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Abstract. Allowing read operations to return stale data with low prob-
ability has been proposed as a means to increase availability in quorums
systems. Existing solutions that allow stale reads cannot tolerate an ad-
versarial scheduler that can maliciously delay messages between servers
and clients in the system and for such a scheduler existing solutions can-
not enforce a bound on the staleness of data read. This paper considers
the possibility of increasing system availability while at the same time
tolerating a malicious scheduler and guaranteeing an upper bound on
the staleness of data. We characterize the conditions under which this
increase is possible and show that it depends on the ratio of the write
frequency to the servers’ failure frequency. For environments with a rel-
atively large failure frequency compared to write frequency, we propose
K-quorums that can provide higher availability than the strict quorum
systems and also guarantee bounded staleness. We also propose a def-
inition of k-atomicity and present a protocol to implement a k-atomic
register using k-quorums.

1 Introduction

Quorum systems have been extensively studied in the literature. A traditional, or
strict, quorum system is simply a collection of sets called quorums such that any
two quorums have a non-empty intersection. Quorum systems have been used
for mutual exclusion, coordination, and data replication in distributed systems.

In a particular protocol using quorum systems, quorums are accessed either
to write a new value to a quorum or to read the values stored in a quorum.
Important quality measures of quorum systems are fault tolerance, availability,
load, and quorum size. In general, these quality measures are conflicting in strict
quorum systems [13]. Systems with high availability tend to have large quorum
sizes and high load. If the failure probability of individual nodes is less than 0.5,
the system with the highest availability is the majority system in which a quorum
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consists of a majority of the servers. Unfortunately, this system suffers from high
load and large quorum size, which means that a large subset of servers need to
be up in order for the system to be usable. However, in environments such as
peer-to-peer networks, where the availability of individual nodes is not very high,
the availability of the majority system is not high. If the failure probability of a
node is more than 0.5, the best system in terms of availability is the singleton,
but that system has a very high load [14].

In order to develop quorum systems with small quorum sizes and with avail-
ability higher than that of the majority system, probabilistic quorum systems
have been proposed [11]. A probabilistic quorum system is a collection of sets
together with an access strategy which specifies the probability that a quorum
is chosen to be used in an access. In a probabilistic quorum system, two quo-
rums chosen according to the access strategy have a non-empty intersection
with probability 1 − ε, where ε is a system parameter. Using probabilistic quo-
rum systems, a read access is guaranteed to get the value of the most up-to-date
non-overlapping write access with probability 1 − ε.

More recently, Yu [20] proposed Signed Quorum systems which aim at over-
coming problems with the definition of probabilistic quorum systems. Yu ob-
served that probabilistic systems cannot be realized in a system in which the
scheduler is an active adversary that delays responses from servers to prevent
clients from following the probabilistic access strategy. He proposed a signed quo-
rum system (SQS) in which the high probability of intersection depends on the
assumptions that the probability that two clients observe conflicting (mismatch)
states (up or down) of servers is low and that simultaneous mismatches of dif-
ferent servers are independent—the independent mismatch assumption. These
assumptions are backed by trace results from a number of experiments [3,21];
further, Yu argues that in practice probabilistic quorum systems would require
making explicit assumptions about the scheduler similar to the ones SQS makes.
In SQS, a quorum consists of positive elements (servers that respond and are
up) and negative elements (servers that do not respond and are assumed to be
down). By allowing servers that are down to be part of a quorum, Yu’s system
can be used even if a small number of servers are up.

Both probabilistic systems and SQS make implicit or explicit assumptions
about the scheduler [20]. Both systems would not perform as claimed if these
assumptions do not hold. Both systems are unusable in the presence of an ad-
versarial scheduler that controls the delay to various nodes in the system. In
fact, in the presence of an adversarial scheduler, the returned values can be ar-
bitrarily old. Also, due to their probabilistic nature, both probabilistic systems
and signed quorum systems do not provide strict guarantees on the freshness of
values returned by a quorum. With positive, albeit small, probability, a quorum
might return a value that is old (even in the absence of an adversarial scheduler)
and there is no way for a client to tell how old the value is.

