
(Almost) All Objects Are Universal

in Message Passing Systems

(Extended Abstract)

Carole Delporte-Gallet1, Hugues Fauconnier2, and Rachid Guerraoui3

1 ESIEE-IGM Marne-La-Vallee, France
2 LIAFA Univ Paris VII, France
3 EPFL Lausanne, Switzerland

Abstract. This paper shows that all shared atomic object types that
can solve consensus among k > 1 processes have the same weakest failure
detector in a message passing system with process crash failures. In such
a system, object types such as test-and-set, fetch-and-add, and queue,
known to have weak synchronization power in a shared memory system
are thus, in a precise sense, equivalent to universal types like compare-
and-swap, known to have the strongest synchronization power. In the
particular case of a message passing system of two processes, we show
that, interestingly, even a register is in that sense universal.

1 Introduction

1.1 Atomic Objects

A shared atomic object is a data structure exporting a set of operations that can
be invoked concurrently by the processes of the system. Atomicity means that
any object operation appears to execute at some individual instant between its
invocation and reply time events [14,11]. Thanks to atomicity, the type of an
object can solely be defined according to its sequential specification: the set of
all possible sequential executions of the object operations [11].

Many distributed algorithms are designed assuming, as underlying synchro-
nization primitives, atomic objects, sometimes provided as hardware devices of
a multiprocessor, and sometimes emulated in software. These include objects of
types register, test-and-set, fetch-and-add, queue, and compare-and-swap.

Some of these atomic object types have been shown to have more synchro-
nization power than others in the sense that they can solve the seminal consensus
problem [9] among more processes [12]. What is meant here by a type solving
consensus is that instances of that type can be used in a deterministic algorithm
that solves the consensus problem; we consider here the uniform variant of con-
sensus where no two processes can decide differently: the problem can be casted
as an atomic object type also called consensus.

The ability for a type to solve consensus among a certain number k of pro-
cesses is important as it implies the ability to emulate any other type in a system
of k processes, irrespective of how many of these processes may crash.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 184–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

(Almost) All Objects Are Universal in Message Passing Systems 185

The type register is in this sense weak as it can only solve consensus for exactly
one process [16]. Test-and-set, fetch-and-add, or queue can solve consensus among
exactly 2 processes. Interestingly, for any number k, there is a type that can solve
consensus among exactly k processes [12]. This leads to a hierarchy of types,
called the consensus hierarchy, classifying types according to their consensus
number (k). Types such as compare-and-swap can solve consensus among any
number of processes, and are said to be universal [12]: their consensus number
is ∞ and they are at the top of the hierarchy.

1.2 Atomic Object Implementations in Message Passing Systems

This paper studies necessary and sufficient conditions for implementing atomic
object types in a distributed system where processes communicate by exchanging
messages: no physical shared memory is assumed. The processes are assumed to
communicate through reliable channels but can fail by crashing. Through such
implementations, algorithms based on shared atomic objects can be automati-
cally ported into a message passing system prone to crash failures. We focus on
robust [2] implementations where any process that invokes an object operation
and does not crash eventually gets a reply.

Two fundamental results are known about such implementations in an asyn-
chronous message passing system (with no synchrony assumptions). The type reg-
ister can only be implemented if we assume that a majority of the processes do
not crash [2], and most of the types cannot be implemented, including test-and-set,
fetch-and-add, queue, and compare-and-swap, if at least one process may crash [9].

In most distributed systems however, certain synchrony assumptions can be
made, and these can even be precisely expressed through axiomatic properties of
a failure detector abstraction [5]: a distributed oracle that provides processes with
hints about crashes, and which can itself be implemented based on synchrony
assumptions, e.g., timeouts.

Two related results, of particular interest in this paper, have been recently
established. First, the weakest failure detector to implement the basic type reg-
ister in a message passing system (with any number of crashes) has been shown
to be an oracle, denoted by Σ, and which outputs, at any time and at every
process, a set of processes such that (1) any two sets always intersect and (2)
eventually every set contains only correct processes [6,8]. This result means that
(a) there is a distributed algorithm that implements the type register using Σ,
and (b) for every failure detector D such that some algorithm implements the
type register using D, there is an algorithm that implements Σ using D. Failure
detector D encapsulates information about failures that are at least as strong as
those encapsulated by Σ.

Second, the weakest failure detector to solve consensus (with any number of
crashes) has been shown to be an oracle, denoted by Σ ∗Ω, and which outputs,
at any time and at every process, both outputs of failure detector Σ and failure
detector Ω. Failure detector Ω outputs, at any time and at every process, a
single (leader) process, such that, eventually this process is the same at all pro-
cesses and is correct [4,6,8]. The fact that Σ ∗ Ω was established as the weakest

186 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

failure detector to solve consensus directly implies that it is also the weakest to
implement compare-and-swap, and more generally, any other universal type.

