
Subscription Propagation and Content-Based

Routing with Delivery Guarantees

Yuanyuan Zhao, Sumeer Bhola, and Daniel Sturman

IBM T.J.Watson Research Center
{yuanyuan, sbhola, sturman}@us.ibm.com

Abstract. Subscription propagation enables efficient content-based
routing in publish/subscribe systems and is a challenging problem when
it is required to support reliable delivery in networks with redundant
routes. We have designed a generic model and a highly-asynchronous
algorithm accomplishing these goals. Existing algorithms can be inter-
preted as different encodings and optimizations of the generic algorithm
and hence their correctness can be derived from the generic algorithm.

1 Introduction and Related Works

A content-based publish/subscribe system consists of publishers that generate
messages and subscribers that register interest in all future messages matching
a predicate. The system, implemented as a network of routing brokers, is re-
sponsible for routing published messages to interested subscribers. Information
providers and consumers are decoupled, since publishers need not be aware of
which subscribers receive their messages, and subscribers need not be aware of
the sources of the messages they receive.

Subscription propagation is a mechanism of propagating subscribers’ interest
throughout the broker network. It allows brokers to filter out and withhold from
sending messages to parts of the network where there are no interested sub-
scribers. This functionality is hence very important for efficiency and scalability
of content-based pub/sub systems. However, the task of designing a subscrip-
tion propagation algorithm is greatly challenged by several factors, especially: 1)
clients’ requirement of strong service guarantees such as reliable in-order, gapless
delivery; 2) the existence of multiple routing paths between publishers and sub-
scribers; 3) communication asynchrony, especially asynchrony among multiple
redundant paths; 4) failures.

As a result, most previous work on subscription propagation [1,2,3] did not
provide a solution that guarantees the correctness of content-based routing and
hence is not capable of supporting reliable delivery in the presence of failures
and multiple paths. We think this situation is due to lack of understanding of
the fundamentals of the subscription propagation problem. There is no coherent
theory of how subscription propagation algorithms should work in general. As a
result, designing subscription propagation algorithms typically becomes isolated
activities each dealing with different situations.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 501–502, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

502 Y. Zhao , S. Bhola, and D. Sturman

2 Our Contributions

We have studied the structure of the subscription propagation problem and its in-
teraction with content-based routing, reliable delivery and redundant routes and
defined a general model for subscription propagation and content-based routing.
We present the model in the context of a redundant routing tree where each tree
node can contain multiple brokers and each edge can contain multiple broker-
broker links. The model utilizes constructs that are inherently asynchronous and
fault tolerant. For example, it uses subscription and conjunction sets where sets
operations can inherently tolerate message duplication and re-ordering. Under
this model, we define the correctness criteria of subscription propagation and
content-based routing and a set of sufficient conditions for supporting reliable
delivery. These sufficient conditions, such as eventual montonicity, allow design-
ing of highly-asynchronous algorithms.

Using the formal model, we construct a generic asynchronous subscription
propagation and content-based routing algorithm. The algorithm supports reli-
able delivery in the presence of multiple routing paths, broker and link failures,
and communication asynchrony without requiring expensive distributed agree-
ment between redundant paths. It provides high network availability and effi-
ciency by allowing data message routing to choose any of the redundant paths.
The generic algorithm is further refined to utilize subscription aggregation.

Many existing algorithms can be interpreted as specializations of the generic
algorithm under different circumstances. For instance, algorithms that assume
FIFO links and single routing paths can optimize the size of subscription state
maintained at a broker. For the algorithms described in [5], the virtual time
vectors can be viewed as an optimization that reduces space consumption but
restricts when subscription changes can be applied. The correctness attribute of
the generic algorithm applies to these algorithms.

A detailed description of this work is available in [4].

References

1. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3):332383,
August 2001.

2. G. Cugola, E. D. Nitto, and A. Fuggetta. The jedi event-based infrastructure and
its application to the development of the opss wfms. IEEE Transactions on Software
Engineering, 27(9):827850, September 2001.

3. P. Triantafillou and A. Economides. Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS04), 2004.

4. Y. Zhao, S. Bhola, and D. Sturman. A general algorithmic model for subscription
propagation and content-based routing with delivery guarantees. Technical report,
RC23669, IBM Research, 2005.

5. Y. Zhao, D. Sturman, and S. Bhola. Subscription propogation in highly-available
publish/subscribe middleware. In ACM/IFIP/USENIX 5th International Middle-
ware Conference (Middleware 2004).

	Introduction and Related Works
	Our Contributions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

