

Lecture Notes in Computer Science 3724
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pierre Fraigniaud (Ed.)

Distributed
Computing

19th International Conference, DISC 2005
Cracow, Poland, September 26-29, 2005
Proceedings

13

Volume Editor

Pierre Fraigniaud
Université Paris-Sud
CNRS, LRI
91405 Orsay Cedex, France
E-mail: Pierre.Fraigniaud@lri.fr

Library of Congress Control Number: 2005932827

CR Subject Classification (1998): C.2.4, C.2.2, F.2.2, D.1.3, F.1.1, D.4.4-5

ISSN 0302-9743
ISBN-10 3-540-29163-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29163-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11561927 06/3142 5 4 3 2 1 0

Preface

DISC, the International Symposium on Distributed Computing, is an annual
forum for presentation of research on all facets of distributed computing, includ-
ing the theory, design, analysis, implementation, and application of distributed
systems and networks. The nineteenth edition of DISC was held on September
26–29, 2005, in Cracow, Poland.

There were 162 fifteen-page-long (in LNCS format) extended abstracts sub-
mitted to DISC this year, and this volume contains the 32 contributions selected
by the Program Committee among these 162 submissions. All submitted papers
were read and evaluated by at least three Program Committee members, assisted
by external reviewers. The final decision regarding every paper was taken during
the Program Committee meeting, which took place in Paris, July 1–2, 2005.

The Best Student Award was split and given to two papers: the paper “Gen-
eral Compact Labeling Schemes for Dynamic Trees”, authored by Amos Kor-
man, and the paper “Space and Step Complexity Efficient Adaptive Collect”,
co-authored by Yaron De Levie and Yehuda Afek.

The proceedings also include 14 two-page-long brief announcements (BA).
These BAs are presentations of ongoing works for which full papers are not ready
yet, or of recent results whose full description will be soon or has been recently
presented in other conferences. Researchers use the brief announcement track
to quickly draw the attention of the community to their experiences, insights
and results from ongoing distributed computing research and projects. The BAs
included in this proceedings were selected among 30 BA submissions.

DISC 2005 was organized in cooperation with Warsaw University and Jagiel-
lonian University. The support of the University of Liverpool, INRIA, CNRS,
and the University of Paris Sud (LRI) is also gratefully acknowledged. The review
process and the preparation of this volume were done using CyberChairPRO.

July 2005 Pierre Fraigniaud
DISC 2005 Program Chair

Organization

DISC, the International Symposium on Distributed Computing, is an annual
forum for research presentations on all facets of distributed computing. The
symposium was called the International Workshop on Distributed Algorithms
(WDAG) from 1985 to 1997. DISC 2005 was organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).

E
A

T
C

S

Program Chair:
Pierre Fraigniaud, CNRS and University of Paris Sud

Organizing Chair:
Dariusz Kowalski, Warsaw University and University of Liverpool

Steering Committee Chair:
Alex Shvartsman, University of Connecticut

Organizing Committee:
Krzysztof Diks, Warsaw University
Kazimierz Grygiel, Warsaw University
Dariusz Kowalski, Warsaw University and University of Liverpool (Chair)
Krzysztof Szafran, Warsaw University
Marek Zaionc, Jagiellonian University

Steering Committee:
Alex Shvartsman, University of Connecticut (Chair)
Paul Vitanyi, CWI and University of Amsterdam (Vice-Chair)
Hagit Attiya, Technion
Faith Fich, University of Toronto
Pierre Fraigniaud, CNRS and University of Paris Sud
Rachid Guerraoui, EPFL
Roger Wattenhofer, ETH Zurich

VIII Organization

Program Committee

Lenore Cowen Tufts University
Panagiota Fatourou University of Ioannina
Hugues Fauconnier University of Paris VII
Pierre Fraigniaud CNRS and University of Paris Sud (Chair)
Roy Friedman Technion
Yuh-Jzer Joung National Taiwan University
Dariusz Kowalski Warsaw University and University of Liverpool
Victor Luchangco Sun Microsystems Laboratories
Maged Michael IBM T.J. Watson Research Center
David Peleg Weizmann Institute
Greg Plaxton University of Texas at Austin
Sergio Rajsbaum National Autonomous University of Mexico
Sylvia Ratnasamy Intel Research Laboratory
Nicola Santoro Carleton University
Sebastiano Vigna University of Milan
Jennifer Welch Texas A&M University

Sponsoring Organizations

Organization IX

Referees

Maha Abdallah
Saurabh Agarwal
Marcos K. Aguilera
Stefan Amborg
Emmanuelle Anceaume
Filipe Araujo
Hagit Attiya
Elad Barkan
Denis Barthou
Paolo Boldi
Costas Busch
Po-An Chen
Pu-Jen Cheng
Bogdan Chlebus
Gregory Chockler
Cheng-Fu Chou
Piotr Chrzastowski
John Chuang
Bruno Codenotti
Reuven Cohen
Michele Colajanni
Massimo Coppola
Artur Czumaj
Shantanu Das
Carole Delporte
Ned Dimitrov
Shlomi Dolev
Feodor F. Dragan
Keith Duddy
Pascal Felber
Faith Ellen Fich
Matthias Fitzi
Pierre Francois
Keir Fraser
Felix C. Freiling
Eli Gafni
Jie Gao
Juan Garay
Maris Gardinariu
Leszek Gasieniec
Cyril Gavoille
Chryssis Georgiou
Bastian Pochon
Eric Goubault

Leszek Gryz
Rachid Guerraoui
Danny Hendler
Lisa Higham
Polly Huang
David Ilcinkas
Prasad Jayanti
Jehn-Ruey Jiang
Colette Johnen
Thomas Fahringer
Alexandru Jugravu
Erez Kantor
Brad Karp
Idit Keidar
David Kempe
Alex Kesselman
Gabi Kliot
Lukasz Kowalik
Piotr Krysta
Eyal Kushilevitz
Aleksandar Kuzmanovic
Mikel Larrea
Emmanuelle Lebhar
Chih-Yu Lin
Zvi Lotker
Dahlia Malkhi
Petros Maniatis
Charles Martel
Jean Mayo
Hurfin Michel
Ethan L. Miller
Neeraj Mittal
Mark Moir
Shlomo Moran
Pat Morin
Marcin Mucha
Alfredo Navarra
Robert Nikolajew
Sotiris Nikoletseas
Nicolas Nisse
Daniel Nussbaum
Alina Oprea
Katarzyna Paluch
Alessandro Panconesi

Evaggelos Papapetrou
Boaz Patt-Shamir
Andrzej Pelc
Stefan Petters
Scott Pike
Bastian Pochon
Giuseppe Prencipe
Michel Raynal
Michael Reiter
Laurent Rosaz
Sergio Ruocco
Eric Ruppert
Jared Saia
Rahul Sami
Piotr Sankowski
Elad Schiller
Michael Scott
Mordechai Shalom
Dennis Shasha
Scott Shenker
Ioannis Stamatiou
Rob van Stee
Paul Stodghill
Michal Strojnowski
Mitul Tiwari
Sebastien Tixeuil
Olga Tkachyshyn
Francisco J. Torres-Rojas
Panos Vassiliadis
Giovanni Vigna
Roman Vitenberg
Berthold Voecking
Da-Wei Wang
Hsinping Wang
Adam Warski
Mirjam Wattenhofer
Peter Widmayer
Avishai Wool
Pawel Wrzeszcz
Aleksandr Yampolskiy
Haifeng Yu
Shmuel Zaks
Xi Zhang
Aaron Zollinger

a e of Contents

n ite a s

Digital Fountains and Their Application to Informed Content Delivery
over Adaptive Overlay Networks

Michael Mitzenmacher . 1

Securing the Net: Challenges, Failures and Directions
Amir Herzberg . 2

Reg ar Papers

Coterie Availability in Sites
Flavio Junqueira, Keith Marzullo . 3

Keeping Denial-of-Service Attackers in the Dark
Gal Badishi, Amir Herzberg, Idit Keidar . 18

On Conspiracies and Hyperfairness in Distributed Computing
Hagen Völzer . 33

On the Availability of Non-strict uorum Systems
Amitanand Aiyer, Lorenzo Alvi i, Rida A. Bazzi 48

Musical Benches
Eli Gafni, Sergio Rajsbaum . 63

Obstruction-Free Algorithms Can Be Practically Wait-Free
Faith Ellen Fich, Victor Luchangco, Mark Moir, Nir Shavit 78

Efficient Reduction for Wait-Free Termination Detection in a
Crash-Prone Distributed System

Neeraj Mittal, Felix C. Freiling, S. Venkatesan,
Lucia Draque Penso . 93

Non-blocking Hashtables with Open Addressing
Chris Purcell, Tim Harris . 108

Computing with Reads and Writes in the Absence of Step Contention
Hagit Attiya, Rachid Guerraoui, Petr Kouznetsov 122

s

XII a o ont nt

Restricted Stack Implementations
Matei David, Alex Brodsky, Faith Ellen Fich . 137

Proving Atomicity: An Assertional Approach
Gregory Chockler, Nancy Lynch, Sayan Mitra, Joshua Tauber 152

Time and Space Lower Bounds for Implementations Using k-CAS
Hagit Attiya, Danny Hendler . 169

(Almost) All Objects Are Universal in Message Passing Systems
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui 184

Ω Meets Paxos: Leader Election and Stability Without Eventual
Timely Links

Dahlia Malkhi, Florin Oprea, Lidong Zhou . 199

Plausible Clocks with Bounded Inaccuracy
Brad T. Moore, Paolo A.G. Sivilotti . 214

Causing Communication Closure: Safe Program Composition with
Non-FIFO Channels

Kai Engelhardt, Yoram Moses . 229

What Can Be Implemented Anonymously
Rachid Guerraoui, Eric Ruppert . 244

Waking Up Anonymous Ad Hoc Radio Networks
Andrzej Pelc . 260

Fast Deterministic Distributed Maximal Independent Set Computation
on Growth-Bounded Graphs

Fabian Kuhn, Thomas Moscibroda, Tim Nieberg,
Roger Wattenhofer . 273

Distributed Computing with Imperfect Randomness
Shafi Goldwasser, Madhu Sudan, Vinod Vaikuntanathan 288

Polymorphic Contention Management
Rachid Guerraoui, Maurice Herlihy, Bastian Pochon 303

Distributed Transactional Memory for Metric-Space Networks
Maurice Herlihy, Ye Sun . 324

Concise Version Vectors in WinFS
Dahlia Malkhi, Doug Terry . 339

a o ont nt XIII

Adaptive Software Transactional Memory
Virendra J. Marathe, William N. Scherer III, Michael L. Scott 354

Optimistic Generic Broadcast
Piotr Zieliński . 369

Space and Step Complexity Efficient Adaptive Collect
Yehuda Afek, Yaron De Levie . 384

Observing Locally Self-stabilization in a Probabilistic Way
Joffroy Beauquier, Laurence Pilard, Brigitte Rozoy 399

Asymptotically Optimal Solutions for Small World Graphs
Michele Flammini, Luca Moscardelli, Alfredo Navarra,
Stephane Perennes . 414

Deciding Stability in Packet-Switched FIFO Networks Under the
Adversarial ueuing Model in Polynomial Time

Maria J. Blesa . 429

Compact Routing for Graphs Excluding a Fixed Minor
Ittai Abraham, Cyril Gavoille, Dahlia Malkhi . 442

General Compact Labeling Schemes for Dynamic Trees
Amos Korman . 457

The Dynamic And-Or uorum System
Uri Nadav, Moni Naor . 472

rief nno ncements

Byzantine Clients Rendered Harmless
Barbara Liskov, Rodrigo Rodrigues . 487

Reliably Executing Tasks in the Presence of Malicious Processors
Antonio Fernández, Chryssis Georgiou, Luis López,
Agust́ın Santos . 490

Obstruction-Free Step Complexity: Lock-Free DCAS as an Example
Faith Ellen Fich, Victor Luchangco, Mark Moir, Nir Shavit 493

Communication-Efficient Implementation of Failure Detector Classes
�Q and �P

Mikel Larrea, Alberto Lafuente . 495

XIV a o ont nt

Optimal Resilience for Erasure-Coded Byzantine Distributed Storage
Christian Cachin, Stefano Tessaro . 497

Agreement Among Unacquainted Byzantine Generals
Michael Okun . 499

Subscription Propagation and Content-Based Routing with Delivery
Guarantees

Yuanyuan Zhao, Sumeer Bhola, Daniel Sturman 501

Asynchronous Verifiable Information Dispersal
Christian Cachin, Stefano Tessaro . 503

Towards a Theory of Self-organization
Emmanuelle Anceaume, Xavier Defago, Maria Gradinariu,
Matthieu Roy . 505

Timing Games and Shared Memory
Zvi Lotker, Boaz Patt-Shamir, Mark R. Tuttle . 507

A Lightweight Group Mutual k-Exclusion Algorithm Using Bi-k-Arbiters
Yu-Chen Kuo, Huang-Chen Lee . 509

Could Any Graph Be Turned into a Small-World
Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar,
Nicolas Schabanel . 511

Papillon: Greedy Routing in Rings
Ittai Abraham, Dahlia Malkhi, Gurmeet Singh Manku 514

An Efficient Long-Lived Adaptive Collect Algorithm
Burkhard Englert . 516

Author Index . 519

Digital Fountains and Their Application
to Informed Content Delivery

over Adaptive Overlay Networks

(Invited Talk)

Michael Mitzenmacher

Division of Engineering and Applied Sciences,
Harvard University,

USA

Abstract. We study how to optimize throughput of large transfers
across richly connected, adaptive overlay networks, focusing on the po-
tential of collaborative transfers between peers to supplement ongoing
downloads. First, we make the case for an erasure-resilient encoding of
the content, using the digital fountain paradigm. Such an approach af-
fords reliability and a substantial degree of application-level flexibility,
as it seamlessly accommodates connection migration and parallel trans-
fers while providing resilience to packet loss. We explain the history of
this paradigm, focusing on recent advances in coding that allow efficient
implementations of digital fountains. We also describe our previous work
showing the effectiveness of digital fountains for reliable multicast and
parallel downloading.

In the setting of collaborative transfers on overlay networks, there is
an additional consideration since sets of encoded symbols acquired by
peers during downloads may overlap substantially. We describe a collec-
tion of useful algorithmic tools for efficient estimation, summarization,
and approximate reconciliation of sets of symbols between pairs of collab-
orating peers, all of which keep messaging complexity and computation
to a minimum. Through simulations and experiments on a prototype im-
plementation, we demonstrate the performance benefits of our informed
content delivery mechanisms.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Securing the Net:
Challenges, Failures and Directions

(Invited Talk)

Amir Herzberg

Department of Computer Science,
Bar Ilan University,

Israel

Abstract. The Internet is infamously insecure (fraudulent and spoofed
sites, phishing and spam e-mail, viruses and Trojans, Denial of Service
attacks, etc.) in spite of extensive efforts, standards, tools, and research.
We will discuss the problems and the pitfalls, and outline solutions and
directions for future applied and analytical research.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Coterie Availability in Sites

Flavio Junqueira and Keith Marzullo

Department of Computer Science and Engineering,
University of California, San Diego

{flavio, marzullo}@cs.ucsd.edu

Abstract. In this paper, we explore new failure models for multi-site systems,
which are systems characterized by a collection of sites spread across a wide area
network, each site formed by a set of computing nodes running processes. In par-
ticular, we introduce two failure models that allow sites to fail, and we use them to
derive coteries. We argue that these coteries have better availability than quorums
formed by a majority of processes, which are known for having best availabil-
ity when process failures are independent and identically distributed. To motivate
introducing site failures explicitly into a failure model, we present availability
data from a production multi-site system, showing that sites are frequently un-
available. We then discuss the implementability of our abstract models, showing
possibilities for obtaining these models in practice. Finally, we present evaluation
results from running an implementation of the Paxos algorithm on PlanetLab us-
ing different quorum constructions. The results show that our constructions have
substantially better availability and response time compared to majority coteries.

1 Introduction

There has been a proliferation of large distributed systems that support a diverse set
of applications such as sensor nets, data grids, and large simulations. Such systems
consist of multiple sites connected by a wide area network, where a site is a collection
of computing nodes running one or more processes. The sites are often managed by
different organizations, and the systems are large enough that site and process failures
are common facts of life rather than rare events.

Critical services in such systems can be made highly available using replication.
In data grids, for example, data sets are the most important assets, and having them
available under failures of sites is very desirable. To improve availability, the well-
known quorum update technique can be used. This technique consists of implementing
a mutual exclusion mechanism by reading and writing to sets of processes that intersect
(quorums) [7]. As another example, the Paxos protocol [16] enables the implementation
of fault-tolerant state machines for asynchronous systems. Paxos is a popular choice be-
cause of its ability to produce results when a majority of replicas survive, for its feature
of not producing erroneous results when failures of more than a majority (indeed, up
to a complete failure) occur, and its very weak assumptions about the environment.
Underlying Paxos (and other similar protocols) is the same quorum update technique.

This paper considers quorum constructions for multi-site systems. The problem area
of quorums for multi-site systems is large and not well studied. We address a set of

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 3–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 F. Junqueira and K. Marzullo

problems from this area as an early foray. We first give a failure model for multi-site
systems that is simple and has intuitive appeal, and then give a second failure model
that has less intuitive appeal but theoretical and practical interest. Because sites can fail,
the failures of processes are not independent, and so an IID (independent, identically
distributed) model is not appropriate. We define a new metric for availability that is
suitable to non-IID failures, and give optimal quorum constructions for both models.
We discuss the implementability of the two failure models, and discuss an experiment
of running Paxos on PlanetLab [21] that gives some validation of our results.

Related work. Quorum systems have been studied for over two decades. The first al-
gorithms based on quorums use voting [8]. Garcia-Molina and Barbara generalized
the notion of voting mechanisms, and proposed the use of minimal collections of in-
tersecting sets, or coteries [7]. Most of the following work (such as [15,18,20]) has
concentrated on how quorums can be constructed to give good availability, load and
capacity assuming relatively simple system properties (such as identical processes and
independent failures) [2,3,19]. Only recently the problem of choosing quorums accord-
ing to properties of the system (such as location) has attracted some attention [9,14].
Of particular interest to our current work are the constructions of [15] and [6]. In [15],
Kumar proposed, to the best of our knowledge, the first hierarchical quorum construc-
tion, and showed that by doing so one can have smaller quorums. The analysis in [15],
however, assumes IID failures. The work by Busca et al. assumes a multi-site system
similar to what we assume here, and their quorum construction [6] is very similar to
our Qsite construction. Their focus, however, was on performance. If one considers the
distribution of response times from a quorum system, performance is often measured
using the average or median, while availability is a property of the tail of the distribu-
tion. Thus, high performance does not necessarily imply high availability. Availability
in quorum systems has been studied before [2,3,19], but we argue here that the previous
metrics are not suitable for multi-site systems. A notable exception is the work by Amir
and Wool [1], which evaluates several existing quorum constructions in the context of
a small, real network.

A network partition is a failure event that leads to one set of non-faulty processes
being unable to communicate with another set of non-faulty processes (and, often, vice
versa). Quorum systems are asynchronous, and so a network partition is treated identi-
cally to slow-to-respond processes. Long-lasting network partitions can make it impos-
sible to obtain a quorum. A recent paper by Yu presents a probabilistic construction that
does increase availability in the face of partitions, but it assumes a uniform distribution
of servers across the network [24]. In comparison, our constructions are deterministic
and make no assumption about distributions of sites.

2 System Model

We consider a system of a set P of processes. The processes are partitioned into sites
B = {B1, B2, . . . , Bk}, and between each pair of processes there is a bidirectional
communication channel. Processes can fail by crashing, and a crashed process can re-
cover. Similarly, a site can fail and recover. A site failure represents the loss of a key
resource used by the processes in the site (such as network, power, or a storage server)

Coterie Availability in Sites 5

or some event that causes physical damage to the equipment on the site (such as loss of
A/C); the processes in the site are all effectively crashed while the site is faulty.

Let E represent the executions of the system. Each execution E ∈ E is a sequence
of system states. Each state s ∈ E of an execution has an associated failure pattern
F (s, E) ⊆ P , which is the set of processes that are faulty in s. If site Bi is faulty in
s, then all of the processes in Bi are in F (s, E). We use NF(E, s) = P \ F (E, s) to
denote the set of non-faulty processes in s. We say that a failure pattern f is valid iff
∃E ∈ E : ∃s ∈ E : f = F (E, s).

We use survivor sets to express valid failure patterns. Survivor sets were introduced
in [11] to provide a more expressive model of process failures. Informally, a survivor set
is a minimal subset of non-faulty processes. There are different ways to define survivor
sets more formally: we have used probabilities [11] and have used the complement of
maximal failure patterns [13]. We use the second one here. This definition does not
rely on probabilities directly, although failure probabilities can be used to determine
survivor sets; we discuss this point later in this paper. The definition is:

Definition 1. Given a set of processes P , a set S is a survivor set if and only if:1

∧
S ⊆ P∧ ∃E ∈ E : ∃s ∈ E : S = NF(E, s)∧ ∀p ∈ S : ∀E ∈ E : ∀s ∈ E : S \ p �= NF(E, s)

We use SP to denote the set of survivor sets of P , and we call a pair 〈P,SP 〉 a
system profile.

We now repeat a few definitions that have appeared elsewhere and that we use in this
paper. A coterieQ is a set of subsets of P that satisfies the following two properties [7]:
1) ∀Qi, Qj ∈ Q : Qi ∩ Qj �= ∅; 2) ∀Qi, Qj ∈ Q, Qi �= Qj : Qi �⊂ Qj ∧ Qj �⊂ Qi. The
first property is called 2-Intersection [13], and it says that quorums in a coterie pairwise
intersect. This property guarantees mutual exclusion when executing operations on quo-
rums, such as reads and writes, as every pair of quorums must have at least one process
in common. The second property states that all quorums are minimal. A coterie Q is
dominated if there is a coterieQ′ such that: 1) Q �= Q′; 2) ∀Q ∈ Q : ∃Q′ ∈ Q′ : Q′ ⊆ Q.
If no coterie dominates a coterieQ, then we say thatQ in non-dominated.

A transversal of a coterie is a subset of processes that intersects every quorum in
the coterie. We use T (Q) to denote the set of transversals of the coterieQ. Transversals
are useful for defining the availability of a coterie: a coterieQ is available in a step s of
some execution E if and only if F (s, E) �∈ T (Q).

3 Computing Availability

The availability of coteries can be computed in various ways. One metric is node vul-
nerability which is the minimum number of nodes that, if removed, make it impossible

1 We use the “bulleted conjunction” and the “bulleted disjunction” notation list invented in
TLA+ [17]. In Definition 1, the list corresponds to the conjunction of the statements to the
right of the “

∧
” marks.

6 F. Junqueira and K. Marzullo

to obtain a quorum [3]. A similar metric, edge vulnerability, counts the minimum num-
ber of channels whose removal makes it impossible to obtain a quorum (no connected
component contains a quorum). Both of these metrics are appropriate when failures are
independent and identically distributed (IID) because they measure the minimum num-
ber of failures necessary to halt the system. They are not necessarily good metrics for
multi-site systems. Consider the following three-site system in which a survivor set is
the union of majorities of processes in a site for some majority of sites:2

P = {a1, a2, a3, b1, b2, b3, c1, c2, c3}
B = {a1a2a3, b1b2b3, c1c2c3}
SP = {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i �= j ∧ l �= m}

∪ {aiajclcm : i, j, l, m ∈ {1, 2, 3} ∧ i �= j ∧ l �= m}
∪ {bibjclcm : i, j, l, m ∈ {1, 2, 3} ∧ i �= j ∧ l �= m}

From our system model, processes are pairwise connected. According to the results
in [3], the best strategy for both node and edge vulnerability is then to use quorums
formed of majorities, which for this system is any subset of five processes. By definition,
for every S ∈ SP , there is some step s of some execution E ∈ E such that S = F (s, E),
where E is the set of executions of 〈P,SP 〉. As P contains nine processes and every
S ∈ SP contains four processes, there are five faulty processes in such a step, and
hence no majority quorum can be obtained. If one uses SP as a coterie, however, then
there is one quorum available in every step, by construction. SP has therefore better
availability than the majority construction.

An alternative to node and edge vulnerability is, given probabilities of failures, to
directly compute the probability of the most likely failure patterns that make it impossi-
ble to obtain a quorum. Probability models, however, can become quite complex when
failures are not IID. To avoid such complexity, we use a different counting metric: the
number of survivor sets that allow a quorum to be obtained. More carefully,

Definition 2. Let 〈P,SP 〉 be a system profile andQ be a coterie over P . The availabil-
ity ofQ is given by: A(Q) = |{S : S ∈ SP ∧ S �∈ T (Q)}|

A coterie Q covers a survivor set S if there is a quorum Q ∈ Q such that Q ⊆ S.
By the definition,A(Q) is hence the number of survivor sets thatQ covers.

This is a good metric because in every step s of an execution E, there is at least
one survivor set in SP that does not intersect F (E, s). If a coterie allows a quorum to
be obtained for more survivor sets, then this coterie is available during more steps. As
node vulnerability and edge vulnerability,A() is a deterministic metric and as such has
a similar limitation with respect to probabilities. If we assign probabilities of failure to
subsets of processes, then our metric may lead to wrong conclusions, as there might
be higher available coteries that include discarded survivor sets. For the constructions
and examples we discuss in this paper, however, using this metric gives us coteries with
optimal availability.

If a coterie Q is dominated, then by definition there is some other coterie Q′ that
dominatesQ. Under reasonable assumptions, the availability ofQ′ is at least as high as

2 We use x1x2 . . . xn as a short notation for the set {x1, x2, . . . , xn}.

Coterie Availability in Sites 7

the availability ofQ. Thus, we use domination to break ties between coteries that cover
the same number of survivor sets. We say that Q ≺a Q′ iff:∨A(Q′) > A(Q)∨

(A(Q′) = A(Q)) ∧Q′ dominates Q

In Section 5, we give quorum constructions that are optimal with respect to this
metric without the tiebreaker rule. We do not discuss how to construct non-dominated
coteries from dominated ones; possible ways to do so are discussed in [4] and [7].

4 Failure Models

In this section, we present two failure models that we use to derive quorum construc-
tions. Both models are specific to multi-site systems, and although they both model site
failures, they model different system properties as we discuss in Section 6.

4.1 The Multi-site Hierarchical Model

The first model, which we call the multi-site hierarchical model, decouples site failures
from process failures. The failure model has two components: Fs, which characterizes
the failures of sites, andFp, which characterizes failures within a site. More specifically,
Fs is a set of maximal subsets of sites that can fail simultaneously, |Fs| > 0. Fp is
an array with one entry for each site, where Fp[i] is the set of maximal subsets of
processes that can be simultaneously faulty in site Bi when Bi is not faulty, |Fp[i]| > 0,
i ∈ {1, . . . , |B|}. Given an instance of this model, a set Si ⊆ P is in SP if and only if:

∃FS ∈ Fs :
∧ ∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧ ∀Bj ∈ FS : Si ∩ Bj = ∅

The multi-site threshold model proposed in [14] is a threshold-based version of this
model: fs is the maximum number of sites that fail simultaneously, and Fp[i] is the
maximum number of processes that fail simultaneously in site Bi.

4.2 The Bimodal Model

The bimodal model is similar to the multi-site hierarchical model: it also has two com-
ponentsFs andFp. In general, this model represents settings in which there are multiple
sites (|B| > 1), all sites can fail but one, and if only one site is not faulty, then all pro-
cesses in it are correct. Thus, each site is a survivor set. If multiple sites are non-faulty,
then the non-faulty sites can have faulty processes. We describe these process failures
with Fs and Fp. Finally, we assume that there exists at least one site Bi such that
Bi �∈ FS for every FS ∈ Fs. Although Bi is not in any element of Fs, it can still fail
in the case that there is one non-faulty site Bj with no faulty processes, and j �= i. This
assumption is necessary to derive an optimal construction, as we explain in Section 5.2.

The bimodal model contains the same failure patterns as the multi-site hierarchi-
cal model for the same components Fs and Fp, but it contains |B| additional failure

8 F. Junqueira and K. Marzullo

patterns, one for each site Bi. More specifically, a set Si ⊆ P is a survivor set for an
instance of this model if and only if:∨ ∃FS ∈ Fs :

∧ ∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧ ∀Bj ∈ FS : Si ∩ Bj = ∅∨ ∃Bj ∈ B : Si = Bj

To construct a proper set of survivor sets, we need to impose the following con-
straint: ∀FS ∈ Fs : (|B \FS| > 1)∧ (∀Bi ∈ FS : Fp[i] �= {∅}). Without this constraint, the
set of survivor sets might not be minimal, violating minimality.

The bimodal model does not have the intuitive appeal of the multi-site hierarchi-
cal model. Nonetheless, we argue in Section 6 that for at least two-site systems, it is
practical. In addition, it has theoretical interest, which we describe in Section 5.

5 Quorum Constructions

In this section, we use the failure models described to derive quorum constructions that
are optimal with respect to the metric A(). The first construction covers all survivor
sets in SP by using SP itself. We provide a necessary and sufficient condition for this
to hold. The other construction is for systems in which it is not possible to cover all
survivor sets. This is important when survivor sets do not pairwise intersect. This con-
struction is also optimal with respect to the metric A() except that the resulting coterie
may be dominated.

5.1 Achieving Optimal Availability

Let 〈P,SP 〉 be a system profile, and suppose that we use the multi-site hierarchical
model to determine SP . To cover all survivor sets in SP , it is necessary and sufficient
that Fs and Fp satisfy the following property:

∀FS, FS′ ∈ Fs : ∃Bi ∈ B :
∧

Bi �∈ FS∧
Bi �∈ FS′∧ ∀FP, FP′ ∈ Fp[i] : ∃p ∈ Bi : p �∈ FP ∧ p �∈ FP′

In words, we require that there is at least one site shared between any two survivor
sets, and within that site there is at least one process that is shared between the two
survivor sets. To show that this property is necessary, suppose that this property is vi-
olated. That is, there are FS, FS′ in Fs such that, for every Bi ∈ B, at least one of
the following holds: 1) Bi ∈ FS; 2) Bi ∈ FS′; 3) there are FP, FP′ ∈ Fp[i] such that
for every p ∈ Bi, either p ∈ FP or p ∈ FP′. This implies that there are at least two
disjoint survivor sets S and S′ in SP . Now suppose by way of contradiction that there
is a coterie Q that covers all survivor sets in SP , i.e., A(Q) = |SP |. We then have that
there is a quorum Q ∈ Q such that Q ⊆ S. Similarly, there is a quorum Q′ ∈ Q such
that Q′ ⊆ S′. Thus, if S ∩ S′ = ∅, then Q ∩Q′ = ∅. We conclude that Q cannot be a
coterie because it violates the 2–Intersection property.

To see that the property is sufficient is straightforward: by the definition of survivor
sets, no survivor set is strictly contained in another, and the intersection property is
guaranteed by assumption.

Coterie Availability in Sites 9

If we use SP as a coterie, then we have achieved the best possible value for our
availability metric because it covers all the survivor sets (i.e.,A(SP) has the maximum
value of |SP |). Using all the sites in the system, however, may be unnecessary. For
example, if the system satisfies k–Intersection for some k > 2, then we may be able to
construct a coterie over fewer sites. 3 We illustrate this point with a threshold version
of the multi-site hierarchical model. Suppose that every set FS ∈ Fs has the same size
fs ≥ 0, and that for every Bi ∈ B and every FP ∈ Fp[i], we have that |FP| = t for
some nonnegative integer t. Then, if |B| ≥ 2fs + 1, we only need to select a subset
B′ ⊆ B of 2fs + 1 sites. For each site Bi ∈ B′, we select 2t + 1 processes from Bi. A
quorum is obtained by selecting a majority of processes from a majority of sites in B′.

We call this construction Qsite. As an example, suppose that |B| = 4, fs = 1, and
for each site Bi, we have that |Bi| = 4 and t = 1. We then use 3 sites, as 2fs + 1 = 3,
and 3 processes from each site, as 2t + 1 = 3. From the construction, a quorum inQ is
hence composed of four processes, two from a site Bi and two from a site Bj , i �= j.
This system has nine processes, and so a majority would consist of five processes. For
both majority and Qsite, the coterie is available as long as there are fs + 1 = 2 non-
faulty sites. Majority, however, not only requires that two sites are non-faulty, but also
that at least one of the sites contains no faulty processes. A coterie generated by Qsite
does not have this same constraint, and it is available as long as there are two non-faulty
sites, each non-faulty site containing two non-faulty processes. This happens because
majority uses larger quorums, and it tolerates fewer process failures.

It is not hard to see that Qsite requires fewer processes compared to majority coter-
ies, and that the difference increases with the value of fs (see [14] for details). Using
fewer processes in each quorum reduces the load handled by any particular process, if
quorums are uniformly selected, and increases the total capacity of the system [19].

5.2 The Bimodal Construction

It may be the case that the set of survivor sets do not satisfy 2–Intersection, and so can
not be used as a coterie. For example, in the bimodal model, for each site Bi, Bi is a
survivor set, and since sites are disjoint, SP is not a coterie.

One can construct a coterie from any SP , though, by simply discarding survivor sets
until remaining sets satisfy 2-Intersection. This procedure clearly will terminate with a
coterie since a single set is a coterie of one quorum. To obtain a coterie that is optimal
with respect to A(), we need to determine the minimal set S ⊂ SP such that SP \ S is
a coterie. The problem of computing the minimum number of survivor sets that have to
be removed from SP to obtain a coterie, however, is in general NP-Complete [12].

Under the bimodal model, it is simple to determine which survivor sets to discard.
Consider the following intersection property that we call k-bimodal Intersection, k > 1:

∀ distinct S1, S2, . . . , Sk+2 ∈ SP :
∨
∃i, j ∈ [1, k] : Si ∩ Sj �= ∅∨
Sk+1 ∩ Sk+2 �= ∅

Assume 〈P,SP 〉 follows the bimodal failure model. According to the model, it con-
tains |B| survivor sets that are disjoint, one for each site Bi ∈ B. Also by the failure

3 k–Intersection generalizes 2–Intersection, and states that all subsets of k quorums intersect.

10 F. Junqueira and K. Marzullo

model, there is a site Bi such that Bi �∈ FS, for every FS ∈ Fs. Let Si be the survivor
set consisting of the processes of Bi. If 〈P,SP 〉 also satisfies k-bimodal Intersection,
k = |B|, then we know that any two survivor sets Sa, Sb in SP \ {S1, S2, . . . Sk} inter-
sect, and that Si ∩ Sa �= ∅ and Si ∩ Sb �= ∅. Since this is true for any Sa and Sb, the set
Q� = {Si}∪ (SP \ {S1, S2, . . . Sk}) is a coterie, andA(Q�) = |SP | − (k− 1). This is
clearly optimal, since all of the remaining k − 1 survivor sets do not intersect Si. Also,
if 〈P,SP 〉 does not satisfy k-bimodal Intersection, then there is no coterie that covers
|SP | − (k − 1) survivor sets, as there is no subset of SP of size |SP | − (k − 1) that
pairwise intersect. We call this construction Bsite.

6 Failure Models in Practice

The failure models presented in Section 4 are abstract views of failures in a multi-
site system. In this section, we present probabilistic models that we use to extract the
parameters of our failure models. First, we use data from a real system to argue why we
believe site failures are common in multi-site systems. In the remainder of the section,
we discuss process failures for the two models we propose in this paper. For each model,
we discuss a framework based on a Markov chain and illustrate with an example.

6.1 Site Failures

To understand how sites fail in a multi-site system, we studied the failure data of a
particular system, the BIRN Grid [5,14]. We obtained monthly availability data for
15 BIRN sites from January 2004 through August 2004.4 According to this data, a site
becoming unavailable is surprisingly common. On average, each site did not have 100%
availability during five of the eight months, and in any given month several sites had
unplanned outages and became unavailable.

Figure 1 summarizes the avail-

<

Fig. 1. Number of sites with availability below α.
The error bars correspond to the standard error.

ability of sites. For each month, we
count the number of sites that had
availability below some value α, for
different values of α. We then com-
pute the average across the eight
months for each value. This average
is what we plot in Figure 1. From the
figure, on average over ten sites do not
have 100% availability in a month.

In trying to determine what causes
low monthly site availability, we iden-
tified a few reasons for a site to be
unavailable, observed in BIRN sites,
in TeraGrid sites [23], and in a local
computer cluster. They are (in no par-
ticular order): Software problems; Power outages; Failure of shared resources (e.g. stor-
age); Flooding resulting from broken pipes; Local campus network problems; Loss of
air-conditioning. We are currently attempting to further quantify these failures.

4 This data is consistently collected by the BIRN staff, and made available through their web
page. Availability figures are based on active probing (via ping) and on notifications generated
by the Storage Resource Broker (SRB) service.

Coterie Availability in Sites 11

6.2 Obtaining the Multi-site Hierarchical Model

The multi-site hierarchical model has two components: Fs that describes sites failures,
and Fp that describes the failures of processes within a site. We can determine Fs

using, for example, data such as described in Section 6.1. To determine Fp, we need
a model of failures within a site. Even when sites are not faulty, individual processes
can fail due to, for example, hardware faults. In many multi-site systems, hardware and
software platforms are the same across the computing nodes (where processes run) of
a site because of the difficulty in managing a heterogeneous environment. We hence
assume that the reliability of processes within a site is uniform and independent. Of
course, this assumption may be violated by viruses and worms [10], but their effects are
outside the scope of this work.

We can model failures in sites using a Markov chain [22]. Instead of modeling the
whole system, we have chosen to model sites individually. We assume that sites operate
independently, and that outside of expected message communication the operation of a
process at a site has little or no influence on the operation of a process at another site.
As a consequence, sites change their failure states concurrently.

As process failures are independent, states of the model correspond to the number
of faulty processes in a site, and the probability of undergoing a transition from a state
with f faulty processes to a state with f +1 process is p. Repair transitions (from f +1
to f), however, may have probabilities that change with the value of f . For example,
resources to repair processes can be progressively allocated as more processes fail. As
a result, the repair probability remains constant or even increases with the value of f .

Figure 2 depicts the chain we just described.

. . . .0 1 2 n

p ppp

r0 r1 rn-1r2

Fig. 2. Model for a single site with n
process

Assuming that no transition probability is zero,
we have that this chain is irreducible and ergodic.
According to the model, processes fail indepen-
dently, but the probability of repair (undergoing a
transition from state f + 1 to f) may change with
the value of f . In our model, we use rf to denote
the probability that the site undergoes a transition
from state f + 1 to state f .

Repairs in different sites happen independently, and hence the probability of a re-
pair transition does not increase with failures in different sites. That is, if a process
fails in site Bi and another in site Bj , i �= j, they do not mutually affect their repair
probabilities.

Using this model, we can easily compute a threshold on the number of failures
for each site. First, we need to determine a target degree of reliability ρ, which is the
probability that the number of simultaneous process failures in any site is higher than
expected. Because our model is an irreducible ergodic Markov chain, we can compute
the limiting probabilities of all states [22]. That is, the probability of being at a state j
after a long time has elapsed, independent of the initial state i (πj = limn→∞ Pn

ij). Us-
ing these limiting probabilities, we can determine a threshold for each site: the threshold
for a site Si is the number of failures associated to the first state that has a limiting prob-
ability smaller than ρ. This is implies that any state with failures above the threshold
has probability lower than ρ.

12 F. Junqueira and K. Marzullo

To illustrate the process of obtaining a threshold for a site, we give an example. Let
B be a collection of sites such that each site has three processes. Suppose that the prob-
abilities of failure and repair are the same across all the sites. These probabilities are as
follows: p = 0.01, r0 = 0.3, r1 = 0.4, and r2 = 0.5. Computing the limiting prob-
abilities, we have the following: π0 = 0.96695, π1 = 0.03223, π2 = 0.00080, π3 =
0.00002. If ρ is 0.001, for instance, we have that the threshold is one for every site, and
Fp is as follows: Fp[i] = {ai : ai ∈ Bi},∀Bi ∈ B.

Note that the reverse order is also possible: choose a value for t and compute the
corresponding probability of violating this threshold. Using one method or the other
depends on design constraints.

6.3 Obtaining the Bimodal Model

From the description of the bimodal model in Section 4, when k − 1 sites fail, the
remaining site has no faulty processes. This means that the processes of each site com-
prise a survivor set. At the same time, it is possible that all available sites have faulty
processes. We model this with a framework based on a Markov chain. Due to the com-
plexity of this model, our framework is only meant to give a more practical view rather
than serve as a general framework.

As in the previous section, the basic idea consists in determining probabilities for
the possible states of the system, and to use a degree of reliability (a value ρ ∈ [0, 1]) to
determine the states that we consider as normal states. Compared to the chain from the
previous section, a state corresponds to failures across all the sites. We then label states
with counters, one for each site. That is, we have one state for each possible value of
the string f1 · f2 · . . . · fk, where 0 ≤ fi ≤ |Bi| and Bi ∈ B. Using a directed graph as a
way of visualizing the model, we have that the states are represented by nodes, and the
transitions by edges, where each edge has a weight that is the transition probability. In
this model, we have three types of edges: site-failure edges, process-failure edges, and
repair edges. A site-failure edge corresponds to the transition from a state in which a
given site has one or more available processes to one in which all processes in this site
are faulty. Using probability notation, let Xs be the random variable representing the
state at step s. We then have that:

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · fi · fi+1 · · · fk} = ps, fi < |Bi| − 1

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · |Bi| − 1 · fi+1 · · · fk}= pf + ps, fi

= |Bi| − 1

where pf is the probability of a process failure, and ps is the probability of a site failure.
As a simplifying assumption, we have that ps and pf are constant across the sites. A
process-failure edge is a transition from a state in which some site Bi has fi faulty
processes to a state in which Bi has fi+1 faulty processes, fi < |Bi|. Using probability
notation, we have:

Pr{Xs+1 = f1 · · · fi + 1 · · · fk|Xs = f1 · · · fi · · · fk} = pf , fi < |Bi|

Coterie Availability in Sites 13

Finally, we call a repair edge a transition from a state in which fi + 1 processes of
some site Bi are faulty to a state in which fi processes of Bi are faulty. That is:

Pr{Xs+1 = f1 · · · fi · · · fk|Xs = f1 · · · fi + 1 · · · fk} = pr(f1 · · · fi + 1 · · · fk), fi ≥ 0

where pr() is a repair probability mapping. Different from ps and pf , we assume that
the repair probability may differ for different states. In fact, this control over repair
probabilities is what we use to guarantee that the properties of the bimodal model hold.
An additional assumption that completes the model is that all other possible transitions
have zero probability.

Figure 3 illustrates a model for two iden-

Fig. 3. Model for two sites

tical sites B1 and B2 of n processes each. In
the figure, we mark the undesirable states by
including them in a gray region. These states
are the ones that violate the Bsite construc-
tion, and therefore must have low probability.
To determine the probability of a state, we use
also limiting probabilities.

In this model, we assume that probabili-
ties of failure are constant, and they cannot
be changed as the system changes states. We
assume, however, that we are able to have dif-
ferent repair probabilities for different states.
As a physical explanation, repair probabilities
change as the effort spent to repair the system
changes. Thus, we can increase the repair probability for an undesirable state, thereby
decreasing the probability of being in this state. In practice, this means that the amount
of physical resources used to repair processes must increase with the number of failures
in the system. It is then necessary to be able to detect failures. A failure detector for this
application, however, can be unreliable as the only side-effect is to have more resources
used to repair processes unnecessarily. Having an unreliable failure detector implies that
the repair probabilities have to take into account false positives. We therefore assume
that it is possible to bound and estimate the frequency with which the failure detector
makes mistakes.

As an example, suppose that n = 3, ps = 0.004, pf = 0.001, and pr(f1 ·f2) = 0.1,
if f1 · f4 is outside the gray region, and pr(f1 · f2) = 0.4, if f1 · f2 is inside the
gray region. We have chosen these values using the following guidelines. First, as we
observed in Section 6.1, site failures are common. We then assume that the probability
of a site failure is higher than of a process failure, although we kept them in the same
order of magnitude. Second, we assume that repair probabilities are much higher than
the failure probabilities.

One still needs to choose a value for t, as repair probabilities depend upon this value.
For such a small system, this choice is constrained to be either t = 0 or t = 1. If t is
greater than 1, then the 2-bimodal intersection property cannot be satisfied, and we are
not able to construct a coterie using the technique proposed in Section 5. We therefore
assume that t = 1, and we have the following limiting probabilities:

14 F. Junqueira and K. Marzullo

M =

⎡⎢⎢⎣
0.7815 0.0391 0.0332 0.0344
0.0391 0.0020 0.0004 0.0004
0.0332 0.0004 0.0003 0.0004
0.0344 0.0004 0.0004 0.0004

⎤⎥⎥⎦
where M [f1 + 1, f2 + 1] is the limiting probability of state f1 · f2. More specifically,
we have that πf1·f2 = M [f1 + 1, f2 + 1].

Suppose now that a1, a2, a3 are the processes on one site, b1, b2, b3 are the processes
on the other site, and 4 × 10−4 < ρ < 2 × 10−3. We have that: 1) Fs = {∅}; 2)
Fp[1] = {ai : ai ∈ B1}; 3) Fp[2] = {bi : bi ∈ B2}. The set of survivor sets is as
follows:

SP = {a1a2a3, b1b2b3} ∪ {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i �= j ∧ l �= m}
and from the Bsite construction, we have, for example, the following coterie:

Q = {a1a2a3} ∪ {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i �= j ∧ l �= m}
which is dominated by:

Q′ = {a1a2a3} ∪ {aibjbl : i, j, l ∈ {1, 2, 3} ∧ j �= l}
and we have by definition that Q ≺a Q′. From the matrix M , observe that Q′ is un-
available only in state 30, considering only allowed states (states that have probability
greater than the degree of reliability). This is optimal as there is no coterie that is avail-
able for both states 30 and 03.

Although the system of the example is a simple one, it illustrates well that the bi-
modal model is implementable. We believe that the results can be generalized for two-
site systems with more processes, but it is an open question whether there is a practical
implementation for systems with more than two sites.

7 Evaluating Coteries on PlanetLab

To evaluate the different choices for quorums in a multi-site system, we conducted an
experiment on PlanetLab using an implementation of the Paxos algorithm [16]. In brief,
Paxos assumes that processes have one or more of the three following roles: Proposer,
Acceptor, and Learner. Proposers propose ballots that are accepted by Acceptors. To
propose, a Proposer has to read from and write to a quorum of Acceptors. Once an
Acceptor accepts a ballot, it notifies the set of Learners. A Learner decides upon a value
once it receives notifications from a quorum of Acceptors.

In our experiment, we have three settings. In all settings, one single host (a UCSD
host) has the roles of both a Proposer and a Learner, whereas the Acceptors are Planet-
Lab hosts spread across three sites (UC Davis, UT Austin, Duke). The settings are:

3Sites: One host from each site. A quorum consists of any set of two hosts. This is the
Qsite construction, for fs = 1, and t = 0;

3SitesMaj: Three hosts from each site. A quorum consists of majorities of hosts from
two sites, and it has size four. This is the Qsite construction for fs = 1, and t = 1;

SimpleMaj: Three hosts from each site. A quorum consists of any simple majority of
sites. That is, any subset of five Acceptors.

Coterie Availability in Sites 15

For each setting, we have the Proposer issuing a new ballot every 15 minutes, and
we log the time it takes to decide upon a value on this ballot. To implement a reliable
channel, we create a new thread for every message sent, and this thread tries to send
the message through a TCP connection until it succeeds. As a consequence, we have
that every message sent by one process to another is eventually received, as long as the
receiving process eventually recovers if it fails.

To register failures, every time

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f b
al

lo
ts

 (
cu

m
ul

at
iv

e)

Latency in seconds

3Sites
3SitesMaj
SimpleMaj

Fig. 4. Cumulative latency distribution

establishing a TCP connection to
another host times out, we log it to
a file. A failure in this case is the
inability to reach the Acceptor, not
necessarily implying that the host
has crashed. That is, the unavail-
ability of a host may be caused by
a network partition.

We had these three settings run-
ning in parallel for 27 days in April
2005. Figure 4 shows part of the cu-
mulative distribution function for
the latency of reaching agreement
on each ballot. We also show in Table 1 the percentage of samples with value greater
than 4s.

It is not surprising that 3Sites has best response time for the average case, followed
by 3SitesMaj and SimpleMaj, since quorums have fewer Acceptors in this exact order.
However, the graph shows that there is a point (around 3.5s) in which the curve for
3SitesMaj crosses 3Sites. This implies that there are fewer samples for 3SitesMaj with
latency greater than 3.5s than for 3Sites. As the tail of the distribution for 3SitesMaj
contains fewer samples, it has best availability among the three in this experiment.

To understand why this is the case, we need to Latency > 4s (%)
3Sites 0.0020

3SitesMaj 0.0016
SimpleMaj 0.0057

Table 1. Samples with value greater
than 4 seconds

understand what components are involved in de-
ciding upon a ballot. The latency of a ballot has
two main components: message latency and pro-
cess failures. From the graph, the message latency
component dominates until 3.5s. After 3.5s, the
delay is mostly caused by the inability to reach
enough Acceptors. Having more processes
increases the latency for 3SitesMaj and SimpleMaj compared to 3Sites for values under
3.5s, where the message latency component has more weight. On the other hand, 3Sites-
Maj presents better response time for values greater than 3.5s, when there are process
failures. Thus, there is a tension between obtaining good response time on average and
having a larger percentage of the samples within a bounded response time. This infor-
mation is important, for example, when determining the time-out for a quorum-based
service. Considering our three settings, if a time-out value greater than 3.5s is chosen,
then 3SitesMaj is likely to time out less often than 3Sites and SimpleMaj. Finally, an
interesting observation is that SimpleMaj not only had the worst average response time,

16 F. Junqueira and K. Marzullo

but also had the largest percentage of samples with response time greater than 4s. This
indicates that using majority quorums is a poor choice for multi-site systems.

We also counted the number of ballots for which the Proposer could not initially
contact enough Acceptors to obtain a quorum, and the decision on the ballot was there-
fore delayed until enough Acceptors were available. When this happens to a ballot, we
say that this ballot is postponed. For each setting, we have the following:

3Sites: There were 3 postponed ballots;
3SitesMaj: There were 2 postponed ballots. Only for one of these ballots, there would

be one quorum available in the simple majority scheme;
SimpleMaj: There were 4 postponed ballots. For all these ballots, using the majorities

of two sites would give us an available quorum.

The data presented in this section is perhaps not conclusive because the number of
failures observed was too small to be statistically valid. Moreover, PlanetLab is not a
production system in the sense that sites are not designed to be highly available, and
node repair is often leisurely. On the other hand, the results presented do not contradict
any of our assumptions, thus indicating that our models may be suitable even for multi-
systems such as PlanetLab.

8 Conclusions

This paper is a first step into the practical construction of coteries for multi-site sys-
tems. We base one coterie construction on a failure model that we motivate from failure
measurements from a deployed multi-site system and from a Markov model. We also
consider a weaker failure model that has some theoretical and practical interest. We
define optimality by introducing a metric that is suitable to dependent failures, and we
show that our quorum constructions are optimal with respect to this metric.

Being a first step, this paper leaves some questions unanswered. First, our multi-site
hierarchical model is intuitive and is based on some failure data from a real system. How
typical is this system? Is the model broadly applicable? Second, our bimodal model
is based on the idea of having different repair probabilities for different states. This
technique, which essentially integrates operating procedures with the failure model,
appears to be a potentially powerful new direction for the design of novel and efficient
protocols. Finally, we describe a method of building a coterie from survivor sets that do
not satisfy 2-Intersection. The survivor sets are defined by some target availability, and
the availability of the quorum system is reduced by discarding survivor sets. How does
this strategy compare with one in which the initial target availability is increased until
the survivor sets satisfy 2-Intersection?

Acknowledgments. We would like to express our gratitude to Geoff Voelker and the
anonymous reviewers for valuable comments on this paper. Support for this work was
provided by AFOSR MURI Contract F49620-02-1-0233.

Coterie Availability in Sites 17

References

1. Y. Amir and A. Wool. Evaluating quorum systems over the Internet. In Proceedings of the
26th IEEE FTCS, pages 26–37, Sendai, Japan, June 1996.

2. Y. Amir and A. Wool. Optimal availability quorum systems: Theory and practice. Informa-
tion Processing Letters, 65(5):223–228, Mar. 1998.

3. D. Barbara and H. Garcia-Molina. The vulnerability of vote assignments. ACM Transactions
on Computer Systems, 4(3):187–213, Aug. 1986.

4. J. Bioch and T. Ibaraki. Generating and approximating nondominated coteries. IEEE Trans-
actions on Parallel and Distributed Systems, 6(9):905–914, Sept. 1995.

5. The Biomedical Informatics Research Network (BIRN). http://www.nbirn.net.
6. J.-M. Busca, M. Bertier, F. Belkouch, P. Sens, and L. Arantes. A performance evaluation of

a quorum-based state-machine replication algorithm for computing grids. In Proceedings of
the 16th IEEE SBAC-PAD’04, Foz do Iguaçú, PR, Brazil, Oct. 2004.

7. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal of
the ACM, 32(4):841–860, Oct. 1985.

8. D. Gifford. Weighted voting for replicated data. In Proceedings of ACM SOSP, pages 150–
162, Pacific Grove, CA, USA, Dec. 1979.

9. S. Gilbert and G. Malewicz. The Quorum Deployment Problem. In Proceedings of OPODIS,
pages 218–228, Grenoble, France, Apr. 2004.

10. F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M. Voelker. Surviving Internet
catastrophes. In Proceedings of USENIX Tech. Conference, General Track, pages 45–60,
Anaheim, CA, USA, Apr. 2005.

11. F. Junqueira and K. Marzullo. Synchronous consensus for dependent process failures. In
Proceedings of the 23rd IEEE ICDCS, pages 274–283, Providence, RI, USA, May 2003.

12. F. Junqueira and K. Marzullo. Coterie availability in sites (extended version). Technical
report, UC San Diego, La Jolla, CA, USA, June 2005.

13. F. Junqueira and K. Marzullo. Replication predicates for dependent-failure algorithms. In
Proceedings of the 11th Euro-Par Conference, LNCS 3648, pages 617–632, Lisbon, Portu-
gal, Aug. 2005.

14. F. Junqueira and K. Marzullo. The virtue of dependent failures in multi-site systems. In
Proceedings of the IEEE Workshop on Hot Topics in System Dependability, Supplemental
volume of DSN’05, pages 242–247, Yokohama, Japan, June 2005.

15. A. Kumar. Hierarchical Quorum Consensus: A new algorithm for managing replicated data.
IEEE Transactions on Computers, 40(9):996–1004, Sept. 1991.

16. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, May 1998.

17. L. Lamport. Specifying systems: The TLA+ language and tools for hardware and software
engineers. Addison-Wesley, 2002.

18. M. Maekawa. A
√

n algorithm for mutual exclusion in decentralized systems. ACM Trans-
actions on Computer Systems, 3(2):145–159, May 1985.

19. M. Naor and A. Wool. The load, capacity, and availability of quorum systems. SIAM Journal
on Computing, 27(2):423–447, Apr. 1998.

20. D. Peleg and A. Wool. Crumbling Walls: A class of practical and efficient quorum systems.
In Proceedings of ACM PODC, pages 120–129, Ottawa, Ontario, Canada, Apr. 1995.

21. The Planetlab testbed. http://www.planet-lab.org/.
22. S. Ross. Introduction to probability models. Harcourt Academic Press, 2000.
23. The TeraGrid project. http://www.teragrid.org/.
24. H. Yu. Signed Quorum Systems. In Proceedings of the 23rd ACM PODC, pages 246–255,

St. John’s, Newfoundland, Canada, July 2004.

Keeping Denial-of-Service Attackers in the Dark

Gal Badishi1, Amir Herzberg2, and Idit Keidar1

1 The Technion Department of Electrical Engineering
2 Bar Ilan University, Department of Computer Science

Abstract. We consider the problem of overcoming (Distributed) Denial of Ser-
vice (DoS) attacks by realistic adversaries that can eavesdrop on messages, or
parts thereof, but with some delay. We show a protocol that mitigates DoS at-
tacks by eavesdropping adversaries, using only available, efficient packet filtering
mechanisms based mainly on (addresses and) port numbers. Our protocol avoids
the use of fixed ports, and instead performs ‘pseudo-random port hopping’. We
model the underlying packet-filtering services and define measures for the capa-
bilities of the adversary and for the success rate of the protocol. Using these, we
analyze the proposed protocol, and show that it provides effective DoS prevention
for realistic attack and deployment scenarios.

1 Introduction

Denial of service (DoS) attacks have proliferated in recent years, causing severe service
disruptions [7]. The most devastating attacks stem from distributed denial of service
(DDoS), where an attacker utilizes multiple machines (often thousands) to generate ex-
cessive traffic [15]. Due to the acuteness of such attacks, various commercial solutions
and off-the-shelf products addressing this problem have emerged.

The most common solution uses an existing firewall/router (or protocol stack) to
perform rate-limiting of traffic, and to filter messages according to header fields like ad-
dress and port number. Such mechanisms are cheap and readily available, and are there-
fore very appealing. Nevertheless, rate-limiting indiscriminately discards messages, and
it is easy to spoof (fake) headers that match the filtering criteria: an attacker can often
generate spoofed packets containing correct source and destination IP addresses, and ar-
bitrarily chosen values for almost all fields used for filtering1. Therefore, the only hope
in using such efficient filtering mechanisms to overcome DoS attacks lies in choosing
values that are unknown to the adversary. E.g., TCP’s use of a random initial sequence
number is a simple version of this approach, but is inadequate if the attacker has some
(even limited) eavesdropping capability.

More effective DoS solutions are provided by expensive commercial devices that
perform stateful filtering [17,18,19]. These solutions specialize in protecting a handful
of commonly-used stateful protocols, e.g., TCP; they are less effective for stateless
traffic such as UDP [19]. Such expensive solutions are not suitable for all organizations.

1 An exception is the TTL field of IP packets, which is automatically decremented by each
router. This is used by some filtering mechanisms, e.g. BGP routers that receive only packets
with maximal TTL value (255) to ensure the packets were sent by a neighboring router, and
the Hop Counter Filtering proposal.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 18–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Keeping Denial-of-Service Attackers in the Dark 19

Finally, the most effective way to filter out offending traffic is using secure source
authentication with message authentication codes (MAC), as in, e.g., IP-Sec [3]. How-
ever, this requires computing a MAC for every packet, which can induce significant
overhead, and thus, this approach may be even more vulnerable to DoS attacks.

Our goal is to address DoS attacks on end hosts, e.g., in corporate networks, as-
suming the network leading to the hosts is functional. (A complementary solution pro-
tecting the end network can be deployed at the ISP.) In this paper, we focus on forti-
fying the basic building block of two-party communication. Specifically, we develop a
DoS-resistant datagram protocol, similar to UDP or raw IP. Our protocol has promising
properties, especially in overcoming realistic attack scenarios where attackers can dis-
cover some of the control information included in protocol packets [1]. Nevertheless,
additional work is required in order to devise a practical system based on our ideas.

Our solution uses a dual-layer approach: On the one hand, we exploit cheap, simple,
and readily-available measures at the network layer. On the other hand, we leverage
these network mechanisms at the application layer. The latter allows for more complex
algorithms as it has to deal with significantly fewer packets than the network layer, and
may have closer interaction with the application. The higher layer dynamically changes
the filtering criteria used by the underlying layer, e.g., by closing certain ports and
opening others for communication. It is important to note that the use of dynamically
changing ports instead of a single well-known port does not increase the chance of a
security breach, as a single application is listening on all open ports.

The main contribution of our work is in presenting a formal framework for under-
standing and analyzing the effects of proposed solutions to the DoS problem. The main
challenges in attempting to formalize DoS-resistance for the first time are: coming up
with appropriate models for the attacker and the environment, modeling the function-
ality that can be provided by underlying mechanisms such as firewalls, and defining
meaningful metrics for evaluating suggested solutions. We capture the functionality
of a simple network-level DoS-mitigation solution by introducing the abstraction of
a port-based rationing channel. Our primary metric of an end-to-end communication
protocol’s resistance to DoS attacks is success rate, which is the worst-case expected
portion of valid application messages that successfully reach their destination, under a
defined adversary class.

Having defined our model and metrics, we proceed to give a generic analysis of
the communication success rate over a port-based rationing channel in different attack
scenarios. We distinguish between directed attacks, where the adversary knows the port
used, and blind attacks, in which the adversary does not know the port. Not surprisingly,
we show that directed attacks are extremely harmful: with as little as 100 machines (or
a sending capacity 100 times that of the protocol) the success rate is virtually zero. On
the other hand, the worst-case success rate that an attacker can cause in blind attacks in
realistic scenarios is well over 90% even with 10,000 machines.

Our goal is therefore to “keep the attacker in the dark”, so that it will have to resort
to blind attacks. Our basic idea is to change the filtering criteria (i.e., ports) in a manner
that cannot be predicted by the attacker. This port-hopping approach mimics the tech-
nique of frequency hopping spread spectrum in radio communication [20]. We assume
that the communicating parties share a secret key unknown to the attacker; they apply

20 G. Badishi, A. Herzberg, and I. Keidar

a pseudo-random function [8] to this key in order to select the sequence of ports they
will use. Note that such port-hopping has negligible effect on the communication over-
head for realistic intervals between hops. The remaining challenge is synchronizing the
processes, so that the recipient opens the port currently used by the sender. We present
a protocol for doing so in a realistic partially synchronous model, where processes are
equipped with bounded-drift bounded-skew clocks, and message latency is bounded.

1.1 Related Work

Our work continues the main line of research on prevention of Distributed Denial of
Service attacks, which focuses on filtering mechanisms to block and discard the offend-
ing traffic. Our work is unique in providing rigorous model and analysis. Necessarily,
we focus on what we consider as the most basic and common attack scenarios and
on a simple network architecture, protecting the communication between two agents,
both using our protocol. We hope that future work will extend our protocols, model and
analysis to more complex attack scenarios and network architectures, as investigated in
some of the related work.

Most closely related is the work presented in [1,12], which proposes realistic and
efficient mechanisms that do not require global adoption, yet allow a server to provide
services immune to DDoS attacks. These solutions, like ours, utilize efficient packet-
filtering mechanisms between the server and predefined, trusted ‘access point’ hosts,
and use an overlay network to allow clients to forward messages via the overlay net-
work to the access points and then to the server. Our protocol is appropriate for use
between the access points and the server, utilizing efficient packet filtering mechanisms
(as available in current routers). The basic ideas of filtering based on ports or other sim-
ple identifiers (‘keys’), and even of changing them, already appear in [1,12], but without
analysis and details. On the other hand, [1] provides a discussion of attack types and
limitations, justifying much of our model, including the assumption that the exposure
of the identifier (port) number may be possible but not immediate.

There are other several proposed methods to filter offending DoS traffic. Some pro-
posals, e.g., [10,13], filter according to the source IP address. This is convenient and
efficient, allowing implementation in existing packet filtering routers. However, IP ad-
dresses are subject to spoofing; furthermore, using a white-list of source addresses of
legitimate clients/peers is difficult, since many hosts may have dynamic IP addresses
due to the use of NAT, DHCP and mobile-IP. Some proposals try to detect spoofed
sender, using new routing mechanisms such as ‘path markers’ supported by some or all
of the routers en route [21,22,2,14]; notice that global router modification is difficult to
achieve. Few proposals try to detect spoofed senders using only existing mechanisms,
such as the hop count (TTL) [9]. However, empirical evaluation of these approaches
show rather disappointing results [6].

A different approach is to perform application-specific filtering for pre-defined pro-
tocols [11,16]. Such protection schemes are cumbersome, only work for a handful of
well-known protocols, and are usually restricted to attackers that transmit invalid pro-
tocol packets.

In earlier work, we have presented Drum [5], a gossip-based multicast protocol
resistant to DoS attacks at the application level. Drum does not make use of pseudo-

Keeping Denial-of-Service Attackers in the Dark 21

random port-hopping, and it heavily relies on well-known ports that can be easily at-
tacked. Therefore, Drum is far less resistant to DoS attacks than the protocol we present
here. Finally, Drum focuses on multicast only, and as a gossip-based protocol, it relies
on a high level of redundancy, whereas the protocol presented herein sends very little
redundant information.

2 Model and Definitions

We consider a realistic semi-synchronous model, where processes have continuously-
increasing local clocks with bounded drift Φ from real time. Each party may schedule
events to occur when its local clock reaches a specific value (time). There is a bound Δ
on the transmission delay, i.e., every packet sent either arrives within Δ time units, or
is considered lost.

Our goal is to send messages from a sender A to a recipient B, in spite of attempts to
disrupt this communication by an adversary. The basic technique available to the adver-
sary is to clog the recipient by sending many packets. The standard defense deployed by
most corporations is to rate-limit and filter packets, typically by a firewall. We capture
this type of defense mechanism using a port-based rationing channel machine, which
models the communication channel between A and B as well as the filtering mecha-
nism. To send a message, A invokes a ch send(m) event, a message is received by the
channel in a net recv(m) event, and B receives messages via ch recv(m) events. We as-
sume that the adversary cannot clog the communication to the channel, and that there
is no message loss other than in the channel. The channel discards messages when it
performs rate-limiting and filtering.

The channel machine is formally defined in [4]. We now provide an intuitive de-
scription of its functionality. Since we assume that the attacker can spoof packets with
valid addresses, we cannot use these addresses for filtering. Instead, the channel fil-
ters packets using port numbers, allowing deployment using existing, efficient filtering
mechanisms. Specifically, let the set of port numbers be {1, . . . , ψ}. We are particularly
interested in the case ψ = 65536, since this is the number of ports available for UDP re-
cipients, and using them requires minimal changes on the sender side. The buffer space
of the channel is a critical resource. The channel’s interface includes the alloc action,
which allows B to break the total buffer space of R messages into a separate allocation
of Ri messages per port i ∈ {1, . . . , ψ}, as long as R ≥

∑ψ
i=1 Ri. For simplicity, we

assume that the buffers are read and cleared together in a single deliver event, which
occurs exactly once on every integer time unit. If the number of packets sent to port i
since the last deliver exceeds Ri, a uniformly distributed random subset of Ri of them
is delivered.

We define several parameters that constrain the adversary’s strength. The most im-
portant parameter is the attack strength, C, which is the maximal number of messages
that the adversary may inject to the channel between two deliver events.

As shown in [1], attackers can utilize different techniques to try to learn the ports
numbers expected by the filters (and used in packets sent by the sender). However,
these techniques usually require considerable communication and time. To simplify,
we allow the adversary to eavesdrop by exposing messages, but we assume that the

22 G. Badishi, A. Herzberg, and I. Keidar

adversary can expose packets no earlier than E time after they are sent, where E is the
exposure delay parameter. The exposure delay reflects the time it takes an attacker to
expose the relevant information, as well as to distribute it to the (many) attacking nodes,
possibly using very limited bandwidth (e.g., if sending from a firewalled network). Our
protocol works well with as little as E > 5Δ. Notice that while we assumed messages
always arrive within Δ time, this is only a simplification, and our results are valid even
if a few messages arrive later than that; therefore, Δ should really be thought of as the
typical maximal round trip time, and not as an absolute bound on a message’s lifetime
(e.g., a second rather than 60 seconds).

Since the adversary may control some behavior of the parties, we take a conser-
vative approach and let the adversary schedule the app send(m) events in which the
application (at A) asks to send m to B. To prevent the adversary from abusing these
abilities by simply invoking too many app send events before a deliver event, we de-
fine the throughput, T ≥ 1, as the maximal number of app send events in a single time
unit. We further assume that R ≥ ΔT , i.e. that the capacity of the channel is sufficient
to handle the maximal rate of app send events.

Since we focus on connectionless communication such as UDP, our main metric
for a system’s resiliency to DoS attacks is its success rate, namely the probability that
a message sent by A is received by B.

Definition 1 (Success rate μ). Let E be any execution of a given two-party protocol
operating over a given port-based rationing channel with parameters Ψ, R, C, Φ, Δ, E
and T , with adversary ADV . Let end(E) be the time of the last deliver event in E. Let
sent(E) (recv(E)) be the number of messages sent (resp., received) by the application,
in app send (resp., app recv) events during E, prior to end(E) −Δ (resp, end(E)).
The success rate μ of E is defined as μ(E) = recv(E)

sent(E) . The success rate of adversary
ADV is the average success rate over all executions of ADV . The success rate of the
protocol, denoted μ(Ψ, R, C, Φ, Δ, E , T), is the worst success rate over all adversaries
ADV .

Finally, a protocol can increase its success rate by sending redundant information,
e.g., multiple copies or error-correcting codes. We therefore also consider a system’s
message (bit) complexity, which is the number of messages (resp. redundant bits) sent
on the channel per each application message.

3 Analyzing the Channel’s Success Rate in a Single Slot with a
Single Port

This section provides generic analysis of the probability of successfully communicating
over a port-based rationing channel under different attacks, when messages are sent to a
single open port, p. This analysis is independent of the timing model and the particular
protocol using the channel, and can therefore serve to analyze different protocols that
use such channels, e.g., the one we present in the ensuing section. We focus on a single
deliver event, and analyze the channel’s delivery probability, which is the probability
for a valid message in the channel’s buffer to be delivered, in that event. Since every

Keeping Denial-of-Service Attackers in the Dark 23

ch send(m) event eventually results in m being added to the channel’s buffer, we can use
the channel’s delivery probability to analyze the success rates of higher level protocols.

Let Rp denote the ration allocated to port p in the last alloc event, and let In(p)
be the contents of the channel’s buffer for port p (see [4] for more details). Consider
a deliver event of a channel from A to B, when A sends messages only to port p. We
introduce some notations:

Rp = R is the value of the channel’s Rp when deliver occurs.
ap = a is the number of messages whose source is A in the channel’s In(p) when

deliver occurs. We assume a ≤ R. If ap < Rp (i.e., a < R), we say that there is
over-provisioning on port p.

cp is the number of messages whose source is not A in In(p) when deliver occurs.

Assume that 1 ≤ a ≤ R. If cp < R− a + 1 then B receives A’s messages, and the
attack does not affect the communication from A to B on port p. Let us now examine
what happens when cp ≥ R − a + 1.

Lemma 1. If cp ≥ R− a + 1, then the channel’s delivery probability is R
cp+a .

Proof. The channel delivers m ∈ In(p) if it is part of the R messages read uniformly
at random from the cp + a available messages. Thus, the delivery probability is R

cp+a .

If the attacker knows that B has opened port p, it can direct all of its power to that
port, i.e., cp = C, where we assume C ≥ R− a + 1. We call this a directed attack.

Corollary 1. In a directed attack at rate C on B’s port p, the delivery probability on
the attacked port is R

C+a , assuming 1 ≤ a ≤ R and C ≥ R− a + 1.

Lemma 2. For fixed R and cp such that 1 ≤ a ≤ R and cp ≥ R−a+1, the probability
of B receiving only invalid messages on port p decreases as a increases.

The proof of this lemma is simple and is omitted due to space considerations.

3.1 Blind Attack

We define a blind attack as a scenario where A sends messages to a single open port, p,
and the adversary cannot distinguish this port from a random one. We now analyze the
worst-case delivery probability under a blind attack.

In general, an adversary’s strategy is composed both of timing decisions and in-
jected messages. The timing decisions affect a, the number of messages from A that
are in the channel at a given delivery slot. Given that a is already decided, we define the
set of all strategies of an attacker with sending rate C as:

S(C) �
{
{ci}i∈ψ | ∀i ∈ ψ : ci ∈ N ∪ {0} ∧

ψ∑
i=1

ci = C
}

Each strategy s ∈ S is composed of the number of messages the attacker sends to
each port. Note that since the adversary wishes to minimize the delivery probability, we

24 G. Badishi, A. Herzberg, and I. Keidar

restrict the discussion to the set of attacks that fully utilize the attacker’s capacity for
sending messages. We denote by μB(a, C, R) : S(C) → [0, 1] the channel’s delivery
probability under all possible blind attack strategies with the given a, C, and R. Since S
is a finite set, μB has at least one minimum point, and we define the delivery probability
to be that minimum:

μB(a, C, R) � min
s∈S(C)

μB(a, C, R, s)

We sometimes use μB instead of μB(a, C, R) when a, C, and R are clear from context.
We want to find lower bounds on μB , depending on the attacker’s strength. We say that
port pi is attacked in strategy s if cpi > 0. We partition S(C) according to the number
of ports being attacked, as follows:

Sk � {s ∈ S(C) | Exactly k ports are being attacked in s}

In [4] we find a lower bound on μB as follows: We first derive a lower bound on
{μB(a, C, R, sk)|sk ∈ Sk}; this lower bound is given as a function of k. Incidently,
the worst depredation occurs when the attacker divides its power equally among the
attacked ports, i.e., when it sends C

k messages to each attacked port. Then, we show
lower bounds on μB(a, C, R) by finding the k that yields the minimum value. In [4],
we prove the following lemma:

Lemma 3. μB(a, C, R) is bounded from below by the following function f(a, C, R):

f(a, C, R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψa
C+ψa if R = a and C ≥ ψ

1− C
ψ(1+a) if R = a and C < ψ

ψR
C+ψa if R > a and C ≥ ψa√

R
R−a−1

ψa−C
(√

R
R−a−1

)
ψa + R

ψ ·
C

(√
R

R−a−1
)2

a2
√

R
R−a

if R > a and C < ψa√
R

R−a−1

0 otherwise
(1)

Lemma 3 provides us with some insights of the adversary’s best strategy and of
the expected degradation in delivery probability. If no over-provisioning is used (i.e.,
R = a), then the adversary’s best strategy is to attack as many ports as possible. This
is due to the fact that even a single bogus message to the correct port degrades the
expected delivery probability. When the adversary has enough power to target all of the
available ports with at least one message, it can attack with more messages per attacked
port, and the delivery probability asymptotically degrades much like the function 1

C .
When not all ports are attacked, the adversary would like to use its remaining resources
to attack more ports rather than target a strict subset of the ports with more than one
bogus message per port. The degradation of the expected delivery probability is then
linear as the attacker’s strength increases.

When over-provisioning is used (R > a), it affects the attack and its result in two
ways. First, the attacker’s best strategy may not be to attack as many ports as it can,

Keeping Denial-of-Service Attackers in the Dark 25

since a single bogus message per port does not do any harm now. Second, for an ad-
versary with a given strength, the degradation in delivery probability is lower when
over-provisioning is used than when it is not employed. We can see in Equation 1 that
if the attacker has enough power to attack all the ports, the over-provisioning ratio R

a
is also the ratio by which the delivery probability is increased, compared to the case
where R = a.

3.2 Actual Values

Figure 1 shows the expected worst-case delivery probabilities for various attack scenar-
ios on a single port. For directed attacks, we show the actual delivery probability, and
for blind attacks, the lower bound f(a, C, R) is shown. We chose ψ = 65536, the num-
ber of ports in common Internet protocols, e.g., UDP. Figure 1(a) illustrates the major
difference between a directed attack and a blind one: even for a relatively weak attacker
(C ≤ 100), the delivery probability under a directed attack approaches 0, whereas under
a blind attack, it virtually remains 1.

Figure 1(b) examines blind attacks by much stronger adversaries (with C up to
10,000 for R = 1, and up to 20,000 for R = 2). We see that the delivery probability

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

C/R

D
el

iv
er

y
P

ro
b

ab
ili

ty

Blind, R = a = 1
Directed, R = a = 1

(a) Blind vs. Directed, R = a = 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C/R

D
el

iv
er

y
P

ro
b

ab
ili

ty

Blind, R = 2a = 2
Blind, R = a = 1

(b) Blind, a = 1.

1 2 3 4 5 6 7 8 9 10
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R

D
el

iv
er

y
P

ro
b

ab
ili

ty

Blind, C = 10000
Blind, C/R = 10000

(c) Blind, a = 1.

Fig. 1. Delivery probability per slot in various attack scenarios on a single port, ψ = 65536

26 G. Badishi, A. Herzberg, and I. Keidar

gradually degrades down to a low of 92.5% when R = 1. If we use an over-provisioned
channel, i.e., have a = 1 (one message from A) when R = 2, the delivery probability
improves to almost 95% for C = 20,000. (The ratio C

R is the same for both curves). Fig-
ure 1(c) shows the effect of larger over-provisioning. We see that the cost-effectiveness
of over-provisioning diminishes as R

a increases.

4 DoS-Resistant Communication

We now describe a protocol that allows for DoS-resistant communication in a partially-
synchronous environment. The protocol’s main component is an ack-based protocol.
B sends acknowledgments for messages it receives from A, and these acks allow the
parties to hop through ports together. However, although the ack-based protocol works
well as long as the adversary fails to attack the correct port, once the adversary gets a
hold of the port used, it can perform a directed attack that renders the protocol useless.
By attacking the found data port, or simultaneously attacking the found data and ack
ports, the adversary can effectively drop the success rate to 0, and no port hopping will
occur. To solve this matter, there is a time-based proactive reinitialization of the ports
used for the ack-based protocol, independent of any messages passed in the system.

4.1 Ack-Based Port Hopping

We present a port-hopping communication protocol that has no indication of time. In
the absence of a clock, A and B must rely on message-passing in order to synchronize
their port-hopping. We present an ack-based port-hopping protocol, which uses two
port-based rationing channels, from B to A (with ration RBA) and vice versa (with
ration RAB). For simplicity we assume RAB = 2RBA = 2R. B always keeps two
open ports for data reception from A, and A keeps one port open for acknowledgments
(acks) from B. The protocol hops ports upon a successful round-trip on the most recent
port used, using a pseudo-random function, PRF ∗2. In order to avoid hopping upon
adversary messages, all protocol messages carry authentication information, using a
second pseudo-random function, PRF , on {0, 1}κ. (We assume that PRF and PRF ∗

use different parts of A and B’s shared secret key.)
The protocol’s pseudocode appears in Figure 2. Both A and B hold a port counter

P , initialized to some seed (e.g., 1). Each party uses its counter P in order to determine
which ports should be open, and which ports to send messages to. B opens port pold

using the (P − 1)th element in the pseudo-random sequence, and pnew, using P . A
sends data messages to the P th port in the sequence, and opens the P th port in a second
pseudo-random sequence designated for acks. When B receives a valid data message
from A on port pold, it sends an ack to the old ack port. When it receives a valid message
on port pnew, it sends an ack to the P th ack port, and then increases P . When A receives

2 Intuitively, we say that fkey(data) is pseudo-random function (PRF ∗) if for inputs of suf-
ficient length, it cannot be distinguished efficiently from a truly random function r over the
same domain and range, by a PPT adversary which can receive g(x) for any values of x, where
g = r with probability half and g = f with probability half. For definition and construction,
see [8].

Keeping Denial-of-Service Attackers in the Dark 27

a valid ack on port pack, it increases P . We note that several data messages may be in
transit before a port hop takes place, since it takes at least one round-trip time for a port
hop to take effect. The proof of the next theorem is given in [4].

PROTOCOL FOR RECIPIENT B:

On ch recv(m,pnew):
if m.auth = PRFSAB (P |“data”) then

app recv(m.data)
alloc(pold, 0)
pold = pnew

pnew = PRF ∗
SAB

(P + 1|“data”)
alloc(pnew , RAB/2)
ack = PRFSAB(P |“ack”)
ch send(ack, PRF ∗

SAB
(P |“ack”))

P = P + 1

On ack init(seed):
P = seed
pold = PRF ∗

SAB
(P − 1|“data”)

pnew = PRF ∗
SAB

(P |“data”)
alloc(pold, RAB/2)
alloc(pnew , RAB/2)

On ch recv(m, pold):
if m.auth = PRFSAB(P − 1|“data”) then

app recv(m.data)
ack = PRFSAB(P − 1|“ack”)
ch send(ack, PRF ∗

SAB
(P − 1|“ack”))

PROTOCOL FOR SENDER A:

On ack init(seed):
P = seed
pack = PRF ∗

SAB
(P |“ack”)

alloc(pack, RBA)

On app send(data):
m = data|PRFSAB(P |“data”)
ch send(m, PRF ∗

SAB
(P |“data”))

On ch recv(ack, pack):
if ack.auth = PRFSAB(P |“ack”) then

alloc(pack, 0)
pack = PRF ∗

SAB
(P + 1|“ack”)

alloc(pack, RBA)
P = P + 1

Fig. 2. Two-party ack-based port-hopping

Theorem 1. When using the ack-based protocol, the probability that a data message
that A sends to port p arrives when p is open is 1 up to a polynomially-negligible
factor3.

In order to compute the throughput that the protocol can support in the absence of
a DoS attack (i.e., when C = 0), we need to take latency variations into consideration.
Since messages sent up to Δ time apart can arrive in the same delivery slot, a throughput
T ≤ R/Δ ensures a ≤ R. For the rest of this section, we assume T ≤ R/Δ.

We now analyze the protocol’s success rate under DoS attacks. We say that the
adversary is in blind mode if it does not know the ports used by the protocol. We first
give a lower bound on the success rate in blind mode, and then give a lower bound on the
probability to be in blind mode at a given time t. Finally, μ is bounded by the probability

3 Namely, for every polynomial g > 0, there is some κg s.t. when κ ≥ κg , then the success rate
μ(t) ≥ f(R, C, R) − g(κ).

28 G. Badishi, A. Herzberg, and I. Keidar

to be in blind mode throughout the execution of the protocol, times the success rate in
blind mode.

Suppose B opens port p with reception rate Rp, and that a ≤ Rp messages from
A are waiting in its channel, along with cp messages from the adversary (cp ≥ 0). By
Lemma 1, the success rate monotonically non-increases with a. Since the adversary can
control a by varying the network delays, it can set a as high as possible for a delivery
slot. Therefore the worst case success rate occurs when a = TΔ. Using Equation 1
in Section 3, we get that the success rate in blind mode is bounded from below by
f(TΔ, C, R).

Note that the protocol begins in blind mode. We now analyze the probability that the
protocol can keep the adversary in blind mode. The only way the adversary can learn
of a port used by the protocol is using an expose event E time after a message is sent to
this port. This information is only useful to the adversary if the port is still in use. Let
us trace the periodic sequence of events that causes the data port to change (once the
data port changes, the acks for the old port are useless). Assume that A continuously
sends messages m1, m2, . . . to B starting at time 0, and consider an execution without
an attack: (1) By time Δ, B receives a valid message from the channel and sends an ack
to A; (2) By time 2Δ, A receives the ack and changes the sending port; (3) B gets the
last message destined for the old port at most at time 3Δ.

If E ≥ 3Δ, the adversary remains in blind mode. Now let us examine what hap-
pens under attack. In order to prevent the port from changing, the adversary must ei-
ther prevent B from getting valid data messages or prevent A from receiving acks. By
Lemma 2, the probability that all valid messages are dropped decreases when a in-
creases. Thus, (as opposed to the previous analysis), in order to increase the probability
that all valid messages are dropped, the adversary should set a ≤ 1 whenever possible.
Denote μB = f(1, C, R), the lower bound on the probability of a single message to be
received on a single port given in Section 3.1.

Lemma 4. If E = 2kΔ for k > 0, and A sends messages to B at least every 2Δ time
units, then the probability that the port changes while the attacker is still blind is at
least 1− (1 − μ2

B)k.

Proof. The probability that the port does not change in a single round-trip is at most
1 − μ2

B . Since A sends messages to B every 2Δ time units, at the conclusion of each
maximal time round-trip, there is at least one new message on its own round-trip. In
order for the port not to change while the adversary is still blind, every round-trip needs
to fail. Since the attacker can react only after 2kΔ time, there is time for k round-trips
in which the attacker is blind, even if none of them succeed. The probability that all
of them fail is less than (1 − μ2

B)k. If one succeeds, the port changes. And so, the
probability that the port changes is at least 1− (1− μ2

B)k.

The lower bound above is illustrated in Figure 3(a).
We now bound the probability to be in blind mode at time t, by assuming that once

the attacker leaves the blind mode it never returns to it. The bound is computed using
a Markov chain, where each state is the number of round-trips that have failed since
the last port change. In the last state, all round-trips have failed before the exposure,
and thus the attacker is no longer blind. The Markov chain for E = 4Δ is shown in

Keeping Denial-of-Service Attackers in the Dark 29

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exposure Delay Divided by Δ

P
ro

b
ab

ili
ty

 t
o

 H
o

p
 B

ef
o

re
 E

xp
o

su
re

 (
L

o
w

er
 B

o
u

n
d

)

R = 2
R = 1

(a) Bound on prob. to hop before exposure,
C
R

= 10,000 .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Divided by Δ

P
ro

b
ab

ili
ty

 t
o

 B
e

in
 B

lin
d

 M
o

d
e

(L
o

w
er

 B
o

u
n

d
)

(b) Bound (g) on prob. to stay in blind mode,
R = 1, C = 10,000, E = 4Δ .

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ Divided by Δ

S
u

cc
es

s
R

at
e

(L
o

w
er

 B
o

u
n

d
)

(c) Bound on protocol’s success rate,
Δ = T = R = 1, C = 10,000, E = 5Δ .

(d) Markov chain for computing the lower
bound in Figure 3(b).

Fig. 3. The effect of E on the ack-based protocol, ψ = 65536

Figure 3(d). We use the chain’s transition matrix to compute the probability g(t, E , C, R)
for remaining in blind mode at time t. Figure 3(b) shows values of g for E = 4Δ. We
can see that the protocol works well only for a limited time.

Finally, we note that the protocol’s message complexity is 2, since it sends an ack
for each message, and its bit complexity is constant: log2(ψ) bits for the port plus κ bits
for the authentication code.

4.2 Adding Proactive Reinitializations

We now introduce a proactive reinitialization mechanism that allows choosing new
seeds for the ack-based protocol depending on time and not on the messages passed
in the system. We denote by tA(t) and tB(t) the local clocks of A and B, resp., where t
is the real time. From Section 2 we get that 0 ≤ |tA(t)− t| ≤ Φ, 0 ≤ |tB(t)− t| ≤ Φ.
We also assume tA, tB ≥ 0.

If A reinitializes the ack-based protocol and then sends a message to B at time
tA(t0), this message can reach B anywhere in the real time interval (t0, t0 +Δ]. There-

30 G. Badishi, A. Herzberg, and I. Keidar

fore, the port used by A at tA(t0) must be open by B at least throughout this interval.
To handle the extreme case where A sends a message at the moment of reinitialization,
B must use the appropriate port starting at time tB(t0)− Φ. (We note that t0 may also
be Φ time units apart from tA(t0).) We define δ as the number of time units between
reinitializations of the protocol, and assume for simplicity and effectiveness of resource
consumption that δ > 4Φ + Δ (see Figure 4 for more details).

Every δ time units, A feeds a new seed to the ack-based protocol, and B anticipates
it by creating a new instance of the protocol, which waits on the new expected ports.
Once communication is established using the new protocol instance, or once it is clear
that the old instance is not going to be used anymore, the old instance is terminated.
The pseudocode for the proactive reinitialization mechanism can be found in Figure 4
(where ABPI stands for ack-based protocol instance). Due to space considerations we
do not detail the change in port rations at the recipient’s side as protocol instances
are created or terminated. We also note that there is a negligible probability that more
than one ack-based protocol instance will share the same port. Even if this happens,
differentiating between instances can be easily done by adding the instance number
(i.e., the total number of times a reinitialization was performed) to each message. The
proof of the next theorem is given in [4].

ADD-ON FOR SENDER A:

Whenever tA(t) ∈ {0, δ, 2δ, . . .}:
ack init(tA(t)/δ)

ADD-ON FOR RECIPIENT B:

When tB(t) = 0:
Create 1st ABPI
For that ABPI, ack init(0)

ADD-ON FOR RECIPIENT B (CONT’D):

Whenever (tB(t) + 2Φ) ∈ {δ, 2δ, 3δ, . . .}:
Create a new ABPI
For that ABPI, ack init((tB(t) + 2Φ)/δ)

4Φ + Δ time after creating a new ABPI
or Δ time after receiving 1st msg for that ABPI:

Terminate all older ABPIs

Fig. 4. Proactive reinitialization of the ack-based protocol

Theorem 2. When using the ack-based protocol with proactive reinitializations, the
probability that a data message that A sends to port p arrives when p is open is 1 up to
a polynomially-negligible factor.

Proactive reinitialization every δ time units allows us to limit the expected degrada-
tion in success rate for a single ack-based protocol instance. Choosing δ is therefore an
important part of the combined protocol. A small δ allows us to maintain high success
rate in the ack-based protocol, but increases the average number of ports that are open
in every time unit (due to running several protocol instances in parallel). When several
ports are used the ration for each one of them is decreased, and so might the success
rate. On the other hand, choosing a high δ entails lower success rate between reinitial-
izations. We conclude the discussion above and the results presented in Section 4.1 with
the following theorem:

Keeping Denial-of-Service Attackers in the Dark 31

Theorem 3. The success rate of the proactively reinitialized ack-based protocol with
throughput T ≤ R/Δ and reinitialization periods of length δ is bounded from below
by: g(δ + Δ, E , C, R) · f(TΔ, C, R) up to a polynomially-negligible factor.

Figure 3(c) shows the value of g(δ + 1, E , 10000, 1) · f(1, 10000, 1, 1).

5 Conclusions and Directions for Future Work

We have presented a model for port-based rationing channels, and a protocol robust to
DoS attacks, for communication over such channels. The protocol is simple, efficient
and effective, as shown by our analysis. While this worst case analysis is valuable, it
can be followed by simulations, experiments, and common case analysis. Moreover, the
system aspects of deploying such a protocol in today’s Internet are yet to be dealt with.

As the important field of application-level DoS mitigation is relatively new, there
is much research space to explore. We now describe several future research directions.
Clearly, many more directions can be sought.

Our model is realistic, as it only requires the underlying channel to provide port-
based filtering; therefore, it can be efficiently implemented using existing mechanisms,
typically at a firewall or router between the victim and the attacker. This raises an inter-
esting question regarding the trade-off between the cost and the possible added value of
implementing additional functionality by the channel (e.g., at the firewall).

This work has focused on two parties only. It would be interesting to extend it to
multiparty scenarios, such as client-sever and multicast. These scenarios may require
a somewhat different approach, and will obviously necessitate analyses of their own.
Furthermore, we required the parties to share a secret key; we believe we can extend
the solution to establish this key using additional parties, e.g., a key distribution center.
Another approach is to use ‘proof of work’ (computational puzzles) techniques to es-
tablish the shared key, by sending an encrypted key together with a ‘proof of work’ that
ensures that the sender worked much more than the recipient.

Our work has focused on resisting DoS attacks; however, it could impact the per-
formance and reliability properties of the connection; in fact, it is interesting to explore
combinations between our model and problem, and the classical problems of reliable
communication over unreliable channels and networks. Furthermore, since our work
requires a shared secret key, it may be desirable to merge it with protocols using shared
secret key for confidentiality and authentication, such as SSL/TLS and IP-Sec.

One of the most important issues when designing a secure and robust protocol is to
quantify its effectiveness under attack. This calls for a clear definition of a metric for that
protocol. But even more importantly, such an analysis requires a clear definition of the
adversary and the environment it operates in. The challenge in modeling the adversary
and the environment rises because the model should reflect reality. Good models allow
to test the protocol as if it deployed “in the wild”, where real adversaries give it their
best shot. Such models enable us to find the attacker’s optimal strategy, or provide a
bound thereof, thus permitting analytical analysis of the protocol. We hope that future
work will take further strides towards defining realistic yet tractable models.

32 G. Badishi, A. Herzberg, and I. Keidar

References

1. D. G. Andersen. Mayday: Distributed filtering for internet services. In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS), 2003.

2. K. Argyraki and D. R. Cheriton. Active internet traffic filtering: Real-time response to denial-
of-service attacks. In Proceedings of the USENIX Annual Technical Conference, April 2005.

3. R. Atkinson. Security architecture for the internet protocol. RFC 2401, IETF, 1998.
4. G. Badishi, A. Herzberg, and I. Keidar. Keeping denial-of-service attackers in the dark. TR

CCIT 541, Department of Electrical Engineering, Technion, July 2005.
5. G. Badishi, I. Keidar, and A. Sasson. Exposing and eliminating vulnerabilities to denial

of service attacks in secure gossip-based multicast. In The International Conference on
Dependable Systems and Networks (DSN), pages 223–232, June.July 2004.

6. M. Collins and M. K. Reiter. An empirical analysis of target-resident dos filters. In Proceed-
ings of the 2004 IEEE Symposium on Security and Privacy, pages 103–114, May 2004.

7. CSI/FBI. Computer crime and security survey, 2003.
8. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of

the Association for Computing Machinery, 33(4):792–807, 1986.
9. C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: an effective defense against spoofed

DDoS traffic. In V. Atluri and P. Liu, editors, Proceedings of the 10th ACM Conference
on Computer and Communication Security (CCS-03), pages 30–41, New York, Oct. 27–30
2003. ACM Press.

10. J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and web sites. In Proceedings of the Interna-
tional World Wide Web Conference, pages 252–262. IEEE, May 2002.

11. Juniper Networks. The need for pervasive application-level attack protection.
12. A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: An architecture for mitigating ddos

attacks. Journal on Selected Areas in Communications, 21(1):176–188, 2004.
13. B. Krishnamurthy and J. Wang. On network-aware clustering of Web clients. In Proceedings

of the SIGCOMM, Aug. 2000.
14. P. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Controlling

high bandwidth aggregates in the network. Computer Communications Review, 32(3):62–73,
July 2002.

15. D. Moore, G. Voelker, and S. Savage. Inferring Internet denial-of-service activity. In Pro-
ceedings of the 10th USENIX Security Symposium, pages 9–22, August 2001.

16. NetContinuum. Web application firewall: How netcontinuum stops the 21 classes of web
application threats.

17. P-Cube. DoS protection.
18. P-Cube. Minimizing the effects of DoS attacks.
19. Riverhead Networks. Defeating DDoS attacks.
20. S. M. Schwartz. Frequency hopping spread spectrum (fhss).
21. A. Yaar, A. Perrig, and D. Song. Pi: A path identification mechanism to defend against DDoS

attacks. In IEEE Symposium on Security and Privacy, May 2003.
22. A. Yaar, A. Perrig, and D. Song. An endhost capability mechanism to mitigate DDoS flood-

ing attacks. In Proceedings of the IEEE Symposium on Security and Privacy, May 2004.

On Conspiracies and Hyperfairness in
Distributed Computing

Hagen Völzer

Institute for Theoretical Computer Science, University of Lübeck, Germany

Abstract. We study the phenomenon of conspiracies, a certain class of livelocks,
in distributed computations. This elementary phenomenon occurs in systems with
shared variables, shared actions as well as in message-passing systems. We pro-
pose a new and simple characterization via a new notion of hyperfairness, which
postulates the absence of conspiracies. We argue that hyperfairness is a useful
tool for understanding some impossibility results, in particular results involving
crash-tolerance. As a main result, we show that a large subclass of hyperfairness
can be implemented through partial synchrony and randomization.

1 Introduction

A conspiracy is a certain kind of livelock in a distributed computation. The phenomenon
has been first described by Dijkstra [6] in his metaphor of the five philosophers. There, a
philosopher b can starve when his two neighbors a and c conspire against him by eating
alternately in such a way that b’s forks are never available at the same time (Fig. 1.a,
forks shown as bullets).

The metaphor of a conspiracy has also been used for an analogous phenomenon in
systems with multiparty-interactions (e.g. [1,12]). A multiparty-interaction is a com-
mon action of two or more processes. A particular interaction may not occur because,
although all participants are always eventually ready for the interaction, they are never,
or at least not sufficiently often, ready at the same time, because they intermittently en-
gage in conflicting interactions. For example (cf. Fig. 1.b), an interaction A of processes
a and b may occur alternately with an interaction C of processes c and d such that b
and c are always eventually ready for an interaction B but not together at the same
time. Note that here interactions conspire (against a particular interaction) rather than
processes.

Conspiracies have been described and studied in these two contexts, i.e., in sys-
tems where processes share either variables or actions. However, they can also occur in
message passing systems: Fig. 2.a shows three processes in a directed ring with two to-
kens. A process that has exactly one token passes the token to its clockwise neighbor. A
process with two tokens destroys both tokens. That system does not necessarily termi-
nate. In a non-terminating run, each token is always eventually available to each process
but they are never available at the same time. We could say here that the message-system
(or the adversary) “conspires” against termination.

A similar “conspiracy” can occur in daily life when a pedestrian wants to cross
a two-lane road and she cannot safely wait between the lanes. To cross, she needs two

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 33–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 H. Völzer

a
b

c

(a) Three philosophers

a

b c

d
A C

B

(b) Three interactions

Fig. 1. Conspiracy-prone systems

resources at the same time: A sufficiently wide free space on the first lane and one on the
second lane. A “conspiracy” occurs when both resources are infinitely often available
but never at the same time.

In the remainder of the paper, we motivate and propose a new characterization of
these livelocks through a new notion of hyperfairness, which is based on the partial
order of causality. Furthermore, we discuss some problems in distributed computing
where these livelocks inherently arise, where we also point out a relationship between
conspiracies and crash-tolerance. Finally, we show as a main result that a large sub-
class of hyperfairness can be implemented through partial synchrony and randomiza-
tion. Missing proofs can be found in the full version of this paper [22].

2 Characterization

We assume that a distributed system is modelled as a directed graph, which is possibly
infinite, where nodes represent global states and edges represent state transitions. State
transitions are labelled with action names, which, for now, are just elements of some
fixed alphabetA. One node is distinguished as the initial state of the system. An action
α ∈ A is enabled in a global state if there is a state transition labelled with α that starts
in that state. An observation of the system is a finite or infinite alternating sequence
σ = z0, α1, z1, . . . of global states and actions that starts in the initial state such that
(zi, zi+1) is an edge in the graph that is labeled with αi+1 for each position i ≥ 0 of σ.

2.1 Previous Work

To our knowledge, Kwong [14] is the first to propose a partial characterization for
conspiracies. Kwong defines that a sequential process p suffers from a “livelock of type
1” in an infinite observation σ if there is a position of σ such that no action of p is
henceforth enabled but actions of p henceforth remain reachable, that is, for each state
zi of σ, there is a state z such that z is reachable from zi (in the graph) and z enables
some action of p. E. Best [3] generalizes that to the notion of ∞-fairness with respect
to (w.r.t.) an action α of the system: An observation σ is not1 ∞-fair w.r.t. α if α occurs
at most finitely many times in σ and for each state zi of σ there is a state z such that z is
reachable from zi and z enables α. Therefore, both notions do not rule out “conspiracies”

1 We always define fairness implicitly, through the explicit definition of unfairness in this paper,
i.e., we always state when a run is not fair.

On Conspiracies and Hyperfairness in Distributed Computing 35

a b

c

(a) A race

a b

c

(b) Sequential
choices

a

b

c

d

(c) Concurrent
choices

a b

c

(d) Sequential
races

Fig. 2. Systems exhibiting livelocks of different nature

that are specified in the system, for example: Philosophers a and c share a unique extra
token (e.g. a napkin), which has to be taken to release the forks and which is released
when forks are taken again, i.e., the algorithm enforces that a and c never think at the
same time and hence b’s forks cannot be available at the same time.

The notion of∞-unfairness rules out all conspiracies described above (and below).
However, there are different kinds of conspiracies which are not discriminated by ∞-
fairness and therefore,∞-fairness may be unnecessarily strong in many cases.

Consider the two systems illustrated in Figs. 2.a and b. The system in Fig. 2.a was
already explained in Sect. 1. In Fig. 2.b, a process holding two tokens of different color
sends one of them to its clockwise neighbor (through message-passing). It is free in
deciding which one. A process holding two tokens of the same color destroys them,
which forces termination. Both systems terminate under the assumption of ∞-fairness
(w.r.t. the action “destroy”). While termination of the first example depends on the ter-
mination of a race—whether the one token will catch up to the other—the termination
of the second example solely depends on the free choices of the processes, i.e., whether
the white or the black token is sent. While races are exclusive to concurrent systems,
choices also occur in sequential systems. The system in Fig. 2.b is in fact a sequential
system. Fig. 2.c shows an example of a concurrent system that does not terminate due
to uncoordinated free choices. There, a process holding two tokens sends one token to
each of its neighbors with a free choice which neighbor receives which token. Again, a
process holding two tokens of the same color destroys them.

An ∞-unfair run is in general a combination of “unfortunate” outcomes of races
and choices. Conspiracies that are due to choices can be ruled out with high probability
through randomization of the choices. Partial characterization can then be achieved by
fairness notions that abstract from randomization, e.g., extreme fairness [19] and α-
fairness [17]. We will deal only with conspiracies that are solely due to races in the rest
of the paper.

Attie, Francez, and Grumberg [1] characterize with the notion of hyperfairness con-
spiracies that are solely due to races. However, their notion is relatively complex and
strongly tied to their particular programming language. Moreover, whether a run is hy-
perfair or not depends in general on the entire behavior of the system. Lamport [16]
generalizes Attie, Francez, and Grumberg’s hyperfairness in a more general setting,
which is similar to ours and independent of programming languages. However, Lam-
port’s hyperfairness coincides with Best’s ∞-fairness.

36 H. Völzer

2.2 Concurrent Runs

We propose to characterize races and the livelocks arising from them on the basis of
runs where events are partially ordered by causality (rather than being totally ordered by
some observer). For the message-passing model, causality can be given by Lamport’s
happens-before relation [15], which we recall below. For other models, causality can
usually be defined in a natural way as well.

For ease of exposition, we assume for now that a notion of causality is given, i.e., we
first define hyperfairness independent of the computational model. We will later study
hyperfairness in the concrete model of asynchronous message-passing. For now, let a
concurrent run (or simply run) be a triple ρ = (E,≺, �) where

– E is a countable set of events,
– ≺ is a partial order on E, called the causal order, such that (1) the set pred(e) =
{e′ | e′ � e} is finite for each event e and (2) for each infinite set E′ ⊆ E, there
exist e, e′ ∈ E′ such that e ≺ e′. Any finite union C =

⋃
i=1,...,n pred(ei) for ei ∈ E is

called a configuration (also: cut, consistent cut) of ρ,
– � is a labeling that maps each event to an action name and each configuration to a

global state.

Two events e, e′ are said to be concurrent if neither e ≺ e′ nor e′ ≺ e. Condition (2)
above rules out systems with infinitely many concurrent components. A configuration D
is reachable from a configuration C if C ⊆ D. A linearization of a run ρ = (E,≺, �) is an
alternating sequence σ = C0, e1,C1, . . . of configurations and events such that C0 = ∅,
Ci+1 = Ci ∪ {ei+1}, Ci � Ci+1 for each position i of σ, and {ei | i is a position of σ} = E.
If σ is a linearization of ρ, we call �(σ) = �(C0), �(e1), �(C1), . . . an observation of ρ.
We associate with each system a set of concurrent runs ρ such that each observation of
ρ is an observation of the system. Under weak technical assumptions, a concurrent run
arises as an equivalence class of observations where two observations are equivalent if
they only differ in the order of concurrent events.

An action is enabled in a configuration C if it is enabled in �(C). An action α is
taken in an event e if �(e) = α.

2.3 Hyperfairness

Figs. 3.a and 3.b show runs of the five philosophers system where only three philoso-
phers a, b, and c take steps; x.h represents philosopher x becoming hungry, x.p repre-
sents x picking up both forks, x.c stands for x becoming critical (i.e., eating), and x.r
represents x releasing both forks. Arrows represent direct causality, i.e., causality is the
transitive closure of direct causality. Note that a.c and c.c are concurrent while a.c and
b.c (as well as b.c and c.c) are causally related.

Fig. 3.b shows a run ρ with a conspiracy that is due to a race condition. Whether
action b.p is enabled depends on the observation: ρ has an observation where b.p is in-
finitely often enabled and ρ has an observation where b.p is never enabled. We take that
property, i.e., that the enabledness depends on the observation as the defining character-
istic of a “race-conspiracy”. We now define hyperfairness w.r.t. an action label, which
is a subset λ ⊆ A of actions. Hyperfairness w.r.t. an action will be a special case of the
definition.

On Conspiracies and Hyperfairness in Distributed Computing 37

a

b

c

a.h a.p a.c a.r

b.h b.p b.c b.r

c.h c.p c.c c.r

(a) Three philosophers becoming critical

a

b

c

a.ha.h a.p a.c a.r

b.h

c.hc.h c.p c.c c.r

(b) Philosopher b starving due to a conspiracy

Fig. 3. Two concurrent runs of the five philosophers system

Definition 1. Let λ ⊆ A. We say that λ is enabled in a state z if there is an action α ∈ λ
that is enabled in z; λ is taken at a position i of an observation σ = z0, α1, z1, . . . if
αi ∈ λ. A run ρ is not hyperfair w.r.t. λ if λ is taken at most finitely many times in ρ and
there is an observation σ = z0, α1, z1, . . . of ρ in which λ is always eventually enabled,
that is, for each position i of σ, there is a position j ≥ i such that z j enables λ. A run ρ
is not hyperfair w.r.t. an action α if it is not hyperfair w.r.t. the label {α}.

Hyperfairness as defined in Def. 1,∞-fairness, and the notion of strong fairness are
related as follows. Recall that an observation σ is not strongly fair w.r.t. a label λ if λ is
taken at most finitely many times in σ and λ is always eventually enabled in σ. Strong
fairness is weaker than hyperfairness which in turn is weaker than ∞-fairness. To state
this formally, we need to define∞-fairness and strong fairness on concurrent runs. The
following definition is the natural way to do this.

Definition 2. A concurrent run ρ is not strongly fair (not ∞-fair) w.r.t. a label λ if all
observations of ρ are not strongly fair (not∞-fair) w.r.t. λ.

Strong fairness on concurrent runs coincides with the notion of the minimal equivalence
completion of strong fairness in the literature [9,13]. Note that a run ρ is not hyperfair
w.r.t. λ if and only if it has an observation that is not strongly fair w.r.t. λ.

Proposition 1. If a run is∞-fair w.r.t. λ, then it is also hyperfair w.r.t. λ; if it is hyper-
fair w.r.t. λ, then it is also strongly fair w.r.t. λ.

The examples in Fig. 2 show that these implications are strict: The system in Fig. 2.a
terminates under hyperfairness w.r.t. the action “two black tokens meet” but it does not
terminate under strong fairness w.r.t. any label2. The systems in Figs. 2.b and c terminate
under∞-fairness but not under hyperfairness. “Conspiracies” are those runs which are
strongly fair but not hyperfair w.r.t. an action or a label. A run that is strongly fair but
not hyperfair w.r.t. a label λ has an observation that is strongly fair as well as one that
is not strongly fair w.r.t. λ.

Note that, in general, one needs to require fairness for more than one action. Con-
sider, for example, Fig. 2.d. Here, two meeting black tokens are turned into one white
token and two meeting white tokens are destroyed. The system terminates if hyperfair-
ness is assumed for both actions, “two black tokens meet” and “two white tokens meet”.

2 This and the following statements get a firm footing when we define concurrent runs in the
message-passing model below.

38 H. Völzer

Next we show that hyperfairness can be written in a way that is similar to the definition
of strong fairness.

Proposition 2. A run ρ is not hyperfair w.r.t. λ if and only if λ is taken at most finitely
often and λ is always eventually enabled in ρ, that is, for each configuration C of ρ,
there is a configuration D that is reachable from C and that enables λ.

Our notion of hyperfairness has been defined as 0-transition fairness by Merceron
[18] as a theoretical way to define fairness on concurrent runs, where, however, the
relationship with conspiracies has not been pointed out. It also coincides with the mini-
mal equivalence completion of strong fairness as defined by Francez, Back, and Kurki-
Suonio [9] (cf. also [13]), which they have defined as a way to transform strong fair-
ness into a fairness notion on observations that respects the equivalence described in
Sect. 2.2.

2.4 Hyperfairness in Message- assing Systems

For the sake of concreteness, we define now hyperfairness in a concrete system model,
viz. in the asynchronous message-passing model. Consider a finite set P of sequential
processes, which communicate by asynchronous reliable message passing, i.e., mes-
sages are not lost, duplicated, or corrupted during transit but may be received in a dif-
ferent order than in which they were sent. A process is modeled by an automaton over
some countable set S of local states. A message is modeled as a pair (p,m), where p is
a process denoting the receiver of the message and m, drawn from some countable set
M, denotes the content. LetM = P × M be the set of all messages. For convenience,
we assume that each message is sent only once during a run3.

The message system is modeled by associating with each process p an output buffer
p.outp ⊆ M and an input buffer p.inp ⊆ M. An action is either a delivery action
p.del(q,m) or a computation action p.comp(s, X). A delivery action p.del(q,m) is en-
abled if (q,m) is contained in p.outp. This action moves (q,m) from p.outp to q.inp. A
computation action p.comp(s, X), where X is a set of messages, is enabled if process
p is in state s and X = p.inp. This action empties p’s input buffer and it computes a
new local state and puts a finite set of messages into p’s output buffer according to the
specification of p’s automaton.