1.3 Contributions

Naturally, this raises the following question. What about all other types like
queue, test-and-set, or fetch-and-add? More generally, what about all types that
can solve consensus among k > 1 processes but not k+1. This paper shows that
the weakest failure detectors to implement these types do all boil down to the
same one: Σ ∗ Ω.

In other words, we show that the weakest failure detector to implement any
type that solves consensus among at least 2 processes is Σ ∗ Ω.

Our result conveys the interesting fact that, in a message passing system
(unlike in a shared memory system), all these types are, in a precise sense,
equivalent and universal. Hence, if we exclude types that cannot solve consen-
sus among two processes such as register, the consensus hierarchy is thus flat in
a message passing system. From a practical perspective, and given that many
synchronization problems can be casted through atomic object types, our re-
sult suggests that, as far as failure detection is concerned, adopting an ad hoc
approach focusing on each problem individually is not more economic than a
generic approach where the failure detector Σ ∗ Ω would be implemented in a
message passing system as a common service underlying all problems, i.e., all
type implementations.

Stating and proving our result goes through defining a general model of
distributed computation encompassing different kinds of abstractions: atomic
objects, message passing and failure detectors. Such a model is interesting by
itself. To our knowledge, besides the model we introduce in this paper, the only
model that captured these different abstractions in a unified framework has
recently been defined (using I/O automata) by considering a restricted form
of failure detectors [1]. In this paper, we establish the weakest failure detector
to implement atomic object types among all failure detectors. Our model, and
in particular our notion of implementation, is a slight generalization of both
the notions of shared memory object implementations of [12] as well as failure
detector reductions of [5].

To prove our result, we first consider the problem of solving consensus among
a subset of processes S in the system. We observe that failure detector ΣS ∗ΩS ,
obtained by restricting Σ and Ω to S, is the weakest to solve consensus in S.
Then we show that the weakest failure detector to solve consensus among any
subset of k > 1 processes is the same as the weakest to solve consensus among
any subset of k + 1 processes. The crucial technical step to establish this result
is to show that the composition of ΩS over all pairs S of processes in the system
is Ω. (The analogous result for ΣS is also needed but more easily obtained).

An interesting particular case is when the system simply consists of two
processes. We show that, in this case, Σ ∗Ω is equivalent to Σ. This equivalence
also has a surprising ramification: whereas no algorithm can solve consensus
using a register in a system of two processes where at least one can crash [16],

(Almost) All Objects Are Universal in Message Passing Systems 187

any failure detector that can be used to implement a register in a message passing
system of two processes, where at least one can crash, can also be used to solve
consensus.

1.4 Roadmap

To summarize, this paper shows that all atomic object types that can solve
consensus among k > 1 processes have the same weakest failure detector in a
message passing system with process crash failures. In the particular interesting
case of a message passing system of two processes, this failure detector is also
the weakest to implement a register.

The rest of the paper is organized as follows. Section 2 defines our model.
Section 3 introduces failure detectors ΣS and ΩS and establishes some prelim-
inary results. Section 4 determines the weakest failure detector to implement
consensus among any subset of k > 1 processes in the system. Section 5 derives
our main results on the weakest failure detector to implement atomic types.
Section 6 relates our results with weakest failure detector results in the shared
memory model. For space limitations, several proofs are omitted from this ex-
tended abstract and given in a companion technical report [7].

2 System Model

We consider a distributed system composed of a finite set of n processes Π = {p1,
p2, . . . , pn}; |Π | = n ≥ 3. (Sometimes, processes are denoted by p and q.) A
discrete global clock is assumed, and Φ, the range of the clock’s ticks, is the set
of natural numbers. The global clock is not accessible to the processes.

2.1 Failure Patterns and Failure Detectors

Processes can fail by crashing. A process p is said to crash at time τ if p does
not perform any action after time τ (the notion of action is defined below).
Otherwise the process is said to be alive at time τ . Failures are permanent, i.e.,
no process recovers after a crash. A correct process is a process that does never
crash (otherwise it is faulty). A failure pattern is a function F from Φ to 2Π ,
where F (τ) denotes the set of processes that have crashed by time τ . The set of
correct processes in a failure pattern F is noted correct(F). As in [5], we assume
that every failure pattern has at least one correct process. An environment is a
set of failure patterns. Unless explicitly stated otherwise, our results are stated
for all environments and hence we do not mention any specific environment.

