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Abstract. This paper describes a method of adapting a domain-inde-
pendent HPSG parser to a biomedical domain. Without modifying the
grammar and the probabilistic model of the original HPSG parser, we
develop a log-linear model with additional features on a treebank of the
biomedical domain. Since the treebank of the target domain is limited, we
need to exploit an original disambiguation model that was trained on a
larger treebank. Our model incorporates the original model as a reference
probabilistic distribution. The experimental results for our model trained
with a small amount of a treebank demonstrated an improvement in
parsing accuracy.

1 Introduction

Natural language processing (NLP) is being demanded in various fields, such
as biomedical research, patent application, and WWW, because an unmanage-
able amount of information is being published in unstructured data, i.e., natural
language texts. To exploit latent information in these, the assistance of NLP
technologies is highly required. However, an obstacle is the lack of portability
of NLP tools. In general, NLP tools specialized to each domain were developed
from scratch, or adapted by considerable human effort. This is because linguistic
resources for each domain, such as a treebank, have not been sufficiently devel-
oped yet. Since dealing with various kinds of domains is an almost intractable
job, sufficient resources can not be expected.

The method presented in this paper is the development of disambiguation
models of an HPSG parser by combining a disambiguation model of an original
parser with a new model adapting to a new domain. Although the training of a
disambiguation model of a parser requires a sufficient amount of a treebank, its
construction requires a considerable human effort. Hence, we exploit the original
disambiguation model that was trained with a larger, but domain-independent
treebank. Since the original disambiguation model contains rich information of
general grammatical constraints, we try to use its information in developing a
disambiguation model for a new domain.
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Our disambiguation model is a log-linear model into which the original disam-
biguation model is incorporated as a reference distribution. However, we cannot
simply estimate this model, because of the problem that has been discussed in
studies of the probabilistic modeling of unification-based grammars [1,2]. That
is, the exponential explosion of parse candidates assigned by the grammar makes
the estimation intractable. The previous studies solved the problem by applying
a dynamic programming algorithm to a packed representation of parse trees. In
this paper, we borrow their idea, and define reference distribution on a packed
structure. With this method, the log-linear model with a reference distribution
can be estimated by using dynamic programming.

In the experiments, we used an HPSG parser originally trained with the
Penn Treebank [3], and evaluated a disambiguation model trained with the GE-
NIA treebank [4], which consisted of abstracts of biomedical papers. First, we
measured the accuracy of parsing and the time required for parameter estima-
tion. For comparison, we also examined other possible models other than our
disambiguation model. Next, we varied the size of a training corpus in order to
evaluate the size sufficient for domain adaptation. Then, we varied feature sets
used for training and examined the parsing accuracy. Finally, we compared the
errors in the parsing results of our model with those of the original parser.

In Section 2, we introduce the disambiguation model of an HPSG parser. In
Section 3, we describe a method of adopting reference distribution for adapting
a probabilistic disambiguation model to a new domain. In Section 4, we examine
our method through experiments on the GENIA treebank.

2 An HPSG Parser

The HPSG parser used in this study is Enju [5]. The grammar of Enju was ex-
tracted from the Penn Treebank [3], which consisted of sentences collected from
The Wall Street Journal [6]. The disambiguation model of Enju was trained
on the same treebank. This means that the parser has been adapted to The
Wall Street Journal, and would be difficult to apply to other domains such
as biomedical papers that include different distribution of words and
their constraints.

In this study, we attempted the adaptation of a probabilistic disambiguation
model by fixing the grammar and the disambiguation model of the original
parser. The disambiguation model of Enju is based on a feature forest model
[2], which is a maximum entropy model [7] on packed forest structure. The
probability, pE(t|s), of producing the parse result t for a given sentence s is
defined as

pE(t|s) =
1
Zs

exp

(∑
i

λifi(t, s)

)

Zs =
∑

t′∈T (s)

exp

(∑
i

λifi(t′, s)

)
,
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Fig. 1. Chart for parsing “he saw a girl with a telescope”

where T (s) is the set of parse candidates assigned to s. The feature function
fi(t, s) represents the characteristics of t and s, while the corresponding model
parameter λi is its weight. Model parameters were estimated so as to maximize
the log-likelihood of the training data.

Estimation of the above model requires a set of training pairs 〈ts, T (s)〉, where
ts is the correct parse for the sentence s. While ts is provided by a treebank, T (s)
is computed by parsing each s in the treebank. However, the simple enumeration
of T (s) is impractical because the size of T (s) is exponential to the length of s.

