
Time and Space Lower Bounds

for Implementations Using k-CAS

(Extended Abstract)

Hagit Attiya1 and Danny Hendler2

1 Department of Computer Science, Technion
2 Department of Computer Science, University of Toronto

Abstract. This paper presents lower bounds on the time- and space-
complexity of implementations that use the k compare-and-swap (k-
CAS) synchronization primitives. We prove that the use of k-CAS prim-
itives cannot improve neither the time- nor the space-complexity of im-
plementations of widely-used concurrent objects, such as counter, stack,
queue, and collect. Surprisingly, the use of k-CAS may even increase the
space complexity required by such implementations.

We prove that the worst-case average number of steps performed by
processes for any n-process implementation of a counter, stack or queue
object is Ω(logk+1 n), even if the implementation can use j-CAS for
j ≤ k. This bound holds even if a k-CAS operation is allowed to read the
k values of the objects it accesses and return these values to the calling
process. This bound is tight.

We also consider more realistic non-reading k-CAS primitives. An
operation of a non-reading k-CAS primitive is only allowed to return
a success/failure indication. For implementations of the collect object
that use such primitives, we prove that the worst-case average number
of steps performed by processes is Ω(log2 n), regardless of the value of
k. This implies a round complexity lower bound of Ω(log2 n) for such
implementations. As there is an O(log2 n) round complexity implemen-
tation of collect that uses only reads and writes, these results establish
that non-reading k-CAS is no stronger than read and write for collect
implementation round complexity.

We also prove that k-CAS does not improve the space complexity of
implementing many objects (including counter, stack, queue, and single-
writer snapshot). An implementation has to use at least n base objects
even if k-CAS is allowed, and if all operations (other than read) swap
exactly k base objects, then the space complexity must be at least k · n.

1 Introduction

Lock-free implementations of concurrent objects require processes to coordinate
without relying on mutual exclusion, thus avoiding the inherent problems of lock-
ing, e.g., deadlock, convoying, and priority-inversion. Synchronization primitives
are often evaluated according to their power to implement other objects in a

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 169–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 H. Attiya and D. Hendler

lock-free manner. A conditional synchronization primitive may modify the value
of the object to which it is applied only if the object has a specific value. The
compare-and-swap synchronization primitive (abbreviated CAS) is an example
of a conditional primitive: CAS(O, old, new) changes the value of an object O to
new only if its value just before CAS is applied is old ; otherwise, CAS does not
change the value of O.

CAS can be used, together with read and write, to implement any object
in a deterministic wait-free manner [20]. It has consequently became a synchro-
nization primitive of choice, and hardware support for it is provided in many
multiprocessor architectures [22,27,29].

In recent years, the question of supporting multi-object conditionals in hard-
ware has been deliberated in both industrial and academic circles [12,16,17,19].
The design of concurrent data structures seems to be easier if conditional prim-
itives can be applied to multiple objects [17]. On the other hand, almost all of
the current architectures support conditional primitives only on a single object.

To help resolve this debate, it is natural to ask whether multi-object con-
ditionals admit more efficient implementations. Of concrete interest are k-CAS
synchronization primitives that atomically check and possibly modify several ob-
jects; when k = 2, this is the familiar double compare&swap (DCAS) primitive.

In this paper, we prove lower bounds on the time- and space-complexity of
implementations of widely-used objects that use multi-object conditional primi-
tives such as k-CAS. We show that the use of such primitives does not improve
neither the time- nor the space-complexity of implementing these objects.

We start by proving that the worst-case average number of steps performed
by processes in solo-terminating implementations of counters, stacks and queues
is Ω(logk+1 n), assuming the implementation uses only j-word conditionals for
j ≤ k, read and write. This extends a worst-case lower bound of Ω(log2 n) on the
number of steps needed for implementing these objects using unary condition-
als [23]. Both lower bounds hold even when implementations can use reading
conditional primitives, which read and return the values of all the objects they
access. As an example, a reading DCAS operation returns the values of the two
objects it accesses just before it is applied. Solo termination [13,25] requires a
process running alone to complete its operation within a finite number of its
steps. (This property is provided by obstruction-free implementations [21].)

At this point, it is natural to question the validity of charging only a single
unit for a reading k-CAS operation, that compares, possibly swaps, and returns
k values. For the purpose of proving lower bounds, it is easier to state what
cannot be done in one step, rather than to stipulate the correct price tag for a
reading k-CAS operation. It is clearly overly optimistic to assume that k values
can be read in one step, and thus, we investigate non-reading k-CAS primitives
that only return a boolean success indication.

For the weaker wake-up problem [15], even a non-reading k-CAS primitive
is more powerful than 1-CAS. The algorithm of Afek et al. [1] can be adapted
to yield an O(logk+1 n) worst-case step implementation, whereas [23] proves a

Time and Space Lower Bounds for Implementations Using k-CAS 171

worst-case lower bound of Ω(log2 n) steps on implementations of wake-up that
can use unary conditional primitives.