This paper investigates the following question. “Is it possible to design a quo-
rum system that: provides strict guarantees on the staleness of values returned,
tolerates an adversarial scheduler, and, in the absence of an adversarial scheduler
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provides higher availability than the majority system?” It turns out that the an-
swer to this question does not only depend on the nodes’ failure probability, but
it also depends on the rate at which write operations are executed, the mean time
between failure (mtbf), and the mean time to recover (mttr) of individual nodes.
We prove a lower bound on the possible increase in availability as a function of
the staleness of values and the ratio of the frequency of writes to the frequency
of failures (1/mtbf). We show that for some values of the ratio, the possible
increase of availability is negligible. For the cases where the increase in availabil-
ity is not negligible, we propose K-quorums, which can have higher availability
(for the same system size) than that of the majority system when the system is
well behaved (no adversarial scheduler) and that have bounded staleness in the
presence of an adversarial scheduler. Our study of bounded-staleness also led us
to revisit the properties of signed quorum systems. For signed quorum systems,
we found that these systems are not guaranteed to behave as predicted in [20]
if the times between writes is large compared to the times between failures.

In summary, we achieve the following in this paper.

– We prove a lower bound on the availability of systems that can tolerate an
adversarial scheduler and provide guarantees on the staleness of returned
values.

– We introduce K-quorum systems which, for some combination of system
parameters, have lower load and higher availability than traditional quorums
systems.

– We show how to use K-quorum systems for providing K-atomic implemen-
tations of a shared register.

The rest of the paper is organized as follows. Section 2 presents the proba-
bilistic approaches to increasing the availability of quorum systems and discusses
their limitations. Section 3 introduces K-consistency semantics, a formalization
of relaxed access semantics with bounded staleness. Section 4 presents the sys-
tem model and the definition of traditional quorum systems. Section 5 proves
lower bounds on the availability of quorum system with worst-case guarantees
on staleness. Section 6 introduces K-quorum systems and shows how they can
be used to implement K-atomic registers. Section 7 gives an overview of related
work.

2 Probabilistic Approaches

In strict quorum systems any read and write quorum sets have a non empty
intersection. This allows for easy construction of registers with safe-semantics,
where any read – that is not concurrent with any write – is guaranteed to return
the value from the latest write.

Probabilistic approaches, such as PQS [11] and SQS [20], provide a high avail-
ability and low load at the cost of weakening consistency semantics. In these sys-
tems, the read and write quorums only intersect probabilistically. Hence, these
systems can only provide safe-semantics probabilistically. Probabilistic guaran-
tees can cause these systems to return arbitrarily old values. In synchronous
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systems, the probability that a read violates safe-semantics can be made arbi-
trarily small by using a large quorum size with an appropriate access strategy.
However there can be no bound on this probability in an asynchronous system
where an adversarial scheduler can affect the choice of quorums.

2.1 Probabilistic Quorum System

A probabilistic quorum system consists of read and write quorums similar to
strict quorums, along with an access strategy for choosing quorums [11]. Any two
quorums that are chosen according to the specified access strategy will intersect
with a high probability.

In a simple construction of such a quorum system with n nodes, quorums
are chosen to be sets of cardinality l

√
n where l is a system parameter [11]. For

large values of n, these systems provide a higher availability than the majority
quorum system because they require only l

√
n nodes to be accessible, as opposed

to requiring n+1
2 in the majority quorum system. In a synchronous setting, using

a uniform random access strategy guarantees that any two quorum sets of size
l
√

n intersect with probability at least 1 − el2 . However, in an asynchronous
system where the scheduler may be adversarial the probability of intersection
can be much smaller – in fact it can be zero.

