
Distributed Computing with Imperfect

Randomness

Shafi Goldwasser�, Madhu Sudan, and Vinod Vaikuntanathan��

MIT CSAIL, Cambridge MA 02139, USA
{shafi, madhu, vinodv}@theory.csail.mit.edu

Abstract. Randomness is a critical resource in many computational
scenarios, enabling solutions where deterministic ones are elusive or even
provably impossible. However, the randomized solutions to these tasks
assume access to a source of unbiased, independent coins. Physical
sources of randomness, on the other hand, are rarely unbiased and inde-
pendent although they do seem to exhibit somewhat imperfect random-
ness. This gap in modeling questions the relevance of current random-
ized solutions to computational tasks. Indeed, there has been substantial
investigation of this issue in complexity theory in the context of the ap-
plications to efficient algorithms and cryptography.

In this paper, we seek to determine whether imperfect randomness,
modeled appropriately, is “good enough” for distributed algorithms. Na-
mely can we do with imperfect randomness all that we can do with
perfect randomness, and with comparable efficiency ? We answer this
question in the affirmative, for the problem of Byzantine agreement. We
construct protocols for Byzantine agreement in a variety of scenarios
(synchronous or asynchronous networks, with or without private chan-
nels), in which the players have imperfect randomness. Our solutions are
essentially as efficient as the best known randomized agreement proto-
cols, despite the defects in the randomness.

1 Introduction

Randomization has proved useful in many areas of computer science including
probabilistic algorithms, cryptography, and distributed computing. In algorithm
design, randomness has been shown to reduce the complexity requirments for
solving problems, but it is unclear whether the use of randomization is inherently
necessary. Indeed, an extensive amount of research in the complexity theoretic
community these days is dedicated to de-randomization: the effort of replacing
random string by deterministic “random-looking” strings.

The case of using randomness within the field of distributed computing is,
in contrast, unambiguous. There are central distributed computing problems
for which it is provably impossible to obtain a deterministic solution, whereas

� This work was supported in part by NSF CNS-0430450, a Minerva Grant 8495, and
a Cymerman-Jakubskind award.

�� This work was supported in part by NSF CNS-0430450.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 288–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Computing with Imperfect Randomness 289

efficient randomized solutions exist. The study of one such problem, the Byzan-
tine Agreement problem is the focus of this paper.

Byzantine Agreement: Randomized versus Deterministic Protocols
The problem of Byzantine Agreement (BA) defined by Pease, Shostak and Lam-
port [18] is for n players to agree on a value, even if some t of them are faulty.
Informally, for any set of initial values of the players, a BA protocol should satisfy
the following: (1) Consistency: All non-faulty players agree on the same value.
(2) Non-triviality: If all the players started with some value v, they agree on v
at the end of the protocol. The faulty players might try to force the non-faulty
players to disagree. The good players, in general, do not know who the faulty
players are. A BA protocol should ensure that the good players agree, even in
the presence of such malicious players.

The possibility of BA depends crucially on the model of communication
among the players. When the players communicate via a synchronous network
with point-to-point channels, there are (t+1)-round deterministic BA protocols
(one in which no player tosses coins) even in the presence of t < n

3 faults [16].
A lower bound of t + 1 communication rounds is known for every deterministic
protocol. When the players communicate via an asynchronous network, the cel-
ebrated result of Fischer, Lynch and Paterson [15] shows that BA is impossible
to achieve even in the presence of a single faulty player.

Yet, Ben-Or [2] in 1983 showed how to achieve Byzantine agreement in an
asynchronous network tolerating a linear number of faults via a randomized pro-
tocol with expected exponential round complexity. More efficient randomized
protocols in asynchronous as well as synchronous networks followed, some of
which (due to [19,4,11,14,13,5]) assume the existence of private communication
channels between pairs of participants (or alternatively cryptographic assump-
tions), and some do not require secret communication (notably Chor-Coan [6]).

To summarize these works, both synchronous and asynchronous BA can be
achieved via a randomized protocol in expected O(1) number of rounds tolerating
an optimal number of faults, assuming private channels of communication exist.
Without any secret communication requirements, for t < n/3 a randomized
protocol exists for synchronous BA using O(t

log n) rounds 1, whereas the best
asynchronous BA protocol still requires exponential number of rounds [2,4].

What type of Randomness is Available in the Real World? The common
abstraction used to model the use of randomness by a protocol (or an algorithm),
is to assume that each participant’s algorithm has access to its own source of
unbiased and independent coins. However, this abstraction does not seem to be
physically realizable. Instead, physical sources are available whose outcome seem
only to be “somewhat random”.
1 Subsequent to this work, we learned that, in as yet unpublished work, Ben-Or and

Pavlov [3] construct an O(log n) round BA protocol in the full-information model.
We note that the results in this paper apply to [3], giving us an O(log n)-round BA
protocol in the full-information model, when the players have a block source each,
and the sources of different players are independent.

