifications. It is written in AsmL [6], a high level executable specification language devel-
oped by the Foundations of Software Engineering (FSE) group at Microsoft Research.
AsmL is integrated with Microsoft’s software development, documentation and runtime
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UCM Spec
(XML Format)

ASM
Program

Data
Structures

Simulation
traces

Spec variables
initialization

Environment

UCM -ASM Engine

UCM Spec
(Hyper Graph) +

Fig. 13. ASM-UCM Simulation Engine Architecture

Enum Mode case R Construct
running in hy as HyperEdge
inactive out hy as HyperEdge

structure UCMElement label as String
source as UCMConstruct case OF Construct
hyper as HyperEdge in hy as HyperEdge
target as UCMConstruct Selec as Set of OR Selection

type Maps = Set of UCMElement case Stub Construct
structure UCMConstruc entry hy as Set of HyperEdge
case SP Construct exit hy as Set of HyperEdge

in hy as HyperEdge Selec plugin as Set of Stub Selection
out hy as HyperEdge Binding Relation as Set of Stub Binding
label as String label as String
preCondition as Boolean case . . .

Fig. 14. Data Structures

environments including Visual Studio, Word and Component Object Model (COM). It
has full .NET interoperability. Figure 13 shows the structure of the ASM-UCM simula-
tion engine, which is composed of the following three components:

5.1 UCM Specification

In order to apply ASM rules defined in section 4, the UCM specification (originally de-
scribed in XML format) should be translated into a hyper graph format where constructs
are connected using hyperedges. For this purpose, we define a UCM specification as a
hyper graph: SPEC = (C, H, λ) where:

- C is the set of UCM constructs composed of sets of typed constructs.
- H is the set of hyperedges
- λ is a transition relation (path connection) defined as: λ = C × H × C

Note: The translation from the XML format to hyper-graph format is done manually.
Before a simulation can be run, the specification’s global variables are initialized.
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class Agent main()
const id as String step
var active as HyperEdge forall s in StartPoints
var mode as Mode let ag=new Agent(label(s), in(s),
var level as Maps running, RootMap, init stub)

ag.Program()
Program()
step

until me.mode = inactive do
choose h in level where HyperExists(active,

GetInHyperEdge(h.source))
match (h.source)

// Rule of Start Point
SP Construct (a,b,c,d): me.active := b

// Rule of Responsibility
R Construct (a,b,c): Execute(h.source)

me.active := b
// Rule of OR-Fork . . .

Fig. 15. ASM-UCM program

5.2 Data Structures

The data structures maintained by the ASM-UCM engine are AsmL structures and dy-
namic sets. They encode the attribute information of UCM constructs and the structures
that handle the dynamic flow of execution. The listing below shows part of the AsmL
data structures used in ASM-UCM simulation engine. For instance, Mode is a static
universe where each element is a static nullary function, UCMElement represents the
structure of the transition relation λ, and UCMConstruct structure incorporates many
case statements as a way of organizing different variant of UCM constructs.

5.3 ASM Program

The listing below illustrates the class Agent and the main program of the ASM-UCM
simulation engine.

6 ASM Execution of the Simplified Call Connection

In this section, we will describe one possible scenario execution of the ASM model for
the simplified call connection introduced in section 2.3.

During the initialization phase the main agent Root is created and the global vari-
ables are initialized (i.e.,SubTL=true;InRange=true;getPIN=true;valid=true). The start
point req rule is executed, and the control goes to the hyperedge IN1. The Stub rule is
then executed. The function SelectionPolicy selects the plug-in TeenLine and the control
passes to in(StubBinding(IN1, SelectionPolicy(SubTL))) which is the incoming hyper-
edge of the startpoint in1. Responsibility ChkTime is observed, control passes to hy-
peredge e12, then the timer is triggered and, a valid PIN is entered. When the control
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Agent Root

(b) TeenLine execution

Fig. 16. Execution Trace

reaches the end point out1, the EndPoint rule is executed, and the control passes to
out(StubBinding(EndPoint,level)) which is the hyperedge OUT1. Then the responsibil-
ity vrf is observed, and the control passes to the incoming hyperedge of the AND-Fork
(i.e. hyperedge in). When the main agent Root reaches the AND-Fork, it creates two
new agents ARing and ASig and changes it mode to inactive. These two agents start
their execution respectively at the AND-Fork’s upper and lower outgoing hyperedges
(i.e. respectively hyperedges e1 and e2). In our implementation, agents ARing and ASign
evolve in an interleaving mode. Agent ARing executes responsibility upd and terminates
while agent ASig executes prb then terminates. An ASM scheduler may be designed to
have concurrent agents behave in true concurrency mode. Choosing the suitable con-
current execution semantics depends on the application domain and the design choices.

7 Discussion and Conclusion

In this paper, we have presented a formal operational semantics for Use Case Maps
language based on Multi-Agent Abstract State Machines. Our ASM model provides
a concise semantics of UCM functional constructs and describes precisely the control
semantics.

Our approach based on ASM is more abstract and more flexible than the one given
in [1] in terms of LOTOS [17]. Indeed, our ASM rules can be easily modified to accom-
modate language evolution. Considering new semantics for a UCM construct, result in
changing the corresponding ASM rule without modifying the original specification.
While in [1], one needs to redesign the mapping between UCM to LOTOS and to re-
generate the LOTOS specification. Moreover, our ASM-UCM simulation engine may
support different concurrency semantics at minimal cost. Agents may behave either in
interleaving semantics with atomic actions (i.e. comparable to LOTOS processes) or in
true concurrency mode. The choice of the suitable alternative depends on the applica-
tion domain and the ASM program (i.e., ASM Scheduler) is designed accordingly.

We showed that ASMs are, in general, suitable to provide a formal representation
of Use Case Maps constructs. The proposed semantics can be seen as a complementary,
unambiguous documentation approach that provides additional insights of the UCM
language and its notation, as well as a basis for future formal verification of UCM.
As part of our future work, we will investigate the use of ASM model checking tech-
nique [14] to verify UCM specifications.



Abstract Operational Semantics for Use Case Maps 379

References

1. Amyot D., Formalization of Timethreads Using LOTOS. Master Thesis, Department of Com-
puter Science, University of Ottawa, Canada, 1994.

2. Amyot D. and Andrade R., Description of wireless intelligent network services with Use
Case Maps, SBRC’99, 17th Simpósio Brasileiro de Redes de Computadores, Salvador,
Brazil, May 1999, pp. 418-433.

3. Amyot D., Buhr R.J.A., Gray T. and Logrippo L., Use Case Maps for the Cap-
ture and Validation of Distributed Systems Requirements. RE’99, Fourth IEEE Inter-
national Symposium on Requirements Engineering, Limerick, Ireland, June 1999,44-53.
http://www.UseCaseMaps.org/pub/re99.pdf

4. Amyot D. and Eberlein A., An Evaluation of Scenario Notations and Construction Ap-
proaches for Telecommunication Systems Development. In: Telecommunications Systems
Journal, 24:1, 61-94, September 2003.

5. Amyot D. and Miga, A., Use Case Maps Document Type Definition 0.19. Working docu-
ment, June 2000. http://www.UseCaseMaps.org/xml/

6. AsmL for Microsoft.Net, http://www.research.microsoft.com/foundations/asml, 2003
7. Börger E., Cavarra A. and Riccobene E., An ASM Semantics for UML Activity Diagrams.

In T. Rus, editor, Proc. Algebraic Methodology and Software Technology, 8th International
Conference, AMAST 2000, LNCS 1826. Springer, 2000.
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Abstract. ArchiTRIO [14] is a formal language, which complements
UML 2.0 concepts with a formal, logic-based notation that allows users
to state system-wide properties, both static and dynamic, including real-
time constraints. In this paper we present the semantics of the core con-
cepts of the ArchiTRIO language. As the core elements of ArchiTRIO
coincide with those of UML 2.0 (operation, interface, port, class), the
semantics of ArchiTRIO provides also a formal definition for the basic
concepts on which UML 2.0 is built.

Keywords: UML, software architecture, formal methods, real-time.

1 Introduction

In the last few years, UML [8] has risen to the status of de facto standard for
system modeling in industrial practice. Its appeal originates from a number of
factors such as ease of use and a certain degree of intuitiveness and flexibility in
the notation (probably rooted in the borrowing form previous, well-established
notations), which reduce the effort needed to be able to write UML models to
a minimum. In its 2.0 incarnation, UML includes constructs (e.g., component,
connector, port) that were previously missing, which are necessary for describing
system architectures. Alas, as with the previous versions, UML lack of formality
hampers its applicability to critical systems, where precise and rigorous designs
are of the utmost importance for the correct development of the application.

In [14] we sketched a novel approach to providing UML with the degree
of formality that is necessary for rigorous modeling and verification, one that
hinges on the idea of complementing the UML notation of class and composite
structure diagrams [8] with a temporal logic-based notation. This combination of
UML and logic-based notation results in a formal language, called ArchiTRIO.
[14] presents the ArchiTRIO approach to system modeling, which falls essentially
in the category of lightweight methods [16]; more precisely, ArchiTRIO allows
developers to use standard UML 2.0 notation to describe non-critical aspects of
systems, but it also offers a complementary formal notation, fully integrated with
the UML one, to represent those system aspects that require precise modeling.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 381–395, 2005.
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ArchiTRIO, then, adds expressive power to UML diagrams, rather than replacing
or modifying any of them: a user who at first does not need full-blown ArchiTRIO
can start by drawing bare UML class diagrams, and only later, when the need
arises for clarity and precision (especially for temporal constraints), introduce
ArchiTRIO-specific notation.

ArchiTRIO is based upon few selected UML 2.0 constructs especially suited
for describing architectures, it gives them a formal meaning, and precisely defines
their composition. [14] mainly focuses on the principles behind ArchiTRIO and
suggests guidelines for its application. This paper presents in some detail the
semantics of the language. The semantics of ArchiTRIO is given in terms of
HOT (Higher-Order TRIO), which is a higher-order extension of our previous
first-order temporal logic TRIO [4]. We chose to found ArchiTRIO on a higher-
order logic to allow for the concise representation of mechanisms such as the
passing of parameters that have an ArchiTRIO/UML class for a type.

In our opinion, the distinguishing feature of HOT is its simplicity, rooted
in the rigorous application of the principle of identifying the concepts of class
and of abstract data type (see, e.g. [1]), which is seldom completely pursued
in traditional object-oriented languages. Since ArchiTRIO has many concepts
in common with UML (class, port, etc.), providing a semantics for the former
amounts also to giving a formal definition for a number of UML elements.

This paper is structured as follows: Section 2 briefly summarizes the features
of ArchiTRIO presented in [14]; Section 3 provides an overview of HOT and of
its set-theoretic semantics; Section 4 builds upon it to define the semantics of
ArchiTRIO; Section 5 compares the present work with some relevant literature,
and especially with the OCL [7]; finally, Section 6 draws some conclusions and
hints at future works in this area of research.

2 A Brief Overview of ArchiTRIO

In this section, we briefly summarize the ArchiTRIO approach originally pre-
sented in [14], and introduce a simple running example, an access control system
for a building divided into areas having different security levels, which we will
use throughout this article to illustrate the features of ArchiTRIO.

Consider an Access Control System used in one or more corporate buildings
having three different security levels: low, medium, and high. The building may
contain zero or more areas of a given security level. The access control is enforced
essentially through two kinds of entities: a local mechanism based on the concept
of security gate, and a central control connected to a user database.

Figure 1 shows the UML class diagram describing the situation above. It de-
picts a CentralControl class, the main entity which enforces the prescribed se-
curity policy for user access; a UserDB, that is a database containing users’ sen-
sible data and their actual security clearance; and three kinds of Gate classes:
SimpleGate, MediumSecurityGate, and HighSecurityGate, in charge of man-
aging the local access to areas with low, medium, and high security level, re-
spectively. Every gate has a port of type GatePort, while CentralControl has
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Gate
HighSecurirtyGateout:GatePort

UserDB

+getUser:User

User

+ name : Integer
- badge : Badge
- fingerprint : Fingerprint
- retina : Retina

+checkPD:boolean

0..*

0..*

Gate
MediumSecurityGateout:GatePort

Gate
SimpleGate

out:GatePort

AccessControl
CentralControl

inH:HighSecAutProtocol[*]

inM:MedSecAutProtocol[*]
inL:LowSecAutProtocol[*]

0..*

0..*

0..*

 

Fig. 1. Access Control System: the high-level class diagram

three different ports, LowSecAutProtocol, MedSecAutProtocol, and HighSec
AutProtocol that are used to communicate with SimpleGates, Medium
SecurityGates, and HighSecurityGates, respectively.

Moving in a top-down fashion, we now define the internal class structure
of the gates (for space reasons, we omit the corresponding diagram; the in-
terested reader can refer to [14]). A SimpleGate is an entity having one or
more BadgeReaders (a subclass of IdRecognizer), managed by a local controller
LC_SimpleGate. Communication between BadgeReader and LC_SimpleGate is
based on the interface LocalControl, implemented by the latter.

A MediumSecurityGate is based on a more sophisticated IdRecognizer, i.e. a
FingerprintsReader, and has an EntrySensor. Analogously to the simple gate,
a medium security gate is supervised by a local controller, LC_MedSecGate, and
communication between the local controller and the sensors is based on the in-
terface LocalControl. The most complex type of gate is the HighSecurityGate:
it consists of two kinds of IdRecognizers, a FingerprintsReader and a
RetinaScanner; an EntrySensor; and a local controller LC_HighSecGate. A high
security gate is opened only after both the user’s fingerprints and retina are suc-
cessfully checked.

Consider now for instance the structure of a high security gate (Figure 2). It
consists of a retina scanner (RS), a fingerprints reader (FR), an entry sensor (ES),
and a local control (LC). Every component is an instance of the correspond-
ing class; LC exchanges data with the sensors by implementing the interface
LocalControl, while communication with the remote central control happens
through a replicated port of type GatePort.

Finally, consider the system high-level architecture (Figure 3). It consists of:
a central control (CC); two low security gates (Entrance and BackDoor); two

HighSecurirtyGate

LocalControl

FR : FingerprintsReader

ES : EntrySensor

LC : LC_HighSecGate

out

RS : RetinaScanner

out:GatePort

 

Fig. 2. Composite structure diagram of a high security gate
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Building

Entrance : SimpleGate

out

CC : CentralControl

inH
inM[2]

inL[2]

Area44 : MediumSecurityGate
out

Area51 : HighSecurityGate

out

BackDoor : SimpleGate

out
AreaX : MediumSecurityGate

out

 

Fig. 3. The building structure: the high-level system architecture

medium security areas and their corresponding gates (AreaX and Area44); and
one high security area reachable through a high security gate (Area51).

This concludes a first simple architectural description of the system, based
exclusively on UML constructs. As we said in the introduction, UML per se does
not precisely define many of the constructs we used for describing our system
here. For instance, it lacks a precise definition of timeouts management and local
control behavior. More generally, we would like to be able to precisely express
a critical property and possibly to verify it. At this point the designer, e.g. of
a critical system, could need something more than plain UML, to add desired
properties and system requirements into its architecture. So ArchiTRIO appears
in the picture: the designer needs a solid formal description of the used concepts
(e.g. class, instance, interface, port, operation, connection, and so on), to state
something more and more precisely of the system, well before implementing it.

The basic ArchiTRIO concepts mirror a subset of the elements one can find
in UML 2.0. The core of the language is the class. A class defines operations
and attributes, and can provide and require interfaces ; ports are groups of re-
quired/provided interfaces, and can be used to define protocols. Classes can
have composite structures, whose parts are connected by connectors. The graph-
ical representation of those concepts that are common to both ArchiTRIO and
UML is the same as in UML. Besides these UML elements, however, ArchiTRIO
includes also concepts derived from temporal logic, which allow users to precisely
define the behavior of a system modeled with ArchiTRIO.

For example, class LC_HighSecGate provides interface LocalControl and
has a port of type GatePort; interface LocalControl defines two operations,
incomingData and personEntered. In addition to the aforementioned UML
port and interface, class LC_HighSecGate includes three logic items, inGate,
lastUser and gate_open. Item inGate is time-independent (TI, meaning that
its value is constant over time), and represents the identifier of the Gate to which
the controller belongs; item lastUser is time-dependent (TD, that is its value
depends on the time instant in which the item is evaluated) and models the data
corresponding to the user who had either his/her fingerprints or his/her retina
scanned; item gate_open, instead, is a state (which means that it is true/false
in intervals of non-null duration), and models the intervals in which the gate is
open.

In addition to the logic items explicitly declared in the class signature, an
ArchiTRIO class includes a number of built-in items, which model the most



ArchiTRIO 385

significant features of the UML elements of the class (for example the param-
eters of an operation, an operation invocation, etc.). Then, the axioms of class
LC_HighSecGate predicate over the logic items (explicitly declared or built-in)
of the class to define its precise behavior. Axiom dataRelay shown below, for
example, states that when an invocation of operation incomingData (exported
through interface LocalControl) is received by the controller and the value of
the rawData parameter is pd, within T time units in the future the controller
will invoke (an instance of) operation sendPersData on port out, passing pd
and the value corresponding to item inGate as parameters.

dataRelay:

iD.inv_rec(pd) -> ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T));

In axiom dataRelay, iD and sPD are variables ranging over all possible in-
vocations of operations incomingData and sendPersData, respectively. Then,
ex out.sPD means that “there exists an invocation of operation sendPersData
(within the scope of port out) such that...”. inv_rec and invoke are built-in
logic items (more precisely events, i.e. predicates that are true only in isolated
time instants) modeling significant events of an operation invocation; in partic-
ular, event iD.inv_rec is true when invocation iD of operation incomingData
is received by the local controller; similarly, event out.sPD.invoke is true when
the controller issues invocation sPD on port out. WithinF is a temporal operator
taken from the TRIO formal language (see [2] for its definition). pd is a variable
of type PersonalData, where PersonalData is an ArchiTRIO class, not shown
here for the sake of brevity, modeling either the badge, or the fingerprints, or
the retina of a user.

Finally, a port is a collection of provided and required interfaces. It can be
used to define a protocol, intended as a combination of invocations of operations
that can be received (from a provided interface) or issued (to a required inter-
face). Thus, an ArchiTRIO port can contain axioms defining the corresponding
protocol in terms of the involved operation invocations. Consider, for example,
port HighSecAutProtocol of Figure 1. It provides interface AccessControl, and
requires one instance of interface FromAccessControl. The port defines the au-
thentication protocol for gates that require that a user authenticates him/herself
through both a fingerprint and a retina scan. More precisely, the two scans can
occur in any order, but always within a maximum delay one from the other for
the authentication to be successful (i.e. for the controller to allow the user to
enter by opening the gate through an openGate command). Further details can
be found in [14].

This concludes our simple and informal overview of ArchiTRIO. The next
sections will cover these concepts more formally.

3 Higher-Order TRIO

Items are the founding elements of the HOT logic. HOT items correspond, in
usual logic lore, to constants, functions or predicates. Items can have arguments
(and return values), which are typed elements. The arguments (and returned
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values) of HOT items can be of any HOT type (see below). For example, we
might define a HOT item it to be a time-dependent (TD) predicate with two
arguments of type T1 and T2:

items: TD it(T1, T2) : boolean;

Items are the building blocks for HOT formulas. HOT formulas are, as usual,
a combination of functions, predicates (that is, items), logical connectors (&, |,
->, <->, not), temporal operators (Dist, Futr, Past, etc.) and quantifiers (all,
ex). For example:

p1(f1, f2(c1)) -> Futr(all x(p2(x)), t);

Notice that every HOT variable (for example c1, x and t in the formula
above) ranges over the values of some type (or domain), which is defined through
a HOT class. A HOT class definition is essentially divided in two parts: the first
part contains the local items; the second part contains the axioms. Axioms are
formulas which model the behavior of the class; that is, they constrain its items.
Given a HOT class, an element of the domain is called an object. The term
object is synonym for instance (of a class) and value (of a type). A HOT object
corresponds also to a model for the corresponding class (or, in TRIO terms, to
a history); essentially, being HOT a temporal logic, an object is a function of
time. As a consequence there is no notion of object creation and destruction as
in operational languages. This approach differs from the usual related literature,
but basically follows and extends the traditional TRIO class-oriented approach
(see [2] for more details).

Modules. TRIO has a primitive notion of module that sharply distinguishes
it from the notion of item: a module is an instance of a class contained in an
instance of another class. HOT instead, thanks to being higher order does not
need such a separation. Rather, it has linguistic constructs that allow one to
obtain the same semantics as TRIO modules in HOT from basic HOT concepts.
Thus, HOT offers the keyword module as a shorthand notation to automatically
introduce the axioms and definitions corresponding to the semantics of TRIO
modules, where essentially a module is represented through a HOT item. As a
brief example, consider a class C containing an array m of n modules of class M:

modules: m[1..n] : M;

This array corresponds in HOT to the following time-independent item:

items: TI m(1..n) : M;

Inheritance. We distinguish two kinds of inheritance: monotonic inheritance,
and free, purely syntactic, inheritance. Monotonic inheritance perfectly matches
the notion of subtyping (in fact it is written C′ subtype of C, or C′ $ C):
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1. every item and axiom defined in C is in C′;
2. C′ may add new items;
3. C′ may add new axioms, thus more constraints w.r.t. C.

The subsection about semantics below shows how this simple notion of in-
heritance produces pure subtyping, as, e.g., in [1].

Instead, purely syntactic inheritance (written C′ redefines C) is a free-form
of inheritance: C′ may modify, add, and delete any items and axioms of C.

We introduce both types of inheritance to make HOT a very free kind of logic
language. Nonetheless, in our opinion the correct interpretation of inheritance
is essentially subtyping. Although in this paper we do not deal with method-
ological aspects, we envisage a methodology where the specifier/designer could
start with a class hierarchy in which both kinds of inheritance are used, be-
ing sometimes easier to work with a free form of inheritance, to later obtain,
through some revision steps, a true tree in which only subtyping is used. For
instance, consider the system presented in Section 2. The designer at first writes
class SimpleGate, because it is the simplest kind of gate. Then, she decides to
add another, more complex kind of gate: the MediumSecurityGate. She creates
class MediumSecurityGate using syntactic inheritance from SimpleGate, replac-
ing the BadgeReader component with one of type FingerprintsReader, then
adding a new component of type EntrySensor. Later, rethinking about the rela-
tion between these two classes, she decides to collect all the concepts common in
gates in a new class Gate, of which both SimpleGate and MediumSecurityGate
become subtypes.

Genericity. HOT classes can be parametric with respect to values of classes
and with respect to classes. The header of a generic HOT class has the syntax
class <class_name> ( <par_decls> ) where parameters may be a type name
or a value of a certain type.

Hints of HOT’s Set-Theoretic Semantics. Given an item i of class C, let us
call sig(i) its signature1. Moreover, let us call items(C) the set of items locally
defined in C (e.g., if items(C) = i1, i2, and C′ is a subtype of C that adds a single
new item i3 to C, then items(C′) = i3). Quite naturally, items are interpreted as
(time dependent or independent) constants, functions or predicates, depending
on their signature. Axioms are essentially constraints on the items. Classes are
types, therefore are interpreted as sets of objects. An object x of class C is, in
general, a function of time (τ):

x : τ → �
i∈I

sig(i), where I =
⋃

C′�C

items(C′).

Therefore x.i is interpreted as a projection of the range of x on the component
sig(i). For example, let C be a class with items n of type natural, and s of type
string, with axioms stating that always n = length(s). Let C′ be a subtype of

1 For simplicity, in the following we do not consider homonyms and name clashes.
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C, containing a new item c of type char, and a new axiom which states that
c = s[0]. Then, every object in C or C′ can be interpreted as a function with
signature: τ → natural × string × char. The main difference is that C does
not constrain in any way item c, therefore C′ ⊆ C.

4 The Semantics of ArchiTRIO

We now define the semantics of the core elements of ArchiTRIO on the stage
of HOT: classes (possibly composite), operations, interfaces/ports. For reasons
of brevity, we do not present the full semantics of ArchiTRIO, but only a sig-
nificant subset thereof; the elements presented here, however, should provide a
meaningful enough picture.

4.1 ArchiTRIO Classes

An ArchiTRIO class is a HOT class, and defines a type; then, as in HOT, an
ArchiTRIO object of type AT is an instance (i.e. a value) of class AT.

All ArchiTRIO classes are subtypes (in terms of HOT) of a HOT class
ArchiRootClass; that is, all ArchiTRIO classes implicitly share a common root
class, which thus defines a type that is common to all ArchiTRIO objects. A
class can include operations and attributes. An attribute is, quite naturally, rep-
resented through an item modeling its value, and operations to get/set it. Then,
its semantics does not raise specific issues besides those associated with the
notion of operation.

4.2 Operations

The concept of ArchiTRIO (and, thus, UML) operation is defined through a
HOT class Operation, which captures the core features shared by all operations.
These features can be summed up as: 1) a set of items modeling the key aspects
of an operation invocation (when the client object issues the invocation, when
the server receives it, the parameters associated with the invocation, etc.), and
2) a set of axioms defining the constraints — time-related or not — over the
aforementioned items (for example, the fact that a return must be preceded by
the server object actually receiving the invocation, etc.). HOT class Operation
defining the semantics common to all operations is sketched below.

class Operation

items:

event invoke, inv_rec, reply; ...

axioms:

Response_NC: reply -> SomP(inv_rec);

...

end

Class Operation introduces the logic items modeling the relevant features
of an operation invocation (e.g. the invoke, inv_rec and reply events first in-
troduced in Section 2), and the axioms defining the behavior that is common to



ArchiTRIO 389

all invocations. For example, axiom Response_NC defines a necessary condition
for the reply event to occur: an operation invocation can return (occurrence of
the reply event) only if the invocation was previously received by the called ob-
ject (event inv_rec; see [2] for the definition of temporal operator SomP). Every
instance o of class Operation corresponds to a single invocation of an oper-
ation. Then, for any instance o, the corresponding events invoke, reply, etc.
are unique; that is, they can happen only once over the temporal domain. This
property is defined by suitable axioms in HOT class Operation; for instance,
formula invoke_unique states in an obvious way that, if event invoke occurs
now, it cannot occur in any other instant of the temporal domain.

Every invocation is also characterized by a pair of objects: one that issues the
invocation, and one that receives it. This is represented in the HOT semantics
through a pair of items, src and tgt, both constants of type ArchiRootClass,
modeling, respectively, the source of the invocation and its target.

A specific operation (e.g. sendPersData of interface AccessControl) is de-
fined as a subtype of HOT class Operation. For example, class sendPersData
below defines the semantics for the corresponding operation (see [14] for the com-
plete declaration of the operation). Every instance spd of class sendPersData
(i.e. every value of type sendPersData) is an invocation of the corresponding
operation.

class AccessControl.sendPersData

subtype of: Operation;

items:

TI rawData : PersonalData;

TI gate : GateId;

TI partial returned : User;

TI partial raised : UserNonExistentException; ...

axioms: ...

end

The parameters of an operation are represented through constants having
the same type of the parameter. For example parameter rawData of operation
sendPersData corresponds to a constant with the same name in the HOT class
sendPersData; then, given an instance sPD of class sendPersData, sPD.rawData
is the value of parameter rawData for that invocation. Similarly, if an operation
returns a value (resp. raises an exception), this is represented through a con-
stant returned (resp. raised) of the same type as the returned value (resp. raised
exception). Constant item returned is declared as partial, meaning that its
value can be undefined, for example if the invocation ends with an exception
(similarly, item raised is partial since its value is undefined if the invocation
ends correctly). When the instance of an operation appears in a formula, the
server object which it refers to is included, as a prefix, in the term identifying
the instance (if the server object is not included, it defaults to this, i.e., the
current object in which the formula is defined). For example, if sPD is a vari-
able of type sendPersData and ac is a term corresponding to an instance of
a class providing interface AccessControl (that is, operation sendPersData),
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to refer to an invocation of operation sendPersData on object ac we have to
write ac.sPD (see for example formula dataRelay of class LC_HighSecGate).
This corresponds to stating that the target object of invocation sPD is ac or,
using the HOT semantics, that sPD.tgt = ac.

4.3 Interfaces and Ports

¿From a semantic point of view, an ArchiTRIO interface is a class that exports
operations (and attributes), but cannot include other logic items (such as, for
example, state gate_open of class LC_HighSecGate), nor can be decomposed
into parts (i.e. it cannot be composite, but merely simple). The only possible
associations that an interface can have are a generalization relationship with
other interfaces, and a “provided by” relationship with an ArchiTRIO class; it
cannot, for example, require an interface.

A class providing an interface I is a subtype of HOT class I. ArchiTRIO
allows a class (resp. interface) to provide (resp. specialize) more than one in-
terface. Then, the corresponding HOT class is a subtype of every and each one
of the provided (resp. specialized) interfaces. An ArchiTRIO class requiring an
interface I is a HOT generic (i.e. parametric) class with respect to a parameter
of type I. For example, class RetinaScanner provides interface IdRecognizer
and requires an interface LocalControl. The corresponding HOT class is shown
below.
class RetinaScanner (lc : LocalControl)

subtype of: IdRecognizer; ...

end

As detailed above, HOT class RetinaScanner has one parameter, lc, of type
LocalControl; that is, every object rs of class RetinaScanner must be instan-
tiated with an object providing interface LocalControl. One way to provide an
instance c of a class C requiring an interface I with the necessary instances of I is
by connecting c with an object providing I in a Composite Structure Diagram,
as explained in Section 4.4. A port in ArchiTRIO is a class that provides a (pos-
sibly empty) set of interfaces PI, and requires a (possibly empty) set of interfaces
RI. In addition, an ArchiTRIO port can include a set of axioms, which define a
protocol associated with the port. A port, like an interface, cannot include logic
items, nor be decomposed further into parts; it may specialize another port, but
not other kinds of classifiers (classes and interfaces). Only ArchiTRIO classes
(neither interfaces, nor other ports) may offer a port.

Being an ArchiTRIO class, a port is defined as a HOT class that requires
and provides the corresponding interfaces. For example, the HOT semantics of
port HighSecAutProtocol shown in Figure 1 is the following:

class HighSecAutProtocol (fac : FromAccessControl)

subtype of: AccessControl; ...

end

The HOT semantics of an ArchiTRIO class C that offers a port p of type P
is that of a class having a module p of type P. The multiplicity of every port
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component (i.e. how many instances of a port P an instance of C actually
offers) is a parameter of the class offering it, if it is left open in the class
definition (e.g., when defined as [1..*]). For example, class CentralControl
of Figure 1 has three ports: inH of type HighSecAutProtocol, inM of type
MedSecAutProtocol and inL of type LowSecAutProtocol. The actual multi-
plicity of these ports is decided when class CentralControl is instantiated (for
example in the example of building of Figure 3, instance CC has two instances
each of ports MedSecAutProtocol and LowSecAutProtocol, and one instance of
port HighSecAutProtocol). Then, the HOT semantics of class CentralControl
is the following2:

class CentralControl (N_inH : Natural, N_inM : Natural, N_inL : Natural,

inH_fac : FromAccessControl[1..N_inH], ...)

modules:

inH[1..N_inH]: HighSecAutProtocol(inH_fac);

inM[1..N_inM]: MedSecAutProtocol(...);

inL[1..N_inL]: LowSecAutProtocol(...); ...

end

Note that the number of ports N_inH, N_inM and N_inL are parameters of
class CentralControl, and are set when the class is instantiated.

4.4 Composite Classes

The parts of an ArchiTRIO composite class are defined, in a natural manner,
through HOT modules. For example, the semantics of class HighSecurityGate
of Figure 2 is the following (note the definition of port out as a module of the
class, in accordance to the discussion of Section 4.3):

class HighSecurityGate (out_ac: AccessControl)

modules:

out: GatePort(out_ac);

LC: LC_HighSecGate;

RS: RetinaScanner(LC);

FR: FingerprintsReader(LC);

ES: EntrySensor(LC); ...

end

As shown above, the HOT semantics of a connection between a provided and
a required interface (such as the one between components LC and RS in Figure
2) is that of parameter instantiation. Then, for example, in object RC of class
RetinaScanner (which requires an interface of type LocalControl) parame-
ter lc is instantiated with object LC, which is precisely of type LocalControl
(similarly for object FR and ES). There are two kinds of connectors between
ports. The first one corresponds to the situation in which two ports of the
same kind, one belonging to a composite class, and one belonging to one of
its components, are connected with each other (this is, for example, the case
of ports out of class HighSecurityGate and of its part LC). The second one,
2 Parameter inH fac is a sequence of N inH objects of type FromAccessControl.
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instead, corresponds to the configuration in which a port P providing interfaces
PI1, ..., PIn and requiring interfaces RI1, ..., RIm is connected to a com-
plementary port Pc requiring interfaces PI1, ..., PIn and providing interfaces
RI1, ..., RIm. This second case occurs, for example, in class Building of Fig-
ure 3, where port inH of component CC, which has type HighSecAutProtocol,
is connected to port out of Area51, which has type GatePort; in fact, port
HighSecAutProtocol provides interface AccessControl and requires interface
FromAccessControl, while port GatePort requires interface AccessControl and
provides interface FromAccessControl, and is thus complementary to the for-
mer. Informally, in the first kind of connection between ports (the one exem-
plified by class HighSecurityGate and its part LC) the composite class relays
instantly all signals arriving at the outermost port p_out to the innermost one
p_in (and vice-versa). Then, all traces of port p_out are also traces for p_in.
This corresponds to p_out and p_in actually being the same object. In the
case of class HighSecurityGate, for example, this corresponds to stating that
out = LC.out. The second kind of connection is instead an extended version of
the connection between provided and required interfaces described above. Then,
the connection between components CC and Area51 in class Building has the
following semantics:

class Building ...

modules:

CC: CentralControl(1, 2, 2, [Area51],...);

Area51: HighSecurityGate(CC.inH); ...

end

where [Area51] is a sequence of exactly one object, Area51 (which has type
FromAccessControl, as required by the definition of parameter inH_fac of class
CentralControl above).

5 Related Works

ArchiTRIO is a formal language that includes a number of concepts from UML
2.0, and assigns them a precise semantics. As a consequence, it is related to a
number of works that have appeared in the literature in recent years. In this
section, we take into account some of the aforementioned works, and briefly
analyze how our approach differs from previous ones.

ArchiTRIO is a logic-based language, and indeed the UML notation already
includes a logic language, the Object Constraint Language (OCL) [7]. With re-
spect to OCL, however, ArchiTRIO has larger scope and greater expressiveness.
In fact, OCL is a language for specifying “[...] invariants on classes and types
in the class model [...] pre- and post conditions on Operations and Methods
[...] constraints on operations [...]” [7]. With ArchiTRIO one can express all of
these properties and some more; for example, axiom dataRelay shown in Sec-
tion 2, which defines neither a class invariant, nor a pre/post condition (nor a
constraint) on an operation, but, rather, a dynamic relationship between two dif-
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ferent operations, cannot be expressed as an OCL constraint3. In addition, OCL
expressions are forbidden to “alter the state of the corresponding executing sys-
tem” (i.e. they are side-effect-free), and they can describe the computation of an
operation only if this is side-effect-free (in UML terms, only if it has an isQuery
tag). ArchiTRIO formulas, on the other hand, do not have any of these restric-
tions, and can easily formalize properties such as “as a result of an invocation
of operation Op, the value of attribute A becomes X”.

Also, it is well-known that OCL cannot express real-time constraints. A real-
time extension to OCL has been proposed in [15] to express real-time constraints
on Statecharts. In the approach of [15], real-time OCL formulas can state that,
for example, “if the class is in state X, then on all execution traces of the under-
lying Statechart state Y must follow after no less than T1 and no more that T2
time units” (where T1 and T2 must be either integer constants or the keyword
inf); that is, RT-OCL formulas make sense only when interpreted with respect
to the Statechart associated with the class. ArchiTRIO formulas, instead, are
more expressive as far as temporal constraints are concerned (they allow quan-
tifications over temporal variables, which can range not only over discrete, but
also over continuous temporal domains), and have a higher level of abstraction.
In fact, while RT-OCL formulas refer to a specific computational environment
(i.e. the one given by the Statechart of the enclosing class), ArchiTRIO ones
assume very little (for example that a reply must be preceded by an invoke),
and they themselves define the possible computations of the class they refer to.

[9] presents a formal semantics for object systems with particular emphasis
on how objects react to the stimuli (called requests) coming from other objects.
In addition, it introduces a notion of substitutability between objects based on
behavioral conformity. The present work exhibits some similarities with [9], in
that we also provide a formal semantics for systems composed of communicating
objects, and introduce a notion of subtyping that hinges on the principle that a
subtype can be used wherever a parent type appears (in HOT/ArchiTRIO terms,
it guarantees that the axiom formulas of the parent still hold). Notice, however,
that while [9] refers to state-based specifications (for example ones given through
Statecharts), ArchiTRIO belongs to the category of axiom systems, hence the
two notions of substitutability and subtyping are inherently different, even if
related (the former is based on the concept of trace containement/simulation,
while the latter on the concept of subset/logical implication). In addition, while
[9] basically offers a semantics of Statecharts describing communicating objects,
ArchiTRIO has a wider reach, as it encompasses the definition of the whole
system, in both its structural and dynamic features.

3 One could argue that such a property (minus the real-time constraint) could be
expressed in UML by means of a Statechart or an Activity Diagram. However, this
only highlights the fact that while in ArchiTRIO there is a unique formalism for
all aspects of the model (static and dynamic), basic UML relies on a number of
overlapping views, which often express similar properties and can be difficult to
reconcile with one another.
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How to add formality to existing UML is a widely acknowledged problem. In
this regard, a number of works in the literature have proposed an approach based
on translating UML behavioral diagrams (especially Statecharts and sequence
diagrams) into an existing formalism (be it π-Calculus [10], TRIO [11], Promela
[13], and many others not listed here for the sake of brevity), or, alternatively,
into an ad-hoc model [12]. The ArchiTRIO approach is different in that we do not
translate any UML dynamic diagram into an existing formalism; on the contrary,
we developed a formal language that is integrated into the UML 2.0 notation,
which allows one to precisely describe both the structure and the dynamics of
a system, of its components and their interactions, with particular attention to
their temporal constraints.

Finally, [6] presents an approach to the analysis of system architectures based
on a subset of UML 2.0 concepts and a formal semantics for time-annotated
Statecharts. Again, with respect to this work, the scope of ArchiTRIO is wider,
as it is intended for use in the whole system design phase, from modeling to
verification. In fact, one could see the techniques presented in [6], and associated
notations, as a target model, to be obtained through a suitable method from an
ArchiTRIO design to perform subsequent verification.

6 Conclusions

We presented the semantics of the ArchiTRIO language [14]. Since ArchiTRIO
shares many concepts with UML, its semantics effectively corresponds to a formal
definition of a number of important UML concepts. The semantics of ArchiTRIO
is given in terms of a higher-order temporal logic, HOT, which is endowed with
a notion of subtyping built upon the simple and intuitive concept of subset.

Our further work on the ArchiTRIO language will follow a number of di-
rections. First and foremost, we are currently developing an integrated tool-set,
called TRIDENT, which is based on the Eclipse [3] platform, to support writ-
ing ArchiTRIO models. This tool, of which an early prototype exists, will be
able to import UML diagrams from external tools, both commercial and non-
commercial, and will allow users to add ArchiTRIO-specific details to those parts
of the model that require a greater level of rigor and precision. Secondly, we will
investigate verification techniques (to be supported by TRIDENT) to comple-
ment the modeling features presented in this paper. In this regard, the semantics
of ArchiTRIO in terms of HOT suggests an encoding of ArchiTRIO classes into
the higher-order logic of a theorem prover such as PVS, along the lines already
followed for the TRIO language [5].

The ultimate goal of our research is the development of a complete “UML-
compliant and compatible”, fully tool supported methodology that allows one to
move smoothly from a purely logic high-level specification to architectural design
to implementation through a sequence of refinement steps, the correctness of each
one being rigorously verified by exploiting several complementary methods.
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Abstract. In this paper, we consider the problem of extending existing sub-
module construction techniques that have been developed for finite state models 
into more expressive and compact behavioral models that handle data through 
parameterized interactions, state variables and simple guards. We provide a be-
havioral model based on extended Input-Output Automata and describe an algo-
rithm that provides the solution to the submodule construction problem in the 
context of this extended behavioral model. This algorithm is based on abstract-
ing variable configurations using the concept of variable partitions, and splitting 
of states obtained from the finite state machine model in order to satisfy the 
constraints imposed by the values of exchanged interaction parameters. 

1   Introduction  

Submodule construction, also called equation solving or factorization, considers the 
following situation: An overall system is to be constructed which consists of several 
components. It is assumed that the specification S of the desired behavior of the sys-
tem is given, as well as a specification of the behavior of all the components, except 
one. The process of submodule construction has the objective of finding a specifica-
tion for the latter component such that all components together provide a behavior 
consistent with the behavior specification S. If the modeling paradigm for the behav-
ior specifications is sufficiently limited, e.g. finite state models, an algorithm for sub-
module construction can be defined [MeBo83, Parr89, Shie89, LeQi90, DrBo99]. 
Submodule construction finds application in the synthesis of controllers for discrete 
event systems [BrWo94], communication gateway design and protocol conversion 
[KeHa93, KNM97, TBD97]. 

In this paper we consider submodule construction techniques for state transition 
models extended with state variables, interaction parameters and simple guards for 
transitions. We use a specification paradigm which is an extension of partially speci-
fied Input/Output Automata as discussed in [Boch02]. The main difficulties encoun-
tered when solving the submodule construction for such extended specification mod-
els are the following:  

a. One has to keep track of the relationship between the variables of the new module 
X, the variables of the system specification and the variables of the existing com-
ponent C.  
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b. For each of the input or output transitions of the new component X, one has to de-
cide which local variables should be used to store parameter values received by an 
input, or which local variable should be used to define the value of an output pa-
rameter.  

c. There may be many different global system states that may be reached depending 
on the choices that are taken under point (b) above. We want to find the most gen-
eral specification for the component X such that without introducing not allowed 
output to the environment of the system nor unexpected input (for the existing 
component C) from the component X or from the environment. 

Our approach for solving this problem without simply enumerating all possible 
choices for the new component X is based on the following two ideas:  

1. In order to model the equivalence between different variables in a given state, we 
consider partitions over the set of all variables. A partition defines a set of non-
overlapping subsets of variables, and our partitions have the property that all vari-
ables that belong to a given subset of the partition are equivalent, that is, known to 
have the same value. 

2.  After applying submodule construction for the IOA model (following known 
methods [QiLe91, BrWo94, KNM97, DriBo99]) we analyze the resulting state ma-
chine for X in order to determine which partitions may apply for each of its states. 
Since for a given state, some partitions may lead to invalid behavior, we introduce 
a transformation step in which the states of the component X are split according to 
the possible partitions that can be reached. The purpose of this splitting is to pre-
serve the acceptable behavior (related to a particular partition) and eliminate inva-
lid behaviors (related to other partitions). The splitting of one state often leads to 
the need for splitting other states from which the former can be reached. We there-
fore come up with a recursive splitting algorithm which allows us to eliminate all 
invalid behavior and keep all acceptable behavior, that is, we obtain the most gen-
eral solution. 

To simplify the problem we only deal with safety properties postponing issues re-
lated to liveness like blocking and progressiveness that has been solved for finite 
models [KNM97, DriBo99, BEYB03]. We note, however, that blocking will be par-
tially solved in our context since we assume that the system component can not block 
any input from its environment. 

The paper is structured as follows. In Section 2 we give the definition of our ex-
tended IOA specification formalism. Section 3 describes our submodule construction 
algorithm for extended IOA and gives some examples. Given the limited space in this 
paper, we concentrate on the definition of variable partitions and the state splitting al-
gorithm. 

2   Behavioral Model 

We start by adopting a behavioral model that manipulates data and compactly repre-
sents large or infinite state systems. The model we suggest is an extension to the IO 
automata model [LyTu89].  
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2.1   Behavioral Model Properties 

We stress mainly two aspects of the model: data manipulation and value passing, and 
differentiation between input and output in an assumption guarantee model. 

2.1.1   Data Manipulation and Value Passing 
The usage of dataflow information in models allows more compact and expressive 
representation of systems. Data manipulation and value passing can be achieved 
through extending finite automata models with parameterized interactions, local vari-
ables, simple transition guards and variable assignments. Parameterized interactions 
are used to represent the exchange of data between components and between compo-
nents and the environment. Processing of data is done through saving values of input 
parameters in local variables, and using these values later to define the values of out-
put parameters. Our model does not apply any operation on received data, and guards 
over data are simple equality checks used to represent the assignment of values to pa-
rameters, or in other words a restriction to the values that can be assigned to the pa-
rameters.  Though the formal model that we present later allows for restrictions on in-
put values, we assume that the behavior specification of C and S do not use this 
feature, since we are only using the guards to represent variable assignment to pa-
rameters. 

2.1.2   Differentiation Between Input and Output in an Assumption Guarantee 
Model 
As in the IOA model, a system has no control over its input interactions; however, it 
can assume that certain inputs are not possible. Similarly, a system might be required 
to give guarantees that it does not send certain interactions at certain states. This con-
cept is generalized in our model to cover parameters sent and received alongside an 
interaction. So a machine can have assumptions that only specific values can be re-
ceived using the transition guards and guarantees that it sends only specific values as 
parameters of output interactions it initiates. We use partial specification to indicate 
input assumptions and output guarantees, that is, if at a given state there was no tran-
sition labeled with a given interaction, then this indicates that the machine assumes 
that its environment will not generate that interaction at that state. Same applies to the 
case of output guarantees, where if an output interaction and a given output valuation 
of the interaction parameters was not specified, then that interaction and parameter 
valuation is guaranteed not to be generated by the machine.  

2.2   Extended Input Output Transition Systems 

In the following we present a formal definition of what we call Extended Input-
Output Transition System (EIOTS), inspired from the Input Output symbolic Transi-
tion System IOSTS in [RBJ00], I/O Automata [LyTu89], and CSP [Hoar85]. An 
EIOTS is tuple < S, V, s0, Se,  , T> where 

• S is a nonempty finite set of states. 
• V is a finite set of variables. 
• s0 ∈  S represents the initial state. 
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• Se ⊂  S represents the set of error states resulting from either a not allowed output 
or an unexpected input. All transitions starting at an error state should lead to an er-
ror state. 