Examples. Consider a probabilistic quorum system over nodes {1, 2, . . . , 100},
where any set of 30 nodes form a quorum. In the presence of an non-adversarial
scheduler, if quorums are chosen uniformly at random, then the probability that
two quorums do not intersect is less than 1.88×10−6. However in an asynchronous
system in which the scheduler arbitrarily delays read messages to {1, 2, . . . , 50}
and also delay write messages to {51, 52, . . . , 100}, read and write quorums will
never intersect causing reads to always return arbitrarily old values.

2.2 Signed Quorum Systems

Signed quorum systems (SQS) [20], like PQS, provide a probabilistic guarantee
of intersection. SQS utilizes the notion of a failure detector to form an estimate
of nodes that may be inaccessible. Quorums in SQS consist of both positive and
negative elements. Positive elements denoting the servers that have been con-
tacted, and negative elements denoting servers that have been suspected to fail.
Two quorums are said to intersect if and only if they intersect in a positive ele-
ment. Like PQS, SQS also increases the availability by allowing non-intersecting
quorums. However, SQS requires that no two non-intersecting quorums be ac-
cessible in the same configuration. In fact, SQS requires that the configurations
in which two non-intersecting quorums are accessible differ in at least 2α node-
states.

In a system with perfect failure-detectors, if the configuration of the nodes
does not change (or less than 2α nodes change state), then SQS can always
guarantee safe-semantics and behave like a strict quorum system. The probability
of non-intersection is equal to the probability that more than 2α nodes used by a
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read and write access have different states and this probability is lower for larger
values of α. In a asynchronous system, it is not possible to distinguish a failed
node from a node whose messages are all delayed by the adversary (assuming that
the only means to determine the state of a node is through message exchanges).
In such a setting, an adversarial scheduler can present the reader and writer
with totally different configurations so that the quorums used never intersect. A
reader may then read an arbitrarily old value.

3 K-Consistency Semantics

The semantics of shared objects that are implemented with quorum systems can
be classified as safe, regular or atomic [9]. For applications that can tolerate some
staleness these notions of consistency are too strong. We propose the notion
of K-safe, K-regular and K-atomic semantics, similar to those defined in [9],
for formalizing consistency semantics in applications that can tolerate limited
staleness.

1. K-safe: In a system that provides K-safe semantics, a read that does not
overlap with a write is guaranteed to return the result of one of the latest
K completed writes. The result of a read, that overlaps with a write is
unspecified.

2. K-regular: A system that provides K-regular semantics, guarantees that
any read, that does not overlap with a write, is guaranteed to return the
result of one of the latest K completed writes. A read that overlaps with a
write, returns either the result of one of the latest K completed writes, or
the eventual result of one of the overlapping writes.

3. K-atomic: In a system with K-atomic semantics, there exists an order of
the operations that is consistent with real time order and such that the
values returned by a read operation is equal to one of the values written by
the last K preceding writes in the order (assuming there are K initial writes
with the same initial value).

4 Model and Definitions

4.1 Model

The system consists of n nodes, P = {1, 2, . . . , n}, each of which may be inac-
cessible with a probability pf . Nodes are assumed to crash and recover indepen-
dently, with a mean-time-to-failure of mttf and a mean-time-to-recover of mttr.
The mean-time-between-failures, is mtbf = mttr + mttf and pf = mttr

mtbf . If a
node is up, then it is assumed to follow the specified protocol; i.e. we assume
there are no malicious faults. Each node is assumed to have access to stable stor-
age, such that the values written to the servers are persistent across crashes. The
system is assumed to be asynchronous, with no bound on the relative speeds of
the nodes. The links are modeled as fair links, i.e. if a message is sent infinitely
often, it will eventually be delivered at the receiver.
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In this paper, we assume that only servers fail. We assume that the duration
of operations are small enough so that we can neglect the client failures during
the operations. Our results, for the single writer multiple reader scenario, can
however be easily extended to tolerate benign client-failures by incorporating a
logging protocol at the client end.

4.2 Quorum Systems

Definition 1. A quorum system over the set of nodes P is a tuple
(R,W)

;
where R ⊂ 2P is the set of read quorums and W ⊂ 2P is the set of write
quorums.

