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Abstract. We give a detailed account of an algorithm for efficient tactical gener-
ation from underspecified logical-form semantics, using a wide-coverage gram-
mar and a corpus of real-world target utterances. Some earlier claims about chart
realization are critically reviewed and corrected in the light of a series of practical
experiments. As well as a set of algorithmic refinements, we present two novel
techniques: the integration of subsumption-based local ambiguity factoring, and
a procedure to selectively unpack the generation forest according to a probability
distribution given by a conditional, discriminative model.

1 Introduction

A number of wide-coverage precise bi-directional NL grammars have been developed
over the past few years. One example is the LinGO English Resource Grammar (ERG)
[1], couched in the HPSG framework. Other grammars of similar size and coverage also
exist, notable examples using the LFG and the CCG formalisms [2,3]. These grammars
are used for generation from logical form input (also termed tactical generation or real-
ization) in circumscribed domains, as part of applications such as spoken dialog systems
[4] and machine translation [5].

Grammars like the ERG are lexicalist, in that the majority of information is encoded
in lexical entries (or lexical rules) as opposed to being represented in constructions (i.e.
rules operating on phrases). The semantic input to the generator for such grammars,
often, is a bag of lexical predicates with semantic relationships captured by appropriate
instantiation of variables associated with predicates and their semantic roles. For these
sorts of grammars and ‘flat’ semantic inputs, lexically-driven approaches to realization
– such as Shake-and-Bake [6], bag generation from logical form [7], chart generation
[8], and constraint-based generation [9] – are highly suitable. Alternative approaches
based on semantic head-driven generation and more recent variants [10,11] would work
less well for lexicalist grammars since these approaches assume a hierarchically struc-
tured input logical form.

Similarly to parsing with large scale grammars, realization can be computation-
ally expensive. In his presentation of chart generation, Kay [8] describes one source
of potential inefficiency and proposes an approach for tackling it. However, Kay does
not report on a verification of his approach with an actual grammar. Carroll et al. [12]
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〈 h1,
{ h1:proposition m(h2), h3: run v(e4, x5), h3:past(e4),

h6: the q(x5, h7, h8), h9: athlete n(x5), h9: young a(x5), h9: polish a(x5) },
{ h2 =q h3, h8 =q h9 } 〉

Fig. 1. Simplified MRS for an utterance like the young Polish athlete ran (and variants). Elements
from the bag of EPs are linked through both scopal and ‘standard’ logical variables.

present a practical evaluation of chart generation efficiency with a large-scale HPSG

grammar, and describe a different approach to the problem which becomes necessary
when using a wide-coverage grammar. White [3] identifies further inefficiencies, and
describes and evaluates strategies for addressing them, albeit using what appears to be
a somewhat task-specific rather than genuine wide-coverage grammar. In this paper,
we revisit this previous work and present new, improved algorithms for efficient chart
generation; taken together these result in (i) practical performance that improves over
a previous implementation by two orders of magnitude, and (ii) throughput that is near
linear in the size of the input semantics.

In Section 2, we give an overview of the grammar and the semantic formalism
we use, recap the basic chart generation procedure, and discuss the various sources of
potential inefficiency in the basic approach. We then describe the algorithmic improve-
ments we have made to tackle these problems (Section 3), and conclude with the results
of evaluating these improvements (Section 4).

2 Background

2.1 Minimal Recursion Semantics and the LinGO ERG

Minimal Recursion Semantics (MRS) [13] is a popular member of a family of flat, un-
derspecified, event-based (neo-Davidsonian) frameworks for computational semantics
that have been in wide use since the mid-1990s. MRS allows both underspecification of
scope relations and generalization over classes of predicates (e.g. two-place temporal
relations corresponding to distinct lexical prepositions: English in May vs. on Monday,
say), which renders it an attractive input representation for tactical generation. While an
in-depth introduction to MRS is beyond the scope of this paper, Figure 1 shows an ex-
ample semantics that we will use in the following sections. The truth-conditional core is
captured as a flat multi-set (or ‘bag’) of elementary predications (EPs), combined with
generalized quantifiers and designated handle variables to account for scopal relations.
The bag of EPs is complemented by the handle of the top-scoping EP (h1 in our exam-
ple) and a set of ‘handle constraints’ recording restrictions on scope relations in terms
of dominance relations.

