
Restricted Stack Implementations

Matei David, Alex Brodsky, and Faith Ellen Fich

Department of Computer Science, University of Toronto,
10 King’s College Road,

Toronto, Canada
{matei, abrodsky, fich}@cs.toronto.edu

Abstract. We introduce a new object, BH, and prove that a system with one
BH object and single-writer Registers has the same computational power as a
system with countably many commutative and overwriting objects. This provides
a simple characterization of the class of objects that can be implemented from
commutative and overwriting objects, and creates a potential tool for proving
impossibility results.

It has been conjectured that Stacks and Queues shared by three or more pro-
cesses are not in this class. In this paper, we use a BH object to show that two
different restricted versions of Stacks are in this class. Specifically, we give an
implementation of a Stack that supports any number of poppers, but at most two
pushers. We also implement a Stack (or Queue) shared by any number of pro-
cesses, but, in which, all stored elements are the same.

1 Introduction

Stacks and Queues are important and well studied data structures. However, they are
not usually available in the hardware and, to use them, one has to implement them from
the basic types available in the system. If the distributed system provides Registers and
objects with consensus number ∞ (such as Compare&Swap or LL/SC), wait-free Stack
and Queue implementations exist, regardless of the number of processes in the system.

Since Stacks and Queues have consensus number 2, they can be implemented in
a wait-free manner from Registers and any type of objects of consensus number 2 in
a system with at most two processes [Her91]. No such implementations are known
when the number of processes is at least three. In fact, it is conjectured that they do
not exist [Li01, Dav04b]. Proving this negative result would also solve Herlihy’s long-
standing open question regarding the ability of Fetch&Add objects to implement every
other consensus number 2 object in systems with more than two processes.

In this paper, we consider the problem of implementing wait-free Stacks and Queues
in systems where only commutative and overwriting objects (such as Test&Set objects,
Fetch&Add objects, Swap objects, and Registers) are available. Two operations com-
mute if the order in which they are applied does not change the resulting state of the
object. One operation overwrites another if applying this operation results in the same
object state whether or not the other operation is applied immediately before it. Commu-
tative and overwriting objects are objects such that every pair of operations performed
by different processes either commute or one overwrites the other. All of them have

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 137–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 M. David, A. Brodsky, and F.E. Fich

consensus number at most 2 [Her91]. The class of all commutative and overwriting
read-modify-write objects with consensus number 2 is called Common2. Many objects
in this class are provided in real systems.

Afek, Weisberger, Weisman [AWW93] prove that any Common2 object
shared by any number of processes can be implemented from Registers and any type of
objects of consensus number 2. Hence, if a Queue or Stack can be implemented from
Registers and Common2 objects, it can be implemented from Registers and any type
of objects of consensus number 2. Proving that such an implementation is impossible
would imply that characterizing an object to be of consensus number 2 is insufficient to
describe its computational power in systems of more than 2 processes.

Attempts to prove the impossibility of such an implementation for Queues have
resulted in the development of a number of restricted implementations of Queues from
Registers and Common2 objects. Specifically, there are wait-free implementations of
Queues shared by one or two dequeuers and any number of enqueuers [HW90, Li01],
and wait-free implementations of Queues shared by one enqueuer and any number of
dequeuers [Dav04a].

Another natural restriction is to consider Stacks and Queues with domain size 1,
i.e., where all the elements stored in the Stack or Queue are the same. Note that single-
valued Stacks and Queues behave identically. Push and Enqueue increase the number
of stored elements by one. Pop and Dequeue decrease the number of stored elements by
one, if there was at least one, and return whether or not this was the case. We prove that a
single-valued Stack shared by any number of pushers and poppers can be implemented
from Registers and Common2 objects. This means that the difficulty of implementing
a general Stack is not simply coordinating pushers and poppers so that they can all
complete their operations, but must involve poppers determining the order in which the
steps of different pushers are linearized.

We obtain our implementation by first constructing an implementation of a Stack
with arbitrary domain shared by one pusher and any number of poppers. Then we show
how to transform it to obtain an implementation of a single-valued Stack shared by any
number of pushers and poppers. We also show how to extend the number of pushers
from one to two when the domain is arbitrary. In contrast, it is not known how to im-
plement a Queue shared by two or more enqueuers and any number of dequeuers from
commutative and overwriting objects.

The implementations in this paper do not directly use Common2 objects. Instead,
we introduce a new object, BH, with a single operation, Sign, and we show that, for
any number of processes, a BH object can be implemented from a single Fetch&Add
object. Then we implement our Stacks from a single BH object and one single-writer
Register per pusher. The form of our implementations is very simple: To perform a
Push, a process appends information to its single-writer Register, and performs one or
two Sign operations (depending on the implementation). To perform a Pop, a process
appends information to its single-writer Register, performs two Sign operations, and
then collects the single-writer Registers of all pushers.