Interestingly, there exist widely-used objects such as collect, for which non-
reading k-CAS is no stronger than read and write. We prove that the worst-
case average time complexity of solo-terminating implementations of collect is
Ω(log2 n), even if k-CAS primitives can be used, for any k. The proof hinges on
the fact that a non-reading k-CAS operation only tells us whether the values
of the k objects to which it is applied equal a particular vector of values or
not. Thus, such an operation provides only a single bit of information about the
objects it accesses. This intuition is captured, in a precise sense, by adapting a
technique of Beame [10], originally applied in the synchronous CRCW PRAM
model. This implies that the round complexity [11] of such implementations is
Ω(log2 n), matching an O(log2 n) round complexity implementation of collect
using read and write, given by Attiya, Lynch, and Shavit [8].

Finally, we turn to study the space complexity of implementations that use
multi-object conditional primitives. We extend a result of Fich, Hendler and
Shavit [14], who show a linear space lower bound on implementations that use
read, write, and unary conditional primitives. They prove this bound for wait-
free implementations of many widely-used concurrent objects, such as stack,
queue, counter, and single-writer snapshot. We show that an implementation
cannot escape this lower bound by using multi-object conditional primitives.
Moreover, if all operations (other than read) swap exactly k locations, then the
space complexity is at least k · n.

Our results indicate that supporting multi-object conditional primitives in
hardware may not yield performance gains: under reasonable cost metrics, they
do not improve the efficiency of implementing many widely-used object.

Several shared object implementations use k-CAS, most often DCAS, to sim-
plify design (e.g. [5,18]). Doherty et al. [12] argue that in certain cases, e.g., for
implementing double-ended queues, even DCAS does not suffice and that simple
and easy-to-prove implementations should rely on 3-CAS. There is a variety of
algorithms for simulating multi-object k-CAS (and other objects) from single-
object CAS, load-linked and store-conditional (e.g. [3,6,7,9,28]). A few papers
investigate the consensus number of multi-object operations [2,24]. Attiya and
Dagan [7] prove that any implementation of two-object conditional primitives
from unary conditional primitives requires Ω(log log∗ n) steps. The k-compare-
single-swap synchronization primitive of [26] is a weaker variant of non-reading
k-CAS, and our lower bounds hold for it.

2 The Shared Memory System Model

We consider a standard model of an asynchronous shared memory system, in
which processes communicate by applying operations to shared objects. An ob-
ject is an instance of an abstract data type. It is characterized by a domain of
possible values and by a set of operations that provide the only means to manipu-
late it. No bound is assumed on the size of an object (i.e., the number of different

172 H. Attiya and D. Hendler

possible values the object can have). An implementation of an object shared by
a set P= {p1, · · · , pn} of n processes provides a specific data-representation for
the object from a set B of shared base objects, each of which is assigned an initial
value, and algorithms for each process in P to apply each operation to the object
being implemented. To avoid confusion, we call operations on the base objects
primitives and reserve the term operations for the objects being implemented.

A wait-free implementation of a concurrent object guarantees that any pro-
cess can complete an operation in a finite number of its own steps. A solo-
terminating implementation guarantees only that if a process eventually runs
by itself while executing an operation then it completes that operation within
a finite number of its own steps. Each step consists of some local computation
and one shared memory event, which is a primitive applied to a vector of ob-
jects in B. We say that the event accesses these base objects and that it applies
the primitive to them. In this extended abstract we consider only deterministic
implementations, in which the next step taken by a process depends only on its
state and the response it receives from the event it applies.

An execution fragment is a (finite or infinite) sequence of events. We denote
the empty execution fragment by ε. An execution is an execution fragment that
starts from an initial configuration. This is a configuration in which all base
objects in B have their initial values and all processes are in their initial states.
If o ∈ B is a base object and E is a finite execution, then value(E, o) denotes
the value of o at the end of E. If no event in E changes the value of o, then
value(E, o) is the initial value of o. In other words, in the configuration resulting
from executing E, each base object o ∈ B has value value(E, o). For any finite
execution fragment E and any execution fragment E′, the execution fragment
EE′ denotes the concatenation of E and E′.

An operation instance, Φ = (O, Op, p, args), is an application by process p of
operation Op with arguments args to object O. In an execution, processes apply
their operation instances to the implemented object. To apply an operation
instance Φ, a process issues a sequence of one or more events that access the
base objects used by the implementation of O. If the last event of an operation
instance Φ has been issued in an execution E, we say that Φ completes in E.
The events of an operation instance issued by a process can be interleaved with
events issued by other processes.

If a process has not completed its operation instance, it has exactly one en-
abled event, which is the next event it will perform, as specified by the algorithm
it is using to apply its operation instance to the implemented object. We say
that a process p is active after E if p has not completed its operation instance
in E. If p is not active after E, we say that p is idle after E. We say that an
execution E is quiescent if every instance that starts in E completes in E.