290 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

This gap between available physical sources and the abstract model has been
addressed starting with the work of von Neumann [23] and Elias [12] which deal
with sources of independent bits of unknown bias. In more recent works, sources
of dependent bits were modeled by Santha-Vazirani [21], Chor-Goldreich [7], and
finally Zuckerman [24] who presented the weak random source generalizing all
previous models.

Informally, for a weak random source, no sequence of bits has too high a
probability of being output. A weak random source is a block source [7] if this is
guaranteed for every output block (for a block size which is a parameter of the
source) regardless of the values of the previous blocks output. Namely, whereas
a general weak random source guarantees some minimum amount of entropy if
sampled exactly once, a block source guarantees a minimum amount of entropy
each time a sample is drawn (where a sample corresponds to a block).

Two natural questions arise. (1) Can weak random sources be used to extract
a source of unbiased and independent coins? (2) Even if not, can weak random
sources be used within applications instead of perfect random sources, with the
same guarantee of correctness and complexity?

The first question was addressed early on, in conjuction with introducing the
various models of imperfect randomness. It was shown that it is impossible to ex-
tract unbiased random coins with access to a single weak random source [21,7,24].
Researchers went on to ask (starting with Vazirani [22]) whether, given two (or
more) weak random sources (all independent from each other), extraction of unbi-
ased random bits is possible. Indeed, it was shown [22,7,24] that two sources suf-
fice. Whereas original works focus on in-principle results, recent work by Barak,
Impagliazzo, and Wigderson [1] and others focuses on constructive protocols.

The second question is the type we will we focus on in this work. In the con-
text of probabilistic algorithms, it was shown early on in [7,24] that a single weak
random source can be used to replace a perfect source of randomness for any BPP
algorithm. Very recently, Dodis et al [10,9], asked the same question in the context
of cryptographic protocols. Namely, is it possible for cryptographic appplications
(e.g. encryption, digital signatures, secure protocols) to exist in a world where par-
ticipants eachhave access to a singleweak source of randomness? Surprisingly, they
show that even if these sources are independent of each other, many cryptographic
tasks such as encryption and zero-knowledge protocols are impossible.

We thus are faced with a natural and intriguing question in the context
of distributed computing:ss Are weak random sources suffiently strong to replace
perfect random sources within randomized distributed computing protocols ? This
is the starting point of our research.

The Choice of our Randomness Model. The model of randomness we
assume in this work is that each player has its own weak source (or block source)
that is independent of the sources of all the other players, as was assumed in the
work of [9] in the context of cryptographic protocols. We feel that this model is
a natural starting point for the study of randomness in distributed computation.
We note however that there is a spectrum of models that may be assumed, and
one such alternative is discussed in section 1 on future directions.

Distributed Computing with Imperfect Randomness 291

Our Results. We focus on the problem of achieving consensus in a complete
network of n participants t of which can be malicious faults as defined by [18]. We
address the settings of synchronous and asynchronous networks, and the cases
of private channels (when each pair of participants have a secret communication
channel between them) and of a full information network (when no secrecy is
assumed for any communication). We note that by the results of Dodis et al. [9],
making cryptographic assumptions is doomed for failure.

We will show,

1. In the case of block sources: how to obtain the best bounds of fault-tolerance
and round complexity currently achieved by randomized distributed proto-
cols. Assuming private channels, we show for both synchronous and asyn-
chronous networks an O(1) expected round protocol for t < n

3 faults (match-
ing [14,5]). In the full-information model, we show for synchronous networks
an O(t

log n) expected round protocol for t < n
3 (matching [6]) and a O(2n)

expected round protocol for t < n
3 (matching [4]).

2. In the case of general weak sources: We assume private channels. For
synchronous networks, we show an O(1) expected round protocol for t < n

3
faults (matching [14]). For asynchronous networks, we get an O(1) expected
rounds protocol for t < n

5 . We leave open the question of finding a BA protocol
in the full information model where each player has a general weak source.

Our Methods. To achieve our results, we build in various ways on top of the
existing distributed algorithms [14,6,2,4]. In general, we follow a 2-step Extract
and Simulate approach to designing such BA protocols. We utilize first O(1)
rounds for a pre-processing protocol, in which the parties interact with each
other so that at the end, a large number of them obtain a private uniformly
random string. The randomness so obtained is used to run existing randomized
BA protocols.

We construct various extraction protocols, in which the players interact to
obtain unbiased and independent random bits. The problem that we will need
to overcome is naturally that when a player receives a sample from another
player (which may be faulty), he cannot assume that the sample is good and
not constructed to correlate with other samples being exchanged. We construct
extraction protocols that work even if some of the players contribute bad inputs
which may depend on samples they have seen sent by honest players (in the case
of full information protocols).

As building blocks, we will use the extractors of [24,7,20] as well as the strong
extractors of [8,20]. A strong extractor ensures that the output of the extraction
is random even if one is given some of the inputs to the extractor. Our pro-
cedures will guarantee that a certain fraction of the non-faulty players obtain
perfectly unbiased and independent coins. However, this will not necessarily be
the case for the all the non-faulty players, and thus one may fear that now when
running existing randomized BA protocols with perfect randomness only avail-
able to some of the non-faulty players, the fault-tolerance of the final protocol
may go down. Luckily this is not the case, due the following interesting general
observation.