The LinGO ERG [1] is a general-purpose, open-source HPSG implementation with
fairly comprehensive lexical and grammatical coverage over a variety of domains and
genres. The grammar has been deployed for diverse NLP tasks, including machine
translation of spoken and edited language, email auto response, consumer opinion track-
ing (from newsgroup data), and some question answering work.1 The ERG uses MRS

1 See http://www.delph-in.net/erg/ for background information on the ERG.
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as its meaning representation layer, and the grammar distribution includes treebanked
versions of several reference corpora – providing disambiguated and hand-inspected
‘gold’ standard MRS formulae for each input utterance – of which we chose one of the
more complex sets for our empirical investigations of realization performance using the
ERG (see Section 4 below).

2.2 The Basic Procedure

Briefly, the basic chart generation procedure works as follows. A preprocessing phase
indexes lexical entries, lexical rules and grammar rules by the semantics they contain.
In order to find the lexical entries with which to initialize the chart, the input semantics
is checked against the indexed lexicon. When a lexical entry is retrieved, the variable
positions in its relations are instantiated in one-to-one correspondence with the variables
in the input semantics (a process we term Skolemization, in loose analogy to the more
general technique in theorem proving; see Section 3.1 below). For instance, for the MRS
in Figure 1, the lookup process would retrieve one or more instantiated lexical entries
for run containing h3: run v(e4, x5). Lexical and morphological rules are applied to the
instantiated lexical entries. If the lexical rules introduce relations, their application is
only allowed if these relations correspond to parts of the input semantics (h3:past(e4),
say, in our example). We treat a number of special cases (lexical items containing more
than one relation, grammar rules which introduce relations, and semantically vacuous
lexical items) in the same way as Carroll et al. [12].

After initializing the chart (with inactive edges), active edges are created from in-
active ones by instantiating the head daughter of a rule; the resulting edges are then
combined with other inactive edges. Chart generation is very similar to chart parsing,
but what an edge covers is defined in terms of semantics, rather than orthography. Each
edge is associated with the set of relations it covers. Before combining two edges a
check is made to ensure that edges do not overlap: i.e. that they do not cover the same
relation(s). The goal is to find all possible inactive edges covering the full input MRS.

2.3 Complexity

The worst-case time complexity of chart generation is exponential (even though chart
parsing is polynomial). The main reason for this is that in theory a grammar could allow
any pair of edges to combine (subject to the restriction described above that the edges
cover non-overlapping bags of EPs). For an input semantics containing n EPs, and
assuming each EP retrieves a single lexical item, there could in the worst case be O(2n)
edges, each covering a different subset of the input semantics. Although in the general
case we cannot improve the complexity, we can make the processing steps involved
cheaper, for instance efficiently checking whether two edges are candidates for being
combined (see Section 3.1 below). We can also minimize the number of edges covering
each subset of EPs by ‘packing’ locally equivalent edges (Section 3.2).

A particular, identifiable source of complexity is that, as Kay [8] notes, when a word
has more than one intersective modifier an indefinite number of its modifiers may be
applied. For instance, when generating from the MRS in Figure 1, edges corresponding
to the partial realizations athlete, young athlete, Polish athlete, and young Polish athlete
will all be constructed. Even if a grammar constrains modifiers so there is only one valid
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ordering, or the generator is able to pack equivalent edges covering the same EPs, the
number of edges built will still be 2n, because all possible complete and incomplete
phrases will be built. Using the example MRS, ultimately useless edges such as the
young athlete ran (omitting Polish) will be created.

Kay proposes an approach to this problem in which edges are checked before they
are created to see if they would ‘seal off’ access to a semantic index (x5 in this case) for
which there is still an unincorporated modifier. Although individual sets of modifiers still
result in exponential numbers of edges, the exponentiality is prevented from propagating
further. However, Carroll et al. [12] argue that this check works only in limited circum-
stances, since for example in (1) the grammar must allow the index for ran to be available
all the way up the tree to How, and simultaneously also make available the indexes for
newspapers, say, and athlete at appropriate points so these words could be modified2.

