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Abstract. Partial parsing techniques try to recover syntactic informa-
tion efficiently and reliably by sacrificing completeness and depth of anal-
ysis. One of the difficulties of partial parsing is finding a means to extract
the grammar involved automatically. In this paper, we present a method
for automatically extracting partial parsing rules from a tree-annotated
corpus using decision tree induction. We define the partial parsing rules
as those that can decide the structure of a substring in an input sentence
deterministically. This decision can be considered as a classification; as
such, for a substring in an input sentence, a proper structure is chosen
among the structures occurred in the corpus. For the classification, we
use decision tree induction, and induce partial parsing rules from the
decision tree. The acquired grammar is similar to a phrase structure
grammar, with contextual and lexical information, but it allows building
structures of depth one or more. Our experiments showed that the pro-
posed partial parser using the automatically extracted rules is not only
accurate and efficient, but also achieves reasonable coverage for Korean.

1 Introduction

Conventional parsers try to identify syntactic information completely. These
parsers encounter difficulties when processing unrestricted texts, because of un-
grammatical sentences, the unavoidable incompleteness of lexicon and grammar,
and other reasons like long sentences. Partial parsing is an alternative technique
developed in response to these problems. This technique aims to recover syn-
tactic information efficiently and reliably from unrestricted texts by sacrificing
completeness and depth of analysis, and relying on local information to resolve
ambiguities [1].

Partial parsing techniques can be roughly classified into two groups. The first
group of techniques involves partial parsing via finite state machines [2,3,9,10].
These approaches apply the sequential regular expression recognizer to an in-
put sentence. When multiple rules match an input string at a given position,
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the longest-matching rule is selected. Therefore, these parsers always produce
a single best analysis and operate very fast. In general, these approaches use
a hand-written regular grammar. As would be expected, manually writing a
grammar is both very time consuming and prone to have inconsistencies.

The other group of partial parsing techniques is text chunking, that is, recog-
nition of non-overlapping and non-recursive cores of major phrases (chunks), by
using machine learning techniques [4,7,8,13,15,17]. Since Ramshaw and Mar-
cus [15] first proposed formulating the chunking task as a tagging task, most
chunking methods have followed this word-tagging approach. In base noun phrase
chunking, for instance, each word is marked with one of three chunk tags: I (for
a word inside an NP), O (for outside of an NP), and B (for between the end of
one NP and the start of another) as follows1:

In ( early trading ) in ( Hong Kong ) ( Monday ), ( gold ) was quoted
at ( $ 366.50 ) ( an ounce ).
InO earlyI tradingI inO HongI KongI MondayB ,O goldI wasO quotedO

atO $I 366.50I anB ounceI .O

With respect to these approaches, there have been several studies on automat-
ically extracting chunking rules from large-scale corpora using transformation-
based learning [15], error-driven pruning [7], the ALLiS top-down inductive sys-
tem [8]. However, it is not yet clear how these approaches could be extended
beyond the chunking task.

In this paper, we present a method of automatically extracting partial pars-
ing rules from a tree-annotated corpus using the decision tree method. Our goal
is to extract rules with higher accuracy and broader coverage. We define the
partial parsing rules as those that can establish the structure of a substring in
an input sentence deterministically. This decision can be considered as a classifi-
cation; as such, for a substring in an input sentence, a proper structure is chosen
among the structures occurred in the corpus, as extended from the word-tagging
approach of text chunking. For the classification, we use decision tree induction
with features of contextual and lexical information. In addition, we use negative
evidence, as well as positive evidence, to gain higher accuracy. For general re-
cursive phrases, all possible substrings in a parse tree are taken into account by
extracting evidence recursively from a parse tree in a training corpus. We induce
partial parsing rules from the decision tree, and, to retain only those rules that
are accurate, verify each rule through cross-validation.

In many cases, several different structures are assigned to the same substring
in a tree-annotated corpus. Substrings for coordination and compound nouns are
typical examples of such ambiguous cases in Korean. These ambiguities can pre-
vent us from extracting partial parsing rules that cover the substrings with more
than one substructure and, consequently, can cause the result of partial parsing
to be limited to a relatively shallow depth. In this work, we address this problem
by merging substructures with ambiguity using an underspecified representation.

1 This example is excerpted from Tjong Kim Sang [17].
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This underspecification leads to broader coverage without deteriorating either
the determinism or the precision of partial parsing.