•  is a nonempty, finite alphabet, which is the disjoint union of a set in of input in-
teractions, a set out of output interactions, and a set { } which has the special in-
ternal interaction .  For each interaction  ∈ in U out, there is a (possibly empty) 
ordered set of interaction parameters Pm  = <pm1,…, pmk>, 

• T ⊆ S x 2PmxV x  x 2VxPm x S. Each tuple (s, , , , s’) ∈T represents a transition 
where: 

• s ∈ S is the starting state of the transition. 
•  ⊆  Pm  xV. A couple (p,v) ∈   represents an equality condition of the 

form (p=v). If  is an input interaction then  is interpreted as a transition 
guard formed by the conjunction of all constituting parameter conditions. If  
is an output interaction then parameter conditions are interpreted as assign-
ments of variables to parameters or in other words a restriction of the possible 
values that a parameter can take. 

•  ∈  is the transition’s interaction. 
•  ⊆ Vx Pm . Each couple (v, p) ∈   represents an assignment of parameter 

p to variable v. The assignments in  are executed during the transition after 
the assignments in ; they assign new values to some of the variables in V. A 
variable is allowed to be assigned only once, this makes  belong to the set of 
partial mapping relations in Vx Pm  

• s’∈ S is the end state of the transition. 
 

The EIOTS shown in Figure 1 is taken as 
an example throughout this paper. It repre-
sents a desired system behavior S. In our 
notation, a question mark next to the inter-
action label represents an input, and an ex-
clamation mark represents an output. Cir-
cles represent states and arrows represent 
transitions. 

A

B D

F

?n(p)
{sv:=p}

{p=sv}
!use(p)

?ack?m

 !rack

C
!O

 

Fig. 1. EIOTS S 

3   Submodule Construction Algorithm 

The algorithm follows the general steps of submodule construction algorithm for fi-
nite state machines namely composition, hiding, determinization and bad or uncon-
trollable state removal. However, these steps have to be adapted for the new specifica-
tion paradigm. To allow for determinization to take place we need to remove the 
effect of hidden guards and hidden variables. This is done through state splitting 
transformation. 

In algorithm 1 we list the general steps of the submodule construction algorithm 
which basically include computing the unrestricted general behavior formed from the 
composition of the Chaos machine of X with the specification and the context. The 
chaos machine represents the most general behavior of X and uses as many variables 
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as there are in S and C combined. To enable the composition between S and C we 
need to apply the duality operator to C which gives a machine that has the same struc-
ture as C with the exception of interchanging input and output interactions out and 

in. The duality operator is applied as well to the composition so that we can compose 
it with the Chaos machine. Then, the resulting EIOTS is transformed using state split-
ting. After splitting we hide all interactions that are not visible to X and all variables 
coming from S and C. Finally, we handle the nondeterminism introduced by hiding, 
and we remove all uncontrollable behavior, that is, we mark all states that uncontrol-
lably reach an error state as “bad”, and add them to the set of error states. 

 

 
To illustrate the algorithmic steps we use a submodule construction example. The 

general system specification S is given in Figure 1. Figure 2a below shows the behav-
ior of the context and Figure 2b describes the general problem architecture. To distin-
guish variables of various machines, we use the name of the machine as a prefix when 
naming variables. 

1

2 3

4

?c(p)
{cv:=p}

?O

?ack
5

 !a

?c(p)
{cv:=p}

{p=cv}
!use(p)

 

c(p)

a

Specification

X Context

m
n(p)

use(p) ackrack

cv

sv

O

xv1 xv2

 

Fig. 2. (a) Context Behavior. (b) Example Architecture. 

In the following sub sections we go through the operations on EIOTSs needed for 
the submodule construction algorithm stressing on composition, and state splitting 
operations. 

3.1   Composition 

The composition of EIOTS follows the composition of partially specified IO  
Automata [KeHa93]. That is, transitions with common interactions are executed syn-
chronously and transition with interactions particular to each machine are executed 

Algorithm 1. Submodule Construction Algorithm: 
Given C, S: EIOTS, X Interaction Alphabet return EIOTS 

• G1 := Chaos( X , |S.V| +|C.V|) xDual(SxDual(C)) 
• G2 := Split(G1, X) 
• G3 := Hide(G2, ( C U S ) - X , S.V U C.V) 
• G4 := Determinize(G3) 
• G5 := RemoveUncontrollableBehavior(G4) 
• Return EIOTS G5 
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independently, assuming that for each interaction there is only one initiator, which is 
one of the two composed machines or the environment.  

Concerning the extended elements of the EIOTS model, the resulting composed 
machine will have a set of variables which is the disjoint union of the variables of the 
component machines, assuming that the machines have distinct variable names. When 
composing two input transitions, the resulting transition will be an input transition. 
Meanwhile, when composing an input transition with an output transition, the result-
ing transition will be an output transition. In both cases, the parameter conditions of 
the resulting transition will be the conjunction of the parameter conditions of the con-
stituting transitions. Similarly, the variable assignments of the resulting transition will 
be the union of the variable assignments of the constituting transitions. 

 

A1 A2

F1 F5

D4

{p=cv,p=sv}
!use(p)

?ack

?a

!rack

?n(p)
 {sv:=p}

B1

C3

B2 !O
!c(p)

{cv:=p}

!c(p)
{cv:=p}

?m ?m

?n(p)
{sv:=p}

!c(p)
{cv:=p}

!c(p)
{cv:=p}

 

Fig. 3. Composition example. SxDual(C). 

 
The composition of two EIOTSes E1 < S1, V1, s01, Se1, 1, T1> and E2 < S2, 

V2, s02, Se2, 2, T2> is an EIOTS E < S, V, s0, Se, , T> that is formally defined as 
follows: 

• S = {(s1,s2)| s1 ∈  S1 and s2 ∈  S2} 
• V = V1UV2, the union of variables in E1 and E2. 
• s0 = (s01, s02) 
• Se  = {(s1,s2) | s1∈  Se1 or s2 ∈Se2} 
• in. = ( 1in - 2out) U ( 2in - 1out) Note: Input interactions that are neither 

initiated by E1 nor by E2. 
• out. = ( 1out U 2out). It is assumed that ( 1out  2out  = {}) 
• T = union of  

o {((s1,s2), 1, , 1, (s1’,s2)) | (s1, 1, , 1, s1’) ∈  T1, s2 ∈  S2,   
∈  1 - 2} Note: for transition with interactions in 1 only. 

o {((s1,s2), 2, , 2, (s1,s2’)) | (s2, 2, , 2, s2’) ∈  T2, s1 ∈  S1,  
∈  ( 2 - 1)} Note: for transition with interactions in 2 only. 
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o {((s1,s2), 1 U 2, , 1U 2, (s1’,s2’)) | (s1, 1, , 1, s1’) ∈  T1 
and (s2, 2, 2, 2, s2’) ∈  T2 and  ∈  1  2} Note: for transi-
tions with common interactions. 

Figure 3 shows the resulting machine of the composition operation of S and 
Dual(C) of our example. Notice in particular the output transition (C3, {p=cv; p=sv}, 
!use(p), {}, D4)  which is the result of composing S’s output transition (C, {p=sv}, 
!use(p), {}, D) and Dual(C)’s input transition (1, {p=cv},?use(p), {}, 4). An implicit 
condition that variables cv and sv should be equivalent to avoid an unspecified recep-
tion is created. 

3.2   Chaos Machine 

The notion of chaos was introduced by Hoare [Hoare85] to denote the most general 
behavior of a module. It was also used in several papers on submodule construction 
[PeYe98, DrBo99, Boch02]. For the case of submodule construction we can add vari-
ables as much as we want, since we have the full control over the new machine. How-
ever, to simulate S and C we only need as many variables as S and C combined. 
For our EOITS model the chaos machine has 
one state which has a looping transition for 
each input interaction and each combination of 
assignments of interaction parameters to local 
variables. Similarly, it has an output transition 
for each output interaction and each combina-
tion of variable assignments to parameters. In 
Figure 4 we give the Chaos machine for the 
submodule construction example using two 
variables which correspond to the two vari-
ables of C and S; for the interaction ?n(p), for 
instance, this machine contains 4 transitions 
with different variable assignments. 

n

{}?n(p){sv1:=p, sv2:=p}

{p=sv1}!c(p){}

{}?a,{}
{}?m,{}

{}?n(p){sv1:=p}
{}?n(p){sv2:=p}

{}?n(p){}{p=sv2}!c(p){}

{}!O{}
{}!rack{}  

Fig. 4. Example Chaos machine:  
Chaos( X, 2) 

3.3   State Splitting 

State splitting is done to separate variable configurations that cause guard failure into 
separate state splits. As outlined in the following algorithm, it is done in three steps, 
first a variable configuration information collection step in the form of variable parti-
tions followed by two consecutive steps for state splitting. 

Algorithm 2. State Splitting Algorithm: 
Given G : EIOTS, X   Interaction Alphabet; return an EIOTS 

• R := ComputePartitions(G) 
• SplitPhaseOne(G, X , R, StateGroups) 
• SplitPhaseTwo(G, X , R, StateGroups ) 

Return EIOTS G 
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3.3.1   Variable Partition Computation 
The concept of variable partition is introduced for the purpose of statically analyzing 
an EIOTS machine. It mainly helps in providing an abstract representation of all vari-
able configurations that are possible at each state of the machine. We are particularly 
interested in characterizing variable configurations that cause transition guards to fail. 

After the execution of a given transition, some variables will be known to have 
same values (like those assigned the same input parameter). We say that such vari-
ables match, and we are interested in finding all variable matching relations at each 
and every state of the EIOTS. A variable matching relation is an equivalence relation, 
since it is reflexive, symmetric and transitive. Therefore, it can be represented by a 
partition over the set of variables since every equivalence relation over a set defines a 
unique partition of the elements in that set and vice versa. At any given state, more 
than one variable configuration or equivalence relation may exist since a state may be 
reached through different paths, and each execution path can create possibly a new 
variable configuration. However, since the number of variables is finite, there will be 
a finite number of possible variable relations and variable partitions at each state. 
Typically the initial configuration is represented with a single relation where no vari-
able is known to be matching any other variable than itself. So, the initial partition is 
made of classes that have one variable each. 

For a given variable configuration we can tell whether it conforms to a transition 
guard by checking whether its corresponding variable partition conforms to the guard. 
In the following we define the conformance predicate.  

Definition 1: Partition Conformance Predicate. The predicate Conform is a mapping, 
Px2PmxV  {True, False} where P is the set of all partitions of V (the set of all vari-
ables), and 2PmxV  represents the set of all possible transition guards, such that Con-
forms( , )= 

){}(}),(|{,, EclEclEvpVvEforclPmp =≠∈∈=∈∀∈∀ γπ  

Basically it says, if a parameter is restricted the value of several variables then 
these variables should be equivalent. 

When a transition is executed it updates variables thus changing the variable con-
figuration of the machine. In the following we define a transformation function that 
defines the partition representing the new variable configuration given the partition 
representing the old configuration and the executed transition. 

Definition 2: Partition Transformation function. Each transition in the EIOTS defines 
a transformation function Transform: Px2PmxV x2VxPm P U{}, where Transform( , 
, ) is defined as follows: Let r be the relation in VxV corresponding to partition . If 

Conforms ( , ) then Transform( , , ) = ’ where ’ is the partition corresponding 
to relation r’ in VxV such that for variables v1, v2 ∈V, (v1,v2) ∈  r’ if 

a) (v1,v2) ∈r and not ∃ (v1,p1) or (v2, p2) ∈ , or 
b) ∃  p∈Pm such that (v1,p) and (v2,p)∈  , or 
c) ∃  p∈Pm, v3∈V such that (v1,p)∈  , (p,v3)∈  , (v3,v2)∈r, and not ∃ p’ 

such that (v2,p’) ∈   

So there will be a resulting partition if the original partition conforms to the transi-
tion guard. And in the resulting partition two variables will be related or in other 
words, will be in the same class, if (a) they were in the same class of the original  
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partition and neither is assigned by the transition, or (b) they are assigned the same 
parameter, or (c) one of them is assigned a parameter that is restricted to the value of 
a variable that was in the class of the second, while the second is not assigned a new 
value. 

Using the partition transformation function we can define the concept of reachable 
partitions to a state as follows. 

Definition 3: Reachable Partition to a State. We say that a partition  is reachable to a 
state s if and only if there exists a path from s0 to s such that a partition 0={{v}| 
v∈V} will be transformed to  after successively applying on 0 all the transforma-
tions defined by the transitions in the order defined by the path leading to s. 

We can compute the set of reachable partitions for each state in an EIOTS machine 
by a recursive procedure described in the following.  

 

Algorithm 3. Reachable Partitions Computation Algorithm: 
Given E<S, V, s0, Se, , T> returns R //R={(s, )∈SxP|  is reachable to state s}. 

• R := {} 
• 0 := {{v} | v ∈  V}  
• newPartitions = {(s0, 0)} 
• Loop while newPartitions  {} 

o Remove a couple (s1, ) from newPartitions 
o R = R U {(s1, )} 
o For each transition (s, , a, , s’) in {(s, , a, , s’) ∈  T | s = s1} 

• if conforms( , ) 
o ’ = Transform( , , ) 
o If (s’, ’) ∉R 

 newPartitions = newPartitions U{(s’, ’)} 
 

nD4

nC3

nB2 !O
{([sv,xv1,cv], [xv2]),  ([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]),  ([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]),    ([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1]),  ([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{([sv,xv1,cv], [xv2]), ([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]), ([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]),    ([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1]),  ([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=xv1}!c(p){cv:=p}
{p=xv2}!c(p){cv:=p}

 

Fig. 5. Variable Partition Computation: part of Chaos(X. , 2)xDual(SxDual(C))  

The partition computation algorithm is a fixed point algorithm that loops until reach-
ing a point where no progress can be made. Progress is evaluated in terms of finding 
new partitions possible in some state of the EIOTS. Since this algorithm only adds parti-
tions and since the maximum number of partitions that can be introduced is bounded by 
the finite set of variable partitions, this algorithm is guaranteed to terminate. 



 Submodule Construction for Extended State Machine Models 405 

 

In figure 5 we give part of the results of applying the partition computation algo-
rithm to the composed behavior of X. Note how reachable partitions to state nD4 are 
only those variable partitions conforming to the guard {p=sv, p=cv} of the incoming 
transition. 

3.3.2   Phase One 
Once all variable partitions reachable at the states of the combined behavior are com-
puted, we will be able to proceed with state splitting. In this phase of the algorithm we 
split into two each state that has an outgoing transition with a guard that fails for cer-
tain reachable variable partitions and succeeds for others. One state split will hold the 
failing partitions and the other will hold the succeeding ones. 

Since each original state might have more than one outgoing transition, a state 
might be split into many state splits according to the different combinations of transi-
tion guards’ successes and failures, and according to the availability of reachable par-
titions that satisfy each combination. Each group of states resulting from the splitting 
of one original state is saved together to be handled collectively in phase two. One 
element of each group is marked as the first state of the group to which all incoming 
transitions to the original state are still attached. These incoming transitions are to be 
handled in the second phase by either redirection or duplication and subsequent recur-
sive state splitting. 

Since we know that all uncontrollable behavior leading to an unsafe behavior will 
be eventually blocked, we treat this behavior collectively by using one state split to 
represent all partitions causing unsafe behaviors. Therefore, a one element of each 
state split group is marked as the uncontrollable split state and is used to hold all par-
titions that cause at least one guarded uncontrollable transition of the original state to 
fail. Uncontrollability in submodule construction is determined by the ability of the 
new module to control the execution of a given transition; therefore, we need to pro-
vide the algorithm with the set of interactions of the new module. A transition is con-
trollable if (a)its interaction is initiated by the new module, or (b) if the interaction is 
an input to the new module and it is not the last transition from the same state with the 
same interaction that is not going to the error state. The second controllability condi-
tion is used to represent the ability of the new module to select a particular assignment 
of parameters to its local variables. 

Next we give the algorithm for phase one. We use the function copyState as a 
shorthand for creating a new state as a copy of an existing state without copying in-
coming or outgoing transitions. We use as well the procedure ReplaceState(old, s, G) 
to replace state old by state s in G through diverting all incoming transition of state 
old to state s. Function newErrorState creates a new error state and returns it. 

In Figure 6 we show the result of applying phase one of the splitting algorithm to 
the example used in Figure 5. In particular notice splitting state nC3 to two states 
nC3.1 and nC3.sE, where nC3.1 holds all partitions that conform to the guarded tran-
sition (nC3, {p=sv, p=cv}, ?use(p), {}, D4), and nC3.sE holds all partitions that do 
not conform, and since the mentioned transition is not controllable, nC3.sE is labeled 
as the error state of the state split group. 
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Algorithm 4. SplitPhaseOne Algorithm: 
Given G < S, V, s0, Se,  , T>, X Interaction Alphabet, R Set 
  // Note:  R ={(s, )∈SxP|  is reachable to state s}. 
• StateGroups:= {} // this variable will hold tuples of the form (sSet: Set of States, f: State, sError: 

state) to store split state groups that will be later treated in Phase 2. f  holds all incoming transitions 
to the group, and sError is the state with all partitions causing unsafe and uncontrollable behavior  

• For each state curS in G.S 
o sError := CopyState(G, curS) 
o first := curS 
o sSet:={curS} //will hold states resulting from the splitting of one original state  
o Tout := { (s, , a, , s’) ∈  T | s= curS } 
o Loop while Tout  {} 

 Remove any element (s1, 1, a1, 1, s1’) from Tout 
 BadPartitions = {  ∈  P | ∃ (s, ) ∈  R where s1 = s and (not conforms( , 

1) or s’∈G.Se)} 
 If BadPartitions  {} 

• R = R – {(s, ) ∈  SxP | s = s1 and  ∈  BadPartitions} 
• If a1 ∈  Xout or ( a1 ∈  Xin  and cardinality({ (s, , a, , s’,) ∈  T | s = 

s1, a = a1 and s’ ∉  G.Se}) > 1) // transition is controllable 
• //Split the state, duplicate outgoing trans, disable nonconforming trans  
o  := CopyState(G, s1) 
o sSet := sSet U { } 
o T:=TU{( , 2, a2, 2,s2’) | ∃  (s2, 2, a2, 2, s’2) ∈  T where s2 = s1} 
o Tout:=ToutU{( , 2,a2, 2,s2’)| ∃ (s2, 2,a2, 2,s’2)∈Tout where s2=s1} 
o T = (T – {( , 1, a1, 1, s1’)}) U {( , 2, a1, 2, newErrorState(G))} 

• else // Transition is uncontrollable 
o  := sError 

• R = R U {(s, ) ∈  SxP| s =  and  ∈  BadPartitions} 
• If {(s, )∈R| s=s1}={}// Delete state from group if it has no ’s left 
o sSet = sSet – {s1} 
o If s1 = first 

 ReplaceState(first, , G) // redirects all incoming trans of first to  
 first :=  

o If {(s,p) ∈  R | s = sError}  {} 
 sSet := sSet U {sError}  
 StateGroups:= StateGroups U {(sSet, first, sError)} 

o Else 
 If |sSet| > 1 

o StateGroups:= StateGroups U {(sSet, first, null)} 
 

3.3.3   Phase Two 
In this phase of the algorithm each group of split states resulting from phase one is 
handled separately. The state designated first of its group has all incoming transitions 
of the original state. Each incoming transition to the group may lead to a recursive 
creation of a new state split group of the transition origin. For example transition 
(nB2, {}, !O, {}, nC3) in figure 6 will lead to the splitting of state nB2. At first nB2 is 
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split into two states since nC3 group has only two states. However, due to incoming 
transitions to these states, the two nB2 states will be recursively split into states 
nB2.1, nB2.2, nB2.3, and nB2.4 as shown in figure 7. 

 

nD4

nC3
.1

nB2 !O
{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

nC3
.sE

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{p=xv1}!c(p){cv:=p}
{p=xv2}!c(p){cv:=p}

 

Fig. 6. Phase one of state splitting: part of Chaos(X. , 2)xDual(SxDual(C)) 

nD4

nC3
.1

nB2
.3

!O

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

nC3
.sE

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

nB2
.2

nB2
.1

nB2
.4

([sv,xv1,xv2,cv])}

{([sv,xv1,cv], [xv2])}

{([sv,xv2,cv], [xv1])}

{p=xv1}!c(p){cv:=p}

!O

!O

{p=xv2}!c(p){cv:=p}

{p=xv1}!c(p)
{cv:=p}

{p=xv2}!c(p)
{cv:=p}

{p=xv1}!c(p)
{cv:=p}

{p=xv2}!c(p)
{cv:=p}

 

Fig. 7. Phase two of state splitting: part of Chaos(X. , 2) x Dual(SxDual(C))  

 
This algorithm is guaranteed to stop since it splits a state only if there are reachable 

partitions to be split. And it only adds partitions to state split that is designated an er-
ror state, but such a state split is not split any further. The maximum number of states 
that could result from splitting would be |R| where R is the state partition reach-
ability relation. In the extreme, this is the case where each state is split into as 
many state splits as there are reachable partitions, that is, each split state will 
be holding a single partition. 
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Algorithm 5. SplitPhaseTwo Algorithm 
Given G < S, V, s0, Se,  , T>, X Interaction Alphabet , StateGroups, R Set // R 
={(s, )∈SxP|  is reachable to state s}. 
• Loop Until StateGroups= {} 
o Remove some element (StateSet, first, sError) from StateGroups 
o Tin := {(s, , a, , s’)∈T | s’= first}// all incoming transition to the current 

group 
o Loop Until Tin = {} //Handle each incoming transition separately 

 Remove some element (s1, 1, a1, 1, s1’) from Tin 
 For each state curS in StateSet 

• // the inverse of Transform function for the partitions of the current state  
• PartitionSet := {  ∈  P| (s1, ) ∈  R and (curS, Transform( 1, 1, )) ∈R}  
• If PartitionSet  {}. 
o s1Group = {(sSet,e,f) ∈  StateGroups| s1 ∈  sSet} 
o If s1Group  {}// s1 the starting state of the current transition belongs 

to a state group that is waiting to be handled 
 Remove some (sSet, e, f) from s1Group 
 StateGroups = StateGroups - s1Group  

o Else // Create new group 
 sSet := {s1} 
 f := s1 
 e := null 

o If curS = sError and (a1 ∉  Xout and ( a1 ∉  Xin  or cardinality({ (s, 
,a, , s’) ∈  T| s = s1, a = a1 and s’ ∉  G.Se }) = 1)// uncontrollable 

transition 
 if e = null 

• e := copyState(G, s1) 
 := e 

o Else  
 := CopyState(G, s1) 
 T:= TU{( , 2, a2, 2, s2’)| ∃ (s2, 2, a2, 2, s’2)∈T where s2 = s1} 
 Tin:=TinU{( , 2,a2, 2,s2’)| ∃ (s2, 2,a2, 2, s’2)∈Tin where s2=s1} 
 // Redirect ’s transition that is the duplicate of the current transi-

tion to the current state. 
 T:= (T – {( , 1, a1, 1, s1’)}) U {( , 2, a1, 2, curS)} 

o sSet := sSet U { } 
o R:= R U {( , ) |  ∈  PartitionSet} 
o R:= R - {(s, ) ∈  R | s = s1 and  ∈  PartitionSet} 
o If {(s, ) ∈  R | s = s1} = {} //Delete state if it has no partitions left 

 sSet:= sSet – {s1} 
 If s1 = f  

• ReplaceState(f, , G) // redirect all incoming transitions of f  to  
• f :=  

o If |sSet| > 1 or e  null 
 StateGroups:= StateGroupsU {(sSet, f,e) 

o G.Se = G.Se U {sError} 
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The state labeled as the error state of the currently handled group (such as state 
nC3.sE in Figure 8) receives special treatment. When handling an incoming transition 
to the error state of a group, the new state split of the transition's origin state corre-
sponding to the error state is labeled itself as the error state of its group only if the 
transition is uncontrollable. In our example, new state split nB2.4 is not marked as the 
error state of its group since transition (nB2.4, {}, !O, {}, nC3.sE) is controllable. 

3.4   Determinization and the Removal of Uncontrollable Behavior  

Determinization or internal transition removal uses the usual subset construction algo-
rithm for determinizing finite automata. As mentioned before, this is possible since 
the splitting algorithm removes the ambiguity created by transition guards. 

The determinization results in new unsafe states due to unobservability. These 
states are removed together with all states from which the unsafe states can be 
reached through uncontrollable transitions. The same controllability criterion is used 
as in the case of splitting. This is similar to the case of submodule construction for 
simple finite state machine models. 

4   Conclusion and Future Work 

This paper addresses the problem of extending submodule construction techniques for 
finite state machine models to more expressive behavioral models that use variables, 
simple guards for transitions and exchange data with the environment through interac-
tion parameters. We have defined a behavioral model with features based on an ex-
tended model of Input-Output Automata. The main contribution of this paper is the 
introduction of dataflow issues to submodule construction problem which has been 
limited in the past to control flow. However, we have only dealt with the simple usage 
of data, mainly saving and retransmission. We seek in the future to handle the control 
flow usage of data through building up on the current approach. We need to ease re-
strictions on guards such as allowing conjunction, disjunction, explicit negation and 
state variable equality predicates. This work will be as well the basis for further work 
on providing more efficient versions of the proposed algorithm through exploring the 
use of higher abstractions for representing variable partitions and taking into consid-
eration undefined and dead variables.  
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Abstract. A collaborative object represents a data type (such as a text
document or a filesystem) designed to be shared by multiple geographi-
cally separated users. Data replication is a technology to improve perfor-
mance and availability of data in distributed systems. Indeed, each user
has a local copy of the shared objects, upon which he may perform up-
dates. Locally executed updates are then transmitted to the other users.
This replication potentially leads, however, to divergent (i.e. different)
copies. In this respect, Operational Transformation (OT) algorithms are
applied for achieving convergence of all copies, i.e. all users view the same
objects. Using these algorithms users can apply the same set of updates
but possibly in different orders since the convergence should be ensured
in all cases. However, achieving convergence with the OT approach is
still a critical and challenging issue. In this paper, we address an open
convergence problem when the shared data has a linear structure such as
list, text, ordered XML tree, etc. We analyze the source of this problem
and we propose a generic solution with its formal correctness.

1 Introduction

Generally users involved in collaborative and mobile environments work on repli-
cas of shared data. During disconnection periods, they can concurrently execute
updates on replicas. This potentially leads to divergent replicas (i.e. different
states). One of the main issues in such environments is how to maintain con-
sistency (or convergence) among replicas after reconnection. Originating from
real-time groupware research [2], the Operational Transformation (OT) approach
provides an interesting solution [3,10]. Using this approach, after reconnection,
a user A might get an operation op previously executed during disconnection by
some other user B on replica of the shared data. User A does not necessarily
integrate op by executing it as is on a replica. Instead, it might execute a variant
of op, op′ – called a transformation of op – that intuitively intends to achieve the
same effect as op. When the transformed operations are executed, they create
the illusion that all operations were executed in the intended execution context
and in the intended order. Compared to other replication systems [12], the ad-
vantages of this approach are: (i) it enables an unconstrained concurrency, i.e. it
requires no global order on concurrent operations unlike traditional consistency
criteria such as linearizability [4]; (ii) it transforms operations to run in any order

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 411–427, 2005.
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even when they do not naturally commute; (iii) it produces a convergence state
that precisely preserves the intentions of all the operations executed during dis-
connection periods. Many collaborative applications are based on OT approach
such as CoWord [18] (a collaborative word processor) and CoPowerPoint [15] (a
real-time collaborative multimedia slides creation and presentation system).

The OT approach consists of application-dependent transformation algo-
rithm. Thus, for every possible pair of concurrent operations, the application
programmer has to define in advance how to merge these operations regardless
of reception order. According to Ressel et al. [11], the OT algorithm needs to
fulfill two conditions (which will be detailed in Section 2) in order to ensure
convergence. Finding such an OT algorithm and proving that it satisfies the
convergence conditions was always considered as a very hard task, because this
proof is often difficult – even impossible – to produce by hand and unmanageably
complicated [16]. To overcome this problem, we have proposed a formal frame-
work to assist the development of correct OT algorithms by using a theorem
prover [6,7].

However, although in theory [11], OT approach is able to achieve convergence
in the presence of arbitrary transformation orders, some types of collaborative
object still represent a serious handicap as for the application of the OT ap-
proach. Indeed, the convergence property has never been achieved when the
collaborative object has a linear structure (such as list, text or ordered XML
tree) and all proposed OT algorithms [2,11,17,14,5,8] fail to meet this property.
In this paper, we analyse thoroughly the source of these failures and we propose
an OT algorithm that ensures the convergence. Unlike previous works we have
been able to completely give formal proof of its correctness by using a theorem
prover. Furthermore, our OT algorithm is generic because it can be applied to
any linear structure-based data.

The remainder of this paper is organized as follows. We present the opera-
tional transformation model in Section 2. Section 3 analyzes convergence prob-
lems that still remain and sketches an abstract solution. Section 4 presents the
ingredients of our solution giving examples and proofs of correctness. The in-
gredients of our formalization for the linear collaborative object into a theorem
prover language are given in Section 5. Section 6 discusses related work, and
section 7 summarizes conclusions.

2 Operational Transformation Approach

2.1 The Model

OT considers n sites, where each site has a copy of the collaborative object. The
collaborative object model we take is a text object modeled by a sequence of
characters, where the position of its first character is zero. It is assumed that the
text state can only be modified by executing the following two primitive editing
operations: (i) Ins(p, c) which inserts the character c at position p; (ii) Del(p)
which deletes the character at position p. It should be pointed out that the above
text model is only an abstract view of many collaborative object models based
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on a linear structure. For instance the character parameter may be regarded as
a string of characters, a line, a block of lines, an ordered XML node, etc.

We denote st ' op = st′ when an editing operation op is executed on the
text state st and produces text state st′. We say that op is generated on state
st. Notation [op1; op2; . . . ; opn] represents an operation sequence. Applying an
operation sequence to a text state st is recursively defined as follows: (i) st' [] =
st, where [] is the empty sequence and; (ii) st'[op1; op2; . . . ; opn] = (((st'op1)'
op2) . . .) ' opn. Two operation sequences seq1 and seq2 are equivalent, denoted
seq1 ≡ seq2, if st ' seq1 = st ' seq2 for all text states st.

To detect concurrency, we assume that there exists a Lamport’s “happens
before” partial ordering between the operations [12]. How this ordering relation
is expressed is beyond the scope of this paper.

OT is an optimistic replication which lets many users concurrently update
the shared data and next it synchronizes their divergent replicas in order to
obtain the same data. The operations of each site are executed on the local
replica immediately without being blocked or delayed, and then are propagated
to other sites to be executed again. Accordingly, every operation is processed in
four steps: (i) generation on one site; (ii) broadcast to other sites; (iii) reception
on other sites; (iv) execution on other sites.

In the following, we give the conflict relation between two insert operations:

Definition 1. (Conflict Relation) Two insert operations op1 = Ins(p1, c1)
and op2 = Ins(p2, c2), generated on different sites, conflict with each other iff:
(i) op1 and op2 are generated on the same text state; and, (ii) p1 = p2, i.e. they
have the same insertion position.

2.2 Transformation Principle

One of the significant issues when designing collaborative objects with a repli-
cated architecture and an arbitrary communication of messages between sites is
the consistency maintenance (or convergence) of all replicas. To illustrate this
problem, consider the following example:

Example 1. Consider the following group text editor scenario (see Figure 1):
there are two users (sites) working on a shared document represented by a se-
quence of characters. These characters are addressed from 0 to the end of the
document. Initially, both copies hold the string “efecte”. User 1 executes oper-
ation op1 = Ins(1, “f”) to insert the character “f” at position 1. Concurrently,
user 2 performs op2 = Del(5) to delete the character “e” at position 5. When
op1 is received and executed on site 2, it produces the expected string “effect”.
But, when op2 is received on site 1, it does not take into account that op1 has
been executed before it and it produces the string “effece”. The result at site
1 is different from the result of site 2 and it apparently violates the intention
of op2 since the last character “e”, which was intended to be deleted, is still
present in the final string. Consequently, we obtain a divergence between sites 1
and 2. It should be pointed out that even if a serialization protocol [2] was used
to require that all sites execute op1 and op2 in the same order (i.e. a global order
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Fig. 1. Incorrect integration Fig. 2. Integration with transformation

on concurrent operations) to obtain an identical result “effece”, this identical
result is still inconsistent with the original intention of op2.

To maintain convergence, an OT approach has been proposed by Ellis and
Gibbs [2] where a user X might get an operation op that was previously executed
by some other user Y on the replica of the shared object. User X does not
necessarily integrate op by executing it as it is on its replica. Instead, he might
execute a variant of op, denoted by op′ (called a transformation of op) that
intuitively intends to achieve the same effect as op. This approach is based on
an algorithm which takes two concurrent operations that are defined on the same
object state. We denote this algorithm by a function T .

Example 2. In Figure 2, we illustrate the effect of T on the previous exam-
ple. When op2 is received on site 1, op2 needs to be transformed according
to op1 as follows: T ((Del(5), Ins(1, “f”)) = Del(6). The deletion position of
op2 is incremented because op1 has inserted a character at position 1, which
is before the character deleted by op2. Next, op′2 is executed on site 1. In
the same way, when op1 is received on site 2, it is transformed as follows:
T (Ins(1, “f”), Del(5)) = Ins(1, “f”); op1 remains the same because “f” is in-
serted before the deletion position of op2.

In the OT approach, every site is equipped by two main components [2,11]:
the integration component and the transformation component. The integration
component is an algorithm which is responsible for receiving, broadcasting and
executing operations. It is independent of the semantics of the collaborative ob-
jects. Several integration algorithms have been proposed in the groupware area,
such as dOPT [2], adOPTed [11], SOCT2,4 [14,19] and GOTO [16]. The trans-
formation component is a set of OT algorithms which is responsible for merging
two concurrent operations defined on the same state. Every OT algorithm is
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specific to the semantics of a collaborative object (text in our example). Every
site generates operations sequentially and stores these operations in a data struc-
ture called history. When a site receives a remote operation op, the integration
component executes the following steps:

1. from the local history it determines the sequence seq of operations that are
concurrent to op;

2. it calls the transformation component in order to get operation op′ that is
the transformation of op according to seq;

3. it executes op′ on the current state;
4. it adds op′ to local history.

In this paper, we only deal with the design of OT algorithm for collaborative
objects which have linear structure (such as list, text or ordered XML tree).

2.3 Convergence Conditions

Let seq be a sequence of operations. Transforming any editing operation op
according to seq, denoted by T ∗(op, seq) is recursively defined as follows:

T ∗(op, []) = op where [] is the empty sequence;
T ∗(op, [op1; op2; . . . ; opn]) = T ∗(T (op, op1), [op2; . . . ; opn])

Using an OT algorithm requires us to satisfy two conditions [11]. Given
two operations op1 and op2, let op′2 = T (op2, op1) and op′1 = T (op1, op2), the
conditions are as follows:

– Condition C1: st ' [op1 ; op′2] = st ' [op2 ; op′1], for every object state st.
– Condition C2: if [op1; op′2] ≡ [op2; op′1] then T ∗(op, [op1; op′2]) = T ∗(op,

[op2; op′1]).

C1 defines a state identity and ensures that if op1 and op2 are concurrent,
the effect of executing op1 before op2 is the same as executing op2 before op1.
This condition is necessary but not sufficient when the number of concurrent
operations is greater than two. As for C2, it ensures that transforming op along
equivalent and different operation sequences will give the same operation. In
previous work [11,9], the authors have proved that conditions C1 and C2 are
sufficient to ensure the convergence property for any number of concurrent op-
erations which can be executed in arbitrary order.

It should be pointed out that verifying that a given OT algorithm verifies
C1 and C2 is a computationally expensive problem even for a simple document
text. Using a theorem prover to automate the verification process is needed and
would be a crucial step for building correct collaborative objects based on OT
approach [5–7].

3 Convergence Problems

In order to illustrate the convergence problems encountered in building OT al-
gorithm for linear collaborative objects, we present a well known transformation
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algorithm designed by Ellis and Gibbs [2] who are the pioneers of the OT ap-
proach. This algorithm is used to synchronize a collaborative text object, shared
by two or more users. There are two editing operations: Ins(p, c, pr) to insert
a character c at position p and Del(p, pr) to delete a character at position p.
Operations Ins and Del are extended with another parameter pr1. This one
represents a priority scheme that is used to solve a conflict occurring when two
concurrent insert operations were originally intended to insert different charac-
ters at the same position. In Figure 3, we give the four transformation cases for
Ins and Del proposed by Ellis and Gibbs. There are two interesting situations
in the first case. The first situation is when the arguments of the two insert
operations are equal (i.e. p1 = p2 and c1 = c2). In this case the function T
returns the idle operation Nop that has a null effect on text state 2. The second
interesting situation is when only the insertion positions are equal (i.e. p1 = p2).
Such conflicts are resolved by using the priority order associated with each insert
operation. The insertion position will be shifted to the right (p1 + 1) when Ins
has a higher priority. The remaining cases of T are quite simple.

Using our theorem-proving approach [5,6], we have detected that the function
T of Figure 3 contains some not obvious bugs that lead to divergence situations.
These situations are detailed in the following.

3.1 Violation of C1

The scenario violating C1 is depicted in Figure 4 (for clarity we have omitted
the priority parameter). There are two users: (i) user1 inserts x in position 1
(op1) while user2 concurrently deletes the character at the same position (op2).
(ii) When op2 is received by site 1, op2 must be transformed according to op1. So
T (Del(1), Ins(1, x)) is called and Del(2) is returned. (iii) In the same way, op1 is
received on site 2 and must be transformed according to op2. T (Ins(1, x), Del(1))
is called and returns Ins(0, x). Condition C1 is violated. Accordingly, the final
results on both sites are different.

The error comes from the definition of T (Ins(p1, c1, pr1), Del(p2, pr2)). The
condition p1 < p2 should be rewritten p1 ≤ p2. This modification is sufficient to
satisfy the condition C1.

3.2 Violation of C2

Even having corrected the previous error, we have detected that condition C2

is not satisfied. Figure 5 presents a scenario for C2 violation. In this scenario
seq = [op2; op′3] and seq′ = [op3; op′2] are two equivalent sequences. Using the
function T of Figure 3 we must have T (op1, seq) = T (op1, seq

′):

T ∗(op1, seq) = op′1 = T (T (op1, op2), op′3) = Ins(2, x)
T ∗(op1, seq

′) = op′′1 = T (T (op1, op3), op′2) = Ins(3, x)

1 This priority is the site identifier where operations have been generated. Two oper-
ations generated from different sites have always different priorities.

2 The definition of T is completed by: T (Nop, op) = Nop and T (op,Nop) = op for
every operation op.
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T(Ins(p1, c1, pr1), Ins(p2, c2, pr2)) =
if p1 < p2 then return Ins(p1, c1, pr1)
elseif p1 > p2 then return Ins(p1 + 1, c1, pr1)

elseif c1 == c2 then return Nop()
elseif pr1 > pr2 then return Ins(p1 + 1, c1, pr1)

else return Ins(p1, c1, pr1)
endif ;

T(Ins(p1, c1, pr1), Del(p2, pr2)) =
if p1 < p2 then return Ins(p1, c1, pr1)
else return Ins(p1 − 1, c1, pr1)
endif ;

T(Del(p1, pr1),Ins(p2, c2, pr2)) =
if p1 < p2 then return Del(p1, pr1)
else return Del(p1 + 1, pr1)
endif ;

T(Del(p1, pr1),Del(p2, pr2)) =
if p1 < p2 then return Del(p1, pr1)
elseif p1 > p2 then return Del(p1 − 1, pr1)

else return Nop()
endif ;

Fig. 3. Transformation function defined by Ellis and Gibbs [2]

As we can see, op′1 �= op′′1 , C2 is violated; and therefore the convergence is not
achieved. The scenario illustrated in Figure 5 is called C2 puzzle.

3.3 Analyzing the Problem

C2 is considered as particularly difficult to satisfy. To better understand the
source of this problem, we consider the previous scenario violating C2 (see Fig-
ure 5). There are three concurrent operations op1 = Ins(3, x), op2 = Del(2)
and op3 = Ins(2, y) where the insertion positions (i.e. Pos(Ins(p, c, pr)) = p)
initially have the following relation: Pos(op1) > Pos(op3).

According to Definition 1, op1 and op3 are not in conflict. In this scenario
we have two equivalent operation sequences S1 = [op2; op′3] and S2 = [op3; op′2]
where op′3 = T (op3, op2) and op′2 = T (op2, op3). The above relation between
op1 and op3 is not preserved when transforming op1 along sequence S1 since
Pos(T (op1, op2)) = Pos(op′3).

The transformation process may lead to two concurrent insert operations
(with different original insertion positions) to get into a false conflict situation (to
have the same insertion position). Unfortunately, the original relation between
the positions of these operations is lost because of their transformations with
other operations. Therefore, we need to know how the insert operations were
generated in order to avoid divergence problems.
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Fig. 4. Scenario violating C1 Fig. 5. Scenario violating C2

In this paper, we propose a new approach to solve the divergence problem.
Intuitively, we notice that storing previous insertion positions for every trans-
formation step is sufficient to recover the original position relation between two
insert operations.

4 Our Solution

In this section, we present our approach to achieving convergence. Firstly, we
will introduce the key concept of position word for keeping track of insertion
positions. Next, we will give our new OT function and how this function resolves
the divergence problem. Finally, we will show the correctness of our approach.

4.1 Position Words

For any set of symbols Σ called an alphabet, Σ∗ denotes the set of words over
Σ. The empty word is denoted by ε. For ω ∈ Σ∗, then |ω| denotes the length of
ω. If ω = uv, for some u, v ∈ Σ∗, then u is a prefix of ω and v is a suffix of
ω. For every ω ∈ Σ∗, such that |ω| > 0, we denote Base(ω) (resp. Top(ω)) the
last (resp. first) symbol of ω. Thus, Top(abcde) = a and Base(abcde) = e. We
assume that Σ is totally ordered and denote the strict part of this order by >.
If ω1, ω2 ∈ Σ∗, then ω1 $ ω2 is the lexicographic ordering of Σ∗ if: (i) ω1 is a
prefix of ω2, or (ii) ω1 = ρu and ω2 = ρv, where ρ ∈ Σ∗ is the longest prefix
common to ω1 and ω2, and Top(u) precedes Top(v) in the alphabetic order.
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Definition 2. (p-word) We consider the natural numbers N as an alphabet.
We define the set of p words P ⊂ N∗ as follows: (i) ε ∈ P; (ii) if n ∈ N then
n ∈ P; (iii) if ω is a nonempty p-word and n ∈ N then nω ∈ P iff n− Top(ω) ∈
{0, 1,−1}.

We observe immediately that we can concatenate two p-words to get another
one if the origin of the first differs of at most 1 from the first letter of the second
one:

Theorem 1. Let ω1 and ω2 be two nonempty p-words. The concatenation of ω1

and ω2, written ω1 ·ω2 or simply ω1ω2, is a p-word iff either Base(ω1) = Top(ω2)
or Base(ω1) = Top(ω2) ± 1.

For example, ω1 = 00, ω2 = 1232 and ω1ω2 = 001232 are p-words but
ω3 = 3476 is not.

Definition 3. (Equivalence of p-words) The equivalence relation on the set
of p words P is defined by: ω1 ≡P ω2 iff Top(ω1) = Top(ω2) and Base(ω1) =
Base(ω2), where ω1, ω2 ∈ P.

We can also show that this relation is a congruence using Definitions 2 and 3:

Proposition 1. (Right congruence) The equivalence relation ≡P is a right
congruence, that is, for all ρ ∈ P: ω1 ≡P ω2 iff ω1ρ ≡P ω2ρ

4.2 OT Algorithm

In order to preserve the order relation between two insert operations, we propose
to keep all different positions occupied by a character during the transformation
process. It means that instead of the single position we maintain a stack of
positions called a p-word. Each time an operation is transformed we push the last
position before transformation in the p-word. The size of the stack is proportional
to the number of concurrent operations. In Figure 6 we give the details of our new
OT function. When two insertion operations insert two different characters at
the same position (they are in conflict), a choice has to be made: which character
must be inserted before the other? The solution that is generally adopted consists
of associating a priority to each character (i.e., the character’s code or the site
identifier). In our OT function, when a conflict occurs, the character whose code
Code(c) is the highest is inserted before the other.

If two p-words are identical it means that the two associated insert operations
are equal. Otherwise the p-word allows to track the order relation between the
two operations. We shall therefore redefine the insert operation as Ins(p, c, w)
where p is the insertion position, c the character to be added and w a p-word.
When an operation is generated, the p-word is empty, i.e. Ins(3, x, ε). When an
operation is transformed and the insertion position is changed, the original posi-
tion is pushed to the p-word. For example, T (Ins(3, x, ε), Del(1)) = Ins(2, x, [3])
and T (Ins(2, x, [3]), Ins(1, x, ε)) = Ins(3, x, [2 · 3]).
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T(Ins(p1, c1, w1),Ins(p2, c2, w2)) =
let α1=PW (Ins(p1, c1, w1)) and α2=PW (Ins(p2, c2, w2))
if (α1 ≺ α2 or (α1 = α2 and Code(c1) < Code(c2)))
then return Ins(p1, c1, w1)
elseif (α1 � α2 or (α1 = α2 and Code(c1) > Code(c2)))

then return Ins(p1 + 1, c1, p1w1)
else return Nop

endif ;

T(Ins(p1, c1, w1),Del(p2)) =
if p1 > p2 then return Ins(p1 − 1, c1, p1w1)
elseif p1 < p2 then return Ins(p1, c1, w1)

else return Ins(p1, c1, p1w1)
endif ;

T(Del(p1),Del(p2)) =
if p1 < p2 then return Del(p1)
elseif p1 > p2 then return Del(p1 − 1)

else return Nop
endif ;

T(Del(p1),Ins(p2, c2, w2)) =
if p1 < p2 then return Del(p1)
else return Del(p1 + 1)
endif ;

Fig. 6. New OT function

We define a function PW which enables to construct p-words from editing
operations. It takes an operation as parameter and returns its p-word:

PW (Ins(p, c, w)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p if w = ε
pw if w �= ε and

(p = Top(w)
or p = Top(w) ± 1)

ε otherwise
PW (Del(p)) = p

Figure 7 shows how the p-words solve the C2 puzzle depicted in Figure 5.
When op1 is transformed according to op3, 3 > 2, so op1 is inserted after op3.
This order relation must be preserved when op′1 = T (Ins(3, x, ε), Del(2)) =
Ins(2, x, [3]) will be transformed according to op′3. To preserve the relation
detected between op1 and op3, we must observe PW (op′1) * PW (op′3). As
[2; 3] * [2; 2] is true, the order relation is preserved.