We also show that any countably infinite collection of Fetch&Add objects and
single-writer Registers can be simulated using one BH object and one single-writer
Register per process. In this case, a process can perform any operation by appending the

Restricted Stack Implementations 139

operation and its arguments to its single-writer Register, applying one Sign operation to
the BH object, and then reading the single-writer Registers of all other processes. Thus,
a system with one BH object and one single-writer Register per process, and a system
with Common2 objects and Registers are equally powerful. In particular, to show that
an object cannot be implemented from Registers and objects in Common2, it suffices to
prove that it has no implementation from one BH object and one single-writer Register
per process. Moreover, it suffices to prove the lower bound for a restricted class of im-
plementations in which each operation is simulated by an algorithm with a fixed, very
simple form. This restriction enables us to better understand the flow of information
between processes and to analyze the interaction between them.

In Section 2, we discuss the BH object and its properties. Section 3 contains our
stack implementations. Throughout the paper, we assume that all objects are determin-
istic and linearizable and we consider only wait-free implementations.

2 The BH Object

In this section, we define the BH object, show how to implement it using a single
Fetch&Add object, and show how it can be used to implement any collection of Com-
mon2 objects. Our goal is to show the existence of such implementations. We do not
address their efficiency.

2.1 Definition of BH

Consider an object with only one operation, in which a process appends its own ID to
a shared log. We refer to an occurrence of a process ID in the log as a signature. We
assume process IDs are positive integers, so a list of signatures is a finite sequence of
positive integers. The object keeps, by means of its internal state, a complete ordered
list of signatures. As a process signs the log, that process receives, in response, the
entire list of signatures, including the one being applied by its current operation. This
object has consensus number ∞, because processes can decide on the input value of
the process whose ID is the first signature in the log. Hence, this does not capture the
limited power of a system with Registers and Common2 objects.

Informally, a BH object, short for Blurred History, works much like the object de-
scribed above, but it is restricted so that it can be implemented from Registers and
Common2 objects. As before, the object has one operation, Sign, and the state of the
BH object is the complete list of signatures applied so far. However, the response a pro-
cess Pa gets from Sign is not the exact state σ of the BH object, but instead, a set of
sequences indistinguishable (in the sense defined below) to Pa from σ.

Two sequences of integers σ, σ′ are a-indistinguishable if there exist b �= c, both dif-
ferent from a, such that σ = σ1 ·bc·σ2, σ′ = σ1 ·cb·σ2 and neither b nor c appears in σ2.
In other words, σ′ is exactly the same as σ, except for the last consecutive occurrences of
two different elements other than a, which are swapped. Two sequences σ, σ′ are also
a-indistinguishable if there is a sequence σ′′ which is a-indistinguishable from both.
Thus, a-indistinguishability is transitively closed. We use the terms a-indistinguishable
and indistinguishable to Pa to refer to the same relation.

140 M. David, A. Brodsky, and F.E. Fich

To provide further intuition, we also give a direct, yet equivalent, definition for
the notion of indistinguishability. We can view a state σ as providing two types of
information:

– the number of signatures by each process, and
– for each signature, which signatures precede it (and, hence, which signatures follow

it).

Let σ be the state of a BH object immediately after Pa performs Sign. In response to its
operation, Pa will receive the following information from σ:

– the number of signatures in σ by each process, and
– the relative order of each pair of signatures in σ, provided that at least one of the

signatures in the pair is by Pa or is followed by another signature by the same
process.

Hence, Pa won’t be able to tell the relative order of the last signatures by other pro-
cesses, when those signatures are consecutive. For example, if the BH object is in state
123 and P1 applies Sign, the response will be {1231, 1321}, which we can write as
1{23}1. As a more elaborate example, if the BH object is in the state 1324451671718
and P9 applies Sign, P9 will get the response 1{23}4{45}1671{178}9. Notice that, in
this example, P9 can derive the exact location of the last (and only) signature by P6

because it knows the location of the two surrounding signatures (the second by P1 and
the first by P7).

When two sequences σ, σ′ are a-indistinguishable, one is a permutation of the other,
and the set of locations of last signatures by processes other than Pa is the same in both.
From the response to a Sign operation, Pa can compute the response of any previous
Sign operation by some other process Pb, except for possibly the last operation by Pb.
To see this, note that Pa knows the location of any signature of Pb except possibly the
last signature of Pb, and furthermore, later steps (by Pb and by other processes) can
only add information about the exact state at the end of Pb’s operation. For example,
if P1 receives the response 124{24}353151 to a Sign operation, it can see that the
response P5 got from its first Sign operation is 124{234}5. In this example, P1 knows
the location of the first signature by P3, but it can see that P5 couldn’t have had that
information from the response to its first Sign.

2.2 Implementing a BH Object

In this section, we informally explain how to implement a BH object using a Fetch&Add
object. A more formal description of this implementation appears in [Dav04b]. The ini-
tial state of the BH object is an empty sequence, and the initial value of the Fetch&Add
object in our implementation is 0.