The acquired grammar is similar to a phrase structure grammar, with con-
textual and lexical information, but it allows building structures of depth one or
more. It is easy to understand; it can be easily modified; and it can be selectively
added to or deleted from the grammar. Partial parsing with this grammar pro-
cesses an input sentence deterministically using longest-match heuristics. The
acquired rules are then recursively applied to construct higher structures.

2 Automatic Rule Acquisition

To start, we define the rule template, the basic format of a partial parsing rule,
as follows:

left context | substring | right context −→ substructure

This template shows how the substring of an input sentence, surrounded by the
left context and the right context, constructs the substructure. The left context
and the right context are the remainder of an input sentence minus the substring.
For automatic learning of the partial parsing rules, the lengths of the left context
and the right context are restricted to one respectively. Note that applying a
partial parsing rule results in a structure of depth one or more. In other words,
the rules extracted by this rule template reduce a substring into a subtree, as
opposed to a single non-terminal; hence, the resultant rules can be applied more
specifically and strictly.

c4.5

tree-annotated
corpus

partial parsing
rules

rule candidate
extraction

tree
underspecification

contextualization
& lexicalization

verification

refinement

Fig. 1. Procedure for extracting partial parsing rules

Figure 1 illustrates the procedure for the extraction of partial parsing rules.
First, we extract all possible rule candidates from a tree-annotated corpus, com-
pliant with the rule template. The extracted candidates are grouped according
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to their respective substrings. Next, using the decision tree method, these candi-
dates are enriched with contextual and lexical information. The contextualized
and lexicalized rules are verified through cross-validation to retain only those
rules that are accurate. The successfully verified accurate rules become the final
partial parsing rules. Remaining rules that cannot be verified are forwarded to
the tree underspecification step, which merges tree structures with hard ambi-
guities. As seen in Fig. 1, the underspecified candidates return to the refinement
step. The following subsections describe each step in detail.

2.1 Extracting Candidates

From the tree-annotated corpus, we extract all the possible candidates for partial
parsing rules in accordance with the rule template. Scanning input sentences an-
notated with its syntactic structure one by one, we can extract the substructure
corresponding to every possible substring at each level of the syntactic struc-
ture. We define level 0 as part-of-speech tags in an input sentence, and level n
as the nodes whose maximum depth is n. If no structure precisely corresponds
to a particular substring, then a null substructure is extracted, which represents
negative evidence.

Figure 2 shows an example sentence2 with its syntactic structure3 and some
of the candidates for the partial parsing rules extracted from the left side of
the example. In this figure, the first partial parsing rule candidate shows how
the substring ‘npp’ can be constructed into the substructure ‘NP’. Snull denotes
negative evidence.

The extracted rule candidates are gathered and grouped according to their
respective substrings. Figure 34 shows the candidate groups. In this figure, G1
and G2 are the group names, and the number in the last column refers to the
frequency that each candidate occurs in the training corpus. Group G1 and G2
have 2 and 3 candidates, respectively. When a particular group has only one
candidate, the candidate can always be applied to a corresponding substring

2 ‘NOM’ refers to the nominative case and ‘ACC’ refers to the accusative case. The
term ‘npp’ denotes personal pronoun; ‘jxt’ denotes topicalized auxiliary particle;
‘ncn’ denotes non-predicative common noun; ‘jco’ denotes objective case particle;
‘pvg’ denotes general verb; ‘ef’ denotes final ending; and ‘sf’ denotes full stop symbol.
For a detailed description of the KAIST corpus and its tagset, refer to Lee [11]. The
symbol ‘+’ is not a part-of-speech, but rather a delimiter between words within a
word phrase.

3 In Korean, a word phrase, similar to bunsetsu in Japanese, is defined as a spacing unit
with one or more content words followed by zero or more functional words. A content
word indicates the meaning of the word phrase in a sentence, while a functional
word—a particle or a verbal-ending—indicates the grammatical role of the word
phrase. In the KAIST corpus used in this paper, a functional word is not included in
the non-terminal that the preceding content word belongs to, following the restricted
representation of phrase structure grammar for Korean [12]. For example, a word
phrase “na/npp + neun/jxt” is annotated as “(NP na/npp ) + neun/jxt”, as in
Fig. 2.
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Fig. 2. An example sentence and the extracted candidates for partial parsing rules
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Fig. 3. Groups of partial parsing rules candidates

deterministically. In contrast, if there is more than one candidate in a particular
group, those candidates should be enriched with contextual and lexical informa-
tion to make each candidate distinct for proper application to a corresponding
substring.