292 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

When we analyze the current usage of randomness in [14,6], we find on closer
look that one may distinguish between how many non-faulty players truly need
to have access to perfectly unbiased and independent sources of random coins,
and how many non-faulty players merely need to follow the protocol instructions.
The number of non-faulty players which need to have access to perfect coins is
drastically lower than the total number of non-faulty players. In the case of [14],
it suffices for t + 1 players to posses good randomness whereas we need all the
n− t non-faulty players to follow the protocol to prove correctness and expected
O(1) termination. In the case of [6] it suffices for (1

2 + δ)n (for arbitrarily small
constant δ > 0) players to possess good randomness.

Future and Related Work. Two questions are left open when each player
has a general weak source (rather than a block source): (1) How to achieve BA
in the full information model, and (2) How to achieve optimal fault-tolerance in
the case of asynchronous networks in the private channels model. We currently
achieve O(1) rounds for t < n/5.

Models of randomness other than what we chose to focus on in this paper
may have been assumed. The one we find particularly appealing is where each
player has a weak random source, but the sources are correlated. Namely, the
only guarantee is that the randomness sampled by player i has a large min-
entropy even conditioned on the values for random strings sampled by all other
players. The model considered in this paper is a first approximation to this more
general model. We have obtained some partial results in this model [17].

It is of great interest to study the possibility of other tasks in distributed
computing, such as leader election and collective coin-flipping, when the players
have imperfect randomness. We briefly note that the results in this paper can be
used to show the possibility of both these tasks, in the model where the players
have independent block sources.

2 Definitions and the Model

The Network, Communication, Fault and Randomness Models. We let
n denote the total number of players in the system and t the number of faulty
players. We consider various models of communication between the players. In
all cases, the n players form a fully-connected communication graph. i.e, each
player i can send to every other player j a message in one step. In the private
channels model, the communication between players i and j is invisible to all the
players but i and j. In contrast, in the full-information model, the communication
between any two players is publicly visible.

We consider synchronous and asynchronous communication in the network.
In the former case, each processor has access to a global clock, and commu-
nication is divided into rounds. Messages sent in a round are received in the
beginning of the next round, and the network ensures reliable message deliv-
ery. In the case of asynchronous communication, however, the only guarantee is
that the messages sent are eventually received by the recipient. Messages can be
arbitrarily re-ordered, and arbitrarily delayed.

Distributed Computing with Imperfect Randomness 293

We consider Byzantine faults in this paper. Byzantine players can deviate ar-
bitrarily from the prescribed protocol, and co-ordinate with each other so as to
mislead the good players into disagreement. We do not assume that the Byzan-
tine players are computationally bounded. The coalition of Byzantine players is
informally referred to as the adversary. We allow the adversary to be rushing.
i.e, the adversary can see all the messages sent by the good players in a round
r, before deciding what to send in round r.

Each player has his own source of (imperfect) randomness, and the sources
of different players generate mutually independent distributions.

Weak Random Sources. Let Uk denote the uniform distribution on k bits.
If X is a random variable which has a distribution D, then we write X ∼
D. The distance between distributions D1 and D2 (denoted by ∆(D1, D2)) is
1
2

∑
a |PrX1∼D1 [X1 = a]−PrX2∼D2 [X2 = a]|. When ∆(D1, D2) ≤ ε, we say that

D1 and D2 are ε-close.
A source of randomness X of length k is simply a random variable that takes

values in {0, 1}k. If X is not uniformly distributed, we say that the source X is a
weak random source. The randomness contained in a source is usually measured
in terms of its min-entropy. A source X of k bits has min-entropy δk, if for every
a ∈ {0, 1}k, Pr[X = x] ≤ 2−δk. In this case, we call X a (k, δ)-source.

Definition 1. A (k, δ)-source (or a (k, δ)-weak source) is a random variable
X that takes values in {0, 1}k such that for any x ∈ {0, 1}k, Pr[X = x] ≤ 2−δk.

A block source is a sequence of random variables X1, X2, . . . such that each Xi

(of length k bits) has min-entropy δk, even if conditioned on any realization of
the other blocks. This corresponds to sampling multiple times from a source of
random bits, when we are guaranteed that each sample has some new entropy.

Definition 2. A (k, δ)-block source is a sequence of random variables
X1, X2, . . . (each of length k) such that any Xi has a min-entropy of δk con-
ditioned on all the other random variables. That is, Pr[Xi = ai | X1 = a1, . . . ,
Xi−1 = ai−1, Xi+1 = ai+1, . . .] ≤ 2−δk.

We use (X, Y) to denote the joint distribution of the random variables X and Y .
In particular, (X, Um) denotes the joint distribution of X and an independent
uniform random variable Um.