During a read (write) operation, the reader (writer) contacts a read quorum
(write quorum) to perform a read (write) operation. The access strategy specifies
which nodes need to be contacted to access a quorum set.

Definition 2. An access strategy for a client specifies an algorithm for choosing
a quorum set to access, possibly based on the previous local history at the client.

For strict quorum systems, the access strategy allows the system to contact
any of the quorums, as long as every write quorum intersects with a read quo-
rum. In probabilistic quorum systems, the access strategy is probabilistic and
the quorum is chosen at random, ignoring the local history at the client. In
Section 6 we present protocols which provide stronger non-probabilistic consis-
tency guarantees, using an access strategy that is dependent on the client’s local
history.

Definition 3. A configuration C of a system specifies the state of each node in
the system (either as accessible or inaccessible).

For systems with independent failures, the probability of the system being
in a configuration C, with K accessible nodes, is P (C) =

(
n
k

)
(1 − pf )k

pf
n−k.

An operation of a client is successful in a given configuration if the quorum set
that should be accessed as specified by the access strategy (or one of the quorum
sets, if the strategy specifies more than one valid set) consists of elements that
are all available.

In what follows we define the availability for systems in which the scheduler
is not adversarial. The availability of the system is only defined during periods
in which the system is well behaved, i.e. periods where any message sent from
a non-crashed node to another non-crashed node is guaranteed to be delivered
within a fixed (may be unknown) time bound. If the network is asynchronous
then an adversarial scheduler can delay all messages arbitrarily to stall any
system from making progress, hence making the system unavailable and any
definition of availability meaningless.

Definition 4. The availability of the system for reads, ar(C, t), in a given con-
figuration C over a time interval of duration t, is defined as the ratio of successful
reads to the total number of reads in an interval of time of length t when the
system is in the specified configuration C.
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Definition 5. The availability of the system for reads, ar(C), in a given config-
uration C is the probability that a read operation is successful when the system
is in configuration C. 1

Let t be the random variable denoting the duration of a configuration C and
whose probability distribution is determined by the failure behavior of the nodes.
Let t1, t2, . . . denote the various realizations (time durations of configuration C)
of t in an execution. If succi denotes the number of successful reads, and toti
denotes the number of attempted reads in the ith realization, then

ar(C) = lim
m→∞

∑m
i=1 succi∑m
i=1 toti

Definition 6. The availability of the system for reads, ar is defined as the ex-
pected availability, E[ar(C)], over all the possible configurations.

We define the availability of the system for writes, aw(C, t), aw(C), and aw

on lines similar to the availability definitions for reads.

Definition 7. The availability of a Quorum System, is defined as the fraction
of successful operations when the network is synchronous.

Our definitions are a generalization of the definitions used previously in
[11,14,20]. In the traditional quorum systems and probabilistic quorum systems,
where the access strategy is independent of the local history, the availability
ar(C, t) and aw(C, t) will be independent of t. However, this may not be the case
if the access strategy is dependent on the local history.

5 Bounds on Increase in Availability

Consider a quorum system Q which provides a bounded staleness of K. For
any configuration C, let wQ(C) be the write availability and rQ(C) be the read
availability of the quorum system in the configuration C.

Let γr and γw be the rates of read and write operations in the system, and let
τ(C) be the expected duration of a configuration C (we assume that the rates of
read and writes are constants, but the results still apply by replacing the rates
with expected rates).

Lemma 1. If C is a configuration with l nodes that are up and n− l nodes that
are down, then the expected duration of the configuration, τ(C), is ≥ 1

l
mttf + n−l

mttr

Proof. Consider a small duration of time dt. The probability of particular node,
that is currently crashed, recovering during an interval of length dt is dt

mttr .
Similarly, the probability of a node crashing is dt

mttf .