To avoid an exponential explosion, Enju represented T (s) in a packed form of
HPSG parse trees [5]. In chart parsing, partial parse candidates are stored in a
chart, in which phrasal signs are identified and packed into an equivalence class
if they are determined to be equivalent and dominate the same word sequence.
A set of parse trees is then represented as a set of relations among equivalence
classes. Figure 1 shows a chart for parsing “he saw a girl with a telescope”, where
the modifiee (“saw” or “girl”) of “with” is ambiguous. Each feature structure
expresses an equivalence class, and the arrows represent immediate-dominance
relations. The phrase, “saw a girl with a telescope”, has two ambiguous subtrees
(A in the figure). Since the signs of the top-most nodes are equivalent, they are
packed into the same equivalence class. The ambiguity is represented as two
pairs of arrows that come out of the node.

A packed chart can be interpreted as an instance of a feature forest [2]. A
feature forest represents a set of exponentially-many trees in an “and/or” graph
of a tractable size. A feature forest is formally defined as a tuple 〈C, D, R, γ, δ〉,
where C is a set of conjunctive nodes, D is a set of disjunctive nodes, R ⊆ C
is a set of root nodes1, γ : D → 2C is a conjunctive daughter function, and
δ : C → 2D is a disjunctive daughter function.

1 For the ease of explanation, the definition of root node is slightly different from the
original.



202 T. Hara, Y. Miyao, and J. Tsujii

HEAD  prep
MOD  NP
SUBCAT <>

HEAD  noun
SUBCAT <>

HEAD  verb
SUBCAT

<NP,NP>

HEAD  noun
SUBCAT <>

HEAD  prep
MOD  VP
SUBCAT <NP>

HEAD  prep
MOD  VP
SUBCAT <>

HEAD  verb
SUBCAT <NP>

HEAD  verb
SUBCAT <>

HEAD  verb
SUBCAT <NP>

HEAD  noun
SUBCAT <>

HEAD  verb
SUBCAT <NP>

HEAD  verb
SUBCAT <NP>

HEAD  prep
MOD  VP
SUBCAT <>

HEAD  noun
SUBCAT <>

HEAD  verb
SUBCAT <NP>

HEAD  noun
SUBCAT <>

HEAD  verb
SUBCAT

<NP,NP>

HEAD  noun
SUBCAT <>

HEAD  noun
SUBCAT <>

HEAD  verb
SUBCAT

<NP,NP>

he

saw

c1

c3

c2

c4

c5 c6

c8c7

Fig. 2. Packed representation of HPSG parse trees in Figure 1

Figure 2 shows (a part of) the HPSG parse trees in Figure 1 represented
as a feature forest. Square boxes are conjunctive nodes, dotted lines express a
disjunctive daughter function, and solid arrows represent a conjunctive daughter
function.

Based on the definition, parse tree t of sentence s can be represented as the
set of conjunctive nodes in the feature forest. The probability pE(t|s) is then
redefined as

pE(t|s) =
1
Zs

exp

(∑
c∈t

∑
i

λifi(c)

)

Zs =
∑

t′∈T (s)

exp

(∑
c∈t′

∑
i

λifi(c)

)
,

where fi(c) are alternative feature functions assigned to conjunctive nodes c ∈ C.
By using this redefined probability, a dynamic programming algorithm can be
applied to estimate p(t|T (s)) without unpacking the packed chart [2].

Feature functions in feature forest models are designed to capture the char-
acteristics of a conjunctive node. In HPSG parsing, it corresponds to a tuple of a
mother and its daughters. Enju uses features that are combinations of the atomic
features listed in Table 1. The following combinations are used for representing
the characteristics of the binary/unary rule applications.

fbinary =

〈
rule,dist,comma,
spanh, symh,wordh, posh, leh,
spann, symn, wordn, posn, len

〉

funary = 〈rule,sym,word,pos,le〉
where suffixh andnmeans a headdaughter anda non-headdaughter, respectively.
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Table 1. Templates of atomic features

rule the name of the applied schema
dist the distance between the head words of the daughters

comma whether a comma exists between daughters and/or inside of daughter phrases
span the number of words dominated by the phrase
sym the symbol of the phrasal category (e.g. NP, VP)

word the surface form of the head word
pos the part-of-speech of the head word
le the lexical entry assigned to the head word
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binary =f

c1
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c3 c4

Fig. 3. Example features

In addition, the following feature is used for expressing the condition of the
root node of the parse tree.