Global states and the graph associated with such a system are defined in the usual
and natural way. We now define concurrent runs through Lamport’s happens-before
relation [15]. Fix a system and let σ = z0, α1, z1, . . . be an observation of that system.
Let E = {1, . . .} be the set of positions of σ and ≺ be the smallest transitive relation on
E such that

1. i ≺ j if i < j, αi = p.comp(s, X) and α j = p.comp(s′, X′) and
2. i ≺ j ≺ k if αi = p.comp(s, X) is an action that puts (q,m) into p.outp, α j =

p.del(q,m), and αk = q.comp(s′, X′) where (q,m) ∈ X′.

3 That can be achieved by incorporating the identity of the sender and a sequence number in
each message.

P

On Conspiracies and Hyperfairness in Distributed Computing 39

An observation (or run) is admissible if each message in each output buffer is
eventually delivered and each process always eventually takes another action unless
it crashes or it has eventually henceforth no more enabled action.

We are interested in synchronizations of messages and process states, e.g., whether
a particular message is received in a particular local state of the process or whether par-
ticular messages are received together. We will therefore consider labels that describe
such synchronizations.

Definition 3. Let p be a process. A set λ of computation actions of p is called a syn-
chronization label if p.comp(s, X) ∈ λ and X ⊆ Y implies p.comp(s, Y) ∈ λ.

A synchronization label can be specified by a pair (p, Φ) where p is a process and
Φ = {(s1, X1), . . .} is a set of pairs where si is a state of p and Xi is a set of messages;
(p, Φ) then denotes the set

{p.comp(s, Y) | ∃(s, X) ∈ Φ : X ⊆ Y}.
Hyperfairness w.r.t. a synchronization label is defined through Def. 1. According to
Prop. 2, a concurrent run ρ is not hyperfair w.r.t. λ if λ is taken at most finitely many
times and there is always eventually a configuration and an (s, X) ∈ Φ such that p is in
state s and all messages m ∈ X are in transit to p.

Enabledness of an action p.comp(s, X) in a configuration C of a concurrent run
intuitively means: In C, process p is in state s and if p waited there for some time, then
it would receive all messages in X (and maybe more) together in one step. That means
that “freezing” p at suitable times for a while could help to prevent a conspiracy. We
will see in Sect. 4 under what circumstances this idea actually works.

When we write λ = (p,Q,M1, . . . ,Mk) we shall mean the synchronization label

{p.comp(s, X) | s ∈ Q and ∀i = 1, . . . , k : Mi ∩ X � ∅},

a

b

c
C1 C2

Fig. 4. A concurrent run that is not hyperfair

i.e., the set of computation actions
where p being in a state in Q receives
at least one message from each Mi.

Fig. 4 shows a run of the system in
Fig. 2.a that is not hyperfair w.r.t. the
synchronization labels (p, S ,M1,M2)
for p ∈ {a, b, c} where S is the set of
all local states and M1 and M2 denote
the set of the messages containing the
first and the second token respectively.

Configurations enabling (c, S ,M1,M2) are represented by vertical dotted lines.

3 Problems with Inherent Conspiracies

We discuss three problems in this section where conspiracies inherently arise. First we
discuss the committee coordination problem, then a crash-tolerant version of the dining
philosophers problem, and finally the crash-tolerant consensus problem.

40 H. Völzer

3.1 Committee Coordination

A classical problem where conspiracies arise is the committee coordination problem
[5], which captures the problem of scheduling multiparty-interactions. Multiparty-inter-
actions are a common construct in distributed programming and specification
languages. Consider a finite set P of professors and a family C ⊆ 2P of nonempty
committees. Each professor p is always either quiet or ready or attending a meeting of
a committee C such that p ∈ C. Each professor is initially quiet. A quiet professor may
remain quiet forever or it may become, at any time, ready to attend a meeting, i.e., it
becomes ready to attend a meeting of any committee it is a member of. A meeting of a
committee C can be seen as a common simultaneous action of all p ∈ C. This can be
simulated in the message-passing model by each professor in C sending a message to
each professor in C upon becoming attending and then waiting for receiving a message
from each professor in C to leave that meeting. We say that a committee C is ready
when all p ∈ C are ready.

We now ask for an algorithm that schedules meetings, that is, based on the informa-
tion which professors are ready, decides which ready committee shall meet next. The
members of that committee are then informed by the algorithm, which triggers them to
become attending. We assume that it takes some positive amount of time to inform a
professor of a scheduling decision. Two committees can only meet concurrently if they
are disjoint. Each committee meeting ends after a positive finite amount of time, and
after a meeting of C, all professors p ∈ C become quiet again.

The liveness requirement that was originally posed [5] is deadlock freedom: If a
committee C is ready then it will eventually meet or a conflicting committee, i.e., a
committee C′ such that C ∩ C′ � ∅, will eventually meet. Deadlock-freedom does
not rule out conspiracies w.r.t. a particular committee: Consider for example the three
committees A = {p}, B = {p, q},C = {q}. A conspiracy w.r.t. B arises when A and
C alternately meet in such a way that p is quiet whenever q is ready and vice versa,
i.e., the members of B are always eventually ready concurrently but not at the same
time. Note that this may force the “starvation” of a particular professor: For example,
if C = {A, B,C} where A = {p}, B = {p, q, r},C = {q}, then a conspiracy of A and C
against B forces the starvation of r.

We consider the following two liveness requirements, where each admissible obser-
vation satisfies for each committee C:

– If C is always eventually ready then C meets infinitely often. (Starvation freedom)
– If each p ∈ C is always eventually ready then C meets infinitely often. (Recurrence)

Clearly, recurrence implies starvation-freedom and starvation-freedom implies dead-
lock-freedom.

Theorem 1. Define c(p) = {C | p ∈ C} for each professor p. There is a committee
coordination algorithm satisfying recurrence (or starvation-freedom) if and only if for
all professors p, q, we have c(p) ∩ c(q) = ∅ or c(p) ⊆ c(q) or c(q) ⊆ c(p).

Proof. For the impossibility, fix p and q such that the above condition is violated. Then
there exist A ∈ c(p) \ c(q), B ∈ c(p) ∩ c(q), and C ∈ c(q) \ c(p) (see Fig. 5). Suppose
that a starvation-free algorithm exists.

On Conspiracies and Hyperfairness in Distributed Computing 41

1. Let all p ∈ A and only those become ready, if necessary repeatedly, until A is
scheduled but not yet meeting. (There may be subcommittees of A that are sched-
uled first by the algorithm. But if A is always eventually ready, A will eventually
meet due to starvation-freedom.) B cannot meet because q is never ready. Now let
all r ∈ B\A become ready. Since A is scheduled but not yet meeting, A is still ready
and therefore, B is now ready as well. However B cannot meet because A is already
scheduled. Let A now meet and become quiet again.

2. Repeat the previous step now with C in the role of A and p in the role of q.
3. Repeat the previous two steps infinitely often. In the obtained observation, B is

infinitely often ready but never meets. The obtained observation therefore violates
starvation-freedom contradicting our supposition.

A B C

p q

Fig. 5. Three committees

For the possibility, assume, without loss of gener-
ality, that each professor is a member of at least one
committee. Let P = {p1, . . . , pn}. Define pi � p j if
(c(pi) ⊂ c(p j)) or (c(pi) = c(p j) and i < j). It is easy
to verify that � is a partial order that represents a forest
(� is irreflexive and transitive and we have: pi � p j and
pi � pk implies p j � pk or pk � p j). For each profes-
sor p, call the (w.r.t. �) maximal professor q such that

p � q the root of p. Committees are sets of professors that are pairwise comparable
w.r.t. �, hence a committee corresponds to a path from some professor p to its root.
Therefore, all members of a committee have the same root and a root is a member of all
the committees associated with its tree.

Upon becoming ready, a professor reports that to its root. Each root maintains a
priority list over its committees. If a root becomes ready, it evaluates its incoming mes-
sages for ready committees. Among the ready committees, it schedules the one with
the highest priority. All members of the winning committee are notified, all messages
from professors that are not in the winning committee are buffered. The priority of the
winning committee is set to least after notification. Committees are scheduled as long
as a root knows of ready but unscheduled committees.

It is easy to see that the algorithm guarantees deadlock-freedom. We prove now
recurrence. Suppose that each p ∈ C is always eventually ready but C is eventually
not scheduled anymore. Consider a time after which C is not scheduled anymore. Let
C = {p1, . . . , pk} where p1 � p2 � . . . � pk. Note that pk is the root of C. It follows
from the definition of � that if a professor p attends committees infinitely often and
p � q so does q. We distinguish the following two cases:

1. No pi ∈ C is attending infinitely often. Since all pi are always eventually ready, C
is eventually ready forever. This contradicts deadlock-freedom.

2. There is an i ∈ {1, . . . k} such that j < i implies p j is eventually ready forever
and j ≥ i implies p j is infinitely often attending. There is a time after which the
readiness of all p j for j < i is known to the root of C. Since pi attends infinitely
often, a committee C′ ∈ c(pi) meets infinitely often. Because of pi � p j for i < j,
we have p j ∈ C′ for i ≤ j. It follows that the root eventually sees the readiness of
C whenever C′ is scheduled. Due to the priority rule, C must be scheduled as well.

42 H. Völzer

Thm. 1 extends a result of Joung [12] by considering distributed processes rather
than processes that are scheduled by a centralized scheduler that has full knowledge
of the history and that communicates synchronously with the professors. We also gave
an alternative characterization of the impossibility and we extended the result from
starvation-freedom to recurrence. Note that our solution is crash-tolerant to some extent:
If we assume that professors may not crash in meetings or if we assume that professors
can detect professors that have crashed in a meeting, then the crash of a professor only
affects the committees it is a member of.

Theorem 2. There is a committee coordination algorithm that satisfies recurrence (and
therefore starvation-freedom) under hyperfairness.

3.2 Dining Philosophers

We consider now the dining philosophers problem as defined by Chandy and Misra
[5]. Consider a finite set P of philosophers and an irreflexive and symmetric relation
N ⊆ P × P. We call p and q neighbors if (p, q) ∈ N. A philosopher cycles through the
states quiet, hungry, and critical. We assume that a critical philosopher always even-
tually becomes quiet while a quiet philosopher may remain quiet forever. We ask for
an algorithm that solves the starvation-free mutual exclusion problem for each pair of
neighbors simultaneously, i.e., we require

(S) Each two neighbors are never critical at the same time, and
(L) each hungry process eventually becomes critical (starvation-freedom).

Chandy and Misra have presented a solution to that problem [5]. We assume now that
a philosopher may crash (permanently and unannounced) while it is enough to assume
here that a critical philosopher may crash, i.e., may remain critical forever. As this may
remain undetected in an asynchronous system, we weaken the starvation-freedom to

(L’) Each hungry process eventually becomes critical unless itself or one of its neighbors
crashes.

This still requires a hungry philosopher with at least distance 2 to a crashed philoso-
pher to become critical. We show now that this problem has inherent conspiracies.

Theorem 3. The crash-tolerant dining philosophers problem is solvable in asynchro-
nous message-passing systems if and only if N is transitive.

Proof. For the impossibility, consider (p, q), (q, r) ∈ N and (p, r) � N. Let p become
hungry and then critical, and let then q and r become hungry. If we now pretend p to
be crashed then, by (L’), r eventually becomes critical. Now let p become quiet and
then hungry again. We can now repeat the previous steps with p and r in swapped
roles. Repeating infinitely, we obtain an observation where there is always either p or r
critical and hence q must remain hungry violating (L’). It is easy to see that the run can
be constructed in such a way that each message is eventually delivered.

For the possibility, observe that the reflexive closure of N is an equivalence. Provide
a unique token for each equivalence class of philosophers, which is needed to become
critical, which may be maintained by any philosopher in the equivalence class, and
which is eventually given to each philosopher upon request.

On Conspiracies and Hyperfairness in Distributed Computing 43

Theorem 4. The crash-tolerant dining philosophers problem can be solved under hy-
perfairness.

Thm. 4 is proven by assuming a central coordinator that is distinct from the philosophers
and that cannot crash. If N is acyclic, we can give a solution without a coordinator.

Theorem 5. The crash-tolerant dining philosophers problem can be solved under hy-
perfairness without a coordinator if N is acyclic.

The case without a coordinator where N is cyclic but not transitive is left open.
Thms. 3 and 4 (as well as Thms. 1 and 2) imply that, in general, we cannot implement
hyperfairness deterministically.

3.3 Consensus

We assume the reader to be familiar with the crash-tolerant consensus problem as de-
fined by Fischer, Lynch, and Paterson [8]. Fischer, Lynch, and Paterson [8] exploit races
between messages to show that the problem is not solvable as soon as one process may
crash. We have elsewhere [20] explicitly constructed an inherent livelock that prevents
processes from reaching consensus. That livelock is different4 from those constructed in
Thms. 1 and 3. Here, we show that consensus can indeed be solved under hyperfairness:

Theorem 6. There is an algorithm that solves t-tolerant consensus for n processes un-
der hyperfairness if and only if n > 2t.

4 Implementation of Hyperfairness

In this section, we show that hyperfairness can be implemented to a large extent by help
of partial synchrony and randomization. We first deal with hyperfairness with respect
to only one synchronization label and generalize then to more than one label.

4.1 Bounded Hyperfairness

We will implement only bounded hyperfairness, a subclass of hyperfairness that often
suffices. It will be clear from the sequel that a somewhat larger subclass can be imple-
mented with the same techniques, however we conjecture that hyperfairness in general
cannot be implemented even under strong synchrony assumptions and randomization.

Bounded hyperfairness rules out bounded conspiracies. Intuitively, a conspiracy is
bounded if the effort that is needed to enable the action from an arbitrary configuration
of the run is bounded.

Definition 4. Let ρ be a run, C and D two configurations of ρ and k ∈ N. We say that
D is k-reachable from C if D is reachable from C and |D \C| ≤ k; ρ is not k-hyperfair
w.r.t. a label λ if λ occurs at most finitely many times and for each configuration C of
ρ there is a configuration that is k-reachable from C and that enables λ. A run is not
bounded-hyperfair w.r.t. λ if there is a k such that it is not k-hyperfair w.r.t. λ.

4 In the livelock constructed in [20], the “conspiring” components are sets of processes that are
not disjoint.

44 H. Völzer

If a run is k-hyperfair w.r.t. λ, then it is also k′-hyperfair w.r.t. λ for k′ < k. A run
that is hyperfair w.r.t. λ is also bounded-hyperfair w.r.t. λ.

4.2 Partial Synchrony

Several forms of partial synchrony have been introduced in the literature, e.g., as a way
to solve the crash-tolerant consensus problem [7]. In this paper, partial synchrony shall
mean that the time each event of a given run consumes is bounded where, however, the
bound is not known to the processes. To formalize this, we associate a value of a global
clock with each event of a run. We assume that the clock progresses discretely and that
each event takes at least one time unit.

Definition 5. A timed run consists of a run ρ = (E, <, �) and a mapping τ : E → N such
that e < e′ ⇒ τ(e) < τ(e′) for all events e, e′. The value τ(e) is called completion time of
e. The value τ0(e) = max{τ(e′) | e′ < e} is called enabling time of e; δ(e) = τ(e) − τ0(e)
is called consumption time of e. The delivery time of a message is the completion time
of its delivery event.

Definition 6. Let K ∈ N. A timed run ρ is K-synchronous if we have δ(e) ≤ K for all
events e of ρ. It is partially synchronous if there is a K such that it is K-synchronous.

4.3 Implementation with Respect to One Synchronization Label

Consider the three philosophers in Fig. 6.a. Each pair of neighbors shares a token by
message-passing. Philosopher b can use an adaptive timeout to prevent a conspiracy
against him, provided the system is partially synchronous: Whenever it has one token,
it waits at least Δ time units for the second token. If the timeout occurs before the
second token is received, it increases the timeout value Δ by some positive constant.
Under partial synchrony, it will eventually have both tokens at the same time.

Consider a message-passing system that may have runs that are not bounded-hyper-
fair with respect to a synchronization label λ. We modify the system such that bounded-
hyperfair runs (w.r.t. λ) are maintained and runs that are not bounded-hyperfair w.r.t. λ
are ruled out by the assumption of partial synchrony.

We use the adaptive timeout mechanism: We assume that process p has a timer that
can be set to a time Δ ∈ N, which guarantees that the timeout occurs not earlier than Δ
time units after the timer has been set. Process p maintains a timeout value Δ and sets
its timer whenever it goes to a state s such that there is a set X of messages such that
p.comp(s, X) ∈ λ, i.e., p’s next computation step is delayed for at least Δ time units. If λ
is not enabled after the timeout, then the timeout value Δ is increased by some positive
constant.

Each timed run ρ′ of the obtained system can be mapped to a timed run ρ of the
original system by hiding the timer and its steps and adding the time that is used by a
step of the timer to the consumption time of the previous computation step. We model
a timer action as a single action that takes more than Δ time units (rather than as a
sequence of Δ actions that take at least one time unit). Then ρ′ is bounded-hyperfair
w.r.t. λ if and only if ρ is. Furthermore, we will call ρ′ K-synchronous if all events of ρ′
except the steps of the timer consume not more than K time units.

On Conspiracies and Hyperfairness in Distributed Computing 45

a

b

c

(a) Three philosophers

a b

c

d

(b) Four philosophers in a ring

Fig. 6. Two more systems of dining philosophers

Lemma 1. If ρ is an admissible and partially synchronous timed run of the obtained
system, then ρ is bounded-hyperfair w.r.t. λ.

Proof. Let ρ be K-synchronous. Assume that for each configuration C of ρ, there is
a configuration enabling λ that is k-reachable from C. It is easy to check that p takes
infinitely many steps. It follows that p takes infinitely often a step where it sets its timer.
If the timeout value is increased only finitely many times, then λ is taken infinitely many
times and we are done. Hence assume the timeout value is increased infinitely often.

Consider a time where the timeout value is greater than k · K. Fix a later time t at
which the timer is set. It is easy to check that for each time t ∈ N, the set Ct := {e |
τ(e) ≤ t} is a configuration. Let D be a configuration that is k-reachable from Ct and
that enables λ. Call s the state that p has in D. Let t′ be the time that the computation
step producing that state s in D is completed. Clearly t ≤ t′ and therefore Ct ⊆ Ct′ ⊆ D.
Due to the timer action, p leaves s not earlier than t′ + k · K. Consider a message m that
is in transit to p in D. Since D \Ct′ does not contain any step of p, all events in D \Ct′

consume less than K time units. Furthermore, we have |D \Ct′ | ≤ k and therefore, m is
delivered not later than t′+k ·K. Hence all messages that are in transit in D are delivered
in time for p’s next computation step after D. Therefore λ is taken in that step of p. It
follows that ρ is bounded-hyperfair w.r.t. λ.

4.4 Implementation with Respect to Multiple Labels

If we implement the mechanism from Sect. 4.3 at all processes simultaneously then
we might delay the sending of a message for which the receiver already waits and has
set a timer as well. Consider, for example, four philosophers in a ring (Fig. 6.b). If
all philosophers hold their left fork simultaneously while using the adaptive time-out
mechanism with the same timeout value, it can happen that all philosophers do the
same at the same time and therefore no philosopher ever becomes critical.

Such a problem is a symmetry breaking problem, which can be solved through
randomization as follows. We use the same construction as in Sect. 4.3, now for finitely
many synchronization labels simultaneously, but now, each time when p goes to a state
that is part of an action in λ, it flips a coin in order to decide whether to set the timer or
not.

Theorem 7. The property (ρ is partially synchronous⇒ ρ is bounded-hyperfair w.r.t.
all labels) has probability 1 in the obtained system.

46 H. Völzer

Corollary 1. The committee coordination problem can be solved such that recurrence
is satisfied with probability 1 through partial synchrony and randomization. The crash-
tolerant dining philosophers problem can be solved with probability 1 through partial
synchrony and randomization.

Joung [11] has proposed a different randomized algorithm that solves a general-
ization of the starvation-free committee coordination problem under partial synchrony.
The used techniques are similar to ours. We have shown elsewhere [21] that adding
randomization (but no synchrony assumption) is not enough to solve the crash-tolerant
dining philosophers problem in general with high probability.

5 Conclusion

We have presented a new formalization of Attie, Francez, and Grumberg’s concept
of hyperfairness [1] in a language-independent way. It captures the intuitive notion
of “conspiracies” that are due to race conditions. We have shown that these conspir-
acies also occur in message-passing systems and that they can be inherent to natural
synchronization problems.

Our notion is strictly weaker than Best’s∞-fairness (resp. Lamport’s hyperfairness)
which means that an algorithm that is proven correct under hyperfairness is easier to
implement than an algorithm that is proven correct under∞-fairness. The relative weak-
ness of hyperfairness w.r.t. ∞-fairness was important to give a generic implementation
of bounded hyperfairness through partial synchrony and randomization.

That implementation is not efficient. However, our implementation shows what
techniques can be used in an implementation. It also shows that hyperfairness can be
seen as an abstraction from weak synchrony assumptions and randomization. As a fair-
ness assumption on a semantic level, hyperfairness is a more abstract concept hiding
synchrony assumptions than, for example, shared communication objects [10] or fail-
ure detectors [4], where the latter is only applicable in models where failures may occur.
The more concrete abstractions of shared objects and failure detectors have the advan-
tage that they can be defined on observations, i.e., no causality information is needed
for them. The relationship of shared objects and failure detectors with hyperfairness
will be subject of future work.

References

1. P. C. Attie, N. Francez, and O. Grumberg. Fairness and hyperfairness in multi-party interac-
tions. Distributed Computing, 6:245–254, 1993.

2. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement proto-
cols. In Proc. 2nd PODC, pp. 27–30. ACM, 1983.

3. E. Best. Fairness and conspiracies. IPL, 18:215–220, 1984. Erratum ibidem 19:162.
4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, Mar. 1996.
5. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.
6. E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf., 1:115–138, 1971.

On Conspiracies and Hyperfairness in Distributed Computing 47

7. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, Apr. 1988.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

9. N. Francez, R.-J. J. Back, and R. Kurki-Suonio. On equivalence-completions of fairness
assumptions. Formal Aspects of Computing, 4:582–591, 1992.

10. M. Herlihy. Wait-free synchronization. ACM ToPLaS, 11(1):124–149, Jan. 1991.
11. Y.-J. Joung. Two decentralized algorithms for strong interaction fairness for systems with

unbounded speed variability. Theor. Comput. Sci., 243(1-2):307–338, 2000.
12. Y.-J. Joung. On fairness notions in distributed systems, part I: A characterization of imple-

mentability. Information and Computation, 166:1–34, 2001.
13. Y.-J. Joung. On fairness notions in distributed systems, part II: Equivalence-completions and

their hierarchies. Information and Computation, 166:35–60, 2001.
14. Y. Kwong. On the absence of livelocks in parallel programs. In Semantics of Concurrent

Computation, LNCS 70, pp. 172–190. Springer, 1979.
15. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558–565, July 1978.
16. L. Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239–245, 2000.
17. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Workshop on Logics

of Programs, LNCS 193, 1985.
18. A. Merceron. Fair processes. In Advances in Petri Nets, LNCS 266. Springer, 1987.
19. A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc. 15th STOC,

pp. 278–290. ACM, 1983.
20. H. Völzer. A constructive proof for FLP. IPL, 92:83–87, 2004.
21. H. Völzer. On randomization versus synchronization in distributed systems. In ICALP, LNCS

3142, pp. 1214–1226. Springer, 2004.
22. H. Völzer. On conspiracies and hyperfairness in distributed computing. SIIM Technical

Report SIIM-TR-A-05-20, Universität zu Lübeck, 2005.

On the Availability of Non-strict Quorum

Systems�

Amitanand Aiyer1, Lorenzo Alvi i1, and Rida A. Bazzi2

1 Department of Computer Sciences,
The University of Texas at Austin
{anand, lorenzo}@cs.utexas.edu

2 Computer Science and Engineering Department,
Arizona State University,

bazzi@asu.edu

Abstract. Allowing read operations to return stale data with low prob-
ability has been proposed as a means to increase availability in quorums
systems. Existing solutions that allow stale reads cannot tolerate an ad-
versarial scheduler that can maliciously delay messages between servers
and clients in the system and for such a scheduler existing solutions can-
not enforce a bound on the staleness of data read. This paper considers
the possibility of increasing system availability while at the same time
tolerating a malicious scheduler and guaranteeing an upper bound on
the staleness of data. We characterize the conditions under which this
increase is possible and show that it depends on the ratio of the write
frequency to the servers’ failure frequency. For environments with a rel-
atively large failure frequency compared to write frequency, we propose
K-quorums that can provide higher availability than the strict quorum
systems and also guarantee bounded staleness. We also propose a def-
inition of k-atomicity and present a protocol to implement a k-atomic
register using k-quorums.

1 Introduction

Quorum systems have been extensively studied in the literature. A traditional, or
strict, quorum system is simply a collection of sets called quorums such that any
two quorums have a non-empty intersection. Quorum systems have been used
for mutual exclusion, coordination, and data replication in distributed systems.

In a particular protocol using quorum systems, quorums are accessed either
to write a new value to a quorum or to read the values stored in a quorum.
Important quality measures of quorum systems are fault tolerance, availability,
load, and quorum size. In general, these quality measures are conflicting in strict
quorum systems [13]. Systems with high availability tend to have large quorum
sizes and high load. If the failure probability of individual nodes is less than 0.5,
the system with the highest availability is the majority system in which a quorum
� This work was supported in part by NSF CyberTrust award 0430510, an Alfred P.

Sloan Fellowhip and a grant from the Texas Advanced Technology Program.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 48–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

s

On the Availability of Non-strict Quorum Systems 49

consists of a majority of the servers. Unfortunately, this system suffers from high
load and large quorum size, which means that a large subset of servers need to
be up in order for the system to be usable. However, in environments such as
peer-to-peer networks, where the availability of individual nodes is not very high,
the availability of the majority system is not high. If the failure probability of a
node is more than 0.5, the best system in terms of availability is the singleton,
but that system has a very high load [14].

In order to develop quorum systems with small quorum sizes and with avail-
ability higher than that of the majority system, probabilistic quorum systems
have been proposed [11]. A probabilistic quorum system is a collection of sets
together with an access strategy which specifies the probability that a quorum
is chosen to be used in an access. In a probabilistic quorum system, two quo-
rums chosen according to the access strategy have a non-empty intersection
with probability 1− ε, where ε is a system parameter. Using probabilistic quo-
rum systems, a read access is guaranteed to get the value of the most up-to-date
non-overlapping write access with probability 1− ε.

More recently, Yu [20] proposed Signed Quorum systems which aim at over-
coming problems with the definition of probabilistic quorum systems. Yu ob-
served that probabilistic systems cannot be realized in a system in which the
scheduler is an active adversary that delays responses from servers to prevent
clients from following the probabilistic access strategy. He proposed a signed quo-
rum system (SQS) in which the high probability of intersection depends on the
assumptions that the probability that two clients observe conflicting (mismatch)
states (up or down) of servers is low and that simultaneous mismatches of dif-
ferent servers are independent—the independent mismatch assumption. These
assumptions are backed by trace results from a number of experiments [3,21];
further, Yu argues that in practice probabilistic quorum systems would require
making explicit assumptions about the scheduler similar to the ones SQS makes.
In SQS, a quorum consists of positive elements (servers that respond and are
up) and negative elements (servers that do not respond and are assumed to be
down). By allowing servers that are down to be part of a quorum, Yu’s system
can be used even if a small number of servers are up.

Both probabilistic systems and SQS make implicit or explicit assumptions
about the scheduler [20]. Both systems would not perform as claimed if these
assumptions do not hold. Both systems are unusable in the presence of an ad-
versarial scheduler that controls the delay to various nodes in the system. In
fact, in the presence of an adversarial scheduler, the returned values can be ar-
bitrarily old. Also, due to their probabilistic nature, both probabilistic systems
and signed quorum systems do not provide strict guarantees on the freshness of
values returned by a quorum. With positive, albeit small, probability, a quorum
might return a value that is old (even in the absence of an adversarial scheduler)
and there is no way for a client to tell how old the value is.

This paper investigates the following question. “Is it possible to design a quo-
rum system that: provides strict guarantees on the staleness of values returned,
tolerates an adversarial scheduler, and, in the absence of an adversarial scheduler

50 A. Aiyer, L. Alvi i, and R.A. Bazzi

provides higher availability than the majority system?” It turns out that the an-
swer to this question does not only depend on the nodes’ failure probability, but
it also depends on the rate at which write operations are executed, the mean time
between failure (mtbf), and the mean time to recover (mttr) of individual nodes.
We prove a lower bound on the possible increase in availability as a function of
the staleness of values and the ratio of the frequency of writes to the frequency
of failures (1/mtbf). We show that for some values of the ratio, the possible
increase of availability is negligible. For the cases where the increase in availabil-
ity is not negligible, we propose K-quorums, which can have higher availability
(for the same system size) than that of the majority system when the system is
well behaved (no adversarial scheduler) and that have bounded staleness in the
presence of an adversarial scheduler. Our study of bounded-staleness also led us
to revisit the properties of signed quorum systems. For signed quorum systems,
we found that these systems are not guaranteed to behave as predicted in [20]
if the times between writes is large compared to the times between failures.

In summary, we achieve the following in this paper.

– We prove a lower bound on the availability of systems that can tolerate an
adversarial scheduler and provide guarantees on the staleness of returned
values.

– We introduce K-quorum systems which, for some combination of system
parameters, have lower load and higher availability than traditional quorums
systems.

– We show how to use K-quorum systems for providing K-atomic implemen-
tations of a shared register.

The rest of the paper is organized as follows. Section 2 presents the proba-
bilistic approaches to increasing the availability of quorum systems and discusses
their limitations. Section 3 introduces K-consistency semantics, a formalization
of relaxed access semantics with bounded staleness. Section 4 presents the sys-
tem model and the definition of traditional quorum systems. Section 5 proves
lower bounds on the availability of quorum system with worst-case guarantees
on staleness. Section 6 introduces K-quorum systems and shows how they can
be used to implement K-atomic registers. Section 7 gives an overview of related
work.

2 Probabilistic Approaches

In strict quorum systems any read and write quorum sets have a non empty
intersection. This allows for easy construction of registers with safe-semantics,
where any read – that is not concurrent with any write – is guaranteed to return
the value from the latest write.

Probabilistic approaches, such as PQS [11] and SQS [20], provide a high avail-
ability and low load at the cost of weakening consistency semantics. In these sys-
tems, the read and write quorums only intersect probabilistically. Hence, these
systems can only provide safe-semantics probabilistically. Probabilistic guaran-
tees can cause these systems to return arbitrarily old values. In synchronous

s

On the Availability of Non-strict Quorum Systems 51

systems, the probability that a read violates safe-semantics can be made arbi-
trarily small by using a large quorum size with an appropriate access strategy.
However there can be no bound on this probability in an asynchronous system
where an adversarial scheduler can affect the choice of quorums.

2.1 Probabilistic Quorum System

A probabilistic quorum system consists of read and write quorums similar to
strict quorums, along with an access strategy for choosing quorums [11]. Any two
quorums that are chosen according to the specified access strategy will intersect
with a high probability.

In a simple construction of such a quorum system with n nodes, quorums
are chosen to be sets of cardinality l

√
n where l is a system parameter [11]. For

large values of n, these systems provide a higher availability than the majority
quorum system because they require only l

√
n nodes to be accessible, as opposed

to requiring n+1
2 in the majority quorum system. In a synchronous setting, using

a uniform random access strategy guarantees that any two quorum sets of size
l
√

n intersect with probability at least 1 − el2 . However, in an asynchronous
system where the scheduler may be adversarial the probability of intersection
can be much smaller – in fact it can be zero.

Examples. Consider a probabilistic quorum system over nodes {1, 2, . . . , 100},
where any set of 30 nodes form a quorum. In the presence of an non-adversarial
scheduler, if quorums are chosen uniformly at random, then the probability that
two quorums do not intersect is less than 1.88×10−6. However in an asynchronous
system in which the scheduler arbitrarily delays read messages to {1, 2, . . . , 50}
and also delay write messages to {51, 52, . . . , 100}, read and write quorums will
never intersect causing reads to always return arbitrarily old values.

2.2 Signed Quorum Systems

Signed quorum systems (SQS) [20], like PQS, provide a probabilistic guarantee
of intersection. SQS utilizes the notion of a failure detector to form an estimate
of nodes that may be inaccessible. Quorums in SQS consist of both positive and
negative elements. Positive elements denoting the servers that have been con-
tacted, and negative elements denoting servers that have been suspected to fail.
Two quorums are said to intersect if and only if they intersect in a positive ele-
ment. Like PQS, SQS also increases the availability by allowing non-intersecting
quorums. However, SQS requires that no two non-intersecting quorums be ac-
cessible in the same configuration. In fact, SQS requires that the configurations
in which two non-intersecting quorums are accessible differ in at least 2α node-
states.

In a system with perfect failure-detectors, if the configuration of the nodes
does not change (or less than 2α nodes change state), then SQS can always
guarantee safe-semantics and behave like a strict quorum system. The probability
of non-intersection is equal to the probability that more than 2α nodes used by a

52 A. Aiyer, L. Alvi i, and R.A. Bazzi

read and write access have different states and this probability is lower for larger
values of α. In a asynchronous system, it is not possible to distinguish a failed
node from a node whose messages are all delayed by the adversary (assuming that
the only means to determine the state of a node is through message exchanges).
In such a setting, an adversarial scheduler can present the reader and writer
with totally different configurations so that the quorums used never intersect. A
reader may then read an arbitrarily old value.

3 K-Consistency Semantics

The semantics of shared objects that are implemented with quorum systems can
be classified as safe, regular or atomic [9]. For applications that can tolerate some
staleness these notions of consistency are too strong. We propose the notion
of K-safe, K-regular and K-atomic semantics, similar to those defined in [9],
for formalizing consistency semantics in applications that can tolerate limited
staleness.

1. K-safe: In a system that provides K-safe semantics, a read that does not
overlap with a write is guaranteed to return the result of one of the latest
K completed writes. The result of a read, that overlaps with a write is
unspecified.

2. K-regular: A system that provides K-regular semantics, guarantees that
any read, that does not overlap with a write, is guaranteed to return the
result of one of the latest K completed writes. A read that overlaps with a
write, returns either the result of one of the latest K completed writes, or
the eventual result of one of the overlapping writes.

3. K-atomic: In a system with K-atomic semantics, there exists an order of
the operations that is consistent with real time order and such that the
values returned by a read operation is equal to one of the values written by
the last K preceding writes in the order (assuming there are K initial writes
with the same initial value).

4 Model and Definitions

4.1 Model

The system consists of n nodes, P = {1, 2, . . . , n}, each of which may be inac-
cessible with a probability pf . Nodes are assumed to crash and recover indepen-
dently, with a mean-time-to-failure of mttf and a mean-time-to-recover of mttr.
The mean-time-between-failures, is mtbf = mttr + mttf and pf = mttr

mtbf . If a
node is up, then it is assumed to follow the specified protocol; i.e. we assume
there are no malicious faults. Each node is assumed to have access to stable stor-
age, such that the values written to the servers are persistent across crashes. The
system is assumed to be asynchronous, with no bound on the relative speeds of
the nodes. The links are modeled as fair links, i.e. if a message is sent infinitely
often, it will eventually be delivered at the receiver.

s

On the Availability of Non-strict Quorum Systems 53

In this paper, we assume that only servers fail. We assume that the duration
of operations are small enough so that we can neglect the client failures during
the operations. Our results, for the single writer multiple reader scenario, can
however be easily extended to tolerate benign client-failures by incorporating a
logging protocol at the client end.

4.2 Quorum Systems

Definition 1. A quorum system over the set of nodes P is a tuple
(
R,W

)
;

where R ⊂ 2P is the set of read quorums and W ⊂ 2P is the set of write
quorums.

During a read (write) operation, the reader (writer) contacts a read quorum
(write quorum) to perform a read (write) operation. The access strategy specifies
which nodes need to be contacted to access a quorum set.

Definition 2. An access strategy for a client specifies an algorithm for choosing
a quorum set to access, possibly based on the previous local history at the client.

For strict quorum systems, the access strategy allows the system to contact
any of the quorums, as long as every write quorum intersects with a read quo-
rum. In probabilistic quorum systems, the access strategy is probabilistic and
the quorum is chosen at random, ignoring the local history at the client. In
Section 6 we present protocols which provide stronger non-probabilistic consis-
tency guarantees, using an access strategy that is dependent on the client’s local
history.

Definition 3. A configuration C of a system specifies the state of each node in
the system (either as accessible or inaccessible).

For systems with independent failures, the probability of the system being
in a configuration C, with K accessible nodes, is P (C) =

(
n
k

)
(1− pf)k

pf
n−k.

An operation of a client is successful in a given configuration if the quorum set
that should be accessed as specified by the access strategy (or one of the quorum
sets, if the strategy specifies more than one valid set) consists of elements that
are all available.

In what follows we define the availability for systems in which the scheduler
is not adversarial. The availability of the system is only defined during periods
in which the system is well behaved, i.e. periods where any message sent from
a non-crashed node to another non-crashed node is guaranteed to be delivered
within a fixed (may be unknown) time bound. If the network is asynchronous
then an adversarial scheduler can delay all messages arbitrarily to stall any
system from making progress, hence making the system unavailable and any
definition of availability meaningless.

Definition 4. The availability of the system for reads, ar(C, t), in a given con-
figuration C over a time interval of duration t, is defined as the ratio of successful
reads to the total number of reads in an interval of time of length t when the
system is in the specified configuration C.

54 A. Aiyer, L. Alvi i, and R.A. Bazzi

Definition 5. The availability of the system for reads, ar(C), in a given config-
uration C is the probability that a read operation is successful when the system
is in configuration C. 1

Let t be the random variable denoting the duration of a configuration C and
whose probability distribution is determined by the failure behavior of the nodes.
Let t1, t2, . . . denote the various realizations (time durations of configuration C)
of t in an execution. If succi denotes the number of successful reads, and toti
denotes the number of attempted reads in the ith realization, then

ar(C) = lim
m→∞

∑m
i=1 succi∑m
i=1 toti

Definition 6. The availability of the system for reads, ar is defined as the ex-
pected availability, E[ar(C)], over all the possible configurations.

We define the availability of the system for writes, aw(C, t), aw(C), and aw

on lines similar to the availability definitions for reads.

Definition 7. The availability of a Quorum System, is defined as the fraction
of successful operations when the network is synchronous.

Our definitions are a generalization of the definitions used previously in
[11,14,20]. In the traditional quorum systems and probabilistic quorum systems,
where the access strategy is independent of the local history, the availability
ar(C, t) and aw(C, t) will be independent of t. However, this may not be the case
if the access strategy is dependent on the local history.

5 Bounds on Increase in Availability

Consider a quorum system Q which provides a bounded staleness of K. For
any configuration C, let wQ(C) be the write availability and rQ(C) be the read
availability of the quorum system in the configuration C.

Let γr and γw be the rates of read and write operations in the system, and let
τ(C) be the expected duration of a configuration C (we assume that the rates of
read and writes are constants, but the results still apply by replacing the rates
with expected rates).

Lemma 1. If C is a configuration with l nodes that are up and n− l nodes that
are down, then the expected duration of the configuration, τ(C), is ≥ 1

l
mttf + n−l

mttr

Proof. Consider a small duration of time dt. The probability of particular node,
that is currently crashed, recovering during an interval of length dt is dt

mttr .
Similarly, the probability of a node crashing is dt

mttf .

1 This definition does not depend on the distribution of read operations if that distri-
bution is independent from that of system configurations.

s

On the Availability of Non-strict Quorum Systems 55

In configuration C, there are l nodes that are up and n − l nodes that are
down. Therefore the probability that the system, currently in configuration C,
changes to some other configuration during an interval of time of length dt is
≤

(
l

mttf + n−l
mttr

)
dt. Hence, the expected duration for which a configuration lasts,

τ(C), is ≥ 1
l

mttf + n−l
mttr

.

For systems where nodes are available with a probability > 0.5, mttf > mttr
and

τ(C) ≥ 1
l

mttf + n−l
mttr

≥ 1
l

mttr + n−l
mttr

=
mttr

n
= τmin

The expected duration of any configuration is at least τmin = mttr
n . Let AC(K)

denote the set of all configurations C such that K writes can be executed suc-
cessfully in C and a read can be executed successfully after K writes are executed
in C.

Lemma 2. For any configuration Ci ∈ AC(K), there exist two sets W (Ci) and
R(Ci) that are available during the configuration Ci and, W (Ci) ∩R(Ci) �= ∅.

Proof. If Ci ∈ AC, it follows that there can be K successful writes in the config-
uration Ci and a successful read after the kth write. Let R be the read quorum
that was used for the successful read after the kth write. Let W1, W2, . . . , WK

be the set of servers contacted during the K successful writes. Since the system
provides bounded staleness, it follows that

R ∩
j=k⋃
j=1

Wj �= ∅

Choose W (Ci) =
⋃j=k

j=1 Wj and R(Ci) = R. Since each Wj and R is available in
Ci it follows that W (Ci), and R(Ci) are available in Ci.

Lemma 3. For any two configurations, Ci, Cj ∈ AC(K), W (Ci) ∩R(Cj) �= ∅.

Proof. Consider the configuration in which all nodes are accessible. Since the
scheduler can be adversarial, it can arbitrarily delay messages from the writer
to all nodes in P \ W (Ci), hence forcing the next K writes to be written to
nodes in W (Ci). Later, it can delay the messages from the reader to the nodes
in P \ R(Cj), so that the reader is forced to choose R(Cj) as the read quorum.
Since the read is guaranteed to return one of the K latest written values, it
follows that W (Ci) ∩R(Cj) �= ∅

Lemma 4. Let C be a configuration. If C /∈ AC(K), then wQ(C) + rQ(C) ≤
1 + ε, where ε = k

γwτmin
.

Proof. If C /∈ AC(K), there are two cases: either there are no more than K
writes that can occur in C, or there is no read that can occur after the Kth

write in C.

56 A. Aiyer, L. Alvi i, and R.A. Bazzi

– If there are no more than K writes that can occur in C, then

wQ(C) = lim
m→∞

∑m
i=1 succi∑m
i=1 toti

≤ lim
m→∞

mK∑m
i=1 toti

= lim
m→∞

mK

mγwτ(C)
=

K

γwτ(C)
≤ K

γwτmin

wQ(C) + rQ(C) ≤ K

γwτmin
+ 1 = 1 + ε

– Let t be the time in the configuration by which the Kth write succeeded. If
there are no successful reads after the Kth write, then all reads up to t can
succeed but all later reads fail. Also there are at most K writes succeeding
up to t, and writes after time t may succeed.

rQ(C) ≤ t

τ(C)

wQ(C) ≤
K + γw

(
τ(C) − t

)
γwτ(C)

wQ(C) + rQ(C) ≤
(
1 +

K

γwτ(C)
)
≤

(
1 +

K

γwτmin

)
= 1 + ε

Consider the quorum system Q′(W ′,R′), whereW ′ = {W (Ci)|Ci ∈ AC(K)},
and R′ = {R(Ci)|Ci ∈ AC(K)}. Q′ is a strict quorum system, that is available
in all configurations C ∈ AC(K).

Theorem 1. The read and write availability of the strict quorum system, Q′ is
≥ rQ + wQ − 1− 2ε

1−ε

Proof. The strict quorum system Q′ is available, for both reads and writes,
during any configuration C ∈ AC(K). Let P (C) denote the probability that
the system is in configuration C, and let PAC(K) =

∑
C∈AC(K) P (C). The read

availability of Q′, rQ′ ≥
∑

C∈AC(K) P (C) = PAC(K). Similarly, wQ′ ≥ PAC(K).
For the bounded-staleness quorum system, Q,

wQ =
∑

P (C)wQ(C) =
∑

C∈AC(K)

P (C)wQ(C) +
∑

C /∈AC

P (C)wQ(C)

≤
∑

C∈AC(K)

P (C) +
∑

C /∈AC(K)

P (C)wQ(C)

rQ ≤
∑

C∈AC

P (C) +
∑

C /∈AC

P (C)rQ(C)

wQ + rQ ≤ 2
∑

C∈AC

P (C) +
∑

C /∈AC

P (C)
(
rQ(C) + wQ(C)

)
≤ 2

∑
C∈AC

P (C) +
∑

C /∈AC

P (C)
(
1 + ε

)
≤ 2PAC + (1− PAC)(1 + ε)

s

On the Availability of Non-strict Quorum Systems 57

Therefore,

PAC ≥
wQ + rQ − 1− ε

1− ε
> wQ + rQ − 1− 2ε

1− ε

It follows that wQ′ , rQ′ > wQ + rQ − 1− 2ε
1−ε

Theorem 1 shows that the increase in availability due to relaxing the con-
sistency guarantees to K-safe is dependent on the rate of write operations γw,
and the expected duration τmin of a configuration. τmin increases linearly with
the mean-time-between-failure for the nodes. Hence, for a large mtbf, the value
of ε = K

γwτmin
will be small. In such cases, if highly available K-safe quorum

systems can be built, then a highly available strict quorum systems can also be
built i.e. there is not much advantage gained by relaxing the consistency seman-
tics to K-safe. However, for systems with a small mtbf, it may be possible to
increase the availability and at the same time provide bounded staleness. We
show a protocol to achieve this in section 6.

6 K-Quorums Protocols

We present K-quorum construction, for a single-writer-multiple-reader environ-
ment, which guarantees bounded staleness even in the presence of an adversarial
scheduler. In Section 6.2, we prove that the proposed protocol achieves K-atomic
semantics.

6.1 Construction and Protocols

A K-quorum system consists of a strict quorum system, (R,W), and a staleness
parameter K that is the bound on the staleness allowed.

Read operations in K-quorums are similar to reads in strict quorum systems.
At a high level, the reader contacts a quorum of servers R ∈ R and chooses the
latest value. The writes are different. In K-quorums, a value is written to a
subset of P , such that the servers contacted during K consecutive writes form
a write-quorum W ∈ W. We henceforth call the set of servers contacted during
a particular write a partial-write-quorum.

The single-writer-multiple-reader protocol for K-quorums, is shown in fig-
ure 1. For simplicity, the protocol presented assumes reliable channels. The pro-
tocol can be made to work with fair channels by using standard techniques, for
building a reliable channels over fair channels, as described in [12].

Write operation. To perform a write operation the writer chooses a partial-
write-quorum, and writes the value along with other meta-data to the partial-
write-quorum. To ensure bounded staleness we require that any K partial-write-
quorums, used for successive writes, collectively contain a write quorum. For-
mally, let Wi be the partial-write-quorum used in the ith write. We require that

∀i : ∃W ∈ W such that W ⊆
i⋃

j=i−K+1

Wj

58 A. Aiyer, L. Alvi i, and R.A. Bazzi

// Writer Protocol
static k := 0; static ts := 0;
void Write(v)
begin

ts := ts + 1; k := k + 1;

find an available partial-write-quorum Wk such that ∃W ∈ W : W ⊆ ⋃i=k
i=k−K+1 Wi

send (v, ts, PW) to servers in Wk, where PW =
⋃i=k−1

i=k−K+1 Wi

wait for acknowledgments from servers in Wk

end

// Reader Protocol
int Read
begin

find an available read quorum R
send read requests to servers in R
wait for replies from all servers
calculate (v, ts, PW) := value with the largest time stamp
write back the value (v, ts, PW) to a partial-write-quorum, Wr

such that ∃W ∈ W : W ⊆ PW ∪ Wr

wait for acknowledgments from servers in Wr

return(v, ts, PW)
end

Fig. 1. K-quorum protocols

The protocol for write is shown in Figure 1. During the ith write, the writer
writes the value v, the timestamp – ts, and the set PW of servers accessed in
the previous (K − 1) writes to each of the servers in Wi.

Read operation. Reads in K-quorums are similar to reads in strict quorum
systems. The reader collects replies from a quorum of servers and chooses the
reply (v, tshst, PW) with the largest time stamp. The reader then writes back
the tuple (v, tshst, PW) to a set of servers W ′ such that ∃W ∈ W : W ⊆ PW ∪
W ′. The protocol for a read is shown in Figure 1. Since a read quorum always
intersects with one of the previous K partial-write-quorums, a read is guaranteed
to return one of the K latest written values irrespective of the behavior of the
scheduler.

6.2 K-Atomic Semantics

To prove that the protocols achieve K−atomic semantics, we show the existence
of an ordering that is consistent with real time order such that, each read returns
the value written by one of the previous K writes. We define

Definition 8. The written-time is the (global) time at which a value that is
being written reaches (and is processed by) every server in partial-write-quorum.

s

On the Availability of Non-strict Quorum Systems 59

We will order the reads and writes such that :

– Writes are ordered according to their written-time.
– A read which returns a value (v, t, PW), which was written with timestamp

t, can be scheduled any time between
1. The written-time, τt of the value returned, (v, t, PW).
2. and, before the written-time of the next Kth write, (v′, t +K, PW ′). i.e.

before τt+K .

It is easy to see that, such an ordering satisfies the requirements of K-atomic
semantics. We need to show that such a ordering can be done in a manner
consistent with local history.

The scheduling of writes is trivial, because written-time of a write occurs
between the time a write has begun and before the write ends.

We now show, by contradiction, that reads can also be scheduled. Assume,
if possible, that the read interval does not overlap with the interval [τt, τt+K

)
.

There are two cases:

1. Read finishes before τt:
This scenario is not possible, because a read completes only after performing
a write-back on the value. Therefore a read can end only after the written-
time of the value it returns.

2. Read begins after τt+K .
Consider the union of the partial write quorums for K previous writes –
W = Wt+1 ∪ Wt+2 ∪ . . . ∪ Wt+K . From the definition of a partial-write-
quorum and the fact that any read quorum intersects with a (complete)
write quorum, it follows that the reader would have received a value from
at least one server in W . Since the reader chooses the highest time-stamp
received, a read that starts after τt+K cannot return a value written before
τK , which is a contradiction. ⇒⇐

Theorem 2. Protocols described in Figure 1 provide K-atomic semantics ��

6.3 Availability

In environments with a relatively small mtbf , K-quorum systems can be used to
achieve a higher availability than strict quorum systems. Consider a K-quorum
system with staleness parameter K and where the read and write quorum sizes
are rn and wn respectively. Let r = rn/n and w = wn/n. Since the read and
write (not partial write) quorums need to intersect, we require r + w ≥ n+1

n .
For a read to be available, we need rn nodes out of n nodes. This can be

made strictly smaller than the availability of majority if r ≤ 0.5 and the goal is
to simultaneously make the write availability be better than that of majority. For
a system, where mtbf is relatively small, the write availability is the probability
of being able to access wn

K nodes out of
(
n− K−1

K wn
)

nodes (the availability of
a given write is independent of that of previous writes). For a given n and pf ,
with appropriate choice of r,w and K, even the write availability of the system

60 A. Aiyer, L. Alvi i, and R.A. Bazzi

can be increased. For example, consider a case where n = 100 and pf = 0.5.
The majority quorum system will be available with a probability 0.46. With
K-quorums, using a read quorum of size 29, a write quorum of size 72 and a
staleness bound of K = 6 can provide much better availability for both reads and
writes. Reads are available with probability 0.99999 (29 out of 100 available),
while writes are available with probability 0.997 (12 out of 40 available). Also, if
the system is well behaved the probability that a read will get the value of the
most recent write is 0.99.

For a given system size n, probability of failure pf and staleness parameter
K, choosing the optimal values for r and w presents similar trade-offs as in strict
quorum system. For having a large read availability it is desirable to have a small
value for r. Similarly, for having a large write availability, it is desirable to have
a small value for w. However as we require that r + w ≥ n+1

n , choosing a small
value for r or w will require the other to be large, resulting in decreased write
or read availability respectively. For optimal overall availability, this trade-off
needs to be resolved based on the relative frequencies of reads and writes in the
system, such that the overall availability is maximized.

Effect of mtbf on Signed Quorum Systems. Realizing that the perfor-
mance of K-quorum systems is highly dependent on the mean time between
failure, we investigated their effect on the performance of systems such as signed
quorum systems. We found that the performance of signed quorum systems de-
teriorates in environments in which the mean-time-between-failures is smaller
than the mean time between a write and a read. One explanation for this is
that if the system has a small mean time to failure, then nodes go up and down
very quickly, so it is more likely that the reader and the writer see two differ-
ent configurations of the system, thereby causing mismatches. For RON traces,
where there are no node failures, the probability of mismatch due to network
faults alone was found to be 0.05. However, in systems where mtbf is small to
the mean time between a write and a read, the probability of mismatch can be
much higher even when ignoring network faults.

Lemma 5. In a system with a small mtbf , if nodes are inaccessible with a prob-
ability pf , then probability of mismatch ignoring any network faults is 2pf(1−pf).

Proof. (sktech) For systems with a small mtbf , the expected duration of a con-
figuration is small. So, the configuration of the system can change widely between
the time a value is written to the system and the time when the value is read.
For this setting the probability that a server if down during the read operation is
independent of the probability of the server is down during the write operation.
The probability that a node is accessible during a read, but not accessible during
a write is (1− pf)pf . Similarly the probability that a node is accessible during a
write, but not accessible during a read is pf (1 − pf). Therefore the probability
of mismatch is at least 2pf(1 − pf), which can be as high as 0.5 depending on
the value of pf .

s

On the Availability of Non-strict Quorum Systems 61

7 Related Work

There is a very large body of work on quorum systems and access semantics. In
this section we concentrate on those works that are most closely related to the
results of this paper.

Quorum systems are used for various distributed applications including repli-
cation, mutual exclusion, and consensus. The performance measures for quorum
systems like load, availability and probe complexity, are mutually opposing –
improving one tends to worsen the other. With large scale internet usage, re-
searchers have been mainly focusing on improving the availability of the sys-
tem [1,2,4,6,18,19]. Naor and Wool prove some basic bounds between the load
and the availability of traditional quorum systems [13].

Lamport presents consistency semantics that have been widely used in the
literature [9] . Traditional quorum systems, where any two quorum sets have a
non-empty intersection, provide at least safe-semantics. However, these systems
are not very highly available. Fox and Brewer [5] show bounds on availability in
the presence of strong consistency guarantees.

Relaxing the consistency guarantees can allow systems to achieve better avail-
ability or performance. For database applications, a number of researchers ([8,16]
for example) discuss weakened consistency semantics for increased concurrency.
Epsilon consistency [16] attempts to increase availability by allowing query ac-
cesses to see some temporary inconsistencies in the data, however these inconsis-
tencies are bounded and the system converges to a global serializability. Krish-
namurthy et al present bounded ignorance [8], for increasing the concurrency in
database applications, where the application may be unaware of at most N trans-
actions. [7,15,17] implement file systems that provide various relaxed semantics.
TACT is a toolkit that allows for dynamic changes in the consistency level of the
system and can be used to specify various kinds of weakened semantics.

Probabilistic approaches to quorum systems [11,20] achieve a much higher
availability than strict quorum systems by weakening the consistency. Lee and
Welch [10] propose probabilistic relaxed semantics for use with probabilistic
system. These systems provide a probabilistic bound on the violation of safe-
semantics. However, as discussed in section 2, these systems are vulnerable to
an adversarial scheduler and provide no bounds on the staleness of data.

References

1. D. S. Amr El Abbadi and F. Cristian. An efficient and fault-tolerant protocol for
replicated data management. In Proc. PODS, 1985.

2. D. S. Amr El Abbadi and F. Cristian. Maintaining availability in partioned repli-
cated databases. In Proc. PODS, 1986.

3. D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay
networks. In Proc. 18th SOSP, pages 131–145, 2001.

4. D. L. Eager and K. C. Sevcik. Achieving robustness in distributed database sys-
tems. ACM Trans. Database Syst., 8(3):354–381, 1983.

5. A. Fox and E. A. Brewer. Harvest, yield and scalable tolerant systems. In Wkshp
on Hot Topics in Op Sys, pages 174–178, 1999.

62 A. Aiyer, L. Alvi i, and R.A. Bazzi

6. D. K. Gifford. Weighted voting for replicated data. In Proc. 7th SOSP, pages
150–162, New York, NY, USA, 1979. ACM Press.

7. R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, Jr., G. J. Popek, and D. Roth-
meir. Implementation of the Ficus Replicated File System. In Proceedings of the
Summer 1990 USENIX Conference, pages 63–71, June 1990.

8. N. Krishnakumar and A. J. Bernstein. Bounded ignorance in replicated systems.
In Proc. PODS, pages 63–74, New York, NY, USA, 1991. ACM Press.

9. L. Lamport. On interprocess communication. part i: Basic formalism. Distributed
Computing, 1(2):77–101, 1986.

10. H. Lee and J. L. Welch. Randomized registers and iterative algorithms. Distributed
Computing, 17(3):209–221, 2005.

11. D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems.
Inf. Comput., 170(2):184–206, 2001.

12. J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum systems. In DSN,
pages 374–383, June 2002.

13. M. Naor and A. Wool. The load, capacity, and availability of quorum systems.
SIAM Journal on Computing, 27(2):423–447, 1998.

14. D. Peleg and A. Wool. The availability of quorum systems. Inf. Comput.,
123(2):210–223, 1995.

15. K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In Proc. 16th SOSP,
1997.

16. C. Pu and A. Leff. Replica control in distributed systems: An asynchronous ap-
proach. In SIGMOD Conference, pages 377–386, 1991.

17. M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and
D. C. Steere. Coda: A highly available file system for a distributed workstation
environment. IEEE Transactions on Computers, 39(4):447–459, 1990.

18. D. Skeen and D. D. Wright. Increasing availability in partitioned database systems.
In Proc. PODS, pages 290–299, New York, NY, USA, 1984. ACM Press.

19. H. G.-M. Susan Davidson and D. Skeen. Consistency in partioned network. Com-
puting Survey, 17(3), 1985.

20. H. Yu. Signed quorum systems. In Proc. 23rd PODC, pages 246–255. ACM Press,
2004.

21. H. Yu and A. Vahdat. The costs and limits of availability for replicated services.
In Proc. 18th SOSP, pages 29–42, 2001.

s

Musical Benches�

Eli Gafni and Sergio Rajsbaum

1 Computer Science Department, UCLA, Los Angeles, CA 90024, USA
eli@cs.ucla.edu

2 Math Institute, UNAM, Ciudad Universitaria, D.F. 04510, Mexico
rajsbaum@math.unam.mx

Abstract. We propose the musical benches problem to model a wait-
free coordination difficulty that is orthogonal to previously studied ones
such as agreement or symmetry breaking (leader election or renaming).
A bench is the usual binary consensus problem for 2 processes. Assume
n + 1 processes want to sit in n benches as follows. Each one starts with
a preference, consisting of a bench and one place (left or right) in the
bench where it wants to sit. Each process should produce as output the
place of the bench where it decides to sit. It is required that no two
processes sit in different places of the same bench. Upon the observance
of a conflict in one of the benches an undecided process can “abandon”
its initial bench and place and try to sit in another bench at another
place.

The musical benches problem is so called because processes jump
from bench to bench trying to find one in which they may be alone or
not in conflict with one another. If at most one process starts in each
bench, the problem is trivially solvable– each process stays in its place.
We show that if there is just one bench where two processes rather than
one, start, the problem is wait-free unsolvable in read/write shared mem-
ory. This impossibility establishes a new connection between distributed
computing and topology, via the Borsuk-Ulam theorem.

The musical benches problem seems like just a collection of consensus
problems, where by the pigeon hole principle at least one of them will
have to be solved by two processes. Consequently, one is tempted to
try to find a bivalency impossibility proof of the FLP style. Our second
result shows that there is no such proof: We present an algorithm to solve
the musical benches problem using set agreement, a primitive stronger
than read/write registers, but weaker than consensus. Thus, an FLP-style
impossibility for musical benches will imply an FLP-style impossibility
of set-consensus.

Themusicalbenchesproblemcanbegeneralizedby consideringbenches
other than consensus, such as set agreement or renaming, leading to a very
interesting class of new problems.

1 Introduction

We consider an n processes asynchronous, single-writer/multi-reader shared
memory system, where any number of processes may fail by crashing. A pro-
� This work has been supported by a grant from LAFMI (Franco-Mexican Lab in

Computer Science), and from UNAM-PAPIIT

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 63–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 E. Gafni and S. Rajsbaum

tocol in this model is wait-free: it guarantees that any process will terminate
within a fixed number of steps, independent of the level of contention and the
execution speeds of the other processes. Understanding the possibilities and lim-
itations of this model is central to distributed computing for several reasons.
Impossibility results in this model translate to impossibility results for a model
where at most t processes can crash [9], sometimes with more powerful primi-
tives [21], or translate into lower bounds on the round complexity of synchronous
systems [14,17]. Indeed, some papers [25,27] have developed unified frameworks
to study synchrony, asynchrony and even partial synchrony, where our wait-free
model plays a central role. Furthermore, this model has been shown to have
the same computational power as other models, such as message passing when
t < n/2 [2].

The fundamental problem of wait-free computation is to characterize the cir-
cumstances under which synchronization problems have wait-free solutions, and
to derive efficient solutions when they exist. This is a difficult problem because
one must reason about complex algorithms that operate in the presence of un-
certainty and partial information created by non-determinism, asynchrony, and
failures. Powerful new tools have been developed based on algebraic topology for
analyzing the semantics and complexity of distributed algorithms in a variety of
models and architectures; see the surveys and tutorials [18,22,26] and references
herein. We use such tools in this paper both to prove impossibility results and
to derive algorithms.

Distributed computing theory development has been fostered by the identifi-
cation of particular problems, that capture the essence of wait-free coordination
difficulties. First, consensus [13] and set agreement [11] serve to model the dif-
ficulty of processes to converge on a small number of decisions. Other similar
problems have been identified, like approximate agreement [12], or loop agree-
ment [24]. The problems of renaming [3] and leader election [33] model the
opposite difficulty: breaking symmetry.

This paper proposes a new schema to model a coordination difficulty that
is orthogonal to the ones described above. It is inspired by the musical chairs
game, where players march to music around a row of chairs numbering one less
than the players and scramble for places when the music stops. The paper studies
the musical benches problem. A bench is the usual binary consensus problem for
2 processes. Assume n + 1 processes want to sit in n benches as follows. Each
one starts with a preference, consisting of a bench and one place (left or right)
in the bench where it wants to sit. Each process should produce as output the
place of the bench where it decides to sit. It is required that no two processes sit
in different places of the same bench. Upon the observance of a conflict in one
of the benches an undecided process can “abandon” its initial bench and place
and try to sit in another bench at another place.

The musical benches problem is so called because processes jump from bench
to bench trying to find one in which they may be alone or not in conflict with
one another. If at most one process starts in each bench, the problem is trivially
solvable– each process stays in its place. We show that if there is just one bench

Musical Benches 65

where two processes rather than one, start, the problem is wait-free unsolvable
in read/write shared memory. This impossibility establishes a new connection
between distributed computing and topology, via the Borsuk-Ulam theorem, a
statement different in nature from previously used ones such as Sperner’s lemma.

The musical benches problem can be generalized by considering benches other
than consensus, such as set agreement or renaming, leading to an interesting class
of new problems. The general idea is to consider a problem that is not solvable
once the number of participants exceed some threshold, k−1. We then replicate
the problem as many times as we wish, calling each replica a bench, and wake
up k − 1 processes in every bench but one, where we wake up k processes. Now
we allow processes to jump from bench to bench each trying to acquire a valid
seat in one of the benches, such that all those on the same bench comply with
the bench seating requirement. For example, a (2, 3)-set agreement bench (3
processes need to agree on at most 2 different values) is wait-free solvable when
there are at most 2 participants, but not when there are 3 or more; we would
wake up 2 processes in every bench but one, where we wake up 3 processes.
The generalized musical benches conjecture is that the schema always leads to
an impossible problem.

In summary, our contributions are the following.

– The introduction of a schema that captures a new kind of distributed coor-
dination difficulty, and the study of the binary consensus instantiation, the
musical benches problem.

– An impossibility proof showing that the musical benches problem is wait-free
unsolvable in read/write shared memory.

– This impossibility establishes a new connection between distributed comput-
ing and topology, via the Borsuk-Ulam theorem.

– An algorithm to solve the musical benches problem using set agreement, a
primitive stronger than read/write registers, but weaker than consensus.

The musical benches problem seems like just a collection of consensus prob-
lems, and thus one is tempted to try to find a bivalency impossibility proof of
the FLP style [13]. More precisely, by the pigeon hole principle at least one of
the benches would have to be solved by two processes, since there are more pro-
cesses than benches. Thus, two processes would have to solve consensus on that
particular bench, contradicting FLP. The algorithm in the last item is signifi-
cant because it shows that no bivalency argument of this style exists. Namely, it
implies that if the musical benches problem is impossible then (2, 3)-set agree-
ment is impossible. Thus, the existence of such a bivalency proof would imply
the celebrated (2, 3)-set agreement impossibility [6,29,34]. But this impossibility
requires Sperner’s lemma, a higher dimensional statement for which no bivalency
arguments are known.

The connection to a result as important as the Borsuk-Ulam theorem estab-
lishes one more significant bridge between distributed computing and topology.
The theorem is “one of the most useful tools offered by elementary algebraic
topology to the outside world” [31]. Recall that it implies Sperner’s lemma
(which is equivalent to Brouwer’s fixed point theorem), but not the opposite.

66 E. Gafni and S. Rajsbaum

(a)

(b)

Fig. 1. Borsuk-Ulam Theorem in 2 dimensions

There are several equivalent versions of the Borsuk-Ulam theorem, the easiest
to remember is illustrated in Figure 1 (from [31]), for the n = 2 dimensional
case. It states that if you take a rubber ball, deflate and crumble it, and lay it
flat, then there are two points on the surface of the ball that were diametrically
opposite and now are lying on top of one another. More formally, we see in part
(b) of the figure, that1 for every continuous map f : Sn → IRn, there exist a
point x ∈ Sn such that f(x) = f(−x).

The rest of this paper is organized as follows. In Section 2 we describe formally
the musical benches problem. In Section 3 we show that it is impossible to solve
wait-free in a read/write shared memory system. In Section 4 we present the
algorithm that solves it using a (2, 3)-set agreement object. Section 5 contains
the conclusions. At the end there is an Appendix with some topology notions
and additional details about our results.

2 The Musical Benches Problem

We consider the usual asynchronous shared memory model, composed of single-
writer/multi-reader registers. In Section 4 we will extend the shared memory
with (2, 3)-set agreement objects. We now describe the binary-consensus musical
benches problem, first intuitively and then more formally.

We can think of 2-process binary consensus as a bench with two places, desig-
nated 1 and −1. Processes p1 and p−1, wake up at places 1 and −1, respectively.
In a solo execution a process must return the place it wakes up in. Otherwise,
in an execution where both participate, they return the same place. This con-
sensus task2 is impossible to solve wait-free in the read-write shared-memory
1 WhereSn is then-dimensional unit sphere, and IRn theEuclidean space of dimension n.
2 In the more usual description of consensus there is a set of possible inputs, and a

process can wake up with any of these inputs. In our description a process has only
one possible input, and different processes have different inputs. Both descriptions
are equivalent, but the one we use is more comfortable for our purposes.

Musical Benches 67

model [13,20], and trivially solvable if at most one process wakes up. We call an
instance of this problem a bench. What will happen if we add a second bench,
with places 2,−2, and wake up either process p2 at slot 2, or p−2 at slot −2,
but not both? In executions with no conflict, i.e., either p−1 or p1 wake up but
not both, the participating processes return the places they wake up in. Only if
both p−1 and p1 wake up, then it is free-for-all and any participating process can
go to any seat. Is the binary-consensus 2 benches problem read-write wait-free
solvable? One feels a strong intuition (unlike in the set agreement impossibility)
as to why it should not be solvable: if a process from bench 1 jumps to bench 2,
it just creates the same problem in bench 2, since we have the freedom of who
to wake up in bench 2 as to try to defeat consensus there. Indeed, the problem
has no solution, but surprisingly, we later essentially prove that this intuition is
not exactly right.

The musical benches problem is formalized in terms of the usual notion of
task, a one-shot decision problem specified in terms of an input/output relation
Δ. The processes start with private input values, and must eventually decide
on output values, by writing to a write-once variable. The relation Δ specifies
for each set of (ids, input values) pairs, what are the allowed output values
for each id. In our case, each id is associated to a single input, so we may
describe Δ as follows. The i-th bench is defined by the set of input vectors
{(p−i, pi), (pi), (p−i)}, and the relation:

Δ(p−i, pi) = {(−i,−i), (i, i)},
Δ(p−i) = {(−i)},
Δ(pi) = {(i)}.

This is illustrated in Figure 2(a). It is sometimes convenient to consider only the
output values, and disregard the processes ids, as depicted in Figure 2(b).

Consider an algorithm for processes p−i, pi where the first operation by a
process is to write its id to shared memory, and that includes an operation
to a write-once decision variable. A process participates in an execution if it
executes its first operation. The input vector of an execution contains the ids of
the participating processes. A process decides in an execution if it writes to the
decision variable, and the value decided is the value written to the variable. The

Fig. 2. The first consensus bench

68 E. Gafni and S. Rajsbaum

output vector of an execution contains the values decided by the processes, or ⊥
if the process did not decide. The algorithm solves the i-th bench problem if in
every execution with input vector I, the output vector O can be extended (by
replacing ⊥ entries with other values) to a vector in Δ(I), and a process that
does not fail decides.

The musical benches problem of size b is also a task specified in terms of
a relation Δ. The input vectors are over {p−i, pi|1 ≤ i ≤ b}, and the output
vectors over {−i, i,⊥|1 ≤ i ≤ b}. In this paper we study the case of b = 2, as
illustrated in Figure 3, disregarding ids and omitting the dotted arrows of Δ for
single vertices, to avoid cluttering the figure. Formally, Δ is:

Fig. 3. Musical benches task

Δ(p−1, p1, p2) = {(x1, x2, x3) |∀i, j, xi ∈ {1,−1, 2,−2}, xi + xj �= 0}
Δ(p1, p2) = {(1, 2)}

Δ(p−1, p1) = {(−1,−1), (1, 1), (−2,−2), (2, 2)}
Δ(p−1) = {(−1)}
Δ(p1) = {(1)}

and so on for Δ(p−1, p1, p−2), Δ(p1, p−2), Δ(p−1, p−2), Δ(p−1, p2), Δ(p−2), and
Δ(p2). Notice it includes the first bench, and a restriction of the 2nd bench that
disallows p−2 and p2 participating together.

3 Impossibility of the Musical Benches Problem

Here we prove that the musical benches problem is wait-free unsolvable. For
clarity we just prove the 2 benches case. Extension to any b is simple. For the
proof we use the Borsuk-Ulam theorem, or rather, its discrete version, known
as Tucker’s lemma. We will need some basic topology notions, presented in the
Appendix.

Tucker’s lemma is described in [31] as follows. Let T be some (finite) trian-
gulation of the n-dimensional ball Bn. We call T antipodally symmetric on the
boundary if the set of simplices of T contained in Sn−1 = ∂Bn is a triangulation

Musical Benches 69

of Sn−1 and it is antipodally symmetric; that is, if σ ⊂ Sn−1 is a simplex of T ,
then −σ is also a simplex of T .

Theorem 1 (Tucker’s lemma). Let T be a triangulation of Bn that is antipo-
dally symmetric on the boundary. Let

λ : V (T) −→ {1,−1, 2,−2, . . . , n,−n}

be a labeling of the vertices of T that satisfies λ(−v) = −λ(v) for every vertex
v ∈ ∂Bn (that is, λ is antipodal on the boundary). Then there exists a 1-simplex
(an edge) in T that is complementary; i.e., its two vertices are labeled by
opposite numbers.

We will only need the 2-dimensional version, illustrated in Figure 4.

Fig. 4. Illustration of 2-dimensional Tucker’s lemma

A task and an algorithm solving it can be represented geometrically using
topology terminology, e.g. [23,29]. A task specification for n + 1 processes is
given by an input complex I, an output complex O, and a relation Δ carrying
each input simplex of I to a set of n-simplexes of O. This definition has the
following operational interpretation: Δ(Sm) is the set of legal final states in
executions where only certain m + 1 processes corresponding to the vertices of
Sm out of n + 1 processes participate (the rest fail without taking any steps). A
protocol solves a task if when the processes run their programs, they start with
mutually compatible input values, represented by a simplex S, communicate
with one another, and eventually halt with some set of mutually compatible
output values, representing a simplex in Δ(S). The musical benches problem of
the previous section can be represented in this form by using simplices instead
of vectors.

Any protocol that solves a task has an associated protocol complex P , in
which each vertex is labeled with a process id and that process’s final state, called
its view. Each simplex thus corresponds to an equivalence class of executions that

70 E. Gafni and S. Rajsbaum

“look the same” to the processes at its vertexes. For 0 ≤ m ≤ n, we understand
P(Sm) for a given Sm in the input complex to be the complex generated by all
executions starting in Sm, in which only the processes in ids(Sm) take part (the
rest fail without taking any steps). If a simplex R is in P(Sm), we say that R is
reachable from Sm.

Let P be the protocol complex for a protocol. If S is an input simplex, let
P(S) ⊂ P denote the complex of final states reachable from the initial state S.
Expressed in the topology notation, we can see that a protocol solves a decision
task 〈In,On, Δ〉 if and only if there exists a color-preserving (i.e., process id-
preserving) simplicial map δ : P → On, called a decision map, such that for
every input simplex S, δ(P(S)) ⊂ Δ(S).

Our basic strategy is the following. We assume that we have a protocol with
complex P that wait-free solves a task 〈I,O, Δ〉. As in [8] without loss of gener-
ality we can assume that P is the result of some large enough number of iterated
immediate snapshots. Let S� be an input simplex, S� the complex of its faces,
and P a protocol. For a wait-free model of computation, prior research (e.g.
[5,6,34]) has shown that P(S�) can be regarded as a subdivision of S�.

Assume there is an algorithm solving the musical benches problem with pro-
tocol complex P . Let T be the input complex to the problem (illustrated in
Figure 3). The next lemma shows that P(T) is a subdivision of T , as illustrated
in the example of Figure 5.

p
-1

p
1

p
-2

p
2

p-1

p2

p-2
p1 p1

p2

p-1

p1

p1

p-1

p-2

p1

p-2

p-1

p2

p-1

solo execution by p1

executions where only p1,p2
can participate

executions where p1,p2,p-1
can participate

p2 must decide 2

p-2 must decide -2

p1 can decide -1,1,-2,2

Fig. 5. A 1-round protocol subdividing the musical benches input complex

Lemma 1. If T is the input complex to the musical benches problem then P(T)
is a triangulation of B2 that is antipodally symmetric on the boundary. Moreover,
if λ is the labeling of the vertices of P(T) induced by the processes decisions, then
λ is antipodal on the boundary.

Sketch of Proof. First notice that |T | ∼= B2. Then, as mentioned above previ-
ous results imply that P(T) can be regarded as a subdivision of T , and hence as
a triangulation of B2. The boundary corresponds to executions with no conflict
in bench 1, thus the problem specification implies that on a face (pi, pj) in the

Musical Benches 71

boundary processes return i and j, respectively. Since we take the same number
of iterations on each face we can easily see that the triangulation is antipodally
symmetric on the boundary of P(T). �

Theorem 2. There is no wait-free solution to the musical benches problem.

Proof. It follows from Lemma 1 that we can apply Theorem 1 and conclude
that there is an edge in P(T) that is complementary. Thus, its two vertices are
labeled by opposite numbers, which means there is an execution where two pro-
cesses decide opposite numbers, violating the musical benches problem consensus
requirement.

4 Solving the Musical Benches Problem with More
Powerful Primitives

We have seen that the binary-consensus musical benches problem is wait-free
unsolvable in read/write shared memory. We show here that this impossibility
implies the wait-free impossibility of solving (2, 3)-set agreement in read/write
shared memory [6,29,34]. We prove this by presenting an algorithm that solves
the musical benches problem using a shared memory extended with (2, 3)-set
agreement objects. Our algorithm is described for the case of two benches (3
processes) since our main motivation is proving that no bivalency argument in
the FLP style [13] exists for the musical benches. We know that the impossibility
of (2, 3)-set agreement cannot be proven without reference to the 2-connectivity
of P for 3 processes [6,29,34].

A (2, 3)-set agreement object can be accessed by 3 processes, and the object
returns to a process one of the ids of a process that invoked it, such that at most
2 different ids are returned by the object. We assume w.l.o.g. that if a process
pi gets back from the object pj , then pj gets back itself, pj [6].

The musical benches protocol appears in Figure 7. It accesses a single (2, 3)-
set agreement object. The main idea is to create a “hole” inside the immediate
snapshots subdivision (of Figure 5), and we do this by doing participating set
protocol [7] and sending all those stuck at level 3, to a (2, 3)-set agreement object.
A winner process that gets back its own id from the object stays at level 3. A
loser, that gets back a different id, continues down to level 2 and proceeds with
the participating set protocol. Since if all 3 are stuck at level 3, then at least one
will lose, and we create the hole by preventing the formation of the all-see-all
simplex in the center of the subdivision.

The code invokes a decision function f that takes as input a final view of
a process and produces a decision value; it is specified in the Appendix. The
corresponding protocol complex appears in Figure 6, together with the decision
function f on each one of the final views. A process pi computes its view, the pair
(Si, view i), by executing the protocol code, and it produces its decision value by
applying f to its view (in the last line of the code).

The protocol works as follows. Local variables are subindexed by the process
ids, and shared variables are not subindexed. The first part of the protocol is the

72 E. Gafni and S. Rajsbaum

p
1

p
-2 p

2

p2

p1

p1

p-1

p-2

p1

p-2

p-1

p2

p-1

p
-1

-2

-1

-2

1

-2

1

2

1

2

-1

2

-1

-1

-2
inside all -2

-1

-2

-2

-2
1

1

2

2

-1
p1

p-1

p1

p-1
p-2

p-1

p-2

p1

p-2

p-1

p2

p-1

p2

p1

p1

p-1

p2

p1

Fig. 6. The Musical Benches Protocol complex using (2, 3)-Set Agreement

Participating Set protocol of [7] for the case of 3 levels, except that it accesses
a set agreement object. A process pi computes in this part a set of ids Si, such
that

1. For all i, i ∈ Si.
2. For all i, j, either Si ⊆ Sj or Sj ⊆ Si.
3. For all i, j, if i ∈ Sj then Si ⊆ Sj.
4. There are at most two indices i, j such that |Si| = |Sj | = 3.

The first three are the requirements of the participating set problem in [7]. Sets
satisfying these properties correspond to the subdivided simplex in either side
of Figure 5 (i.e., spanned by the corners p−1, p1, p2 or p−1, p1, p−2). The 4-th
property is achieved through the set agreement object, invoked by pi with the
operation setAg(i). It has the effect of removing the simplex in the center of
the subdivision (impossible that the three processes produce sets of size 3), and
leaving just its boundary (at most two processes may produce sets of size 3).
In the second part of the protocol only processes with sets of size 3 participate,
and they compute the view i variables, which have the effect of subdividing this
boundary. The following simple lemma implies that the complex of Figure 6
corresponds to the computed views (Si, view i).

Musical Benches 73

Initially:
level [j] := 4 and id [j] := ⊥ for j ∈ {1, 2, 3}; OKi := false; view i = ∅;
begin MB protocol(pi)

repeat
level [i] := level [i] − 1;
for j = 1 to 3 do level i[j] := level [j] end for
Si := {j : level i[j] ≤ level [i], j ∈ {1, 2, 3}};
if |Si| = 3 then (* level [i] = 3 *)

ansi := setAg(i);
if ansi = i then OKi := true

end if
else (* level [i] < 3 or |Si| < 3 *)

OKi := true
end if

until |Si| ≥ level [i] and OKi;
(* end of participating set section *)
if |Si| = 3 then

id [i] := i;
for j = 1 to 3 do id i[j] := id [j] end for
view i := {j : id i[j] �= ⊥, j ∈ {1, 2, 3}};

end if
decide f(Si, view i)
end protocol

Fig. 7. Musical Benches Protocol using (2, 3)-Set Agreement (for process pi)

Lemma 2. Let the views (Si, view i) be the vertices of a complex C. A simplex
of C contains a set of vertices if they can be ordered such that both their Si’s and
their view i’s are ordered by containment. This complex C is well defined.

The correctness of the MB protocol follows from this lemma, by proving that
the decision function f does not produce a complementary edge, something that
is easily verified in Figure 6 (and noting that on the boundary of C a process
always decides its own id).

Theorem 3. The MB protocol solves the musical benches problem.

Notice that in Figure 6 there is a second subdivision, namely the one that
subdivides the edges of the all-see-all simplex after the use of the set-agreement
object. This subdivision is achieved through the use of read/write operations, and
indeed it does not change the topological characteristics of the protocol complex
(i.e., connectivity) [29]. It is nevertheless required to be able to associate output
values to vertices without violating the problem specification e.g. [28].

5 Conclusions

We have introduced a scheme that models a new coordination difficulty, the
generalized musical benches problem, that can be instantiated with any problem,

74 E. Gafni and S. Rajsbaum

which we call a bench, that is solvable for k− 1 participants, and is not solvable
once the number of participants is at least k, for some threshold k. We have
conjectured that the generalized musical benches problem is unsolvable for any
such instantiation.

In this paper we studied the musical benches problem, which is the case
obtained by using binary consensus benches. Recall that the consensus problem
is impossible to wait-free solve in the read-write shared-memory model [13,20],
but that it is solvable if we add a new possible output place, which is allowed to
be returned in a non-solo execution (e.g. [30,32]). The “ambiguity of choosing”
of [10] says that in a solution to the version with a new output place there exists
an execution in which one process is “sitting” in one of two places, and like
Heisenberg’s uncertainty principle we cannot predict where it will appear, and
hence the impossibility of solving the problem without the new place. We have
seen the problem is unsolvable if we add an additional place. Namely, we have
two new output places −2, 2 and wake up either process p2 at slot 2, or p−2 at
slot −2. The intuition behind this impossibility may seem more evident, than the
impossibility of solving wait-free 3-processes 2-set agreement [6,29,34]. Processes
p1 and p−1 can resolve their differences only by at least one of them moving to
the second bench. But then if (w.lo.g.) one of them moves to place 2, we wake
up p−2. Now we are almost at the mirror situation. To resolve the conflict at the
second bench we would like to choose the place of a process in the first bench
which might have stayed there, but this tantamount to 2-process consensus! It
is then surprising that the musical benches impossibility problem is based on
Borsuk-Ulam, a theorem more difficult to prove than Sperner’s lemma, and not
on a traditional bivalency argument.

In the “complement” to consensus benches, which we call 2-renaming benches
(based on the renaming problem [3]), we have again two benches with places
1,−1, 2,−2. Processes p1 and p−1 both may wake up at bench 1, while p2 and p−2

wake up at the second bench, in place 2 or −2, respectively. We wake up either p2

or p−2, but not both. In executions in which not both p1 and p−1 participate, pro-
cesses return the place they woke up at. Else, all processes return distinct chairs.
Again the intuition is evident. Processes p1 and p−1 cannot resolve their differences
in the first bench [5,23,29]. W.l.o.g at least one of them goes to the second bench,
say place 2. We then wake up p2, and have a mirror situation. We have a direct
impossibility proof for this problem, similar to the one presented in this paper, as
well as an impossibility proof by reduction from renaming. But nevertheless it is
intriguing to find a single “meta-proof” that applies to both the renaming and the
consensus instantiations of the generalized musical benches problem.

We showed that the impossibility of the musical benches problem implies the
impossibility of 3-processes 2-set agreement, while the impossibility of renam-
ing implies the impossibility of 2-renaming-benches. This puts the two problems
somewhere between set agreement and renaming. Which is another step in under-
standing the R/W implementation relation between the set of R/W unsolvable
tasks [15].

Musical Benches 75

Acknowledgments. We are grateful to the anonymous referees for their
comments.

References

1. Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots
of Shared Memory. Journal of the ACM, 40(4):873–890, 1993.

2. Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Robustly in Message-Passing
Systems. Journal of the ACM, 42(1): 124–142, 1995.

3. Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming In An
Asynchronous Environment. Journal of the ACM, 37(3):524–548, 1990.

4. Attiya H. and Rachman O., Atomic Snapshots in O(n log n) Operations. SIAM
Journal of Computing, 27(2):319-340, 1998.

5. Attiya H., Rajsbaum S., The Combinatorial Structure of Wait-Free Solvable Tasks.
SIAM J. Comput. 31(4): 1286–1313, 2002.

6. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient
Asynchronous Computations. Proc. 25th ACM Symposium on the Theory of Com-
puting (STOC’93), ACM Press, pp. 91-100, June 1993.

7. Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Ex-
tended Abstract). Proc. 12th ACM Symposium on Principles of Distributed Com-
puting (PODC’93), ACM Press, pp. 41-51, August 1993.

8. Borowsky E. and Gafni E., A Simple Algorithmically Reasoned Characterization of
Wait-Free Computations (ExtendedAbstract).Proc. 16thACMSymposium onPrin-
ciples of Distributed Computing (PODC’97), ACM Press, pp. 189–198, August 1997.

9. Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation
Algorithm. Distributed Computing, 14(3):127–146, 2001.

10. Burns J. and Peterson G, The Ambiguity of Choosing. Proc. 8th ACM Symposium
on Principles of Distributed Computing (PODC), August 14–16, 1989, Edmonton,
Alberta, Canada, pp. 145–157.

11. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation, 105:132-158, 1993.

12. Fekete A., Asymptotically Optimal Algorithms for Approximate Agreement. Dis-
tributed Computing, 4:9–29, 1990.

13. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consen-
sus with One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

14. Gafni, E. Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony
(Extended Abstract). Proc. 17th ACM Symposium on Principles of Distributed
Computing (PODC), June 28–July 2, 1998, Puerto Vallarta, Mexico, pp. 143–152.

15. Gafni E. DISC/GODEL presentation: R/W Reductions. Oct. 4 2004.
http://www.cs.ucla.edu/˜ eli/eli/godel.ppt

16. Gafni E., Koutsoupias E., Three-Processor Tasks Are Undecidable. SIAM J. Com-
put. 28(3): 970–983, 1999.

17. Gafni E., Guerraoui R. and Pochon B., From a Static Impossibility to an Adaptive
Lower Bound: The Complexity of Early Deciding Set Agreement. Proc. 37th ACM
Symposium on Theory of Computing (STOC’05), Baltimore (MD), May 2005.

18. Eric Goubault, A historical note on “Geometry and Concurrency”,
http://www.di.ens.fr/˜ goubault/index1.html

19. Havlicek J. Computable Obstructions to Wait-Free Computability. Distributed
Computing 13(2): 59–83, 2000.

76 E. Gafni and S. Rajsbaum

20. Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Lan-
guages and Systems, 11(1):124-149, 1991.

21. Herlihy M., Rajsbaum S., The Decidability of Distributed Decision Tasks (Ex-
tended Abstract). Proc. 29th ACM Symposium on the Theory of Computing
(STOC’97), ACM Press, pp. 589-598, May 1997.

22. Herlihy M., Rajsbaum S., New Perspectives in Distributed Computing. Proc.
24th International Symposium Mathematical Foundations of Computer Science
(MFCS), in Miroslaw Kutylowski, Leszek Pacholski, Tomasz Wierzbicki (Eds.):
Lecture Notes in Computer Science 1672, Springer, 170–186, 1999.

23. Herlihy H., Rajsbaum S., Algebraic spans. Mathematical Structures in Computer
Science 10(4): 549–573, 2000.

24. Herlihy H., Rajsbaum S., A classification of wait-free loop agreement tasks. Theor.
Comput. Sci. 291(1): 55–77, 2003.

25. Herlihy, M. Rajsbaum, S. and Tuttle, M. Unifying Synchronous and Asynchronous
Message-Passing Models. Proc. 17th ACM Symposium on Principles of Distributed
Computing (PODC), June 28–July 2, 1998, Puerto Vallarta, Mexico, pp. 133–142.

26. Herlihy, M. Rajsbaum, S. and Tuttle, M. An Overview of Synchronous Message-
Passing and Topology. Electr. Notes Theor. Comput. Sci. 39(2), 2001.

27. Herlihy, M. Rajsbaum, S. and Tuttle, M. An axiomatic approach to computing the
connectivity of synchronous and asynchronous systems. Proc. of the 6th workshop
on Geometric and Topological Methods in Concurrency and Distributed Computing
(GETCO), October 4, 2004.

28. Gunnar Hoest, Nir Shavit. Towards a Topological Characterization of Asyn-
chronous Complexity (Preliminary Version). Proc. 16th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), Santa Barbara, California, USA, August
21–24, pp. 199–208.

29. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Com-
putability. Journal of the ACM, 46(6):858-923, 1999.

30. Jayanti P., Chandra T. and Toueg S., Fault-tolerant wait-free shared objects. Jour-
nal of the ACM, 45(3):451-500, 1998.

31. Jiri Matousek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods
in Combinatorics and Geometry, 2003, Springer.

32. Raynal, M., Real-time dependable decisions in timed asynchronous distributed sys-
tems. Proc. 3rd Int. Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 97). IEEE Computer Society Press, Newport Beach, 283–290, 1997.

33. Tel, G. Introduction to Distributed Algorithms, Cambridge University Press; 2 edi-
tion, February 15, 2001.

34. Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topol-
ogy of Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

A Appendix: Topology Notions

The unit ball {x ∈ IRd : ‖x ‖≤ 1} is denoted by Bd, while Sd−1 = {x ∈ IRd : ‖
x‖= 1} is the (d− 1)-dimensional unit sphere.

A simplex is a set of vertices, a complex is a set of simplexes closed under
containment. The dimension d of a simplex σ is one less than its number of
vertices, and is said to be a d-simplex, sometimes denoted σd. A subset of a
simplex is called a face. It is sometimes convenient to assume a simplex σ is

Musical Benches 77

embedded in Euclidean space. For this its vertices are supposed to be affinely
independent, and σ is the convex hull of its vertices. The union of all embedded
simplices in a comlex C, called the polyhedron of C, is denoted |C|, and can be
regarded as the (point-set) union of the simplexes in C. The boundary of an n-
simplex is the subcomplex of σn obtained by deleting the single n-dimensional
simplex and retaining all its faces.

A triangulation of a topological space X is a complex C such that X ∼= |X |,
namely with homeomorphic spaces. The simplest triangulation of the sphere
Sn−1 is the boundary of an n-simplex.

A vertex map carries vertices of one complex to vertices of another. A sim-
plicial map is a vertex map that preserves simplexes, that is, it sends a set of
vertices that form a simplex into a (possibly smaller) set of vertices that also
form a simplex. In distributed computing we often consider properly colored com-
plexes, where each vertex has associed a color, namely a process id, and no two
vertices of the same simplex have the same id. For example, the complex in
Figure 5 is colored. A simplicial map on properly colored complexes is color pre-
serving if it associates vertexes of the same color. Notice that a color-preserving
map preserves dimension.

A complex σ(K) is a subdivision of a complex K if:

– each simplex in σ(K) is contained in a simplex in K, and
– each simplex of K is the union of finitely many simplexes in σ(K).

Note that |K| = |σ(K)|. If s is a point in |K|, the carrier of s, denoted carrier (s,K),
is the unique smallestT ∈ K such that s ∈ T . As an example, the complex in Figure
5 is a subdivision of the complex in the left side of Figure 3.

B Appendix: Decision Function of the Protocol

The MB protocol of Figure 7 uses a decision function f that is implicitly de-
fined in Figure 6, by putting a number besides each vertex. Here we describe it
explicitly by writing what is the view of the vertex, and what the value of f on
that view (Si, view i).

1. f(Si, view i) = −2 if |Si| = 2 and i = −1.
2. f(Si, view i) = −1 if |Si| = 2 and i = 1. Otherwise:
3. f(Si, view i) = i if |Si| ≤ 2. Otherwise:
4. f(Si, view i) = −2 if −2 ∈ Si. Otherwise:
5. f(Si, view i) = 1 if view i = {−1}.
6. f(Si, view i) = 2 if view i = {−1, 1}.
7. f(Si, view i) = −1 if view i = {1}.
8. f(Si, view i) = −1 if view i = {1, 2} and i = 1.
9. f(Si, view i) = −2 if view i = {1, 2} and i = 2.

10. f(Si, view i) = −2 if view i = {2}.
11. f(Si, view i) = −2 if view i = {−1, 2} and i = −1.
12. f(Si, view i) = 1 if view i = {−1, 2} and i = 2.

Obstruction-Free Algorithms Can Be Practically

Wait-Free

Faith Ellen Fich2, Victor Luchangco1, Mark Moir1, and Nir Shavit1

1 Sun Microsystems Laboratories
2 University of Toronto

Abstract. The obstruction-free progress condition is weaker than pre-
vious nonblocking progress conditions such as lock-freedom and wait-
freedom, and admits simpler implementations that are faster in the un-
contended case. Pragmatic contention management techniques appear to
be effective at facilitating progress in practice, but, as far as we know,
none guarantees progress.

We present a transformation that converts any obstruction-free algo-
rithm into one that is wait-free when analyzed in the unknown-bound
semisynchronous model. Because all practical systems satisfy the as-
sumptions of the unknown-bound model, our result implies that, for all
practical purposes, obstruction-free implementations can provide progress
guarantees equivalent to wait-freedom. Our transformation preserves the
advantages of any pragmatic contention manager, while guaranteeing
progress.

1 Introduction

Substantial effort has been made over the last decade in designing nonblocking
shared data structure implementations, which aim to overcome the numerous
problems associated with lock-based implementations. Despite this effort, de-
signs satisfying traditional nonblocking progress conditions, such as wait-freedom
and—to a lesser extent—lock-freedom, are usually complicated and expensive.

Significant progress in overcoming these problems has been achieved recently
by designing implementations that satisfy the weaker obstruction-free nonblock-
ing progress condition, which requires progress guarantees only in the (eventual)
absence of interference from other operations [16]. This weaker requirement al-
lows simpler implementations that perform better in the common uncontended
case. Recently Herlihy, Luchangco, Moir and Scherer [18] introduced a dynamic
software transactional memory (DSTM) package, which allows programmers to
develop obstruction-free data structures without reasoning about concurrency.

That obstruction-free data structures do not guarantee progress under con-
tention is not just a theoretical concern: they are observed to suffer from livelock
in practice. To combat this problem, obstruction-free implementations are com-
bined with contention managers [18], whose role is to facilitate progress when
necessary by allowing operations to run without interference long enough to com-
plete. While a number of contention managers have proved effective in practice
[18,26,27], as far as we know, none guarantees progress.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 78–92, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Obstruction-Free Algorithms Can Be Practically Wait-Free 79

In this paper we show that the advantages of this pragmatic approach can be
exploited without giving up strong progress guarantees. We do so by showing how
to transform any obstruction-free algorithm so that it guarantees that every oper-
ation eventually completes, given some very weak timing assumptions about the
target system. These assumptions are embodied by the unknown-bound semisyn-
chronous model of computation [9,2]. Roughly speaking, this model assumes that
some bound exists on the relative execution rates of any two processes in the
system, but does not assume that the bound is known. All practical systems
satisfy this assumption.

Our transformation does not affect the behavior of the original algorithm
(except for a very small overhead) until some operation decides that it has run
for too long without completing. Furthermore, our transformation can be applied
to an obstruction-free algorithm combined with any valid contention manager
(i.e., one that preserves the obstruction-freedom of the algorithm; see [18] for
restrictions on contention managers), allowing us to take advantage of the prac-
tical benefits of a heuristic contention manager that does not guarantee progress,
without sacrificing progress guarantees.

Considering obstruction-free implementations significantly reduces the bur-
den on designers of data structures (and software transactional memory im-
plementations) by eliminating the need to ensure progress under contention.
Furthermore, designers of contention managers for obstruction-free implementa-
tions have a great deal of latitude because contention managers can change the
timing behavior of an execution arbitrarily without causing safety requirements
to be violated. This is because the obstruction-free implementations are proved
safe in an asynchronous model of computation, in which processes may execute
arbitarily fast or slow or even stop executing all together. Therefore, contention
manager designers are free to experiment with a wide range of heuristics for
controlling contention, and in particular can exploit timing information avail-
able in the target system, for example to delay an operation to prevent it from
interfering with another.

The idea of combining an algorithm that ensures the required safety proper-
ties in an asynchronous model, but does not guarantee progress, with a mech-
anism that exploits timing information about the execution environment to en-
sure progress is not new. For example, failure detectors [7,19] can be used with
asynchronous consensus algorithms to guarantee progress in the face of failures.
Similarly, the Disk Paxos algorithm [12] employs a leader election algorithm to
ensure progress.

Although these approaches are similar in spirit to the obstruction-free ap-
proach, there are differences both in motivation and in acceptable solution ap-
proaches. First, research on failure detectors focuses on fault tolerance. It is
known to be impossible to tolerate the failure of even a single process in some
asynchronous environments, including message passing environments and shared
memory systems in which memory can be accessed only using read and write
operations [11,20]. In such environments, it is necessary to exploit synchrony in

80 F.E. Fich et al.

the system to solve fundamental problems such as consensus. Failure detector
research aims at characterizing and separating out this synchrony.

In contrast, research on obstruction-free algorithms has focused on modern
shared-memory multiprocessors, which support strong synchronization primi-
tives, such as compare-and-swap (CAS). It has long been understood that we
can implement any shared data structure so that it can tolerate process crashes
in such environments, even in an asynchronous model [15]. Thus, recent work
on the obstruction-free approach to implementing nonblocking data structures is
not motivated by fault tolerance, but by performance, simplicity of design, and
separation of concerns: we achieve simpler implementations that perform better
in the common uncontended case, while separating the design of mechanisms for
achieving progress (e.g., contention managers) from the design of the underlying
obstruction-free algorithm that guarantees the required safety properties.

The Disk Paxos algorithm [12] uses a consensus algorithm to agree on transi-
tions of a replicated state machine, but the consensus algorithm does not guar-
antee progress under contention. Therefore, the algorithm uses a leader election
algorithm, and processes take steps of the consensus algorithm only when they
believe themselves to be the leader. The leader election algorithm eventually
ensures that exactly one process is the leader (provided some reasonable as-
sumptions about system “stability” are eventually satisfied), and thereby ensures
progress. This can be viewed as a form of contention management. However, such
use of a leader election algorithm as a contention manager is not acceptable in
the design of shared data structures, because it eliminates concurrency in the
common case. This is natural in the case of Disk Paxos, because concurrent op-
erations trying to reach consensus necessarily synchronize with each other, but
operations on shared data structures should be able to proceed in parallel when
they do not conflict. Therefore, we have taken care to design our transforma-
tion so that it uses its original contention manager as long as it is effective, and
only attempts to serialize operations if this contention manager proves ineffec-
tive. This way, we guarantee that every operation eventually completes, while
continuing to exploit the natural concurrency between nonconflicting operations.

To our knowledge, the only other work aimed at providing strong progress
guarantees for obstruction-free algorithms is due to Guerraoui, Herlihy, and
Pochon [14]. They present a simple contention manager and prove that it en-
sures that every transaction completes after a bounded delay. However, their
contention manager is blocking, which means a single thread failure can prevent
further progress by any other transaction, and common events, such as thread
preemptions, can prevent progress for long periods of time.

Scherer and Scott [26] developed the timestamp contention manager based
on the ideas used by our transformation, but have not made any claims about
whether or under what circumstances it ensures progress. Furthermore, their ex-
periments show that this contention manager does not perform as well as others
they have invented. Our transformation shows that we can choose a contention
manager based on its performance in common cases, rather than in the worst
case, without giving up guaranteed progress.

Obstruction-Free Algorithms Can Be Practically Wait-Free 81

2 Background

Before presenting our transformation, we introduce background on nonblock-
ing shared data structures, nonblocking progress conditions, and asynchronous
and semisynchronous models of computation, and briefly describe some previous
results that use semisynchronous models to analyze implementations.

2.1 Nonblocking Shared Data Structures

Today, almost all concurrent programs rely on blocking constructs such as mu-
tual exclusion locks for synchronizing access to shared data structures. The use
of locks introduces numerous problems, including deadlock, performance bot-
tlenecks, and priority inversion [15]. Researchers have investigated nonblocking
implementations in the hope of eliminating these problems.

An implementation of a shared data structure in a shared memory system
provides a representation of the data structure using base objects in the system
and provides algorithms for the processes of the system to perform operations
on the data structure.

Most nonblocking algorithms are based on an optimistic approach to syn-
chronization, in which an operation is attempted but may fail to take effect if
another concurrent operation interferes. In this case, the operation is retried. A
significant source of difficulty is guaranteeing that an operation is not retried
repeatedly without ever completing. Generally, stronger nonblocking progress
guarantees are more difficult to achieve, and require algorithms that are more
complicated and more expensive.

2.2 Nonblocking Progress Conditions

A wait-free implementation [15] guarantees that when a process performs an op-
eration, it completes the operation in a finite number of its own steps, regardless
of how fast or slowly other processes execute, and even if they stop executing
permanently. Such strong progress guarantees are attractive, but often very dif-
ficult to achieve. Most wait-free algorithms in the literature are too complicated
and too expensive to be useful in practice.

A lock-free implementation guarantees that, starting from any state in which
one or more processes are executing operations, some process will complete its
operation within a finite number of steps. This weaker progress condition usually
makes lock-free implementations easier to design than wait-free ones. Simple
and practical lock-free implementations have been achieved for a small number
of important data structures, such as stacks [28], queues [25], and workstealing
deques [3,8]. Lock-freedom has generally been regarded as acceptable because
well known contention management techniques such as backoff [1] are effective
at reducing contention when it arises, thereby achieving progress in practice,
despite the lack of the strong theoretical guarantee of wait-freedom.

Herlihy, Luchangco, and Moir [16] recently proposed the obstruction-free ap-
proach to implementing nonblocking operations for shared data structures. An

82 F.E. Fich et al.

obstruction-free implementation simply guarantees that a process will complete
its operation if it eventually executes enough steps without interference from
other processes. Thus, if two or more processes repeatedly interfere with each
other, it is possible that none of them completes its operation. The view is
that, because contention management techniques are required to achieve accept-
able performance when contention arises anyway, it is unnecessary to make any
progress guarantees in the case of contention between concurrent operations.

Several examples in the literature suggest that by providing only obstruction-
free progress guarantees, significantly simpler implementations can be achieved
that are faster in the uncontended case [16,18,21]. Furthermore, although an
implementation that is obstruction-free but not lock-free will exhibit livelock if
contention is ignored, experience shows that livelock can be effectively avoided
by using simple contention management strategies [18,26,27].

2.3 Asynchronous and Semisynchronous Models of Computation

Concurrent algorithms are usually required to ensure safety properties regardless
of how the steps of concurrent processes are interleaved, and (therefore) regard-
less of how fast or slowly any process executes. In other words, these algorithms
should be proved safe in an asynchronous model of computation, in which the
steps of processes are scheduled by an adversarial scheduler that can perform
many steps of a process consecutively or perform them arbitrarily far apart. In
such a model, it is impossible for a process to determine whether another process
has crashed (i.e., stopped executing) or is just running very slowly.

Of course, in reality, there are limits to how fast or slowly processes can run.
Some algorithms exploit assumptions about these limits to improve in various
ways on algorithms designed for an asynchronous model. Such algorithms are an-
alyzed in synchronous or semisynchronous models of computation that embody
timing assumptions made about the target execution environment.

In a synchronous model, all processes execute steps at the same rate (until
they crash). This means that if a process does not perform a step when it should,
other processes can detect that it has crashed. However, if the correctness of a
particular algorithm depends on all (noncrashed) processes performing steps
precisely at a given rate, then tiny variations in execution rate, for example due
to one processor becoming warmer than another, can cause incorrect behavior.
Consequently, such algorithms are not generally practical.

Semisynchronous models relax these timing requirements, allowing processes
to execute steps at different rates, and even allowing the rate at which a partic-
ular process executes to vary over time. However, it is assumed that there is an
upper bound on the relative execution rates of any pair of processes. To be more
precise, let us define the maximum step time of an execution as the longest time
between the completion times of consecutive steps of any process. We define min-
imum step time analogously. Semisynchronous models assume that there exists
a finite R such that in all executions, the ratio of the maximum and minimum
step times is at most R. The evaluation of algorithms in semisynchronous models
has value for the practitioner because real-world systems satisfy the assumptions

Obstruction-Free Algorithms Can Be Practically Wait-Free 83

of such models, and for the theoretician in understanding the limitations of as-
sumptions on timing.

In the known-bound model [2,23], R is known by all processes. This implies
that a process can wait long enough to guarantee that every other process has
taken another step, or has crashed. Some algorithms that depend on knowledge
of R can violate safety requirements in systems that do not satisfy the assumed
bound. Conservative estimates of the bound for a particular system generally
translate into worse performance, so designers are faced with a dangerous trade-
off in using such algorithms. Thus, such algorithms are not easily portable and
indeed may violate safety properties in a given system if the system stops satis-
fying the timing assumptions, for example due to increased temperature.

In the unknown-bound model [9,2], R is not known to processes. Thus, in
contrast to the synchronous and known-bound models, a process does not know
how long to wait to ensure that every other process that has not crashed takes
a step. Therefore, it is not possible for a process to detect that another process
has crashed. Nonetheless, it is possible for algorithms to wait for increasingly
longer periods, and to exploit the knowledge that eventually all noncrashed
processes have taken a step during one of these periods. It has been shown that
an algorithm that is correct in this model does not violate any of its safety
properties even in an asynchronous model, although progress properties proved
in the unknown-bound model may not hold in an asynchronous model [2].

Algorithms that are correct in an asynchronous model are nonetheless some-
times analyzed in a synchronous or semisynchronous model, thus allowing the
analysis to depend on various timing assumptions. Because contention manage-
ment techniques such as backoff fundamentally rely on operations waiting for
some time before retrying, they cannot be meaningfully analyzed in an asyn-
chronous model of computation, which has no notion of time whatsoever.

In this paper, we show how to transform any obstruction-free implementation
into one that guarantees that every process performing an operation eventually
completes the operation, when analyzed in the unknown-bound model. Thus, the
resulting algorithm is safe to use in any non-real-time application, and guarantees
that every operation eventually completes in any practical system.

2.4 Some Previous Work Using Semisynchronous Models

The study of algorithms in semisynchronous models has a long tradition in the
distributed-computing community [9,10,5]. Semisynchronous algorithms have re-
ceived considerable attention in the context of shared-memory synchronization.
For lack of space, we mention only a few of the results.

Fischer [10] was the first to propose a timing-based mutual exclusion algo-
rithm. He showed that in a known-bound model, there is a simple and efficient
algorithm that uses a single shared variable. This overcame the linear space
lower bound of Burns and Lynch [6] for asynchronous systems. Unfortunately,
that algorithm violates safety properties if the timing assumptions of the model
are violated. Lynch and Shavit [23] improved on Fischer’s algorithm: in the same
model, they presented an algorithm that uses two variables and ensures safety

84 F.E. Fich et al.

even if the timing assumptions are violated, although progress is not guaranteed
in this case. Gafni and Mitzenmacher [13] analyzed this algorithm under various
stochastic timing models. Alur, Attiya, and Taubenfeld [2] showed that timing-
based mutual exclusion and consensus algorithms with constant time complexity
in the uncontended case exist in the unknown-bound model.

Counting networks [4] have also been evaluated in semisynchronous models.
Lynch, Shavit, Shvartsman, and Touitou [22] showed that some nonlinearizable
uniform counting networks are linearizable when analyzed in the known-bound
model. This result was generalized by Mavronicolas, Papatriantafilou, and Tsigas
[24] to nonuniform networks under a variety of timing assumptions. In these
results, the linearizability of the implementations depends on timing.

3 Our Transformation

We begin by explaining some simple ways of ensuring progress for each opera-
tion under various different assumptions and models. These ideas motivate the
techniques used in our algorithm, and explain why they are needed under the
weak assumptions of the unknown-bound model.

First, if we assume that processes never crash, then it is easy to ensure
progress, even in an asynchronous model. This is achieved by ordering opera-
tions using timestamps, and having each process wait until all earlier operations
in this order have completed before performing the steps of its own operation.
This ensures that operations do not encounter contention with concurrent opera-
tions while executing the original obstruction-free algorithm, so every operation
eventually completes. However, if a process does crash while it has a pending
operation, no operations with later timestamps can be executed.

In a synchronous model, if all processes know an upper bound B on the
number of consecutive steps that must be taken by a process to ensure that
its operation completes, then it is easy to guarantee that each operation com-
pletes, even if processes can crash. The idea is, again, to order operations using
timestamps and to have processes refrain from executing their operations while
operations with earlier timestamps are pending. However, unlike in the asyn-
chronous model, a process can detect if another process crashed while executing
its operation: If the operation is not completed within B steps, then the process
executing it must have crashed. In this case, a process can execute its operation
when every operation with an earlier timestamp has either completed, or will
not interfere further because the process executing it has crashed.

A similar approach works in the known-bound model. In this case, a process
that is waiting for an earlier operation than its own to complete must conserva-
tively assume that it is executing its steps at the maximum speed allowed by the
model relative to the speed of the process executing the earlier operation. Thus,
in this model, a process must wait for RB steps in order to be sure that another
process has had time to execute B steps, where R is the ratio of the maximum
and minimum step times.