1 This definition does not depend on the distribution of read operations if that distri-
bution is independent from that of system configurations.
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In configuration C, there are l nodes that are up and n − l nodes that are
down. Therefore the probability that the system, currently in configuration C,
changes to some other configuration during an interval of time of length dt is
≤ (

l
mttf + n−l

mttr

)
dt. Hence, the expected duration for which a configuration lasts,

τ(C), is ≥ 1
l

mttf + n−l
mttr

.

For systems where nodes are available with a probability > 0.5, mttf > mttr
and

τ(C) ≥ 1
l

mttf + n−l
mttr

≥ 1
l

mttr + n−l
mttr

=
mttr

n
= τmin

The expected duration of any configuration is at least τmin = mttr
n . Let AC(K)

denote the set of all configurations C such that K writes can be executed suc-
cessfully in C and a read can be executed successfully after K writes are executed
in C.

Lemma 2. For any configuration Ci ∈ AC(K), there exist two sets W (Ci) and
R(Ci) that are available during the configuration Ci and, W (Ci) ∩ R(Ci) �= ∅.
Proof. If Ci ∈ AC, it follows that there can be K successful writes in the config-
uration Ci and a successful read after the kth write. Let R be the read quorum
that was used for the successful read after the kth write. Let W1, W2, . . . , WK

be the set of servers contacted during the K successful writes. Since the system
provides bounded staleness, it follows that

R ∩
j=k⋃

j=1

Wj �= ∅

Choose W (Ci) =
⋃j=k

j=1 Wj and R(Ci) = R. Since each Wj and R is available in
Ci it follows that W (Ci), and R(Ci) are available in Ci.

Lemma 3. For any two configurations, Ci, Cj ∈ AC(K), W (Ci) ∩ R(Cj) �= ∅.
Proof. Consider the configuration in which all nodes are accessible. Since the
scheduler can be adversarial, it can arbitrarily delay messages from the writer
to all nodes in P \ W (Ci), hence forcing the next K writes to be written to
nodes in W (Ci). Later, it can delay the messages from the reader to the nodes
in P \ R(Cj), so that the reader is forced to choose R(Cj) as the read quorum.
Since the read is guaranteed to return one of the K latest written values, it
follows that W (Ci) ∩ R(Cj) �= ∅
Lemma 4. Let C be a configuration. If C /∈ AC(K), then wQ(C) + rQ(C) ≤
1 + ε, where ε = k

γwτmin
.

Proof. If C /∈ AC(K), there are two cases: either there are no more than K
writes that can occur in C, or there is no read that can occur after the Kth

write in C.
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– If there are no more than K writes that can occur in C, then

wQ(C) = lim
m→∞

∑m
i=1 succi∑m
i=1 toti

≤ lim
m→∞

mK
∑m

i=1 toti

= lim
m→∞

mK

mγwτ(C)
=

K

γwτ(C)
≤ K

γwτmin

wQ(C) + rQ(C) ≤ K

γwτmin
+ 1 = 1 + ε

– Let t be the time in the configuration by which the Kth write succeeded. If
there are no successful reads after the Kth write, then all reads up to t can
succeed but all later reads fail. Also there are at most K writes succeeding
up to t, and writes after time t may succeed.

rQ(C) ≤ t

τ(C)

wQ(C) ≤ K + γw

(
τ(C) − t

)

γwτ(C)

wQ(C) + rQ(C) ≤ (
1 +

K

γwτ(C)
) ≤ (

1 +
K

γwτmin

)
= 1 + ε

Consider the quorum system Q′(W ′,R′), where W ′ = {W (Ci)|Ci ∈ AC(K)},
and R′ = {R(Ci)|Ci ∈ AC(K)}. Q′ is a strict quorum system, that is available
in all configurations C ∈ AC(K).

Theorem 1. The read and write availability of the strict quorum system, Q′ is
≥ rQ + wQ − 1 − 2ε

1−ε

Proof. The strict quorum system Q′ is available, for both reads and writes,
during any configuration C ∈ AC(K). Let P (C) denote the probability that
the system is in configuration C, and let PAC(K) =

∑
C∈AC(K) P (C). The read

availability of Q′, rQ′ ≥ ∑
C∈AC(K) P (C) = PAC(K). Similarly, wQ′ ≥ PAC(K).