There is still a problem. This solution leads to the convergence (i.e. the same
states), but C2 is not respected. Indeed, we can verify in Figure 7 that:

T ∗(op1, [op2; op′3]) �= T ∗(op1, [op3; op′2])
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Fig. 7. Correct execution of C2 puzzle

When two identical insertions operations are transformed according to two
equivalent operation sequences, their p-words may get different. If they are dif-
ferent, they can be considered as equivalent if the top and the base of their
p-words are equal. With the equivalence of p-words, we give the equivalence of
two editing operations.

Definition 4. (Operation equivalence) Given two editing operations op1 and
op2, we say that op1 and op2 are equivalent and we denote it also by op1 ≡P
op2 iff one of the following conditions holds: (i) op1 = Ins(p1, c1, w1), op2 =
Ins(p2, c2, w2), c1 = c2 and PW (op1) ≡P PW (op2); (ii) op1 = Del(p1), op2 =
Del(p2) and p1 = p2.

With the above operation equivalence we propose a weak form of the condi-
tion C2 that still ensures the state convergence. This condition is called C′

2.

Definition 5. (Condition C′
2) For every editing operations op, op1 and op2,

if the function T satisfies C1 then:

T ∗(op, [op1 ; T (op2, op1)]) ≡P T ∗(op, [op2 ; T (op1, op2)])

4.3 Correctness

In the following, we give the correctness of our approach by proving that:

1. our OT function does not lose track of insertion positions;
2. the original relation between two insert operations is preserved by transfor-

mation;
3. the conditions C1 and C′

2 are satisfied.
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Most of the proofs have been automatically checked by the theorem prover
SPIKE [1].

Let Char be the set of characters. We define the set of editing operations as
follows: O = {Ins(p, c, w) | p ∈ N and c ∈ Char and w ∈ P} ∪ {Del(p) | p ∈ N}.
Conservation of p-Words. In the following, we show that our OT function
does not lose any information about position words.

Lemma 1. Given an insert operation op1 = Ins(p1, c1, w1). For every editing
operation op ∈ O such that op �= op1, PW (op1) is a suffix of PW (T (op1, op)).

Proof. Let op′1 = T (op1, op) and PW (op1) = p1w1. Then, we consider two cases:

1. op = Ins(p, c, w): Let α1 = PW (op1) and α2 = PW (op).
– if α1 ≺ α2 or (α1 = α2 and Code(c1) < Code(c)) then op′1 = op1;
– if α1 * α2 or (α1 = α2 and Code(c1) > Code(c)) then op′1 = Ins(p1 +

1, c1, p1w1) and p1w1 is a suffix of PW (op′1);
2. op = Del(p)

– if p1 > p then op′1 = Ins(p1 − 1, c1, p1w1) then p1w1 is a suffix of
PW (op′1);

– if p1 < p then op′1 = op1;
– if p1 = p then op′1 = Ins(p1, c1, p1w1) and p1w1 is a suffix of op′1. �

The following theorem states that the extension of our OT function to se-
quences, i.e. T ∗, does not lose any information about position words.

Theorem 2. Given an insert operation op1 = Ins(p1, c1, w1). For every opera-
tion sequence seq, PW (op1) is a suffix of PW (T ∗(op1, seq)).

Proof. By induction on n, the length of seq.

– Basis step: n = 0. Then seq is empty and we have T ∗(op1, []) = op1.
– Induction hypothesis: for n ≥ 0, PW (op1) is a suffix of PW (T ∗(op1, seq)).
– Induction step: Let seq = [seq′; op] where seq′ is a sequence of length

n and op ∈ O. We have T ∗(op1, [seq′; op]) = T (T ∗(op1, seq
′), op). By

Lemma 1, PW (T ∗(op1, seq
′)) is a suffix of PW (T ∗(op1, [seq′; op])) =

PW (T (T ∗(op1, seq
′), op)). By induction hypothesis and the transitivity of

the suffix relation, we conclude that PW (op1) is a suffix of PW (T ∗(op1, seq))
for every sequence of operations seq. �

Position Relations. We can use the position relations between insert opera-
tions as an invariant which must be preserved when these operations are trans-
formed and executed in all remote sites.

Lemma 2. Given two concurrent insert operations op1 and op2. For every edit-
ing operation op ∈ O such that op �= op1 and op �= op2: PW (op1) ≺ PW (op2)
implies PW (T (op1, op)) ≺ PW (T (op2, op))

Proof. We have to consider two cases: op = Ins(p, c, w) and op = Del(p).
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The following theorem shows that the extension of our OT function to se-
quence, i.e. T ∗, preserves also the invariance property.

Theorem 3. Given two concurrent insert operations op1 and op2. For every
sequence of operations seq: PW (op1) ≺ PW (op2) implies PW (T ∗(op1, seq)) ≺
PW (T ∗(op2, seq)).

Proof. By induction on the length of seq. �

Convergence Properties. Recall that the condition C′
2 is a relaxed form of C2.

Indeed C′
2 means that transforming an operation along two equivalent operation

sequences will not give the same result but two equivalent operations. In the
following, we sketch the proof that C1 and C′

2 are verified by our transformations
and we can therefore conclude that it achieves convergence. The complete proofs
of Theorems 4 and 5 below have been automatically checked by the theorem
prover SPIKE. Due to lack of space we only give some representatives cases of
the proofs.

The following theorem shows that our OT function satisfies C1.

Theorem 4. (Condition C1). Given any editing operations op1, op2 ∈ O and
for every object state st we have: st' [op1; T (op2, op1)] = st' [op2; T (op1, op2)].

Proof. Consider the following case: op1 = Ins(p1, c1, w1), op2 = Ins(p2, c2, w2)
and PW (op1) ≺ PW (op2). According to this order, c1 is inserted before c2. If
op1 has been executed then when op2 arrives it is shifted (op′2 = T (op2, op1) =
Ins(p2 + 1, c1, p2w2)) and op′2 inserts c2 to the right of c1. Now, if op1 arrives
after the execution of op2, then op1 is not shifted, i.e. op′1 = T (op1, op2) = op1.
The character c1 is inserted as it is to the left of c2. Thus executing [op1, op

′
2]

and [op2, op
′
1] on the same object state gives also the same object state. �

Theorem 5 shows that our OT function also satisfies C′
2. This theorem means

that if T satisfies condition C1 then when transforming op1 against two equiva-
lent sequences [op2; T (op3, op2)] and [op3; T (op2, op3)] we will obtain two equiv-
alent operations according to Definition 4.

Theorem 5. (Condition C′
2). If the OT function T satisfies C1 then

for all op1, op2, op3 ∈ O we have: T ∗(op1, [op2; T (op3, op2)]) ≡P
T ∗(op1, [op3; T (op2, op3)]).

Proof. Consider the case of op1 = Ins(p1, c1, w1), op2 = Del(p2), p1 = p2 and
p > p2 + 1. Using our OT function (see Figure 6), we have op′1 = T (op1, op2) =
Ins(p1, c1, p1w1) and op′2 = T (op2, op1) = Del(p2 + 1). When transform-
ing op against [Ins(p1, c1, w2); Del(p2 + 1)] we get op′ = Ins(p, c, (p + 1)pw)
and when transforming op against [Del(p2); Ins(p1, c1, p1w1)] we obtain op′′ =
Ins(p, c, (p − 1)pw). Operations op′ and op′′ have the same insertion position
and the same character. It remains to show that PW (op′) ≡P PW (op′′). As
p(p− 1)p ≡P p(p + 1)p and the equivalence relation ≡P is a right congruence by
Proposition 1 then op′ and op′′ are equivalent. �
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5 Formal Specification

For modelling the structure and the manipulation of data in programs, abstract
data types (ADTs) are frequently used [20]. Indeed, the structure of data is
reflected by so called constructors (e.g., 0 and successor s(x), meaning x + 1,
may construct the ADT nat of natural numbers). Moreover, all (potential) data
are covered by the set of constructors terms, exclusively built by constructors.
An ADT may have different sorts, each characterized by a separate set of con-
structors. Furthermore, the manipulation of data is reflected by function symbols
(e.g., plus and minus on nat). The value computed by such functions are spec-
ified by axioms, usually written in equational logic. An algebraic specification is
a description of one or more such abstract data types [20].

5.1 Collaborative Object Specification

More formally a collaborative object can be considered as a structure of the form
G = (O, T ) where O is the set of operations applied to the object and T is the
transformation function. In our approach, we construct an algebraic specification
from a collaborative object. We define a sort Opn for the operation set O, where
each operation serves as a constructor of this sort. These constructors are as
follows: (i) Ins(p, c, ω) inserts element c at position p, (ii) Del(p) deletes the
element at position p.

We use the List ADT for specifying a linear collaborative object. The List
ADT has two constructors: (i) 〈〉 (i.e., an empty list); (ii) l ◦ x (i.e., a list
composed by an element x added to the end of the list l). The data type of
List’s elements is only a template and can be replaced by each type needed. For
instance, an element may be regarded as a character, a paragraph, a page, an
XML node, etc. Because all operations are applied to the object structure in
order to modify it, we give the following function: ' : List × Opn → List. All
appropriate axioms of the function ' describe the transition between the object
states when applying an operation. For example, the operation Del(p) changes
List as follows:

l ' Del(p) =

⎧⎪⎪⎨
⎪⎪⎩

〈〉 if l = 〈〉
l if l = l′ ◦ c and p ≥ |l|
l′ if l = l′ ◦ c and p = |l| − 1
(l′ ' Del(p)) ◦ c if l = l′ ◦ c and p < |l| − 1

where |l| returns the length of the list l.
In the same way, we define Ins(p, c) modifications below:

l ' Ins(p, c, ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈〉 if l = 〈〉 and p �= 0
l ◦ c if l = 〈〉 and p = 0
(l′ ' Ins(p, c, ω)) ◦ d if l = l′ ◦ d and p < |l|
(l′ ◦ d) ◦ c if l = l′ ◦ d and p = |l|
l if l = l′ ◦ d and p > |l|

An OT algorithm is defined by the following function: T : Opn×Opn → Opn.
It takes two operation arguments. For example, the following transformation:



Towards Synchronizing Linear Collaborative Objects 425

T (Del(p1),Ins(p2, c2, ω2)) = if p1 ≥ p2 then return Del(p1 + 1) else return
Del(p1)

is defined by two conditional equations:

p1 ≥ p2 =⇒ T (Del(p1), Ins(p2, c2, ω2)) = Del(p1 + 1)
p1 � p2 =⇒ T (Del(p1), Ins(p2, c2, ω2)) = Del(p1)

This example illustrates how it is easy to translate a transformation func-
tion into conditional equations. This task is straightforward and can be done
mechanically.

We now express the convergence conditions as theorems to be proved in
our algebraic setting. Both convergence conditions C1 and C2 are formulated as
follows:
Theorem 6. (Condition C1) ∀op1, op2 ∈ Opn and ∀st ∈ List :

(st ' op1) ' T (op2, op1) = (st ' op2) ' T (op1, op2).

Theorem 7. (Condition C2) ∀op1, op2, op ∈ Opn :

T (T (op, op1), T (op2, op1)) = T (T (op, op2), T (op1, op2)).

5.2 The Theorem Prover: SPIKE

To automatically check the convergence conditions C1 and C2 we have
used SPIKE [1], an automated induction-based theorem prover. SPIKE was
employed for the following reasons: (i) its high automation degree; (ii) its ability
to perform case analysis (to deal with multiple methods and many transforma-
tion cases); (iii) its ability to find counter-examples; (iv) its incorporation of
decision procedures (to automatically eliminate arithmetic tautologies produced
during the proof attempt) [13].

6 Related Work

Several techniques have been proposed to address C2. These may be categorized
as follows.

The first approach tries to avoid the C2 puzzle scenario. This is achieved by
constraining the communication among replicas in order to restrict the space
of possible execution order. For example, the SOCT4 algorithm [19] uses a se-
quencer, associated with a deferred broadcast and a sequential reception, to
enforce a continuous global order on updates. This global order can also be
obtained by using an undo/do/redo scheme like in GOTO [16].

The second approach deals with resolution of the C2 puzzle. In this case,
concurrent operations can be executed in any order, but transformation func-
tions require to satisfy the C2 condition. This approach has been developed in
adOPTed [11], SOCT2 [14], and GOT [17]. Unfortunately, we have proved else-
where [5] that all previously proposed transformation functions fail to satisfy
this condition.

Recently, Li et al. [8] have tried to analyze the root of the problem behind
C2 puzzle. We have found that there is still a flaw in their solution. Let op1 =
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Ins(p + 1, x), op2 = Ins(p, z) and op3 = Del(p) be three concurrent operations
generated on sites 1, 2 and 3 respectively. They use a function β that computes
for every editing operation the original position according to the initial object
state. For this case, it is possible to get: β(op1) = β(op2) = β(op3) whereas
Pos(op1) > Pos(op2). When a conflict occurs Li et al. use the site identifier to
reorder the character to be inserted (see our OT function in Figure 6). Consider
the following sequences:

S1 = [op1; T (op3, op1)] = [Ins(p + 1, z); Del(p)]
S2 = [op3; T (op1, op3)] = [Del(p); Ins(p, z)]

Transforming op2 against S1 does not give the same operation that trans-
forming op2 against S2. This case leads to divergence problem. Note that
Pos(T (op2, op3)) = Pos(T (op1, op3)). Thus op1 and op2 lose their original re-
lation after transformation according to op3. The mistake is due to the defini-
tion of their β function. Indeed, their definition relies on the exclusion trans-
formation function ET , which is the reversed function of T . For instance, if
T (op1, op2) = op′1 then ET (op′1, op2) = op1. Due to the non-inversibility of T ,
ET is not always defined [16]. Consequently, the convergence property cannot
be achieved in all cases.

7 Conclusion

OT has a great potential for generating non-trivial states of convergence. How-
ever, without a correct set of transformation functions, OT is useless. In this
paper we have pointed out correctness problems of the existing OT algorithms
used to synchronize linear collaborative objects (such as document text or XML
trees) and we have proposed a solution based on a weak form of the condition C2.
Using our theorem-proving approach [5,6] we have provided a complete proof for
our OT algorithm. Furthermore, our solution is generic because it can be applied
to any linear structure-based data.

Although this weak form still ensures the convergence state, we cannot plug
our OT algorithm in all integration algorithms based on the condition C2, such as
adOPTed [11] and SOCT2 [14]. So, we consider our work as a first step towards
to build a generic integration algorithm based only on conditions C1 and C′

2.
Moreover, we plan to optimize our OT algorithm because the size of p-words
increase according to the number of transformation steps.
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19. N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence in a distributed
real-time collaborative environment. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW’00), Philadelphia, Pennsylvania,
USA, December 2000.

20. M. Wirsing. Algebraic Specification. Handbook of theoretical computer science (vol.
B): formal models and semantics, pages 675–788, 1990.



Designing Efficient Fail-Safe

Multitolerant Systems

Arshad Jhumka1 and Neeraj Suri2

1 Department of Computer Science University of Warwick,
Coventry CV4 7AL, UK

arshad@dcs.warwick.ac.uk
2 Department of Computer Science, TU - Darmstadt, Darmstadt, Germany

Abstract. In this paper, we propose a method for designing efficient
fail-safe multitolerant systems. A multitolerant system is one that is able
to tolerate multiple types of faults, and a fail-safe multitolerant system
handles the various fault types in a fail-safe manner. Efficiency issues
of interest are fault tolerance-related, and they are: (i) completeness,
and (ii) accuracy. Based on earlier work, this paper makes the following
contributions: (i) We develop a theory for design of efficient fail-safe mul-
titolerance, (ii) based on the theory, we present a sound and complete al-
gorithm that automates the addition of efficient fail-safe multitolerance,
and (iii) we develop the example of an efficient fail-safe multitolerant
token ring to show the viability of our approach. Our approach works
for finite state systems.

Keywords: Detectors, fail-safe, multitolerance, program transformation,
safety specification, automation, program synthesis.

1 Introduction

Fault tolerance is the ability of a program or system to satisfy its specification,
even in the presence of external perturbations. Perturbations, or faults, are varied
in nature, for example, computer intrusions, message losses, variable corruptions
etc. Thus, a program intended to be deployed in such a faulty environment needs
to be able to withstand the effect of these faults, i.e., we require the program to be
tolerant to the faults. In other words, such a program needs to be multitolerant.

Alpern and Schneider showed that, in general, a specification [1] can be con-
sidered as the intersection of a safety specification, and a liveness specification.
In the presence of faults, the need to satisfy both specifications is not manda-
tory, giving rise to different levels of fault tolerance. The more prominent of
them being (i) fail-safe, (ii) non-masking and (iii) masking fault tolerance. In
this paper, we focus on fail-safe fault tolerance. Fail-safe fault tolerance, infor-
mally, is the ability of a system to always satisfy its safety specification in the
presence of faults, i.e., if the system is about to violate safety, then the system is
halted. This type of fault tolerance is often used in safety critical systems, such
as nuclear power plants, train control systems, where safety is more important
than continuous provision of service. In practice, a backup system may be used
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after the original system is halted. Though a fail-safe fault-tolerant program does
not have to guarantee liveness in presence of faults, some form of “controlled”
liveness can be obtained [4].

Arora and Kulkarni [3] showed that there exists a class of program compo-
nents, called detectors that is both necessary and sufficient to ensure fail-safe
fault tolerance. A detector is a program component that asserts the validity
of a given predicate in a given state of the program. Examples are run-time
checks [9], executable assertions [5], error detection codes, comparators etc. Our
focus on fail-safe fault tolerance design thus translates into focusing on the design
of detectors.

Designing effective detectors is known to be a non-trivial task [9]. Compos-
ing1 ineffective detectors with a given program will have some adverse effects,
such as failures to detect erroneous states of the system, or the trigger of false
alarms. To address these problems, Jhumka et.al [7,6] developed a theory of
detectors that identified the properties that underpin the operational effective-
ness of detectors. These properties are (i) completeness, and (ii) accuracy. The
completeness property of a detector is linked with a detector’s ability to detect
erroneous states, while the accuracy property is linked with a detector’s ability
to avoid mistakes (false alarms). A complete and accurate detector is termed
perfect. The completeness and accuracy properties represent the fault tolerance
efficiency issues on which we focus in this paper.

Our approach to the design of multitolerance is based on the well-known
software engineering principle of decomposition. Instead of trying to design de-
tectors that are to efficiently tolerate a complex fault class F , we first decompose
the complex fault class F into a sequence of basic fault classes f1 . . . fn. We then
design effective detectors that handle the first basic fault class f1. Once done,
we consider the next basic fault class f2, and design effective detectors that not
only handle f2, but also do not interfere with the effectiveness of detectors that
handle f1. The idea is to incrementally design a multitolerant program such that,
in any one step, effective tolerance to a new basic fault class is added, while all
previous tolerances and effectiveness are preserved.

1.1 Related Work

The first work on multitolerance design was proposed by Arora and Kulkarni
in [2]. However, our work differs from that of Arora and Kulkarni [2] in the fol-
lowing ways: (i) fault tolerance efficiency issues are at the heart of the approach
proposed in this paper, unlike in [2], (ii) we present a sound and complete algo-
rithm for automating addition of multitolerance, unlike in [2]. Later, Kulkarni
and Ebnenasir [8] proposed an automated approach, as in this paper, for the
addition of multitolerance. Their approach differs from that proposed in this pa-
per in two ways: (i) they tackle the problem in a different system model (where
read/write restrictions are imposed), and (ii) they do not tackle efficiency prop-
erties, as in this paper.

Building on previous work [7,6], our contributions in this paper are: (i) We
present a theory for efficient fail-safe multitolerance design, (ii) We provide a
sound, and complete algorithm that automates the addition of efficient fail-safe

1 We will formally define this term in the next section.
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multitolerance, and (iii) we present a case study of the design of a fail-safe
multitolerant token ring to show the applicability of our approach.

The paper is structured as follows: Sec. 2 introduces the assumed models
and terminologies. Sec. 3 defines the problem of perfect fail-safe fault tolerance.
In Sec. 4 addresses the problem of adding perfect fail-safe multitolerance to
programs. An example of a fully distributed, fail-safe multitolerant program for
a token ring is presented in Sec. 5.

2 Preliminaries

In this section, we recall the standard formal definitions of programs, faults,
fault tolerance (in particular, fail-safe fault-tolerance), and of specifications [3].

2.1 Concurrent Systems

The work assumes an interleaved execution semantics together with the shared
variable communication paradigm.

2.2 Programs

A program P consists of a set of processes {p1 . . . pn}. Each process pi contains
a finite set of actions, and a finite set of variables. Each variable stores a value
of a predefined nonempty finite domain and is associated with a predefined set
of initial values. In this paper, we will use two representations of a program:
(i) guarded command notation, and (ii) state transition system. While formal
definitions/results will be based on the transition model, the guarded command
notation provides a more “visual” basis.

In the guarded command notation, an action has the form

〈guard〉 → 〈statement〉
where the guard is a predicate over the program variables, and the statement
is either the empty statement or an instantaneous value assignment to one or
more variables.

The state space SP of a program P is the set of all possible value assignments
to variables. A state predicate of P is a boolean expression over the state space
of P . The set of initial states IP is defined by the set of all possible assignments
of initial values to variables of P .

An action ac of P is enabled in a state s if the guard of ac evaluates to “true”
in s. An action ac can be represented by a set of state pairs. Note that programs
are permitted to be non-deterministic as multiple actions can be enabled in the
same state.

A computation of p is a weakly fair (finite or infinite) sequence of states
s0, s1, . . . such that s0 ∈ Ip and for each j ≥ 0, sj+1 results from sj by executing
the assignment of a single action which is enabled in sj . Weak fairness implies
that if a program action ac is continuously enabled, ac is eventually chosen to
be executed. Weak fairness implies that a computation is maximal with respect
to program actions, i.e., if the computation is finite then no program action is
enabled in the final state.
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A state s occurs in a computation s0, s1, . . . iff there exists an i such that
s = si. Similarly, a transition (s, s′) occurs in a computation s0, s1, . . . iff there
exists an i such that s = si and s′ = si+1.

In the context of this paper, programs are equivalently represented as state
machines, i.e., a program is a tuple P = (SP , IP , δP ), where SP is the state
space and IP ⊆ SP is the set of initial states. Transition (s, s′) ∈ δP iff ac of P
is enabled in state s and execution of ac in state s results in state s′. We say
that ac induces these transitions. State s is called the start state and s′ the end
state of the transition.

2.3 Specifications

A specification for a program P is a set of computations which is fusion-closed.
A specification S is fusion-closed2 iff the following holds for finite computations
α, β, and a state s: If α = γ ·s·ρ and β = ε·s·σ are in S, then so are computations
γ · s · σ and ε · s · ρ. A computation c of P satisfies a specification S iff c ∈ S.
A program P satisfies a specification S iff all possible computation of P satisfies
S.

Definition 1 (Maintains). Let P be a program, S be a specification and α be
a finite computation of P . We say that α maintains S iff there exists a sequence
of states β of P such that α · β ∈ S.

Definition 2 (Safety specification). A specification S of a program P is a
safety specification iff the following condition holds: ∀ computation σ that vio-
lates S, ∃ a prefix α of σ s.t ∀ state sequences β, α · β violates S.

Informally, the safety specification of a program states that “something bad
never happens”. More formally, it defines a set of “bad” finite computation
prefixes that should not be found in any computation. Thus, satisfaction of a
safety specification implies that the program should not display any violating
(bad) computation prefix.

2.4 Fault Models and Fault Tolerance

All standard fault models from practice which endanger a safety specification
(transient or permanent faults) can be modeled as a set of added transitions.
We focus on the subset of these fault models which can potentially be tolerated:
We disallow faults to violate the safety specification directly. For example, in
the token ring protocol, at most one process can hold the token. We allow a
fault to duplicate the token, however we rule out faults that “force” a second
process to hold a duplicated token, as this kind of faults cannot be tolerated.
Rather, faults can change the program state (e.g., duplication of token) such
that subsequent program actions execution (holding of duplicate token) violate
the safety specification. This can be potentially tolerated by asking any process
to check if some other process is already holding a token, before accepting one.

We defer for future work investigation of fault tolerance under the fault model
where safety is directly violated.
2 Intuitively, fusion closure guarantees that history is available in each computation

state.



432 A. Jhumka and N. Suri

Definition 3 (Fault model). A fault model F for program P and safety spec-
ification SS is a set of transitions over the variables of P that do not vio-
late SS, i.e., if transition (sj , sj+1) is in F and s0, s1, . . . , sj is in SS, then
s0, s1, . . . , sj, sj+1 is in SS.

We call members of F the faults affecting P . We say that a fault occurs if a
fault transition is executed.

Definition 4 (Computation in the presence of faults). A computation of
P in the presence of faults F is a weakly P -fair sequence of states s0, s1, . . .
such that s0 is an initial state of P and for each j ≥ 0, sj+1 results from sj by
executing a program action from P or a fault action from F .

Weakly P -fair means that only the actions of P are treated weakly fair (fault
actions must not eventually occur if they are continuously enabled). In the tran-
sition system view, a fault model F adds a set of (fault) transitions to δP . We
denote the modified transition relation by δF

P . We call δF
P the program P in

presence of F . Since fault actions are not treated fairly, their occurrence is not
mandatory. Note that we do not rule out faults that occur infinitely often (as
long as they do not directly violate the safety property).

Earlier, we discussed that a safety specification entails keeping track of bad
prefixes that should not appear in any computation. The requirement of a safety
specification being fusion-closed allows us to keep track of bad transitions, rather
than of prefixes.

Definition 5 (bad transition). Give a program P , fault model F , and fusion-
closed safety specification SSPEC. A transition t ∈ δF

p is bad with respect to a
safety specification SSPEC if for all computations σ of p holds: If t occurs in σ
then σ �∈ SSPEC.

This is possible as fusion-closure implies availability of history in every com-
putation state, and the history (prefix) can be encoded into that state. Note that,
under our fault model assumption, a fault transition cannot be a bad transition.

Definition 6 (Fail-safe fault-tolerance). Given a program P with safety
specification SS, and a fault model F . The program P is said to be fail-safe
F -tolerant for specification S iff all computations of P in the presence of faults
F satisfy SS.

If F is a fault model and SS is a safety specification, we say that a program P
is F -intolerant for SS iff P satisfies SS in the absence of F but violates SS in the
presence of F . For brevity, we will write fault-intolerant instead of F -intolerant
for SS if F and SS are clear from the context.

Definition 7 (Reachable transition). A transition (s, t) of P is reachable iff
there exists a computation α of P such that (s, t) occurs in α.

Definition 8 (Reachable transition in the presence of faults). We say
that a transition (s, t) is reachable by p in the presence of faults iff there exists
a computation α of P in presence of faults such that (s, t) occurs in α.
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3 Addition of Fail-Safe Fault Tolerance

In this section, we explain the addition of fail-safe fault tolerance to a fault-
intolerant program. We first briefly review the role of detectors in ensuring fail-
safe fault tolerance.

3.1 Role of Detectors in Fail-Safe Fault Tolerance

Informally, a detector3 is a program component that detects whether a given
predicate is true in a given state. Arora and Kulkarni showed in [3] that, for every
action ac of a program P with safety specification SS, there exists a predicate
such that execution of ac in a state where this predicate is true satisfies SS. In
other words, the action ac is transformed as follows: (g → st) → (d∧ g → st),
where d is the detector implementing the predicate. In this case, we say that
action ac is composed with detector d (we sometimes say that detector d is
monitoring ac). We say that a program P is composed with detector d if there is
an action ac of P such that ac is composed with d. We also say that a program
P is composed with a set of detectors D if ∀d ∈ D∃ ac of P such that ac is
composed with d. If a transition (s, s′) induced by ac violates SS, then such a
transition is a bad transition. Thus, any computation that violates SS contains
a bad transition.

Given a program P with safety specification SS expressed as a temporal
logic formula, the set of bad transitions (due to fusion closure) can be computed
in polynomial time by considering all transitions (s, s′) where s, s′ ∈ Sp. For
simplicity, we assume that the safety specification is concisely expressed as a
set of bad transitions. The authors of [3] also show that fail-safe fault-tolerant
programs contain detectors. However, [3] did not show how to design the re-
quired detectors. To address this problem, Jhumka et.al [6,7] developed a theory
that underpins the design of effective (complete and accurate) detectors. We will
develop the theory of multitolerance based on the theory of [6,7], which we will
briefly introduce for sake of completeness.

3.2 Transformation Problem for Addition of Fail-Safe Fault
Tolerance

The problem of adding fail-safe fault tolerance is formalized as follows:

Definition 9 (Fail-safe fault tolerance addition). Let SS be a safety spec-
ification, F a fault model, and P an F -intolerant program for SS. The fail-safe
transformation problem is defined as follows: Identify a program P ′ such that:
1. P ′ satisfies SS in the presence of F .
2. In the absence of F , every computation of P ′ is a computation of P .
3. In the absence of F , every computation of P is a computation of P ′.

A program p′ that satisfies the above conditions is said to solve the fail-safe
transformation problem for p. The second and third conditions imply that the
detectors need to be transparent in the absence of faults, and should not add
other ways of satisfying SS.

In the next section, we present a theory of detectors, based upon which,
we provide an algorithm that synthesizes a program p′ from a fault-intolerant
program p, such that p′ solves the fail-safe transformation problem.
3 For a more formal introduction, we refer the reader to [3].
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3.3 A Theory of Detectors

The detector theory of [6,7] is based on the concept of SS-inconsistency, where
SS is the safety specification of a program P . The intuition behind the incon-
sistency is that if a given computation of P in the presence of faults violates the
safety specification SS, then some “erroneous” transition has occurred in the
computation, i.e., inconsistent with SS.

Definition 10 (SS-inconsistent transitions). Given a fault-intolerant pro-
gram P with safety specification SS, fault model F , and a computation α of P
in the presence of F . A transition (s, s′) is SS-inconsistent for P w.r.t. α iff

– there exists a prefix α′ of α such that α′ violates SS,
– (s, s′) occurs in α′, i.e., α′ = σ · s · s′ · β,
– all transitions in s · s′ · β are in δp, and
– σ · s maintains SS.

Fig. 1 illustrates Definition 10. It shows the state transition relation of a
program in the presence of faults (the transition (s3, s4) is introduced by F ).
The safety specification SS identifies a bad transition (s6, s7) which should be
avoided. In the presence of faults, this transition becomes reachable and hence
the program if F -intolerant since it exhibits a computation α1 violating SS.
In this computation, the three transitions following the fault transition match
Definition 10 and hence are SS -inconsistent w.r.t. α1 in the presence of F . Note
that an SS -inconsistent transition is only reachable in the presence of faults.

. . .

initial state

$s_1$ $s_2$ $s_3$ $s_4$ $s_5$

$s_6$

$s_8$

$s_7$

$s_9$

$\alpha_1$

$\alpha_2$

fault transition

inconsistent w.r.t. $\alpha_1$
bad transition

Fig. 1. Graphical explanation of SS -consistency

Intuitively, an SS-inconsistent transition for a given program computation is
a program transition where the subsequent execution of a sequence of program
transitions causes the computation to violate the safety specification. In a sense,
SS-inconsistent transitions lead the program computation on the “wrong path”.

Now we define SS-inconsistency independent of a particular computation.

Definition 11 (SS-inconsistent transition for P ). Given a program P ,
safety specification SS, fault model F . A transition (s, s′) is SS-inconsistent for
P iff there exists a computation α of P in the presence of F such that (s, s′) is
SS-inconsistent for p w.r.t. α.

In general, due to non-determinism in program execution, a transition can
be SS-inconsistent w.r.t. a computation α1, and not be SS-inconsistent w.r.t. α2.
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If we cannot find a computation in the presence of faults for which a particular
transition is SS-inconsistent then we say that this transition is SS-consistent.

The notion of SS-inconsistency is a characteristic for a computation which
violates SS [6].

In the next section, we introduce the notion of perfect detectors using the
terminology of SS-consistency.

3.4 Perfect Detectors

From Sec. 3.3, we observed that SS-inconsistent transitions are those transitions
that can lead a program to violate its safety specification in the presence of
faults if no precautions are taken. Perfect detectors are a means to implement
these precautions. The definition of perfect detectors follows two guidelines: A
detector d monitoring a given action ac of program P needs to (1) “reject” the
starting states of all transitions induced by ac that are SS-inconsistent for P , and
(2) “keep” the starting states of all induced transitions that are SS-consistent
for P . These two properties are captured in the definition of completeness and
accuracy of detectors.

Definition 12 (Detector accuracy). Given a program P , safety specification
SS, fault model F , and a program action ac of P . A detector d monitoring ac is
SS-accurate for ac in P in presence of F iff for all transitions (s, s′) induced by
ac holds: if (s, s′) is SS-consistent for P , then s ∈ d.

Definition 13 (Detector completeness). Given a program P with safety
specification SS, fault class F , and a program action ac of P . A detector d moni-
toring action ac is SS-complete for ac in P in presence of F iff for all transitions
(s, s′) induced by ac holds: if (s, s′) is SS-inconsistent for P , then s �∈ d.

Definition 14 (Perfect detector). Given a program P , safety specification
SS, fault class F , and a program action ac of P . A detector d monitoring ac is
SS-perfect for ac in P in presence of F iff d is both SS-complete and SS-accurate
for ac in P .

Where the specification is clear from the context we will write accuracy in-
stead of SS-accuracy (the same holds for completeness and perfection).

Intuitively, the completeness property of a detector is related to the safety
property of the program p in the sense that the detector should filter out all
SS-inconsistent transitions for p, whereas the accuracy property relates to the
liveness specification of p in the sense that the detector should not rule out SS-
consistent transitions. This intuition is captured by the following lemmas (for
proof, refer to [6,7]).

Lemma 1 (Fault-free behavior).
Given a fault-intolerant program P and a set D of perfect detectors. Con-

sider program P ′ resulting from the composition of P and D. Then the following
statements hold:

1. In the absence of faults, every computation of P ′ is a computation of P .
2. In the absence of faults, every computation of P is a computation of P ′.
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add-perfect-fail-safe(δP , δF , ss: set of bad transitions):
{ ssr := get-ssr(δP , δF , ss)
return (P ′ = δP \ ssr)}

get-ssr(δP , δF , ss: set of transitions):
{ ssr := {(s, t)|(s, t) ∈ ss is reachable by P in presence of F}
return (ssr)}

Fig. 2. Algorithm that solves the fail-safe fault tolerance addition problem

Before we characterize the role of perfect detectors in presence of faults, we
formally define critical actions of a program.

Definition 15 (Critical and non-critical actions). Given a program P with
safety specification SS, and fault class F . An action ac of P is said to be critical
for P w.r.t SS in presence of F iff there exists a transition (s, s′) induced by ac
such that (s, s′) is a bad transition that is reachable by P in presence of faults F
(Definition 7) . An action is non-critical for P w.r.t SS in presence of F iff it
is not critical for P w.r.t SS in presence of F .

Lemma 2 (Behavior in the presence of faults). Given a fault-intolerant
program P with safety specification SS, and fault class F . Given also a program
P ′ by composing each critical action ac of P w.r.t SS in presence of F with a
perfect detector for ac in presence of F . Then, P ′ satisfies SS in presence of
faults F .

Proofs of lemmas 1 and 2 can be found in [7]. From lemmas 1 and 2, we
observe that a program P ′ obtained by composing each critical action ac of a
fault-intolerant program P with a perfect detector for ac in P in presence of faults
F (which can be shown to exist [6]) solves the fail-safe fault tolerance addition
problem. When a fail-safe fault-tolerant program P ′ satisfies the three conditions
for fail-safe fault tolerance addition problem, we say that P ′ is perfectly fail-safe
F−tolerant w.r.t SS and that P ′ has efficient fail-safe F -tolerance (since P ′ is
a maximal program that satisfies SS in presence of F ).

3.5 Algorithm for Adding Perfect Fail-Safe Fault Tolerance

Having established the role of perfect detectors in fail-safe fault tolerance, in
Fig. 2, we provide an algorithm that solves the fail-safe transformation problem,
using perfect detectors. It takes as arguments the program P , the fault class F ,
and the set ss of bad program transitions encoding the safety specification (it
can be shown that these are induced by critical actions of P in presence of F ).

The theory (and algorithm) presented adds fail-safe fault tolerance to a single
fault class. We now extend the results to handle multiple fault classes.

4 Addition of Perfect Fail-Safe Multitolerance

In this section, we consider the addition of perfect fail-safe fault tolerance for
multiple fault classes. Specifically, the main question is whether perfect detectors
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are composable, i.e., whether the addition of two perfect detectors for two differ-
ent fault classes in a program preserve each other efficiency properties (accuracy
and completeness)?

4.1 A Stepwise Addition Approach

The approach adopted is stepwise, as also suggested by Arora and Kulkarni
in [2]. One of the problems during the design of multitolerance is that a tol-
erance mechanism (detector in this case) for one fault class can interfere with
the tolerance mechanism for another fault class. Thus, any synthesis method or
automated procedure should ensure, by construction, that no interference exists
between the tolerance mechanisms for different fault classes.

First, we define a fail-safe multitolerant program.

Definition 16 (Fail-Safe Multitolerant Program). Given a program P with
safety specification SS, and n fault classes F1 . . . Fn. A program P is said to be
fail-safe multitolerant to F1 . . . Fn for SS iff P is fail-safe Fi-tolerant for SS for
each 1 ≤ i ≤ n. A program P is said to be perfectly fail-safe multitolerant to
F1 . . . Fn for SS iff P is perfectly fail-safe Fi-tolerant to SS for each 1 ≤ i ≤ n.

The stepwise approach considers one fault class at a time, in some fixed
order F1 . . . Fn. The fault-intolerant program P is transformed into a perfectly
fail-safe multitolerant program to fault classes F1 . . . Fn. In the first step, P is
augmented with detectors that will make the resulting program P1 perfectly
fail-safe fault-tolerant to F1. Then, in the second step, P1 is augmented with
detectors that will make the resulting program P2 perfectly fail-safe fault-tolerant
to F2, while preserving its perfect fail-safe fault tolerance to F1. The same is
repeated until all fault classes are tolerated. In other words, we want to know
if perfect detectors for the various fault classes compose. This represents the
main contribution (synthesis of perfect fail-safe multitolerance) of the paper.
In contrast, [2,8] focused only only on fail-safe multitolerance (which can be
trivially satisfied by using the empty program), whereas this paper focuses on
the non-trivial provision of perfect fail-safe multitolerance. We provide below the
non-interference conditions that need to be satisfied by a synthesis method:

Step 1 of Non-interference Conditions: Specifically, in the first step, when the
fault-intolerant program P is augmented with detectors to obtain a program P1,
the following non-interference conditions need to be verified:

1. In the absence of F1, the detector components added to P do not interfere with
P , i.e., each computation of P is in the problem specification even if it executes
concurrently with the new detector components.

2. In the presence of faults F1, each computation of the detector components is in
the components’ specification even if they execute concurrently with P .

3. In the presence of faults F1, the resulting program is perfectly fail-safe F1-tolerant.

Step 2 of Non-interference Conditions: In the second step, when the fail-safe
F1-tolerant program p1 is augmented with detectors that will make it fail-safe
F2-tolerant program, while preserving its fail-safe F1 tolerance, the following
non-interference conditions need to be satisfied:
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1. In the absence of F1 and F2, the new detectors for fail-safe fault tolerance to F2 do
not interfere with p1, i.e., each computation of p1 satisfies the problem specification
even if p1 executes concurrently with the new detectors.

2. In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do not
interfere with the fail-safe fault tolerance to F1 of p1, i.e., every computation of p1is
in the fail-safe fault-tolerance specification to F1 even if p1 executes concurrently
with the new components.

3. In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do not
interfere with the perfect detection to F1 of p1.

4. In the presence of F2, p1 does not interfere with the new detectors that provide
fail-safe fault-tolerance to F2, i.e., every computation of the new component is in
the new components specification.

5. In the presence of F2, p1 does not interfere with the perfect detection to F2 provided
by the new detector components.

These steps can be easily generalized to n steps. Observe that these sets
of conditions specify the transformation problem for addition of perfect fail-
safe multitolerance to an initially fault-intolerant program. Our next goal is to
derive a sound, and complete algorithm that satisfies the various non-interference
conditions during the addition of fail-safe multitolerance.

Before detailing our automated approach for addition of fail-safe multitoler-
ance, we present a key result behind our approach.

Lemma 3 (Perfect detectors and multitolerance). Given a fault-intolerant
program P with safety specification SS, and fault classes F1 . . . Fn. Given a pro-
gram Pi−1 which is perfectly fail-safe multitolerant for SS with perfect detection
to fault classes F1 . . . Fi−1. Given also a program Pi obtained from Pi−1 s.t Pi

is perfectly fail-safe fault-tolerant to Fi. Then, Pi is also perfectly fail-safe mul-
titolerant to fault classes F1 . . . Fi−1.

Proof Sketch: We can prove this by induction over the fault sequence. The base
case is trivial, while for the inductive step, since all detectors added for Fi are
perfect, they reject only SS-inconsistent transitions, i.e., they do not add any
transition. Hence, the new set of perfect detectors added cannot interfere with
the previous detectors. Thus, perfect detection for all previous fault classes is
preserved.

Pi can be obtained from Pi−1 by composing actions that are critical in the
presence of Fi with the relevant perfect detectors (Lemma 2). Lemma 3 then
shows that composition with perfect detectors preserves the perfect fail-safe
fault tolerance to other classes. The lemma underpins the synthesis algorithm for
perfect fail-safe multitolerance. The algorithm is sound (The returned program
is indeed perfectly fail-safe multitolerant to all fault classes considered) and
complete (if such a perfectly fail-safe multitolerant to all fault classes considered
exists, then the algorithm will find it).

4.2 An Algorithm for Adding Efficient Fail-Safe Multitolerance

The algorithm for automatic synthesis of fail-safe multitolerant programs with
perfect detection to all fault classes is shown in Fig. 3. The resulting program is
fail-safe multitolerant to n fault classes by design (soundness).
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Theorem 1. Algorithm add-perfect-fail-safe-multitolerance is sound and com-
plete.

Proof. The algorithm is sound by construction, based on Lemma 3. Complete-
ness of the algorithm is due to our assumption of finite state (bounded) programs
and by construction.

add-perfect-fail-safe-multitolerance(P, [F1 . . . Fn], ss: set of transitions):

{i := 1; P0 := P
while (i ≤ n) do {

Pi := add-perfect-fail-safe(Pi−1, Fi, ss);
i := i + 1;} od

return(Pn)}

Fig. 3. The algorithm adds fail-safe fault tolerance to n fault classes, with perfect

detection to every fault class

It can also be shown that algorithm add-perfect-fail-safe-multitolerance2 (see
Fig. 4) is equivalent to algorithm add-perfect-fail-safe-multitolerance.

add-perfect-fail-safe-multitolerance2(P, [F1 . . . Fn], ss: set of transitions):

Pn := add-perfect-fail-safe(P,
⋃n

i=1 Fi, ss);
return(Pn)}

Fig. 4. The algorithm adds fail-safe fault tolerance to n fault classes, with perfect

detection to every fault class

In the next section, we present a case study of the design of a perfect fail-safe
multitolerant token ring.

5 Example of a Fail-Safe Multitolerant Token Ring

Processes 0 . . .N are arranged in a ring. Process k, 0 ≤ k < N passes the token to
process k+1, whereas process N passes the token to process 0. Each process k has
a binary variable, t.k, and a process k, k �= N holds the token iff t.k �= t.(k + 1),
and process N holds the token iff t.N = t.0.

The fault-intolerant program for the token ring is as follows (+2 is modulo-2
addition) :

ITR1 :: k �= 0 ∧ t.k �= t.(k − 1) → t.k := t.(k − 1)

ITR2 :: k = 0 ∧ t.k �= t.N +2 1 → t.k := t.N +2 1
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In the presence of faults, we do not want certain processes to take some steps.
In particular, if the state of process k is corrupted, then process k + 1 should
not make any transition. The faults we consider here are general faults, such as
timing, message loss or duplication, but such faults are detected by the process
before any action inadvertedly accesses that state. When a fault is detected by
process k, the value of t.k is set to ⊥.

Fault Action: The first fault class F1 that we consider is one that corrupts the
state of a single process k, which can be any process.

F1 :: t.k �=⊥ ∧|{k|t.k =⊥}| = 0 → t.k :=⊥

Fail-Safe Fault Tolerance to Fault Class F1: Running algorithm add-perfect-fail-
safe-multitolerance will result in the following program after the first iteration.

1-FSTR1::|{k : t.k =⊥}| ≤ 1 ∧ t.(k − 1) �=⊥ ∧k �= 0 ∧ t.k �= t.(k − 1) → t.k := t.(k − 1)

1-FSTR2 :: |{k : t.k =⊥}| ≤ 1 ∧ t.N �=⊥ ∧k = 0 ∧ t.k �= t.N +2 1 → t.k := t.N +2 1

Theorem 2 (Fail-safe TR). Program 1-FSTR is perfectly fail-safe fault-tolerant
to F1.

Perfect Fail-Safe Fault Tolerance to Fault Classes F1 and F2: Second, we con-
sider a fault class where the state of two processes k and l can be corrupted.

Fault Action: The fault action that we consider is

F2 :: t.k �=⊥ ∧|{k|t.k =⊥}| = 1 → t.k :=⊥

The second iteration of algorithm add-perfect-fail-safe-multitolerance on pro-
gram 1-FSTR will result in the following program:

2-FSTR1 :: |{k : t.k =⊥}| ≤ 2 ∧ t.(k − 1) �=⊥ ∧k �= 0 ∧ t.k �= t.(k − 1) → t.k := t.(k − 1)

2-FSTR2 :: |{k : t.k =⊥}| ≤ 2 ∧ t.N �=⊥ ∧k = 0 ∧ t.k �= t.N +2 1 → t.k := t.N +2 1

Theorem 3 (Fail-safe TR). Program 2-FSTR is perfectly fail-safe fault-tolerant
to F1 and F2.

Fail-Safe Fault Tolerance to Fault Class F1 . . . FN+1: We then consider a fault
class that can corrupt the state of i (1 ≤ i ≤ (N + 1)) processes.