Obstruction-Free Algorithms Can Be Practically Wait-Free 85

However, this technique does not work in the unknown-bound model because
the bound R is not known to processes. In fact, in this model, it is impossible for
one process to determine that another process has crashed. Nonetheless, ideas
similar to those described above can be used to guarantee that each operation
excuted by a process that does not crash will complete even in the unknown-
bound model. The key idea is that, rather than delaying for an amount of time
that is known to be long enough to allow another process to take B steps, a
process can delay for increasingly long periods of time while an earlier operation
has not completed.

Each time a process performs b steps of its operation, for some constant b,
it increments a counter. This serves the dual purposes of demonstrating that it
has not crashed, and therefore must be deferred to by later operations, as well
as increasing the number of steps for which later operations must defer. After
a process has waited the required number of steps for an earlier operation that
has not been completed and whose counter has not been incremented, it assmues
that the process performing the earlier operation has crashed. Consequently, it
removes the timestamp of that operation from the order of operations under
consideration and proceeds.

In case the process executing the earlier operation has, in fact, not crashed,
it reinstates its operation into the order (using its original timestamp). With
this arrangement, if a process does crash while executing an operation, then it is
removed from consideration and does not prevent progress by other operations.
On the other hand, if an operation fails to complete because others did not wait
long enough, then they will wait longer next time, so the bound provided by the
model ensures that eventually they will wait long enough and the operation will
complete.

It is important to note that the worst-case bound R for a particular system
might be very high, because a process might occasionally take a very long time
between two steps. However, the algorithm has no knowledge of the bound, so
the bound does not affect the performance of the algorithm; only the particular
execution behaviour does. Furthermore, even if an unlikely sequence of events
causes progress to take a long time, this has no bearing on how the algorithm
behaves in the future. In practice, processes run at approximately the same speed
most of the time. Therefore, the effective bound will generally be small, even if,
in theory, the actual bound is very large.

This description captures the key idea about how we transform implemen-
tations to provide progress guarantees in the unknown-bound model. However,
because this strategy essentially amounts to eliminating concurrency, it would
not be practical if simply used as described. Therefore, our transformation does
not employ this strategy until some process determines that it has executed the
original operation too long without making progress.

The algorithm produced by applying our transformation to an obstruction-
free algorithm OFAlg (which may include a contention manager) is shown in
Figure 1. We now describe the transformed algorithm in more detail.

86 F.E. Fich et al.

invoke(op)
N1: if ¬PANIC
N2: execute up to B steps of OFAlg
N3: if op is complete
N4: return response
N5: PANIC ← true

// panic mode
P1: t ← fetch-and-increment(C)
P2: A[i] ← 1

repeat
P3: T[i] ← t

// find minimum time stamp; reset all others
P4: m ← t

k ← i
P5: for each j �= i
P6: s ← T[j]
P7: if s < m
P8: T[k] ← ∞
P9: m ← s

k ← j
else

P10: if (s < ∞) T[j] ← ∞
P11: if k = i

repeat
P12: execute up to b steps of OFAlg
P13: if (op is complete)
P14: T[i] ← ∞
P15: PANIC ← false
P16: return response
P17: A[i] ← A[i] + 1
P18: PANIC ← true
P19: until (T[i] = ∞)

else
repeat

P20: a ← A[k]
P21: wait a steps
P22: s ← T[k]
P23: until a = A[k] or s �= m
P24: if (s = m) T[k] ← ∞
P25: until (op is complete)

Fig. 1. The transformation

The PANIC flag is used to regulate when the strategy to ensure progress
should be used. When a process invokes an operation, it first checks this flag
(N1) and, if it is false, executes up to B steps of its original algorithm (N2),
where B is a parameter of the transformation. If these steps are sufficient to
complete its operation, the process simply returns (N3–N4). Observe that, if

Obstruction-Free Algorithms Can Be Practically Wait-Free 87

every operation completes within B steps, then the PANIC flag remains false,
so the transformed algorithm behaves exactly like the original one, except that
it must read one variable, which is likely to be cached. Thus, by choosing B
appropriately, we ensure that our transformation introduces very little overhead,
if the original contention manager is effective.

If its operation fails to complete within B steps, a process sets the PANIC
flag to true (N5). Thereafter, until the flag is reset, all new operations see that
the PANIC flag is true and begin to participate in the strategy to ensure progress
(P1–P25).

A process pi participating in this strategy first acquires a timestamp (P1),
initializes its activity counter A[i] (P2), and then repeats loop P3–P25 until its
operation is complete. In each iteration of this loop, pi announces its times-
tamp in T [i] (P3) and then searches for the minimum (i.e., oldest) timestamp
announced by any process. All timestamps that are not ∞, but are larger than
the minimum timestamp it observes, are replaced by ∞ (P4–P10).

If pi determines that it has the minimum timestamp (P11), then it repeatedly
takes up to b steps of the original algorithm (P12) (where the constant b is a
parameter of the algorithm), increments its activity counter (P17), and resets
the PANIC flag to true (P18). Note that the PANIC flag may have been set
to false because some other process completed its operation (P15). Resetting
the PANIC flag to true ensures that new operations continue to participate
in the strategy to ensure progress. Process pi repeats these steps until either
its operation finishes (P13–P16) or some other process overwrites its timestamp
with∞ (P19). The latter case indicates that this other process has read an older
timestamp (P8, P10) or thinks that pi may have crashed (P24).

If process pi determines that some other process pk has the minimum times-
tamp (P11), then pi enters loop P20–P23. During each iteration of this loop, pi

reads pk’s activity counter A[k] (P20) and waits for the indicated number of steps
(P21). If pk’s timestamp is overwritten during this period of time, then either
pk has completed its operation, another process thought that pk had crashed,
or another process saw an operation with a smaller timestamp. In this case, pi

exits the loop (P23). If pk’s timestamp is not overwritten by another value and
pk does not increment its activity counter during this period of time, then pk

may have crashed, so pi exits the loop (P23) and overwrites pk’s timestamp with
∞ (P24).

In the next section, we present a careful proof of correctness for the resulting
algorithm. Specifically, we show that, if process pi has the smallest timestamp
among all active processes with uncompleted operations, then pi eventually com-
pletes its operation. Before doing so, we informally explain why our strategy
ensures this property.

Eventually, in every iteration of loop P3–P25, process pi enters loop P12–P19.
Meanwhile, other processes determine that pi’s timestamp is the minimum and
wait for a number of steps indicated by pi’s activity counter A[i]. If pi doesn’t
complete its operation within b steps, then it increments its activity counter
A[i]. Eventually, no process resets T [i] to ∞, and A[i] becomes large enough so

88 F.E. Fich et al.

that each process executing loop P20–P23 waits long enough at P21 so that pi

increments A[i] during this period. Thus, eventually, all other active processes
remain in loop P20–P23, so no process except pi executes steps of the original
algorithm. Hence, obstruction freedom guarantees that pi eventually completes
its operation.

On the other hand, if pi crashes, then the other processes will no longer see
A[i] change, will stop waiting for pi, and will overwrite its timestamp with ∞.
Then the way is clear for the next operation in timestamp order (if any) to make
progress.

An important feature of the transformed implementation is that, if the orig-
inal contention manager is occasionally ineffective, causing the PANIC flag to
be set, the PANIC flag will be reset and normal execution will resume, provided
the original contention manager does not remain ineffective. To see this, recall
that every operation by a noncrashed process eventually completes, and note
that each operation either sees that PANIC is false and does not set it (N1), or
sets it to false before returning (P15). Furthermore, PANIC is set to true only
by an operation that has executed either B or b steps of the original algorithm
(including the original contention manager) without completing. Thus, with ap-
propriate choices for B and b, we ensure that our mechanism continues to be
invoked only if the original contention manager continues to be ineffective.

4 Proof of Correctness

The transformed algorithm performs the original algorithm on the original shared
objects and does not apply any other steps to those objects. Thus, the algorithm
produced by applying our transformation to any obstruction-free algorithm re-
tains the semantics of the original algorithm.

It remains to prove that the resulting algorithm is wait-free (assuming that
there is a bound on the ratio of the maximum time and minimum time between
steps of each process), that is, when the algorithm is executed in a system that
satisfies the assumptions of the unknown-bound semisynchronous model, every
operation executed by a process that does not crash eventually completes.

We begin with the following lemma, which we use in the wait-freedom proof.

Lemma 1. If two different processes pi and pj are both in the loop at lines
P12–P19, then either T[i] = ∞ or T[j] = ∞.

Proof. Before reaching line P12, each process must set its entry in T to the
timestamp of its operation at line P3. Consider the last time each process did
so, and suppose, without loss of generality, that pj did so before pi did. Because
pi reached line P12, pi must have set T[j] to ∞ (or read that T[j] = ∞) after it
set T[i], which was after the last time pj set T[j] to a finite value. Since no other
process sets T[j] to anything other than ∞, we have T[j] =∞, as required.

The proof of wait-freedom is by contradiction. Suppose there is an execution
in which some process takes an infinite number of steps after invoking an oper-
ation, but does not complete the operation. All the claims that follow are made

Obstruction-Free Algorithms Can Be Practically Wait-Free 89

within the context of this execution. Throughout the proof, we use vi to denote
the local variable v in the code of process pi.

Any process that does not complete its operation within B steps must have
seen (or set) PANIC = true. Then, on line P1, it must have applied fetch-and-
increment to C and received a unique timestamp for this operation.

Let t∗ be the minimum timestamp of any operation that does not complete
even though the process pi∗ that invoked this operation takes an infinite number
of steps. Thus, after some point in the execution, any process that gets a times-
tamp less than t∗ for an operation it invokes either completes the operation or
stops taking steps. Let X be any point in the execution after pi∗ first sets T [i∗]
to t∗ on line P3 and such that, after X , no process takes a step of an operation
with timestamp less than t∗.

Lemma 2. Infinitely often, pi∗ is not in loop P12–P19.

Proof. Suppose that there is some point Y after X in the execution such that
after Y , pi∗ remains in loop P12–P19 forever. Note that pi∗ is the only process
that can set T [i∗] to a value other than ∞. However, pi∗ does not do so after Y .
Thus, if T [i∗] is set to ∞ after Y , then it will remain ∞. But then pi∗ will exit
the loop, contrary to assumption. Hence, from Y onwards, T [i∗] = t∗.

By Lemma 1, any other process pj that is in loop P12–P19 after Y has
T [j] = ∞ and so, if it continues to take steps, would eventually exit this loop.
Process pj cannot re-enter this loop after leaving it: since tj > t∗ = T [i∗], when
pj next reaches line P11, kj �= j . Thus, there is some point after Y in the
execution after which no process except pi∗ performs steps in loop P12–P19.

Since the only line that sets PANIC to false is P15, which pi∗ does not
perform after Y (or else pi∗ would complete its operation), and since pi∗ sets
PANIC to true every iteration, eventually PANIC remains true. Thus, eventually,
no process will perform N2. Thus, there is some point after Y in the execution
after which no process except pi∗ performs steps of OFAlg.

Note that, in each iteration of loop P12–P19, process pi∗ executes b steps of
OFAlg. Since OFAlg is obstruction free, this implies that pi∗ eventually completes
its operation and exits the loop by performing line P16. This contradicts the
assumption that pi∗ remains in loop P12–P19 from Y onwards.

When pi∗ performs line P4 during its last operation, it sets mi∗ to t∗. There-
after, mi∗ is always less than or equal to t∗, since the only other way mi∗ gets
assigned a value is when lines P7–P9 are performed. After X , every process pk

with T [k] < t∗ takes no steps, so A[k] does not change. Thus, if pi∗ enters loop
P20–P23 (with ki∗ �= i∗ and mi∗ < t∗), it will eventually leave it, because A[ki∗]
does not change. Furthermore, if no other process sets T [ki∗] to a different value
(either to the timestamp of a later operation performed by pki∗ or to ∞), then
pi∗ will set T [ki∗] to ∞ on line P24.

Because pi∗ takes an infinite number of steps and remains in loop P3–P25,
but does not remain in loop P12–P19 or loop P20–P23 forever, pi∗ performs lines
P3–P10 infinitely often. Thus, eventually, T [j] > t∗ for all j �= i. In each iteration
of loop P3–P25 starting after this point, pi∗ performs a successful test on line P11

90 F.E. Fich et al.

and executes loop P12–P19. In each iteration of this inner loop, pi∗ increments
A[i∗]. Thus A[i∗] increases without bound. Furthermore, the number of steps
performed between successive increments of A[i∗] is bounded by a constant.

Eventually, from some point Z on, T [j] > t∗ for all j �= i∗ and A[i∗] is greater
than R times the maximum number of steps between successive increments of
A[i∗], where R is the ratio of the maximum and minimum step times. If, after
Z, process pj begins loop P20–P23 with kj = i∗, then, while it is waiting on
line P21, process pi∗ increments A[i∗]. Hence, if pj exits this loop, sj �= mj and
pj does not set T [i∗] to ∞. The only other places that T [i∗] can be set to ∞
are lines P8, P10, and P14. By assumption, process pi∗ does not complete its
operation, and so does not execute P14. Note that after X , T [i∗] contains only
t∗ or ∞. If process pj reads T [i∗] = ∞ on line P6, then it performs no write on
line P10. Otherwise process pj reads T [i∗] = t∗ on line P6. In this case, it sets
mj = t∗ on line P9. After Z, T [k] > t∗ for all k �= i∗, so process pj does not
write to T [i∗] on line P8. Thus, eventually, no process writes ∞ to T [i∗]. Since
process pi∗ writes t∗ to T [i∗] infinitely often, T [i∗] has value t∗ from some point
onwards.

But this implies that, eventually, process pi∗ enters and never exits loop
P12–P19. This contradicts Lemma 2.

5 Concluding Remarks

We have shown that any obstruction-free algorithm can be transformed into a
new algorithm that is wait-free when analyzed in the unknown-bound semisyn-
chronous model of computation. Our transformation can be applied to an
obstruction-free implementation, together with any valid contention manager,
and the transformed implementation behaves like the original as long as the
chosen contention manager is effective. Because real-world systems satisfy the
assumptions of the model we consider, our result shows that obstruction-free
algorithms and ad hoc contention managers can be used in practice without
sacrificing the strong progress guarantees of wait-freedom.

In an earlier version of our transformation, a process incremented its activity
counter only once in each iteration of the outer loop P3–P25, rather than each
iteration of loop P12–P19. Hugues Fauconnier pointed out that this transforma-
tion applies only to bounded obstruction-free algorithms. These are algorithms
having a finite bound such that every operation completes within that number
of steps after it encounters no more interference. In contrast, the algorithm we
present here can be applied even if an execution contains an operation and an
infinite sequence of different configurations with increasing time requirements for
completion of that operation when running alone. In other words, our algorithm
ensures that every operation executed by a noncrashed process eventually com-
pletes, even if the underlying obstruction-free algorithm only guarantees eventual
completion after encountering no more interference.

Our result can easily be made stronger from both practical and theoreti-
cal points of view. First, as presented, our transformation introduces the need

Obstruction-Free Algorithms Can Be Practically Wait-Free 91

to know of the maximum number of processes that use the implementation.
However, this disadvantage can easily be eliminated using results of Herlihy,
Luchangco and Moir [17]. From a theoretical point of view, our use of the fetch-
and-increment can be eliminated by using standard timestamping techniques
based on an array of single-writer-multiple-reader registers. Thus, our transfor-
mation is applicable in a wide range of shared memory systems, as it does not
depend on any special support for synchronization.

Acknowledgements. We are grateful to Hugues Fauconnier for his observation.
Faith Ellen Fich is grateful for financial support from the Natural Sciences and
Engineering Research Council of Canada and from the Scalable Synchronization
Research Group of Sun Microsystems, Inc.

References

1. A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In
Proceedings of the 16th International Symposium on Computer Architecture, pages
396–406, May 1989.

2. R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive algorithms for synchroniza-
tion. SIAM J. Comput., 26(2):539–556, 1997.

3. N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001.

4. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,
41(5):1020–1048, 1994.

5. H. Attiya and M. Mavronicolas. Efficiency of semisynchronous versus asynchronous
networks. Math. Syst. Theory, 27(6):547–571, 1994.

6. J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual exclusion.
Information and Computation, 107(2):171–184, 1993.

7. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

8. D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Proceedings of
the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pages 21–28. ACM Press, 2005.

9. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

10. M. Fischer. Personal communication with Leslie Lamport. June 1985.
11. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus

with one faulty process. Journal of the ACM, pages 374–382, 1985.
12. E. Gafni and L. Lamport. Disk Paxos. In DISC ’00: Proceedings of the 14th

International Conference on Distributed Computing, pages 330–344, London, UK,
2000. Springer-Verlag.

13. E. Gafni and M. Mitzenmacher. Analysis of timing-based mutual exclusion with
random times. In PODC ’99: Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing, pages 13–21. ACM Press, 1999.

14. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In Proceedings of the 24th Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 258–264. ACM Press, 2005.

15. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, January 1991.

92 F.E. Fich et al.

16. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proc. 23rd International Conference on Distributed
Computing Systems, 2003.

17. M. Herlihy, V. Luchangco, and M. Moir. Space- and time-adaptive nonblocking
algorithms. In Proceedings of Computing: The Australasian Theory Symposium
(CATS), 2003.

18. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional
memory for supporting dynamic-sized data structures. In Proc. 22th Annual ACM
Symposium on Principles of Distributed Computing, pages 92–101, 2003.

19. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems (extended abstract). In WDAG ’94: Proceedings
of the 8th International Workshop on Distributed Algorithms, pages 280–295, Lon-
don, UK, 1994. Springer-Verlag.

20. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among un-
reliable asynchronous processes. In F. P. Preparata, editor, Advances in Computing
Research, volume 4, pages 163–183. JAI Press, Greenwich, CT, 1987.

21. V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In
SPAA ’03: Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 314–323. ACM Press, 2003.

22. N. Lynch, N. Shavit, A. Shvartsman, and D. Touitou. Timing conditions for lin-
earizability in uniform counting networks. Theor. Comput. Sci., 220(1):67–91,
1999.

23. N. A. Lynch and N. Shavit. Timing-based mutual exclusion. In IEEE Real-Time
Systems Symposium, pages 2–11. IEEE Press, 1992.

24. M. Mavronicolas, M. Papatriantafilou, and P. Tsigas. The impact of timing on
linearizability in counting networks. In IPPS ’97: Proceedings of the 11th Interna-
tional Symposium on Parallel Processing, pages 684–688. IEEE Computer Society,
1997.

25. M. Michael and M. Scott. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared-memory multiprocessors. Journal of Parallel and Dis-
tributed Computing, 51(1):1–26, 1998.

26. W. N. Scherer III and M. L. Scott. Contention management in dynamic software
transactional memory. In Moir and Shavit, editors, In Proceedings of Workshop on
Concurrency and Sycnhronization in Java Programs, July 2004.

27. W. N. Scherer III and M. L. Scott. Advanced contention management for dynamic
software transactional memory. In Proceedings of the 24th Annual ACM Symposium
on Principles of Distributed Computing, pages 240–248. ACM Press, 2005.

28. R. K. Treiber. Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center, April 1986.

Efficient Reduction for Wait-Free Termination
Detection in a Crash-Prone Distributed System

Neeraj Mittal1,�, Felix C. Freiling2,
S. Venkatesan1, and Lucia Draque Penso2,��

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, TX 75083, USA

{neerajm, venky}@utdallas.edu
2 Department of Computer Science, RWTH Aachen University,

D-52056 Aachen, Germany
freiling@informatik.rwth-aachen.de

lucia@i4.informatik.rwth-aachen.de

Abstract. We investigate the problem of detecting termination of a
distributed computation in systems where processes can fail by crash-
ing. Specifically, when the communication topology is fully connected,
we describe a way to transform any termination detection algorithm A
that has been designed for a failure-free environment into a termination
detection algorithm B that can tolerate process crashes. Our transfor-
mation assumes the existence of a perfect failure detector. We show that
a perfect failure detector is in fact necessary to solve the termination
detection problem in a crash-prone distributed system even if at most
one process can crash.

Let μ(n, M) and δ(n, M) denote the message complexity and detec-
tion latency, respectively, of A when the system has n processes and the
underlying computation exchanges M application messages. The mes-
sage complexity of B is at most O(n+μ(n, 0)) messages per failure more
than the message complexity of A. Also, its detection latency is at most
O(δ(n, 0)) per failure more than that of A. Furthermore, the overhead
(that is, the amount of control data piggybacked) on an application mes-
sage increases by only O(log n) bits per failure.

The fault-tolerant termination detection algorithm resulting from the
transformation satisfies two desirable properties. First, it can tolerate
failure of up to n−1 processes, that is, it is wait-free. Second, it does not
impose any overhead on the fault-sensitive termination detection algo-
rithm until one or more processes crash, that is, it is fault-reactive. Our
transformation can be extended to arbitrary communication topologies
provided process crashes do not partition the system.

Keywords: distributed system, termination detection, faulty processes,
wait-free algorithm, failure detector, algorithm transformation.

� Work by Neeraj Mittal was performed in part while visiting RWTH Aachen
University and supported by Deutsche Forschungsgemeinschaft (DFG) within the
Graduiertenkolleg “Software for Mobile Communication Systems”.

�� Lucia Draque Penso was supported by Deutsche Forschungsgemeinschaft (DFG) as
part of the Graduiertenkolleg “Software for Mobile Communication Systems” at
RWTH Aachen University.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 93–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 N. Mittal et al.

1 Introduction

One of the fundamental problems in distributed systems is to detect termination
of an ongoing distributed computation. The termination detection problem was
independently proposed by Dijkstra and Scholten [1] and Francez [2] more than
two decades ago. Since then, many researchers have studied this problem and,
as a result, a large number of efficient algorithms have been developed for de-
tecting termination (e.g., [3,4,5,6,7,8,9,10,11,12,13,14]). Most of the termination
detection algorithms in the literature have been developed assuming that both
processes and channels stay operational throughout an execution. Real-world
systems, however, are often prone to failures. For example, processes may fail by
crashing and channels may be lossy. In this paper, we investigate the termination
detection problem when processes can fail by crashing. We assume that process
crashes do not result in restarting of the primary computation.

One of the earliest fault-tolerant algorithm for termination detection was
proposed by Venkatesan [15], which was derived from the fault-sensitive (that
is, fault-intolerant) termination detection algorithm by Chandrasekaran and
Venkatesan [9]. Venkatesan’s algorithm achieves fault-tolerance by replicating
state information at multiple processes. However, it assumes a prespecified bound
k on the maximum number of processes that can fail by crashing. Its message
complexity is O(kM + c), where M is the number of application messages ex-
changed by the underlying computation and c is the number of channels in
the communication topology. As a result, the overhead incurred by the algo-
rithm depends on the maximum number of processes that can fail during an
execution rather than the actual number of processes that fail during an exe-
cution. Moreover, the algorithm assumes that it is possible to send up to k + 1
(possibly different) messages to different processes in an atomic manner. Unlike
other fault-tolerant termination detection algorithms, however, Venkatesan’s al-
gorithm does not assume that the communication topology is fully connected
and works as long the topology is (k + 1)-connected [15].

Lai and Wu [16] and Tseng [17] modify fault-sensitive termination detection
algorithms by Dijkstra and Scholten [1] and Huang [8], respectively, to derive
two different fault-tolerant termination detection algorithms. Both algorithms
assume that the communication topology is fully connected. However, unlike
Venkatesan’s algorithm, both have low message complexity of O(M + fn + n),
where n is the initial number of processes in the system f is the actual number
of processes that fail during an execution. The algorithm by Lai and Wu [16]
has high detection latency of O(n) whereas the algorithm by Tseng [17] has
high application and control message overheads of O(M) and O(f log n + nM),
respectively.

Shah and Toueg give a fault-tolerant algorithm for taking a consistent snap-
shot of a distributed system in [18]. Their algorithm is derived from the fault-
sensitive consistent snapshot algorithm by Chandy and Lamport [19]. As a re-
sult, each invocation of their snapshot algorithm may generate up to O(c) control
messages. It is easy to verify that, when their algorithm is used for termination
detection, the message complexity of the resulting algorithm is O(cM) in the
worst-case. Similarly, Gärtner and Pleisch [20] give an algorithm for detecting
an arbitrary stable predicate in a crash-prone distributed system. (Note that

Efficient Reduction for Wait-Free Termination Detection 95

termination is a stable property.) In their algorithm, every relevant local event
is reliably and causally broadcast to a set of monitors, thereby increasing the
message complexity significantly.

In this paper, when the communication topology is fully connected, we de-
scribe a way to transform any fault-sensitive termination detection algorithm
A into a fault-tolerant termination detection algorithm B. Our transformation
assumes the existence of a perfect failure detector, which we show is necessary
to solve the problem. Let μ(n, M) and δ(n, M) denote the message complexity
and detection latency, respectively, of A when the system has n processes and
the underlying computation exchanges M application messages. The message-
complexity of B is O(f(n + μ(n, 0))) messages more than the message com-
plexity of A. Also, the detection latency of B is O(fδ(n, 0)) more than the
detection latency of A. For most termination detection algorithms, when the
topology is fully connected, μ(n, 0) is either O(n) or O(c), and δ(n, 0) is O(1).
(For example, for the Dijkstra and Scholten’s algorithm [1], μ(n, 0) = O(n) and
δ(n, 0) = O(1) when their algorithm is adopted for a non-diffusing computa-
tion.) Further, the application and control message overheads of B are at most
O(f log n) and O(f log n + n log M) more than those for A. (Message overhead
refers to the amount of control information piggybacked on a message.) The over-
head of O(n log M) applies only to those control messages that are exchanged
whenever a crash is detected. The fault-tolerant termination detection algorithm
resulting from the transformation satisfies two desirable properties. First, the it
can tolerate failure of up to n−1 processes, that is, it is wait-free. Second, it does
not impose any overhead on the fault-sensitive termination detection algorithm
if no process actually crashes during an execution, that is, it is fault-reactive.

Typically, generalized transformations tend to be inefficient compared to cus-
tomized/specialized transformations. However, when our transformation is ap-
plied to fault-sensitive termination detection algorithms by Dijkstra and Scholten
[1] and Huang [8], the resulting fault-tolerant algorithms compare very favorably
with those by Lai and Wu [16] and Tseng [17]. Specifically, when our transforma-
tion is applied to Dijkstra and Scholten’s algorithm [1], the resulting algorithm
has the same message-complexity and detection latency as the algorithm by Lai
and Wu [16]. However, the message overhead—application as well as control—is
higher for our algorithm. On the other hand, when our transformation is applied
to Huang’s weight throwing algorithm [8] (which is similar to Mattern’s credit
distribution and recovery algorithm [7]), the resulting algorithm has the same
message-complexity and detection latency as that of the algorithm by Tseng [17]
but has slightly higher application message overhead (O(log M + f log n) versus
O(log M)). Surprisingly, the overhead of control messages exchanged due to pro-
cess crashes by our algorithm, which is given by O(f log n + n log M), is much
lower than that of Tseng’s algorithm [17], which is given by O(f log n + nM).
For comparison between various fault-tolerant termination detection algorithms,
please refer to Table 1. The results of applying our transformation to some im-
portant termination detection algorithms are given in [21].

The main idea behind our approach is to restart the fault-sensitive termina-
tion detection algorithm whenever a new failure is detected. A separate mecha-
nism is used to account for those application messages that are in-transit when
the termination detection algorithm is restarted. Arora and Gouda [22] also

96 N. Mittal et al.

Table 1. Comparison of various fault-tolerant termination detection algorithms

Venkatesan [15] Lai and Wu [16] Tseng [17]
Our Approach

[this paper]

Message Complexity O(kM + c) O(M + fn + n) O(M + fn + n)
μ(n, M) +

O(f (n + μ(n, 0)))

Detection Latency O(M) O(n) O(f + 1)
δ(n, M) +

O(f δ(n, 0))

Application Message

Overhead
k-way duplication O(f log n + log M) O(log M)∗

α(n, M) +

O(f log n)

Control

Message

Overhead

Termination

Detection
O(log n + log M) O(f log n + log M) O(log M)∗

β(n, M) +

O(f log n)

Failure

Recovery
- O(f log n + log M) O(f log n + nM)

O(f log n) +

O(n log M)

Assumptions
FIFO channels +

atomic multicast

fully connected

topology

fully connected

topology

fully connected

topology

∗Assuming an efficient implementation of weight throwing scheme such as the one described in [7]

n: initial number of processes in the system

c: number of channels in the communication topology

f : actual number of processes that crash during an execution

k: maximum number of processes that can crash during an execution

M : number of application messages exchanged

μ(n, M) : message complexity of the fault-sensitive termination detection algorithm with n

processes and M application messages

δ(n, M) : detection latency of the fault-sensitive termination detection algorithm with n

processes and M application messages

α(n, M) : application message overhead of the fault-sensitive termination detection algorithm

with n processes and M application messages

β(n, M) : control message overhead of the fault-sensitive termination detection algorithm with

n processes and M application messages

provide a mechanism to reset a distributed system. Their approach is different
from our approach in many ways. First, the semantics of their reset operation is
different from the semantics of our restart operation. Specifically, if their reset
mechanism is applied to our system, then it will not only reset the termination
detection algorithm but will also reset the underlying distributed computation
(whose termination is to be detected). Further, application messages exchanged
by the underlying computation before it is reset will be discarded. If a failure
occurs near the completion of the underlying computation, the entire work needs
to be redone if the distributed reset procedure is used. In contrast, in our case,
the distributed computation continues to execute without interruption. (When
there are process crashes, we assume that the primary computation may be able
to cope with process failures without the need to restart itself.) Therefore, in
our case, application messages exchanged before the termination detection algo-
rithm is restarted, especially those exchanged between correct processes, cannot
be ignored. Arora and Gouda’s approach is more suitable for applications that
can be reset on occurrence of a failure whereas our approach is more suitable for
applications that continue to execute despite failures. Second, in their approach,
the system may be reset more than once for the same failure. This may hap-
pen, for example, when multiple processes detect the failure of the same process

Efficient Reduction for Wait-Free Termination Detection 97

at different times. Third, their reset operation, which is self-stabilizing in na-
ture, is designed to tolerate much broader and more severe kinds of faults such
as restarts, message losses and arbitrary state perturbations than just crash
failures. Not surprisingly, their reset operation has higher message and time
complexities than our restart operation. Fourth, their approach is non-masking
fault-tolerant, which implies that the safety specification of the application may
be violated temporarily, even if there is a single crash fault. When translated to
our problem, this means that the termination detection algorithm may falsely
announce termination, a case which our approach avoids.

We build upon the work by Wu et al [23]. We do this in the context of the
failure detector hierarchy proposed by Chandra and Toueg [24], a way to compare
problems based on the level of synchrony required for solving them. We show
that termination detection needs the synchrony assumptions of a perfect failure
detector to be solvable even if at most one process can crash. This result can be
used to further understand the relationship between termination detection and
other problems in fault-tolerant distributed computing, such as consensus and
atomic broadcast.

Our transformation can also be extended to an arbitrary communication
topology provided process crashes do not partition the system. (In case par-
titioning occurs, termination is detected separately in each partition.) For an
arbitrary topology, however, the increase in message-complexity and detection
latency per failure is higher than that for fully connected topology. Due to lack
of space, we only focus on the transformation for fully connected topology in
this paper. Details of the transformation for arbitrary topology can be found
elsewhere [21].

This paper is organized as follows. In Sect. 2, we present our model of a crash-
prone distributed system and describe what it means to detect termination in
such a system. We discuss our transformation in Sect. 3. In Sect. 4 we determine
the type of failure detector which is necessary for solving termination detection.
Finally, we present our conclusions and outline directions for future research in
Sect. 5.

2 Model and Problem Definition

2.1 System Model

We assume an asynchronous distributed system consisting of multiple processes,
which communicate with each other by exchanging messages over a set of com-
munication channels. There is no global clock or shared memory.

Processes are not reliable and may fail by crashing. Once a process crashes,
it halts all its operations and never recovers. We use the terms “non-crashed
process”, “live process” and “operational process” interchangeably. A process
that crashes is called faulty. A process that is not faulty is called correct. Note
that there is a difference between the terms “live process” and “correct pro-
cess”. A live process has not crashed yet but may crash in the future. Let
P = {p1, pn, . . . , pn} denote the initial set of processes in the system. We as-
sume that there is at least one correct process in the system at all times.

98 N. Mittal et al.

We assume that all channels are bidirectional but may not be FIFO (first-
in-first-out). Channels are reliable in the sense that if a process never crashes,
then every message destined for it is eventually delivered. A message may, how-
ever, take an arbitrary amount of time to reach its destination. Unless otherwise
stated, we assume that the communication topology is fully connected, that is,
every pair of operational processes can directly communicate with each other.

We assume the existence of a perfect failure detector [24], a device which
gives processes reliable information about the operational state of other pro-
cesses. Upon querying the local failure detector, a process receives a list of cur-
rently suspected processes. A perfect failure detector satisfies two properties [24]:
strong accuracy (no correct process is ever suspected) and strong completeness
(a crashed process is eventually permanently suspected by every correct pro-
cess). By varying definitions of completeness and accuracy, different types of
failure detectors can be defined. For example, the eventually perfect failure de-
tector satisfies eventually strong accuracy (eventually no correct process is ever
suspected) and strong completeness.

2.2 Termination Detection in a Crash-Prone System

Informally, the termination detection problem involves determining when a dis-
tributed computation has ceased all its activity. The distributed computation
satisfies the following four properties or rules. First, a process is either active or
passive. Second, a process can send a message only if it is active. Third, an active
process may become passive at any time. Fourth, a passive process may become
active only on receiving a message. Intuitively, an active process is involved in
some local activity, whereas a passive process is idle. In case both processes and
channels are reliable, a distributed computation terminates once all processes
become passive and stay passive thereafter. In other words, a distributed com-
putation is said to be classically-terminated once all processes become passive
and all channels become empty.

In a crash-prone distributed system, once a process crashes, it ceases all
its activities. Moreover, any message in-transit towards a crashed process can be
ignored because the message cannot initiate any new activity. Therefore, a crash-
prone distributed system is said to be strictly-terminated if all live processes are
passive and no channel contains a message in-transit towards a live process.
Wu et al [23] establish that, for the strict-termination detection problem to be
solvable in a crash-prone distributed system, it must be possible to flush the
channel from a crashed process to a live process. A channel can be flushed using
either return-flush [15] or fail-flush [16] primitive. Both primitives allow a live
process to ascertain that its incoming channel from the crashed process has
become empty.

In case neither return-flush nor fail-flush primitive is available, Tseng sug-
gested freezing the channel from a crashed process to a live process [17]. When a
live process freezes its channel with a crashed process, any message that arrives
after the channel has been frozen is ignored. (A process can freeze a channel only
after detecting that the process at the other end of the channel has crashed.) We
say that a message is deliverable if it is destined for a live process along a chan-
nel that has not been frozen yet; otherwise it is undeliverable. We say that the

Efficient Reduction for Wait-Free Termination Detection 99

system is effectively-terminated if all live processes are passive and there is no
deliverable message in-transit towards a live process. Trivially, strict-termination
implies effective-termination but not vice versa. Deciding which of the two ter-
mination conditions is to be detected depends on the application semantics. We
believe that detecting effective-termination is sufficient in most cases.

Wu et al [23] also show that in order for strict-termination detection to be
solvable, process faults must be detectable. Translated into the terminology of
Chandra and Toueg [24], the failure detector used should satisfy strong complete-
ness. We fulfill this requirement by assuming the existence of a perfect failure
detector, which additionally satisfies strong accuracy. We justify this assumption
later by proving that we need at least a perfect failure detector to solve even
effective-termination detection in a crash-prone distributed system. Further, we
assume that it is possible to freeze the channel from a crashed process to a
live process (that is, application allows messages from crashed processes to be
discarded). Hereafter, we focus on effective-termination detection. The transfor-
mation results in Section 3, however, remain valid even for strict-termination
detection assuming that channels can be flushed instead of frozen.

For convenience, we refer to messages exchanged by the underlying dis-
tributed computation as application messages and to messages exchanged by
the termination detection algorithm as control messages. The performance of
a termination detection algorithm is measured in terms of three metrics: mes-
sage complexity, detection latency and message overhead. Message complexity
refers to the number of control messages exchanged by the termination detection
algorithm in order to detect termination. Detection latency measures the time
elapsed between when the underlying computation terminates and when the ter-
mination detection algorithm actually announces termination. Finally, message
overhead refers to the amount of control data piggybacked on a message by the
termination detection algorithm.

We call a termination detection algorithm fault-tolerant if it works correctly
even in the presence of faults; otherwise it is called fault-sensitive or fault-
intolerant. In this paper, we use the terms “crash”, “fault” and “failure” in-
terchangeably.

3 From Fault-Sensitive Algorithm to Fault-Tolerant
Algorithm

We assume that the given fault-sensitive termination detection algorithm is able
to detect termination of a non-diffusing computation, when any subset of pro-
cesses can be initially active. This is not a restrictive assumption as it is proved
in [25] that any termination detection algorithm for a diffusing computation,
when at most one process is initially active, can be efficiently transformed into a
termination detection algorithm for a non-diffusing computation. The transfor-
mation increases the message complexity of the underlying termination detection
algorithm by only O(n) messages and moreover, does not increase its detection
latency. We also assume that, as soon as a process learns about the failure of its
neighbouring process, it freezes its incoming channel with the process.

100 N. Mittal et al.

Due to lack of space, we only describe the main idea behind our transfor-
mation. Further, we only state the main lemmas and theorems that are used to
prove its correctness and analyze its performance. The formal description of the
algorithm and omitted proofs can be found in [21].

3.1 The Main Idea

The main idea behind our transformation is to restart the fault-sensitive termi-
nation detection algorithm algorithm on the set of currently operational processes
whenever a new failure is detected. We refer to the fault-sensitive termination
detection algorithm—an input to our transformation—by A, and to the fault-
tolerant termination detection algorithm—the output of our transformation—by
B. Before restarting A, we ensure that all operational processes agree on the set
of processes that have failed. This is useful as explained further.

Consider a subset of processes Q. We say that a distributed computation has
terminated with respect to Q (classically or strictly or effectively) if the respective
termination condition holds when evaluated only on processes and channels in
the subsystem induced by Q. Also, we say that Q has become safe if (1) all
processes in P \Q have failed, and (2) every process in Q has learned about the
failure of all processes in P \Q. We have,

Theorem 1. Consider a safe subset of processes Q. Assume that all processes
in Q stay operational. Then a distributed computation has effectively-terminated
with respect to P if and only if it has classically-terminated with respect to Q.

The above theorem implies that if all alive processes agree on the set of
failed processes and there are no further crashes, then it is sufficient to ascertain
that the underlying computation has classically-terminated with respect to the
set of operational processes. An advantage of detecting classical termination is
that we can use A, a fault-sensitive termination detection algorithm, to detect
termination. We next show that even if one or more processes crash, A does not
announce false termination.

Theorem 2. When a fault-sensitive termination detection algorithm is executed
on a distributed system prone to process crashes then the algorithm still satisfies
the safety property, that is, it never announces false termination.

Now, when A is restarted, a mechanism is needed to deal with application
messages that were sent before A is restarted but are received after A has been
restarted. Such application messages are referred to as stale or old application
messages. Clearly, the current instance of A may not be able to handle an old
application message correctly. One simple approach is to “hide” an old appli-
cation message from the current instance of A and deliver it directly to the
underlying distributed computation. However, on receiving an old application
message, if the destination process changes its state from passive to active, then,
to the current instance of A, it would appear as if the process became active
spontaneously. This violates one of the four rules of the distributed computation.
Clearly, the current instance of A may not work correctly in the presence of old

Efficient Reduction for Wait-Free Termination Detection 101

application messages and therefore cannot be directly used to detect termination
of the underlying computation.

We use the following approach to deal with old application messages. We
superimpose another computation on top of the underlying computation. We
refer to the superimposed computation as the secondary computation and to the
underlying computation as the primary computation. As far as live processes are
concerned, the secondary computation is almost identical to the primary com-
putation except possibly in the beginning. Whenever a process crashes and all
live processes agree on the set of failed processes, we simulate a new instance of
the secondary computation in the subsystem induced by the set of operational
processes. The processes in the subsystem are referred to as the base set of
the simulated secondary computation. We then use a new instance of the fault-
sensitive termination detection algorithm to detect termination of the secondary
computation. The older instances of the secondary computation and the fault-
sensitive termination detection algorithm are simply aborted. We maintain the
following invariants. First, if the secondary computation has classically termi-
nated then the primary computation has classically terminated as well. Second, if
the primary computation has classically terminated, then the secondary compu-
tation classically terminates eventually. Note that the new instances of both the
secondary computation and the fault-sensitive termination detection algorithm
start at the same time on the same set of processes.

We now describe the behavior of a process with respect to the secondary
computation. Intuitively, a process stays active with respect to the secondary
computation at least until it knows that it cannot receive any old application
message in the future. Consider a safe subset of processes Q. Suppose an instance
of the secondary computation is initiated in the subsystem induced by Q. A
process pi ∈ Q is passive with respect to the current instance of the secondary
computation if one of the following conditions hold:

1. it is passive with respect to the primary computation, and
2. it knows that there is no old application message in transit towards it from

any process in Q

An old application message is delivered directly to the primary computation
and is hidden from the current instance of the secondary computation as well
as the current instance of the fault-sensitive termination detection algorithm.
Specifically, only those application messages that are sent by the current in-
stance of the secondary computation are tracked by the corresponding instance
of the fault-sensitive termination detection algorithm. (In other words, all appli-
cation messages are exchanged through the current instance of the termination
detection algorithm except for old application messages.) It can be verified that
the secondary computation is “legal” in the sense that it satisfies all the four
rules of the distributed computation. Therefore the fault-sensitive termination
detection algorithm A can be safely used to detect (classical) termination of the
secondary computation even in the presence of old application messages. First,
we show that, to detect termination of the primary computation, it is safe to
detect termination of the secondary computation.

102 N. Mittal et al.

Theorem 3. Consider a secondary computation initiated in the subsystem in-
duced by processes in Q. Then, if the secondary computation has classically ter-
minated with respect to Q, then the primary computation has classically termi-
nated with respect to Q.

Next, we prove that, to detect termination of the primary computation, it is
sufficient to detect the termination of the secondary computation under certain
conditions.

Theorem 4. Consider a secondary computation initiated in the subsystem in-
duced by processes in Q. Assume that the primary computation has classically
terminated with respect to Q and each process in Q eventually learns that there
are there are no old application messages in transit towards it sent by other
processes in Q. If all processes in Q stay operational, then the secondary com-
putation eventually classically terminates with respect to Q.

We next describe how to ensure that all operational processes agree on the
set of failed processes before restarting the secondary computation the fault-
sensitive termination detection algorithm. Later, we describe how to ascertain
that there are no relevant old application messages in transit. We assume that
both application and control messages are piggybacked with the complement of
the base set of the current instance of the secondary computation in progress,
which can be used to identify the specific instance of the secondary computation.

Achieving Agreement on the Set of Failed Processes: Whenever a process
crashes, one of the live processes is chosen to act as the coordinator. Specifically,
the process with the smallest identifier among all live processes acts as the co-
ordinator. Every process, on detecting a new failure, sends a NOTIFY message
to the coordinator containing the set of all processes that it knows have failed.
The coordinator maintains, for each operational process pi, processes that have
failed according to pi. On determining that all operational processes agree on
the set of failed processes, the coordinator sends a RESTART message to each
operational process. A RESTART message instructs a process to initiate a new
instance of the secondary computation on the appropriate set of processes, and,
also, start a new instance of the fault-sensitive termination detection algorithm
to detect its termination.

It is possible that, before receiving a RESTART message for a new instance, a
process receives an application message that is sent by a more recent instance of
the secondary computation than that of the secondary computation currently in
progress at that process. In that case, before processing the application message,
it behaves as if it has also received a RESTART message and acts accordingly.

Tracking Old Application Messages: A process stays active with respect to
the current instance of the secondary computation at least until it knows that
it cannot receive any old application message from one of the processes in the
relevant subsystem. To that end, each process maintains a count of the number
of application messages it has sent to each process so far and, also, a count of
the number of application messages it has received from each process so far.

Efficient Reduction for Wait-Free Termination Detection 103

A process, on starting a new instance of the secondary computation, sends
an OUTSTATE message to the coordinator; the message contains the number
of application messages it sent to each process before restarting the secondary
computation. The coordinator, on receiving an OUTSTATE message from ev-
ery operational process, sends an INSTATE message to all live processes. An
INSTATE message sent to process pi contains the number of application mes-
sages that each process has sent to pi before starting the current instance of
the secondary computation. This information can be easily computed by the
coordinator after it has received an OUTSTATE message from all live processes.

Clearly, once a process has received an INSTATE message from the coordina-
tor, it can determine how many old application messages are in transit towards
it and at least wait until it has received all those messages before becoming
passive for the first time with respect to the current instance of the secondary
computation.

3.2 Proof of Correctness

We now prove that our transformation produces an algorithm B that solves the
effective-termination detection problem given that A is a correct fault-sensitive
algorithm for solving the classical termination detection problem. The following
proposition can be easily verified:

Proposition 1. Whenever an instance of A is initiated on a process set Q, all
processes in P \Q have in fact crashed and all channels from processes in P \Q
to Q have been frozen.

First, we prove the safety property.

Theorem 5 (safety property). If B announces termination, then the under-
lying computation has effectively terminated.

Next, we show that B is live. That is,

Theorem 6 (liveness property). Once the underlying computation effectively
terminates, B eventually announces termination.

3.3 Performance Analysis

Let μ(n, M) and Oδ(n, M) denote the message complexity and detection latency,
respectively, of A when the system has n processes and the underlying computa-
tion exchanges M application messages. We now analyze the message complexity
and detection latency of the fault-tolerant termination detection algorithm B.
Let f denote the actual number of processes that fail during an execution of B.

Lemma 1. The number of times A is restarted is bounded by f .

To compute the message complexity of B, we assume that μ(n, M) satisfies
the following constraint for k ≥ 1:

k∑
i=1

μ(n, Mi) ≤ μ(n,

k∑
i=1

Mi) + (k − 1) μ(n, 0) (6.1)

104 N. Mittal et al.

For all existing termination detection algorithms that we are aware of, μ(n, M)
is linear in M . It can be verified that if μ(n, M) is a linear function in M , then
the inequality (6.1) indeed holds.

Theorem 7 (message complexity). The message complexity of B is given by
μ(n, M) + O(f (n + μ(n, 0))).

We now bound the detection latency of B. To compute detection latency in
an asynchronous distributed system, it is typically assumed that message delay
is at most one time unit. Moreover, we assume that the failure detection latency
is bounded by one time unit as well.

Theorem 8 (detection latency). The detection latency of B is given by
δ(n, M) + O(fδ(n, 0)).

We next bound the message overhead of B. Let α(n, M) and β(n, M) denote
the application and control message overhead, respectively, of A when the sys-
tem has n processes and the underlying computation exchanges M application
messages.

Theorem 9 (application message overhead). The application message
overhead of B is α(n, M) + O(f log n).

Finally, we bound the control message overhead of B. Note that control mes-
sages can be categorized into two groups. The first group consists of control mes-
sages exchanged by different instances of A. The second group consists of control
messages exchanged as a result of process crash, namely NOTIFY, RESTART,
OUTSTATE and INSTATE. We refer to the messages in the first group as ter-
mination detection messages and to the messages in the second group as failure
recovery messages.

Theorem 10 (control message overhead). The control message overhead of
B for termination detection messages is given by β(n, M) + O(f log n) and for
failure recovery messages is given by O(f log n + n log M).

4 The Weakest Failure Detector for Termination
Detection

Failure detectors are not only an abstraction to yield information about the op-
erational state of processes, they can also be regarded as synchrony abstractions
since they are usually implemented using heartbeat messages and timeouts [26].
For example, an eventually perfect failure detector is strictly weaker than a per-
fect failure detector, and, therefore, can be implemented with weaker synchrony
assumptions (namely those of partial synchrony [27] instead of full synchrony).
Proving that a certain type of failure detector is necessary for solving a prob-
lem gives an indication about the minimal amount of synchrony needed to solve
that problem. In this section, unless otherwise stated, “termination” refers to
“effective-termination”.

We now show that a perfect failure detector is necessary for solving termina-
tion detection in a crash-prone distributed system. To that end, we transform an

Efficient Reduction for Wait-Free Termination Detection 105

instance of a fault-tolerant termination detection algorithm into a perfect failure
detector at one process q, that is, q is able to reliably detect process crashes. A
perfect failure detector can then be implemented by using n parallel instances
of the transformation algorithm, one per process.

Assume that we are given an algorithm A that can detect termination of
an arbitrary computation among n processes even in the presence of process
crashes. We now set up n independent computations Ci, one for each process
pi. The computation Ci is such that process pi is initially active and all pro-
cesses apart from pi are passive. In the computation no messages are sent and
received and pi never becomes passive. Now consider some process q �= pi and
the corresponding computation Ci. Process q starts an instance of the termi-
nation detection algorithm A with respect to the computation Ci. Whenever
A announces the termination of Ci, q henceforth permanently suspects pi. The
same actions are performed for every other process in the system, that is, q
invokes n parallel instances of A, one for each computation Ci.

We now show that this algorithm implements a perfect failure detector if
A correctly solves the effective-termination detection problem. First consider
strong accuracy (a process is never suspected before it crashes) and assume
that q suspects pi. It follows from our transformation that A has announced
termination of the computation Ci. This means that all processes in Ci are
either crashed or passive. Since Ci is such that pi is always passive, it implies
that pi has crashed.

Now consider strong completeness (eventually every crashed process is sus-
pected by every correct process) and assume that pi has crashed and q is correct.
Once pi crashes, clearly the termination condition holds for the computation Ci.
Since A is a correct termination detection algorithm, A eventually announces
termination of Ci at q. Upon announcing termination, q starts suspecting pi,
concluding the proof.

Overall, this shows that if we can solve termination detection in a crash-
prone distributed system, then we can also implement a perfect failure detector
in such a system. Hence, it is impossible to solve termination detection when
one or more processes can crash assuming only a failure detector that is strictly
weaker than a perfect failure detector. In other words, a perfect failure detector
is necessary for solving the effective-termination detection problem.

The weakest failure detector for a problem is a failure detector that is necessary
and sufficient to solve that problem. We show above that a perfect failure detector
is necessary. Our transformation in Sect. 3 shows that a perfect failure detector is
also sufficient. Combining the two, we can conclude that a perfect failure detector
is the weakest failure detector for solving the effective-termination detection prob-
lem. The result holds as long as at least one process can crash and assuming that
channels can be frozen. Therefore, it generalizes the result of Wu et al [23], which
shows that a failure detector must be complete. Our result also further clarifies the
relationship between the termination detection problem and the consensus prob-
lem: Wu et al [23] show that consensus is at least as hard to solve as termination
detection. By relating termination detection to the failure detector hierarchy of
Chandra and Toueg [24], our result has two interesting corollaries. First, termina-
tion detection is strictly harder than consensus in environments where a majority
of processes remains correct. This follows from the result that in such cases the

106 N. Mittal et al.

weakest failure detector for consensus is strictly weaker than a perfect failure de-
tector [24]. Second, when anynumber of processes can crash, termination detection
is actually equivalent to consensus [28].

5 Conclusions and Future Work

In this paper, we presented a transformation using a perfect failure detector that
can be used to convert any termination detection algorithm for a fully connected
communication topology that has been designed for a failure-free environment
into a termination detection algorithm that can tolerate process crashes. Our
transformation does not impose any additional overhead on the system (besides
that imposed by the underlying termination detection algorithm) if no process
actually crashes during an execution. Moreover, when applied to fault-sensitive
termination detection algorithms by Dijkstra and Scholten [1] and Huang [8],
the resulting fault-tolerant termination detection algorithms compare very fa-
vorably with those by Lai and Wu [16] and Tseng [17]. Our transformation can
be generalized to an arbitrary communication topology provided process crashes
do not partition the system. We also proved that a perfect failure detector is
the weakest failure detector for solving the termination detection problem in a
crash-prone distributed system. This holds even if at most one process can crash.

As part of future work, we plan to investigate the termination detection
problem when crashed processes may recover and channels may be lossy. We
also plan to apply ideas proposed in this paper to transform other fault-sensitive
algorithms—such as for detecting other stable properties—into fault-tolerant
algorithms.

References

1. Dijkstra, E.W., Scholten, C.S.: Termination Detection for Diffusing Computations.
Information Processing Letters (IPL) 11 (1980) 1–4

2. Francez, N.: Distributed Termination. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 2 (1980) 42–55

3. Rana, S.P.: A Distributed Solution of the Distributed Termination Problem. In-
formation Processing Letters (IPL) 17 (1983) 43–46

4. Shavit, N., Francez, N.: A New Approach to Detection of Locally Indicative Sta-
bility. In: Proceedings of the International Colloquium on Automata, Languages
and Systems (ICALP), Rennes, France (1986) 344–358

5. Mattern, F.: Algorithms for Distributed Termination Detection. Distributed Com-
puting (DC) 2 (1987) 161–175

6. Dijkstra, E.W.: Shmuel Safra’s Version of Termination Detection. EWD
Manuscript 998. Available at http://www.cs.utexas.edu/users/EWD (1987)

7. Mattern, F.: Global Quiescence Detection based on Credit Distribution and Re-
covery. Information Processing Letters (IPL) 30 (1989) 195–200

8. Huang, S.T.: Detecting Termination of Distributed Computations by External
Agents. In: Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS). (1989) 79–84

9. Chandrasekaran, S., Venkatesan, S.: A Message-Optimal Algorithm for Distributed
Termination Detection. Journal of Parallel and Distributed Computing (JPDC) 8
(1990) 245–252

Efficient Reduction for Wait-Free Termination Detection 107

10. Tel, G., Mattern, F.: The Derivation of Distributed Termination Detection Al-
gorithms from Garbage Collection Schemes. ACM Transactions on Programming
Languages and Systems (TOPLAS) 15 (1993) 1–35

11. Khokhar, A.A., Hambrusch, S.E., Kocalar, E.: Termination Detection in Data-
Driven Parallel Computations/Applications. Journal of Parallel and Distributed
Computing (JPDC) 63 (2003) 312–326

12. Mahapatra, N.R., Dutt, S.: An Efficient Delay-Optimal Distributed Termination
Detection Algorithm. To Appear in Journal of Parallel and Distributed Computing
(JPDC) (2004)

13. Wang, X., Mayo, J.: A General Model for Detecting Termination in Dynamic Sys-
tems. In: Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, New Mexico (2004)

14. Mittal, N., Venkatesan, S., Peri, S.: Message-Optimal and Latency-Optimal Ter-
mination Detection Algorithms for Arbitrary Topologies. In: Proceedings of the
Symposium on Distributed Computing (DISC), The Netherlands (2004) 290–304

15. Venkatesan, S.: Reliable Protocols for Distributed Termination Detection. IEEE
Transactions on Reliability 38 (1989) 103–110

16. Lai, T.H., Wu, L.F.: An (N − 1)-Resilient Algorithm for Distributed Termination
Detection. IEEE Transactions on Parallel and Distributed Systems (TPDS) 6
(1995) 63–78

17. Tseng, Y.C.: Detecting Termination by Weight-Throwing in a Faulty Distributed
System. Journal of Parallel and Distributed Computing (JPDC) 25 (1995) 7–15

18. Shah, A., Toueg, S.: Distributed Snapshots in spite of Failures. Technical Report
TR84-624, Department of Computer Science, Cornell University, Ithaca, NY (1984)
(Revised February 1985).

19. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems 3 (1985) 63–75

20. Gärtner, F.C., Pleisch, S.: (Im)Possibilities of Predicate Detection in Crash-
Affected Systems. In: Proceedings of the 5th Workshop on Self-Stabilizing Systems
(WSS), Lisbon, Portugal, Springer-Verlag (2001) 98–113

21. Mittal, N., Freiling, F.C., Venkatesan, S., Penso, L.D.: Efficient Reductions for
Wait-Free Termination Detection in Crash-Prone Systems. Technical Report
AIB-2005-12, Department of Computer Science, Rheinisch-Westfälische Technis-
che Hochschule (RWTH), Aachen, Germany (2005)

22. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43
(1994) 1026–1038

23. Wu, L.F., Lai, T.H., Tseng, Y.C.: Consensus and Termination Detection in the
Presence of Faulty Processes. In: Proceedings of the International Conference on
Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan (1992) 267–274

24. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM 43 (1996) 225–267

25. Peri, S., Mittal, N.: On Termination Detection in an Asynchronous Distributed
System. In: Proceedings of the ISCA International Conference on Parallel and
Distributed Computing Systems (PDCS), California (2004) 209–215

26. Larrea, M., Fernández, A., Arévalo, S.: On the Implementation of Unreliable Fail-
ure Detectors in Partially Synchronous Systems. IEEE Transactions on Computers
53 (2004) 815–828

27. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Syn-
chrony. Journal of the ACM 35 (1988) 288–323

28. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P.,
Toueg, S.: The Weakest Failure Detector to Solve Certain Fundamental Problems
in Distributed Computing. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), St. Johns, Newfoundland, Canada (2004)

Non-blocking Hashtables with Open Addressing

Chris Purcell1 and Tim Harris2

1 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

Chris.Purcell@cl.cam.ac.uk
2 Microsoft Research Ltd., Roger Needham Building, 7 JJ Thomson Avenue,

Cambridge CB3 0FB, UK
tharris@microsoft.com

Abstract. We present the first non-blocking hashtable based on open
addressing that provides the following benefits: it combines good cache
locality, accessing a single cacheline if there are no collisions, with short
straight-line code; it needs no storage overhead for pointers and memory
allocator schemes, having instead an overhead of two words per bucket;
it does not need to periodically reorganise or replicate the table; and it
does not need garbage collection, even with arbitrary-sized keys. Open
problems include resizing the table and replacing, rather than erasing,
entries. The result is a highly-concurrent set algorithm that approaches
or outperforms the best externally-chained implementations we tested,
with fixed memory costs and no need to select or fine-tune a garbage
collector or locking strategy.

1 Introduction

This paper presents a new design for non-blocking hashtables in which collisions
are resolved by open addressing, i.e. probing through the other buckets of the
table, rather than external chaining through linked lists.

The key idea is that rather than leaving tombstones to mark where deletions
occur, we store per-bucket upper bounds on the number of other buckets that
need to be consulted. This means that unlike the earlier designs we discuss in
Section 2.2, ours supports a mixed workload of insertions and deletions without
the need to periodically replicate the table’s contents to clean out tombstones.
Consequently, the table can operate without the need for dynamic storage man-
agement so long as its load factor remains acceptable.

Our design is split into three parts. Section 3.1 deals with maintaining the
shared bounds associated with each bucket. The key difficulty here is ensuring
that a bound remains correct when several entries are being inserted and removed
at once. Section 3.2 builds on this to provide a hashtable. The main problem in
doing so is guaranteeing non-blocking progress while ensuring that at most one
instance of any key can be present in the table. In Section 3.3, we present a more
complicated design allowing larger keys and a better progress guarantee, and in
Section 3.4 we discuss open problems with the algorithm.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 108–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Non-blocking Hashtables with Open Addressing 109

Section 4 evaluates the performance of our algorithm, compared to state-
of-the-art designs based on external chaining. As with these, we rely only on
the single-word atomic operations found on all modern processor families. Ad-
ditionally, our algorithm has many properties that machines rely on for opti-
mal performance: operations run independently, updating disjoint memory loca-
tions (disjoint access parallel) and not modifying shared memory during logically
read-only operations (read parallel), and hence typically run in parallel on multi-
processor machines. Finally, a low operation footprint (shared memory touched
per operation) gives greater throughput under stress by easing pressure on the
memory subsystem.

Our results reflect this, demonstrating performance comparable with the best
existing designs in all tested cases. On highly-parallel workloads with many up-
dates, our algorithm ran 35% faster; while a single-threaded run with mostly
read-only operations was the worst case, running 40% slower than the best ex-
isting design.

Proof of correctness and progress properties can be found in [11].

2 Background

2.1 Non-blocking Progress Guarantees

Data structures are easiest to implement when accessed in isolation, but general
schemes for enforcing that isolation — for instance, using mutual exclusion locks
— typically result in poor scalability and robustness in the face of contention and
failure. Concurrent algorithms that avoid mutual exclusion are generally non-
blocking: suspension of any subset of threads will not prevent forward progress
by the rest of the system.

The weakest non-blocking guarantee is obstruction-freedom: if at any time a
thread runs in isolation, it will complete its operation within a bounded number
of steps. This precludes mutual exclusion, as suspension of a lock-holding thread
will prevent others waiting on that lock from making progress. Lock-freedom
combines this with guaranteed throughput: any active thread taking a bounded
number of steps ensures global progress. Unfortunately, creating practical non-
blocking forms of even simple data structures is notoriously difficult.

2.2 Related Work

Externally-chained hashtables store each bucket’s collisions1 in a list. Michael
introduced the first practical lock-free hashtables based on external chaining
with linked lists [8]. Shalev and Shavit described split-ordered lists that allow
the number of buckets to vary dynamically [9]. Fraser detailed lock-free skip-lists
and binary search trees [2]. Recently, Lea has contributed a high-performance,
scalable, lock-based, externally-chained hashtable design to the latest version

1 We refer to a key stored outside its primary bucket as a collision.

110 C. Purcell and T. Harris

of Java (5.0), which avoids locking on most read-operations, preserving read-
parallelism.

All of the above designs rely on an out-of-band garbage collector. Michael
reported that reference counting was unacceptably slow for this purpose as it
did not preserve read-parallelism; he proposed using safe memory reclamation [7]
to get a strictly bounded memory overhead. Fraser used a simple low-overhead
garbage collection scheme, epoch-based reclamation, where all threads maintain
a current epoch, and memory is reclaimed only after all epochs change; this has
a potentially unbounded memory footprint, and a large one in practice.

Tombstones are the traditional means of handling deletion in an open ad-
dressed hashtable [3], but cause degenerate search times in the face of a random
workload with frequent deleting. Martin and Davis [5] proposed using periodic
table replication to limit tombstone growth, relying on garbage collection to re-
claim old tables. More recently, Gao et al. [1] presented a design with in-built
garbage collection.

Both designs limit tombstone reuse to reinsertions of the old key, to achieve
linearizability, and do not address the issue of storing multi-word keys directly
in the table. The rest of our paper presents solutions to these problems, which
we believe are compatible with the replication algorithms already proposed.

3 Memory-Management-Free Open Addressing

Each bucket in our hashtable stores a bound on its collisions’ indices in the
probe sequence (Figure 1). When running in isolation, a reader follows the probe
sequence this number of steps before terminating; an insert that collides raises
the bound if necessary; and an erase that empties the last bucket in this truncated
probe sequence searches back for the previous collision and decreases the bound
accordingly.

We make this safe for concurrent use in two steps, first maintaining each
bucket’s bound in Section 3.1, then ensuring keys are not duplicated in Sec-
tion 3.2.

0

-

2

9

0

2

0

-

1

17

0

12

0

-

0

7

Probe bound

Key

2 steps in probe sequence

Fig. 1. Bounds on collision indices for a hash table holding keys {3, 7, 9, 12, 17}. Hash
function is (key mod 8), probe sequence is quadratic [1

2
(i2 + i)]. Key 17 is stored two

steps along the probe sequence for bucket 1, so the probe bound is 2.

Non-blocking Hashtables with Open Addressing 111

Probe bound

Key

3

17 1 - -- 5 --

0 0 0 0 0 00

After a collision is removed, a thread scans for the previous collision.

Probe bound

Key

1

17 - - -- 5 --

0 0 0 0 0 00

If a concurrent erasure is missed, the bound may be left too large.

Probe bound

Key

1

17 1 9 -- 5 --

0 0 0 0 0 00

Worse, if a concurrent insertion is missed, the bound may be made too small.

Fig. 2. Problems maintaining a shared bound after a collision is removed from the end
of the probe sequence

3.1 Bounding Searches

Maintaining the probe bounds concurrently is complicated by the need to lower
them: simply scanning the probe sequence for the previous collision and swapping
it into the bound field may result in the bound being too large if the collision is
removed, slowing searches, or too small if another collision is inserted, violating
correctness (Figure 2).

In order to keep the bounds correct during erasures, we use a scanning phase
during which the thread erasing the last collision in the probe sequence searches
through the previous buckets to compute the new bound (lines 18–22). A thread
announces that it is in this phase by setting a scanning bit to true (line 18);
this bit is held in the same word as the bound itself, so both fields are updated
atomically.

Dealing with insertions is now easy: they atomically clear the scanning bit
and raise the bound if necessary (lines 9–12). Deletions also clear the scanning
bit (line 16), but are complicated by the scanning phase. We rely on the fact
that at most one thread can be in the process of erasing a given collision, and
that threads only start scanning when erasing the last collision in the probe
sequence. The collision’s index value thus identifies the scanning thread and, if

112 C. Purcell and T. Harris

it is still present as the bound when scanning completes, and if the scanning bit
is still set, we know there have been no concurrent updates (line 22). Otherwise,
we retry the scanning phase.

Given a lock-free atomic compare-and-swap (CAS) function, the pseudocode
in Figure 3 is lock-free. We represent the packing of an int and a bit into a
machine word with the 〈., .〉 operator.

1 class Set {
word bounds[size] // 〈bound,scanning〉

3 void InitProbeBound(int h):
bounds[h] := 〈0,false〉

5 int GetProbeBound(int h): // Maximum offset of any collision in probe seq.
〈bound,scanning〉 := bounds[h]

7 return bound

void ConditionallyRaiseBound(int h, int index): // Ensure maximum ≥ index
9 do

〈old bound,scanning〉 := bounds[h]
11 new bound := max(old bound,index)

while ¬CAS(&bounds[h],〈old bound,scanning〉,〈new bound,false〉)
13 void ConditionallyLowerBound(int h, int index): // Allow maximum < index

〈bound,scanning〉 := bounds[h]
15 if scanning = true

CAS(&bounds[h],〈bound,true〉,〈bound,false〉)
17 if index > 0 // If maximum = index > 0, set maximum < index

while CAS(&bounds[h],〈index,false〉,〈index,true〉)
19 i := index-1 // Scanning phase: scan cells for new maximum

while i > 0 ∧ ¬DoesBucketContainCollision(h, i)
21 i--

CAS(&bounds[h],〈index,true〉,〈i,false〉)

Fig. 3. Per-bucket probe bounds (continued below)

3.2 Inserting and Removing Keys

Inserting and removing keys concurrently is complicated by the lack of a pre-
determined bucket for any given key. Inserting into the first empty bucket is
not sufficient because, as Figure 4 shows, a concurrent erasure may alter which
bucket is ‘first’, and a key may be duplicated. If duplicate keys are allowed in
the table, concurrent key erasure becomes impractical.

To ensure uniqueness, we split insertions into three stages (Figure 5). First,
a thread reserves an empty bucket and publishes its attempt by storing the
key it is inserting, along with an ‘inserting’ flag. Next, the thread checks the
other positions in the probe sequence for that key, looking for other threads
with ‘inserting’ entries, or for a completed insertion of the same key. If it finds
another insertion in progress in a bucket then it changes that bucket’s state
to ‘busy’, stalling the other insertion at that point in time. If it finds another
completed insertion of the same key, then its own insertion has failed: it empties
its bucket and returns ‘false’. In the final stage, it attempts to finish its own

Non-blocking Hashtables with Open Addressing 113

Probe bound

Key

2

9 - 1 -- 13 5-

0 0 0 1 0 00

One thread determines that the first empty bucket is at offset 1, and prepares to
insert key 17 there.

Probe bound

Key

2

- - 1 -- 13 5-

0 0 0 1 0 00

Another thread removes key 9, and prepares to insert key 17. The first empty bucket
is now at offset 0.

Probe bound

Key

2

17 17 1 -- 13 5-

0 0 0 1 0 00

The two threads now insert, creating a duplicate of the key.

Fig. 4. Problems concurrently inserting keys

insert, changing the ‘inserting’ flag in its bucket to ‘member’. It must do this
with a CAS instruction so that it fails if stalled by another thread; if stalled, the
thread republishes its attempt and restarts the second stage.

The pseudocode in Figure 6 is obstruction-free. Each bucket contains a four-
valued state, one of empty, busy, inserting or member, and, for the latter two
states, a key. The key and state must be modified atomically; we use the 〈., .〉
operator to represent packing them into a single word. A key k is considered
inserted if some bucket in the table contains 〈k, member〉. The Hash function
selects a bucket for a given key. The three insertion stages can be found in lines
42–50, 51–60 and 61, respectively.

Unlike Martin and Davis’ approach [5], deleted buckets are immediately free
for arbitrary reuse, so table replication is not needed to clear out tombstones. The
algorithm preserves read parallelism and, assuming disjoint keys hash to separate
memory locations, disjoint access parallelism. In the expected case where the
bucket contains no collisions, the operation footprint is two words — a single
cache line if buckets and bounds are interleaved.

114 C. Purcell and T. Harris

0 2 0 0 1 0 0 0

empty
-

member
9

member
1

empty
-

member
17

inserting
12

empty
-

member
7

Probe bound

State
Key

Initial state

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

inserting
12

inserting
12

member
7

Probe bound

State
Key

Publish the attempted insertion in the second cell in the probe sequence, and raise
the probe bound to cover it.

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

busy
-

inserting
12

member
7

Collision
offset bound

State
Key

Stall all concurrent insertion attempts.

0 2 0 0 1 1 0 0

empty
-

member
9

member
1

empty
-

member
17

busy
-

member
12

member
7

Probe bound

State
Key

Move bucket into ‘member’ state.

Fig. 5. Inserting key 12

3.3 Extensions: Lock-Freedom and Multi-word Keys

We now turn to two flaws in the above algorithm. The first is that concurrent
insertions may live-lock, each repeatedly stalling the other. One solution is to
use an out-of-line contention manager: Scherer and Scott have described many
suitable for use in any obstruction-free algorithm [10], which are easy to adopt.
Another solution, which we cover in more detail as it is a non-trivial problem,
is to make the algorithm lock-free.

The standard method of achieving lock-freedom is to allow operations to
assist as well as obstruct each other. As given, however, the hash table cannot
support concurrent assistance, as Figure 7 demonstrates: a cell’s contents can
change arbitrarily before returning to a previous state, allowing a CAS to succeed
incorrectly. This is known as the ABA problem, and we return to it in a moment.

The second problem is storing keys larger than a machine word: in the algo-
rithm as given, this requires a multi-word CAS, which is not generally available.
However, we note that a cell’s key is only ever modified by a single writer,
when the cell is in busy state. This means we only need to deal with concurrent
single-writer multiple-reader access to the cell, rather than provide a general
multi-word atomic update. We can therefore use Lamport’s version counters [4]
(Figure 8).

If a cell’s state is stored in the same word as its version count, the ABA
problem is circumvented, allowing threads to assist concurrent operations. This

Non-blocking Hashtables with Open Addressing 115

23 word buckets[size] // 〈key,state〉
word* Bucket(int h, int index): // Size must be a power of 2

25 return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

bool DoesBucketContainCollision(int h, int index):
27 〈k,state〉 := *Bucket(h,index)

return (k �= - ∧ Hash(k) = h)

29 public:
void Init():

31 for i := 0 .. size-1
InitProbeBound(i)

33 buckets[i] := 〈-,empty〉
bool Lookup(Key k): // Determine whether k is a member of the set

35 h := Hash(k)
max := GetProbeBound(h)

37 for i := 0 .. max
if *Bucket(h,i) = 〈k,member〉

39 return true
return false

41 bool Insert(Key k): // Insert k into the set if it is not a member
h := Hash(k)

43 i := 0 // Reserve a cell
while ¬CAS(Bucket(h,i), 〈-,empty〉, 〈-,busy〉)

45 i++
if i ≥ size

47 throw ”Table full”
do // Attempt to insert a unique copy of k

49 *Bucket(h,i) := 〈k,inserting〉
ConditionallyRaiseBound(h,i)

51 max := GetProbeBound(h) // Scan through the probe sequence
for j := 0 .. max

53 if j �= i
if *Bucket(h,j) = 〈k, inserting〉 // Stall concurrent inserts

55 CAS(Bucket(h,j), 〈k,inserting〉, 〈-,busy〉)
if *Bucket(h,j) = 〈k,member〉 // Abort if k already a member

57 *Bucket(h,i) := 〈-,busy〉
ConditionallyLowerBound(h,i)

59 *Bucket(h,i) := 〈-,empty〉
return false

61 while ¬CAS(Bucket(h,i), 〈k,inserting〉, 〈k,member〉)
return true

63 bool Erase(Key k): // Remove k from the set if it is a member
h := Hash(k)

65 max := GetProbeBound(h) // Scan through the probe sequence
for i := 0 .. max

67 if *Bucket(h,i) = 〈k,member〉 // Remove a copy of 〈k, member〉
if CAS(Bucket(h,i), 〈k,member〉, 〈-,busy〉)

69 ConditionallyLowerBound(h,i)
*Bucket(h,i) := 〈-,empty〉

71 return true
return false

73 }

Fig. 6. Obstruction-free set (continued from Figure 3)

116 C. Purcell and T. Harris

empty inserting

- 12

State

Key

A single thread is about to complete its insertion of key 12. The next step is to
atomically move the cell from inserting to member state.

empty member

- 12

State

Key

The thread is suspended, and its insertion assisted to completion by another thread.

member inserting

12 12

State

Key

The key is now removed, and two other threads are concurrently attempting to
reinsert key 12. One has just succeeded, and the other is about to remove itself. If the
first thread wakes up at this point, it will still atomically move the cell from inserting

to member state, duplicating key 12.

Fig. 7. Problems assisting concurrent operations

lets us create a lock-free insertion algorithm (diagram in Figure 9, pseudo-code
in Figure 10).

Each bucket contains: a version count; a state field, one of empty, busy,
collided, visible, inserting or member; and a key field, publically readable during
the latter three stages. The version count and state are maintained so that no
state (except busy) will recur with the same version.

As before, a thread finds an empty bucket and moves it into ‘inserting’ state
(lines 65–76), and checks the probe sequence for other threads with ‘inserting’
entries, or a completed insertion of the same key (lines 86–106). However, if
multiple ‘inserting’ entries are found, the earliest in the probe sequence is left
unaltered, and the others moved into ‘collided’ state. When the whole probe
sequence has been scanned and all contenders removed, the earliest entry is
moved into ‘member’ state (line 105) and the insertion concludes (lines 78–83).

This version of the hashtable is lock-free.

3.4 Open Problems: Dynamic Growth and Key Replacement

If the set population approaches the number of buckets, we must replicate into
a larger table. The Gao et al. [1] replication algorithm may be adaptable for this
purpose. No aggregate time or memory cost is incurred on operations, as if the
population stabilises, no further replications are required. Assuming each new
table doubles in size, discarding the old table after growth is a memory overhead
no greater than the final size of the table.

Even if a garbage collector is running, the bounded memory footprint pro-
vides several advantages. Many collectors are only activated when memory be-
comes scarce, so will benefit from less memory usage. Lacking pointers, no costly

Non-blocking Hashtables with Open Addressing 117

read or write barriers are needed to ensure memory is not leaked. Finally, the
small number of memory allocations needed helps avoid any synchronization the
allocator code may contain. The performance and latency benefits of these will
depend on the memory management algorithms used.

As given, the algorithm cannot implement a dictionary, storing a value with
each key, as there is no way to replace keys.

We hope to report these modifications in future work.

23 struct BucketT {
word vs // 〈version,state〉

25 Key key
} buckets[size]

27 word buckets[size] // 〈key,state〉
BucketT* Bucket(int h, int index): // Size must be a power of 2

29 return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

bool DoesBucketContainCollision(int h, int index):
31 〈version1,state1〉 := Bucket(h,index)→vs

if state1 = visible ∨ state1 = inserting ∨ state1 = member
33 if Hash(Bucket(h,index)→key) = h

〈version2,state2〉 := Bucket(h,index)→vs
35 if state2 = visible ∨ state2 = inserting ∨ state2 = member

if version1 = version2
37 return true

return false

39 public:
void Init():

41 for i := 0 .. size-1
InitProbeBound(i)

43 buckets[i].vs := 〈0,empty〉
bool Lookup(Key k): // Determine whether k is a member of the set

45 h := Hash(k)
max := GetProbeBound(h)

47 for i := 0 .. max
〈version,state〉 := Bucket(h,index)→vs // Read cell atomically

49 if state = member ∧ Bucket(h,index)→key = k
if Bucket(h,index)→vs = 〈version,member〉

51 return true
return false

53 bool Erase(Key k): // Remove k from the set if it is a member
h := Hash(k)

55 max := GetProbeBound(h)
for i := 0 .. max

57 〈version,state〉 := Bucket(h,index)→vs // Atomically read/update cell
if state = member ∧ Bucket(h,index)→key = k

59 if CAS(Bucket(h,i)→vs, 〈version,member〉, 〈version,busy〉)
ConditionallyLowerBound(h,i)

61 Bucket(h,i)→vs := 〈version+1,empty〉
return true

63 return false

Fig. 8. Version-counted derivative of Figure 6 (continued in Figure 10)

118 C. Purcell and T. Harris

0 2 0 0 1 0 0 0

18 2

9

3

1

6 4

17

3

12

24 7

7

Probe bound

Version

Key

empty member member empty member inserting empty memberState

Initial state

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member inserting inserting memberState

Write key and raise probe sequence bound

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member inserting collided memberState

Earlier ‘inserting’ entry found; move bucket into ‘collided’ state.

0 2 0 0 1 1 0 0

18 2

9

3

1

6 4

17

3

12

24

12

7

7

Probe bound

Version

Key

empty member member empty member member collided memberState

Assist completion of earlier entry

0 2 0 0 1 0 0 0

18 2

9

3

1

6 4

17

3

12

25 7

7

Probe bound

Version

Key

empty member member empty member member empty memberState

Empty bucket, lower probe sequence bound and return false.

Fig. 9. Inserting key 12 (lock-free algorithm)

4 Results

In order to assess the performance of our new obstruction-free hashtable, we
implemented a range of designs from the literature: Michael’s ‘dynamic lock-free
hashtable’, which uses external chains to manage collisions and safe-memory-
reclamation (MM-SMR) to manage storage, a variant of Michael’s design using
epoch-based garbage collection (MM-Epoch), a further variant of Michael’s de-
sign using reference counting (MM-RC), and Shalev and Shavit’s ‘split-ordered
lists’ using epoch-based garbage collection (SS-Epoch). We also tested Lea’s
lock-based hashtable design, again using epoch-based collection. Since perfor-
mance depends on the locking algorithm and the level of granularity (number of
locks), we used a basic spinlock and the MCS lock [6] at different granularities.

Non-blocking Hashtables with Open Addressing 119

bool Insert(Key k): // Insert k into the set if it is not a member
65 h := Hash(k)

i := -1 // Reserve a cell
67 do

if ++i ≥ size
69 throw ”Table full”

〈version,state〉 := Bucket(h,i)→vs
71 while ¬CAS(&Bucket(h,i)→vs, 〈version,empty〉, 〈version,busy〉)

Bucket(h,i)→key := k
73 while true // Attempt to insert a unique copy of k

*Bucket(h,i)→vs := 〈version,visible〉
75 ConditionallyRaiseBound(h,i)

*Bucket(h,i)→vs := 〈version,inserting〉
77 r := Assist(k,h,i,version)

if Bucket(h,i)→vs �= 〈version,collided〉
79 return true

if ¬r
81 ConditionallyLowerBound(h,i)

Bucket(h,i)→vs := 〈version+1,empty〉
83 return false

version++

85 private:
bool Assist(Key k,int h,int i,int ver i): // Attempt to insert k at i

87 // Return true if no other cell seen in member state
max := GetProbeBound(h) // Scan through probe sequence

89 for j := 0 .. max
if i �= j

91 〈ver j,state j〉 := Bucket(h,j)→vs
if state j = inserting ∧ Bucket(h,j)→key = k

93 if j < i // Assist any insert found earlier in the probe sequence
if Bucket(h,j)→vs = 〈ver j,inserting〉

95 CAS(&Bucket(h,i)→vs, 〈ver i,inserting〉, 〈ver i,collided〉)
return Assist(k,h,j,ver j)

97 else // Fail any insert found later in the probe sequence
if Bucket(h,i)→vs = 〈ver i,inserting〉

99 CAS(&Bucket(h,j)→vs, 〈ver j,inserting〉, 〈ver j,collided〉)
〈ver j,state j〉 := Bucket(h,j)→vs // Abort if k already a member

101 if state j = member ∧ Bucket(h,j)→key = k
if Bucket(h,j)→vs = 〈ver j,member〉

103 CAS(&Bucket(h,i)→vs,〈ver i,inserting〉,〈ver i,collided〉)
return false

105 CAS(&Bucket(h,i), 〈ver i,inserting〉, 〈ver i,member〉)
return true

107 }
Fig. 10. Lock-free insertion algorithm (continued from Figure 8)

We compared these against our new design, as presented in Figures 3, 8 and 10
(PH).

Our benchmark is parameterized by the number of concurrent threads and
by the range of key values used. We present results for 1–12 threads (running
on a Sun Fire V880 with eight 900MHz UltraSPARC-III CPUs) and with 215

keys chosen from [0, 215M), M = 2 or 10. Each update step consists of removing
a key then inserting another; finding keys and empty slots is done by trial-and-
repetition, choosing candidates uniformly at random, giving M2

M−1 searches on
average for each update step. This was designed to avoid hashtable resizing,

120 C. Purcell and T. Harris

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11 12

M
ic

ro
se

cs
 p

er
 u

pd
at

e
(9

0%
 c

on
fid

en
ce

 in
te

rv
al

)

Number of threads

4 reads : 1 update (M=2)

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 3 4 5 6 7 8 9 10 11 12

M
ic

ro
se

cs
 p

er
 u

pd
at

e
(9

0%
 c

on
fid

en
ce

 in
te

rv
al

)

Number of threads

11 reads : 1 update (M=10)

MM-Epoch
PH

DL-Epoch
MM-SMR

Fig. 11. Performance on 8-way SPARC machine

which simplifies our algorithm, as well as allowing a fine locking granularity and
greater read-parallelism in Lea’s, but which unfortunately negates the benefit of
split-ordered lists.

Each trial lasted ten seconds, after a three second warm-up period to fill
caches, and trials were repeated 20 times, interleaved to avoid short-lived anoma-
lies, to obtain a 90% confidence interval. Our results are shown in Figure 11.

MM-Epoch and MM-SMR consistently outperform MM-RC and SS-Epoch
(which, for clarity, are not shown in the results), thanks to low overhead and
read-parallelism. Below 8 threads, DL-Epoch performs best with low-overhead
spinlocking, avoiding the high cost of spinning with a fine locking granularity.

Searching for a key that is not in the table requires two memory accesses
for the PH algorithm, but only one for all others tested. In the absence of con-
tention, this is clearly visible in the results. Applications with a higher lookup
hit rate would lower this cost. However, in all test with at least four threads, PH
outperforms the other designs; this can largely be attributed to touching fewer
cachelines (one rather than two) in the common-case code path for update op-
erations — inter-processor cacheline exchange dominates runtime in massively
parallel workloads. Applications with much larger, multi-cacheline keys would
lose most of this advantage, and may favour an externally-chained scheme to
lower the memory footprint of empty buckets.

5 Conclusions

We have presented a lock-free, disjoint-access and read parallel set algorithm
based on open addressing, with no need for garbage collection, and touched
upon removing population constraints. It has high straight-line speeds and a
low operation footprint leading to excellent performance, matching and besting
state-of-the-art external-chaining implementations in the tests we performed.

We wish to thank Sun Microsystems, Inc. for donating the SPARC v880
server on which this work was evaluated, and the University of Rochester, New
York, for hosting it.

Non-blocking Hashtables with Open Addressing 121

References

1. Gao, H., Groote, J. and Hesselink, W. Almost Wait-Free Resizable Hashta-
bles In Proceedings of the 18th International Parallel and Distributed Processing
Symposium, April 2004, p.50a.

2. Fraser, K. Practical Lock-Freedom. University of Cambridge Computer Labora-
tory, Technical Report number 579, February 2004.

3. Knuth, D. The Art of Computer Programming. Part 3, Sorting and Searching.
Addison-Wesley, 1973.

4. Lamport, L. Concurrent Reading and Writing. In Communications of the ACM,
1977, pp.806-811.

5. Martin, D. and Davis, R. A Scalable Non-Blocking Concurrent Hash Table
Implementation with Incremental Rehashing. Unpublished manuscript, 1997.

6. Mellor-Crummey, J. and Scott, M. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. In ACM Transactions on Computer Systems,
Volume 9, Issue 1, February 1991, pp. 21–65.

7. Michael, M. Safe Memory Reclamation for Dynamic Lock-Free Objects using
Atomic Reads and Writes. In Proceedings of the 21st Annual Symposium on Prin-
ciples of Distributed Computing, July 2002, pp.21-30.

8. Michael, M. High performance dynamic lock-free hash tables and list-based
sets In Proceedings of the 14th Annual Symposium on Parallel Algorithms and
Architectures, August 2002, pp.73-82.

9. Shalev, O. and Shavit, N. Split-Ordered Lists: Lock-free Extensible Hash Ta-
bles. In Proceedings of the 22nd Annual Symposium on Principles of Distributed
Computing, July 2003, pp.102-111.

10. Scherer, W. and Scott, M. Contention Management in Dynamic Software
Transactional Memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, July 2004, pp.70–79.

11. Purcell, C. and Harris, T. Non-blocking Hashtables with Open Address-
ing. University of Cambridge Computer Laboratory, Technical Report number 639,
September 2005.

Computing with Reads and Writes

in the Absence of Step Contention
(Extended Abstract)

Hagit Attiya1, Rachid Guerraoui2, and Petr Kouznetsov2

1 Department of Computer Science, Technion
2 School of Computer and Communication Sciences, EPFL

Abstract. This paper studies implementations of concurrent objects
that exploit the absence of step contention. These implementations use
only reads and writes when a process is running solo. The other pro-
cesses might be busy with other objects, swapped-out, failed, or simply
delayed by a contention manager. We study in this paper two classes
of such implementations, according to how they handle the case of step
contention. The first kind, called obstruction-free implementations, are
not required to terminate in that case. The second kind, called solo-fast
implementations, terminate using powerful operations (e.g., C&S).

We present a generic obstruction-free object implementation that has
a linear contention-free step complexity (number of reads and writes
taken by a process running solo) and uses a linear number of read/write
objects. We show that these complexities are asymptotically optimal,
and hence generic obstruction-free implementations are inherently slow.
We also prove that obstruction-free implementations cannot be gracefully
degrading, namely, be nonblocking when the contention manager operates
correctly, and remain (at least) obstruction-free when the contention
manager misbehaves.

Finally, we show that any object has a solo-fast implementation, based
on a solo-fast implementation of consensus. The implementation has lin-
ear contention-free step complexity, and we conjecture solo-fast imple-
mentations must have non-constant step complexity, i.e., they are also
inherently slow.

1 Introduction

At the heart of many distributed systems are shared objects—data structures
that are concurrently accessed by many processes. Often, these objects are im-
plemented in software, out of more elementary base objects. Lock-free implemen-
tations of such objects do not rely on mutual exclusion or locking, and thereby
allow processes to overcome adverse operating systems affects. This includes both
wait-free algorithms, in which every process completes its operations in a finite
number of steps, and nonblocking algorithms, where some process completes an
operation in every sufficiently long execution [15]. The safety property typically
required from both nonblocking and wait-free implementations is linearizabil-
ity [15,18]; roughly, every operation on the object should appear instantaneous.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 122–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing with Reads and Writes in the Absence of Step Contention 123

Although they provide very attractive guarantees, lock-free implementations
were claimed to have limited usability. This is because nonblocking implemen-
tations of many objects are often impossible, e.g., when only read/write objects
are available [12,10,23]. Even when the implementations are possible, which can
be achieved under specific timing assumptions (e.g., encapsulated within failure
detector abstractions), or using strong synchronization operations (like C&S),
these implementations are typically complex and expensive [9, 20, 7]. The com-
plexity and computability price paid by lock-free algorithms often originates in
situations in which there is step contention, i.e., steps of concurrent processes
are interleaved.

In this paper, we study implementations that exploit the fact that in practice,
step contention is rare, or at least can be made so through operating system
support. That is, only one process is typically performing visible (non local)
steps within any object operation, whereas the rest of the processes are busy
with other objects, swapped-out or failed. The absence of step contention does
not preclude common scenarios where other processes have pending operations
on the same implemented object but are not accessing the base objects. This is
fundamentally different from alternative contention metrics: point contention [5]
and interval contention [2]; both count also failed or swapped-out processes. (See
the scenario presented in Figure 1.)

We first study obstruction-free implementations that guarantee termination
only in the absence of step contention. This is formalized by the solo termination
property [11]: a process that takes sufficiently many steps on its own returns a
value. Clearly, obstruction-free implementations cannot rely on mutual exclu-
sion or locks, and hence, they are lock-free. On the other hand, implementations
that would guarantee termination only in the absence of interval (or point)
contention can be obtained using locks. Whereas all nonblocking implementa-
tions are obstruction-free, the converse is not necessarily true, however, since
obstruction-free implementations may incur scenarios (when there is step con-
tention) in which no process is able to complete its operation in a finite number
of steps.

An obstruction-free implementation has to provide a legal response if it re-
turns at all, but termination is required only under very restricted conditions.

i r

i′ r′

Fig. 1. An example illustrating types of contention: Operation [i, r] has interval con-
tention 5, point contention 4, and step contention 3; operation [i′, r′] has interval and
point contention 4, and step contention 1 ([i′, r′] is step contention-free). (Square brack-
ets denote invocations and responses, while solid intervals denote steps on base objects.)

124 H. Attiya, R. Guerraoui, and P. Kouznetsov

One contribution of this paper is to disambiguate the behavior of an obstruction-
free implementation when an operation cannot return a legal response. In the
presence of step contention, an operation may return control to a higher-level en-
tity, which we call the client. Ideally, the obstruction-free implementation should
only be allowed to return a fail indication to the client, enabling it to choose
whether to re-invoke the same operation, or to invoke another operation. We
show however that there is inherent uncertainty as to whether the operation
could have had an effect on the object or not, by reduction to wait-free con-
sensus. This implies that the implementation must sometimes return a special
pause value, indicating that the client should re-invoke the same operation. We
extend the notion of linearizability so as to accommodate failed operations and
re-invocations of paused operations.

An obstruction-free implementation of any object is presented (Section 3.2),
which exemplifies how pause and fail values are returned when a legal response
is not possible. A natural way to evaluate obstruction-free implementations is
by considering the contention-free step complexity, namely, the number of steps
taken by a process running alone, until it returns a value. Our implementations
have linear contention-free step complexity and use a linear number of read/write
base objects. By reduction to the lower bound of Jayanti, Tan and Toueg [19],
we show that obstruction-free implementations of many long-lived objects from
historyless base objects must have Ω(n) contention-free step complexity and
must use Ω(n) historyless objects.

In practice, the burden of providing termination of obstruction-free imple-
mentations is shifted to a system-supported contention manager that relies on
low-level mechanisms such as timers, identifiers and interrupts [25,17]. The con-
tention manager instructs the clients if and when to invoke operations, trying to
ensure that only a single process eventually accesses the concurrent object. To
explore inherent characteristics of obstruction-free implementations, we consider
a specific contention manager that can turn any obstruction-free implementation
into a nonblocking one (none of those of [25,26,14,17] can do so). The contention
manager indicates the client whether to continue or not (a binary indication),
and should eventually indicate only to a single client to continue [8]. 1

We show (Section 3.5) that there are no gracefully degrading consensus im-
plementations, which are nonblocking when the contention manager operates
correctly, but remain (at least) obstruction-free when the contention manager is
unsuccessful.

We finally explore solo-fast implementations. These are wait-free linearizable
object implementations that use only read/write base objects when there is no
step contention, but may fall back on more powerful objects like compare&swap,
when contention occurs. Luchangco, Moir and Shavit [24] presented a generic
object implementation that uses only reads and writes when an operation runs in
1 This specification style is inspired by the way failure detectors [9, 8] abstract

away (partial) synchrony assumptions. It highlights the intriguing connection be-
tween obstruction-free implementations and Paxos-style algorithms for consensus
and state-machine replication [21].

Computing with Reads and Writes in the Absence of Step Contention 125

the absence of contention. However, in their implementation this also means lack
of pending operations, namely, lack of point contention; moreover, a transient
increase in point contention will cause a subsequent operation (that has no point
contention) to invoke costly C&S operations. In light of this, it is challenging to
design truly solo-fast implementations that do not invoke C&S operations in the
more common case of no step contention.

Surprisingly, we show in this paper that any object has a solo-fast imple-
mentation by describing a solo-fast consensus implementation, and employing
it within Herlihy’s universal construction [15] (Section 4). The implementation
has linear contention-free step complexity. We conjecture that solo-fast ones are
inherently slow: they must have (at least) non-constant step complexity.

2 Model

A system contains a set Π of n > 1 processes p1, . . . , pn that communicate
through shared objects.

Every object has a type that is defined by a triple (O, R, Δ), where O is a set
of invocations, R is a set of responses, and Δ is a set of sequences of invocation-
response pairs. The set Δ, known as the sequential specification of the type,
contains all the sequences of invocations and responses allowed by the object.

For example, the compare&swap (C&S) object is accessed by a CS (r1, r2,
m) operation; the operation compares that value in memory location m with the
content of local variable r1, and if equal, writes the value of r2 to m. The opera-
tion returns the old value of m. The sequential specification of the compare&swap
type includes all sequences of CS operations that obey this rule.

Another important example is the consensus object, on which processes per-
form a propose operation with an argument in some set V . The sequential spec-
ification of consensus includes all sequences of propose operations that return
the argument of the first operation in every sequence.

To implement a (high-level) object from a collection of base objects, processes
follow an algorithm A, which is a collection of state machines A1, . . . An, one for
each process.

When receiving an invocation (to the high-level object), process pi takes steps
according to Ai. In each step, pi can either (a) invoke an operation on a base
object, or (b) receive the response of its previous base operation, or (c) perform
some local computation. After each step, pi changes its local state according to
Ai, and possibly returns a response on the pending high-level operation.

We investigate implementations that work when process speeds are highly-
variable, and at the extreme case, a process may stop taking steps.

An execution e of an algorithm A is a sequence of interleaved events. Every
execution induces a history that includes only the invocations and responses
of the high-level operations. Each invocation or response is associated with a
single process and a single object. A local history of process pj in H , H |j, is the
subsequence of H containing only events of pj. Similarly, H |x is the subsequence
of H of operations on an object x.

126 H. Attiya, R. Guerraoui, and P. Kouznetsov

A response matches an invocation if they are associated with the same process
and the same object. A local history is well-formed if it is a sequence of matching
invocation-response pairs, except perhaps for the last invocation in a finite local
history. A history H is well-formed if every local history in H is well-formed.

A matching invocation-response pair [i, r] is called a complete operation, and
we say that i returns r. An invocation i without a matching response is called a
pending operation; a completion of a pending operation, that is, an invocation, is
the invocation together with an appropriate response. The fragment of H (or e,
its corresponding execution) between the invocation i and its matching response
r (if it exists) is the operation’s interval.

In an infinite execution, a process is correct if it takes an infinite number of
steps or it has no pending operation; otherwise, it is faulty.

A history H is sequential if every invocation is immediately followed by its
matching response. A sequential history H is legal if for every object x, H |x is
in the sequential specification of x.

Two different invocations i and i′ on the same object x are concurrent in a
history H , if i and i′ are both pending in some finite prefix of H . This implies
that their intervals overlap. We say that two operations [i, r] and [i′, r′] (or i′ if
i′ is pending) are non-concurrent if their intervals are non-overlapping: Either
r appears before i′ in H , in which case we say that [i, r] precedes [i′, r′], or r′

appears before i in H , in which case we say that [i, r] follows [i′, r′].
A well-formed history H satisfies extended linearizability [15] (see also [6,

Chapter 10]) if there is a permutation H ′ containing all the complete operations
and completions of a subset of the pending operations in H , such that (1) H ′ is
legal, and (2) H ′ respects the order of non-concurrent operations in H .

This paper explores the benefits induced by the scenarios in which contention
is rare. Formally, we define the step contention of a fragment in execution e to
be the number of processes that take steps in this fragment. An operation is
step contention-free in e if step contention of its interval in e is 1. An operation
is eventually step contention-free in e if its interval in e has a suffix with step
contention 1.

Alternative ways to measure contention during an operation’s interval were
previously defined [5, 2]: The interval contention during is the number of pro-
cesses whose operations are concurrent with an operation op in e. The point
contention of op is the maximum number of operations simultaneously concur-
rent with op in e. Note that interval contention is always equal to or higher
than step contention, but point contention is incomparable to step contention.
Note also when no operation overlaps op, then both the point contention and
the interval contention are 1.

3 Obstruction-Free Implementations

This section considers obstruction-free implementations [17,16], which guarantee
progress only in the absence of step contention.

Computing with Reads and Writes in the Absence of Step Contention 127

3.1 Definitions

Originally [17,16], an implementation is called obstruction-free “if it guarantees
progress for every thread that eventually executes in isolation. Even though other
threads may be in the midst of executing operations, . . . ” [17, Page 522]. For
deterministic implementations, this requirement is equivalent to solo termina-
tion [11], and it echoes the liveness correctness conditions stated for Paxos-style
algorithms for state-machine replication [21].

Using our terminology, an implementation is obstruction-free if every opera-
tion that is eventually step contention-free eventually returns.

Obstruction-freedom is a very weak liveness condition, and it requires the
operation to return only under very restricted conditions. In all other circum-
stances, we only require that an operation’s response is legal, if it returns a
response at all.

If an operation cannot return a legal response, it is useful to return con-
trol to a higher-level entity, which we call the client. The client may consult
a system-specific mechanism called a contention manager, in order to expedite
termination.

There are two ways in which an obstruction-free implementation returns
control to the client, depending on whether the implementation is certain that
the operation did not have any effect on the object or not. If the implementation
is certain that the operation did not have an effect, a special fail value is returned,
indicating that the operation was not applied, and the client is free to invoke
any operation it wishes. Otherwise, a special pause value ⊥ is returned, and the
client must re-invoke the same operation until a non-⊥ response is received. (We
discuss the need for the two indications below.)

We add to R, the set of responses of an object, a special pause value ⊥ /∈ R
and a special fail value ∅ /∈ R. The definition of a well-formed local history is
extended to require that if an invocation i is followed by the response ⊥, then
the subsequent event, if exists, is i.

The definition of extended linearizability is further extended so that invoca-
tions returning fail are removed from the linearized history, while a sequence of
invocations returning pause are considered as one pending operation.

Formally, let H be any history, and H̄ be any well-formed local history of
H . Let i be an invocation in H̄ on an object x. A fragment of the form i, r
in H̄ , where r ∈ R, is called an occurrence of i (returning r). Since an invo-
cation occurrence might return ⊥ and be re-invoked later, there might be a
number of occurrences of i in a history. Consider the longest fragment of the
form i or i,⊥, i, . . . ,⊥, i in H̄ . If the fragment is followed by a matching re-
sponse r /∈ {⊥, ∅}, we call i, r or, resp., i,⊥, i . . . ,⊥, i, r a complete operation. If
the fragment is followed by a fail response ∅, we call i, ∅ or, resp., i,⊥, i . . . ,⊥, i, ∅
a failed operation. If the fragment is followed by no event or by ⊥, we call i or
i,⊥ or, resp., i,⊥, i, . . . ,⊥, i or i,⊥, i . . . ,⊥, i,⊥ a pending operation. Since H̄
is well-formed, a pending operation is a suffix of H̄ (⊥ cannot be followed by
an invocation other than i). The operation’s interval is the shortest fragment of

128 H. Attiya, R. Guerraoui, and P. Kouznetsov

Shared variables: register X, initially ⊥, and “only-fail” OF consensus object C

Code for process p0:

upon propose(v0) do
d0 ← C.propose(v0)
if d0 = ∅ then

d0 ← X
return d0

Code for process p1:

upon propose(v1) do
X ← v1
repeat

d1 ← C.propose(v1)
until d1 �= ∅
return d1

Fig. 2. Wait-free consensus from “only-fail” obstruction-free consensus

H that includes all events of that operation. If the fragment i,⊥, i, . . . ,⊥, i is
followed by no event in H̄ then the operation’s interval is infinite.

As defined before, a well-formed history H is linearizable if there is a per-
mutation H ′ containing all the complete operations in H and completions of
a subset of the pending operations in H , such that H ′ is legal and it respects
the order of non-concurrent operations in H . When taken in the context of
the extended notions of complete and pending operations, this definition means
that we order all non-failed operations, with the interval of a paused operation
“spanned” across its re-invocations.

An implementation is live if every invocation occurrence return in a finite
number of its own steps (although a value in {⊥, ∅} can be returned). An imple-
mentation is valid if (1) an invocation occurrence returns ⊥ (that is, pause) only
when it is not step contention-free, and (2) an invocation occurrence i returns
∅ (that is, fail) only when the corresponding operation (the longest fragment of
the form i, ∅ or i,⊥, i, . . . ,⊥, i, ∅ in the local history) is not step contention-free.
It is immediate that any live and valid implementation is obstruction-free.

Ideally, an obstruction-free implementation should only be allowed to return
valid responses and, in the case of step contention, fail indications to the client,
enabling the client to either re-invoke the operation, or to invoke another opera-
tion. However, below we show that no obstruction-free consensus implementation
from registers can enjoy this property. Thus, it is sometimes unavoidable to re-
turn ⊥ in obstruction-free implementations.

Theorem 1. There is no obstruction-free consensus implementation from reg-
isters that never returns ⊥.

Proof. By contradiction, consider an implementation of obstruction-free consen-
sus that is allowed to return only ∅ in the case of step contention. Then it is
possible to implement wait-free consensus for two processes p0 and p1 using one
such consensus object, denoted C, and one register X , contradicting [10,23]. The
algorithm is presented in Figure 2.

Validity of the algorithm follows from the fact that ∅ is returned only in
case of step contention. If C returns ∅ at p0, then p1 can only decide its own
value. Thus, Agreement is satisfied. Since p1 eventually runs in the absence of
contention, it eventually decides. Thus, Termination is also satisfied. ��

Computing with Reads and Writes in the Absence of Step Contention 129

3.2 Obstruction-Free Generic Object Implementation

This section gives an algorithm that obstruction-free implements any object of
type T , using only registers. Like previous universal implementations, it is built
from consensus objects. (A simple obstruction-free consensus algorithm, derived
from Paxos-style consensus algorithms, appears in the full version of the paper.)

The universal obstruction-free implementation relies on a sequential imple-
mentation of the object type T ; it is live, valid and linearizable. Herlihy’s uni-
versal nonblocking implementation [15] cannot be applied “off-the-shelf” since it
does not handle re-invocations and failing. Instead, the algorithm builds on sim-
ilar ideas, while making sure that pause or fail are returned only in the absence
of step contention.

An object of type T is represented as a linked list; an element of the list
represents an operation applied to the object. The list of operations clearly
determines the list of corresponding responses. A process makes an invocation
by appending a new element to the end of the list. The algorithm assumes a
function response(invs, inv) that returns the response matching the invocation
inv in a sequential execution of invocations from list invs (under the condition
that inv ∈ invs).

The algorithm (Figure 3) uses the following shared variables:

– n atomic single-writer, multi-reader registers L1, . . . , Ln. Process pi stores in
Li its last view of the object state in the form of a linked list of operations
that pi witnessed to be applied on the object.

– C[] is an unbounded array of obstruction-free consensus objects. The array
is used to agree on the order in which invocations are put into the linked list
of operations.

Roughly, the algorithm works as follows. When a process pi executes an invo-
cation inv, it identifies the longest list Lj (let k = |Lj|). If inv is already in Lj ,
the response associated with inv in Li is returned (line 5). This ensures that an
operation takes effect at most once, even if repeated several times. If it is not the
first instance of inv, and k > |Li| (i.e., inv was not decided in any OF Consensus
to which it was proposed), pi returns ∅ (line 9). Otherwise, pi proposes inv to
C[k + 1] (line 10). If C[k + 1] returns ⊥ (step contention is detected), then pi

returns ⊥ (line 13). If the propose operation fails, or returns a non-inv response
while it is not the first instance of inv, then pi returns ∅ (line 16). If C[k + 1]
returns inv, then pi returns the response associated with inv (line 20). Other-
wise, the procedure is repeated, now at position k +2. Now if C[k + 2] returns a
non-{inv,⊥} response, then pi returns ∅ (line 29). The second consensus opera-
tion ensures validity of the implementation, namely, that ∅ is never returned in
line 29 if the corresponding operation is step contention-free.

This algorithm implies the next theorem (the correctness proof appears in
the full version of the paper).

Theorem 2. Every sequential type T has an obstruction-free linearizable imple-
mentation from registers.

130 H. Attiya, R. Guerraoui, and P. Kouznetsov

Shared variables:
Register L1, . . . , Ln ← ∅, . . . , ∅
OF-Consensus C[]

1: upon Invoking inv do

2: invs ← longest({L1, . . . , Ln}) { Select the longest invocation list }
3: if inv ∈ invs then
4: check ← false

5: return response(invs, inv) { Return if inv is already completed }
6: k ← |invs|
7: if (k > |Li|) and check then
8: check ← false

9: return ∅ { Fail the operation }
10: dec ← C[k + 1].propose(inv) { The 1st consensus operation }
11: if dec = ⊥ then
12: check ← true
13: return ⊥
14: if (dec = ∅) or (dec �= inv and check) then
15: check ← false

16: return ∅ { Fail the operation }
17: invs ← invs · dec; Li ← invs { Update Li }
18: if dec = inv then
19: check ← false

20: return response(invs, inv) { Return if inv is decided }
21: dec ← C[k + 2].propose(inv) { The 2nd consensus operation }
22: if dec = ⊥ then
23: check ← true
24: return ⊥
25: if dec �= ∅ then invs ← invs · dec; Li ← invs
26: if dec = inv then
27: check ← false

28: return response(invs, inv) { Return if inv is decided }
29: return ∅ { Fail if inv is ignored twice }

Fig. 3. An obstruction-free implementation of T : code for process pi

Remark. Our algorithm satisfies one additional property. In any execution, every
operation takes effect (if it does) before it stops taking steps in that execution.
In other words, the implementation stays linearizable even if we restrict an op-
eration’s interval to the shortest fragment of the execution which contains all
steps of that operation. As a result, an operation invoked by a faulty process
takes effect (if it does) before the process fails, which makes our implementations
strictly linearizable [3].

A simpler proof of Theorem 2 can be obtained by presenting an algorithm
that returns only ⊥ indications in the case of step contention. However, our
algorithm is better in the sense that it carefully detects the scenarios in which
an applied operation did not take effect, and thus ∅ can be returned, which
makes our algorithm more convenient to use.

3.3 Obstruction-Free Implementations Are Slow

The universal construction presented in Figure 3 is not very efficient: finding
the longest list of invocations requires to collect information from all processes.

Computing with Reads and Writes in the Absence of Step Contention 131

The next theorem shows that this is inherent in obstruction-free universal im-
plementations from read/write base objects, by proving a lower bound of Ω(n)
on the number of steps and on the number of registers for implementing a com-
pare&swap object.

Theorem 3. Let A be any obstruction-free implementation of n-valued com-
pare&swap from registers, then A has an execution in which a step contention-
free operation takes n − 1 or more steps and accesses n − 1 or more different
objects.

Proof. Follows directly from the result of Jayanti, Tan and Toueg [19]. They
show that any implementation of n-valued compare&swap that satisfies the solo
termination property has an execution in which a solo operation (i.e., an opera-
tion that does not observe step contention) takes n−1 or more steps and accesses
at n−1 or more different objects. Since any obstruction-free implementation en-
sures the solo termination property, we immediately have the theorem. ��

3.4 Leveraging Obstruction-Free Objects

The next two subsections discuss how obstruction-free implementations can be
turned into nonblocking or wait-free ones using a contention manager. The con-
tention manager we consider provides the client with a binary indication whether
to continue or not. The contention manager works well when it indicates only to
a single client to continue. Formally, in response to the client’s query, the con-
tention manager returns either 0 or 1, telling the client to abort or to continue
(respectively); in the latter case, we say that the client is a leader. The eventual
contention manager, denoted Ω, guarantees that eventually exactly one correct
client with a pending operation (if such a client exists) is a leader; it is delib-
erately similar to the “sloppy leader” failure detector and can be implemented
using partial synchrony assumptions [8].

A single obstruction-free consensus object and Ω can implement nonblocking
consensus using the following simple algorithm: A process queries the contention
manager and, if it is a leader, the process makes a propose invocation on the
underlying obstruction-free consensus object. If the response is neither ⊥ nor ∅,
it is returned; otherwise, the process repeats. This implies the following result:

Theorem 4. Consensus has a nonblocking implementation from (only)
obstruction-free consensus and Ω.