froot = 〈sym,word,pos,le〉

Figure 3 shows example features: froot is the feature for the root node, in
which the phrase symbol is S and the surface form, part-of-speech, and lexical
entry of the lexical head are “saw”, VBD, and a transitive verb, respectively.
The fbinary is the feature for the binary rule application to “saw a girl” and
“with a telescope”, in which the applied schema is the Head-Modifier Schema, the
head daughter is VP headed by “saw”, and the non-head daughter is PP headed
by “with”, whose part-of-speech is IN and the lexical entry is a VP-modifying
preposition.

3 Re-training of Disambiguation Models

The method of domain adaptation is to develop a new maximum entropy model
with incorporating an original model as a reference probabilistic distribution.
The idea of adaptation using a reference distribution has already been presented
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in several studies [8,9]. When we have a reference probabilistic model p0(t|s) and
are making a new model pM (t|s), the probability is defined as

pM (t|s) =
1
Z ′

s

p0(t|s) exp

⎛
⎝∑

j

ρjgj(t′, s)

⎞
⎠

where Z ′
s =

∑
t′∈T (s)

p0(t′|s) exp

⎛
⎝∑

j

ρjgj(t′, s)

⎞
⎠ .

Model parameters, ρj, are estimated so as to maximize the likelihood of the
training data as in ordinary maximum entropy models. The maximization of the
likelihood with the above model is equivalent to finding the model pM that is
closest to the reference probability p0 in terms of the Kullback-Leibler distance.

However, we cannot simply apply the above method to our task because the
parameter estimation requires the computation of the above probability for all
parse candidates T (s). As discussed in Section 2, the size of T (s) is exponentially
related to the length of s. This imposes a new problem, that is, we need to
enumerate p0(t|s) for all candidate parses. Obviously, this is intractable.

Since Enju represented a probabilistic disambiguation model in a packed
forest structure, we exploit that structure to represent our probabilistic model.
That is, we redefine pM with feature functions gj on conjunctive nodes as

pM (t|s) =
1
Z ′

s

p0(t|s) exp

⎛
⎝∑

c∈t

∑
j

ρjgj(c)

⎞
⎠

where Z ′
s =

∑
t′∈T (s)

p0(t|s) exp

⎛
⎝∑

c∈t′

∑
j

ρjgj(c)

⎞
⎠ .
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Fig. 4. Example of importing a reference distribution into each conjunctive node
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As described in Section 2, the original model, pE(t|s), is expressed in a packed
structure as

pE(t|s) =
1
Zs

exp

(∑
c∈t

∑
i

λifi(c)

)

where Zs =
∑

t′∈T (s)

exp

(∑
c∈t

∑
i

λifi(c)

)
.

Then, p0(t|s) is substituted by pE(t|s), and pM (t|s) is formulated as

pM (t|s) =
1
Z ′

s

{
1
Zs

exp

(∑
c∈t

∑
i

λifi(c)

)}
exp

⎛
⎝∑

c∈t

∑
j

ρjgj(c)

⎞
⎠

=
1

Z ′
s · Zs

exp

⎛
⎝∑

c∈t

∑
i

λifi(c) +
∑
c∈t

∑
j

ρjgj(c)

⎞
⎠

=
1

Z ′′
s

exp

⎧⎨
⎩

∑
c∈t

⎛
⎝∑

i

λifi(c) +
∑

j

ρjgj(c)

⎞
⎠

⎫⎬
⎭

where Z ′′
s = Zs · Z ′

s =
∑

t∈T (s)

exp

⎧⎨
⎩

∑
c∈t

⎛
⎝∑

i

λifi(c) +
∑

j

ρjgj(c)

⎞
⎠

⎫⎬
⎭ .