Extractors. Given a (k, δ)-source X , our first attempt would be to extract
“pure randomness” from X . That is, to construct a deterministic function Ext :
{0, 1}k → {0, 1}m (for some m > 0) such that for any (k, δ)-source X ,
∆(Ext(X), Um) is small. But, it is easy to show that this task is impossible
in general. Thus it is natural to ask if one can extract uniform randomness given
two independent (k, δ)-sources. Chor-Goldreich [7] answered this in the affirma-
tive for the case when δ > 1

2 . More recently, Raz [20] showed this for the case
when one of the two sources has min-entropy at least k

2 and the other has min-
entropy at least log k. Below, we formally define the notion of a deterministic
two-source extractor, which is a key tool in our constructions.

294 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Definition 3. A function Ext : ({0, 1}k)2 → {0, 1}m is a (k, δ) two-source
extractor if for any (k, δ)-source X1 and any independent (k, δ)-source X2,
Ext(X1, X2) is ε-close to Um.

A strong two-source extractor is one in which the output of the extractor is
independent of each of the inputs separately. More formally,

Definition 4. A function Ext : ({0, 1}k)2 → {0, 1}m is a (k, δ) two-source
strong extractor if for any (k, δ)-source X1 and any independent (k, δ)-source
X2, the distributions (Ext(X1, X2), Xi) and (Um, Xi) are ε-close, for i ∈ {1, 2}.
Dodis and Oliveira [8] show that some well-known constructions of two-source
deterministic extractors indeed yield two-source strong extractors. Raz [20] shows
how to construct very general two-source strong extractors.

3 Extracting Randomness in a Network

Each player participating in a randomized distributed protocol is traditionally
assumed to have a uniformly distributed string that is independent of the ran-
dom strings of the other players. In addition, some protocols assume that the
randomness of each player is private. i.e, the faulty players have no information
on the randomness of the good players. There is no guarantee on the behavior
of the protocol if the players use a weak random source or if the players have
public randomness.

Our goal would be to run a distributed extraction protocol among the players
such that the good players help each other extract a uniform random string
collectively from their (mutually independent) weak random sources, even in
the presence of some malicious parties. The malicious colluding parties could
each contribute an arbitrary string, possibly correlated with what they see in
the network, as input to the extraction protocol.

One of the building blocks in our randomness extraction protocols is a multi-
source extractor whose output is random even if an arbitrary subset of the input
sources do not have any min-entropy, but all the sources are independent. We
call this a (κ, τ)-immune extractor.

Definition 5. Let X1, X2, . . . , Xκ+1 be (k, δ)-block sources. A function Ext that
takes as input a finite number of blocks from each of the κ + 1 block sources is
called a (κ, τ)-immune (k, δ)-extractor if for any block sources X1, X2, . . . ,
Xκ+1 such that (i) X1 is a (k, δ)-source, (ii) at least κ− τ among the κ sources
X2, . . . , Xκ+1 are (k, δ) sources, and (iii) the Xi’s are mutually independent,
Ext(X1, X2, . . . , Xκ+1) is ε-close to Um.

In the above definition, we are guaranteed that the τ “bad” sources (those which
do not have any randomness) are independent of the κ + 1− τ “good” sources.
We might need to deal with worse situations. In particular, the τ bad sources
could be dependent on some of the “good” sources. A (κ, τ)-strongly immune
extractor extracts uniform randomness even in this adversarial situation.

Distributed Computing with Imperfect Randomness 295

Definition 6. Let X1, X2, . . . , Xκ+1 be (k, δ)-block sources. A function Ext that
takes as input a finite number of blocks from each of the κ + 1 block sources
is called a (κ, τ)-strongly-immune (k, δ)-extractor if for any block sources
X1, X2, . . . , Xκ+1 such that (i) X1 is a (k, δ)-source independent of all other Xi,
and (ii) at least κ− τ among the κ sources X2, . . . , Xκ+1 are (k, δ)-sources and
are mutually independent, Ext(X1, X2, . . . , Xκ+1) is ε-close to Um.

Some distributed protocols might require the players to have private random-
ness. But, if the players are connected by non-private channels, most of the
inputs to the extraction protocols are publicly visible. In this case, the output of
the extraction protocol might depend on the values that were publicly transmit-
ted and is thus not private. We need to construct (κ, τ)-strongly immune strong
extractors to cope with this situation. The constructions are as given below.

I-Ext: A (t, t− 1)-immune extractor.

Inputs: Let Ext be any (k, δ) two-source extractor. Let X2
1 , X3

1 , . . . , Xt+1
1 denote

t distinct blocks of the (k, δ)-block source X1. Let X2, . . . , Xt+1 be one block
each from the t other sources.

I-Ext({X i
1}t+1

i=2, X2, . . . , Xt+1) =
⊕t+1

i=2 Ext(X i
1, Xi).

Theorem 1. I-Ext is a (t, t − 1)-immune extractor, assuming that Ext is a
(k, δ)-two source extractor.