3.5 Graceful Degradation of Obstruction-Free Implementations

Obstruction-free consensus can be implemented from registers only [4]. On the
other hand, wait-free consensus can be implemented from registers using Ω [22].
However, these two liveness properties cannot be combined in the same imple-
mentation, namely, there is no wait-free consensus implementation using regis-
ters and Ω which becomes (at least) obstruction-free when the contention man-
ager fails to eventually elect a single correct leader. In fact, we prove the claim
even for nonblocking consensus implementations.

132 H. Attiya, R. Guerraoui, and P. Kouznetsov

Theorem 5. There is no nonblocking consensus implementation using registers
and Ω that ensures obstruction-freedom when the contention manager fails to
eventually elect a single correct leader.

Proof. Suppose, by contradiction, that an algorithm A provides such an im-
plementation. We show that it is then possible to devise an algorithm A′ that
implements nonblocking consensus for two processes, p1 and p2 with registers
only — a contradiction with [10, 23].

In A′, processes take steps like in A, except that, instead of using Ω, processes
assume that Ω always indicates p1 as the only leader. In doing so, processes
cyclically invoke propose operations until a non-{⊥, ∅} value is returned. Note
that A′ cannot violate safety properties of consensus, since every finite execution
of A′ is also an execution of A. To establish a contradiction, it is thus sufficient
to show that at least one correct process eventually terminates in A′, i.e., obtains
a non-{⊥, ∅} value from the underlying algorithm A.

Every execution of A′ belongs to one of the following classes:
(1) Executions in which p1 is correct, i.e., the assumed output of the contention
manager complies with the specification of Ω. Such an execution is indistinguish-
able to p1 and p2 from executions of A in which processes p3, . . . , pn are initially
faulty, and p1 is the only correct leader. Since A implements a nonblocking con-
sensus using Ω, some correct process (p1 or p2) eventually obtains a non-{⊥, ∅}
value from A and decides.
(2) Executions in which p1 is faulty, i.e., the assumed output of the contention
manager does not comply with the specification of Ω. Assume that p2 is correct
in such an execution (if both p1 and p2 are faulty, consensus is trivially solved).
Any finite prefix of our execution is indistinguishable to p2 from an execution of
A in which processes p3, . . . , pn are initially faulty, and the contention manager
malfunctions. Since p2 is eventually running in the absence of step contention,
and A ensures obstruction-freedom even when the contention manager is incor-
rect, p2 eventually obtains a non-{⊥, ∅} value from A and decides.

In other words, A′ guarantees that whenever there is at least one correct
process, some correct process eventually decides — a contradiction. ��

4 Solo-Fast Implementations

We say that a wait-free linearizable implementation of a sequential type T from
registers and other objects (e.g., compare&swap) is solo-fast if only read and
write operations are invoked by any step contention-free operation on it.

4.1 Solo-Fast Generic Object Implementation

Figure 4 presents a solo-fast consensus implementation. The algorithm proceeds
in rounds (lines 13–25). Starting the algorithm, every process first computes in
line 3 the smallest round k in which a value can be fixed, i.e., returned in line 19
(we say that pi joins in round k). The algorithm guarantees that if any process

Computing with Reads and Writes in the Absence of Step Contention 133

Shared variables:
Registers {Aj}, {Bj}, j ∈ {1, 2, . . . , n}, initially ⊥
C&S C1, . . . Cn−1, initially ⊥

1: upon propose(inputi) do

2: V ← collect A { ⊥’s are ignored in each collect }
3: ki ← min{k ≥ 1 |∀(k′, v′) ∈ V : k′ ≤ k ∧ ∀(k, v′), (k, v′′) ∈ V : v′ = v′′}
4: if ∃(k, v) ∈ V then
5: vi ← v
6: else
7: V ′ ← collect B
8: if V ′ �= ∅ then
9: vi ← the highest timestamped value in V ′

10: else
11: vi ← inputi
12: while (true) do
13: Ai ← (ki, vi)
14: V ← collect A
15: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then
16: Bi ← (ki, vi)
17: V ← collect A
18: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then
19: return vi

20: V ′ ← collect B
21: if V ′ �= ∅ then
22: vi ← the highest timestamped value in V ′

23: v′ ← Cki
.CS(⊥, vi)

24: if v′ �= ⊥ then vi ← v′

25: ki ← ki + 1

Fig. 4. An n-process solo-fast consensus: code for process pi

fixes a value, then no process can ever fix a different value. In every round,
starting from round k, pi tries to fix its current estimate. It is ensured that if no
other process tries to fix concurrently a different value in the current or higher
round, then the estimate must be fixed. If pi is not able to fix the estimate in
the current round (we say that pi aborts in that round), which can only happen
when there is step contention, it updates the estimate using a C&S operation
and goes to the next round. The algorithm guarantees that whenever process pi

aborts in round k, and no process joins in round k +1, then pi fixes its estimate
in round k + 1 (C&S ensures that no two processes that abort in round k try to
fix different values in round k +1). We show that no process can join in round n
or later, and thus pi fixes its estimate in round k ≤ n. The algorithm is solo-fast,
since no process can abort in a round (and thus use a C&S operation) in the
absence of step contention.

This algorithm implies the next theorem (the correctness proof appears in
the full version of the paper).

Theorem 6. There is a solo-fast consensus implementation from registers and
C&S objects, that takes O(n) steps in the solo path.

From Theorem 6 and Herlihy’s universal construction [15], we immediately
obtain:

134 H. Attiya, R. Guerraoui, and P. Kouznetsov

Corollary 1. Every sequential type T has a solo-fast implementation from reg-
isters and C&S objects.

4.2 Lower Bounds and Reductions

Our implementation has linear space and contention-free step complexity. Prov-
ing that it is asymptotically optimal is not straightforward. Unlike obstruction-
free implementations (see the proof of Theorem 3), the lower bound of [19]
cannot be applied to solo-fast implementations, since processes can access non-
historyless objects such as C&S, which is not allowed in [19]. Nevertheless, if we
assume that the C&S objects are non-readable, then a simple variation of [19]
implies that the step and space complexity for solo-fast is at least linear. (This
matches the complexity of our implementation.)

The apparent similarity between obstruction-free and solo-fast implementa-
tions tempts to think that a linear lower bound on space and step complexity of
a solo-fast implementation can be obtained by a reduction from an obstruction-
free one (applying Theorem 3). However, despite of the similarity, such a reduc-
tion seems difficult to achieve. For instance, a seemingly straightforward trans-
formation from a solo-fast implementation to an obstruction-free one in which
hardware C&S objects are recursively substituted with their solo-fast implemen-
tations does not guarantee solo termination if the underlying C&S objects are
readable. Indeed, even on a solo path, any read operation on a C&S object would
recursively call a solo-fast version of it, and so on.

5 Discussion

This paper studies the notion of step contention, which inherently does not
charge for processes stalled, e.g., due to failures or swap-outs, and is, in this
sense, fundamentally different from point or interval contention. We show that
registers are powerful enough to ensure liveness in the absence of step contention
(which leads to a wider set of executions than when looking at other forms of
contention). However, we suggest that building such implementations using only
registers in the absence of step contention is inherently expensive and of limited
benefit.

There are several interesting avenues for further research:

Complexity of obstruction-free consensus. We have shown tight bounds on the
cost of generic obstruction-free implementations. However, there might be more
efficient obstruction-free solutions for specific problems. For obstruction-free con-
sensus, for example, an Ω(

√
n) lower bound on the number of registers (or his-

toryless objects) can be derived from the lower bound of Fich, Herlihy and
Shavit [11]. This bound is not tight (the upper bound is O(n)) and more-
over, it does not bound the contention-free step complexity of obstruction-free
consensus.

Computing with Reads and Writes in the Absence of Step Contention 135

Complexity of solo-fast implementations. Our solo-fast implementation performs
O(n) read and write steps, even in the absence of step contention; by employing
adaptive collect [1, 5], the step complexity can be made to depend only on the
point contention; by employing adaptive collect for unbounded concurrency [13],
it can be made independent of the number of processes.

We conjecture that a non-constant lower bound on the contention-free step
complexity of any generic solo-fast implementation holds even if underlying com-
pare&swap objects are readable, making solo-fast implementations rather inef-
ficient. On the other hand, it is possible that the step and space complexities of
solo-fast consensus can be made constant if objects slightly more powerful than
read/write registers, e.g., counters or queues, are used on a solo path.

Contention management. The contention manager we considered is fundamen-
tally different from those considered in [25,26,14,17]. It is easy to see that none
of those can transform any obstruction-free implementation into a nonblocking
one. Those contention managers do not provide any worst case nonblocking de-
terministic guarantees (with the exception of [14] in the absence of failures),
and were actually rather designed to provide a high throughput in the average
case. Devising a contention manager that would provide deterministic worst case
guarantees with acceptable average case throughput is an interesting research
direction.

Acknowledgments. We would like to thank Partha Dutta, Danny Hendler, Ron
Levy, and Eric Ruppert for important discussions on the topic of this paper, and
the anonymous reviewers for helpful comments.

References

1. Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS), pages 262–272, 1999.

2. Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive splitter and applications.
Distributed Computing, 15(2):67–86, 2002.

3. M. K. Aguilera and S. Frølund. Strict linearizability and the power of aborting.
Technical report, HP Laboratories Palo Alto, 2003.

4. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. J.
Algorithms, 11(3):441–461, 1990.

5. H. Attiya and A. Fouren. Algorithms adapting to point contention. J. ACM,
50(4):444–468, 2003.

6. H. Attiya and J. L. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). Wiley, 2004.

7. B. N. Bershad. Practical considerations for non-blocking concurrent objects. In
Proceedings of the 14th IEEE International Conference on Distributed Computing
Systems (ICDCS’93), pages 264–273, 1993.

8. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

9. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

136 H. Attiya, R. Guerraoui, and P. Kouznetsov

10. D. Dolev, C. Dwork, and L. J. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77–97, January 1987.

11. F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized syn-
chronization. J. ACM, 45(5):843–862, 1998.

12. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(3):374–382, April 1985.

13. E. Gafni, M. Merritt, and G. Taubenfeld. The concurrency hierarchy, and algo-
rithms for unbounded concurrency. In Proceedings of the 20th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), pages 161–169, 2001.

14. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In Proceedings of the 24th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), 2005.

15. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, January 1991.

16. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional
memory for dynamic-sized data structures. In Proceedings of the 22nd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 92–101,
2003.

17. M. Herlihy, V. Luchango, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings of the 23rd IEEE International Con-
ference on Distributed Computing Systems (ICDCS’03), pages 522–529, 2003.

18. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, June 1990.

19. P. Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for nonblocking
implementations. SIAM Journal on Computing, 30(2):438–456, 2000.

20. A. LaMarca. A performance evaluation of lock-free synchronization protocols.
In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 130–140, 1994.

21. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

22. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. In Proceedings of the 8th International Work-
shop on Distributed Algorithms (WDAG’94), volume 857 of LNCS, pages 280–295.
Springer Verlag, 1994.

23. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, pages 163–
183, 1987.

24. V. Luchango, M. Moir, and N. Shavit. On the uncontended complexity of consen-
sus. In Proceedings of the 17th International Symposium on Distributed Computing
(DISC’03), pages 45–59, 2003.

25. M. L. Scott and W. N. Scherer III. Contention management in dynamic software
transactional memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, July 2004.

26. M. L. Scott and W. N. Scherer III. Advanced contention management for dynamic
software transactional memory. In Proceedings of the 24th Annual ACM Symposium
on Principles of Distributed Computing (PODC), 2005.

Restricted Stack Implementations

Matei David, Alex Brodsky, and Faith Ellen Fich

Department of Computer Science, University of Toronto,
10 King’s College Road,

Toronto, Canada
{matei, abrodsky, fich}@cs.toronto.edu

Abstract. We introduce a new object, BH, and prove that a system with one
BH object and single-writer Registers has the same computational power as a
system with countably many commutative and overwriting objects. This provides
a simple characterization of the class of objects that can be implemented from
commutative and overwriting objects, and creates a potential tool for proving
impossibility results.

It has been conjectured that Stacks and Queues shared by three or more pro-
cesses are not in this class. In this paper, we use a BH object to show that two
different restricted versions of Stacks are in this class. Specifically, we give an
implementation of a Stack that supports any number of poppers, but at most two
pushers. We also implement a Stack (or Queue) shared by any number of pro-
cesses, but, in which, all stored elements are the same.

1 Introduction

Stacks and Queues are important and well studied data structures. However, they are
not usually available in the hardware and, to use them, one has to implement them from
the basic types available in the system. If the distributed system provides Registers and
objects with consensus number∞ (such as Compare&Swap or LL/SC), wait-free Stack
and Queue implementations exist, regardless of the number of processes in the system.

Since Stacks and Queues have consensus number 2, they can be implemented in
a wait-free manner from Registers and any type of objects of consensus number 2 in
a system with at most two processes [Her91]. No such implementations are known
when the number of processes is at least three. In fact, it is conjectured that they do
not exist [Li01, Dav04b]. Proving this negative result would also solve Herlihy’s long-
standing open question regarding the ability of Fetch&Add objects to implement every
other consensus number 2 object in systems with more than two processes.

In this paper, we consider the problem of implementing wait-free Stacks and Queues
in systems where only commutative and overwriting objects (such as Test&Set objects,
Fetch&Add objects, Swap objects, and Registers) are available. Two operations com-
mute if the order in which they are applied does not change the resulting state of the
object. One operation overwrites another if applying this operation results in the same
object state whether or not the other operation is applied immediately before it. Commu-
tative and overwriting objects are objects such that every pair of operations performed
by different processes either commute or one overwrites the other. All of them have

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 137–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 M. David, A. Brodsky, and F.E. Fich

consensus number at most 2 [Her91]. The class of all commutative and overwriting
read-modify-write objects with consensus number 2 is called Common2. Many objects
in this class are provided in real systems.

Afek, Weisberger, Weisman [AWW93] prove that any Common2 object
shared by any number of processes can be implemented from Registers and any type of
objects of consensus number 2. Hence, if a Queue or Stack can be implemented from
Registers and Common2 objects, it can be implemented from Registers and any type
of objects of consensus number 2. Proving that such an implementation is impossible
would imply that characterizing an object to be of consensus number 2 is insufficient to
describe its computational power in systems of more than 2 processes.

Attempts to prove the impossibility of such an implementation for Queues have
resulted in the development of a number of restricted implementations of Queues from
Registers and Common2 objects. Specifically, there are wait-free implementations of
Queues shared by one or two dequeuers and any number of enqueuers [HW90, Li01],
and wait-free implementations of Queues shared by one enqueuer and any number of
dequeuers [Dav04a].

Another natural restriction is to consider Stacks and Queues with domain size 1,
i.e., where all the elements stored in the Stack or Queue are the same. Note that single-
valued Stacks and Queues behave identically. Push and Enqueue increase the number
of stored elements by one. Pop and Dequeue decrease the number of stored elements by
one, if there was at least one, and return whether or not this was the case. We prove that a
single-valued Stack shared by any number of pushers and poppers can be implemented
from Registers and Common2 objects. This means that the difficulty of implementing
a general Stack is not simply coordinating pushers and poppers so that they can all
complete their operations, but must involve poppers determining the order in which the
steps of different pushers are linearized.

We obtain our implementation by first constructing an implementation of a Stack
with arbitrary domain shared by one pusher and any number of poppers. Then we show
how to transform it to obtain an implementation of a single-valued Stack shared by any
number of pushers and poppers. We also show how to extend the number of pushers
from one to two when the domain is arbitrary. In contrast, it is not known how to im-
plement a Queue shared by two or more enqueuers and any number of dequeuers from
commutative and overwriting objects.

The implementations in this paper do not directly use Common2 objects. Instead,
we introduce a new object, BH, with a single operation, Sign, and we show that, for
any number of processes, a BH object can be implemented from a single Fetch&Add
object. Then we implement our Stacks from a single BH object and one single-writer
Register per pusher. The form of our implementations is very simple: To perform a
Push, a process appends information to its single-writer Register, and performs one or
two Sign operations (depending on the implementation). To perform a Pop, a process
appends information to its single-writer Register, performs two Sign operations, and
then collects the single-writer Registers of all pushers.

We also show that any countably infinite collection of Fetch&Add objects and
single-writer Registers can be simulated using one BH object and one single-writer
Register per process. In this case, a process can perform any operation by appending the

Restricted Stack Implementations 139

operation and its arguments to its single-writer Register, applying one Sign operation to
the BH object, and then reading the single-writer Registers of all other processes. Thus,
a system with one BH object and one single-writer Register per process, and a system
with Common2 objects and Registers are equally powerful. In particular, to show that
an object cannot be implemented from Registers and objects in Common2, it suffices to
prove that it has no implementation from one BH object and one single-writer Register
per process. Moreover, it suffices to prove the lower bound for a restricted class of im-
plementations in which each operation is simulated by an algorithm with a fixed, very
simple form. This restriction enables us to better understand the flow of information
between processes and to analyze the interaction between them.

In Section 2, we discuss the BH object and its properties. Section 3 contains our
stack implementations. Throughout the paper, we assume that all objects are determin-
istic and linearizable and we consider only wait-free implementations.

2 The BH Object

In this section, we define the BH object, show how to implement it using a single
Fetch&Add object, and show how it can be used to implement any collection of Com-
mon2 objects. Our goal is to show the existence of such implementations. We do not
address their efficiency.

2.1 Definition of BH

Consider an object with only one operation, in which a process appends its own ID to
a shared log. We refer to an occurrence of a process ID in the log as a signature. We
assume process IDs are positive integers, so a list of signatures is a finite sequence of
positive integers. The object keeps, by means of its internal state, a complete ordered
list of signatures. As a process signs the log, that process receives, in response, the
entire list of signatures, including the one being applied by its current operation. This
object has consensus number ∞, because processes can decide on the input value of
the process whose ID is the first signature in the log. Hence, this does not capture the
limited power of a system with Registers and Common2 objects.

Informally, a BH object, short for Blurred History, works much like the object de-
scribed above, but it is restricted so that it can be implemented from Registers and
Common2 objects. As before, the object has one operation, Sign, and the state of the
BH object is the complete list of signatures applied so far. However, the response a pro-
cess Pa gets from Sign is not the exact state σ of the BH object, but instead, a set of
sequences indistinguishable (in the sense defined below) to Pa from σ.

Two sequences of integers σ, σ′ are a-indistinguishable if there exist b �= c, both dif-
ferent from a, such that σ = σ1 ·bc·σ2, σ′ = σ1 ·cb·σ2 and neither b nor c appears in σ2.
In other words, σ′ is exactly the same as σ, except for the last consecutive occurrences of
two different elements other than a, which are swapped. Two sequences σ, σ′ are also
a-indistinguishable if there is a sequence σ′′ which is a-indistinguishable from both.
Thus, a-indistinguishability is transitively closed. We use the terms a-indistinguishable
and indistinguishable to Pa to refer to the same relation.

140 M. David, A. Brodsky, and F.E. Fich

To provide further intuition, we also give a direct, yet equivalent, definition for
the notion of indistinguishability. We can view a state σ as providing two types of
information:

– the number of signatures by each process, and
– for each signature, which signatures precede it (and, hence, which signatures follow

it).

Let σ be the state of a BH object immediately after Pa performs Sign. In response to its
operation, Pa will receive the following information from σ:

– the number of signatures in σ by each process, and
– the relative order of each pair of signatures in σ, provided that at least one of the

signatures in the pair is by Pa or is followed by another signature by the same
process.

Hence, Pa won’t be able to tell the relative order of the last signatures by other pro-
cesses, when those signatures are consecutive. For example, if the BH object is in state
123 and P1 applies Sign, the response will be {1231, 1321}, which we can write as
1{23}1. As a more elaborate example, if the BH object is in the state 1324451671718
and P9 applies Sign, P9 will get the response 1{23}4{45}1671{178}9. Notice that, in
this example, P9 can derive the exact location of the last (and only) signature by P6

because it knows the location of the two surrounding signatures (the second by P1 and
the first by P7).

When two sequences σ, σ′ are a-indistinguishable, one is a permutation of the other,
and the set of locations of last signatures by processes other than Pa is the same in both.
From the response to a Sign operation, Pa can compute the response of any previous
Sign operation by some other process Pb, except for possibly the last operation by Pb.
To see this, note that Pa knows the location of any signature of Pb except possibly the
last signature of Pb, and furthermore, later steps (by Pb and by other processes) can
only add information about the exact state at the end of Pb’s operation. For example,
if P1 receives the response 124{24}353151 to a Sign operation, it can see that the
response P5 got from its first Sign operation is 124{234}5. In this example, P1 knows
the location of the first signature by P3, but it can see that P5 couldn’t have had that
information from the response to its first Sign.

2.2 Implementing a BH Object

In this section, we informally explain how to implement a BH object using a Fetch&Add
object. A more formal description of this implementation appears in [Dav04b]. The ini-
tial state of the BH object is an empty sequence, and the initial value of the Fetch&Add
object in our implementation is 0.

We can view the value V stored in the Fetch&Add object as an infinite sequence of
bits, {bi | i = 0, 1, . . .}. Let N denote the number of processes in the system and, for
i = 1, . . . , N , let Va denote the infinite subsequence of bits {bj | (j mod N) + 1 =
a}. Then V1, . . . , VN are mutually disjoint. At any point in time, Va encodes a finite
sequence of non-negative integers as the concatenation of the unary representations of

Restricted Stack Implementations 141

these integers, each integer separated from the next by 10, and followed by an infinite
sequence of 0’s. For example, u1, u2, u3 is encoded as 1u1+101u2+101u3+100 · · ·. Then
any positive integer can be appended to the end of the sequence by only changing certain
bits of Va from 0 to 1.

We implement every Sign operation by Pa using one Fetch&Add operation on V
that appends a number to the sequence encoded in Va. Since Pa is the only process
changing Va, it can keep the value of Va in a local register va. Whenever Pa needs to
append a number to the sequence encoded in Va, it can inspect va to decide which bits
of Va have to be changed from 0 to 1. Pa can then set those bits using a Fetch&Add
operation on V with an appropriate argument. For example, if Va stores 2, 0, 3, encoded
as 111010111100 · · ·, and Pa needs to append the value 1 to this sequence, it has to
change the 12-th and 13-th bits of Va from 0 to 1. Pa can accomplish this by performing
a Fetch&Add operation on V with argument 2a−1+11N + 2a−1+12N .

In our BH implementation, every process Pa has, in addition to va, a second local
register wa. This register has initial value 0. It is used to store the last value received
by Pa from a Fetch&Add operation on V . A Sign operation by Pa is implemented as
follows:

– using va and wa, process Pa computes a value x such that performing a Fetch&Add
operation on V with argument x has the effect of appending wa to the sequence
encoded in Va;

– Pa appends wa to va;
– Pa performs Fetch&Add on V with argument x;
– Pa stores the response from this Fetch&Add operation in wa;
– using wa, process Pa computes the response from Sign.

The computation of x was described above. Thus, it remains to explain how to compute
the response from the Sign operation.

From the response to its Fetch&Add operation, Pa can compute the number of pre-
vious signatures by some other process Pb as the number of runs of 1’s in the sequence
Vb. It can also compute ub,i, the i-th non-negative integer in the sequence encoded by
Vb. Note that ub,i is the response Pb received from the Fetch&Add operation it per-
formed during its (i − 1)-st Sign operation. Hence, Pa can compute which signatures
precede the (i−1)-st signature by Pb. The only information about the signature log that
Pa cannot compute is the relative order of the last signatures by other processes, when
those signatures are consecutive. This is precisely the information needed to construct
the class of states indistinguishable to Pa from the signature log.

2.3 Implementations Using a BH Object

In this section, we show that a system with one single-writer Register per process and
one BH object can be used to simulate a system with infinitely many Common2 objects
and Registers. To do that, we implement a countably infinite collection of Fetch&Add
objects and single-writer Registers using one single-writer Register per process and one
BH object. Our claim follows from the fact that any Register can be implemented from
single-writer Registers [VA86], and that any Common2 object can be implemented from
Fetch&Add objects and Registers [AWW93].

142 M. David, A. Brodsky, and F.E. Fich

Consider a system of countably infinitely many Fetch&Add objects and single-
writer Registers. Assume the objects in this system are indexed by positive integers. A
process may perform three types of high-level operations:
Fetch&Add(k, x), if k is the index of a Fetch&Add object, Read(k), if k is the in-
dex of a Register, and Write(k, x), if k is the index of one of the Registers to which it
may Write. In a system with one single-writer Register per process and one BH object,
we implement each of the three types of operations as follows:

– Pa appends the current high-level operation to its Register;
– Pa Signs the BH object;
– Pa Reads the Registers of all processes;
– Pa locally computes the result of the implemented operation.

Throughout the implementation, the value held in Pa’s Register is an ordered list of all
the high-level operations that Pa has started. We linearize a high-level operation at the
moment the process executing it Signs the BH object. Thus, given the responses Pa gets
from its Sign and Read operations, Pa can compute which high-level operations have
occurred so far. It can also compute the linearization of these operations, except for
what is blurred in the response it gets from the BH object. This information is enough
for Pa to compute the result of its high-level operation:

– If the high-level operation is a Write, its response is simply OK.
– If the high-level operation is Read(k), we know that only one process Pb writes

to the single-writer Register with index k. In this case, Pa returns the argument of
the last Write operation by Pb to this Register that is linearized before this Read. If
there is no such Write operation, then the initial value of the Register is returned.

– If the high-level operation is Fetch&Add(k, x), Pa needs to compute the sum of the
arguments of all the Fetch&Add operations on this object that are linearized before
the current operation. Note that Pa does not need to know the order in which these
operations are linearized, since addition is commutative.

Something stronger can be said about a system with one single-writer Register per
process and one BH object.

Theorem 1. Let S1 be a system with countably infinitely many Common2 objects and
Registers. Let S2 be a system with one single-writer Register per process and one BH
object. If there exists an implementation of some object O in S1, then there exists an im-
plementation of O in S2. Furthermore, to perform a high-level operation on O, process
Pa begins by appending this operation to its single-writer Register and then alternately
performs Sign and Reads of all Registers.

In the construction, a process uses its single-writer Register to record which opera-
tion it performs, on which object it performs this operation, and any parameters of this
operation. Thus, when implementing a single object that supports a single operation
that takes no parameters, the single-writer Registers are not needed.

Restricted Stack Implementations 143

3 Stack Implementations from a BH Object

3.1 A Single-Pusher Stack Implementation

In this section, we give a single-pusher many-popper Stack implementation from one
BH object B and an unbounded array V of single-writer Registers, each capable of
holding one Stack element and each of which can only be written by the single pusher
P1. Alternatively, V can be a single-writer register capable of holding any sequence
of Stack elements. The initial state of B is the empty sequence. Let process Pa be a
popper, for a > 1. The implementation is presented in Figure 1.

The pusher P1 holds a local variable last , initialized to 0, which is used to store the
index of the last slot of V to which P1 wrote. To push an element x onto the Stack, P1

increments last and writes x into V [last]. P1 then signs B. A signature of P1 in B is
called a push step. Recall that this is an occurrence of 1 in the state of B.

To pop an element off the Stack, Pa first performs two Sign operations on B. From
the result of its second operation, which is an equivalence class of a-indistinguishable
sequences, Pa selects any representative σ. Then Pa locally computes a function f
of σ (see Figure 1). The value of this function is either 0, in which case Pa returns ε,
indicating an empty Stack, or a positive integer, which Pa uses to index V . In the second
case, the value stored in that location of V is the result of Pa’s Pop. The signatures of
poppers in B are called pop steps. The signature produced by the first Sign occurring
in a Pop operation is called a first pop step, and the signature produced by the second
Sign is called a second pop step.

The heart of this implementation is the function f . It takes a BH state σ as input,
and decides which value the process computing it should pop from the Stack. Inside the
function, we consider each Push operation φ, starting with the latest, and try to match
it with the earliest completed Pop operation α that starts after the push step of φ. If no
such α exists, we erase φ from σ and continue. On the other hand, if α exists, we erase
both α and φ from σ and continue. If α turns out to be the Pop operation that invoked f
on σ, which is the case if the second pop step of α is the last signature in σ, we decide
that α should return the value pushed on the Stack by φ.

For the purposes of proving the correctness of this implementation, it will be con-
venient to assume that P1 is pushing the values 1, 2, 3, . . ., thus identifying the value
stored in a cell of V with the index of that cell.

A crucial fact in proving the correctness of this algorithm is given in Lemma 5,
where we show that the choice of σ made in line 6 does not affect the output of a
Pop operation. Specifically, the result of applying f to two indistinguishable states is
the same. In order to establish this result, we prove several Lemmas saying that, under
certain conditions, swapping two consecutive steps of σ does not change the result of f .
The last pop step in σ, which is the second pop step of the Pop operation that invoked
f , is never moved.

Let σ = τ1, a, b, τ2 and σ′ = τ1, b, a, τ2, where a �= b and τ2 is not empty. Lem-
mas 1, 2 and 3 describe situations in which f(σ) = f(σ′).

Lemma 1. Swapping two consecutive pop steps by different processes, of which at least
one is a first pop step, does not affect the result of f . Formally, if a is a first pop step
and b is a pop step, then f(σ) = f(σ′).

144 M. David, A. Brodsky, and F.E. Fich

Procedure P1:Push(x)

1. increment(last)
2. Write(V[last], x)
3. Sign(B, 1)

Procedure Pd :Pop, for d 1

4. Sign(B, d)
5. C Sign(B, d)
6. σ any sequence in C
7. l f(σ)
8. if l = 0
9. return ε

else
10. return Read(V[l])

endif

Function f(σ)

11. while there exist push steps in σ
12. i location of last push step in σ
13. A (j, j) : j and j are the locations of the first

and second steps of a pop operation and i j
14. if A is not empty
15. (k, k) pair with minimum j in A
16. if k is the last location in σ
17. return number of push steps in σ

endif
18. delete signatures at i, k and k from σ

else
19. delete signature at i from σ

endif
endwhile

20. return 0

Fig. 1. A Single-Pusher Implementation

Proof. During every iteration of the while loop, membership in A is determined in
line 13 by the order between push steps and first pop steps, and the selection of a pop
operation in line 15 is determined by the order between second pop steps. Hence, the
computations of f on σ and σ′ take exactly the same decision during every iteration of
the while loop.

Restricted Stack Implementations 145

The same argument can be used to show:

Lemma 2. Swapping a consecutive push step and second pop step does not affect the
result of f . Formally, if a is a push step and b is a second pop step, f(σ) = f(σ′).

Lemma 3. Swapping two consecutive second pop steps does not affect the result of f .
Formally, if both a and b are second pop steps, f(σ) = f(σ′).

Proof. We use induction on the number of executions of the while loop to show that
f(σ) = f(σ′).

The only difference in the computations of f on σ and σ′ can arise in an iteration in
which both pop operations involved in the swap are in the set A, one of them is selected
in f(σ) and the other is selected in f(σ′). Let τ and τ ′ be the respective sequences at
the beginning of that iteration. Without loss of generality, we must have

τ = τ1, 1, τ2, a1, τ3, b1, τ4, a2, b2, τ5 and

τ ′ = τ1, 1, τ2, a1, τ3, b1, τ4, b2, a2, τ5,

where the 1 following τ1 is the last step by the pusher P1. Hence τ2, τ3, τ4, τ5 contain
no 1’s. The steps a1 and a2 are the first and second steps of a pop operation by Pa, and
b1 and b2 are the first and second steps of a pop operation by Pb. Notice that in this case
τ3 cannot contain pop steps by Pa because Pa has a pending operation.

In this scenario, 1, a1, a2 are deleted in f(σ) and 1, b1, b2 are deleted in f(σ′). Let

τ = τ1, τ2, τ3, b1, τ4, b2, τ5 and

τ ′ = τ1, τ2, a1, τ3, τ4, a2, τ5.

Then f(σ) = f(τ) = f(τ) and f(σ′) = f(τ ′) = f(τ ′). The computation of f is not
affected by what popper is performing a particular Pop operation. It is only affected by
the locations of pop steps in the sequence. Hence, f(τ) = f(τ ′′), where

τ ′′ = τ1, τ2, τ3, a1, τ4, a2, τ5.

Since τ3 contains no pop steps by Pa and no push steps, τ ′ can be transformed into τ ′′

by repeatedly swapping the first pop step a1 with pop steps that immediately precede
it. By Lemma 1, f(τ ′) = f(τ ′′).

Lemma 4. Removing the first step of an incomplete Pop does not affect the result of f .

Proof. The first step of an incomplete pop operation is never considered when building
the set A, nor when selecting a pop operation from A, so removing it will cause no
change in the computation of f .

Lemma 5. Let σ be the BH state at the end of a pop operation by some process Pd. Let
σ′ be a sequence indistinguishable to Pd from σ. Then f(σ) = f(σ′).

Proof. By properties of the BH object, there is a sequence of states σ(0), σ(1), . . . ,
σ(m) with σ = σ(0) and σ(m) = σ′ such that any two consecutive states σ(e),
σ(e+1) can be obtained from one another by swapping two consecutive last steps by
some processes other than Pd. We have three possibilities:

146 M. David, A. Brodsky, and F.E. Fich

– One of these steps is a first pop step. Since it is the last step by that process, it must
be part of an incomplete pop operation. By Lemma 4, removing it will not affect
the result of f . But removing it erases the difference between σ(e) and σ(e+1), so
f(σ(e)) = f(σ(e+1)).

– Both steps are second pop steps. By Lemma 3, f(σ(e)) = f(σ(e+1)).
– One is a push step, the other is a second pop step. By Lemma 2, f(σ(e)) =

f(σ(e+1)).

Inductively, f(σ) = f(σ′).

Next, we assign linearization points for Push operations and for completed Pop
operations. We do not linearize any incomplete Pop operations (which only apply one
Sign). A Push operation is linearized at its push step. Let α be a complete Pop operation
and let σα be the BH state when α is completed. We define the linearization point of α
as follows:

– If there are no Push operations deleted unmatched (i.e. on line 19) during the com-
putation of f on σα, then α is linearized at its second pop step.

– Otherwise, α is linearized immediately before the Push operation φ deleted on
line 19 whose push step occurs earliest in σα. If multiple Pop operations are lin-
earized at the same place, they are put in the same order that their second pop steps
appear in σα.

Note that, in the second case, the push step of φ occurs between the two pop steps of α:
Since φ occurs in σα, the second pop step cannot occur before the push step. If the first
pop step occurs after the push step, then A is not empty at the end of the first iteration
of the computation of f on σα and φ is deleted on line 18, rather than line 19.

Furthermore, if τ0, d1, τ1, 1, τ2, d2 is the BH state when the Pop operation α com-
pletes, d1 and d2 are the two pop steps of α, and τ2 does not contain any push step or
both pop steps of any Pop operation, then α is not linearized at its second pop step. This
follows from the fact that A is empty during the first iteration of f on τ0, d1, τ1, 1, τ2, d2

and, hence, the last Push operation is deleted unmatched.

Given σ, we define h(σ) to be the Stack history associated with σ. It contains the
sequence of operations in the order they are linearized, together with their return values.
For example, h(11216264241266) is the sequence

(Push, OK), (Push, OK), (Pop by P2, 2), (Push, OK), (Pop by P6, 3),
(Pop by P4, 1), (Pop by P2, ε), (Push, OK), (Pop by P6, 4).

Theorem 2. For every state σ, the Stack history h(σ) is legal.

Proof. We use induction on the number of push steps in σ.
First, let σ be a history with no push steps. Any Pop operation which is completed

during σ will output ε, hence h(σ) is legal.
Now let k ≥ 0 and assume that, for all sequences σ′ with at most k push steps, h(σ′)

is legal. Let σ be a history with k + 1 push steps. Let φ denote the last Push operation.

First, consider the case where σ contains no completed Pop operations that start after
its last push step �. Then σ = π, �, ρ, where ρ contains no push steps. Let σ′ = π, ρ.

Restricted Stack Implementations 147

All Push operations in σ′ return the same result, OK, as in σ and each is linearized
in the same place in h(σ′) and h(σ).

Any Pop operation α whose second pop step occurs before � in σ is linearized before
φ in h(σ) Moreover, since σα = σ′

α, it follows that α has the same result in σ and σ′

and is linearized in the same place in h(σ) and h(σ′).
Now let α be a Pop operation whose second pop step occurs after � in σ. Since there

are no completed Pop operations that start after �, the first pop step of α occurs in π.
Then σ = τ0, d1, τ1, �, τ2, d2, τ3, where d1 and d2 are the pop steps of α and τ2, τ3 does
not contain any push step or both pop steps of any Pop operation. By the observation
following the definition of the linearization points, α is not linearized at its second pop
step and φ is deleted unmatched during the computation of f on σα. It follows that α
has the same result in both σ and σ′.

If α is not linearized immediately before �, then it is linearized immediately be-
fore a push step that occurs in π and whose Push operation is also deleted during the
computation of f on σα. Hence, α is linearized in the same place in h(σ) and h(σ′).

Each Pop operation that is linearized immediately before � in h(σ) is linearized at its
second pop step in h(σ′). These operations are linearized after the last Push operation
in h(σ′) and are linearized in the same relative order as they are in h(σ).

Thus h(σ) = h(σ′), (Push, OK). By the induction hypothesis, h(σ′) is legal. Thus,
so is h(σ).

Now consider the case where σ contains at least one completed Pop operation that
starts after the last push step �. Then σ = τ0, �, τ1, d1, τ2, d2, τ3, where d1 and d2 are
the two steps of the first completed Pop operation α that starts after �. Then τ1, τ2, τ3

contains no push steps and τ1, τ2 does not contain both steps of any Pop operation.
Since φ ends before α begins, it is linearized before α. Any other (Pop) operation β

that is linearized between φ and α must be linearized at β’s second pop step, c2. Since
this occurs before d2, the definition of α implies that β’s first pop step, c1, must occur
before �. Thus σβ = ρ0, c1, ρ1, �, ρ2, c2, where ρ2 does not contain any push step or the
both pop steps of any Pop operation. But then the observation following the definition
of the linearization points says that β is not linearized at c2, which is a contradiction.
Thus, there are no operations linearized between φ and α in h(σ).

During the first iteration of the computation of f on σα = τ0, �, τ1, d1, τ2, d2, vari-
able i contains the location of � and, by the choice of α, variables k and k′ contain the
locations of α’s first and second pop steps. Thus f returns the number of push steps
in σα, which is the index of the location in V to which φ writes. By Lemma 5, the
sequence that is chosen on line 6 during α gives the value for f as σα. Hence α returns
the value pushed by φ.

Now we argue that removing both φ and α does not change the relative order of the
linearization points of the the remaining operations nor the results of these operations.
Let σ′ = τ0, τ1, τ2, τ3. Note that the linearization points of each Push operation (except
φ) is the same in σ′ as in σ. We consider a number of different cases for completed Pop
operations.

A Pop operation whose second pop step is in τ0 has σα = σ′
α. Thus it is linearized

at the same point and returns the same value in σ and σ′.

148 M. David, A. Brodsky, and F.E. Fich

If a Pop operation β has its second pop step in τ3, then, during the first iteration of
the computation of f on σβ , φ and α are matched and deleted on line 18, leaving σ′.
Thus β has the same linearization point in σ as it does in σ′ and returns the same value.

Finally, consider a Pop operation β whose second pop step is either in τ1 or τ2.
Since φ is matched with α during the computation of f on σα and σβ is a proper prefix
of σα, φ is deleted unmatched during the first iteration of the computation of f on σβ .
The only difference between the resulting sequence and σ′

β is the first pop step d1 of α,
which, by Lemma 4 does not affect the result of f . Hence, β returns the same value in
h(σ) and h(σ′).

By definition of α, β’s first pop step is in τ0. Since no operations are linearized
between φ, which is linearized at �, and α, which is linearized at d2, β is not linearized
at its second pop step in σ. Hence it is linearized immediately before some push step.
If that push step is not �, then β has the same linearization point in σ′, since the same
Push operations are deleted unmatched in the computations of f on σβ and σ′

β .
The only other Pop operations are those whose second pop steps are in τ1, τ2 and

which are linearized immediately before � in σ. They are linearized in order of their
second pop steps. Since the last Push operation, φ, is the earliest unmatched Push op-
eration in the computation of f on σβ , it must be the only unmatched Push operation.
Thus, in σ′

β , there are no unmatched Push operations, so in σ′, these operations are lin-
earized at their second pop steps. Hence, they have the same relative order in σ and σ′.
Since the linearization point of all other operations are in τ0 or in τ3, all operations in
h(σ′) occur in the same order in h(σ).

Since we show that each operation in h(σ′) returns the same result as it does in
h(σ). It follows that h(σ) is exactly equal to h(σ′) with an inserted pair of consecutive
operations, the Push φ and the matching Pop α. By the induction hypothesis, h(σ′) is
legal, so, from the specifications of a Stack object, h(σ) is also legal.

3.2 A Single-Valued Stack Implementation

The single-popper Stack implementation is based on the observation that the number of
times each pusher signs the BH object prior to a Pop is precisely the number of elements
that were pushed on the Stack prior to that Pop. If there is only one pusher, there is no
ambiguity about the order in which the Push operations occurred. Unfortunately, this is
not the case when there are many pushers. For example, suppose processes P1 and P2

each pushed a value on the Stack by signing the BH object and then process P3 popped
a value by signing the BH object twice. The resulting state 1233 of the BH object is
indistinguishable to P3 from 2133, the state that results when P1 and P2 perform their
operations in the opposite order. Consequently, it is not clear if the value pushed by P1

or P2 is the one which should be popped. While we can overcome this problem for the
special case of exactly two pushers (see following section), the general solution remains
elusive. However, if all the values pushed on the Stack are the same, then the problem
of choosing which value to match with which Pop is obviated.

A process performing a Pop on a single-valued Stack only needs to determine
whether or not its Pop operation has some matching Push. It does not matter which
pusher performed the Push. This is essentially the problem that is solved by the single-
pusher Stack implementation (in the previous section).

Restricted Stack Implementations 149

To perform a Push, a process appends 1 to its single-writer Register and signs the
BH object once. To perform a Pop, a process appends 2 to its single-writer Register,
signs the BH object twice, and then reads the Registers of all other processes. Let C
denote the equivalence class of BH states returned as a result of the second Sign opera-
tion in a Pop. As in line 6, we select any representative σ from C. However, before we
compute f on σ, we replace every push step in σ with a push step by a virtual process,
P0. A step by some process Pa is a push step if the corresponding value in Pa’s Regis-
ter is a 1. If f returns 0 on the modified sequence, the Pop returns ε; otherwise the Pop
returns the single value in the domain.

The proof of correctness is essentially the same as the the proof for the single-
pusher Stack, except for the addition of the following lemma, which handles two Push
operations whose order cannot be distinguished.

Lemma 6. Swapping two consecutive push steps does not affect the result of f .

3.3 A Two-Pusher Stack implementation

We will now extend the algorithm given in Section 3.1 to allow two pushers instead of
just one. The basic idea is similar to the “helping” mechanism that appears in Herlihy’s
universal construction [Her91]: the completion of a Push operation by one pusher might
“help” linearize a pending Push operation by the other pusher.

Let P1 and P2 be the two pushers, and let Pd be a popper, for d > 2. We assume
that, in addition to a BH object B, we have two unbounded arrays V1, V2 of single-
writer Registers, where Va is written by pusher Pa. To push the value x, Pa first writes
x in the next available location in Va. Pa then applies two Sign operations on B. Recall
that in the single-pusher implementation, a Push operation consisted of only one Sign.

A Pop operation by Pd begins by applying two Sign operations on the BH object.
The return value of the second operation is an equivalence class of states indistinguish-
able to Pd from the real state of B. We then select any representative σ, as in line 6.
However, before we can apply function f on σ, we need to transform σ from a two-
pusher history into a single-pusher history. This transformation is performed by a new
function, g, described below.

The function g takes as arguments a two-pusher history σ, and the arrays V1, V2. It
constructs a single-pusher history τ and an array V . The two histories, σ and τ , contain
exactly the same pop steps. The push steps by P1 and P2 in σ are replaced in τ with
push steps by a virtual process, P0. The idea is that a Push operation φ is linearized
either at its second step, or at the second step of the first push operation φ′ by the other
pusher which was started and completed after the first step of φ. The function g can be
computed as follows.

– Find the earliest second push step in σ; call that push operation φ′.
– If there is a push operation φ which has a first step that occurs before the first push

step of φ′, delete both φ and φ′, and insert two steps by P0 in τ at the location of
the second push step of φ′.

– If no such φ exists, delete φ′ and insert a step by P0 in τ at the location of the
second push step of φ′.

150 M. David, A. Brodsky, and F.E. Fich

– Whenever we delete the i-th Push operation by Pa, write Va[i] into the first empty
location in V . In the first case, when we delete φ and φ′, append the value corre-
sponding to φ before the one corresponding to φ′.

– Repeat until no push operation in σ has two steps.
– At the end, delete any remaining first push steps.

For the purposes of proving correctness, we may assume that the i-th value pushed
by Pa and written in Va[i] is the pair (a, i). For example, if σ = 1112332611241
3322431426 (where second push steps and second pop steps are underlined), we have
g(σ, V1, V2) = (τ, V) where τ = 0330064033043406 and V = (1,1), (1,2), (2,1), (1,3),
(2,2), (2,3).

After computing g(σ) = (τ, V), a Pop operation computes f(τ). If the latter evalu-
ates to 0, the Pop returns ε; otherwise the Pop returns the element in location f(τ) of V ,
the array computed in g. For example, for σ, τ, V from the previous example, f(τ) = 2
and V [f(τ)] = (1, 2).

The following two Lemmas are needed to prove the correctness of this extension.

Lemma 7. Let σ be the state at the end of a Pop operation by Pd and let σ′ be a state
indistinguishable to Pd from σ. Let g(σ) = (τ, V) and g(σ′) = (τ ′, V ′). Then V = V ′

and f(τ) = f(τ ′).

Lemma 8. Let σ be a BH state. Let σ′ be any prefix of σ. Let g(σ) = (τ, V) and let
g(σ′) = (τ ′, V ′). Then τ ′ is a prefix of τ and V ′ is a prefix of V .

Finally, we argue that our algorithm is linearizable. Given a two-pusher history σ,
let g(σ) = (τ, V). We define the linearization points for Push operations in σ to be the
corresponding steps where they appear in τ . We define linearization points for Pop op-
erations in σ the same way they are defined in the single-pusher history τ . By Lemma 8,
all Pop operations completed in σ have returned the exact same values as if they had
occurred in τ . Since the single-pusher history τ is linearizable, so is σ.

4 Conclusions

In this paper, we have showed that it is possible to construct wait-free implementations
of certain restricted Stacks using only Registers and Common2 objects. Specifically,
it is possible to implement single-valued Stacks (and Queues) shared by any number
of process, and general (multi-valued) Stacks shared by one or two pushers and any
number of poppers.

Queue implementations exist for any number of enqueuers and at most two de-
queuers [Li01], and for one enqueuer and any number of dequeuers [Dav04a]. In a
Stack implementation, only the poppers output relevant values. If there are only two
poppers, they might be able to agree on the sequence of values to output. This sug-
gests that Stack implementations for any number of pushers and at most two poppers
might exist. However, we conjecture that implementing a Stack with domain size 2,
shared by three pushers and three poppers, is impossible to implement from Registers
and Common2 objects.

Restricted Stack Implementations 151

Since modern distributed systems do provide more powerful types, our results are
mainly of theoretical interest. The BH object is not an object one would want to imple-
ment in hardware or use in an efficient implementation. Moreover, the implementations
we present use an unbounded size BH object and an unbounded number of single-writer
Registers (or single-writer Registers of unbounded size).

However, we believe the BH object is a very useful tool for studying the computa-
tional power of Registers and objects in Common2. It provides a simple characterization
of the information a process can obtain from such objects during the course of a com-
putation. This makes it much easier to show the existence of algorithms for this model
and has the potential of leading to the development of interesting impossibility results
dealing with questions at the foundations of our understanding of shared memory dis-
tributed computing.

Acknowledgments

This research was supported by an Ontario Graduate Scholarship, the Natural Sciences
and Engineering Research Council of Canada, and the Scalable Synchronization Re-
search Group of Sun Microsystems.

References

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. In Proceedings of the 12th ACM Symposium on
Principles of Distributed Computing, pages 159–170, 1993.

[Dav04a] Matei David. A single-enqueuer wait-free queue implementation. In Proceedings
of DISC 2004, pages 132–143, 2004.

[Dav04b] Matei David. Wait-free linearizable queue implementations. Master’s thesis, Univ.
of Toronto, 2004.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, January 1991.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):495–504, January 1990.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous distributed
shared-memory systems. Master’s thesis, Univ. of Toronto, 2001.

[VA86] Paul Vitanyi and Baruch Awerbuch. Atomic shared register access by asynchronous
hardware. In Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science, pages 233–243, 1986.

Proving Atomicity: An Assertional Approach

Gregory Chockler1, Nancy Lynch1, Sayan Mitra1, and Joshua Tauber1

MIT CSAIL, The Stata Center, Bldg.32, 32 Vassar Street,
Cambridge MA 02139, USA

{grishac, lynch, mitras, josh}@csail.mit.edu

Abstract. Atomicity (or linearizability) is a commonly used consistency
criterion for distributed services and objects. Although atomic object im-
plementations are abundant, proving that algorithms achieve atomicity
has turned out to be a challenging problem. In this paper, we initiate
the study of systematic ways of verifying distributed implementations
of atomic objects, beginning with read/write objects (registers). Our
general approach is to replace the existing operational reasoning about
events and partial orders with assertional reasoning about invariants and
simulation relations. To this end, we define an abstract state machine
that captures the atomicity property and prove correctness of the object
implementations by establishing a simulation mapping between the im-
plementation and the specification automata. We demonstrate the gen-
erality of our specification by showing that it is implemented by three
different read/write register constructions: the message-passing register
emulation of Attiya, Bar-Noy and Dolev, its optimized version based on
real time, and the shared memory register construction of Vitanyi and
Awerbuch. In addition, we show that a simplified version of our specifi-
cation is implemented by a general atomic object construction based on
the Lamport’s replicated state machine algorithm.

1 Introduction

Many distributed and network-based services can be modeled as shared objects
accessible to (possibly remote) clients through well-defined interfaces. Atomicity
[16,21] (also known as linearizability [10]) is a desirable property for such objects
as it allows clients using the objects to perceive the operations that occur in each
run as occurring atomically, in some sequential order. This perception makes it
easier to understand the behavior of a system using distributed services, and so,
simplifies the task of system design.

Atomic services could be implemented simply on single server machines.
However, to achieve high availability in a distributed system and to tolerate
failures, atomic services are typically implemented by distributed algorithms.

� This work is supported by MURI–AFOSR SA2796PO 1-0000243658, USAF–AFRL
#FA9550-04-1-0121, NSF Grant CCR-0121277, NSF-Texas Engineering Experiment
Station Grant 64961-CS, and DARPA F33615-01-C-1896.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 152–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving Atomicity: An Assertional Approach 153

Many distributed algorithms have been proposed for implementing atomic ob-
jects; see, for example, [17,15,36,27,33,32,10,35,14,19,18,22,23,8]. These use a
range of techniques to achieve the appearance of total ordering, for example,
assigning timestamps and processing operations in timestamp order, or using
quorum configurations.

Although atomic object implementations are abundant, proving that algo-
rithms achieve atomicity has turned out to be a challenging problem. Most exist-
ing proofs for such algorithms are long, subtle, and difficult to understand and
check. As evidence of the difficulty, we note that several published proofs for
implementations of atomic shared read/write memory objects have later been
shown to be incorrect. We believe that a fundamental reason for the difficulty of
these proofs is their style: they are based on detailed, not-very-systematic, rea-
soning about events and their ordering. Useful structure in such proofs is often
provided by lemmas about partial orders of operations on objects, for example,
Proposition 3 of [16] (for single-writer read/write objects) and Lemma 13.16 of
[21] (for multi-writer read/write objects). These lemmas provide sufficient con-
ditions for correctness of atomic read/write object implementations, based on
a list of properties that a partial ordering of operations must satisfy. However,
showing that these properties hold still requires detailed, ad hoc reasoning about
events (see, e.g., [22,23]).

In this paper, we study systematic ways of verifying distributed implemen-
tations of atomic objects, beginning with read/write objects (registers). Our
general approach is to replace operational reasoning about events and partial
orders with assertional reasoning about invariants and simulation relations. The
assertional methods differ from the traditional operational arguments in two
important ways. First, the system properties are stated precisely in terms of
predicates over the system state components. Second, assertional proofs can be
checked by examining individual state transitions of the algorithm without rea-
soning about entire executions. As such they lend themselves to mechanization,
i.e., the process of checking a proof can be carried out using interactive tools,
such as theorem provers.

Our approach to carrying out assertional atomicity proofs is first to define
an abstract state machine that captures the atomicity property and then, prove
correctness of the object implementations by establishing a simulation mapping
between the implementation and the specification automata. The challenge is
to find a specification automaton that is general enough to apply to many ex-
isting implementations, and at the same time sufficiently close to the actual
implementations to simplify the task of finding the mapping. One example of
an atomicity specification that turned out to be too abstract for carrying out
simulation proofs is the canonical atomic object automaton of Section 13.1.2
of [21]. The canonical object automaton maintains a buffer used to store incom-
ing client requests. Buffered requests can later be applied to the object state,
and the generated responses are returned to their originators. Unfortunately,
this specification, though simple, does not provide sufficient detail to allow for
easy match with concrete implementations.

154 G. Chockler et al.

We therefore, give more detailed specifications. Namely, we define an ab-
stract state machine, which we call the Partial-Order Machine (PO-Machine),
which records information about operations and their orders in its state. The
PO-Machine expresses the common behavior of many existing atomic register
implementations, in which client operation requests are gradually ordered rela-
tive to other operation requests until all the necessary ordering constraints are
achieved. The ordering constructed is, in the limit, guaranteed to be a partial
order of the requested operations that satisfies sufficient conditions for showing
atomicity.

We use the PO-Machine as a formal specification for distributed algorithms
that implement atomic memory. We show that it is implemented by three dif-
ferent read/write register constructions: the message-passing emulation of At-
tiya, Bar-Noy, and Dolev (ABD) [3] (extended to handle multiple writers as in
[23]), an optimized version of ABD that takes advantage of synchronized clocks
at writers [8], and the unbounded version of the shared memory construction
of a multi-writer/multi-reader register from single-writer/single-reader registers
of [36]. We also show that a slight modification of the PO-Machine, called the
TO-Machine, can be used to prove atomicity of a general (i.e., not necessarily
read/write) object implementation based on the replicated state machine proto-
col of Lamport [15].

We specify the PO-Machine and the algorithms formally using the I/O Au-
tomata (IOA)[20] and Timed IOA [12,11] models, in fact, using formal spec-
ification languages that have been defined for these models. The IOA/TIOA
specification languages lead to very stylized assertional proofs for invariants and
simulation relations that can be partially automated using theorem provers.
Moreover, the same IOA specifications can be used by the IOA compiler [31,30]
to produce executable Java code.

Other related work: Our use of a partial order automaton as an abstract spec-
ification was inspired by prior work of Fekete et al. on specifying the behavior
of an Eventually Serializable Data Service [9]. Their specification used a (dif-
ferent) partial-order machine, which expresses weaker consistency requirements
than atomicity. The algorithm studied in [9], based on an earlier algorithm of
Liskov et al. [13], was shown to achieve this weaker form of consistency.

The only other published simulation-based atomicity proofs we are aware of
are those of Bogdanov [5] (replicated state machine), and Doherty et al. (lock-
free queue) [7]. The proofs in both these papers are complicated: They involve
multiple levels of asbtraction as well as both forward and backward simulations.
In contrast, every construction considered in this paper is shown to be atomic
by exhibiting a single forward simulation directly from the implementation au-
tomaton to a specification automaton.

Another example of using assertional reasoning for proving atomicity is the
work by Wang and Stoller [37], which uses static analysis combined with model
checking to verify atomicity of code blocks involving lock-free synchronization
primitives. A more general discussion of assertional proof techniques can be
found in [28].

Proving Atomicity: An Assertional Approach 155

The rest of the paper is organized as follows: In Section 2, we introduce
preliminary definitions and notation used throughout the paper. The sufficient
condition for proving atomicity is specified in Section 3. The PO-Machine is
described in Section 4. The ABD algorithm is presented and proved correct in
Section 5. A time-based version of ABD is discussed in Section 6. Section 7
briefly discusses the proofs of the Vitanyi-Awerbuch’s register construction, and
of the Lamport’s replicated state machine. Section 8 discusses future directions.
For lack of space, we only outline intuition and highlight basic ideas underlying
the correctness proofs. The detailed proofs can be found in the full version of
the paper [6].

2 Preliminary Definitions

We use the I/O Automata (IOA)[20] model to formally specify services, describe
algorithms and carry out proofs. An I/O automaton is a non-determenistic state
machine whose state can change atomically through a discrete transition labeled
by a discrete action. The set of the automaton’s actions is called the action
signature of the automaton. The actions can be either external or internal. The
external actions, which can be either input or output , model interaction with
the automaton’s environment; and the internal actions model local computation
steps. In Section 6, we also use the Timed I/O Automata (TIOA) model [12,11],
which, in addition to discrete transitions, also allows the automata state to evolve
by trajectories , which describe evolution of the state over time.

We use forward simulations to carry out atomicity proofs. Informally, a for-
ward simulation is a relationship between the states of two automata requiring
that the transitions of one system can in some sense be mimicked by the other.
A precise definition of the simulation formalism can be found in [21].

The read/write service: A read/write object (a register) type consists of the
following components: (1) an arbitrary set of values V with an initial value v0,
(2) the set of operations of the form write(v), v ∈ V , and read, (3) the set of
responses are ack and v ∈ V , and (4) the sequential specification f such that
f(w, write(v)) = (v, ack) and f(w, read) = (w, w).

A read/write service implements a shared read/write register. To access the
service, a client issues an operation descriptor consisting of a location identifier
loc, and an operation identifier id. In addition, the write operation descriptor
also contains a value val. We often refer to an operations descriptor x simply
as operation x, and denote its various components by x.loc, x.id, and x.val. We
denote by Ow and Or the sets of the write and the read operations respectively,
and by O = Ow ∪ Or the set of all operations. For a set X ⊆ O, we denote by
X.id = {x.id : x ∈ X} the set of identifiers of operations in X .

Clients use the actions of the form request(x), x ∈ O, and response(x, v), x ∈
O, v ∈ V ∪{ack}, to issue operation requests and receive responses respectively.
Given a sequence β of the request and response actions, an requested operation
x is said to be complete in β if β contains response(x, v) for some v ∈ V ∪ {ack}
which we call the return value of x.

156 G. Chockler et al.

We say that β is well-formed if there exists a function cause mapping each
response event to a preceding request event in β so that the following is satisfied:
(1) For each response event e = response(x, ∗), cause(e) = request(x) (i.e., re-
sponses are not spuriously generated); and (2) cause is one-to-one (i.e., responses
are not duplicated)1.

The following definition will be used throughout the paper: Let Π be a set of
read and write operations, and R be a binary relation over Π . For an operation
π ∈ Π we define last-prec-writes(π, R) = {ω ∈ Ow : (ω, π) ∈ R ∧ � ∃ω′ ∈ Ow :
(ω, ω′) ∈ R ∧ (ω′, π) ∈ R}.

3 Atomicity

Atomicity (or linearizability) is specified as a property satisfied by the object
implementation traces. It is typically defined in terms of the existence of serial-
ization points for operations so that shrinking the operations to occur at their
serialization points results in a valid sequential execution of the read/write reg-
ister (see, e.g., Chapter 13 of [21], Chapter 9 of [4], or [10]). For our purposes in
this paper, it is enough to give a sufficient condition for proving atomicity; this
condition is equivalent to the one in Lemma 13.16 of [21].

Let β be a well-formed sequence of the actions of the read/write service
interface that contains no incomplete operations, and Π be the set of opera-
tions requested in β. We say that β satisfies Partial Order property (henceforth,
referred to as PO) if there exists an irreflexive partial ordering ≺ of all the
operations in Π , satisfying the following:

Property 1 (PO Constraints)

1. If the response event for π precedes the request event for φ in β, then φ �≺ π.
2. For any two write operations π and φ in Π, either π ≺ φ or φ ≺ π.
3. If π is a write operation in Π and φ is a read operation in Π whose request

event follows the response event for π, then π ≺ φ.
4. If π is a read operation in Π and φ is a read operation whose request event

follows the response event for π, then for each ω ∈ last-prec-writes(π,≺),
ω ≺ φ.

5. Let π be a read operation in Π, and v be the value returned by π. If
last-prec-writes(π,≺) �= ∅, then v = ω.val for some
ω ∈ last-prec-writes(π,≺). Otherwise, v = v0.

The following lemma is proved in [6]:

Lemma 1. β satisfies PO iff there exists an irreflexive partial ordering of all
the operations in Π, satisfying the (more restrictive) constraints of Lemma 13.16
of [21].
1 Note that our notion of well formedness is weaker than that usually found in the

literature as it allows requests from the same location to be issued concurrently.

Proving Atomicity: An Assertional Approach 157

From the above result and Lemma 13.16 of [21], we obtain:

Lemma 2. If β is well-formed and satisfies PO, then β satisfies atomicity.

4 The PO-Machine

In this section we define the Partial-Order Machine. First, we formally specify
the environment assumptions of the read/write service. This environment is
represented by a single automaton, called Users, whose code could be found
in [6]. The Users automaton contains a single variable requested to keep track
of the ids of requested operations, in order to avoid repeats. An implementation
of the environment would not have such a variable, but would use some other
mechanism to ensure unique operation ids (e.g., client id and a counter).

Lemma 3. For x, y ∈ requested, x = y ⇔ x.id = y.id.

The PO-Machine signature and state variables appear in Figure 1, and its
transitions appear in Figure 2. This automaton maintains a partial order in
its state, represented by variables vertices and edges. Vertices correspond to
requested operations, and edges to ordering relationships that have been deter-
mined for these operations. When a request arrives, it is put into vertices; later,
it becomes classified as ordered, then completed, and finally, responded. Edges
may be added at any time from ordered write operations to unordered ones (see
action add-edge).

An unordered operationπ may become ordered at any time after it has acquired
incoming edges from all write operations that completed before π began (i.e., all
writes in prec(π)). This ensures that constraints 1 and 3 of Property 1 hold among
all writes, and between writes and reads. Constraint 1 is also trivially preserved
among reads as edges originating at read requests are disallowed by the PO sig-
nature (see Figure 1). When a write operation π becomes ordered, new edges are
inserted to ensure that π is ordered with respect to all previously-ordered write
operations (see action order) so that constraint 2 of Property 1 is satisfied.

An ordered operation may become completed at any time; when a read oper-
ation φ completes, it also forces each write operation π immediately preceding φ
in the partial order to complete. This ensures that every read operation invoked
after φ completes will find π in its prec set, and will therefore, become ordered
only after it has an incoming edge from π. This guarantees that constraint 4 of
Property 1 is satisfied, and also captures the essence of the “helping” mechanism
found in many atomic register implementations.

A completed operation is allowed to return a response. The response returned
by a read operation is the value written by the last preceding (in the partial
order) write operation, or the initial value if no such write exists (see action
response). Thus, constraint 5 of Property 1 is satisfied.

In [6], we prove that the limit of the transitive closure of (vertices, edges),
maintained in the derived variable dag, satisfies Property 1. Since every trace
of PO-Machine is obviously well-formed, by Lemma 2, PO-Machine implements
an atomic register:

158 G. Chockler et al.

Theorem 1. Each trace of the PO-Machine satisfies atomicity.

Signature:

Input:
request(x), x ∈ O

Output:
response(x, v), x ∈ O,

v ∈ V ∪ {ack}

Internal:
add-edge(x, y), x ∈ Ow , y ∈ Ow ∪ Or
order(x), x ∈ O
complete(x), x ∈ O

State:

vertices ⊆ O, initially empty
ordered ⊆ O, initially empty
completed ⊆ O, initially empty

responded ⊆ O, initially empty
edges ⊆ O × O, initially empty
prec is a partial function from O to subsets of O,

initially empty

Derived vars:

dag, the transitive closure of (vertices, edges)

For x ∈ Or , last-writes(x) = last-prec-writes(x, dag)

Fig. 1. PO-Machine signature and states

Input request(x)
Effect:

vertices := vertices ∪ {x}
prec(x) := completed ∩ Ow

Internal add-edge(x, y)
Precondition:

y ∈ vertices − ordered
x ∈ ordered

Effect:
edges := edges ∪ {(x, y)}

Internal order(x), x ∈ Ow
Precondition:

x ∈ vertices − ordered
∀y ∈ prec(x) : (y, x) ∈ dag

Effect:
edges := edges ∪ {(x, y) : y ∈ ordered ∩ Ow ∧

(y, x)
∈ dag}
ordered := ordered ∪ {x}

Internal order(x), x ∈ Or
Precondition:

x ∈ vertices − ordered
∀y ∈ prec(x) : (y, x) ∈ dag

Effect:
ordered := ordered ∪ {x}

Internal complete(x)
Precondition:

x ∈ ordered − completed
Effect:

completed := completed ∪ {x}
if x ∈ Or then

∀y ∈ last-writes(x) do
completed := completed ∪ {y}

Output response(x, ack), x ∈ Ow
Precondition:

x ∈ completed − responded
Effect:

responded := responded ∪ {x}

Output response(x, v0), x ∈ Or
Precondition:

x ∈ completed − responded
last-writes(x) = ∅

Effect:
responded := responded ∪ {x}

Output response(x, v), x ∈ Or
Precondition:

x ∈ completed − responded
last-writes(x)
= ∅
v = w.val : w ∈ last-writes(x)

Effect:
responded := responded ∪ {x}

Fig. 2. PO-Machine transitions

5 The Attiya, Bar-Noy, and Dolev Algorithm

In this section, we present a distributed wait-free implementation of an atomic
multi-writer/multi-reader register based on the well-known message-passing al-
gorithm of Attiya, Bar-Noy, and Dolev [3] (which we call ABD). We prove cor-
rectness of ABD by showing that ABD implements PO-Machine, which by The-
orem 1, implies that ABD implements an atomic register.

Proving Atomicity: An Assertional Approach 159

The original ABD protocol implements a wait-free atomic read/write regis-
ter using a collection of n processes communicating among themselves through
reliable point-to-point channels. The implementation is resilient to up to n/2 pro-
cess crashes. Each process in ABD is responsible for both: handling the client
operation requests, and storing and updating the local copy of the register value.

Here, we present a generalized version of ABD where we let the two roles in
the ABD protocol be performed by two classes of agents: clients and replicas.
This design allows for flexibility in assigning roles to actual network locations
thus simplifying the algorithm deployment in real systems. We also use a sepa-
rate client to handle each user request so that the actual clients can handle any
number of requests and in whatever order (for example, requests can be par-
titioned among several threads, or executed sequentially). Our implementation
also supports multiple writers using the technique of [23].

We now describe the ABD implementation (the ABD automaton) in more
detail. Let P be a finite set of replicas. We define a quorum system Q on P to
be the union of a set of write quorums Qw and the set of read quorums Qr.
Qw and Qr are sets of subsets of P such that for each Qw ∈ Qw and Qr ∈ Qr,
Qw ∩Qr �= ∅. The ABD automaton is the composition of the Users automaton
of Section 4, the client automata Cx, x ∈ O, the replica automata Rp, p ∈ P ,
and the reliable point-to-point channel automata connecting each client Cx with
replica Rp and vice versa. The client’s interface and state variables appear in
Figure 3. The code of the reader client, the writer client and the replica appear
in Figures 4, 5, and 6 respectively. We do not present the specification for the
channel automata as their functionality is obvious.

The value stored at each replica is associated with a tag. Tags are two-field
records consisting of a sequence number sn, which is a non-negative integer, and
a request identifier id. Tags are ordered lexicographically with the precendence
to the sequence number field.

Clients access read (resp. write) quorums by first sending a message to all
the replicas, and then awaiting responses from a write (resp. a read) quorum.
The request handling at clients involves two rounds of quorum accesses, called
the read phase and the write phase respectively, such that a read quorum is
contacted during the read phase, and a write quorum is contacted during the
write phase. A client keeps track of the request progress through the phases
using the variable status. The operation’s status is initially idle. It is changed
to pending (p) at the beginning of the read phase. It becomes sending (s) at the
beginning of the write phase. It is changed to committed (c) upon completion of
the write phase, and finally to responded (r) after a response is returned.

Specifically, to handle a write request x, the client Cx (see Figure 5) performs
a read phase to determine the highest tag t associated with the values stored at
some read quorum. It then performs a write phase to store the value v associated
with tag (t.sn, x.id) at a write quorum. It then responds with ack. To handle a
read request y, client Cy (see Figure 4) first performs a read phase to determine
the value v associated with the highest tag t among those associated with the

160 G. Chockler et al.

values stored at some read quorum. It then performs a write phase to guarantee
that the pair (t, v) is stored at a write quorum. It then responds with v.

The replica’s algorithm (see Figure 6) is simple: In response to a read phase
message, a replica p either responds with its current tag (for write requests), or
the current tag and the value (for read requests). In response to a write phase
message carrying a tag which is bigger than p’s current tag, p overwrites its
current tag and the value with those in the message. Otherwise, the p’s state is
left unchanged. In both cases, p responds with ack.

Types:

T ag = N≥0 × O.id, with selectors sn and id, ordered lexicographically

Phase = {idle, p, s, c, r}, ordered so that idle < p < s < c < r

Signature:
Input:

request(x)
receive(m)p,x, p ∈ P , m ∈ {ack} ∪

N≥0 ∪ (T ag × V)

Output:
response(x, v), v ∈ V ∪ {ack}
send(m)x,p , p ∈ P , m ∈ {r, w} ∪

(T ag × V)

Internal:

rq-collected(q)x , q ∈ Qr

wq-collected(q)x , q ∈ Qw

State:
status ∈ Phase, initially idle
val ∈ V , initially undefined
tag ∈ T ag, initially (0, i0)

read-resp ∈ P , initially empty
write-resp ∈ P , initilly empty
for each p ∈ P : req-bufferp ∈ seqof({r, w} ∪

(T ag × V)), initially λ

Fig. 3. The state and signature of client automata Cx, x ∈ O for ABD

Input request(x)
Effect:

status := p
for each p ∈ P :

append 〈r〉 to req-bufferp

Input receive(v, t)p,x
Effect:

read-resp := read-resp ∪ {p}
if status = p ∧ t > tag then

val := v
tag := t

Internal rq-collected(q)x
Precondition:

status = p
read-resp ⊇ q

Effect:
status := s
for each p ∈ P :

append 〈tag, val〉 to req-bufferp

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, v)
Precondition:

status = c
val = v

Effect:
status := r

Output send(m)x,p
Precondition:

req-bufferp
= λ

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 4. Transitions of reader Cx, x ∈ Or for ABD

Proving Atomicity: An Assertional Approach 161

Input request(x)
Effect:

status := p
for each p ∈ P :

append 〈w〉 to req-bufferp

Input receive(sn)p,x, sn ∈ N≥0

Effect:
read-resp := read-resp ∪ {p}
if status = p ∧ sn > tag.sn then

tag.sn := sn

Internal rq-collected(q)x
Precondition:

status = p
read-resp ⊇ q

Effect:
status := s
tag.sn := tag.sn + 1
for each p ∈ P :

append 〈tag, x.val〉 to req-bufferp

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, ack)
Precondition:

status = c

Effect:
status := r

Output send(m)x,p
Precondition:

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 5. Transitions of writer Cx, x ∈ Ow for ABD

Signature:

Input:
receive(m)x,p, x ∈ O, m ∈ {r, w} ∪ (T ag × V)

Output:
send(m)p,x , x ∈ O, p ∈ R, m ∈ {ack} ∪ (T ag × V)

State:

val ∈ V , initially v0

tag ∈ T ag, initially (0, i0)

For each x ∈ O: resp-bufferx ∈ seqof({ack} ∪ N≥0 ∪ (T ag × V)), initially λ

Transitions:

Input receive(r)x,p
Effect:

append 〈val, tag〉 to resp-bufferx

Input receive(w)x,p
Effect:

append 〈tag.sn〉 to resp-bufferi

Input receive(t, v)x,p
Effect:

if t > tag then
tag := t
val := v

append 〈ack〉 to resp-bufferx

Output send(m)p,x
Precondition:

resp-bufferx
= λ
m = head(resp-bufferx)

Effect:
delete head of resp-bufferx

Fig. 6. Replica automaton Rp, p ∈ P for ABD

Correctness of ABD: We now prove that ABD implements an atomic register.
Our strategy will be to show that ABD implements PO-Machine by exhibiting a
forward simulation from ABD to PO-Machine. In the following, for each x ∈ O,
we will use subscript x to refer to the state variables of Cx. It is convenient
for the ABD correctness proof to define several derived variables for the ABD
automaton. These are summarized in Figure 7.

Among these variables, the most interesting one is min-tag which is used to
keep track of the lowest possible tag that could ever be determined by a client at
the end of the read phase. At the beginning and before any replica has responded,
min-tag is the smallest tag among the maximum tags carried by replicas in every
read quorum. As the client is progressing through the read phase it might get a
response from a replica whose tag is bigger than the current value of min-tag .

162 G. Chockler et al.

– pending = {x ∈ O : statusx ≥ p}
– ordered = {x ∈ O : statusx ≥ s}
– completed = {x ∈ O : statusx ≥ c}
– responded = {x ∈ O : statusx ≥ r}
– For r ∈ Or : last-writes(r) = {w ∈ Ow ∩ ordered : s.tagw = s.tagr}
– For x ∈ O, p ∈ P :

new-tag(x, p) =

{
t, if ∃v ∈ V : 〈v, t〉 ∈ resp-bufferp,x ∪ channelp,x
(sn, x.id), if 〈sn〉 ∈ resp-bufferp,x ∪ channelp,x
tagp, otherwise

– For x ∈ O:

min-tag(x) =

{
max[tagx, minQ∈Qr

max{new-tag(x, p) : p ∈ Q \ read-respx}],
if ∀Q ∈ Qr , read-resp
⊇ Q

tagx, otherwise

Fig. 7. Derived variables for the ABD automaton

In this case, the definition of min-tag ensures that min-tag is assigned to that
higher value. Finally, upon completion of the read phase, the value of min-tag
is fixed to be the maximum tag received during the phase. The simulation proof
relies on the following key property of min-tag :

Lemma 4. For each x ∈ O, min-tag(x) is non-decreasing.

The simulation mapping from the states of ABD to the states of the PO-
Machine appears in Figure 8. The first four components of the mapping are
straightforward: All the operations that have ever been requested (indicated by
status > idle) are mapped to vertices; the operations that have completed the
read phase and acquired final tags (indicated by status > p) are mapped to
ordered; and the operations that have responded (indicated by status > c) are
mapped to responded.

The set of edges consists only of edges among operations that have completed
their read phases (8.7). The edges among these operations are determined by
their tag order and type. Specifically, any two writes x and y, such that tagx <
tagy, are connected by edge (x, y) (8.8); and each read x and write y such
that tagx = tagy, are connected through edge (y, x) (8.9). To maintain the
mapping for edges, each rq-collected(x) for x ∈ Ow is simulated by a sequence of
add-edge(y, x) for each ordered write operation y such that tagy ≤ tagx, followed
by order(x); and each rq-collected(x) for x ∈ Ow is simulated by a sequence of
add-edge(y, x) for each ordered operation y such that tagy = tagx. No actions
involving unordered operations (i.e., the operations with status < s) result in
adding new edges.

The most interesting part of the proof is to show that order(x) becomes
enabled once all the (y, x) edges have been added. For that we need to show
that the tag acquired by x at the end of the read phase is at least as big as
the tag of every operation that had completed before x began. Since at the
end of the read phase, tagx = min-tag(x), the necessary enabling condition is
provided by part 8.6 of the mapping that requires that for each y ∈ prec(x),
tagy ≤ min-tag(x).

Proving Atomicity: An Assertional Approach 163

f is the relation over states(P O − Machine) × states(ABD) such that each (s, u) ∈ f iff:

1. u.requested = s.requested
2. u.vertices = s.pending
3. u.ordered = s.ordered
4. u.completed = s.completed ∪

⋃
r∈Or∩s.completed

s.last-writes(r)

5. u.responded = s.responded
6. For all x ∈ u.vertices, if y ∈ u.prec(x), then s.tagy ≤ s.min-tag(x)
7. u.dag ⊆ s.ordered × s.ordered
8. For all x, y ∈ Ow ∩ u.ordered, if (x, y) ∈ u.dag, then s.tagx < s.tagy
9. For all x ∈ Ow ∩ u.ordered and y ∈ Or ∩ u.ordered, (x, y) ∈ u.edges iff s.tagx = s.tagy

Fig. 8. Forward simulation from ABD to PO-Machine

To show that 8.6 is maintained throughout the read phase of x, request(x)
is simulated by the request(x) action of the PO-Machine; and each receive is
simulated by the empty sequence. Since at the time x is invoked, the tag of every
y ∈ prec(x) has been stored at a write quorum of replicas, and because every pair
of write and read quorums intersects, minQ∈Qr maxp∈Q{tagp} ≥ tagy. Hence, 8.6
is preserved by request(x). Finally, since min-tag(x) is non-decreasing (Lemma 4)
and prec(x) is not affected by any action except request, 8.6 is preserved by
receive. Hence, by the end of the read phase of x, for each y ∈ prec(x), tagy ≤
min-tag(x) as required.

We argued informally that the mapping in Figure 8 is a forward simulation
from ABD to the PO-Machine. A detailed proof appears in [6].

Lemma 5. The mapping in Figure 8 is a forward simulation from ABD to the
PO-Machine.

Since by Theorem 1, each trace of the PO-Machine satisfies atomicity, the
same is true for every trace of ABD:

Theorem 2. Each trace of ABD satisfies atomicity.

Automated Tools Support: We have used the TIOA to PVS translator and TAME
library [2] to generate descriptions of the PO-Machine and the ABD algorithm
in the language of the Prototype Verification System (PVS) [26]. We used PVS
to substantially increase the level of detail and assurance of some of our previous
hand proofs. In fact, we discovered several gaps and bugs in our hand proofs.
Automatic translation enabled us to easily tweak the simulation relations and
rerun the proof scripts. We also used the IOA code generator tool [31,30] to
compile the verified ABD automaton into an executable Java code. This way,
a single formal representation of the ABD algorithm was used for specification,
verification, and execution.

6 Timed ABD

In this section, we present an optimized version of the ABD protocol, called
Timed-ABD, that takes advantage of perfectly synchronized clocks at the writers
to eliminate the read phase of the write implementation (see [8]).

164 G. Chockler et al.

The Timed-ABD is the composition of the following timed automata: the
replica and reader client automata in Figures 6 and 4 respectively augmented
with arbitrary trajectories that keep their state unchanged; and the writer client
automata whose code appears in Figure 9. To model synchronized clocks, each
writer maintains a local variable clock whose trajectory is d(clock) = 1 (i.e., the
clock value grows continuously, at the same rate as the real time).

The writer algorithm is as follows: To write a value, the writer first takes its
current clock reading, and then delays its execution until its clock exceeds the
initial reading. The second clock reading is used as the tag with which the client
performs the write phase.

Signature:

Input:
request(x)i
receive(m)p,x, p ∈ P , m ∈ {ack} ∪ N≥0

Internal:
orderx
wq-collected(q)x , q ∈ Qw

Output:
response(x, v), v ∈ {ack}
send(m)x,p, m ∈ {w} ∪ (T ag × V)

State:
clock ∈ R, initially 0
Discrete req-time ∈ R, initially 0
status ∈ Phase, initially idle

tag ∈ T ag, initially (0, x.id)
write-resp ⊆ P , initilly empty
for each p ∈ P : req-bufferp ∈ seqof({w} ∪ (T ag × V)),
initially λ

Transitions:

Input request(x)
Effect:

status := p
req-time := clock

Internal orderx
Precondition:

clock > req-time
status = p

Effect:
tag.sn := clock
status := s
for each p ∈ P :

append 〈tag, x.val〉 to req-bufferp

Trajectories:

evolve

d(clock) = 1

All the other state variables are kept unchanged

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, ack)
Precondition:

status = c
Effect:

status := r

Output send(m)x,p
Precondition:

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 9. Writer client Cx, x ∈ Ow for Timed-ABD

The simulation mapping from the states of Timed-ABD to the states of
Timed-PO (i.e., the PO-Machine augmented with arbitrary trajectories that do
not change its state) appears in Figure 10. To see that the mapping is preserved,
we observe that a write operation becomes ordered once it is verified that a
non-zero amount of time has elapsed since it was requested. We therefore, simu-
late each Timed-ABD trajectory corresponding to a non-zero time interval by a
trajectory of Timed-PO of the same length, followed by a sequence of add-edge
actions, followed by order. The rest of the simulation proof is straightforward
(see [6] for details).

Proving Atomicity: An Assertional Approach 165

f is the relation over states(Timed-ABD) × states(Timed-PO) such that (s, u) ∈ f iff:

1-5: Identical to 1-5 in Figure 8
6: For all x ∈ u.vertices ∩ Or , if y ∈ u.prec(x), then s.tagy ≤ s.min-tag(x)

7-8: Identical to 7-8 in Figure 8
9: For all x ∈ u.vertices ∩ Ow , if y ∈ u.prec(x), then s.tagy.sn ≤ s.req-timex

10: For all x ∈ (u.vertices − u.ordered) ∩ Ow , y ∈ u.ordered ∩ Ow , if s.tagy.sn < s.clockx, then (y, x) ∈
u.edges.

Fig. 10. Forward simulation from Timed-ABD to Timed-PO

7 Other Algorithms

We discuss briefly how to prove atomicity of the unbounded multi-writer/multi-
reader register construction of Vitanyi and Awerbuch [36] (referred to henceforth
as VA), and of a general atomic object implementation based on the replicated
state machine algorithm of Lamport [15] (referred to henceforth as RSM).

First, we observe that VA can be recast as a special case of ABD with the
write quorums being the rows and the read quorums being the collumns of the
matrix. Therefore, the simulation proof of VA is almost identical to that of ABD.
In particular, it is easy to see that the simulation from ABD to PO-Machine in
Figure 8 is also a forward simulation from VA to PO-Machine.

To prove atomicity of RSM, we use a simplified version of the PO-Machine,
called TO-Machine. The TO-Machine constructs a single total order of all the
requested operations. In particular, every operation becomes ordered only after
it is ordered relative to all the other ordered operations. The TO-Machine is
parameterized by the emulated object sequential specification and initial state
which are used to compute responses. The simulation proof is based on the ob-
servation that in RSM, an operation x becomes ordered once the local timestamp
at each replica becomes greater than that of x. The full proof appears in [6].

8 Conclusions and Future Work

Our work with four algorithms so far suggests to us that our PO-Machine (or
small variants) may be general enough to capture many of the existing atomic
register algorithms. We plan to use these methods to study a wider variety of al-
gorithms, such as bounded-timestamp-based constructions (see e.g., [34]), whose
proofs have been notoriously difficult and bug-prone. An interesting challenge
will be to extend our framework to capture implementations that are not ex-
plicitly based on timestamps, for example, the construction that creates atomic
bits from safe bits [32]. Another interesting direction deals with adapting the
PO-Machine to capture weaker register semantics, such as safe registers, reg-
ular registers (including the multi-writer regular registers of Welch [29]), and
sequentially consistent registers. There is an increased recent interest in these
semantics as they capture the guarantees provided by many Byzantine-resilient
storage systems [24,25,1] based on Byzantine quorums [24].

Yet another interesting application domain for our techniques is the verifi-
cation of multi-threaded programs based on lock-free synchronization primitives

166 G. Chockler et al.

(such as CAS, LL/SC, etc.). This area has recently been receiving an increased
attention due to the growing popularity of multi-processor computing platforms,
and the introduction of lock-free synchronization primitives into the Java con-
currency package.

Finally, we are interested in identifying common patterns behind many di-
verse implementations of atomic objects. This will make it easier to understand
and compare different algorithms. We expect that such patterns should be ex-
pressible in terms of common specification automata (e.g., a unified version of
the PO- and TO-Machines).

References

1. Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk
paxos: Optimal resilience with byzantine shared memory. In Proceedings of the
23st ACM Symposium on Principles of Distributed Computing (PODC’04), pages
226–235, St John’s Newfoundland, Canada, July 2004.

2. Myla Archer. TAME: PVS Strategies for special purpose theorem proving. Annals
of Mathematics and Artificial Intelligence, 29(1/4), February 2001.

3. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM, 42(1):124–142, January 1995.

4. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. McGraw-Hill Publishing Company, UK, 1998.

5. Andrej Bogdanov. Formal verification of simulations between i/o automata. Mas-
ter’s thesis, Massachusetts Institute of Technology, July 2001.

6. G. Chockler, N. Lynch, S. Mitra, and J. Tauber. Proving atomicity: An assertional
approach. Technical Report MIT/LCS/TR-XXX, MIT Laboratory for Computer
Science, 2005.

7. Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal veri-
fication of a practical lock-free queue algorithm. In FORTE, pages 97–114, 2004.

8. Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Alex A. Shvartsman, and Jennifer L.
Welch. GeoQuorums: Implementing atomic memory in ad hoc networks.

9. Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman.
Eventually-serializable data services. In Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 300–309, Philadelphia,
PA, May 1996.

10. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463–492, July 1990.

11. D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O
automata. Technical Report MIT/LCS/TR-917a, MIT Laboratory for Computer
Science, 2004. Available at http://theory.lcs.mit.edu/tds/reflist.html.

12. Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed
I/O automata: A mathematical framework for modeling and analyzing real-time
system. In RTSS 2003: The 24th IEEE International Real-Time Systems Sympo-
sium, Cancun,Mexico, December 2003.

13. Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing
high availability using lazy replication. ACM Transactions on Computer Science,
10(4):360–391, 1992.

Proving Atomicity: An Assertional Approach 167

14. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998. Earlier version in Research Report 49, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, September 1989.

15. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

16. Leslie Lamport. On interprocess communication: Part I and II. Dist. Comput.,
1:77–101, 1986.

17. Leslie Lamport. On interprocess communication, Part II: Algorithms. Distributed
Computing, 1(2):86–101, April 1986.

18. Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column), 32(4):18–25, December 2001.

19. Butler Lampson. The ABCD’s of paxos. In Proceedings of the Twentieth Annual
ACM symposium on Principles of Distributed Computing, Newport, RI, August
2001.

20. N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

21. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, March 1996.

22. Nancy Lynch and Alex Shvartsman. Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In Twenty-Seventh Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS’97), pages 272–281, Seat-
tle, Washington, USA, June 1997. IEEE.

23. Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory
service for dynamic networks. In D. Malkhi, editor, Distributed Computing (Pro-
ceedings of the 16th International Symposium on DIStributed Computing (DISC),
Toulouse, France, October 2002), volume 2508 of Lecture Notes in Computer Sci-
ence, pages 173–190. Springer-Verlag, 2002. Also, Technical Report MIT-LCS-TR-
856.

24. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Journal of Dis-
tributed Computing, 11(4):203–213, 1998.

25. J. P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In 16th
International Symposium on Distributed Computing (DISC’02), Toulouse, France,
Lecture Notes in Computer Science, pages 311–325. Springer-Verlag, 2002.

26. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, number 1102 in Lecture
Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

27. Gary L. Peterson and James E. Burns. Concurrent reading while writing II: The
multi-writer case. In 28th Annual Symposium on Foundations of Computer Science,
pages 383–392, Los Angeles, California, October 1987. IEEE.

28. A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems.
ACM Comput. Surv., 25(3):225–262, 1993.

29. Cheng Shao, Evelyn Pierce, and Jennifer L. Welch. Multi-writer consistency con-
ditions for shared memory objects. In Proceedings of the 17th International Con-
ference on Distributed Computing (DISC), pages 106–120, October 2003.

30. Joshua A. Tauber. Verifiable Compilation of I/O Automata without Global Syn-
chronization. PhD thesis, Massachusetts Institute of Technology, Cambridge,MA,
September 2004.

168 G. Chockler et al.

31. Joshua A. Tauber, Nancy A. Lynch, and Michael J. Tsai. Compiling IOA without
global synchronization. In Proceedings of the The 3rd IEEE International Sym-
posium on Network Computing and Applications, (IEEE NCA04), pages 121–130,
September 2004.

32. John Tromp. How to construct an atomic variable. In LNCS 392, Proc. 3rd In-
ternational Workshop On Distributed Algorithms, pages 292–302. Springer-Verlag,
1989.

33. K. Vidyasankar. Concurrent reading while writing revisited. Distributed Comput-
ing, 4:81–85, 1990.

34. Paul Vitanyi. Simple wait-free multireader registers. In Proceedings of the 16th
International Symposium on Distributed Computing (DISC’02), volume 2508 of
Lecture Notes in Computer Science, pages 118–132. Springer-Verlag, Berlin, 2002.

35. Paul M. B. Vitányi. Distributed elections in an Archimedean ring of processors.
In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
pages 542–547, Washington, D.C., April/May 1984.

36. P.M.B. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous
hardware. In 27th IEEE Annual Symposium on Foundations of Computer Science,
pages 233–243, 1986.

37. Liqiang Wang and Scott D. Stoller. Static analysis for programs with non-blocking
synchronization. In Proc. ACM SIGPLAN 2005 Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM Press, June 2005.

Time and Space Lower Bounds

for Implementations Using k-CAS

(Extended Abstract)

Hagit Attiya1 and Danny Hendler2

1 Department of Computer Science, Technion
2 Department of Computer Science, University of Toronto

Abstract. This paper presents lower bounds on the time- and space-
complexity of implementations that use the k compare-and-swap (k-
CAS) synchronization primitives. We prove that the use of k-CAS prim-
itives cannot improve neither the time- nor the space-complexity of im-
plementations of widely-used concurrent objects, such as counter, stack,
queue, and collect. Surprisingly, the use of k-CAS may even increase the
space complexity required by such implementations.

We prove that the worst-case average number of steps performed by
processes for any n-process implementation of a counter, stack or queue
object is Ω(logk+1 n), even if the implementation can use j-CAS for
j ≤ k. This bound holds even if a k-CAS operation is allowed to read the
k values of the objects it accesses and return these values to the calling
process. This bound is tight.

We also consider more realistic non-reading k-CAS primitives. An
operation of a non-reading k-CAS primitive is only allowed to return
a success/failure indication. For implementations of the collect object
that use such primitives, we prove that the worst-case average number
of steps performed by processes is Ω(log2 n), regardless of the value of
k. This implies a round complexity lower bound of Ω(log2 n) for such
implementations. As there is an O(log2 n) round complexity implemen-
tation of collect that uses only reads and writes, these results establish
that non-reading k-CAS is no stronger than read and write for collect
implementation round complexity.

We also prove that k-CAS does not improve the space complexity of
implementing many objects (including counter, stack, queue, and single-
writer snapshot). An implementation has to use at least n base objects
even if k-CAS is allowed, and if all operations (other than read) swap
exactly k base objects, then the space complexity must be at least k · n.

1 Introduction

Lock-free implementations of concurrent objects require processes to coordinate
without relying on mutual exclusion, thus avoiding the inherent problems of lock-
ing, e.g., deadlock, convoying, and priority-inversion. Synchronization primitives
are often evaluated according to their power to implement other objects in a

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 169–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 H. Attiya and D. Hendler

lock-free manner. A conditional synchronization primitive may modify the value
of the object to which it is applied only if the object has a specific value. The
compare-and-swap synchronization primitive (abbreviated CAS) is an example
of a conditional primitive: CAS(O, old, new) changes the value of an object O to
new only if its value just before CAS is applied is old ; otherwise, CAS does not
change the value of O.

CAS can be used, together with read and write, to implement any object
in a deterministic wait-free manner [20]. It has consequently became a synchro-
nization primitive of choice, and hardware support for it is provided in many
multiprocessor architectures [22,27,29].

In recent years, the question of supporting multi-object conditionals in hard-
ware has been deliberated in both industrial and academic circles [12,16,17,19].
The design of concurrent data structures seems to be easier if conditional prim-
itives can be applied to multiple objects [17]. On the other hand, almost all of
the current architectures support conditional primitives only on a single object.

To help resolve this debate, it is natural to ask whether multi-object con-
ditionals admit more efficient implementations. Of concrete interest are k-CAS
synchronization primitives that atomically check and possibly modify several ob-
jects; when k = 2, this is the familiar double compare&swap (DCAS) primitive.

In this paper, we prove lower bounds on the time- and space-complexity of
implementations of widely-used objects that use multi-object conditional primi-
tives such as k-CAS. We show that the use of such primitives does not improve
neither the time- nor the space-complexity of implementing these objects.

We start by proving that the worst-case average number of steps performed
by processes in solo-terminating implementations of counters, stacks and queues
is Ω(logk+1 n), assuming the implementation uses only j-word conditionals for
j ≤ k, read and write. This extends a worst-case lower bound of Ω(log2 n) on the
number of steps needed for implementing these objects using unary condition-
als [23]. Both lower bounds hold even when implementations can use reading
conditional primitives, which read and return the values of all the objects they
access. As an example, a reading DCAS operation returns the values of the two
objects it accesses just before it is applied. Solo termination [13,25] requires a
process running alone to complete its operation within a finite number of its
steps. (This property is provided by obstruction-free implementations [21].)

At this point, it is natural to question the validity of charging only a single
unit for a reading k-CAS operation, that compares, possibly swaps, and returns
k values. For the purpose of proving lower bounds, it is easier to state what
cannot be done in one step, rather than to stipulate the correct price tag for a
reading k-CAS operation. It is clearly overly optimistic to assume that k values
can be read in one step, and thus, we investigate non-reading k-CAS primitives
that only return a boolean success indication.

For the weaker wake-up problem [15], even a non-reading k-CAS primitive
is more powerful than 1-CAS. The algorithm of Afek et al. [1] can be adapted
to yield an O(logk+1 n) worst-case step implementation, whereas [23] proves a

Time and Space Lower Bounds for Implementations Using k-CAS 171

worst-case lower bound of Ω(log2 n) steps on implementations of wake-up that
can use unary conditional primitives.

Interestingly, there exist widely-used objects such as collect, for which non-
reading k-CAS is no stronger than read and write. We prove that the worst-
case average time complexity of solo-terminating implementations of collect is
Ω(log2 n), even if k-CAS primitives can be used, for any k. The proof hinges on
the fact that a non-reading k-CAS operation only tells us whether the values
of the k objects to which it is applied equal a particular vector of values or
not. Thus, such an operation provides only a single bit of information about the
objects it accesses. This intuition is captured, in a precise sense, by adapting a
technique of Beame [10], originally applied in the synchronous CRCW PRAM
model. This implies that the round complexity [11] of such implementations is
Ω(log2 n), matching an O(log2 n) round complexity implementation of collect
using read and write, given by Attiya, Lynch, and Shavit [8].

Finally, we turn to study the space complexity of implementations that use
multi-object conditional primitives. We extend a result of Fich, Hendler and
Shavit [14], who show a linear space lower bound on implementations that use
read, write, and unary conditional primitives. They prove this bound for wait-
free implementations of many widely-used concurrent objects, such as stack,
queue, counter, and single-writer snapshot. We show that an implementation
cannot escape this lower bound by using multi-object conditional primitives.
Moreover, if all operations (other than read) swap exactly k locations, then the
space complexity is at least k · n.

Our results indicate that supporting multi-object conditional primitives in
hardware may not yield performance gains: under reasonable cost metrics, they
do not improve the efficiency of implementing many widely-used object.

Several shared object implementations use k-CAS, most often DCAS, to sim-
plify design (e.g. [5,18]). Doherty et al. [12] argue that in certain cases, e.g., for
implementing double-ended queues, even DCAS does not suffice and that simple
and easy-to-prove implementations should rely on 3-CAS. There is a variety of
algorithms for simulating multi-object k-CAS (and other objects) from single-
object CAS, load-linked and store-conditional (e.g. [3,6,7,9,28]). A few papers
investigate the consensus number of multi-object operations [2,24]. Attiya and
Dagan [7] prove that any implementation of two-object conditional primitives
from unary conditional primitives requires Ω(log log∗ n) steps. The k-compare-
single-swap synchronization primitive of [26] is a weaker variant of non-reading
k-CAS, and our lower bounds hold for it.

2 The Shared Memory System Model

We consider a standard model of an asynchronous shared memory system, in
which processes communicate by applying operations to shared objects. An ob-
ject is an instance of an abstract data type. It is characterized by a domain of
possible values and by a set of operations that provide the only means to manipu-
late it. No bound is assumed on the size of an object (i.e., the number of different

172 H. Attiya and D. Hendler

possible values the object can have). An implementation of an object shared by
a set P= {p1, · · · , pn} of n processes provides a specific data-representation for
the object from a set B of shared base objects, each of which is assigned an initial
value, and algorithms for each process in P to apply each operation to the object
being implemented. To avoid confusion, we call operations on the base objects
primitives and reserve the term operations for the objects being implemented.

A wait-free implementation of a concurrent object guarantees that any pro-
cess can complete an operation in a finite number of its own steps. A solo-
terminating implementation guarantees only that if a process eventually runs
by itself while executing an operation then it completes that operation within
a finite number of its own steps. Each step consists of some local computation
and one shared memory event, which is a primitive applied to a vector of ob-
jects in B. We say that the event accesses these base objects and that it applies
the primitive to them. In this extended abstract we consider only deterministic
implementations, in which the next step taken by a process depends only on its
state and the response it receives from the event it applies.

An execution fragment is a (finite or infinite) sequence of events. We denote
the empty execution fragment by ε. An execution is an execution fragment that
starts from an initial configuration. This is a configuration in which all base
objects in B have their initial values and all processes are in their initial states.
If o ∈ B is a base object and E is a finite execution, then value(E, o) denotes
the value of o at the end of E. If no event in E changes the value of o, then
value(E, o) is the initial value of o. In other words, in the configuration resulting
from executing E, each base object o ∈ B has value value(E, o). For any finite
execution fragment E and any execution fragment E′, the execution fragment
EE′ denotes the concatenation of E and E′.

An operation instance, Φ = (O, Op, p, args), is an application by process p of
operation Op with arguments args to object O. In an execution, processes apply
their operation instances to the implemented object. To apply an operation
instance Φ, a process issues a sequence of one or more events that access the
base objects used by the implementation of O. If the last event of an operation
instance Φ has been issued in an execution E, we say that Φ completes in E.
The events of an operation instance issued by a process can be interleaved with
events issued by other processes.

If a process has not completed its operation instance, it has exactly one en-
abled event, which is the next event it will perform, as specified by the algorithm
it is using to apply its operation instance to the implemented object. We say
that a process p is active after E if p has not completed its operation instance
in E. If p is not active after E, we say that p is idle after E. We say that an
execution E is quiescent if every instance that starts in E completes in E.

Processes communicate with one another by issuing events that apply read-
modify-write (RMW) primitives to vectors of base objects. We assume that a
primitive is always applied to vectors of the same size. This size is called the
arity of the primitive. RMW primitives with arity 1 are called single-object
RMW primitives. RMW primitives with arity larger than 1 are called multi-object

Time and Space Lower Bounds for Implementations Using k-CAS 173

RMW primitives. For presentation simplicity we assume that all the base objects
to which a primitive is applied are over the same domain. A RMW primitive,
applied to a vector of k base objects over some domain D, is characterized by
a pair of functions, 〈g, h〉, where g is the primitive’s update function and h is
the primitive’s response function. The update function g : Dk × W → Dk,
for some input-values domain W , determines how the primitive updates the
values of the base objects to which it is applied. Let e be an event, issued by
process p after execution E, that applies the primitive 〈g, h〉 to a vector of base
objects 〈o1, . . . , ok〉. Then e atomically does the following: it updates the values of
objects o1, . . . , ok to the values of the components of the vector g(〈v1, . . . , vk〉, w),
respectively, where −→v = 〈v1, . . . , vk〉 is the vector of values of the base objects
after E, and w ∈ W is an input parameter to the primitive. We call −→v the
object-values vector of e after E. The RMW primitive returns a response value,
h(−→v , w), to process p. If W is empty, we say that the primitive takes no input.

A k-compare-and-swap (k-CAS), for some integer k ≥ 1, is an example of
a RMW primitive. It receives an input vector, 〈old1, . . . , oldk, new1, . . . , newk〉,
from D2k. Its update function, g(−→v , 〈old1, . . . , oldk, new1, . . . , newk〉), changes
the values of base objects o1, . . . , ok to values new1, . . . , newk, respectively, if
and only if vi = oldi for all i ∈ {1, . . . , k}. If this condition is met, we say that
the k-CAS event was successful, otherwise we say that the k-CAS event was
unsuccessful. The response function of a non-reading k-CAS primitive returns
true if the k-CAS event was successful or false otherwise. The response function
of a reading k-CAS primitive returns −→v .

Read is a single-object RMW primitive. It takes no input, its update function
is g(〈v〉) = 〈v〉 and its response function is h(〈v〉) = v. Write is another example
of a single-object RMW primitive. Its update function is g(〈v〉, w) = 〈w〉, and its
response function is h(〈v〉, w) = ack. A RMW primitive is nontrivial if it may
change the values of some of the base object to which it is applied, e.g., read;
it is trivial, otherwise. Fetch&add is another example of a single-object RMW
primitive. Its update function is g(〈v〉, w) = 〈v + w〉, for v, w integers, and its
response function simply returns the previous value of the base object to which
it is applied.

Next, we define the concept of conditional synchronization primitives.

Definition 1. A RMW primitive 〈g, h〉 is conditional if, for every possible input
w,

∣∣∣{−→v |g(−→v , w) �= −→v
}∣∣∣ ≤ 1. Let e be an event that applies the primitive 〈g, h〉

with input w. A vector cw such that g(cw, w) �= cw is called the change point of
e. Any vector v �= cw is called a fixed point of e.

In other words, a RMW primitive is a conditional primitive if, for every input
w, there is at most one vector cw such that g(cw, w) �= cw. k-CAS is a conditional
primitive for any integer k ≥ 1. The single change point of a k-CAS event with
input 〈old1, . . . , oldk, new1, . . . , newk〉 is the vector 〈old1, . . . , oldk〉. Read is also
a conditional primitive.

Next we define the notion of invisible events. This is a generalization of
the definition provided in [14] that can be applied to multi-object primitives.

174 H. Attiya and D. Hendler

Informally, an invisible event is an event by some process that cannot be observed
by other processes.

Definition 2. Let e be a RMW event applied by process p to a vector of objects
〈o1, . . . , ok〉 in an execution E, where E = E1eE2. We say that e is invisible in
E on oi, for i ∈ {1, . . . , k}, if either the value of oi is not changed by e or if
E2 = E′e′E′′, e′ is a write event to oi, E′ is p-free, and no event in E′ is applied
to oi. We say that e is invisible in E if e is invisible in E on all objects oi, for
i ∈ {1, . . . , k}.

All read events are invisible. A write event is invisible if the value of the
object to which it is applied equals the value it writes. A RMW event is invisible
if its object-values vector is a fixed point of the event when it is issued. A RMW
event (and specifically a write event) e that is applied by process p to an objects
vector is invisible if, before p applies another event, a write event is applied to
each object oi that is changed by e before another RMW event is applied to o.

If a RMW event e is not invisible in an execution E on some object o, we
say that e is visible in E on o. If e is not invisible in E, we say that e is a visible
event in E.

3 Step Lower Bounds for Counters and Related Objects

In this section we prove a lower bound on the average step complexity of solo-
terminating implementations of a counter that use only read, write and condi-
tional primitives. We then prove the same result for stacks and queues by using
a simple reduction to counters. For the lower bounds obtained in this paper,
we only consider executions in which every process performs at most a single
operation instance. This can only strengthen our lower bounds.

A counter is an object whose domain is N . It supports a single operation,
fetch&increment. A counter implementation A is correct if the following holds for
any non-empty quiescent execution E of A: the responses of the fetch&increment
instances that complete in E constitute a contiguous range of integers starting
from 0.

In order to prove the lower bound we argue about the extent to which pro-
cesses must be aware of the participation of other processes in any execution of
a counter implementation. Intuitively, a process p is aware of the participation
of another process q in an execution if information flow from q to p is possible
in that execution. The following definitions formalize this notion.

Definition 3. Let E be an execution and p, q be two distinct processes. Let eq

be an event in E, by process q, that applies a non-trivial primitive to a vector v
of base objects. We say that p is aware of eq in E through event f if v contains
a base object o such that at least one of the following holds:

– There is a prefix E′ of E such that eq is visible on o in E′ and there is a
RMW event f that applies a primitive other than write to o, issued by p,
that follows eq in E′,

Time and Space Lower Bounds for Implementations Using k-CAS 175

– there is a process r /∈ {p, q} that is aware of eq in E through an event g and
p is aware of g in E through f .

If p is aware of an event e in E through one or more (other) events, we say
that p is aware of e in E. If p is aware of an event e of q in E, then p is also
aware of all of q’s previous events in E.

If p is aware of any event by q in E, then p may be aware of q’s participation
in the execution. The key intuition behind our step lower bound proof is that
in any n-process execution of a counter implementation, ‘many’ processes need
to be aware of the participation of ‘many’ other processes in the execution. The
following definition provides a quantification of the extent to which a process is
aware of the participation of other processes in an execution.

Definition 4. Let E be an execution and let p and q be processes. We say that
p is aware of q after E if either p = q or if p is aware of some event of q in E.
We denote by F (E, p) the set of processes that p is aware of after E. We call
this set the awareness set of p after E. If p is aware of q after E and p �= q, we
denote the last event of q in E that p is aware of in E by lastAware(E,p,q).

Information about processes that participate in the execution flows through
base objects. The following definition provides a quantification to the number of
other processes a process can become aware of when it reads from a base object.

Definition 5. Let E be an execution, o be a base object and q be a process. We
say that o has record of q after E if there exists an event e in E such that all of the
following hold. (1) E = E1eE2, (2) e is an application of a non-trivial primitive
to an objects-vector that contains o by some process r such that q ∈ F (E1e, r),
and (3) e is visible in E on o. We define the familiarity set of o after E as the
set of all processes that o has record of after E, and denote it by F (E, o).

Definition 5 only provides an upper bound (not necessarily tight) on the
number of other processes that a process may become aware of when it accesses
a base object. This can only strengthen our lower bound. We also note that
requirement (2) of Definition 5 makes sure that a RMW event e that modifies
an object o extends o’s familiarity set with the familiarity sets of all other objects
accessed by e.

The following lemma proves an intuitively-clear relation between the value
returned by a fetch&increment operation instance of a process in some execution
and the size of that process’ awareness set after that execution.

Lemma 1. Let E be an execution of a counter implementation. If the
fetch&increment instance by p returns i in E then |F (E, p)| > i.

The following corollary is an immediate consequence of Lemma 1.

Corollary 1. Let E be a quiescent n-process execution of a solo-terminating
counter implementation, then the following holds:∑

p∈P F (E, p) ≥ (n + 1) · (n + 2)/2.

176 H. Attiya and D. Hendler

We need the following technical definition and lemma.

Definition 6. Let S = {e1, · · · , ek} be a set of events by different processes
that are enabled after some execution E, all about to apply write and/or condi-
tional RMW primitives. We say that an ordering of the events of S is a weakly-
visible-schedule of S after E, denoted by σ(E, S), if the following holds. Let
E1 = Eσ(E, S), then

1. at most a single event of S is visible on any one object in E1. If ej ∈ S is
visible on a base object in E1, then ej is issued by a process that is not aware
of any event of S in E1,

2. any process is aware of at most a single event of S in E1, and
3. All the read events of S are scheduled in σ(E, S) before any event of σ(E, S)

changes a base object.

Lemma 2. Let S = {e1, · · · , ek} be a set of events by different processes that
are enabled after some execution E, all about to apply write and/or conditional
RMW primitives. Then there is a weakly-visible-schedule of S after E.

Lemma 2 is proved by a careful ordering of the events of S that is done in
an iterative manner. Our step complexity lower bounds follow.

Theorem 1. Let A be an n-process solo-terminating implementation of a
counter from base objects that support only read, write and either reading or
non-reading conditional primitives with arity k or less. Then A has an execution
E that contains Ω(n logk+1 n) events, in which every process performs a single
fetch&increment instance.

Proof. We construct an n-process execution, E, of length Ω(n logk+1 n) in which
every process performs a single fetch&increment instance. The construction pro-
ceeds in rounds, indexed by the integers 1, 2, · · · , r for some r ∈ Ω(logk+1 n).
We prove that the construction maintains the following invariant: before round i
starts, the awareness set of any process and the familiarity set of any base object
has size at most (2k + 1)i−1.

Before execution starts, objects have no record of processes and processes are
only aware of themselves, thus the induction claim holds. If a process p has not
completed its fetch&increment instance before round i starts, we say that p is
active in round i. All processes are active in round 1. All the processes that are
active in round i have an enabled event in the beginning of round i. We denote
the set of these events by Si. We denote the execution that consists of all the
events issued in rounds 1, . . . , i by Ei.

From Lemma 2, there is a weakly-visible-schedule, σ(Ei−1, Si), of the events
of Si after Ei−1. Ei is constructed by extending Ei−1 with σ(Ei−1, Si).