Processes communicate with one another by issuing events that apply read-
modify-write (RMW) primitives to vectors of base objects. We assume that a
primitive is always applied to vectors of the same size. This size is called the
arity of the primitive. RMW primitives with arity 1 are called single-object
RMW primitives. RMW primitives with arity larger than 1 are called multi-object

Time and Space Lower Bounds for Implementations Using k-CAS 173

RMW primitives. For presentation simplicity we assume that all the base objects
to which a primitive is applied are over the same domain. A RMW primitive,
applied to a vector of k base objects over some domain D, is characterized by
a pair of functions, 〈g, h〉, where g is the primitive’s update function and h is
the primitive’s response function. The update function g : Dk × W → Dk,
for some input-values domain W , determines how the primitive updates the
values of the base objects to which it is applied. Let e be an event, issued by
process p after execution E, that applies the primitive 〈g, h〉 to a vector of base
objects 〈o1, . . . , ok〉. Then e atomically does the following: it updates the values of
objects o1, . . . , ok to the values of the components of the vector g(〈v1, . . . , vk〉, w),
respectively, where −→v = 〈v1, . . . , vk〉 is the vector of values of the base objects
after E, and w ∈ W is an input parameter to the primitive. We call −→v the
object-values vector of e after E. The RMW primitive returns a response value,
h(−→v , w), to process p. If W is empty, we say that the primitive takes no input.

A k-compare-and-swap (k-CAS), for some integer k ≥ 1, is an example of
a RMW primitive. It receives an input vector, 〈old1, . . . , oldk, new1, . . . , newk〉,
from D2k. Its update function, g(−→v , 〈old1, . . . , oldk, new1, . . . , newk〉), changes
the values of base objects o1, . . . , ok to values new1, . . . , newk, respectively, if
and only if vi = oldi for all i ∈ {1, . . . , k}. If this condition is met, we say that
the k-CAS event was successful, otherwise we say that the k-CAS event was
unsuccessful. The response function of a non-reading k-CAS primitive returns
true if the k-CAS event was successful or false otherwise. The response function
of a reading k-CAS primitive returns −→v .

Read is a single-object RMW primitive. It takes no input, its update function
is g(〈v〉) = 〈v〉 and its response function is h(〈v〉) = v. Write is another example
of a single-object RMW primitive. Its update function is g(〈v〉, w) = 〈w〉, and its
response function is h(〈v〉, w) = ack. A RMW primitive is nontrivial if it may
change the values of some of the base object to which it is applied, e.g., read;
it is trivial, otherwise. Fetch&add is another example of a single-object RMW
primitive. Its update function is g(〈v〉, w) = 〈v + w〉, for v, w integers, and its
response function simply returns the previous value of the base object to which
it is applied.

Next, we define the concept of conditional synchronization primitives.

Definition 1. A RMW primitive 〈g, h〉 is conditional if, for every possible input
w,

∣
∣
∣

{−→v |g(−→v , w) �= −→v }
∣
∣
∣ ≤ 1. Let e be an event that applies the primitive 〈g, h〉

with input w. A vector cw such that g(cw, w) �= cw is called the change point of
e. Any vector v �= cw is called a fixed point of e.

In other words, a RMW primitive is a conditional primitive if, for every input
w, there is at most one vector cw such that g(cw, w) �= cw. k-CAS is a conditional
primitive for any integer k ≥ 1. The single change point of a k-CAS event with
input 〈old1, . . . , oldk, new1, . . . , newk〉 is the vector 〈old1, . . . , oldk〉. Read is also
a conditional primitive.

Next we define the notion of invisible events. This is a generalization of
the definition provided in [14] that can be applied to multi-object primitives.

174 H. Attiya and D. Hendler

Informally, an invisible event is an event by some process that cannot be observed
by other processes.

Definition 2. Let e be a RMW event applied by process p to a vector of objects
〈o1, . . . , ok〉 in an execution E, where E = E1eE2. We say that e is invisible in
E on oi, for i ∈ {1, . . . , k}, if either the value of oi is not changed by e or if
E2 = E′e′E′′, e′ is a write event to oi, E′ is p-free, and no event in E′ is applied
to oi. We say that e is invisible in E if e is invisible in E on all objects oi, for
i ∈ {1, . . . , k}.

All read events are invisible. A write event is invisible if the value of the
object to which it is applied equals the value it writes. A RMW event is invisible
if its object-values vector is a fixed point of the event when it is issued. A RMW
event (and specifically a write event) e that is applied by process p to an objects
vector is invisible if, before p applies another event, a write event is applied to
each object oi that is changed by e before another RMW event is applied to o.

If a RMW event e is not invisible in an execution E on some object o, we
say that e is visible in E on o. If e is not invisible in E, we say that e is a visible
event in E.

3 Step Lower Bounds for Counters and Related Objects

In this section we prove a lower bound on the average step complexity of solo-
terminating implementations of a counter that use only read, write and condi-
tional primitives. We then prove the same result for stacks and queues by using
a simple reduction to counters. For the lower bounds obtained in this paper,
we only consider executions in which every process performs at most a single
operation instance. This can only strengthen our lower bounds.

A counter is an object whose domain is N . It supports a single operation,
fetch&increment. A counter implementation A is correct if the following holds for
any non-empty quiescent execution E of A: the responses of the fetch&increment
instances that complete in E constitute a contiguous range of integers starting
from 0.

In order to prove the lower bound we argue about the extent to which pro-
cesses must be aware of the participation of other processes in any execution of
a counter implementation. Intuitively, a process p is aware of the participation
of another process q in an execution if information flow from q to p is possible
in that execution. The following definitions formalize this notion.