For the bounded-staleness quorum system, Q,

wQ =
∑

P (C)wQ(C) =
∑

C∈AC(K)

P (C)wQ(C) +
∑

C /∈AC

P (C)wQ(C)

≤
∑

C∈AC(K)

P (C) +
∑

C /∈AC(K)

P (C)wQ(C)

rQ ≤
∑

C∈AC

P (C) +
∑

C /∈AC

P (C)rQ(C)

wQ + rQ ≤ 2
∑

C∈AC

P (C) +
∑

C /∈AC

P (C)
(
rQ(C) + wQ(C)

)

≤ 2
∑

C∈AC

P (C) +
∑

C /∈AC

P (C)
(
1 + ε

)

≤ 2PAC + (1 − PAC)(1 + ε)

s
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Therefore,

PAC ≥ wQ + rQ − 1 − ε

1 − ε
> wQ + rQ − 1 − 2ε

1 − ε

It follows that wQ′ , rQ′ > wQ + rQ − 1 − 2ε
1−ε

Theorem 1 shows that the increase in availability due to relaxing the con-
sistency guarantees to K-safe is dependent on the rate of write operations γw,
and the expected duration τmin of a configuration. τmin increases linearly with
the mean-time-between-failure for the nodes. Hence, for a large mtbf, the value
of ε = K

γwτmin
will be small. In such cases, if highly available K-safe quorum

systems can be built, then a highly available strict quorum systems can also be
built i.e. there is not much advantage gained by relaxing the consistency seman-
tics to K-safe. However, for systems with a small mtbf, it may be possible to
increase the availability and at the same time provide bounded staleness. We
show a protocol to achieve this in section 6.

6 K-Quorums Protocols

We present K-quorum construction, for a single-writer-multiple-reader environ-
ment, which guarantees bounded staleness even in the presence of an adversarial
scheduler. In Section 6.2, we prove that the proposed protocol achieves K-atomic
semantics.

6.1 Construction and Protocols

A K-quorum system consists of a strict quorum system, (R,W), and a staleness
parameter K that is the bound on the staleness allowed.

Read operations in K-quorums are similar to reads in strict quorum systems.
At a high level, the reader contacts a quorum of servers R ∈ R and chooses the
latest value. The writes are different. In K-quorums, a value is written to a
subset of P , such that the servers contacted during K consecutive writes form
a write-quorum W ∈ W . We henceforth call the set of servers contacted during
a particular write a partial-write-quorum.

The single-writer-multiple-reader protocol for K-quorums, is shown in fig-
ure 1. For simplicity, the protocol presented assumes reliable channels. The pro-
tocol can be made to work with fair channels by using standard techniques, for
building a reliable channels over fair channels, as described in [12].

Write operation. To perform a write operation the writer chooses a partial-
write-quorum, and writes the value along with other meta-data to the partial-
write-quorum. To ensure bounded staleness we require that any K partial-write-
quorums, used for successive writes, collectively contain a write quorum. For-
mally, let Wi be the partial-write-quorum used in the ith write. We require that

∀i : ∃W ∈ W such that W ⊆
i⋃

j=i−K+1

Wj
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// Writer Protocol
static k := 0; static ts := 0;
void Write( v )
begin

ts := ts + 1; k := k + 1;

find an available partial-write-quorum Wk such that ∃W ∈ W : W ⊆ ⋃i=k
i=k−K+1 Wi

send (v, ts, PW ) to servers in Wk, where PW =
⋃i=k−1

i=k−K+1 Wi

wait for acknowledgments from servers in Wk

end

// Reader Protocol
int Read
begin

find an available read quorum R
send read requests to servers in R
wait for replies from all servers
calculate (v, ts, PW ) := value with the largest time stamp
write back the value (v, ts, PW ) to a partial-write-quorum, Wr

such that ∃W ∈ W : W ⊆ PW ∪ Wr

wait for acknowledgments from servers in Wr

return(v, ts, PW)
end

Fig. 1. K-quorum protocols

The protocol for write is shown in Figure 1. During the ith write, the writer
writes the value v, the timestamp – ts, and the set PW of servers accessed in
the previous (K − 1) writes to each of the servers in Wi.