Assume the induction hypothesis holds before round i starts. Let o be some
base object. From Definition 6, at most one event of Si is visible on o in Ei. If
there is no such event, then F (Ei, o) = F (Ei−1, o). Otherwise there is a single
such event, e, issued by some process p. Let o1, . . . , oj , for some j, 1 ≤ j ≤ k−1 be
the base objects accessed by e in addition to o, if any. From Definition 6, p is not

Time and Space Lower Bounds for Implementations Using k-CAS 177

aware of any event from Si in Ei. Thus F (Ei, o) ⊂ F (Ei−1, o)∪ F (Ei−1, p)∪j
l=1

F (Ei−1, ol) hence, from the induction hypothesis, |F (Ei, o)| ≤ (k+1)(2k+1)i−1.
Therefore the induction hypothesis for round i + 1 holds for all base objects.

Let us now consider the maximal size of the awareness set of any process right
after round i terminates. Clearly, F (Ei, p) = F (Ei−1, p) for any process p that
is not active in round i. From Definition 3, the same holds for all the processes
that issue a write event in round i. Let p be a process that issues a read event in
round i that accesses some base object o. As reads are scheduled before any event
changes a base object in round i, we have F (Ei, p) ⊂ F (Ei−1, p) ∪ F (Ei−1, o)
hence |F (Ei, p)| ≤ 2(2k + 1)i−1.

Consider a conditional RMW event e by process p that is issued in round i and
accesses base objects o1, . . . , oj for some j ≤ k. From Definition 6, if e is visible
in Ei, then p is aware of no event of Si in Ei. Hence F (Ei, p) ⊂ F (Ei−1, p)∪j

l=1

F (Ei−1, ol). Otherwise e is invisible in Ei and, again from Definition 6, p is aware
of at most a single event e′ from Si in Ei. Let q be the process that issues e′, then
q is not aware of any event of Si in Ei. Let o′1, . . . , o′j1 , for some 1 ≤ j1 ≤ k − 1,
be the base objects accessed by e′ in addition to o, if any.

Thus we have F (Ei, p) ⊂ F (Ei−1, p) ∪ F (Ei−1, q) ∪j
l=1 F (Ei−1, ol) ∪j1

l=1

F (Ei−1, o
′
l). Consequently, we have |F (Ei, p)| ≤ (2k + 1)i regardless of whether

e is visible in Ei or not. Thus the induction hypothesis holds for all processes
before round i + 1 starts.

From Corollary 1, there are at least n/3 processes the awareness set of each
of which contains at least n/4 other processes after E. Consequently each of
these processes is active in at least the first log2k+1(n/4− 1) rounds, hence each
of these processes performs at least log2k+1(n/4− 1) events in E.

The full version contains a similar result for stacks and queues.

Theorem 2. Let A be an n-process solo-terminating implementation of a stack
or a queue from base objects that support only read, write and either reading or
non-reading conditional primitives with arity k or less. Then A has an execution
E that contains Ω(n logk+1 n) events, in which every process performs a single
fetch&increment instance.

By using techniques from [23], Theorems 1 and 2 can be extended to hold
also if base objects support the validate, swap and move primitives.

4 Step and Round Lower Bounds for Collect

In this section we consider a variation on collect that we call the input collection
problem (ICP). The input to ICP is an n-bit vector that is given in an array of
n base objects, each of which stores one bit. An ICP object supports a single
operation called collect, which every process performs at most once. The response
of the collect operation is an n-bit number whose i’th bit equals the i’th input
bit. We prove step- and round complexity lower bounds on implementations of
ICP. It can easily be seen that these bounds hold also for the ordinary collect

178 H. Attiya and D. Hendler

object (defined in, e.g., [4]) by considering executions of collect in which every
process performs a store instance immediately followed by a collect instance.

Round complexity is defined as follows. Let E be an execution. A round of E
is a consecutive sequence of events in E, in which every process that is active just
before the sequence begins issues at least one event. A minimal round is a round
such that no proper prefix of it is a round. Every execution can be uniquely
partitioned into minimal rounds. The round complexity of E is the number of
rounds in this partition. Let A be an implementation. A’s round complexity is the
supremum over the round complexity of all its executions. Round complexity is
a meaningful measure of time for fail-free executions in which processes operate
at approximately the same speed.

Attiya et al. [8] present an O(log2 n) round complexity implementation of
ICP from read and write. They prove a matching lower bound for such imple-
mentations. In this section we prove an Ω(log2 n) round complexity lower bound
for ICP implementations that can use non-reading k-CAS primitives for any k, in
addition to read and write. Thus we show that non-reading k-CAS is no stronger
than read and write in terms of ICP implementation round complexity.

Beame [10] proves a lower bound of Ω(log2 n) for a problem similar to ICP
in the concurrent-read concurrent-write (CRCW) PRAM model. We use a vari-
ation on his technique to prove a similar lower bound for solo-terminating im-
plementations of ICP even when non-reading conditional primitives of any arity
may be used. Clearly a fan-in argument would not work in this case.

Fix an implementation A of ICP. For notational simplicity we assume in
this section that all base objects are indexed, where oj denotes the base object
indexed by j. The base objects of the input array are o1, . . . , on.

The proofs presented in this section consider only the subset of synchronous
executions of A, denoted E(A), in which the participating processes issue their
events in lock-step. Clearly E(A) is a proper subset of all the possible executions
of A; proving our lower bound for this subset can only strengthen it.

In detail, an execution E in E(A) proceeds in rounds. In the beginning of
each round, each of the participating processes whose instance of collect has not
yet been completed has an enabled event. All processes have an enabled event
in the beginning of round 1. In each round these enabled events are scheduled
in a specific order, which we will shorty describe. As we consider deterministic
implementations, this implies the following: the states of all processes and the
values of all base objects right after each round of E terminates depend solely
on the input vector. Thus, we denote the single execution of E that results when
the input vector is I by EI . An execution EI ∈ E(A) terminates after the collect
instances of all the processes complete.

Let EI be the execution of E(A) for some input vector I. We denote by EI,t

the prefix of EI that contains all the events issued in rounds 1, . . . , t of EI . We
denote by S(EI,t) the set of the events that are enabled just before round t of
EI starts. Then in round t we extend EI,t−1 with a weakly-visible-schedule of
S(EI,t) after EI,t−1 to obtain EI,t. Lemma 2 guarantees that this can be done.

Time and Space Lower Bounds for Implementations Using k-CAS 179

The following definition formalizes the notion of partitions, which is the key
concept of the technique of Beame [10] that we apply.

Definition 7. We let PV (i, t) (respectively CV (j, t)) denote the set of all pos-
sible states of process pi (respectively the possible values of object oj) right after
round t of an execution E ∈ E(A) terminates. The sets PV (i, t) and CV (j, t)
induce a partitioning of the input vectors to equivalence classes. The process
partition P (i, t) is the partition of the input vectors to equivalence classes that
is induced by the set PV (i, t). Two input vectors I1, I2 are in the same class of
P (i, t) if and only if there is a state s ∈ PV (i, t) so that pi is in state s after
round t of both executions EI1 and EI2 . We define an object partition, C(j, t),
similarly.

From Definition 7, we have |PV (i, t)|, |CV (j, t)| ≤ |E(A)| = 2n, |PV (i, t)| =
|P (i, t)| and |CV (j, t)| = |C(j, t)|, for any process pi, object oj and round t.

In the following we consider a full-information model, i.e., we assume that
the state of any process reflects the entire history of the events it issued (and
their corresponding responses) and that objects are large enough to store any
such state. This assumption can obviously only strengthen our lower bound.

Theorem 3. Let A be a solo-terminating implementation of ICP from base ob-
jects that support only read, write and non-reading conditional primitives of any
arity. Then there is an execution of E(A) in which some process issues Ω(log2 n)
events as it performs its instance of collect.

Proof. Assume there is a process pi whose instance of collect completes in round
m or an earlier round in every execution of E(A). We show that m ∈ Ω(log2 n).
The collect instance of pi returns different responses for different input vectors.
As the response of the collect instance performed by pi depends only on pi’s state
before the response is returned, we have: |P (i, m)| = 2n. Let rt = maxi |P (i, t)|
and ct = maxj |C(j, t)| respectively denote the maximum size of all process
and object partitions right after round t. Let r0 and c0 respectively denote the
maximum size of any process partition and object partition just before execution
starts. We prove that the sequences rt, ct satisfy the recurrences: (1) rt+1 ≤ rt ·ct,
and (2) ct+1 ≤ n · rt + ct with initial conditions: (3) r0 = 1, and (4) c0 ≤ 2.

Before any execution starts, we have ∀j ∈ {1, . . . , n} : |C(j, 1)| = 2, as the
single bit in every input base object partitions the set of input vectors to 2. We
also have ∀j > n : |C(j, 1)| = 1, as other base objects have the same initial value
regardless of the input. Additionally we have ∀i : |P (i, 1)| = 1, as the initial
state of a process does not depend on the input vector. Thus initial conditions
(3) and (4) hold.

Assume the claim holds for rounds 1, · · · , t and consider round t + 1. Let
us consider |P (i, t + 1)|, the partition size of process pi right after round t + 1
terminates. pi’s partition size can grow in round t+1 only because of executions
in which pi applies a read or a non-reading conditional primitive in round t + 1.
The primitive applied by pi in round t + 1 and the base objects to which it is
applied are only a function of pi’s state before round t + 1 begins. Thus the

180 H. Attiya and D. Hendler

number of different events applied by pi in round t + 1 of all the executions of
E(A) is at most P (i, t) ≤ rt.

We consider the following two possibilities. If pi applies a non-reading con-
ditional primitive in round t + 1 of an execution, then it receives a single bit
response. In this case every state of pi before round t + 1 starts can change
to one of at most two states. If pi applies a read to some object oj in round
t + 1 of an execution, then, from Definition 6, the read is applied before oj is
changed in round t + 1. Thus, from induction hypothesis, the event can read
at most |CV (i, t)| ≤ ct different values. Hence pi’s state in each such execu-
tion can change to one of at most ct different states. In either case we get:
|P (i, t + 1)| ≤ rt · ct, which proves recurrence (1).

Let oj be some base object. We now consider the set of values, CV (j, t + 1),
that object oj may assume right after round t+1 terminates in all the executions
of E(A). There may be executions in which no process writes to oj during round
t + 1, thus we may have:

CV (j, t) ⊆ CV (j, t + 1). (1)

Let n(j, t + 1) denote the number of distinct values that oj may assume right
after round t+1 in all of the executions in which its value is modified during
that round. Let EI be such an execution. From Definition 6, at most a single
event of S(EI,t+1) may be visible on oj after EI,t+1. If there is such an event,
then it is issued by a process that is not aware of any event of S(EI,t+1). Thus
the number of distinct values written to oj by any process pi in round t + 1 of
all executions is at most |P (i, t)| ≤ rt. As any process may write to oj in round
t + 1 we get:

n(j, t + 1) ≤
n∑

k=1

|P (k, t)| ≤ n · rt. (2)

Combining Equations 1 and 2 proves recurrence (2). As shown in [10], solving
the recurrences for the sequences ri, cj yields m ≥ log2 n + 1− log(1 + log2 2n).
Thus, there is an execution in which some process performs Ω(log2 n) events.

The following lower bound on the average step complexity of ICP also follows
from the proof of Theorem 3.

Theorem 4. Let A be a solo-terminating implementation of ICP from base ob-
jects that support only read, write and non-reading conditional primitives of any
arity. Then A has an execution that contains Ω(n log2 n) events.

5 Space Complexity

Fich et al. [14] consider wait-free implementations of a class of visible objects.
Intuitively, a visible object supports some operation Op such that any instance
of Op must issue a visible event before it completes. This class contains widely-
used objects such as counter, stack, queue, and single-writer snapshot. They

Time and Space Lower Bounds for Implementations Using k-CAS 181

show that any wait-free implementation of a visible object from base objects
that support only unary conditional primitives, read and write must use Ω(n)
such objects. In this section we generalize this result and show that it holds also
for implementations that may use conditional primitives of any arity. The results
of this section apply to both reading and non-reading conditional primitives.

Let A be a wait-free implementation of a visible object. Lemma 3.2 in [14]
proves that A can be brought to a state where all processes have pending indexed
events whose visibility depends on their index: an event with index i cannot be
made invisible by events with indices larger than i. Such a state is called an
n-levelled state. This is being formalized by the following definition.

Definition 8. The state resulting from a finite execution E is n-levelled if there
is a sequence e1, e2, . . . , en of events by different processes, all about to apply non-
trivial primitives, such that, for every nonempty execution fragment E′ consisting
of some subset of these events (in any order), ej is visible in EE′, where j =
min{i|ei ∈ E′}. We call e1, e2, . . . , en an n-levelled sequence and say that event
ej is at level j.

An object that only supports read and write primitives is called a register.
An object that can only be accessed by conditional primitives (of any arity) is
called a multi-conditional object. An object that only supports read, write and
may be accessed by conditional primitives (of any arity) is called a read-write-
multi-conditional object.

Let e be a write or a conditional event. The change set of e, denoted C(e), is
the set of base objects whose values may be changed by e; its size is called the
change multiplicity of e and denoted c(e). If e is a write event, then C contains
the single object accessed by e. If e is a conditional event, then C(e) is the set of
objects whose values are changed by e if e is issued when its object-values vector
is a change-point of e.

In what follows we consider an implementation, A, that uses base objects
that only support read, write and conditional primitives of any arity. We let
SPACE(A) denote the number of base objects used by A. We prove that if
A can be brought to an n-levelled state, then SPACE(A) = Ω(n). In fact,
multi-object conditionals may worsen the implementation’s space complexity:
the lower bound on space complexity that we obtain is proportional to the sum
of the change multiplicities of the issued events.

Lemma 3. Assume that after execution E, A is in an n-levelled state. Let S =
{e1, . . . , en} be a corresponding n-levelled sequence. Let Sw and Sc respectively
denote the subset of write events of S and the subset of conditional events of S.

1. If A uses only registers and multi-conditional objects, then
SPACE(A) ≥

∑n
i=1 c(ei).

2. If A uses only read-write-multi-conditional objects, then
SPACE(A) ≥ max

(
(
∑n

i=1 c(ei))− |Sw|, �n/2�
)
.

Proof. Let ei, ej be two events of S, i < j. Assume first that both ei and ej

are conditional events. We now show that C(ei) ∩ C(ej) = φ. Assume otherwise

182 H. Attiya and D. Hendler

to obtain a contradiction, then there is some object o ∈ C(ei) ∩ C(ej). From
Definition 8, ei is visible in Eei and ej is visible in Eej . Thus the object-values
vector of ei (respectively ej) after E is a change-point of ei (respectively ej).
As i < j, again from Definition 8, ei is visible in Cejei. However, as o is in the
change set of ej , its value is changed by ej . Consequently the object-values vector
of ei after Eej is a fixed-point of ei. This is a contradiction to the assumption
that ei is visible in Eej . It is easily seen that C(ei) ∩ C(ej) = φ also when ei, ej

are both write events. This proves (1).
Assume that A uses only read-write-multi-conditional objects. As at most

one write event and one conditional event may change any one object, we have
SPACE(A) ≥ �n/2�. If C(ei)∩C(ej) �= φ then it must be that ei is a write event
and ej a conditional event, thus |C(ei) ∩ C(ej)| = 1. This proves (2).

The above lemma and Lemma 3.2 of [14] immediately imply the following:

Theorem 5. Let A be an n-process wait-free implementation of a visible object.

– If A uses only registers or multi-conditional objects, then SPACE(A) ≥ n.
– If A uses only multi-conditional objects and C(e) ≥ k for any conditional

event e issued in an execution of A, then SPACE(A) ≥ k · n.
– If A uses only read-write-multi-conditionals objects, then SPACE(P) ≥
�n/2�.

Acknowledgements. The authors thank Maged Michael who triggered this re-
search by asking whether the results of [14] hold with k-CAS primitives. We
would also like to thank Faith Ellen Fich for referring us to Paul Beame’s tech-
nique, and Nir Shavit for helpful discussions on the topics of this paper. Danny
Hendler was supported by Sun Microsystems.

References

1. Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In STOC, pages 538547,
1995.

2. Y. Afek, M. Merritt, and G. Taubenfeld. The power of multi-objects. Information
and Computation, 153(1):117138, 1999.

3. Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disentangling multi-object
operations. In PODC, pages 111120, 1997.

4. Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications.
In FOCS, page 262, 1999.

5. O. Agesen, D. Detlefs, C. H. Flood, A. T. Garthwaite, P. A. Martin, M. Moir,
N. Shavit, and G. L. S. Jr. Dcas-based concurrent deques. Theory Comput. Syst.,
35(3):349386, 2002.

6. J. H. Anderson and M. Moir. Universal constructions for multi-object operations.
In PODC 95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 184193, New York, NY, USA, 1995. ACM Press.

7. H. Attiya and E. Dagan. Improved implementations of binary universal operations.
Journal of the ACM, 48(5):10131037, 2001.

Time and Space Lower Bounds for Implementations Using k-CAS 183

8. H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? Journal of the
ACM, 41(4):725763, July 1994.

9. G. Barnes. A method for implementing lock-free shared data structures. In SPAA,
pages 261270, 1993.

10. P. Beame. Limits on the power of concurrent-write parallel machines. Information
and Computation, 76(1):1328, 1988.

11. R. Cole and O. Zajicek. The apram: incorporating asynchrony into the pram model.
In SPAA, pages 169178, 1989.

12. S. Doherty, D. Detlefs, L. Groves, C. H. Flood, V. Luchangco, P. A. Martin, M.
Moir, N. Shavit, and G. L. S. Jr. DCAS is not a silver bullet for nonblocking
algorithm design. In SPAA, pages 216224, 2004.

13. F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized syn-
chronization. Journal of the ACM, 45(5):843862, Sept. 1998.

14. F. E. Fich, D. Hendler, and N. Shavit. On the inherent weakness of conditional
synchronization primitives. In PODC, pages 8087, 2004.

15. M. J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld. The wakeup problem.
SIAM Journal on Computing, 25(6):13321357, Dec. 1996.

16. K. Fraser. Practical Lock-Freedom. PhD thesis, Kings College University of Cam-
bridge, Sept. 2003.

17. M. Greenwald. Non-Blocking Synchronization and System Design. PhD thesis,
Stanford University Technical Report STAN-CS-TR-99-1624, Palo Alto, CA, Aug.
1999.

18. M. B. Greenwald and D. R. Cheriton. The synergy between non-blocking synchro-
nization and operating system structure. In OSDI, pages 123136, 1996.

19. P. H. Ha and P. Tsigas. Reactive multi-word synchronization. In 12th International
Conference on Parallel Architectures and Compilation Techniques, pages 184193,
2003.

20. M. Herlihy. Wait-free synchronization. ACM Transactions On Programming Lan-
guages and Systems, 13(1):123149, Jan. 1991.

21. M. Herlihy, V. Luchango, and M. Moir. Obstruction-free synchronization: Dou-
bleended queues as an example. In ICDCS, pages 522529, 2003.

22. Intel Corporation. Intel itanium processor-specific application binary interface,
2001.

23. P. Jayanti. A time complexity lower bound for randomized implementations of
some shared objects. In PODC, pages 201210, 1998.

24. P. Jayanti and S. Khanna. On the power of multi-objects. In WDAG, pages 320332,
1997.

25. P. Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for non-blocking
implementations. Siam J. Comput., 30(2):438456, 2000.

26. V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In
SPAA, pages 314323, 2003.

27. Motorola. MC68020 32-Bit Microprocessor Users Manual. Prentice-Hall, 2nd edi-
tion, 1986.

28. N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99116, February 1997.

29. SPARC International, Inc., Mountain View, CA. The SPARC Architecture Manual
Version 9, 1/e. Prentice Hall, 1994.

(Almost) All Objects Are Universal

in Message Passing Systems

(Extended Abstract)

Carole Delporte-Gallet1, Hugues Fauconnier2, and Rachid Guerraoui3

1 ESIEE-IGM Marne-La-Vallee, France
2 LIAFA Univ Paris VII, France
3 EPFL Lausanne, Switzerland

Abstract. This paper shows that all shared atomic object types that
can solve consensus among k > 1 processes have the same weakest failure
detector in a message passing system with process crash failures. In such
a system, object types such as test-and-set, fetch-and-add, and queue,
known to have weak synchronization power in a shared memory system
are thus, in a precise sense, equivalent to universal types like compare-
and-swap, known to have the strongest synchronization power. In the
particular case of a message passing system of two processes, we show
that, interestingly, even a register is in that sense universal.

1 Introduction

1.1 Atomic Objects

A shared atomic object is a data structure exporting a set of operations that can
be invoked concurrently by the processes of the system. Atomicity means that
any object operation appears to execute at some individual instant between its
invocation and reply time events [14,11]. Thanks to atomicity, the type of an
object can solely be defined according to its sequential specification: the set of
all possible sequential executions of the object operations [11].

Many distributed algorithms are designed assuming, as underlying synchro-
nization primitives, atomic objects, sometimes provided as hardware devices of
a multiprocessor, and sometimes emulated in software. These include objects of
types register, test-and-set, fetch-and-add, queue, and compare-and-swap.

Some of these atomic object types have been shown to have more synchro-
nization power than others in the sense that they can solve the seminal consensus
problem [9] among more processes [12]. What is meant here by a type solving
consensus is that instances of that type can be used in a deterministic algorithm
that solves the consensus problem; we consider here the uniform variant of con-
sensus where no two processes can decide differently: the problem can be casted
as an atomic object type also called consensus.

The ability for a type to solve consensus among a certain number k of pro-
cesses is important as it implies the ability to emulate any other type in a system
of k processes, irrespective of how many of these processes may crash.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 184–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

(Almost) All Objects Are Universal in Message Passing Systems 185

The type register is in this sense weak as it can only solve consensus for exactly
one process [16]. Test-and-set, fetch-and-add, or queue can solve consensus among
exactly 2 processes. Interestingly, for any number k, there is a type that can solve
consensus among exactly k processes [12]. This leads to a hierarchy of types,
called the consensus hierarchy, classifying types according to their consensus
number (k). Types such as compare-and-swap can solve consensus among any
number of processes, and are said to be universal [12]: their consensus number
is ∞ and they are at the top of the hierarchy.

1.2 Atomic Object Implementations in Message Passing Systems

This paper studies necessary and sufficient conditions for implementing atomic
object types in a distributed system where processes communicate by exchanging
messages: no physical shared memory is assumed. The processes are assumed to
communicate through reliable channels but can fail by crashing. Through such
implementations, algorithms based on shared atomic objects can be automati-
cally ported into a message passing system prone to crash failures. We focus on
robust [2] implementations where any process that invokes an object operation
and does not crash eventually gets a reply.

Two fundamental results are known about such implementations in an asyn-
chronous message passing system (with no synchrony assumptions). The type reg-
ister can only be implemented if we assume that a majority of the processes do
not crash [2], and most of the types cannot be implemented, including test-and-set,
fetch-and-add, queue, and compare-and-swap, if at least one process may crash [9].

In most distributed systems however, certain synchrony assumptions can be
made, and these can even be precisely expressed through axiomatic properties of
a failure detector abstraction [5]: a distributed oracle that provides processes with
hints about crashes, and which can itself be implemented based on synchrony
assumptions, e.g., timeouts.

Two related results, of particular interest in this paper, have been recently
established. First, the weakest failure detector to implement the basic type reg-
ister in a message passing system (with any number of crashes) has been shown
to be an oracle, denoted by Σ, and which outputs, at any time and at every
process, a set of processes such that (1) any two sets always intersect and (2)
eventually every set contains only correct processes [6,8]. This result means that
(a) there is a distributed algorithm that implements the type register using Σ,
and (b) for every failure detector D such that some algorithm implements the
type register using D, there is an algorithm that implements Σ using D. Failure
detector D encapsulates information about failures that are at least as strong as
those encapsulated by Σ.

Second, the weakest failure detector to solve consensus (with any number of
crashes) has been shown to be an oracle, denoted by Σ ∗Ω, and which outputs,
at any time and at every process, both outputs of failure detector Σ and failure
detector Ω. Failure detector Ω outputs, at any time and at every process, a
single (leader) process, such that, eventually this process is the same at all pro-
cesses and is correct [4,6,8]. The fact that Σ ∗Ω was established as the weakest

186 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

failure detector to solve consensus directly implies that it is also the weakest to
implement compare-and-swap, and more generally, any other universal type.

1.3 Contributions

Naturally, this raises the following question. What about all other types like
queue, test-and-set, or fetch-and-add? More generally, what about all types that
can solve consensus among k > 1 processes but not k+1. This paper shows that
the weakest failure detectors to implement these types do all boil down to the
same one: Σ ∗Ω.

In other words, we show that the weakest failure detector to implement any
type that solves consensus among at least 2 processes is Σ ∗Ω.

Our result conveys the interesting fact that, in a message passing system
(unlike in a shared memory system), all these types are, in a precise sense,
equivalent and universal. Hence, if we exclude types that cannot solve consen-
sus among two processes such as register, the consensus hierarchy is thus flat in
a message passing system. From a practical perspective, and given that many
synchronization problems can be casted through atomic object types, our re-
sult suggests that, as far as failure detection is concerned, adopting an ad hoc
approach focusing on each problem individually is not more economic than a
generic approach where the failure detector Σ ∗ Ω would be implemented in a
message passing system as a common service underlying all problems, i.e., all
type implementations.

Stating and proving our result goes through defining a general model of
distributed computation encompassing different kinds of abstractions: atomic
objects, message passing and failure detectors. Such a model is interesting by
itself. To our knowledge, besides the model we introduce in this paper, the only
model that captured these different abstractions in a unified framework has
recently been defined (using I/O automata) by considering a restricted form
of failure detectors [1]. In this paper, we establish the weakest failure detector
to implement atomic object types among all failure detectors. Our model, and
in particular our notion of implementation, is a slight generalization of both
the notions of shared memory object implementations of [12] as well as failure
detector reductions of [5].

To prove our result, we first consider the problem of solving consensus among
a subset of processes S in the system. We observe that failure detector ΣS ∗ΩS ,
obtained by restricting Σ and Ω to S, is the weakest to solve consensus in S.
Then we show that the weakest failure detector to solve consensus among any
subset of k > 1 processes is the same as the weakest to solve consensus among
any subset of k + 1 processes. The crucial technical step to establish this result
is to show that the composition of ΩS over all pairs S of processes in the system
is Ω. (The analogous result for ΣS is also needed but more easily obtained).

An interesting particular case is when the system simply consists of two
processes. We show that, in this case, Σ ∗Ω is equivalent to Σ. This equivalence
also has a surprising ramification: whereas no algorithm can solve consensus
using a register in a system of two processes where at least one can crash [16],

(Almost) All Objects Are Universal in Message Passing Systems 187

any failure detector that can be used to implement a register in a message passing
system of two processes, where at least one can crash, can also be used to solve
consensus.

1.4 Roadmap

To summarize, this paper shows that all atomic object types that can solve
consensus among k > 1 processes have the same weakest failure detector in a
message passing system with process crash failures. In the particular interesting
case of a message passing system of two processes, this failure detector is also
the weakest to implement a register.

The rest of the paper is organized as follows. Section 2 defines our model.
Section 3 introduces failure detectors ΣS and ΩS and establishes some prelim-
inary results. Section 4 determines the weakest failure detector to implement
consensus among any subset of k > 1 processes in the system. Section 5 derives
our main results on the weakest failure detector to implement atomic types.
Section 6 relates our results with weakest failure detector results in the shared
memory model. For space limitations, several proofs are omitted from this ex-
tended abstract and given in a companion technical report [7].

2 System Model

We consider a distributed system composed of a finite set of n processes Π = {p1,
p2, . . . , pn}; |Π | = n ≥ 3. (Sometimes, processes are denoted by p and q.) A
discrete global clock is assumed, and Φ, the range of the clock’s ticks, is the set
of natural numbers. The global clock is not accessible to the processes.

2.1 Failure Patterns and Failure Detectors

Processes can fail by crashing. A process p is said to crash at time τ if p does
not perform any action after time τ (the notion of action is defined below).
Otherwise the process is said to be alive at time τ . Failures are permanent, i.e.,
no process recovers after a crash. A correct process is a process that does never
crash (otherwise it is faulty). A failure pattern is a function F from Φ to 2Π ,
where F (τ) denotes the set of processes that have crashed by time τ . The set of
correct processes in a failure pattern F is noted correct(F). As in [5], we assume
that every failure pattern has at least one correct process. An environment is a
set of failure patterns. Unless explicitly stated otherwise, our results are stated
for all environments and hence we do not mention any specific environment.

Roughly speaking, a failure detector D is a distributed oracle which gives
hints about failure patterns of a given environment E . Each process p has a
local failure detector module of D, denoted by Dp. Associated with each failure
detector D is a range RD (when the context is clear we omit the subscript) of
values output by the failure detector. A failure detector history H with range
R is a function H from Π × Φ to R. For every process p ∈ Π , for every time

188 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

τ ∈ Φ, H(p, τ) denotes the value of the failure detector module of process p
at time τ , i.e., H(p, τ) denotes the value output by Dp at time τ . A failure
detector D is more precisely a function that maps each failure pattern F of E
to a set of failure detector histories with range RD: D(F) denotes the set of
all possible failure detector histories permitted for the failure pattern F . Let D
and D′ be any two failure detectors, D ∗ D′ denotes the failure detector, with
range RD ∗RD′ , which associates to every failure pattern F , the set of histories
D ∗ D′(F) = {(H,H′) | H ∈ H(D),H′ ∈ H′(D′)}. This notation is naturally
extended to a finite set of failure detectors K: ∗{D | D ∈ K}.

2.2 Actions, Runs and Schedules

To access its local state or shared services, a process p executes (deterministic)
actions from a (possibly infinite) alphabet Ap. Each action is associated with
exactly one process and the set of all actions A is a disjoint union of the Api (1 ≤
i ≤ n). The state of a process after it executes action a in state s, is denoted a(s).
A configuration C is a function mapping each process to its local state. When
applied to a configuration C, action a of Api gives a new unique configuration
denoted a(C): for all j �= i (a(C))(pj) = C(pj) and (a(C))(pi) = a(C(pi)).

An infinite sequence of actions is called a schedule. In the following, Sc[i]
denotes the i-th action of schedule Sc. Given seq = a1 . . . aiai+1 a prefix of a
schedule and C a configuration, the new configuration seq(C) resulting from
the execution seq on some C is defined by induction as ai+1((a1 . . . ai)(C)). To
each schedule Sc = a1 . . . aiai+1 . . . and configuration C0 correspond a unique
sequence of configurations C0C1 . . . CiCi+1 . . . such that Ci+1 = ai+1(Ci).

A run is a tuple R =< F, C, Sc, T >, where F is a failure pattern, C a
configuration, Sc a schedule, and T a time assignment represented by an infinite
sequence of increasing values such that: (1) for all k, if Sc[k] is an action of
process p then p is alive at time T [k] (p /∈ F (T [k])) and (2) if p is correct then p
executes an infinite number of actions. An event e is the occurrence of an action
in Sc, and if e is the k-th action in Sc, then T [k] is the time at which event e is
executed.

Consider an alphabet of actions A and any subset B of A. Let Sc|B be the
subsequence of Sc consisting only of the actions of B, and T |B be the sub-
sequence of T corresponding to actions of B in R =< F, C, Sc, T >. We call
< F, C, Sc|B, T |B > the history corresponding to B, and we simply denote it by
R|B. In particular, when B = Api , R|Api is called the history of process pi in R.

2.3 Services

A service is defined by a pair (Prim, Spec). Each element of Prim, denoted by
prim, is a tuple < s, p, arg, ret > representing an action of process p identified
by a sort s, an input argument arg from some (possibly infinite) range In and
an output argument (or return value) ret from some (possibly infinite) range
Out. An empty argument is denoted by λ. The specification Spec of a service
X is defined by a set of runs. In this paper, we consider three kinds of services:
message passing, atomic objects and failure detectors.

(Almost) All Objects Are Universal in Message Passing Systems 189

Message passing. The classical notion of point-to-point message passing channel,
represented here by a service and denoted MP, is defined through primitive
send(m) to q of process p and primitive receive() from q of process p.1 Primitive
receive() from q returns either some message m or the null message λ; in the
first case we say that p received m. Each non null message is uniquely identified
and has a unique sender as well as a unique potential receiver. The specification
Spec of MP stipulates that: (1) the receiver of m receives it at most once and
only if the sender of m has sent m; (2) if process p is correct and if process q
executes an infinite number of receive from p primitives, then all messages sent
by p to q are received by q.

Failure detector. The only primitive defined for a failure detector service is a
query without argument that returns one value in the failure detector range. A
run R =< F, C, Sc, T > satisfies the specification of a failure detector D if there
is a failure detector history H ∈ D(F) such that for all k, if Sc[k] is a query of
D by process p that outputs v, then H(p, T [k]) = v. Any such history is said to
be associated with run R.

Atomic object. Atomic objects are services defined by a sequential specification,
and which can be accessed through invocation and reply primitives associated
with each operation of the object. It is common to call a pair of invocation
and subsequent reply primitives the occurrence of the operation and identify
an invocation and the associated operation. The sequential specification of an
atomic object is defined by its type and an initial state. A type T is a tuple
< Q, Op, I, L >: where Q is the set of states of the type, Op is a set of operations,
I is a set of replies, and L is a relation that carries each state st ∈ Q and
operation op to a set of state and reply pairs, which are said to be legal, and
denoted by L(st, op). When L is a function, the type is said to be deterministic.
An invocation returns λ, and a reply has λ as argument and returns a value in I.
An invocation inv and a reply rep are said to be matching if they are actions of
the same process p and if there exist states st and st′ such that (st′, rep) belongs
to L(st, inv). A (finite or infinite) sequence σ = (o0r0)(o1r1) . . . (ojrj) . . . where,
for all l, ol and rl are respectively operations and replies, is legal from state s
if there is a corresponding sequence of states s = s0, s1, . . . sj , . . . such that, for
each l (sl+1, rl+1) ∈ L(sl, ol). Such a sequence is called a sequential history of
object O from initial state s. 2

Only well-formed schedules are considered. Consider a schedule Sc, and its
restriction to a process Sc|p, we say that some occurrence of invocation is pending
if there is no matching reply. We say that a schedule Sc is well-formed if (i) no
prefix of Sc|p has more than one occurrence of a pending invocation and (ii)
(Sc|p)|Prim begins with an invocation and has alternating matching invocations
and replies. By extension, a run R =< F, C, Sc, T > is well-formed if its schedule

1 More formally, these primitives are respectively a tuple < send to q, p, m, λ > with
m ∈ M where M is a set of messages and a tuple < receive from q, p, λ, x > with
x ∈ M ∪ {λ}.

2 The definition of the Spec part of an atomic object O is the same as in [12].

190 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

Sc is well-formed and there is no pending invocation for correct processes in F .
When reasoning about the atomicity of an object, we consider only operations
that terminate, i.e., both invocation inv and a matching reply have taken place.
If a process p performs an invocation inv and then p crashes before getting
any reply, we assume that either the state of the object appears as if inv has
not taken place, or inv has indeed terminated. An operation is said to precede
another if the first terminates before the second start and two operations are
concurrent if none precedes the other.

Let R =< F, C, Sc, T > be any well-formed run, and R|Prim be the his-
tory corresponding to object O =< Prim, Spec > of type T , a linearization
of R|Prim with respect to T and state s is a pair (H, T ′) such that: (1) H a
sequential history of O from state s; (2) H includes all non pending invocations
of operation in S; (3) If some invocation inv is pending in S, then either H
does not include this pending invocation or includes a matching reply; (4) H
includes no action other than the ones mentioned in (2) and (3); (5) T ′ is an
infinite sequence such that Sc[k] is an invocation and Sc[k′] the matching reply,
corresponding respectively to H [l] and H [l + 1] then T ′[l] = T ′[l + 1] belongs to
the interval (T [k], T [k′]) A run R is linearizable for type T and state s if R has
a linearization with respect to T and state s. The specification Spec associated
to an object O of type T and initial state s is the set of runs well-formed for O
that are linearizable with respect to T and state s [11].

2.4 Algorithms and Implementations

An algorithm A =< A1, · · · , An, Serv >, using a set of services Serv, is a collec-
tion of n deterministic automata Ai (one per process pi) with transitions labeled
by actions in Ai such that all operations defined for services in Serv are included
inA. Every transition of Ai is a tuple (s, a, s′) where s and s′ are local states of pi

and a is a action of pi such that a(s) = s′. Computation proceeds in steps of the al-
gorithm: in each step of an algorithm A, a process p atomically executes an action
inA. If a is an action of pi and C is a configuration, a is said to be applicable to C
if there is a transition (s, a, s′) in Ai such that s = C(pi). By extension, a schedule
Sc = Sc[1]Sc[2] . . . Sc[k] . . . is applicable to a configuration C if for each k > 1,
Sc[k] is applicable to configuration (Sc[1] . . . Sc[k− 1])(C). A run of algorithm A
is a run R =< F, C, Sc, T > such that Sc is a schedule applicable to configuration
C, such that R satisfies the specifications of services in Serv.

Roughly speaking, implementing a service X using a set of services Serv
means providing the code of a set of subtasks associated with every process:
one subtask for each primitive sort of X as well as a set of additional sub-
tasks. The subtasks associated to the primitives are assumed to be sequential
in the following sense: if a process p executes a primitive prim (of the ser-
vice to be implemented), the process launches the associated subtask and waits
for it to terminate and return a reply before executing another primitive. All
subtasks use services in Serv to implement service X , in the sense that the
only primitives used in these subtasks are primitives defined in Serv. More pre-
cisely, an implementation of a service X =< Prim, Spec > with primitives of

(Almost) All Objects Are Universal in Message Passing Systems 191

sorts ps1, . . . , psm, using a set of services Serv, among n processes, is defined
by I(X, n, Serv) =< (X1, (ps1

1, . . . , ps1
m)), . . . , (Xn, (ps1

1, . . . , psn
m)) > where, for

each i, Xi is the implementation subtask of pi and psi
j is the primitive imple-

mentation subtask associated to process pi and the primitive of sort psj of X
such that the only primitives occurring in these subtasks are primitives defined
in Serv.

An implementation I(X, n, Serv) for environment E ensures that: for each
algorithm A =< A1, · · · , An, Serv′∪{X} >, the corresponding algorithm A′ =<
A′

1, · · · , A′
n, Serv ∪ Serv′ > in which X is implemented by I(X, n, Serv) where,

for each i, A′
i is the automaton corresponding to the subtasks Ai, Xi, psi

1, . . . , psi
j

is such that all runs R of A′, restricted to actions of A1, · · · , An, are runs of A.
Note that, we implicitly consider robust [2] implementations of services: ev-

ery correct process that executes a primitive of an implemented service should
eventually get a reply from that invocation. We will sometimes focus on imple-
mentations of S−services: the primitives of such a service can only be invoked
by processes of a subset S of the system. In such implementation, the only
restriction is the fact that only the processes in S contain each one subtask
per primitive sort of the S-service (but all processes contain implementation
tasks). If we do not specify the subset S, we implicitly assume the set of all
processes.

2.5 Weakest Failure Detector

The notion of failure detector D2 being reducible to D1 in a given environment
E (D1 is said to be stronger than D2 in E and written D2 �E D1) of [5], means
in our context that there is an algorithm that implements D2 using D1 and
MP in E . All the implementation subtasks use only MP and D. For every run
R =< F, C, Sc, T >, and failure detector history H ∈ D1(F) such that F is in
E , the output of the algorithm in R is a history of D2(F). We say that D1 is
equivalent to D2 in E (D1 ≡E D2), if D2 �E D1 and D1 �E D2 in E .

We say that a failure detector D1 is the weakest to implement a given service
in environment E if and only if the two following conditions are satisfied: (1)
there is an algorithm that implements the service using D1 in E , and (2) if there
is an algorithm that implements the service using some failure detector D2 in E ,
then D2 is stronger than D1 in E . As pointed out earlier, given that most of our
results hold for all environments, we will generally not mention (and implicitly
assume) any environment when stating and proving results.

3 The Quorum and Leader Failure Detectors

We introduce here two failure detectors: the Quorum and the Leader. Both are
defined relatively to a subset S of processes in the system. The first one, denoted
by ΣS , is a generalization of Σ [6,8]. The second one, denoted by ΩS , generalizes
Ω [4].

192 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

3.1 Failure Detector ΣS

Given any subset S of processes in Π , failure detector ΣS outputs, at each process
in S, and at any time, a list of processes, called trusted processes, such that every
list intersects with every other list, and eventually, all lists contain only correct
processes. For presentation simplicity, we consider that, at any process of S that
has crashed, the list that is output is simply Π . More generally, the lists that
are output satisfy the two following properties:

– Intersection. Every two lists of trusted processes intersect: ∀F ∈ E , ∀H ∈
ΣS(F), ∀p, q ∈ S, ∀τ, τ ′ ∈ Φ : H(p, τ) ∩H(q, τ ′) �= ∅

– Completeness. Eventually, every list of processes trusted by every correct
process contains only correct processes: ∀F ∈ E , ∀H ∈ ΣS(F), ∀p ∈ S ∩
correct(F), ∃τ ∈ Φ, ∀τ ′ > τ ∈ Φ : H(p, τ ′) ⊆ correct(F)

Failure detector Σ introduced in [6,8] is simply ΣΠ .
In the following, we state a result on a register shared by the processes of

a subset S, and denoted by S−register: the read() and write() operations can
only be invoked by the processes in S. (The sequential specification of a regis-
ter stipulates that the read() returns the last value written.) The proof of this
proposition is in [7].

Proposition 1. ΣS is the weakest failure detector to implement a S−register.

3.2 Failure Detector ΩS

Given any subset S of processes in Π , failure detector ΩS outputs at any time
and at any process, one process called the leader, such that the following property
is satisfied:

– Unique eventual leader: ∀F ∈ E , ∀H ∈ ΩS(F), ∃l ∈ correct(F), ∃τ ∈ Φ, ∀τ ′ >
τ, ∀x ∈ correct(F) ∩ S, H(x, τ ′) = {l}

Intuitively, the guarantee here is that all processes inside S eventually get
the same correct leader. Processes outside S might never get the same leader.
However, the leader process that is output does not need to be in S: it can be
any process in Π . Failure detector Ω corresponds to ΩΠ .

We state now a result on the consensus type (an abstraction of the consensus
problem) shared by the processes of a subset S, denoted by S−consensus: the
propose() operation can only be invoked by the processes of S. (The sequential
specification of consensus stipulates that all propose() operations return the first
value proposed.) The proof of this proposition is in [7].

Proposition 2. ΣS ∗ ΩS is the weakest failure detector to implement
S−consensus.

(Almost) All Objects Are Universal in Message Passing Systems 193

4 From k-consensus to (k + 1)-consensus

To prove our main result on the weakest failure detector to implement types
with a given consensus number k, we address the question of the weakest failure
detector to implement k-process consensus (we simply write k-consensus). In
short, an algorithm implements k-consensus if it implements S-consensus for any
subset S of size k. We show that, for any k s.t. 1 < k < n, the weakest failure
detector to implement k-consensus is also the weakest to implement (k + 1)-
consensus.

To prove this, we go through intermediate results about the composition,
over a family of subsets S, of all ΣS and of all ΩS .

The following proposition is a direct consequence of the definitions:

Proposition 3. Let S be any subset of Π and let L be any family of subsets
of S such that, for all p, q ∈ S, there exists some set L ∈ L such that p and q
belong to L. We have: ΣS ≡ ∗{ΣX |X ∈ L}.

An interesting particular case is where subsets X are pairs, i.e., for any
S ⊆ Π , ΣS ≡ ∗{Σ{p,q}|p, q ∈ S}. The composition of all ΣS , over all subsets S
of size 2, is in this case Σ:

Corollary 1. For all S ⊆ Π, ΣS ≡ ∗{Σ{p,q}|p, q ∈ S}.

Concerning ΩS , we get the following:

Proposition 4. Let L be any family of subsets of Π such that, for all p, q ∈ Π,
there exists some L ∈ L such that p ∈ L and q ∈ L. Ω ≡ ∗{ΩL|L ∈ L}.

Proof. As Ω is also ΩL for every L ⊆ Π , we directly get: ∗{ΩL|L ∈ L} � Ω.
The opposite inequality is more involved.
Consider a run R with a failure pattern F , and let τ0 be a time such that

(1) after time τ0 no more process crashes and (2) the output of failure detectors
ΩL, L ∈ L, does not change after τ0.

In the following, we show how to implement failure detector ♦S, which is
equivalent to Ω [4]. Failure detector ♦S outputs subsets of suspected processes
and ensures: (1) completeness, i.e. eventually every faulty process is permanently
suspected by every correct process; and (2) accuracy, i.e. eventually, some correct
process is never suspected.

Consider the digraph G =< V, E > for which V = correct(F), and (p, q) ∈ E
if and only if q is leader for p for some ΩL such that p ∈ L.

Now consider G′ =< V ′, E′ > the digraph of the strongly connected compo-
nent of G: V ′ is the set of strongly connected components of G and (C, C′) ∈ E′

if and only if there is at least one p ∈ C and one q ∈ C′ such that (p, q) ∈ E.
We say that C ∈ V ′ is a sink if there is no edge going out of C: note that this
means that (a) if p belongs to some sink S, and (p, q) ∈ E then q ∈ S.

First, there exists at least one sink in G′. Indeed, assume the contrary and
let C0 be any vertex in G′; by induction, we construct a sequence (Cu) (u > 0)
of vertices such that (i) (Cu−1, Cu) ∈ E′ and (ii) Cu−1 �= Cu. As we assume

194 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

that there is no sink, this sequence is infinite. Moreover this sequence is cycle
free: if Cu = Cm for some m < u, then a direct induction proves that all Ck

(m ≤ k ≤ u) are the same strongly connected component contradicting (ii). This
implies an infinite number of different Ci contradicting the fact that G is finite.

Consider process p in some C, and process q in some sink S. By definition
of L, there is at least one L of L such that p and q both belong to L. By (a), l,
the common leader for p and q, belongs to S. Proving that (b) for every p and
every sink S, there exists a process l ∈ S such that (p, l) ∈ E.

Moreover, let S and S′ be two sinks, by (b) there is an edge from S to S′

and an edge from S′ to S in G′, proving that S and S′ are in the same strongly
connected component and then S = S′. Hence, there is only one sink in G′. In
the following S will denote this unique sink of G′.

In order to implement ♦S, each process p proceeds as follows.
Process p maintains (1) a set Leaderp

p of all its leaders, (2) for each q, a set
Leaderq

p of the known leaders of q and, (3) a digraph Gp =< Vp, Ep > for which
Vp = Π , and (k, q) ∈ Ep if and only if q ∈ Leaderk

p and, (4) Trustp, the output
of the emulated failure detector: this output will be the set of processes q such
that there is a path from p to q in Gp.

Process p updates its variables as follows:

– Leaderp
p is always the set of processes output as leader from ΩL for all L on

L such that p ∈ L. p broadcasts forever Leaderp
p.

– If p receives from some q a set X of processes, then p replaces Leaderq
p by

X .
– Gp =< Vp, Ep > for which Vp = Π , and (k, q) ∈ Ep if and only if q ∈

Leaderk
p . Variable Trustp holds the set of processes q such that there is a

path from p to q in Gp. If Leaderp
p or Leaderq

p change, then p computes
again Gp and Trustp.

As (1) any change in Trust variables comes from changes in the output of
ΩL’s, and (2) no message is lost, there is a time τ1 ≥ τ0 after which no variable
Trustp changes.

Consider a correct process p. Observe that if (q, r) is an edge of Gp then r
is a leader for q, and hence if q is a correct process then r is correct too. Then
by an easy induction, after time τ1, every process on a path from p in Gp is
a correct process and Trustp contains only correct processes. This proves the
completeness property of required for ♦S.

Observe also that, after time τ1, for every correct process p, the set of pro-
cesses q such that there is a path from p to q in G is equal to Trustp. Moreover, if
(x, y) ∈ E then Trusty ⊆ Trustx and, by an easy induction, (c) if there is a path
from x to y in G then Trusty ⊆ Trustx. This proves that, if x and y are in the
same strongly connected component of G, then Trustx = Trusty. In particular,
for all q in the sink S of G′, Trustq = S. By (b) and (c), for every correct process
p, Trustq ⊆ Trustp for at least one process q in S, therefore S ⊆ Trustp. This
proves the accuracy property of ♦S. Hence we get Ω � ∗{ΩL|L ∈ L} and then
Ω ≡ ∗{ΩL|L ∈ L}.

(Almost) All Objects Are Universal in Message Passing Systems 195

In particular, for the family of subsets of two elements:

Corollary 2. Ω ≡ ∗{Ω{p,q}|p, q ∈ Π}.

It is important to notice a difference here between Proposition 3 and Propo-
sition 4, and this conveys a fundamental difference between Σ and Ω. Consider
a strict subset S of Π . If we can implement a {p, q}-register within every pair
{p, q} of S, then we can implement a S-register in S. This is not true with {p, q}-
consensus and this follows from the fact that some leaders output by Ω{p,q} might
not belong to the set S. We prove the following in [7]:

Proposition 5. There exists a system of n processes, a non-empty subset of Π,
S, an environment E and a set of failure detectors Ω{p,q}, for all p, q in S, such
that ΩS �≡E ∗{Ω{p,q} | p, q ∈ S}.

If we restrict ourselves however to the overall set of processes Π , the difference
(i.e., the proposition above) does not hold. That is, to implement consensus (resp.
a register), it is necessary and sufficient to implement consensus (resp. register)
among all subsets of at least two processes.

Corollary 3. For any n ≥ k ≥ 2, Ω ≡ ∗{ΩS||S| = k} and Σ ≡ ∗{ΣS||S| = k}.

Proof. We apply Proposition 3 and Proposition 4 to the family of all subsets of
k (n ≥ k ≥ 2) processes.

We directly get from the previous Corollary and Proposition 2 the following:

Corollary 4. For every k such that 2 ≤ k ≤ n, for any failure detector D,
D implements consensus if and only if D implements S-consensus for all S such
that |S| = k.

It is important to notice again that the previous corollary holds only for
consensus, and not for S-consensus if S �= Π .

5 Implementing Atomic Object Types

In the following, we will say that types T1, · · · , Tn emulate k-consensus if there
is an algorithm that uses only instances of types T1, · · · , Tn to implements k-
consensus.

Proposition 6. If a type T emulates 2-consensus, then (1) the weakest failure
detector to implement T is Σ ∗ Ω and (2) any failure detector that implements
T implements any type.

Proof. Let T be any type emulating 2-consensus. This means that there is an al-
gorithm using T and message passing that implements 2-consensus. Clearly, this
algorithm with any failure detector D implementing T implements 2-consensus
too and by Corollary 4 it implements consensus. Then, by Proposition 2 we get:
(a) Σ ∗Ω � D.

196 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

Remark that Σ ∗Ω implements any number of instances of consensus. Hence,
using the universality result of consensus [12], we derive that Σ ∗Ω implements
any type. Then by (a) any failure detector that implements T implements any
type proving (2). Moreover, as Σ ∗ Ω implements any type, it implements in
particular T . Together with (a), this proves (1).

An interesting application of Proposition 6 concerns the environment where
n−1 process might fail (which we call the wait-free environment) and the notion
of consensus number, which we recall now.

In fact, several definitions of the notion of consensus number of a type T
(sometimes also called consensus power) have been be considered [13]. All are
based on the maximum number k of processes for which there is an algorithm
that, using T , emulates k-consensus. The definitions differ on whether or not the
implementation can use several instances of T , and whether the type register
can also be used. Hierarchy h1 means one instance and no register, hr

1 means
one instance and registers, hm means many instances, no register, and hr

m means
many instances and many registers.3

From Proposition 6, the weakest failure detector to implement type T such
that h1(T) = 2 or hm(T) = 2 is Σ ∗ Ω. If T is deterministic, we can derive
from [3] that hm(T) = hr

m(T). Hence we get the following:

Proposition 7. In the wait-free environment, for every k such that 2 ≤ k ≤ n,
Σ ∗ Ω is the weakest failure detector to implement (1) any type T such that
k = h1(T), (1’) any type T such that k = hm(T), (2) any deterministic type T
such that k = hr

1(T), and (2’) any deterministic type T such that k = hr
m(T).

We finally consider the special case where n = 2. In this case, implementing
a register is in some sense equivalent to implementing consensus. More precisely,
we prove the following:

Proposition 8. For n = 2, Σ ≡ Σ ∗Ω.

Proof. We actually prove a stronger result. We show that for n = 2, Σ is equiva-
lent to S which is a failure detector introduced in [5], and which outputs subsets
of suspected processes and ensures: (1) completeness, i.e. eventually every faulty
process is permanently suspected by every correct process and (2) accuracy, i.e.
some correct process is never suspected. As S implements consensus [5], from
proposition 2, we get: Σ � Σ ∗ Ω � S. Denote by p1 and p2 the two processes
of the system. Consider a failure pattern F . If no process crashes in F , then
by the intersection property of Σ, one correct process is trusted forever by p1

and p2. If some process, say p1, crashes, then by the completeness property of
Σ, after some time τ , p2 is the only process trusted by p2. By the intersection
property of Σ, p2 has been trusted forever by p2. Therefore, in all cases, at least
one correct process is never suspected. This proves the accuracy property of S.
Hence S � Σ.

As a direct consequence, we get: for n = 2, Σ ≡ Σ ∗Ω ≡ S.
3 We implicitly assume here n-ported types, i.e., every instance of a type has n ports

in our system of n processes [13].

(Almost) All Objects Are Universal in Message Passing Systems 197

6 Concluding Remarks

The question we address in this paper is that of the weakest failure detector
to implement atomic object types (of certain consensus numbers) in a message
passing system. This question is complementary to the question of the weakest
failure detector to solve consensus in a system of n processes, given object types
of consensus number k < n [15,17,10]. In this paper, the goal was to actually
implement the types themselves.

It would be interesting to determine, for any k > 1, the weakest failure
detector to implement any type with consensus number k, given any type of
consensus number j < k. We conjecture that our proof technique could help
show that Ω is the weakest failure detector to implement, with register objects
(instead of message passing channels), any object type with a consensus number
higher than 2. Going from any type with consensus number k > 2 to any type
with consensus number j < k < n would probably need a combination of our
proof technique with that of [10].

Acknowledgments

Comments from Partha Dutta, Petr Kouznetsov, Bastian Pochon, and Michel
Raynal helped improve the presentation of this paper.

References

1. P. Attie, R. Guerraoui, P. Kouznetsov, N. Lynch, and S. Rajsbaum. The impos-
sibility of boosting distributed service resilience. In Proceedings of the 25th Inter-
national Conference on Distributed Computing Systems. IEEE Computer Society
Press, June 2005.

2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing
systems. J. ACM, 42(2):124–142, Jan. 1995.

3. R. A. Bazzi, G. Neiger, and G. L. Peterson. On the use of registers in achieving
wait-free consensus. Distributed Computing, 10(3):117–127, 1997.

4. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, Mar. 1996.

6. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message
passing. Technical Report 200377, EPFL Lausanne, 2003.

7. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Implementing atomic objects
in a message passing system. Technical report, EPFL Lausanne, 2005.

8. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Koutnetzov,
and S. Toueg. The weakest failure detectors to solve certain fundamental problems
in distributed computing. In 23th ACM Symposium on Principles of Distributed
Computing, July 2004.

9. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

198 C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui

10. R. Guerraoui and P. Kouznetsov. On failure detectors and type boosters. In
Proceedings of the 17th International Symposium on Distributed Computing, LNCS
2848, pages 292–305. Springer-Verlag, 2003.

11. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

12. M. P. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst.,
13(1):123–149, Jan. 1991.

13. P. Jayanti. On the robustness of herlihy’s hierarchy. In 12th ACM Symposium on
Principles of Distributed Computing, pages 145–157, 1993.

14. L. Lamport. On interprocess communication; part I and II. Distributed Computing,
1(2):77–101, 1986.

15. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared memory systems. In Proceedings of the 8th International Workshop
on Distributed Algorithms, LNCS 857, pages 280–295, Sept. 1994.

16. M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

17. G. Neiger. Failure detectors and the wait-free hierarchy. In 14th ACM Symposium
on Principles of Distributed Computing, 1995.

Ω Meets Paxos:

Leader Election and Stability Without Eventual
Timely Links

Dahlia Malkhi1, Florin Oprea2,�, and Lidong Zhou3

1 Microsoft Research Silicon Valley and the Hebrew University of Jerusalem
2 Department of Electrical and Computer Engineering, Carnegie Mellon University

3 Microsoft Research Silicon Valley

Abstract. This paper provides a realization of distributed leader elec-
tion without having any eventual timely links. Progress is guaranteed
in the following weak setting: Eventually one process can send messages
such that every message obtains f timely responses, where f is a re-
silience bound. A crucial facet of this property is that the f responders
need not be fixed, and may change from one message to another. In
particular, this means that no specific link needs to remain timely. In
the (common) case where f = 1, this implies that the FLP impossibil-
ity result on consensus is circumvented if one process can at any time
communicate in a timely manner with one other process in the system.

The protocol also bears significant practical importance to well-known
coordination schemes such as Paxos, because our setting more precisely
captures the conditions on the elected leader for reaching timely consen-
sus. Additionally, an extension of our protocol provides leader stability,
which guarantees against arbitrary demotion of a qualified leader and
avoids performance penalties associated with leader changes in schemes
such as Paxos.

1 Introduction

A fundamental design guideline pioneered in the Paxos protocol [1] and later
employed in numerous coordination protocols is to separate safety properties
from liveness properties. Safety must be preserved at all times, and hence, its
implementation must not rely on synchrony assumptions. Liveness, on the other
hand, may be hampered during periods of instability, but eventually, when the
system resumes normal behavior, progress should be guaranteed. In various co-
ordination protocols such as Paxos, liveness hinges on a separate leader election
algorithm, with the problem of finding a good leader election algorithm left open.

It is well known in the theory of distributed computing that liveness of con-
sensus cannot be guaranteed in a purely asynchronous system with no timing
assumptions [2]. Ω is known to be the weakest failure detector [3,4] that is
sufficient for consensus, hence provides the liveness properties of consensus. Ω

� Work done during a summer internship at Microsoft Research Silicon Valley.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 199–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 D. Malkhi, F. Oprea, and L. Zhou

essentially implements an eventual leader election, where all non-faulty processes
eventually trust the same non-faulty process as the leader.

While Ω captures the abstract properties needed to provide liveness, it does
not say under which pragmatic system conditions is progress guaranteed. It
leaves open the interesting questions of what synchrony conditions should be
assumed when implementing Ω and what additional properties would yield an
ideal leader election algorithm for practical coordination schemes such as Paxos.

A revisit of Paxos. In this paper, rather than cooking up arbitrary synchrony
assumptions and additional properties, we derive the desired features of our
protocols from Paxos, a cornerstone coordination scheme employed in various
reliable storage systems such as Petal [5], Frangipani [6], Chain Replication [7],
and Boxwood [8].

At a high level, Paxos is a protocol for a set of processes to reach consensus
on a series of proposals. With a leader election algorithm, a process p that is
elected leader first carries out the prepare phase of the protocol. In this phase,
p sends a prepare message to all processes to declare the ballot number it uses
for its proposals, learns about all the existing proposals, and requests promises
that no smaller ballot numbers be accepted afterwards. The prepare phase is
completed once p receives acknowledgments from n − f processes. Once the
prepare phase is completed, to have a proposal committed, leader p initiates the
accept phase by sending an accept message to all processes with the proposal and
the ballot number it declares in the prepare phase. The proposal is committed
when p receives acknowledgments from f + 1 processes. Whenever a higher
ballot number is encountered in the prepare phase or the accept phase, the
leader has to initiate a new prepare phase with an even higher ballot number.
This could happen if there are other processes acting as leaders, unavoidable in
an asynchronous system.

To implement a replicated state machine, Paxos streamlines a series of consen-
susdecisions.Anew leader p carries out thepreparephase once for all its proposals.
After the completion of the prepare phase, p carries out only the accept phase for
each proposal until a new leader emerges by initiating a new prepare phase.

Our goal is to distill the conditions under which Paxos can have new proposals
committed in a timely fashion and to provide a leader election protocol exactly
under those conditions. Therefore, we make the following observations:
– After an initial prepare phase, in order for a leader p to make timely

progress, it suffices for p to obtain timely responses for its accept message
from any set of f + 1 processes (or f processes besides itself). The set could
change for different accept messages.

– Any leader change incurs the cost of an extra round of communication for
the prepare phase.

Contribution. Complying with the conditions under which we wish to enable
progress in Paxos, our leader algorithm features the following two desired
properties1:
1 Formal definitions of these properties are provided in the body of the paper.

Leader Election and Stability Without Eventual Timely Links 201

First, the algorithm guarantees to elect a leader without having any eventual
timely links. Progress is guaranteed in the following surprisingly weak setting:
Eventually one process can send messages such that every message obtains f
timely responses, where f is a resilience bound. We name such a process �f -
accessible. A crucial facet of this property is that the f responders need not be
fixed, and may change from one message to another. We emphasize that this
condition stems from the workings of Paxos, whose safety does not necessitate
that the f processes with which a leader interacts be fixed.

Our solution bears the following ramification on the foundations of dis-
tributed computing. It implies that the FLP [2] impossibility result on consensus
with one failure (f = 1) is circumvented if one process can at any time interact
in a timely manner with one other process in the system.

No previous leader election protocol provides any guarantee in these settings.
In fact, the approach taken in most previous protocols is fundamentally incom-
patible with this condition, because previous protocols gossip about suspicions
until the system converges. This does not allow for a leader to communicate at
different times with different subsets of the system, as the leader will constantly
be under suspicion of some part of the system. Thus, no easy “engineering” of
previous protocols can provide progress under the �f -accessibility condition.

The second contribution provided by our algorithm is leader stability. This
is based on the observation that a leader change necessitates an execution of
a prepare phase by the new leader, an often costly operation. We therefore
embrace the notion of stability that a qualified leader not be demoted, where a
leader is considered qualified if it remains capable of having proposals committed
in a timely fashion. For Paxos, when n = 2f +1 holds, a leader is qualified if it is
non-faulty and maintains timely communication with a set of f other processes
at all times, with the set possibly changing over time.

An important practical measure for a leader election protocol is its communi-
cation complexity [9]. It is desirable that under a steady state, where a qualified
leader operates without being suspected by any other process, only the leader
incurs periodic communication with the rest of the system (hence achieving O(n)
steady-state link-utilization communication complexity.) In Section 6, we sketch
an extension of our protocol that achieves this ideal. This extension works only
with the basic version of our protocol for Ω, which does not uphold stability. It
is left as an open question whether a stable leader election algorithm with O(n)
steady-state message complexity exists under the condition of �f accessibility.

2 Related Work

Our review of previous work concentrates on the two properties of interest to
us: synchrony conditions and leader stability.

On synchrony conditions. A simple solution for the leader election problem is
as follows [1,10]. Periodically send alive messages from all to all, and let each
process collect data on all the processes it heard from within the last broadcast

202 D. Malkhi, F. Oprea, and L. Zhou

period. Each process elects as leader the process with the lowest process id from
its view. This implementation requires that eventually all n2 communication
links become timely with a known communication bound.

A number of papers [11,9] relax this by assuming an unknown communica-
tion bound. The reduction to the known bound model involves gradually in-
creasing timeout periods until no false alarms incur on the current leader. This
“trick” may be used in almost all leader-election protocols, as is done, e.g., in
[11,9,12,13,14,15]. Nevertheless, all communication links are required to be even-
tually synchronous.

Aguilera et al. further relaxes the model to one that has a process maintaining
eventually timely links with the rest of system [12] and to one that has a process
whose outgoing links to the rest of the system are eventually timely [13]. In [13], a
single correct process called �-source is assumed to have outgoing non-lossy and
timely links eventually . Their protocol works by processes sending accusation
messages to one another when they timeout. Intuitively, every process converges
on the suspicions of the �-source process, since its accusations are guaranteed
to arrive timely at their destinations.

More recently, and most relevant to our work, there are several pieces of work
that require surprisingly weak synchrony conditions for implementing Ω and con-
sensus. This line of work limits the scope of timely links from the correct pivot
process to only a subset of the system. There are two main flavors, one deals with
failure-detection abstractions without explicit mentioning of synchrony condi-
tions, and the second builds directly over partial synchrony conditions. We start
with the first approach, which historically precedes the second.

The work of [16,17] introduces the notion of limited scope failure detectors,
where the scope of the accuracy property of an unreliable failure detector is
defined with respect to a parameter (x) as the minimum number of processes
that must not erroneously suspect a correct process to have crashed. This yields
failure detector classes Sx (respectively, �Sx), whose accuracy properties are
required to hold only on a subset of the processes whose size is x. The usual
failure detectors S (respectively, �S) implicitly consider a scope equal to the
total number of processes. A limited-scope detector in the classes Sk or �Sk is
straight-forward to implement using periodic alive messages and timeouts, given
a system in which one correct process (eventually) has x outgoing timely links.
Therefore, under these conditions, a possible construction of Ω is to as follows:
first implement �Sx; then transform �Sx to �S [14]; finally transform �S to
Ω [18].

Aguilera et al. [15] adopts a more direct approach. Define a process p to be
a �f -source if eventually it has f outgoing links that are timely. Any of the f
recipient endpoints of these links may be faulty. Assuming a bound f on the
number of crashed processes, Aguilera et al. [15] presents an Ω construction
with the existence of one correct �f -source. The protocol counts suspicions of
processes about all other processes and exchanges vectors of suspicion-counters.
Each process elects as leader the process with the lowest suspicion counter, break-
ing ties by process ids. Intuitively, the suspicion counters of crashed processes

Leader Election and Stability Without Eventual Timely Links 203

grow indefinitely, whereas the �f -source has a guaranteed bounded suspicion-
counter. This guarantees that eventually a correct process is elected as leader
(among all the ones whose counters are bounded), and furthermore, it remains
so permanently because all counters are non-decreasing.

Both the Sf condition and the �f -source condition are neither weaker nor
stronger than ours: Let p denote, respectively, the pivot correct process that
upholds any of these models. The �f -source assumption and the �Sf accuracy
assumption require timeliness only on f outgoing links from p, and no correctness
of the f recipients. Our �f -accessible assumption requires f bi-directional timely
links from p, as well as correctness from the f recipients, which are stronger
assumptions. However, in �f -source, the set of f links is fixed throughout the
execution, as is the limited-scope subset of �Sf , whereas �f -accessible allows
the f links to vary in time, which is a weaker assumption.

Although formally these models are incomparable, we note that our assump-
tions are strongly motivated by practical needs, particularly those of the Paxos
protocol. In Paxos, if there is a single leader, the leader can carry out the accept
phase and make progress so long as it is able to communicate with f processes.
This is exactly the condition under which our Ω implementation is guaranteed
to operate. In particular, the leader may in realistic settings have a “moving
set” of f timely links. But so long as at any moment, some set of f links are
timely, our protocol can guarantee progress. Under these conditions, the �f -
source assumption does not hold, nor does �Sf , and the protocols of [14,15]
may fail.

Leader stability. The only previous work we are aware of that considers some
form of leader stability is the protocol of Aguilera et al. [12]. Their notion of
stability relates to a leader that is recognized by all non-faulty processes as
leader. For practical consensus protocols such as Paxos, this condition might
have limited value, because no process inside the system can know when a leader
is known to all others. In Paxos, a process must know whether it is a leader in
order to decide whether to initiate the prepare phase. Therefore, our stability
condition uses the leader’s own perspective as the determining time to when its
leadership stabilizes. This is what Paxos needs to avoid having leaders being
arbitrarily de-crowned due to unnecessary prepare messages.

3 Informal Model

The system consists of a set P of n processes, each pair of which can directly
communicate by sending and receiving messages over a bi-directional link. Each
process is equipped with a drift-free local clock. Clocks of different processes need
not be synchronized. When we reason about the system, we often use a global
wall-clock t, which is not known or used by the processes within the system.

Each process executes a sequence of steps triggered either by message recep-
tion or timer expiration. In a step, a process may perform any number of local
computations, send messages, and set timers. For simplicity, we denote the time
it takes to perform a step as zero.

204 D. Malkhi, F. Oprea, and L. Zhou

Process and Communication Faults. Processes may fail by crashing permanently,
and otherwise are non-faulty. A failure pattern Fp is a function from wall clock
time to sets of processes that have crashed by that time. We say that p is
non-faulty at time t if p �∈ Fp(t). We say that p is non-faulty if it is always non-
faulty. There is a known resilience bound f ≤ !n−1

2 " on the number of crashed
processes.2

Communication links are reliable, in the sense that no message from a non-
faulty process can be dropped, duplicated, or changed, and no messages are
generated by the links.

Communication Synchrony. The conditions regarding timeliness of links are at
the heart of our investigation. There is a known upper bound δ on the round-trip
delay of messages, but it does not hold on all pairs of processes at all times. What
is known is that eventually there is one process that is able to exchange messages
within the δ delay with f other processes. We will now make this notion precise.

Definition 1. Let (p, q) denote the communication link between p and q. We say
that (p, q) is timely at time t if any message sent by p to q at time t receives a
response within δ time. Note that if q becomes faulty before handling p’s message,
or q is slow to respond, then by definition the link is not timely.

Definition 2. A process p ∈ P is said to be f -accessible at time t if there exist
f other processes q such that the links (p, q) are timely at t.

Our synchrony requirement is the following.

Definition 3. (�f -accessibility) There is a time t and a process p such that for
all t′ ≥ t, p is f -accessible at t′.

Note that the definition of f -accessibility allows a process p to be considered
f -accessible even if the sets of f processes accessed by p at different times change.
This property is fundamentally more practical than fixing a subset with which p
must interact forever. This definition is derived from the way consensus protocols
like Paxos [1] and revolving-coordinator consensus [3] operate.

We also note that there are several known ways to weaken our model with
variations that bear practical importance. First, it is easy to extend the model to
account for a non-zero bound on local processing time and clock drifts, but this
would just be a syntactic burden. Second, it is possible to relax the assumption
that the communication round-trip bound δ is a priori known. The trick for
overcoming this uncertainty is to start with an aggressively-low guess of δ and
gradually increase it when premature expirations are encountered. Most of the
2 It is easy to generalize the discussion to use quorum systems instead of counting

processes. A read/write quorum system for P , denoted R(P),W(P) ⊆ 2P , is a pair of
sets of subsets of P , such that every pair Q1 ∈ W(P), Q2 ∈ W(P)∪R(P) has a non-
empty intersection, Q1∩Q2 �= ∅. Each subset is called a quorum. Quorums generalize
thresholds as follows. Operations on (f + 1)-subsets are replaced with operations on
write quorums; operations on (n − f)-subsets are replaced with operations on read
quorums.

Leader Election and Stability Without Eventual Timely Links 205

claims in this paper can be adapted to reflect this technique of learning δ. For
simplicity, we omit this from the discussion. Finally, our non-timely reliable links
may be easily replaced with fair lossy-links as in [15], which are links that deliver
infinitely many times any message-type that has been sent infinitely often. This
requires repeatedly sending messages until acknowledged, and once again, is
omitted from the discussion.

Problem statement. Our goal is to construct in our model a weak leader Ω,
defined as follows [3]: Ω provides every process q at any time t with a local hint
Ωq(t), such that the following holds:

Definition 4 (Ω). There exist a time t and a non-faulty process p, such that
for any t′ ≥ t, every process q that is not faulty at time t′ has Ωq(t′) = p.

4 Ω with �f -Accessibility

Our first protocol implements Ω under the �f -accessibility condition. The pro-
tocol for process p appears in Figure 1. It works as follows.

Each process maintains for itself a non-decreasing epoch number, as well as an
epoch freshness counter. Epochs are implemented using the following data types
and variables. An epoch number is a pair that consists of an integer field named
serialNum and another field named processId , which stores either a process id
or null. We assume a total ordering on process ids with null smaller than any
process id . Epoch numbers are ordered lexicographically, first by serialNum and
then by processId .

We define a state to be a pair consisting of an epoch-number field named
epochNum and an integer field named freshness . States are ordered lexicograph-
ically, first by epochNum and then by freshness .

A process refreshes its epoch number in fixed periodicity of length Δ, by
incrementing the epoch freshness counter and writing it to its registry, which is
replicated on all processes in the system. If the refresh fails to complete updating
the registry at f +1 processes within the known δ round-trip bound, the process
increases its own epoch number. The vector registry [] records locally at each
process the latest state it received from others: registry[q] is updated upon receipt
of a refresh message from q.

Process p records the states it reads of all other processes in a vector named
views[]. A process updates its view by periodically reading the entire registry
vector from n − f processes. Each entry views [q] has two fields. One is a state
field, and the other is a bit called expired indicating whether q’s state has been
continuously refreshed or not. Initially, all serialNum and freshness fields are
zeroed, and expired field set to true.

The idea is to select as a leader the process with the lowest non-expired epoch
number (breaking ties using process ids). To assess whether an epoch number
has expired or not, every process reads the registry of all processes from n − f
processes periodically. The exact period between the completion of a previous
read and the start of the next must be at least Δ + δ to guarantee that every

206 D. Malkhi, F. Oprea, and L. Zhou

process has had a chance to refresh its registry at least once between reads. If a
process p detects no change in another process q’s counter, p expires q’s epoch
number and no longer considers q a contender for leadership until a new epoch
is detected for q.

The intuition behind the success of the protocol is as follows. First, unless
a process always manages to write its registry to f other processes within δ
time units after some point, its epoch number will increase indefinitely or will
be considered expired (e.g., when it fails).

Second, consider a process p that after a certain time t always manages to write
its registry to f other processes within δ. It follows that eventually p stops increas-
ing its epoch number. Note that this is true for any �f -accessible process. Let p
be the process whose epoch number stops increasing at the lowest value in the sys-
tem. Denote that lowest epoch number as ep. The timely refreshing of ep makes it
eventually known as p’s epoch by all non-faulty processes. Observe that ep never
expires at any other process, because p succeeds in refreshing ep’s freshness counter
every Δ time period. Furthermore, eventually all higher epoch numbers either be-
come known to all non-faulty processes, or belong to processeswhose (lower) epoch
numbers expire. Hence, eventually all other processes will consider p leader.

The protocol also makes use of monotonically increasing counters, such as
refreshNum and readNum, to associate responses with requests. These counters
are initialized to 0. Variables epochStartTime and lastCompletedReadStartTime
are introduced for later use, when the protocol is extended for stability in
Section 5.

Process p also has a variable leader : P ∪ null, that captures p’s view of
the current leader. leader is initially set to null. Ωp(t) is thus defined to be the
value of leaderp on process p at time t. The correctness proof showing that the
protocol in Figure 1 implements Ω appears in the full version of this paper [19].

5 Stability

Driven by our need to employ Ω within repeated consensus instances of the
Paxos protocol, we now introduce a crucial addition to Ω.

The definition of Ω mandates that eventually a single leader stabilizes and
is never replaced. However, it allows many leaders to be replaced many times
until that time arrives. This is undesirable in many respects. In Paxos, replacing
a leader is a costly operation. The new leader needs to perform an extra round
of communication in order to collect information about the latest actions of the
previous leader. In many other settings, electing a new leader involves heavy
re-configuration procedures, which should be avoided if possible.

We therefore would like to require that a qualified leader (e.g., a �f -accessible
leader) never be demoted. To this end, we first need to define precisely what it
means for a process to be a leader. Our definition is simple and is grounded in
practice: A process p is a leader at time t if it considers itself a leader at time t.
More precisely, we have the following simple definition:

Leader Election and Stability Without Eventual Timely Links 207

Start refreshTimer with Δ time units; Start readTimer with Δ + δ time units;

REFRESH:
Upon refreshTimer timeout: /* time to refresh the registry */

start refreshTimer with Δ time units;
ackMsgCount := 0; refreshNum ++;
send 〈refresh, p, registry [p], refreshNum〉 to every q ∈ P ;
start roundTripTimer with δ time units;

Upon receiving 〈refresh, q, rg , rn〉:
if (registry [q] < rg) registry [q] := rg ; send to q 〈ack, p, q, rn〉; end if

Upon receiving 〈ack, q, p, rn = refreshNum〉:
if (++ackMsgCount ≥ f + 1)

stop roundTripTimer; registry [p].freshness ++;
end if

ADVANCE EPOCH:
Upon roundTripTimer timeout: /* no timely links to a quorum */

views[p].expired := true; registry [p].epochNum.serialNum ++;
epochStartTime := currentTime;

COLLECT:
Upon readTimer timeout: /* time to read the registries */

lastReadStartTime := currentTime; readNum ++;
statusMsgCount := 0; oldViews := views; /* store for comparison */
send 〈collect, p, readNum〉 to every q ∈ P ;

Upon receiving 〈collect, q, rn〉: send to q 〈status, p, q, rn , registry〉;

Upon receiving 〈status, q, p, rn = readNum , qReg〉:
for each r ∈ P views[r].state := max(qReg [r], views[r].state); end for
if (++statusMsgCount ≥ n − f) /* responses from a quorum collected */

lastCompletedReadStartTime := lastReadStartTime ;
for every r ∈ P /* check if r has refreshed its epoch number */

if (views[r].state ≤ oldViews[r].state) views[r].expired := true; end if
if (views[r].state.epochNum > oldViews[r].state.epochNum)

views[r].expired := false;
end if

end for
leaderEpoch := min({views[q].state.epochNum | views[q].expired = false}

∪{〈0, null〉});
leader := leaderEpoch .processId ; start readTimer with Δ + δ time units;

end if

Fig. 1. Ω with �f -accessibility

208 D. Malkhi, F. Oprea, and L. Zhou

Definition 5. Process p is a leader at time t iff Ωp(t) = p.

Intuitively, this definition is desirable because, once p considers itself a leader,
it takes actions as leader and may incur any cost mentioned earlier associated
with leadership. Leader stability is then defined simply as follows:

Definition 6 (Leader Stability:). Let p be a leader at time t, and assume
that p is f -accessible during the period [t − δ, t + τ]. We say that a protocol
implementing Ω satisfies leader stability at time t+τ if p is still a leader at time
t + τ , and no other process q �= p is a leader at time t + τ .

Ω with Stability

In this section, we introduce changes to the above protocol in order to provide
for leader stability. In order for these changes to work, however, we require
n = 2f + 1.3

In the protocol of Figure 1, p considers itself a leader immediately when p sets
leaderp to p; that is, when p’s current epoch number is the lowest non-expired
epoch number in p’s view. This is insufficient; the scenario that disrupts stability
is as follows. Suppose a process p becomes a leader at time t because its current
epoch number ep is the lowest non-expired epoch number in its view at t. In the
meantime, another process q times out on an epoch number eq < ep − 1 and
advances to a new epoch number eq + 1 < ep. If q now becomes f -accessible,
eq + 1 will eventually become the lowest epoch number, demoting leader p even
if p has been f -accessible; leader stability is thus violated.

To achieve stability, for a process p to become a leader, we not only require
that p’s epoch number be the lowest non-expired epoch number in p’s view, but
further require that p declare itself a leader only after making sure that no non-
expired lower epoch number will cause other processes to claim leadership. This
can be achieved by the following two extensions to the first protocol:

1. Whenever a process initiates a new epoch number, rather than incrementing
the epoch number by 1, it learns the highest existing epoch number through
a timely communication (with bound δ) with n− f processes and then picks
an epoch number that is higher than any existing epoch number.

2. Process p not only checks whether its current epoch number is the lowest in
its current view, but also waits for sufficiently long to ensure that all non-
expiring epoch numbers that can be lower than ep must have been reflected
in p’s view.
To be precise, let t be the time when the current epoch number ep is chosen,
a process p has to wait until the completion of a collect/status round that
starts at least 2Δ + 3δ time units after time t. This is because a non-faulty
and f -accessible p will start its first refresh for ep at t + Δ and receive f + 1
responses before t + Δ + δ. In order for another process q to pick an epoch

3 Alternatively, we could require that an accessible process have timely links to n− f
processes, rather than f + 1 processes.

Leader Election and Stability Without Eventual Timely Links 209

Start refreshTimer with Δ time units; Start readTimer with Δ + δ time units;

REFRESH: same as in Figure 1

ADVANCE EPOCH:
Upon initialization or roundTripTimer timeout:

/* no timely links to a quorum, retrieving existing epoch numbers */
stop refreshTimer;
refreshNum ++; isLeader := false; views[p].expired := true;
epochCount := 0;
globalMaxEn := registry [p].epochNum ;
seqNum ++;
send 〈getEpochNum, p, seqNum〉 to each process q ∈ P ;
start getEpochTimer with δ time units;

Upon getEpochTimer timeout: /* no timely links to a quorum, retry */
seqNum ++;
epochCount := 0;
globalMaxEn := registry [p].epochNum ;
send 〈getEpochNum, p, seqNum〉 to each process q ∈ P ;
start getEpochTimer with δ time units;

Upon receiving 〈getEpochNum, q, sn〉:
localMaxEn :=max{registry [r].epochNum | r ∈ P};
send to q 〈retEpochNum, p, q, sn , localMaxEn〉;

Upon receiving 〈retEpochNum, q, p, sn = seqNum , en〉:
if (en > globalMaxEn) globalMaxEn := en; end if
if (++epochCount ≥ n − f) /* epoch numbers from a quorum collected */

registry [p].serialNum := globalMaxEn.serialNum + 1;
epochStartTime := currentTime;
start refreshTimer with Δ time units;

end if

COLLECT: same as in Figure 1

BECOME LEADER:
Upon change to lastCompletedReadStartTime

if (leaderEpoch = registry [p].epochNum ∧
lastCompletedReadStartTime − epochStartTime ≥ 2Δ + 3δ)
isLeader := true;

end if

Fig. 2. Stable Leader Election Protocol with �f -accessibility

210 D. Malkhi, F. Oprea, and L. Zhou

number eq lower than ep, q must have started the (timely) communication
to learn existing epoch numbers before t + Δ + δ and then started epoch eq

at t+Δ+2δ; otherwise, due to n− f + f +1 > n, one of the n− f processes
reporting existing epoch numbers will be among the t + 1 that know ep and
will report an epoch number that is ep or higher. If q never expires eq, then
it will complete its refresh for eq at t + 2Δ + 3δ. Any collect/status round
after t + 2Δ + 3δ will reflect eq; therefore, ep is not the lowest non-expired
epoch and p will not become a leader.

To capture the condition under which a process considers itself a leader, we
introduce, in addition to variable leaderp, a boolean local variable isLeaderp for
each process p and define Ωp as follows:

Ωp :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p isLeaderp = true

leaderp leaderp �= p ∧ leaderp �= null

null otherwise

The full protocol is given in Figure 2. The correctness proofs appear in the full
version of this paper [19].

6 Reducing Message Complexity

As suggested in [9], a crucial measure of communication complexity is the number
of links that are utilized infinitely often in the protocol. Our protocols use all-to-
all communication infinitely often to keep leader information up to date, hence
employ O(n2) infinite-utilization links.

For the protocol in Figure 1, the steady-state communication complexity can
be reduced to O(n), where in a steady state there exists a unique f -accessible
leader that is never suspected by any non-faulty process. We briefly sketch the
required changes here. The full paper [19] contains a precise protocol description
and its correctness proof.

The first change is related to the refreshing of epoch numbers. A process
p that is not currently the leader need not refresh its own epoch number; it
can simply let it become inactive, since it is not contending for the leadership.
Therefore, we disable the periodic refresh at p when it is not a leader. A pro-
cess increments its epoch number only when it experiences a roundTripTimer
timeout, as in the original protocol, and may “revive” an inactive epoch number
when becoming a leader.

The second change is related to the monitoring of epoch numbers in the
system. In a steady state, there is no reason for a process p to monitor the states
of all other processes. Therefore, we disable periodic collect altogether.

A process p that does not obtain any refresh message carrying the current
presumed leader’s epoch number for some timeout period suspects that the cur-
rent leader has failed. Likewise, a process p that hears a refresh message carrying

Leader Election and Stability Without Eventual Timely Links 211

a lower epoch number than the current presumed leader’s epoch number assumes
that it does not have up-to-date information about the current leader .

In these two cases (only), a process activates the collect procedure twice,
where the second one is activated at least Δ + δ time units after the first one
completes, as in the original protocol. Process p then determines the lowest active
epoch number and compares it with its current epoch number. If p’s current
epoch number is no higher than the lowest active epoch number, p becomes a
leader and activates refresh periodically as in the original protocol. Otherwise,
p will consider the process owning the lowest epoch number as the leader and
expect to receive refresh messages from that process periodically.

The intuition behind the success of the modified protocol is somewhat similar
to our original protocol, but with crucial differences. As before, consider a process
p that, after a certain time t, always manages to write its registry to f other
processes within δ. It follows that eventually p stops increasing its epoch number.
Note that this is true for any �f -accessible process.

Now, consider a non-crashed process q with the lowest current epoch number
in the system. If q is not the leader yet, then q believes that there exists a lower
active epoch number than its own. Because such an epoch number no longer
exists, eventually q times out on that epoch number and performs two collects.
Because its epoch number is the lowest among the non-crashed processes, it will
learn that its epoch number is no higher than the lowest active epoch number
in the system and become a leader. If q is not �f -accessible, eventually it will
fail updating its own freshness counter and will increase its epoch number.

Together, we have that, on the one hand, the �f -accessible processes stop
increasing their epoch numbers. On the other hand, any non �f -accessible pro-
cess either crashes or increases its own epoch number to be higher than the
lowest epoch number in the system. As before, the process p whose epoch stops
increasing at the lowest value in the system becomes a permanent leader.

In terms of message complexity, once an f -accessible leader is elected and all
processes receive its refresh messages without suspecting the leader, eventually
all non-leader processes stop refreshing their epochs and stop reading, hence the
communication complexity drops to O(n).

7 Discussion

The condition we introduced to uphold stability in this paper, namely n = 2f+1,
is stronger than what is required in practice. It is worth noting that, for both
Paxos and our stable leader election protocol, it suffices for a leader p to interact
in a timely fashion once with n− f processes. Subsequently, p can maintain its
leadership and proceed with consensus decisions, provided that it can interact
at any time with f + 1 processes.

Stability also appears to be in conflict with the ability to reduce the steady-
state message complexity to O(n). Intuitively, the reduced message complexity
forces a process to decide whether to become a leader based on less accurate in-
formation, thereby creating opportunities for unnecessary demotion. For example,

212 D. Malkhi, F. Oprea, and L. Zhou

in our protocol, to ensure stability, a process becomes a leader only when it is cer-
tain that no process can have a lower active epoch number. This is hard because
epoch numbers can remain inactive (and unknown to other processes) before they
are revived. It is left as an open question whether a stable leader protocol exists
under �f -accessibility with O(n) steady-state message complexity.

8 Conclusion

It is our firm belief that leader election algorithms that implement Ω should be
studied in the context of practical coordination schemes that realize consensus.
This paper makes two contributions toward this goal.

First, it contributes to the study of weak synchrony conditions that enable
leader election. �f -accessibility, the synchrony condition we require, is new and
surprisingly weak, in that it requires no eventual timely links. It is incompa-
rable to (but also not stronger than) previously known conditions for leader
election. The condition is derived by our observations on Paxos, leading to an
implementation of Ω under f -accessibility.

Second, it provides practical and stable leader election protocol that elimi-
nates unnecessary and potentially expensive leader changes. The paper therefore
provides Paxos with a “good” leader election protocol; this was left as an open
problem in Lamport’s original Paxos paper [1].

References

1. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems
16 (1998) 133–169

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374–382

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43 (1996) 685–722

5. Lee, E.K., Thekkath, C.: Petal: Distributed virtual disks. In: Proceedings of the 7th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 1996). (1996) 84–92

6. Thekkath, C., Mann, T., Lee, E.K.: Frangipani: A scalable distributed file system.
In: proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP 1997). (1997) 224–237

7. van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput
and availability. In: Proceedings of the 6th Usenix Symposium on Operating System
Design and Implementation (OSDI 2004). (2004) 91–104

8. MacCormick, J., Murphy, N., Najork, M., Thekkath, C.A., Zhou, L.: Boxwood:
Abstractions as the foundation for storage infrastructure. In: Proceedings of the
6th Usenix Symposium on Operating System Design and Implementation (OSDI
2004). (2004) 105–120

Leader Election and Stability Without Eventual Timely Links 213

9. Larrea, M., Fernndez, A., Arvalo, S.: Optimal implementation of the weakest failure
detector for solving consensus. In: Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS 2000). (2000) 52–59

10. Prisco, R.D., Lampson, B., Lynch, N.: Revisiting the Paxos algorithm. In: Pro-
ceedings of the 11th Workshop on Distributed Algorithms(WDAG). (1997) 11–125

11. Larrea, M., Arvalo, S., Fernndez, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Proceedings of the 13th
International Symposium on Distributed Computing (DISC 1999). (1999) 34–48

12. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election.
In: Proceedings of the 15th International Symposium on Distributed Computing
(DISC 2001). (2001)

13. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Omega with weak reliability and synchrony assumptions. In: Proceedings of the
Twenty-Second Annual ACM Symposium on Principles of Distributed Computing
(PODC 2003), ACM Press (2003) 306–314

14. Anceaume, E., Fernndez, A., Mostefaoui, A., Neiger, G., Raynal, M.: A necessary
and sufficient condition for transforming limited accuracy failure detectors. J.
Comput. Syst. Sci. 68 (2004) 123–133

15. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC 2004), ACM Press (2004) 328–337

16. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms
for failure detectors. In: Proceedings of the 17th Annual ACM Symposium on
Principles of Distributed Computing (PODC 1998). (1998) 297–308

17. Mostefaoui, A., Raynal, M.: Unreliable failure detectors with limited scope accu-
racy and an application to consensus. In: Proceedings of the 19th International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FST&TCS99), Springer-Verlag LNCS #1738 (1999) 329–340

18. Chu, F.: Reducing Ω to �W . Information Processing Letters 67 (1998) 298–293
19. Malkhi, D., Oprea, F., Zhou, L.: Omega meets Paxos: Leader election and stabil-

ity without eventual timely links. Technical Report MSR-TR-2005-93, Microsoft
Research, Redmond, WA (2005)

Plausible Clocks with Bounded Inaccuracy

Brad T. Moore and Paolo A.G. Sivilotti

The Ohio State University, Columbus OH 43210, USA
{mooreb, paolo}@cse.ohio-state.edu

Abstract. In a distributed system with N processes, time stamps of
size N (such as vector clocks) are necessary to accurately track potential
causality between events. Plausible clocks are a family of time-stamping
schemes that use smaller time stamps at the expense of some accuracy.
To date, all plausible clocks have been designed to use fixed-sized time
stamps, and the inaccuracy of these schemes varies from run to run. In
this paper, we define a new metric, imprecision, that formally charac-
terizes the fidelity of a plausible clock. We present a new plausible clock
system that guarantees an arbitrary constant bound on imprecision. This
bound is achieved by allowing time stamps to grow and shrink over the
course of the computation. We verify the correctness of our algorithm,
present results of a simulation study, and evaluate its performance.

1 Introduction

The events of a distributed system can be ordered by potential causality: whether
one event might have affected another. Determining this ordering between events
is of fundamental importance to a variety of distributed algorithms. For example,
a global snapshot consists of a set of events such that no pair is causally related
[1,2,3]. Cache-coherence protocols can maintain consistency by ordering updates
to a shared object by potential causality [4,5,6] Resource allocation algorithms
can use this relation to resolve contention for a shared resource [7,8].

Many logical time-stamping schemes exist to track potential causality be-
tween events. Lamport clocks [9], for example, time stamp each message and
event with an integer, while vector clocks [10,11] time stamp each message and
event with an array of integers. Although Lamport clocks require less overhead,
they carry limited information: Lamport clocks order all events that are causally
related but may also order events that are not causally related. On the other
hand, the larger time stamps of vector clocks permit them to be completely
accurate: Vector clocks order all and only events that are causally related.

This trade-off between space and accuracy is inherent to the problem. For
a system with N processes, time stamps of size N are both sufficient and
necessary for complete accuracy [12]. This result means that no time-stamping
scheme can simultaneously guarantee small time stamps and perfect accuracy.

A plausible clock is a time-stamping system that satisfies the requirement that
all events that are causally related be ordered, but not necessarily the additional
requirement that only events that are causally related be ordered [13]. Because

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 214–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Plausible Clocks with Bounded Inaccuracy 215

plausible clocks do not guarantee perfect accuracy, they can be implemented with
small time stamps. Several plausible clock schemes have been developed [13,14]
that use constant-sized time stamps. The accuracy achieved by these schemes
varies from run to run and even over the course of a single execution. Their
performance, therefore, is quantified in terms of their expected-case inaccuracy
and is generally assessed through simulation.

In this paper, we introduce a new performance measure: imprecision. Infor-
mally, the imprecision of a time stamp is the maximum number of incorrect
orderings permitted by such a stamp. Thus, imprecision reflects an upper bound
on the inaccuracy of a time-stamping system. Existing plausible clock algorithms
are parameterized by the size of time stamps used. For any chosen size less than
N , however, the imprecision of such an algorithm can be quite high. In contrast,
we describe a new algorithm that is parameterized by the amount of impreci-
sion. This algorithm allows time stamps to grow and shrink over the course of
the computation as necessary to maintain the desired level of precision. To our
knowledge, this is the first guaranteed precision plausible clock algorithm.

We quantify the performance of our algorithm in two ways. Firstly, we study
the expected-case time-stamp size through simulation. That is, we determine
the average time-stamp size needed to maintain a given level of precision, under
a variety of circumstances. Secondly, we examine the expected-case accuracy
achieved by our algorithm through simulation. That is, we determine how close
the actual inaccuracy comes to the upper bound reflected in the selected level
of imprecision. We compare the performance of our algorithm with that of two
existing plausible clock algorithms.

2 Background and Definitions

2.1 The Model

Adistributed systemconsists of N processes. Processes communicate by message-
passing, which is asynchronous, point-to-point, and fault-free. The execution of a
process pi is a finite sequence of events denoted Hi . Each event is either a local,
send, or receive event. There is a one-to-one correspondence between send events
and theirmatching receive events.The executionof the system is the set of all events
from the individual histories, H = (∪ i : 1 ≤ i ≤ N : Hi) .1

The happens before (→) relation [9] orders the events in H by their potential
causal relationship. For two events a ∈ Hi and b ∈ Hj , a → b if and only if:

1. i = j and a occurs before b on pi ,
2. a is a send event and b is the corresponding receive event, or
3. there exists an event c ∈ H such that a → c and c → b .
1 The notation we use for quantification throughout this paper is (op vars :

ranges : exp) , where op is an associative and commutative operator with an iden-
tity element, vars is the set of bound variables, ranges is a predicate restricting the
ranges of the bound variables, and exp is the expression to be quantified.

216 B.T. Moore and P.A.G. Sivilotti

Two events are concurrent when neither happens before the other:

a ‖ b ≡ ¬(a → b) ∧ ¬(b → a) .

2.2 Logical Clocks

A time-stamping system X [13] is a tuple (〈S,
X→〉, G, X.stamp, X.tag) , where:

S is a set of logical time values used locally (time stamps),
X→ is an irreflexive transitive relation on time stamps,
G is a set of logical time values appended to messages (time tags),
X.stamp is the time stamping function mapping events to stamps, and
X.tag is the tagging function mapping event time stamps to message time tags.

The relation X→ is irreflexive and transitive, therefore 〈S,
X→〉 is a strict

partial order. This strict partial order induces further relations: for r, s ∈ S ,

r
X= s ≡ r = s

r
X

‖ s ≡ ¬(r X→ s) ∧ ¬(s X→ r) ∧ ¬(r X= s) .

For convenience, we will overload the definitions of these relations to allow them
to directly compare events of H . For instance, given two events a, b ∈ H ,

a
X→ b ≡ X.stamp(a) X→ X.stamp(b) .

In practice, the function X.stamp is guaranteed to be locally computable
by defining it inductively. First, time stamps are defined for all initial events.
Then, a function on S ×G is given that determines the time stamp of an event
based upon the most recent local time stamp and the most recently received
message time tag. When the time-stamping system is clear from context, we will
omit the name and write simply stamp and tag .

2.3 Example: Vector Clocks

The vector clock is a logical clock that characterizes the happens before relation
(i.e., a → b ≡ a

Vector→ b). A time stamp s ∈ S is a vector of N integers
(S = Z

N). The stamp function is defined inductively. The time stamp of
an initial (local) event on pi is all 0’s except for the ith entry, which is 1.
A subsequent local or send event on pi has the same stamp as its immediate
predecessor on pi , except the ith entry is incremented. Finally, the time stamp
of a receive event is the element-wise max of the current stamp (with the ith

entry incremented) and the incoming tag.
Time tags are identical to time stamps (G = S). The tag function is the

identify function: The time tag appended to a message is the time stamp of the
corresponding send event. The Vector→ relation is defined to be2

2 The bound variables i and j will be understand to range from 1 to N and so the
range can be omitted.

Plausible Clocks with Bounded Inaccuracy 217

r
Vector→ s ≡ (∀ i :: r[i] ≤ s[i]) ∧ (∃ j :: r[j] < s[j]) .

A vector clock maintains the two important properties. First, events on a
given process are mapped to a strictly increasing sequence of integers. That is,
for two time stamps r = stamp(a) and s = stamp(b) on process pi , a →
b ≡ r[i] < s[i] . Second, a stamp records the most recent happens before event
from each process. For instance, consider a time stamp r = stamp(a) on process
pi . For each entry r[j] where j �= i , there exists a time stamp s = stamp(b)
on pj such that s[j] = r[j] . This event b is the most recent event on pj that
happens before a . More formally, b→ a ∧ ¬ (∃ c ∈ Hj :: b→ c ∧ c → a) .

2.4 Plausible Clocks

A time-stamping system P is plausible if and only if it satisfies, for all a, b ∈ H ,

a → b ⇒ a
P→ b (1)

a = b ≡ a
P= b . (2)

Equation (1) requires that a plausible clock’s ordering relation on time stamps
be consistent with the happens before relation between events: Every pair of
causally-related events is correctly ordered by the plausible clock, although some
unrelated (i.e., concurrent) events may also be ordered. Equation (2) requires
that a plausible clock’s time stamps can be used to distinguish different events.

2.5 Inaccuracy

The inaccuracy of a plausible clock is the ratio of the number of incorrectly
ordered event pairs to the number of concurrent event pairs in the system [14].
Formally, we define C as the set of concurrent pairs in the system, and M as
the set of incorrectly ordered pairs. The inaccuracy of a plausible clock P on a
history H , ρ(P, H) , is therefore defined by

C = { (a, b) ∈ H ×H : a ‖ b : (a, b) }

M = { (a, b) ∈ H ×H : a ‖ b ∧ ¬(a
P

‖ b) : (a, b) }

ρ(P, H) =
|M |
|C| .

Accuracy can then be defined as 1 − ρ(P, H) . Note that ‖ and
P

‖ are both
symmetric, so a single pair of events is counted twice in both C and M .

2.6 Imprecision

Our goal is to create a plausible clock that can guarantee an arbitrary bound on
inaccuracy. To be practical, there should be no presumption of global information

218 B.T. Moore and P.A.G. Sivilotti

nor should the clock modify the underlying computation (e.g., by sending extra
messages). Our approach is to bound the inaccuracy by controlling the maximum
possible error permitted by individual time stamps. To this end, we redefine
inaccuracy in terms of this error.

First, we define the local error of a plausible clock to be the number of
mistakes it makes with respect to a given event. More precisely, it is the number
of (concurrent) events that are mistakenly ordered before the event in question.
Formally, we define the local error of P with respect to an event b by

δ(P, H, b) = |{ a ∈ H : a ‖ b ∧ a
P→ b : a }| .

We can now define the total number of mistakes in terms of the local error for
each event (note, we do not double-count pairs in the definition of local error):

|M | = 2 ∗ (
∑

b ∈ H :: δ(P, H, b)) .

Therefore, inaccuracy can be written as

ρ(P, H) = 2 ∗ (
∑

b ∈ H :: δ(P, H, b))
|C| .

Our definition of ρ(P, H) is still problematic. We would like to define inac-
curacy in terms of the local error per event; however, it is currently the ratio
between the sum of local error and the total number of concurrent event pairs.
To this end, we define ε(H) as the ratio between the total number of concurrent
pairs and the total number of events:

ε(H) = 1/2 ∗ |C||H | .

For computations that exhibit regular communication patterns and whose pro-
cesses are not partitioned, the value of ε(H) remains constant as H is extended
with new events. If the processes were partitioned (say one process ceases to
communicate), this ratio would increase without bound as H is extended with
new events. For the remainder of the paper, we will assume fault-free executions
where all processes actively communicate within the system. Rewriting the total
number of concurrent pairs in terms of this concurrency ratio, we have

ρ(P, H) = 1/ε(H) ∗ (
∑

b ∈ H :: δ(P, H, b))
|H | .

Since we assume that ε(H) is a constant, we need only to bound the mean value
of δ in order to bound the inaccuracy. Unfortunately, we cannot use δ directly
in our algorithm; the stamp function is defined inductively over time stamps
and not histories. Therefore, we define a new metric that is based on time stamps
and hence can be used directly by a plausible clock to reason about fidelity. We
call this metric imprecision. The imprecision of a time stamp generated by a
plausible clock is an upper bound on the number of ordering mistakes made for

Plausible Clocks with Bounded Inaccuracy 219

an event with that time stamp. More formally, let H(P, s) be the set of histories
for which the plausible clock P generates the time stamp s :

H(P, s) = {H : (∃ a ∈ H :: P.stamp(a) = s) : H } .

Imprecision, ψ(P, s) , then is defined by

ψ(P, s) = (MaxH ∈ H(P, s), a ∈ H : P.stamp(a) = s : δ(P, H, a)) .

Intuitively, imprecision is the worst-case value of δ for an event with a given
time stamp. Note that imprecision is independent of history and therefore is a
function of the information contained within a time stamp. If we guarantee that
all time stamps generated during a computation have an imprecision below some
arbitrary bound, K , then the mean value of δ is also below that bound. The
resulting bound on inaccuracy is given by

ρ(P, H) ≤ 1/ε(H) ∗ (
∑

b ∈ H :: ψ(P, P.stamp(b)))
|H | ≤ K/ε(H) .

3 A Guaranteed Precision Plausible Clock

3.1 Logical Time Intervals

With vector clocks, the time stamps of events on process pi all differ in their
ith entry. This one entry orders these events and distinguishes between them.
The other entries serve a different purpose: Each one uniquely identifies the most
recent happens-before event on the corresponding remote process. Our approach
is conceptually similar. Time stamps are vectors where the ith entry orders and
distinguishes between events on pi , while the other entries indicate the most
recent happens-before events on remote processes. The difference is that a range
of values, rather than a single one, is used as an entry in the array and hence
the most recent happens-before events are not uniquely identified.

At the core of our algorithm is the concept of a time interval. A time interval
is a tuple 〈beg, end〉 where beg and end are integers and beg ≤ end . Unlike
the integer entry of vector clocks which corresponds to a single event, a time
interval corresponds to a set of events. The event of interest is within this range.
Thus, when comparing two time intervals, we can conclude something about the
ordering of the respective events of interest only when the ranges do not overlap.
The ordering between two intervals m and n is given by

m
int
< n ≡ m.end < n.beg

m
int≈ n ≡ ¬(m

int
< n) ∧ ¬(n

int
< m)

m
int

� n ≡ (m
int
< n) ∨ (m

int≈ n) .

220 B.T. Moore and P.A.G. Sivilotti

Fig. 1. Examples of time interval comparison

We define a precise interval to be one in which the begin and end points are
equal. In the case of precise intervals, an overlap reflects exact equality:

precise(m) ≡ m.beg = m.end

m
int= n ≡ precise(m) ∧ precise(n) ∧ m = n .

3.2 Definition of S and G

A time stamp s ∈ S is a vector of N time intervals. Let min beg(s)
(min end(s)) be the minimum begin (end) point in s . Like vector clocks,
our time stamps map the events of a given process to an increasing sequence.
That is, for two time stamps r = stamp(a) and s = stamp(b) on process pi ,

precise(r[i]) ∧ precise(s[i]) (3)

a → b ≡ r[i]
int
< s[i] . (4)

A time stamp s also satisfies several additional properties. First, all imprecise
intervals of s share the same end value. Second, all precise intervals of s are
greater than the imprecise intervals. Both properties are captured by:

(∀ i : ¬precise(s[i]) : s[i].end = min end(s)) . (5)

Like time stamps, a time tag t is also a vector of N time intervals. It satisfies
all the properties of time stamps and, in addition, the property that imprecise
intervals have the same begin point:

(∀ i : ¬precise(s[i]) : s[i].beg = min beg(s)) . (6)

Thus, G ⊂ S . See Fig. 2 for an illustration of a time stamp and a time tag.

Ordering. The comparison of time stamps in our algorithm is similar to that of
vector clocks. The P→ relation is formally defined by:

r
P→ s ≡ (∀ i :: r[i]

int

� s[i]) ∧ (∃ j :: r[j]
int
< s[j]) .

Plausible Clocks with Bounded Inaccuracy 221

Fig. 2. A time stamp (a) and a time tag (b) in a system with 6 processes. Imprecise
entries in a time tag share a common interval.

Space Complexity. Since precise intervals can be encoded with a single integer
and all imprecise intervals share the same end point, time stamps can be encoded
with N + 1 integers (i.e., N begin values and one common end value).

For a time tag with R precise intervals, R log N bits are required to encode
the mapping between precise intervals and their respective processes. Since all
imprecise intervals are the same, a time tag requires R(L + log N) + 2L bits,
where L bits are used to encode a single integer.

Imprecision. The size of the intervals determines the imprecision of a time stamp.
In any given history, the local error possible for a stamp s with respect to some
process pi is the size of the ith interval of s . Hence, the imprecision is the sum
of these interval lengths:

ψ(s) = (
∑

i :: s[i].end− s[i].beg) .

3.3 Definition of Stamp

The stamp function is defined inductively for process pi as follows. Initially, all
time stamp entries are precise intervals equal to 〈0, 0〉 except for the ith entry
which is set to 〈1, 1〉 . During a local/send event, the ith entry is incremented.
Thus, if r is the old stamp on pi , the new stamp s is defined by

precise(s[i]) ∧ s[i].end = r[i].end + 1
(∀ j : j �= i : s[j] = r[j]) .

Upon receiving a time tag, the max of the beg and end points of each entry is
taken and the ith entry is incremented. Thus, if r is the old stamp on pi and
t is the time tag of the incoming message, the new stamp s is defined by

precise(s[i]) ∧ s[i].end = max(r[i].end, t[i].end) + 1
(∀ j : j �= i : s[j] = 〈max(r[j].beg, t[j].beg), max(r[j].end, t[j].end)〉) .

222 B.T. Moore and P.A.G. Sivilotti

Algorithm 1: stamp
Data: r is old stamp on pi , s is new stamp on pi , t is incoming tag
INITIALLY:

for j := 1 to N do s[j] := 〈0, 0〉
s[i] := 〈1, 1〉

LOCAL or SEND EVENT:
for j := 1 to N do s[j] := r[j]
s[i].end := s[i].end + 1
s[i].beg := s[i].end

RECEIVE EVENT:
for j := 1 to N do

s[j].end := max(r[j].end, t[j].end)
s[j].beg := max(r[j].beg, t[j].beg)

end
s[i].end := s[i].end + 1
s[i].beg := s[i].beg

3.4 Definition of Tag

The goal of the tag algorithm is to construct the smallest possible time tag while
not exceeding its bound on imprecision. Informally, the time tag is constructed
by iteratively adding the greatest precise intervals until the error of the time
tag is below the imprecision bound, K . The common imprecise interval of the
time tag is formed by taking the max end value and the min beg value of the
remaining intervals not in the time tag. The pseudo-code for tag is Algorithm 2.
The function ith max(i, s) returns the index of the ith largest precise interval
in time stamp s .

3.5 Example

Figure 3 depicts two examples of a process executing three events: a local event,
a receive event, and a send event. In these example, the process is p3 , there are
a total of 6 processes, and the bound on imprecision is 30 . Observe that the
time stamps satisfy property (5), while the time tags satisfy (5) and (6). Also
note that the imprecision of each stamp (and tag) is less than the bound.

When a message is received, the new stamp is calculated as the element-wise
max of the old stamp and the incoming message. The result of this operation is
a valid time stamp (i.e., it satisfies (5)). In Fig. 3(a) the imprecision of the local
stamp increases as the result of an incoming message (from 6 to 15), while in
Fig. 3(b) it decreases (from 6 to 3).