Definition 3. Let E be an execution and p, q be two distinct processes. Let eq

be an event in E, by process q, that applies a non-trivial primitive to a vector v
of base objects. We say that p is aware of eq in E through event f if v contains
a base object o such that at least one of the following holds:

– There is a prefix E′ of E such that eq is visible on o in E′ and there is a
RMW event f that applies a primitive other than write to o, issued by p,
that follows eq in E′,

Time and Space Lower Bounds for Implementations Using k-CAS 175

– there is a process r /∈ {p, q} that is aware of eq in E through an event g and
p is aware of g in E through f .

If p is aware of an event e in E through one or more (other) events, we say
that p is aware of e in E. If p is aware of an event e of q in E, then p is also
aware of all of q’s previous events in E.

If p is aware of any event by q in E, then p may be aware of q’s participation
in the execution. The key intuition behind our step lower bound proof is that
in any n-process execution of a counter implementation, ‘many’ processes need
to be aware of the participation of ‘many’ other processes in the execution. The
following definition provides a quantification of the extent to which a process is
aware of the participation of other processes in an execution.

Definition 4. Let E be an execution and let p and q be processes. We say that
p is aware of q after E if either p = q or if p is aware of some event of q in E.
We denote by F (E, p) the set of processes that p is aware of after E. We call
this set the awareness set of p after E. If p is aware of q after E and p �= q, we
denote the last event of q in E that p is aware of in E by lastAware(E,p,q).

Information about processes that participate in the execution flows through
base objects. The following definition provides a quantification to the number of
other processes a process can become aware of when it reads from a base object.

Definition 5. Let E be an execution, o be a base object and q be a process. We
say that o has record of q after E if there exists an event e in E such that all of the
following hold. (1) E = E1eE2, (2) e is an application of a non-trivial primitive
to an objects-vector that contains o by some process r such that q ∈ F (E1e, r),
and (3) e is visible in E on o. We define the familiarity set of o after E as the
set of all processes that o has record of after E, and denote it by F (E, o).

Definition 5 only provides an upper bound (not necessarily tight) on the
number of other processes that a process may become aware of when it accesses
a base object. This can only strengthen our lower bound. We also note that
requirement (2) of Definition 5 makes sure that a RMW event e that modifies
an object o extends o’s familiarity set with the familiarity sets of all other objects
accessed by e.

The following lemma proves an intuitively-clear relation between the value
returned by a fetch&increment operation instance of a process in some execution
and the size of that process’ awareness set after that execution.

Lemma 1. Let E be an execution of a counter implementation. If the
fetch&increment instance by p returns i in E then |F (E, p)| > i.

The following corollary is an immediate consequence of Lemma 1.

Corollary 1. Let E be a quiescent n-process execution of a solo-terminating
counter implementation, then the following holds:
∑

p∈P F (E, p) ≥ (n + 1) · (n + 2)/2.

176 H. Attiya and D. Hendler

We need the following technical definition and lemma.

Definition 6. Let S = {e1, · · · , ek} be a set of events by different processes
that are enabled after some execution E, all about to apply write and/or condi-
tional RMW primitives. We say that an ordering of the events of S is a weakly-
visible-schedule of S after E, denoted by σ(E, S), if the following holds. Let
E1 = Eσ(E, S), then

1. at most a single event of S is visible on any one object in E1. If ej ∈ S is
visible on a base object in E1, then ej is issued by a process that is not aware
of any event of S in E1,

2. any process is aware of at most a single event of S in E1, and
3. All the read events of S are scheduled in σ(E, S) before any event of σ(E, S)

changes a base object.

Lemma 2. Let S = {e1, · · · , ek} be a set of events by different processes that
are enabled after some execution E, all about to apply write and/or conditional
RMW primitives. Then there is a weakly-visible-schedule of S after E.

Lemma 2 is proved by a careful ordering of the events of S that is done in
an iterative manner. Our step complexity lower bounds follow.

Theorem 1. Let A be an n-process solo-terminating implementation of a
counter from base objects that support only read, write and either reading or
non-reading conditional primitives with arity k or less. Then A has an execution
E that contains Ω(n logk+1 n) events, in which every process performs a single
fetch&increment instance.

Proof. We construct an n-process execution, E, of length Ω(n logk+1 n) in which
every process performs a single fetch&increment instance. The construction pro-
ceeds in rounds, indexed by the integers 1, 2, · · · , r for some r ∈ Ω(logk+1 n).
We prove that the construction maintains the following invariant: before round i
starts, the awareness set of any process and the familiarity set of any base object
has size at most (2k + 1)i−1.

Before execution starts, objects have no record of processes and processes are
only aware of themselves, thus the induction claim holds. If a process p has not
completed its fetch&increment instance before round i starts, we say that p is
active in round i. All processes are active in round 1. All the processes that are
active in round i have an enabled event in the beginning of round i. We denote
the set of these events by Si. We denote the execution that consists of all the
events issued in rounds 1, . . . , i by Ei.

From Lemma 2, there is a weakly-visible-schedule, σ(Ei−1, Si), of the events
of Si after Ei−1. Ei is constructed by extending Ei−1 with σ(Ei−1, Si).