Roughly speaking, a failure detector D is a distributed oracle which gives
hints about failure patterns of a given environment E . Each process p has a
local failure detector module of D, denoted by Dp. Associated with each failure
detector D is a range RD (when the context is clear we omit the subscript) of
values output by the failure detector. A failure detector history H with range
R is a function H from Π × Φ to R. For every process p ∈ Π , for every time

188 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

τ ∈ Φ, H(p, τ) denotes the value of the failure detector module of process p
at time τ , i.e., H(p, τ) denotes the value output by Dp at time τ . A failure
detector D is more precisely a function that maps each failure pattern F of E
to a set of failure detector histories with range RD: D(F) denotes the set of
all possible failure detector histories permitted for the failure pattern F . Let D
and D′ be any two failure detectors, D ∗ D′ denotes the failure detector, with
range RD ∗RD′ , which associates to every failure pattern F , the set of histories
D ∗ D′(F) = {(H,H′) | H ∈ H(D),H′ ∈ H′(D′)}. This notation is naturally
extended to a finite set of failure detectors K: ∗{D | D ∈ K}.

2.2 Actions, Runs and Schedules

To access its local state or shared services, a process p executes (deterministic)
actions from a (possibly infinite) alphabet Ap. Each action is associated with
exactly one process and the set of all actions A is a disjoint union of the Api (1 ≤
i ≤ n). The state of a process after it executes action a in state s, is denoted a(s).
A configuration C is a function mapping each process to its local state. When
applied to a configuration C, action a of Api gives a new unique configuration
denoted a(C): for all j �= i (a(C))(pj) = C(pj) and (a(C))(pi) = a(C(pi)).

An infinite sequence of actions is called a schedule. In the following, Sc[i]
denotes the i-th action of schedule Sc. Given seq = a1 . . . aiai+1 a prefix of a
schedule and C a configuration, the new configuration seq(C) resulting from
the execution seq on some C is defined by induction as ai+1((a1 . . . ai)(C)). To
each schedule Sc = a1 . . . aiai+1 . . . and configuration C0 correspond a unique
sequence of configurations C0C1 . . . CiCi+1 . . . such that Ci+1 = ai+1(Ci).

A run is a tuple R =< F, C, Sc, T >, where F is a failure pattern, C a
configuration, Sc a schedule, and T a time assignment represented by an infinite
sequence of increasing values such that: (1) for all k, if Sc[k] is an action of
process p then p is alive at time T [k] (p /∈ F (T [k])) and (2) if p is correct then p
executes an infinite number of actions. An event e is the occurrence of an action
in Sc, and if e is the k-th action in Sc, then T [k] is the time at which event e is
executed.

Consider an alphabet of actions A and any subset B of A. Let Sc|B be the
subsequence of Sc consisting only of the actions of B, and T |B be the sub-
sequence of T corresponding to actions of B in R =< F, C, Sc, T >. We call
< F, C, Sc|B, T |B > the history corresponding to B, and we simply denote it by
R|B. In particular, when B = Api , R|Api is called the history of process pi in R.

2.3 Services

A service is defined by a pair (Prim, Spec). Each element of Prim, denoted by
prim, is a tuple < s, p, arg, ret > representing an action of process p identified
by a sort s, an input argument arg from some (possibly infinite) range In and
an output argument (or return value) ret from some (possibly infinite) range
Out. An empty argument is denoted by λ. The specification Spec of a service
X is defined by a set of runs. In this paper, we consider three kinds of services:
message passing, atomic objects and failure detectors.

(Almost) All Objects Are Universal in Message Passing Systems 189

Message passing. The classical notion of point-to-point message passing channel,
represented here by a service and denoted MP, is defined through primitive
send(m) to q of process p and primitive receive() from q of process p.1 Primitive
receive() from q returns either some message m or the null message λ; in the
first case we say that p received m. Each non null message is uniquely identified
and has a unique sender as well as a unique potential receiver. The specification
Spec of MP stipulates that: (1) the receiver of m receives it at most once and
only if the sender of m has sent m; (2) if process p is correct and if process q
executes an infinite number of receive from p primitives, then all messages sent
by p to q are received by q.

Failure detector. The only primitive defined for a failure detector service is a
query without argument that returns one value in the failure detector range. A
run R =< F, C, Sc, T > satisfies the specification of a failure detector D if there
is a failure detector history H ∈ D(F) such that for all k, if Sc[k] is a query of
D by process p that outputs v, then H(p, T [k]) = v. Any such history is said to
be associated with run R.

Atomic object. Atomic objects are services defined by a sequential specification,
and which can be accessed through invocation and reply primitives associated
with each operation of the object. It is common to call a pair of invocation
and subsequent reply primitives the occurrence of the operation and identify
an invocation and the associated operation. The sequential specification of an
atomic object is defined by its type and an initial state. A type T is a tuple
< Q, Op, I, L >: where Q is the set of states of the type, Op is a set of operations,
I is a set of replies, and L is a relation that carries each state st ∈ Q and
operation op to a set of state and reply pairs, which are said to be legal, and
denoted by L(st, op). When L is a function, the type is said to be deterministic.
An invocation returns λ, and a reply has λ as argument and returns a value in I.
An invocation inv and a reply rep are said to be matching if they are actions of
the same process p and if there exist states st and st′ such that (st′, rep) belongs
to L(st, inv). A (finite or infinite) sequence σ = (o0r0)(o1r1) . . . (ojrj) . . . where,
for all l, ol and rl are respectively operations and replies, is legal from state s
if there is a corresponding sequence of states s = s0, s1, . . . sj , . . . such that, for
each l (sl+1, rl+1) ∈ L(sl, ol). Such a sequence is called a sequential history of
object O from initial state s. 2