Proof (Sketch). At least one of the sources (say Xj , 2 ≤ j ≤ t + 1) has min-
entropy δk and Xj is independent of all the X i

1 (i = 2, . . . , t + 1). Also, Xj
1 has

min-entropy δk conditioned on all the blocks Xj′
1 (j′ �= j). That is, the distri-

bution of (Xj
1 |Xj′

1 = xj′
1) has min-entropy at least δk. Therefore, Ext(Xj

1 |(Xj′
1 =

xj′
1), Xj) is ε-close to Um. Consider any j′ �= j. The joint distributions

(Xj
1 |Xj′

1 , Y) and (Xj′
1 , Z) are independent. Thus, Ext(Xj′

1 , Xj′) is independent
of Ext(Xj

1 , Xj), for all j′ �= j. This shows that
⊕t

i=2 Ext(X i
1, Xi) is close to Um.

Theorem 2. There exists a (t, t− 1)-strongly immune strong extractor SI-Ext.

Proof (Sketch). In the construction of I-Ext, using a two-source strong extractor
(for instance, those of [8,20]) in the place of Ext gives us SI-Ext. We prove the
theorem for the case when t = 2. The proof for t > 2 follows quite easily from
this proof.

Let the distributions under consideration be X = (X1, X2), Y and Z. Here,
the distributions Y and Z could be dependent, but both are independent of X .
At least one of Y and Z have min-entropy δk. W.l.o.g, this is Y . Then, since X1

has min-entropy δk conditioned on X2 = x2, Ext((X1|X2 = x2), Y) is ε-close
to Um.

Let D1
def
= Ext((X1|X2 = x2), Y) and let D2

def
= Ext(X2, Z). We know that[

D1, Y
] ≈ [

Um, Y
]

and since Z = f(Y),
[
D1, Y, Z

] ≈ [
Um, Y, Z

]
.

296 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

We also know that [
D1, X

2
] ≈ [

Um, X2
]
,

since D1 is the result of extracting from (X1|X2 = x2) and Y , both of which are
independent of X2. Since X2 and Z are independent, and so are X2 and Y ,

[
D1, X

2, Y, Z
] ≈ [

Um, X2, Y, Z
]
.

Therefore,
[
D1, X

2, Y, Z, Ext(X2, Z)
] ≈ [

Um, X2, Y, Z, Ext(X2, Z)
]
.

Note that the last component of this distribution is precisely D2. Thus, D1 is
random, given D2, Y , Z and X2. Thus

[
D1 ⊕ D2, X

2, Y, Z
] ≈ [

Um, X2, Y, Z
]
.

In particular, this means
[
D1 ⊕D2, Y, Z

] ≈ [
Um, Y, Z

]
, which is the definition

of the extractor being strong. �	
Fact 1. Suppose X1, X2 and Y are random variables, and Z is a random vari-
able such that Z is independent of X1 and X2. If (X1, Y) ≈ (X2, Y), then
(X1, f(Y, Z)) ≈ (X2, f(Y, Z)).

4 Byzantine Agreement Protocols with Block Sources

In this section, we show how to construct randomized Byzantine agreement (BA)
protocols that work even when the players have access to block sources (resp.
general weak sources), using the extraction protocols of the previous section.
Our transformations are fairly generic and they apply to a large class of known
randomized BA protocols.

The protocol Synch-PC-Extract ensures that, in the presence of at most t
faults, at least 2
n

2 � − 2t good players get private random strings. The protocol
Asynch-Extract, on the other hand, ensures that all the good players get private
random strings, at the end of the protocol.

Theorem 3 (Synchronous, Private Channels). If n ≥ 3t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by a synchronous network with private channels,
and have (k, δ) block-sources with δ > 1

2 .

Protocol Synch-PC-Extract

Group the players P1, P2, . . . , Pn into pairs (p1, p2), . . . , (pn−1, pn). Let Ext be
an (n, δ) two-source extractor. (Note: Assume for simplicity that n is even. If
not, add a dummy player.)

Each player Pi does the following:
– If i is even, sample a k-bit string Xi from the source, and send it to Pi−1.
– If i is odd, sample a k-bit string Xi from the source, and receive a k-bit

string Xi+1 from Pi+1. Compute an m-bit string Ri ← Ext(Xi, Xi+1).
Send to Pi+1 the first m

2 bits of Ri and store the remaining bits.

Distributed Computing with Imperfect Randomness 297

Protocol Asynch-Extract

Each player pi does the following: (Note: Ext is either a (t+1, t)-immune extractor
or a (t + 1, t)-strongly immune strong extractor).

– Wait to receive t + 1 strings Y1, Y2, . . . , Yt+1 from t + 1 different players.
– Sample blocks X1

1 , X2
1 , . . . , Xt+1

1 from the random source.
– Compute and Store Ri ← Ext({Xj

1}t+1
j=1, Y1, Y2, . . . , Yt+1).

Protocol Synch-FI-Extract

Group the players into 4-tuples (p1, p2, p3, p4), . . ., (pn−3, pn−2, pn−1, pn). Let
SI-ext be a (3, 2)-strongly immune strong extractor. (Note: Assume for sim-
plicity that n is a multiple of four. If not, add at most two dummy players.)

Each player pi does the following: (Assume that pi is in a 4-tuple with pi+1, pi+2

and pi+3.)