We can view the value V stored in the Fetch&Add object as an infinite sequence of
bits, {bi | i = 0, 1, . . .}. Let N denote the number of processes in the system and, for
i = 1, . . . , N , let Va denote the infinite subsequence of bits {bj | (j mod N) + 1 =
a}. Then V1, . . . , VN are mutually disjoint. At any point in time, Va encodes a finite
sequence of non-negative integers as the concatenation of the unary representations of

Restricted Stack Implementations 141

these integers, each integer separated from the next by 10, and followed by an infinite
sequence of 0’s. For example, u1, u2, u3 is encoded as 1u1+101u2+101u3+100 · · ·. Then
any positive integer can be appended to the end of the sequence by only changing certain
bits of Va from 0 to 1.

We implement every Sign operation by Pa using one Fetch&Add operation on V
that appends a number to the sequence encoded in Va. Since Pa is the only process
changing Va, it can keep the value of Va in a local register va. Whenever Pa needs to
append a number to the sequence encoded in Va, it can inspect va to decide which bits
of Va have to be changed from 0 to 1. Pa can then set those bits using a Fetch&Add
operation on V with an appropriate argument. For example, if Va stores 2, 0, 3, encoded
as 111010111100 · · ·, and Pa needs to append the value 1 to this sequence, it has to
change the 12-th and 13-th bits of Va from 0 to 1. Pa can accomplish this by performing
a Fetch&Add operation on V with argument 2a−1+11N + 2a−1+12N .

In our BH implementation, every process Pa has, in addition to va, a second local
register wa. This register has initial value 0. It is used to store the last value received
by Pa from a Fetch&Add operation on V . A Sign operation by Pa is implemented as
follows:

– using va and wa, process Pa computes a value x such that performing a Fetch&Add
operation on V with argument x has the effect of appending wa to the sequence
encoded in Va;

– Pa appends wa to va;
– Pa performs Fetch&Add on V with argument x;
– Pa stores the response from this Fetch&Add operation in wa;
– using wa, process Pa computes the response from Sign.

The computation of x was described above. Thus, it remains to explain how to compute
the response from the Sign operation.

From the response to its Fetch&Add operation, Pa can compute the number of pre-
vious signatures by some other process Pb as the number of runs of 1’s in the sequence
Vb. It can also compute ub,i, the i-th non-negative integer in the sequence encoded by
Vb. Note that ub,i is the response Pb received from the Fetch&Add operation it per-
formed during its (i − 1)-st Sign operation. Hence, Pa can compute which signatures
precede the (i−1)-st signature by Pb. The only information about the signature log that
Pa cannot compute is the relative order of the last signatures by other processes, when
those signatures are consecutive. This is precisely the information needed to construct
the class of states indistinguishable to Pa from the signature log.

2.3 Implementations Using a BH Object

In this section, we show that a system with one single-writer Register per process and
one BH object can be used to simulate a system with infinitely many Common2 objects
and Registers. To do that, we implement a countably infinite collection of Fetch&Add
objects and single-writer Registers using one single-writer Register per process and one
BH object. Our claim follows from the fact that any Register can be implemented from
single-writer Registers [VA86], and that any Common2 object can be implemented from
Fetch&Add objects and Registers [AWW93].

142 M. David, A. Brodsky, and F.E. Fich

Consider a system of countably infinitely many Fetch&Add objects and single-
writer Registers. Assume the objects in this system are indexed by positive integers. A
process may perform three types of high-level operations:
Fetch&Add(k, x), if k is the index of a Fetch&Add object, Read(k), if k is the in-
dex of a Register, and Write(k, x), if k is the index of one of the Registers to which it
may Write. In a system with one single-writer Register per process and one BH object,
we implement each of the three types of operations as follows:

– Pa appends the current high-level operation to its Register;
– Pa Signs the BH object;
– Pa Reads the Registers of all processes;
– Pa locally computes the result of the implemented operation.

Throughout the implementation, the value held in Pa’s Register is an ordered list of all
the high-level operations that Pa has started. We linearize a high-level operation at the
moment the process executing it Signs the BH object. Thus, given the responses Pa gets
from its Sign and Read operations, Pa can compute which high-level operations have
occurred so far. It can also compute the linearization of these operations, except for
what is blurred in the response it gets from the BH object. This information is enough
for Pa to compute the result of its high-level operation:

– If the high-level operation is a Write, its response is simply OK.
– If the high-level operation is Read(k), we know that only one process Pb writes

to the single-writer Register with index k. In this case, Pa returns the argument of
the last Write operation by Pb to this Register that is linearized before this Read. If
there is no such Write operation, then the initial value of the Register is returned.

– If the high-level operation is Fetch&Add(k, x), Pa needs to compute the sum of the
arguments of all the Fetch&Add operations on this object that are linearized before
the current operation. Note that Pa does not need to know the order in which these
operations are linearized, since addition is commutative.