Only well-formed schedules are considered. Consider a schedule Sc, and its
restriction to a process Sc|p, we say that some occurrence of invocation is pending
if there is no matching reply. We say that a schedule Sc is well-formed if (i) no
prefix of Sc|p has more than one occurrence of a pending invocation and (ii)
(Sc|p)|Prim begins with an invocation and has alternating matching invocations
and replies. By extension, a run R =< F, C, Sc, T > is well-formed if its schedule

1 More formally, these primitives are respectively a tuple < send to q, p, m, λ > with
m ∈ M where M is a set of messages and a tuple < receive from q, p, λ, x > with
x ∈ M ∪ {λ}.

2 The definition of the Spec part of an atomic object O is the same as in [12].

190 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

Sc is well-formed and there is no pending invocation for correct processes in F .
When reasoning about the atomicity of an object, we consider only operations
that terminate, i.e., both invocation inv and a matching reply have taken place.
If a process p performs an invocation inv and then p crashes before getting
any reply, we assume that either the state of the object appears as if inv has
not taken place, or inv has indeed terminated. An operation is said to precede
another if the first terminates before the second start and two operations are
concurrent if none precedes the other.

Let R =< F, C, Sc, T > be any well-formed run, and R|Prim be the his-
tory corresponding to object O =< Prim, Spec > of type T , a linearization
of R|Prim with respect to T and state s is a pair (H, T ′) such that: (1) H a
sequential history of O from state s; (2) H includes all non pending invocations
of operation in S; (3) If some invocation inv is pending in S, then either H
does not include this pending invocation or includes a matching reply; (4) H
includes no action other than the ones mentioned in (2) and (3); (5) T ′ is an
infinite sequence such that Sc[k] is an invocation and Sc[k′] the matching reply,
corresponding respectively to H [l] and H [l + 1] then T ′[l] = T ′[l + 1] belongs to
the interval (T [k], T [k′]) A run R is linearizable for type T and state s if R has
a linearization with respect to T and state s. The specification Spec associated
to an object O of type T and initial state s is the set of runs well-formed for O
that are linearizable with respect to T and state s [11].

2.4 Algorithms and Implementations

An algorithm A =< A1, · · · , An, Serv >, using a set of services Serv, is a collec-
tion of n deterministic automata Ai (one per process pi) with transitions labeled
by actions in Ai such that all operations defined for services in Serv are included
in A. Every transition of Ai is a tuple (s, a, s′) where s and s′ are local states of pi

and a is a action of pi such that a(s) = s′. Computation proceeds in steps of the al-
gorithm: in each step of an algorithm A, a process p atomically executes an action
in A. If a is an action of pi and C is a configuration, a is said to be applicable to C
if there is a transition (s, a, s′) in Ai such that s = C(pi). By extension, a schedule
Sc = Sc[1]Sc[2] . . . Sc[k] . . . is applicable to a configuration C if for each k > 1,
Sc[k] is applicable to configuration (Sc[1] . . . Sc[k − 1])(C). A run of algorithm A
is a run R =< F, C, Sc, T > such that Sc is a schedule applicable to configuration
C, such that R satisfies the specifications of services in Serv.

Roughly speaking, implementing a service X using a set of services Serv
means providing the code of a set of subtasks associated with every process:
one subtask for each primitive sort of X as well as a set of additional sub-
tasks. The subtasks associated to the primitives are assumed to be sequential
in the following sense: if a process p executes a primitive prim (of the ser-
vice to be implemented), the process launches the associated subtask and waits
for it to terminate and return a reply before executing another primitive. All
subtasks use services in Serv to implement service X , in the sense that the
only primitives used in these subtasks are primitives defined in Serv. More pre-
cisely, an implementation of a service X =< Prim, Spec > with primitives of

(Almost) All Objects Are Universal in Message Passing Systems 191

sorts ps1, . . . , psm, using a set of services Serv, among n processes, is defined
by I(X, n, Serv) =< (X1, (ps1

1, . . . , ps1
m)), . . . , (Xn, (ps1

1, . . . , psn
m)) > where, for

each i, Xi is the implementation subtask of pi and psi
j is the primitive imple-

mentation subtask associated to process pi and the primitive of sort psj of X
such that the only primitives occurring in these subtasks are primitives defined
in Serv.