– Samples six blocks Xj
1 (j = 1, . . . , 6) from its random source.

– Send Xj
1 to pi+j (for j = 1, . . . , 3). Store Xj

1 (j = 4, . . . , 6).
– Receive k-bit strings Yj from pi+j (j = 1, . . . , 3).
– Compute Ri ← SI-ext({X4

1 , X5
1 , X6

1}, Y1, Y2, Y3) and store Ri.

Proof. In the first round, the players run the protocol Synch-PC-Extract. Let Ri

denote the output of player i after running Synch-PC-Extract. Now, the players
run the BA protocol guaranteed by Lemma 1 with player i using Ri as random-
ness.

There are at least
n
2 � − t ≥
 t

2� + 1 pairs such that both the players in
the pair are good. In each pair, the players extract uniform and independent
random strings. Thus, there are at least 2(
 t

2� + 1) ≥ t + 1 players at the end
of the protocol with m-bit strings that are ε-close to uniform. Because of the
private channels assumption, the inputs used to compute Ri are invisible to
the adversary, and therefore, the randomness extracted is private. Now, invoke
Lemma 1 to complete the proof.

Lemma 1. If n ≥ 3t + 1, then there exists a BA protocol that runs in expected
O(1) rounds tolerating t faults in a synchronous network with private channels,
even if only t + 1 (out of n− t) good players have private randomness.

Proof. The protocol of Feldman and Micali [14] is such a BA protocol. Refer to
Appendix A for a proof sketch.

Theorem 4 (Synchronous, Full-Information Model). If n ≥ 3t + 1, then
there exists a BA protocol that runs in expected O(t

log n) rounds tolerating t faults,
assuming the players are connected by a synchronous network with non-private
channels, and have (k, δ) block sources with δ > 1

2 .

298 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Proof. In the first round, the players run the protocol Synch-FI-Extract. Using
the randomness so obtained, run the BA protocol guaranteed by Lemma 2.

Consider the set of 4-tuples of players such that at most two players in the
4-tuple are bad. There are at least
n

4 � −
 t
3� ≥
 5t

12� such tuples. In each such
pair, the good players extract uniform and independent random strings, since
there are at least two good players in such a 4-tuple and Ext is a (3, 2)-strongly
immune extractor. There are at least 4
 5t

12� ≥ 5
9n = (1

2 + Θ(1))n players at the
end of the protocol with m-bit strings that are ε-close to uniform. Moreover, the
random strings Ri of these players are private, since Ext is a strong extractor.
Now, invoke Lemma 2 to complete the proof.

Lemma 2. If n ≥ 3t+1, there exists a BA protocol that runs in expected O(t
log n)

rounds tolerating t faults in a synchronous network with non-private channels,
even if only (1

2 + δ)n good players have private randomness (for some δ > 0).

Proof. The protocol of Chor and Coan [6] is such a BA protocol. Refer to Ap-
pendix B for a proof sketch.

Theorem 5 (Asynchronous Network). If n ≥ 3t + 1, then there exist BA
protocols that tolerate t faults in an asynchronous network, when the players
have (k, δ) block-sources with δ > 1

2 , and

– run in O(1) rounds, with private channels, and
– run in O(2n) rounds, with non-private channels.

Proof (Sketch).
In the private channels case: In the first round, the players run the protocol
Asynch-Extract with a (t + 1, t)-immune extractor in the place of Ext. Let Ri

denote the output of player i after running Asynch-Extract. Now, the players run
the O(1)-round BA protocol of [5], with player i using Ri as the randomness to
the [5] protocol.

Each player pi gets t + 1 strings, eventually. This is because n ≥ 2t + 1 and
there are at most t faulty players. At least one of the t + 1 strings is “good”.
i.e, it comes from a (k, δ) block-source which is independent from pi’s source.
By the (t + 1, t)-immunity of Ext, this means that the output Ri of player i is
ε-close to uniform. Further, the output Ri of pi is private, informally because
one of the inputs to Ext is unknown to the faulty players.
In the non-private channels case: The players run the protocol Asynch-Extract
with a (t + 1, t)-strongly immune strong extractor in the place of Ext.

4.1 The Case of General Weak Sources

The statement of Theorem 3 is true even when the players have a general weak
source. This is informally because, the extractor uses at most one sample from
each source.

Theorem 6 (Asynchronous, Private Channels). If n ≥ 5t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by an asynchronous network with private channels,
and have weak sources with min-entropy rate δ ≥ 1

2 .

Distributed Computing with Imperfect Randomness 299

Proof. The protocol used in the proof of Theorem 3, with the following slight
modification, suffices to prove this. The change is that, each player, after re-
ceiving a string from its partner in a pair, sends a message indicating that the
extraction protocol is complete. When player i receives such a message from
n − 2t players, he stops the extraction protocol and sets Ri = φ. Each player
eventually receives such a message from n−2t players, since at least n−2t play-
ers are in pairs in which both the players are good. When a player i receives such
a message, it knows that at least n− 4t players have indeed extracted uniform
randomness. Since n− 4t ≥ t + 1, we are done.