Something stronger can be said about a system with one single-writer Register per
process and one BH object.

Theorem 1. Let S1 be a system with countably infinitely many Common2 objects and
Registers. Let S2 be a system with one single-writer Register per process and one BH
object. If there exists an implementation of some object O in S1, then there exists an im-
plementation of O in S2. Furthermore, to perform a high-level operation on O, process
Pa begins by appending this operation to its single-writer Register and then alternately
performs Sign and Reads of all Registers.

In the construction, a process uses its single-writer Register to record which opera-
tion it performs, on which object it performs this operation, and any parameters of this
operation. Thus, when implementing a single object that supports a single operation
that takes no parameters, the single-writer Registers are not needed.

Restricted Stack Implementations 143

3 Stack Implementations from a BH Object

3.1 A Single-Pusher Stack Implementation

In this section, we give a single-pusher many-popper Stack implementation from one
BH object B and an unbounded array V of single-writer Registers, each capable of
holding one Stack element and each of which can only be written by the single pusher
P1. Alternatively, V can be a single-writer register capable of holding any sequence
of Stack elements. The initial state of B is the empty sequence. Let process Pa be a
popper, for a > 1. The implementation is presented in Figure 1.

The pusher P1 holds a local variable last , initialized to 0, which is used to store the
index of the last slot of V to which P1 wrote. To push an element x onto the Stack, P1

increments last and writes x into V [last]. P1 then signs B. A signature of P1 in B is
called a push step. Recall that this is an occurrence of 1 in the state of B.

To pop an element off the Stack, Pa first performs two Sign operations on B. From
the result of its second operation, which is an equivalence class of a-indistinguishable
sequences, Pa selects any representative σ. Then Pa locally computes a function f
of σ (see Figure 1). The value of this function is either 0, in which case Pa returns ε,
indicating an empty Stack, or a positive integer, which Pa uses to index V . In the second
case, the value stored in that location of V is the result of Pa’s Pop. The signatures of
poppers in B are called pop steps. The signature produced by the first Sign occurring
in a Pop operation is called a first pop step, and the signature produced by the second
Sign is called a second pop step.

The heart of this implementation is the function f . It takes a BH state σ as input,
and decides which value the process computing it should pop from the Stack. Inside the
function, we consider each Push operation φ, starting with the latest, and try to match
it with the earliest completed Pop operation α that starts after the push step of φ. If no
such α exists, we erase φ from σ and continue. On the other hand, if α exists, we erase
both α and φ from σ and continue. If α turns out to be the Pop operation that invoked f
on σ, which is the case if the second pop step of α is the last signature in σ, we decide
that α should return the value pushed on the Stack by φ.

For the purposes of proving the correctness of this implementation, it will be con-
venient to assume that P1 is pushing the values 1, 2, 3, . . ., thus identifying the value
stored in a cell of V with the index of that cell.

A crucial fact in proving the correctness of this algorithm is given in Lemma 5,
where we show that the choice of σ made in line 6 does not affect the output of a
Pop operation. Specifically, the result of applying f to two indistinguishable states is
the same. In order to establish this result, we prove several Lemmas saying that, under
certain conditions, swapping two consecutive steps of σ does not change the result of f .
The last pop step in σ, which is the second pop step of the Pop operation that invoked
f , is never moved.

Let σ = τ1, a, b, τ2 and σ′ = τ1, b, a, τ2, where a �= b and τ2 is not empty. Lem-
mas 1, 2 and 3 describe situations in which f(σ) = f(σ′).

Lemma 1. Swapping two consecutive pop steps by different processes, of which at least
one is a first pop step, does not affect the result of f . Formally, if a is a first pop step
and b is a pop step, then f(σ) = f(σ′).

144 M. David, A. Brodsky, and F.E. Fich

Procedure P1:Push(x)

1. increment(last)
2. Write(V[last], x)
3. Sign(B, 1)

Procedure Pd :Pop, for d 1

4. Sign(B, d)
5. C Sign(B, d)
6. σ any sequence in C
7. l f(σ)
8. if l = 0
9. return ε

else
10. return Read(V[l])

endif

Function f(σ)

11. while there exist push steps in σ
12. i location of last push step in σ
13. A (j, j) : j and j are the locations of the first

and second steps of a pop operation and i j
14. if A is not empty
15. (k, k) pair with minimum j in A
16. if k is the last location in σ
17. return number of push steps in σ

endif
18. delete signatures at i, k and k from σ

else
19. delete signature at i from σ

endif
endwhile

20. return 0

Fig. 1. A Single-Pusher Implementation

Proof. During every iteration of the while loop, membership in A is determined in
line 13 by the order between push steps and first pop steps, and the selection of a pop
operation in line 15 is determined by the order between second pop steps. Hence, the
computations of f on σ and σ′ take exactly the same decision during every iteration of
the while loop.