An implementation I(X, n, Serv) for environment E ensures that: for each
algorithm A =< A1, · · · , An, Serv′∪{X} >, the corresponding algorithm A′ =<
A′

1, · · · , A′
n, Serv ∪ Serv′ > in which X is implemented by I(X, n, Serv) where,

for each i, A′
i is the automaton corresponding to the subtasks Ai, Xi, psi

1, . . . , psi
j

is such that all runs R of A′, restricted to actions of A1, · · · , An, are runs of A.
Note that, we implicitly consider robust [2] implementations of services: ev-

ery correct process that executes a primitive of an implemented service should
eventually get a reply from that invocation. We will sometimes focus on imple-
mentations of S−services: the primitives of such a service can only be invoked
by processes of a subset S of the system. In such implementation, the only
restriction is the fact that only the processes in S contain each one subtask
per primitive sort of the S-service (but all processes contain implementation
tasks). If we do not specify the subset S, we implicitly assume the set of all
processes.

2.5 Weakest Failure Detector

The notion of failure detector D2 being reducible to D1 in a given environment
E (D1 is said to be stronger than D2 in E and written D2 �E D1) of [5], means
in our context that there is an algorithm that implements D2 using D1 and
MP in E . All the implementation subtasks use only MP and D. For every run
R =< F, C, Sc, T >, and failure detector history H ∈ D1(F) such that F is in
E , the output of the algorithm in R is a history of D2(F). We say that D1 is
equivalent to D2 in E (D1 ≡E D2), if D2 �E D1 and D1 �E D2 in E .

We say that a failure detector D1 is the weakest to implement a given service
in environment E if and only if the two following conditions are satisfied: (1)
there is an algorithm that implements the service using D1 in E , and (2) if there
is an algorithm that implements the service using some failure detector D2 in E ,
then D2 is stronger than D1 in E . As pointed out earlier, given that most of our
results hold for all environments, we will generally not mention (and implicitly
assume) any environment when stating and proving results.

3 The Quorum and Leader Failure Detectors

We introduce here two failure detectors: the Quorum and the Leader. Both are
defined relatively to a subset S of processes in the system. The first one, denoted
by ΣS , is a generalization of Σ [6,8]. The second one, denoted by ΩS , generalizes
Ω [4].

192 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

3.1 Failure Detector ΣS

Given any subset S of processes in Π , failure detector ΣS outputs, at each process
in S, and at any time, a list of processes, called trusted processes, such that every
list intersects with every other list, and eventually, all lists contain only correct
processes. For presentation simplicity, we consider that, at any process of S that
has crashed, the list that is output is simply Π . More generally, the lists that
are output satisfy the two following properties:

– Intersection. Every two lists of trusted processes intersect: ∀F ∈ E , ∀H ∈
ΣS(F), ∀p, q ∈ S, ∀τ, τ ′ ∈ Φ : H(p, τ) ∩ H(q, τ ′) �= ∅

– Completeness. Eventually, every list of processes trusted by every correct
process contains only correct processes: ∀F ∈ E , ∀H ∈ ΣS(F), ∀p ∈ S ∩
correct(F), ∃τ ∈ Φ, ∀τ ′ > τ ∈ Φ : H(p, τ ′) ⊆ correct(F)

Failure detector Σ introduced in [6,8] is simply ΣΠ .
In the following, we state a result on a register shared by the processes of

a subset S, and denoted by S−register: the read() and write() operations can
only be invoked by the processes in S. (The sequential specification of a regis-
ter stipulates that the read() returns the last value written.) The proof of this
proposition is in [7].

Proposition 1. ΣS is the weakest failure detector to implement a S−register.

3.2 Failure Detector ΩS

Given any subset S of processes in Π , failure detector ΩS outputs at any time
and at any process, one process called the leader, such that the following property
is satisfied:

– Unique eventual leader: ∀F ∈ E , ∀H ∈ ΩS(F), ∃l ∈ correct(F), ∃τ ∈ Φ, ∀τ ′ >
τ, ∀x ∈ correct(F) ∩ S, H(x, τ ′) = {l}

Intuitively, the guarantee here is that all processes inside S eventually get
the same correct leader. Processes outside S might never get the same leader.
However, the leader process that is output does not need to be in S: it can be
any process in Π . Failure detector Ω corresponds to ΩΠ .

We state now a result on the consensus type (an abstraction of the consensus
problem) shared by the processes of a subset S, denoted by S−consensus: the
propose() operation can only be invoked by the processes of S. (The sequential
specification of consensus stipulates that all propose() operations return the first
value proposed.) The proof of this proposition is in [7].

Proposition 2. ΣS ∗ ΩS is the weakest failure detector to implement
S−consensus.