With this form of pM (t|s), a dynamic programing algorithm can be applied.
For example, we show how to obtain probabilities of parse trees in the case of
Figure 4. For ease, we assume that there are only two disjunctive daughters
(dotted lines) that are of the top conjunctive node. The left disjunctive node
introduces a parse tree t1 that consists of conjunctive nodes {c1, c2, c3, . . . },
and the right one, t2 that consists of {c1, c2, c4, . . . }. To each conjunctive node
ck, a weight from the reference distribution

∑
i λifi(ck) is assigned. Probability

pM (t1|s) and pM (t2|s) are then given as

pM (t1|s)=
1

Z ′′
s

exp

⎧⎨
⎩

⎛
⎝∑

i

λifi(c1) +
∑

j

ρjgj(c1)

⎞
⎠+

⎛
⎝∑

i

λifi(c2) +
∑

j

ρjgj(c2)

⎞
⎠

+

⎛
⎝∑

i

λifi(c3) +
∑

j

ρjgj(c3)

⎞
⎠ + · · ·

⎫⎬
⎭

pM (t2|s)=
1

Z ′′
s

exp

⎧⎨
⎩

⎛
⎝∑

i

λifi(c1) +
∑

j

ρjgj(c1)

⎞
⎠+

⎛
⎝∑

i

λifi(c2) +
∑

j

ρjgj(c2)

⎞
⎠

+

⎛
⎝∑

i

λifi(c4) +
∑

j

ρjgj(c4)

⎞
⎠ + · · ·

⎫⎬
⎭ .
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4 Experiments

We implemented the method described in Section 3. The original parser, Enju,
was developed on Section 02-21 of the Penn Treebank (39,832 sentences)[5]. For
the training of our model, we used the GENIA treebank [4], which consisted of
500 abstracts (4,446 sentences) extracted from MEDLINE. We divided the GENIA
treebank into three sets of 400, 50, and 50 abstracts (3,524, 455, and 467 sentences),
and these setswere used respectively as training, development, and final evaluation
data. The method of Gaussian MAP estimation [10] was used for smoothing.

The meta parameter σ of the Gaussian distribution was determined so as
to maximize the accuracy on the development set. In the following experiments,
we measured the accuracy of predicate-argument dependencies on the evaluation
set. The measure is labeled precision/recall (LP/LR), which is the same measure
as previous work [11,5] that evaluated the accuracy of lexicalized grammars on
the Penn Treebank.

First, we measured the accuracy of parsing and the time required for pa-
rameter estimation. Table 2 compares the results of the following estimation
methods.

Table 2. Accuracy and time cost for various estimation methods

F-score Training Parsing time (sec.)
GENIA Corpus Penn Treebank time (sec.) GENIA Corpus Penn Treebank

Our method 86.87 86.81 2,278 611 3,165
Combined 86.32 86.09 29,421 424 2,757

GENIA only 85.72 42.49 1,694 332 8,183
Original model 85.10 87.16 137,038 515 2,554
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Table 3. Accuracy with atomic feature templates

Features LP LR F-score diff.
RULE 85.42 84.87 85.15 +0.05
DIST 85.29 84.77 85.03 −0.07

COMMA 85.45 84.86 85.15 +0.05
SPANh+SPANn 85.58 85.02 85.30 +0.20

SYMBOLh+SYMBOLn 85.01 84.56 84.78 −0.32
WORDh+WORDn 86.59 86.07 86.33 +1.23

WORDh 85.48 84.98 85.23 +0.13
WORDn 85.44 84.64 85.04 −0.06

POSh+POSn 85.23 84.77 85.00 −0.10
LEh+LEn 85.42 85.06 85.24 +0.14

None 85.39 84.82 85.10

Table 4. Accuracy with the combination of RULE and other features

Features LP LR F-score diff.
RULE+DIST 85.41 84.85 85.13 +0.03

RULE+COMMA 85.92 85.15 85.53 +0.43
RULE+SPANh+SPANn 85.33 84.82 85.07 −0.03

RULE+SYMBOLh+SYMBOLn 85.43 85.00 85.21 +0.11
RULE+WORDh+WORDn 87.12 86.62 86.87 +1.77

RULE + WORDh 85.74 84.94 85.34 +0.24
RULE + WORDn 85.10 84.60 84.85 −0.25

RULE+POSh+POSn 85.51 85.08 85.29 +0.19
RULE+LEh+LEn 85.48 85.08 85.28 +0.18

None 85.39 84.82 85.10

Our method: training with our method
Combined: training Enju model with the training corpus replaced by the com-

bination of the GENIA corpus and the Penn Treebank
GENIA only: training Enju model with the training corpus replaced by the

GENIA corpus only
Original Model: training an original Enju model

The table shows the accuracy and the parsing time for the GENIA corpus and
the Penn Treebank Section 23, and also shows the time required for the training
of the model. The additional feature used in our method was RULE+WORDh+
WORDn, which will be explained later. In the “Combined” method, we could
not train the model with the original training parameters (n = 20, ε = 0.98 in
[5]) because the estimator ran out of memory. Hence, we reduced the parameters
to n = 10, ε = 0.95.