(1) How quickly did the newspapers say the athlete ran?

Carroll et al. describe an alternative technique which adjoins intersective modifiers into
edges in a second phase, after all possible edges that do not involve intersective modi-
fication have been constructed by chart generation. This overcomes the multiple index
problem described above and reduces the worst-case complexity of intersective modi-
fication in the chart generation phase to polynomial, but unfortunately the subsequent
phase which attempts to adjoin sets of modifiers into partial realizations is still expo-
nential. We describe below (Section 3.3) a related technique which delays processing of
intersective modifiers by inserting them into the generation forest, taking advantage of
dynamic programming to reduce the complexity of the second phase. We also present
a different approach which filters out edges based on accessibility of sets of seman-
tic indices (Section 3.4), which covers a wider variety of cases than just intersective
modification, and in practice is even more efficient.

Exponential numbers of edges imply exponential numbers of realizations. For an
application task we would usually want only one (the most natural or fluent) realization,
or a fixed small number of good realizations that the application could then itself select
from. In Section 3.5 we present an efficient algorithm for selectively unpacking the
generation forest to produce the n-best realizations according to a statistical model.

3 Efficient Wide-Coverage Realization

3.1 Relating Chart Edges and Semantic Components

Once lexical lookup is complete and up until a final, post-generation comparison of
results to the input MRS, the core phases of our generator exclusively operate on typed
feature structures (which are associated to chart edges). For efficiency reasons, our algo-
rithm avoids any complex operations on the original logical-form input MRS. In order
to best guide the search from the input semantics, however, we employ two techniques
that relate components of the logical form to corresponding sub-structures in the feature

2 White [3] describes an approach to dealing with intersective modifiers which requires the
grammarian to write a collection of rules that ‘chunk’ the input semantics into separate modi-
fier groups which are processed separately; this involves extra manual work, and also appears
to suffer from the same multiple index problem.
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structure (FS) universe: (i) Skolemization of variables and (ii) indexing by EP cover-
age. Of these, only the latter we find commonly discussed in the literature, but we expect
some equivalent of making variables ground to be present in most implementations.

As part of the process of looking up lexical items and grammar rules introducing se-
mantics in order to initialize the generator chart, all FS correspondences to logical vari-
ables from the input MRS are made ‘ground’ by specializing the relevant sub-structure
with Skolem constants uniquely reflecting the underlying variable, for example adding
constraints like [SKOLEM “x5”] for all occurrences of x5 from our example MRS.
Skolemization, thus, assumes that distinct variables from the input MRS, where supplied,
cannot become co-referential during generation. Enforcing variable identity at the FS
level makes sure that composition (by means of FS unification) during rule applications
is compatible to the input semantics. In addition, it enables efficient pre-unification fil-
tering (see ‘quick-check’ below), and is a prerequisite for our index accessibility test
described in Section 3.4 below.

In chart parsing, edges are stored into and retrieved from the chart data structure
on the basis of their string start and end positions. This ensures that the parser will
only retrieve pairs of chart edges that cover compatible segments of the input string (i.e.
that are adjacent with respect to string position). In chart generation, Kay [8] proposed
indexing the chart on the basis of logical variables, where each variable denotes an
individual entity in the input semantics, and making the edge coverage compatibility
check a filter. Edge coverage (with respect to the EPs in the input semantics) would be
encoded as a bit vector, and for a pair of edges to be combined their corresponding bit
vectors would have to be disjoint.

We implement Kay’s edge coverage approach, using it not only when combining
active and inactive edges, but also for two further tasks in our approach to realization:

• in the second phase of chart generation to determine which intersective modifier(s)
can be adjoined into a partially incomplete subtree; and

• as part of the test for whether one edge subsumes another, for local ambiguity
factoring (see Section 3.2 below)3.