Message tags are constructed from time stamps using the largest possible
common interval such that the imprecision of the tag is less than the bound. In

Plausible Clocks with Bounded Inaccuracy 223

Algorithm 2: tag
Data: r is the time stamp of the send event, t is the outgoing tag
for j := 1 to N do t[j] := 〈0, 0〉
minbeg := (Min j : 1 ≤ j ≤ N : r[j].beg)
i := 1
k := ith max(i, r)
while (N − i + 1) ∗ (r[k].end − minbeg) > K do

t[k] := r[k]
i := i + 1
k := ith max(i, r)

end
for j := 1 to N do

if t[j] = 〈0, 0〉 then
t[j].end = r[k].end
t[j].beg = minbeg

end

end

Fig. 3. Sample executions illustrating stamp and tag

Fig. 3(b), for example, entries 1,2,4, and 5 are part of the common interval, giving
an imprecision of 4 ∗ (14 − 10) = 16 . The next largest common interval would
include entry 3 and so would be 〈10, 17〉 . The resulting imprecision, however,
would be 5 ∗ (17− 10) = 35 which exceeds the bound.

4 Proofs of Correctness

In this section, we sketch the proof of correctness for our time-stamping scheme.
Only the main theorems and lemmas are given, while details are available in [15].

We first define two operators on time stamps, then use these operators to
show plausibility and boundedness of imprecision.

224 B.T. Moore and P.A.G. Sivilotti

4.1 The Join (��) and Expand Operators

We define the join (r �� s) of two time stamps by

(∀ i :: (r �� s)[i].beg = max(r[i].beg, s[i].beg)
∧ (r �� s)[i].end = max(r[i].end, s[i].end)) .

The stamp function for receive events can be redefined in terms of join. Figure 4
is a graphical representation of this operator.

Fig. 4. The join (��) operator

An important property is that S is closed under join. That is, the join of two
time stamps, r and s , satisfies (5). This closure property allows us to prove,
inductively, that all stamps generated by stamp are indeed elements of S and
all tags generated by tag are indeed elements of G .

Next, we define the expand of a time stamp by

expand(s) = (
∑

i : ¬precise(s[i]) : min end(s)−min beg(s)) .

Thus, expand(s) is the size of the smallest (i.e., shortest common interval)
time tag that can be generated from s .

We can show that the join operation does not increase the worst-case error
of the system. That is, the expand of the join of two time stamps is less than
or equal to the max of their respective expand ’s:

expand(r �� s) ≤ max(expand(r), expand(s)) .

This property allows us to prove inductively that the expand of all stamps
generated by stamp and all tags generated by tag is below a specified bound.

4.2 Proof of Plausibility

In order to prove that P is plausible, we begin by showing that the P→ relation
holds between pairs of events on the same process as well as send-receive pairs.

Theorem 1. If a and b both occur on a process pi , a → b ⇔ a
P→ b .

Plausible Clocks with Bounded Inaccuracy 225

Theorem 2. If a is a send event and b is the corresponding receive, a
P→ b .

Another property of P is that the ith (precise) interval can be used to order
events on pi with other events.

Theorem 3. If a and b occur on processes pi and pj respectively, a �= b ∧
stamp(a)[i] int= stamp(b)[i] ⇒ a → b , and stamp(a)[i]

int
< stamp(b)[i] ⇒

a → b .

Theorem 4. P is plausible.

Proof. There are two proof obligations: properties (1) and (2) of plausible clocks.

Property (1): a → b ⇒ a
P→ b . Assume a → b . Therefore, there exists a

chain of events c0, c1, ..., cn where c0 = a and cn = b and (∀ k : 0 ≤
k < n : ck → ck+1) such that adjacent pairs in this chain are either on
the same process or matching send/receive events. From Theorems 1 and 2, we
have (∀ k : 0 ≤ k < n : ck

P→ ck+1) . Furthermore, since end intervals are
non-decreasing along this chain, P→ is transitive along this chain. Therefore,
a

P→ b .

Property (2): a = b ≡ a
P= b . The forward direction follows immediately from

the definition of P= . For the reverse direction, assume a
P= b . Let pi (pj) be the

process on which a (b) occurs and let r (s) be stamp(a) (stamp(b)). Since
r

P= s , r[i] int= s[i] and r[j] int= s[j] . From (3), both r[i] and s[j] are precise.
From Theorem 3, neither r[j] nor s[i] are precise. Since precise intervals are
greater than imprecise intervals, these two intervals cannot be simultaneously
equivalent unless a = b . ��

4.3 Proof That Imprecision is Bounded

Theorem 5. ψ(stamp(a)) = (
∑

i :: stamp(a)[i].end− stamp(a)[i].beg)

Proof. Consider an event b that occurs on process pj . From Theorem 3, a and
b are correctly ordered when the jth intervals of their stamps are ordered by
int= or

int
< . Hence, ordering mistakes can only occur when the jth intervals are

related by
int≈ . From (3) and (4), at most stamp(a)[j].end − stamp(a)[j].beg

such events exist. Thus, (
∑

i :: stamp(a)[i].end − stamp(a)[i].beg) is an
upper bound on the number of incorrectly related events (P→ but not →). This
bound is tight since, for any time stamp s a history can be constructed in which
there is an event whose stamp is s and for which (

∑
i :: stamp(a)[i].end−

stamp(a)[i].beg) ordering mistakes are made. ��

226 B.T. Moore and P.A.G. Sivilotti

5 Experimental Evaluation

We consider a client-server system with 2 clients and 98 servers. A client performs
local events and sends messages to a random server. While waiting for a response,
a client performs only local events. Servers reply to messages in FIFO order, and
only perform local events if there are no outstanding requests from clients. Event
arrivals follow a negative exponential distribution.

For our analysis, we consider only events from the middle of the computation
(i.e., events that have are causally related to some event from each process
which, in turn, is also causally related to some event from each process). We
exclude events at the beginning and end since plausible clocks (including our
own) perform better during the startup of a computation than in steady-state.

The two primary characteristics we evaluate are: the relationship between
message size and inaccuracy; and the difference between the (worst-case) inac-
curacy bound determined by imprecision and the actual (expected-case) inaccu-
racy achieved. The former allows a comparison between our algorithm and other
plausible clock algorithms in terms of trading off accuracy for message overhead.
The latter is unique to our algorithm, where imprecision can be controlled.

Figure 5 depicts the relationship between message size and resulting inac-
curacy. The plausible clocks considered are R-Entries Vector (REV) and Comb
(a combination of REV and k-Lamport) [13]. We fix the k-Lamport component
of Comb to 5 entries while varying the size of its REV component. The results
show that, on average, our algorithm (labeled “Common Interval” in the figure)
yields better accuracy than either of the other two.

Although this figure compares these plausible clocks directly, it is worth re-
membering that these clocks differ in a fundamental way: Our algorithm does
not guarantee a constant message overhead, while other plausible clock algo-
rithms do not guarantee any level of accuracy.3 Therefore, while it is useful
to compare their performance in trading off accuracy for message overhead, the
choice of which algorithm to use will likely be driven by the primary performance
property being optimized.

Figure 6 depicts the relationship between the inaccuracy bound (derived from
imprecision) and the observed inaccuracy. We see that the resulting inaccuracy
is significantly less than the inaccuracy bound. Imprecision measures the worst-
case error per time stamp. Actual runs, however, may not generate events that
result in error equal to each time stamp’s imprecision. Thus, while our algorithm
provides a guarantee on the worst case behavior, it does not do this at the expense
of degrading the expected case inaccuracy.

6 Related Work

Several algorithms have been proposed as scalable solutions to vector clocks. For
instance, in [16] Baldoni and Melideo proposed k -dependency vectors. Their al-
3 Notice that the data points for our algorithm have error bars in the horizontal axis

since time tag size varies.

Plausible Clocks with Bounded Inaccuracy 227

Fig. 5. Performance comparison with
other plausible clocks

Fig. 6. Actual observed inaccuracy com-
pared to upper bound

gorithm affixes a constant-size vector of integers to application messages. The
trade-off for this approach is that extra computation may be required to de-
tect the causal relationship between events. The algorithm requires a dedicated
checker process to determine the causal order of events.

The definition of plausible clocks was formalized in [13], where it was also
shown that such clocks could be combined to improve accuracy. Two plausible
clock algorithms were presented: REV and k-Lamport, along with their combi-
nation, Comb. In [13,17], the performance of Comb was analyzed through simu-
lation. The results of those studies showed good performance of Comb and also
the dependency of that performance on several factors (e.g., local history size,
communication pattern, system size). However, formal analysis of the expected
behavior of a plausible clock algorithm was left for future work.

NUREV clocks were proposed in [14]. This plausible clock uses a fixed vector
size and a dynamic mapping of processor ids to vector entries. Several mappings
were proposed to minimize the ordering errors produced by this clock, and hence
maximize the expected accuracy. This work did not consider the cost of encoding
the dynamic map in the time tag.

Unlike these other approaches, our notion of imprecision–since it reflects a
worst-case bound–permits the evaluation of plausible clock performance inde-
pendent of a particular history or set of histories.

7 Conclusion

The contribution of this work is threefold. Firstly, we have defined a new met-
ric, imprecision, which quantifies the worst-case accuracy of a plausible clock
time-stamping system. This metric characterizes the system itself, independent
of any particular history. Existing plausible clocks are parameterized by message
time tag size and (even those with good average-case accuracy) have unbounded
imprecision. Our second contribution is a new plausible clock algorithm which is
parameterized by imprecision. This algorithm guarantees a maximum, bounded
imprecision by varying the size of time tags as needed during a computation.

228 B.T. Moore and P.A.G. Sivilotti

Finally, we provide an experimental evaluation of this algorithm’s performance.
We find that the expected message size for our algorithm compares favorably
with existing plausible clocks. We also note that since imprecision is a conserva-
tive upper bound on inaccuracy, the actual inaccuracy for a given history may
be considerably less than this guaranteed bound.

References

1. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems 3 (1985) 63–75

2. Netzer, R., Xu, J.: Necessary and sufficient conditions for consistent global snap-
shots. IEEE Transactions on Parallel and Distributed Systems 6 (1995) 165–169

3. Elnozahy, M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message passing systems. Technical Report CMU-CS-96-181, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (1996)

4. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
Definitions, implementation, and programming. Distributed Computing 9 (1995)
37–49

5. Prakash, R., Raynal, M., Singhal, M.: An adaptive causal ordering algorithm suited
to mobile computing environments. Journal of Parallel and Distributed Computing
41 (1997) 190–204

6. Fernández, A., Jiménez, E., Cholvi, V.: On the interconnection of causal memory
systems. In: Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Distributed Computing. (2000) 163–170

7. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM 24 (1981) 9–17

8. Maekawa, M.: A
√

N algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems 3 (1985) 145–159

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

10. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. In: Proc. of the 11th Australian Computer Science Conf. (1988) 55–66

11. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel & Distributed Algorithms. Elsevier
Science Publishers B. V. (1989) 215–226

12. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems.
Information Processing Letters 39 (1991) 11–16

13. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for
distributed systems. Distributed Computing 12 (1999) 179–196

14. Gidenstam, A., Papatriantafilou, M.: Adaptive plausible clocks. In: Proceedings of
the 24th International Conference on Distributed Computing Systems (ICDCS’04),
IEEE Computer Society (2004) 86–93

15. Moore, B.T.: Plausible clocks with bounded inaccuracy. Master’s thesis, The Ohio
State University (2005) available as technical report OSU-CISRC-7/05-TR52.

16. Baldoni, R., Melideo, G.: k-dependency vectors: A scalable causality-tracking pro-
tocol. In: Proceedings of the 11th Euromicro Conference on Parallel, Distributed
and Network-Based Processing. (2003)

17. Torres-Rojas, F.J.: Performance evaluation of plausible clocks. In: Proceedings of
the 7th Euro-Par Conference. (2001) 476–481

Causing Communication Closure: Safe Program
Composition with Non-FIFO Channels�

Kai Engelhardt1 and Yoram Moses2,��

1 School of Computer Science and Engineering,
The University of New South Wales, and NICTA���

Sydney, NSW 2052, Australia
kaie@cse.unsw.edu.au

2 Department of Electrical Engineering, Technion,
Haifa, 32000 Israel

moses@ee.technion.ac.il

Abstract. A semantic framework for analyzing safe composition of distributed
programs is presented. Its applicability is illustrated by a study of program com-
position when communication is reliable but not necessarily FIFO. In this model,
special care must be taken to ensure that messages do not accidentally overtake
one another in the composed program. We show that barriers do not exist in this
model. Indeed, no program that sends or receives messages can automatically be
composed with arbitrary programs without jeopardizing their intended behavior.
Safety of composition becomes context-sensitive and new tools are needed for
ensuring it. A notion of sealing is defined, where if a program P is immediately
followed by a program Q that seals P then P will be communication-closed—it
will execute as if it runs in isolation. The investigation of sealing in this model
reveals a novel connection between Lamport causality and safe composition. A
characterization of sealable programs is given, as well as efficient algorithms for
testing if Q seals P and for constructing a seal for a significant class of programs.
It is shown that every sealable program that is open to interference on O(n2)
channels can be sealed using O(n) messages.

1 Introduction

Much of the distributed algorithms literature is devoted to solutions for individual tasks.
Implicitly it may appear that these solutions can be readily combined to create larger
applications. Composing such solutions is not, however, automatically guaranteed to
maintain their correctness and their intended behavior. For example, algorithms are
typically designed under the assumption that they begin executing in a well-defined
initial global state in which all channels are empty. In most cases, the algorithms are not
guaranteed to terminate in such a state. Another inherent feature of distributed systems

� Work was partially supported by ARC Discovery Grant RM02036.
�� Work on this paper happened during a sabbatical visit to the School of Computer Science

and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
��� National ICT Australia is funded through the Australian Government’s Backing Australia’s

Ability initiative, in part through the Australian Research Council.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 229–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 K. Engelhardt and Y. Moses

is that, even though they are often designed in clearly separated phases, these phases
typically execute concurrently. For instance, Lynch writes in [12, p. 523]:

“An MST algorithm can be used to solve the leader-election problem [. . .].
Namely, after establishing an MST, the processes participate in the STtoLeader
protocol to select the leader. Note that the processes do not need to know when
the MST algorithm has completed its execution throughout the network; it is
enough for each process i to wait until it is finished locally, [. . .].”

In general, when two phases, such as implementations of an MST algorithm and of the
STtoLeader algorithm, are developed independently and then executed in sequence, one
phase may confuse messages originating from the other with its own messages. Perhaps
the first formal treatment of this issue was via the notion of communication-closed lay-
ers introduced by Elrad and Francez in [2]. Consider a program P = P1 ‖ . . . ‖ Pn con-
sisting of n concurrent processes Pi = Qi;Li;Q′i, the execution of which is, intuitively,
divided into three phases, Qi, Li, and Q′i. Elrad and Francez define L = L1 ‖ . . . ‖ Ln to
be a communication-closed layer (CCL) in P if under no execution of P does a com-
mand in some Li communicate with a command in any Q j or Q′j [2]. If a program P can
be decomposed into a sequence of CCLs then every execution of P can be viewed as
a concatenation of executions of P’s layers in order. Hence, reasoning about P can be
reduced to reasoning about its layers in isolation. This approach has been investigated
further and applied to a variety of problems by Janssen, Poel, and Zwiers [9,7,8,13].
Stomp and de Roever considered related notions in the context of synchronous com-
munication [14]. Gerth and Shrira considered the issue of using distributed programs
as off-the-shelf components to serve as layers in larger distributed programs [6]. They
observe that the above definition of CCL is made with respect to the whole program P
as context, and hence is unsuitable for off-the-shelf components. They solve the prob-
lem by defining L to be a General Tail Communication Closed (GTCC) layer if, roughly
speaking, for all layers T1 ‖ . . . ‖ Tn we have that L is a CCL in L1;T1 ‖ . . . ‖ Ln;Tn. Since
this definition does not refer to the surrounding program context of a layer, it asserts a
certain quality of composability. Sequentially composing GTCC layers guarantees that
each one of them is a CCL.

We develop a framework for defining and reasoning about various notions central to
the design of CCLs in different models of communication. The communication model
used in most of the literature concerning CCLs is that of reliable FIFO channels. In
practice, channels often fail to satisfy this assumption. Three main sources of imperfec-
tion are loss, reordering, and duplication of messages by a channel. This paper studies
the impact of message reordering on the design of CCLs. Our communication model,
which we call REL, will therefore assume that channels neither lose nor duplicate mes-
sages but message delivery is not necessarily FIFO. As we shall see, in REL, the CCL
property depends in an essential way on Lamport causality [11]. Indeed, to ensure CCL,
causality is all that is needed in REL, whereas either duplication or loss already mandate
the need for headers in messages [5,4].

Consider for instance the task of transmitting a message m from process i to process
j where it is stored in variable x. The task is accomplished by i performing SND

i→ j
m to

send the message and j performing RCV
j←i
x to receive it into variable x. This imple-

mentation denoted MT
i→ j
m→x (for Message-Transmit) works fine in isolation. Composing

Safe Program Composition with Non-FIFO Channels 231

two copies1 of MTi→ j , however, does not guarantee the same behavior as executing the
first to completion and then executing the second. Since communication is not FIFO,
the second message sent by i could be the first one received by j. On the other hand,
if MTi→ j is followed by MT j→i no such interference occurs. Moreover, no later pro-
gram can ever interfere with the first MTi→ j in this pair. Of course the second program,
MT j→i, is still susceptible to interference, e.g., by another MT j→i. In fact, non-trivial
programs are never safe from interference in REL. As we shall show, for any termi-
nating program P transmitting a message from i to j there is a program Q potentially
interfering with communication in P. One consequence is that no terminating program
that sends messages can be a GTCC layer.

The above discussion suggests that it is nec-

MT j i

i

j

snd

rcv

rcv

snd

snd

MT
i j

Fig. 1. MTi→ j seals MT j→i

essary to inspect the next layer in order to de-
termine whether a given layer is a CCL. In fact,
we shall define a notion of a program Q seal-
ing its predecessor P, which will ensure that P
is a CCL in P immediately followed by Q. For
example, MT j→i seals MTi→ j and vice versa. In-
tuitively, Q seals P if Q guarantees that no mes-
sage sent after P can be received in P. Let us

consider why MT
j→i
ACK seals MTi→ j . Suppose that a later message is sent on the channel

from i to j as in Fig. 1. This send is performed only after the message sent in the op-
posite direction has been received by i, which in turn must have been sent after the first
message has been received by j. Consequently, j’s receive event must precede i’s send-
ing of the later message. Therefore, the later message cannot compete with the earlier
one. A message transmitted in the opposite direction is often called an acknowledgment.
More interesting examples of sealing presented in Figures 2(a) and 3. For a decompo-
sition of a program P into a sequence of � layers L(1), . . . ,L(�), it follows that if L(k+1)

seals L(k) for all 1≤ k < � then each layer L(k) is a CCL in P.
In [11] Lamport defined causality among events of asynchronous message passing

systems. Causality implies temporal precedence. As discussed above, transmitting an
acknowledgment guarantees that the receive of the first message causally precedes any
later sends on the same channel. Observe that the same effect could be obtained by other
means ensuring the intended precedence. For instance, a causal chain consisting of a
sequence of messages starting at j, going through a number of intermediate processes,
and ending at i could be used just as well. While this transitive form of acknowledgment
appears to be inefficient, a given message can play a role in a number of transitive
acknowledgments. Fig. 2(a) illustrates a program consisting of the transmission of three
messages over three different channels. It is sealed using transitive acknowledgments
by the program displayed in Fig. 2(b), which sends only two messages.

Indeed, we shall later show how O(n) messages can usefully substitute for Ω(n2)
acknowledgments. Not all programs can be sealed. We shall later prove that program X
shown in Fig. 3(a) is unsealable. The same program executed in the presence of a third
process as in Fig. 3(b) is, however, sealable. Any seal of this program will necessarily

1 We omitted the subscript in MTi→ j . Whenever a parameter is irrelevant to the point being made,
we tend to omit it.

232 K. Engelhardt and Y. Moses

snd

rcv

snd

snd

rcv rcv

(a) A program P

rcv

rcv

snd

snd

(b) A seal for P

Fig. 2. An example of sealing

snd

snd

rcv

rcv

(a) Unsealable program X .

snd

snd

rcv

rcv

(b) A sealable program P′

snd

snd

rcv

rcv

snd

rcv

(c) A seal for P′

Fig. 3. An example of a program for two processes that is unsealable unless a third process is
added

use transitive acknowledgments as discussed above. See Fig. 3(c) for an illustration of
one way this program can be sealed.

Contributions. The first main contribution of this paper is in the presentation of a frame-
work studying safe composition of layers of distributed programs in different models
of communication. Within the framework we define notions including CCL and barri-
ers. Moreover, it is possible to define new notions such as sealing that play an important
role in ensuring safe composition. In this paper the power of the framework is illustrated
by a comprehensive study of safe composition in REL. In a companion paper [3] the
framework is used to define additional notions that are used to study safe composition
in FIFO-models with duplicating and/or lossy channels.

Our second main contribution is in identifying the notion of sealing and demon-
strating its central role in the design of CCLs in REL. We study the theory of sealing in
REL and present the following results.

– Sealable straight-line programs are completely characterized.
– A definition of the sealing signature of straight-line programs is given, which char-

acterizes the sealing behavior of a program concisely, for both purposes, sealing
and being sealed. The size of the signature is O(n2).

– An algorithm for deciding whether Q seals P based only on their signatures is
presented.

Safe Program Composition with Non-FIFO Channels 233

– An algorithm for constructing seals for sealable straight-line programs is presented.
It produces seals that perform less than 3n message transmissions even though
Ω(n2) channels may need to be sealed.

The restriction to straight-line programs is motivated by the undecidability of the cor-
responding problems for general programs. Specifically,the halting problem can be re-
duced to each of these problems for general programs. As far as communication closure
is concerned, straight-line programs already display most of the interesting aspects rel-
evant to the subject of sealing.

2 A Model of Distributed Programs with Layering

In this section we define a simple language for writing message-passing concurrent
programs. Its composition operator “∗” is called layering. Layering subsumes the two
more traditional operators “;” and “‖” (as discussed by Janssen in [7]). The meaning
of P∗Q is that each process i first executes its share of P and then proceeds directly to
execute its share of Q. In particular, layering does not impose any barrier synchroniza-
tion between P and Q. In other words, in P ∗Q process i need not wait for any other
processes to finish their shares of P before moving on to Q. Consequently, programs
execute between cuts rather than global states. We shall define a notion r[c,d] � P of a
program P occurring over an interval r[c,d] between the cuts c and d of a run r.

Our later analysis will be concerned with CCLs P. Thus we need to ensure that no
message crosses any initial or final cut of an interval over which P occurs. A concise
way of capturing this formally is via a new language construct, the phase operator, τ.
Writing τP specifies that all communication involving P is internal to P, that is, P is a
CCL. If P is a CCL in a given larger program L then every execution of P in L is also an
execution of τP. In other words, P can be substituted for τP in L. We adopt a standard
notion of refinement to indicate substitutability of programs. Program P refines program
Q if every execution of P over an interval r[c,d] is also one of Q, regardless of what
happens before c and after d. The notions of “∗”, “τ”, and refinement provide a unified
language for defining notions of safe composition. The programming language and its
semantics are formally defined as follows.

2.1 Syntax

Let n ∈ N and P = {1, . . . ,n} be a set of processes. Throughout the paper n will be
reserved for denoting the number of processes. Let (Vari)i∈P be mutually disjoint sets
ofs program variables (of process i) not containing the name hi which is reserved for
i’s communication history. Let Expri be the set of arithmetic expressions over Vari. Let
L be propositional logic over atoms formed from expressions with equality “=” and
less-than “<”. We define a syntactic category Prg of programs:

Prg (P ::= ε | x :=e | SND
i→ j
e | RCV j←i

x | [φ] | τP | P∗P | P+ P | Pω

where x ∈ Vari, e ∈ Expri, i, j ∈ P, and φ ∈ L .

234 K. Engelhardt and Y. Moses

The intuitive meaning of these constructs is as follows. The symbol ε denotes the
empty program. It takes no time to execute. Assignment statement x := e evaluates ex-
pression e and assigns its value to variable x. The SND

i→ j
e statement sends a message

containing the value of e on the channel from i to j. Communication is asynchronous,
and sending is non-blocking. The RCV

j←i
x statement, however, blocks until a message

arrives on the channel from i to j. It takes a message off the channel and assigns its
content to x. The guard [φ] expresses a constraint on the execution of the program: in
a run of the program, φ must hold at this location. Guards take no time to execute.
The program τP behaves the same as P, with the additional restriction that it does not
communicate with statements outside P. The operation “∗” represents layered composi-
tion following Janssen et al. [8]. Layering statements of distinct processes is essentially
the same as parallel composition whereas layering of statements of the same process
corresponds to sequential composition. We tend to omit “∗” when no confusion will
arise. The symbol “+” denotes nondeterministic choice. By Pω we denote zero or more
(possibly infinitely many) repetitions of program P.2

2.2 Semantics

A send record (for i) is a triple (i→ j,v), which records sending a message with contents
v from i to the receiver j. Similarly, (j ← i,v) is a receive record (for j). A local state
(for process i) is a mapping from Vari to values and from hi to a sequence of send
and receive records for i. A local run (for process i) is an infinite sequence of local
states. We identify an event (of i) with the transition from one local state in a local run
of i to the next. An event is either a send, a receive, or an internal event. A (global)
run is a tuple r = ((ri)i∈P,δr) of local runs — one for each process — plus an injective
matching function δr associating a send event with each receive event in r. The mapping
δr is restricted such that:3

1. If δr(e) = e′ and e is a receive event of process j resulting in the appending of
(j ← i,v) to j’s message history then e′ is a send event of process i appending the
corresponding send record (i→ j,v) to i’s message history.

2. Lamport’s causality relation
L−→ induced by δr on the events of r, as defined below,

is an irreflexive partial order, hence acyclic.

The first condition captures the property that messages are not corrupted in transit. The
fact that the function δr is total precludes the reception of spurious messages, whereas
injectivity ensures that messages are not duplicated in transit. Further restrictions on
δr can be made to capture additional properties of the communication medium such as
reliability, FIFO, fairness, etc.

2 Using guards, choices, and repetition it is possible to define if φ then P else Q fi as an abbrevi-
ation for [φ]P+[¬φ]Q and while φ do P od for ([φ]P)ω[¬φ]. The results in this paper also hold
for a language based on if and while instead of [.], +, and ω.

3 Our choice of execution model is closely related to the more standard one of infinite sequences
of global states, representing an interleaving of moves by processes. Our conditions on δr

guarantee the existence of such an interleaving. In general, each of our runs represents an
equivalence class of interleavings.

Safe Program Composition with Non-FIFO Channels 235

In [11] Lamport defined a “happened before” relation
L−→ on the set of events oc-

curring in a run r of a distributed system. The relation
L−→ is defined as the smallest

transitive relation subsuming (1) the total orders on the events of process i given by
the ri, and (2) the relation { (e1,e2) | δr(e2) = e1 } between send and receive events
induced by the matching function δr.

Cuts and Channels. Write N+ for N∪{∞}. A cut is a pair (r,c) consisting of a run r
and a P-indexed family c = (ci)i∈P of N+-elements. We write “≤” for the component-
wise extension of the natural ordering on N+ to cuts within the same run. A cut is finite
if all its components are.

Say that an event e performed by process i is in a cut (r,c) if e occurs in ri at an
index no larger than ci. A cut (r,c) corresponds to the, possibly implausible, situation in
which the events in the cut have occurred for each process i∈P. A cut (r,c) is consistent
if every

L−→ predecessor of an event in the cut is also in the cut. We define the channel
chani→ j at a cut (r,c) to be the set of i’s send events to j and j’s receive events from i
in (r,c) that are not matched by δr to any event also in (r,c). Finally, a formula φ ∈ L
holds at (r,c), and we write (r,c) |= φ, if φ holds in standard propositional logic when,
for each i ∈ P, program variables in Vari are evaluated in the local states ri(ci) if ci is
finite, and are considered unspecified otherwise.4

Semantics of Programs. We define the meaning of programs by stating when a pro-
gram occurs over an interval. An interval consists of two cuts (r,c) and (r,d) over the
same run with c≤ d, which we denote for simplicity by r[c,d]. An event is in r[c,d] if
it is in (r,d) but not in (r,c). We define the occurrence relation � between intervals and
programs by induction on the structure of programs. The interesting cases are those of
∗ and τ. Formally, program P∈ Prg occurs over interval r[c,d], denoted r[c,d] � P, iff:5

r[c,d] � ε if c = d.
r[c,d] � x :=e if d = c[i)→ ci + 1] and ri(di) = ri(ci)[x)→ v], where v is the value of e
in ri(ci).
r[c,d] � SND

i→ j
e if d = c[i)→ ci + 1] and ri(di) = ri(ci)[hi)→ ri(ci)(hi) · 〈(i → j,v)〉],

where v is the value of e in ri(ci).
r[c,d] � RCV

i← j
x if d = c[i)→ ci +1] and ri(di) = ri(ci)[hi)→ ri(ci)(hi) · 〈(i← j,v)〉,x)→

v].
r[c,d] � [φ] if c = d and (r,c) |= φ.
r[c,d] � τP if r[c,d] � P and no communication event in r[c,d] is matched by δr with
an event outside r[c,d].
r[c,d] � P∗Q if there exists c′ satisfying c≤ c′ ≤ d such that r[c,c′] � P and r[c′,d] � Q.
r[c,d] � P+ Q if r[c,d] � P or r[c,d] � Q.
r[c,d] � Pω if, intuitively, an infinite or finite number (possibly zero) of iterations of P
occur over r[c,d]. More formally, r[c,d] � Pω if there exists a finite or infinite sequence
(c(k))k∈I such that I is a non-void prefix of N+, c(0) = c, c(k) ≤ c(k′) for all k < k′ ∈ I,⊔

k∈I c(k) = d, and r[c(k),c(k+1)] � P for all k,k + 1 ∈ I.

4 Recall that local states assign values to local variables.
5 We shall denote by f [a)→ b] the function that agrees with f on everything but a, and maps

a to b.

236 K. Engelhardt and Y. Moses

The program semantics is insensitive to deadlocks because deadlocking executions are
not represented by runs. We deliberately chose to ignore deadlocks to simplify the pre-
sentation and focus on the main aspects of composition. Whether a program deadlocks
can be analyzed using standard techniques [12, p. 635f].

General assumption. From now onward, we shall only consider programs that are
deadlock-free.

Refinement. We shall capture various assumptions about properties of systems by
specifying sets of runs. For instance, REL is the class of runs with reliable commu-
nication, and RELFI is its subclass in which channels are also FIFO.

Given a set Γ of runs, we say that P refines Q in Γ, denoted P ≤Γ Q, iff r[c,d] � P
implies r[c,d] � Q, for all r ∈ Γ and c,d ∈ (N+)P. In other words, every execution of P
(in a Γ run) is also one of Q, regardless of what happens before and after. Therefore, we
may replace Q by P in any larger program context. This definition of refinement is thus
appropriate for stepwise top-down development of programs from specifications. The
refinement relation on programs is transitive (in fact a pre-order) and all programming
constructs are monotone w.r.t. the refinement order.

3 Capturing Safe Composition

The phase operator τ allows us to delineate the interactions that a layer can have with
other parts of the program. When combined with refinement it is useful for defining
various notions central to the study of safe composition, as we now illustrate.

CCL. We can express that the program L is a CCL in the program P∗L∗Q w.r.t. Γ by:

τ(P∗L∗Q) ≤Γ P∗ τL∗Q .

In words, any isolated execution of P∗L ∗Q will have the property that all communi-
cation in L is internal and hence L executes as in isolation. This definition is context-
sensitive.

Barriers. More modular would be a notion that guarantees safe composition regardless
of the program context. One technique to ensure that two consecutive layers do not
interfere with each other is to place a barrier B between them. Formally, program B is a
barrier in Γ if

τ(P∗B∗Q) ≤Γ τP∗ τB∗ τQ , for all programs P and Q.

TCC. Some programs can be safely composed without the need for any barrier [2,10].
Depending on the model Γ, there may be programs P that safely compose with all
following layers. We say that P is tail communication closed (TCC) in Γ if,

τ(P∗Q) ≤Γ τP∗ τQ , for all programs Q.

Thus, if P is TCC then any execution of P starting in empty channels will also end with
all channels empty. Therefore TCC programs can be readily composed.6 It is straight-

6 TCC follows and is closely related to the notion of GTCC introduced by Gerth and Shrira [6].
The main difference is that their notion is defined w.r.t. a set of initial states.

Safe Program Composition with Non-FIFO Channels 237

forward to check that the programs ε, [φ], x :=e, and τP are TCC in any Γ. Moreover,
if P and Q are TCC in Γ then so are P+ Q, P∗Q, and Pω. Observe that every barrier B
in Γ is in particular TCC in Γ.

Seals. In many models of interest, only trivial programs are TCC. This is the case, for
example, in REL, as shown in Section 4 below. In such models, an alternative method-
ology is required for determining when it is safe to compose given programs. Next we
define a notion of sealing that formalizes the concept of program S serving as an imper-
meable layer between P and later phases such that no later communication will interact
with P. We say that S seals P in Γ if, for all programs Q,

τ(P∗ S ∗Q) ≤Γ τP∗ τ(S ∗Q) .

Thus, if S seals P in Γ then neither S nor any later program can interfere with com-
munication in P. If S seals P and Q seals S, then S will behave in τ(P ∗ S ∗Q) as it
does in isolation. Sealing allows incremental program development while maintaining
CCL-style composition.

Lemma 1. 1. If both P and P′ are sealed by S in Γ then so is P+ P′.
2. If both S and S′ seal P in Γ then S + S′ (properly) seals P in Γ.
3. If S seals P in Γ then S ∗Q seals P in Γ.
4. If both S seals P and S′ seals S in Γ, then S′ seals P∗ S in Γ.
5. If P seals itself in Γ then P seals Pω in Γ.
6. TCC subsumes sealing: P is TCC in Γ iff all programs seal P in Γ.

It follows from this lemma that, if program P can be decomposed into a sequence of �
layers L(1), . . . ,L(�), it follows that if L(k+1) seals L(k) for all 1 ≤ k < � then each layer
L(k) is a CCL in P.

For example, as discussed in the introduction, any program of the form MT j→i seals
any program of the form MTi→ j in REL. Consequently, a program of the form MTi→ j ∗
MT j→i seals itself in REL. On the other hand, the shorter program MTi→ j does not seal
itself in REL—in an execution of MTi→ j ∗MTi→ j the two messages sent by i could be
received in the reverse order of sending.

Proper Seals. Suppose that P = {1,2} and xi ∈ Vari for i ∈ P. Then the program
Q = while true do (x1 := 5 ∗ x2 := 17) od is TCC in RELFI, a CCL in REL, and seals
any program in REL. For it necessarily diverges, that is, it occurs only over intervals
r[c,d] with non-finite d. This implies that no layer following Q has any impact on the
semantics of the whole program. It follows trivially that no communication of a later
layer can interfere with anything before. Programs such as Q are not particularly useful
as seals, in contrast to ones that seal without diverging. This motivates the following
definition. We say that S is a proper seal of P in Γ if S seals P and S never diverges after
P. That is, for all r ∈ Γ and c,d,d′, whenever r[c,d] � τP, and r[d,d′] � S and d is finite
then so is d′.

For instance, since MTi→ j is a terminating program that seals MT j→i in REL, it is in
particular a proper seal.

238 K. Engelhardt and Y. Moses

4 Case Study: Safe Composition in REL

We now consider safe composition in the model REL. Communication events can cause
a program not to be TCC in REL. For example, reconsider the program MT

i→ j
e→x =

SND
i→ j
e ∗ RCV

j←i
x . It is TCC in RELFI but not TCC in REL. That MTi→ j is not TCC

in REL is no coincidence. Next we show that no terminating program performing any
communication whatsoever is TCC in REL.

Theorem 2. If r[c,d] � P for some r ∈ REL and finite c,d such that all channels are
empty in (r,c) and there is at least one send or receive event in r[c,d], then P is not TCC
in REL.

Since a barrier is necessarily TCC we immediately obtain

Corollary 3. No program can serve as a barrier in REL.

Having shown that TCC and thus barriers are not generally useful notions in REL, we
turn our attention to (proper) sealing. It is instructive that not all terminating programs
can be properly sealed in REL:

Lemma 4. If P = {1,2} then the program X = SND1→2
x+1 ∗ SND2→1

y+1 ∗ RCV1←2
x ∗ RCV2←1

y
illustrated in Fig. 3(a) cannot be sealed properly in REL.

Our programming language Prg is Turing-complete. Since the halting problem for Prg
can be reduced to sealability in REL we obtain

Theorem 5. Sealability in REL is undecidable.

Given this theorem we shall restrict our attention to more tractable subclasses of pro-
grams. Program P is balanced (in REL) if, whenever r[c,d] � P and all channels are
empty at (r,c), then every channel contains the same number of sends and receives at
(r,d). Note that balanced programs are TCC in RELFI. The following theorem shows
that in REL balance is a necessary prerequisite for being properly sealable.

Theorem 6. In REL, every non-divergent program that is properly sealable is also
balanced.

Program P is said to closes chani→ j (in REL) if chani→ j is empty after P in any exe-
cution of P starting at a cut with empty channels. More formally this is expressed as
follows. For all r ∈ REL and programs Q, if r[c,d′] � τ(P ∗Q) and r[c,d] � P then
chani→ j is empty in (r,d). A channel that is not closed is open. The state of a program’s
channels is the essential element in determining sealability.

Program P is straight-line if it contains neither nondeterministic choices nor loops
nor guards. In other words, P is built from sends, receives, and assignments using lay-
ering only. Our focus in this section is on balanced straight-line programs, or BSL for
short.

The program graph of a BSL P is a graph (V,E) that has a node for every send and
receive event in P plus an initial dummy node FSTi and a final dummy node LSTi for
each process i. The edge set E consists of the successor relation over events in the same
process extended to the dummy nodes plus an edge between the k’th send and the k’th

Safe Program Composition with Non-FIFO Channels 239

receive on channel chani→ j , for all k, i, and j. All the graphs in Figures 2 and 3 are
program graphs. The size of a BSL P’s program graph is of the order of the size of the
program.

Next we investigate the connection between program graphs and Lamport causality.
We use E+ to refer to the irreflexive transitive closure of E and call edges not containing
dummy nodes normal. The subset of normal edges is denoted by NE . In RELFI, the
normal edges induce the full causality relation on the events of the program. As we
shall show, in REL the normal edges of a program graph are also

L−→ edges.

Lemma 7. Let r ∈ REL, let P be a BSL with program graph (V,E), and let Q be a
program. If r[c,d] � τ(P∗Q) then NE ⊆ L−→.

Lemma 7 implies that all edges in (NE)+ will be
L−→ edges in every run r ∈ REL of τ(P∗

Q). We note that (NE)+ is the largest set of edges with this property, because (NE)+ =
(L−→∩V 2) if r ∈ RELFI.

A more concise representation than the program graph is called the signature of P
and denoted by SIG(P). It has size O(n2) while preserving the information necessary
to decide what channels are left open, respectively closed, by P. Given the program
graph (V,E) of a BSL P we can obtain SIG(P) as follows. After calculating E+, we
remove all nodes except for the dummy nodes and the first send and last receive on
each channel. The graph is further reduced by removing the node SNDi→ j whenever
(FST j,SNDi→ j) ∈ E+. Similarly, RCV j←i is removed whenever (RCV j←i,LSTi) ∈ E+.
The sends and receives remaining in the signature are precisely the ones that could
interfere with receives in a preceding layer or with sends in a succeeding layer.

The complexity of computing SIG(P) is in O(‖P‖3) since it requires the causality
relation obtained as the transitive closure of the edge relation of P’s program graph.
We remark that for BSLs P and Q, SIG(P ∗Q) can be obtained from their respective
signatures at a cost of O(n2).

Let P be a BSL and let G = (V,E) be SIG(P). Then P leaves channel chani→ j open
iff RCV j←i ∈V . For instance, the program MTi→ j leaves chani→ j open — there is a node
RCV j←i in SIG(MTi→ j), which is depicted in Fig. 4(a). As we have shown earlier, MT j→i

seals MTi→ j in REL, which implies that MT j→i closes chani→ j once. Since MT j→i does
not re-open the channel, the RCV j←i node found in SIG(MTi→ j) is not present in the
SIG(MTi→ j ∗MT j→i) shown in Fig. 4(b).

snd

rcv

(a) SIG(MTi→ j)

snd rcv

(b) SIG(MTi→ j ∗MT j→i)

Fig. 4. Examples of signatures. Thin arrows denote transitive causality edges.

240 K. Engelhardt and Y. Moses

4.1 Deciding Sealing

Whether one BSL seals another can be decided on the basis of their signatures. Suppose
BSL P leaves chani→ j open and Q seals P. Then, if Q sends on that channel, then P’s
last receive RCV j←i on the channel must causally precede Q’s first send SNDi→ j on it.
Otherwise, Q must ensure that any later send on chani→ j is causally preceded by P’s
last receive. This is guaranteed exactly if P’s signature contains an edge (RCV j←i,LSTk)
and Q’s signature contains an edge (FSTk,LSTi), for some k ∈ P. (See Fig. 5.)

j rcv

i

k

snd

(a) Channel chani→ j left open by P
and a causality edge to LSTk.

snd

rcv

(b) Sealing the channel by causality.
The dashed part accounts for Q
sending on chani→ j .

Fig. 5. Excerpts of the signatures of BSLs P and Q

Based on the above observation the following theorem characterizes sealing among
BSLs.

Theorem 8. Let P and Q be BSLs and let (VP,EP) = SIG(P) and (VQ,EQ) = SIG(Q).
Then Q properly seals P iff, for all RCV j←i ∈VP, there exists k ∈ P such that (RCV j←i,
Ldk) ∈ EP, (FSTk,LSTi) ∈ EQ, and, if SNDi→ j ∈VQ then (FSTk,SNDi→ j) ∈ EQ.

Given the theorem above, the complexity of deciding whether Q seals P, given their
signatures, is obviously determined by the size of P’s signature, which we recall is
O(n2).

4.2 A Characterization of Sealability

Observe that the set of channels closed by a BSL P when executed from a cut with
empty channels is uniquely determined by P and can be derived from its signature. We
can thus associate a closed-channel graph with each BSL . Formally, the closed-channel
graph CP = (P,EP) of a BSL P is given by (i, j) ∈ EP iff i �= j and chani→ j is closed by
P in REL. In the following we denote the undirected version of a graph G by Gu.

Theorem 9 (Sealability). Let P be a BSL. Then P can be sealed properly in REL iff Cu
P

is connected. Moreover, if P is properly sealable in REL then it can be sealed by a BSL
that transmits less than 3n messages.

Sketch of proof. We now sketch the “if”-direction of the claim. Let T ⊆ EP such that
(P,T)u is a spanning tree of Cu

P and let v be its root. We construct a seal S for P in

Safe Program Composition with Non-FIFO Channels 241

three phases. In the first phase we establish that for every edge (i, j) ∈ T the channel on
this edge directed towards v is closed. This is achieved by sending an acknowledgment
should this channel not be closed already by P. The second phase consists of a con-
vergecast from all leaves of T towards the root v. Finally, the third phase is a broadcast
from v to the leaves. It follows that S closes every channel at least once and is therefore
a seal for P. Moreover, each of the three phases transmits at most n−1 messages. ��

Example 10. Consider a phase L = ∗i∈P Li. In L each process i �= 1 sends a message
to every other process k /∈ {1, i} before receiving the n− 2 messages sent to it in this
phase. Finally, process i transmits a message to process 1. We can define process i’s
program Li more formally by

Li =
(
∗k/∈{1,i} SNDi→k

)
∗
(
∗k/∈{1,i} RCVi←k

)
∗ SNDi→1 .

Process 1 in turn receives those messages sent last in the Li, that is:

L1 = ∗i�=1 RCV1←i

Executing L beginning with empty channels leaves n2− 3n + 3 channels open. Never-
theless, L can be sealed efficiently by the program

S = ∗i�=1(SND1→i ∗ RCVi←1) ,

which transmits n−1 messages. (See Fig. 6 for the program graph of S.)

snd snd

rcv

rcv

… …

…

Fig. 6. O(n) transmissions close Ω(n2) open channels

5 Conclusion and Future Work

A subtle yet crucial issue in developing distributed applications is the safe composition
of smaller programs into larger ones. The notion of CCL captures when a program
works as if it were executed in isolation in the context of a given larger program. The
literature on CCLs focused mostly on reliable FIFO communication. In that setting
programs can be designed that are inherently CCLs in any program context.

Observe that neither termination detection nor barrier-style techniques can be ap-
plied in REL without careful inspection of the surrounding program context. Any such
mechanism will form a layer in the resulting program which in turn must be shown
to safely compose with the other layers. A popular approach to running distributed
applications on non-RELFI systems is to construct an intermediate data-link layer pro-
viding RELFI communication to the application. This typically involves sealing every

242 K. Engelhardt and Y. Moses

single message transmission from interference by previous and later layers. Popular al-
gorithms for data-link achieve this by adding message headers and/or acknowledging
every single message, thereby incurring a significant overhead [1,15]. As we show for
REL, it is often possible to do better than that. Our analysis of sealing can be used to
add the minimal amount of glue between consecutive layers to ensure that they compose
safely, without changing the layers at all.

We have introduced a framework for studying safe program composition. It facili-
tates the formal definition of standard notions such as CCL, barriers, and TCC. Gerth
and Shrira showed that—as a context-sensitive notion—CCL is unsuitable for com-
positional development of larger systems from off-the-shelf components. As we have
shown, neither barriers nor TCC layers are useful for such development in REL, that is,
when communication is reliable but not FIFO. In another paper [3], we use essentially
the same framework to investigate safe composition in models with message duplica-
tion or loss. Barriers and TCC layers are also absent in those models. The framework
introduced here is used to define two more notions, namely fitting after and separating,
that are more readily applicable in those models.7 We illustrate our approach by ap-
plying it to the case of REL. Notably, the approach allows for seamless composition of
programs without need for translation or headers.

The central notion introduced and explored in this paper is that of one program seal-
ing another. Larger programs can be composed from smaller ones provided each smaller
program seals its predecessor. For instance, recall that MTi→ j ∗MT j→i seals itself in
REL. Lemma 1.5 can be used to show that a program of the form while true do MTi→ j ∗
MT j→i od can serve to transmit a sequence of values from i to j in REL. Indeed, if the
return messages from j to i are not merely acknowledgments, it can perform sequence
exchange. The notion of sealing in REL is shown to be intimately related to Lamport
causality. Based on this connection, we devise efficient algorithms for deciding and
constructing seals for the class of straight-line programs.

Acknowledgment. We would like to thank Manuel Chakravarty, Yael Moses, and Ron
van der Meyden for helpful comments on preliminary versions of this paper.

References

1. Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, D.-W. Wang, and L. Zuck.
Reliable communication over unreliable channels. Journal of the ACM, 41(6):1267–1297,
1994.

2. T. Elrad and N. Francez. Decomposition of distributed programs into communication-closed
layers. Science of Computer Programming, 2(3):155–173, Dec. 1982.

3. K. Engelhardt and Y. Moses. Safe composition of distributed pro-
grams communicating over order-preserving imperfect channels. Submitted;
see ftp://ftp.cse.unsw.edu.au/pub/users/kaie/EM2005b.pdf, June 2005.

4. K. Engelhardt and Y. Moses. Single-bit messages are insufficient in the presence of duplica-
tion. In preparation; see ftp://ftp.cse.unsw.edu.au/pub/users/kaie/EM2005c.pdf,
June 2005.

7 We say that P fits after Q if τ(P ∗Q) ≤Γ τP ∗ τQ. Program S separates P from Q if τ(P ∗ S ∗
Q)≤Γ τP∗τS∗τQ.

Safe Program Composition with Non-FIFO Channels 243

5. A. Fekete and N. Lynch. The need for headers: An impossibility result for communica-
tion over unreliable channels. In CONCUR ’90: Proceedings on Theories of Concurrency:
Unification and Extension, pages 199–215. Springer-Verlag, 1990.

6. R. Gerth and L. Shrira. On proving communication closedness of distributed layers. In
K. V. Nori, editor, Foundations of Software Technology and Theoretical Computer Science,
Sixth Conference, volume 241 of LNCS, pages 330–343, New Delhi, India, 18–20 Dec. 1986.
Springer-Verlag.

7. W. Janssen. Layered Design of Parallel Systems. PhD thesis, University of Twente, 1994.
8. W. Janssen. Layers as knowledge transitions in the design of distributed systems. In U. H.

Engberg, K. G. Larsen, and A. Skou, editors, Proceedings of the Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS (Aarhus, Denmark, 19–
20 May, 1995), number NS-95-2 in Notes Series, pages 304–318, Department of Computer
Science, University of Aarhus, May 1995. BRICS.

9. W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the development
of parallel systems. In J. C. M. Baeten and J. F. Groote, editors, Proceedings of CONCUR
’91, 2nd International Conference on Concurrency Theory, Amsterdam, The Netherlands,
volume 527 of LNCS, pages 298–316, 1991.

10. W. Janssen and J. Zwiers. From sequential layers to distributed processes, deriving a mini-
mum weight spanning tree algorithm, (extended abstract). In Proceedings 11th ACM Sym-
posium on Principles of Distributed Computing, pages 215–227. ACM, 1992.

11. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 7:558–565, 1978.

12. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
13. M. Poel and J. Zwiers. Layering techniques for development of parallel systems. In G. von

Bochmann and D. K. Probst, editors, Computer Aided Verification, Fourth International
Workshop, CAV ’92, volume 663 of LNCS, pages 16–29, Montreal, Canada, June 29 – July 1
1992. Springer-Verlag.

14. F. A. Stomp and W.-P. de Roever. A principle for sequential reasoning about distributed
algorithms. Formal Aspects of Computing, 6(6):716–737, 1994.

15. D.-W. Wang and L. D. Zuck. Tight bounds for the sequence transmission problem. In
PODC ’89: Proceedings of the eighth annual ACM Symposium on Principles of Distributed
Computing, pages 73–83. ACM Press, 1989.

What Can Be Implemented Anonymously?

Rachid Guerraoui1 and Eric Ruppert2

1 EPFL, Lausanne, Switzerland
2 York University, Toronto, Canada

Abstract. The vast majority of papers on distributed computing as-
sume that processes are assigned unique identifiers before computation
begins. But is this assumption necessary? What if processes do not have
unique identifiers or do not wish to divulge them for reasons of privacy?
We consider asynchronous shared-memory systems that are anonymous.
The shared memory contains only the most common type of shared ob-
jects, read/write registers. We investigate, for the first time, what can be
implemented deterministically in this model when processes can fail. We
give anonymous algorithms for some fundamental problems: timestamp-
ing, snapshots and consensus. Our solutions to the first two are wait-free
and the third is obstruction-free. We also show that a shared object has
an obstruction-free implementation if and only if it satisfies a simple
property called idempotence. To prove the sufficiency of this condition,
we give a universal construction that implements any idempotent object.

1 Introduction

Distributed computing typically studies what can be computed by a system of
n processes that can fail independently. Variations on the capacities of the pro-
cesses (e.g., in terms of memory or time), their means of communication (e.g.,
shared memory or message passing), and their failure modes (e.g., crash failures
or malicious failures) have led to an abundant literature. In particular, a prolific
research trend has explored the capabilities of a system of crash-prone asyn-
chronous processes communicating through basic read-write objects (registers).

Several properties have been defined to describe the progress made by an
algorithm regardless of process crashes or asynchrony. The strongest is wait-
freedom [18], which requires every non-faulty process to complete its algorithm
in a finite number of its own steps. However, wait-free algorithms are often
provably impossible or too inefficient to be practical. In many settings, a weaker
progress guarantee is sufficient. The non-blocking property (sometimes called
lock-freedom) is one such guarantee, ensuring that, eventually, some process will
complete its algorithm. It is weaker than wait-freedom because it permits indi-
vidual processes to starve. A third condition that is weaker still is obstruction-
freedom [19], which can be very useful when low contention is expected to be the
common case, or if contention-management is used. Obstruction-freedom guar-
antees that a process will complete its algorithm whenever it has an opportunity
to take enough steps without interruption by other processes.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 244–259, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

What Can Be Implemented Anonymously? 245

Virtually all of the literature on those topics assumes that processes have dis-
tinct identities. Besides intellectual curiosity, it is practically appealing to revisit
this fundamental assumption. Indeed, certain systems, like sensor networks, con-
sist of mass-produced tiny agents that might not even have identifiers [4]. Others,
like web servers [29] and peer-to-peer file sharing systems [11], sometimes man-
date preserving the anonymity of the users and forbid the use of any form of
identity for the sake of privacy [10]. Instead of revealing its identity to a server
that houses a shared-memory object, a process might use a trusted third party
that can itself be approximated by a decentralized mechanism [16]. This party
forwards the process’s invocations to the server (stripped of the process’s id) and
then forwards the server’s responses back to the process. But what can actually
be done in an anonymous system? In such a system, processes are programmed
identically [5,7,8,12,23,28]. In particular, processes do not have identifiers. There
has been work on anonymous message-passing systems, starting with Angluin
[3]. The very small amount of research that has looked at anonymous shared-
memory systems assumed failure-free systems or the existence of a random oracle
to build randomized algorithms. (See Sect. 2.)

We explore in this paper, for the first time, the types of shared objects that
can be implemented deterministically in an anonymous, asynchronous shared-
memory system. We assume that any number of unpredictable crash failures
may occur. The shared memory is composed of registers that are (multi-reader
and) multi-writer, so that every process is permitted to write to every register. In
contrast, usage of single-writer registers would violate total anonymity by giving
processes at least some rudimentary sense of identity: processes would know
that values written into the same register at different times were produced by
the same process. Some problems, such as leader election, are clearly impossible
in this model because symmetry cannot be broken; if processes run in lockstep,
they will perform exactly the same sequence of operations. However, we show
that some interesting problems can be solved without breaking symmetry.

We first consider timestamps, which are frequently used to help processes
agree on the order of various events. Objects such as fetch&increment and coun-
ters, which are traditionally used for creating timestamps, cannot be imple-
mented in our model, so we introduce a weaker object called a weak counter
which provides sufficiently good timestamps for our applications. We construct,
in Sect. 4, an efficient, wait-free implementation of a weak counter.

In non-anonymous systems, the snapshot object [1,2,6] is probably the most
important example of an object that has a wait-free implementation from regis-
ters. It is an abstraction of the problem of obtaining a consistent view of many
registers while they are being updated by other processes. There are many known
implementations of snapshot objects but, to our knowledge, all do make essential
use of process identities. Wait-free algorithms generally rely on helping mecha-
nisms, in which fast processes help the slow ones complete their operations. One
of the challenges of anonymity is the difficulty of helping other processes when
it is not easy to determine who needs help. In Sect. 5, we show that a wait-free
snapshot implementation does exist and has fairly efficient time complexity. The

246 R. Guerraoui and E. Ruppert

timestamps provided by the weak counter are essential in this construction. We
also give a non-blocking implementation with better space complexity.

In non-anonymous systems, most objects have no wait-free (or even non-
blocking) implementation [18]. However, it is possible to build an obstruction-
free implementation of any object by using a subroutine for consensus, which is a
cornerstone of distributed computing that does itself have an obstruction-free im-
plementation [19]. Consensus also arises in a wide variety of process-coordination
tasks. There is no (deterministic) wait-free implementation of consensus using
registers, even if processes do have identifiers [18,26]. In Sect. 6, we note that
an obstruction-free anonymous consensus algorithm can be obtained by simply
derandomizing the randomized anonymous algorithm of Chandra [13]. The re-
sulting algorithm uses unbounded space. We then give a new algorithm that uses
a bounded number of registers, with the help of our snapshots.

Theorem Implemented Object Using Space Progress Uses

1 weak counter registers O(k) wait-free
3 weak counter binary registers O(k) non-blocking
4 m-component snapshot registers m non-blocking
5 m-component snapshot registers O(m + k) wait-free 1
6 binary consensus binary registers unbounded obs-free
7 binary consensus registers O(n) obs-free 4
9 consensus binary registers unbounded obs-free 6, 8
9 consensus registers O(n log d) obs-free 7, 8
10 idempotent object binary registers unbounded obs-free 3, 9
12 idempotent object registers object-dependent obs-free 3, 7

Fig. 1. Summary of implementations, where n is the number of processes, k is the
number of operations invoked, and d is the number of possible inputs to consensus

Finally, we give a complete characterization of the types of objects that
have obstruction-free implementations in our model in Sect. 7. An object can be
implemented if and only if it is idempotent: i.e. applying any permitted operation
twice in a row (with the same arguments) has the same effect as applying it once.
We use a symmetry argument to show this condition is necessary. To prove
sufficiency, we give a “universal” construction that implements any idempotent
object, using our weak counter object and our consensus algorithm.

To summarize, we show that the anonymous asynchronous shared-memory
model has some, perhaps surprising, similarities to the non-anonymous model,
but there are also some important differences. We construct a wait-free algo-
rithm for snapshots and an obstruction-free algorithm for consensus that uses
bounded space. Not every type of object has an obstruction-free anonymous im-
plementation, however. We give a characterization of the types that do. Table 1
summarizes all anonymous implementations given in this paper, indicating which
implementations are used as subroutines for others.

What Can Be Implemented Anonymously? 247

2 Related Work

Some research has studied anonymous shared-memory systems when no failures
can occur. Johnson and Schneider [23] gave leader election algorithms using ver-
sions of single-writer snapshots and test&set objects. Attiya, Gorbach and Moran
[8] gave a characterization of the tasks that are solvable without failures using
registers if n is not known. The characterization is the same if n is known [14].
Consensus is solvable in these models, but it is not solvable if the registers cannot
be initialized by the programmer [22]. Aspnes, Fich and Ruppert [5] looked at
failure-free models with other types of objects, such as counters. They also char-
acterized which shared-memory models can be implemented if communication
is through anonymous broadcasts, showing the broadcast model is equivalent to
having shared counters and strictly stronger than shared registers.

There has also been some research on randomized algorithms for anonymous
shared-memory systems with no failures. For the naming problem, processes
must choose unique names for themselves. Processes can randomly choose names,
which will be unique with high probability. Registers can be used to detect when
the names chosen are indeed unique, thus guaranteeing correctness whenever the
algorithm terminates, which happens with high probability [25,30]. Two papers
gave randomized renaming algorithms that have finite expected running time,
and hence terminate with probability 1 [15,24].

Randomized algorithms for systems with crash failures have also been studied.
Panconesi et al. [28] gave a randomized wait-free algorithm that solves the naming
problem using single-writer registers, which give the system some ability to distin-
guish between different processes’ actions. Several impossibility results have been
shown for randomized naming using only multi-writer registers [12,15,24]. Inter-
estingly, Buhrman et al. [12] gave a randomized wait-free anonymous algorithm
for consensus in this model that is based on Chandra’s randomized consensus al-
gorithm [13]. Thus, producing unique identifiers is strictly harder than consensus
in the randomized setting. Aspnes, Shah and Shah [7] extended the algorithm of
Buhrman et al. to a setting with infinitely many processes.

Solving a decision task can be viewed as a special case of implementing
objects: each process accesses the object, providing its input as an argument,
and later the object responds with the output the process should choose. Herlihy
and Shavit [20] gave a characterization of the decision tasks that have wait-
free solutions in non-anonymous systems using ideas borrowed from algebraic
topology. They also describe how the characterization can be extended to systems
with a kind of anonymity: processes have identifiers but are only allowed to use
them in very limited ways. Herlihy gave a universal construction which describes
how to create a wait-free implementation of any object type using consensus
objects [18]. Processes use consensus to agree on the exact order in which the
operations are applied to the implemented object. Although this construction
requires identifiers, it was the inspiration for our obstruction-free construction
in Sect. 7. Recently, Bazzi and Ding [9] introduced, in the context of Byzantine
systems, non-skipping timestamps, a stronger abstraction than what we call a
weak counter. (Our weak counter does not preclude skipping values.)

248 R. Guerraoui and E. Ruppert

3 Model

We consider an anonymous system, where a collection of n processes execute
identical algorithms. In particular, the processes do not have identifiers. The
system is asynchronous, which means that processes run at arbitrarily varying
speeds. It is useful to think of processes being allocated steps by an adversarial
scheduler. Algorithms must work correctly in all possible schedules. Processes
are subject to crash failures: they may stop taking steps without any warning.
The algorithms we consider are deterministic.

Processes communicate with one another by accessing shared data structures,
called objects. The type of an object specifies what states it can have and what
operations may be performed on it. The programmer chooses the initial state of
the objects used. Except for our weak counter object in Sect. 4, all objects are
linearizable (atomic) [21]: although operations on an object take some interval of
time to complete, each appears to happen at some instant between its invocation
and response. An operation atomically changes the state of an object and returns
a response to the invoking process. (The weak counter object can be viewed as
a set-linearizable object [27].) We consider oblivious objects: all processes are
permitted to perform the same set of operations on it and its response to an
operation does not depend on the identity of the invoking process. (Non-oblivious
objects are somewhat inconsistent with the notion of totally anonymous systems,
since processes must identify themselves when they invoke an operation.)

Some types of objects are provided by the system and all other types needed
must be implemented from them. An implementation specifies the code that
must be executed to perform each operation on the implemented object. Since
we are considering anonymous systems, all processes execute identical code to
perform a particular operation. (We refer to such an implementation as an anony-
mous implementation.) The implementation must also specify how to initialize
the base objects to represent any possible starting state of the implemented
object.

We assume the shared memory contains the most basic kind of objects: reg-
isters, which provide two types of operations. A read operation returns the state
of the object without changing it. A write(v) changes the state to v and returns
ack. Every process can access every register. If the set of possible values that
can be stored is finite, the register is bounded; otherwise it is unbounded. A bi-
nary register has only two possible states. When describing our algorithms in
pseudocode, names of shared objects begin with upper-case letters, and names
of the process’s private variables begin with lower-case letters.

4 Weak Counters

A weak counter provides a single operation, GetTimestamp, which returns an
integer. It has the property that if one operation precedes another, the value
returned by the later operation must be larger than the value returned by the
earlier one. (Two concurrent GetTimestamp operations may return the same

What Can Be Implemented Anonymously? 249

value.) Furthermore, the value returned to any operation should not exceed
the number of invocations that have occurred so far. This object will be used
as a building block for our implementation of snapshots in Sect. 5 and our
characterization of implementable types in Sect. 7. It is used in those algorithms
to provide timestamps to different operations. The weak counter is essentially a
weakened form of a fetch&increment object: a fetch&increment object has the
additional requirement that all values returned should be distinct. It is known
that a fetch&increment object has no wait-free implementation from registers,
even if processes have identifiers [18]. By considering our weaker version, we have
an object that is implementable, and still strong enough for our purposes.

We give an anonymous, wait-free implementation of a weak counter from
unbounded registers. A similar but simpler construction, which provides an im-
plementation that satisfies the weaker non-blocking progress property, but uses
only binary registers, is then described briefly. Processes must know n, the num-
ber of processes in the system, (or at least an upper bound on n) for the wait-free
implementation, but this knowledge is not needed for the non-blocking case.

Our wait-free implementation uses an arrayA[1, 2, . . .] of binary registers, each
initialized to⊥. To obtain a counter value, a process locates the first entry of the ar-
ray that is ⊥, changes it to *, and returns the index of this entry. (See
Fig. 2.) The key property for correctness is the following invariant: if A[k] = *,
then all entries in A[1..k] are*. To locate the first⊥ in A efficiently, the algorithm
uses a binary search. Starting from the location a returned by the process’s previ-
ous GetTimestamp operation, the algorithm probes locations a + 1, a + 3, a +
7, . . . , a + 2i − 1, . . . until it finds a ⊥ in location b. (For the first operation by the
process, we initialize a to 1.) We call this portion of the algorithm, corresponding
to the first loop in the pseudocode, phase 1. The process then executes a binary
search of A[a..b] in the second loop, which constitutes phase 2.

To ensure processes cannot enter an infinite loop in phase 1 (while other
processes write more and more *’s into the array), we incorporate a helping
mechanism. Whenever a process writes a * into an entry of A, it also writes
the index of the entry into a shared register L (initialized to 0). A process may
terminate early if it sees that n writes to L have occurred since its invocation.
In this case, it returns the largest value it has seen in L. The local variables j
and t keep track of the number of times the process has seen L change, and the
largest value the process has seen in L, respectively.

Theorem 1. Fig. 2 gives a wait-free, anonymous implementation of a weak
counter from registers.

Proof. We first give three simple invariants.
Invariant 1: For each process’s value of a, if a > 1, then A[a− 1] = *.
Once * is written into an entry of A, that entry’s value will never change again.
It follows that line 14 maintains Invariant 1. Line 6 does too, since the preceding
iteration of line 3 found that A[b] = *.
Invariant 2: If A[k] = *, then A[k′] = * for all k′ ≤ k.
This follows from Invariant 1: whenever line 17 is executed, we have a = b, so
A[b− 1] is already *.

250 R. Guerraoui and E. Ruppert

GetTimestamp

1 b ← a + 1
2 � ← L; t ← �; j ← 0
3 loop until A[b] = ⊥
4 if L �= �

5 then � ← L; t ← max(t, �); j ← j + 1
6 if j ≥ n then a ← b + 1; return t and halt
7 end if
8 end if
9 b ← 2b − a + 1

10 end loop
11 loop until a = b

12 mid ← a+b−1
2

� This is an integer, since b − a + 1 is a power of 2
13 if A[mid] = ⊥ then b ← mid

14 else a ← mid +1
15 end if
16 end loop
17 write � to A[b]
18 L ← b

19 return b

Fig. 2. Wait-free implementation of a weak counter from registers

Invariant 3: Whenever a process P executes line 11 during a GetTimestamp
operation op, P ’s value of b has the property that A[b] was equal to ⊥ at some
earlier time during op.
This is easy to prove by induction on the number of iterations of the second loop.
Wait-freedom: To derive a contradiction, assume there is an execution where
some operation by a process P runs forever without terminating. This can only
happen if there is an infinite loop in Phase 1, so an infinite number of *’s
are written into A during this execution. This means that an infinite number
of writes to L will occur. Suppose some process Q writes a value x into L.
Before doing so, it must write * into A[x]. Thus, any subsequent invocation
of GetTimestamp by Q will never see A[x] = ⊥. It follows from Invariant 3
that Q can never again write x into L. Thus, P ’s operation will eventually see
n different values in L and terminate, contrary to the assumption.
Correctness: Suppose one GetTimestamp operation op1 completes before an-
other one, op2, begins. Let r1 and r2 be the values returned by op1 and op2,
respectively. We must show that r2 > r1. If op1 terminates in line 6, then, at
some earlier time, some process wrote r1 into L and also wrote * into A[r1]. If
op1 terminates in line 19, it is also clear that A[r1] = * when op1 terminates.

If op2 terminates in line 19, then A[r2] was ⊥ at some time during op2, by
Invariant 3. Thus, by Invariant 2, r2 > r1. If op2 terminates in line 6, op2 has
seen the value in L change n times during its run, so at least two of the changes
were made by the same process. Thus, at least one of those changes was made by
an operation op3 that started after op2 began (and hence after op1 terminated).
Since op3 terminated in line 19, we have already proved that the value r3 that

What Can Be Implemented Anonymously? 251

op3 returns (and writes into L) must be greater than r1. But op2 returns the
largest value it sees in L, so r2 ≥ r3 > r1.

In any finite execution in which k GetTimestamp operations are invoked,
at most O(k) of the registers are ever accessed, and the worst-case time for any
operation is O(log k). An amortized analysis can be used to prove the stronger
bound of O(log n) on the average time per operation in any finite execution.
Intuitively, if some process P must perform a phase 1 that is excessively long,
we can charge its cost to the many operations that must have written into A
since P did its previous operation. (See [17] for a detailed proof of the following.)

Proposition 2. If n processes perform a total of k invocations of the Get-
Timestamp algorithm in Fig. 2, the total number of steps by all processes is
O(k log n) and O(k) registers are accessed.

If we do not require the weak counter implementation to be wait-free, we
do not need the helping mechanism. Thus, we can omit lines 2, 4–8 and 18,
which allow a process to terminate early if it ever sees that n changes to the
shared register L occur. This yields a non-blocking implementation that uses
only binary registers. The proof of correctness is a simplified version of the proof
of Theorem 1, and the analysis is identical to the proof of Proposition 2.

Theorem 3. There is a non-blocking, anonymous implementation of a weak
counter from binary registers. In any execution with k invocations of GetTimes-
tamp in a system of n processes, the total number of steps is O(k log n) and O(k)
registers are accessed.

5 Snapshot Objects

The snapshot object [1,2,6] is an extremely useful abstraction of the problem
of getting a consistent view of several registers when they can be concurrently
updated by other processes. It has wait-free (non-anonymous) implementations
from registers, and has been widely used as a basic building block for other al-
gorithms. A snapshot object consists of a collection of m > 1 components and
supports two kinds of operations: a process can update the value stored in a com-
ponent and atomically scan the object to obtain the values of all the components.
Since we are interested in anonymous systems, we consider the multi-writer ver-
sion, where any process can update any component. Many algorithms exist to
implement snapshots, but all use process identifiers. The following proposition
can be proved using a simple modification of the standard non-blocking snapshot
algorithm for non-anonymous systems [1]. A proof appears in [17].

Proposition 4. There is a non-blocking, anonymous implementation of an m-
component snapshot object from m registers.

More surprisingly, we show that a standard algorithm for (non-anonymous)
wait-free snapshots [1] can also be modified to work in an anonymous system.

252 R. Guerraoui and E. Ruppert

Update(i, x)

1 t ← GetTimestamp
2 v ← Scan
3 write (x, v, t) in Ri

Scan

1 t ← GetTimestamp
2 loop
3 read R1, R2, . . . , Rm

4 if a register contained (∗, v, t′) with t′ ≥ t

5 then return v

6 elseif n + 1 sets of reads gave same results
7 then return the first field of each value
8 end if
9 end loop

Fig. 3. Wait-free implementation of a snapshot object from registers.

The original algorithm could create a unique timestamp for each Update op-
eration. We use our weak counter to generate timestamps that are not nec-
essarily distinct, but are sufficient for implementing the snapshot object. The
non-uniqueness of the identifiers imposes a need for more iterations of the loop
than in the non-anonymous algorithm. Our algorithm uses m (large) registers,
R1, . . . , Rm, and one weak counter, which can be implemented from registers,
by Theorem 1. Each register Ri will contain a value of the component, a view
of the entire snapshot object and a timestamp. See Fig. 3.

Theorem 5. The algorithm in Fig. 3 is an anonymous, wait-free implementa-
tion of a snapshot object from registers. The average number of steps per opera-
tion in any finite execution is O(mn2).

Proof. (Sketch) See [17] for a detailed proof. It can be shown that the regis-
ters either keep changing continually, eventually including timestamps that will
satisfy the first termination condition, or stop changing so that the second ter-
mination condition will eventually be satisfied. Updates are linearized when
the write occurs. If a Scan sees n + 1 identical sets of reads, it can be shown
that these values were all in the register at one instant in time, which is used as
the linearization point. If a Scan uses the vector recorded from another Scan
as its output, the two Scans are linearized at the same time. The timestamp
mechanism is sufficient to guarantee that the linearization point so chosen is
between the invocation and response of the Scan.

6 Consensus

In the consensus problem, processes each start with a private input value and
must all choose the same output value. The common output must be the input
value of some process. These two conditions are called agreement and validity,
respectively. Herlihy, Luchangco and Moir [19] observed that a randomized wait-
free consensus algorithm can be “derandomized” to obtain an obstruction-free
consensus algorithm. If we derandomize the anonymous consensus algorithm of
Chandra [13], we obtain the following theorem. (A proof appears in [17].)

What Can Be Implemented Anonymously? 253

Theorem 6. There is an anonymous, obstruction-free binary consensus algo-
rithm using binary registers.

The construction that proves Theorem 6 uses an unbounded number of bi-
nary registers. In this section, we give a more interesting construction of an
obstruction-free, anonymous algorithm for consensus that uses a bounded num-
ber of (multivalued) registers. First, we focus on binary consensus, where all
inputs are either 0 or 1, and give an algorithm using O(n) registers.

In the unbounded-space algorithm, each process maintains a preference that
is either 0 or 1. Initially, a process’s preference is its own input value. Intuitively,
the processes are grouped into two teams according to their preference and the
teams execute a race along a course of unbounded length that has one track for
each preference. Processes mark their progress along the track (which is repre-
sented by an unbounded array of binary registers) by changing register values
from ⊥ to * along the way. Whenever a process P sees that the opposing team is
ahead of P ’s position, P switches its preference to join the other team. As soon
as a process observes that it is sufficiently far ahead of all processes on the oppos-
ing team, it stops and outputs its own preference. Two processes with opposite
preferences could continue to race forever in lockstep but a process running by
itself will eventually out-distance all competitors, ensuring obstruction-freedom.

Our bounded-space algorithm uses a two-track race course that is circular,
with circumference 4n + 1, instead of an unbounded straight one. The course
is represented by one array for each track, denoted R0[1, 2, . . . , 4n + 1] and
R1[1, 2, . . . , 4n + 1]. We treat these two arrays as a single snapshot object R,
which we can implement from registers. Each component stores an integer, ini-
tially 0. As a process runs around the race course, it keeps track of which lap it
is running. This is incremented each time a process moves from position 4n + 1
to position 1. The progress of processes in the race is recorded by having each
process write its lap into the components of R as it passes.

Several complications are introduced by using a circular track. After a fast
process records its progress in R, a slow teammate who has a smaller lap number
could overwrite those values. Although this difficulty cannot be eliminated, we
circumvent it with the following strategy. If a process P ever observes that
another process is already working on its kth lap while P is working on a lower
lap, P jumps ahead to the start of lap k and continues racing from there. This
will ensure that P can only overwrite one location with a lower lap number, once
sufficiently many k’s have been written. There is a second complication: because
some numbers recorded in R may be artificially low due to the overwrites by slow
processes, processes may get an incorrect impression of which team is in the lead.
To handle this, we make processes less fickle: they switch teams only when they
have lots of evidence that the other team is in the lead. Also, we require a process
to have evidence that it is leading by a very wide margin before it decides. The
algorithm is given in Fig. 4, where we use v̄ to denote 1− v.

Theorem 7. The algorithm in Fig. 4 is an anonymous, obstruction-free binary
consensus algorithm that uses 8n + 2 registers.

254 R. Guerraoui and E. Ruppert

Propose(input)

1 v ← input ; j ← 0; lap ← 1
2 loop
3 S ← Scan of R

4 if Sv[i] < Sv̄[i] for a majority of values of i ∈ {1, .., 4n + 1}
5 then v ← v̄

6 end if
7 if min

1≤i≤4n+1
Sv[i] > max

1≤i≤4n+1
Sv̄[i]

8 then return v

9 elseif some element of S is greater than lap

10 then lap ← maximum element of S; j ← 1
11 else j ← j + 1
12 if j = 4n + 2 then lap ← lap +1; j ← 1
13 end if
14 end if
15 Update the value of Rv[j] to lap

16 end loop

Fig. 4. Obstruction-free consensus using O(n) registers

Proof. We use 8n + 2 registers to get a non-blocking implementation of the
snapshot object R using Proposition 4.
Obstruction-freedom: Consider any configuration C. Let m be the maximum
value that appears in any component of R in C. Suppose some process P runs by
itself forever without halting, starting from C. It is easy to check that P ’s local
variable lap increases at least once every 4n + 1 iterations of the loop until P
decides. Eventually P will have lap ≥ m+1 and j = 1. Let v0 be P ’s local value
of v when P next executes line 7. At this point, no entries in R are larger than
m. Furthermore, Rv0 [i] ≥ Rv̄0 [i] for a majority of the values i. (Otherwise P
would have changed its value of v in the previous step.) From this point onward,
P will never change its local value v, since it will write only values bigger than m
to Rv0 , and Rv̄0 contains no elements larger than m, so none of P ’s future writes
will ever make the condition in line 4 true. During the next 4n + 1 iterations of
the loop, P will write its value of lap into each of the entries of Rv0 , and then
the termination condition will be satisfied, contrary to the assumption that P
runs forever. (This termination occurs within O(n) iterations of the loop, once
P has started to run on its own, so termination is guaranteed as soon as any
process takes O(n4) steps by itself, since the Scan algorithm of Proposition 4
terminates if a process takes O(n3) steps by itself.)
Validity: If all processes start with the same input value v, they will never
switch to preference v̄ nor write into any component of Rv̄.
Agreement: For each process that decides, consider the moment when it last
scans R. Let T be the first such moment in the execution. Let S∗ be the Scan
taken at time T . Without loss of generality, assume the value decided by the
process that did this Scan is 0. We shall show that every other process that
terminates also decides 0. Let m be the minimum value that appears in S∗

0 .
Note that all values in S∗

1 are less than m.

What Can Be Implemented Anonymously? 255

We first show that, after T , at most n Updates write a value smaller than
m into R. If not, consider the first n + 1 such Updates after T . At least two of
them are done by the same process, say P . Process P must do a Scan in between
the two Updates. That Scan would still see one of the values in R0 that is at
least m, since 4n+1 > n. Immediately after this Scan, P would change its local
variable lap to be at least m and the value of lap is non-decreasing, so P could
never perform the second Update with a value smaller than m.

We use a similar proof to show that, after T , at most n Update operations
write a value into R1. If this is not the case, consider the first n+1 such Updates
after T . At least two of them are performed by the same process, say P . Process
P must do a Scan between the two Updates. Consider the last Scan that P
does between these two Updates. That Scan will see at most n values in R1

that are greater than or equal to m, since all such values were written into R1

after T . It will also see at most n values in R0 that are less than m (by the
argument in the previous paragraph). Thus, there will be at least 2n + 1 values
of i for which R0[i] ≥ m > R1[i] when the Scan occurs. Thus, immediately after
the Scan, P will change its local value of v to 0 in line 5, contradicting the fact
that it writes into R1 later in that iteration.

It follows from the preceding two paragraphs that, at all times after T ,
min

1≤i≤4n+1
R1[i] < m ≤ max

1≤i≤4n+1
R0[i]. Any process that takes its final Scan

after T cannot decide 1.

Just as a randomized, wait-free consensus algorithm can be “derandomized”
to yield an obstruction-free algorithm, the algorithm of Theorem 4 could be used
as the basis of a randomized wait-free anonymous algorithm that solves binary
consensus using bounded space.

Theorems 6 and 7 can be extended to non-binary consensus using the follow-
ing proposition, which is proved using a fairly standard technique of agreeing on
the output bit-by-bit (see [17]).

Proposition 8. If there is an anonymous, obstruction-free algorithm for binary
consensus using a set of objects S, then there is an anonymous, obstruction-free
algorithm for consensus with inputs from the countable set D that uses |D| binary
registers and log |D| copies of S. Such an algorithm can also be implemented
using 2 log |D| registers and log |D| copies of S if |D| is finite.

Corollary 9. There is an anonymous, obstruction-free algorithm for consensus,
with arbitrary inputs, using binary registers. There is an anonymous,
obstruction-free algorithm for consensus with inputs from a finite set D that uses
(8n + 4) log |D| registers.

7 Obstruction-Free Implementations

We now give a complete characterization of the (deterministic) object types that
have anonymous, obstruction-free implementations from registers. We say that

256 R. Guerraoui and E. Ruppert

an object is idempotent if, starting from any state, two successive invocations
of the same operation (with the same arguments) return the same response and
leave the object in a state that is indistinguishable from the state a single appli-
cation would leave it in. (This is a slightly more general definition of idempotence
than the one used in [5].) This definition of idempotence is made more precise
using the formalism of Aspnes and Herlihy [6]. A sequential history is a sequence
of steps, each step being a pair consisting of an operation invocation and its
response. Such a history is called legal (for a given initial state) if it is consistent
with the specification of the object’s type. Two sequential histories H and H ′

are equivalent if, for all sequential histories G, H ·G is legal if and only if H ′ ·G
is legal. A step p is idempotent if, for all sequential histories H , if H · p is legal
then H · p · p is legal and equivalent to H · p. An object is called idempotent
if all of its operations are idempotent. Examples of idempotent objects include
registers, sticky bits, snapshot objects and resettable consensus objects.

Theorem 10. A deterministic object type T has an anonymous, obstruction-
free implementation from binary registers if and only if T is idempotent.

Proof. (⇒) We assume n > 2. The special case n = 2 is deferred to the full
paper. Assume there is such an implementation of T . Let P, Q and R be distinct
processes. Let H be any legal history and let p = (op, res) be any step such
that H · p is legal. Let α be the execution of the implementation where some
process P executes the code for the sequence of operations in H , and then Q
executes op. Since the object is deterministic, Q must receive the result res for
operation op. Let β be the execution where P executes the code for the sequence
of operations in H , and then processes Q and R execute the code for op, taking
alternate steps. Since Q and R access only registers, they will take exactly the
same sequence of steps, and both will terminate and return res. Thus, H · p · p
must be legal also.

The internal state of P is the same at the end of α and β. The value stored
in each register is also the same at the end of these two runs. Thus any sequence
of operations performed by P after α will generate exactly the same sequence
of responses as they would if P executed them after β. It follows that, for any
history G, H · p ·G is legal if and only if H · p · p ·G is legal, so T is idempotent.

(⇐) Let T be any idempotent type. We give an anonymous, obstruction-free
algorithm that implements T from binary registers. The algorithm uses an un-
bounded number of consensus objects Con[1, 2, . . .], which have an obstruction-
free implementation from binary registers, by Corollary 9. The algorithm also
uses the GetTimestamp operation that accesses a weak counter, which can
also be implemented from binary registers, according to Theorem 3. These will
be used to agree on the sequence of operations performed on the simulated ob-
ject. All other variables are local. The history variable is initialized to an empty
sequence, and i is initialized to 1. The code in Fig. 5 describes how a process
simulates an operation op.
Obstruction-freedom: If, after some point of time, only one process takes
steps, all of its subroutine calls will terminate, and it will eventually increase i

What Can Be Implemented Anonymously? 257

Do(op)

1 loop
2 t ← GetTimestamp
3 (op′, t′) ← Propose(op, t) to Con[i]
4 res ← result returned to op ′ if it is done after history

5 history ← history ·(op, res)
6 i ← i + 1
7 if (op′, t′) = (op, t)
8 then return res

9 end if
10 end loop

Fig. 5. Obstruction-free implementation of an idempotent object from binary registers

until it accesses a consensus object that no other process has accessed. When
that happens, the loop is guaranteed to terminate.
Correctness: We must describe how to linearize all of the simulated operations.
Any simulated operation that receives a result in line 3 that is equal to the value
it proposed to the consensus object is linearized at the moment that consensus
object was first accessed. All (identical) operations linearized at the moment
Con [i] is first accessed are said to belong to group i.

The following invariant follows easily from the code (and the fact that the
object is idempotent): At the beginning of any iteration of the loop by any
process P , historyP is equivalent to the history that would result from the the
first iP − 1 groups of simulated operations taking place (in order), where iP and
historyP are P ’s local values of the variables i and history . Thus, the results
returned to all simulated operations are consistent with the linearization.

We must still show that the linearization point chosen for a simulated oper-
ation is between its invocation and response. Let D be an execution of Do(op)
in group i. The linearization point T of D is the first access in the execution to
Con [i]. Clearly, this cannot be after D completes, since D itself accesses Con [i].
Let D′ be the execution of Do(op′) that first accesses Con [i]. (It is possible that
D = D′.) Since D is linearized in group i, it must be the case that op = op′, and
also that the timestamps used in the proposals by D and D′ to Con [i] are equal.
Let t be the value of this common timestamp. Note that T occurs after D′ has
completed the GetTimestamp operation that returned t. If T were before D is
invoked, then the GetTimestamp operation that D calls would have to return
a timestamp larger than t. Thus, T is after the invocation of D, as required.

The algorithm used in the above proof does not require processes to have
knowledge of the number of processes, n, so the characterization of Theorem 10
applies whether or not processes know n. Since unbounded registers are idempo-
tent, it follows from the theorem that they have an obstruction-free implemen-
tation from binary registers, and we get the following corollary.

258 R. Guerraoui and E. Ruppert

Corollary 11. An object type T has an anonymous, obstruction-free implemen-
tation from unbounded registers if and only if T is idempotent.

In the more often-studied context of non-anonymous wait-free computing,
counters (with separate increment and read operations) can be implemented
from registers [6], while consensus objects cannot be [18,26]. The reverse is true
for anonymous, obstruction-free implementations (since consensus is idempotent,
but counters are not). Thus, the traditional classification of object types accord-
ing to their consensus numbers [18] will not tell us very much about anonymous,
obstruction-free implementations since, for example, consensus objects cannot
implement counters, which have consensus number 1.

If large registers are available (instead of just binary registers), the algorithm
in Fig. 5 could use, as a consensus subroutine, the algorithm of Theorem 7 instead
of the algorithm of Theorem 6. If the number of different operations that are
permitted on the idempotent object type is d and k invocations occur, then the
number of registers needed to implement each consensus object is O(n log(dk)),
by Proposition 8, and at most k consensus objects are needed. This yields the
following proposition.

Proposition 12. An idempotent object with a operation set of size d has an
implementation that uses O(kn log(dk)) registers in any execution with k invo-
cations on the object.

Acknowledgements. We thank Petr Kouznetsov for helpful conversations. This
research was supported by the Swiss National Science Foundation (NCCR MICS
project) and the Natural Sciences and Engineering Research Council of Canada.

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, 1993.

2. J. H. Anderson. Composite registers. Distributed Computing, 6(3):141–154, 1993.
3. D. Angluin. Local and global properties in networks of processors. In 12th ACM

Symp. on Theory of Computing, pages 82–93, 1980.
4. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in

networks of passively mobile finite-state sensors. In 23rd ACM Symp. on PODC,
pages 290–299, 2004.

5. J. Aspnes, F. Fich, and E. Ruppert. Relationships between broadcast and shared
memory in reliable anonymous distributed systems. In Distributed Computing,

18th Intl Symp., pages 260–274, 2004.
6. J. Aspnes and M. Herlihy. Wait-free data structures in the asynchronous PRAM

model. In 2nd ACM SPAA, pages 340–349, 1990.
7. J. Aspnes, G. Shah, and J. Shah. Wait-free consensus with infinite arrivals. In

34th ACM Symp. on Theory of Computing, pages 524–533, 2002.
8. H. Attiya, A. Gorbach, and S. Moran. Computing in totally anonymous asyn-

chronous shared memory systems. Inf. and Computation, 173(2):162–183, 2002.
9. R. A. Bazzi and Y. Ding. Non-skipping timestamps for byzantine data storage

systems. In Distributed Computing, 18th Intl Conf., pages 405–419, 2004.

What Can Be Implemented Anonymously? 259

10. O. Berthold, H. Federrath, and M. Köhntopp. Project “anonymity and unobserv-
ability in the internet”. In 10th Conf. on Computers, Freedom and Privacy, pages
57–65, 2000.

11. S. C. Bono, C. A. Soghoian, and F. Monrose. Mantis: A lightweight, server-
anonymity preserving, searchable P2P network. Technical Report TR-2004-01-
B-ISI-JHU, Information Security Institute, Johns Hopkins University, 2004.

12. H. Buhrman, A. Panconesi, R. Silvestri, and P. Vitanyi. On the importance of
having an identity or, is consensus really universal? In Distributed Computing,

14th Intl Conf., volume 1914 of LNCS, pages 134–148, 2000.
13. T. D. Chandra. Polylog randomized wait-free consensus. In 15th ACM Symp. on

PODC, pages 166–175, 1996.
14. C. Drulă. The totally anonymous shared memory model in which the number of

proces ses is known. Personal communication.
15. O. Eğecioğlu and A. K. Singh. Naming symmetric processes using shared variables.

Distributed Computing, 8(1):19–38, 1994.
16. D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun. ACM,

42(2):39–41, 1999.
17. R. Guerraoui and E. Ruppert. What can be implmented anonymously? Technical

Report 200496, School of Computer and Communications Sciences, EPFL, 2004.
18. M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149, 1991.
19. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-

ended queues as an example. In 23rd IEEE Intl Conf. on Distributed Computing

Systems, pages 522–529, 2003.
20. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.

J. ACM, 46(6):858–923, 1999.
21. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concur-

rent objects. ACM TOPLAS, 12(3):463–492, 1990.
22. P. Jayanti and S. Toueg. Wakeup under read/write atomicity. In Distributed

Algorithms, 4th Intl Workshop, volume 486 of LNCS, pages 277–288, 1990.
23. R. E. Johnson and F. B. Schneider. Symmetry and similarity in distributed sys-

tems. In 4th ACM Symp. on PODC, pages 13–22, 1985.
24. S. Kutten, R. Ostrovsky, and B. Patt-Shamir. The Las-Vegas processor identity

problem (How and when to be unique). J. Algs, 37(2):468–494, 2000.
25. R. J. Lipton and A. Park. The processor identity problem. Inf. Process. Lett.,

36(2):91–94, 1990.
26. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among un-

reliable asynchronous processes. In F. P. Preparata, editor, Advances in Computing

Research, volume 4, pages 163–183. JAI Press, Greenwich, Connecticut, 1987.
27. G. Neiger. Set-linearizability. In 13th ACM Symp. on PODC, page 396, 1994.
28. A. Panconesi, M. Papatriantafilou, P. Tsigas, and P. Vitányi. Randomized naming

using wait-free shared variables. Distributed Computing, 11(3):113–124, 1998.
29. M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM

Trans. on Inf. and System Security, 1(1):66–92, 1998.
30. S.-H. Teng. Space efficient processor identity protocol. Inf. Process. Lett.,

34(3):147–154, 1990.

Waking Up Anonymous Ad Hoc Radio

Networks�

Andrzej Pelc1

Département d’informatique, Université du Québec en Outaouais Gatineau,
Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. We consider the task of waking up an anonymous ad hoc
radio network from a single source, by a deterministic algorithm. In the
beginning only the source is awake and has to wake up other nodes by
disseminating messages throughout the network. Nodes of the network
do not know its topology and they do not have distinct labels. In such
networks some nodes are impossible to reach. A node in a network is
accessible if it can be woken up by some (possibly network-dependent)
deterministic algorithm. A deterministic wakeup algorithm for ad hoc
networks is universal if it wakes up all accessible nodes in all networks.
We study the question of the existence of such a universal wakeup al-
gorithm. For synchronous communication we design a universal wakeup
algorithm, and for asynchronous communication we show that no such
algorithm exists.

1 Introduction

A radio network is a collection of stations, which can act as transmitters or as
receivers. Stations will be referred to as nodes of the network. The network is
modeled as an undirected connected graph on the set of these nodes. An edge e
between two nodes means that transmissions of one end of e can reach the other
end. Time is divided into equal steps (time slots). In every step every node acts
either as a transmitter or as a receiver. A node acting as a transmitter sends a
message which can potentially reach all of its neighbors. An important distinction
at the receiving end is between a message being delivered and being heard, i.e.,
received successfully by a node. In the synchronous scenario, a message sent by
a node in a given step t is delivered to all neighbors in the same step. In the
asynchronous scenario, it is delivered to each neighbor in some step t′ ≥ t, and
this choice is made by an adversary, for each neighbor.

A node acting as a receiver in a given step hears a message, if and only if, a
message from exactly one of its neighbors is delivered in this step. The message
heard in this case is the one that was delivered from the unique neighbor. If
messages from at least two neighbors v and v′ of u are delivered simultaneously
in a given step, none of the messages is heard by u in this step. In this case we
� Research partially supported by NSERC discovery grant and by the Research Chair

in Distributed Computing at the Université du Québec en Outaouais.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 260–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Waking Up Anonymous Ad Hoc Radio Networks 261

say that a collision occurred at u. It is assumed that the effect at node u of a
collision is the same as that of no message being delivered in this step, i.e., a
node cannot distinguish a collision from silence.

A standard assumption made when considering deterministic radio commu-
nication is that nodes have distinct labels which can be parameters for a com-
munication algorithm. However, in practice, nodes of unknown identities may
join the network over time in a distributed fashion, and thus it is important
to design communication algorithms that do not depend on node identities.
Therefore in this paper we drop the assumption of distinct node identities and
consider anonymous ad hoc radio networks. In ad hoc networks (cf. [7,20]) nodes
do not know the topology of the network. In our present scenario, knowledge of
nodes is even more restricted: they know neither the topology of the network nor
their labels. We assume that there is one distinguished node called the source,
which has a wakeup message to be disseminated in the network. All other nodes
are identical. Nodes know only their status source/non-source but they do not
have any other a priori information (global or local) concerning the network:
they know neither the topology of the network nor its size, nor even their own
degree.

Waking up a radio network from a single source is the following basic task.
In the beginning, one distinguished node, called the source, is awake and all
other nodes are dormant. The source starts the wakeup process by sending a
message, which is then relayed by awake nodes. Every node that hears a message
becomes awake and can send further messages. Dormant nodes do not send
any messages, i.e. they act as receivers until being woken up. All nodes have
individual clocks that tick at the same rate, measuring time steps. The clock
of a node starts in the step when the node is woken up. Waking up is closely
related to broadcasting, which is one of the fundamental primitives in network
communication. Its goal is to transmit a message from the source of the network,
to all other nodes. Remote nodes get the source message via intermediate nodes,
along paths in the network. The difference between waking up from a single
source and broadcasting is that, in waking up, dormant nodes do not send any
messages, and in broadcasting, such spontaneous transmissions, containing some
control messages and sent before the source message reaches a given node, may
be allowed.

We consider only deterministic wakeup algorithms. In our anonymous sce-
nario it is clear that, for some networks, not all nodes can be woken up. For
example, in the 4-cycle, the node at distance 2 from the source cannot be wo-
ken up by any algorithm, due to the impossibility of breaking symmetry. Hence
we say that a node in a network is accessible if it can be woken up by some
(possibly network-dependent) algorithm. Broadcasting (whose aim is to reach
all nodes) may be impossible in anonymous networks, for the same reason as
above. Therefore, waking up anonymous networks is rather related to multicas-
ting whose goal is to transmit source information to all accessible nodes. Since
our context is that of ad hoc networks, we are interested in network-independent
wakeup algorithms. A wakeup algorithm for ad hoc networks is universal if it
wakes up all accessible nodes in all networks.

262 A. Pelc

1.1 Our Results

We study the fundamental question of the existence of a deterministic univer-
sal wakeup algorithm. Such an algorithm, if it exists, is very general, in that
– without knowing the network – it is still capable of disseminating source in-
formation in every possible network to all nodes that can be reached by some
deterministic communication algorithm (even specifically designed for this par-
ticular network). We focus attention on feasibility of universal wakeup. It turns
out that the existence of a universal wakeup algorithm depends on the synchrony
of communication. For synchronous communication we design a universal wakeup
algorithm, and for asynchronous communication we show that no such algorithm
exists.

1.2 Open Problems

Since we show a universal wakeup algorithm in the synchronous setting and
refute its existence in the asynchronous setting, it is natural to ask if a universal
wakeup algorithm exists in the partially synchronous setting, in which there is an
upper bound t on the delay between sending and delivery of a message, and t can
be used as an input to the algorithm. On the other hand, in this paper we focus
attention on feasibility of universal wakeup and not on its efficiency. It remains
open if there exists a universal wakeup algorithm (in the synchronous or partially
synchronous setting), which wakes up all accessible nodes in all networks in time
polynomial in the size of the network.

1.3 Related Work

Models used in the literature about algorithmic aspects of radio communication
differ mostly in the amount of information about the network that is assumed
available to nodes. However, all previous results concerning deterministic algo-
rithms for radio communication assume that nodes have distinct identities, and
each node knows its identity.

Deterministic centralized broadcasting assuming complete knowledge of the
network was considered, e.g., in [6], where a O(D log2 n)-time broadcasting al-
gorithm was given for all n-node networks of radius D. This was improved to
O(D log n + log2 n) in [21]. In [16], O(D + log5 n)-time broadcasting was pro-
posed. This was improved to O(D + log4 n) in [15]. On the other hand, in [1]
the authors proved the existence of a family of n-node networks of radius 2, for
which any broadcast requires time Ω(log2 n).

One of the first papers to study deterministic distributed broadcasting in ra-
dio networks whose nodes have only limited knowledge of the topology, was [3].
The authors assumed that nodes know only their own label and labels of their
neighbors. Many authors [5,7,8,12,13] studied deterministic distributed broad-
casting in radio networks under the assumption that nodes know only their own
label (but not labels of their neighbors). In [7] the authors gave a broadcasting
algorithm working in time O(n) for arbitrary n-node networks, assuming that
nodes can transmit spontaneously, before getting the source message. For this

Waking Up Anonymous Ad Hoc Radio Networks 263

model, a matching lower bound Ω(n) on deterministic broadcasting time was
proved in [19] even for the class of networks of constant diameter. On the other
hand, in [5] a lower bound Ω(D log n) was proved for n-node networks of radius
D, if spontaneous transmissions are not allowed.

In [7,8,12,14] the model of directed graphs was used. Increasingly faster
broadcasting algorithms working on arbitrary (directed) radio networks were
constructed, the currently fastest being the O(n log2 D)-time algorithm from
[14]. On the other hand, in [13] a lower bound Ω(n log D) on broadcasting time
was proved for directed n-node networks of radius D.

Randomized broadcasting algorithms in radio networks were studied, e.g.,
in [3,23]. For these algorithms, no topological knowledge of the network was
assumed, and no distinct identities of nodes were supposed. In [3] the authors
showed a randomized broadcasting algorithm running in expected time
O(D log n + log2 n). In [23] it was shown that for any randomized broadcast-
ing algorithm and parameters D ≤ n, there exists an n-node network of radius
D requiring expected time Ω(D log(n/D)) to execute this algorithm. It should
be noted that the lower bound Ω(log2 n) from [1], for some networks of radius
2, holds for randomized algorithms as well. A randomized algorithm working
in expected time O(D log(n/D) + log2 n), and thus matching the above lower
bounds, was presented in [20] (cf. also [14]).

The wakeup problem in radio networks was first studied in [17] for single-
hop networks (modeled by complete graphs), and then in [11,9] for arbitrary
networks. In [18] the authors studied randomized wakeup algorithms for radio
networks. In all these papers it was assumed that a subset of all nodes wake up
spontaneously and have to wake up other (dormant) nodes.

In all the above papers communication was carried out in the synchronous
model, in which a message is delivered to a neighbor in the time step in which
it is sent. Asynchronous radio communication was first considered in [10], where
the authors studied an efficiency measure of an asynchronous broadcasting al-
gorithm called the work (the total number of messages sent). They used various
adversaries to model asynchrony of radio communication. The model of asyn-
chrony used in the present paper was called edge adversary in [10].

To the best of our knowledge, the present paper is the first to study determin-
istic communication algorithms for anonymous ad hoc radio networks. Various
computational tasks in anonymous networks of different nature were studied,
e.g., in [2,4,22].

2 Preliminaries

2.1 Algorithms and Histories

Since in our setting networks are anonymous and nodes are not aware of the
topology, the decision made by a node in a given step, whether it should transmit
or not, can be based solely on the messages previously heard by this node. Hence
a (deterministic) wakeup algorithm can be viewed as a function that takes the
communication history of a node before the given step and returns a message

264 A. Pelc

to be sent in a given step or the decision to send no message. From the point of
view of node accessibility we can restrict attention to algorithms that instruct
nodes to send a particular type of messages: when, according to its history, a
node is supposed to send a message in a given step, the message is the entire
history of the node before this step. Since the history is the only information
based on which decisions are made, any wakeup algorithm can be simulated
by an algorithm sending entire histories, and hence, if a node in a network is
accessible by any algorithm, it is accessible by an algorithm whose messages are
entire histories.

In what follows we formally define the notions of history and of a wakeup
algorithm that correspond to the above intuitions. The history of a node v in
step i, denoted by H(i, v), is a finite sequence of symbols 1, [,]. It corresponds
to what the node heard until step i and is inductively defined as follows. H(0, v)
is the sequence [1] (where 1 is the one-bit wakeup message of the source), if v is
the source, and it is the sequence [] otherwise. The latter sequence is denoted
by ε and is called the empty history. Suppose that H(j, w) is defined for all j < i
and all nodes w. Consider a node v and step i > 0.

– If node v heard a message m in step i then H(i, v) is the concatenation of
H(i− 1, v) and of the sequence [m].

– If node v did not hear any message in step i and v is awake then H(i, v) is
the concatenation of H(i− 1, v) and of the sequence [].

– If node v is dormant (i.e., it is not the source and did not hear any message
in any step j ≤ i) then H(i, v) is the sequence [].

In particular, this definition formalizes the intuition that nodes other than
the source start counting steps from the time of their waking up by the first
message they hear, and the source starts counting steps from the beginning.
Histories of dormant nodes are all the same in all steps and equal to ε.

Let H denote the set of all histories. A wakeup algorithm is any function
A : H −→ {0, 1}, such thatA(ε) = 0. IntuitivelyA(H) = 1 means that algorithm
A instructs a node with history H to act as a transmitter in a given step and
send a message containing H , while A(H) = 0 means that algorithm A instructs
a node with history H to act as a receiver and thus not send any message.

In the above definitions, histories of nodes depend on messages heard, and al-
gorithms give instructions about sending. The notion of an execution of a wakeup
algorithm in a given communication environment gives the relation between the
above. Fix a wakeup algorithm A and a network G with source s. In the case
of asynchronous communication also fix an adversary A, which, for every step i,
every node v, such that v sends a message in step i, and for every neighbor w of
v, determines the step j ≥ i in which the message is delivered to w (not neces-
sarily heard by w). Similarly as in [10] we do not allow amalgamating messages
sent in different steps by a node, i.e., if two messages were sent by a node v in
distinct steps, they must be delivered at each neighbor of v in distinct steps as
well. In the case of synchronous communication we assume that the adversary
always determines step j = i, i.e., it delivers a message in the step in which
it is sent. The execution of algorithm A in (G, s), under adversary A, defines

Waking Up Anonymous Ad Hoc Radio Networks 265

the message heard in any step i by any node. It is the notion of execution that
captures both the role of collisions, and the role of the adversary in successful
receiving of messages. Fix a node v and a step i, in which v acts as a receiver,
according to A. If a message m from exactly one neighbor w of v is delivered at
v in step i then v hears m in step i. Otherwise v hears nothing. It follows from
the above that if a node v hears a message in step i then this message must be
H(j, w), for some j < i and some neighbor w of v, and in the case of synchronous
communication it must be H(i − 1, w). A node other than the source is awake
when it already heard some message.

Suppose that a network G with source s and an adversary are fixed. For
any wakeup algorithm A, any time step i and any node v of this network, the
execution of A defines a history of the algorithm A in node v at time i. This
history is denoted by H(i, v,A).

2.2 Node Accessibility

A node of a network G with source s, for adversary A, is accessible if there
exists a wakeup algorithm A such that the execution of A in this network, under
adversary A, causes node v to hear a message in some step. Note that this
algorithm may be tailored specifically to wake up this particular node, and thus
may depend on the network and even on the specific node v.

As mentioned in the introduction, some nodes in some networks are not
accessible, as witnessed by the example of the 4-cycle. Below we give a simple
sufficient condition for inaccessibility of a node, exploiting the symmetry of the
network. Consider a network G = (V, E) with source s. Nodes w and w′ are called
similar if there exists a graph automorhism f of the graph G (i.e., a bijection
f : V −→ V such that u is adjacent to v iff f(u) is adjacent to f(v)) for which
f(s) = s and f(w) = w′. A node v is called blocked if v is not the source and if,
for every u adjacent to v, there exists a node u′ �= u adjacent to v and similar
to u.

Proposition 1. In synchronous communication, every blocked node is inacces-
sible.

Proof. We first prove by induction on step i that similar nodes have identical
histories in all steps i in the synchronous execution of any wakeup algorithm.
Fix a wakeup algorithm A. For i = 0 this property is obvious. Suppose that
it holds for i ≥ 0 and let u and u′ be similar nodes. Let f : V −→ V be
an automorphism of G, for which f(s) = s and f(u) = u′. We want to prove
H(i+1, u,A) = H(i+1, u′,A). By the inductive hypothesis we have H(i, u,A) =
H(i, u′,A). If none of the nodes u, u′ hears any message in step i + 1, we are
done. Hence we may assume, without loss of generality, that u hears a message
in step i + 1. Let v be the neighbor of u from which u heard this message.
The node f(v) is a neighbor of u′, similar to v. By the inductive hypothesis we
have H(i, v,A) = H(i, f(v),A). Hence algorithm A causes f(v) to transmit the
same message as v in step i + 1. If u′ hears this message, we are done. Hence
assume that u′ does not hear any message in step i + 1. This means that either

266 A. Pelc

w’

w

vu

t

s

Fig. 1. A network with a non-blocked inaccessible node

u′ itself or some neighbor w �= f(v) of u′ transmits in this step. In the first case
u also transmits in this step because H(i, u,A) = H(i, u′,A), which contradicts
the assumption that u hears a message in step i + 1. In the second case, the
neighbor f−1(w) of node u is similar to w and, by the inductive hypothesis,
we have H(i, w,A) = H(i, f−1(w),A). Consequently, f−1(w) transmits in step
i + 1, since w does. However, node f−1(w) is a neighbor of u different from v,
which contradicts the fact that u hears the mesage from v in step i + 1. Thus
we got contradiction in both cases and the property is proved by induction.

Now suppose that a blocked node v �= s is accessible, and let A be a wakeup
algorithm whose synchronous execution causes v to hear a message for the first
time in step j. Suppose that this message comes from neighbor u of v. Since v is
blocked, there exists a neighbor u′ �= u that is similar to u. Hence histories of u′

and u are identical up to step j−1. Consequently, if u sends a message in step j,
so does u′. This prevents v from hearing any message in step j. Contradiction.
�

The sufficient condition for node inaccessibility from Proposition 1 permits
to establish this feature of nodes in many cases. For example, consider a square
grid of odd size with the source in the center of the grid. Symmetries with
respect to each of the diagonals are clearly automorphisms of the grid that fix the
source. It follows that every node of the diagonal is blocked, and consequently
it is inaccessible, for the synchronous adversary. However, the condition from
Proposition 1 is not necessary for inaccessibility. Consider the network from
Fig. 1. It is easy to see that nodes u and v are not similar, and hence node
t is not blocked. However, it is inaccessible for the following reason. Nodes w
and w′ have identical histories in all steps in the synchronous execution of any
wakeup algorithm. Consequently they cannot inform node v of their existence
and hence the symmetry between nodes u and v cannot be broken. These nodes
have identical histories in all steps in the synchronous execution of any wakeup
algorithm, hence no algorithm can wake up node t.

3 A Universal Synchronous Wakeup Algorithm

In this section we consider the synchronous setting, in which every message is
delivered to neighbors of a sending node in the same step in which it is sent. In

Waking Up Anonymous Ad Hoc Radio Networks 267

this setting we can define the notion of time of any nonempty history H , denoted
by T (H). This is the number of the time step (counted from the start of the
wakeup process), in which the history is taken. T (H) can be easily computed,
given H . It is clear how to do it for time step 1. Suppose that it is computed for
histories in time steps j < i, and consider a history H in step i. Consider the
subsequence H ′ of H corresponding to the first message forming H . The sequence
H ′ is some history at a time j < i, hence by induction T (H ′) can be computed.
Every step after j is reflected in the sequence H either by a subsequence []
if no message was heard in this step, or by a subsequence [m], where m is the
message heard in this step. The number x of these subsequences (easy to identify
by pairing parantheses [and]), added to T (H ′), gives T (H).

Example 1. Consider the history H = ([][H ′][H1][][][H2][][H3]). The first
segment [] codes the fact that the node is not the source. The next segment
[H ′] means that the first heard message was H ′. Suppose that T (H ′), computed
recursively, is 5. The end segment [H1][][][H2][][H3] of the sequence H means
that the node heard message H1 in step 6, no message in steps 7 and 8, message
H2 in step 9, no message in step 10, and message H3 in step 11. Thus T (H) = 11.

Consider any wakeup algorithm A and any time step i. The truncation of
A to i, denoted A|i, is the restriction of the function A to the set of those
histories H for which T (H) ≤ i. Let Σi be the set of all truncations to i.
For each integer i, Σi is a finite set. Enumerate all elements of all sets Σi by
distinct positive integers (since truncations are functions from a set of sequences
to {0, 1}, a canonical enumeration could be, e.g., the lexicographic ordering of
these functions). For any truncation A|i, let Φ(A|i) denote the positive integer
associated to A|i in this enumeration. Call it the code of truncation A|i. By
definition, distinct truncations have distinct codes.

We are now ready to define the algorithm U that will be proved universal.
The idea of the algorithm is the following. Let pj denote the jth prime number.
For any truncation A|i with code j, algorithm U simulates decisions of algorithm
A made in steps k ≤ i by making identical decisions in steps pk

j . This idea is
formalized as follows.

Let H be a history and j a positive integer. We define the jth projection of
H , denoted Πj(H), by induction on T (H). We have Πj([]) = ([]) and Πj([1]) =
([1]). Suppose that Πj(H ′) is defined for all histories with T (H ′) < T (H). Let
H∗ be the subsequence of H corresponding to time steps that are powers of pj .
Let H∗ = ([H1][H2] . . . [Hr]), where Ht are either histories or empty sequences.
Now Πj(H) is defined as ([Πj(H1)][Πj(H2)] . . . [Πj(Hr)]). Intuitively, Πj(H)
extracts from H the part that happened in time steps which are powers of pj .