Assume the induction hypothesis holds before round i starts. Let o be some
base object. From Definition 6, at most one event of Si is visible on o in Ei. If
there is no such event, then F (Ei, o) = F (Ei−1, o). Otherwise there is a single
such event, e, issued by some process p. Let o1, . . . , oj , for some j, 1 ≤ j ≤ k−1 be
the base objects accessed by e in addition to o, if any. From Definition 6, p is not

Time and Space Lower Bounds for Implementations Using k-CAS 177

aware of any event from Si in Ei. Thus F (Ei, o) ⊂ F (Ei−1, o)∪ F (Ei−1, p)∪j
l=1

F (Ei−1, ol) hence, from the induction hypothesis, |F (Ei, o)| ≤ (k+1)(2k+1)i−1.
Therefore the induction hypothesis for round i + 1 holds for all base objects.

Let us now consider the maximal size of the awareness set of any process right
after round i terminates. Clearly, F (Ei, p) = F (Ei−1, p) for any process p that
is not active in round i. From Definition 3, the same holds for all the processes
that issue a write event in round i. Let p be a process that issues a read event in
round i that accesses some base object o. As reads are scheduled before any event
changes a base object in round i, we have F (Ei, p) ⊂ F (Ei−1, p) ∪ F (Ei−1, o)
hence |F (Ei, p)| ≤ 2(2k + 1)i−1.

Consider a conditional RMW event e by process p that is issued in round i and
accesses base objects o1, . . . , oj for some j ≤ k. From Definition 6, if e is visible
in Ei, then p is aware of no event of Si in Ei. Hence F (Ei, p) ⊂ F (Ei−1, p)∪j

l=1

F (Ei−1, ol). Otherwise e is invisible in Ei and, again from Definition 6, p is aware
of at most a single event e′ from Si in Ei. Let q be the process that issues e′, then
q is not aware of any event of Si in Ei. Let o′1, . . . , o′j1 , for some 1 ≤ j1 ≤ k − 1,
be the base objects accessed by e′ in addition to o, if any.

Thus we have F (Ei, p) ⊂ F (Ei−1, p) ∪ F (Ei−1, q) ∪j
l=1 F (Ei−1, ol) ∪j1

l=1

F (Ei−1, o
′
l). Consequently, we have |F (Ei, p)| ≤ (2k + 1)i regardless of whether

e is visible in Ei or not. Thus the induction hypothesis holds for all processes
before round i + 1 starts.

From Corollary 1, there are at least n/3 processes the awareness set of each
of which contains at least n/4 other processes after E. Consequently each of
these processes is active in at least the first log2k+1(n/4− 1) rounds, hence each
of these processes performs at least log2k+1(n/4 − 1) events in E.

The full version contains a similar result for stacks and queues.

Theorem 2. Let A be an n-process solo-terminating implementation of a stack
or a queue from base objects that support only read, write and either reading or
non-reading conditional primitives with arity k or less. Then A has an execution
E that contains Ω(n logk+1 n) events, in which every process performs a single
fetch&increment instance.

By using techniques from [23], Theorems 1 and 2 can be extended to hold
also if base objects support the validate, swap and move primitives.

4 Step and Round Lower Bounds for Collect

In this section we consider a variation on collect that we call the input collection
problem (ICP). The input to ICP is an n-bit vector that is given in an array of
n base objects, each of which stores one bit. An ICP object supports a single
operation called collect, which every process performs at most once. The response
of the collect operation is an n-bit number whose i’th bit equals the i’th input
bit. We prove step- and round complexity lower bounds on implementations of
ICP. It can easily be seen that these bounds hold also for the ordinary collect

178 H. Attiya and D. Hendler

object (defined in, e.g., [4]) by considering executions of collect in which every
process performs a store instance immediately followed by a collect instance.

Round complexity is defined as follows. Let E be an execution. A round of E
is a consecutive sequence of events in E, in which every process that is active just
before the sequence begins issues at least one event. A minimal round is a round
such that no proper prefix of it is a round. Every execution can be uniquely
partitioned into minimal rounds. The round complexity of E is the number of
rounds in this partition. Let A be an implementation. A’s round complexity is the
supremum over the round complexity of all its executions. Round complexity is
a meaningful measure of time for fail-free executions in which processes operate
at approximately the same speed.

Attiya et al. [8] present an O(log2 n) round complexity implementation of
ICP from read and write. They prove a matching lower bound for such imple-
mentations. In this section we prove an Ω(log2 n) round complexity lower bound
for ICP implementations that can use non-reading k-CAS primitives for any k, in
addition to read and write. Thus we show that non-reading k-CAS is no stronger
than read and write in terms of ICP implementation round complexity.

Beame [10] proves a lower bound of Ω(log2 n) for a problem similar to ICP
in the concurrent-read concurrent-write (CRCW) PRAM model. We use a vari-
ation on his technique to prove a similar lower bound for solo-terminating im-
plementations of ICP even when non-reading conditional primitives of any arity
may be used. Clearly a fan-in argument would not work in this case.

