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Self-organization is an evolutionary process in which the effects of the envi-
ronment are minimal; i.e., where the development of new, complex structures
primarily takes place in and throughout the system itself. Natural phenom-
ena, living forms, or social systems (e.g., growing crystals, cells aggregation,
ant colonies) are examples of self-organizing systems in which a global order of
the system emerges from local interactions. In the newly emerging fields of dis-
tributed systems (p2p, ad-hoc networks, sensor networks, cooperative robotics),
self-organization has become one of the most desired properties. The major fea-
ture of all recent scalable distributed systems is their extreme dynamism in
terms of structure, content, and load. In peer-to-peer systems, self-organization
is handled through protocols for node arrival and departure, based either on a
fault-tolerant overlay network, such as in CAN, Chord, Pastry, or on a localiza-
tion and routing infrastructure [2]. In ad-hoc networks, self-organizing solutions
have been designed to cluster ad-hoc nodes [4]. Self-organizing algorithms have
also been developed to arrange mobile robots into predefined geometric patterns
(e.g., [3]).

Informal definitions for self-organization, or the related self∗ properties (e.g.,
self-configuration, self-healing or self-reconfiguration) have been proposed pre-
viously [4]. Zhang and Arora [4] propose the concepts of self-healing and self-
configuration in wireless ad-hoc networks.

The correctness proofs for self-organizing systems should be based on a well-
founded theoretical model that can capture the dynamic behavior of these sys-
tems. Hence, the characterization of the self-organizing aspects of these systems
cannot solely focus on the non-dynamic periods since they may be absent or
very short. Moreover, defining self-organization as a simple convergence process
towards a stable predefined set of admissible configurations is inadequate for two
reasons. First, it may be impossible to clearly characterize the set of admissi-
ble configurations since, in dynamic systems, a configuration should include the
state of some key parameters that have a strong influence on the dynamicity of
the system. These parameters can seldom be quantified a priori (e.g., the status
of batteries in sensor networks, or the data stored within p2p systems). Second,
due to the dynamic behavior of nodes, it may happen that no execution of the
system converges to one of the predefined admissible configurations.
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We propose a formal specification of the self-organization notion. Our spec-
ification is based on the locality principle, i.e., the fact that interactions and
knowledge are both limited in scope. We formalize this idea [1], leading first to
the notion of local self-organization. Intuitively, a locally self-organizing system
should reduce the entropy of the system in the neighborhood of each node. For
example, a locally self-organizing p2p system forces components to be adjacent
to components that improve, or at least maintain, some property or evalua-
tion criterion. We then formalize the notion of self-organization by imposing
the system to be locally self-organizing at all its nodes, and by ensuring that
despite its dynamicity, the system entropy progressively decreases. That is, self-
organization strongly relies on the local self-organization property, and on the
behavior of the system during the connection/disconnection actions. Accord-
ing to this behavior, the system guarantees different levels of self-organization,
namely, the weak and the strong self-organization. The weak self-organization is
defined in terms of two properties. The weak liveness property says that either
(1) infinitely often, there are static fragments, i.e., sequences of configurations
with no connections/disconnections, during which the knowledge of the system
enriches, or (2) all processes have reached a stable state. The safety property
states that, during all static fragments, system knowledge does not decrease.
The weak self-organization definition applies to static fragments. Nothing is
guaranteed during dynamic ones (i.e., sequences of configurations in which con-
nections/disconnections occur). For instance, the weak liveness does not forbid
processes to reset their neighbors lists after each connection/disconnection. To
prevent the system from “collapsing” during dynamic fragments, strong self-
organization specifies a stronger property guaranteeing that for all the processes
of which the neighborhood is unchanged, information is maintained. Specifically,
this ensures the existence of a non-empty group of processes for which local in-
formation has been maintained between the end of a static fragment and the
beginning of the subsequent one. The second contribution of this work is a case
study. Using our framework we prove the weak self-organization of Pastry and
CAN, two well known peer-to-peer overlays.

Future investigation focuses on the design of a probabilistic extension of our
model motivated by the fact that connection/disconnection actions are well-
modeled by probabilistic laws.
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