For the GENIA corpus, our model gave the higher accuracy than the origi-
nal model and the other estimation methods, while for the Penn Treebank, our
model gave a little lower accuracy than the original model. This result indicates
that our model was more adapted to the specific domain. The “GENIA only”
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Table 5. Accuracy with the combination of WORD and another feature

Features LP LR F-score diff.
WORDh+WORDn+RULE 87.12 86.62 86.87 +1.77
WORDh+WORDn+DIST 86.41 85.86 86.14 +1.04

WORDh+WORDn+COMMA 86.91 86.38 86.64 +1.54
WORDh+WORDn+SPANh+SPANn 85.77 85.22 85.49 +0.39

WORDh+WORDn+SYMBOLh+SYMBOLn 86.58 85.70 86.14 +1.04
WORDh+WORDn+POSh+POSn 86.53 85.99 86.26 +1.16

WORDh+WORDn+LEh+LEn 86.16 85.68 85.92 +0.82
None 85.39 84.82 85.10

Table 6. Errors in our model and Enju

Total errors Common errors Errors not in
the other model

Our model 1179 1050 129
Original model 1338 1050 288

method gave significantly lower accuracy. We expect that the method clearly
lacked the amount of the training corpus for obtaining generic grammatical
information.

The “Combined” method achieved the accuracy close to our method. How-
ever, it is notable that our method took much less time for the training of the
model since ours did not need to handle the Penn Treebank. Instead, our method
exploited the original model of Enju, which was trained on the Penn Treebank,
and this resulted in much less cost of training.

Next, we changed the size of the GENIA treebank for training: 40, 80, 120,
160, 200, 240, 280, 320, 360, and 400 abstracts. Figure 5 shows the accuracy when
the size of the training data was changed. We can say that, for those feature sets
giving remarkable accuracy in the experiments, the accuracy edged upwards with
the size of the training corpus, and the trend does not seem to converge even if
more than 400 abstracts exist. If we choose more complex feature sets for higher
accuracy, data sparseness will occur and an even larger corpus will be needed.
These findings indicate that we can further improve the accuracy by using a
larger treebank and a proper feature set.

Table 3 shows the accuracy of models with only atomic feature templates.
The bottom of the table gives the accuracy attained by the original parser.
When we focus on the WORD features, we can see the combination of WORDh

and WORDn improved the accuracy significantly, although each of the features
by itself did not improve so much. DIST, SYMBOL, and POS feature templates
lowered the accuracy. The other feature templates improved the accuracy, though
not as well as the WORD templates.

Table 4 shows that the RULE feature combined with one or more other
features often gave a little higher accuracy than the RULE feature gave by
itself, though not as well as the WORD features.
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Table 5 shows that the WORD features combined with one or more other
features gave remarkable improvement to the accuracy as a whole. RULE and
COMMA features gave even higher accuracy than with only the WORD features.
Our results revealed that the WORD features were crucial for the adaptation to
the biomedical domain. We expect that this was because the biomedical domain
had a different distribution of words, while more generic grammatical constraints
were not significantly different from other domains.

Table 6 shows the comparison of the number of errors of our model with those
of the original model in parsing the GENIA corpus. Though our model gave less
errors than the original model, our model introduced a certain amount of new
errors. In future work, we need to investigate manually those errors to find more
suitable feature templates without losing the information in the original model.

5 Conclusions

We have presented a method of adapting a domain-independent HPSG parser
to a biomedical domain. Since the treebank of the new domain was limited,
we exploited an original disambiguation model. The new model was trained
on a biomedical treebank, and was combined with the original model by using
it as a reference distribution of a log-linear model. The experimental results
demonstrated our new model was adapted to the target domain, and was superior
to other adaptation methods in accuracy and the cost of training time. With our
model, the parsing accuracy for the target domain improved by 1.77 point with
the treebank of 3,524 sentences. Since the accuracy did not seem to saturate, we
will further improve the accuracy by increasing the size of the domain-dependent
treebank. In addition, the experimental results showed that the WORD feature
significantly contributed to the accuracy improvement.

We examined only a few feature templates, and we must search for further
more feature templates. Not only the new combinations of the atomic features
but also new types of features, which may be domain-dependent such as named
entities, will be possible.
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