Now the algorithm U is defined as follows. Let H be a nonempty history. If
T (H) is not pk

j − 1, for any j and k, then U(H) = 0, i.e., nodes do not transmit
in time steps that are not powers of primes. If T (H) = pk

j − 1, for some j and k,
then let A|i be a truncation with code j. If k ≤ i then U(H) = A(Πj(H)), i.e.,
U simulates the decision of (the truncation of) A. If k > i then U(H) = 0 (the
simulation of the truncation A|i is finished).

268 A. Pelc

This concludes the definition of the wakeup algorithm U . It remains to prove
its main property.

Theorem 1. The wakeup algorithm U is universal.

Proof. Consider an accessible node v in a network G with source s. Let u1, u2,...,
um be neighbors of v. Denote v = u0. Suppose that a wakeup algorithm A wakes
up node v in step i. Hence v hears the message from some neighbor uq in step
i. Let j be the code of truncation A|i. Consider the step t = pi

j . Let Hr, for
r = 0, 1, . . . , m, be the history of node ur in time step t− 1, under algorithm U ,
i.e., Hr = H(t−1, ur,U), and let Ĥr be the history of node ur in time step i−1,
under algorithm A, i.e., Ĥr = H(i− 1, ur,A). Hence Ĥr = Πj(Hr). Since v was
woken up by uq in algorithmA, we have A(Ĥq) = 1 and A(Ĥr) = 0, for all r �= q.
By the definition of algorithm U we have U(Hr) = A(Πj(Hr)) = A(Ĥr). Hence
U(Hq) = 1 and U(Hr) = 0, for all r �= q. Consequently, v hears the message from
uq in time step t. It follows that all accessible nodes are woken up by algorithm
U , and hence this algorithm is universal. �

4 Impossibility of Universal Asynchronous Wakeup

In this section we prove that a universal wakeup algorithm does not exist if
communication is asynchronous. We will show this impossibility result even for
a restricted adversary that cannot amalgamate messages: messages sent by a
neighbor w of v in different steps have to be delivered at v in different steps.

In order to carry out our impossibility argument, we first define the following
class N of networks. Networks of this class are indexed by finite nondecreasing
sequences. Let r = (r1, . . . , rk) be such a sequence, where r1 ≤ · · · ≤ rk. The
network Nr is defined as follows. The source s has neighbors u1,..., uk, which
have another common neighbor t, at distance 2 from s. Moreover, to each node
um a path of length rm is attached, and all paths are pairwise disjoint and do

s

t

u u u u
1 2 3 4

Fig. 2. The network N(1,2,2,3)

Waking Up Anonymous Ad Hoc Radio Networks 269

not contain s or t (see Fig. 2). A network Nr is called leading, if the largest term
of the sequence r is unique (i.e., if rk > rk−1). Thus the network N(1,2,2,3) is
leading and the network N(1,2,3,3) is not.

We first prove the following fact.

Lemma 1. In every leading network every node is accessible.

Proof. Let Nr be a leading network, and let rk be the unique largest term of
r. The following algorithm (called Algorithm Dedicated because it is specially
tailored for the network Nr and depends on r = (r1, . . . , rk)) wakes up all nodes
of Nr. We describe the algorithm informally but it can be easily translated to
correspond to our definition from Section 2.

Algorithm Dedicated

– The source sends a message with counter −1;
– a node that was woken up by a message with counter x in

some step, sends a message with counter x + 1 in the next
step;

– a node that heard a message with counter rk in some step,
sends the message elected in the next step;

– a node that heard the message elected for the first time in
some step, sends the message elected k− 1 times, in the k− 1
following steps.

It is easy to see that all nodes of Nr, other than node t, are woken up by
messages with counters. The message elected is generated only in the unique
longest path, and consequently only one neighbor of the source, namely node uk

corresponding to this longest path, sends k messages: one message with counter
0 and k− 1 messages elected. Every other neighbor of the source sends only one
message (with counter 0). There are at most k− 1 different steps in which mes-
sages from nodes u1,..., uk−1 are delivered. Hence at least one of the k messages
from node uk is delivered to t in a step in which it is the only message delivered
to t. Consequently, node t is woken up as well. �

In order to prove the impossibility of universal asynchronous wakeup, it is
now sufficient to show the following result.

Lemma 2. For every wakeup algorithm A there exists a leading network and
an adversary, for which node t is not woken up by A.

Proof. Consider any wakeup algorithm A, a network Nr and a neighbor um of
the source. Fix the following partial behavior of the adversary: all messages sent
by the source and all messages sent along edges of the path of length rm attached
to um are delivered in the time step in which they are sent (i.e., on this part of
the network the adversary is synchronous). Any message sent by any neighbor
uk of the source in step i is delivered at s and at t in the same step j ≥ i (j is to
be specified later). Consider the part of the execution of A before node t is woken

270 A. Pelc

up. The only messages um can hear during this part are either from its neighbor
on the path of length rm attached to um, or from the source. Since during this
part the source does not hear any message (otherwise node t would also hear
a message in the same step), its history (possibly heard by um) is of the form
([1][][] . . . []). Hence messages heard by um during this part of the execution
of A (for the above partially described behavior of the adversary) depend only
on rm (and not on the entire topology of Nr). Consequently, the histories of um

also depend only on rm during this part.
In view of this property, the following function f : N −→ N ∪ {∞} is well

defined. Take any positive integer x and consider a neighbor um of the source s
in a network Nr. Suppose that x = rm is the length of the path attached to um.

First suppose that, by some time step i, node t of network Nr is not woken
up and that by this time step node um sends y messages. Suppose that um does
not send any more messages before node t is woken up. Then we define f(x) = y.
It remains to specify when we set f(x) = ∞. This is the case if the following
property is satisfied. For any positive integer k there exists an integer i such that
if node t is not woken up by step i then node um sends at least k messages by
step i. This concludes the definition of function f . Consider two cases.

Case 1. f(x) =∞, for some x.
Consider the network N(x,x,x+1). This is a leading network. Suppose that all

messages sent by neighbors u1 and u2 of the source are delivered at t and at s
in the step in which they are sent (hence the adversary is synchronous for these
nodes). Let these be steps i1, i2, . . . , until t is woken up. Let the jth message be
sent by u3 in step zj , until t is woken up. We complete the description of the
behavior of the adversary by imposing the step dj in which this jth message of
u3 is delivered at t and at s: dj is the smallest step ik larger than all dj′ , for
j′ < j and larger than zj . Hence none of the messages sent by u1, u2, u3 is heard
by t, due to collisions. Consequently, t can never be woken up.

Case 2. f(x) is a positive integer, for all x.
Subcase 2.1. f(x) ≤ f(1), for all positive integers x.
In this case, there exist two positive integers x1 < x2, such that c = f(x1) =

f(x2). Consider the network N(x1,x2). This is a leading network. Let i be a time
step by which neighbors u1 and u2 of the source send their first c messages. Now
we complete the description of the behavior of the adversary by imposing steps
when messages sent by u1 and u2 are delivered at t and at s: in both cases they
are delivered in steps i+1, i+2, . . . , i+ c. Hence none of these messages is heard
by t, due to collisions. Consequently, t is not woken up by any of these messages.
However, u1 and u2 will not send any more messages, and hence t can never be
woken up.

Subcase 2.2. f(x) > f(1), for some positive integer x.
In this case denote f(1) = a and f(x) = b. Let c = �b/a�. Consider the

network Nr, where r = (r1, . . . , rc+1), with r1 = · · · = rc = 1 and rc+1 = x. Let
i be a time step by which neighbors u1, . . . , uc of the source send their first a
messages and neighbor uc+1 of the source sends its first b messages. We complete
the description of the behavior of the adversary by imposing steps when messages
sent by nodes um, for m ≤ c + 1, are delivered at t and at s. The b messages

Waking Up Anonymous Ad Hoc Radio Networks 271

sent by node uc+1 are delivered in steps i + 1, i + 2, . . . , i + b. The a messages
sent by node um, for m < c, are delivered in steps i + (m − 1)a + 1, i + (m −
1)a+2, . . . , i+ma. Finally, the a messages sent by node uc are delivered in steps
i + b − a + 1, i + b − a + 2, . . . , i + b. Hence none of these messages is heard by
t, due to collisions. Consequently, t is not woken up by any of these messages.
However, none of the nodes um will send any more messages, and hence t can
never be woken up. �

Lemmas 1 and 2 imply the main result of this section:

Theorem 2. There does not exist a universal asynchronous wakeup algorithm.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Sciences 43 (1991) 290–298.

2. Attiya, H., Snir, M., Warmuth, M., Computing on an Anonymous Ring, Journal
of the ACM 35, (1988), 845–875.

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in ra-
dio networks: an exponential gap between determinism and randomization. Journal
of Computer and System Sciences 45 (1992) 104–126.

4. Boldi, P., Vigna, S., Computing anonymously with arbitrary knowledge, Proc. 18th
ACM Symp. on Principles of Distributed Computing , (PODC 1999).

5. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile
radio networks. Distributed Computing 10 (1997) 129–135.

6. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in mul-
tihop radio networks. IEEE Transactions on Communications 39 (1991) 426–433.

7. Chlebus, B., Ga̧sieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in ad hoc radio networks. Distributed Computing 15 (2002) 27–38.

8. Chlebus, B., Ga̧sieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting. Proc. 27th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’2000), LNCS 1853, 717–728.

9. Chlebus, B., Kowalski, D.: A better wake-up in radio networks, Proc. 23rd Annual
Symp. on Principles of Distributed Computing (PODC 2004).

10. Chlebus, B., Rokicki, M.: Asynchronous broadcast in radio networks, Proc.
11th Int. Coll. on Structural Information and Communication Complexity,
(SIROCCO’2004), LNCS 3104, 57–68.

11. Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The wake-up problem in multi-hop ra-
dio networks, Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), 985 – 993.

12. Chrobak, M., Ga̧sieniec, L., Rytter, W.: Fast broadcasting and gossiping in
radio networks. Proc. 41st Symposium on Foundations of Computer Science
(FOCS’2000) 575–581.

13. Clementi, A.E.F., Monti, A., Silvestri, R. , Selective families, superimposed codes,
and broadcasting on unknown radio networks, Proc. 12th Ann. ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’2001), 709–718.

14. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with un-
known topology. Proc. 44th Symposium on Foundations of Computer Science
(FOCS’2003) 492–501.

272 A. Pelc

15. Elkin, M., Kortsarz, G.: Improved broadcast schedule for radio networks. Proc.
16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005).

16. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal
of Algorithms 46 (1) (2003) 1–20.

17. Ga̧sieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast
systems, SIAM Journal on Discrete Mathematics 14 (2001), 207-222.

18. Jurdzinski, T., Stachowiak, G.:, Probabilistic algorithms for the wakeup problem
in single-hop radio networks, Proc. 13th International Symposium on Algorithms
and Computation (ISAAC 2002), LNCS 2518, 535 – 549.

19. Kowalski, D., Pelc, A.: Time complexity of radio broadcasting: adaptiveness vs.
obliviousness and randomization vs. determinism, Theoretical Computer Science
333 (2005), 355-371.

20. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Proc.
22nd ACM Symposium on Principles of Distributed Computing (PODC’2003) 73–
82.

21. Kowalski, D., Pelc, A.: Centralized deterministic broadcasting in undirected multi-
hop radio networks, Proc. 7th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX’2004), LNCS 3122,
171-182.

22. Kranakis, E., Krizanc, D., van der Berg, J., Computing Boolean Functions on
Anonymous Networks, Information and Computation 114, (1994), 214–236.

23. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM Journal on Computing 27 (1998) 702–712.

Fast Deterministic Distributed Maximal

Independent Set Computation on
Growth-Bounded Graphs

Fabian Kuhn1, Thomas Moscibroda1, Tim Nieberg2,�, and Roger Wattenhofer1

1 Computer Engineering and Networks Laboratory,
ETH Zurich,

8092 Zurich, Switzerland
{kuhn, moscitho, wattenhofer}@tik.ee.ethz.ch

2 Department of Applied Mathematics,
University of Twente,

Postbus 217, 7500 AE Enschede, The Netherlands
t.nieberg@utwente.nl

Abstract. The distributed complexity of computing a maximal inde-
pendent set in a graph is of both practical and theoretical importance.
While there exists an elegant O(log n) time randomized algorithm for
general graphs [20], no deterministic polylogarithmic algorithm is known.
In this paper, we study the problem in graphs with bounded growth, an
important family of graphs which includes the well-known unit disk graph
and many variants thereof. Particularly, we propose a deterministic algo-
rithm that computes a maximal independent set in time O(log Δ · log∗n)
in graphs with bounded growth, where n and Δ denote the number of
nodes and the maximal degree in G, respectively.

1 Introduction

The distributed complexity of computing a maximal independent set (MIS) in a
graph has been one of the tantalizing problems in distributed computing. While
there are well-known and elegant randomized algorithms that compute a MIS in
expected time O(log n) [20], the open problem formulated by Linial [19], whether
there exists a deterministic distributed algorithm that finds a MIS in a graph in
polylogarithmic time, is open.

If every node has a unique identifier, there is a trivial distributed MIS algo-
rithm which works as follows. Every node joins the MIS if it has the smallest
ID among its neighbors and if none of its neighbors has already joined the MIS.
Unfortunately, this algorithm can result in an entirely sequential execution and
linear running time because there may be only a single point of activity at any
time. While there exist algorithms that greatly outperform the trivial sequential

� This work is partially supported by the European research project Embedded
WiSeNts (FP6-004400) and by the Dutch project Smart Surroundings (BSIK-03060).

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 273–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

274 F. Kuhn et al.

algorithm, e.g., [22], the quest for a polylogarithmic algorithm has so far been
in vain.

The particular interest in the MIS problem stems on the one hand from its
practical importance in various application settings. Specifically, in a network
graph consisting of nodes representing processors, a MIS defines a set of pro-
cessors which can operate in parallel without interference. On the other hand,
the maximal independent set problem is also of outstanding theoretical interest,
because it prototypically captures the notion of symmetry breaking, one of the
central aspects in distributed computing, in a simple, well-defined way. While
it is easily conceivable that the symmetry between nodes can be broken using
randomization, doing so deterministically appears to be intrinsically difficult.

Recently, maximal independent sets have been granted particular attention
by the wireless networking community. In wireless ad hoc and sensor networks,
clustering is one of the foremost network organization techniques to enable ef-
ficient routing and to cope with failures and mobility. The clustering induced
by a MIS has been shown to exhibit particularly desirable properties [2]. Yet, in
spite of the multiplicity of papers written in the wireless networking literature,
not much is known about the fundamental principles governing the computation
of maximal independent sets in the kind of network graphs that have typically
been used to model wireless networks.

In wireless networking, the usually studied graphs are unit disk graphs (UDG)
in which all nodes are assumed to be located in the Euclidean plane and there
exists a communication edge between two nodes u and v iff the Euclidean dis-
tance d(u, v) is at most 1. In this paper, we study the distributed complexity of
computing a MIS in unit disk graphs. Specifically, we show that for unit disk
graphs, Linial’s question can be answered in the affirmative. In particular, we
present a novel deterministic distributed algorithm that computes a MIS in unit
disk graphs in time O(log Δ · log∗n), where Δ denotes the maximal degree in the
network graph.

Obtaining a MIS deterministically is easy if each node knows it exact location,
and the location of its neighbors. Moreover, if nodes can sense the distance
to their neighbors, a MIS can be computed deterministically in time O(log∗n)
as shown in [16]. Hence, it is an important aspect about our result that the
nodes do not require any position or distance information. That is, the only
information available at a node is the connectivity information to its neighbors.
In graph theoretical terms, this corresponds to a problem definition in which
the geometric representation of the graph is not given. Notice that even in the
case of centralized algorithms, the absence of a geometric representation of a
given unit disk graph renders many problems much harder. Particularly, given
a unit-disk graph, it is NP -hard to find its graphical representation or even an
approximation thereof [6,14].

The absence of position or distance information implies that our algorithm
works for arbitrary graphs, even though it achieves the claimed O(log Δ · log∗n)
running time only in graphs with bounded growth, such as the unit disk graph.
However, we establish our result not only for unit disk graphs, but for the more

Fast Deterministic Distributed Maximal Independent Set Computation 275

general notion of growth-bounded graphs. This more general family of graphs
captures the intuitive notion that if many nodes are located close from each other,
many of them must be within mutual transmission range. In graph theoretical
terms, a graph is growth-bounded if the number of independent nodes in a node’s
r-neighborhood is bounded.

As we show in this paper, the notion of growth-bounded graphs is closely
related to unit ball graphs (UBG) introduced in [16]. As opposed to the two-
dimensional Euclidean metric in UDGs, we assume the points to be located in
an arbitrary metric space. Two nodes can communicate with one another if their
mutual distance is at most 1. Our deterministic algorithm works for any metric
space, but its running time depends on the doubling dimension of the underlying
metric. A metric’s doubling dimension is the smallest ρ such that every ball can
be covered by at most 2ρ balls of half the radius. Specifically, our algorithm
terminates in time O(log Δ · log∗n) if the underlying metric is doubling, that is,
its doubling dimension ρ is constant. In this case, the resulting unit ball graph
is polynomially growth-bounded.

Clearly, our claim for unit disk graphs then follows directly as a special case
of this more general result, because a UDG is growth-bounded and a UBG with
constant doubling dimension. Intriguingly, this result shows that in graphs with
bounded growth, our deterministic algorithm outperforms Luby’s randomized
algorithm which requires O(log n) expected time.

Besides being of theoretical interest of its own, the reason for studying more
general growth-bounded graphs instead of merely unit disk graphs are twofold.
First, it is well known that unit disk graphs, while generally being respected as
a first modelling step, do in many ways not capture the reality experienced in
wireless networks closely. Secondly, it has been argued that the distance metric
induced by Internet latencies is growth-bounded and incudes a doubling metric.

The remainder of the paper is organized as follows. We give an overview over
related work in Section 2. Section 3 formally introduces our model of computa-
tion and necessary notation. The algorithm is then presented and analyzed in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

The distributed (randomized and deterministic) complexity of computing a MIS
has been of fundamental interest to the distributed computing community for
various reasons [20,7,4,18]. A major breakthrough in the understanding of the
distributed computational complexity of MIS was the elegant randomized algo-
rithm by Luby [20] that has a running time of O(log n) (see also [1,11]). The
distributed computation of maximal independent sets have also been studied
in the context of backbone construction in wireless networks [2,8] and in radio
network models [21]. However, all these algorithms either have linear running
time [2] or are probabilistic [8,21].

The fastest known deterministic distributed algorithms are based on the
notion of network decompositions introduced in [4]. A (d(n), c(n))-network de-

276 F. Kuhn et al.

composition of a graph G = (V, E) is a partition of V into disjoint clusters, such
that the subgraph induced by each cluster is connected, the diameter of each
cluster is in d(n), and the chromatic number of the resulting cluster graph is
in c(n), where the cluster graph is obtained by contracting each cluster into a
single node. Given a (d(n), c(n))-decomposition a MIS can easily be computed
in time d(n) · c(n). First all clusters of the first color compute a MIS in paral-
lel in time d(n). Subsequently, clusters of the next colors iteratively add their
contributions to the MIS. In [4] authors present a deterministic O(f(n)c) time
algorithm for computing an (f(n)c, f(n)c)-decomposition, where c is a constant,
and f(n) = n

√
log log n/ log n, yielding a deterministic O(f(n)c) MIS algorithm.

The fastest currently known deterministic MIS algorithm was given in [22]. Based
on a (g(n)d, g(n))-decomposition in time O(g(n)d), where g(n) = n

√
1/ log n and

d is a constant, the authors obtain a deterministic O(g(n)d) MIS algorithm.
On the other hand, the first lower bound given for the distributed com-

putation of maximal independent sets has been given by Linial in [18]. This
lower bound says that even on a ring topology, at least time Ω(log∗n) is re-
quired to compute a maximal independent set. Subsequently, it was shown in
[15] that in general graphs, every (possibly randomized) algorithm requires at
least Ω(

√
log n/ log log n) or Ω(log Δ/ log log Δ) communication rounds for com-

puting a MIS.
While all of the above results hold for general graphs, much less is known

about the complexity in unit disk graphs or growth-bounded graphs. In fact, if
distances are unknown, the fastest deterministic algorithm to compute a MIS in
unit disk graphs is the algorithm given in [22] for general graphs.

Bounded growth metrics in general and doubling metrics in particular have
found quite a lot of attention recently [10,12,13,24,25]. It is proposed that la-
tencies of many real networks such as peer-to-peer networks or the Internet are
doubling. The network-related problems which are solved include metric embed-
dings [10,12], distance labeling and compact routing [25], and nearest neighbor
search [13]. The doubling dimension has been introduced in [10], however, a
similar notion has already been used in [3].

The notion of a unit ball graph (UBG) has been introduced in [16] in which
the authors prove that if the underlying metric space exhibits constant doubling
dimension, it is possible to construct a (O(1), O(1))-network decomposition in
O(log∗n) communication rounds, which is asymptotically optimal. As shown
above, this implies a O(log∗n) time algorithm for computing a MIS in UBGs.
However, in contrast to our paper, [16] assumes that nodes can sense the dis-
tances to their neighboring nodes. That is, nodes know about the underlying
metric space, whereas in this paper, nodes must base their decision merely on
the connectivity information induced by the UBG.

3 Model and Definitions

For our algorithms, we use the standard message passing model. The network
is modelled as an undirected graph G = (V, E). Two nodes u, v ∈ V of the

Fast Deterministic Distributed Maximal Independent Set Computation 277

network are connected by an edge (u, v) ∈ E whenever there is a direct bidi-
rectional communication channel connecting u and v. For simplicity, we assume
a synchronous communication model where time is divided in rounds. In each
round, every node can send a message of size O(log n) to each of its neighbors
in G. The time complexity of an algorithm is the number of rounds it needs to
complete. Note that at the cost of higher message complexity, every synchronous
message passing algorithm can turned into an asynchronous algorithm with the
same time complexity.

As discussed, finding a fast deterministic algorithm for computing a MIS on
a general network graph is a hard problem. We therefore restrict our attention
to an important class of graphs which we call growth-bounded graphs and which
are defined as follows.

Definition 1. (Growth-Bounded Graph) We call a graph G f -growth-boun-
ded if there is a function f(r) such that every r-neighborhood in G contains at
most f(r) independent nodes.

Note that f(r) does not depend on the number of nodes n or any other
property of G. Hence, for constant r, the number of independent nodes in an
r-neighborhood is constant.

The class of growth-bounded graphs seems to cover the class of graphs which
can occur in wireless networks quite well. In wireless networks, nodes have some
geographic position. Nearby nodes tend to hear each other, far-away nodes can-
not communicate because with the available power, radio signals can only be
transmitted up to some distance. In particular the class of growth-bounded
graphs covers the widely used unit disk graphs as well as UDG variants (e.g.
[5,17]). In [16], the unit disk graph model has been extended to general metric
spaces resulting in so-called unit ball graphs (UBG). The nodes of a UBG are
the points of a metric space; two nodes are connected if and only if their distance
is at most 1. The following lemma shows that if the underlying metric space of
a UBG G has constant doubling dimension, G is polynomially growth-bounded

Lemma 1. Let G be a unit ball graph and let ρ be the doubling dimension of
the underlying metric space. Every r-neighborhood of G contains at most (2r)ρ

independent nodes.

Proof. By the definition of a UBG, the r-neighborhood of node v in G is com-
pletely covered by the ball Br(v) with radius r around v. By the definition of
the doubling dimenstion ρ, Br(v) can be covered by at most 2ρ(1+log2 r) balls of
radius 1/2. By the triangle inequality, two nodes inside a ball of radius 1/2 have
distance at most 1, that is, the nodes inside a ball of radius 1/2 form a clique in
G. The number of independent nodes in the r-neighborhood of v, therefore is at
most 2ρ(1+log2 r) = 2ρrρ.

For the description and analysis of our MIS algorithm, we need a formal
notion for the density of an independent set. To do so, we use the following
definition from [23]. Let S ⊆ V be a subset of the nodes of a graph G = (V, E).

278 F. Kuhn et al.

S is called r-ruling if for each node u ∈ V \ S, the distance to the closest node
in S is at most r.

If the set S in the above definition is an independent set, we speak of an
r-ruling independent set. Note that a MIS is a 1-ruling independent set.

Throughout the paper, we will make use of node neighborhoods of particular
radii. By Γr(v) we denote the set of nodes u �= v which have distance at most r
from v. We further define

Γ+
r (v) := Γr(v) ∪ {v} and Γ (v) := Γ1(v).

4 Distibuted MIS Construction

In this section, we describe and analyze our distributed deterministic MIS con-
struction for growth-bounded graphs. The algorithm consists of three phases. In
the first phase, in time O(log Δ · log∗ n), an O(log Δ)-ruling independent set S
of the network graph G is computed. The second phase transforms the sparse
set S in to a dense independent set S′ such that each node v of G has a node
u ∈ S′ at distance at most 3, that is, S′ is 3-ruling. For growth-bounded graphs,
such a dense independent set induces an (O(1), O(1))-decomposition which can
be used to finally extend S′ to a maximal independent set in the third phase.

4.1 Constructing a Sparse Independent Set

The first phase of our MIS construction is a distributed algorithm which locally
computes an O(log Δ)-ruling independent set S for a given undirected growth-
bounded graph G = (V, E) in time O(log Δ log∗ n). A detailed description of the
first phase is given by Algorithm 1. Before analyzing the algorithm, we give an
informal description of the code.

At the beginning, S is empty and all nodes are active (denoted by the vari-
ables b(v) for v ∈ V). Nodes are active as long as they have not decided whether
to join the independent set S. As soon as a node becomes passive, it has either
joined S in line 20 or it has decided not to join S. From a general perspective, Al-
gorithm 1 tries to eliminate active vertices from the network until single, locally
independent nodes are left. It does so with the help of edge-induced subgraphs of
bounded degree. In each iteration of the while loop, a constant-degree graph G
consisting of active nodes and edges of G is computed. On G, we can construct
a MIS in time O(log∗ n) [7,9,18]. Only the nodes of the MIS of G stay active
after the iteration of the while loop. This way, the number of active nodes is
reduced by at least a constant factor in every while loop iteration. As soon as
an active node v has no active neighbors, v joins the independent set S (line
20). The graph G is constructed as follows. First, each active node v chooses
an active neighbor d(v). Then, each active node u which has been chosen by at
least one neighbor v, selectes a neighbor p(u) for which d(p(u)) = u. The edge
set of V consists of all edges of the form (u, p(u)). Because a node u can only
be connected to d(u) and p(u), G has at most degree 2. Now, consider a single
execution of the while loop (lines 3–22, Figure 1).

Fast Deterministic Distributed Maximal Independent Set Computation 279

Algorithm 1 Computing an IS (code for vertex v)
1: S := ∅;
2: b(v) := act;
3: while b(v) = act do
4: if ∃u ∈ Γ (v) | b(u) = act then
5: d(v) := min{u ∈ Γ (v) | b(u) = act};
6: inform neighbor d(v);
7: Av := {u ∈ Γ (v) | d(u) = v};
8: if Av �= ∅ then
9: p(v) := min Av;

10: inform neighbor p(v)
11: fi;
12: Bv := {u ∈ Γ (v) | p(u) = v};
13: if (Av = ∅) ∧ (Bv = ∅) then
14: b(v) := pass
15: else
16: construct MIS I on graph G = (V , E) with V := {u ∈ V | b(u) = act} and

E := {(u, p(u)) | u ∈ V ∧ Au �= ∅};
17: if v �∈ I then b(v) := pass fi
18: fi
19: else
20: S := S ∪ {v}; b(v) := pass
21: fi
22: od

Lemma 2. In the graph G = (V , E), every vertex has degree at most 2.

Proof. Consider v ∈ V , then there are at most two vertices adjacent to v by an
edge in E, namely d(v) if p(d(v)) = v, and p(v).

Note that due to this lemma, line 16 of the algorithm, that is, the local construc-
tion of a MIS I on G, can be completed in O(log∗ n) rounds using methodes
described in [7,9,18].

Lemma 3. Let VA denote the set of active nodes. After k iterations of the while
loop, S ∪ VA is a 2k-ruling set of G.

Proof. We prove the lemma by induction over the number k of while loop iter-
ations. Initially all nodes are active, thus the lemma is satisfied for k = 0. For
the induction step, we show that if a node v becomes passive in an iteration of
the while loop, either v joins S or there is an active node at distance at most 2
from v which remains active for until the next while loop iteration. Node v can
become passive in lines 14, 17, or 20. If v becomes passive in line 20, it joins S
and therefore the condition of the lemma is satisfied. In line 17, v is a node of
G and has a neighbor u of v which is in the MIS I of G. Thus, node u remains
active.

The last remaining case is that v decides to become passive in line 14. By the
condition in line 4, we can assume that v has at least one active neighbor at the

280 F. Kuhn et al.

Fig. 1. One iteration of Algorithm 1. The dashed nodes are passive at the outset of the
iteration. The dashed arrows between active nodes denote the links d(v). The graph
G is induced by the links p(v) which are denoted by the solid, bended arrows. Finally,
the algorithm computes a MIS on G, leaving only the black nodes active for the next
iteration.

beginning of the while loop iteration. Therefore, v can choose a node u = d(v)
in line 5. Since Au �= ∅, u chooses a node p(u) and therefore u is a node of G.
Because all nodes of the MIS I of G remain active, either u or a neighbor w of
u is still active after completing the while loop iteration. Since distG(v, w) = 2,
this completes the proof.

The following two lemmas are used to give bounds on the number of rounds
needed by Algorithm 1 to complete, and to explain the resulting structure in G
for general graphs and for growth-bounded graphs, respectively.

Lemma 4. After O(log n) consecutive executions of the while loop, Algorithm
1 terminates with a O(log n)-ruling independent set S on any graph G.

Proof. Let nact be the number of active nodes at the beginning of an iteration of
the while loop. We prove that in one while loop iteration, at least nact/3 nodes
become passive. The claim then follows by Lemma 3.

Let n ≤ nact be the number of nodes of G of some particular iteration of the
while loop. All nodes which are not part of G become passive in lines 14 or 20.
It therefore suffices to prove that at least one third of the nodes of G become
passive. However, G is constructed such that it does not contain isolated nodes,
that is, all nodes of G have at least degree 1. Note that G is an edge-induced
subgraph of G. Because the maximum degree of a node in G is 2 (Lemma 2), the
MIS I consists of at most 2n/3 nodes. Hence, at least n/3 nodes become passive
in line 17.

The following lemma shows that for growth bounded graphs, the run time
can even be reduced to O(log Δ) executions of the while loop where Δ denotes
the maximum degree of the network graph G.

Fast Deterministic Distributed Maximal Independent Set Computation 281

v1

v2

v6
v5

v4

v3

v7

Fig. 2. The cluster with the edges in G. Black nodes will remain active in the next
iteration. The nodes v1, v2, and v3 are in Ci. Nodes v4, v5, and v6 are connected only
to nodes outside of the cluster and hence, are in set Co. Finally, v6 ∈ Cp.

Lemma 5. If the network graph G is growth-bounded, after O(log Δ) consecu-
tive execution of the while loop, Algorithm 1 terminates with an O(log Δ)-ruling
independent set S.

Proof. Let M be a maximal independent set of G. The set M defines a clustering
of G as follows. We associate a cluster Cu with each node u ∈ M . Each node
v �∈ M is assigned to the cluster of an adjacent node u ∈ M . Note that each
cluster contains at most Δ + 1 nodes. Let us define the cluster graph GC as
follows. The nodes of GC are the clusters Cu. Two nodes Cu and Cv are connected
if there is an edge connecting the respective clusters. Because we assume that G
is growth bounded, there is a function f such that there are at most f(3) = O(1)
independent nodes at distance at most 3 from a node u. Therefore, the maximum
degree of GC is bounded by d := f(3).

In the following, we show that the maximum number of active nodes per
cluster is reduced by a factor 2 in a constant number of while loop iterations.
For convenience, we define a unit of time to be one iteration of the while loop.
Let α be the maximum number of active nodes per cluster at some time t. We
will show that there is a constant k such that at time t+ k each cluster contains
at most α/2 active nodes. Note that this implies the lemma because we have
α ≤ Δ + 1 at time t = 0. Let Cu be a cluster with c > α/2 active nodes. Let
us look at a single iteration of the while loop of Algorithm 1. We partition the
c active nodes of Cu into three groups according to their neighbors in G (Figure
2). We denote the set of nodes v which become passive in line 6 because there
is no node w for which d(w) = u by Cp. The set of nodes which have a neighbor
inside Cu and which are only connected to nodes outside Cu are called Ci and
Co, respectively. Clearly, we have |Cp|+ |Ci|+ |Co| = c. Because the maximum
degree of G is 2, during the construction of the MIS in line 10 at least one third
of the nodes in Ci become passive. The nodes in Co can be divided into the
nodes Cp

o which become passive and the nodes Ca
o which stay active. Each node

outside Cu is connected to at most 2 nodes in Ca
o . Therefore, at least |Ca

o |/2
nodes outside Cu become passive. Let ci := |Cp| + |Ci| + |Cp

o | and co := |Ca
o |.

We have ci + co = c. In each iteration of the while loop at least ci/3 nodes in

282 F. Kuhn et al.

Algorithm 2 Computes a dense IS
Input: t-ruling independent set S
Output: 3-ruling independent set S
1: S′ := S;
2: while S′ is not 3-ruling do
3: for each u ∈ S′ do
4: compute Ŝu ⊂ Γ+

4 (u) such that S′∪Ŝu is an IS and ∀v ∈ Γ+
3 (u),∃w ∈ S′∪Ŝu :

{v, w} ∈ E;
5: G is the graph induced by

⋃
u∈S′ Ŝu;

6: S′ := S′ ∪ MIS(G);
7: od;
8: od

Cu and at least co/2 nodes of clusters which are adjacent to Cu become passive.
Assume that after k iterations of the while loop, there are still α/2 active nodes
in Cu. Let c(j), c

(j)
i , and c

(j)
o be the values of c, ci, and co of the jth iteration,

respectively. Because there are at most α nodes at the beginning, we have

1
3
·

k∑
j=1

c
(j)
i ≤ α

2
(1)

because otherwise at least α/2 nodes of Cu would have become passive. Therefore,
the number of nodes in the neighbor clusters of Cu which have become passive
is at least

1
2
·

k∑
j=1

c(j)
o =

1
2
·

k∑
j=1

c(j) − c
(j)
i ≥ kα

4
− 1

2
·

k∑
j=1

c
(j)
i .

Because of Equation (1), this is at least (k − 3)α/4. Because there are at most
dα active nodes in neighbor clusters of Cu at the beginning, after O(d) = O(1)
iterations of the while loop there are no active nodes in the neighborhood of Cu

left. From then on, at least one third of the nodes in Cu becomes passive in every
further iteration.

Summarizing the Lemmas 2–5, we obtain the following theorem.

Theorem 1. Algorithm 1 is a local, distributed algorithm which computes an
O(log Δ)-ruling independent set in O(log Δ · log∗ n) rounds for any
growth-bounded graph G = (V, E).

For general graphs, the Algorithm terminates in O(log n · log∗ n) rounds pro-
ducing an O(log n)-ruling independent set. All messages are of size O(log n).

4.2 Making the Independent Set Dense

In the following, we show how the relatively sparse independent set which we con-
structed so far can be made dense enough to obtain an (O(1), O(1))-decomposition
for growth-bounded graphs. Specifically, we show how on growth-bounded graphs,

Fast Deterministic Distributed Maximal Independent Set Computation 283

a t-ruling independent set can be transformed into a 3-ruling independent set in
O(t log∗ n) rounds using messages of size O(log n). Algorithm 2 describes the basic
method to achieve this. The idea is to enlarge the independent set in small steps
such that it gets denser in each step. Before coming to a detailed analysis, we give
a rough overview. In line 3, each node of the independent set adds new nodes to
the independent set such that each neighbor in distance at most 3 has a neighbor
in the extended set. Because every independent set node adds new nodes, it is not
guaranteed that the additional nodes generated by different independent set nodes
are independent. Therefore, in lines 4 and 5, the independence of the extended in-
dependent set is restored by computing a MIS on the new nodes (see Lemma 7).
The following lemma shows that in each iteration of the while loop, the maximum
distance of any node to the next node of S′ decreases by at least 1.

Lemma 6. Let S′ be a t-ruling independent set for t > 3. After one iteration
of the while loop of Algorithm 2, S′ is a (t− 1)-ruling independent set.

Proof. We first prove that S′ remains an independent set throughout the algo-
rithm. The sets Ŝu are constructed such that nodes in S′ and nodes in Ŝu are
independent. We therefore only have to prove that all the new nodes form an
independent set. However, this is clearly guaranteed because in line 6, a maximal
independent set of the graph induced by all the new nodes is computed.

To prove that the maximum distance from a node to the next independent
set node decreases, we consider a node v ∈ V for which the distance to the
nearest node u ∈ S′ is t > 3. We prove that after an iteration of the while loop,
the distance between v and the closest node in S′ is at most t− 1. The set Ŝu is
constructed such that every node w in the 3-neighborhood Γ+

3 (u) has a neighbor
in S′∪ Ŝu. On a shortest path (of length t) connecting u and v, let x be the node
which is at distance exactly 3 from u. There must be a neighbor y of x for which
y ∈ Ŝu. After computing the MIS in line 6, either y or a neighbor z of y join
the independent set S′. The distance between v and y is t− 1 and the distance
between v and z is t− 1 which concludes the proof.

It remains to show that Algorithm 2 can indeed be implemented by an ef-
ficient distributed algorithm. Lemma 7 gives exact bounds on the distributed
complexity of the Algorithm 2.

Lemma 7. Let G be a growth bounded graph. On G, Algorithm 2 can be executed
by a distributed algorithm with time complexity O(t log∗ n) using messages of size
O(log n).

Proof. By Lemma 6, Algorithm 2 terminates after at most t iterations of the
while loop. We therefore have to prove that each while loop iteration can be
exectuted in time O(log∗ n) using messages of size O(log n). Let us first look at
the construction of Ŝu for some node u ∈ S′. A node v ∈ Γ+

4 (u) can potentially
join Ŝu if it has neighbor in S′∪Ŝu and if it has an uncovered neighbor w ∈ Γ+

3 (u),
that is, w has no neighbor in S′ ∪ Ŝu. We call such a node v candidate. We add
a candidate v to Ŝu if it has a lower ID than all adjacent candidates. Finding

284 F. Kuhn et al.

out whether a node is a candidate and whether it has the lowest ID among
its neighbor candidates can be done in 3 rounds. First, all nodes of S′ ∪ Ŝu

inform their neighbors that they are in the independent set. Then, all covered
nodes in Γ+

3 (u) inform their neighbors which can now decide whether they are
candidates. Finally, the candidates exchange their IDs. We call those 3 rounds a
step. In each step, at least the candidate with the highest ID joins Ŝu. Because
we assume that G is a growth bounded graph, there can be at most f(4) = O(1)
independent nodes in Γ+

u (u) for some function f . Hence, the number of nodes in
Ŝu and therefore the number of steps needed to construct Ŝu is constant. Note
that if there was no restriction on the message size, u could collect the complete
4-neighborhood, locally compute Ŝu, and inform the nodes in Ŝu in 8 rounds.

It now remains to prove that the construction of the MIS in line 6 of Algo-
rithm 2 can be computed in O(log∗ n) rounds. Let us therefore have a look at
the structure of the graph G which is induced by the union of the sets Ŝu for all
u ∈ S′. Consider a node v of G, that is, v ∈ Ŝu for some u ∈ S′. Further, let w be
a neighbor of v in G. The node w is in Ŝu′ for some node u′ ∈ S′ \ {u}. Because
Ŝu′ consists of nodes of Γ+

4 (u′), the distance between v and u′ is at most 5. Since
G is a growth bounded graph, there exists a function f such that there are at
most f(5) independent nodes at distance at most 5 from v. Thus, there are at
most f(5) possible nodes u′ ∈ S′ which can cause neighbors w for v. Because all
nodes in Ŝu′ are independent, the number of neighbors of w in Ŝu′ is at most
f(1). Therefore, the maximum degree of the graph G can be upper bounded by
f(5) · f(1) = O(1). It is well-known that on a constant-degree graph, a MIS can
be constructed in O(log∗ n) rounds using messages of size O(log n) [7,9,18].

Combining Lemmas 6 and 7 we obtain the next theorem.

Theorem 2. On a growth-bounded graph, a t-ruling independent set can be
transformed into a 3-ruling independent set in O(t log∗ n) rounds using messages
of size O(log n).

4.3 Computing the MIS

We will now describe the last phase of our algorithm, turning the 3-ruling inde-
pendent set S′ from Algorithm 2 into a MIS. Set S′ induces a natural clustering
of the nodes of G. For each node u ∈ S′, we define the cluster Cu to be the set of
all nodes v ∈ V for which u is the nearest node of S′, ties are broken arbitrarily.
The cluster graph GS′ induced by S′ is then defined as follows. The node set of
GS′ is the set of clusters {Cu|u ∈ S′}. The clusters Cu and Cv are connected by an
edge in GS′ if and only if there are nodes u′ ∈ Cu and v′ ∈ Cv which are neighbors
in the network graph G. Because S′ is a 3-ruling set, the distance between the
centers u and v of two neighboring clusters Cu and Cv can be at most 7. The
degree of GS′ is therefore bounded by f(7) = O(1) if G is f -growth-bounded.
The first step of the third phase of our MIS algorithm is to compute GS′ and
to color GS′ with f(7) + 1 colors, resulting in a (O(1), O(1))-decomposition of
G. Applying algorithms from [7,9,18], this can be achieved in O(log∗ n) rounds
using messages of size O(log n).

Fast Deterministic Distributed Maximal Independent Set Computation 285

Having computed this decomposition, we can now compute a MIS M of G by
sequentially computing the contributions from each color of the coloring of GS′ .
For each node v, let xv be the color of v’s cluster. Using the cluster colors and
the node identifiers, we define a lexicographic order ≺ on the set V such that
for u, v ∈ V , u ≺ v if and only if xu < xv or if xu = xv ∧ ID(u) < ID(v). Each
node now proceeds as follows. Initially, we set M = S′. All nodes v of S′ inform
their neighbors about the joining of M by sending a JOIN(v) message. If a node
u receives a JOIN(v) message from a neighbor v, it cannot join the MIS any
more and therefore sends a COVERED(u) message to all neighbors. If a node v
has not received a JOIN(u) message but has received a COVERED(u) from all
u ∈ Γ (v) for which u ≺ v, it can safely join M . Note that all neigbors w ∈ Γ (v)
with w + v, would need to receive a COVERED(v) message from v before joining
M . If a node v joins M , it informs its neighbors by sending a JOIN(v) message.
As shown by the next lemma, the described algorithm computes a MIS M in
time O(1).

Lemma 8. On f -growth-bounded graphs the above algorithm computes a MIS
M in time 2f(7)f(3).

Proof. We first show that M indeed is an independent set of G. For the sake of
contradiction, assume that there are two adjacent nodes u and v which both join
M . W.l.o.g., we assume that u ≺ v. Assuming that v joins M means that v must
have received a COVERED(u) message from u. However, this is a contradition
to the assumption that u joins M . To see that M is a MIS, observe that as long
as M is not maximal, there is a smallest node u (with respect to ≺) which is not
covered.

It remains to prove the time complexity of the above algorithm. First note
that because the radius of each cluster is at most 3, there can be at most f(3)
MIS nodes per cluster. Let us now look at a single cluster Cu of the smallest
color 1. Because with respect to the order ≺, the nodes of Cu are smaller than all
nodes of neighboring clusters, the smallest uncovered node of Cu is always free
to join M . When a node v joins M , it takes two rounds until the neighbors of v
have forwarded the information that they have been covered. Because there are
at most f(3) nodes of Cu which join M , it takes at most 2f(3) rounds until all
nodes of color 1 are covered or have joined M . As soon as there is no uncovered
node of a color i, the above argument holds for color i + 1. Therefore, after at
most f(7) · 2f(3) rounds, all nodes are either covered or have joined M .

Combining Theorems 1, and 2 and Lemma 8, we obtain the main theorem
of this paper.

Theorem 3. Let G be a growth-bounded network graph. There is a deterministic
distributed algorithm which constructs a maximal independent set on G in time
O(log Δ · log∗ n).

286 F. Kuhn et al.

5 Conclusions

In this paper, we have given a deterministic distributed algorithm which com-
putes a maximal independent set in time O(log Δ · log∗n) in unit ball graphs if
the underlying metric has constant doubling dimension. This includes the prac-
tically important special case of unit disk graphs. Our algorithms does not rely
on any representation of the underlying metric space, i.e., nodes do not need to
know about the distances to their neighbors.

The MIS problem being of fundamental nature, our result sheds new light
into the intriguing question of the possibilities and limitations of different models
in distributed computing. It is therefore interesting to compare our solution with
MIS algorithms in other models. In the radio network model, where collisions
between neighboring senders may occur, the fastest known algorithm for unit
disk graph runs in time O(log2n) and requires randomization [21]. In the message
passing model, the fastest known algorithm for general graphs is randomized
and runs in time O(log n) [20]. Finally, [16] showed that if nodes know the
distances to their neighbors, there exists a deterministic O(log∗n) time algorithm
in graphs with bounded growth. The last comparison particularly highlights the
importance of distance information, which appears to render the MIS problem
much simpler.

References

1. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.

2. K. Alzoubi, P.-J. Wan, and O. Frieder. Message-Optimal Connected Dominating
Sets in Mobile Ad Hoc Networks. In Proceedings of the 3 rd ACM Int. Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC), pages 157–164, EPFL
Lausanne, Switzerland, 2002.

3. P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France,
111(4):429–448, 1983.

4. B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition
and locality in distributed computation. In Proc. of the 30 th Symp. on Foundations
of Computer Science (FOCS), pages 364–369, 1989.

5. L. Barrière, P. Fraigniaud, and L. Narayanan. Robust Position-Based Routing
in Wireless Ad Hoc Networks with Unstable Transmission Ranges. In Proc. of
the 5 th International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL-M), pages 19–27. ACM Press, 2001.

6. H. Breu and D. G. Kirkpatrick. Unit Disk Graph Recognition is NP-hard. Com-
putational Geometry. Theory and Applications, 9(1-2):3–24, 1998.

7. R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking. Information and Control, 70(1):32–53, 1986.

8. R. Gandhi and S. Parthasarathy. Distributed Algorithms for Coloring and Con-
nected Domination in Wireless Ad Hoc Networks. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 2004.

9. A. Goldberg, S. Plotkin, and G. Shannon. Parallel Symmetry-Breaking in Sparse
Graphs. SIAM Journal on Discrete Mathematics (SIDMA), 1(4):434–446, 1988.

Fast Deterministic Distributed Maximal Independent Set Computation 287

10. A. Gupta, R. Krauthgamer, and J. Lee. Bounded Geometries, Fractals, and Low-
Distortion Embeddings. In Proc. of 44th IEEE Symp. on Foundations of Computer
Science (FOCS), 2003.

11. A. Israeli and A. Itai. A Fast and Simple Randomized Parallel Algorithm for
Maximal Matching. Information Processing Letters, 22:77–80, 1986.

12. J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and Embedding using
Small Sets of Beacons. In Proc. of 45th IEEE Symp. on Foundations of Computer
Science (FOCS), 2004.

13. R. Krauthgamer and J. Lee. Navigating Nets: Simple Algorithms for Proximity
Search. In Proc. of 15th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2004.

14. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit Disk Graph Approximation.
In Proceedings of the 2004 Joint Workshop on Foundations of Mobile Computing
(DIALM), pages 17–23, New York, NY, USA, 2004. ACM Press.

15. F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally!
In Proc. of the 23rd ACM Symp. on Principles of Distributed Computing (PODC),
pages 300–309, 2004.

16. F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Locality of Bounded Growth.
In Proc. of the 24th ACM Symp. on Principles of Distributed Computing (PODC),
2005.

17. F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-Hoc Networks Beyond Unit Disk
Graphs. In Proceedings of 1 st Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pages 69–78. ACM Press, 2003.

18. N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, February 1992.

19. N. Linial. Local-Global Phenomena in Graphs. Combinatorics Probability and
Computing, 2:491–503, 1993.

20. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

21. T. Moscibroda and R. Wattenhofer. Maximal Independent Sets in Radio Networks.
In Proc. of the 23rd ACM Symp. on Principles of Distributed Computing (PODC),
2005.

22. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In Proc. of the 24 th annual ACM symposium on
Theory of computing (STOC), pages 581–592. ACM Press, 1992.

23. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
24. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of

Replicated Objects in a Distributed Environment. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 311–
320, 1997.

25. K. Talwar. Bypassing the embedding: Approximation schemes and compact rep-
resentations for low dimensional metrics. In Proc. of 36th ACM Symp. on Theory
of Computing (STOC), 2004.

Distributed Computing with Imperfect

Randomness

Shafi Goldwasser�, Madhu Sudan, and Vinod Vaikuntanathan��

MIT CSAIL, Cambridge MA 02139, USA
{shafi, madhu, vinodv}@theory.csail.mit.edu

Abstract. Randomness is a critical resource in many computational
scenarios, enabling solutions where deterministic ones are elusive or even
provably impossible. However, the randomized solutions to these tasks
assume access to a source of unbiased, independent coins. Physical
sources of randomness, on the other hand, are rarely unbiased and inde-
pendent although they do seem to exhibit somewhat imperfect random-
ness. This gap in modeling questions the relevance of current random-
ized solutions to computational tasks. Indeed, there has been substantial
investigation of this issue in complexity theory in the context of the ap-
plications to efficient algorithms and cryptography.

In this paper, we seek to determine whether imperfect randomness,
modeled appropriately, is “good enough” for distributed algorithms. Na-
mely can we do with imperfect randomness all that we can do with
perfect randomness, and with comparable efficiency ? We answer this
question in the affirmative, for the problem of Byzantine agreement. We
construct protocols for Byzantine agreement in a variety of scenarios
(synchronous or asynchronous networks, with or without private chan-
nels), in which the players have imperfect randomness. Our solutions are
essentially as efficient as the best known randomized agreement proto-
cols, despite the defects in the randomness.

1 Introduction

Randomization has proved useful in many areas of computer science including
probabilistic algorithms, cryptography, and distributed computing. In algorithm
design, randomness has been shown to reduce the complexity requirments for
solving problems, but it is unclear whether the use of randomization is inherently
necessary. Indeed, an extensive amount of research in the complexity theoretic
community these days is dedicated to de-randomization: the effort of replacing
random string by deterministic “random-looking” strings.

The case of using randomness within the field of distributed computing is,
in contrast, unambiguous. There are central distributed computing problems
for which it is provably impossible to obtain a deterministic solution, whereas

� This work was supported in part by NSF CNS-0430450, a Minerva Grant 8495, and
a Cymerman-Jakubskind award.

�� This work was supported in part by NSF CNS-0430450.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 288–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Computing with Imperfect Randomness 289

efficient randomized solutions exist. The study of one such problem, the Byzan-
tine Agreement problem is the focus of this paper.

Byzantine Agreement: Randomized versus Deterministic Protocols
The problem of Byzantine Agreement (BA) defined by Pease, Shostak and Lam-
port [18] is for n players to agree on a value, even if some t of them are faulty.
Informally, for any set of initial values of the players, a BA protocol should satisfy
the following: (1) Consistency: All non-faulty players agree on the same value.
(2) Non-triviality: If all the players started with some value v, they agree on v
at the end of the protocol. The faulty players might try to force the non-faulty
players to disagree. The good players, in general, do not know who the faulty
players are. A BA protocol should ensure that the good players agree, even in
the presence of such malicious players.

The possibility of BA depends crucially on the model of communication
among the players. When the players communicate via a synchronous network
with point-to-point channels, there are (t+1)-round deterministic BA protocols
(one in which no player tosses coins) even in the presence of t < n

3 faults [16].
A lower bound of t + 1 communication rounds is known for every deterministic
protocol. When the players communicate via an asynchronous network, the cel-
ebrated result of Fischer, Lynch and Paterson [15] shows that BA is impossible
to achieve even in the presence of a single faulty player.

Yet, Ben-Or [2] in 1983 showed how to achieve Byzantine agreement in an
asynchronous network tolerating a linear number of faults via a randomized pro-
tocol with expected exponential round complexity. More efficient randomized
protocols in asynchronous as well as synchronous networks followed, some of
which (due to [19,4,11,14,13,5]) assume the existence of private communication
channels between pairs of participants (or alternatively cryptographic assump-
tions), and some do not require secret communication (notably Chor-Coan [6]).

To summarize these works, both synchronous and asynchronous BA can be
achieved via a randomized protocol in expected O(1) number of rounds tolerating
an optimal number of faults, assuming private channels of communication exist.
Without any secret communication requirements, for t < n/3 a randomized
protocol exists for synchronous BA using O(t

log n) rounds 1, whereas the best
asynchronous BA protocol still requires exponential number of rounds [2,4].

What type of Randomness is Available in the Real World? The common
abstraction used to model the use of randomness by a protocol (or an algorithm),
is to assume that each participant’s algorithm has access to its own source of
unbiased and independent coins. However, this abstraction does not seem to be
physically realizable. Instead, physical sources are available whose outcome seem
only to be “somewhat random”.
1 Subsequent to this work, we learned that, in as yet unpublished work, Ben-Or and

Pavlov [3] construct an O(log n) round BA protocol in the full-information model.
We note that the results in this paper apply to [3], giving us an O(log n)-round BA
protocol in the full-information model, when the players have a block source each,
and the sources of different players are independent.

290 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

This gap between available physical sources and the abstract model has been
addressed starting with the work of von Neumann [23] and Elias [12] which deal
with sources of independent bits of unknown bias. In more recent works, sources
of dependent bits were modeled by Santha-Vazirani [21], Chor-Goldreich [7], and
finally Zuckerman [24] who presented the weak random source generalizing all
previous models.

Informally, for a weak random source, no sequence of bits has too high a
probability of being output. A weak random source is a block source [7] if this is
guaranteed for every output block (for a block size which is a parameter of the
source) regardless of the values of the previous blocks output. Namely, whereas
a general weak random source guarantees some minimum amount of entropy if
sampled exactly once, a block source guarantees a minimum amount of entropy
each time a sample is drawn (where a sample corresponds to a block).

Two natural questions arise. (1) Can weak random sources be used to extract
a source of unbiased and independent coins? (2) Even if not, can weak random
sources be used within applications instead of perfect random sources, with the
same guarantee of correctness and complexity?

The first question was addressed early on, in conjuction with introducing the
various models of imperfect randomness. It was shown that it is impossible to ex-
tract unbiased random coins with access to a single weak random source [21,7,24].
Researchers went on to ask (starting with Vazirani [22]) whether, given two (or
more) weak random sources (all independent from each other), extraction of unbi-
ased random bits is possible. Indeed, it was shown [22,7,24] that two sources suf-
fice. Whereas original works focus on in-principle results, recent work by Barak,
Impagliazzo, and Wigderson [1] and others focuses on constructive protocols.

The second question is the type we will we focus on in this work. In the con-
text of probabilistic algorithms, it was shown early on in [7,24] that a single weak
random source can be used to replace a perfect source of randomness for any BPP
algorithm. Very recently, Dodis et al [10,9], asked the same question in the context
of cryptographic protocols. Namely, is it possible for cryptographic appplications
(e.g. encryption, digital signatures, secure protocols) to exist in a world where par-
ticipants eachhave access to a singleweak source of randomness? Surprisingly, they
show that even if these sources are independent of each other, many cryptographic
tasks such as encryption and zero-knowledge protocols are impossible.

We thus are faced with a natural and intriguing question in the context
of distributed computing:ss Are weak random sources suffiently strong to replace
perfect random sources within randomized distributed computing protocols ? This
is the starting point of our research.

The Choice of our Randomness Model. The model of randomness we
assume in this work is that each player has its own weak source (or block source)
that is independent of the sources of all the other players, as was assumed in the
work of [9] in the context of cryptographic protocols. We feel that this model is
a natural starting point for the study of randomness in distributed computation.
We note however that there is a spectrum of models that may be assumed, and
one such alternative is discussed in section 1 on future directions.

Distributed Computing with Imperfect Randomness 291

Our Results. We focus on the problem of achieving consensus in a complete
network of n participants t of which can be malicious faults as defined by [18]. We
address the settings of synchronous and asynchronous networks, and the cases
of private channels (when each pair of participants have a secret communication
channel between them) and of a full information network (when no secrecy is
assumed for any communication). We note that by the results of Dodis et al. [9],
making cryptographic assumptions is doomed for failure.

We will show,

1. In the case of block sources: how to obtain the best bounds of fault-tolerance
and round complexity currently achieved by randomized distributed proto-
cols. Assuming private channels, we show for both synchronous and asyn-
chronous networks an O(1) expected round protocol for t < n

3 faults (match-
ing [14,5]). In the full-information model, we show for synchronous networks
an O(t

log n) expected round protocol for t < n
3 (matching [6]) and a O(2n)

expected round protocol for t < n
3 (matching [4]).

2. In the case of general weak sources: We assume private channels. For
synchronous networks, we show an O(1) expected round protocol for t < n

3
faults (matching [14]). For asynchronous networks, we get an O(1) expected
rounds protocol for t < n

5 . We leave open the question of finding a BA protocol
in the full information model where each player has a general weak source.

Our Methods. To achieve our results, we build in various ways on top of the
existing distributed algorithms [14,6,2,4]. In general, we follow a 2-step Extract
and Simulate approach to designing such BA protocols. We utilize first O(1)
rounds for a pre-processing protocol, in which the parties interact with each
other so that at the end, a large number of them obtain a private uniformly
random string. The randomness so obtained is used to run existing randomized
BA protocols.

We construct various extraction protocols, in which the players interact to
obtain unbiased and independent random bits. The problem that we will need
to overcome is naturally that when a player receives a sample from another
player (which may be faulty), he cannot assume that the sample is good and
not constructed to correlate with other samples being exchanged. We construct
extraction protocols that work even if some of the players contribute bad inputs
which may depend on samples they have seen sent by honest players (in the case
of full information protocols).

As building blocks, we will use the extractors of [24,7,20] as well as the strong
extractors of [8,20]. A strong extractor ensures that the output of the extraction
is random even if one is given some of the inputs to the extractor. Our pro-
cedures will guarantee that a certain fraction of the non-faulty players obtain
perfectly unbiased and independent coins. However, this will not necessarily be
the case for the all the non-faulty players, and thus one may fear that now when
running existing randomized BA protocols with perfect randomness only avail-
able to some of the non-faulty players, the fault-tolerance of the final protocol
may go down. Luckily this is not the case, due the following interesting general
observation.

292 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

When we analyze the current usage of randomness in [14,6], we find on closer
look that one may distinguish between how many non-faulty players truly need
to have access to perfectly unbiased and independent sources of random coins,
and how many non-faulty players merely need to follow the protocol instructions.
The number of non-faulty players which need to have access to perfect coins is
drastically lower than the total number of non-faulty players. In the case of [14],
it suffices for t + 1 players to posses good randomness whereas we need all the
n− t non-faulty players to follow the protocol to prove correctness and expected
O(1) termination. In the case of [6] it suffices for (1

2 + δ)n (for arbitrarily small
constant δ > 0) players to possess good randomness.

Future and Related Work. Two questions are left open when each player
has a general weak source (rather than a block source): (1) How to achieve BA
in the full information model, and (2) How to achieve optimal fault-tolerance in
the case of asynchronous networks in the private channels model. We currently
achieve O(1) rounds for t < n/5.

Models of randomness other than what we chose to focus on in this paper
may have been assumed. The one we find particularly appealing is where each
player has a weak random source, but the sources are correlated. Namely, the
only guarantee is that the randomness sampled by player i has a large min-
entropy even conditioned on the values for random strings sampled by all other
players. The model considered in this paper is a first approximation to this more
general model. We have obtained some partial results in this model [17].

It is of great interest to study the possibility of other tasks in distributed
computing, such as leader election and collective coin-flipping, when the players
have imperfect randomness. We briefly note that the results in this paper can be
used to show the possibility of both these tasks, in the model where the players
have independent block sources.

2 Definitions and the Model

The Network, Communication, Fault and Randomness Models. We let
n denote the total number of players in the system and t the number of faulty
players. We consider various models of communication between the players. In
all cases, the n players form a fully-connected communication graph. i.e, each
player i can send to every other player j a message in one step. In the private
channels model, the communication between players i and j is invisible to all the
players but i and j. In contrast, in the full-information model, the communication
between any two players is publicly visible.

We consider synchronous and asynchronous communication in the network.
In the former case, each processor has access to a global clock, and commu-
nication is divided into rounds. Messages sent in a round are received in the
beginning of the next round, and the network ensures reliable message deliv-
ery. In the case of asynchronous communication, however, the only guarantee is
that the messages sent are eventually received by the recipient. Messages can be
arbitrarily re-ordered, and arbitrarily delayed.

Distributed Computing with Imperfect Randomness 293

We consider Byzantine faults in this paper. Byzantine players can deviate ar-
bitrarily from the prescribed protocol, and co-ordinate with each other so as to
mislead the good players into disagreement. We do not assume that the Byzan-
tine players are computationally bounded. The coalition of Byzantine players is
informally referred to as the adversary. We allow the adversary to be rushing.
i.e, the adversary can see all the messages sent by the good players in a round
r, before deciding what to send in round r.

Each player has his own source of (imperfect) randomness, and the sources
of different players generate mutually independent distributions.

Weak Random Sources. Let Uk denote the uniform distribution on k bits.
If X is a random variable which has a distribution D, then we write X ∼
D. The distance between distributions D1 and D2 (denoted by Δ(D1, D2)) is
1
2

∑
a |PrX1∼D1 [X1 = a]−PrX2∼D2 [X2 = a]|. When Δ(D1, D2) ≤ ε, we say that

D1 and D2 are ε-close.
A source of randomness X of length k is simply a random variable that takes

values in {0, 1}k. If X is not uniformly distributed, we say that the source X is a
weak random source. The randomness contained in a source is usually measured
in terms of its min-entropy. A source X of k bits has min-entropy δk, if for every
a ∈ {0, 1}k, Pr[X = x] ≤ 2−δk. In this case, we call X a (k, δ)-source.

Definition 1. A (k, δ)-source (or a (k, δ)-weak source) is a random variable
X that takes values in {0, 1}k such that for any x ∈ {0, 1}k, Pr[X = x] ≤ 2−δk.

A block source is a sequence of random variables X1, X2, . . . such that each Xi

(of length k bits) has min-entropy δk, even if conditioned on any realization of
the other blocks. This corresponds to sampling multiple times from a source of
random bits, when we are guaranteed that each sample has some new entropy.

Definition 2. A (k, δ)-block source is a sequence of random variables
X1, X2, . . . (each of length k) such that any Xi has a min-entropy of δk con-
ditioned on all the other random variables. That is, Pr[Xi = ai | X1 = a1, . . . ,
Xi−1 = ai−1, Xi+1 = ai+1, . . .] ≤ 2−δk.

We use (X, Y) to denote the joint distribution of the random variables X and Y .
In particular, (X, Um) denotes the joint distribution of X and an independent
uniform random variable Um.

Extractors. Given a (k, δ)-source X , our first attempt would be to extract
“pure randomness” from X . That is, to construct a deterministic function Ext :
{0, 1}k → {0, 1}m (for some m > 0) such that for any (k, δ)-source X ,
Δ(Ext(X), Um) is small. But, it is easy to show that this task is impossible
in general. Thus it is natural to ask if one can extract uniform randomness given
two independent (k, δ)-sources. Chor-Goldreich [7] answered this in the affirma-
tive for the case when δ > 1

2 . More recently, Raz [20] showed this for the case
when one of the two sources has min-entropy at least k

2 and the other has min-
entropy at least log k. Below, we formally define the notion of a deterministic
two-source extractor, which is a key tool in our constructions.

294 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Definition 3. A function Ext : ({0, 1}k)2 → {0, 1}m is a (k, δ) two-source
extractor if for any (k, δ)-source X1 and any independent (k, δ)-source X2,
Ext(X1, X2) is ε-close to Um.

A strong two-source extractor is one in which the output of the extractor is
independent of each of the inputs separately. More formally,

Definition 4. A function Ext : ({0, 1}k)2 → {0, 1}m is a (k, δ) two-source
strong extractor if for any (k, δ)-source X1 and any independent (k, δ)-source
X2, the distributions (Ext(X1, X2), Xi) and (Um, Xi) are ε-close, for i ∈ {1, 2}.

Dodis and Oliveira [8] show that some well-known constructions of two-source
deterministic extractors indeed yield two-source strong extractors. Raz [20] shows
how to construct very general two-source strong extractors.

3 Extracting Randomness in a Network

Each player participating in a randomized distributed protocol is traditionally
assumed to have a uniformly distributed string that is independent of the ran-
dom strings of the other players. In addition, some protocols assume that the
randomness of each player is private. i.e, the faulty players have no information
on the randomness of the good players. There is no guarantee on the behavior
of the protocol if the players use a weak random source or if the players have
public randomness.

Our goal would be to run a distributed extraction protocol among the players
such that the good players help each other extract a uniform random string
collectively from their (mutually independent) weak random sources, even in
the presence of some malicious parties. The malicious colluding parties could
each contribute an arbitrary string, possibly correlated with what they see in
the network, as input to the extraction protocol.

One of the building blocks in our randomness extraction protocols is a multi-
source extractor whose output is random even if an arbitrary subset of the input
sources do not have any min-entropy, but all the sources are independent. We
call this a (κ, τ)-immune extractor.

Definition 5. Let X1, X2, . . . , Xκ+1 be (k, δ)-block sources. A function Ext that
takes as input a finite number of blocks from each of the κ + 1 block sources is
called a (κ, τ)-immune (k, δ)-extractor if for any block sources X1, X2, . . . ,
Xκ+1 such that (i) X1 is a (k, δ)-source, (ii) at least κ− τ among the κ sources
X2, . . . , Xκ+1 are (k, δ) sources, and (iii) the Xi’s are mutually independent,
Ext(X1, X2, . . . , Xκ+1) is ε-close to Um.

In the above definition, we are guaranteed that the τ “bad” sources (those which
do not have any randomness) are independent of the κ + 1− τ “good” sources.
We might need to deal with worse situations. In particular, the τ bad sources
could be dependent on some of the “good” sources. A (κ, τ)-strongly immune
extractor extracts uniform randomness even in this adversarial situation.

Distributed Computing with Imperfect Randomness 295

Definition 6. Let X1, X2, . . . , Xκ+1 be (k, δ)-block sources. A function Ext that
takes as input a finite number of blocks from each of the κ + 1 block sources
is called a (κ, τ)-strongly-immune (k, δ)-extractor if for any block sources
X1, X2, . . . , Xκ+1 such that (i) X1 is a (k, δ)-source independent of all other Xi,
and (ii) at least κ− τ among the κ sources X2, . . . , Xκ+1 are (k, δ)-sources and
are mutually independent, Ext(X1, X2, . . . , Xκ+1) is ε-close to Um.

Some distributed protocols might require the players to have private random-
ness. But, if the players are connected by non-private channels, most of the
inputs to the extraction protocols are publicly visible. In this case, the output of
the extraction protocol might depend on the values that were publicly transmit-
ted and is thus not private. We need to construct (κ, τ)-strongly immune strong
extractors to cope with this situation. The constructions are as given below.

I-Ext: A (t, t− 1)-immune extractor.

Inputs: Let Ext be any (k, δ) two-source extractor. Let X2
1 , X3

1 , . . . , Xt+1
1 denote

t distinct blocks of the (k, δ)-block source X1. Let X2, . . . , Xt+1 be one block
each from the t other sources.

I-Ext({X i
1}t+1

i=2, X2, . . . , Xt+1) =
⊕t+1

i=2 Ext(X i
1, Xi).

Theorem 1. I-Ext is a (t, t − 1)-immune extractor, assuming that Ext is a
(k, δ)-two source extractor.

Proof (Sketch). At least one of the sources (say Xj , 2 ≤ j ≤ t + 1) has min-
entropy δk and Xj is independent of all the X i

1 (i = 2, . . . , t + 1). Also, Xj
1 has

min-entropy δk conditioned on all the blocks Xj′
1 (j′ �= j). That is, the distri-

bution of (Xj
1 |X

j′
1 = xj′

1) has min-entropy at least δk. Therefore, Ext(Xj
1 |(X

j′
1 =

xj′
1), Xj) is ε-close to Um. Consider any j′ �= j. The joint distributions

(Xj
1 |X

j′
1 , Y) and (Xj′

1 , Z) are independent. Thus, Ext(Xj′
1 , Xj′) is independent

of Ext(Xj
1 , Xj), for all j′ �= j. This shows that

⊕t
i=2 Ext(X i

1, Xi) is close to Um.

Theorem 2. There exists a (t, t− 1)-strongly immune strong extractor SI-Ext.

Proof (Sketch). In the construction of I-Ext, using a two-source strong extractor
(for instance, those of [8,20]) in the place of Ext gives us SI-Ext. We prove the
theorem for the case when t = 2. The proof for t > 2 follows quite easily from
this proof.

Let the distributions under consideration be X = (X1, X2), Y and Z. Here,
the distributions Y and Z could be dependent, but both are independent of X .
At least one of Y and Z have min-entropy δk. W.l.o.g, this is Y . Then, since X1

has min-entropy δk conditioned on X2 = x2, Ext((X1|X2 = x2), Y) is ε-close
to Um.

Let D1
def
= Ext((X1|X2 = x2), Y) and let D2

def
= Ext(X2, Z). We know that[

D1, Y
]
≈

[
Um, Y

]
and since Z = f(Y),[

D1, Y, Z
]
≈

[
Um, Y, Z

]
.

296 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

We also know that [
D1, X

2
]
≈

[
Um, X2

]
,

since D1 is the result of extracting from (X1|X2 = x2) and Y , both of which are
independent of X2. Since X2 and Z are independent, and so are X2 and Y ,[

D1, X
2, Y, Z

]
≈

[
Um, X2, Y, Z

]
.

Therefore, [
D1, X

2, Y, Z, Ext(X2, Z)
]
≈

[
Um, X2, Y, Z, Ext(X2, Z)

]
.

Note that the last component of this distribution is precisely D2. Thus, D1 is
random, given D2, Y , Z and X2. Thus

[
D1 ⊕ D2, X

2, Y, Z
]
≈

[
Um, X2, Y, Z

]
.

In particular, this means
[
D1 ⊕D2, Y, Z

]
≈

[
Um, Y, Z

]
, which is the definition

of the extractor being strong. ��

Fact 1. Suppose X1, X2 and Y are random variables, and Z is a random vari-
able such that Z is independent of X1 and X2. If (X1, Y) ≈ (X2, Y), then
(X1, f(Y, Z)) ≈ (X2, f(Y, Z)).

4 Byzantine Agreement Protocols with Block Sources

In this section, we show how to construct randomized Byzantine agreement (BA)
protocols that work even when the players have access to block sources (resp.
general weak sources), using the extraction protocols of the previous section.
Our transformations are fairly generic and they apply to a large class of known
randomized BA protocols.

The protocol Synch-PC-Extract ensures that, in the presence of at most t
faults, at least 2!n

2 " − 2t good players get private random strings. The protocol
Asynch-Extract, on the other hand, ensures that all the good players get private
random strings, at the end of the protocol.

Theorem 3 (Synchronous, Private Channels). If n ≥ 3t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by a synchronous network with private channels,
and have (k, δ) block-sources with δ > 1

2 .

Protocol Synch-PC-Extract

Group the players P1, P2, . . . , Pn into pairs (p1, p2), . . . , (pn−1, pn). Let Ext be
an (n, δ) two-source extractor. (Note: Assume for simplicity that n is even. If
not, add a dummy player.)

Each player Pi does the following:
– If i is even, sample a k-bit string Xi from the source, and send it to Pi−1.
– If i is odd, sample a k-bit string Xi from the source, and receive a k-bit

string Xi+1 from Pi+1. Compute an m-bit string Ri ← Ext(Xi, Xi+1).
Send to Pi+1 the first m

2 bits of Ri and store the remaining bits.

Distributed Computing with Imperfect Randomness 297

Protocol Asynch-Extract

Each player pi does the following: (Note: Ext is either a (t+1, t)-immune extractor
or a (t + 1, t)-strongly immune strong extractor).

– Wait to receive t + 1 strings Y1, Y2, . . . , Yt+1 from t + 1 different players.
– Sample blocks X1

1 , X2
1 , . . . , Xt+1

1 from the random source.
– Compute and Store Ri ← Ext({Xj

1}t+1
j=1, Y1, Y2, . . . , Yt+1).

Protocol Synch-FI-Extract

Group the players into 4-tuples (p1, p2, p3, p4), . . ., (pn−3, pn−2, pn−1, pn). Let
SI-ext be a (3, 2)-strongly immune strong extractor. (Note: Assume for sim-
plicity that n is a multiple of four. If not, add at most two dummy players.)

Each player pi does the following: (Assume that pi is in a 4-tuple with pi+1, pi+2

and pi+3.)

– Samples six blocks Xj
1 (j = 1, . . . , 6) from its random source.

– Send Xj
1 to pi+j (for j = 1, . . . , 3). Store Xj

1 (j = 4, . . . , 6).
– Receive k-bit strings Yj from pi+j (j = 1, . . . , 3).
– Compute Ri ← SI-ext({X4

1 , X5
1 , X6

1}, Y1, Y2, Y3) and store Ri.

Proof. In the first round, the players run the protocol Synch-PC-Extract. Let Ri

denote the output of player i after running Synch-PC-Extract. Now, the players
run the BA protocol guaranteed by Lemma 1 with player i using Ri as random-
ness.

There are at least !n
2 " − t ≥ ! t

2" + 1 pairs such that both the players in
the pair are good. In each pair, the players extract uniform and independent
random strings. Thus, there are at least 2(! t

2" + 1) ≥ t + 1 players at the end
of the protocol with m-bit strings that are ε-close to uniform. Because of the
private channels assumption, the inputs used to compute Ri are invisible to
the adversary, and therefore, the randomness extracted is private. Now, invoke
Lemma 1 to complete the proof.

Lemma 1. If n ≥ 3t + 1, then there exists a BA protocol that runs in expected
O(1) rounds tolerating t faults in a synchronous network with private channels,
even if only t + 1 (out of n− t) good players have private randomness.

Proof. The protocol of Feldman and Micali [14] is such a BA protocol. Refer to
Appendix A for a proof sketch.

Theorem 4 (Synchronous, Full-Information Model). If n ≥ 3t + 1, then
there exists a BA protocol that runs in expected O(t

log n) rounds tolerating t faults,
assuming the players are connected by a synchronous network with non-private
channels, and have (k, δ) block sources with δ > 1

2 .

298 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Proof. In the first round, the players run the protocol Synch-FI-Extract. Using
the randomness so obtained, run the BA protocol guaranteed by Lemma 2.

Consider the set of 4-tuples of players such that at most two players in the
4-tuple are bad. There are at least !n

4 " − !
t
3" ≥ !

5t
12" such tuples. In each such

pair, the good players extract uniform and independent random strings, since
there are at least two good players in such a 4-tuple and Ext is a (3, 2)-strongly
immune extractor. There are at least 4! 5t

12" ≥
5
9n = (1

2 + Θ(1))n players at the
end of the protocol with m-bit strings that are ε-close to uniform. Moreover, the
random strings Ri of these players are private, since Ext is a strong extractor.
Now, invoke Lemma 2 to complete the proof.

Lemma 2. If n ≥ 3t+1, there exists a BA protocol that runs in expected O(t
log n)

rounds tolerating t faults in a synchronous network with non-private channels,
even if only (1

2 + δ)n good players have private randomness (for some δ > 0).

Proof. The protocol of Chor and Coan [6] is such a BA protocol. Refer to Ap-
pendix B for a proof sketch.

Theorem 5 (Asynchronous Network). If n ≥ 3t + 1, then there exist BA
protocols that tolerate t faults in an asynchronous network, when the players
have (k, δ) block-sources with δ > 1

2 , and

– run in O(1) rounds, with private channels, and
– run in O(2n) rounds, with non-private channels.

Proof (Sketch).
In the private channels case: In the first round, the players run the protocol
Asynch-Extract with a (t + 1, t)-immune extractor in the place of Ext. Let Ri

denote the output of player i after running Asynch-Extract. Now, the players run
the O(1)-round BA protocol of [5], with player i using Ri as the randomness to
the [5] protocol.

Each player pi gets t + 1 strings, eventually. This is because n ≥ 2t + 1 and
there are at most t faulty players. At least one of the t + 1 strings is “good”.
i.e, it comes from a (k, δ) block-source which is independent from pi’s source.
By the (t + 1, t)-immunity of Ext, this means that the output Ri of player i is
ε-close to uniform. Further, the output Ri of pi is private, informally because
one of the inputs to Ext is unknown to the faulty players.
In the non-private channels case: The players run the protocol Asynch-Extract
with a (t + 1, t)-strongly immune strong extractor in the place of Ext.

4.1 The Case of General Weak Sources

The statement of Theorem 3 is true even when the players have a general weak
source. This is informally because, the extractor uses at most one sample from
each source.

Theorem 6 (Asynchronous, Private Channels). If n ≥ 5t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by an asynchronous network with private channels,
and have weak sources with min-entropy rate δ ≥ 1

2 .

Distributed Computing with Imperfect Randomness 299

Proof. The protocol used in the proof of Theorem 3, with the following slight
modification, suffices to prove this. The change is that, each player, after re-
ceiving a string from its partner in a pair, sends a message indicating that the
extraction protocol is complete. When player i receives such a message from
n − 2t players, he stops the extraction protocol and sets Ri = φ. Each player
eventually receives such a message from n−2t players, since at least n−2t play-
ers are in pairs in which both the players are good. When a player i receives such
a message, it knows that at least n− 4t players have indeed extracted uniform
randomness. Since n− 4t ≥ t + 1, we are done.

References

1. Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness
using few independent sources. In FOCS, pages 384–393, 2004.

2. Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In PODC, pages 27–30, 1983.

3. Michael Ben-Or and Elan Pavlov. Byzantine agreement in the full-information
non-adaptive model. unpublished manuscript.

4. Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In PODC,
pages 154–162, 1984.

5. Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In STOC, pages 42–51, 1993.

6. Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine
agreement algorithm. IEEE Trans. Software Eng., 11(6):531–539, 1985.

7. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. FOCS, pages 429–442, 1985.

8. Yevgeniy Dodis and Roberto Oliveira. On extracting private randomness over a
public channel. In RANDOM-APPROX, pages 252–263, 2003.

9. Yevgeniy Dodis, Shien Jin Ong, Manoj P, and Amit Sahai. On the (im)possibility
of cryptography with imperfect randomness. In FOCS, pages 196–205, 2004.

10. Yevgeniy Dodis and Joel Spencer. On the (non)universality of the one-time pad.
In FOCS, pages 376–, 2002.

11. Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping persuasively
in constant time. SIAM J. Comput., 19(3):472–499, 1990.

12. P. Elias. The efficient construction of an unbiased random sequence. Ann. Math.
Statist., 43(3):865–870, 1972.

13. Paul Feldman. Asynchronous byzantine agreement in expected constant number
of rounds. unpublished manuscript.

14. Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

15. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. In PODS, pages 1–7, 1983.

16. Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for >
processors in + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

17. Shafi Goldwasser and Vinod Vaikuntanathan. Distributed computing with imper-
fect randomness part ıı. manuscript, in preparation.

18. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM., 27:228–234, 1980.

300 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

19. Michael O. Rabin. Randomized byzantine generals. FOCS, pages 403–409, 1983.
20. Ran Raz. Extractors with weak random seeds. STOC, to appear, 2005.
21. M. Santha and U. V. Vazirani. Generating quasi-random sequences from slightly-

random sources. In FOCS, pages 434–440, Singer Island, 1984.
22. Umesh V. Vazirani. Towards a strong communication complexity theory or gen-

erating quasi-random sequences from two communicating slightly-random sources
(extended abstract). In STOC, pages 366–378, 1985.

23. J. von Neumann. Various techniques for use in connection with random digits. In
von Neumann’s Collected Works, volume 5, pages 768–770. Pergamon, 1963.

24. David Zuckerman. General weak random sources. In FOCS 1990, pages 534–543,
1990.

Appendix A – Proof of Lemma 1

We describe the salient features of Feldman-Micali protocol for Byzantine Agree-
ment in a network with private channels, tolerating t < n

3 faulty players.
The protocol consists of three building blocks: a graded broadcast protocol,

an n/3-resilient verifiable secret-sharing protocol and an oblivious common-coin
protocol. The graded broadcast protocol is deterministic. The graded VSS pro-
tocol of Feldman-Micali [14] has the property that the Sharing protocol is ran-
domized, and the only instructions in the protocol are executed by the dealer h.
The share-verification and recovery are deterministic. Therefore,

Lemma 3. If n ≥ 3t + 1, there exists an O(1)-round protocol, which is a t-
resilient graded Verifiable Secret-Sharing (VSS) protocol, assuming only that
the dealer has randomness.

Definition 7 (Oblivious Common Coin). Let P be a fixed-round protocol in
which each player x has no input and is instructed to output a bit rx. We say that
P is an oblivious common coin protocol with fairness p and fault-tolerance t if for
all bits b, for every set of t players who are corrupted, Pr[∀ good players i, ri = b]
≥ p. We refer to an execution of P as a coin. The coin is unanimously good if
ri = b for every good player i.

Lemma 4. If n ≥ 3t + 1, there exists an O(1)-round oblivious coin protocol,
which assumes only that t + 1 good players have randomness.

Proof. The Oblivious Coin protocol of Feldman-Micali [14] is given below.
Protocol Oblivious Common Coin

1. (for every player i): For j = 1, . . . , n, randomly and independently choose a
value sij ∈ [0, . . . , n− 1]. (Note: We will refer to sij as the secret assigned to
j by i.)
Concurrently run Share and Graded-Verify (of a VSS protocol) n2 times,
once for each pair (h, j) ∈ [1 . . . n]2, wherein h acts as a dealer, and shares
shj , the secret assigned by h to j. Let verificationhj

i be player i’s output at
the end of Graded-Verify for the execution labeled (h, j).

Distributed Computing with Imperfect Randomness 301

2. (for every player i): Gradecast the value

(verification1i
i , verification2i

i , . . . , verificationni
i).

3. (for every player i): for all j, if
(a) in the last step, you have accepted player j’s gradecast of a vector ej ∈

{0, 1, 2}n,
(b) for all h, |verificationhj

i − ej [h]| ≤ 1, and
(c) ej [h] = 2 for at least n− t values of h,
then set playerij = ok, else set playerij = bad.

4. (for every player i): Recover all possible secrets.
Concurrently run Recover on all the n2 secrets shared. Denote by valuehj

i

your output for execution (h, j). If playerij = bad, set SUMij = bad, else
set

SUMij = {
∑

h such that ej [h]=2

valuehj
i } mod n.

If for some player j, SUMij = 0, output ri = 0, else output ri = 1.

We now sketch the proof that the above protocol is an Oblivious Common Coin
protocol, assuming at least t + 1 good players have uniform randomness, and at
most t players are faulty. This follows from the following series of observations.

– In step 3(a) of the protocol, all the good players that accept the gradecast of
a player i receive the same vector ei, even if it player i is bad. This means,
every good player i computes SUMij as a sum of the same set of values.

– If SUMij is not set to bad, all the addenda of SUMij had ej [h] = 2, which
means verificationhj

i ≥ 1 (by Step 3(b) of the above protocol). This in
turn means, by the property of graded VSS, that there is a unique secret
corresponding to the (h, j)th execution of Share, which can be recovered.
Thus, for every player j (who may be malicious), there exists a value γ such
that, for any good player i, SUMij is either γ or bad.

– Moreover, if SUMij �= bad, then SUMij is a sum of at least n− t values (by
Step 3(c) of the above protocol). At least one of the n− t values is shared by
a good player who has randomness (since there are at least t + 1 of them).
Thus, since all the values shared are independent 2, SUMij is either set to
bad or a random number γ.

– Given this, we can prove that the coin is sufficiently common and sufficiently
random. The proof proceeds identically to that of [14]. More precisely, we can
prove that for any bit b, Pr[∀ good players i, ri = b] ≥ min(e−1, 1− e−2/3).

Lemma 5 ([14]). Given an oblivious-coin protocol as a black-box, there is a
deterministic protocol that achieves BA in O(1) rounds.
2 It turns out that this statement is not precise, and has to be proven by a more careful

simulation argument, for which we refer the reader to [14].

302 S. Goldwasser, M. Sudan, and V. Vaikuntanathan

Appendix B – Proof of Lemma 2

The Chor-Coan protocol for BA in a full-information network is given below. The
players are divided into fixed disjoint groups of size g. The ith group consists of
the set of players {p(i−1)g+1, . . . , pig}. For any player pi, let GROUP(pi) denote
the group that pi belongs to. The protocol proceeds in phases where, in each
phase, the players try to reach agreement on their values. In each phase, one of
the groups is said to be active. The purpose of the players in the active group is
(among other things) to toss coins and send it to all the other players.

1. For e = 1 to ∞, each player pi does the following: (Note: e is the current
phase.)
(a) Sends to every player the message (e, Phase1, bi).
(b) Receive messages from every other player of the form (e, Phase1, ∗).
(c) If for some v, there are ≥ n− t messages of the form (e, Phase1, v), then

set bi ← v, else set bi ← “?”
(d) If GROUP(pi) ≡ e (mod !n

g ") then set coin← b, else set coin← 0 {Note

: b is a random bit}
(e) Send to every player the message (e, Phase2, bi, coin).
(f) Receive messages of the form (e, Phase2, c, coin) from every player.

{ Note: Let NUM(c) be the number of messages received that contain c. }
(g) If NUM(c) ≥ n− t for some bit c, decide c.
(h) Else, if NUM(c) ≥ t + 1 and NUM(c) > NUM(c̄), set bi ← c.
(i) Else, set bi ← majority of the coinj ’s from the group x, where x ≡

e(mod !n/g").

Proof of Lemma 2. The following properties of the protocol are easily verified:
(a) If a player pi decides at the end of a phase, all players decide by the end of
the next phase. (b) If a player sets bi ← c at the end of a phase (instruction h,
above), then no player pj sets bj ← c̄. Given this, it is easy to see that agreement
is reached when all the remaining players (ones who set bi to be the coin-toss
from a group) set bi to c (in instruction i). It remains to analyze the expected
number of rounds in which this event happens.

Set the size of a group to be g = 2m = log n. Call a group e good if more
than m + 1 players in the group are non-faulty. Call a coin-toss good if at least
m + 1 good players in a group tossed the same coin (with a fixed value – 0 or
1). It is clear that Pr[coin-toss of a group e is good | e is a good group] ≥ 1

2m+1 .
Now, lets analyze how many bad groups there can be. There are at most t <
(1
2 − ε)n players who have no randomness, and these players can make at most
t

m+1 < (1
2 − ε) 2n

log n = (1 − 2ε) n
log n groups bad. Since there are n

log n groups in
total, the number of good groups is at least 2εn

log n .
The protocol terminates as soon as there is a good coin-toss. The expected

number of good groups that have to toss coins before they get a good coin is
precisely 2m+1 ≤ 2

√
n. The probability that a good coin is not formed after

n3/4 groups tossing coins is negligible, by a Chernoff Bound. Thus, the expected
number of rounds to each agreement is 2t

log n + n3/4 + O(1).

Polymorphic Contention Management

Rachid Guerraoui1, Maurice Herlihy2,�, and Bastian Pochon1

1 School of Computer and Communication Sciences, EPFL
2 Brown University and Microsoft Research Cambridge

Abstract. In software transactional memory (STM) systems, a con-
tention manager resolves conflicts among transactions accessing the same
memory locations. Whereas atomicity and serializability of the transac-
tions are guaranteed at all times, the contention manager is of crucial
importance for guaranteeing that the system as a whole makes progress.

A number of different contention management policies have been pro-
posed and evaluated in the recent literature. An empirical evaluation
of these policies leads to the striking result that there seems to be no
“universal” contention manager that works best under all reasonable
circumstances. Instead, transaction throughput can vary dramatically
depending on factors such as transaction length, data access patterns,
the length of contended vs. uncontended phases, and so on.

This paper proposes polymorphic contention management, a structure
that allows contention managers to vary not just across workloads, but
across concurrent transactions in a single workload, and even across dif-
ferent phases of a single transaction. The ability to mix contention man-
agers or to change them on-the-fly provides performance benefits, but
also poses number of questions concerning how a contention manager
of a given class can interact in a useful way with contention managers
of different, possibly unknown classes. We address these questions by
classifying contention managers in a hierarchy, based on the cost asso-
ciated with each contention manager, and present a general algorithm
to handle conflict between contention managers from different classes.
We describe how our polymorphic contention management structure is
smoothly integrated with nested transactions in the SXM library.

1 Introduction

Because it is getting harder and harder to make processors run faster, chip
manufacturers are focusing on multicore architectures, in which multiple pro-
cessors (cores) communicate directly through shared hardware caches [6]. The
next generation of processors will provide increased concurrency instead of in-
creased clock speed, and programming languages and APIs will need to exploit
this increased parallelism.

The limitations of conventional synchronization techniques, based on locks
and condition variables [1] are well-known [11,10]. Coarse-grained locks, which
� Supported by NSF grant 0410042 and by grants from Intel Corporation and Sun

Microsystems.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 303–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 R. Guerraoui, M. Herlihy, and B. Pochon

protect relatively large amounts of data, simply do not scale. Threads block one
another even when they do not really interfere, and the lock itself becomes a
source of memory contention. Fine-grained locks are more scalable, but they are
difficult to use effectively and correctly. In particular, they introduce substantial
software engineering problems, as the conventions associating locks with objects
become more complex and error-prone. Locks also cause vulnerability to thread
failures and delays: if a thread holding a lock is delayed by a page fault, or
context switch, other running threads may be blocked.

An alternative to locking is to synchronize by light-weight in-memory trans-
actions, an approach called transactional memory. A transaction [2] is a finite
sequence of memory reads and writes executed by a single thread. Transactions
are atomic [19]: each transaction either commits (it takes effect) or aborts (its ef-
fects are discarded). Transactions are serializable [14]: they appear to take effect
in a one-at-a-time order. (Unlike database transactions, we are not concerned
here with backing up changes to non-volatile memory.)

Software transactional memory (STM) systems have been the focus of much
recent research [7,10,8,16,17]. Most of these systems guarantee a relatively weak
progress property called freedom from obstruction [9]: if a transaction runs
long enough without overlapping a conflicting transaction, then it will com-
mit. Obstruction-freedom does not rule out livelock or starvation, so stronger
progress properties are typically provided “out-of-band” by a user-provided mod-
ule called a contention manager. Roughly speaking, if transaction A is about to
take a step that will cause a synchronization conflict with transaction B, then
A consults its contention manager to decide whether to proceed, thus causing
B to abort, or else to back off for a bounded duration, giving B a chance to
finish.

Contention managers affect liveness, not safety. The most natural way to
evaluate a contention manager is by its throughput, the number of transactions
committed per unit of time. A bad transaction manager provides low through-
put, but cannot produce unsafe results (except perhaps by throwing unexpected
exceptions).

A number of different contention management policies have been proposed
[5,10,16,17]. In contrast with a recent publication [17], a striking result of our
evaluation (discussed in more details below) is that there seems to be no “uni-
versal” contention manager that works best under all reasonable circumstances.
Instead, transaction throughput can vary dramatically depending on factors such
as transaction length, data access patterns, length of contended vs. uncontended
phases, and so on. We expect this uncertainty to be even more drastic in large
scale concrete applications.

Figure 1 illustrates how contention manager performance depends on con-
text. The figure features contention managers that have recently appeared in
the literature (we give more details on these later in the paper). The two sce-
narios illustrated differ in the contention pattern among conflicting transactions.
Both scenarios use a red-black tree data structure in which a number of threads
insert and remove elements. The number of transactions committed within a

Polymorphic Contention Management 305

00 55 1010 1515 2020 2525 3030 3535
0

2k

4k

6k

8k

10k

12k

Greedy

Karma

Polka

Aggressive

Timestamp

Number of threadsNumber of threads

C
o
m

m
it
te

d
tr

an
sa

ct
io

n
s

p
er

se
c

Fig. 1. Comparison of various contention management policies under low (left) and
high (right) contention scenarios

constant time period of one second, under various contention management poli-
cies, is depicted, with respect to a number of threads ranging from 1 to 32. The
scenario on the left reduces contention by making each thread executes a time-
delay loop at the end of every transaction. The scenario on the right exhibits a
contention-intensive scenario, in which threads continuously insert and remove
elements from the red-black tree. Elements are taken from a small set of 256 in-
tegers to force contention to happen within the tree. Benchmarks were run on a
4-processor Intel Xeon machine with hyperthreading turned on.

When situations such as those of Figure 1 simultaneously appear within a
single application, the application benefits from associating distinct contention
managers to different groups of transactions, according to the situation encoun-
tered by each particular group. The diversity of contention managers within a
single application may also be motivated by the change, over the lifetime of the
application, of parameters affecting the throughput of committed transactions,
for instance the number of threads or the number of tables in a database. In
this case, running transactions with a default contention manager from some
time on, may lead to conflicts with transactions that are still running with the
previous default contention manager and have not yet committed.

We propose polymorphic contention management, a structure that allows
contention managers to vary not just across workloads, but across concurrent
transactions in a single workload, and even across different phases of a single
transaction. The ability to mix contention managers or to change them on-the-
fly provides performance benefits, but also poses number of questions concerning
how one contention manager of a given class1 can interact in a useful way with
contention managers of different, possibly unknown classes. We introduce a hi-
erarchy of contention manager classes, based on the cost associated with each

1 Throughout the paper, the notion of “contention manager class” is to be taken in
the object-oriented sense, i.e., a set of instances implementing the same contention
manager policy.

306 R. Guerraoui, M. Herlihy, and B. Pochon

contention manager class, and identify general groups of contention manager
classes. We present a general algorithm to handle contention between contention
managers from different classes.

Our polymorphic contention management structure is presented in the con-
text of SXM, a new software transactional memory library which we imple-
mented in C#. SXM supports distinct contention management policies at the
level of individual, possibly nested [13], transactions. We associate transactions
with methods in SXM, which makes it natural to isolate nested transactions
from parents, and concurrent transactions from one another. Our polymorphic
scheme promotes a flexible programming style where the contention manager
of a nested transaction can be interactive: the thread of control is returned to
the application after the transaction is aborted a certain number of times. This
allows the application for possibly changing at runtime the contention manager
of the transaction (e.g., if the number of threads increases). The full code of
SXM is available on the web for further experimentation [15].

The remainder of the paper is organized as follows. Section 2 gives an
overview of elements of SXM that are needed to describe our polymorphic con-
tention management structure. Section 3 explains in more details contention
management in SXM and compares different contention managers. Section 4
discusses the mixing of contention managers. Section 5 describes how to asso-
ciate a contention manager with a transaction in SXM. Section 6 presents the
implementation of SXM in C#, including a postprocessor approach to declaring
transactions. Section 7 discusses related work.

2 Overview of SXM

Before describing our polymorphic structure, we provide here a short overview of
our transaction model, illustrated in Figure 2, and an example of a program using
our SXM library. In Section 6, we will give more details about the implementation
of SXM and the polymorphic contention management scheme in C#.

Ta Tb

Ta begins Tb begins

O1

O1

O2

O3

Ta is aborted by Tb Tb commits

Ta acquires O1

Ta acquires O2

Tb acquires O3

Tb acquires O1:
contention detected with Ta, Tb’s contention man-
ager decides to abort Ta

Fig. 2. Tb is attacking victim transaction Ta

Polymorphic Contention Management 307

2.1 Transactions

We consider a system made of n threads. Each thread executes independently of
other threads, and follows a program assigned to it. Beside normal code, a thread
may execute transactions [2]. A transaction is a basic unit of computation that
appears to take place atomically [19] to every other transaction (thread). When
a thread finishes a transaction, the transaction may either commit, and every
modification performed during the transaction instantaneously takes place, or
abort, in which case no modification is effectively performed.

We consider an object-based memory model. In this model, threads share
objects. Within a transaction, a thread accesses transactional objects. A transac-
tional object is an object supporting additional methods, for being accessed from
within a transaction. Roughly speaking, every transactional object supports a
clone operation. When a thread executes within a transaction, the thread works
on a copy of the transactional object, obtained using the clone method. When the
thread obtains a copy of the transactional object to work on, we say the thread
acquires the transactional object. Upon completion, the transaction atomically
commits every modification done on every copy acquired, to the original trans-
actional object. If the transaction fails to commit, the thread may restart the
transaction.

2.2 Contention Managers

A transaction Ta may fail to commit because another transaction Tb has accessed
the same transactional object O, invalidating the copy Ta has obtained. When
Tb acquires O, Tb detects a conflict with Ta. At this point however, it is not clear
whether Tb, which we call the attacking transaction, should abort Ta, which we
call the victim transaction, or whether Tb should just wait and give more time
to Ta to finish. It is possible that Ta never commits if it is always aborted by
other transactions. Hence the choice of mediating conflicts among transactions
with a contention manager.

More precisely, a contention manager instance is associated with each trans-
action. In case of a conflict, the contention manager of the attacking transaction
decides, possibly based on the computation of the transactions, which of the
attacking or the victim transaction should abort. On the one hand, a transac-
tion that has aborted many times should be given a change to commit, and
thus should not be aborted too easily. On the other hand, a transaction may be
blocked, e.g. waiting for swapped-out data to be swapped in, and aborting the
blocked transaction in favor of others may lead to better throughput. Clearly,
the contention manager is crucial to the performance of a STM system.

By eventually aborting any conflicting transaction if called sufficiently many
times, a contention manager may easily ensure freedom from obstruction [9], a
relatively weak liveness guarantee. More sophisticated contention management
policies ensure stronger liveness guarantees [5,16].

308 R. Guerraoui, M. Herlihy, and B. Pochon

2.3 Transactions and Contention Management in SXM

In SXM, the transaction invocation tree is mapped onto the method invocation
tree, through a few programming conventions, following the current “library”
approach of SXM. Section 6.3 describes an alternative postprocessor approach
to declare transactions in SXM.

A transaction is explicitly constructed from a method and the transactional
objects must be marked with the Atomic attribute and support the ICloneable in-
terface. We assume here that a particular contention manager has been chosen and
specified elsewhere, and we explain how this is effectively achieved in Section 3.

Figure 3 depicts a simple example of a counter in SXM. There are two classes,
Application and Counter. The class Application represents the application class,
and defines a method Increment, to be run as a transaction. The class Counter
implements ICloneable and is marked with Atomic: hence instances of Counter
are transactional objects, and may be accessed through the C# property inc,
defined in Counter. (We use properties instead of methods because properties
make an explicit distinction between get and set accesses, that we respectively
associate with read and write accesses. This allows for distinguishing, within a
transaction, objects that are accessed read-only, i.e. through a get property, or
read-write, i.e. through set property).

The body of the Increment method consists in accessing a single transactional
object, counter, instantiated from the class Counter, by invoking the increment
property on it. The Main method declares a transaction corresponding to the
Increment method, in three steps (line numbers refer to Figure 3):

1: class Application
2: Counter counter; // Transactional object

3: public Application()
4: this.counter =

〈obtain a fresh Counter instance〉;

5: // Increment will be run as transaction
6: public void Increment()
7: this.counter.increment;

8: static public void Main(string argv[])
9: // Create the application

10: Application application = new Application();

11: // Create a delegate
12: Delegate delegate = new

SXMDelegate(application.Increment);

13: // Create the transaction
14: SXMAction incrementAction =

SXMAction.Create(delegate);
15: . . .
16: // Run the transaction
17: incrementAction.Run();

1: // Class representing transactional objects
2: [Atomic]
3: class Counter : ICloneable
4: private int balance;

5: public Counter(int balance)
6: this.balance = balance;

7: public object Clone()
8: return new Counter(this.balance);

9: // Property that increments the balance
10: property int increment
11: set
12: balance = balance + 1;

Fig. 3. Example of a counter in SXM

Polymorphic Contention Management 309

1. Create first a delegate, representing the method to run as a transaction
(line 6, second column). (A delegate is a C# feature that represents a kind
of type-safe pointer on a method.)

2. Create a transaction, represented as an instance of SXMAction, from this
delegate (line 8, second column).

3. Launch the transaction by invoking the Run method on the SXMAction in-
stance (line 11, second column). (In a real application, running the transac-
tion would obviously occur within a new thread.)

3 Specifying a Contention Manager

3.1 Contention Management Methods

Every transaction is associated with a particular contention manager, where the
task of the contention manager is to resolve conflicts encountered with other
transactions. The contention manager resolves conflicts based on the compu-
tation performed by its associated transaction. In this sense, the contention
manager is informed by its associated transaction of the evolution of the com-
putation.

A contention manager exports notification and feedback methods: notification
methods enable the transaction to inform the contention manager of its compu-
tation, whereas feedback methods enable the contention manager to inform the
transaction of what to do in specific situations.

Notification methods include methods such as BeginTransaction, Transaction-
Committed, TransactionAborted, as well as methods to indicate an attempt in ac-
quiring a transactional object (OpenReadAttempt and OpenWriteAttempt), and
success in acquiring a transactional object (OpenReadSucceeded and OpenWrite-
Succeeded).

A feedback method is invoked by a transaction on its own contention man-
ager, in situations where the expertise of the contention manager is needed. We
consider two feedback methods:

– The method ResolveConflict is invoked on the contention manager of a trans-
action whenever a conflict is detected with another transaction. Roughly
speaking, the contention manager of the attacking transaction may decide
in this case, according to its specific contention management policy (we give
examples in the next section), whether to abort the victim transaction, or
whether to send to sleep the attacking transaction and give more time to
the victim transaction to finish.

– The method ShouldBegin is invoked on the contention manager of a transac-
tion whenever the transaction (re)starts. This method returns whether the
transaction should wait, or whether it may start. In a typical contention
manager implementation, ShouldBegin blocks the transaction, based on its
specific contention management policy, yielding in favor of other threads.
The contention manager sends the transaction to sleep until it is appropri-
ate for the transaction to start.

310 R. Guerraoui, M. Herlihy, and B. Pochon

3.2 Examples of Contention Managers

Several contention managers have been defined in the literature [5,16,17]. The Ag-
gressive contention manager systematically aborts the victim transaction. The Po-
lite contention manager exponentially backs off for a fixed number of attempts, and
eventually aborts the conflicting transaction. The Randomized contention man-
ager aborts the victim transaction with some probability p, and waits with prob-
ability 1− p. Greedy and Timestamp contention managers associate a timestamp
to a transaction when it is run for the first time. The idea is that an old trans-
action (one with a lower timestamp) has priority over a young one (one with a
higher timestamp). In case of conflict, if the victim has a higher timestamp, it
is aborted. With Greedy, if the victim transaction is waiting, then the attacking
transaction aborts it; otherwise, the attacking transaction waits, until the victim
either commits, aborts, or waits. With Timestamp, if the attacking transaction is
not older than the victim, the attacking transaction then waits for a series of fixed
intervals. After attempting half the number of intervals, the contention manager
of the attacking transaction flags the victim as possibly defunct. After attempting
the full number of intervals, if the victim has the defunct flag set, the contention
manager of the attacking transaction aborts the victim; meanwhile, if the victim
transaction performs any transaction-related operation, its contention manager
resets the defunct flag. Karma and Polka contention managers increase the prior-
ity of a transaction whenever the transaction successfully acquires a transactional
object. When two transactions are in conflict, the attacking transaction makes
a number of attempts equal to the difference among priorities of both transac-
tion, with a constant backoff between each attempt (Karma), or with an exponen-
tial random backoff between successive attempts (Polka). The Eruption contention
manager also maintains the number of transactional objects successfully acquired,
denoted objs, and gives to a transaction an initial priority of zero. In case of con-
flict, if the victim transaction has a higher priority than the attacking one, the
contention manager of the attacking transaction adds objs to the priority of the
victim transaction, and then sends the attacking transaction to sleep for an ex-
ponential random backoff. Otherwise, the contention manager aborts the victim
transaction. The idea behind the Eruption contention manager is to increase the
priority of the transaction behind which other transactions are waiting.

Figure 4 illustrates, following the example of Section 2, how we create a
transaction from the Increment method, and associate with this transaction a
Greedy contention manager [5].

1: static public void Main(string argv[])
2: Application application = new Application();
3: Delegate delegate = new SXMDelegate(application.Increment);
4: SXMAction incrementAction = SXMAction.Create(delegate,typeof(Greedy));
5: . . .
6: incrementAction.Run();

Fig. 4. Specifying a contention manager

Polymorphic Contention Management 311

3.3 Benchmarks

The benchmarks in this section provide some guidelines for choosing adequate
contention managers in different parts of a given concurrent application. In fact, a
programmer is encouraged to experiment with different contention management
policies, especially since safety is not impacted.

Figures 1 and 5 show the number of committed transactions in a constant pe-
riod of one second with respect to the number of threads, ranging from 1 to 32, with
different contention management policies and in three different scenarios. Figure 1
depicts, on the left, a red-black tree application with low contention among trans-
actions and, on the right, a red-black tree application with high contention among
transactions. Figure 5 depicts a red-black forest application, a data structure made
of fifty red-black trees, in which threads continuously insert and remove elements,
in either one or all trees on a random basis; the length distribution of the transac-
tions produced which a red-black forest exhibits a high variance.

As conveyed by the left part of Figure 1, when there is no contention among
transactions at the end of the computation, for various length of uncontented
periods, and transactions are approximately of the same size, the Greedy con-
tention manager [5] provides the best throughput. Intuitively, this is because
Greedy does not maintain costly data structures for assigning priority to trans-
actions. On the other hand, the right part of Figure 1 shows that Karma [16]
and Polka [17] provide a better throughput in a contention-intensive scenario.
This might be explained by the fact that the priority assigned to transactions,
though more costly to update, reveals itself a good estimator of the intuition that
a transaction that has performed a lot of work should have a higher priority than
a transaction that has performed less work.

In Figure 5(a), transactions are of irregular length, and the best contention
management policies seem uncertain. More precisely, it highly varies depending
on the number of threads (we come back to this in Section 4).

Number of threads

C
o
m

m
it
te

d
tr

an
sa

ct
io

n
s

p
er

se
c

0 5 10 15 20 25 30 35
0k

2k

4k

6k

8k

10k

12k

(a) Red-black forest, high contention

Number of threads

C
o
m

m
it
te

d
tr

an
sa

ct
io

n
s

p
er

se
c

0 5 10 15 20 25 30 35
0k

2k

4k

6k

8k

10k

12k

Greedy
Karma

Polka
Aggressive

Timestamp
Mixing

(b) Adapting the contention manager to the number
of threads

Fig. 5. Red-black forest application

312 R. Guerraoui, M. Herlihy, and B. Pochon

4 Polymorphic Contention Management

4.1 Mixing Contention Managers

In SXM, each transaction may be associated with a distinct contention manager
class. Obviously, we would like to associate with each transaction within an
application the contention manager for which the best throughput is obtained.
This is not necessarily the same contention manager class for all (groups of)
transactions.

Figure 5(b) shows the throughput of committed transactions per seconds
when the contention manager associated with any new transaction adapts to
the current number of threads, within the same application.

To illustrate this situation, consider a server responding to client requests over
the Internet, designed such that each client is served by a different thread within
the server. Consider that at some point, a high number of clients simultaneously
send a request to the server. The number of threads within the application is
then high, and the application benefits from switching the default contention
manager to be used for any new transaction, to one that is efficient with a high
number of threads. When the number of clients later decreases, the number of
threads on the server decreases. The application then benefits from switching the
default contention manager to one that is efficient with a low number of threads.

A programmer may also want to implement her own contention managers,
for the purpose of her application. On the other hand, she might also want to
use a contention manager that already exists for other transactions.

Clearly, addressing the conflict resolution (a priori) by considering every pos-
sible pair of contention managers in the ResolveConflict method is simply not
possible. In the following, we discuss how that can be done in a dynamic manner.

4.2 Coping with Diversity

When two or more contention manager classes are mixed within a single ap-
plication, two conflicting transactions are not necessarily associated with the
same contention manager class. Consider for example a transaction Ta managed
by a Greedy contention manager denoted Ma and a transaction Tb, attacking
Ta, managed by a Karma contention manager denoted Mb. In the ResolveCon-
flict method, Mb needs to decide whether to abort the victim transaction Ta,
monitored by Ma. Although Mb has a reference to Ma, Mb does not know the
dynamic type of Ma (Greedy). In fact, Ma is available to Mb as a reference of type
IContentionManager, a simple interface implemented by all contention manager
implementations in SXM.

To cope with the diversity of contention managers, the easiest policy we
may imagine is that any contention manager immediately aborts a conflicting
transaction managed by a different contention manager. In fact, this is the be-
havior of the Aggressive contention manager [16]. In this case, any contention
manager is an Aggressive contention manager in face of a contention manager
of an unknown class.