Fix an implementation A of ICP. For notational simplicity we assume in
this section that all base objects are indexed, where oj denotes the base object
indexed by j. The base objects of the input array are o1, . . . , on.

The proofs presented in this section consider only the subset of synchronous
executions of A, denoted E(A), in which the participating processes issue their
events in lock-step. Clearly E(A) is a proper subset of all the possible executions
of A; proving our lower bound for this subset can only strengthen it.

In detail, an execution E in E(A) proceeds in rounds. In the beginning of
each round, each of the participating processes whose instance of collect has not
yet been completed has an enabled event. All processes have an enabled event
in the beginning of round 1. In each round these enabled events are scheduled
in a specific order, which we will shorty describe. As we consider deterministic
implementations, this implies the following: the states of all processes and the
values of all base objects right after each round of E terminates depend solely
on the input vector. Thus, we denote the single execution of E that results when
the input vector is I by EI . An execution EI ∈ E(A) terminates after the collect
instances of all the processes complete.

Let EI be the execution of E(A) for some input vector I. We denote by EI,t

the prefix of EI that contains all the events issued in rounds 1, . . . , t of EI . We
denote by S(EI,t) the set of the events that are enabled just before round t of
EI starts. Then in round t we extend EI,t−1 with a weakly-visible-schedule of
S(EI,t) after EI,t−1 to obtain EI,t. Lemma 2 guarantees that this can be done.

Time and Space Lower Bounds for Implementations Using k-CAS 179

The following definition formalizes the notion of partitions, which is the key
concept of the technique of Beame [10] that we apply.

Definition 7. We let PV (i, t) (respectively CV (j, t)) denote the set of all pos-
sible states of process pi (respectively the possible values of object oj) right after
round t of an execution E ∈ E(A) terminates. The sets PV (i, t) and CV (j, t)
induce a partitioning of the input vectors to equivalence classes. The process
partition P (i, t) is the partition of the input vectors to equivalence classes that
is induced by the set PV (i, t). Two input vectors I1, I2 are in the same class of
P (i, t) if and only if there is a state s ∈ PV (i, t) so that pi is in state s after
round t of both executions EI1 and EI2 . We define an object partition, C(j, t),
similarly.

From Definition 7, we have |PV (i, t)|, |CV (j, t)| ≤ |E(A)| = 2n, |PV (i, t)| =
|P (i, t)| and |CV (j, t)| = |C(j, t)|, for any process pi, object oj and round t.

In the following we consider a full-information model, i.e., we assume that
the state of any process reflects the entire history of the events it issued (and
their corresponding responses) and that objects are large enough to store any
such state. This assumption can obviously only strengthen our lower bound.

Theorem 3. Let A be a solo-terminating implementation of ICP from base ob-
jects that support only read, write and non-reading conditional primitives of any
arity. Then there is an execution of E(A) in which some process issues Ω(log2 n)
events as it performs its instance of collect.

Proof. Assume there is a process pi whose instance of collect completes in round
m or an earlier round in every execution of E(A). We show that m ∈ Ω(log2 n).
The collect instance of pi returns different responses for different input vectors.
As the response of the collect instance performed by pi depends only on pi’s state
before the response is returned, we have: |P (i, m)| = 2n. Let rt = maxi |P (i, t)|
and ct = maxj |C(j, t)| respectively denote the maximum size of all process
and object partitions right after round t. Let r0 and c0 respectively denote the
maximum size of any process partition and object partition just before execution
starts. We prove that the sequences rt, ct satisfy the recurrences: (1) rt+1 ≤ rt ·ct,
and (2) ct+1 ≤ n · rt + ct with initial conditions: (3) r0 = 1, and (4) c0 ≤ 2.

Before any execution starts, we have ∀j ∈ {1, . . . , n} : |C(j, 1)| = 2, as the
single bit in every input base object partitions the set of input vectors to 2. We
also have ∀j > n : |C(j, 1)| = 1, as other base objects have the same initial value
regardless of the input. Additionally we have ∀i : |P (i, 1)| = 1, as the initial
state of a process does not depend on the input vector. Thus initial conditions
(3) and (4) hold.

Assume the claim holds for rounds 1, · · · , t and consider round t + 1. Let
us consider |P (i, t + 1)|, the partition size of process pi right after round t + 1
terminates. pi’s partition size can grow in round t+1 only because of executions
in which pi applies a read or a non-reading conditional primitive in round t + 1.
The primitive applied by pi in round t + 1 and the base objects to which it is
applied are only a function of pi’s state before round t + 1 begins. Thus the

180 H. Attiya and D. Hendler

number of different events applied by pi in round t + 1 of all the executions of
E(A) is at most P (i, t) ≤ rt.

We consider the following two possibilities. If pi applies a non-reading con-
ditional primitive in round t + 1 of an execution, then it receives a single bit
response. In this case every state of pi before round t + 1 starts can change
to one of at most two states. If pi applies a read to some object oj in round
t + 1 of an execution, then, from Definition 6, the read is applied before oj is
changed in round t + 1. Thus, from induction hypothesis, the event can read
at most |CV (i, t)| ≤ ct different values. Hence pi’s state in each such execu-
tion can change to one of at most ct different states. In either case we get:
|P (i, t + 1)| ≤ rt · ct, which proves recurrence (1).