Fault Action: The fault action that we consider is

Fi :: t.k �=⊥ ∧|{k|t.k =⊥}| = i − 1 → t.k :=⊥
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The ith iteration of algorithm add-perfect-fail-safe-multitolerance on program
(i-1)-FSTR will result in the following program:

i-FSTR1 :: |{k|t.k =⊥}| ≤ i ∧ t.(k − 1) �=⊥ ∧k �= 0 ∧ t.k �= t.(k − 1) → t.k := t.(k − 1)

i-FSTR2 :: |{k|t.k =⊥}| ≤ i ∧ t.N �=⊥ ∧k = 0 ∧ t.k �= t.N +2 1 → t.k := t.N +2 1

Theorem 4 (Fail-safe TR). Program i-FSTR is perfectly fail-safe fault-tolerant
to F1 to Fi for 1 ≤ i ≤ (N + 1).

From program i-FSTR, it can be easily deduced that, when i = N + 1,
|{k|t.k =⊥}| ≤ N + 1 is always “True” (cannot corrupt more processes than
there exist), so program N+1-FSTR (or MFSTR - Multitolerant Fail-Safe Token
Ring) simplifies to:

MFSTR1 :: t.(k − 1) �=⊥ ∧k �= 0 ∧ t.k �= t.(k − 1) → t.k := t.(k − 1)

MFSTR2 :: t.N �=⊥ ∧k = 0 ∧ t.k �= t.N +2 1 → t.k := t.N +2 1

Program MFSTR is perfectly fail-safe fault tolerant to fault classes that can
corrupt the state of any number of processes (up to every process), and is iden-
tical to the fail-safe fault-tolerant token ring program presented by Arora and
Kulkarni in [2]. However, our approach (and results) differs from that of [2]
in two important ways. First, our approach is automated, hence proofs of cor-
rectness are obviated. Second, our intermediate programs are different, i.e., the
programs tolerating less than (N+1) faults are different. In effect, all the interme-
diate programs in [2] are exactly the same. This is because bad transitions, even
those that are unreachable in the presence of certain faults were removed. As a
matter of contrast, for every fault class, we remove only those bad transitions
that are reachable. Thus, though the overall multitolerant program is correct,
the approach is not efficient as they remove more transitions than is strictly
necessary. Another important consequence of our theory is that for multitoler-
ance, a system designer knows what are sufficient conditions to achieve this. As
can be observed, when a fault occurs, the system may deadlock. However, Arora
and Kulkarni argued in [2] that, towards adding masking fault tolerance (both
safety and liveness preserved), a stepwise approach can be adopted where first
fail-safe fault tolerance is added followed by liveness properties. Hence, as future
work, we are looking to automate the addition of components that add liveness
to fail-safe fault-tolerant programs.

6 Summary

In this paper, we have made the following contributions: Based on previous work,
(i) we have developed a theory for perfect fail-safe multitolerance, (ii) We have
provided a sound, and complete algorithm that automates addition of perfect
fail-safe multitolerance, while guaranteeing the non-interference conditions, and
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(iii) We have presented a case study of the design of a perfectly fail-safe mul-
titolerant token ring that explains the working of our algorithm. The ability to
automatically add fail-safe multitolerance to an initially fault-intolerant program
is an important step in the design of fault-tolerant systems, the more so that the
program is fail-safe multitolerant by design.

Acknowledgements. We wish to thank Felix Freiling for helpful discussions.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181185, 1985.

2. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.
IEEE Transactions on Software Engineering, 24(1):6378, Jan. 1998.

3. A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In Proceedings of the 18th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS98), May 1998.

4. C. Fetzer and F. Cristian. Fail-awareness: An approach to construct fail-safe appli-
cations. In Proceedings of The Twenty-Seventh Annual International Symposium
on Fault-Tolerant Computing (FTCS97), pages 282291. IEEE, June 1997.

5. M. Hiller. Executable assertions for detecting data errors in embedded control sys-
tems. In Proceedings of the International Conference on Dependable Systems and
Network (DSN 2000), pages 2433, 2000.

6. A. Jhumka, F. Freiling, C. Fetzer, and N. Suri. Automated synthesis of fail-safe
fault-tolerance using perfect detectors. Technical report, University of Warwick,
2005.

7. A. Jhumka, M. Hiller, and N. Suri. An approach for designing and assessing detectors
for dependable component-based systems. In HASE, pages 6978, 2004.

8. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In DSN, 2004.
9. N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall. The use of self checks

and voting in software error detection: An empirical study. IEEE Transactions on
Software Engineering, 16(4):432443, 1990.



Hierarchical Decision Diagrams
to Exploit Model Structure

Jean-Michel Couvreur1 and Yann Thierry-Mieg2

1 Laboratoire Bordelais de Recherche en Informatique, France

2 Laboratoire d’Informatique de Paris 6, France

Abstract. Symbolic model-checking using binary decision diagrams (BDD) can
allow to represent very large state spaces. BDD give good results for synchronous
systems, particularly for circuits that are well adapted to a binary encoding of a
state. However both the operation definition mechanism (using more BDD) and
the state representation (purely linear traversal from root to leaves) show their
limits when trying to tackle globally asynchronous and typed specifications. Data
Decision Diagrams (DDD) [7] are a directed acyclic graph structure that manip-
ulates(a priori unbounded) integer domain variables, and which o ers a flexible
and compositional definition of operations through inductive homomorphisms.

We first introduce a new transitive closure unary operator for homomorphisms,
that heavily reduces the intermediate peak size e ect common to symbolic ap-
proaches. We then extend the DDD definition to introduce hierarchy in the data
structure. We define Set Decision Diagrams, in which a variable’s domain is a
set of values. Concretely, it means the arcs of an SDD may be labeled with an
SDD (or a DDD), introducing the possibility of arbitrary depth nesting in the
data structure. We show how this data structure and operation framework is par-
ticularly adapted to the computation and representation of structured state-spaces,
and thus shows good potential for symbolic model-checking of software systems,
a problem that is di cult for plain BDD representations.

1 Introduction

Model checking of concurrent systems is a di cult problem that faces the well known
state-space explosion problem. E cient techniques to tolerate extremely large state
spaces have been developed however, using a compact representation based on deci-
sion diagrams [1,2]. However, these symbolic techniques su er from the intermediate
peak size e ect : the size of intermediate results is sometimes out of proportion with the
size of the result. This is particularly true of globally asynchronous systems [9]. To fight
this e ect, and its dual on the size of the BDD representing the transition relation, the
works of [11,13,9] for example have shown how to exploit modularity to decompose
a transition relation in various ways. This allows large gains with respect to a purely
linear encoding in traditional BDD approaches. More recently Ciardo in [4] showed in
the context of modular verification how a fixpoint evaluation that is guided by the vari-
able ordering can dramatically reduce the peak size e ect. This is due to a saturation

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 443–457, 2005.
c IFIP International Federation for Information Processing 2005
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algorithm that works from the leaves up, thus a large proportion of the nodes created at
each iteration are retained in the result.

The structure of a model is essential from the architectural point of view, but is
usually not well captured by symbolic representations. Indeed, in a BDD encoding, a
system state is seen as a linear path that traverses all the (binary) variables that represent
the system. This is a handicap for symbolic techniques when trying to tackle complex
specifications, as structure information is lost in this state encoding. Gupta proposed in
[10] an encoding of inductive Boolean functions using hierarchical BDD, in the context
of parametric circuits. The complexity of the transition model used in that work has
however prevented a more widespread use of this concept.

We define here a new hierarchical data decision structure, SDD, that allows to gen-
eralize some of these patterns of good decision diagram usage, in an open and flexible
framework, inductive homomorphisms. SDD are naturally adapted to the representa-
tion of state spaces composed in parallel behavior, with event based synchronizations.
The structure of a model is reflected in the hierarchy of the decision diagram encod-
ing, allowing sharing of both operations and state representation. SDD allow to flexibly
compute local fixpoints, and thus our model-checker though still very young o ers per-
formance an order above NuSMV [6] and comparable to SMaRT [4]. The DDD SDD
library is available under LGPL from .

The paper is structured as follows : we first present data decision diagrams (2.1) and
labeled Petri nets (2.2) as the context in which we work. Section 3 shows how we inte-
grated local saturation in our DDD operation framework. Section 4 introduces our new
Set Decision Diagram hierarchical structure and operations. Section 5 explains how
they can be used in the context of modular and hierarchical symbolic model checking
for labeled transition systems, and in particular our chosen P T nets. We give perfor-
mances of our prototype in sections 3 and 5.

2 Context

2.1 Data Decision Diagram Definition

Data Decision Diagrams (DDD) [7] are a data structure for representing finite sets of
assignments sequences of the form (e1 : x1) (e2 : x2) (en : xn) where ei are vari-
ables and xi are the assigned integer values. When an ordering on the variables is fixed
and the values are booleans, DDD coincides with the well-known Binary Decision Di-
agram. When the ordering on the variables is the only assumption, DDD correspond to
the specialized version of the Multi-valued Decision Diagrams representing character-
istic function of sets [3]. However DDD assume no variable ordering and, even more,
the same variable may occur many times in a same assignment sequence. Moreover,
variables are not assumed to be part of all paths. Therefore, the maximal length of a
sequence is not fixed, and sequences of di erent lengths can coexist in a DDD. This
feature is very useful when dealing with dynamic structures like queues.

DDD have two terminals : as usual for decision diagram, 1-leaves stand for accept-
ing terminators and 0-leaves for non-accepting ones. Since there is no assumption on
the variable domains, the non-accepted sequences are suppressed from the structure. 0
is considered as the default value and is only used to denote the empty set of sequence.
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This characteristic of DDD is important as it allows the use of variables of finite domain
with a priori unknown bounds. In the following, E denotes a set of variables, and for
any e in E, Dom(e) IN represents the domain of e.

Definition 1 (Data Decision Diagram). The set of DDD is defined by d if:

– d 0 1 or
– d e with:

e E
: Dom(e) , such that x Dom(e) (x) 0 is finite.

We denote e
x

d, the DDD (e ) with (x) d and for all y x, (y) 0. We call

DDD sequence a DDD of the form e1
x1

e2
x2

1.

Although no ordering constraints are given, DDD represent sets of compatible DDD
sequences. Note that the DDD 0 represents the empty set and is therefore compatible
with any DDD sequence. The symmetric compatibility property is defined inductively
for two DDD sequences:

Definition 2 (Compatible DDD sequences).

– Any DDD sequence is compatible with itself.

– Sequences 1 and e
x

d are incompatible

– Sequences e
x

d and e
x

d are compatible i . e e (x x d and d are
compatible)

As usual, DDD are encoded as (shared) decision trees (see

a

a

b c

1

1

1

11

2

4

Fig. 1.
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a
1

b
1

1
a

4
c

1
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a
1

a
2

c
1

1

Fig. 1 for an example DDD). Hence, a DDD of the form e
is encoded by a node labeled e and for each x Dom(e) such that

(x) 0, there is an arc from this node to the root of (x). By the
definition 1, from a node e there can be at most one arc labeled
by x Dom(e) and leading to (x). This may cause conflicts when
computing the union of two DDD, if the sequences they contain are
incompatible, so care must be taken on the operations performed.

DDD are equipped with the classical set-theoretic operations.
They also o er a concatenation operation d1 d2 which replaces 1
terminals of d1 by d2. Applied to well-defined DDD, it corresponds
to a cartesian product. In addition, homomorphisms are defined to
allow flexibility in the definition of application specific operations.

A basic homomorphism is a mapping from to such that
(0) 0 and (d d ) (d) (d ) d d . The sum and

the composition of two homomorphisms are homomorphisms. Some basic homomor-
phisms are hard-coded. For instance, the homomorphism d Id where d , stands
for the intersection and Id for the identity, allows to select the sequences belonging
to d : it is a homomorphism that can be applied to any d yielding d Id(d ) d d .
The homomorphisms d Id and Id d permit to left or right concatenate sequences. We

widely use the left concatenation that adds a single assignment (e : x), noted e
x

Id.
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Furthermore, application-specific mappings can be defined by inductive homomor-
phisms. An inductive homomorphism is defined by its evaluation on the 1 terminal

(1) , and its evaluation (e
x

) for any e
x

. is itself a (possibly inductive)
homomorphism, that will be applied on the successor node d. The result of ( e )

is then defined as x Dom(e) (e
x

(x)). We give examples of homomorphisms in the
next subsection which introduces a simple labeled P T net formalism.

2.2 Labeled P T Nets Definition

In this section, we introduce a class of modular Petri nets. We chose P T nets for their
simple semantics, but most of what is presented here is valid for other LTS.

A Labeled P T-Net is a tuple P T Pre Post L label where

– P is a finite set of places,
– T is a finite set of transitions (with P T ),
– Pre and Post : P T IN are the pre and post functions labelling the arcs.
– L is a set of labels
– label : L T True False is a function labeling the transitions.

A marking m is an element of INP. A transi-
Idle

WaitL

HasL

WaitR

HasR

i 1modN

i 1modNi

i

Fork

Fig. 2. Labeled P T net model of the
philosophers

tion t is enabled in a marking m if for each place
p, the condition Pre(p t)(m) m(p) holds. The
firing of a transition t from a marking m leads
to a new marking m defined by p P m (p)
m(p) Pre(p t) Post(p t).

Two labeled P T nets may be composed by
synchronization on the transitions that bear the
same label. This is a parallel composition noted
�, with event-based synchronizations that yields
a new labeled P T net. This is a general composi-
tional framework, adapted to the composition of
arbitrary labeled transition systems (LTS).

This paper focuses on the representation of a
state-space defined by composition of LTS, more

than on a given formalism. We thus limit our discussion to ordinary nets, with only con-
stant arc functions, and only pre and post arcs. However our implementations actually
encompass a wider class of nets (with FIFO, queues. . . ) described fully in [7]. Let us
consider an encoding of a state space of a P T net in which we use one variable for each
place of the system. The domain of place variables is the set of natural numbers. The

initial marking for a single place is encoded by: dp p
m0(p)

1. For a given total order
on the places of the net, the DDD encoding the initial marking is the concatenation of
DDD dp1 dpn . For instance, the initial state of a philosopher can be represented by :

Idle
1

WaitL
0

WaitR
0

HasL
0

HasR
0

Fork
1

1.
The symbolic transition relation is defined arc by arc in a modular way well-adapted

to the further combination of arcs of di erent net sub-classes. The two following homo-
morphisms are defined to deal respectively with the pre (h ) and post (h ) conditions.
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Both are parameterized by the connected place (p) as well as the valuation (v) labelling
the arc entering or outing p .

h (p v)(e x)

e
x v

Id if e p x v
0 if e p x v

e
x

h (p v) otherwise
h (p v)(1)

h (p v)(e x)

e
x v

Id if e p

e
x

h (p v) otherwise
h (p v)(1)

These basic homomorphisms are composed to form a transition relation. For a tran-
sition t, t (resp. t ) denotes the set of places p P Pre(p t) 0 (resp. p P
Post(p t) 0 ). The full homomorphism hTrans for a given transition t is obtained by :
hTrans(t) p t h (p Post(p t)) p th (p Pre(p t))

For instance the top-most transition in the model of Fig. 2 would have as homomor-
phism : hTrans(t) h (WaitL 1) h (WaitR 1) h (Idle 1).

When on a path a precondition is unsatisfied, the h homomorphism will return 0,
pruning the path from the structure. Thus the h are only applied on the paths such that
all preconditions are satisfied.

3 Introducing Saturation

A first extension to the DDD homomorphism model was made to introduce the concept
of local saturation. The idea, inspired by [4], is to compute fixpoint computations start-
ing from internal nodes of the decision diagram structure, instead of having all fixpoint
computations performed at the highest level. This is shown experimentally to consider-
ably reduce the intermediate peak size e ect that is one of the critical problems related
to symbolic approaches (see [9] for a good overview of other intermediate size reduc-
tion techniques). In e ect, by computing local fixpoints starting from the leaves of the
structure and going up, and re-saturating lower nodes each time a variable is modified
favors creation of “low” nodes that will indeed appear in the final result. The canon-
ization process of decision diagrams is inductively based on the unicity of the terminal
node(s), thus creating more saturated low nodes reduces the number of intermediate
nodes at all levels in the structure.

To this end we introduce a new transitive closure unary operator that allows to
perform local fixpoint computations. For any homomorphism h, h (d) d is evalu-
ated by repeating d h(d) until a fixpoint is reached. While this computation may not
terminate, if it does its evaluation can be described as a finite composition using of
h, thus is itself an inductive homomorphism. This operator is usually applied to Id h
instead of h, allowing to cumulate newly reached paths in the result.

To use this operator e ciently, we need to set a starting level for each transition of
the system. We define a transition t’s top level, noted top(t), as the variable of highest
index (the last variable encountered in the DDD bears index 0) that is a ected by a firing
of t. We then define a table TopTrans of size the number of variables of the system. This
table contains in TopTrans[i] a homomorphism that is a sum of the homomorphisms
(constructed using the usual equation presented in section 2.2) of all transitions t such
that top(t) i, and of Id.
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(e x)

e
x

(TopTrans[e 1] ) if e 0

e
x

Id otherwise
(1) 1

We then define this new transition homomorphism that exploits these aspects.
TopTrans is never modified, and is thus simply referenced in . The main application
case consists in applying over the successor node of index e 1 a fixpoint of (thus
saturating all lower nodes of indexes strictly smaller than e 1) followed by all the
transitions that start from node e 1 (plus Id) in a fixpoint. The last place in the structure
is indexed by 0, and we stop the operation when we reach this level. For a system
composed of N places, we compute the full state space by applying (TopTrans[N
1] ) to the DDD representing the initial state.

Table 1 measures the impact of the use of fixpoint operators on state space construc-
tion. We use a benchmark of four models taken from [13]. Performance measures were
run on a P4 2.4GHz 2GbRAM. The table shows the huge gain in complexity o ered
by local saturation. The number of nodes explored is however sometimes higher in the
saturation approach ; this e ect is explained by the fact that every step of the fixpoint
computations are cached, thus some transitions may be fired more times in the ver-
sion with saturation. Ciardo et al. suggest in [4] that only the result of the full fixpoint

PNDDD no sat PNDDD sat
Model N Nb. States final total time total time

nodes nodes (s) nodes (s)
Dining 50 2.23e 31 1387 13123 11.6 10739 0.09

Philosophers 100 4.97e 62 2787 26823 54.19 21689 0.18
200 2.47e 125 5587 54223 234 43589 0.39
1000 9.18e 626 27987 - - 218789 2.1

Slotted 10 8.29e 09 1281 35898 83.07 45970 0.8
Ring 15 1.46e 15 2780 118054 595 132126 2.26

Protocol 50 1.72e 52 29401 - - 3.58e 06 61.58
Flexible 10 2.50 09 580 8604 2.06 11202 0.17

Manufacturing 25 8.54e 13 2545 50489 28.75 85962 1.58
System 50 4.24e 17 8820 231464 240.4 490062 9.78

80 1.58e 20 21300 - - 1.72e 06 37.06
Kanban 10 1.01e 09 257 26862 20.47 5837 0.06

50 1.04e 16 3217 - - 209117 3.96
100 1.73e 19 11417 - - 1.32e 06 28.09
200 3.17e 22 42817 - - 9.23e 06 238.95

Table 1. Comparing our tool PNDDD with saturation activated or not. Benchmark models taken
from [13]. We give for each model the final number of nodes and the total number of nodes
explored (i.e. constructed at some point). Garbage collecting was deactivated to allow to measure
this value; this is the default behavior anyway, we lazily collect garbage only once at the end of
the construction.
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evaluation be cached, not its steps ; however we did not implement this tuning of our
caching policy, which might reduce the measure (if we only count nodes actually cre-
ated), but not truly the time space complexity (as the extra nodes that we do count could
be garbage colected at any time). Note that our fixpoint operator allows any library user
to profit from leaves to root saturation instead of the traditional external fixpoint, thus
generalizing the concept introduced in [4] to other applications.

The time complexity explosion in the version without local fixpoint is due to the
cost of traversals of the structure and to the number of iterations required in this breadth-
first evaluation scheme. The saturation process naturally applies transitions from their
starting level as it is reached, whereas in a fixpoint “from outside”, the transitions that
target the bottom of the structure need to traverse a very large number of nodes.

4 Set Decision Diagrams

4.1 SDD Definition

DDD are a flexible data structure, and inductive homomorphisms give the user unprece-
dented freedom to define new symbolic operations. Since the work in [7], DDD have
been used for instance to implement model checkers for a subset of VHDL in a project
for the “Direction Générale des Armées” (DGA) called Clovis (the reports are however
not public), for formal verification of LfP in MORSE, an RNTL project [12], and to
construct a quotient state-space by exploiting the symmetries of a colored Well-Formed
net model [15]. However, as we manipulated more and more complex data structures,
such as the dynamically dimensioned tensors of [15], we encountered problems linked
to the lack of structure of DDD. We therefore decided to extend the DDD definition
to allow hierarchical nesting of DDD. This new data structure is called Set Decision
Diagrams, as an arc of the structure is labeled by a set of values, instead of a single
valuation. The set is itself represented by an SDD or DDD, thus in e ect we label the
arcs of our structure with references to SDD or DDD, introducing hierarchy in the data
structure.

Set Decision Diagrams (SDD) are data structures for representing sequences of as-
signments of the form e1 a1;e2 a2; en an where ei are variables and ai are sets of
values. SDD can therefore simply be seen as a di erent encoding for set of assignment
sequences of the same form as those of DDD, obtained by flattening the structure, i.e.

as a DDD defined as x1 a1 x2 a2 xn an e1
x1

e2
x2

en
xn

1.
In this section we base our reasoning on the actual data structure that is used to

store them, and as sets will label the arcs of our data structure, we use the e1 a1

presentation. However the basic linearity operation properties over the sequences of the
equivalent DDD must be ensured to allow correct computations. We assume no variable
ordering, and the same variable can occur several times in an assignment sequence. We
also make no assumptions on the domain of the variables. We encode SDD as shared
decision trees. We define the usual terminals 0 and 1 to represent non-accepting and
accepting sequences respectively. In the following, E denotes a set of variables, and for
any e in E, Dom(e) represents the domain of e,
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Definition 3 (Set Decision Diagram). The set of SDD is defined by d if:

– d 0 1 or
– d (e ) with:

e E
: is a finite set of pairs (ai di) where ai Dom(e) and di

We denote e
ai

di, the SDD (e ) with (ai) d and for all a j ai, (a j) 0. We call

SDD sequence an SDD of the form e1
a1

e2
a2

1 where i ai 1.

We further introduce a canonical representation for SDD, essential to allow use of
a unicity table and cache. The SDD we manipulate are canonized by construction,
through the union operation given in proposition 1 below.

Definition 4 (Canonical Set Decision Diagram). An SDD d is said to be canonical if
and only if :

– d 0 or d 1

– d (e ) and (ai di) (a j d j) i j,
1 ai a j

2 di d j

3 ai and di 0

Intuitively this definition sets the constraints that:

1. The number of sets of values that are mapped to a non-zero SDD be finite. This
is required so that the number of arcs leading from a node be finite, since only the
arcs labeled with sets that map to a non-zero SDD are stored in the data structure;

2. For a value x of Dom(e), at most one non zero SDD is associated. In other words
the sets referenced on the arcs outgoing from a node are disjoint. This is required
to allow existence of a unique canonical representation of sets, hence unicity and
comparison of SDD nodes.

3. No two arcs from a node may lead to the same SDD. This is the crucial point, any

time we are about to construct e
a

d e
a

d, we will construct e
a a

d instead.
This corresponds to fusing arcs that would have led to the same node.

4. By definition, the empty set maps to 0 and is not represented.

Some immediate e ects of this definition should be highlighted :

– This definition assumes that sets of values can be (e ciently) represented, as an arc
of the shared decision tree representing the SDD is labeled with a set of values. As
an SDD itself represents a set, we can use variables of domain itself, introducing
hierarchy in the data structure.

– In practice, the requirements on the data sets that label the arcs of an SDD are that
they o er the usual set theoretic operations (union, intersection and set di erence)
and the ability to compute a hash key for the set stored. These requirements are
captured by an abstract interface class, thus labeling an SDD with any type of de-
cision diagram (i.e. from existing libraries) should be very easy if it is written in C
or C .
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– Another e ect is that we no longer have the constraint of DDD that the number
of values taken by a variable x be finite. This constraint expressed in DDD that
the number of outgoing arcs from a node be finite, but is reduced for SDD to the
constraint that the number of sets of values that lead to di erent nodes be finite. This
subtle di erence means that we could represent infinite sets provided an e cient
set representation is used (intervals in for instance). This possibility has not yet
been fully explored, and stresses the limits of our definition however, as we can no
longer consider our model equivalent to a linear DDD like finite representation.

To handle paths of variable lengths, SDD are required to represent a set of compat-
ible assignment sequences. An operation over SDD is said partially defined if it may
produce incompatible sequences in the result.

Definition 5 (Compatible SDD sequences).

– Any SDD sequence is compatible with itself.

– 1 and e
a

d are incompatible

– e
a

d and e
a

d are compatible if
e e

a and a are compatible
(a a d and d are compatible)

The compatibility of a and a is defined as SDD compatibility if a a or DDD com-
patibility if a a . DDD and SDD are incompatible. Other possible referenced types
should define their own notion of compatibility.

4.2 Operations on SDD

Set Theoretic Operations. First, we generalize the usual set-theoretic operations –
sum (union), product (intersection) and di erence – to sets of set assignment sequences
expressed in terms of SDD.

Definition 6 (Finite Mapping and Union). A mapping : 2Dom(e) is said to be
finite if it respects the property that a Dom(e) (a) 0 is finite. Such a mapping
has a finite number k of sets ai Dom(e) such that (ai) 0, and can be explicitly
represented by the enumeration of the non-zero mappings it defines : k

i 1 ai di

where i ai Dom(e) di . Let k
i 1 ai di and k

i 1 ai di be two finite
mappings.

We define the square union as :

k
i 1 ai di

k
i 1 ai di

k
i 1

k
j 1 ai a j di if di d j

k
i 1 ai di if j [1 k ] di d j
k
i 1 ai di if j [1 k] di d j

Intuitively this operation performs part of the son-based canonization scheme neces-
sary for SDD : it ensures that no two arcs from an SDD node lead to the same SDD
(requirement 3 of SDD definition 3). It is easily implemented by a hash map of keys
dis and values ais. However it should be noted that this operation does not preserve
requirement 2 of definition 3, as nothing ensures that the sets mentionned on the arcs
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are disjoint. Indeed, a given value x in Dom(e) may be included in more than one ai set
of the result. But this operation over mappings will serve as a basis to define the sum

, the di erence , and the product of two SDD Mappings.

Definition 7 (Compatible SDD set theoretic operations). By definition, set theoretic
operations are only o ered over compatible SDD.

– 0 d d 0 d,0 d d 0 0, 0 d 0 and d 0 d d ;
– 1 1 1 1 1, 1 1 0
– e e e

Proposition 1 (Mapping operations). The sum (respectively product and di er-
ence ) of two SDD mappings k

i 1 ai di and k
i 1 ai di can be defined

inductively by :

k

i 1

(ai

k

j 1

(a j)) di

k

i 1

(ai

k

j 1

(a j)) di

k

i 1

k

j 1

ai a j di d j

k

i 1

k

j 1

(ai a j) di di

k

i 1

(ai

k

j 1

(a j)) di

k

i 1

k

j 1

ai a j di d j

Proof. We need to show the equivalence of the above propositions with a straight def-
inition reasoning on the actual individual assignments in a sequence. The proof is rela-
tively straightforward and is based on considering the di erent intersection possibilities
between the operands’ mappings. It is omitted here due to lack of space as it requires
introduction of additional definitions and notations for reasoning with the sequences of
the equivalent DDD.

It should be noted that using to compose the terms constituting the result may produce
some simplifications, as sets that map to the same value will be unioned, and the di d j
terms may produce already existing SDD. Furthermore, by definition the empty set
maps to 0, this produces further simplification as both the (ai

k
j 1(a j)) and the ai a j

terms are liable to be empty sets. We should remind here that the union operation
defined above is the core of the canonisation procedure, as it is in charge of ensuring
the canonicity of SDD by construction.

SDD Homomorphisms. By analogy with DDD, SDD allow the definition of user de-
fined operations through a recursive and compositional definition : inductive homo-
morphisms. The essential constraint over homomorphisms is linearity over the set of
sequences contained in an SDD. Homomorphisms can then be combined by sum and
composition.
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Definition 8 (Homomorphism). A mapping on SDD is a fully defined homomor-
phism if (0) 0 and d1 d2 : (d1) (d2) (d1 d2)

Proposition 2 (Sum and composition). Let 1, 2 be two homomorphisms. Then
1 2, 1 2 are homomorphisms.

The transitive closure is also introduced, and allows to perform a local fixpoint com-
putation. It follows the same definition as for DDD transitive closure : for a homomor-
phism h, h (d) is computed by repeating d h(d) until a fixpoint is reached. Again we
usually use (h Id) in our fixpoint computations. From here we can allow the definition
of user-defined inductive homomorphisms:

Proposition 3 (Inductive homomorphism). The following recursive definition of
mappings ( k)k defines a family of homomorphisms called inductive homomorphisms.:

d k(d)
0 if d 0
d if d 1

k
i 1 k(e ai)(di) if d (e k

i 1 ai di )

k(e a) is inductively defined as a sum k(e a) l l(e a) l 0(e a) where all
l(e a) are SDD homomorphisms, linear over the elements of a ( a a Dom(e) :
l(e a a ) l(e a) l(e a )).

To define a family of inductive homomorphisms , one has just to set the homomor-
phisms for the symbolic expression (e ai) for any variable e and set ai and the SDD

(1). It should be noted that this definition di ers from the DDD inductive homomor-
phism in that (e ai) is defined over the sets (ai Dom(e)) of values of the variable e’s
domain Dom(e). This is a fundamental di erence as it requires to be defined in an
ensemblist way: we cannot by this definition define the evaluation of over a single
value of e. However must be defined for the set containing any single value.

In addition we must respect the linearity constraint over the sequences of the equiv-
alent DDD. Thus (e a) must be an SDD homorphism linear over the element of a.

We use most commonly homomorphisms of the form e
(a)

Id which allows a linear
operation on the values labeling the arc, and by composition with another inductive
homomorphism, to realize an operation on the rest of the paths of the SDD.

As in [13], we require that the partition of the system into modules be consistent.
This constraint allows the definition of a transition relation in a partitioned disjunc-
tive or conjunctive (i.e. i i) form [11]. This allows one not to explicitly construct
the full BDD (or Kronecker representation [13,5]) that corresponds to , allowing to
tackle larger systems. In e ect, consistency means each term composing can be eval-
uated independently and in any order, and (S ) i i(S ). For our ordinary Petri net
model, this is not a problem as any partition is consistent [13], however more complex
operations require some care in the definition of modules.

5 SDD and Modular Petri Nets

In this section we present how the SDD hierarchy can be exploited to e ciently generate
and store the state-space of a labeled Petri net, itself a composition of labeled Petri nets.
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In previous works, we had shown how to use DDD for non-modular Petri nets [7]. The
key idea is to use a variable to represent the state of a set of places, instead of having
one variable per place of the net. In Miner and Ciardo’s work on Smart [13], a variable
represented a set of places or module, but the states of the module were represented in
an explicit fashion using splay trees. Here we propose a purely symbolic approach as
we use an SDD variable to represent the state of a module entering the composition of
the full model, the value domain of which is a DDD with one variable per place of the
module.

Definition 9 (Structured state representation). Let M be a labeled P T net, we induc-
tively define its representation r(M) by :

– If M is a unitary net, we use the encoding of section 2.2 r(M) dp1 dp2 dpn , with

dp p
m0(p)

1.

– If M M1 � M2, r(M) mM1

r(M1)
mM2

r(M2)
1. Thus the parallel composition of

two subnets will give rise to the concatenation of their representations.

– If M (M1), r(M) m(M1)
r(M1)

1. Thus parenthesizing an expression gives rise to
a new level of hierarchy in the representation.

A state is thus encoded hierarchically in accordance with the module definitions.
We define a total order over the N subnets or modules composing a model, used to
index these submodels. Indeed the parallel composition operation is commutative and
symmetric, therefore a net can always be seen as a “flat” parallel composition of its
subnets. Such a composition which does not use any parenthesizing, would produce a
DDD representation. However, using di erent parenthesizing(s) yields a more hierar-
chical vision (nested submodules), that can be accurately represented and exploited in
our framework.

Thus for a parenthesizing of the composition in the manner M0 � (M1 � (M2 �
(Mn 1 � (Mn) )) we have n levels of depth in the SDD, with at each level k two vari-
ables : a variable mk with the states of a unitary module of the form Mk, and a variable
m(Mk ) that in e ect represents the states of all the modules of index greater than k.

We partition the transitions of the system into local and synchronization transitions.
A transition t is local to unitary module Mn i p t t p Mn. For each unitary
module of index n, we construct a DDD homomorphism n built using DDD saturation
as presented in section 3.

For synchronization transitions that are not local to a single module, we define the
projection of a transition on a module of index n as:

n(t) p t p Mnh (p Post(p t)) p t p Mnh (p Pre(p t))

We further define for a synchronization transition t, Top(t) as the most internal paren-
thesised group (Mk) such that Mk wholly contains t. So in e ect t is local to this group,
and this is the most internal level we can apply t from. When nesting occurs at more
than one level of depth t has a top and bottom at each level of depth in the structure.
Bot(t) is defined as the lowest variable index that is used by t. Our full transition relation
is then inductively defined by:
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Let k t T op(t) (Mk) (t) represent the transitions local to a parenthesized group
(Mk); we define 1 Id.

(t)(e x)

e
k k(t) k(x)

e 1 if e mMk bot(t) e

e
k k(t) k(x)

e 1 (t) if e mMk bot(t) e

e
k (t) k(x)

e 1 (t) if e m(Mk)

(t)(1) 1

This algorithm thus performs local saturation of nested subnets. Like the algorithms of
[4], it performs local saturation on the lower nodes as soon synchronization transitions
are fired. This avoids the creation of intermediate nodes which will not appear in the

Table 2. Performances of our prototype over some bench models. We compare our tool’s run time
with the run times of Smart. Indicatively we also give the runtimes of NuSMV [6], the emblematic
tool for symbolic representations (these values were not measured by us, but are directly taken
from [5]). Some are missing as indicated by ?. The Lotos model is obtained from a true industrial
case-study. It was generated automatically from a LOTOS specification (8,500 lines of LOTOS
code 3,000 lines of C code) by Hubert Garavel from INRIA. AGV (automated guided vehicle)
is a flexible manufacturing problem, with synthesis of controllers in mind : we give the statistics
with and without the controller enabled. Example witness trace construction is possible, yielding
the shortest path to (un)desirable states. Run time is 1h20 for finding a shortest witness trace
enabling each of the 776 transitions of the Lotos model, the longest is 28 transitions in length.

final total PNDDD SDD NuSMV SMaRT
Model N States SDD DDD SDD DDD time time time

(#) (#) (#) (#) (#) (#) (sec) (sec) (sec)
Philosophers 100 4.97 62 398 21 2185 70 0.21 990.8 0.43

200 2.47 125 798 21 4385 70 0.43 18129 0.7
1000 9.18e 626 3998 21 21985 70 2.28 - 5.9
5000 6.52 3134 19998 21 109985 70 11.7 - 83.7

Ring 10 8.29e 09 61 44 2640 150 0.4 6.1 0.11
15 1.65e 16 288 44 8011 150 1.21 2853 0.29
50 1.72e 52 2600 44 238400 150 34.01 - 5.6

FMS 25 8.54e 13 55 412 346 11550 0.26 41.6 0.36
50 4.24e 17 105 812 671 38100 1.02 17321 1.33
80 1.58e 20 165 1292 1064 89760 2.59 - 4
150 4.8e 23 305 2412 1971 294300 10.52 - 20.7

Kanban 10 1.01e 09 15 46 129 592 0.02 ? 0.48
50 1.04 16 55 206 1589 9972 1.08 ? 43
100 1.73e 19 105 406 5664 37447 8.79 ? 474
200 3.17e 22 205 806 21314 144897 93.63 ? 13920

Lotos [8] N A 9.79474e 21 326 759 125773 34298 265.28 ? ?
AGV [14] N A 3.09658e 07 12 34 135 234 0.01 ? ?

AGV Controlled N A 1.66011e 07 95 124 2678 349 0.38 ? ?
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final state-space representation, hence it limits the peak number of nodes that needs to
be stored.

The following table shows the performance of our prototype tool over models taken
from [13]. We use here a simple (M1)�(M2)� �(Mn) parenthesizing scheme in these
performance runs, thus only one level of depth is used in the data structure. This is a
parenthesizing scheme that most closely relates to the experiments of [4]; indeed the
number of SDD nodes is identical to the number of MDD nodes reported by Smart.

We can observe that the encoding is much more compact than with plain DDD,
and the run times are a factor below those obtained with the flat DDD representation.
The exception is the philosophers model, which actually gives better run times in the
flat DDD representation (though at a cost in terms of representation size). The slotted
ring example shows the superiority of the MDD access procedure, which allows direct
access to all the nodes of any level k. Thus MDD saturation more e ciently fights
the intermediate size problem than our own transitive closure operator. We believe this
might be improved by tuning the caching policy, but this remains to be proved.

The Kanban model shows the advantage of SDD over MDD when the number of
states per submodel grows : in this model each submodule has a number of states fac-
torial with respect to N, while the number of modules stays constant. Smart’s MDD
representation represents one arc for each state value of a submodule, as an arc bearing
the index of the state in a splay tree explicit (but quite compact) representation. Thus
although we may have the same number of nodes, the number of arcs in the MDD rep-
resentation explodes exponentially with N, while our referenced DDD scheme allows to
factorize all the arcs that lead from a node d1 to a node d2 in the referenced DDD. This
is an important point as larger software examples present modules with a sometimes
very large reachability set.

6 Conclusion

We have presented Set Decision Diagrams, a hierarchical directed acyclic graph struc-
ture, with a canonical representation that allows use of a BDD-like cache and unicity
table. SDD operations are defined through a general and flexible model, inductive ho-
momorphisms, that give exceptional freedom to the user. This structure is particularly
well adapted to the construction and storage of the state space of hierarchical and mod-
ular models. Thanks to local fixpoint computations and improved sharing in the repre-
sentation with respect to the purely linear encoding of usual decision diagram libraries,
exceptional performances can be attained.

The principles of our parenthesized parallel composition can be generalized to a
wide range of models that can be seen as LTS. The choice of a correct parenthesizing is
an open problem : the separation into parts should highlight parts that are similar at least
structurally. One easy choice for typed specifications is to assign an encoding to each
type (record, vectors, lists, basic types...). This will increase representation sharing. Our
library, available under LGPL from , can be extended through inheritance
to use other decision diagram packages than DDD to represent the states of a module.

We are currently working at extending [15] to exploit symmetries in a hierarchical
SDD representation, as coloration can be seen as an important structural information,
that can guide the process of choosing an appropriate parenthesizing. We are also using
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the SDD in a project to model-check Promela specifications. Finally we aim at defining
a framework for operations that do not respect the module consistency constraint, as
our current solutions lacks generality in this respect.
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Ad hoc networks  (MANETs), which are  wireless networks with no fixed  infrastructure, 
have received extensive attentions [1, 5, 8, 12, 38-41, 46, 49-52]. Each mobile node in the 
network functions as a router that discovers and maintains routes for other nodes. These 
nodes may move arbitrarily, and therefore network topology changes frequently and 
unpredictably. Other limitations of ad hoc networks include high power consumption, scare 
bandwidth, and high error rates. Applications of ad hoc networks are emergency 
search-and-rescue operations, meetings or conventions in which persons wish to quickly 
share information, data acquisition operations in inhospitable terrain, and automated 
battlefield [38]. Bluetooth networks [53] and sensor networks [35, 42] are commercial 
products of ad hoc networks. 

A geometric graph G=(V, r) consists of nodes placed in 2-dimension space R2 and edge 
set E={(i, j) d(i, j) r, where i, j V and d(i, j) denotes the Euclidian distance between node i 
and node j}. Let n={x1, x2, …, xn} be a set of independently and uniformly distributed 
random points. We use ( n, r, A) to denote the random geometric graph (RGG) [29] of n 
nodes on n with radius r and placed in an area A. RGGs consider geometric graphs on 
random point configurations. Applications of RGGs include communications networks, 
classification, spatial statistics, epidemiology, astrophysics, and neural networks [29]. 

A RGG ( n, r, A) is suitable to model an ad hoc network N=(n, r, A) consisting of n 
mobile devices with transmission radius r unit length that are independently and uniformly 
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RGGs are different from well-known random graphs [3, 13, 28]. One kind of random 

graph can be characterized by two parameters n and p, where n represents the number of 
nodes and p represents the probability of the existence of each possible edge. Edge 
occurrences in the random graph are independent to each other, which is not the case in 
MANETs. Therefore the fruitful results of random graphs cannot be directly applied to 
MANETs. Other graph models proposed for MANETs are interval graphs [16], unit disk 
graph [7, 17], proximity graphs [29], and indifference graphs [37]. 

Many fundamental properties of ad hoc networks are related to subgraphs in RGGs. For 
example, the IEEE 802.11 CSMA/CA protocol suffers from the hidden and the exposed 
terminal problem [41, 45]. The hidden terminal problem is caused by concurrent 
transmissions of two nodes that cannot sense each other but transmit to the same destination. 
We call such two terminals a hidden-terminal pair. The existence of hidden-terminal pairs in 
an environment seriously results in garbled messages and increases communication delay, 
thus degrading system performance [24, 25, 45]. 

A hidden-terminal pair can be represented by a pair of edges (x, y) and (x, z) of G=(V, E) 
such that (x, y) E and (x, z) E, but (y, z) E. In graph terms, such a pair of edges is an 
induced subgraph p2 that is a path of length two (See Figure 2). Counting the occurrences of 
p2 in a given RGG helps counting the number of hidden-terminal pairs in the network. 

The exposed terminal problem is due to prohibiting concurrent transmissions of two 
nodes that sense each other but can transmit to different receivers without conflicts [41]. The 
problem results in unnecessary reduction in channel utilization and throughput. We name 
these nodes an exposed-terminal set. Similarly, the problem can be modeled as a subgraph H 
of G=(V, E) with four vertices {x, y, z, w} V such that {(x, y), (y, z), (z, w)} E, but (x, z) E 
and (y, w) E (See Figure 2). 

(a) (b)

device, each edge connecting two vertices represents a possible communication link as they 
are within the transmission range of each other. A random geometric graph and its 
representing network are shown in Figure 1. In the example, area A is a rectangle that is used 
to model the deployed area such as a meeting room. Area A, however, can be a circle, or any 
other shape, and even infinite space. 

 

 

Fig. 1. (a) An ad hoc network N=(6, r, A), where A is a rectangle. (b) Its associated random 
geometric graph ( 6 , r, A). 

 

distributed at random in an area A. When each vertex in ( n, r, A) represents a mobile 
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Quantitative analyses on specific subgraphs of a given RGG are of importance for 
understanding and evaluating the fundamental properties of MANETs. There is extensive 
literature on the subgraph probability of RGGs [29]. Penrose had shown that, for arbitrary 
feasible connected subgraph  with k vertices, the number of induced subgraphs isomorphic 
to  satisfies a Poisson limit theorem and a normal limit theorem [29]. To the best of our 
knowledge, previous related results are all asymptotic or approximate. 

In the paper, we make the first attempt to propose a paradigm to systematically derive 
the exact formulas for a great deal of subgraph probabilities in RGGs. In contrast to previous 
asymptotic bounds or approximation, the closed-form formulas we derived are fairly 
accurate and of practical value. With the paradigm, we undergoes quantitative analyses on 
fundamental properties of ad hoc networks including the number of hidden-terminal pairs 
and the number of exposed-terminal sets. 

Computing the probability of occurrence of RGG subgraphs is complicated by the 
assumption of finite plane. For example, one device in Figure 1 is deployed nearby the 
boundary of rectangle A so its radio coverage region (often modeled by a circle) is not 
properly contained in A. This is due to border effects, which complicate the derivation of 
closed formulas. Previous discussions usually circumvent the border effects by using torus 
convection [1, 20]. Torus convention models the network topology in a way that nodes 
nearby the border are considered as being close to nodes at the opposite border and they are 
allowed to establish links. Most of the time, we adopt torus convention to deal with border 
effects in the paper. However, we also obtain an exact formula for the single edge probability 
of RGGs when confronting the border effects. 

Our definition of random geometric graphs ( n, r, A) is different from those of Poisson 
point process [1, 12], which assume that the distribution of n points (vertices) on a possibly 
infinite plane follows a Poisson distribution with parameter  (the given density). In Poisson 
point process, the number of vertices can only be a random number rather than a tunable 
parameter. In practice, however, some MANET modeling requires a fixed input n or a finite 
deployed area. 

The rest of the paper is organized as follows. In Section 2, some definitions and 
notations are introduced. In Section 3, we briefly survey related results on RGGs. A 
paradigm for computing the subgraph probability of RGGs with torus convention is 
presented in Section 4. Section 5 presents those derivations when confronting border effects. 
In Section 6, quantitative analyses on ad hoc networks are discussed. Finally, Section 7 
concludes the paper. 

x

y z

wzy 

x 

Hp2 

Fig. 2. The subgraphs of hidden-terminal pair p2 and exposed-terminal set H 
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A graph  G=(V, E) consists  of  a finite nonempty vertex set V and edge set E of  unordered 
pairs of distinct vertices of V. A graph G=(V, E) is labeled when the V  vertices are 
distinguished from one another by names such as v1, v2, …, vV. Two labeled graphs G=(VG, 
EG) and H=(VH, EH) are identical, denoted by G=H if VG= VH and EG=EH. A graph H=(VH, 
EH) is a subgraph of G=(VG, EG) if VH VG and EH EG. Suppose that V  is a nonempty subset 
of V. The subgraph of G=(V, E) whose vertex set is V  and whose edge set is the set of those 
edges of G that have both ends in V  is called the subgraph of G induced by V , denoted by 
GV . The size of any set S is denoted by S . The degree of a vertex v in graph G is the number 
of edge incident with v. The notation

m
n denotes the number of ways to select m from n 

distinct objects. 
The subgraph probability of RGGs is defined as follows. Let ={G1, G2, …, Gk} 

represent every possible labeled graphs of ( n, r, A), where k=2
2
n

. When Gx is a labeled 
subgraph in , we use Pr(Gx) to denote the probability of the occurrence of Gx. Suppose 
S V and T V, we define Pr(Gs)= 

wsw GGG
wG

 and 

)Pr( , when 1 w k. 