In our testing with the LinGO ERG, many hundreds or thousands of edges may be
produced for non-trivial input semantics, but there are only a relatively small number
of logical variables. Indexing edges on these variables involves bookkeeping that turns
out not to be worthwhile in practice; logical bit vector operations on edge coverage
take negligible time, and these serve to filter out the majority of edge combinations
with incompatible indices. The remainder are filtered out efficiently before unification
is attempted by a check on which rules can dominate which others, and the quick-check,
as developed for unification-based parsing [14]. For the quick-check, it turns out that
the same set of feature paths that most frequently lead to unification failure in parsing
also work well in generation.

3 We therefore have four operations on bit vectors representing EP coverage (C) in chart edges:
• concatenation of edges e1 and e2 → e3: C(e3) = OR(C(e1), C(e2));
• can edges e1 and e2 combine? AND(C(e1), C(e2)) = 0;
• do edges e1 and e2 cover the same EPs? C(e1) = C(e2);
• do edges e1, . . . , en cover all input EPs? NOT(OR(C(e1), . . . , C(en)) = 0.
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3.2 Local Ambiguity Factoring

In chart parsing with context free grammars, the parse forest (a compact representation
of the full set of parses) can only be computed in polynomial time if sub-analyses dom-
inated by the same non-terminal and covering the same segment of the input string are
‘packed’, or factored into a single unitary representation [15]. Similar benefits accrue
for unification grammars without a context free backbone such as the LinGO ERG,
if the category equality test is replaced by feature structure subsumption [16]4; also,
feature structures representing the derivation history need to be restricted out when ap-
plying a rule [17]. The technique can be applied to chart realization if the input span is
expressed as coverage of the input semantics. For example, with the input of Figure 1,
the two phrases in (2) below would have equivalent feature structures, and we pack the
one found second into the one found first, which then acts as the representative edge for
all subsequent processing.

(2) young Polish athlete | Polish young athlete

We have found that packing is crucial to efficiency: realization time is improved by more
than an order of magnitude for inputs with more than 500 realizations (see Section 4).
Changing packing to operate with respect just to feature structure equality rather than
subsumption degrades throughput significantly, resulting in worse overall performance
than with packing disabled completely: in other words, equivalence-only packing fails
to recoup the cost of the feature structure comparisons involved.

A further technique we use is to postpone the creation of feature structures for active
edges until they are actually required for a unification operation, since many end up as
dead ends. Oepen and Carroll [18] do a similar thing in their ‘hyper-active’ parsing
strategy, for the same reason.

3.3 Delayed Modifier Insertion

As discussed in Section 2.3, Carroll et al. [12] adjoin intersective modifiers into each
partial tree extracted from the forest; their algorithm searches for partitions of modifier
phrases to adjoin, and tries all combinations. This process adds an exponential (in the
number of modifiers) factor to the complexity of extracting each partial realization.

This is obviously unsatisfactory, and in practice is slow for larger problems when
there are many possible modifiers. We have devised a better approach which delays
processing of intersective modifiers by inserting them into the generation forest at ap-
propriate locations before the forest is unpacked. By doing this, we take advantage of
the dynamic programming-based procedure for unpacking the forest to reduce the com-
plexity of the second phase. The procedure is even more efficient if realizations are
unpacked selectively (section 3.5).

3.4 Index Accessibility Filtering

Kay’s original proposal for dealing efficiently with modifiers founders because more
than one semantic index may need to be accessible at any one time (leading to the

4 Using subsumption-based packing means that the parse forest may represent some globally
inconsistent analyses, so these must be filtered out when the forest is unpacked.
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alternative solutions of modifier adjunction, and of chunking the input semantics – see
Sections 2.3 and 3.3).

However, it turns out that Kay’s proposal can form the basis of a more generally
applicable approach to the problem. We assume that we have available an operation
collect-semantic-vars() that traverses a feature structure and returns the set of semantic
indices that it makes available5. We store in each chart edge two sets: one of semantic
variables in the feature structure that are accessible (that is, they are present in the
feature structure and could potentially be picked by another edge when it is combined
with this one), and a second set of inaccessible semantic variables (ones that were once
accessible but no longer are). Then,

• when an active edge is combined with an inactive edge, the accessible sets and
inaccessible sets in the resulting edge are the union of the corresponding sets in the
original edges;

• when an inactive edge is created, its accessible set is computed to be the semantic
indices available in its feature structure, and the variables that used to be accessible
but are no longer in the accessible set are added to its inaccessible set, i.e.