References

1. Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness
using few independent sources. In FOCS, pages 384–393, 2004.

2. Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In PODC, pages 27–30, 1983.

3. Michael Ben-Or and Elan Pavlov. Byzantine agreement in the full-information
non-adaptive model. unpublished manuscript.

4. Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In PODC,
pages 154–162, 1984.

5. Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In STOC, pages 42–51, 1993.

6. Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine
agreement algorithm. IEEE Trans. Software Eng., 11(6):531–539, 1985.

7. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. FOCS, pages 429–442, 1985.

8. Yevgeniy Dodis and Roberto Oliveira. On extracting private randomness over a
public channel. In RANDOM-APPROX, pages 252–263, 2003.

9. Yevgeniy Dodis, Shien Jin Ong, Manoj P, and Amit Sahai. On the (im)possibility
of cryptography with imperfect randomness. In FOCS, pages 196–205, 2004.

10. Yevgeniy Dodis and Joel Spencer. On the (non)universality of the one-time pad.
In FOCS, pages 376–, 2002.

11. Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping persuasively
in constant time. SIAM J. Comput., 19(3):472–499, 1990.

12. P. Elias. The efficient construction of an unbiased random sequence. Ann. Math.
Statist., 43(3):865–870, 1972.

13. Paul Feldman. Asynchronous byzantine agreement in expected constant number
of rounds. unpublished manuscript.

14. Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

15. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. In PODS, pages 1–7, 1983.

16. Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for >
processors in + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

17. Shafi Goldwasser and Vinod Vaikuntanathan. Distributed computing with imper-
fect randomness part ıı. manuscript, in preparation.

18. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM., 27:228–234, 1980.

300 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

19. Michael O. Rabin. Randomized byzantine generals. FOCS, pages 403–409, 1983.
20. Ran Raz. Extractors with weak random seeds. STOC, to appear, 2005.
21. M. Santha and U. V. Vazirani. Generating quasi-random sequences from slightly-

random sources. In FOCS, pages 434–440, Singer Island, 1984.
22. Umesh V. Vazirani. Towards a strong communication complexity theory or gen-

erating quasi-random sequences from two communicating slightly-random sources
(extended abstract). In STOC, pages 366–378, 1985.

23. J. von Neumann. Various techniques for use in connection with random digits. In
von Neumann’s Collected Works, volume 5, pages 768–770. Pergamon, 1963.

24. David Zuckerman. General weak random sources. In FOCS 1990, pages 534–543,
1990.

Appendix A – Proof of Lemma 1

We describe the salient features of Feldman-Micali protocol for Byzantine Agree-
ment in a network with private channels, tolerating t < n

3 faulty players.
The protocol consists of three building blocks: a graded broadcast protocol,

an n/3-resilient verifiable secret-sharing protocol and an oblivious common-coin
protocol. The graded broadcast protocol is deterministic. The graded VSS pro-
tocol of Feldman-Micali [14] has the property that the Sharing protocol is ran-
domized, and the only instructions in the protocol are executed by the dealer h.
The share-verification and recovery are deterministic. Therefore,

Lemma 3. If n ≥ 3t + 1, there exists an O(1)-round protocol, which is a t-
resilient graded Verifiable Secret-Sharing (VSS) protocol, assuming only that
the dealer has randomness.

Definition 7 (Oblivious Common Coin). Let P be a fixed-round protocol in
which each player x has no input and is instructed to output a bit rx. We say that
P is an oblivious common coin protocol with fairness p and fault-tolerance t if for
all bits b, for every set of t players who are corrupted, Pr[∀ good players i, ri = b]
≥ p. We refer to an execution of P as a coin. The coin is unanimously good if
ri = b for every good player i.

Lemma 4. If n ≥ 3t + 1, there exists an O(1)-round oblivious coin protocol,
which assumes only that t + 1 good players have randomness.

Proof. The Oblivious Coin protocol of Feldman-Micali [14] is given below.
Protocol Oblivious Common Coin

1. (for every player i): For j = 1, . . . , n, randomly and independently choose a
value sij ∈ [0, . . . , n− 1]. (Note: We will refer to sij as the secret assigned to
j by i.)
Concurrently run Share and Graded-Verify (of a VSS protocol) n2 times,
once for each pair (h, j) ∈ [1 . . . n]2, wherein h acts as a dealer, and shares
shj , the secret assigned by h to j. Let verificationhj

i be player i’s output at
the end of Graded-Verify for the execution labeled (h, j).

Distributed Computing with Imperfect Randomness 301

2. (for every player i): Gradecast the value

(verification1i
i , verification2i

i , . . . , verificationni
i).

3. (for every player i): for all j, if
(a) in the last step, you have accepted player j’s gradecast of a vector ej ∈
{0, 1, 2}n,

(b) for all h, |verificationhj
i − ej [h]| ≤ 1, and

(c) ej [h] = 2 for at least n− t values of h,
then set playerij = ok, else set playerij = bad.