A walk in G=(V, E) is a finite non-null sequence W=v0e1v1e2…ekvk, where vi V and ej E 
for 0 i k and 1 j k. The integer k is the length of the walk. When vo, v1, …, vk are distinct, 
W is called a path. A path is a cycle if its origin and terminus are the same. An induced 
subgraph that is a path of length i is denoted by pi. Similarly, an induced subgraph that is a 
cycle of length i is denoted by ci; c3 is often called a triangle. A set of vertices is independent 
if no two of them are adjacent. An induced subgraph which is an independent set of size i is 
denoted by Ii. The notational conventions used in the paper can be found in [4]. 

A  book  written  by  Penrose [29] provides and explains the theory of random geometric 
graphs. Graph problems considered in the book include subgraph and component counts, 
vertex degrees, cliques and colorings, minimum degree, the largest component, partitioning 
problems, and connectivity and the number of components. 

For n points uniformly randomly distributed on a unit cube in d 2 dimensions, Penrose 
[32] showed that the resulting geometric random graph G is k-connected and G has 
minimum degree k at the same time when n . In [9, 10], Díaz et al. discussed many 
layout problems including minimum linear arrangement, cutwidth, sum cut, vertex 
separation, edge bisection, and vertex bisection in random geometric graphs. In [11], Díaz et 
al. considered the clique or chromatic number of random geometric graphs and their 
connectivity. 

Some results of RGGs can be applied to the connectivity problem of ad hoc networks. In 
[39], Santi and Blough discussed the connectivity problem of random geometric graphs 

( n, r, A), where A is a d-dimensional region with the same length size. In [1], Bettstetter 
investigated two fundamental characteristics of wireless networks: its minimum node degree 

2   Definitions and Notations 
 

3   Related Work in RGG 
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and its k-connectivity. In [12], Dousse et al. obtained analytical expressions of the probability 
of connectivity in the one dimension case. In [18], Gupta and Kumar have shown that if 
r=

n
ncn )(log , then the resulting network is connected with high probability if and only if 

c(n) . In [47], Xue and Kumar have shown that each node should be connected to (log 
n) nearest neighbors in order that the overall network is connected.  

Recently, Yen and Yu have analyzed link probability, expected node degree, and 
expected coverage of MANETs [49]. In [48], Yang has obtained the limits of the number of 
subgraphs of a specified type which appear in a random graph. 
 

In  the  section,  we develop a paradigm for computing subgraph  probability of  RGGS. 
First of all, we are to prove that the occurrences of arbitrary two distinct edges in RGGs are 
independent in the next subsection. The property of edge independence greatly simplifies our 
further calculations. For simplicity, we always assume that A is sufficiently large to properly 
contain a circle with radius r in a ( n, r, A) throughout the paper; that implies r2 A . In 
the paper, notation Ei (Ei ) denotes the event of the occurrence (absence) of edge ei. 

Since we adopt torus convention to avoid border effects in the section, single-edge 
probability in RGG is obtained trivially and listed below. 
Theorem 1: We have Pr(Ej)= r2/ A , for an arbitrary edge ej=(u, v) and u v, in a ( n, r, A). 

The next  theorem will indicate that the  occurrences of arbitrary two distinct edges in 
RGGs are independent. The result is somewhat difficult to be accepted as facts at first glance 
for some scholars. The following theorem shows that the occurrences of arbitrary two 
distinct edges in RGGs are independent even if they share one end vertex. 
Theorem 2 [49]: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a ( n, r, A), we 
have Pr(EiEj)=Pr(Ei)Pr(Ej). 

Note that Theorem 2 does not imply that the occurrences of more than two edges in 
RGGs are also independent. In fact, we will show their dependence later. 

By Theorem 1 and 2, we obtain the probability of two-edge subgraphs immediately. 
Corollary 3: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a ( n, r, A), we 

have Pr(EiEj)= ( r2/ A )2. 

In  this  subsection, we consider  eight labeled  subgraphs  with three vertices as  base 
subgraphs, the probabilities of which will be used to compute the probability of larger 
subgraphs later. Based on the number of edges included, subgraphs of three vertices can be 
classified into four groups: a triangle (c3), an induced path of length two (p2), an edge with an 
isolated vertex (p1+I1), and three isolated vertices (I3) (See Figure 3). 
 

 
4   A Paradigm for Computing Subgraph Probability 

 

 
4.1   Edge Independence in RGGs 

 

 
4.2   Base Subgraphs 

 

To compute the probability of c3, we need the following lemma. Two equal-sized circles 
are properly intersecting if one circle contains the center of the other. Due to page limit, we 
omit the proofs of Lemma 4-5 and Theorem 6- 9 intentionally. 
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Lemma 4: The expected overlapped area of two properly intersecting circles with the same 
radius r is 2

4
33 r in a ( n, r, A). 

The following conditional probability is a consequence of Lemma 4. 
Lemma 5: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a ( n, r, A), we have 
Pr(EiEj Ek)=

4
33 r2/ A , where u v w. 

The probability of the first base subgraph c3 (triangle) can then be obtained. 
Theorem 6: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a ( n, r, A), we 
have Pr(EiEjEk)=

4
33 r4/ A 2, where u v w. 

Next, we consider the subgraph of an edge with an isolated vertex (p1+I1). 
Theorem 7: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a ( n, r, A), we 
have P(EiEj Ek )=

A
r 2 (1-

A
r 2 -

A4
33 r2), where u v w. 

We have shown that the occurrences of two distinct edges in a ( n, r, A) are 
independent (Theorem 2). The next theorem, however, shows that edge independence does 
not exist for subgraphs with three or more edges. 
Theorem 8: The occurrences of arbitrary three distinct edges in a ( n, r, A) are dependent. 

The next base subgraph we considered is an induced path p2, which will be used to 
model a hidden-terminal pair. 
Theorem 9: For arbitrary three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a ( n, r, 
A), we have Pr(EiEjEk )=

4
33 r4/ A 2, where u v w. 

The last base subgraph we considered is I3. 
Theorem 10: For arbitrary three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a ( n, r, 

c3 p2

p1+I1 

p2 p2

p1+I1 p1+I1 I3

Fig. 3. Eight base subgraphs 

A), we have Pr(Ei Ej Ek )= 4
2

4
4

33

1 r
AA

r , where u v w. 

Proof: (Omitted.)
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To simplify calculation, we  adopt the following graph drawings. A solid line denotes an 
edge of G; a broken line denotes a possible edge between them; two vertices without a line 
denote a non-edge of G. Note that such graph drawing represent a class of graphs G=(V, ES, 
EB), where ES (EB) denotes solid-line edge (broken-line edge) set. For example, the following 
graph denotes eight base graphs depicted in Figure 3. 

We list some subgraphs discussed in Section 4.1 or 4.2 with their notations, drawings, 
and probabilities in Table 1. 

 

Notati
on p1 E2 c3 p2 E1+I1 I3 

G 
      

Pr(G) r2/ A ( r2/ A )2 
24 /

4
33 Ar 24/

4
33 Ar A

r2

(1-
A
r2

-
A
4
33

r2

) 

.4
33

1 4
2

4

r
AA

r  

 
Note that we have Pr(E2)=Pr(c3)+Pr(p2) in Table 1. This equation can be derived by the 

following two types of derivation rules. 

In fact, type I (type II) graph derivation rule can be applied on any broken-line edge 
(non-edge) of any graph. That is, for any e EB, we have G(V, ES, EB)=G1(V, ES {e}, 
EB-{e})+G2(V, ES, EB-{e}). Similarly, for any e ES EB, we have G(V, ES, EB)=G1(V, ES, 
EB {e})-G2(V, ES {e}, EB) equivalently. We will show how these derivation rules can be 
used to systematically compute subgraph probability of RGGs. 

Given a subgraph of a RGG, we try to obtain its probability by following three basic 
steps in the paradigm: 

= + =

Type Type II

 

4.3   A Paradigm for Computing Subgraph Probability of RGGs 
 

Table 1. Probabilities of subgraphs with three vertices or less in a RGG 

(1) Decompose the graph into a linear combination of base graphs by recursively applying 
the derivation rules. 

(2) Compute the probabilities of base graphs. 

464 C.W. Yu and L.-H. Yen 



(3) Compute the probability of the graph by manipulating the probabilities of base graphs. 
We have established probability formulas for essential components (i.e. base graphs) in 

Section 4.2. The following example demonstrates the great convenience of this paradigm. A 
graph H (representing the exposed-terminal set) is decomposed into a set of subgraphs 
according to the derivation rules. 
 

 
Graph H turns out to be a linear combination of three graphs. Although these subgraphs are 
not base graphs, we can obtain their probabilities with the help of base graphs. The first 
graph (denoted by E3) consists of three solid edges (which form a path of length three) and 
three other broken edges; therefore we can obtain its probability by applying Theorem 1 
three times; that is, we have Pr(E3)=( r2/ A )3. The second graph (denoted by E1+c3) 
consists of a triangle and a solid edge; then its probability can be obtained by applying 
Theorem 6 and Theorem 1 once; that is, we have Pr(E1+c3)=

A
r

A
r 2

2

4

4
33 . The last 

graph (denoted by c3
2) consists of two triangles with a common edge; we can also obtain its 

probability by applying Theorem 1 once and Lemma 5 twice; that is, we have 

Pr(c3
2)=

A
r

A
r 2

2
2

4
33 . According to above discussion, we have 

Pr(H)=Pr(E3)-2 Pr(E1+c3)+Pr(c3
2)=( r2/A)3-2

3

62

4
33

A
r +

3

62

4
33

A
r =

3

6

16
27

A
r . 

In summary, we have the following theorem. 
Theorem 11: For arbitrary four distinct nodes x, y, z, and w in a ( n, r, A), we have 
Pr(GS=H)=

3

6

16
27

A
r , where S={x, y, z, w}and H=(VH, EH) with VH=S and {(x, y), (y, z), (z, 

w)}  EH, but (x, z) EH and (y, w) EH. 
 

 

 

 

2   

Table 2 lists subgraphs and associated probabilities mentioned above. 
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Notation E3
 E1+c3 c3

2 H 

G 
    

Pr(G) ( r2/ A )3 
3

62

4
33

A
r

3

62

4
33

A
r

3

6

16
27

A
r  

Following our paradigm, the probability formulas of a great deal of subgraphs (in RGGs) 
can be obtained systematically. In Section 6, we will demonstrate that such specific 
subgraphs with their properties have considerable merit in quantitative analyses of wireless 
ad hoc networks. 

In  the  section,  we  restrict the deployed area A to an l m rectangle. We make an attempt 
to face border effects and obtain a closed-form formula of computing the single edge 
probability of RGGs. The results derived in the section can be used to measure the extent of 
coverage and connectivity of ad hoc networks [23]. 

Due to page limit, the main result and its corollaries are listed only. 

Theorem 12 [49]: Given a ( n, r, A) and an l m rectangle A, the single edge probability 
considering border effects is

22

23
3
43

3
44

2
1

lm
mlrmrlrr . 

Corollary 13: The average (expected) degree of a vertex in a ( n, r, A) considering border 
effects is (n-1) (

22

23
3
43

3
44

2
1

lm
mlrmrlrr ), where A is an l m rectangle. 

Corollary 14: The expected edge number of a ( n, r, A) considering border effects is 
(

2
)1(nn ) (

22

23
3
43

3
44

2
1

lm
mlrmrlrr ), where A is an l m rectangle. 

To obtain these results, we first derive some necessary lemmas. Let n={x1, x2, …, xn} be 
a set of independently and uniformly distributed random points in a given ( n, r, A), where 
xi=(Xi, Yi) and 0 Xi l and 0 Yi m, for 1 i n. Clearly, Xi’s (and Yi’s) are independent, 
identically distributed random variables with probability density function (p.d.f.) f(x)=1/l 
(g(y)=1/m) over the range [0, l] ([0, m]). 

Lemma 15 [49]: Given a ( n, r, A) and any two distinct nodes xi=(Xi, Yi) and xj=(Xj, Yj), we 
have Pr[ Xi-Xj z]=

2

2 2
l

lzz  and Pr[ Yi-Yj w]=
2

2 2
m

mww where 0 z l and 0 w m. 

5   Computing Subgraph Probability in the Face of Border Effects 
 

Table 2. Probabilities of some subgraphs with four vertices in a RGG 
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Lemma 17 [43]: duuau 22
1

=
a
uauau 1222

1

sin +c, where c is a constant. 

We conclude that border effect does affect the value of the single edge probability of 
( n, r, A). If A is an l m rectangle, the difference between the single edge probabilities 

with and without avoiding border effects (by adopting torus convention) 
is

22

4
2
13

3
43

3
4

lm
rlrmr . 

In the  section, we  make  use of the derived results to develop quantitative analyses of  ad 
hoc (sensor) networks including the number of hidden-terminal pairs and the number of 
exposed-terminal sets. 

First, we  compute  the  expected number of  hidden-terminal  pairs in any RGG. The 
performance of media access control (MAC) scheme is in close relation to the number of 
hidden-terminal pair of a given wireless network [24, 25, 45]. In literature, a hidden-terminal 
pair can be modeled by Hearing graph [45]; RTS/CTS mechanism and other methods have 
been designed for alleviate the hidden terminal problems [2, 14]. 

Since each hidden-terminal pair consists of three distinct labeled vertices, we set S to be 
the selected three-vertex set. There are

3
n different combinations for selecting three from n 

vertices, and three different settings for labeling one from three as the center of the 
hidden-terminal pair (i.e. the internal node of the induced path with length 2). Therefore, we 
have the number of hidden-terminal pairs 

3
n 3 Pr(GS=p2) =3

3
n

4
33 r4/ A 2 by 

Theorem 9. 
Theorem 18: The expected number of hidden-terminal pairs in a ( n, r, A) is 
3

3
n

4
33 r4/ A 2. 

Since 3
3
n

4
33 r4/ A 2=3 )

321
)2()1(( nnn

4
33 r4/ A 2 

=(n3-3n2+2n)
8

33 r4/ A 2, we conclude that the hidden terminal pairs grow as like O(n3r4), 

where n is the number of mobile nodes and r is the range of power. 

 
6   Quantitative Analyses of Wireless ad Hoc Networks 

 
6.1   The Number of Hidden-Terminal Pairs 
 

Lemma 16 [49]: Given a ( n, r, A) and any two distinct nodes xi=(Xi, Yi) and xj=(Xj, Yj), we 

have that: (1) the p.d.f. of (Xi-Xj)2 is f(u)=
2

2
1

1
l

lu  where 0 u l2, and (2) the p.d.f. of (Yi-Yj)2 

is g(v)=
2

2
1

1
m

mv , where 0 v m2. 
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the performance (including throughput, packet delay, and blocking probability) of the IEEE 
802.11 MAC protocol. Specifically, they have showed that throughput is acceptable when 
the number of hidden-terminal pairs is less than 10%, beyond which throughput can fall 
sharply [25]. When determining a network-level simulation of a mobile ad hoc network or 
designing a wireless network, we can (with Theorem 18) precisely control the quantity of 
hidden terminal pairs by adjusting the number of mobile nodes or the power range. 

To derive a tight bound of the number of exposed-terminal sets in a given RGG, we need 
to compute first the subgraph probability of c4 (a cycle of length four). The paradigm 
proposed in Section 5 can be applied to tackle a great deal of subgraphs, but not some types 
of subgraphs such as cycles. We try to obtain tight bounds for Pr(c4) in a different way. 
Theorem 19: For arbitrary four distinct nodes u, v, w, and x in a ( n, r, A), we have 
Pr(GS=c4)

3

6

4
33

A
r , where S={u, v, w, x}. 

Proof: Consider the geometric graph c4 and its circle model (See Figure 4(a) and Figure 4(b)). 
These four nodes need to be placed properly near to each other in order to form the cycle of 
length four. Since the longest distance between every two neighboring centers is r, the four 
centers in the circle model must be placed in a convex quadrilateral with the same size length 
r (See Figure 4(c)). 

Since the subgraph c4 consists of a induced path p2 and another nearby vertex, we have 
Pr(GS=c4) Pr(GS=p2) Pr(the remaining vertex is near p2 properly). Because Pr(the remain 
vertex is near p2 properly) is the probability of putting the center of the remaining node in the 
convex quadrilateral, we have Pr(the remaining vertex is near p2 properly) (r2/ A ). In a 
sequel, we have Pr(GS=c4) 

2

42

4
33

A
r

A
r =

3

6

4
33

A
r  by Theorem 9.  

r

r

 

6.2   The Number of Exposed Terminal Sets 
 

 
 

Fig. 4. (a) A cycle of length four. (b) Its circle model. (c) The convex quadrilateral in the circle 
model. 

 

In [25], Khurana et al. have shown that hidden terminals can have a detrimental effect on 

In [24], Khurana et al. have shown that if the number of hidden terminal pairs is small 
and when collisions are unlikely, the RTS/CTS exchange is a waste of bandwidth. On the 
other hand, if the number of hidden terminal pairs is large, RTS/CTS mechanism helps avoid 
collision. Moreover, the optimal value for the RTS_Threshold in IEEE 802.11 [24] depends 
on the number of hidden terminals. 
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Note that every graph in the same row contains the same subgraph (cycle of length four). 
Therefore the number of exposed-terminal sets is equal to the number of labeled H graphs 
minus the number of the duplicated cycles (=3(duplicated counting) 3(rows)): 

2
2
4

4
n Pr(GS=H)-3 3

4
n Pr(GS=c4) 

=
3

64

44
3

A
rn -9

4
n Pr(GS=c4)     (by Theorem 11) 

3

64

44
3

A
rn -9

4
n

3

6

4
33

A
r     (by Theorem 19) 

3

64

44
3273

A
rn . 

Theorem 20: The expected number of exposed-terminal sets in a ( n, r, A) is no less 
than

3

64

44
3273

A
rn . 

Similarly, we conclude that the exposed-terminal sets grow as like O(n4r6), where n is the 
number of mobile nodes and r is the range of power. In [41], Shukla et al. have mitigated the 
exposed terminal problem by identifying exposed terminal sets and scheduling concurrent 
transmissions whenever possible. Combing with Theorem 20, we can estimate the extent of 
performance degradation due to the exposed-terminal problem, and adopt similar techniques 
used in [41] to improve system performance. 

We have  proposed  a paradigm for computing the subgraph probabilities of RGGs, and 
have shown its applications in finding fundamental properties of wireless networks. We are 
surprised at finding some interesting properties: 
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7   Conclusions 

Fig. 5. Twelve different ways of labeling H graph 

 Counting the number of exposed-terminal sets is equivalent to counting the number of 
labeled subgraph H (See Table 2). There are 

4
n  ways to select four from n elements. Each 

has 2
2
4 =12 ways in forming the subgraph H (Figure 5).  
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RGGs. We also believe that the techniques developed in the paper can be exploited to 
conduct quantitative analysis on other fundamental properties of wireless ad hoc networks. 

 We would like to thank Dr. Jau-Ling Shih for her invaluable help. 

 

Acknowledgements 

 
 

References 
 

1. Christian Bettstetter, “On the minimum node degree and connectivity of a wireless multi-
hop network,” MobiHoc, 2002, pp. 80-91. 

2. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a media access protocol 
for wireless LANs,” ACM SIGCOMM, 1994, pp. 212-215. 

3. B. Bollobas, Random Graphs, London: Academic Press, 1985. 
4. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, 1976. 
5. Josh Broth, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva, “A 

performance comparison of multi-hop wireless ad hoc network routing protocols,” 
Mobicom, 1998, pp. 85-97. 

6. C.-L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical Theorem Proving, 
Academic Press, New York, 1973. 

7. B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete Mathematics, 
vol. 86, pp. 165-177, 1990. 

8. Bevan Das and Vaduvur Bharghavan, “Routing in ad-hoc networks using minimum 
connected dominating sets,” IEEE International Conference on Communications, 1997, 
pp. 376-380. 

9. J. Díaz, M. D. Penrose, J. Petit, and M. Serna, “Convergence theorems for some layout 
measures on random lattice and random geometric graphs,” Combinatorics, Probability, 
and Computing, No. 6, pp. 489-511, 2000. 

10. J. Díaz, M. D. Penrose, J. Petit, and M. Serna, “Approximating layout problems on random 
geometric graphs,” Journal of Algorithms, vol. 39, pp. 78-116, 2001. 

11. J. Díaz, J. Petit, and M. Serna, “Random geometric problems on [0, 1]2, “Lecture Notes in 
Computer Science, vol. 1518, Springer-Verlag, New York/ Berlin, 1998. 

12. O. Dousse, P. Thiran, and M. Hasler, “Connectivity in ad-hoc and hybrid networks,” 
Infocom, 2002. 

13. P. Erdös and A. Rénye, “On Random Graphs I,” Publ. Math. Debrecen, vol. 6, pp. 290-
297, 1959. 

14. C. Fullmer and J. Garcia-Luna-Aceves, “Solutions to hidden terminal problems in wireless 
networks,” ACM SIGCOMM, 1997, pp. 39-49. 

15. E.N. Gilbert, “Random Graphs,” Ann. Math. Stat., vol. 30, pp. 1141-1144, 1959. 
16. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New 

York, 1980. 
17. A. Gräf, M. Stumpt, and G. Wei enfels, ”On coloring unit disk graphs,” Algorithmica, 

vol. 20, pp. 277-293, 1998. 

Many interesting subgraph probabilities and their applications in MANETs are still 
uncovered. For example, we are now interested in accurately estimating the diameter of 

1. The occurrences of two distinct edges in RGG are independent. 
2. The occurrences of three or more distinct edges in RGG are dependent. 
3. Probabilities of some specific subgraphs in RGG can be estimated accurately. 

470 C.W. Yu and L.-H. Yen 



22. T. Hou and V. Li, “Transmission range control in multihop packet radio networks, “IEEE 
Transaction on Communications, vol. 34, pp. 38-44, 1986. 

23. C.-F. Hsin and M. Liu, “Network coverage using low duty-cycled sensors: Random and 
coordinated sleep algorithm,” International Symposium on Information Processing in 
Sensor Networks, 2004. 

24. S. Khurana, A. Kahol, S. K. S. Gupta, and P. K. Srimani, “Performance evaluation of 
distributed co-ordination function for IEEE 802.11 wireless LAN protocol in presence of 
mobile and hidden terminals,” International Symposium on Modeling, Analysis and 
Simulation of Computer and Telecommunication Systems, 1999, pp. 40-47. 

25. S. Khurana, A. Kahol, and A. Jayasumana, “Effect of hidden terminals on the performance 
of the IEEE 802.11 MAC protocol,” Proceedings of Local Computer Networks 
Conference, 1998. 

26. L. Kleinrock and J. Silvester, “Optimum transmission radii for packet radio networks or 
why six is a magic number,” Proc. IEEE National Telecom. Conf., 1978, pp. 4.3.1-4.3.5. 

27. S.-J. Lee and M. Gerla, “AODV-BR: Backup routing in Ad hoc Networks,” IEEE Wireless 
Communications and Networking Conference, 2000, vol. 3, pp. 1311-1316. 

28. Edgar M. Palmer, Graphical Evolution: An Introduction to the Theory of Random Graphs, 
New York: John Wiley and Sons, 1985. 

29. Mathew D. Penrose, Random Geometric Graphs, Oxford University Press, 2003. 
30. M. D. Penrose, “A strong low for the longest edge of the minimal spanning tree,” The 

Annals of Probability, vol. 27, no. 1, pp. 246-260, 1999. 
31. M. D. Penrose, “The longest edge of the random minimal spanning tree,” The Annals of 

Applied Probability, vol. 7, no. 2, pp. 340-361, 1997. 
32. M. D. Penrose, “On k-connectivity for a geometric random graph,” Random structures and 

Algorithms, vol. 15, no. 2, pp. 145-164, 1999. 
33. T. K. Philips, S. S. Panwar, and A. N. Tantawi, “Connectivity properties of a packet radio 

network model,” IEEE Transactions on Information Theory, pp. 1044-1047, 1989. 
34. P. Piret, “On the connectivity of radio networks,” IEEE Transactions on Information 

Theory, pp. 1490-1492, 1991. 
35. G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Commun. ACM, vol. 

43, no. 5, pp. 51–58, May 2000. 
36. V. Ravelomanana, “Extremal Properties of three-dimensional sensor networks with 

applications,” IEEE Transactions on Mobile Computing, vol. 3, no. 3, pp. 246-257, 2004. 
37. F. S. Roberts, “Indifference graphs,” in Proof Techniques in Graph Theory, F. Harary 

(editor), Academic Press, New York, pp. 139-146, 1969. 
38. E.M. Royer and C-K Toh, “A Review of Current Routing Protocols for Ad Hoc Mobile 

Wireless Networks,“ IEEE Personal Communication, pp. 46-55, 1999. 
39. Paolo Santi and Douglas M. Blough, “The critical transmitting range for connectivity in 

sparse wireless ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 2, no. 1, 
pp. 25-39, 2003. 

40. Paolo Santi and Doulas M. Blough,”A probabilistic analysis for the radio range assignment 
problem in ad hoc networks,” MobiHoc, 2001, pp. 212-220. 

20. Peter Hall, Introduction to the Theory of Coverage Process, John Wiley and Sons, New 
York, 1988. 

21. Paul G. Hoel, Sidney C. Port, and Charles J. Stone, Introduction to Probability Theory, 
Houghton Mifflin Company, Boston, Mass., 1971. 

 

18. P. Gupta and P. R. Kumar, “Critical power for asymptotic connectivity in wireless 
networks,” Stochastic Analysis, Control, Optimization and Applications, pp. 547-566, 
1998. 

19. P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE  Transactions on 
Information Theory, vol. 46, no. 2, pp. 388-404, 2000. 

 
471 Computing Subgraph Probability of Random Geometric Graphs 



46. J. Wu and H. Li, “Domination and its application in ad hoc wireless networks with 
unidirectional links,” International Conference on Parallel Processing, 2000, pp. 189 – 
197. 

47. F. Xue and P. R. Kumar, “The number of neighbors needed for connectivity of wireless 
networks,” Wireless Networks, vol. 10, pp. 169-181, 2004. 

48. K. J. Yang, On the Number of Subgraphs of a Random Graph in [0, 1]d, Unpublished 
D.Phil. thesis, Department of Statistics and Actuarial Science, University of Iowa, 1995. 

49. L.-H. Yen and C. W. Yu, “Link probability, network coverage, and related properties of 
wireless ad hoc networks,” The 1st IEEE International Conference on Mobile Ad-hoc and 
Sensor Systems, 2004, pp. 525-527. 

50. C. W. Yu, L.-H. Yen, and Yang-Min Cheng, “Computing subgraph probability of random 
geometric graphs with applications in wireless ad hoc networks,” Tech. Rep., CHU-CSIE-
TR-2004-005, Chung Hua University, R.O.C. 

51. Chang Wu Yu, Li-Hsing Yen, Kun-Ming Yu, and Zhi Pin Lee, “An Ad Hoc Routing 
Protocol Providing Short Backup Routes,” Eighth IEEE Internation Conference on 
Communication Systems, 2002, Singapore, pp.1052-1056. 

52. Kun-Ming V. Yu, Shi-Feng Yand, and Chang Wu Yu, “An Ad Hoc Routing Protocol with 
Multiple Backup Routes,” Proceedings of the IASTED International Conference Networks, 
Parallel and Distributed Processing, and Applications, 2002, pp. 75-80. 

53. The Bluetooth Interest group,” http://www.bluetooth.com.” 
 
 

43. J. Stewart, Calculus, 4th ed., Gary W. Ostedt, 1999. 
44. H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed packet 

radio terminals,” IEEE Transaction on Communications, vol. 32, pp. 246-257, 1984. 
45. F. Tobagi and L. Kleinrock, “Packet switching in radio channels, Part II-The hidden 

terminal problem in carrier sense multiple access and the busy tone solution,” IEEE Trans. 
Commun., vol. COM-23, no. 12, pp. 1417-1433, 1975. 

 

41. D. Shukla, L. Chandran-Wadia, and S. Iyer, “Mitigating the exposed node problem in 
IEEE 802.11 ad hoc networks,” International Conference on Computer Communications 
and Networks, 2003, pp. 157-162. 

42. K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for self-organization of a 
wireless sensor network, ” IEEE Personal Commun., vol. 7, no. 5, pp. 16–27, Oct. 2000. 

472 C.W. Yu and L.-H. Yen 



Formalising Web Services

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
kjt@cs.stir.ac.uk

Abstract. Despite the popularity of web services, creating them manually is
an intricate task. Composite web services are defined using the evolving stan-
dard for BPEL (Business Process Execution Logic). It is explained how CRESS

(Chisel Representation Employing Systematic Specification) has been extended
to meet the challenge of graphically and formally describing web services. Sam-
ple CRESS descriptions are presented of web services. These are automatically
translated into LOTOS, permitting rigorous analysis and automated validation.

1 Introduction

1.1 Background

Web services have become a popular way of providing access to distributed applica-
tions. These may be legacy applications given a web service wrapping, or purpose-
designed applications. This paper describes an unusual application of formal methods
(LOTOS) to modern developments in communications systems (web services).

The interface to a web service is defined in WSDL (Web Services Description Lan-
guage). However this is purely syntactic and does not define the semantics of a web
service. Although WSDL can be manually created and edited, this is an intricate and
error-prone task. For this reason, most commercial solutions aim to create WSDL auto-
matically from the code of an application.

WSDL describes an isolated web service. The current thrust in web service research
is on composing them into what are called business process. (Other terms used include
business flow and web service choreography.) Assume that the following web services
exist: airlines take flight bookings, hotels reserve rooms, car hire firms book vehicles,
and banks accept electronic payments. A travel agency can then build a business process
that arranges all these aspects of a trip through a single web service.

Unfortunately, many competing standards emerged for composing web services.
Harmonisation was achieved with the multi-company specification for BPEL4WS (Busi-
ness Process Execution Language for Web Services [1]). This is being standardised as
WS-BPEL (Web Services Business Process Execution Language [2]). BPEL4WS is sta-
ble, and has been used for most of the work reported here. However it has shortcomings,
so WS-BPEL has also been used for reference. For brevity, this paper refers to BPEL

and web services with all the interpretations discussed above.
BPEL is a recent and evolving language, so tool support is still developing. It can be

very difficult to understand a complex flow from the XML in BPEL. A graphical view
of composed web services is thus very desirable. BPMN (Business Process Modeling
Notation [3]) has been developed to give a high-level graphical view of such services.
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This paper emphasises the composition of web services, not the description of iso-
lated web services. This is partly because web service creation is now well automated,
and partly because many web services already exist. Composing web services, i.e. defin-
ing web-based business processes, has attracted considerable industrial interest.

The author has previously developed CRESS (Chisel Representation Employing
Structured Specification) as a general-purpose graphical notation for services. CRESS

has been used to specify and analyse voice services from the IN (Intelligent Network)
[6], Internet Telephony [7], and IVR (Interactive Voice Response) [8]. Service descrip-
tions in CRESS are graphical and accessible to non-specialists. A major advantage of
CRESS descriptions is that they are automatically translated into formal languages for
analysis, as well as into implementation languages for deployment. CRESS offers bene-
fits of comprehensibility, portability, rigorous analysis and automated implementation.

Essentially, CRESS describes the flow of actions in a service. It was therefore natural
to investigate whether CRESS might be used for describing web service flows. This has
proven to be an appropriate application of CRESS. CRESS is designed to be extensible,
with plug-in modules for each application domain and each target language. Substantial
work has been required because web services are quite distinctive. However, adding
web services as a new CRESS domain has benefited from much of the existing CRESS

framework. For example, CRESS has explicit support for features that allow a base
service to be extended in a modular manner. The existing CRESS lexical analyser, parser
and code generators have also been reused for web services.

The work described in this paper discusses how composed web services are rep-
resented using CRESS and translated into LOTOS. This automatically creates formal
models of web services, and allows them to be rigorously analysed. Since web develop-
ers are unlikely to be familiar with formal methods, the use of LOTOS is hidden as much
as possible in the approach. CRESS descriptions can be formally validated without see-
ing or understanding the underlying LOTOS. In additional work not reported here, the
same CRESS descriptions of web services are automatically translated into BPEL and
WSDL for implementation and deployment of web services.

1.2 Relationship to Other Work

Web services are well established and are widely supported by commercial tools; it
would not be sensible to try competing with these. However the focus of this paper
is on web service composition. Due to the relative newness of BPEL, support is only
now maturing. Major products include IBM’s WebSphere, Microsoft’s BizTalk Server,
Active EndPoint’s ActiveBPEL, and Oracle’s BPEL Process Manager. None of these
provides a formal basis or rigorous analysis.

BPMN can be viewed as a competitor notation to CRESS for describing web ser-
vices. However, BPMN is a very large notation (the standard runs to almost 300 pages).
It also has a single purpose: describing business processes. BPMN is only a front-end
for creating web services; tool support for creating (say) BPEL is only now emerging.
In contrast, CRESS is a compact and general-purpose notation that has now been proven
on services from four different domains. CRESS offers automated translation to formal
languages (e.g. LOTOS, SDL) as well as to implementations (e.g. BPEL, VoiceXML).
CRESS also introduces a feature concept that is lacking in other web service approaches.
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There has been only limited research on formalising web services. [4] is closest to
the present paper. This work supports automated conversion between BPEL and LOTOS.
CRESS differs in using a more abstract, graphical description that is translated into
BPEL and LOTOS; there is no interconversion among these representations.

LTSA-WS (Labelled Transition System Analyzer for Web Services [5]) is also close
in aim to CRESS. LTSA-WS allows composed web services to be described in a BPEL-
like manner. Service compositions and workflow descriptions are automatically trans-
lated into FSP (Finite State Processes) to check safety and liveness properties. CRESS

differs in being a multi-purpose approach that works with many different kinds of ser-
vices and with many different target languages. CRESS may be used with any analytic
technique using on the formal languages it supports, although it offers its own approach
based on scenario validation.

The CRESS notation is described and illustrated elsewhere (e.g. [6,7,8]). Only a
brief overview is therefore given here; the notation is explained through examples. Sec-
tion 2 illustrates how CRESS is used to describe business processes. Section 3 outlines
the translation of CRESS service descriptions into LOTOS. Section 4 shows how the
resulting specifications can be formally analysed in a variety of useful ways.

2 CRESS Description of Business Processes

A brief introduction is given to the concepts of business processes. The CRESS repre-
sentation of these is then explained, mainly with reference to some realistic examples.

2.1 CRESS for Business Processes

A composite web service is termed a business process. It exchanges messages with
partner web services, considered as service providers. A web service may be invoked
synchronously (a request and immediate response) or asynchronously (a request fol-
lowed by a later response). A business process is itself a web service with respect to
its users. Web services have communication ports where operations are invoked. An
unsuccessful operation gives rise to a fault. Compensation applies where work has to
be undone due to a fault (e.g. a partial travel booking has to be cancelled). Correlation
is used to link asynchronous messages to the correct business process instance.

A CRESS diagram is a directed graph that shows the flow of activities. In BPEL

terms, a CRESS diagram defines an executable business process. Numbered nodes in
a CRESS diagram correspond to BPEL activities. These are inputs and outputs (com-
munications with other web services) or actions (internal to the web service). A BPEL

activity is considered to terminate successfully or to fail (due to a fault).
In a CRESS diagram, arcs (BPEL links) join the nodes. CRESS nodes and arcs may

have assignments in the form / variable <− expression. Arcs may be labelled by expres-
sion guards or event guards. Expression guards control alternative choices (switches in
BPEL). Event guards introduce behaviour that is conditional on some event occurring
(handlers in BPEL). The CRESS concept of event encompasses BPEL events, faults,
requests for compensation and correlation requests.

For business processes, CRESS is required to offer sophisticated flow of control.
Branches in a CRESS diagram normally reflect alternatives. However business processes
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need fine-grained control over parallelism. Although BPEL has separate constructs for
sequence, iteration and graph-like flows, CRESS models them all in a uniform way.

2.2 CRESS for Business Activities

CRESS names are given in simple or hierarchic form. Operation names have the format
partner.port.operation. Fault names have the format fault.variable, the fault variable
being optional. Simple variables have the types defined by XSD (XML Schema Defini-
tion, e.g. Float f, Natural n, String s). CRESS can also define structured types, e.g. the
following that defines two offer variables:

{Natural reference String dealer Float price Natural delivery} offer, offer2

Such a structured type is named implicitly after the first variable: Offer. Structured
variables accesses have the form offer.price.

The subset of CRESS activities appearing in this paper is explained below; CRESS

supports more than is described here. As usual, ‘?’ means optional, ‘*’ means zero or
more times, and ‘|’ denotes choice.

Invoke operation output (input faults*)? An asynchronous (one-way) invocation sends
only an output. A synchronous (two-way) invocation exchanges an output and an
input with a partner web service. CRESS requires potential faults to be declared stat-
ically, though their occurrence is dynamic. The faults that may arise in a business
process are implied by Invoke, Reply and Throw.

Receive operation input Typically this is used at the start of a business process to re-
ceive a request for service. An initial Receive creates a new instance of the process;
a correlation handler is used to match incoming messages to the correct instance.
Each such Receive is matched by a Reply for the same operation. Receive also
accepts an asynchronous response to an earlier one-way Invoke.

Reply operation output | fault Typically this is used at the end of a business process to
provide a response. Alternatively, a fault may be signalled.

Fork strictness.? This is used to introduce parallel paths; further forks may be nested to
any depth. Normally, failure to complete parallel paths as expected leads to a fault.
This is strict parallelism, and may be indicated explicitly as strict (the default). If
this is too stringent, loose may be used instead.

Join condition.? Each Fork is matched by Join. By default, only one of the parallel
paths leading to Join must terminate successfully. However, an explicit join con-
dition may be defined over the termination status of parallel activities. In CRESS,
the expression uses the node numbers of immediately prior activities. For exam-
ple, 1 && (2 || 3) means that activity 1 and either activity 2 or 3 must terminate
successfully. In turn, this means that activities prior to 1, 2 and 3 must also succeed.

Throw fault. This reports a fault as an event to be caught elsewhere by a fault handler.
Compensate scope? This is called after a fault to undo previous work. An explicit

scope (CRESS node number) indicates which compensation to perform. In the ab-
sence of this, compensation handlers are called in reverse order of completion.

The Throw and Compensate. actions cause a CRESS event handler to be invoked.
In BPEL these may be defined inside any scope of a process. In CRESS, scopes are
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implicit. As a consequence, event handlers may only be global or associated with an
Invoke. (This is a small restriction that accords with common BPEL practice anyway.)
The handlers appearing in this paper are as follows:

Catch fault. This defines how to handle the specified fault. If a fault has just a name
and no value, it is handled by a Catch with a matching fault name only. A fault
with name and value is handled by a Catch with matching fault name and variable
type, otherwise by a Catch without a fault name but a matching type of fault value.
(Although not illustrated in this paper, CatchAll handles any fault.) A fault handler
applies where it is defined, and to subsidiary activities. If a fault occurs, it is con-
sidered by the current scope; if unmatched, it is considered by higher-level scopes
until a matching handler is found. No match for a fault terminates the application.

Compensation. This defines how to undo work due to a fault. A compensation handler
applies only where it is defined, and is enabled only once the corresponding activity
completes successfully. If a compensation handler is executed, it expects to see the
process state at the time it was enabled. It also cannot alter the current process state.
In effect, the process must maintain a stack of compensation states.

2.3 A Lender Web Service

A loan service is a frequent example for business processes; the one here is based on
that in the BPEL standard. LoanStar is a lender that offers a loan to an online customer,
who submits a proposal containing name, address and loan amount. If the amount is
10000 or more, LoanStar asks its business partner FirstRate to perform a full assess-
ment. FirstRate is an approver that thoroughly evaluates a loan proposal. The loan rate
it determines is returned by LoanStar to its customer. FirstRate may cause a refusal fault
(e.g. error message ‘unacceptable’) because a loan cannot be offered.

1 Receive
lender.loan.quote

proposal

5 Invoke
assessor.loan.assess

proposal risk

2 Invoke
approver.loan.approve

proposal rate refusal.error

Else

Else

Uses
  {String name String address
    Integer amount} proposal
  String risk
  Float rate
  String error

4 Reply
lender.loan.quote

rate

proposal.amount  >=  10000

risk = "low"
/ rate <- 3.5

3 Reply
lender.loan.quote

refusal.error

Catch refusal.error

Fig. 1. Lender Business Process
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A full assessment is costly, so a loan for less than 10000 is evaluated more simply.
LoanStar asks its business partner RiskTaker to make a simple assessment. RiskTaker is
an assessor that evaluates the risk of a loan. If the risk is low, LoanStar offers to lend at
a basic rate of 3.5%. If the risk is not low, LoanStar asks FirstRate for a full assessment.

This example involves multiple web services: two partner web services (assessor,
approver), and the business process itself (lender). The loan customer acts like a web
service, and may be one. The CRESS description of the business process is in figure 1.
The concepts needed to understand this have been explained earlier. Nodes (inputs, out-
puts, actions) in ellipses are linked by arcs (plain or guarded). If the approver invocation
causes a refusal fault (node 2), this is caught by the associated handler (node 3).

The rounded rectangle at the bottom right of figure 1 is a CRESS rule box. Uses de-
clares diagram variables, here proposal, risk, rate and error. Rule boxes have other pur-
poses such as defining macros, event-triggered assignments and subsidiary diagrams.

An input or output names the partner, port and operation (e.g. lender.loan.quote).
In this example, all the web services happen to communicate via port loan, but the port
names could vary among services. The lender operation is quote, the approver operation
is approve, and the assessor operation is assess.

2.4 A Car Supplier Web Service

As a further example, DoubleQuote is a supplier that offers online customers a good
deal on car orders. A customer provides a need containing name, address and car model.
The request for a quotation is passed to two dealers, each of which responds with an
offer giving the dealer reference, name, price and delivery period.

DoubleQuote works with two business partners: BigDeal (acting as dealer1) and
WheelerDealer (acting as dealer2). A dealer indicates that it cannot supply the model
by replying with infinite price. (It would alternatively be possible to signal this by a
fault.) The better offer is selected: the lower price, or the earlier delivery date if equal.
This offer is sent to the appropriate dealer as a definite order. If necessary, the customer
may later cancel the order corresponding to the selected offer.

Again, there are multiple web services: the dealers (dealer1, dealer2), the business
process itself (supplier), and possibly the customer. The CRESS description of supplier
is in figure 2. All partners happen to have the same port name car. The supplier opera-
tions are order and cancel, while the dealer operations are quote, order and cancel.

In figure 2, the supplier obtains dealer quotations in parallel (nodes 2 to 5) in or-
der to save time. Both quotes must be obtained (3 && 4 in node 5) for the quotation
process to terminate successfully. Whichever dealer offer is selected leads to a reply
(node 7 or 9). Since a definite order is placed, it may be necessary to undo this if the
DoubleQuote buyer renegues (or the calling web service faults). DoubleQuote therefore
allows a previous order to be cancelled by the relevant dealer (nodes 10 to 12).

2.5 A Car Broker Web Service

As a final example, CarMen is a broker that provides an online service to negotiate car
purchases and loans for these. A customer provides a need with name, address and car
model. CarMen first uses its business partner DoubleQuote (section 2.4) to order the
car on the best terms. If the car is unavailable (the price is infinite), CarMen informs its
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customer of refusal by causing a fault with error message ‘car unavailable’. Otherwise,
CarMen asks its business partner LoanStar (section 2.3) to arrange a loan for the car
price. If a loan can be provided, the customer receives a schedule containing the dealer
reference, name, price, delivery period and loan rate. If a loan is refused (e.g. because
the customer financial record is bad), a loan refusal fault will occur. Since the car has
already been ordered, compensation requires the order to be cancelled. The refusal is
then returned to the customer.

The CRESS description of this business process is in figure 3. This time, the Uses
clause also references the subsidiary services lender and supplier. If the lender invoca-
tion in node 3 causes a refusal fault, it is intercepted by the global fault handler (nodes 7,
8). This calls the compensation handler in node 6 and returns the fault to the customer.

The situation with web services is now very complex. The broker (figure 3) invokes
the supplier to order the car (figure 2) and the lender to arrange a loan (figure 1). In
turn, each of these invokes two further web services. A total of seven web services is
therefore involved. The beauty of web services is that this is all invisible to CarMen’s
customer, who sees a single web service for ordering and financing the purchase of a
car. In fact, the internal details of a business process are intentionally hidden since this
is confidential. This also allows businesses to change their internal procedures, e.g. the
supplier may change dealers or may use more than two dealers.

1 Receive
supplier.car.order

need

Uses
  {String name String address String model} need
  {Natural reference String dealer Float price
    Natural delivery} offer, offer2

2 Fork

3 Invoke
dealer1.car.quote

need offer

4 Invoke
dealer2.car.quote

need offer2

5 Join
3 && 4

6 Invoke
dealer1.car.order

offer

8 Invoke
dealer2.car.order

offer2

(offer.price < offer2.price) ||
((offer.price = offer2.price) &&

(offer.delivery < offer2.delivery))
Else

Start

11 Invoke
dealer1.car.cancel

offer

12 Invoke
dealer2.car.cancel

offer

10 Receive
supplier.car.cancel

offer

offer.dealer = dealer1 Else

7 Reply
supplier.car.order

offer

9 Reply
supplier.car.order

offer2

Fig. 2. Car Supplier Business Process
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2 Invoke
supplier.car.order

need offer

3 Invoke
lender.loan.quote

proposal rate refusal.error

Uses
  {Natural reference String dealer Float price
     Natural delivery Float rate} schedule
  / LENDER SUPPLIER

4 Reply
broker.carloan.purchase

schedule

7 Compensate

5 Reply
broker.carloan.purchase

refusal.error

offer.price != Infinity
/ proposal.name <- need.name

/ proposal.address <- need.address
/ proposal.amount <- offer.price

Else
/ error <- "car unavailable"

1 Receive
broker.carloan.purchase

need

/ schedule.reference <- offer.reference
/ schedule.dealer <- offer.dealer

/ schedule.price <- offer.price
/ schedule.delivery <- offer.delivery

/ schedule.rate <- rate

Start

6 Invoke
supplier.car.cancel

offer

Catch refusal.error

Compensation

8 Reply
broker.carloan.purchase

refusal.error

Fig. 3. Car Broker Business Process

3 Translating Web Services to LOTOS

The general principles of translating CRESS diagrams into LOTOS are explained in
[6,8]. The generated code is neatly laid out and well commented. The CRESS framework
is largely reusable for web services. However, web services have distinct characteristics
that require extension to this approach. The translation strategy is illustrated in this
section with extracts from the LOTOS generated by the examples in figures 1, 2 and 3.