Restricted Stack Implementations 145

The same argument can be used to show:

Lemma 2. Swapping a consecutive push step and second pop step does not affect the
result of f . Formally, if a is a push step and b is a second pop step, f(σ) = f(σ′).

Lemma 3. Swapping two consecutive second pop steps does not affect the result of f .
Formally, if both a and b are second pop steps, f(σ) = f(σ′).

Proof. We use induction on the number of executions of the while loop to show that
f(σ) = f(σ′).

The only difference in the computations of f on σ and σ′ can arise in an iteration in
which both pop operations involved in the swap are in the set A, one of them is selected
in f(σ) and the other is selected in f(σ′). Let τ and τ ′ be the respective sequences at
the beginning of that iteration. Without loss of generality, we must have

τ = τ1, 1, τ2, a1, τ3, b1, τ4, a2, b2, τ5 and

τ ′ = τ1, 1, τ2, a1, τ3, b1, τ4, b2, a2, τ5,

where the 1 following τ1 is the last step by the pusher P1. Hence τ2, τ3, τ4, τ5 contain
no 1’s. The steps a1 and a2 are the first and second steps of a pop operation by Pa, and
b1 and b2 are the first and second steps of a pop operation by Pb. Notice that in this case
τ3 cannot contain pop steps by Pa because Pa has a pending operation.

In this scenario, 1, a1, a2 are deleted in f(σ) and 1, b1, b2 are deleted in f(σ′). Let

τ = τ1, τ2, τ3, b1, τ4, b2, τ5 and

τ ′ = τ1, τ2, a1, τ3, τ4, a2, τ5.

Then f(σ) = f(τ) = f(τ) and f(σ′) = f(τ ′) = f(τ ′). The computation of f is not
affected by what popper is performing a particular Pop operation. It is only affected by
the locations of pop steps in the sequence. Hence, f(τ) = f(τ ′′), where

τ ′′ = τ1, τ2, τ3, a1, τ4, a2, τ5.

Since τ3 contains no pop steps by Pa and no push steps, τ ′ can be transformed into τ ′′

by repeatedly swapping the first pop step a1 with pop steps that immediately precede
it. By Lemma 1, f(τ ′) = f(τ ′′).

Lemma 4. Removing the first step of an incomplete Pop does not affect the result of f .

Proof. The first step of an incomplete pop operation is never considered when building
the set A, nor when selecting a pop operation from A, so removing it will cause no
change in the computation of f .

Lemma 5. Let σ be the BH state at the end of a pop operation by some process Pd. Let
σ′ be a sequence indistinguishable to Pd from σ. Then f(σ) = f(σ′).

Proof. By properties of the BH object, there is a sequence of states σ(0), σ(1), . . . ,
σ(m) with σ = σ(0) and σ(m) = σ′ such that any two consecutive states σ(e),
σ(e+1) can be obtained from one another by swapping two consecutive last steps by
some processes other than Pd. We have three possibilities:

146 M. David, A. Brodsky, and F.E. Fich

– One of these steps is a first pop step. Since it is the last step by that process, it must
be part of an incomplete pop operation. By Lemma 4, removing it will not affect
the result of f . But removing it erases the difference between σ(e) and σ(e+1), so
f(σ(e)) = f(σ(e+1)).

– Both steps are second pop steps. By Lemma 3, f(σ(e)) = f(σ(e+1)).
– One is a push step, the other is a second pop step. By Lemma 2, f(σ(e)) =

f(σ(e+1)).

Inductively, f(σ) = f(σ′).

Next, we assign linearization points for Push operations and for completed Pop
operations. We do not linearize any incomplete Pop operations (which only apply one
Sign). A Push operation is linearized at its push step. Let α be a complete Pop operation
and let σα be the BH state when α is completed. We define the linearization point of α
as follows:

– If there are no Push operations deleted unmatched (i.e. on line 19) during the com-
putation of f on σα, then α is linearized at its second pop step.

– Otherwise, α is linearized immediately before the Push operation φ deleted on
line 19 whose push step occurs earliest in σα. If multiple Pop operations are lin-
earized at the same place, they are put in the same order that their second pop steps
appear in σα.

Note that, in the second case, the push step of φ occurs between the two pop steps of α:
Since φ occurs in σα, the second pop step cannot occur before the push step. If the first
pop step occurs after the push step, then A is not empty at the end of the first iteration
of the computation of f on σα and φ is deleted on line 18, rather than line 19.

Furthermore, if τ0, d1, τ1, 1, τ2, d2 is the BH state when the Pop operation α com-
pletes, d1 and d2 are the two pop steps of α, and τ2 does not contain any push step or
both pop steps of any Pop operation, then α is not linearized at its second pop step. This
follows from the fact that A is empty during the first iteration of f on τ0, d1, τ1, 1, τ2, d2

and, hence, the last Push operation is deleted unmatched.