(Almost) All Objects Are Universal in Message Passing Systems 193

4 From k-consensus to (k + 1)-consensus

To prove our main result on the weakest failure detector to implement types
with a given consensus number k, we address the question of the weakest failure
detector to implement k-process consensus (we simply write k-consensus). In
short, an algorithm implements k-consensus if it implements S-consensus for any
subset S of size k. We show that, for any k s.t. 1 < k < n, the weakest failure
detector to implement k-consensus is also the weakest to implement (k + 1)-
consensus.

To prove this, we go through intermediate results about the composition,
over a family of subsets S, of all ΣS and of all ΩS .

The following proposition is a direct consequence of the definitions:

Proposition 3. Let S be any subset of Π and let L be any family of subsets
of S such that, for all p, q ∈ S, there exists some set L ∈ L such that p and q
belong to L. We have: ΣS ≡ ∗{ΣX |X ∈ L}.

An interesting particular case is where subsets X are pairs, i.e., for any
S ⊆ Π , ΣS ≡ ∗{Σ{p,q}|p, q ∈ S}. The composition of all ΣS , over all subsets S
of size 2, is in this case Σ:

Corollary 1. For all S ⊆ Π, ΣS ≡ ∗{Σ{p,q}|p, q ∈ S}.

Concerning ΩS , we get the following:

Proposition 4. Let L be any family of subsets of Π such that, for all p, q ∈ Π,
there exists some L ∈ L such that p ∈ L and q ∈ L. Ω ≡ ∗{ΩL|L ∈ L}.

Proof. As Ω is also ΩL for every L ⊆ Π , we directly get: ∗{ΩL|L ∈ L} � Ω.
The opposite inequality is more involved.
Consider a run R with a failure pattern F , and let τ0 be a time such that

(1) after time τ0 no more process crashes and (2) the output of failure detectors
ΩL, L ∈ L, does not change after τ0.

In the following, we show how to implement failure detector ♦S, which is
equivalent to Ω [4]. Failure detector ♦S outputs subsets of suspected processes
and ensures: (1) completeness, i.e. eventually every faulty process is permanently
suspected by every correct process; and (2) accuracy, i.e. eventually, some correct
process is never suspected.

Consider the digraph G =< V, E > for which V = correct(F), and (p, q) ∈ E
if and only if q is leader for p for some ΩL such that p ∈ L.

Now consider G′ =< V ′, E′ > the digraph of the strongly connected compo-
nent of G: V ′ is the set of strongly connected components of G and (C, C′) ∈ E′

if and only if there is at least one p ∈ C and one q ∈ C′ such that (p, q) ∈ E.
We say that C ∈ V ′ is a sink if there is no edge going out of C: note that this
means that (a) if p belongs to some sink S, and (p, q) ∈ E then q ∈ S.

First, there exists at least one sink in G′. Indeed, assume the contrary and
let C0 be any vertex in G′; by induction, we construct a sequence (Cu) (u > 0)
of vertices such that (i) (Cu−1, Cu) ∈ E′ and (ii) Cu−1 �= Cu. As we assume

194 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

that there is no sink, this sequence is infinite. Moreover this sequence is cycle
free: if Cu = Cm for some m < u, then a direct induction proves that all Ck

(m ≤ k ≤ u) are the same strongly connected component contradicting (ii). This
implies an infinite number of different Ci contradicting the fact that G is finite.

Consider process p in some C, and process q in some sink S. By definition
of L, there is at least one L of L such that p and q both belong to L. By (a), l,
the common leader for p and q, belongs to S. Proving that (b) for every p and
every sink S, there exists a process l ∈ S such that (p, l) ∈ E.

Moreover, let S and S′ be two sinks, by (b) there is an edge from S to S′

and an edge from S′ to S in G′, proving that S and S′ are in the same strongly
connected component and then S = S′. Hence, there is only one sink in G′. In
the following S will denote this unique sink of G′.

In order to implement ♦S, each process p proceeds as follows.
Process p maintains (1) a set Leaderp

p of all its leaders, (2) for each q, a set
Leaderq

p of the known leaders of q and, (3) a digraph Gp =< Vp, Ep > for which
Vp = Π , and (k, q) ∈ Ep if and only if q ∈ Leaderk

p and, (4) Trustp, the output
of the emulated failure detector: this output will be the set of processes q such
that there is a path from p to q in Gp.

Process p updates its variables as follows:

– Leaderp
p is always the set of processes output as leader from ΩL for all L on

L such that p ∈ L. p broadcasts forever Leaderp
p.

– If p receives from some q a set X of processes, then p replaces Leaderq
p by

X .
– Gp =< Vp, Ep > for which Vp = Π , and (k, q) ∈ Ep if and only if q ∈

Leaderk
p . Variable Trustp holds the set of processes q such that there is a

path from p to q in Gp. If Leaderp
p or Leaderq

p change, then p computes
again Gp and Trustp.

As (1) any change in Trust variables comes from changes in the output of
ΩL’s, and (2) no message is lost, there is a time τ1 ≥ τ0 after which no variable
Trustp changes.