3.1 Data Handling

BPEL simple types are translated into a limited range of LOTOS types. BPEL boolean
corresponds to LOTOS Bool, BPEL natural to LOTOS Nat, and variations on BPEL string
to LOTOS Text. Other numeric types in BPEL are mapped to LOTOS type Number.
Numbers are problematic to handle in LOTOS since floating point numbers are required.
BPEL 1.1 allows floating point variables, but fortunately requires only simple integer
arithmetic. Text strings are also awkward in LOTOS since there is no character type.
LOTOS has no lexical shorthands for numbers or strings, so an ugly syntax is required;
their conventional form is shown in the code extracts that follow.
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Expressions are translated into their obvious LOTOS equivalents. BPEL uses XPATH

as its expression language, and so has access to a wide range of functions. The LOTOS

framework has support for those required by BPEL 1.1, i.e. a subset of the arithmetic,
logical and string functions in XPATH 1.0. Expression guards become LOTOS guarded
choices. Assignments are turned into LOTOS Let statements.

BPEL requires use of structured variables. Each structured type is automatically
translated into a LOTOS type with fields as operations. For example, proposal in figure 1
generates the type Proposal, with field operations such as getName and setName.

3.2 Basic Behaviour

Outputs (Reply, Invoke) and inputs (Receive, Invoke) correspond to LOTOS events.
An activity sequence in a CRESS diagram becomes a sequence in LOTOS. However,
parts of a CRESS diagram often have to be translated as separate LOTOS processes.
This happens, for example, when part of a diagram is reached by different paths or is
invoked as an event handler. A BPEL activity results in successful termination or failure.
LOTOS behaviours therefore exit with state True or False. For simple behaviours, this
is the States result of a process. It will be seen later that states are generalised when
dealing with compensation handling or with concurrency.

All the aspects considered so far are illustrated in the following code for nodes 1, 2
and 5 in figure 1:

Process LENDER 1 [lender,approver,assessor] (* LENDER from 1 *)
(error:Text,proposal:Proposal,rate:Number,risk:Text) : Exit(States) :

lender !loan !quote ?proposal:Proposal; (* LENDER receive 1 *)
(

[getAmount(proposal) Ge 10000] > (* check proposal.amount >= 10000 *)
LENDER 2 [lender,approver,assessor] (* LENDER invoke 2 (again) *)
(error,proposal,rate,risk)

[Not(getAmount(proposal) Ge 10000)] > (* Else after proposal.amount >= 10000 *)
assessor !loan !assess !proposal; (* LENDER invoke 5 request *)
assessor !loan !assess ?risk:Text; (* LENDER invoke 5 response *)
(

[risk Eq ′′low′′] > (* check risk = ′′low′′ *)
(

Let rate:Number = 3.5 In (* update local *)
LENDER 4 [lender,approver,assessor] (* LENDER reply 4 (again) *)
(error,proposal,rate,risk)

)

[Not(risk Eq ′′low′′)] > (* Else after risk = ′′low′′ *)
LENDER 2 [lender,approver,assessor] (* LENDER output 2 (again) *)

(error,proposal,rate,risk)
)

)
EndProc (* end LENDER 1 *)
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3.3 Event Handling

For each web service, the CRESS translator statically discovers where event handlers
are defined and the scopes where these apply (global, or associated with an Invoke).
An event dispatcher process is then generated with reference to these handlers accord-
ing to their scopes. If a fault handler does not exist for the current scope, the global
handler (if any) is tried. Faults have to be matched against handlers in a particular or-
der: Catch with a matching fault name, Catch with a matching fault name and type,
Catch with a matching fault type, CatchAll. A fault means unsuccessful termination,
so event handlers always exit with a False status.

A Compensate action, a Throw action or a fault invokes the event dispatcher with
information about the scope, fault name and fault value type. The fault handling rules of
BPEL require fault values to be coerced into a single LOTOS type Value. This is needed
so that the kind of value can be matched against Catch. For example, a fault handler
expecting a string must check if the value is indeed a string; another handler for the
same fault name might deal with floating point fault values.

As an example, Invoke in node 2 of figure 1 may generate a refusal fault. This calls
the LENDER EVENT dispatcher for scope 0 associated with node 2; there is just one
event scope in this example. The Match operation compares the given fault name and
value type with those in the event (refusal and Text in this case). When node 3 is called,
the fault value (error) is set to a string by operation Text.

Process LENDER 2 [lender,approver,assessor] (* LENDER from 2 *)
(error:Text,proposal:Proposal,rate:Number,risk:Text) : Exit(States) :

approver !loan !approve !proposal; (* LENDER invoke 2 request *)
(

approver !loan !approve !refusal ?error:Text; (* LENDER invoke 2 fault *)
LENDER EVENT [lender,approver,assessor] (* call event dispatcher *)

(error,proposal,rate,risk,0 Of Nat,refusal,Value(error))

approver !loan !approve ?rate:Number; (* LENDER invoke 2 response *)
LENDER 4 [lender,approver,assessor] (* LENDER reply 4 (again) *)

(error,proposal,rate,risk)
)

EndProc (* end LENDER 2 *)
Process LENDER EVENT [lender,approver,assessor] (* event dispatcher *)
(error:Text,proposal:Proposal,rate:Number,risk:Text, scope:Nat,event:Event,value:Value) :

Exit(States) :
[scope Eq 0] > (* scope 0 ? *)

(
[Match(event,kind,refusal,TextKind)] > (* match for ′refusal.error′? *)

LENDER 3 [lender,approver,assessor] (* call event handler *)
(Text(value),proposal,rate,risk)

)
EndProc (* end LENDER EVENT *)

Compensation handling is much more complex to translate than fault handling. A
compensation handler becomes available only when its associated scope has terminated
successfully. The state of the process must also be stored for use by the compensation
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handler in case it is called later. When compensation is in use, LOTOS processes must
therefore carry a states parameter as the history of compensation states.

As each activity with compensation completes, it prefixes the current state (i.e. the
process parameters) to the previous state list. In this way, a stack of compensation states
is maintained. The following extract is from nodes 1 and 2 of figure 3. The first param-
eter of operation State is a True status (all that is used in simple processes), while the
second parameter is the compensation scope (1 in this case, 0 being the global scope).

Process BROKER 1 [broker,supplier,lender] (* BROKER from start *)
(error:Text,need:Need,offer:Offer,proposal:Proposal,rate:Number,

schedule:Schedule,states:States) : Exit(States) :
broker !carloan !purchase ?need:Need; (* BROKER receive 1 *)
supplier !car !order !need; (* BROKER invoke 2 request *)
supplier !car !order ?offer:Offer; (* BROKER invoke 2 response *)
(

Let states:States = (* store state *)
State(True,1,error,need,offer,proposal,rate,schedule) + states In ...

)
EndProc (* end BROKER 1 *)

A Compensate action for a given scope invokes the event dispatcher. This searches
the stored states for a matching compensation state. If found, the handler for this state
is called. If not found (or no scope was specified by Compensate), the default action is
to call all compensation handlers in reverse order of activity completion. The net effect
is that compensation undoes previous work. In figure 3, for example, failure to obtain a
loan causes the car order to be cancelled.

3.4 Concurrency

Parallel execution in BPEL (Fork, Join) is very tricky to render in LOTOS, despite the
fact that LOTOS can readily specify concurrency. This is largely because BPEL has
global variables that are shared among parallel execution paths, whereas LOTOS has
only local state. It is also necessary to deal with the effects of event handlers during
parallel execution, e.g. a fault may prematurely terminate one path and trigger com-
pensation. By default, BPEL allows execution to continue if only one of the preceding
parallel paths terminates successfully. However, an arbitrary combination of path ter-
mination statuses may be used to determine this.

The CRESS translation to LOTOS handles concurrency by collecting an exit state
from each path. The status of each is then evaluated. If the Join condition is satisfied,
execution can continue. If the condition is not satisfied, a JoinFailure fault is caused.
However if the Fork specifies loose concurrency, the activity following Join is simply
considered to have failed. This may allow other parts of the web service to continue.

Concurrency is a second reason for processes to carry their state as a parameter.
Each parallel path exits with the current process state. The states from each path are
reconciled, and the current process parameters are computed. In fact, BPEL acknowl-
edges but does not solve the problem that the same variables may be altered in parallel
path. The CRESS toolset performs a data flow analysis of diagrams as they are trans-
lated. This is essential anyway, for example to decide whether variables should be read
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(‘?’) or written (‘!’) in LOTOS events. The same data flow analysis detects variables that
are altered on parallel paths, causing a warning to be issued during translation.

The following shows the translation of node 5 in figure 2 where the parallel paths
from nodes 3 and 4 converge. As will be seen, the translation has to be very complex.

(
(

SUPPLIER 3 [supplier,dealer1,dealer2] (* SUPPLIER output 3 *)
(need,offer,offer2,states)

>> Accept states:States In (* accept fork states *)
Exit(states,Any States) (* fork exit *)

)
|||

(
SUPPLIER 4 [supplier,dealer1,dealer2] (* SUPPLIER output 4 *)
(need,offer,offer2,states)

>> Accept states:States In (* accept fork states *)
Exit(Any States,states) (* fork exit *)

)
)

>> Accept states0,states1:States In (* accept join states *)
(

Let state:State = State(AnyBool,need,offer,offer2) In (* get state updates *)
Let state0:State = Head(states0) In (* get SUPPLIER 3 state *)
Let state1:State = Head(states1) In (* get SUPPLIER 4 state *)
Let status0:Bool = getStatus(state0) In (* get SUPPLIER 3 status *)
Let status1:Bool = getStatus(state1) In (* get SUPPLIER 4 status *)
Let state:State = getState(state,state0,state1) In (* reconcile states *)
Let need:Need = getNeed(state) In (* set need from combined state *)
Let offer:Offer = getOffer(state) In (* set offer from combined state *)
Let offer2:Offer = getOffer2(state) In (* set offer2 from combined state *)
Let states:States = getStates(Tail(states0),Tail(states1)) In (* combine states *)

[Not(status0 And status1)] > (* join failed? *)
SUPPLIER EVENT [supplier,dealer1,dealer2] (* call event dispatcher *)
(need,offer,offer2,states,AnyNat,JoinFailure,AnyValue)

[status0 And status1] > (* check join condition *)
SUPPLIER 5 [supplier,dealer1,dealer2] (* SUPPLIER from join 5 *)
(need,offer,offer2,states)

)

3.5 Partner Processes

Partner web services are translated as separate LOTOS processes, synchronised in paral-
lel with the main LOTOS process. If the partner is an external web service (e.g. approver
or assessor in figure 1), a skeleton specification is generated to match its port/operation
signature. For example, the default specification of approver is:

Process APPROVER [approver] : Exit(States) : (* APPROVER partner *)
approver !loan !approve ?proposal:Proposal; (* APPROVER ′approve′ input *)
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(
approver !loan !approve !AnyNumber; (* APPROVER ′approve′ output *)
APPROVER [approver] (* repeat APPROVER *)

approver !loan !approve !refusal !AnyText; (* APPROVER ′refusal′ fault *)
APPROVER [approver] (* repeat APPROVER *)

)
EndProc (* end APPROVER *)

This is sufficient for basic validation of the lender web service, but does not permit
useful analysis. It is therefore possible to give a more realistic specification of external
partners. If the CRESS translator finds the file <partner>.lot, it uses this specification
of the partner instead of the default one. In fact these specifications can be arbitrarily
complex. The four external partners in figures 1 and 2 were given realistic specifica-
tions. For example, the dealer partners maintain ‘databases’ (lists) of car information,
customer quotations and customer orders.

3.6 Overall Specification Structure

When the broker service in figure 3 is translated, the services in figures 1 and 2 are also
incorporated. The result is 330 lines of automatically generated LOTOS data types and
310 lines defining LOTOS processes. To this must be added the 400 lines of manually
specified partner processes. The generated code is embedded in a specification frame-
work that provides generic support for any web service. This consists of 590 lines of
LOTOS (mostly complex data types). In total, this amounts to just over 1600 lines of
LOTOS – a manageable specification.

The translation of exactly the same services to BPEL makes an interesting compar-
ison. For this, CRESS generates 60 source files and 3300 lines of code (mostly BPEL,
WSDL and Java). So whether the translation to LOTOS or BPEL is considered, it is
evident that the CRESS notation is very compact.

4 Rigorous Analysis of Web Services

4.1 The Value of Formalising Web Services

Developing a formal interpretation of BPEL has been valuable in its own right. For
example, a number of errors, omissions and ambiguities have been found in the standard
(mainly in complex areas such as event handling and data handling). A number of these
errors in BPEL4WS have already been corrected in WS-BPEL. The formalisation of
BPEL also provides a precise interpretation of the standard.

More importantly, the formalisation supports a wide variety of analyses. Some of
the investigations have used the TOPO (and LOLA) tools for LOTOS, while others have
used CADP. Both offer distinct capabilities. LOLA has the advantage of using LOTOS

data types as specified; this is beneficial since web services are supported by some
rather complex types. LOLA is particularly useful for performing formally-based vali-
dation. CADP complements this through capabilities such as state space minimisation,
equivalence checking and model checking. The penalty in using CADP is that it places
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certain requirements on the LOTOS, mainly on the data types. Some of these issues are
addressed by annotations, but actualised data types have to be expanded manually, and
some data types need manual realisations.

Rigorous analysis aims to find problems with a web service viewed as a black box.
Formal verification indicates where the LOTOS is incorrect; the automatically generated
comments show where the CRESS description needs to be improved. Formal validation,
however, is performed at a higher level, so the CRESS changes are more obvious.

4.2 Formal Checking

When web services are composed, there is a danger that they do not synchronise prop-
erly due to a misunderstanding over the interface. In LOTOS terms, this manifests itself
as a deadlock. (A LOTOS web service either performs Exit or recurses.) This is easily
checked by LOLA using its expansion capabilities. When using BPEL (or more exactly
WSDL), it is difficult to manually check services for compatibility since WSDL interface
descriptions can be written in different ways and yet be consistent.

The internal design of a web service is proprietary. The owner may, however, wish to
publish an abstraction for public use. There is then a question of whether the private and
public specifications are consistent with each other. Essentially the public specification
must be equivalent (e.g. observationally) to the private specification. Web services also
evolve, e.g. the external partners used by a business process may change. Again, there
is an issue of whether an updated web service is equivalent to the former one. CADP

supports these kind of analyses with the specifications generated from web services.
CADP also allows model checking of web service properties. Safety and liveness

properties can be formulated in ACTL (Action-based Computational Temporal Logic).
For example, the lender service must not fault (safety), and every invocation of the
broker service must eventually receive a response (liveness).

4.3 Rigorous Validation

In practice, web services have to be manually debugged like any other program, though
tools like ActiveBPEL provide visual simulation. The LOTOS generated for web ser-
vices can, of course, be manually simulated – but again this is just debugging.

The author has developed MUSTARD (Multiple-Use Scenario Test and Refusal De-
scription [10]) as a language-independentand tool-independent approach for expressing
use case scenarios. These are translated into the chosen language (LOTOS here) and au-
tomatically validated against the specification (using LOLA). This is useful for initial
validation of a specification, and also for later ‘regression testing’ following a change
in the service description.

There is insufficient space here to explain the MUSTARD notation, so reference to
[10] and to the following example must suffice. Briefly, MUSTARD allows scenarios
with sequences, alternatives, non-determinism and concurrency. The following MUS-
TARD scenario checks simultaneous requests to the supplier process. The first sequence
requests an Audi A5, and expects to receive a schedule with dealer reference 8, name
WheelerDealer, price 33000, delivery 30 days, loan rate 3.5%. The second requests a
Ford Mondeo, and allows a specified schedule or an unavailable message in return.
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test(Simultaneous Purchases, % simultaneous purchases scenario
succeeds( % behaviour must succeed

interleaves( % behaviours are interleaved
sequences( % need request, schedule response

send(broker.carloan.purchase,Need(′Ken Turner,′Stirling Scotland,′Audi A5)),
read(broker.carloan.purchase,Schedule(8,′WheelerDealer,33000,30,3.5))),

sequences( % need request, choice response
send(broker.carloan.purchase,Need(′Kurt Jenner,′London England,′Ford Mondeo)),
offers( % choice of schedule or fault

read(broker.carloan.purchase,Schedule(6,′BigDeal,20000,10,4.1)),
read(broker.carloan.purchase,refusal,′car unavailable))))))

Of course, there is then the issue of where such scenarios come from. The author
has separately developed PCL (Parameter Constraint Language [9]) for this kind of
purpose. Trying to generate useful tests from a complex specification is generally in-
feasible. PCL is therefore used to annotate a specification with constraints on interesting
input values and on useful orderings over inputs. This makes test generation practica-
ble for specifications with complex data types, infinite data sorts or concurrency – all
characteristic of web service specifications.

4.4 Interaction Among Services

Scenario-based validation is also a useful way of checking for interference among sup-
posedly independent services. In telecommunications, this is called the feature interac-
tion problem. Interactions may arise for technical reasons (e.g. conflicting services are
activated by the same trigger) or for resource reasons (e.g. the services have a shared re-
source or external partner). One way of interpreting service interaction is that a service
behaves differently in the presence of some other service.

Web services are formally validated by a range of MUSTARD scenarios that address
all the critical characteristics of their behaviour. It then becomes possible to check ser-
vices in isolation as well as in combination. This can effectively and efficiently detect
interactions among services, though failure to detect interactions is not a guarantee that
the services are interaction-free.

Web services are usually viewed as atomic and therefore do not incorporate add-on
features (unlike telecommunications services). However it is useful to have a feature
concept for web services. CRESS readily supports this in the same way as features can
be added to voice services. A range of generic features has therefore been defined for
web services; space does not allow them to be presented in detail here.

Consider the sample web services discussed earlier. They all make use of a customer
name and address. The services could also perform other operations such as setting up
an account or checking the status of a request. In all cases, it would be useful to validate
the name and address provided. In fact this is a fraught problem, as all maintainers of
mailing lists are aware.

A name feature has therefore been defined for normalising names. This is automat-
ically invoked when a web service receives a given request with a name. It sets the
name into a normal form (e.g. ‘KJ Turner’). A contact feature has also been defined for
checking whether a name and address are known to be associated. This is automatically
invoked when a given request with name and address is received by a web service.
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When services are validated with MUSTARD using contact alone or with name as
well, it is found that they behave differently (i.e. feature interaction occurs). The prob-
lem is obvious: if the name feature normalises a name, this may be inconsistent with
the name recorded for an address. Of course, most feature interactions are obvious with
hindsight. The value of automated analysis is that such problems are detected without
detailed manual investigation when a new feature is added.

5 Conclusions

Business processes can benefit from formal models of their behaviour. A graphical de-
scription is much more understandable than the raw BPEL and WSDL. A high degree
of automation is strongly desirable in the creation of web-based business processes.
CRESS meets all of these requirements. Compared to commercial tools, CRESS does
not support the entirety of web services. It handles nearly everything used in practice,
a lack of timers being the main omission. However CRESS confers distinctive benefits:
applicability to many domains, human-readable code for translated services, features as
service add-ons, and translation to formal languages for rigorous analysis.

CRESS has now shown its worth in four rather different application domains: IN,
Internet Telephony, IVR and web services. The toolset is portable, having been used on
four different platforms. CRESS accepts diagrams drawn with three existing graphical
editors, and generates code in five different languages. It is therefore an approach of
wide practical and theoretical benefit.
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Abstract. This paper considers the problem of automatic abstraction,
from a low-level model given in term of network of interacting automata
to a high-level message sequence chart. This allows the designer to play
in a coherent way with the local and global views of a system, and opens
new perspectives in reverse model engineering. Our technique is based
on a partial order semantics of synchronous parallel automata and the
construction of a finite complete prefix of an event-structure coding all
the behaviors. We present the models and algorithms. The examples
presented in the paper have been processed by a small software prototype
we have implemented.

1 Introduction

Designing a distributed application is a complex task. At the final stage of the
modeling, once the different architectural decisions have been made, designers
usually obtain a set of communicating sequential components. During earlier
stages of software development, designers use more abstract and visual repre-
sentations such as scenarios. For instance, Message Sequence Charts (MSCs) [9]
are an appealing visual formalism to capture system requirements. They are par-
ticularly suited for describing scenarios of distributed telecommunication soft-
ware [7]. Several variants of MSCs appear in the literature (sequence diagrams ,
message flow diagrams, object interaction diagrams, Live Sequence Charts) and
are used in a number of software engineering methodologies including UML [8].
They provide the designer with a global view of the dynamic behavior of the
system, given in a declarative manner.

However, there is often a gap between the local view defined as sequential
components and the more global view described by scenarios. Some scenarios
cannot be implemented by sequential machines, and some compositions of se-
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quential machines do not have finite representation in terms of MSCs. This is
why a lot of recent works have been developed to automatically generate com-
municating automata (at least a skeleton) from MSCs [1,5] in the context of a
top-down design methodology. Obviously, building a bridge in the opposite di-
rection is also an interesting problem, as it would allow designers to play freely
with any style of specification (global declarative or distributed imperative) while
preserving the coherence of both views. A solution to this problem could also
be the basis of another important challenge called “aspect modeling”, in which
a new feature described as a set of scenarios can be added safely to an already
existing model of communicating machines. This will imply sophisticated formal
techniques, since the required transformations modify dramatically the structure
of the automata.

This context motivates our work on some “reverse distributed model engi-
neering”. We begin with simple models, which are networks of synchronous paral-
lel finite state automata for the imperative aspect, and MSCs for the declarative
aspect. The problem is thus to automatically obtain a MSC from an automata
network, which codes all the runs of the system, runs being defined as partial
orders of transition occurrences. The finiteness of the automata and the syn-
chronous communication ensure that such a transformation is possible. This
question has already been addressed from the theoretical point of view in term
of formal languages in [3]. They show that any single Büchi automaton with a
structural property, called diamond, and with all its states accepting, is able to
generate the language of a bounded MSC. However, this problem is undecidable
for asynchronous communicating finite state machines. This justifies our choice
to consider synchronous networks and to propose an original algorithm to pro-
duce a concrete MSC, as readable as possible. Figure 1 shows an example of such
network, which consists of two automata A0 and A1, synchronized on their com-
mon event x. Figure 1 gives the corresponding MSC we would like to compute.
Notice that the MSC graph is complex due to the fact that this example was
designed to show all the tricky aspects of the transformation. A more realistic
example is treated in Section 4.

We will use the notion of unfolding, and the fact it can be finitely generated
by a finite complete prefix. This is based on the unfolding theory, as presented
in [4,2]. In the paper, we adopt nevertheless a direct approach, without using
Petri nets as usual, in order to avoid to introduce a new intermediary formal
model. The question of using the finite prefix as a generator of the unfolding is
also new up to our knowledge.

The rest of the paper is organized as follows. Section 2 defines formally au-
tomata networks, MSCs and the notion of runs. The next section 3 is devoted
to the generation of possible runs by the construction of a finite complete prefix
of the unfolding. Section 4 presents how the MSC automaton and the referenced
basic MSCs are extracted from the prefix. We conclude by a discussion sum-
marizing the approach and proposing a few perspectives. All the proofs of the
propositions and theorems are available in the research report [10].
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2 Definition of Automata Networks and MSCs

2.1 Networks

An initialized labelled automaton is a tuple A = 〈S, Σ,→, s0〉 where S is a finite
set of states, Σ is a set of labels, → ⊆ S × Σ × S is a set of labelled transitions,
and s0 ∈ S is the initial state. For a transition t = (s, a, s′) ∈ →, we denote

α(t)
def

= s its source, β(t)
def

= s′ its target, and λ(t)
def

= a its label.

I
def

= {1, . . . , n} denotes a finite set of indices. We consider the synchronous

parallel composition of the initialized labelled automata Ai = 〈Si, Σi,→i, s
0
i 〉i∈I

The network of Figure 1 is formally defined by:

S0 = {0, 1, 2} S1 = {0, 1, 2}
Σ0 = {a, b, x} Σ1 = {c, d, e, x}
s0
0 = 0 s0

1 = 0
→0 = {(0, a, 1), (1, b, 2), (2, x, 0), (2, b, 2)}
→1 = {(0, c, 1), (1, e, 2), (2, x, 0), (1, d, 0)}

In an interleaving semantics, the network behavior is defined as the (global)
initialized labelled automaton A = 〈S, Σ,→, s0〉 where:

Fig. 1. A network of two synchronized automata and its scenario view
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– S
def

= S1 × · · · × Sn

– Σ
def

=
⋃

i∈I Σi

– ((si)i∈I , a, (s′i)i∈I) ∈ → iff

⎧⎨
⎩

∀i ∈ {1, . . . , n}

{
(si, a, s′i) ∈ →i

∨ (si = s′i ∧ a /∈ Σi)
∧ ∃i ∈ {1, . . . , n} (si, a, s′i) ∈ →i

– s0 def

= (s0
1, . . . , s

0
n)

A B C

m

n

o

msc SynchroBarrier

Intuitively, we force the automata to evolve synchronously when they execute
a transition labelled by the same name. In the other case, they evolve indepen-
dently. Figure 2 shows the product automaton of our example. Sequential runs
are the different paths in the graph of the product automaton. Unfortunately,
this notion of run does not enlight the causal relations between the different
occurrences of transitions (seen as atomic events), as done in MSCs. In our con-
text, the right notion of run is the partial ordering of events that have occurred.
Hence, runs of a system will be defined as basic MSCs.

2.2 Message Sequence Charts

MSCs are composed of basic scenarios (or bMSCs), that depict interactions
among several objects. These interactions are then composed hierarchically by

Fig. 2. The synchronized product

Fig. 3. bMSC representation of rendez-vous
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means of operators (loop, choice, sequence, ...). For the sake of simplicity, we will
only consider a single hierarchical level. Interactions in the automata networks
we consider are synchronous (i.e. Rendez-vous communication): they are block-
ing, and involve several participants. For this reason, communications in bMSCs
will be represented by references to other bMSCs describing how a communica-
tion mechanism is implemented. Such Rendez-vous can be implemented using a
synchronization barrier, as depicted in Figure 3. In MSCs, referencing inside a
diagram is allowed by inline expressions. Here, we will only consider references
to simple bMSCs depicting communications among a given set of components.
We do not allow reference nesting, and will not use inline expressions with opt,
alt or loop.

In our framework, a bMSC is defined as a finite set of events. Each event is
represented as the vector of its predecessors on each instance. The absence of
predecessor on an instance is denoted by the null event •. We associate a label to
each event, which will serve to note the corresponding transition of the automata.
For example, considering a system with three instances, the event e3 denoted by
((e1, (1, a, 2)), •, (e2, (3, a, 4))) is a synchronization event between the first and
the third instance, and having the events e1 and e2 as immediate predecessors
on these instances. There is no immediate predecessor on the second instance
since it does not participate in the synchronization. The labels are (1, a, 2) and
(3, a, 4), denoting for instance the transitions to synchronize in an automata
network. Formally, a bMSC over a set of instances I is a tuple B = (E, Σ, A, Θ),
where E = {(ei, σ)i∈I , σ ∈ Σ} is a set of events such that each ei ∈ {•}∪E×Σ.
E contains local events (events such that |{ei �= •}| = 1) and interactions (events
such that |{ei �= •}| > 1). Σ is a local alphabet, A is an alphabet of local actions
and interaction names, and Θ : Σ −→ A assigns a global name to events.

When fi = (e, σ), we denote πi(f) = e. We will say that e is a predecessor of
f , and write e → f when ∃i ∈ I such that πi(f) = e. E also contains a specific
event ⊥ = (•, . . . , •)i∈I called the initial event that has no predecessor. We will
say that an event is minimal in a bMSC iff ⊥ is the unique predecessor of all its
components. A bMSC must also satisfy the following properties :

i) the reflexive and transitive closure →∗ of → is a partial order.
ii) (synchronization) ∀e = (ei)i∈I ∈ E, we require that ∃!a, ∀i ∈ I, ei �=

• =⇒ Θ(σi) = a. This property means that all components participating to
an event must synchronize.

iii) (local sequencing) ∀i ∈ I, ∀e ∈ E, ei �= • =⇒ πi(e) = ⊥ or (πi(e))i �= •
iv) (no choice) ∀(e, e′) ∈ E2, ∀i ∈ I, e �= e′ =⇒ πi(e) �= πi(e

′). This property
forbids the introduction of choices in a bMSC.

bMSCS are good candidates to model causal relations in runs of a distributed
system. Causality between events is defined by →∗. When neither e →∗ e′, nor
e′ →∗ e, we will say that e and e′ are independent (or concurrent). The set of
minimal events in B w.r.t →∗ is denoted by min(E). We will say that an event
is minimal for an instance i ∈ I if the predecessor event on component i is ⊥. It
is maximal for this instance if it is not a predecessor event for an event on this
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instance. The minimal (resp. maximal) event on instance i (when it is defined)
will be denoted by mini(E)(resp. maxi(E)). A bMSC B1 is a prefix of a bMSC
B2 if and only if E1 ⊆ E2 and ∀e ∈ E1, Θ1(e) = Θ2(e). The empty bMSC is the
tuple B∅ = ({⊥}, ∅, ∅, ∅). Figure 4 is an example of bMSC. This bMSC defines
the behavior of 2 instances A0 and A1. Events a, b, c, e are local actions, and
reference x represents a synchronous interaction between A0 and A1.

The sequential composition of two bMSCs B1 = (E1, Σ1, A1, Θ1), B2 =
(E2, Σ2, A2, Θ2) is the bMSC B = (E, Σ1 ∪ Σ2, A1 ∪ A2, Θ), where :

E =

E1 ∪

(
E2 \

(
{⊥} ∪ {mini(E2)|i ∈ I}

))

∪

⎧⎨
⎩

(e′1, . . . e
′
n)|∃i ∈ I, ∃(e1, . . . , en) ∈ mini(E2)

∧∀j ∈ I, e′j =

{
(maxj(E1), σ) if ej = (⊥, σ)
ej otherwise

⎫⎬
⎭

Θ(σ) = Θ1(σ) if σ ∈ Σ1, Θ2(σ) otherwise

More intuitively, sequential composition merges two bMSCs along their common
instances axes by addition of an ordering between the last event on each instance
of B1 and the first event on the same instance in B2.

A High-level Message Sequence Chart (HMSC) is a tuple H = (N,→
,M, n0, F ), where N is a set of nodes, →⊆ N×M×N is a transition relation, M
is a set of bMSCs, n0 is the initial node, and F is a set of accepting nodes. HMSCs
can be considered as finite state automata labelled by bMSCs. A HMSC H de-

fines a set of paths PH . For a given path p = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk ∈ PH

we can associate a bMSC Bp = M1 ◦M2 ◦ · · · ◦Mk. The runs of a HMSC H are
the prefixes of all bMSCs generated by paths of H . The run associated to the
empty path is B∅.

2.3 Runs as Partial Orders

A run of an automata network Ai = 〈Si, Σi,→i, s
0
i 〉i∈I is defined as a bMSC

M = (E, Σ, A, Θ), with the following properties:

i) Σ =
⋃
i∈I

−→i. Hence, for an event e = (ei)i∈I , each ei is of the form

ei = (e′, t), and we will denote τi(e)
def

= t, αi(e)
def

= α(t) and βi(e)
def

= β(t).

We define βi(⊥)
def

= s0
i .

ii) A =
⋃
i∈I

Σi.

iii) Θ(t) = λ(t)
iv) (local sequencing) ∀i ∈ I ei �= • =⇒ αi(e) = βi(πi(e))

As Σ, A, Θ are implicit for a given set of events E, we will often denote a
bMSC B = (E, Σ, A, Θ) by its set of events E. Intuitively, an event e �= ⊥
represents the synchronization of actions of the automaton Ai such that ei �= •;
and ei = (e′, t) means that the local action on automaton Ai is t, and the
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msc Run

This run corresponds to the concatenation of the bMSCs AB and CEX of
Figure 1. Its events are:

0 = ⊥, 3 = ((1, (1, b, 2)), •),
1 = ((0, (0, a, 1)), •), 4 = (•, (2, (1, e, 2))),
2 = (•, (0, (0, c, 1))), 5 = ((3, (2, x, 0)), (4, (2, x, 0)))

The question now is to represent all the possible runs. This is the role of
the unfolding, which superimposes all the runs, shares the common prefixes and
distinguishes the different histories using the notion of conflict.

3 Generation of Runs

3.1 Unfolding

We consider the union of all possible runs, forming a new event set E. The
absence of choices is no more guaranted. This is why we define the conflict
relation # on the events as follows:

e # e′ iff ∃f, f ′ ∈ E

⎧⎪⎪⎨
⎪⎪⎩

f �= f ′

f →∗ e
f ′ →∗ e′

∃i ∈ I πi(f) = πi(f
′)

Informally, two events are in conflict if they have a common ancestor event
that branches on a same instance.

The unfolding of the synchronous parallel composition of the initialized la-
belled automata Ai = 〈Si, Σi,→i, s

0
i 〉i∈I is the set U of all events that are not

in self-conflict: U
def

= {e ∈ E | ¬(e # e)}. Graphically, we draw a circle for each
event, and an arc from e′ to e, labelled by i each time ei = (e′, t). Figure 5 shows
the shape of the unfolding of the network of Figure 1.

previous action that concerned the automaton Ai was e′. Note that property
iii) implies that for a given component i ∈ I and for any chain ⊥ −→ e1 =
(⊥, t1) −→ e2 = (e1, t2) . . . −→ ek = (ek−1, tk) such that ∀j ∈ 1..k, ej

i �= •, the
sequence t1.t2 . . . tk is a path of automaton Ai.

Fig. 4. A run as defined as a bMSC with inline references
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A (finite) run (also called a configuration) of the unfolding is a
bMSC B = (F, Σ, A, Θ) where Σ, A, Θ are defined as usual, and
F is a finite subset of E which is conflict-free and causally closed,

i.e:

{
∀e, f ∈ F ¬(e # f)
∀f ∈ F ∀e ∈ E e →∗ f =⇒ e ∈ F

Proposition 1. The unfolding contains all the possible runs.

3.2 A Trivial Solution for MSC Extraction

As explained previously, our goal is to compute a global declarative view defined
as a MSC from a distributed imperative view of a distributed system given by
a network of automata. The existence of a trivial solution to this problem is
guaranteed by the following proposition.

Proposition 2. Let A = (S, Σ,−→, s0) be the global initialized labelled au-

tomaton obtained by synchronous product of automata (Ai)i∈I . Let H =
(S, b(Σ),−→′, s0, S) be the HMSC where b(σ) is the bMSC containing a sin-

gle local action performed by an automaton or a single interaction per-

formed by all automata involved in a synchronous communication, and

−→′= {(n, b(σ), n′)|(n, σ, n′) ∈−→)}. Then, the set of runs of H and the set

of runs of (Ai)i∈I are equivalent.

We can imagine the resulting HMSC by having a look on Figure 2. Clearly,
it does not fulfill our goal of reverse model engineering. We must try to fill as
much as possible the bMSCs.

Fig. 5. The unfolding of the network of Figure 1 and its finite complete prefix

496 T. Chatain, L. Hélouët, and C. Jard



3.3 Finite Complete Prefix

The unfolding U of an automata network is an infinite structure. However, it is
possible to work on a finite representation of U called a finite complete prefix.

For a configuration c ⊆ U and for an automaton i ∈ I, we define the last

event ↑i c that concerned i in c as the event f ∈ c such that:

(fi �= • ∨ f = ⊥) ∧ �f ′ ∈ c πi(f
′) = f

Proposition 3. For a configuration c ⊆ U and for an automaton i ∈ I, ↑i c is

unique.

We denote ↑ c, the vector (↑i c)i∈I of last events. The global state vector
associated with a configuration c is also defined as the states of each automaton
after having performed the event ↑i c, i.e.

GState(c)
def

= (βi(↑i c))i∈I

For all e ∈ U , �e�
def

= {f ∈ E | f →∗ e} is a configuration, called the local

configuration of e. We define the set C of cut-off events of an unfolding as:

e ∈ C iff ∃f ∈ �e� \ {e} GState(�f�) = GState(�e�)

Actually the event f for a cut-off event e is generally not unique. We define the
regeneration configuration, denoted ∂e of a cut-off event e ∈ C as the intersection
of the local configurations �f� of the events f ∈ �e�\{e} such that GState(�f�) =
GState(�e�):

∂e
def

=
⋂

f∈�e�\{e}
GState(�f�)=GState(�e�)

�f�.

Proposition 4. For all e ∈ C, GState(∂e) = GState(�e�).

The set {e ∈ U | �f ∈ C f →+ e} is a finite complete prefix of the unfolding
U .

Theorem 1. The finite complete prefix is a finite generator of the unfolding.

Figure 5 (right) shows the prefix obtained from our example. Let us consider
the event e, labelled by x. It is a cut-off event. Its regeneration configuration
∂e is {⊥}. This is graphically represented by an oscillating arrow pointed to ⊥,
knowing that ∂e = �⊥�.
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The following algorithm computes the finite complete prefix U .

Initialization

1. create the initial event: U = ⊥ = (•)i∈I , with GState({⊥}) = (s0
i )i∈I ;

2. C ← ∅;

Repeat until deadlock

1. select a tuple (xi)i∈I where xi ∈ {•}∪ →i, such that:

– ∃a ∈ Σ ∀i ∈ I

{
xi = • =⇒ a /∈ Σi

xi �= • =⇒ λi(xi) = a
– ∀i ∈ I xi �= • =⇒ ∃e′i ∈ U \ C, βi(e

′
i) = αi(xi)

2. build the event e = (ei)i∈I , where

{
ei = (e′i, xi) if xi �= •
ei = • otherwise

3. if e /∈ U ∧ ¬(e # e) in U ∪ {e}
– U ← U ∪ {e};
– if ∃e′ ∈ �e� with GState(�e′�) = GState(�e�):

then C ← C ∪ {e};

∂e ←
⋂

f∈�e�\{e}
GState(�f�)=GState(�e�)

�f�

4 MSC Extraction

MSC extraction starts with the abstraction of the prefix. Intuitively, for a given
finite complete prefix, we define X as a subset of configurations that contains
the local configuration of the cut-off events, their regeneration configuration, the
local configuration of the terminal events, and that is closed under intersection.
X can be projected on each instance in order to obtain a network of “abstract
automata”. The product forms the HMSC automaton. Basic MSCs are obtained
by considering all the events occuring in an interval between two configurations
of X , and transitions are deduced from configurations inclusion.

We denote by P the finite complete prefix of the unfolding U of an automata
network. An event e is terminal if there exists no f ∈ U such that e → f . Let X
be the set of configurations inductively defined as:

– {⊥} ∈ X
– for all e cut-off event, �e� ∈ X ∧ ∂e ∈ X ;
– for all terminal event e, �e� ∈ X ;
– for all x, x′ ∈ X , x ∪ x′ is a configuration =⇒ x ∩ x′ ∈ X .

We denote by Y
def

= {�e� | e ∈ C} the local configurations of cut-off events.

For all x ∈ X , let us define Ex
def

= x \
⋃

x′∈X
x′�x

x′. The sets Ex are subsets of

elements that are not contained in any smaller configuration of X . They define
the bMSCs that will be extracted from the prefix.
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For all x ∈ X , the sets Ex′ with x′ ∈ X, x′ ⊆ x are a partition of x. For
all event e ∈ x we denote E−1(e, x) the unique configuration x′ ∈ X such that
x′ ⊆ x and e ∈ Ex′ . Let us define an abstraction of the prefix P , where the
elements of X play the role of “macro-events”. For all i ∈ I we define the set Xi

of macro-events that concern i as:

Xi
def

= {x ∈ X | ∃e ∈ Ex, ei �= • ∨ e = ⊥}

For the example of Figure 5, we have:

– X = {⊥,⊥cd,⊥ab,⊥abcex,⊥abb}
– E⊥ = ⊥, E⊥cd = cd, E⊥ab = ab, E⊥abcex = cex, E⊥abb = b
– X0 = {⊥,⊥ab,⊥abcex,⊥abb}, X1 = {⊥,⊥cd,⊥abcex}
– Y = {⊥cd,⊥abcex,⊥abb}

For all i ∈ I and for all x ∈ Xi \ {{⊥}}, the last event that concerned i in
x \Ex is ↑i (x \Ex). We define the macro-event that immediately precedes x on

i as πi(x)
def

= E−1(↑i (x \ Ex), x).
Using this definition, for each i ∈ I we can now define the initialized labelled

macro-automaton

Ai
def

= 〈Xi \ Y, {Ex | x ∈ Xi},→i, {⊥}〉

where

→i =
{(πi(x), Ex, x) | x ∈ Xi \ {{⊥}} ∧ x /∈ Y }

∪ {(πi(x), Ex, E−1(↑i ∂e, ∂e) | x ∈ Xi ∧ x = �e� with e cut-off event}

Figure 6 shows the network of macro-automata obtained from our example.
Let A = 〈S, Σ,−→, s0〉 be the synchronous product A1 × A2 × · · · × An. The
HMSC extracted from a finite complete prefix P is defined as HP = (S,−→′

, b(Σ), s0, S), where ∀σ ∈ Σ, b(σ) is the bMSC obtained by adding ⊥ as prede-
cessor of all minimal events to σ, and −→′= {(s, b(σ), s′)|∃s, σ, s′) ∈−→}. For
our example, the HMSC computed from the synchronous product in Figure 6 is
the resulting HMSC of Figure 1 announced in the beginning.

Theorem 2. Let P be a finite complete prefix of an automata network unfolding,

and let (Ai)i∈I be the set of “macro-automata” obtained from P . Let H be the

HMSC obtained from the synchronous product (Ai)i∈I . The runs of (Ai)i∈I and

the runs of H are equivalent.

Fig. 6. The network of macro-automata and its product
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Let us consider the more realistic example shown in Figure 7 (left). It is a sim-
ple connection and release protocol between two peers. The two peers (sender
and receiver) are presented on top of the figure. They are connected through
channels of size one. The automata of channels are given at the bottom of the
figure. In this protocol, the sender can initiate a connection by sending the Creq
message (”!” and ”?” characters denote the send and receive actions respec-
tively). After that, it can decide locally to close the connection by sending the
message Dreq, or receives the message Ddreq indicating that a distant discon-
nection has been made by the receiver. In case of collision (reception of Ddreq in
state 2), the connection is also closed. On the receiver side, after having received
the Creq, the received may decide to close the connection by sending the dis-
tant disconnection message Ddreq. If not, the Dreq message is received in state
1. In that case, it is required that the receiver alerts the sender by the Dconf
message to allow it to close locally the connection. Note that in case of collision,
it is possible to receive a message Dreq in state 0, which must be skipped.

Figure 7 (right) shows the prefix of the unfolding of this example. We show
three cut-off events, corresponding to the three basic patterns of the protocol,

which are local disconnection, distant disconnection and collision. The MSC view
produced by our method is shown in Figure 8.

Fig. 7. The Connect-Disconnect protocol with channels of size one and its prefix
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5 Discussion

We have addressed the problem of reverse model engineering, and more precisely
the automatic translation of synchronous networks of finite automata into mes-
sage sequence charts. A trivial solution is to build the product automaton and to
interpret transition labels as basic MSCs. Unfortunately, this degenerated MSC
does not fulfill the requirements of reverse engineering, which are to present the
concurrent histories of the system using as much as possible a partial order view.

This work introduces new techniques that permit to recover a global partial-
order based view of a system described by composition of sequential components,
and hence seems relevant for reverse model engineering. The main algorithm is
the unfolding of the network of automata. It computes the set of all partial
order runs. Thanks to the finiteness of the system, this set is finitely generated
by a prefix. From this prefix, we showed a way to extract basic partial order
patterns (bMSCs). The removal of these patterns in the prefix, followed by a
local projection lead to an abstract network of “macro-automata”. A HMSC
with the same behavior as the initial automata network can then be produced by

computing the product of macro automata. An alternative could be to consider
a parallel construct in the HMSC, as proposed for instance in netcharts [6].

The algorithms have been implemented in a software prototype (a few thou-
sand of lines of C-code). The next step will be to be able to deal with more

Fig. 8. MSC extracted from Automata of Figure 7
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complex systems. First, we have to relax the synchronous assumption to take
benefit of the asynchronous communication in MSCs. We think it is possible
to find a class of systems in which synchronous communication can be safely
replaced by an asynchronous one without changing the set of partial runs. Let
us recall nevertheless that asynchronous communicating automata and MSC de-
fine uncomparable languages. This means that a translation of automata into
MSC may not exists. Furthermore, deciding whether a network of asynchronous
automata defines a MSC language is an undecidable problem. Hence, to be ef-
fective in an asynchronous framework, our approach will necessarily apply to a
restricted class of automata. Secondly, the MSCs we obtain are dependent of
two things: the definition of cut-off events and the definition of configurations
that are extracted from the finite complete prefix. So far, an event is a cut off
event if its configuration has already been seen in its causal past. This leads to
some duplications of events in the finite complete prefix. The definition of cut-off
events can be refined using the adequate orders proposed by J. Esparza in [2].
This enhancement will reduce the duplication of events. Concerning the defini-
tion of configurations to extract (the X set), we can decide to share more or
less common prefixes in the bMSCs, and find a tradeoff between the number of
duplications and the size of the considered bMSCs. This could be parameterized.
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1. L. Hélouët and C. Jard. Conditions for Synthesis of Communicating Automata
from HMSCs, 5th International Workshop on Formal Methods for Industrial Criti-
cal Systems (FMICS), ARE. Stefania-Gnesi, I. Schieferdecker (ed), GMD FOKUS,
Apr. 2000.

2. J. Esparza and S. Römer. An Unfolding Algorithm for Synchronous Products of
Transition Systems, Proc. of Concur 1999, Lecture Notes in Computer Science
1664, pp. 2-20, 1999.

3. A. Muscholl and D. Peled. From Finite State Communication Protocols to High-
Level Message Sequence Charts, Proc. of ICALP’01, Lecture Notes in Computer
Science 2076, pp. 720-731, 2001.