1 tmp← edge.accessible;
2 edge.accessible← collect-semantic-vars(edge.fs)
3 edge.inaccessible← (tmp \ edge.accessible) ∪ edge.inaccessible

• immediately after creating an inactive edge, each EP in the input semantics that
the edge does not (yet) cover is inspected, and if the EP’s index is in the edge’s
inaccessible set then the edge is discarded (since there is no way in the future that
the EP could be integrated with any extension of the edge’s semantics).

A nice property of this new technique is that it applies more widely than to just
intersective modification: for instance, if the input semantics were to indicate that a
phrase should be negated, no edges would be created that extended that phrase without
the negation being present. Section 4 shows this technique results in dramatic improve-
ments in realization efficiency.

3.5 Selective Unpacking

The selective unpacking procedure outlined in this section allows us to extract a small
set of n-best realizations from the generation forest at minimal cost. The global rank
order is determined by a conditional Maximum Entropy (ME) model – essentially an
adaptation of recent HPSG parse selection work to the realization ranking task [19]. We
use a similar set of features to Toutanova and Manning [20], but our procedure dif-
fers from theirs in that it applies the stochastic model before unpacking, in a guided
search through the generation forest. Thus, we avoid enumerating all candidate realiza-
tions. Unlike Malouf and van Noord [21], on the other hand, we avoid an approximative
beam search during forest creation and guarantee to produce exactly the n-best realiza-
tions (according to the ME model). Further looking at related parse selection work, our
procedure is probably most similar to those of Geman and Johnson [22] and Miyao and

5 Implementing collect-semantic-vars() can be efficient: searching for Skolem constants through-
out the full structure, it does a similar amount of computation as a single unification.
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1 →
〈

2 3
〉 〈

4 3
〉

2 →
〈

5 6
〉 〈

5 7
〉

4 →
〈

8 6
〉 〈

8 7
〉 〈

9 6
〉 〈

9 7
〉

6 →
〈

10
〉 〈

11
〉

Fig. 2. Sample generator forest and sub-node decompositions: ovals in the forest (on the left)
indicate packing of edges under subsumption, i.e. edges 4 , 7 , 9 , and 11 are not in the gen-
erator chart proper. During unpacking, there will be multiple ways of instantiating a chart edge,
each obtained from cross-multiplying alternate daughter sequences locally. The elements of this
cross-product we call decomposition, and they are pivotal points both for stochastic scoring and
dynamic programming in selective unpacking. The table on the right shows all non-leaf decom-
positions for our example generator forest: given two ways of decomposing 6 , there will be three
candidate ways of instantiating 2 and six for 4 , respectively, for a total of nine full trees.

Tsujii [23], but neither provide a detailed discussion of the dependencies between local-
ity of ME features and the complexity of the read-out procedure from a packed forest.

Two key notions in our selective unpacking procedure are the concepts of (i) decom-
posing an edge locally into candidate ways of instantiating it and of (ii) nested contexts
of ‘horizontal’ search for ranked hypotheses (i.e. uninstantiated edges) about candidate
subtrees. See Figure 2 for examples of edge decomposition, but note that the ‘depth’
of each local cross-product needs to correspond to the maximum required context size
of ME features; for ease of exposition, our examples assume a context size of no more
than depth one (but the algorithm straightforwardly generalizes to larger contexts). Given
one decomposition – i.e. a vector of candidate daughters to a token construction – there
can be multiple ways of instantiating each daughter: a parallel index vector 〈i0 . . . in〉
serves to keep track of ‘vertical’ search among daughter hypotheses, where each index ij
denotes the i-th instantiation (hypothesis) of the daughter at position j. Hypotheses are
associated with ME scores and ordered within each nested context by means of a local
agenda (stored in the original representative edge, for convenience). Given the additive
nature of ME scores on complete derivations, it can be guaranteed that larger derivations
including an edge e as a sub-constituent on the fringe of their local context of optimiza-
tion will use the best instantiation of e in their own best instantiation. The second-best
larger instantiation, in turn, will be obtained from moving to the second-best hypothesis
for one of the elements in the (right-hand side of the) decomposition. Therefore, nested
local optimizations result in a top-down, exact n-best search through the generation for-
est, and matching the ‘depth’ of local decompositions to the maximum required ME
feature context effectively prevents exhaustive cross-multiplication of packed nodes.