Read operation. Reads in K-quorums are similar to reads in strict quorum
systems. The reader collects replies from a quorum of servers and chooses the
reply (v, tshst, PW ) with the largest time stamp. The reader then writes back
the tuple (v, tshst, PW ) to a set of servers W ′ such that ∃W ∈ W : W ⊆ PW ∪
W ′. The protocol for a read is shown in Figure 1. Since a read quorum always
intersects with one of the previous K partial-write-quorums, a read is guaranteed
to return one of the K latest written values irrespective of the behavior of the
scheduler.

6.2 K-Atomic Semantics

To prove that the protocols achieve K−atomic semantics, we show the existence
of an ordering that is consistent with real time order such that, each read returns
the value written by one of the previous K writes. We define

Definition 8. The written-time is the (global) time at which a value that is
being written reaches (and is processed by) every server in partial-write-quorum.

s
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We will order the reads and writes such that :

– Writes are ordered according to their written-time.
– A read which returns a value (v, t, PW ), which was written with timestamp

t, can be scheduled any time between
1. The written-time, τt of the value returned, (v, t, PW ).
2. and, before the written-time of the next Kth write, (v′, t +K, PW ′). i.e.

before τt+K .

It is easy to see that, such an ordering satisfies the requirements of K-atomic
semantics. We need to show that such a ordering can be done in a manner
consistent with local history.

The scheduling of writes is trivial, because written-time of a write occurs
between the time a write has begun and before the write ends.

We now show, by contradiction, that reads can also be scheduled. Assume,
if possible, that the read interval does not overlap with the interval [τt, τt+K

)
.

There are two cases:

1. Read finishes before τt:
This scenario is not possible, because a read completes only after performing
a write-back on the value. Therefore a read can end only after the written-
time of the value it returns.

2. Read begins after τt+K .
Consider the union of the partial write quorums for K previous writes –
W = Wt+1 ∪ Wt+2 ∪ . . . ∪ Wt+K . From the definition of a partial-write-
quorum and the fact that any read quorum intersects with a (complete)
write quorum, it follows that the reader would have received a value from
at least one server in W . Since the reader chooses the highest time-stamp
received, a read that starts after τt+K cannot return a value written before
τK , which is a contradiction. ⇒⇐

Theorem 2. Protocols described in Figure 1 provide K-atomic semantics ��

6.3 Availability

In environments with a relatively small mtbf , K-quorum systems can be used to
achieve a higher availability than strict quorum systems. Consider a K-quorum
system with staleness parameter K and where the read and write quorum sizes
are rn and wn respectively. Let r = rn/n and w = wn/n. Since the read and
write (not partial write) quorums need to intersect, we require r + w ≥ n+1

n .
For a read to be available, we need rn nodes out of n nodes. This can be

made strictly smaller than the availability of majority if r ≤ 0.5 and the goal is
to simultaneously make the write availability be better than that of majority. For
a system, where mtbf is relatively small, the write availability is the probability
of being able to access wn

K nodes out of
(
n − K−1

K wn
)

nodes (the availability of
a given write is independent of that of previous writes). For a given n and pf ,
with appropriate choice of r,w and K, even the write availability of the system
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can be increased. For example, consider a case where n = 100 and pf = 0.5.
The majority quorum system will be available with a probability 0.46. With
K-quorums, using a read quorum of size 29, a write quorum of size 72 and a
staleness bound of K = 6 can provide much better availability for both reads and
writes. Reads are available with probability 0.99999 (29 out of 100 available),
while writes are available with probability 0.997 (12 out of 40 available). Also, if
the system is well behaved the probability that a read will get the value of the
most recent write is 0.99.