4. K. Mac Millan. A Technique of State Space Search Based on Unfolding, Journal
of Formal Methods and System Design, 9, 1-22 (1992), Kluwer.

5. M. Abdallah, F. Khendec, and G. Butler. New Results on Deriving SDL Specifi-
cations from MSCs, Proc. of 9th SDL Forum, pp. 51-66, Montreal.

6. M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Netcharts: Bridging the Gap
between HMSCs and Executable Specifications, Proc. of Concur 2003, Lecture
Notes in Computer Science 2761, pp. 296-310, 2003.

7. E. Rudolph, O. Graubmann and J. Grabowski. Tutorial on Message Sequence
Charts, Computer Networks and ISDN Systems - SDL and MSC, Vol. 28, 1996.

8. G. Booch, I. Jacobson and J. Rumbaugh. Unified Modeling Language User Guide,
Addison-Wesley, 1997.

9. ITU, Message Sequence Charts, standard Z.120, 2000.
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Abstract. This paper presents a novel application of an untimed pro-
cess algebra formalism to a class of timing-critical verification problems
usually modelled with either timed automata or timed process algebra.
We show that a formalism based on interacting automata can model sys-
tem components, behavioural constraints and properties requiring proof
without elaborating the underlying process-algebraic formalism to in-
clude explicit timing constructs; and that properties can be verified with-
out introducing temporal logic, model-checking, or refinement relation
checking. We demonstrate this technique in detail by application to the
Fischer mutual-exclusion protocol, an archetypal example of a system
that depends of timing constraints to operate correctly.

1 Introduction

Many complex systems are most naturally modelled as collections of components
that operate and interact concurrently. Such modelling allows a problem to be
decomposed into parts having behaviour that is, in isolation, readily described.
To operate correctly, some complex systems rely on timing relationships between
certain critical actions shared by two or more components. In order to verify the
correctness of such systems, the tools and methodologies used must be capable
of expressing timing constraints and temporal properties in a manner clearly
comprehensible to the user.

The contribution of this paper is twofold. Firstly, it demonstrates an intuitive
way of describing relative orderings among timing intervals as processes (i.e., as
state machines), which can be naturally composed with system model processes
to supply the timing-critical aspects of the model’s behaviour. This separation
of timed and untimed behaviour helps specification, as it allows greater freedom
in partitioning the work of constructing complex models.

Secondly, this paper describes how formalprotocol verificationmaybe achieved
by use of a process algebraic equivalence checker coupled with the concurrent com-
position of (1) a system description, as a process, and (2) a process which describes
the property requiring proof, which is also presented as a state / action / new-state
type process. When both types of object are modelled as processes, there is no need
for design engineers to learn a separate property description language or model
checking tool in addition to a language with which to express system behaviour.

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 503–517, 2005.
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We believe that this simplification, and the ability to express properties requiring
verification in a state machine type manner, is of real value in encouraging engi-
neers to adopt formal description and verification methods.

This paper uses the well-known Fischer protocol to illustrate both this treat-
ment of timing representation, and the composition-based property verification
technique.

A key feature of the methodology described in this paper is the central role of
the concurrent composition operator. Concurrent composition is the fundamental
mechanism for constructing system models in the process algebra paradigm; its
use for this purpose warrants no additional comment. In our methodology, con-
current composition plays two further significant roles, namely to enforce timing
constraints, and as the core of the composition-based verification technique.

1.1 Timing Constraints as Processes

Rather than encoding timing constraints as an integral part of a system model
(which is the usual case with timed automata [2] and timed process algebra [20]
modelling), timing constraints are encoded as separate processes that express
relationships between time intervals.

This is accomplished by first determining which actions in the system model
signify the boundaries of time critical time intervals, and then defining timing
constraint processes which express the allowable sequences of occurrences of these
events. When these processes are composed with the system model, they enforce
the timing relationships that they encode.

In this way the modelling of system behaviour can be decoupled from the tim-
ing constraints. This simplifies model development and experimentation, since
timed aspects of a model can be altered without modification of the time-
insensitive aspects.

1.2 Properties as Processes

The idea of expressing properties requiring proof as processes is a well-known
process algebraic technique, described for example in [6, 18, 22]. In the case where
a correctness specification is a complete description of a system, verification
proceeds by checking that the system implementation process is equivalent to
the specification process according to some semantic equivalence relation.

Frequently, however, total behavioural equivalence between two processes
is not the goal of the proof process. For certain systems, verifying correctness
consists of determining that certain properties do in fact hold for an imple-
mented system. Such properties do not constitute a complete specification but
are rather a particular relationship between a number of distinct actions. Veri-
fication of such properties then requires the demonstration that the occurrence
of the property actions in the constructed system model process have the same
sequence of occurrence designated by the property process.

One technique for accomplishing this is to abstract all non-property actions
from the model process, and then check that the model refines the property pro-
cess according to a semantic ordering relation (see [22] chapter 14 for example).
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In this paper we describe an alternative proof mechanism that avoids the
introduction of the concept of process refinement orderings, and in which con-
current composition plays a crucial role.

A similar approach to using a single language to specify system behaviour,
constraints and properties is explored for the Temporal Logic of Actions ([16])
in [1], where a close relationship between logical conjuntion of formulæ and
concurrent composition of processes is shown.

In section 2 we present the mechanism which underlies our property verifi-
cation technique. In section 3 we demonstrate the technique by application to
the Fischer protocol, showing in detail how timing constraints and correctness
properties are formulated as processes. In section 4 we discuss the significance
of this work and contrast it with related work.

2 Checking Properties via Composition

We show how the verification of a class of properties, safety properties, can be
performed in an process algebra (or interacting automata) based framework by
making use of the concurrent composition of processes and process equivalence
testing – provided that the process composition operation has certain features.

Our description of this technique is framed in terms of the Structural Op-
erational Semantics approach to formalising process behaviour [21]. Under this
approach, processes are identified with labelled transition systems (LTS). A LTS
is a rooted directed graph where each edge is labelled with an action. Each
vertex of the graph is a distinct state of the process, and each edge represents
a transition between states, with transition labels determining the interaction
between the process and its environment (or with other processes).

Labelled transition systems admit a variety of different equivalence relations
and orderings, such as trace equivalence, testing equivalence and bisimulation.
The technique we present here can be used with any of these process equivalence
relations, yielding criteria for the fulfillment of safety properties which vary in
sensitivity to internal (unobserved) process nondeterminism. Trace equivalence
is assumed here, since it is both simple and sufficiently discriminating for the
examples in this paper.

2.1 Safety Properties and Concurrent Composition

A safety property of a system is a property which states that “nothing bad” will
ever happen. When expressed as a process, a safety property process exhibits only
allowable behaviours – the set of behaviours that a system must not overstep if
it is to fulfill that property.

The concurrent composition of processes is used to verify that a system cor-
rectly satisfies a particular safety property using the following procedure:

1. The system model process is composed with the property process so that
they synchronise only for the events in the property process.

2. This composite process is compared to the system model process: if the two
are equivalent, then the system fulfills the safety property.
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Fig. 1. Example property and system processes

This procedure is summarised by an equation that must hold in order for system
S to fulfill property P :

S ∗ P ∼= S (1)

where S ∗ P denotes the concurrent composition of S and P .
To see how the concurrent composition of processes can be used to perform a

safety property check, consider an example property process P and two different
system component processes S and T , pictured in Figure 1. Process P represents
the property that all occurrences of actions a and b must begin with a and then
strictly alternate.

By having P operate in parallel with S and synchronising on actions a and b,
P can be considered to be “supervising” S, watching for occurrences of actions
a and b. Let us follow the possible activity of the combined process S ∗ P .

Both processes begin in state 1. In state S1, S can perform action a and
transition to state S2. Since P and S synchronise on action a, P participates in
this action and also transitions from state P1 to state P2.

In state S2, S can perform action c and transition to state S3. Since P is
uninterested in action c, S is free to perform this action without any change
in P . In state S3, S may again perform c and return to state S2. S may thus
perform any number of c actions while P remains in state P2.

In state S3, S may also perform a b action. In this case, P must be in state
P2, and is also ready to perform action b, returning both processes to state 1.

In this example, process S is never prevented from performing an action by
P . The behaviour of the composite process S ∗ P is thus equivalent to S, so S
satisfies property P .

Process T provides a contrasting example of a process that fails to satisfy
property P . By again following the concurrent behaviour of T and P we can see
how this is detected.

The initial behaviour of T and P is the same as S and P – both participate
in action a and transition to state 2. In state T2, T can only perform action a.
Since T and P synchronise on action a, P must also perform a. But in state P2,
P is only ready to perform action b. Neither process allows the other to continue,
and so the composite behaviour of T and P ends at this point. This behaviour
(a single occurrence of a) is clearly not equivalent to the behaviour of T , so T
does not satisfy property P .
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These examples are extremely simple, but the technique operates correctly
for arbitrarily complex processes, including those where both system and prop-
erty are nondeterministic. The soundness of this property checking technique is
proven in [10].

In order for this proof technique to work, the concurrent composition opera-
tion must have two important characteristics. Firstly, the operator must be able
to enforce synchronisation for actions in the property process, while allowing
free asynchronous activity for other actions. Secondly, the operator must allow
multi-way synchronisation. It must allow two or more processes to participate in
an interaction, so that property processes can synchronise on the same actions
present in the system processes. This enables a property process to monitor sys-
tem processes and restrict their behaviour to activity that correctly satisfies the
property. If the system processes do contravene the specified property, then the
equivalence check will detect the fact that the composite system’s activity has
been curtailed, signifying that the safety property is not satisfied.

The concurrent composition operator of the CIRCAL formalism [17], used
in this paper, has these characteristics. The CCS [19] parallel composition op-
erator cannot be used in this manner since CCS synchronisation operates with
complementary pairs of events, which are eliminated in the resulting composite
process. The CSP [9] generalised parallel operator is suitable since the set of syn-
chronisation events is an explicit parameter to the operator, and the operator
allows multi-way composition.

2.2 Modelling With CIRCAL

In this paper we adopt the CIRCAL process algebra [17, 18] for our definition of
model components, constraints and properties. Several different notations and
toolsets have been developed for defining complex systems as CIRCAL processes.
XCircal [18], used in this paper, is a C-like language in which the CIRCAL
process algebra operators have been embedded, while [6] defines an intuitive and
precise diagrammatic notation for CIRCAL processes. Also under development
is a library of functional language combinators (in Haskell) for defining and
manipulating CIRCAL processes [11], and a visual programming interface for
building processes in diagrammatic form.

These representations build upon the same underlying CIRCAL process for-
malism, and enable modellers to exploit the formalism’s important features.
Three of the formalism’s characteristics are particularly relevant to our proof
technique. Firstly, the CIRCAL composition operator fulfills the partial synchro-
nisation requirement necessary for the composition-based property verification
technique.

Secondly, the CIRCAL composition operator is a multi-way operator in which
an action shared by two processes remains visible in the composite process,
enabling additional processes to participate in the event. This allows processes
that implement behavioural constraints, diagnostic “probes” (see for example
[18]), and correctness properties to be composed into a system model without
having to modify the original processes.
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Thirdly, the fact that transitions are labelled with sets of events allows ar-
bitrary finite relations and functions to be constructed and incorporated into a
model. These can be used to connect and adapt process components, or as model
components in their own right.

3 Modelling and Verification Methodology

In this section we outline our modelling and verification methodology, then illus-
trate the methodology by application to a timing-dependent concurrent mutual-
exclusion protocol. The methodology proceeds in three phases.

1. The first phase consists of identifying critical actions in the system being
modelled and constructing processes that capture the essential details of the
system’s behaviour. This involves constructing explicit transition systems for
parts of the system that can be modelled as simple finite state behaviours,
and using concurrent composition and abstraction operations to construct
larger, more complex systems in a hierarchical fashion. This phase is illus-
trated in section 3.2. At this stage the detailed time-critical aspects of the
model may be ignored.

2. In the second phase, the model events that delimit critical timing inter-
vals are identified. Timing constraint processes that specify the necessary
relationships between these intervals are then constructed and composed to-
gether to obtain a timed system. This phase is illustrated in this paper in
section 3.3.

3. The third phase consists of the definition and verification of required system
properties, which is accomplished by the construction of property processes
and application of the constraint-based verification technique. This phase is
illustrated in section 3.4.

3.1 Modelling the Fischer Protocol

The Fischer Protocol [15] is a distributed algorithm for ensuring critical section
mutual exclusion between a number of concurrent processes. The protocol is
simple yet relies on timing constraints among its processes for correct operation.
It has become a standard for demonstrating verification techniques for timed
systems, see for example [3, 14, 24].

We demonstrate our property verification methodology by treating part of
the specification for correct operation of a Fischer protocol system as a safety
property. We model both the system and the protocol’s essential correctness
property (mutual exclusion) as processes, and verify that the modelled system
satisfies the property.

System Description. A Fischer protocol system consists of N workers. Each
worker goes about some independent activity (not modelled here) and occasion-
ally attempts to perform some activity which needs to be protected by a critical
section. It is assumed that in order to operate correctly, the system must have
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the property that at most one worker is performing its critical section activity
at any instant.

To enact the Fischer protocol, the workers interact by reading from and
writing to a shared register. The register can take on one of N + 1 values, one
for each process plus an “empty” state Z. Figure 2 shows the basic operational
cycle of a Fischer protocol worker. Workers wait (or perform their non-critical
activity) in the start state (A) until the register becomes empty. They may then
indicate their intention to enter their critical section moving to the request state
(B), in which case they must set the register to indicate the fact, and then make
the transition to the wait state (C) within a certain time period. In the wait
state the worker will either notice that another worker has made a later request,
in which case this worker aborts its attempt to enter its critical section and
returns to the start state; or the waiting period will elapse and the worker enters
the critical section state (D). Eventually the worker exits its critical section and
returns to the start state, setting the shared register to the empty state.

3.2 Process Models of System Components

In the construction of our model of a Fischer protocol system, we utilise processes
to model two quite different classes of object. In the following section we use
processes to model abstract temporal constraints needed for the correct operation
of Fischer’s protocol. This leaves us free to model, in this section, the physical
elements of the protocol system without regard to timed behaviour.

Worker processes are modelled in CIRCAL as behavioural processes in a
straightforward way: a diagram of the worker process model is shown in Figure
3. The process has four states A, B, C and D. The transitions are labelled
with two varieties of actions. There are actions of the form xy, where x and y
are states; the purpose of these actions is to signal the activity of the process at
every transition. As we shall see later, these actions will be shared with constraint
and property processes in order to refine and analyse the system model.

Each transition is also labelled with an additional actions that indicate the
worker’s interaction with the shared register (which is also modelled as a process).
These actions take the form k := a, where the worker writes a process name a to
the register; or k == a (or k! = a), where the worker reads and tests the value of
the register. These actions are shared with the process model of the register, and
coordinate the activity of the worker process with the register process.

Fig. 2. The Fischer protocol worker process states
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Fig. 3. The Fischer worker process model

Process Fischer(Event ab,bc,ca,cd,da,ksetz,keqz,ksetp,

keqp,kneqp) {

Process A, B, C, D;

A <- (ab keqz) B

B <- (bc ksetp) C

C <- (ca kneqp) A + (cd keqp) D

D <- (da ksetz)

return A

}

Fig. 4. The XCircal code for the worker process

The XCircal code for constructing a worker process is given in Figure 4.1

This prototypical worker process is instantiated with events named to indicate
the worker process in which they occur. For reasons that will become clear later,
actions involving the empty register state also tagged with the worker’s name.
For example, the action pk == z indicates that process P is testing to see if the
register’s value has value Z.

FischerP <- Fischer(pab,pbc,pca,pcd,pda,pksetz,pkeqz,ksetp,
keqp,kneqp)

FischerQ <- Fischer(qab,qbc,qca,qcd,qda,pksetz,qkeqz,ksetq,
keqq,kneqq)

The Shared Register Model. Figure 5 shows a process which models the
shared register for a system of two worker processes. The process has one state
for each worker process, plus one state representing the “empty” state of the
register (labelled z). Write actions of the form k := a lead from every state
to the state a. For each state a, read actions of the form k == a lead from
a to itself. For clarity, Figure 5 omits the read transitions of the form k!=a :
for each A these are present as looping transitions for all states other than A.
Worker processes performing write actions cause the register to change state, and
worker processes will only be able to perform read actions if the register is in a
compatible state. For brevity, we have omitted XCircal code for the remainder
of the transition systems.
1 Since XCircal does not allow them in event names, the non-alphabetic characters

are transcribed to mnemonic characters in an obvious way.
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Fig. 5. The shared register process for a system with two worker processes P and Q

Fig. 6. Diagram of untimed Fischer protocol system

Fig. 7. Register multiplexer process M
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The Untimed System. Figure 6 shows the Fischer protocol system of two
worker processes, using a simple but powerful (and fully formal) diagramming
notation introduced in [6]. In this notation, each rectangle represents an abstrac-
tion boundary containing one or more processes: all actions other than those ap-
pearing as “ports” on the rectangle’s perimeter are abstracted and hidden from
the exterior. In a simplified version of the notation, employed here, lines simply
connect ports with identical names (thus denoting a single shared action). At
the innermost level, processes are ultimately represented by transition diagrams.
For reasons of space, we only show a single level of nesting in a diagram: the
internal structure of internal processes are represented instead by process names.

There are several things to note about the composite system.

– The complete Fischer protocol system consists of the concurrent composition
of the worker processes, the shared register process, and a register-access
mediation process (see below).

– For actions which involve the empty state Z, communication between the reg-
ister and worker processes are mediated by an additional process M (pictured
in
Figure 7). If these each of these events were modelled by a single system-
wide action, this would force each action to be synchronised across all worker
processes. This is clearly incorrect, since it would require all workers to ren-
dezvous for reads or writes involving the Z register value. Considering the
intended behaviour more carefully, we can see that outside of the register
itself, the action of each worker setting (or checking) a particular register
value are distinct events which can occur independently. Process M acts as
a junction that allows asynchronous access to shared register actions.

– All the register actions are abstracted from the FischerSystem process.
What remains visible to the outside are the transition-marking actions for
each worker process.

The XCircal code that defines an (untimed) Fischer system with two workers
is:

FischerSystem <- (FischerP * FischerQ * Register * Multiport) -
(pksetz pkeqz qksetz qkeqz kneqp kneqq kneqz
ksetp ksetq ksetz keqp keqq keqz)

3.3 Process Models of Timing Constraints

Since the Fischer protocol relies on timing constraints among its worker processes
for correct operation, the untimed model of the Fischer protocol presented above
is inadequate. Specifically, after indicating its intention to enter its critical sec-
tion, a worker process P needs to wait “long enough” to ensure that all other
workers are either (a) back at the start state, or (b) have already followed P ,
usurped P s place, and have sent P back to the start state.

One approach to modelling the timed behaviour of a Fischer protocol system
is to equip each worker with its own local clock, and predicate certain transitions
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Fig. 8. Fischer protocol timing constraint between processes P and Q

on clock values. This is the Timed Automata approach, described for example
in [14].

Applying our methodology, we express the “workers wait long enough in state
C” condition purely in terms of the sequences of events allowed (or disallowed)
by timing interval restrictions. The condition that worker P waits long enough
for worker Q can be enforced by the requirement that the interval between the
qab and qbc event be longer than the interval from qab to any pcd event. In other
words, once a qab event has occurred, a pcd event may not occur (i.e. P must
wait) until qbc has occurred. A process that enforces this constraint is shown in
Figure 8.

The process shown in Figure 8 is an instance of a family of processes which
have the effect of disallowing a specific sequence of actions. In this case the
process disallows the subsequence qab → pcd in the set of all sequences of events
drawn from {qab, qbc, pcd}. Constraints based on disallowing longer sequences of
events can easily be generated, using an algorithm based on the Knuth-Morris-
Pratt string searching algorithm [13]. This process expresses the constraint that
requires P to wait for worker Q. To fully express the timing constraints for the
whole system a constraint process is needed for every ordered pair of distinct
workers, so n(n − 1) constraint processes are required for an n worker system.2

For our two-worker example, the two instantiated constraint processes are:

TimingPQ <- TimingConstraint(pcd,qab,qbc)
TimingQP <- TimingConstraint(qcd,pab,pbc)

Applying these timing constraints to our untimed system yields the process:

TimedFischer <- FischerSystem * TimingPQ * Timing QP

The relative timing interval constraint technique employed here is more
generic and less concrete than the use of clock variables in timed automata.
Unlike clock variables, relative timing interval constraints do not directly sug-
gest an implementation in terms of local clocks used by concurrent processes. It
is interesting to note that the nature of the CIRCAL composition operator allows
the timing interval constraint processes given in this subsection to be replaced
2 By using slightly more complex processes, this can be reduced to n constraint pro-

cesses for an n worker system. There are a number of different constraint processes
that correctly enforce the Fischer protocol’s timing requirements; the constraint pro-
cess used here is one of the simplest.
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by an alternative set of processes which express the necessary timing constraints
in another idiom – as discrete local clocks for each process for example – without
requiring modification to either the worker processes or the correctness property
process (described in the next section).

3.4 Process Models of Behavioural Properties

The mutual exclusion property says that only one process may be in its critical
section at a time. In our model, this property can be expressed in terms of
the events that mark each worker process entering (cd events) and leaving (da
events) its critical section. For a system of n worker processes, a simple n + 1
state property process indicates what sequences of events are compatible with
the mutual exclusion property. The two-worker version of this property process
is show in Figure 9.

Fig. 9. Mutual-exclusion property for two processes P and Q

3.5 Verification

The behaviour of a protocol system (including the shared register and timing
constraint processes) for two or three workers is simple enough that the mutual
exclusion property can be verified by printing out the critical section behaviour
and inspecting it. Figure 10 shows the complete behaviour of a two-worker proto-
col system, with all actions except critical section actions hidden by the abstrac-
tion operator. It clearly conforms to the two-worker mutual exclusion property
(the two being in fact identical). Larger systems can be verified by using the
technique described in section 2. Treating the mutual exclusion property as a
safety condition (it expresses the allowable behaviours for a correct system), our
correctness condition is

TimedFischer * MutexProperty ∼= TimedFischer

where T imedFischer is the system model process (including timing constraint
processes) and MutexProperty is the mutual exclusion property for the appro-
priate number of workers. Using the current generation of CircalSystem tools we
have successfully performed this verification for systems of at most 5 workers.
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Start State Transition Label End State

----------- ---------------- ---------

1 ["Pcd"] -> 2

1 ["Qcd"] -> 3

2 ["Pda"] -> 1

3 ["Qda"] -> 1

Fig. 10. Critical section behaviour of worker, register and timing constraint processes

4 Discussion

The ability of a modelling formalism to accurately represent timing information
is becoming increasingly significant when designing a range of complex, concur-
rent systems such as asynchronous digital logic circuits [8, 23, 5] and network
communication protocols [4].

In this paper we present a practical modelling and verification methodology
which exploits the characteristics of a specific process algebraic composition
operator. This approach differs from existing methodologies.

Rather than augment an automata model with clocks and timed transitions,
temporal constraints are expressed as relative timing interval constraint pro-
cesses. The primary requirements for use of the interval timing constraints tech-
nique are that (a) the critical states and time intervals in the system are cleanly
delimited by actions, and that (b) timing constraints can be expressed as rela-
tionships between these intervals. For the example in this paper the constraint
relationship takes the form a relative differences in interval duration for two
intervals that start at the same moment. Other timing properties known to be
amenable to expression as interval constraints include intervals required to be
overlapping (or non-overlapping); and intervals required to be entirely contained
within other intervals. Cowie [7] describes a methodology for translating a class
of constraints normally expressed in an interval algebra to constraint processes.

Our methodology contrasts with previously described methodologies for mod-
elling and verifying timing-dependent systems. Timed Automata [2] are formal
automata models which include a real-valued local clock value for each process,
and allow transitions to be predicated on clock values. The Uppaal and TVS
systems are toolsets that include model-checkers for Timed Automata (Fischer
protocol verification examples for each are reported in [14] and [3]).

Timed process algebra [20] extend untimed process algebra (such as CCS,
CSP or ACP) with operators for expressing the possibility that transitions may
be delayed a certain period after they become active. [24] describes the Fischer
protocol in terms of a discrete-time and a real-time process algebra.

A third approach to modelling and analysing timed systems is to introduce
timing components (e.g. clock processes and “clock tick” actions) into an un-
timed framework such as an untimed process algebra – an example of this ap-
proach is given in this is given in [4].

The methodology described in this paper contributes to the state of the art
of formal methods by providing (1) an alternative technique for defining con-
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straints in timing-critical systems: separate constraint processes which define
relationships between critical timing intervals; and (2) an alternative technique
for verifying properties in such systems: the composition-based verification tech-
nique, which does not require the introduction of temporal logic, model-checking
or refinement relation checking.

This elegant approach does not introduce any additional mathematical con-
cepts, and capitalises on a concept already very familiar to engineers: processes
described by state transition diagrams. The use of state-machine based property
and constraint definition does not, of course, guarantee superior expressiveness
and comprehensibility in all cases: it depends very much on the system and prop-
erties in question. The methodology presented in this paper does however present
a lower barrier of entry to a population design engineers that would otherwise
be unlikely to adopt formal methods techniques, and provides an additional set
of tools for the experienced formal methods practitioner.

The example presented here is simple, due to space constraints. We can
report a number of observations about the application of the methodology to
larger systems (for example, see [12]).

Firstly, increasing structural and behavioural complexity of systems does
not appear to present a major problem in system modelling. We find that the
encapsulation of system processes as components with well defined interfaces
(the process signature) and encapsulated state provides an “object oriented”
environment that allows the construction of clean, hierarchical models.

Secondly, whilst some entities such as finite variables and logical relations can
be naturally modelled as component processes, this does not appear to be the
case for arithmetic or dynamically sized data structures (even when restricted
to finitely bounded versions).

We see this methodology being used, as in the Fischer protocol example, to
analyse complex systems in terms of sequences of critical events. Experimenta-
tion and modelling at this level can be used to develop correct algorithms and
protocols.

We would like to acknowledge that this research has been funded in part by
the Australian Research Council.
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Abstract. In this paper, we model the epoch distance of the random waypoint 
model in mobile ad hoc networks. In the random waypoint model, each node 
selects a target location (i.e., waypoint) to move at a speed selected from an 
interval. Once the target is reached, the node pauses for a random time and then 
selects another target with another speed to move again. The movement between 
two waypoints is referred to as an epoch. In this paper, we derive the probability 
distribution of the epoch distance for the random waypoint model. Such a study is 
important as the epoch length distribution may be required for the derivation of 
the link duration distribution or node spatial distribution for mobile ad hoc 
networks. The analytical result is then verified via simulation.  

Keywords: Random waypoint model, epoch distance, ad hoc networks. 

1   Introduction 

Mobile ad hoc networks have received much attention in recent years. In such a 
network, no infrastructures such as base stations exist, and data are relayed by 
intermediate mobile hosts if the receiver is beyond the transmission range of the sender.  

There have been many mobility models available for evaluating the performance of 
mobile ad hoc networks, including the random waypoint model [1], random walk [2], 
and group model [3]. In this paper, we focus on the random waypoint model. With this 
mobility model, each node selects a target location (i.e., waypoint) to move at a speed 
selected from a uniformly distributed interval [ minV , maxV ]. Once the target is reached, 
the node pauses for a random time and then selects another target with another speed to 
move again.  

In this paper, we model the epoch distance (length) of the random waypoint model, 
and derive the probability distribution of the distance between two waypoints in mobile 
ad hoc networks. Such a study is important as the epoch length distribution may be 
required for the derivation of the link duration distribution [4] or node spatial 
distribution [5] for mobile ad hoc networks. The analytical result is then verified by 
simulations. 
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    The rest of the paper is organized as follows. Sec. II gives the analytical model of 
epoch distance in the random waypoint model. Sec. III provides the simulation results 
to verify the analytical model. Finally, the paper is concluded in Sec. IV.    

2   Epoch Distance in Random Waypoint Model 

In our analysis, the movement area Q is a two-dimensional unit square area [0, 1]2, and 
each node moves based on the random waypoint model with the same parameters. 
Nodes are assumed uniformly distributed in the area. Given two waypoints (x1, y1) and 
(x2, y2), there are four cases to consider, each with an equal probability: (i) 21 xx ≤ and 

21 yy ≤ , (ii) 21 xx ≤ and 21 yy > , (iii) 21 xx > and 21 yy ≤ , and (iv) 21 xx > and 

21 yy > . To save space, we will derive the epoch length distribution based on the 

conditions 21 xx ≤ and 21 yy ≤ . The other cases can be obtained similarly. 

Let ED  denote the random variable of an epoch distance for the random waypoint 

model. The probability of dDE ≤  is equal to the probability that the distance of two 

random points in a unit square less than or equal to d (i.e., d≤ ). The probability of 
dDE ≤  given the first point placed at (x1, y1) is equal to the probability that the second 

point falls inside the circle centered at (x1, y1) with radius d. We only consider the 
probability under the condition that (x2, y2) is at the upper right direction of (x1, y1), 
which is equivalent to the condition 21 xx ≤  and 21 yy ≤ . Since the second point is 

uniformly placed on the movement area Q at random, the probability that the condition 
dDE ≤  is satisfied is equivalent to the area for the second point to locate on Q that 

satisfies the condition. To derive the probability of dDE ≤ , we need to further 

consider two cases: (i) 1≤d  and (ii) 21 ≤≤ d . 

i) 1≤d  

                 

Fig. 1. The conditional probability of dDE ≤  given 1≤d  
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The probability of dDE ≤  given 1≤d  is illustrated in the shaded areas shown in 

Fig 1. The lowest-leftmost point of each shaded area is a possible location of (x1, y1), 
and the shaded area is the corresponding area for (x2, y2) to locate in Q, which satisfies 

dDE ≤  given 1≤d . There are five different sub-cases to derive the conditional 

probability of dDE ≤  given 1≤d , as shown in Fig. 1. 

 
Case 1: dx −≤ 11  and dy −≤11  

Case 1 states that as long as the first point (x1, y1) stays in the area with 
,11 dx −≤ and dy −≤11 , where 1≤d , the possible area at which the second point 

(x2, y2) is located (see the shaded area in A1-1 in Fig. 1) will entirely fall in the 
movement area Q. Therefore, we have 

{ } 2
11 4

1
1,1,1|Pr ddydxddDE π=−≤−≤≤≤   (1) 

 
Case 2: dx −≥ 11  and dy −≤ 11  

Case 2 states that once x1 exceeds 1-d, x2 must be limited to 1 to avoid the second 
point move out of the movement area Q. Consequently, the possible area in which the 
second point may be located is composed of a fan shape and a triangle as given by the 
shaded areas A2-1 and A2-2, respectively, in Fig. 1. Therefore, we have 
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Case 3: dx −≤ 11  and dy −≥ 11  

Case 3 states that once y1 exceeds 1-d, y2 must be limited to 1 to avoid the second 
point move out of the movement area Q. Consequently, the possible area in which the 
second point may be located is also composed of a fan shape and a triangle as given by 
the shaded areas A3-1 and A3-2, respectively, in Fig. 1. Therefore, we have. 
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Case 4: dx −≥ 11  and dy −≥ 11 .  

Case 4 states that since both x1 and y1 exceeds 1-d, both x2 and y2 must be limited to 
1 to avoid the second point move out of the movement area Q. In Case 4, 

dyx ≥−+− 2
1

2
1 )1()1( , so that the arc of the quarter circle still intersects the upper and 

right boundaries of the movement area Q. The possible location of the second point is 
composed of a fan shape and two triangles, as given by the shaded areas A4-1, A4-2, 
and A4-3, respectively, in Fig. 1. Hence, we have 
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Case 5: dx −≥ 11  and dy −≥ 11  

Similar to Case 4, but with dyx ≤−+− 2
1

2
1 )1()1( , the arc of the quarter circle will 

not intersect any boundary of area Q. Thus, the possible location of the second point to 
stay is just a rectangular (i.e., the intersection the quarter circle and the unit square Q) as 
shown in Fig. 1. It yields 
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From (1) to (5), we obtain   
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Therefore, 
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ii) 21 ≤≤ d  

Given (x1, y1), the conditional probability of dDE ≤  given 21 ≤≤ d  is the 

shaded areas shown in Fig 2. Like in the case 1≤d , the lowest-leftmost point of each 
shaded area is a possible location of (x1, y1), the shaded areas are the corresponding area 

for (x2, y2) to locate in Q,  which satisfies dDE ≤  given that 21 ≤≤ d . 

                          

Fig. 2. The conditional probability of dDE ≤  given 21 ≤≤ d  

There are two different sub-cases to derive the probability of dDE ≤  given 

21 ≤≤ d , as shown in Fig. 2, which are similar to Cases 4 and 5 when 1≤d . 



522 Y.-T. Wu, W. Liao, and  C.-L. Tsao 

 

Case 1: Since dyx ≥−+− 2
1

2
1 )1()1( , the arc of the quarter circle will intersect the 

boundaries of the movement area Q. The possible location of the second point is 
composed of a fan shape and two triangles, as given by the shaded areas A4-1, A4-2, 
and A4-3, respectively, in Fig. 2. Thus, 
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Case 2: Since dyx ≤−+− 2
1

2
1 )1()1( , the arc of the quarter circle will not intersect 

any boundary of area Q. The possible location of the second point is just a rectangular 
(i.e., the intersection the quarter circle and the unit square Q) as in Fig. 2. Hence, we 
have 
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Based on (7) and (11), we can obtain the probability distribution of DE, i.e. the 

distance between two destinations as follows. 
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3   Performance Evaluation 

In this section, we verify our analytical model via simulation. In our simulation, there 
are 300 nodes initially distributed in a unit square as in [6,7]. The parameter settings are 
listed in Table I. 

Table 1. Simulation parameters 

 
Parameter Value 

number of nodes 300 
transmission range r 0.15 

nodal speed Vfix 0.01 (1/sec) 
movement area Q [0, 1]2 

simulation duration 600,000 (sec) 

    Fig. 3 plots the analytical probability density functions (pdf) of DE  in comparison to 
the simulation. The figure shows that the analytical curves match the simulation results 
very well. 

                       
                                Fig. 3. The distribution of DE 

4   Conclusion 

In this paper, we model the epoch distance of the random waypoint model for mobile ad 
hoc networks. In particular, the probability distribution of the distance between two 
waypoints is derived. The analytical results are also verified via simulations. The 
results show that the analytical and simulation curves match well. 
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Abstract. As the complexity of circuit design increases, verification
through simulation has become a bottleneck of the IC design process.
Distributed parallel simulation is one way to solving the problem. In
order to distribute the simulation workload to multiple processors, the
design must be carefully partitioned first. While most previous work
focus on gate level partitioning, our work extends a previously imple-
mented Verilog gate-level partitioner to support RTL and behavior level
partitioning. Techniques to partition special constructs specific to these
levels, such as global access, function calls and memory access, are
described in this paper. The experimental results show that our
techniques are capable of finding partitions which can accelerate sim-
ulation.

Keywords: distributed simulation, parallel simulation, RTL level par-
titioner, behavior level partitioner.

1 Introduction

As the complexity of circuit design increases, verification through simulation has
become a bottleneck of chip design process. Large designs, such as System on
Chip (SOP), may take several days to simulate. Sitting for simulation to finish
is a waste of time and increases the chip’s time to market. Therefore the Field
Programmable Gate Array(FPGA) prototyping, such as an emulator, has been
proposed to solve this problem. However, emulators are expensive and hard to
use.

Memory usage is another problem that arises when a design gets larger. The
physical memory of a computer is limited, so it may not be possible to simulate
large designs that exceed the computer’s capacity of memory.

Several Electronic Design Automation (EDA) tool vendors now provide dis-
tributed simulation solutions to solve the problem, e.g. the Simcluster [1].
Through distributed simulation, the workload can be distributed among sev-
eral processors and improve the turnaround time of simulation. By dividing a
design into several smaller pieces, each piece needs less memory for simulation
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c© IFIP International Federation for Information Processing 2005

,

sykuo@cc.ee.ntu.edu.tw



526 K.-H. Chang et al.

and can easily fit into a modern computer. However, for better performance,
partitioning must be done carefully.

Partitioning has been studied for several decades and many algorithms have
been proposed and solved the partitioning problems successfully. However, most
of them focus on flattened gate-level partitioning. As chips get larger, RTL and
behavior level simulation have also become bottlenecks in the IC design process,
and the demand for parallel simulation is increasing. Furthermore, in a large
project, it is often necessary to simulate a design containing several levels of
abstraction. For example, part of a chip may be in gate-level while another part
in RTL-level; or part of the design may be hierarchical while the other part
is flattened. This emerging demand for mixed abstraction level of parallel logic
simulation is beyond the capability of existing gate-level partitioning algorithms.

In this paper, a partitioner that can perform the partitioning at all abstrac-
tion levels is proposed. It can find partitions for a design from behavior level to
gate level, no matter it is hierarchical or flattened.

2 Previous Work

The goal of the distributed simulation partitioner is to make the workload shared
among processors as balanced as possible and make the communication overhead
as small as possible. A good survey on this topic is given by Bailey, Briner and
Chamberlain [2]. While most previous work focuses on gate-level, Guettaf et
al. [3] proposed a behavior level partitioner for VHDL. However, they did not
address how to handle special constructs like function call, global access and
memory access, and these issues are addressed in our work.

The multi-level partitioner proposed in this paper is relied on our previous
work on gate-level partitioning. It supports two partitioner modes, normal mode
and regroup mode, and utilizes techniques to flatten the design for finer-grained
partitioning. Please refer to [4] for more details on this work.

3 Behavior and RTL Level Partitioning

Our proposed workload estimation technique and RTL/behavior level partition-
ing algorithm are discussed in this section.

3.1 Workload Estimation

Workload in a simulation consists of processing signal changes, scheduling the
affected behaviors, and executing the affected behaviors. In general, it is diffi-
cult to estimate workload accurately, and approximations are needed. In gate
level designs, the number of gates are often used to estimate workload in each
partition. In this paper, we use the number of variables and nets in a partition
to estimate the workload, which is similar to the use of gate count in gate-level
designs.
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3.2 Partition Algorithm

The gate-level partitioner we based on is only capable of partitioning gates (or
instances in Verilog). In order to handle RTL/behavior level code, we need to
convert them to instances first, and the algorithm is given below.

For each initial block, always block, and continuous assignments, an instance
is created. The variables used at the LHS(left hand side) of the assignments will
become output ports, and the variables used at the RHS of the assignments will
become input ports. Then it can be partitioned with any gate-level partitioning
algorithm.

Task and function definitions are duplicated to all the partitions where they
are called. Since Verilog task and function calls are not reentrant, this approach
will not cause any problem.

Global accesses which cross partitions will be replaced by channel commands
provided by Simcluster. In Simcluster, channel commands are provided to set,
view, force and release variables in a remote partition. For example, “a= b.c.d;”
will be converted to “$channel variable(”b.c.d”, a)”.

Memory accesses are handled differently from variables because a memory
cannot become a port. Task and function are used to handle memory accesses
that cross partitions, and the template is given in Figure 1. In the template,

When memory access to “a.b.mem” appears on the LHS and is in another partition:
a.b.mem[i]= RHS;

will become:
set mem(i, RHS);

task set mem;

input index;

input RHS;

$channel memory set("a.b.mem", index, RHS);

endtask

When memory access to “a.b.mem” appears on the RHS and is in another partition:
LHS= a.b.mem[i];

will become:
LHS= fetch mem(i);

function fetch mem;

input index;

reg result;

begin

$channel memory("a.b.mem", index, result);

fetch mem= result;

end

endfunction

Fig. 1. Remote Memory Access Template
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$channel memory is used to get data from the memory in a remote partition,
and $channel memory set is used to send data to the remote memory.

4 Experimental Results

The design is part of the CF FFT project from Opencores [5]. It is a fast Fourier
transform converter. The FFT architecture is pipelined on a rank basis; each
rank has its own butterfly and ranks are isolated from each other using memory
interleavers. The design is in RTL level. The “large testbench” provided in the
project is used as the testbench and is also in RTL level. The cf fft 4096 16
configuration (4K point FFT, 16 bit precision) is used as the design under test.
The top-level module instantiates the testbench and the design under test. Our
partitioner is used to partition the design into two partitions at top module.

The simulator used is VCK, and the platform is Redhat Linux 8.0 running
on a workstation with dual AMD MP 1.8GHz CPU. The partitioner run time is
0.6 seconds. The single process run time is 118 seconds. After partitioning, the
distributed run time becomes 71 seconds with 1.66X speed up.

Aside from this benchmark, our partitioner has also been used by Avery
Design Systems to partition several commercial designs successfully.

5 Conclusion

In this paper, we extended a gate-level partitioner to support RTL and behavior
level partitioning. We proposed techniques to convert RTL/behavior level code
to gates and described how to handle constructs specific to these levels. Unlike
other partitioners, which usually focus on gate-level circuits only, our partitioner
can partition any design in any level of abstraction, as long as it is written
in Verilog. From the results of the experiment, it can be concluded that the
partitioner proposed in our work can indeed find good partitions that accelerate
circuit simulation by distributed simulation. With this partitioner, distributed
simulation tools will become easier to use and greatly save circuit designers’ and
verifiers’ time.
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Abstract. Event-pattern reactive programs serve reactive components
by pre-processing the input event stream and generating notifications
according to temporal patterns. The declarative language PAR allows
the expression of complex event-pattern reactions. Despite its simplicity
and deterministic nature, PAR is expressively complete in the follow-
ing sense: every event-pattern reactive system that can be described and

implemented using finite memory can also be expressed in PAR.

1 Introduction

Event-pattern reactive (EPR) programs are software components that recognize
temporal patterns of events and respond by generating output notifications. Such
components are increasingly used in middleware for publish-subscribe architec-
tures to provide services such as event correlation (see, for example [6, 2]). EPR
programs process an input stream of events, possibly generating an output after
each event is read. The process of generating an output stream from input is
called a behavior. Similar to regular languages, behaviors can be specified op-
erationally by means of state machines or declaratively. Although state machines
are usually the model of choice for implementation, a declarative representation
is preferred for specification, because

(1) it is often more concise and readable. For example, the expression “notify

all occurrences of alarm after fire with no interleaving false-alarm” is
clearer than an equivalent state machine;

(2) it permits algebraic treatment for common operations and for proving equiv-
alences and entailments;

(3) it avoids the “implementation bias,” thus enabling to delay space/time trade-
offs until the system construction phase.

In [3] we presented a machine-oriented approach to describe EPR programs. In [4]
we proposed PAR, a declarative language to specify EPR programs, and built
the formal framework to define its semantics in terms of output and completion
status (a pattern is recognized or it is realized that the pattern will never occur,
and no more output is produced).
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In this paper we prove that PAR has full expressive power: any behavior that
can be implemented by a finite-state machine, also called a finite behavior,
can be specified by a PAR expression. This result mirrors the well-known result
in automata theory that regular expressions are equally expressive as finite-state
automata, and our proof borrows ideas from that proof [1], but is technically
more challenging. First, the semantic domain is more complex since output,
completion and synchronization with the input have to be considered. Second,
PAR is deterministic while regular expressions contain + for non-deterministic
choice, and ∗ for arbitrary repetition. This simplifies the proof of expressive
completeness of regular expressions since different paths can be easily merged.

Below we briefly summarize the semantic domain for EPR programs and the
PAR syntax and semantics. More details can be found in [4] and the full version
of this paper [5].

The Semantic Domain. The input stream is formed from input symbols
taken from a finite set Σ. Output notifications O consist of subsets of a finite set
of output symbols. The empty notification ∅ is allowed, and notifications can
be combined by set union if two patterns are recognized simultaneously. The
combination of two or more of the same output A, is A itself.

An event-pattern behavior is defined by the immediate response to all input
stream prefixes, characterized by two aspects: the output and the completion

status. There are three completion statuses: (1) success (�): the pattern has
just been observed; (2) failure (⊥): the pattern cannot be observed in any
stream that extends the current prefix; and (3) incomplete (ι): more input is
needed or the input symbol is not relevant. We call C = {�, ι,⊥} the completion

domain. The presence of completion statuses allows a compositional definition
of behaviors: expressions can use the completion statuses of their subexpressions
to preempt or restart them.

In [4] we defined Event Pattern Machines (EPM) to describe behaviors. An
EPM M : 〈S, o, α, ∂〉 consists of a set of states S and three maps—o, α and
∂—such that, for any state and input symbol: (1) o returns an output value,
(2) α returns a completion status, and (3) ∂ gives a “next” state. We require
that if a state s is reached from q with input a, and αaq �= ι then s is silent in the
sense that all states reachable from s generate no output and declare ι status.
Under these conditions, each state in S is associated with a unique behavior.

If S is a finite set of states (basically a Mealy-style machine with input Σ and
output O × C) we call such a machine a finite EPM, and the behaviors defined
by them are called finite behaviors. The framework, however, is not restricted to
finite machines. Any set, for example, the (infinite) set of all PAR programs, if
equipped with o, α and ∂ function, receives unique semantics: each PAR program
is assigned a unique behavior.

PAR Syntax. A simple PAR expression is an equality test for an input symbol:
for each input symbol a there is an expression a. If A is an output notification
and x and y are PAR expressions, then so are:

x | y x ; y x x[A] repeatx try x unless y silent
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PAR Semantics. The semantics of PAR is defined in terms of the maps o, α and
∂. First, for every PAR expression x and input a, if αax �= ι then ∂ax = silent.
Let x and y be PAR expressions. The semantics of the constructs are:

– simple: the expression a waits for an a event to succeed.
– selection: the expression (x | y) evaluates x and y in parallel, succeeding as

soon as one succeeds and failing when both have failed. Unlike + for regular
expressions, selection does not nondeterministically choose between the two
branches.

– sequential: (x ; y) evaluates x and, upon successful completion, evaluates y.
– complementation: x reverses completion statuses upon termination.
– output: x[A] generates the output A when x successfully completes.
– repetition: the expression (repeat x) evaluates x. If x fails, then the repeti-

tion fails; if x succeeds then repeat restarts the body.
– preemption: the expression (try x unless y) evaluates both x and y in

parallel, trying to check whether x succeeds before y. Hence, if the try part
x succeeds then the whole expression succeeds. It fails if x fails, or if y

succeeds and x does not succeed.
– silent: silent always outputs ∅ and declares incomplete.