Consider a correct process p. Observe that if (q, r) is an edge of Gp then r
is a leader for q, and hence if q is a correct process then r is correct too. Then
by an easy induction, after time τ1, every process on a path from p in Gp is
a correct process and Trustp contains only correct processes. This proves the
completeness property of required for ♦S.

Observe also that, after time τ1, for every correct process p, the set of pro-
cesses q such that there is a path from p to q in G is equal to Trustp. Moreover, if
(x, y) ∈ E then Trusty ⊆ Trustx and, by an easy induction, (c) if there is a path
from x to y in G then Trusty ⊆ Trustx. This proves that, if x and y are in the
same strongly connected component of G, then Trustx = Trusty. In particular,
for all q in the sink S of G′, Trustq = S. By (b) and (c), for every correct process
p, Trustq ⊆ Trustp for at least one process q in S, therefore S ⊆ Trustp. This
proves the accuracy property of ♦S. Hence we get Ω � ∗{ΩL|L ∈ L} and then
Ω ≡ ∗{ΩL|L ∈ L}.

(Almost) All Objects Are Universal in Message Passing Systems 195

In particular, for the family of subsets of two elements:

Corollary 2. Ω ≡ ∗{Ω{p,q}|p, q ∈ Π}.

It is important to notice a difference here between Proposition 3 and Propo-
sition 4, and this conveys a fundamental difference between Σ and Ω. Consider
a strict subset S of Π . If we can implement a {p, q}-register within every pair
{p, q} of S, then we can implement a S-register in S. This is not true with {p, q}-
consensus and this follows from the fact that some leaders output by Ω{p,q} might
not belong to the set S. We prove the following in [7]:

Proposition 5. There exists a system of n processes, a non-empty subset of Π,
S, an environment E and a set of failure detectors Ω{p,q}, for all p, q in S, such
that ΩS �≡E ∗{Ω{p,q} | p, q ∈ S}.

If we restrict ourselves however to the overall set of processes Π , the difference
(i.e., the proposition above) does not hold. That is, to implement consensus (resp.
a register), it is necessary and sufficient to implement consensus (resp. register)
among all subsets of at least two processes.

Corollary 3. For any n ≥ k ≥ 2, Ω ≡ ∗{ΩS||S| = k} and Σ ≡ ∗{ΣS||S| = k}.

Proof. We apply Proposition 3 and Proposition 4 to the family of all subsets of
k (n ≥ k ≥ 2) processes.

We directly get from the previous Corollary and Proposition 2 the following:

Corollary 4. For every k such that 2 ≤ k ≤ n, for any failure detector D,
D implements consensus if and only if D implements S-consensus for all S such
that |S| = k.

It is important to notice again that the previous corollary holds only for
consensus, and not for S-consensus if S �= Π .

5 Implementing Atomic Object Types

In the following, we will say that types T1, · · · , Tn emulate k-consensus if there
is an algorithm that uses only instances of types T1, · · · , Tn to implements k-
consensus.

Proposition 6. If a type T emulates 2-consensus, then (1) the weakest failure
detector to implement T is Σ ∗ Ω and (2) any failure detector that implements
T implements any type.

Proof. Let T be any type emulating 2-consensus. This means that there is an al-
gorithm using T and message passing that implements 2-consensus. Clearly, this
algorithm with any failure detector D implementing T implements 2-consensus
too and by Corollary 4 it implements consensus. Then, by Proposition 2 we get:
(a) Σ ∗ Ω � D.

196 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

Remark that Σ ∗Ω implements any number of instances of consensus. Hence,
using the universality result of consensus [12], we derive that Σ ∗ Ω implements
any type. Then by (a) any failure detector that implements T implements any
type proving (2). Moreover, as Σ ∗ Ω implements any type, it implements in
particular T . Together with (a), this proves (1).

An interesting application of Proposition 6 concerns the environment where
n−1 process might fail (which we call the wait-free environment) and the notion
of consensus number, which we recall now.

In fact, several definitions of the notion of consensus number of a type T
(sometimes also called consensus power) have been be considered [13]. All are
based on the maximum number k of processes for which there is an algorithm
that, using T , emulates k-consensus. The definitions differ on whether or not the
implementation can use several instances of T , and whether the type register
can also be used. Hierarchy h1 means one instance and no register, hr

1 means
one instance and registers, hm means many instances, no register, and hr

m means
many instances and many registers.3

From Proposition 6, the weakest failure detector to implement type T such
that h1(T) = 2 or hm(T) = 2 is Σ ∗ Ω. If T is deterministic, we can derive
from [3] that hm(T) = hr

m(T). Hence we get the following:

Proposition 7. In the wait-free environment, for every k such that 2 ≤ k ≤ n,
Σ ∗ Ω is the weakest failure detector to implement (1) any type T such that
k = h1(T), (1’) any type T such that k = hm(T), (2) any deterministic type T
such that k = hr

1(T), and (2’) any deterministic type T such that k = hr
m(T).