2.2 Refining Candidates

This step refines ambiguous candidates with contextual and lexical information
to make them unambiguous.

First, each candidate needs to be annotated with contextual and lexical in-
formation occurring in the training corpus, as shown in Fig. 4. In this figure, we
can see that a substring with lexical information such as ‘su/nbn’ unambigu-
ously constitutes the substructure ‘AUXP’. We use the decision tree method,
C4.5 [14], to select the important contextual and lexical information that can
facilitate the establishment of unambiguous partial parsing rules. The features
used in the decision tree method are the lexical information of each terminal or
4 The term ‘etm’ denotes adnominalizing ending; ‘nbn’ denotes non-unit bound noun;

‘jcs’ denotes subjective case particle; ‘paa’ denotes attributive adjective; ‘ecs’ denotes
subordinate conjunctive ending; and ‘AUXP’ denotes auxiliary phrase.
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sal/pvg + | r/etm su/nbn + ga/jcs iss/paa | + da/ef → AUXP
i/jp + | r/etm su/nbn + ga/jcs eop/paa | + da/ef → AUXP

nolla/pvg + | n/etm jeok/nbn + i/jcs iss/paa | + da/ef → Snull

wanjeonha/paa + | n/etm geot/nbn + i/jcs eop/paa | + go/ecc→ Snull

kkeutna/pvg + | n/etm geut/nbn + i/jcs ani/paa | + ra/ecs → Snull

ik/pvg + | neun/etm geut/nbn + i/jcs jot/paa | + da/ef → Snull

ha/xsv + | r/etm nawi/nbn + ga/jcs eop/paa | + da/ef → Snull

Fig. 4. Annotated candidates for the G1 group rules

nbn = su(way):

paa = iss(exist)

paa = eop(not exist)

paa = man(much) S
null

AUXP

AUXP

• • •

Fig. 5. A section of the decision tree

non-terminal for the substring, and the parts-of-speech and lexical information
for the left context and the right context. Lexical information of a non-terminal
is defined as the part-of-speech and lexical information of its headword.

Figure 5 shows a section of the decision tree learned from our example sub-
string. The deterministic partial parsing rules in Fig. 6 are extracted from the
decision tree. As shown in Fig. 6, only the lexical entries for the second and the
fourth morphemes in the substring are selected as additional lexical informa-
tion, and none of the contexts is selected in this case. We should note that the
rules induced from the decision tree are ordered. Since these ordered rules do
not interfere with those from other groups, they can be modified without much
difficulty.

| etm su/nbn + jcs iss/paa | −→ AUXP
| etm su/nbn + jcs eop/paa | −→ AUXP
| etm su/nbn + jcs man/paa| −→ Snull

Fig. 6. Partial parsing rules extracted from a section of the decision tree in Fig. 5
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After we enrich the partial parsing rules using the decision tree method, we
verify them by estimating the accuracy of each rule to filter out less deterministic
rules. We estimate the error rates (%) of the rule candidates via a 10-fold cross
validation on the training corpus. The rule candidates of the group with an error
rate that is less than the predefined threshold, θ, can be extracted to the final
partial parsing rules. The candidates in the group G2 in Fig. 3 could not be
extracted as the final partial parsing rules, because the estimated error rate of
the group was higher than the threshold. The candidates in G2 are set aside
for tree underspecification processing. Using the threshold θ, we can control the
number of the final partial parsing rules and the ratio of the precision/recall
trade-off for the parser that adopts the extracted partial parsing rules.

2.3 Dealing with Hard Ambiguities: The Underspecified
Representation

The group G2 in Fig. 3 has one of the attachment ambiguities, namely, consecu-
tive subordinate clauses. Figure 7 shows sections of two different trees extracted
from a tree-annotated corpus. The two trees have identical substrings, but are an-
alyzed differently. This figure exemplifies how an ambiguity relates to the lexical
association between verb phrases, which is difficult to annotate in rules. There
are many other syntactic ambiguities, such as coordination and noun phrase
bracketing, that are difficult to resolve with local information. The resolution
usually requires lexical co-occurrence, global context, or semantics. Such am-
biguities can deteriorate the precision of partial parsing or limit the result of
partial parsing to a relatively shallow depth.