4. (for every player i): Recover all possible secrets.
Concurrently run Recover on all the n2 secrets shared. Denote by valuehj

i

your output for execution (h, j). If playerij = bad, set SUMij = bad, else
set

SUMij = {
∑

h such that ej [h]=2

valuehj
i } mod n.

If for some player j, SUMij = 0, output ri = 0, else output ri = 1.

We now sketch the proof that the above protocol is an Oblivious Common Coin
protocol, assuming at least t + 1 good players have uniform randomness, and at
most t players are faulty. This follows from the following series of observations.

– In step 3(a) of the protocol, all the good players that accept the gradecast of
a player i receive the same vector ei, even if it player i is bad. This means,
every good player i computes SUMij as a sum of the same set of values.

– If SUMij is not set to bad, all the addenda of SUMij had ej [h] = 2, which
means verificationhj

i ≥ 1 (by Step 3(b) of the above protocol). This in
turn means, by the property of graded VSS, that there is a unique secret
corresponding to the (h, j)th execution of Share, which can be recovered.
Thus, for every player j (who may be malicious), there exists a value γ such
that, for any good player i, SUMij is either γ or bad.

– Moreover, if SUMij �= bad, then SUMij is a sum of at least n− t values (by
Step 3(c) of the above protocol). At least one of the n− t values is shared by
a good player who has randomness (since there are at least t + 1 of them).
Thus, since all the values shared are independent 2, SUMij is either set to
bad or a random number γ.

– Given this, we can prove that the coin is sufficiently common and sufficiently
random. The proof proceeds identically to that of [14]. More precisely, we can
prove that for any bit b, Pr[∀ good players i, ri = b] ≥ min(e−1, 1− e−2/3).

Lemma 5 ([14]). Given an oblivious-coin protocol as a black-box, there is a
deterministic protocol that achieves BA in O(1) rounds.
2 It turns out that this statement is not precise, and has to be proven by a more careful

simulation argument, for which we refer the reader to [14].

302 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Appendix B – Proof of Lemma 2

The Chor-Coan protocol for BA in a full-information network is given below. The
players are divided into fixed disjoint groups of size g. The ith group consists of
the set of players {p(i−1)g+1, . . . , pig}. For any player pi, let GROUP(pi) denote
the group that pi belongs to. The protocol proceeds in phases where, in each
phase, the players try to reach agreement on their values. In each phase, one of
the groups is said to be active. The purpose of the players in the active group is
(among other things) to toss coins and send it to all the other players.

1. For e = 1 to ∞, each player pi does the following: (Note: e is the current
phase.)
(a) Sends to every player the message (e, Phase1, bi).
(b) Receive messages from every other player of the form (e, Phase1, ∗).
(c) If for some v, there are ≥ n− t messages of the form (e, Phase1, v), then

set bi ← v, else set bi ← “?”
(d) If GROUP(pi) ≡ e (mod
n

g �) then set coin← b, else set coin← 0 {Note

: b is a random bit}
(e) Send to every player the message (e, Phase2, bi, coin).
(f) Receive messages of the form (e, Phase2, c, coin) from every player.
{ Note: Let NUM(c) be the number of messages received that contain c. }

(g) If NUM(c) ≥ n− t for some bit c, decide c.
(h) Else, if NUM(c) ≥ t + 1 and NUM(c) > NUM(c̄), set bi ← c.
(i) Else, set bi ← majority of the coinj ’s from the group x, where x ≡

e(mod
n/g�).
Proof of Lemma 2. The following properties of the protocol are easily verified:
(a) If a player pi decides at the end of a phase, all players decide by the end of
the next phase. (b) If a player sets bi ← c at the end of a phase (instruction h,
above), then no player pj sets bj ← c̄. Given this, it is easy to see that agreement
is reached when all the remaining players (ones who set bi to be the coin-toss
from a group) set bi to c (in instruction i). It remains to analyze the expected
number of rounds in which this event happens.

Set the size of a group to be g = 2m = log n. Call a group e good if more
than m + 1 players in the group are non-faulty. Call a coin-toss good if at least
m + 1 good players in a group tossed the same coin (with a fixed value – 0 or
1). It is clear that Pr[coin-toss of a group e is good | e is a good group] ≥ 1

2m+1 .
Now, lets analyze how many bad groups there can be. There are at most t <
(1
2 − ε)n players who have no randomness, and these players can make at most
t

m+1 < (1
2 − ε) 2n

log n = (1 − 2ε) n
log n groups bad. Since there are n

log n groups in
total, the number of good groups is at least 2εn

log n .
The protocol terminates as soon as there is a good coin-toss. The expected

number of good groups that have to toss coins before they get a good coin is
precisely 2m+1 ≤ 2

√
n. The probability that a good coin is not formed after

n3/4 groups tossing coins is negligible, by a Chernoff Bound. Thus, the expected
number of rounds to each agreement is 2t

log n + n3/4 + O(1).

	Introduction
	Definitions and the Model
	Extracting Randomness in a Network
	Byzantine Agreement Protocols with Block Sources
	The Case of General Weak Sources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