We finally consider the special case where n = 2. In this case, implementing
a register is in some sense equivalent to implementing consensus. More precisely,
we prove the following:

Proposition 8. For n = 2, Σ ≡ Σ ∗ Ω.

Proof. We actually prove a stronger result. We show that for n = 2, Σ is equiva-
lent to S which is a failure detector introduced in [5], and which outputs subsets
of suspected processes and ensures: (1) completeness, i.e. eventually every faulty
process is permanently suspected by every correct process and (2) accuracy, i.e.
some correct process is never suspected. As S implements consensus [5], from
proposition 2, we get: Σ � Σ ∗ Ω � S. Denote by p1 and p2 the two processes
of the system. Consider a failure pattern F . If no process crashes in F , then
by the intersection property of Σ, one correct process is trusted forever by p1

and p2. If some process, say p1, crashes, then by the completeness property of
Σ, after some time τ , p2 is the only process trusted by p2. By the intersection
property of Σ, p2 has been trusted forever by p2. Therefore, in all cases, at least
one correct process is never suspected. This proves the accuracy property of S.
Hence S � Σ.

As a direct consequence, we get: for n = 2, Σ ≡ Σ ∗ Ω ≡ S.
3 We implicitly assume here n-ported types, i.e., every instance of a type has n ports

in our system of n processes [13].

(Almost) All Objects Are Universal in Message Passing Systems 197

6 Concluding Remarks

The question we address in this paper is that of the weakest failure detector
to implement atomic object types (of certain consensus numbers) in a message
passing system. This question is complementary to the question of the weakest
failure detector to solve consensus in a system of n processes, given object types
of consensus number k < n [15,17,10]. In this paper, the goal was to actually
implement the types themselves.

It would be interesting to determine, for any k > 1, the weakest failure
detector to implement any type with consensus number k, given any type of
consensus number j < k. We conjecture that our proof technique could help
show that Ω is the weakest failure detector to implement, with register objects
(instead of message passing channels), any object type with a consensus number
higher than 2. Going from any type with consensus number k > 2 to any type
with consensus number j < k < n would probably need a combination of our
proof technique with that of [10].

Acknowledgments

Comments from Partha Dutta, Petr Kouznetsov, Bastian Pochon, and Michel
Raynal helped improve the presentation of this paper.

References

1. P. Attie, R. Guerraoui, P. Kouznetsov, N. Lynch, and S. Rajsbaum. The impos-
sibility of boosting distributed service resilience. In Proceedings of the 25th Inter-
national Conference on Distributed Computing Systems. IEEE Computer Society
Press, June 2005.

2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing
systems. J. ACM, 42(2):124–142, Jan. 1995.

3. R. A. Bazzi, G. Neiger, and G. L. Peterson. On the use of registers in achieving
wait-free consensus. Distributed Computing, 10(3):117–127, 1997.

4. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, Mar. 1996.

6. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message
passing. Technical Report 200377, EPFL Lausanne, 2003.

7. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Implementing atomic objects
in a message passing system. Technical report, EPFL Lausanne, 2005.

8. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Koutnetzov,
and S. Toueg. The weakest failure detectors to solve certain fundamental problems
in distributed computing. In 23th ACM Symposium on Principles of Distributed
Computing, July 2004.

9. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

198 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

10. R. Guerraoui and P. Kouznetsov. On failure detectors and type boosters. In
Proceedings of the 17th International Symposium on Distributed Computing, LNCS
2848, pages 292–305. Springer-Verlag, 2003.

11. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

12. M. P. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst.,
13(1):123–149, Jan. 1991.

13. P. Jayanti. On the robustness of herlihy’s hierarchy. In 12th ACM Symposium on
Principles of Distributed Computing, pages 145–157, 1993.

14. L. Lamport. On interprocess communication; part I and II. Distributed Computing,
1(2):77–101, 1986.

15. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared memory systems. In Proceedings of the 8th International Workshop
on Distributed Algorithms, LNCS 857, pages 280–295, Sept. 1994.

16. M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

17. G. Neiger. Failure detectors and the wait-free hierarchy. In 14th ACM Symposium
on Principles of Distributed Computing, 1995.

	Introduction
	Atomic Objects
	Atomic Object Implementations in Message Passing Systems
	Contributions
	Roadmap

	System Model
	Failure Patterns and Failure Detectors
	Actions, Runs and Schedules
	Services
	Algorithms and Implementations
	Weakest Failure Detector

	The Quorum and Leader Failure Detectors
	Failure Detector Σ_S
	Failure Detector Ω_S

	From k-consensus to (k+1)-consensus
	Implementing Atomic Object Types
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