Given σ, we define h(σ) to be the Stack history associated with σ. It contains the
sequence of operations in the order they are linearized, together with their return values.
For example, h(11216264241266) is the sequence

(Push, OK), (Push, OK), (Pop by P2, 2), (Push, OK), (Pop by P6, 3),
(Pop by P4, 1), (Pop by P2, ε), (Push, OK), (Pop by P6, 4).

Theorem 2. For every state σ, the Stack history h(σ) is legal.

Proof. We use induction on the number of push steps in σ.
First, let σ be a history with no push steps. Any Pop operation which is completed

during σ will output ε, hence h(σ) is legal.
Now let k ≥ 0 and assume that, for all sequences σ′ with at most k push steps, h(σ′)

is legal. Let σ be a history with k + 1 push steps. Let φ denote the last Push operation.

First, consider the case where σ contains no completed Pop operations that start after
its last push step �. Then σ = π, �, ρ, where ρ contains no push steps. Let σ′ = π, ρ.

Restricted Stack Implementations 147

All Push operations in σ′ return the same result, OK, as in σ and each is linearized
in the same place in h(σ′) and h(σ).

Any Pop operation α whose second pop step occurs before � in σ is linearized before
φ in h(σ) Moreover, since σα = σ′

α, it follows that α has the same result in σ and σ′

and is linearized in the same place in h(σ) and h(σ′).
Now let α be a Pop operation whose second pop step occurs after � in σ. Since there

are no completed Pop operations that start after �, the first pop step of α occurs in π.
Then σ = τ0, d1, τ1, �, τ2, d2, τ3, where d1 and d2 are the pop steps of α and τ2, τ3 does
not contain any push step or both pop steps of any Pop operation. By the observation
following the definition of the linearization points, α is not linearized at its second pop
step and φ is deleted unmatched during the computation of f on σα. It follows that α
has the same result in both σ and σ′.

If α is not linearized immediately before �, then it is linearized immediately be-
fore a push step that occurs in π and whose Push operation is also deleted during the
computation of f on σα. Hence, α is linearized in the same place in h(σ) and h(σ′).

Each Pop operation that is linearized immediately before � in h(σ) is linearized at its
second pop step in h(σ′). These operations are linearized after the last Push operation
in h(σ′) and are linearized in the same relative order as they are in h(σ).

Thus h(σ) = h(σ′), (Push, OK). By the induction hypothesis, h(σ′) is legal. Thus,
so is h(σ).

Now consider the case where σ contains at least one completed Pop operation that
starts after the last push step �. Then σ = τ0, �, τ1, d1, τ2, d2, τ3, where d1 and d2 are
the two steps of the first completed Pop operation α that starts after �. Then τ1, τ2, τ3

contains no push steps and τ1, τ2 does not contain both steps of any Pop operation.
Since φ ends before α begins, it is linearized before α. Any other (Pop) operation β

that is linearized between φ and α must be linearized at β’s second pop step, c2. Since
this occurs before d2, the definition of α implies that β’s first pop step, c1, must occur
before �. Thus σβ = ρ0, c1, ρ1, �, ρ2, c2, where ρ2 does not contain any push step or the
both pop steps of any Pop operation. But then the observation following the definition
of the linearization points says that β is not linearized at c2, which is a contradiction.
Thus, there are no operations linearized between φ and α in h(σ).

During the first iteration of the computation of f on σα = τ0, �, τ1, d1, τ2, d2, vari-
able i contains the location of � and, by the choice of α, variables k and k′ contain the
locations of α’s first and second pop steps. Thus f returns the number of push steps
in σα, which is the index of the location in V to which φ writes. By Lemma 5, the
sequence that is chosen on line 6 during α gives the value for f as σα. Hence α returns
the value pushed by φ.

Now we argue that removing both φ and α does not change the relative order of the
linearization points of the the remaining operations nor the results of these operations.
Let σ′ = τ0, τ1, τ2, τ3. Note that the linearization points of each Push operation (except
φ) is the same in σ′ as in σ. We consider a number of different cases for completed Pop
operations.

A Pop operation whose second pop step is in τ0 has σα = σ′
α. Thus it is linearized

at the same point and returns the same value in σ and σ′.

148 M. David, A. Brodsky, and F.E. Fich

If a Pop operation β has its second pop step in τ3, then, during the first iteration of
the computation of f on σβ , φ and α are matched and deleted on line 18, leaving σ′.
Thus β has the same linearization point in σ as it does in σ′ and returns the same value.

Finally, consider a Pop operation β whose second pop step is either in τ1 or τ2.
Since φ is matched with α during the computation of f on σα and σβ is a proper prefix
of σα, φ is deleted unmatched during the first iteration of the computation of f on σβ .
The only difference between the resulting sequence and σ′

β is the first pop step d1 of α,
which, by Lemma 4 does not affect the result of f . Hence, β returns the same value in
h(σ) and h(σ′).