The main function hypothesize-edge() in Figure 3 controls both the ‘horizontal’ and
‘vertical’ search, initializing the set of decompositions and pushing initial hypothe-
ses onto the local agenda when called on an edge for the first time (lines 11 – 17).
Furthermore, the procedure retrieves the current next-best hypothesis from the agenda
(line 18), generates new hypotheses by advancing daughter indices (while skipping over
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1 procedure selectively-unpack-edge(edge , n) ≡
2 results ← 〈 〉; i ← 0;
3 do
4 hypothesis ← hypothesize-edge(edge , i); i ← i + 1;
5 if (new ← instantiate-hypothesis(hypothesis)) then
6 n ← n − 1; results ← results ⊕ 〈new〉;
7 while (hypothesis and n ≥ 1)
8 return results;

9 procedure hypothesize-edge(edge , i) ≡
10 if (edge.hypotheses[i]) return edge.hypotheses[i];
11 if (i = 0) then
12 for each (decomposition in decompose-edge(edge)) do
13 daughters ← 〈 〉; indices ← 〈 〉
14 for each (edge in decomposition.rhs) do
15 daughters ← daughters ⊕ 〈hypothesize-edge(edge, 0)〉;
16 indices ← indices ⊕ 〈0〉;
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis ← edge.agenda.pop()) then
19 for each (indices in advance-indices(hypothesis.indices)) do
20 if (indices ∈ edge.indices) then continue
21 daughters ← 〈 〉;
22 for each (edge in hypothesis.decomposition.rhs) each (i in indices) do
23 daughter ← hypothesize-edge(edge, i);
24 if (not daughter) then
25 daughters ← 〈 〉; break
26 daughters ← daughters ⊕ 〈daughter〉;
27 if (daughters) then new-hypothesis(edge, decomposition, daughters, indices)
28 edge.hypotheses[i] ← hypothesis;
29 return hypothesis;

30 procedure new-hypothesis(edge , decomposition , daughters , indices) ≡
31 hypothesis ← new hypothesis(decomposition, daughters, indices);
32 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
33 edge.indices ← edge.indices ∩ {indices};

Fig. 3. Selective unpacking procedure, enumerating the n best realizations for a top-level result
edge from the generation forest. An auxiliary function decompose-edge() performs local cross-
multiplication as shown in the examples in Figure 2. Another utility function not shown in pseudo-
code is advance-indices(), another ‘driver’ routine searching for alternate instantiations of daughter
edges, e.g. advance-indices(〈0 2 1〉) → {〈1 2 1〉 〈0 3 1〉 〈0 2 2〉}. Finally, instantiate-hypothesis() is
the function that actually builds result trees, replaying the unifications of constructions from the
grammar (as identified by chart edges) with the feature structures of daughter constituents.

configurations seen earlier) and calling itself recursively for each new index (lines 19 –
27), and, finally, arranges for the resulting hypothesis to be cached for later invocations
on the same edge and i values (line 28). Note that we only invoke instantiate-hypothesis()

on complete, top-level hypotheses, as the ME features of Toutanova and Manning [20]
can actually be evaluated prior to building each full feature structure. However, the
procedure could be adapted to perform instantiation of sub-hypotheses within each lo-
cal search, should additional features require it. For better efficiency, our instantiate-

hypothesis() routine already uses dynamic programming for intermediate results.