For a given system size n, probability of failure pf and staleness parameter
K, choosing the optimal values for r and w presents similar trade-offs as in strict
quorum system. For having a large read availability it is desirable to have a small
value for r. Similarly, for having a large write availability, it is desirable to have
a small value for w. However as we require that r + w ≥ n+1

n , choosing a small
value for r or w will require the other to be large, resulting in decreased write
or read availability respectively. For optimal overall availability, this trade-off
needs to be resolved based on the relative frequencies of reads and writes in the
system, such that the overall availability is maximized.

Effect of mtbf on Signed Quorum Systems. Realizing that the perfor-
mance of K-quorum systems is highly dependent on the mean time between
failure, we investigated their effect on the performance of systems such as signed
quorum systems. We found that the performance of signed quorum systems de-
teriorates in environments in which the mean-time-between-failures is smaller
than the mean time between a write and a read. One explanation for this is
that if the system has a small mean time to failure, then nodes go up and down
very quickly, so it is more likely that the reader and the writer see two differ-
ent configurations of the system, thereby causing mismatches. For RON traces,
where there are no node failures, the probability of mismatch due to network
faults alone was found to be 0.05. However, in systems where mtbf is small to
the mean time between a write and a read, the probability of mismatch can be
much higher even when ignoring network faults.

Lemma 5. In a system with a small mtbf , if nodes are inaccessible with a prob-
ability pf , then probability of mismatch ignoring any network faults is 2pf(1−pf).

Proof. (sktech) For systems with a small mtbf , the expected duration of a con-
figuration is small. So, the configuration of the system can change widely between
the time a value is written to the system and the time when the value is read.
For this setting the probability that a server if down during the read operation is
independent of the probability of the server is down during the write operation.
The probability that a node is accessible during a read, but not accessible during
a write is (1− pf )pf . Similarly the probability that a node is accessible during a
write, but not accessible during a read is pf (1 − pf ). Therefore the probability
of mismatch is at least 2pf(1 − pf), which can be as high as 0.5 depending on
the value of pf .

s
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7 Related Work

There is a very large body of work on quorum systems and access semantics. In
this section we concentrate on those works that are most closely related to the
results of this paper.

Quorum systems are used for various distributed applications including repli-
cation, mutual exclusion, and consensus. The performance measures for quorum
systems like load, availability and probe complexity, are mutually opposing –
improving one tends to worsen the other. With large scale internet usage, re-
searchers have been mainly focusing on improving the availability of the sys-
tem [1,2,4,6,18,19]. Naor and Wool prove some basic bounds between the load
and the availability of traditional quorum systems [13].

Lamport presents consistency semantics that have been widely used in the
literature [9] . Traditional quorum systems, where any two quorum sets have a
non-empty intersection, provide at least safe-semantics. However, these systems
are not very highly available. Fox and Brewer [5] show bounds on availability in
the presence of strong consistency guarantees.

Relaxing the consistency guarantees can allow systems to achieve better avail-
ability or performance. For database applications, a number of researchers ( [8,16]
for example) discuss weakened consistency semantics for increased concurrency.
Epsilon consistency [16] attempts to increase availability by allowing query ac-
cesses to see some temporary inconsistencies in the data, however these inconsis-
tencies are bounded and the system converges to a global serializability. Krish-
namurthy et al present bounded ignorance [8], for increasing the concurrency in
database applications, where the application may be unaware of at most N trans-
actions. [7,15,17] implement file systems that provide various relaxed semantics.
TACT is a toolkit that allows for dynamic changes in the consistency level of the
system and can be used to specify various kinds of weakened semantics.

Probabilistic approaches to quorum systems [11,20] achieve a much higher
availability than strict quorum systems by weakening the consistency. Lee and
Welch [10] propose probabilistic relaxed semantics for use with probabilistic
system. These systems provide a probabilistic bound on the violation of safe-
semantics. However, as discussed in section 2, these systems are vulnerable to
an adversarial scheduler and provide no bounds on the staleness of data.
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