
An Efficient Long-Lived Adaptive
Collect Algorithm�

Burkhard Englert

California State University Long Beach, Dept. of Comp. Engr. & Comp. Science,
Long Beach, CA 90840

englert@cecs.csulb.edu

Abstract. We present a new long-lived, efficient, adaptive collect algo-
rithm. Namely, our algorithm adapts to K-contention - it has the prop-
erty that if during an operation the interval contention k exceeds a pre-
determined constant K the step complexity is O(N). If, it falls below K,
the processors executions will eventually have adaptive step complexity
of O(k3). Moreover, for K such that K3 ≤ N our algorithm requires only
O(N2) shared memory registers.

1 Summary

To solve many well known problems such as atomic snapshot or renaming, it
is essential that processors are able to gather information about each other. A
simple way in which communication can be established is through the use of an
array of Single-Writer Multi-Reader (SWMR) registers where each processor has
a unique array entry assigned to it. Only a fixed processor is allowed to write
to each array location while all processors can read all array entries. To update
information about itself a processor writes into its array entry and to collect
information about the other processors it reads all entries in an arbitrary order.
Such a collect algorithm with step complexity O(N), however, where N is the
total number of processors in the system, is possibly inefficient if only few of the
N processors are actually participating. This motivated researchers to look for
adaptive algorithms whose step complexity only depends on the number of the
concurrently participating processors.

Motivated by Lamport’s MX algorithm [5], many adaptive algorithms have
since been designed. Recently, a number of different adaptive collect algorithms
were presented [1,2,3,4]. The algorithm by Attiya, Fouren and Gafni [3] for ex-
ample, has an asymptotically optimal O(k) step complexity, but it is a one-shot
algorithm and the memory consumption is exponential in N . More recently
Attiya, Kuhn, Wattenhofer and Wattenhofer [4] presented a new randomized
adaptive collect algorithm with asymptotically optimal step complexity and
polynomial memory overhead. For any constant γ > 1 they also presented a
new deterministic collect algorithm with O(k2/((γ − 1) logn)) step complexity
� An extended abstract of this paper appears in the Proceedings of the DPNA 2005

(IEEE-ICPADS 2005) workshop.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 516–518, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Long-Lived Adaptive Collect Algorithm 517

and O(nγ+1)/(γ − 1) logn) memory complexity. However, their algorithms are
one-shot, not long-lived and hence adapt only to total contention with respect
to shared memory operations. On the other hand the collect algorithm by Afek,
Stupp and Touitou [1] is long-lived and adapts to the point contention (and hence
to interval contention) k. It is designed for low contention, has step complexity
O(k3) and uses O(N3) shared memory registers. As a result, if the interval con-
tention k during the execution of a collect is high such that k3 >> N , where N
is the number of processors in the system, their algorithm [1] is less efficient than
a ”straightforward” collect algorithm where processors read all N SWMR regis-
ters in any order. Moreover, since such a ”naive” algorithm only requires O(N)
shared memory cells but the long-lived adaptive collect algorithm by Afek, Stupp
and Touitou [1] requires O(N3) shared memory registers, a significant memory
overhead is encountered. In this sense it is very desirable to have an algorithm
that itself can ”adapt” to low or high (interval) contention.

We call such an algorithm adaptive to K-contention. The constant K can be
determined in advance. For example, if, as in [1], the adaptive step complexity is
O(k3), we can let K be the largest integer such that K3 < N . Our new algorithm
provides a mechanism to switch back and forth between the two approaches solely
based on the interval contention a processor encounters.

Our paper makes the following contributions:

– We present a new long-lived adaptive collect algorithm. Previous algorithms
[1] were designed for low contention and their performance suffers if the
contention encountered exceeds K such that K3 > N . Our algorithm is
efficient since it guarantees that a processor never needs to perform more
than O(N) steps in a collect operation. Moreover, our algorithm guarantees
that if the interval contention k of two successive operations by a processor p
is less than K and the contention of all other operations by other processors
that occur or are active between these two operations is also less than K,
then the step complexity of the second operation by p is O(k3).

– Our algorithm introduces a mechanism that allows processors to switch back
and forth from operation to operation between reading the registers of all
other processors and an adaptive execution.

– Our algorithm requires only O(N2) shared memory registers (instead of
O(N3) [1]) thereby reducing the memory complexity overhead encountered
by long-lived adaptive collect algorithms.

Acknowledgement. We are grateful to Eli Gafni for helpful discussions and
comments.

References

1. Y. Afek, G. Stupp and D. Touitou. Long-lived adaptive collect with applications.
Proc. of the 40th Ann. Symp. on Foundations of Computer Science: 262-272, Oc-
tober 1999.

518 B. Englert

2. H. Attiya and A. Fouren. Algorithms adaptive to point contention. In J. ACM,
50(4): 444-468, July 2003.

3. H. Attiya, A. Fouren and E. Gafni. An adaptive collect algorithm with applications.
Distributed Computing, 15(2): 87-96, 2002.

4. H. Attiya, F. Kuhn, M. Wattenhofer and R. Wattenhofer. Efficient Adaptive Collect
using Randomization. Proc. 18th Annual Conference on Distributed Computing
(DISC), 2004.

5. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1): 1-11. February 1987.

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