Rule candidates with these ambiguities mostly have several different struc-
tures assigned to the same substrings under the same non-terminals. In this
paper, we refer to them as internal syntactic ambiguities. We manually exam-
ined the patterns of the internal syntactic ambiguities, which were found in the
KAIST corpus as they could not be refined automatically due to low estimated
accuracies. During the process, we observed that few internal syntactic ambigu-
ities could be resolved with local information.

In this paper, we handle internal syntactic ambiguities by merging the candi-
dates using tree intersection and making them underspecified. This underspeci-
fied representation enables an analysis with broader coverage, without deterio-
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Fig. 7. Examples of internal syntactic ambiguities
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Fig. 8. Underspecified candidates

rating the determinism or the precision of partial parsing. Since only different
structures under the same non-terminal are merged, the underspecification does
not harm the structure of higher nodes. Figure 8 shows the underspecified can-
didates of group G2. In this figure, the first two rules in G2 are reduced to the
merged ‘VP’. Underspecified candidates are also enriched with contextual and
lexical information using the decision tree method, and they are verified through
cross-validation, as described in Sect. 2.2. The resolution of internal syntactic
ambiguities is forwarded to a module beyond the partial parser. If necessary,
by giving all possible structures of underspecified parts, we can prevent a later
processing from re-analyzing the parts. Any remaining candidates that are not
selected as the partial parsing rules after all three steps are discarded.

3 Experimental Results

We have performed experiments to show the usefulness of automatically ex-
tracted partial parsing rules. For our evaluations, we implemented a naive par-
tial parser, using TRIE indexing to search the partial parsing rules. The input
of the partial parser is a part-of-speech tagged sentence and the result is usually
the sequence of subtrees. At each position in an input sentence, the parser tries
to choose a rule group using longest-match heuristics. Then, if any matches are
found, the parser applies the first-matching rule in the group to the correspond-
ing substring, because the rules induced from the decision tree are ordered.

In our experiments, we used the KAIST tree-annotated corpus [11]. The
training corpus contains 10,869 sentences (289,362 morphemes), with an average
length of 26.6 morphemes. The test corpus contains 1,208 sentences, with an
average length of 26.0 morphemes. The validation corpus, used for choosing the
threshold, θ, contains 1,112 sentences, with an average length of 20.1 morphemes,
and is distinct from both the training corpus and the test corpus.

The performance of the partial parser was evaluated using PARSEVAL mea-
sures [5]. The F measure, a complement of the E measure [16], is used to combine
precision and recall into a single measure of overall performance, and is defined
as follows:

Fβ =
(β2 + 1) ∗ LP ∗ LR

β2 ∗ LP + LR

In the above equation, β is a factor that determines the weighting of precision
and recall. Thus, β < 1 is used to weight precision heavier than recall, β > 1
is used to weight recall heavier than precision, and β = 1 is used to weight
precision and recall equally.
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Table 1. Precision/Recall with respect to the threshold, θ, for the validation corpus

θ # of rules precision recall Fβ=0.4

6 18,638 95.5 72.9 91.6
11 20,395 95.1 75.1 91.7
16 22,650 94.2 78.0 91.6
21 25,640 92.6 83.3 91.2
26 28,180 92.0 84.7 90.9

Table 2. Experimental results of the partial parser for Korean

Grammar precision recall Fβ=0.4 Fβ=1

baseline 73.0 72.0 72.9 72.5
depth 1 rule only 95.2 68.3 90.3 79.6
not underspecified 95.7 71.6 91.4 81.9
underspecified 95.7 73.6 91.9 83.2
underspecified (in case θ=26) 92.2 83.5 90.9 87.6
PCFG 80.0 81.5 80.2 80.7
Lee [11] 87.5 87.5 87.5 87.5

The parsing result can be affected by the predefined threshold, θ (described
in Sect. 2.2), which can control both the accuracy of the partial parser and
the number of the extracted rules. Table 1 shows the number of the extracted
rules and how precision and recall trade off for the validation corpus as the
threshold, θ, is varied. As can be seen, a lower threshold, θ, corresponds to a
higher precision and a lower recall. A higher threshold corresponds to a lower
precision and a higher recall. For a partial parser, the precision is generally
favored over the recall. In this paper, we used a value of 11 for θ, where the
precision was over 95% and fβ=0.4 was the highest. The value of this threshold
should be set according to the requirements of the relevant application.