Let oj be some base object. We now consider the set of values, CV (j, t + 1),
that object oj may assume right after round t+1 terminates in all the executions
of E(A). There may be executions in which no process writes to oj during round
t + 1, thus we may have:

CV (j, t) ⊆ CV (j, t + 1). (1)

Let n(j, t + 1) denote the number of distinct values that oj may assume right
after round t+1 in all of the executions in which its value is modified during
that round. Let EI be such an execution. From Definition 6, at most a single
event of S(EI,t+1) may be visible on oj after EI,t+1. If there is such an event,
then it is issued by a process that is not aware of any event of S(EI,t+1). Thus
the number of distinct values written to oj by any process pi in round t + 1 of
all executions is at most |P (i, t)| ≤ rt. As any process may write to oj in round
t + 1 we get:

n(j, t + 1) ≤
n∑

k=1

|P (k, t)| ≤ n · rt. (2)

Combining Equations 1 and 2 proves recurrence (2). As shown in [10], solving
the recurrences for the sequences ri, cj yields m ≥ log2 n + 1− log(1 + log2 2n).
Thus, there is an execution in which some process performs Ω(log2 n) events.

The following lower bound on the average step complexity of ICP also follows
from the proof of Theorem 3.

Theorem 4. Let A be a solo-terminating implementation of ICP from base ob-
jects that support only read, write and non-reading conditional primitives of any
arity. Then A has an execution that contains Ω(n log2 n) events.

5 Space Complexity

Fich et al. [14] consider wait-free implementations of a class of visible objects.
Intuitively, a visible object supports some operation Op such that any instance
of Op must issue a visible event before it completes. This class contains widely-
used objects such as counter, stack, queue, and single-writer snapshot. They

Time and Space Lower Bounds for Implementations Using k-CAS 181

show that any wait-free implementation of a visible object from base objects
that support only unary conditional primitives, read and write must use Ω(n)
such objects. In this section we generalize this result and show that it holds also
for implementations that may use conditional primitives of any arity. The results
of this section apply to both reading and non-reading conditional primitives.

Let A be a wait-free implementation of a visible object. Lemma 3.2 in [14]
proves that A can be brought to a state where all processes have pending indexed
events whose visibility depends on their index: an event with index i cannot be
made invisible by events with indices larger than i. Such a state is called an
n-levelled state. This is being formalized by the following definition.

Definition 8. The state resulting from a finite execution E is n-levelled if there
is a sequence e1, e2, . . . , en of events by different processes, all about to apply non-
trivial primitives, such that, for every nonempty execution fragment E′ consisting
of some subset of these events (in any order), ej is visible in EE′, where j =
min{i|ei ∈ E′}. We call e1, e2, . . . , en an n-levelled sequence and say that event
ej is at level j.

An object that only supports read and write primitives is called a register.
An object that can only be accessed by conditional primitives (of any arity) is
called a multi-conditional object. An object that only supports read, write and
may be accessed by conditional primitives (of any arity) is called a read-write-
multi-conditional object.

Let e be a write or a conditional event. The change set of e, denoted C(e), is
the set of base objects whose values may be changed by e; its size is called the
change multiplicity of e and denoted c(e). If e is a write event, then C contains
the single object accessed by e. If e is a conditional event, then C(e) is the set of
objects whose values are changed by e if e is issued when its object-values vector
is a change-point of e.

In what follows we consider an implementation, A, that uses base objects
that only support read, write and conditional primitives of any arity. We let
SPACE(A) denote the number of base objects used by A. We prove that if
A can be brought to an n-levelled state, then SPACE(A) = Ω(n). In fact,
multi-object conditionals may worsen the implementation’s space complexity:
the lower bound on space complexity that we obtain is proportional to the sum
of the change multiplicities of the issued events.

Lemma 3. Assume that after execution E, A is in an n-levelled state. Let S =
{e1, . . . , en} be a corresponding n-levelled sequence. Let Sw and Sc respectively
denote the subset of write events of S and the subset of conditional events of S.

1. If A uses only registers and multi-conditional objects, then
SPACE(A) ≥ ∑n

i=1 c(ei).
2. If A uses only read-write-multi-conditional objects, then

SPACE(A) ≥ max
(

(
∑n

i=1 c(ei)) − |Sw|, �n/2
)

.

Proof. Let ei, ej be two events of S, i < j. Assume first that both ei and ej

are conditional events. We now show that C(ei) ∩ C(ej) = φ. Assume otherwise

182 H. Attiya and D. Hendler

to obtain a contradiction, then there is some object o ∈ C(ei) ∩ C(ej). From
Definition 8, ei is visible in Eei and ej is visible in Eej . Thus the object-values
vector of ei (respectively ej) after E is a change-point of ei (respectively ej).
As i < j, again from Definition 8, ei is visible in Cejei. However, as o is in the
change set of ej , its value is changed by ej . Consequently the object-values vector
of ei after Eej is a fixed-point of ei. This is a contradiction to the assumption
that ei is visible in Eej . It is easily seen that C(ei) ∩ C(ej) = φ also when ei, ej

are both write events. This proves (1).
Assume that A uses only read-write-multi-conditional objects. As at most

one write event and one conditional event may change any one object, we have
SPACE(A) ≥ �n/2. If C(ei)∩C(ej) �= φ then it must be that ei is a write event
and ej a conditional event, thus |C(ei) ∩ C(ej)| = 1. This proves (2).