By definition of α, β’s first pop step is in τ0. Since no operations are linearized
between φ, which is linearized at �, and α, which is linearized at d2, β is not linearized
at its second pop step in σ. Hence it is linearized immediately before some push step.
If that push step is not �, then β has the same linearization point in σ′, since the same
Push operations are deleted unmatched in the computations of f on σβ and σ′

β .
The only other Pop operations are those whose second pop steps are in τ1, τ2 and

which are linearized immediately before � in σ. They are linearized in order of their
second pop steps. Since the last Push operation, φ, is the earliest unmatched Push op-
eration in the computation of f on σβ , it must be the only unmatched Push operation.
Thus, in σ′

β , there are no unmatched Push operations, so in σ′, these operations are lin-
earized at their second pop steps. Hence, they have the same relative order in σ and σ′.
Since the linearization point of all other operations are in τ0 or in τ3, all operations in
h(σ′) occur in the same order in h(σ).

Since we show that each operation in h(σ′) returns the same result as it does in
h(σ). It follows that h(σ) is exactly equal to h(σ′) with an inserted pair of consecutive
operations, the Push φ and the matching Pop α. By the induction hypothesis, h(σ′) is
legal, so, from the specifications of a Stack object, h(σ) is also legal.

3.2 A Single-Valued Stack Implementation

The single-popper Stack implementation is based on the observation that the number of
times each pusher signs the BH object prior to a Pop is precisely the number of elements
that were pushed on the Stack prior to that Pop. If there is only one pusher, there is no
ambiguity about the order in which the Push operations occurred. Unfortunately, this is
not the case when there are many pushers. For example, suppose processes P1 and P2

each pushed a value on the Stack by signing the BH object and then process P3 popped
a value by signing the BH object twice. The resulting state 1233 of the BH object is
indistinguishable to P3 from 2133, the state that results when P1 and P2 perform their
operations in the opposite order. Consequently, it is not clear if the value pushed by P1

or P2 is the one which should be popped. While we can overcome this problem for the
special case of exactly two pushers (see following section), the general solution remains
elusive. However, if all the values pushed on the Stack are the same, then the problem
of choosing which value to match with which Pop is obviated.

A process performing a Pop on a single-valued Stack only needs to determine
whether or not its Pop operation has some matching Push. It does not matter which
pusher performed the Push. This is essentially the problem that is solved by the single-
pusher Stack implementation (in the previous section).

Restricted Stack Implementations 149

To perform a Push, a process appends 1 to its single-writer Register and signs the
BH object once. To perform a Pop, a process appends 2 to its single-writer Register,
signs the BH object twice, and then reads the Registers of all other processes. Let C
denote the equivalence class of BH states returned as a result of the second Sign opera-
tion in a Pop. As in line 6, we select any representative σ from C. However, before we
compute f on σ, we replace every push step in σ with a push step by a virtual process,
P0. A step by some process Pa is a push step if the corresponding value in Pa’s Regis-
ter is a 1. If f returns 0 on the modified sequence, the Pop returns ε; otherwise the Pop
returns the single value in the domain.

The proof of correctness is essentially the same as the the proof for the single-
pusher Stack, except for the addition of the following lemma, which handles two Push
operations whose order cannot be distinguished.

Lemma 6. Swapping two consecutive push steps does not affect the result of f .

3.3 A Two-Pusher Stack implementation

We will now extend the algorithm given in Section 3.1 to allow two pushers instead of
just one. The basic idea is similar to the “helping” mechanism that appears in Herlihy’s
universal construction [Her91]: the completion of a Push operation by one pusher might
“help” linearize a pending Push operation by the other pusher.

Let P1 and P2 be the two pushers, and let Pd be a popper, for d > 2. We assume
that, in addition to a BH object B, we have two unbounded arrays V1, V2 of single-
writer Registers, where Va is written by pusher Pa. To push the value x, Pa first writes
x in the next available location in Va. Pa then applies two Sign operations on B. Recall
that in the single-pusher implementation, a Push operation consisted of only one Sign.

A Pop operation by Pd begins by applying two Sign operations on the BH object.
The return value of the second operation is an equivalence class of states indistinguish-
able to Pd from the real state of B. We then select any representative σ, as in line 6.
However, before we can apply function f on σ, we need to transform σ from a two-
pusher history into a single-pusher history. This transformation is performed by a new
function, g, described below.

The function g takes as arguments a two-pusher history σ, and the arrays V1, V2. It
constructs a single-pusher history τ and an array V . The two histories, σ and τ , contain
exactly the same pop steps. The push steps by P1 and P2 in σ are replaced in τ with
push steps by a virtual process, P0. The idea is that a Push operation φ is linearized
either at its second step, or at the second step of the first push operation φ′ by the other
pusher which was started and completed after the first step of φ. The function g can be
computed as follows.

– Find the earliest second push step in σ; call that push operation φ′.
– If there is a push operation φ which has a first step that occurs before the first push

step of φ′, delete both φ and φ′, and insert two steps by P0 in τ at the location of
the second push step of φ′.