4 Evaluation and Summary

Below we present an empirical evaluation of each of the refinements discussed in Sec-
tions 3.2 through 3.5. Using the LinGO ERG and its ‘hike’ treebank – a 330-sentence
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Table 1. Realization efficiency for various instantiations of our algorithm. The table is broken
down by average ambiguity rates, the first two columns showing the number of items per aggre-
gate and average string length. Subsequent columns show relative cpu time of one- and two-phase
realization with or without packing and filtering, shown as a relative multiplier of the baseline
performance in the 1p+f+ column. The rightmost column is for selective unpacking of up to 10
trees from the forest produced by the baseline configuration, again as a factor of the baseline. (The
quality of the selected trees depends on the statistical model and the degree of overgeneration in
the grammar, and is a completely separate issue which we do not address in this paper).

items length 1p−f− 2p−f− 1p−f+ 1p+f− 2p+f− 1p+f+ n=10Aggregate
� φ × × × × × s ×

500 < trees 9 23.9 31.76 20.95 11.98 9.49 3.69 31.49 0.33
100 < trees ≤ 500 22 17.4 53.95 36.80 3.80 8.70 4.66 5.61 0.42
50 < trees ≤ 100 21 18.1 51.53 13.12 1.79 8.09 2.81 3.74 0.62
10 < trees ≤ 50 80 14.6 35.50 18.55 1.82 6.38 3.67 1.77 0.89

0 ≤ trees ≤ 10 185 10.5 9.62 6.83 1.19 6.86 3.62 0.58 0.95
Overall 317 12.9 35.03 20.22 5.97 8.21 3.74 2.32 0.58

Coverage 95% 97% 99% 99% 100% 100% 100%

collection of instructional text taken from Norwegian tourism brochures – we bench-
marked various generator configurations, starting from the ‘gold’ standard MRS formula
recorded for each utterance in the treebank. At 12.8 words, average sentence length in
the original ‘hike’ corpus is almost exactly what we see as the average length of all
paraphrases obtained from the generator (see Table 1); from the available reference
treebanks for the ERG, ‘hike’ appears to be among the more complex data sets.

Table 1 summarizes relative generator efficiency for various configurations, where
we use the best-performing exhaustive procedure 1p+f+ (one-phase generation with
packing and index accessibility filtering) as a baseline. The configuration 1p−f− (one-
phase, no packing or filtering) corresponds to the basic procedure suggested by Kay [8],
while 2p−f− (two-phase processing of modifiers without packing and filtering) imple-
ments the algorithm presented by Carroll et al. [12]. Combining packing and filter-
ing clearly outperforms both these earlier configurations, i.e. giving an up to 50 times
speed-up for inputs with large numbers of realizations. Additional columns contrast the
various techniques in isolation, thus allowing an assessment of the individual strengths
of our proposals. On low- to medium-ambiguity items, for example, filtering gives rise
to a bigger improvement than packing, but packing appears to flatten the curve more.
Both with and without packing, filtering improves significantly over the Carroll et al.
two-phase approach to intersective modifiers (i.e. comparing columns 2p−f− and 2p+f−
to 1p−f+ and 1p+f+, respectively), thus confirming the increased generality of our solu-
tion to the modification problem. Finally, the benefits of packing and filtering combine
more than merely multiplicatively: compared to 1p−f−, just filtering gives a speed-up of
5.9, and just packing a speed-up of 4.3. At 25, the product of these factors is well below
the overall reduction of 35 that we obtain from the combination of both techniques.

While the rightmost column in Table 1 already indicates that 10-best selective un-
packing further improves generator performance by close to a factor of two, Figure 4
breaks down generation time with respect to forest creation vs. unpacking time. When
plotted against increasing input complexity (in terms of the ‘size’ of the input MRS),
forest creation appears to be a low-order polynomial (or better), whereas exhaustive
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Fig. 4. Break-down of generation times (in seconds) according to realization phases and input
complexity (approximated in the number of EPs in the original MRS used for generation). The
three curves are, from ‘bottom’ to ‘top’, the average time for constructing the packed generation
forest, selective unpacking time (using n = 10), and exhaustive unpacking time. Note that both
unpacking times are shown as increments on top of the forest creation time.

unpacking (necessarily) results in an exponential explosion of generation time: with
more than 25 EPs, it clearly dominates total processing time. Selective unpacking, in
contrast, appears only mildly sensitive to input complexity and even on complex inputs
adds no more than a minor cost to total generation time. Thus, we obtain an over-
all observed run-time performance of our wide-coverage generator that is bounded (at
least) polynomially. Practical generation times using the LinGO ERG average below or
around one second for outputs of fifteen words in length, i.e. time comparable to human
production.
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