The above lemma and Lemma 3.2 of [14] immediately imply the following:

Theorem 5. Let A be an n-process wait-free implementation of a visible object.

– If A uses only registers or multi-conditional objects, then SPACE(A) ≥ n.
– If A uses only multi-conditional objects and C(e) ≥ k for any conditional

event e issued in an execution of A, then SPACE(A) ≥ k · n.
– If A uses only read-write-multi-conditionals objects, then SPACE(P) ≥

�n/2.

Acknowledgements. The authors thank Maged Michael who triggered this re-
search by asking whether the results of [14] hold with k-CAS primitives. We
would also like to thank Faith Ellen Fich for referring us to Paul Beame’s tech-
nique, and Nir Shavit for helpful discussions on the topics of this paper. Danny
Hendler was supported by Sun Microsystems.

References

1. Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In STOC, pages 538547,
1995.

2. Y. Afek, M. Merritt, and G. Taubenfeld. The power of multi-objects. Information
and Computation, 153(1):117138, 1999.

3. Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disentangling multi-object
operations. In PODC, pages 111120, 1997.

4. Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications.
In FOCS, page 262, 1999.

5. O. Agesen, D. Detlefs, C. H. Flood, A. T. Garthwaite, P. A. Martin, M. Moir,
N. Shavit, and G. L. S. Jr. Dcas-based concurrent deques. Theory Comput. Syst.,
35(3):349386, 2002.

6. J. H. Anderson and M. Moir. Universal constructions for multi-object operations.
In PODC 95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 184193, New York, NY, USA, 1995. ACM Press.

7. H. Attiya and E. Dagan. Improved implementations of binary universal operations.
Journal of the ACM, 48(5):10131037, 2001.

Time and Space Lower Bounds for Implementations Using k-CAS 183

8. H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? Journal of the
ACM, 41(4):725763, July 1994.

9. G. Barnes. A method for implementing lock-free shared data structures. In SPAA,
pages 261270, 1993.

10. P. Beame. Limits on the power of concurrent-write parallel machines. Information
and Computation, 76(1):1328, 1988.

11. R. Cole and O. Zajicek. The apram: incorporating asynchrony into the pram model.
In SPAA, pages 169178, 1989.

12. S. Doherty, D. Detlefs, L. Groves, C. H. Flood, V. Luchangco, P. A. Martin, M.
Moir, N. Shavit, and G. L. S. Jr. DCAS is not a silver bullet for nonblocking
algorithm design. In SPAA, pages 216224, 2004.

13. F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized syn-
chronization. Journal of the ACM, 45(5):843862, Sept. 1998.

14. F. E. Fich, D. Hendler, and N. Shavit. On the inherent weakness of conditional
synchronization primitives. In PODC, pages 8087, 2004.

15. M. J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld. The wakeup problem.
SIAM Journal on Computing, 25(6):13321357, Dec. 1996.

16. K. Fraser. Practical Lock-Freedom. PhD thesis, Kings College University of Cam-
bridge, Sept. 2003.

17. M. Greenwald. Non-Blocking Synchronization and System Design. PhD thesis,
Stanford University Technical Report STAN-CS-TR-99-1624, Palo Alto, CA, Aug.
1999.

18. M. B. Greenwald and D. R. Cheriton. The synergy between non-blocking synchro-
nization and operating system structure. In OSDI, pages 123136, 1996.

19. P. H. Ha and P. Tsigas. Reactive multi-word synchronization. In 12th International
Conference on Parallel Architectures and Compilation Techniques, pages 184193,
2003.

20. M. Herlihy. Wait-free synchronization. ACM Transactions On Programming Lan-
guages and Systems, 13(1):123149, Jan. 1991.

21. M. Herlihy, V. Luchango, and M. Moir. Obstruction-free synchronization: Dou-
bleended queues as an example. In ICDCS, pages 522529, 2003.

22. Intel Corporation. Intel itanium processor-specific application binary interface,
2001.

23. P. Jayanti. A time complexity lower bound for randomized implementations of
some shared objects. In PODC, pages 201210, 1998.

24. P. Jayanti and S. Khanna. On the power of multi-objects. In WDAG, pages 320332,
1997.

25. P. Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for non-blocking
implementations. Siam J. Comput., 30(2):438456, 2000.

26. V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In
SPAA, pages 314323, 2003.

27. Motorola. MC68020 32-Bit Microprocessor Users Manual. Prentice-Hall, 2nd edi-
tion, 1986.

28. N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99116, February 1997.

29. SPARC International, Inc., Mountain View, CA. The SPARC Architecture Manual
Version 9, 1/e. Prentice Hall, 1994.

	Introduction
	The Shared Memory System Model
	Step Lower Bounds for Counters and Related Objects
	Step and Round Lower Bounds for Collect
	Space Complexity

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