– If no such φ exists, delete φ′ and insert a step by P0 in τ at the location of the
second push step of φ′.

150 M. David, A. Brodsky, and F.E. Fich

– Whenever we delete the i-th Push operation by Pa, write Va[i] into the first empty
location in V . In the first case, when we delete φ and φ′, append the value corre-
sponding to φ before the one corresponding to φ′.

– Repeat until no push operation in σ has two steps.
– At the end, delete any remaining first push steps.

For the purposes of proving correctness, we may assume that the i-th value pushed
by Pa and written in Va[i] is the pair (a, i). For example, if σ = 1112332611241
3322431426 (where second push steps and second pop steps are underlined), we have
g(σ, V1, V2) = (τ, V) where τ = 0330064033043406 and V = (1,1), (1,2), (2,1), (1,3),
(2,2), (2,3).

After computing g(σ) = (τ, V), a Pop operation computes f(τ). If the latter evalu-
ates to 0, the Pop returns ε; otherwise the Pop returns the element in location f(τ) of V ,
the array computed in g. For example, for σ, τ, V from the previous example, f(τ) = 2
and V [f(τ)] = (1, 2).

The following two Lemmas are needed to prove the correctness of this extension.

Lemma 7. Let σ be the state at the end of a Pop operation by Pd and let σ′ be a state
indistinguishable to Pd from σ. Let g(σ) = (τ, V) and g(σ′) = (τ ′, V ′). Then V = V ′

and f(τ) = f(τ ′).

Lemma 8. Let σ be a BH state. Let σ′ be any prefix of σ. Let g(σ) = (τ, V) and let
g(σ′) = (τ ′, V ′). Then τ ′ is a prefix of τ and V ′ is a prefix of V .

Finally, we argue that our algorithm is linearizable. Given a two-pusher history σ,
let g(σ) = (τ, V). We define the linearization points for Push operations in σ to be the
corresponding steps where they appear in τ . We define linearization points for Pop op-
erations in σ the same way they are defined in the single-pusher history τ . By Lemma 8,
all Pop operations completed in σ have returned the exact same values as if they had
occurred in τ . Since the single-pusher history τ is linearizable, so is σ.

4 Conclusions

In this paper, we have showed that it is possible to construct wait-free implementations
of certain restricted Stacks using only Registers and Common2 objects. Specifically,
it is possible to implement single-valued Stacks (and Queues) shared by any number
of process, and general (multi-valued) Stacks shared by one or two pushers and any
number of poppers.

Queue implementations exist for any number of enqueuers and at most two de-
queuers [Li01], and for one enqueuer and any number of dequeuers [Dav04a]. In a
Stack implementation, only the poppers output relevant values. If there are only two
poppers, they might be able to agree on the sequence of values to output. This sug-
gests that Stack implementations for any number of pushers and at most two poppers
might exist. However, we conjecture that implementing a Stack with domain size 2,
shared by three pushers and three poppers, is impossible to implement from Registers
and Common2 objects.

Restricted Stack Implementations 151

Since modern distributed systems do provide more powerful types, our results are
mainly of theoretical interest. The BH object is not an object one would want to imple-
ment in hardware or use in an efficient implementation. Moreover, the implementations
we present use an unbounded size BH object and an unbounded number of single-writer
Registers (or single-writer Registers of unbounded size).

However, we believe the BH object is a very useful tool for studying the computa-
tional power of Registers and objects in Common2. It provides a simple characterization
of the information a process can obtain from such objects during the course of a com-
putation. This makes it much easier to show the existence of algorithms for this model
and has the potential of leading to the development of interesting impossibility results
dealing with questions at the foundations of our understanding of shared memory dis-
tributed computing.

Acknowledgments

This research was supported by an Ontario Graduate Scholarship, the Natural Sciences
and Engineering Research Council of Canada, and the Scalable Synchronization Re-
search Group of Sun Microsystems.

References

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. In Proceedings of the 12th ACM Symposium on
Principles of Distributed Computing, pages 159–170, 1993.

[Dav04a] Matei David. A single-enqueuer wait-free queue implementation. In Proceedings
of DISC 2004, pages 132–143, 2004.

[Dav04b] Matei David. Wait-free linearizable queue implementations. Master’s thesis, Univ.
of Toronto, 2004.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, January 1991.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):495–504, January 1990.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous distributed
shared-memory systems. Master’s thesis, Univ. of Toronto, 2001.

[VA86] Paul Vitanyi and Baruch Awerbuch. Atomic shared register access by asynchronous
hardware. In Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science, pages 233–243, 1986.

	Introduction
	The BH Object
	Definition of BH
	Implementing a BH Object
	Implementations Using a BH Object

	Stack Implementations from a BH Object
	A Single-Pusher Stack Implementation
	A Single-Valued Stack Implementation
	A Two-Pusher Stack implementation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