Table 2 presents the precision and the recall of the partial parser for the test
corpus when the threshold, θ, was given a value of 11. In the baseline gram-
mar, we selected the most probable structure for a given substring from each
group of candidates. The “depth 1 rule only” grammar is the set of the rules
extracted along with the restriction, stating that only a substructure of depth
one is permitted in the rule template. The “underspecified” grammar is the final
version of our partial parsing rules, and the “not underspecified” grammar is
the set of the rules extracted without the underspecification processing. Both
PCFG and Lee [11] are statistical full parsers of Korean, and Lee enriched the
grammar using contextual and lexical information to improve the accuracy of a
parser. Both of them were trained and tested on the same corpus as ours was
for comparison. The performance of both the “not underspecified” grammar and
the “underspecified” grammar was greatly improved compared to the baseline
grammar and PCFG, neither of which adopts contextual and lexical informa-
tion in their rules. The “not underspecified” grammar performed better than
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the “depth 1 rule only” grammar. This indicates that increasing the depth of a
rule is helpful in partial parsing, as in the case of a statistical full parsing, Data-
Oriented Parsing [6]. Comparing the “underspecified” grammar with the “not
underspecified” grammar, we can see that underspecification leads to broader
coverage, that is, higher recall. The precision of the “underspecified” grammar
was above 95%. In other words, when a parser generates 20 structures, 19 out
of 20 structures are correct. However, its recall dropped far beyond that of the
statistical full parser [11]. When we set θ to a value of 26, the underspecified
grammar slightly outperformed that of the full parser in terms of fβ=1, although
the proposed partial parser does not always produce one complete parse tree5.
It follows from what has been said thus far that the proposed parser has the
potential to be a high-precision partial parser and approach the performance
level of a statistical full parser, depending on the threshold θ.

The current implementation of our parser has a O(n2mr) worst case time
complexity for a case involving a skewed binary tree, where n is the length of
the input sentence and mr is the number of rules. Because mr is the constant,
much more than two elements are reduced to subtrees of depth one or more in
each level of parsing, and, differing from full parsing, the number of recursions
in the partial parsing seems to be limited6, we can parse in near-linear time.
Figure 9 shows the time spent in parsing as a function of the sentence length7.
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Fig. 9. Time spent in parsing

Lastly, we manually examined the first 100 or so errors occurring in the test
corpus. In spite of underspecification, the errors related to conjunctions and

5 In the test corpus, the percentage that our partial parser (θ=26) produced one
complete parse tree was 70.9%. When θ=11, the percentage was 35.9%.

6 In our parser, the maximum number of recursion was 10 and the average number of
recursion was 4.47.

7 This result was obtained using a Linux machine with Pentium III 700MHz processor.
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attachments were the most frequent. The errors of conjunctions were mostly
caused by substrings not occurring in the training corpus, while the cases of
attachments lacked contextual or lexical information for a given substring. These
errors can be partly resolved by increasing the size of the corpus, but it seems
that they cannot be resolved completely with partial parsing. In addition, there
were errors related to noun phrase bracketing, date/time/unit expression, and
either incorrectly tagged sentences or inherently ambiguous sentences. For date,
time, and unit expressions, manually encoded rules may be effective with partial
parsing, since they appear to be used in a regular way. We should note that
many unrecognized phrases included expressions not occurring in the training
corpus. This is obviously because our grammar cannot handle unseen substrings;
hence, alleviating the sparseness in the sequences will be the goal of our future
research.

4 Conclusion

In this paper, we have proposed a method of automatically extracting the par-
tial parsing rules from a tree-annotated corpus using a decision tree method. We
consider partial parsing as a classification; as such, for a substring in an input
sentence, a proper structure is chosen among the structures occurred in the cor-
pus. Highly accurate partial parsing rules can be extracted by (1) allowing rules
to construct a subtree of depth one or more; (2) using decision tree induction,
with features of contextual and lexical information for the classification; and (3)
verifying induced rules through cross-validation. By merging substructures with
ambiguity in non-deterministic rules using an underspecified representation, we
can handle syntactic ambiguities that are difficult to resolve with local infor-
mation, such as coordination and noun phrase bracketing ambiguities. Using a
threshold, θ, we can control the number of the partial parsing rules and the ratio
of the precision/recall trade-off of the partial parser. The value of this thresh-
old should be set according to the requirements of the relevant application. Our
experiments showed that the proposed partial parser using the automatically
extracted rules is not only accurate and efficient, but also achieves reasonable
coverage for Korean.
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