2 Expressive Completeness

Every PAR expression x describes a finite behavior since the set {∂wx} is finite.
The converse also holds:

Theorem. Every finite behavior can be described with a PAR expression.

Proof. (Sketch; the full formal proof can be found in the full version of this pa-
per [5]). Let M be an EPM with state set S : {v1, . . . , vn, vn+1}, where, without
loss of generality, we assume that vn+1 is the only silent state (all silent states are
bisimilar). The goal is to construct PAR expressions Φ1, . . . , Φn such that each Φi

exactly describes the behavior associated with state vi. Following the approach
of the proof of the equivalence of regular expressions and finite automata [1], we
do so by incrementally constructing a set of intermediate expressions that more
and more accurately capture the behavior of the states. We show that after n

rounds we can define the desired expressions Φ1, . . . , Φn.

Incremental Construction. At round k we build a set of expressions ϕk
ij

that simulate the behavior of node vi for input strings that, visiting only nodes
labeled less than vk along the way, either never reach vj or reach it for the first
time. During the construction all expressions ϕk

ij satisfy the following invariant:
if vl is the state reached from vi after reading a, and A is the output generated:
(1) if vl = vj then ϕk

ij succeeds on a and outputs A;
(2) if vl �= vj and l > k then ϕk

ij fails and outputs nothing; and
(3) if vl �= vj and l ≤ k then ϕk

ij is incomplete on a, outputs A and ∂a(ϕk
ij) = ϕk

lj .

Base case: The expression ϕ0
ij succeeds on a and outputs A, if there is a direct

edge from vi to vj labeled with input a and output A; otherwise ϕ0
ij fails without
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generating output. This can simply be achieved with the expression a[A] enclosed
in a try-unless whose unless case succeeds immediately.

Inductive step: The expression ϕk
ij is defined using previously defined expres-

sions. For j = k, ϕk
ij = ϕk−1

ij . For j �= k we need to consider two sets of paths
(see figure): those that do not visit vk (captured by ϕk−1

ij ), and and those that
do. In the latter case, vk can be visited multiple times. Therefore, we need to

vi

ϕ
k−1
ik

ϕ
k−1
ij

vk

ϕ
k−1
kj

ϕ
k−1
kk

vj

define a PAR expression ϕk−1
kk ∗ϕk−1

kj that
(based on ϕk−1

kk and ϕk−1
kj ) behaves: (1)

as vk for paths that lead to vj using
nodes at most vk−1, (2) fails as soon as
the the machine visits a node larger than
vk, and (3) restarts if a visit to vk is pro-
duced. Note that this is trivial to achieve
with regular expressions, but not that
easy in PAR. In the full version [5] we
show that this construct can be defined

by the expression x ∗ y
def= try repeat (y W x) unless repeatx.

Final Expressions. Using the expressions ϕn
ij we can now define expressions

Φi, for states vi, i = 1, . . . , n. The behavior of the silent state vn+1, if present,
is modeled by the expression silent. We introduce the auxiliary expressions
Kleene�

i (and Kleene⊥
i ) that upon an input a, succeed if vi succeeds (resp. fails),

and become Kleene�
j (resp. become Kleene⊥

j ) if vi leads to vj . This is achieved
with the use of ∗ defined above. Finally, Φi is defined by composing all possible
paths from vi:

Φi
def=

⎛
⎝ try Kleene�

i |
∣∣
j
ϕn

ij ; Kleene�
j

unless Kleene⊥
i |

∣∣
j
ϕn

ij ; Kleene⊥
j

⎞
⎠ .
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Abstract. This paper gives formal definitions of the different existing
interoperability notions called interoperability criteria. The equivalence
between two of them leads to a method for interoperability test genera-
tion that avoids the state explosion problem of classical approaches.

1 Introduction

Despite a large literature on the interest of providing a formal approach for
interoperability testing [1, 2], only few tentative have been proposed. Therefore,
the aims of this study presented in this paper are double. First, we give formal
definitions of interoperability testing called interoperability criteria (iop criteria
for short in the following). The second contribution of this work is a new method
to generate automatically interoperability test cases. It uses a theorem proving
the equivalence between two iop criteria. It avoids the well-known state-explosion
problem due to the classical construction of the specification composition. Thus,
the proposed method is a real solution that provides an easy and efficient way
to derive effectively interoperability test cases.

2 Interoperability Definitions

One-to-One Interoperability Testing Architecture. In this study, we con-
sider the one-to-one interoperability context : the System Under Test (SUT) is
composed of two Implementation Under Test (IUT). There are two kind of in-
terfaces. The lower interfaces used for the interaction of the IUTs and the upper
interfaces used for the communication with their environment. Depending on the
access to the different interfaces, different architectures can be distinguished.

Formal Background. The well-known IOLTS (Input-Output Labeled Transi-
tion System) model will be used to model specifications and to define interop-
erability criteria. We note p?m (p!a) for an input (output) of message m on the
interface p. Figure 1 gives an example of two specifications using this model.

Quiescence and ioco. Three main situations lead to quiescence of a system :
deadlock (a state after which no event is possible), outputlock (a state after which

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 533–537, 2005.
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Fig. 1. Specifications S1 and S2

only transitions labeled with input exist) and livelock (a loop of internal events).
Quiescence is modeled by δ and is treated as an observable output event. The
obtained IOLTS is called suspensive IOLTS [3] and noted Δ(M). The ioco con-
formance relation [3] is used for the formal interoperability definitions. It says
that an IUT I is ioco-conformant to its specification S if I can never produce
an output that could not be produced by S after the same suspension trace.

Interaction. We need a model of the asynchronous interaction of the imple-
mentations. This is noted M1‖AM2 and obtained as usual by a synchronous
composition of Δ(M1), Δ(M2) and FIFO queues modeling the asynchronous
environment. Quiescence is preserved and δ(i) corresponds to quiescence of Mi

and δ of the two IOLTS.

Projection. In interoperability testing, we usually need to observe some spe-
cific events of an IUT. M/X represents the projection of the behavior of the
implementation M reduced to a set X of expected messages.

Model of an Implementation: iop-Input Completion. In the context of
interoperability testing, tester can only observe the events on the lower inter-
faces. But these testers can not differenciate events received by an IUT from
events effectively treated. A completion is needed for inputs corresponding to
the output alphabet of the other IUT specification. It is called the iop-input
completion leading the IOLTS into an error deadlock state.

Formal Definition of Interoperability Criteria. According to the chosen
testing architecture, different notions of interoperability can be used [4]. We will
focus here on two interoperability (iop) criteria. The global iop criterion iopG

says that two implementations are considered interoperable if, after a suspen-
sive trace of the asynchronous interaction of the specifications, all outputs and
quiescence observed during the asynchronous interaction of the implementations
are foreseen in the specifications. The bilateral iop criterion iopB says that
after a suspensive trace of S1 observed during the asynchronous interaction of
the implementations, all outputs and quiescence observed in I1 are foreseen in
S1, and the same in the point of view of I2 implementing the specification S2.

The most important result is the following theorem 1 stating that iopG is
equivalent to the bilateral total iop criterion iopB.

Theorem 1. I1 iopG I2 ⇔ I1 iopB I2
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3 Interoperability Test Generation

The goal of an interoperability test generation algorithm is to generate interop-
erability Test Cases (TC) that can be executable on the SUT composed of the
two IUT to be tested. The inputs of such algorithms are the specifications S1

and S2 on which the two IUT (I1 and I2) are based, and a Test Purpose (TP )
which is a particular property (in the shape of incomplete sequences of actions
that have to be observed or sent to the SUT) to be tested.

Interoperability Verdicts. The execution of an iop test case TC on
SUT (I1‖AI2) gives a verdict : verdict(TC, SUT ) ∈ {PASS, FAIL, INC}. The
interoperability verdict PASS means that no interoperability error was detected,
FAIL means that the iop criterion is not verified, and INC (for Inconclusive)
means that the behavior of the SUT seems valid but it is not the purpose of the
test case.

The Classical Approach and the State-Space Explosion Problem. In the
classical approach based on a criteria like iopG, the test generation algorithm
begins with the construction of the asynchronous interaction S1 ‖A S2. Then S1

‖A S2 is composed with the TP. The consistency of TP is checked in parallel and
TC is generated. Yet, the construction of S1 ‖A S2 can cause the well-known
state-space explosion, as building S1 ‖A S2 is exponential in the number of states
of S1 and S2 and the FIFO queues size. Thus, interoperability test generation
based on the global iop criterion may be impossible even for small specifications.

A New Method Based on the Bilateral iop Criterion iopB. The equiva-
lence of iopB and iopG (cf. therorem 1) suggests to study a method for iop test
cases generation based on the bilateral iop criterion iopB. The idea is to derive
TPSi from an iop test purpose TP . Each TPSi represents TP in the point of
view of Si. This step is described in the following algorithm (see figure 2). The
second step is to use a conformance test generation tool F such that F : (S1,
TPS1) → TC1 and F : (S2, TPS2) → TC2. We obtain two unilateral iop test
cases TC1 and TC2. The obtained test cases obtained are modified in order to
take into account the differences between upper and lower interfaces in interop-
erability testing. For example, an event l!m (resp. l?m) in the obtained test case
will be replaced by ?(l?m) (resp. ?(l!m)) in the interoperability test case. This
means that the unilateral interoperability tester observes that a message m is
received from (resp. sent to) the other IUT on the lower interface l. No changes
are made on the test cases for events on the upper interfaces. According to the
theorem 1, verdict(TC, I1 ‖A I2) = verdict(TC1, I1 ‖A I2) ∧ verdict(TC2, I1

‖A I2). The rules for the combination of these two verdicts to obtain the final
iopB verdict are given by : PASS ∧ PASS = PASS, PASS ∧ INC = INC,
INC ∧ INC = INC, and FAIL ∧ (FAIL ∨ INC ∨ PASS) = FAIL.

Applying the Method to an Example. Let us consider the two specifications
S1 and S2 of figure 1 and the interoperability testing purpose TP = l1?a.U2!N .
This test purpose is interesting because it contains events on both interfaces
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Input: TP : test purpose; Output: {TPSi}i=1,2;
Invariant: Sk = S3−i (* Sk is the other specification *); TP = μ1...μn

Initialization: μ0 = ε; TPSi = ε;
for (i=0;i ≤ n;i++) do

if (μi ∈ ΣSi) then TPSi = TPSi .μi (* just add *)
if (μi ∈ ΣSk

L ) then TPSi = TPSi .μ̄i (* just add the mirror *)

if (μi ∈ Σ
Sk
U ∪ {τ})

σ1 := TPSi ; aj =last event(σ1)
while aj ∈ ΣSk

U ∪ {τ} do σ1=remove last event(σ1)
aj−1 =last event(σ1) (* aj−1 is the last event added to TPSi and

end a mirror event āj−1 may exist in Sk *)

MSk = {q ∈ QSk such that q
āj−1→ and σ = āj−1.ω.μi ∈ Traces(q)}

if (∀q ∈ MSk , q
σ

�−→) then error(TP not valid : no path to μi)

while (e=last event(ω) /∈ ΣSk
L ∪ {ε}) do ω=remove last event(ω) end

if (e ∈ ΣSk
L ) then TPSi = TPSi .ē

else error(TP not valid : μi /∈ ΣS1 ∪ ΣS2)

Fig. 2. Algorithm to derive TPSi from TP
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Fig. 3. Interoperability test cases obtained for TP = l1?a.U2!N

and both IUTs. Applying the algorithm of figure 2, we obtain : TPS1=l1!a.l1?n
and TPS2 = μ̄1.μ2 = l2!a.U2!N . The obtained test cases TC1 and TC2 are
given in upper side of figure 3. For interoperability test case generation based on
the global relation, the obtained TC (cf. the third test case in figure 3) comes
from the composition of S1‖AS2 with TP . According to the theorem 1, final
interoperability verdicts obtained with TC1 and TC2 should be the same as the
verdict obtained with TC. The proof is not given here but a look at glance to
TC1 and TC2 shows the same paths and verdicts in TC.

4 Conclusion

In this paper, interoperability criteria taking quiescence into account are defined,
describing the conditions under which two IUT can be considered interoperable.
A theorem proving that two of them are equivalent allows a new method for
interoperability test generation that avoids the classical state-explosion problem.
Further studies will consider a distributed approach for interoperability testing
of architectures composed of more than two implementations.
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Abstract. Formal technique is the basis of automatic test generation. Mobile IPv6 
is a complicated and distributed protocol with many discrete behaviors. It is diffi-
cult to describe the entire protocol by some formal model. The idea of hierarchical 
protocol description is proposed. Finite state machine (FSM) and multi-node finite 
state machine (MN-FSM) are defined. Mobile IPv6 protocol is divided into four 
layers. FSM and MN-FSM are used to describe network system, mobile IPv6 
nodes, inner data structure management and discrete behaviors. Test sequences 
can be generated automatically based on these formal models. 

1   Introduction 

Mobile IPv6 is the mobility solution in network layer [1]. Conformance testing is very 
necessary to guarantee an implementation consistent to its standard specification [2]. 
Mobile IPv6 is in its growing stage, so it is necessary to study mobile IPv6 confor-
mance testing. 

Test generation is the key issue in conformance testing. Formal technique is the ba-
sis of automatic test generation. How to describe mobile IPv6 by formal technique 
must be solved before test generation. Considering state explosion and plentiful dis-
crete behaviors, it is not practical to describe the entire mobile IPv6 protocol by some 
formal model. We propose the idea of hierarchical protocol description. Finite state 
machine (FSM) and multi-node finite state machine (MN-FSM) are defined to de-
scribe mobile IPv6. 

2   Hierarchical Protocol Description 

Mobile IPv6 protocol can be described in four sections, which are network system, 
nodes, inner data structure (IDS) management and discrete behaviors. Four types of 
nodes, including mobile node (MN), correspondent node (CN), home agent (HA) and 
common router (CR), are defined. Each type of node is also a self-governed system. 
Also, three types of IDSs, including binding cache (BC), binding update list (BUL) 
and home agent list (HAL), are defined. 

For distributed system, compared to trying to describe entire protocol by single 
formal model, hierarchical description can reduce complexity [3]. Mobile IPv6 proto-
col can be described in four layers (Fig 1). 

© IFIP International Federation for Information Processing 2005 
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Fig. 1. The composition of mobile IPv6 protocol. Four types of nodes (MN, CN, HA and CR) 
are the core section. Mobile IPv6 network is composed of these types of nodes. IDS manage-
ment is the most important mission that these nodes must perform. Discrete behavior descrip-
tion is the necessary section. 

Finite state machine (FSM) is the most popular model for describing network pro-
tocols [4]. We add a behavior function to the traditional FSM definition, which is 
used to describe behaviors that don’t change state nor generate output event. 

2.1   Description for Network System (NS) 

The state of mobile IPv6 network system can be described by the following proper-
ties. 
1. Mp: location of mobile node. Mp = {home, foreign}. 
2. HRflag: flag of home registration (HR). HRflag = {0, 1}. 
3. CRflag: flag of common registration (CR). CRflag = {0, 1}. 

Let S be the set of states for network system. S = Mp × HRflag × CRflag. Removing 
the invalid or unstable states from S, only three valid states remain is S. For mobile 
IPv6 network, all input events are manual behaviors. Under any circumstance, no 
output event happens, but related behaviors will happen. State transition graph for 
network system is shown in Fig 2. 

2.2   Description for Mobile IPv6 Nodes 

We take MN description as an example to present how to describe mobile IPv6 nodes. 
The MN’s main task is to maintain its current location on home agent and correspon-
dent nodes. In one lifecycle of movement, MN’s behaviors can be presented as fol-
lows (Fig 3). 

1. At first, MN attaches at home link and is in stable state. 
2. MN detects movement from home link, and then generates care-of address. 
3. Mobile node performs HR, and then is in stable state. 
4. MN receives a tunnel packet, performs CR, and then is in stable state. 
5. MN receives another tunnel packet, repeat last step. 
6. MN detects itself returning to home link, and then de-registers HR and all CRs. 
7. Then MN completes one lifecycle of movement. 
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2.3   Description for Inner Data Structure Management 

We take BC management as an example to present how to describe IDS management. 
BC is composed of many BC 
entries (BCE). BCE’s state is 
determined by its remaining 
lifetime. In CN, each BCE stands 
for a mobile node. Let FSM M = 
(Se, Ie, Oe, of, tf, bf) be the formal 
model for single BCE manage-
ment (Fig 4). 

Based on description for sin-
gle BCE management, we pro-
pose multi-nodes finite state 
machine (MN-FSM) to describe 
BC management in a particular 
mobile IPv6 network (Def 1). 

Definition 1. Multi-Nodes Finite State Machine 

MN-FSM is used to describe BC management by CN in a particular mobile IPv6 network.  
Let MN-FSM M = (S, I, O, N, of, tf, V, bf, sf, SB0B), in which: 
• N: the set of mobile nodes. If there are n mobile nodes, N = {1, 2, ... , n}. 
• S: the set of states. Each state is the combination of all BCEs’ current states. 
• S0: the initial state. S0 = {<1, Se0>, …, <n, Se0>}. 
• I: the set of input events. I ⊆ N × Ie. 
• O: the set of output events. O ⊆ N × Oe. 
• of: the output function. of: S × I  O. 
• tf: the state transition function. tf: S × I  S. 
• V: a n-column vector. Each element stores the related BCE’s lifetime that has been 

updated latest. 
• bf: the behavior function. bf resets the vector V based on the valid binding updates latest. 
• Sf: the signal generation function. 

Se1 Se2

Se0

Ie5//

I e5
//

Ie1/f/O
e1

I e1
/f/

O e1
I e2

//O
e1

Ie3//Oe2

Ie1/f/Oe1

Ie5 //

I
e4 //

Fig. 4. State transition graph for BCE management 
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Fig. 5. State transition graph for BC management 
with two BCEs 
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BC management with two BCEs is described (Fig 5), in which tf and of are defined as 
follows. 
If in Fig 4 

Sei  Iea/f/Oeb  Sej 

Then in Fig 5 
{<1,Sei>,<2,*>} <1,Iea>/bf/

<1,Oeb> {<1,Sej>,<2,*>} 
And 

{<1,*>,<2,Sei>} <2,Iea>/b
f/<2,Oeb> {<1,*>,<2,Sej>} 

3   Conclusion 

Formal description is the base 
of conformance testing. This 
paper proposes the method of 
hierarchical description. The 
entire mobile IPv6 protocol is 
divided into four layers and each layer is described separately. Based on formal de-
scription for mobile IPv6 protocol, we can use test generation method for FSM model 
to generate mobile IPv6 test sequences, such as T-method, U-method etc. We also 
have developed test system, and tested many kinds of mobile IPv6 devices and ob-
tained some valuable results [5].  
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Abstract. We present I–Systems as a formal constraint-based approach
for modeling and analyzing both autonomous and reactive behavior in a
distributed system. Essentially it is a formalism of interacting finite au-
tomata. We demonstrate its incremental potential by stepwise modeling
a solution for a synchronous communication problem.

1 I–Systems

In practice, interaction in a distributed system is based on local (or regional)
cooperation between a small number of components. Global effects arise from a
propagation of influences originating from constraints on local or regional coop-
eration. The component behavior exhibits two different types of events: enforced
events will occur, either due to local control decisions or through external in-
fluences that trigger these events, free events may (or may never) occur based
on autonomous local decisions, or because of incomplete information about yet
unknown external influences.

Based on the observation that components in distributed systems may be
reactive or active, we distinguish between reactive (inert) and autonomous com-
ponents called parts. Parts have a constituting set of local states (that are rele-
vant for the interaction) which are called phases. Also, parts are in exactly one
phase at any time. In this way parts are finite automata. In contrast to commu-
nicating automata the cooperation, influences, decisions and their propagation,
even the internal behavioral details within a component are defined based only
on two types of binary relations (denoted as coupling and excitement relation,
see section 2) between parts. It turns out that the I-System model has a higher
specificational power than communicating finite automata.

We Will Present I-Systems as Interacting Finite Automata. The inter-
action is specified though local action rules which describe the frame of actions
in parts (i.e. occurrences of phase transitions), as well as the ensuing influence
on, or from, other parts. A technical comprehensive presentation of the static
structure, the dynamics, and the semantics of I-Systems can be found in [3,4].

F. Wang (Ed.): FORTE 2005, LNCS 3731, pp. 542–546, 2005.
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2 Modeling of Sequential Processes

As mentioned above each part of an I–System can be interpreted as a finite
automaton. In order to specify its transition structure we focus on installing
interaction primitives (instead of communication primitives for communicating
automata). As a result, free and enforced phase transitions, as well as their
enforcing influences, can be modeled explicitly.

As an example let us assume an autonomous part b1 with four phases
p1, . . . , p4. Our goal is to impose a cyclic behavior structure in b1 such that
only free phase transitions from p1 to p2 and from p3 to p4, and enforced phase
transitions from p2 to p3 and from p4 to p1 may/will occur. We realize this
by simply adding an additional inert part b2 with phases e1, . . . , e4, and by
stepwise adapting the coupling and excitement relation as depicted in Fig. 1.

(a)

p1

p2

p3

p4

e1

e2

e3

e4

b1 b2

(b)

p1

p2

p3

p4

e1

e2

e3

e4

b1 b2

(c)

p1

p2

p3

p4

e1

e2

e3

e4

b1 b2

Fig. 1. Incremental Design of Sequential Processes

Step 1 (Fig. 1.a): Adding coupling relations between b1 and b2

The symmetrical coupling relation specifies pairs of mutually exclusive phases.
Result: We restrict the local behavior to phase transitions between pi and
p(i+1) mod 4 and back, induced by the reactive part b2.

Step 2 (Fig. 1.b): Adding excitement relations directed from b1 to b2

In general, an element (p, q) ∈ E where E is the excitement relation expresses a
potential excitation from phase p in part b to phase q in part b′. The
main idea is that if b is in p and b′ is in q then b exerts an influence on b′ to
leave p, and b′ will leave p unless prevented through other external influences.
B, in turn, has to stay in p as long as b′ is in q.
Result: We install directions in b1, i.e. phase transitions only occur from pi to
p(i+1) mod 4.

Step 3 (Fig. 1.c): Adding excitement relations directed from b2 to b1

Result: We enforce outgoing phase transitions from p2 as well as from p4.

Major Result: In general each organizational form of behavior in a part as
specified through autonomous decision effects or dutiful steps according to an
organizational role can be modeled through the incremental standard construction
explained in the example above [3,4].
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3 Application: Synchronous Communication

We model, for a correct implementation, the synchronous communication con-
cept of CSP, cf. [1,2]. In order to establish such a communication between a
process (part) P1 and a process (part) P2, P1 executes a tie command (when
arriving in phase ti1). As a result a virtual channel is opened which would be
connected to a corresponding virtual channel on the side of P2 (in phase ti2).
In this way the real communication between P1 and P2 could start (phases co1,
co2). After completion the virtual channels will be abandoned by executing an
untie command (in phases un1, un2).

The synchronization conditions for P1 are formulated in the following
way. They must hold symmetrically for P2.
SC1: If P1 has arrived in ti1 while P2 has not entered ti2 or co2, P1 has to wait.
SC2: If P1 has arrived in co1 while P2 is still in ti2 then P1 cannot proceed,

and P1 exerts an influence on P2 as to leaving ti2.
SC3: If P1 has arrived in un1 while P2 is still in co2 then P1 cannot proceed,

and P1 exerts an influence on P2 as to leaving co2.
SC4: If P1 is in ti1 and P2 is outside of its communication section (i.e. P2

is in a remainder phase re2) then there is no influence on P2 from P1 as
to enter its communication section.

The local behavior in the parts P1 and P2 can be realized as in section 2,
detailing free and enforced phase transitions. We stepwise realize SC1 - SC4
through the symmetric construction shown in the screenshot of Fig. 1.

Step 1: SC2 is realized through connecting P1 and P2 through the inert part
V E1.
Step 2: SC3 is realized through connecting P1 and P2 through the inert part
V E2.

Fig. 2. Incremental Realization of Synchronous Communication
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Step 3: SC1 and SC4 are both realized through connecting P1 and P2 through
the inert part V S.

Major Property: The interaction is minimal in the sense that through this
connection no further restriction is imposed on P1 or P2.

As we readily verify this property is easy to achieve through the explicit
specification utilized above while in other models, including communicating au-
tomata, this has always been the weakest part of the proposed solutions (see
e.g. [1]).

4 Conclusion

We have presented the advantages of I–Systems in modeling distributed inter-
action, a formalism corresponding to an extended model of interacting finite
automata (as opposed to communicating finite automata).

We have demonstrated the stepwise realization of a local behavior struc-
ture through primitive interaction constructions, connecting the involved parts
through a reactive component. An I–System model for a distributed system re-
flecting all kinds of cooperative requirements or constraints can be incrementally
constructed in this way such that the absence of undesirable influences in sub-
systems can be guaranteed.

We have developed a fundamental formal framework for I–Systems, e.g.:

– We have developed a novel abstract axiom system for specifying and de-
riving the behavior of an I–System. Behavioral steps (phase transitions) are
derived by local checks of the local constraint structure. The axiom system is
motivated through a distributed implementation and an efficient animator.

– We have defined a trace-semantics that documents the effects of influences
and allows to distinguish between free and enforced actions (phase transi-
tions).

– We have defined a finite behavior graph that is equivalent to the (infinite)
trace semantics in that they describe the same behavior.

– We currently investigate efficient analysis and model-checking techniques
for I–Systems, i.e. finding cycles in the behavior graph in order to identify
infinite traces in the trace-semantics.

The presentation of formal details is out of the scope of this short paper. They
can be found in [3,4]. An on-line animation including the examples as well as
the example constructions described will be demonstrated at the conference.
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Abstract. Strand space is a promising technique developed by Guttman
et al. from MITRE company, and it provides us an intuitive and clear
framework to analyze security protocols, but its mechanics of the proof
tend to be quite intricate and not necessarily easy to be formalized. In
this paper, we combine the inductive approach with strand space. We
introduce an inductive definition for bundles, and it not only provides us
a constructive illustration for a bundle, but also introduces an effective
and rigorous technique of rule induction to prove properties of bundles.
Using this induction principle, we not only prove that a bundle is a
casually well-founded graph, but also give a rigorous proof for results of
authentication tests. Our result of authentication test extends Guttman’s
result to a more general case, and its proof is also much easier and
clearer. As a trivial case study, we prove authentication properties of
Needham-Schroeder-Lowe protocol. Our approach has been mechanized
using Isabelle/HOL.

1 Introduction

Strand space is a promising technique developed by Guttman et al. from MITRE
company [1]. The most important of all for analysis is carried out on the notion
of bundles. A bundle is a casually well-founded set of nodes and arrows of both
kinds, which sufficiently formalizes a session of a protocol. In a bundle, it must
be insured that a node is included only if all nodes that proceed it are already
included. For the strand corresponding to the principal in a given protocol run,
we construct all possible bundles containing nodes of the strand. In fact, this
set of bundles encodes all possible interactions of the environment with that
principal in the run. Reasoning about the protocol takes place on this set of
bundles. Typically, for the protocol to be correct, each such bundle must contain
one strand of each legitimate principals apparently participating this session, all
agreeing on principals, nonces, and session keys. Penetrator strands may also be
entangled in a bundle, even in a correct protocol, but they should not prevent
legitimate parties from agreeing on the data values, or from maintaining the
secrecy of the value chosen. The key to this approach is the fact that a bundle
� This work is supported by NSF project of China under Grant No.60173020,
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form a finite, well-founded sets under the relation, and each non-empty subset of
the bundle has a �-minimal element. A powerful idea, authentication test, is also
introduced by Guttman et al [2]. This is basically a formalization of the basic
challenge-response style primitive that is a building block for many protocols.
An agent transmits a so-called test component, and later receives back another
term that is in some transformed form of the component, then only a regular
principal, not penetrator can have transformed it. In favorable circumstances,
it can only be one regular participant, the intended one, who has thereby been
authenticated.

Although strand space provides us an intuitive and clear framework to an-
alyze why security protocols are correct, it seemed that the mechanics of the
proof tend to be quite intricate and not necessarily easy to be formalized. To
our knowledge, no one has ever formalized strand space theory in a theorem
prover since the theory was introduced in 1998. Note that almost 7 years has
passed, which is not a short time. Special attention should be paid to consider
why it is so difficult to formalize strand space. In our opinion, two problems are
due to this difficulty. Firstly, as the cornerstone in strand space theory, bun-
dle’s definition is not suitable for formal reasoning. It is just a sketchy property
description of a graph about a protocol session, that is, a bundle is a casually
well-founded graph. However, it does not tell us how this graph is constructed.
Secondly, many concepts and proofs are very informal and complicated, and it
is far away from being mechanized. One evidence is results about authentication
tests. Authentication tests provide a general and powerful idea to prove authen-
tication properties in a wide range of security protocols, and they are easy to
apply themselves, but the proofs justifying them are quite complicated and dif-
ficult to be formalized. In order to prove these results, Guttman has introduced
normal bundles and efficient bundles, which place more restriction on the oper-
ations of penetrator, and he has proved two important lemmas: a normal form
lemma and an efficient form lemma. Many definitions are involved in his proof,
such as graph operations, rising and falling paths, bridges, and it is too tedious
to formally define them in a theorem prover, and proofs of the two lemmas are so
complicated that it is hard to follow even in paper proof, let alone to formalize
them and present formal proofs in theorem provers.

The main contributions of this paper are as following: (1) We introduce an
inductive definition for bundles, and it not only provides us a constructive illus-
tration for a bundle, but also introduces an effective and rigorous technique of
rule induction to prove properties of bundles. (2) We formalize the semantics to
fresh assumption, that is certain data items, such as nonces and session keys, are
fresh and never arise in more than one protocol run. We also introduce a notion
of complete transforming path. Roughly speaking, a complete transforming path
p for a data item a is a path such that record necessary transforming information
about a. Suppose a uniquely originates in n, and n′ is a node containing a in
a bundle b, then there is a complete transforming path from n to n′ through b
about a. (3) We extend Guttman’s authentication results to a more general case,
and use results of well-foundedness of bundle and complete path to give an easier
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and clearer proof. (4) We formalized our theory in Isabelle/HOL, and prove au-
thentication results of Needham-Schroeder-Lowe protocol as a trivial case study.
The remainder of this paper is organized as follows: Section 2 formalizes prelim-
inary definitions such as messages, agents, and strands, strand spaces. Section
3 introduces the inductive definition of bundle and the corresponding induction
principle. Section 4 introduces the notion of complete path and authentication
results. Section 5 is related work and conclusion.

2 Strands and Strand Space

The notions in this subsection are mainly from Guttman’s original definition,
and we just formalize them straightforward in Isabelle.

datatype sign=positive (”+” 100) |negative (” − ” 100)
types signed msg= ”sign × msg”
typedecl sigma
types node= ” sigma × nat”
types strand space=”sigma ⇒ signed msg list ”
consts Sigma set :: ”sigma set” (”

∑
”)”

SP :: ”strand space”
attr::”sigma ⇒ agent”

constdefs Domain::”node set”
”Domain=={(s,i). s ∈

∑
∧ i < length (SP s)}”

constdefs casual1::”(node × node) set”

”casual1 ==

⎧⎨
⎩

(n1,n2) . n1∈ Domain ∧ n2∈ Domain ∧
node sign n1= + ∧ node sign n2= − ∧
∧ node term n1=node term n2 ∧ fst n1 
= fst n2

⎫⎬
⎭

syntax ” casual1”:: ”node ⇒node⇒bool” (infix ”→” 100)
translations ”n1→n2 ”==”(n1, n2)∈casual1”
constdefs casual2::”(node × node) set”

”casual2 ==
{

(n1, n2) . n1∈ Domain ∧ n2∈ Domain ∧
∧ (fst n1)= (fst n2) ∧ Suc(snd n1)=snd n2

}
syntax ” casual2”::” node ⇒node⇒bool” (infix ”⇒” 50)
translations ”n1⇒n2 ”==”(n1, n2)∈casual2”
edge=”node × node”
graph=”node set × edge set”
A signed message such as (+, m) is a pair of a sign and a message. We

define an abstract type sigma to define the type of signatures of strands. A
node (s, i) is just a pair of a strand signature and an integer index. A strand
space is just a trace mapping function which maps a strand signature to a list
of signed messages. In our discussion, we usually fix a given strand signature set
and strand space, so we define them as arbitrary but fixed consts

∑
and SP

respectively. Given
∑

and SP , we are only interested in those nodes which is
in the image of

∑
under the trace mapping function SP , and these nodes are

defined by the const Domain. Two kinds of casual relation, denoted by → and
⇒, are introduced on the nodes in Domain. In the definition of →, node term
n, node sign n are defined to return n′s message term and sign respectively.
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3 Bundles

Rather than following the way Guttman defined, we introduce a brand-new
definition for bundles. It is totally an inductive definition, as shown as follows.

consts bundles ::” graph set”
inductive ”bundles” intros

Nil: ”(∅, ∅) ∈ bundles”
Add Positive1:”[| b∈ bundles; node sign n2 = +; n2∈Domain; n2/∈ fst b;
0 < snd n2; n1∈ fst b; n1⇒n2 |] =⇒ ({n2} ∪ fst b, (n1, n2) ∪ snd b)∈bundles”
Add Positive2:”[| b∈ bundles; node sign n2=+; n2/∈fst b; n2∈Domain;
snd n2=0 |] =⇒({n2} ∪ fst b, snd b)∈bundles”
Add negtive1: ”[| b∈ bundles; node sign n2=−; n2 /∈ fst b;

n1 → n2 ∧ n1 ∈ fst b ∧ (∀ n3. n3 ∈ fst b−→(n1,n3)/∈ snd b);
0 < snd n2 ; n1′ ∈ (fst b); n1′ ⇒n2 |]

=⇒ ({n2} ∪ fst b, {(n1, n2), (n1′ , n2)} ∪ snd b) ∈ bundles”
Add negtive2: ”[| b∈ bundles; node sign n2=−; n2 /∈ (fst b);

n1 → n2 ∧ n1 ∈ fst b ∧ (∀ n3. n3 ∈fst b−→(n1,n3)/∈ snd b);
snd n2=0 |] =⇒({n2} ∪ fst b, {(n1, n2)} ∪ snd b)∈bundles”

Our motivation here is two-folded. The more apparent is to introduce a more
constructive definition to formalize a graph of a protocol session, rather that just
saying that it is a casually well-defined graph. The other is to take advantage of
the strong ability of induction principle supported by Isabelle to reason about
inductively defined set. For the set of bundles, the induction principle says that
P (b) holds for each bundle b provided that P is preserved under all the rules for
creating bundles.

4 Path and Authentication Tests

Definition 1. A path p through bundle b is a list of nodes such that p = [], or
p0 ∈ b and (pi, pi+1) ∈ (→ ∩ snd b) or (pi, pi+1) ∈ (⇒ ∩ snd b)+ for any i such
that 0 ≤ i < length p − 1.

If a is uniquely originating from n, and n′ is a node which contains a, and
n′ is in bundle b, then there exists a path p through b from n to n′, moreover,
and if p is across a positive node m such that a � node term m and m is in a
non originating strand for term a, then p also crosses all nodes in fst m such
that m′ ⇒+ m and a � node term m′; in particular, p must cross a node m′′,
which is the first node containing a in non-originating strand fst m;.

Lemma 1
[|b ∈ bundles|] =⇒ uniquely originate a n −→
∀n′.n′ ∈ fst b ∧ a � node term n′ −→⎛
⎜⎜⎜⎜⎝

∃ p. path (n#p) b ∧ (n#p)!(length p) = n′

∧

⎛
⎜⎜⎝

∀ m.

(
m ∈ set (n#p) ∧ node sign m = +
∧fst m 
= fst n ∧ a � node term m

)
−→(

(∃m′. m′ ∈ set (n#p) ∧ is f irst node a m′ (fst m))
∧(∀m′.m′ ⇒+ m ∧ a � node term m′ −→ m′ ∈ set (n#p))

)
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
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,where set xs returns the set of all elements in list xs.
Proofs given by Guttman are extraordinarily complicated, we could not just

follow his way to formalize results of authentication tests. Instead, we present
authentication tests in a different style. Suppose that atom a uniquely originates
on n, and given a term set T such that for all terms t in T, if a � M, then
t = Crypt K M, and invKey K can not be obtained by the penetrator for
some K, M ; synth T are terms that the penetrator can build up from T ; if n′ is
another node containing a, and n′ contains a new a-component which can not be
built by synth T, furthermore, if we also assume that each component t′ of each
positive node on the originating strand is built by synth T, i.e., the originating
strand does not help this transformation, then some regular strand except the
originating one performs some transformation about a.

Lemma 2 (outgoing-authentication-test).
[|b ∈ bundles; uniquely originate a n; T 
= ∅; a ∈ Atoms;
∀t ∈ T .∃K M.a � t −→ t = Crypt K M ;
∀t.a 
� t −→ t ∈ T ; ∀k.a 
= Key k;

∀t ∈ T .a � t −→ ∀K M.

(
t = Crypt K M −→
∀n. (node term n = invKey K → attr n /∈ bad)

)
;

∀m.

(
fst m = fst n ∧ node sign m = + ∧ a � node term m −→
node term m ∈ synth T

)
;

a � (node term m′) ∧ node term m′ /∈ synth T |] =⇒

∃p m m′.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

path n#p b ∧ (n#p)! (length p) = n′∧
m ⇒+ m′ ∧ m ∈ set (n#p) ∧ m′ ∈ set (n#p)∧
node sign m = − ∧ node sign m′ = +∧
attr (fst m′) /∈ bad ∧ fst m 
= fst n
∧node term m ∈ synth T
∧node term m′ /∈ synth T
∧a � node term m ∧ a � node term m′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

5 Related Work and Conclusions

Our work in this paper fruitfully borrows techniques from two popular ap-
proaches: strand space and the inductive method. Firstly, strand space model
provides us a natural and efficient representation for the problem domain, and
it has the advantage that it contains the exact casual relation information, and
precise formulation about freshness assumption, and much more intuitive formu-
lation of protocol’s properties, and much simpler proofs. Our initial aim is just
using Isabelle to formalise original strand space theory. But during this process,
we find many concepts are too informal and many proofs needs a lot of human
insight, and they are far away from being mechanized. In particular, when we
try to formalise results of authentication tests, we find we could not overcome
this difficulty if we do not extend their model. The definitions involved in results
about normal form lemma and efficient form lemma are too tedious to formulate,
and it is very hard to follow proofs even in paper proof, let alone to formalize
them. Because all these problems are about bundles, they have given us the
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intuition that the crux lies in the definition of bundles, which is just a sketchy
property specification, and not enough to support formal reasoning. But how
to give a more tractable definition for bundles? Fortunately, Paulson’s work in
the inductive approach has inspired us to go ahead [3]. Paulson’s intuition be-
hind his work has taught us that the principles of mathematical induction is not
only simple, but also very powerful, especially to handle problems with infinite
states. Besides, Isabelle’s built-in support for inductive set and rule induction
make it very convenient to apply induction principle. All these acted as stimuli
for us to introduce the inductive approach to formalising strand space. The key
to our approach is introducing an inductive definition for bundles, and it not
only provides us a constructive illustration for a bundle, but also introduces an
effective and rigorous technique of rule induction to prove properties of bundles.
Using this induction principle, we can prove that a bundle is a casually well-
founded graph. We also clearly formalize the semantics to fresh assumption, and
introduce the notion of complete transforming path and prove the existence of
a a-complete transforming path through a bundle from its originating node to
any nodes containing a. Combining the above results we give a rigorous proof for
results of authentication tests. Our result of authentication test not only extends
Guttman’s result to a more general case, but also its proof is much easier and
clearer, because we need not introduce normal bundles and efficient bundles. Our
formulation and proof techniques are applicable generally. Analyzing a protocol
case only requires definition about traces of regular strands, and our results of
authentication tests make it very easy to prove authentication properties. As
a trivial case study, we show how to use our results by proving authentication
properties of Needham-Schroeder-Lowe protocol.
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Abstract. An enhanced compositional framework is presented for mod-
elling network protocols with symbolic transition graphs. In the context
of the modelling framework, a sufficient condition for deadlock freedom
of network protocols, namely interoperability, is reconstructed in a more
concise way with an advantage that it allows for symbolic verification
without referring to protocol states. Furthermore, a case study with Mo-
bile IPv6 illustrates the effectiveness of the improved modelling frame-
work and also discloses some infrangibilities of Mobile IPv6 in the sense
that it can not maintain the binding coherency all the time, which may
result in unreachable or unstable routes.

1 Introduction

Internet Protocol version 6 (IPv6), as a backbone of the Next Generation Inter-
net, supports mobility as one of its fundamental features, which aims to make
the global mobile Internet possible [1,2]. Research efforts have been devoted to
analyze Mobile IPv6 quantitatively with respect to its performance. However,
qualitative analysis of Mobile IPv6, with respect to its functionality, is of little
concern.

This paper presents an enhanced version of modelling framework for net-
work protocols using symbolic transition graphs with assignment (STGA), and
extends our case study on Mobile IPv4 [3] to analyze the inherent mobility of
IPv6 from a viewpoint of a complete network topology. The case study discloses
some infrangibilities in the routing capability of Mobile IPv6, that is, it can not
maintain the binding coherency all the time, which may result in unreachable
or unstable routes. Such defects have not been reported before, even in Mobile
IPv6 testing [4].
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2 Model Checking Mobile IPv6

Formally, Mobile IPv6 can be described as a tuple MIP6nha,nmh = (E6, Ce
6, C

p
6)

with E6 = {HA6[0..nha−1], MH6[0..nmh−1]}. HA6 and MH6 are STGA mod-
els of home agents and mobile hosts in Mobile IPv6, respectively; nha and nmh

are the number of home agents and mobile hosts, respectively. Ce
6 is a finite set

of channel connecting protocol entities with the external environment of MIP6.
Cp

6 is a finite set of channel connecting protocol entities with each other.
From the viewpoint of functionality, Mobile IPv6 should always be able to

route IP datagrams to mobile nodes roaming outside of their home networks,
which can be described as the conjunction of μ-calculus formulae: DF , ARh,
ARf and ToD. DF means the protocol can always evolve. ARh(ARf ) means
whenever a mobile host becomes stable at its home network(a foreign network),
all datagrams destined for the mobile host should be forwarded without a tun-
nel(via a tunnel). ToD means a tunnel should be used only when the mobile
host is roaming.

For details of the definitions of MIP6 and formulae mentioned above, one
can refer to [5]. Especially, MIP6 can be easily proved to be interoperable. With
Theorem 2.3 and 2.4 in [5], the deadlock freedom of MIP61,1 can be concluded
without explicitly enumerating its state space exhaustively.

As far as AR and ToD are concerned, the model checking experiments end
unexpectedly with negative results, which disclose the infrangibility of Mobile
IPv6 in its routing capability.

2.1 Adaptive Routing

Fig. 1(a) illustrates a counterexample for the property ARf , where a mobile
host is to register its binding information. Although having acknowledged the
mobile host with OK, the home agent updates its local binding list after it
has forwarded a datagram received previously to the mobile host according to
its current binding list, where the mobile host is supposed to be still home.
Therefore the datagram will never reach the mobile host. Similarly one can find
a corresponding counterexample for the property ARh.

One way to avoid the case of datagram loss illustrated above is to switch the
order between actions reg rep hm and set hbinding. A model checking experi-
ment shows the resulted model does still not satisfy ARh, with a counterexample
illustrated in Fig. 1(b), where a mobile host has moved out of its home network.
Before the mobile host becomes stable at the foreign network, that is, receives a
Binding Acknowledgement from its home agent, a datagram has been forwarded
to its new care-of address coa that is not yet enabled. In such case, the behavior
of the mobile host is undefined in the specification of Mobile IPv6. Similarly one
can find a corresponding counterexample for the property ARf with respect to
the modified model.

2.2 Tunnel on Demand

The binding incoherency also ruins the property ToD. Fig. 2(a) illustrates a
counterexample for ToD, where a mobile host is to deregister its binding in-
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HA6(ip) MH6

The MH is attached to a foreign network
reg req hm(coa)

reg rep hm(OK)

af

send

rh

set hbinding(coa)

msc Case I: To reply the MH before
updating the binding list

(a) A Counterexample for ARf

HA6(ip) MH6

ah

The MH is attached to a foreign network
reg req hm(coa)

set hbinding(coa)
send

rf

reg rep hm(OK)

msc Case II: To update the binding
list before replying the MH

(b) A Counterexample for ARh

Fig. 1. Counterexamples for Adaptive Routing

HA6(ip) MH6

The MH is attached to its home network
reg req hm(0)

reg rep hm(OK)

ah

send

tu ha

err tod

set hbinding(coa)

msc Case III: To reply the MH
before updating the binding list

(a)

HA6(ip) MH6

The MH is attached to a foreign network
reg req hm(coa)

set hbinding(coa)
send

tu ha

err tod

reg rep hm(OK)

msc Case IV: To update the
binding list before replying the MH

(b)

Fig. 2. Counterexamples for Tunnel-On-Demand
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formation. Although having acknowledged the mobile host with OK, the home
agent updates its local binding list after it has forwarded a datagram received
previously to the mobile host according to its current binding list, where the mo-
bile host is supposed to be out of its home network. In such case, the behavior
of the mobile host is undefined in the specification of Mobile IPv6.

The modified model resulted by switching the order between actions
reg rep hm and set hbinding does still not satisfy ToD. A counterexample is il-
lustrated in Fig. 2(b), where a mobile host is to register its binding information.
Before receiving a Binding Acknowledgement from its home agent, it receives
a datagram via a tunnel, which has not yet been enabled. In such case, the
behavior of the mobile host is undefined in the specification of Mobile IPv6.

3 Conclusion

An enhanced compositional framework was presented in this paper for modelling
network protocols using STGA. It inherits the reactive nature of network pro-
tocols and render interoperability checking static on symbolic transition graphs.
A case study on Mobile IPv6 has been conducted, respecting the deadlock-free
design paradigm of the modelling framework. The case study not only shows
the effectiveness of the modelling framework, but also detects some infrangibil-
ities of Mobile IPv6 in its binding incoherency, which may make a datagram
unreachable to its destination or being forwarded to an unstable mobile host.

As future work, the framework can be extended for parameterized verifica-
tion. The inherent parameterized nature of the modelling framework can help
verify concrete network protocols or other reactive systems in a more cost-
effective way.
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