Polymorphic Contention Management 313

Ta

Manager Ma

Tb

Manager Mb

Ta begins, tsa = 1
Tb begins, tsb = 0

O1

O1

O2

O3

Ta is aborted by Tb

Tb commits

Ta acquires O1

Ta acquires O2

Tb acquires O3

Tb acquires O1:
– Mb detects a conflict with Ta

– Mb is of a different class from Ma

– Mb invokes ResolveConflict from the Priority
class

– As tsb < tsa (Tb has higher priority than Ta),
Mb aborts Ta

Fig. 6. Tb is attacking victim transaction Ta with a contention manager of a different
class

Rank Contention manager Data structures

0
a

IContentionManager —
1 Aggressive, Polite —

2
b

Greedy, Killblocked Birthdate
3 (Published)Timestamp Birthdate, variable

4
c

Kindergarten List of transactions
5 Karma, Polka, Eruption List of objects

Fig. 7. A hierarchy of contention managers

Ta

Tb

Ta begins

Ta commits

Tb begins (nested)

Tb ends

Ta acquires O1

Tb acquires O2

Tb acquires O3

O1

O2

O3

Ta inherits of
O2 and O3

Fig. 8. Nesting transactions

We classify contention managers in a hierarchy. The hierarchy is based on the
cost associated to each contention manager, from the less costly ones (those that
do not use any bookkeeping) to the most costly ones (those that maintain much
information about the current transaction, the other transactions, etc.). The
hierarchy is shown in Figure 7, and includes the contention managers defined
in [5] and [16].

More precisely, Figure 7 depicts three general groups of contention managers:
(a) ad-hoc contention managers which always adopt the same strategy indepen-
dently of the computation of transactions, (b) contention managers which base
their decision on information local to transactions, and (c) contention managers
which base their decision on the computation and previous interactions of trans-
actions. This is reflected in the implementation of the contention managers by
(a) no variable at all, (b) simple data structures, and (c) complex data struc-
tures. Because contention managers in group b maintain simpler data structures
and less bookkeeping than contention managers in group c, but, at the same
time, base their decisions on elements of the computation of the transaction, in

314 R. Guerraoui, M. Herlihy, and B. Pochon

contrast with contention managers in group a, we use this class as the common
denominator among all contention managers.

Furthermore, two transactions that are associated with distinct contention
managers were probably not planned to conflict initially. Hence using contention
management policies such as Karma or Polka to address the conflict does not
really make sense in this case, because the number of transactional objects that
have been accessed so far is probably not comparable. Making a decision based
on the number of objects acquired by each transaction does not really reflect the
priority among transactions.

To cope with this issue, we defined an abstract Priority contention manager,
from which every concrete contention manager class inherits. This contention
manager class associates a priority to every transaction, when the transaction is
run. The Priority contention manager class exports a concrete conflict resolution
ResolveConflict method, based on this priority.

Consider the scenario depicted in Fig. 6, where a transaction Tb attacks a
transaction Ta, and denote by Ma (resp. Mb) the contention manager of Ta

(resp. Tb), and by ResolveConflicta (resp. ResolveConflictb) the original Resolve-
Conflict of contention manager Ma (resp. Mb). When the SXM library detects
the conflict, it invokes the ResolveConflict on Mb. Within the method, the conflict
resolution algorithm now works as follows:

1. If Mb and Ma are of the same class, or Mb is of a superclass of Ma, then
apply ResolveConflictb between Ta and Tb.

2. If Mb and Ma are of incomparable classes, then apply the ResolveConflict
method as defined by the Priority contention manager, between Ta and Tb.

We use the priority and conflict resolution algorithm of the Greedy contention
manager as the common priority and conflict resolution algorithm of the Prior-
ity contention manager. The Greedy contention manager records the time at
which a transaction starts for the first time. When two transactions conflicts,
these timestamps are used as priority, with the idea that older transactions have
higher priority than recent transactions. Consider a victim transaction Ta and
a transaction Tb attacking Ta. We associate timestamp tsa (resp. tsb) with Ta

(resp. Tb). The ResolveConflict method of the Greedy contention manager pro-
ceeds as follows (recall that Tb is attacking Ta):

1. If tsa > tsb (Ta was started more recently than Tb) or Ta is waiting, then
abort Ta.

2. Otherwise, wait until Ta commits, aborts or starts waiting. (If Ta starts
waiting, then see Rule 1.)

5 Associating Contention Managers with Transactions

In Section 3we pointed out how a particular contention managermay be associated
with a transaction at the top level. We go one step further, and allow for decompos-
ing a transaction into nested transactions (following the method invocation tree),

Polymorphic Contention Management 315

and associating different contention managers within the same top level transac-
tion. We discuss now the issues behind nesting transactions and explain how each
nested transaction may be associated with a distinct contention manager.

5.1 Issues Behind Nesting Transactions

In SXM, the transaction boundaries are mapped on the method boundaries.
Consider an application where a method A invokes a method B. In the applica-
tion, we declare transaction Ta (resp. Tb) associated with method A (resp. B).
There are two possibilities for running transaction Tb:

1. Tb runs within transaction Ta.
2. Tb runs as a separate transaction nested in Ta.

Running transaction Tb as a nested transaction (possibility 2) is more costly
than running Tb within Ta (possibility 1), since it requires creating a fresh trans-
action state. (We give more details on what it takes to create a transaction in
Section 6.) To illustrate the usefulness of possibility 2, assume that before in-
voking Tb, Ta performs a long computation consuming a lot of resources. If a
conflict is encountered when executing Tb with a third transaction Tc, we would
prefer restarting Tb without restarting Ta. In this case, it is convenient to run Tb

as a separate transaction, which may be aborted and restarted separately from
Ta. In this case, Ta is not impacted by the conflict encountered by Tb, and the
execution of Ta may resume when Tb eventually commits.

Whether one approach is more appropriate than the other depends on the
context. Hence we consider both approaches, as either one may be appropriate
in different situations: our SXM library provides the programmer with the pos-
sibility, for every transaction, to choose which approach to use. When creating
a transaction from a method, the programmer may specify, using a boolean pa-
rameter, whether the transaction should run within its parent transaction, or
as a nested transaction. Figure 9 shows the syntax for declaring a transaction
which should be nested in a parent transaction.

In terms of contention management, SXM defines on the one hand notifi-
cation methods specific to the case where a transaction is run within another
transaction, for instance to inform the contention manager about the depth of
the transaction. On the other hand, when running a transaction Tb nested in a
transaction Ta, SXM enables to associate with Tb a contention manager that is
distinct from the contention manager of Ta.

Whereas the implementation of possibility 1 is trivial and only requires
declaring additional notification methods, the implementation of possibility 2
is more involved. With possibility 2, if Tb aborts, our SXM library restarts it,
without impacting Ta, whereas if Tb reaches completion without aborting, then
Tb returns the thread of execution to Ta. When Tb terminates, Tb cannot really
commit, because its parent transaction Ta is not finished yet, and may still be
aborted later on. If Tb commits, and Ta is later aborted, we would have to roll
back the changes of Tb, which is cumbersome.

316 R. Guerraoui, M. Herlihy, and B. Pochon

1: static public void Main(string argv[])
2: Application application = new Application();
3: bool runAsNestedTransaction = true;
4: Delegate delegate = new SXMDelegate(application.Increment);
5: SXMAction incrementAction = SXMAction.Create(delegate,typeof(Greedy),runAsNestedTransaction);
6: . . .
7: incrementAction.Run();

Fig. 9. Specifying nested transaction semantics

1: class Nesting
2: static SXMAction parentAction;
3: static SXMAction childAction;

4: static public void Main(string[] argv)
5: Interactive.ManagerType = typeof(Aggressive);
6: Nesting example = new Nesting();
7: Delegate parent = new

SXMDelegate(example.ParentMethod);
8: Delegate child = new

SXMDelegate(example.ChildMethod);
9: parentAction = SXMAction.Create(parent,

typeof(Interactive));
10: childAction = SXMAction.Create(child,

typeof(Greedy),true);
11: . . .
12: parentAction.Run();

1: public void ParentMethod()
2: . . .
3: // Repeat while nested transaction aborts
4: while true do
5: try
6: childAction.Run();
7: break;
8: catch InteractiveException
9: . . .

10: // Associate another manager
11: // with child transaction if it aborts
12: childAction.ManagerType = typeof(Karma);
13: . . .

14: public void ChildMethod()
15: . . .

Fig. 10. The Interactive contention manager

In SXM, when any nested transaction finishes, the parent transaction inherits
the objects acquired by the nested transaction, as shown in Figure 8. When the
parent transaction later commits, all the objects it has acquired, included those
inherited from nested transactions, are committed. (We give more details on the
actual implementation of nested transactions in Section 6.)

5.2 Interactive Contention Management

As part of resolving a conflict among two conflicting transactions, a contention
manager may perform several actions: abort the victim transaction, backoff for
a random or exponential time, access data structures for bookkeeping, change
the priority of the attacking or of the victim transaction, etc.

SXM features the Interactive contention manager, that returns the thread of
execution to the parent transaction (or to the executing thread if already at the
top level), as soon as a nested transaction aborts. This allows for defining more
complex schemes, for instance trying an alternative transaction in case of the
first transaction aborts (similarly to the orElse construct of [7]). This is key to
dynamically changing the contention manager of the nested transaction, if one
feels that another contention manager would then perform better.

The Interactive contention manager is parametrized with another contention
manager, as the Interactive contention manager does not feature any contention

Polymorphic Contention Management 317

management policy on its own. Figure 10 depicts an example of the Interactive
contention manager. In this example, a parent transaction is associated with the
Interactive contention manager (line 9), which was previously parametrized with
the Aggressive contention manager (line 5), and a nested transaction is associated
with the Greedy contention manager (line 10). The nested transaction is created
in such a way it will be run as a separate transaction by SXM (line 10). In case
the nested transaction aborts, the Interactive contention manager throws an ex-
ception. In the exception handler (line 8, second column), the parent transaction
assigns another contention manager class to the nested transaction (line 12, sec-
ond column), before restarting it (while loop at line 4, second column). When the
nested transaction succeeds, the parent transaction may resume its execution.

6 Implementation of SXM in C#

In SXM, when a transaction invokes an operation on a transactional object, a
synchronization code is transparently executed before the operation is effectively
performed. This synchronization code is generated and added to the program at
runtime, using the reflexive API of C#. Roughly speaking, this code allows for
detecting conflicts among transactions, upon acquiring a transactional object.
In this section, we give more details on implementation issues in SXM.

6.1 Transactional Object Structure

For an object to be transactional, its class is marked with the Atomic attribute
and implements the ICloneable interface. Get properties within this class are
(implicitly) considered as read operations, whereas set properties are (implic-
itly) considered as write operations. The fields of an Atomic class are declared
private, so that they are not accessible from the outside of the object by accident,
preventing the transaction abstraction from being broken.

To create a transactional object in a program, maybe in a transaction, a
thread uses a transactional object factory, SXMObjectFactory. Behind the scenes,
a transactional object of class Type is represented by an instance of class
TX Type, which inherits from Type. Class TX Type is created at runtime by
the SXMObjectFactory, which is given class Type as a parameter, and return
class TX Type. As TX Type inherits from Type, instances of class TX Type re-
turned by the factory may be referenced as instances of class Type, hence a full
transparency for the programmer.

An instance of class TX Type has a single field, denoted stmObject, of type
SynchState.2 Roughly speaking, the instance of class SynchState supports the
methods necessary for acquiring a copy of the object. The SynchState object
references a Locator object. A Locator references in its turn an XState instance
and two instances of class Type. An XState object represents the state of the
transaction, and may have three values: ACTIVE, COMMITTED or ABORTED.

2 The SynchState object corresponds to the TMObject in the DSTM system of [10].

318 R. Guerraoui, M. Herlihy, and B. Pochon

TX Type instance SynchState Locator Fields of Locator

XState
instance

New object

Old object

ACTIVE

Type instance

Type instance

Fig. 11. Transactional object structure

When a fresh XState instance is created for a transaction, it is in the ACTIVE
state. In a Locator instance, the XState instance corresponds to the state of the
transaction which acquired the transactional object the most recently.

Initially, the SynchState instance referenced by TX Type, references a Locator
instance containing the COMMITTED transaction state, and the original version
of the transactional object is referenced by the new object. Figure 11 illustrates
the structure of a transactional object.

When a transaction attempts to invoke a method on the transactional ob-
ject, the transaction really invokes the method with the same signature on the
TX Type instance. (Recall that each instance of a class marked with the Atomic
attribute is created from the SXMObjectFactory, which returns instances of class
TX Type.)

TX Type declares the same properties, with the same signature, as Type.
The body of a get (resp. set) property in class TX Type adds synchronization
code before calling the original get (resp. set) property. More precisely, it is
implemented as follows:

1. An invocation of OpenRead (resp. OpenWrite) method on stmObject object
is performed. Roughly speaking, this encapsulates the steps necessary to
obtain a fresh copy of the object, and to make sure no other transaction has
a copy of the object. Corresponding to the contention management policy,
this means to either abort a conflicting transaction, or to send its transaction
to sleep for some time.

2. The original get (resp. set) property of class Type is invoked on the copy
returned, and the result is returned to the user (resp. the copy is modified
with the given value).

For instance, consider a linked list data structure. A list is composed of zero
or more nodes, represented by class Node. A node contains two fields, a integer
element, representing the value stored in the node, and a reference next, on the
next node in this list. Both fields are accessed through get (resp. set) properties,
which only return the value in the field (resp. set the field with the new value).
Node is shown in Figure 12(a) and TX Node generated from Node at runtime
through the SXMObjectFactory is shown in Figure 12(b).

Polymorphic Contention Management 319

1: [Atomic]
2: class Node : ICloneable
3: private Node next;
4: private int element;

5: public Node(Node next, int element)
6: this.next = next;
7: this.element = element;

8: public object Clone()
9: return new Node(this.next,this.element);

10: property Node Next
11: get
12: return this.next;
13: set
14: this.next = value;

15: property int Element
16: get
17: return this.element;
18: set
19: this.element = value;

(a) Class Node

1: class TX Node : Node
2: private SynchState stmObject;

3: public TX Node() : base()
4: this.stmObject = new SynchState(this);

5: property Node Next
6: get
7: Node target = stmObject.OpenRead();
8: return target.Next;
9: set

10: Node target = stmObject.OpenWrite();
11: target.Next = value;

12: property int Element
13: get
14: Node target = stmObject.OpenRead();
15: return target.Element;
16: set
17: Node target = stmObject.OpenWrite();
18: target.Element = value;

(b) Class TX Node, generated from Node at runtime

Fig. 12. Classes Node and TX Node

We discuss the OpenWrite method, the OpenRead method works in an anal-
ogous way.

In OpenWrite, a reference to the Locator installed in the SynchState instance
is obtained first. In the Locator, we may read the status (i.e., the XState field)
of the transaction that most recently updated the object, to determine which
of the old or new object is the current version of the object: if the status of
the transaction is COMMITTED, then the new version is the current version,
whereas if the status is ACTIVE or ABORTED, then the old object is the current
version.

We instantiate a fresh Locator object, with an ACTIVE status field, and a
clone of the current version of the object (as determined above) referenced the
old object (recall that the object supports the ICloneable interface).

If the state of the last transaction that updated the object is ACTIVE, we
are in presence of a conflict. In this case, the transaction calls ResolveConflict
on its contention manager. If the contention manager decides to abort the other
transaction, it atomically swaps the status of the other transaction, from ACTIVE
to ABORTED. The contention manager may otherwise decides to wait for some
time, and retry from the beginning of the OpenWrite method.

After aborting any conflicting transaction, the transaction atomically up-
dates the SynchState instance (with compare-and-swap) to install the newly
created Locator in place of the previous Locator.

At last, the transaction commits by atomically swapping its state from AC-
TIVE to COMMITTED. If this succeeds, all the new versions of the objects
accessed by the transaction become the current versions. Committing fails if
another transaction has already swapped the state to ABORTED.

320 R. Guerraoui, M. Herlihy, and B. Pochon

The OpenRead method implementation differs from the OpenWrite method
implementation, in that two transactions reading the same transactional objects
do not conflict with each other.

Note that the indirection induced by the SynchState instance is not strictly
necessary. In fact, we could program the full OpenRead and OpenWrite methods
directly within TX Type. However, this would require to write the full body of
OpenRead and OpenWrite at runtime by using the C# reflection API. For the
sake of simplicity, we introduce this extra object indirection.

6.2 Transaction Structure

Upon running a transaction, by invoking the Run method of the SXMAction
object, SXM creates a new transaction state (a fresh XState instance in the
ACTIVE state), and associates this new transaction state instance with the new
transaction. The transaction state is then later available, when the transaction
later acquires transactional object (through OpenRead and OpenWrite methods).

When a transaction starts, a depth counter is incremented. A zero value cor-
responds to the transaction at the top level. If the depth is more than zero, then
the parameter provided by the programmer is used to determined whether to run
the transaction as a nested transaction and associate with it a new contention
manager instance, or to run the transaction within the parent transaction. SXM
then invokes the transactional method by simply invoking the delegate. When
the delegate returns, SXM tries to atomically commit the modifications (by
swapping the state of the transaction from ACTIVE to COMMITTED). If the
transaction fails to commit, then SXM creates a fresh XState instance, asso-
ciates this instance with the transaction, and invokes the delegate once again.

If a nested transaction aborts, this means that its state object has been
swapped from ACTIVE to ABORTED. However, the parent transaction, which
does not share its state with nested transactions, is not affected. Hence SXM
only restarts the nested transaction.

If the nested transaction ends without aborting, the parent transaction in-
herits the objects accessed by the nested transaction. To achieve this, SXM
modifies, one after another, the Locator objects referencing the transactional ob-
jects accessed by the nested transaction. The modification consists in changing
the transaction state reference, from the nested transaction state, to the parent
transaction state (for which we keep a reference within the nested transaction).

– If SXM notices that, after having modified the Locator of every transactional
object accessed by the nested transaction, the transaction state of the nested
transaction has status ABORTED, then SXM aborts the parent transaction
(it atomically swaps the state of the parent transaction from ACTIVE to
ABORTED), and then restarts the parent transaction from the beginning.

– If SXM succeeds in modifying each Locator object of the transactional objects
acquired by the nested transaction, without the nested transaction being
aborted, then SXM returns the thread of execution to the parent transac-
tion, which may continue executing. In this case, every transactional object

Polymorphic Contention Management 321

1: class Application
2: Counter counter;

3: public Application()
4: this.counter = new Counter();

5: [Transactional(Greedy,true)]
6: public void Increment()
7: this.counter.increment;

8: static public Main(string[] argv)
9: Application application = new Application();

10: application.Increment();

1: [Atomic]
2: class Counter
3: private int balance;

4: property int increment
5: set
6: balance = balance + 1;

Fig. 13. A postprocessing approach to an example of a counter in SXM

modified by the nested transaction now references the parent transaction in
its Locator object.

When the parent transaction ends, SXM tries to commit the transaction by
atomically swapping its state from ACTIVE to COMMITTED. This signals, for
each transactional object modified by the transaction and now including the ob-
jects inherited from nested transactions, that the new object is the current version
of the transactional object. If SXM fails to commit (indicating contention with an-
other transaction), SXM restarts the parent transaction from the beginning.

6.3 Postprocessor Approach to Declaring Transactions

SXM could also be ported as an extension of the CIL postprocessor.CIL is the com-
mon intermediate language emitted by the C# compiler. More precisely, we pro-
pose extensions to the postprocessor for declaring transactional methods in SXM.

The Transactional attribute marks methods that are transactional. The trans-
action starts when the method begins and ends when the method ends. As be-
fore, the Atomic class attribute marks the shared objects that may be accessed by
transactional methods. (The ICloneable interface is implemented automatically
with the Atomic attribute.)

Figure 13 revisits the example of the counter, implemented in SXM with
postprocessing extensions. The class Application defines a transactional method
Increment, which acts on an instance of the Counter class. The Counter class is
declared with the Atomic attribute.

To specify which contention manager type to use with a transaction, the
programmer may give a parameter to the Transactional attribute. The program-
mer may also specify, with a parameter to the Transactional attribute, whether
a transaction should be executed as a nested transaction (true), or within the
parent transaction (false), in case the transaction is run as a nested transaction.

7 Concluding Remarks

In [10], Herlihy et al. proposed a dynamic software transaction memory (DSTM)
system in Java for transactions accessing a set of objects not fixed or known in

322 R. Guerraoui, M. Herlihy, and B. Pochon

advance. In DSTM, a single contention manager class is used to monitor all
transactions.

Harris and Fraser described in [7] a transaction scheme resembling conditional
critical regions (CCR). They also proposed a simple form of nesting transactions,
where committing a transaction occurs only when the top-level transactions
returns. The contention manager is fixed, and a transaction that encounters a
conflict systematically aborts, after waiting for the conflicting transaction to
finish.

Harris et al. proposed in [8] a STM system in Concurrent Haskell, in which
transactions are declared using an atomic block. Transactions can be composed
while preserving the atomicity of the composition. Contention management was
not discussed.

Scherer and Scott compared in [16] many contention managers, considering
various kind of metrics for prioritizing transactions. They elected one (Polka) as
the best contention manager and did not consider the question of integrating
different contention managers within a single application when the concurrency
pattern varies over the life of the application. Taking into account alternative
contention managers (Greedy [5]) as well as different load situations led us to
revisit the “universality” of Polka, and introduce our polymorphic structure.

The way transactions are nested and mapped to method boundaries in SXM
resembles that of Argus [12]. Argus introduced object wrappers called guardians.
A guardian object is similar to a transactional object as defined in this paper,
and encapsulates objects to be accessed within a transaction to provide atomicity
guarantees. Argus uses a lock-based approach to ensure atomicity of transactions.

Our transaction scheme is more pragmatic than in Argus as it leaves it up
to the programmer to decide whether the method invocation runs in a nested
transaction or remains within the parent. Moreover, we only pay the price of
nesting transaction upon usage. In this sense, our scheme is closer to that of
ACS [4]. Contention management was however not factored out neither in Argus
nor in ACS, and concurrency control was achieved using locking: when a nested
transaction returns, the parent inherits the locks.

Modular concurrency control approaches [3,18,20] considered the semantics
of the operations to enable transaction interleaving. High-level atomicity is pre-
served, independently of the order in which commutative atomic operations are
executed. On the other hand, identifying an operation as commutative when it
is not, may lead to a violation of safety; whereas safety is always guaranteed
in a STM application. In a sense, a contention manager in a STM application
extracts a part of concurrency control that is only concerned with progress (and
cannot hamper safety).

References

1. E. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1(2):115–138, 1971.

2. J. Gray. A transaction model, automata languages and programming. Lecture
Notes in Computer Science, 85:282–298, 1980.

Polymorphic Contention Management 323

3. R. Guerraoui. Atomic object composition. In ECOOP’94: Proceedings of the
European Conference on Object-Oriented Programming, pages 118–138. Springer-
Verlag, 1994.

4. R. Guerraoui, R. Capobianchi, A. Lanusse, and P. Roux. Nesting actions through
asynchronous message passing: the ACS protocol. In ECOOP ’92: Proceedings
of the European Conference on Object-Oriented Programming, pages 170–184.
Springer-Verlag, 1992.

5. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of contention managers.
In PODC’05: Proceedings of the twenty-fourth annual symposium on Principles of
Distributed Computing. ACM Press, 2005.

6. L. Hammond, B. Nayfeh, and K. Olukotun. A single-chip multiprocessor. Com-
puter, 30(9):79–85, 1997.

7. T. Harris and K. Fraser. Language support for lightweight transactions. In OOP-
SLA’03: Proceedings of the eighteenth ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, October 2003.

8. T. Harris, S. Marlow, S. Jones, and M. Herlihy. Composable memory transaction.
Technical report, Microsoft Research Cambridge, December 2004.

9. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS ’03: Proceedings of the twenty-third Inter-
national Conference on Distributed Computing Systems, page 522. IEEE Computer
Society, 2003.

10. M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional mem-
ory for dynamic-sized data structures. In PODC’03: Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages 92–101.
ACM Press, 2003.

11. M. Herlihy and J. Moss. Transactional memory: architectural support for lock-free
data structures. In ISCA’93: Proceedings of the twentieth Annual International
Symposium on Computer Architecture, pages 289–300. ACM Press, 1993.

12. B. Liskov. Distributed programming in argus. Communication of ACM, 31(3):300–
312, 1988.

13. J. E. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, MIT, 1981.

14. C. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, 1979.

15. Microsoft Research. C# software transactional memory.
http://research.microsoft.com/research/downloads/default.aspx.

16. W. Scherer and M. Scott. Contention management in dynamic software transac-
tional memory. In Workshop on Concurrency and Synchronization in Java Pro-
grams, July 2004.

17. W. Scherer and M. Scott. Advanced contention management for dynamic soft-
ware transactional memory. In PODC’05: Proceedings of the twenty-fourth annual
symposium on Principles of Distributed Computing. ACM Press, 2005.

18. P. Schwarz and A. Spector. Synchronizing shared abstract types. ACM Transac-
tions on Computer Systems, 2(3):223–250, 1984.

19. W. Weihl. Specification and Implementation of Atomic Data Types. PhD thesis,
MIT, 1984.

20. W. Weihl. Local atomicity properties: modular concurrency control for ab-
stract data types. ACM Transactions on Programming Languages and Systems,
11(2):249–282, 1989.

Distributed Transactional Memory for

Metric-Space Networks�

Maurice Herlihy and Ye Sun

Brown University, Providence, RI 02912-1910 USA

Abstract. Transactional Memory is a concurrent programming API in
which concurrent threads synchronize via transactions (instead of locks).
Although this model has mostly been studied in the context of multipro-
cessors, it has attractive features for distributed systems as well. In this
paper, we consider the problem of implementing transactional memory in
a network of nodes where communication costs form a metric. The heart
of our design is a new cache-coherence protocol, called the Ballistic pro-
tocol, for tracking and moving up-to-date copies of cached objects. For
constant-doubling metrics, a broad class encompassing both Euclidean
spaces and growth-restricted networks, this protocol has stretch logarith-
mic in the diameter of the network.

1 Introduction

Transactional Memory is a concurrent programming API in which concurrent
threads synchronize via transactions (instead of locks). A transaction is an ex-
plicitly delimited sequence of steps to be executed atomically by a single thread.
A transaction can either commit (take effect), or abort (have no effect). If a
transaction aborts, it is typically retried until it commits. Support for the trans-
actional memory model on multiprocessors has recently been the focus of sev-
eral research efforts, both in hardware [13, 16, 32, 36, 38, 42] and in software
[14, 15, 17, 23, 31, 33, 41].

In this paper, we propose new techniques to support the transactional mem-
ory API in a distributed system consisting of a network of nodes that commu-
nicate by message-passing with their neighbors. As discussed below, the trans-
actional memory API differs in significant ways from prior approaches to dis-
tributed transaction systems, presenting both a different high-level model of
computation and a different set of low-level implementation issues. The proto-
cols and algorithms needed to support distributed transactional memory require
properties similar to those provided by prior proposals in such areas as cache
placement, mobile objects or users, and distributed hash tables. Nevertheless, we
will see that prior proposals typically fall short in some aspect or another, rais-
ing the question whether these (often quite general) proposals can be adapted
to meet the (specific) requirements of this application.
� Supported by NSF grant 0410042 and by grants from Intel Corporation and Sun

Microsystems

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 324–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Transactional Memory for Metric-Space Networks 325

Transactions have long been used to provide fault-tolerance in databases and
distributed systems. In these systems, data objects are typically immobile, but
computations move from node to node, usually via remote procedure call (RPC).
To access an object, a transaction makes an RPC to the object’s home node,
which in turn makes tentative updates or returns results. Synchronization is
provided by two-phase locking, typically augmented by some form of deadlock
detection (perhaps just timeouts). Finally, a two-phase commit protocol ensures
that the transaction’s tentative changes either take effect at all nodes or are all
discarded. Examples of such systems include Argus [28] and Jini [44].

In distributed transactional memory, by contrast, transactions are immobile
(running at a single node) but objects move from node to node. Transaction
synchronization is optimistic: a transaction commits only if, at the time it fin-
ishes, no other transaction has executed a conflicting access. In recent software
transactional memory proposals, a contention manager module is responsible
for avoiding deadlock and livelock. A number of contention manager algorithms
have been proposed and empirically evaluated [12, 17, 22]. One advantage of this
approach is that there is no need for a distributed commit protocol: a transaction
that finishes without being interrupted by a synchronization conflict can simply
commit.

These two transactional models make different trade-offs. One moves con-
trol flow, the other moves objects. One requires deadlock detection and commit
protocols, and one does not. The distributed transactional memory model has
several attractive features. Experience with this programming model on multi-
processors [17] suggests that transactional memory is easier to use than locking-
based synchronization, particularly when fine-grained synchronization is desired.
Moving objects to clients makes it easier to exploit locality. In the RPC model,
if an object is a “hot spot”, that object’s home is likely to become a bottleneck,
since it must mediate all access to that object. Moreover, if an object is shared
by a group of clients who are close to one another, but far from the object’s
home, then clients must incur high communication costs with the home.

Naturally, there are distributed applications for which the transactional mem-
ory model is not appropriate. For example, some applications may prefer to store
objects at dedicated repositories instead of having them migrate among clients.
In summary, it would be difficult to claim that either model dominates the other.
The RPC model, however, has been thoroughly explored, while the distributed
transactional memory model is novel.

To illustrate some of the implementation issues, we start with a (somewhat
simplified) description of hardware transactional memory. In a typical multi-
processor, processors do not access memory directly. Instead, when a processor
issues a read or write, that location is loaded into a processor-local cache. A
native cache-coherence mechanism ensures that cache entries remain consistent
(for example, writing to a cached location automatically locates and invalidates
other cached copies of that location). Simplifying somewhat, when a transaction
reads or writes a memory location, that cache entry is flagged as transactional.
Transactional writes are accumulated in the cache (or write buffer), and are not

326 M. Herlihy and Y. Sun

written back to memory while the transaction is active. If another thread in-
validates a transactional entry, that transaction is aborted and restarted. If a
transaction finishes without having had any of its entries invalidated, then the
transaction commits by marking its transactional entries as valid or as dirty, and
allowing the dirty entries to be written back to memory in the usual way.

In some sense, modern multiprocessors are like miniature distributed sys-
tems: processors, caches, and memories communicate by message-passing, and
communication latencies outstrip processing time. Nevertheless, there is one key
distinction: multiprocessor transactional memory designs extend built-in cache
coherence protocols already supported by modern architectures. Distributed sys-
tems (that is, nodes linked by communication networks) typically do not come
with such built-in protocols, so distributed transactional memory requires build-
ing something roughly equivalent.

The heart of a distributed transactional memory implementation is a dis-
tributed cache-coherence protocol. When a transaction attempts to access an
object, the cache-coherence protocol must locate the current cached copy of the
object, move it to the requesting node’s cache, invalidating the old copy. (For
brevity, we ignore shared, read-only access for now.)

We consider the cache-coherence problem in a network in which the cost of
sending a message depends on how far it goes. More precisely, the communication
costs between nodes form a metric. A cache coherence protocol for such a network
should be location-aware: if a node in Boston is seeking an object in New York
City, it should not send messages to Australia.

In this paper, we propose the Ballistic distributed cache-coherence protocol,
a novel location-aware protocol for metric space networks. The protocol is hi-
erarchical: nodes are organized as clusters at different levels. One node in each
cluster is chosen to act as leader for this cluster when communicating with clus-
ters at different levels. Roughly speaking, a higher-level leader points to a leader
at the next lower level if the higher-level node thinks the lower-level node “knows
more” about the object’s current location.

The protocol name is inspired by its communication patterns: when a trans-
action requests for an object, the request rises in the hierarchy, probing leaders
at increasing levels until the request encounters a downward link. When the re-
quest finds such a link, it descends, following a chain of links down to the cached
copy of the object.

We evaluate the performance of this protocol by its stretch: each time a
node issues a request for a cached copy of an object, we take the ratio of the
protocol’s communication cost for that request to the optimal communication
cost for that request. We analyze the protocol in the context of constant-doubling
metrics, a broad and commonly studied class of metrics that encompasses low-
dimensional Euclidean spaces and growth-restricted networks [1, 2, 9, 11, 21, 24,
25, 26, 34, 37, 40, 43]. (This assumption is required for performance analysis, not
for correctness.) For constant-doubling metrics, our protocol provides amortized
O(log Diam) stretch for non-overlapping requests to locate and move a cached
copy from one node to another. The protocol allows only bounded overtaking:

Distributed Transactional Memory for Metric-Space Networks 327

when a transaction requests an object, the Ballistic protocol locates an up-to-
date copy of the object in finite time. Concurrent requests are synchronized by
path reversal : when two concurrent requests meet at an intermediate node, the
second request to arrive is “diverted” behind the first.

Our cache-coherence protocol is scalable in the number of cached objects it
can track, in the sense that it avoids overloading nodes with excessive traffic
or state information. Scalability is achieved by overlaying multiple hierarchies
on the network and distributing the tracking information for different objects
across different hierarchies in such a way that as the number of objects increases,
individual nodes’ state sizes increase by a much smaller factor.

The contribution of this paper is to propose the first protocol to support
distributed transactional memory, and more broadly, to call the attention of the
community to a rich source of new problems.

2 Related Work

Many others have considered the problem of accessing shared objects in net-
works. Most related work focuses on the copy placement problem, sometimes
called file allocation (for multiple copies) or file migration (for single copy). These
proposals cannot directly support transactional memory because they provide
no ability to combine multiple accesses to multiple objects into a single atomic
unit. Some of these proposals [5, 8] compare the online cost (metric distance)
of accessing and moving copies against an adversary who can predict all future
requests. Others [4, 30] focus on minimizing edge congestion. These proposals
cannot be used as a basis for a transactional cache-coherence protocol because
they do not permit concurrent write requests.

The Arrow protocol [39] was originally developed for distributed mutual ex-
clusion, but was later adapted as a distributed directory protocol [10, 18, 19].
Like the protocol proposed here, it relies on path reversal to synchronize con-
current requests. The Arrow protocol is not well-suited for our purposes because
it runs on a fixed spanning tree, so its performance depends on the stretch of
the embedded tree. The Ballistic protocol, by contrast, “embeds itself” in the
network in a way that provides the desired stretch.

The Ballistic cache-coherence protocol is based on hierarchical clustering, a
notion that appears in a variety of object tracking systems, at least as early
as Awerbuch and Peleg’s mobile users [7], as well as various location-aware dis-
tributed hash tables (DHTs) [2, 20, 21, 37, 40]. Krauthgamer and Lee [25] use
clustering to locate nearest neighbors. Talwar [43] uses clustering for compact
routing, distance labels, and related problems. Other applications include lo-
cation services [1, 26], animal tracking [9], and congestion control ([11]). Of
particular interest, the routing application ([43]) implies that the hierarchical
construct we use for cache coherence can be obtained for free if it has already
been constructed for routing. Despite superficial similarities, these hierarchical
constructions differ from ours (and from one another) in substantial technical
ways.

328 M. Herlihy and Y. Sun

To avoid creating directory bottlenecks, we use random hash ids to assign
objects to directory hierarchies. Similar ideas appear as early as Li and Hudak
[27]. Recently, location-aware DHTs (for example, [2, 20, 21, 37, 40]) assign ob-
jects to directory hierarchies based on object id as well. These hierarchies are
randomized. By contrast, Ballistic provides a deterministic hierarchy structure
instead of a randomized one. A deterministic node structure provides practi-
cal benefits. The cost of initializing a hierarchical node structure is fairly high.
Randomized constructions guarantee good behavior in the expected case, while
deterministic structures yield good behavior every time.

While DHTs are also location aware, they typically manage immutable im-
movable objects. DHTs provide an effective way to locate an object, but it is
far from clear how they can be adapted to track mobile copies efficiently. Prior
DHT work considers the communication cost of publishing an object to be a
fixed, one-time cost, which is not usually counted toward object lookup cost.
Moving an object, however, effectively requires republishing it, so care is needed
both to synchronize concurrent requests and to make republishing itself efficient.

There have been many proposals for distributed shared memory systems (sur-
veyed in [35]),which also present a programmingmodel inwhichnodes in a network
appear to share memory. None of these proposals, however, support transactions.

3 System Overview

Each node has a transactional memory proxy module that provides interfaces
both to the application and to proxies at other nodes. An application informs
the proxy when it starts a transaction. Before reading or writing a shared object,
it asks the proxy to open the object. The proxy checks whether the object is
in the local cache, and if not, calls the Ballistic protocol to fetch it. The proxy
then returns a copy of the object to the transaction. When the transaction asks
to commit, the proxy checks whether any object opened by the transaction has
been invalidated (see below). If not, the proxy makes the transaction’s tentative
changes to the object permanent, and otherwise discards them.

If another transaction asks for an object, the proxy checks whether it is in
use by an active local transaction. If not, it sends the object to the requester and
invalidates its own copy. If so, the proxy can either surrender the object, aborting
the local transaction, or it can postpone a response for a fixed duration, giving
the local transaction a chance to commit. The decision when to surrender the
object and when to postpone the request is a policy decision. Nodes must use
a globally-consistent contention management policy that avoids both livelock
and deadlock. A number of such policies have been proposed in the literature
[12, 17, 22]. Perhaps the simplest is to assign each transaction a timestamp when
it starts, and to require that younger transactions yield to older transactions.
A transaction that restarts keeps its timestamp, and eventually it will be the
oldest active transaction and thus able to run uninterrupted to completion.

The most important missing piece is the mechanism by which a node locates
the current copy of an object. As noted, we track objects using the Ballistic cache

Distributed Transactional Memory for Metric-Space Networks 329

coherence protocol, a hierarchical directory scheme that uses path reversal to
coordinate concurrent requests. This protocol is a distributed queuing protocol:
when a process joins the queue, the protocol delivers a message to that process’s
predecessor in the queue. The predecessor responds by sending the object (when
it is ready to do so) back to the successor, invalidating its own copy.

For read sharing, the request is delivered to the last node in the queue, but
the requester does not join the queue. The last node sends a read-only copy of
the object to the requester and remembers the requester’s identity. Later, when
that node surrenders the object, it tells the reader to invalidate its copy. An
alternative implementation (not discussed here) can let read requests join the
queue as well.

4 Hierarchical Clustering

In this section we describe how to impose a hierarchical structure (called the
directory or directory hierarchy) on the network for later use by the cache co-
herence protocol.

Consider a metric space of diameter Diam containing n physical nodes, where
d(x, y) is the distance between nodes x and y. This distance determines the cost
of sending a message from x to y and vice-versa. Scale the metric so that 1 is
the smallest distance between any two nodes. Define N(x, r) to be the radius-r
neighborhood of x in the metric space.

We select nodes in the directory hierarchy using any distributed maximal
independent set algorithm (for example, [3, 6, 29]). We construct a sequence of
connectivity graphs as follows:

– At level 0, all physical nodes are in the connectivity graph. They are also
called the level 0 or leaf nodes. Nodes x and y are connected if and only if
d(x, y) < 21. Leader0 is a maximal independent set of this graph.

– At level �, only nodes from leader�−1 join the connectivity graph. These
nodes are referred to as level � nodes. Nodes x and y are connected in this
graph if and only if d(x, y) < 2�+1. Leader� is a maximal independent set of
this graph.

The construction ends at level L when the connectivity graph contains exactly
one node, which is called the root node. L ≤ �log2 Diam�+ 1 since the connec-
tivity graph at level �log2Diam� is a complete graph.

The (lookup) parent set of a level � node x is the set of level � + 1 nodes
within distance 10 · 2l+1 of x. In particular, the home parent of x is the parent
closest to x. By construction, home parent is at most distance 2�+1 away from
x. The move parent set of x is the subset of parents within distance 4 · 2l+1 of x.

A directory hierarchy is a layered node structure. Its vertex set includes the
level-0 through level-L nodes defined above. Its edge set is formed by drawing
edges between parent child pairs as defined above. Edges exist only between
neighboring level nodes. Figure 1 illustrates an example of such a directory

330 M. Herlihy and Y. Sun

Fig. 1. Illustration of a directory hierarchy

hierarchy. Notice that nodes above level 0 are logical nodes simulated by physical
nodes.

We use the following notation:

– home�(x) is the level-� home directory of x. home0(x) = x. home i(x) is the
home parent of homei−1(x).

– moveProbe�(x) is the move-parent set of home�−1(x). These nodes are probed
at level � during a move started by x.

– lookupProbe�(x) is the lookup-parent set of home�−1(x). These nodes are
probed at level � during a lookup started by x.

5 The Cache-Coherence Protocol

For now, we focus on the state needed to track a single cached object, postponing
the general case to Sect. 6. Each non-leaf node in the hierarchy has a link state:
it either points to a child, or it is null. If we view non-null links as directed edges
in the hierarchy, then they always point down. Intuitively, when the link points
down, the parent “thinks” the child knows where the object is.

Nodes process messages sequentially: a node can receive a message, change
state, and send a message in a single atomic step. We provide three operations.
When an object is first created, it is published so that other nodes can find it.
(As discussed briefly in the conclusions, an object may also be republished in
response to failures.) A node calls lookup to locate the up-to-date object copy
without moving it, thus obtaining a read-only copy. A node calls move to locate
and move the up-to-date object copy, thus obtaining a writable copy.

1. publish(): An object created at a leaf node p is published by setting each
homei(p).link = homei−1(p), leaving a single directed path from root to p,
going through each home directory in turn.
For example, Figure 1 shows an object published by leaf A. A’s home direc-
tories all point downwards. In every quiescent state of the protocol, there is
a unique directed path from the root to the leaf where the object resides,
although not necessarily through the leaf node’s home directories.

Distributed Transactional Memory for Metric-Space Networks 331

2. lookup(): A leaf q started a lookup request. It proceeds in two phases. In
the first up phase, the nodes in lookupProbe�(q) are probed at increasing
levels until a non-null downward link is found. At each level �, home�−1(q)
initiates a sequential probe to each node in lookupProbe�(q). The ordering
can be arbitrary except that the home parent of home�−1(q), which is also
home�(q), is probed last. If the probe finds no downward links at level �,
then it repeats the process at the next higher level.
If, instead, the probe discovers a downward link, then downward links are
followed to reach the leaf node that either holds the object or will hold the
object soon. When the object becomes available, a copy is sent directly to q.

3. move(): The operation also has two phases. In the up phase, the protocol
probes the nodes in moveProbe�(q) (not lookupProbe�(q)), probing home�(q)
last. Then home�(q).link is set to point to home�−1(q) before it repeats the
process at the next higher level. (Recall that probing the home parent’s link
and setting its link are done in a single atomic step.)
For the down phase, when the protocol finds a downward link at level �,
it redirects that link to home�−1(q) before descending to the child pointed
to by the old link. The protocol then follows the chain of downward links,
setting each one to null, until it arrives at a leaf node. This leaf node either
has the object, or is waiting for the object. When the object is available, it
is sent directly to q.

Figure 2 shows the protocol pseudocode for the up phase and down phase
of lookup and move operations. As mentioned, each node receives a message,
changes state, and sends a message in a single atomic step.

5.1 Cache Responsiveness

A cache-coherence protocol needs to be responsive so that an operation issued by
any node at any time is eventualy completed. In the Ballistic protocol, overtaking
can happen in satisfying concurrent writes: A node B may issue a write operation
at a later (wall clock) time than a node A, and yet B’s operation may be ordered
first if B is closer to the object. Nevertheless, we will show that such overtaking
can occur only during a bounded window in time. Therefore, a write operation
eventually completes. That a read operation eventually completes follows.

Two parameters are used in proving that a write operation completes. The
first parameter TE, the maximum enqueue delay, is the time it takes for a move
request to reach its predecessor. This number is network-specific but finite, since
a request never blocks in reaching its predecessor. The other parameter is TO, the
maximum time it takes for an object to travel from one requester to its successor,
also finite. TO includes the time it takes to invalidate existing read-only copies
before moving a writable copy. TO also includes the delay the contention manager
sets before responding to a conflicting successor request.

A node has at most one outstanding move request at any time. By invariant
analysis, the successor ordering established by the Ballistic protocol never forms
a cycle. These two jointly establish that a move request cannot be overtaken by
any move request generated more than n · TE later.

332 M. Herlihy and Y. Sun

// search (up) phase, d is requesting node’s home directory
void up(node* d, node* request) {

node* parent = null;

iterator iter = LookupParent(d); // home parent ordered last
[iterator iter = MoveParent(d);] // (move only,) a different set
for (int i=0; i<sizeof(iter); i++) {
parent = iter.next();

// --transfer control to next parent in probe set--
if (parent.link != null) { // found link

node* oldlink = parent.link; // remember link
[parent.link = d;] // (move only,) redirect link
// --transfer control to oldlink instead of going back to d--
down(oldlink, request); // start down phase
break;

}
// --transfer control back to d except if current parent is home parent--

}
// no links seen, in the middle of probing home parent now
// control already at home parent, will not go back to d
[parent.link = d;] // (move only,) add link to reverse path
up(parent, request); // probe at next level from home parent

}

// trace (down) phase, following links starting from d
void down(node* d, node* request) {

if (d is leaf) { // end of link chain, predecessor found
d.succ = request;

return;
}
node* oldlink = d.link; // remember link
[d.link = null;] // (move only,) link erased after taken
// --transfer control to oldlink--
down(oldlink, request); // move down

}

Fig. 2. Pseudocode for lookup and move operations, lines in “[]” are for moves only

Theorem 1 (Finite write response time). Every move request is satisfied
within time n · TE + n · TO from when it is generated.

5.2 Implementing Serializable Transactions

Recall from Sect. 3 that an object is opened before being read or written. Creat-
ing a new writable copy invalidates existing read-only copies and writable copies,
and creating a new read-only copy downgrades any existing writable copy to a
read-only copy. This provides one-copy consistency for each object.

Distributed Transactional Memory for Metric-Space Networks 333

A transaction accesses multiple objects using the Ballistic cache-coherence
protocol. Acceses to multiple objects appear to happen instantaneously. As dis-
cussed in Sect. 3, this is achieved by letting the local transactional memory proxy
watch for conflicting accesses.

5.3 Performance

The Ballistic cache coherence protocol works in any network, but our perfor-
mance analysis focuses on constant-doubling metrics. A metric is a constant-
doubling metric if there exists a constant dim , such that each radius-r neighbor-
hood can be covered by at most 2dim radius- r

2 neighborhoods. This focus is not
overly restrictive. Constant-doubling networks (and even stronger models such
as growth-restricted or Euclidean space networks) arise often in practice and are
common in the literature (for example, [1, 2, 9, 11, 21, 24, 25, 26, 34, 37, 40, 43]).

In the performance analysis, we consider only the case when move requests
do not overlap.

The protocol’s work is the communication cost of an operation. For publish,
we count the communication cost of adding links on the publishing leaf’s home
parent path. For move and lookup, we count the communication cost of finding
the leaf node that will eventually send back the up-to-date object copy.

The protocol’s distance for a move or lookup operation is the cost of commu-
nicating directly from the requesting node to its destination (which is the metric
distance between these two nodes).

The protocol’s stretch is the ratio of the work to the distance. The communi-
cation cost of replying to the requesting node can be ignored since the message
is sent directly via the underlying routing protocol.

Constant-doubling metrics have the following properties.

1. Bounded Link Property: The metric distance between a level-� child and
its level-(� + 1) parent is less than or equal to cb · 2�, for some constant cb.

2. Constant Expansion Property: Any node has no more than a constant
number of lookup parents and lookup children.

3. Lookup Property: For any two leaves p and q, let p� be any of p’s level-�
ancestors by following move parents only. If p� /∈ lookupProbe�(q), then the
metric distance beteween p and q is at least cl · 2� for some constant cl.

4. Move Property: If p� /∈ moveProbe�(q), then the metric distance between
p and q is at least cm · 2� for some constant cm.

Theorem 2. The publish operation has work O(Diam).

A lookup request that overlaps with one or more move requests is “chasing”
a moving object. We relax the above definition of distance for such a lookup
request to be the metric distance from the source of the lookup request to the
farthest object location during the interval of this lookup.

334 M. Herlihy and Y. Sun

Theorem 3. The stretch for a lookup operation is constant.

Informally, due to the lookup property of constant-doubling metrics, the
location of an object (indicated by downward links) is marked at well-known
places to direct lookup requests along a low-stretch path.

For move, we are interested in the amortized work and distance across a
sequence of object movements.

Theorem 4. If an object has moved a combined distance of d since its initial
publication, the amortized move stretch is O(min{log2 d, L}).

Informally, due to the move property of constant-doubling metrics, the fre-
quency of updating a level-� link is proportional to the cumulative distance
moved divided by 2�.

The stretch results hold when move requests do not overlap. Move requests
that concurrently probe overlapping parent sets may “miss” one another. The
protocol is still correct, because the requests will eventually meet, but perhaps at
a higher level. If this particular race condition can be avoided, then the stretch
results in this section still apply when there are overlapping move requests.

6 Support for Multiple Objects

In this section, we provide load-balanced support for multiple objects. Load-
balanced solutions are given for growth-restricted networks. Growth-restricted is
slightly more restrictive than constant doubling: there exists a constant which
bounds the ratio between the number of nodes in N(x, 2r) and the number of
nodes in N(x, r) for arbitrary node x and arbitrary radius r. The multiple object
solution works correctly for any metrics, but without provable load results. Load-
balancing in the more general metrics is hard due to the possible “non-smooth”
population change when moving between neighboring areas or when expanding
size of area under inspection. There is a load-balancing multiple object solution
for static objects in the more general constant-doubling metrics, which is beyond
the scope of this paper.

A physical node which stores information about an object is subject to two
kinds of load: it stores state, and it must respond to requests. Moreover, since
multiple logical nodes can be mapped to a single physical nodes, a physical node
may be subject to loads for multiple logical nodes. We now consider how to
balance these loads.

If multiple objects share a single directory, then physical nodes which sim-
ulate logical nodes higher in the common hierarchy will bear a greater load.
Instead, the load can be more evenly shared by letting different objects use
different directory structures mapped onto the physical nodes.

Each object chooses a directory to use based on a random hash id between
0 and n − 1, where n is the number of physical nodes, assumed to be a power
of 2 without loss of generality. In load analysis, we assume that each leaf node
(physical node) stores up to m objects and each leaf node generates up to r

Distributed Transactional Memory for Metric-Space Networks 335

requests. We also assume that applications generate a uniform load in the fol-
lowing sense: each request is for an object with a random id located at a random
node. Moreover, we assume these conditions continue to hold even after objects
have moved around.

Intuitively, nodes low in the hierarchy will have light loads, since they handle
requests originating from or ending in a small neighborhood and store links
for objects located in a small neighborhood. At higher levels, we “perturb” the
directory structure for each object to avoid overloading any particular node.

Here is how the multiple directories are built:

1. Find a base directory as in Sect. 4.
2. Using this directory as a skeleton, n overlapping replacement directories

are built. Each is isomorphic to the base directory. A level-� node in any
replacement directory is at most distance 2� away from the corresponding
level-� node in the base directory. By the triangle inequality, the cost of
a mapped level-� edge in the replacement directory is still bounded by a
constant factor of 2�.

We next describe how to construct a replacement directory for a given object
id by describing how to map a level-� node A in the base directory. Define
h(A, �) = !log2 |N(A, 2�)|". Then a subset of 2h(A,�) physical nodes are selected
(arbitrarily) from N(A, 2�). Each of these 2h(A,�) nodes is assigned a unique
h(A, �)-bit label and plays the role of A in the directory for any object whose id
has this label as a prefix. Obviously, each chosen node is responsible for 1

2h(A,�)

portion of object ids.

Theorem 5. Stretch results for the base directory carry over to the replacement
directory with a constant factor increase.

Theorem 6. In growth-restricted networks, each physical node x has O(log Diam)
child degree and parent degree in the multiple directory structure.

Theorem 7. In growth-restricted metrics, the expected non-null link storage
load at each physical node x is O(m · log Diam). This expectation is taken over
a uniform object id distribution.

Theorem 8. In growth-restricted metrics, the expected request handling load at
each physical node x is O(r · log Diam). This expectation is taken over a uniform
request distribution.

7 Discussion

Distributed transactional memory has fault-tolerance properties comparable to
distributed transactions under the RPC model. A complete discussion of fault-
tolerance is beyond the scope of this paper, but here is an overview of the
principal issues. A reliable protocol should be used to pass a cached object from
one node’s cache to another’s, to ensure that the sender invalidates its local copy
only if the receiver actually receives the object.

336 M. Herlihy and Y. Sun

Naturally, if the node holding an object crashes, that object will become
unavailable (just as in the RPC model). It is sensible to back up long-lived
objects on non-volatile storage so they will become available again when the
node recovers. The directory information used by the Ballistic protocol can be
treated as soft state, in the sense that it can be regenerated if it is lost. One
can detect that part of the directory has been lost if the root sends periodic
ping messages down the chain to the object’s current location. If a node holding
an object fails to receive a ping for too long, then it can republish the object,
routing around any failed nodes in the former path, in much the same way that
routing protocols rebuild broken paths.

We have assumed a static physical network. When nodes can enter or leave
the physical network, it may be necessary to rerun the maximal independent
set protocol to rebuild the hierarchy. Distributed maximal independent set al-
gorithms typically limit changes to the area around the affected nodes.

References

[1] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. Lls: a locality aware location
service for mobile ad hoc networks. In DIALM-POMC, pages 75–84, 2004.

[2] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. Land: stretch (1+ ε) locality-
aware networks for dhts. In Proceedings of the fifteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 550–559, 2004.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7:567–583, 1986.

[4] Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Westermann.
Caching in networks (extended abstract). In Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pages 430–439, 2000.

[5] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allo-
cation. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 164–173, 1993.

[6] Baruch Awerbuch, Lenore J. Cowen, and Mark A. Smith. Efficient asynchronous
distributed symmetry breaking. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 214–223, 1994.

[7] Baruch Awerbuch and David Peleg. Concurrent online tracking of mobile users.
In SIGCOMM ’91: Proceedings of the conference on Communications architecture
& protocols, pages 221–233, 1991.

[8] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed
data management (extended abstract). In STOC ’92: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 39–50. ACM Press,
1992.

[9] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based fault-local sta-
bilizing algorithm for tracking in sensor networks. In 8th International Conference
on Principles of Distributed Systems (OPODIS), 2004.

[10] M. J. Demmer and M. P. Herlihy. The arrow directory protocol. In 12th Interna-
tional Symposium on Distributed Computing, 1998.

[11] Matthias Grünewald, Friedhelm Meyer auf der Heide, Christian Schindelhauer,
and Klaus Volbert. Energy, congestion and dilation in radio networks. In Pro-
ceedings of the 14th ACM Symposium on Parallel Algorithms and Architectures,
10 - 13 August 2002.

Distributed Transactional Memory for Metric-Space Networks 337

[12] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In Proceedings of the tenty-fourth annual symposium on Prin-
ciples of distributed computing, 2005. To appear.

[13] Lance Hammond, Vicky Wong, Mike Chen, Ben Hertzberg, Brian D. Carlstrom,
John D. Davis, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. Transactional memory coherence and consistency. In Proceedings
of the 31st Annual International Symposium on Computer Architecture, June 2004.

[14] Tim Harris and Keir Fraser. Language support for lightweight transactions. In
Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 388–402, 2003.

[15] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Compos-
able memory transactions. In Principles and Practice of Parallel Programming,
2005. To appear.

[16] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDS), pages 522–529, May 2003.

[17] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of
the twenty-second annual symposium on Principles of distributed computing, pages
92–101. ACM Press, 2003.

[18] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Competitive con-
current distributed queuing. In Proceedings of the twentieth annual ACM sympo-
sium on Principles of distributed computing, pages 127–133, 2001.

[19] M.P. Herlihy and S. Tirthapura. Self-stabilizing distributed queueing. In Proceed-
ings of 15th International Symposium on Distributed Computing, October 2001.

[20] Kirsten Hildrum, Robert Krauthgamer, and John Kubiatowicz. Object location
in realistic networks. In Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 25–35, 2004.

[21] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed
object location in a dynamic network. In Proceedings of the Fourteenth ACM
Symposium on Parallel Algorithms and Architectures, pages 41–52, August 2002.

[22] W. N. Scherer III and M. L. Scott. Contention management in dynamic software
transactional memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, July 2004.

[23] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In Proceedings of the thirteenth annual ACM
symposium on Principles of distributed computing, pages 151–160, 1994.

[24] David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-
restricted metrics. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 741–750. ACM Press, 2002.

[25] Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for
proximity search. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 798–807. Society for Industrial and Ap-
plied Mathematics, 2004.

[26] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographic ad hoc routing. In Proceedings
of the 6th annual international conference on Mobile computing and networking,
pages 120–130. ACM Press, 2000.

[27] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Trans. Comput. Syst., 7(4):321–359, 1989.

338 M. Herlihy and Y. Sun

[28] Barbara Liskov. Distributed programming in argus. Commun. ACM, 31(3):300–
312, 1988.

[29] Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM J. Comput., 15(4):1036–1055, 1986.

[30] B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Exploiting
locality for data management in systems of limited bandwidth. In FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 284–293. IEEE Computer Society, 1997.

[31] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design tradeoffs in modern soft-
ware transactional memory systems. In 7th Workshop on Languages, Compilers,
and Run-time Support for Scalable Systems, October 2004.

[32] Jos F. Martnez and Josep Torrellas. Speculative synchronization: applying thread-
level speculation to explicitly parallel applications. In Proceedings of the 10th
international conference on architectural support for programming languages and
operating systems (ASPLOS-X), pages 18–29. ACM Press, 2002.

[33] Mark Moir. Practical implementations of non-blocking synchronization primitives.
In Proceedings of the sixteenth annual ACM symposium on Principles of distributed
computing, pages 219–228. ACM Press, 1997.

[34] E. Ng and H. Zhang. Predicting internet network distance with coordiantes-based
approaches. In Proceedings of IEEE Infocom, 2002.

[35] B Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algo-
rithms. Computer, 24(8):52–60, 1991.

[36] Jeffrey Oplinger and Monica S. Lam. Enhancing software reliability with specula-
tive threads. In Proceedings of the 10th international conference on architectural
support for programming languages and operating systems (ASPLOS-X), pages
184–196. ACM Press, 2002.

[37] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[38] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-
based programs. In Proceedings of the 10th international conference on archi-
tectural support for programming languages and operating systems (ASPLOS-X),
pages 5–17. ACM Press, 2002.

[39] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst., 7(1):61–77, 1989.

[40] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware 2001,
pages 329–350, 2001.

[41] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, pages
204–213. ACM Press, 1995.

[42] Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek. Multiple
reservations and the Oklahoma update. IEEE Parallel and Distributed Technology,
1(4):58–71, November 1993.

[43] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics.
In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 281–290, 2004.

[44] Jim Waldo and Ken Arnold, editors. The Jini Specifications. Jini Technology
Series. Pearson Education, 2000.

Concise Version Vectors in WinFS

Dahlia Malkhi1 and Doug Terry2

1 Microsoft Research Silicon Valley and
The Hebrew University of Jerusalem, Israel

2 Microsoft Research Silicon Valley

Abstract. Conflicts naturally arise in optimistically replicated systems.
The common way to detect update conflicts is via version vectors, whose
storage and communication overhead are number of replicas × number
of objects. These costs may be prohibitive for large systems.

This paper presents predecessor vectors with exceptions (PVEs), a
novel optimistic replication technique developed for Microsoft’s WinFS
system. The paper contains a systematic study of PVE’s performance
gains over traditional schemes. The results demonstrate a dramatic re-
duction of storage and communication overhead in normal scenarios,
during which communication disruptions are infrequent. Moreover, they
identify a cross-over threshold in communication failure-rate, beyond
which PVEs loses efficiency compared with traditional schemes.

1 Introduction

Consider an information system, such as an e-mail client, that is composed of
multiple data objects, holding folders, files and tags. Data may be replicated
in multiple sites. For example, a user’s mailbox may reside at the server, on
the user’s office and home workstations, and on a PDA. The system allows
concurrent, optimistic updates to its objects from distributed locations, without
communication or centralized control. So for example, the user might hop on the
plane with a copy of her mailbox on a laptop and edit various parts of it while
disconnected; she may introduce changes on a PDA, and so on. At some point,
when connecting between these components, she wishes to synchronize versions
across replicas, and be alerted to any conflicts generated.

This problem model arises naturally within the scope of Microsoft’s WinFS
project, whose aim is to provide peer-to-peer weakly consistent replicated stor-
age facilities. The problem model is fundamental in distributed systems, and
numerous replication methods exist to tackle it. However, the applications that
are aimed for by the WinFS team mandate taking scale more seriously than ever
before. In particular, e-mail repositories, log files, and databases can easily reach
millions of objects. Hence, communicating even a single bit per object (e.g., a
‘dirty’ bit) in order to be able synchronize replicas might simply be too costly.

In this paper, we present a precise description and correctness proof of
the replica reconciliation and conflict detection mechanism inside Microsoft’s
WinFS. We name the scheme predecessor vectors with exceptions (PVE). We

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 339–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 D. Malkhi and D. Terry

produce a systematic study of the performance gains of PVE, and provide a com-
parison with traditional optimistic replication scheme. The results demonstrate
a substantial reduction in storage and communication overhead associated with
replica synchronization, in most normal cases. In conditions that allow (most)
synchronizations to complete without communication breaks, a pair of replicas
needs only communicate a constant number of bits per replica in order to detect
discrepancies in replicas’ states. Moreover, they need to maintain only a sin-
gle counter per object in order to determine versions ordering and alert to any
conflict. Our study also demonstrates the “cut-off” point in the communication
fault-rate, beyond which the PVE technique becomes less attractive than the
alternatives.

In order to understand the efficiency leap offered by the PVE scheme, let
us review the most well known alternative. Version Vectors (VVs) [1] are tra-
ditionally used in optimistic replication systems in order to find which replica
has more updated object states, as well as to detect conflicting versions. Per
object version vectors were pioneered in Locus [1], and subsequently employed
in various optimistic replication systems, e.g., [2,4,3].

The version vector for a data object is an array of size R, where R is the
number of replicas in the system. Each replica has a pair 〈replica, counter〉
in the vector, indicating the latest counter value introduced on the object by
the replica. For example, suppose that we have three replicas, A, B, and C.
An object is initialized with VV (〈A, 0〉, 〈B, 0〉, 〈C, 0〉). An update to the ob-
ject initiated at replica A increments A’s component, and so generates version
(〈A, 1〉, 〈B, 0〉, 〈C, 0〉). Later, B may obtain the new version from A and store
it, and produce another update on the object. The newer object state receives
version (〈A, 1〉, 〈B, 1〉, 〈C, 0〉). And so on.

A version vector V dominates another vector W if every component of V is
no less than W ; V strictly dominates W , if it dominates W and one component
is greater. Due to optimism, there may be objects on different replicas whose
version vectors are incomparable by the domination relation; this corresponds
to conflicting versions, indicating that simultaneous updates were introduced to
the object at different replicas. For example, continuing the scenario above, sup-
pose that all replicas have version (〈A, 1〉, 〈B, 1〉, 〈C, 0〉) in store. Now proceed to
have diverging updates on the object simultaneously by A and C. These gener-
ate VVs (〈A, 2〉, 〈B, 1〉, 〈C, 0〉) and (〈A, 1〉, 〈B, 1〉, 〈C, 1〉), respectively, which are
conflicting as neither one dominates the other.

Consider a system with N objects replicated across R replicas. Further, con-
sider the synchronization between two replicas whose views of the object space
differs in q objects. The VV scheme is designed for synchronizing replicas object
by object, and incurs the following costs.

1. Store a version-vector per object, incurring a storage overhead of Õ(N ×R)
bits space; 1

1 For simplicity of notation, the notation Õ(·) indicates the same complexity order as
O(·) up to logarithmic factors of N and R, which may be required to code any single
value in our settings.

Concise Version Vectors in WinFS 341

2. Communicate information that allows the two replicas to determine which
objects one should send the other, and to detect conflicts. A naive imple-
mentation sends all N version vectors, incurring a communication overhead
of Õ(N × R). If the replicas store logs of recent updates, and maintain ad-
ditional information about the position known to other replicas in the log,
they may bring the cost down close to Õ(q×R), which is the lowest possible
communication overhead with the VV scheme.

These cost measures and their analysis are made more precise later in the
paper. Note that even for moderate numbers of replicas R, storing N ×R values
is a substantial burden when N is large, and moreover, communicating between
Õ(q ×R) to Õ(N ×R) overhead bits may be prohibitive.

In WinFS, the goal is to quickly synchronize heavy-volume servers, each carry-
ing largemagnitudes of objects. In situationswhere communicationdistuptions are
not the norm, the innovative PVE mechanism in WinFS that reconciles replica dis-
crepancies bringsdowncosts a considerableamount. It needs Õ(R) informationbits
to determine replica’s differences, i.e., the equivalence of communicating one ver-
sion vector. In addition, per object meta-information storage and communication
is in most cases constant (one counter). Table 1 in Section 5 contains a summary of
these complexities. In the remainder of this paper, we describe the foundations of
the PVE replication protocol, and compare is against VVs.

The contributions of this paper are as follows. First, we give a precise and de-
tailed formulation of the PVE replica reconciliation protocol employed in WinFS.
We note that the full design and the architecture of the WinFS system is the
result of a large team effort, and is beyond the scope of this paper. Second, we
develop a performance model capturing the cost measures of interest to us, and
quantify the performance gains of the PVE scheme, as compared with known
methods. Third, we evaluate these measures via simulation under complex sys-
tem conditions with increasing communication failures rates. This evaluation
reveals a cut-off point that characterizes the benefit area of the PVE scheme
over traditional version vectors.

2 Problem Statement

In this section, we begin with the precise specification of our problem. Later
sections provide a rigorous treatment of the solution.

The system consists of a collection of data objects, potentially numerous.
Each object might be quite small, e.g., a mail entry or even a status word.
Objects are replicated on a set of hosts. Each host may locally introduce updates
to every object, without any concurrency control. These updates create a partial
ordering of object versions, where updates that sequentially follow one another
are causally related, but non-related updates exist and are conflicting.

Our focus is on distributed systems in which updates overwrite previous ver-
sions. The alternative would be database or journal systems, in which the history
of updates on an object is stored and applied at every replica. State-based storage

342 D. Malkhi and D. Terry

saves storage and computation, and is suitable for the kind of information systems
that WinFS aims for, e.g., a user’s Outlook files, where updates may be numer-
ous. In state-based systems only the most recent version of any object needs to be
sent. Nevertheless, it is worth noting that the method presented in this paper can
workwith (minor) appropriatemodifications for log-based replication systems.For
brevity, we omit this from discussion in this paper.

The goal is to provide a lightweight replica-reconciliation and conflict de-
tection mechanism. The mechanism should provide two communicating replicas
with the means to detect precedence ordering on object versions that they hold,
and detect any conflicts in them. With this mechanism, they can bring each
other up-to-date or report conflicts.

More precisely, we now describe objects, versions, and causality. An object
is identified uniquely by its name. Objects are instantiated with versions, where
an object instance has the following fields:
name: the unique identifier.
version: a pair 〈replica id, counter〉.
predecessors: a set of preceding versions (including the current version).
data: application-specific opaque information.

Because versions uniquely determine objects’ instances, we simply refer to
any particular instance by its version. There may be multiple versions with the
same object name. We say that these are versions of the same object.

There is a partial, causal ordering among different versions of the same object.
When a replica A creates an instance of an object o with version v, the set W of
versions that are previously known by replica A on o causally precedes version
v. In notation, W ≺ v. For every version w ∈ W, we likewise say that w causally
precedes v; in notation, w ≺ v. Causality is transitive.

Since the system permits concurrent updates, the causality relation is only a
partial order, i.e., multiple versions might follow any single version. When two
versions do not follow one another, they are conflicting. I.e., if w �≺ v ∧ v �≺ w,
then v and w are conflicting.

It is desirable to detect and resolve conflicts, either automatically (when ap-
plication specific conflict resolution code is available) or by alerting the user and
solving manually. In either case, a resolution of conflicting versions is a version
that causally follows both. For example, here is a conflict and its resolution:
v0 ≺ v ≺ w ; v �≺ u ; u �≺ v ; v0 ≺ u ≺ w .

New versions override previous ones, so we are generally only interested in
the most recent version available; versions that causally precede it are obsolete
and carry no valuable information. This simple rule is complicated by the fact
that multiple conflicting versions may exist, and we are interested in all of them
until they can be resolved.

2.1 Performance Measures

This paper is concerned with mechanisms that facilitate synchronization of dif-
ferent replicas. The challenge is to bring the storage and communication costs

Concise Version Vectors in WinFS 343

associated with replica reconciliation (significantly) down. More precisely, we
focus on two performance measures:

Storage is the total number of overhead bits stored in order to preserve version
ordering.

Communication is (i) the total number of bits communicated between two
replicas in order to determine which updates are missing by one that the other
has, and (ii) any overhead data that is transferred along with objects’ states in
order to determine precedence/conflicts.

3 Overview of the PVE Method

This section provides an informal overview of the PVE scheme. Later sections
provide a more formal description and a proof of correctness.

The PVE scheme works as follows. An object version is a pair 〈replica,
counter〉. Instead of using separate counters for distinct objects, the scheme
uses one per-replica counter to enumerate the versions that the replica gener-
ates on all objects (the counter is across all objects). For example, suppose that
replica A first introduces an update to object o1, and second to o2. The ver-
sions corresponding to o1 and to o2 will be 〈A, 1〉, 〈A, 2〉, respectively. Note that
versions are not full vectors, as in the traditional VV scheme described in the
Introduction.

Each object has, in addition to its version, a predecessor set that captures the
versions that causally precede the current one. Predecessor sets are captured in
PVE using version vectors, though we will show momentarily that in most cases,
PVE can replace these vectors with a null pointer. In order to distinguish these
vectors from the traditional version vectors, we call them predecessor vectors.
A predecessor vector (PV) contains one version, the latest, per replica. When
a replica A generates a new object version, the PV associated with the new
version contains the latest versions known by A on the object from each other
replica. For example, suppose we have three replicas, A, B, and C. A new object
starts with a zeroed predecessor vector (〈A, 0〉, 〈B, 0〉, 〈C, 0〉). Consider the two
versions generated by replica A above on o1 and o2, 〈A, 1〉 and 〈A, 2〉, respec-
tively. When A creates these versions, no other versions are known on either o1

or o2, hence the PV of 〈A, 1〉 is (〈A, 1〉, 〈B, 0〉, 〈C, 0〉), and the PV of 〈A, 2〉 is
(〈A, 2〉, 〈B, 0〉, 〈C, 0〉). A (causally) subsequent update to o1 by replica B creates
version 〈B, 1〉, with predecessors (〈A, 1〉, 〈B, 1〉, 〈C, 0〉). This PV represents the
latest versions known by B on object o1.

The formal definition capturing the per-replica scheme with predecessor vec-
tors scheme are given below.

Definition 1 (Per-Replica Counter).
Let X be a replica. The versions generated by replica X on objects are the

ordered sequence {〈X, i〉}i=1,2,....

344 D. Malkhi and D. Terry

Definition 2 (Predecessor Vectors).
Let X1, ..., XR be the set of replicas. A predecessors vector (PV) is an R-array

of tuples of the form (〈X1, i1〉, ..., 〈XR, iR〉).
A predecessors vector (〈X1, i1〉, ..., 〈XR, iR〉) dominates another vector

(〈X1, j1〉, . . . , 〈XR, jR〉) if ik ≥ jk for k = 1..R, and it strictly dominates if
i� > j� for some 1 ≤ � ≤ R.

By a natural overload of notation, we say that a predecessor vector (〈X1, i1〉,
. . . , 〈XR, iR〉) dominates a version 〈Xk, jk〉 if ik ≥ jk; strict domination follows
accordingly with strong inequality.

The reader should first note that despite the aggregation of multiple-object
versions using one counter, the predecessor version vectors can express prece-
dence relations between versions of the same object. For example, in the scenario
above, version 〈A, 1〉 precedes 〈B, 1〉, and is indeed dominated by the PV associ-
ated with version 〈B, 1〉. Moreover, PVs do not create false conflicts. The reason
is that incomparable predecessor vectors conflict only if they belong to the same
object. So for example, suppose that continuing the scenario above, replica A in-
troduces version 〈A, 3〉 to object o1 with predecessors (〈A, 3〉, 〈B, 1〉, 〈C, 0〉); and
simultaneously, replica C introduces version 〈C, 1〉 on o2, with the corresponding
PV (〈A, 2〉, 〈B, 0〉, 〈C, 1〉). These versions would be conflicting had they belonged
to the same object, but are fine since they are never compared against each other.

Hence, comparing different versions for the same object is now possible as
in the traditional use of version vectors. Namely, the same domination rela-
tion among predecessor vectors and versions, though these may contain replica-
counters pertaining to different objects, can determine precedence and conflicts
of updates to the same object.

Reducing the Overhead. So far we have not introduced any space savings over
traditional VVs, though. The surprising benefit of aggregate PVs is as follows.
Let X.knowledge denote the component-wise maximum of the PVs of all the
versions held by a replica X . The performance savings stems from the following
fact: In order to represent ordering relations of all the versions X stores for all
objects, it suffices for replica X to store only X.knowledge. Knowledge aggre-
gates the predecessor vectors of all objects, and is used instead of per-object PV.
More specifically, knowledge replaces PVs as follows.

– No PV is stored per object at all. The only vector stored by a replica is its
aggregate knowledge vector.

– In order for A to determine which versions in its store are more up-to-
date than B’s store, B simply needs to send B.knowledge to A. Using the
difference between A.knowledge and B.knowledge, A can determine which
versions it should send B.

– Then, having determined the q relevant newer versions, A sends these ver-
sions with (only) a single version counter each, plus to send (once) A’s
knowledge vector.

The reader should be concerned at this point that information is lost concern-
ing the ability to tell version precedence. We now demonstrate why this is not

Concise Version Vectors in WinFS 345

the case. When two replicas, A and B, wish to compare their latest versions of
the same object o, say 〈r, nr〉 and 〈s, ns〉 respectively, they simply compare these
against A.knowledge, B.knowledge. If A.knowledge dominates 〈s, ns〉, then the
version currently held by A for object o, namely 〈r, nr〉, strictly succeeds 〈s, ns〉.
And vice versa. If none of these knowledge vectors dominates the other version,
then these are conflicting versions.

Going back to the scenario built above, replica A has in store the following:
o1.version = 〈A, 3〉; o2.version = 〈A, 2〉; knowledge = (〈A, 3〉, 〈B, 1〉, 〈C, 0〉).
Replica C stores the following: o1.version = 〈B, 1〉; o2.version = 〈C, 1〉;
knowledge = (〈A, 2〉, 〈B, 1〉, 〈C, 1〉). When comparing their versions for object
o1, A and C will find that A’s version is more recent, and when comparing their
versions of object o2, they will find C’s version to be the recent one.

The result is that storage overhead in WinFS is Õ(N +R), instead of Õ(N ×
R). More dramatically, the communication overhead associated with synchro-
nization is reduced. The communication overhead of sending knowledge is Õ(R),
and the total communication overhead associated with synchronizing replicas is
Õ(q + R).

Dealing with Disrupted Synchronization. Synchronization among two replicas
may fail to complete due to network disruption. One way of coping with this is
to abort incomplete synchronization procedures; then no further complication
to the above scheme is needed.

However, in reality, due to large volumes that may need to be synchronized,
aborting a partially-completed synchronization may not be desirable (and in fact,
may create increasingly larger and larger synchronization demands, that might
become less and less likely to complete). The aggregate knowledge method above
introduces a new source of difficulty due to incomplete synchronizations. Let us
demonstrate this problem. When replica A receives an object’s new version from
another replica B, that object does not carry a specific PV. Suppose that before
synchronizing with B, the highest version A stores from B on any object is
〈B, 10〉. If B sends 〈B, 14〉, then clearly versions 〈B, 11〉, 〈B, 12〉, and 〈B, 13〉 are
missing in A’s knowledge, hence there are “holes”.

It is tempting to try to solve this by a policy that mandates sending all
versions from one replica in an order that respects their generation order. In
the above scenario, send 〈B, 11〉 before 〈B, 14〉, unless that version has been
obsoleted by another version. Then, when 〈B, 14〉 is received, A would know
that it must already reflect 〈B, 11〉, 〈B, 12〉, and 〈B, 13〉.

Unfortunately, this strategy is impossible to enforce, as illustrated in the
following scenario. Object o1 receives an update from replica A, with version
〈A, 1〉, and PV (〈A, 1〉, 〈B, 0〉, 〈C, 0〉). Meanwhile, object o2 is updated by B, its
version is 〈B, 1〉, with PV (〈A, 0〉, 〈B, 1〉, 〈C, 0〉). Replica A and B synchronize
and exchange their latest updates. Subsequently, object o1 is updated at replica
B with version 〈B, 2〉 and PV (〈A, 1〉, 〈B, 2〉, 〈C, 0〉); and object o2 is updated
at replica A with version 〈A, 2〉 and PV (〈A, 2〉, 〈B, 1〉, 〈C, 0〉). The orderings
between all versions is as follows:

346 D. Malkhi and D. Terry

o1 : [〈A, 1〉; PV = (〈A, 1〉, 〈B, 0〉, 〈C, 0〉)] ≺ [〈B, 2〉; PV = (〈A, 1〉, 〈B, 2〉, 〈C, 0〉)]
o2 : [〈B, 1〉; PV = (〈A, 0〉, 〈B, 1〉, 〈C, 0〉)] ≺ [〈A, 2〉; PV = (〈A, 2〉, 〈B, 1〉, 〈C, 0〉)]

Then Replica B synchronizes with replica A, sending it all of its recent updates.
Replica A now stores: o1.version = 〈B, 2〉; o2.version = 〈A, 2〉; knowledge =
(〈A, 2〉, 〈B, 2〉, 〈C, 0〉).

Now suppose that replica C, which has been detached for a while, comes
back and synchronizes with replica A. During this synchronization, only the
most recent versions of objects o1 and o2 are sent to replica C. In this scenario,
there is simply no way to prevent holes: Replica C may first obtain o1’s recent
version, i.e., 〈B, 2〉, and then have its communication cut. Then version 〈B, 1〉
(which happens to belong to o2) is missing. A similar situation occurs if replica
C obtains o2’s recent version first and is then cut.

It is worth noting that although seemingly we don’t care about the missing,
obsoleted versions, we cannot ignore them. If the subsequent versions are lost
from the system for some reason, inconsistency may result. For example, in the
first case above, the missing o2 version 〈B, 1〉 is subsumed by a later version
〈A, 2〉. However, if replica C simply includes 〈B, 2〉 in its knowledge vector, and
replica A crashes such that 〈A, 2〉 is forever lost from the system, C might never
obtain the latest state of o2 from replica B.

The price paid in the PVE scheme for its substantial storage and commu-
nication reduction is the need to maintain information about such exceptions.
In the above scenario, replica C will need to store exception information as fol-
lows. First, C.knowledge will contain (〈A, 0〉, 〈B, 2〉, 〈C, 0〉) with an exception
〈eB, 1〉. 2

Definition 3 (PVs with Exceptions).
A predecessors vector with exceptions (PVE) is an R-array of tuples of the

form (〈X1, i1〉〈eX1, ij1〉〈eX1, ijk1
〉, ..., 〈XR, iR〉〈eXR, ijR〉〈eX1, ijkR

〉).
A version 〈Xk, jk〉 is dominated by a predecessors vector X with exceptions

as above if ik ≥ jk, and jk is not among the exceptions in the k’th position in
X.

A predecessors vector with exceptions X dominates another vector Y if the
respective PVs without the exceptions dominate, and no exception included X is
dominated by Y .

Second, we require that a replica maintain explicit PV for every new version
it obtains via a partial synchronization. These explicit PVs may be omitted only
if the replica’s knowledge dominates them. Continuing the scenario above, we
demonstrate a subtle chain of events which necessitates this additional overhead.

2 An alternative form of exception is to store (〈A, 0〉, 〈B, 0〉, 〈C, 0〉) with a ‘positive
exception’ 〈eB, 2〉. The two alternatives result in different storage load under different
scenarios, positive exceptions being preferable under long synchronization gaps. For
simplicity, we use negative exceptions in the description here, although the method
employed in WinFS uses positive exceptions.

Concise Version Vectors in WinFS 347

Consider the information stored at replica C after partial synchronization:
o1.version = 〈B, 2〉; o2.version = ⊥; knowledge = (〈A, 0〉, 〈B, 2〉〈eB, 1〉, 〈C, 0〉).
Suppose that A synchronizes with C and sends it update 〈A, 1〉 on o1. This
update clearly does not follow 〈B, 2〉 (the current version of o1 held by C),
but according to C’s knowledge, neither is it succeeded by it – a conflict! The
problem, of course, is that C’s knowledge no longer dominates version 〈A, 1〉.

Only at the end of the synchronization procedure, the knowledge of the send-
ing replica is merged with the knowledge of the receiving replica. At that point,
knowledge at the receiving replica will clearly dominate all of the versions it
received during synchronization, and their PV may be omitted. But if synchro-
nization is cut in the middle, some of these PVs must be kept, until such time
when the replica’s knowledge again dominates them.

In our performance analysis and comparison with other methods, we take
into account this cost and measure its effect. Note that, it is incurred only
due to communication disruptions that prevent synchronization procedures from
completing. Our simulations vary the number of such disruptions from small to
aggressively high.

4 Causality-Based Replica Reconciliation

In this section, we begin to provide the formal treatment of the PVE replica
reconciliation mechanism. Our approach builds the description in two steps.
First, we give a generic set-oriented method for replica reconciliation, and define
the properties it requires. Second, in the next section, we instantiate the method
with the PVE concise predecessor vectors scheme.

The key enabler of replica synchronization is a mechanism for represent-
ing sets of versions, through which precedence ordering can be captured. To
this end, replicas store the following information concerning causality. First,
replica r maintains information about the entire set of versions it knows of, rep-
resented in r.knowledge. Second, each version v stored at replica r contains in
v.predecessors a representation of the entire set of causally preceding versions.
More specifically, we require the maintenance of a set r.knowledge per replica r,
and v.predecessors per version v, as follows.

Definition 4 (The Knowledge Invariant). For every replica r, and version
v, we require r to maintain a set r.knowledge, such that if v ∈ r.knowledge then
replica r stores version v or a version w such that v ≺ w.

Definition 5 (The Predecessors Invariant). For every object instances v and
w, we require r to maintain a set w.predecessors such that v ∈ w.predecessors if
and only if v ≺ w.

Given the above two requirements, it should be possible to determine if a
version is included in a replica’s storage; and if one version precedes another or
they conflict.

348 D. Malkhi and D. Terry

4.1 A Synchronization Framework

We now give a two-way asymmetric, conflict detection framework that uses
knowledge and predecessors. The protocol is composed of a requestor that con-
tacts a server, and obtains all the versions in the server’s knowledge. These
versions are integrated into the requestor’s storage, and raise conflict alarms
where needed.

The synchronization protocol is a one-way protocol between a requesting host
and a serving host. It makes use of the conflict causality representation as follows:

1. Requestor r sends server s its knowledge set r.knowledge.
2. Server s responds with the following:

(a) For every object o it stores, for which o.version �∈ r.knowledge, it sends o

3. For every version o received by from s, requestor r does the following:
(a) For every object w in store, such that w.name == o.name:

if o ∈ w.predecessors then ignore o and stop;
else if w.version ∈ o.predecessors then delete w;
else alert conflict.

(b) Insert o.version into r.knowledge.
(c) Integrate o.predecessors into r.knowledge.
(d) store o

Fig. 1. A generic framework for using causality information

However, for our purposes, representing the full knowledge and predecessors
sets is too costly. The challenge is to represent causality in a space-efficient
manner, suitable for very large object sets, and moderate-size replica sets, while
maintaining the invariants. The detailed solution follows in the next section.

4.2 Concise Version Vectors

The key to our novel conflict-detection technique is to transform the
predecessors sets into different sets that can be represented more efficiently.

We first require the following technical definition:

Definition 6 (Extrinsic). Let o be some object, o.predecessors its predeces-
sor set. Let S be a set of versions. We denote by S |o.name the reduction of
S to versions pertaining to object o.name only. S is called extrinsic to o if
S |o.name== o.predecessors.

The surprising storage saving is derived in PVE from the following realiza-
tion. For any object o, we can use an extrinsic set to o in place of predecessors
throughout the protocol. In particular, when a replica’s knowledge set is extrin-
sic to a predecessors set, it may be used in its place; the main storage savings is
derived from using an empty set to denote (by convention) the replica’s knowl-
edge set, and avoid repeated storage of it. The following rule is the root of the
PVE storage and communication savings:

Concise Version Vectors in WinFS 349

Property 1. At any point in the protocol, any predecessors set may be replaced
with an extrinsic set. By convention, an empty predecessors set indicates the
replica’s knowledge set.

We are now ready to introduce the PVE novel conflict detection scheme,
which considerably reduces the size of representations of predecessor versions in
normal cases.
Versions and Predecessor Vectors. The scheme uses the per-replica counter
defined in Definition 1, that enumerates updates generated by the replica on all
objects. Hence, a replica r maintains a local counter c. When replica r generates
a version on an object o, it increments the local counter and creates version
〈r, c〉 on object o. Predecessors are represented using the PVEs as defined in
Definition 3.
Knowledge. A replica r maintains in r.knowledge a PVE representing all the ver-
sions it knows of. Inserting a new version 〈s, ns〉 into r.knowledge is done by up-
dating the highest version seen by s to 〈s, ns〉, and possibly inserting exceptions if
there are holes between ns and the previous highest version from s.
Object Predecessors. As already mentioned, an empty (⊥) predecessors set
is used whenever r.knowledge is extrinsic to an object’s predecessors. In all
other cases, predecessor contains a PVE, describing the set of causally preceding
versions on the object.
Generating a New Version. When a replica r generates a new update on an
object o, the new version 〈r, c〉 is inserted into r.knowledge right away. Then,
if o.predecessor is ⊥, nothing needs to be done to it. Implicitly, this means
that the versions dominated by r.knowledge causally precede the new version. If
o.predecessors is not empty, then the new version is inserted to o.predecessors
without exceptions. Implicitly this means that the set of versions that were
dominated by the previous o.predecessors causally precede the new update.
Merging Knowledge. During synchronization, the knowledge vector of a
sender s is merged into the knowledge vector of the receiver r. The goal of
the merging is to produce a vector that represents a union of all the versions in-
cluded in r.knowledge and s.knowledge, and replace r.knowledge with it. For ex-
ample, merging s.knowledge = (〈A, 3〉, 〈B, 5〉〈eB, 4〉, 〈C, 6〉) into r.knowledge =
(〈A, 7〉〈eA, 6〉, 〈B, 3〉〈eB, 2〉, 〈C, 1〉) yields (〈A, 7〉〈eA, 6〉, 〈B, 5〉〈eB, 4〉, 〈C, 6〉).
Synchronization. Space saving using empty predecessors requires caution in
maintaining the extrinsic nature of predecessor sets throughout the synchroniza-
tion protocol.

First, suppose that a requestor r receives from a server s a version v with
an extrinsic v.predecessors set. It is incorrect to merge v.predecessors into the
r.knowledge set right away, since v.predecessors may contain versions of objects
different from v that r does not have. Hence, only v itself can be inserted into
r.knowledge.

Second, consider the state of r.knowledge at the end of its synchronization
with s. Every version v sent by s has been inserted into r.knowledge. However,
there may be some versions, e.g., w ≺ v, which r.knowledge does not contain.
s does not explicitly send w, because it is included in v.predecessors. But since

350 D. Malkhi and D. Terry

1. Requestor r sends server s its knowledge set r.knowledge.
2. Server s responds with the following:

(a) It sends s.knowledge.
(b) For every object o it stores, for which o.version �∈ r.knowledge, it sends o. If

s.knowledge is not extrinsic to o.predecessors, s sends o.predecessors (other-
wise, leave o.predecessors empty).

3. For every version o received from s, requestor r does the following:
(a) For every object w in store, such that w.name == o.name:

if o.version ∈ w.predecessors or w.predecessors == ⊥ and o.version ∈
r.knowledge then ignore o and stop;
else if w.version ∈ o.predecessors or o.predecessors == ⊥ and w.version ∈
s.knowledge then delete w;
else alert conflict.

(b) store o
(c) If o.predecessors == ⊥, then unless r.knowledge is extrinsic to

s.knowledge set o.predecessors = s.knowledge.
(d) For every object w in store, such that w.name == o.name (these

must be conflicting versions), if w.predecessors = ⊥ then set
w.predecessors = r.knowledge.

(e) Insert o.version into r.knowledge.
4. Merge s.knowledge into r.knowledge.
5. (Lazily) go through versions v such that v.predecessors �= ⊥, and if

r.knowledge is extrinsic to v.predecessors then set v.predecessors = ⊥.

Fig. 2. Using extrinsic predecessors; modifications from the generic framework indi-
cated in boldface

predecessor sets are not merged into r.knowledge, it may be left not containing
w. To address this, at the end of an uninterrupted synchronization with s, the
requestor r merges s.knowledge into r.knowledge.

Third, should synchronization ever be disrupted in the middle, a requestor r
may be left with r.knowledge lacking some versions. This happens if a version v
was incorporated into r.knowledge, but some preceding version w ≺ v has not
been merged in.

As a consequence, in a future synchronization request, say with s′, r may
(inefficiently) receive w from s′. Hence, r checks if it can discard w by test-
ing whether w is contained in v.predecessors (and if yes, r also inserts w into
r.knowledge for efficiency). Figure 2 below describes the full PVE synchroniza-
tion protocol.

4.3 Properties

The following properties are easily derived from the two invariants given in
Definition 4 and Definition 5. In the full paper, we provide proof that the pro-
tocol above maintains these invariants.

Concise Version Vectors in WinFS 351

Safety: Every conflicting version received by a requestor is detected.
Non-triviality: Only true conflicts are alerted.
Liveness: at the end of a complete execution of a synchronization procedure, for

all objects the requestor r stores versions that are identical, or that causally
follow, the versions stored by server s .

5 Performance

Storage overhead associated with precedence and conflict detection comprises of
two components. The per replica knowledge vector contains aggregate informa-
tion about all known versions at the replica. In typical, faultless scenarios, the PVE
scheme requires Õ(R) space per replica for the knowledge representation. By com-
parison, the VV scheme has no aggregate information on a replica’s knowledge.

Additional storage overhead stems from precedence vectors. In our scheme,
in faultless scenarios there is one version counter per object, incurring a space
of Õ(N). By comparison, in faultless scenarios, the VV scheme keeps Õ(R×N)
storage, i.e., one version vector per object.

The fault-free (lower-bound) storage overhead for PVE and VV are summa-
rized in Table 1.

When failures occur, the overhead of VV remains unchanged, but the PVE
scheme may gradually suffer increasing storage overheads. There are two sources
of additional complexity. The first is the need to keep exceptions in the knowledge,
the second is the explicit version vectors (and their corresponding exceptions) kept
for versions which the replica’s knowledge does not dominate. In theory, neither of
these components has any strict upper bound. These formal upper bounds are also
summarize in Table 1 below.Belowwe provide simulation results that demonstrate
storage growth in the PVE scheme relative to failure rates.

The communication overhead associated with synchronization also has two
parts. First, a sender and a receiver need to determine which objects have ver-
sions yet unknown to the receiver. In the PVE scheme, this is done by conveying
the receiver’s knowledge vector to the sender. The faultless overhead here is
Õ(R); the upper bound is again theoretically unbounded.

Denote from now on the number of object versions that the sender determines
it has to send to the receiver by q. The second component of the communication
overhead is the extra precedence information associated with these q objects. In
faultless runs of the PVE scheme, this information consists of one counter (the
version counter) per object. Hence, the overhead is Õ(q). In case of faults, as
before the knowledge vector might contain an unbounded number of exceptions,
and additionally, some objects may have explicit version vectors (and their ex-
ceptions) associated with them. Hence, there is no formal upper bound on the
synchronization overhead. Here again, our simulation studies relate this com-
plexity with the fault rate.

As for the VV scheme, the only way to convey knowledge of the latest versions
held by a replica is by explicitly listing all of them, which requires Õ(N×R) bits.
Therefore, in realistic deployments of VV, the server may keep a log of version

352 D. Malkhi and D. Terry

0

20

40

60

80

100

0 20 40 60 80 100
percent of disrupted synchronizations

100 object system

overhead
PVE storage overhead

�

�

�
�

�
� � � � �

� � �
� � �

� � � � �

�
PVE comm overhead

+

+

+ + + + + + + + + + +
+ + + + + +

+
+

+
VV

��

�

0

20

40

60

80

100

0 20 40 60 80 100
percent of disrupted synchronizations

1000 object system

overheadoverhead
PVE storage overhead

� � � � � � �
�

� � �
� � �

�

�

�
�

�
�

�

�
PVE comm overhead

+ + + + + + +
+

+ + +
+ + +

+
+

+
+

+
+

+

+
VV

��

�

Fig. 3. Per-object storage and communication overheads with varying communication
failure frequency, with N = 100 objects (top) N = 1000 objects (bottom)

vectors of all the objects that received updates since the last synchronization
with the requestor, and sends only the VVs associated with these objects. The
complexity will be between Õ(q ×R) and Õ(N ×R).

In face of communication faults, replicas using the PVEmethod might accumu-
late over time both knowledge exceptions, and versions that require explicit pre-
decessors. There is no simple formula that describes how frequently are exceptions
accrued, as this depends on a variety of parameters and exact causal ordering.

In order to evaluate the effect of communication disruptions on storage in
our scheme, we conducted several simple simulations. We ran R = 50 replicas,
generating version updates to objects at random. The number of objects varied
between N = 100 and N = 1000. Every 100 total updates, a synchronization
round was carried out in a round-robin manner: Replica 1 served updates to 2,
replica 2 served 3, and so on, up to replica R sending updates back to 1. This was
repeated 100 times. A failure-probability variable pfail controlled the chances of

Concise Version Vectors in WinFS 353

Table 1. Lower and Upper Bounds Comparison of PVE with the version-vector scheme

Version vectors PVE

storage l.b. Õ(N × R) Õ(N + R)

storage u.b Õ(N × R) unbounded

comm l.b. Õ(q × R) Õ(q + R)

comm u.b. Õ(N × R) unbounded

a communication disruption within every pairwise synchronization. We measured
the resulting average communication and storage overhead. These are depicted in
Figure 3 for three cases, 100, 1000 and 10000 objects. We normalize the overhead
to per-object overhead. For reference, the per object storage overhead in standard
VVs is exactly R = 50. The best achievable communication overhead with VVs
is also R = 50, and is depicted for reference.

The figure clearly indicates a tradeoff in the PVE scheme. When communica-
tion disruptions are reasonably low, PVE storage and communication overhead is
substantially reduced compared with the VV scheme, even for a relatively small
number of objects. As failure rate increases, the number of exceptions in aggre-
gate vector rises, and the total storage used for knowledge and for predecessor sets
increases. The point at which the per-object amortized overhead passes that of a
single VV depends on the number of objects, and for quite moderate size systems
(1K objects) the cut-off point is beyond 90 percent communication disruption rate.

Acknowledgements

The protocol described in this paper was designed by the the Microsoft WinFS
product team, including Doug Terry. We especially acknowledge Irena Hudis
and Lev Novik for pushing the idea of concise version vectors. Harry Li, Yuan
Yu, and Leslie Lamport helped with the formal specification of the replication
protocol and the proof of its correctness.

References

1. D. S. Parker (Jr.), G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,
J. M. Chow, S. Kiser D. Edwards, and C. Kline. Detection of mutual inconsistency
in distributed systems. IEEE Transactions on Software Engineering, 9(3):240–247,
May 1983.

2. T. W. Page (Jr.), R. G.. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software – Practice and Experience, 11(1), December 1997.

3. R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication. ACM Transactions on Computer Systems, 10(4):360–391, 1992.

4. D. H. Ratner. Roam: A Scalable Replication System for Mobile and Distributed
Computing. PhD thesis, 1998. UCLA Technical report UCLA-CSD-970044.

Adaptive Software Transactional Memory�

Virendra J. Marathe, William N. Scherer III, and Michael L. Scott

Department of Computer Science,
University of Rochester,

Rochester, NY 14627-0226
{vmarathe, scherer, scott}@cs.rochester.edu

Abstract. Software Transactional Memory (STM) is a generic synchronization
construct that enables automatic conversion of correct sequential objects into cor-
rect nonblocking concurrent objects. Recent STM systems, though significantly
more practical than their predecessors, display inconsistent performance: differ-
ing design decisions cause different systems to perform best in different circum-
stances, often by dramatic margins. In this paper we consider four dimensions of
the STM design space: (i) when concurrent objects are acquired by transactions
for modification; (ii) how they are acquired; (iii) what they look like when not
acquired; and (iv) the non-blocking semantics for transactions (lock-freedom vs.
obstruction-freedom). In this 4-dimensional space we highlight the locations of
two leading STM systems: the DSTM of Herlihy et al. and the OSTM of Fraser
and Harris. Drawing motivation from the performance of a series of application
benchmarks, we then present a new Adaptive STM (ASTM) system that adjusts
to the offered workload, allowing it to match the performance of the best known
existing system on every tested workload.

1 Introduction

Traditional lock-based concurrent systems are prone to several important problems in-
cluding deadlock, priority inversion, convoying, and lack of fault tolerance. Coarse
grain locks are not scalable, and algorithms based on fine grain locks are notoriously
difficult to write. Ad-hoc nonblocking implementations of concurrent objects avoid the
semantic problems of locks and can match or exceed the performance of fine grain
locking, but are at least as difficult to write.

Ideally, one would like a mechanism that provides the convenience of coarse grain
locks without their semantic or performance problems. Toward this end, Herlihy [6]
was the first to suggest automatically converting sequential code to correct nonblocking
concurrent code. Inspired in part by hardware proposals for multiword atomic primi-
tives [9, 20], subsequent researchers developed more sophisticated constructions [1, 11,
15, 19, 21], but these suffer from various practical problems: Most impose time or space
overheads too high for real-world systems. Some require unrealistic atomic primitives.
Many support only static collections of objects and/or static transactions (in which the
set of objects to be accessed is known in advance).

� This work was supported in part by NSF grant numbers EIA-0080124, CCR-9988361, and
CCR-0204344, by DARPA/AFRL contract number F29601-00-K-0182, and by financial and
equipment grants from Sun Microsystems Laboratories.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 354–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adaptive Software Transactional Memory 355

Recent software transactional memory (STM) systems have overcome most of these
problems [2, 3, 5, 8]: They employ atomic primitives like compare-and-swap (CAS) and
load-linked/store-conditional (LL/SC), which are widely supported by current multipro-
cessors. They support dynamic collections of objects and dynamic transactions. Their
space overheads are modest. Finally, their performance overheads are low enough to
outperform coarse-grain locks in important cases, and to provide an attractive alterna-
tive to even well-tuned fine-grain locks when convenience, fault tolerance, and clean
semantics are considered. Those of us working in the field envision a day when STM
mechanisms are embedded in compilers for languages like Java and C#, providing non-
blocking implementations of synchronized methods “for free”.

STM systems may be either word- or object-based, depending on the granularity at
which data is modified. We focus on the latter, which appear particularly well suited to
object-oriented languages such as Java and C#. The two leading object-based STMs are
currently the DSTM of Herlihy et al. [8] and the OSTM of Fraser and Harris [2, 3]. In
prior work [13], we undertook a preliminary comparison of these systems. Among other
things, we found that DSTM outperforms OSTM by as much as an order of magnitude
on write-dominated workloads, while OSTM outperforms DSTM by as much as a factor
of two on read-dominated workloads. We attribute much of the difference to the choice
of acquire semantics (discussed in Sections 2 and 3.1) and to indirect object access in
DSTM, which imposes an extra cache miss on the typical read access.

In the current paper we discuss four principal design decisions for object-based
STM, encompassing (i) when concurrent objects are acquired by transactions for modi-
fication (eager vs. lazy acquire); (ii) how they are acquired (per-object or per-transaction
metadata); (iii) what they look like to readers when not currently acquired (level of indi-
rection); and (iv) the type of nonblocking semantics (lock-free vs. obstruction-free). Our
taxonomy enhances previous [3, 13] understandings of DSTM and OSTM performance
by locating these systems within the four-dimensional design space. By clarifying the
performance implications of design dimensions, the taxonomy has also allowed us to
develop an Adaptive STM system (ASTM) that automatically adapts its behavior to
the offered workload, allowing it to closely approximate the performance of the best
existing system in every scenario we have tested.

As background, Section 2 outlines a common usage pattern and API for object-
based STM. Section 3 presents our characterization of the STM design space and lo-
cates DSTM and OSTM within it. Section 4 describes three variants of ASTM, all of
which revisit design decisions at run time based on the offered workload. The first two
variants adapt along dimensions (ii) and (iii) above; the third adds simultaneous adap-
tation along dimension (i). Experimental results, presented in Section 5, show ASTM
to be competitive with the better of OSTM and DSTM across all execution scenarios,
making it highly attractive for general-purpose use.

2 STM Usage

STM transactions provide nonblocking concurrent access to one or more shared trans-
actional objects. Transactions typically proceed through the following four phases with
respect to any given object:

356 V.J. Marathe, W.N. Scherer III, and M.L. Scott

Open: makes the object available to the transaction. A transaction cannot access an
unopened object, but objects may be concurrently opened by multiple transactions.

Acquire: asserts the transaction’s ownership of the object. An object can be acquired
by only one transaction at a time. Any other transaction that subsequently attempts
to acquire the object must detect and resolve the conflict. The conflict resolution
method determines whether the STM is lock-free [2, 3] or obstruction-free [5, 8].
Acquire is not typically a separate operation. DSTM [8] implements it as part of the
open operation (eager acquire). OSTM [2, 3] implements it as part of the commit
operation (lazy acquire).

Commit: attempts to atomically effect all changes to acquired objects made by the
current transaction. Typically, this is done by using a compare-and-swap (CAS) or
store-conditional instruction to update the status field in a transaction descriptor
accessible to all competing transactions. (Without loss of generality we assume the
use of CAS in the remainder of this paper.) This CAS serves as the linearization
point [10] of the transaction.

Release: cleans up metadata associated with a transaction after it commits or aborts.
DSTM introduced the concept of early release [8], which allows a transaction to re-
linquish an accessed object prior to committing. Early release reduces the window
of contention in which multiple transactions are transiently dependent on a particu-
lar object, but it requires the programmer to exploit application-specific knowledge
to ensure that transactions are consistent and linearizable.

In our STM experiments (Section 5) we employ a uniform API for beginning, vali-
dating, committing, and aborting transactions; and for accessing objects in read-only or
read-write modes. Details can be found in the technical report version of this paper [14].

3 STM Design Space

In this section we discuss four key dimensions in the STM design space. We also present
a brief comparison of DSTM and OSTM in light of them.

3.1 Eager vs. Lazy Acquire

Transactions acquire objects when first accessed under eager acquire semantics, but at
commit time under lazy acquire semantics. Eager acquire allows a transaction to de-
tect contention earlier; this enables a doomed transaction to abort instead of performing
useless work. Eager acquire also makes it easier to ensure consistency: If every conflict
is resolved when first detected, then an unaborted transaction can be sure that its ob-
jects are mutually consistent as of the most recent open operation. With lazy acquire, by
contrast, the obvious approach requires a transaction to maintain a private list of opened
objects, and to re-verify the entire list when opening another. This approach imposes
total overhead quadratic in the number of opened objects. An alternative is to “sand-
box” transactional code to catch and recover from memory and arithmetic faults, and to
impose a limit on execution time as heuristic protection against infinite loops. In some
cases it may be safe to execute with inconsistent data, in which case no verification
overhead is required, but this requires application-specific knowledge.

Adaptive Software Transactional Memory 357

On the other side of the tradeoff, lazy acquire can greatly shrink the window wherein
transactions see each other as contenders and may be unnecessarily aborted or delayed.
In particular, with lazy acquire transaction A will never be aborted by transaction B if
B itself aborts before A attempts to commit.

3.2 Metadata Structure

A transactional object typically wraps an underlying data object; i.e. it contains a pointer
through which the data object can be referenced. Two different means of acquiring
such an object appear in current object-based STM systems: (i) an acquirer makes the
transactional object point to the transaction descriptor; and (ii) the acquirer makes the
transactional object point to an indirection object that contains pointers to the transac-
tion descriptor and to old and new versions of the data object. Option (i) allows con-
flicting transactions to see all of their competitors’ metadata, but makes object release
expensive: A released object cannot be left in an acquired state (where it points to a de-
scriptor), because subsequent accesses would have to search the descriptor’s write list
to find a current version. Additionally, maintaining descriptors for previous committed
and aborted transactions would constitute potential space overhead quadratic in the to-
tal number of objects. Instead, a cleanup operation must update transactional objects to
point directly to the current data object, at the cost of an extra CAS per object.

Cleanup can be omitted entirely with per-object metadata, at the cost of 2× over-
head in space. Alternatively, a lightweight cleanup phase might “zero out” pointers to
obsolete data objects, making them available for garbage collection. An attractive inter-
mediate option is to omit the cleanup phase, but allow readers to clean up obsolete data
objects incrementally.

3.3 Indirection in Object Referencing

As noted in the previous subsection, cleanup is essential with per-transaction metadata.
It is optional with per-object metadata. If performed, it provides readers with direct ac-
cess to the data objects of currently unacquired transactional objects. If not performed,
it will tend to induce an extra cache miss for every object opened in read-only mode.
The consequent slower reads have a significant impact on overall throughput for read-
dominated workloads [13].

3.4 Lock-Freedom vs. Obstruction-Freedom

Lock-free concurrent objects guarantee that at least one thread makes progress in a
bounded number of time steps. Obstruction-freedom [7] admits the possibility of live-
lock, but tends to lead to substantially simpler code: Lock-free STM systems typically
arrange to acquire objects in some global total order. They also perform recursive help-
ing, in which transaction A performs transaction B’s operations on its behalf when A
detects a conflict with B. Lock-freedom is most naturally implemented with lazy ac-
quire and sorting; without them a transaction might discover the need to open an object
that precedes some other already-opened object in the global total order.

358 V.J. Marathe, W.N. Scherer III, and M.L. Scott

Arbitration among competing transactions in an obstruction-free system is handled
“out of band” by a separate contention manager [8]. With the right manager, one can
obtain high probabilistic—or even strict—guarantees of progress [4, 17, 18].

3.5 Placing DSTM and OSTM

DSTM is obstruction-free, whereas OSTM is lock-free. Transactional objects in DSTM
point to an indirection locator object, which in turn contains pointers to the most recent
acquirer’s transaction descriptor and to old and new versions of the data. The acquirer’s
status determines which version of an object is valid: the new version is valid only when
the acquirer has COMMITTED. An unacquired transactional object in OSTM points di-
rectly to the appropriate version of the data. As we shall see, this difference in object
referencing results in poor performance for DSTM in read-dominated workloads.

OSTM is lock-free; hence, it uses lazy acquire. DSTM uses eager acquire. For write
access, DSTM acquires objects by swapping in a new locator; OSTM acquires objects
by making them point directly to the transaction descriptor. Neither DSTM nor OSTM
acquires objects accessed in read-only mode. Rather, both systems maintain a private
read list, which they revalidate on every open operation. OSTM must also validate its
write list on every open. These bookkeeping, sorting, validation, and cleanup overheads
cause OSTM to perform poorly in write-dominated workloads. DSTM has no cleanup
phase, but it arranges for readers, at open time, to “zero out” fields in locators that point
to obsolete data objects, thus making them available to the garbage collector.

In our STM design space, DSTM can be summarized as the point 〈eager acquire,
per-object metadata, indirect object referencing, obstruction-free〉; OSTM maps to 〈lazy
acquire, per-transaction metadata, direct object referencing, lock-free〉. In the following
section we describe our ASTM system. It adapts across dimensions (i) and (iii) of the
design space: 〈eager OR lazy acquire, per-object metadata, direct OR indirect object
referencing, obstruction-free〉.

4 Adaptive Software Transactional Memory

As noted in Section 3, and as demonstrated in preliminary experiments [13], the location
of an STM system in the design space plays a key role in its algorithmic complexity and
performance. The fact that different systems perform best in different circumstances
raises the question: Is it possible to adapt among multiple design points to obtain a
“best-of-both-worlds” STM system that performs well in all scenarios? We address this
question with our ASTM design.

4.1 Basic ASTM Design

In our experiments to date we have yet to identify a workload in which lock freedom
provides a performance advantage over obstruction freedom. Given the design flexibil-
ity and algorithmic simplifications enabled by obstruction freedom, together with the
success of practical contention managers in avoiding livelock problems [18], we have
adopted obstruction freedom for ASTM.

Adaptive Software Transactional Memory 359

Figure 1 depicts a Transactional Memory Object (TMObject, borrowed from DSTM
terminology) in ASTM. By default, TMObjects point directly to data objects. A reader
transaction does not acquire a TMObject. Instead, it maintains a private read list and
guarantees transaction consistency by re-validating the objects on that list at each new
open operation. Reads by a transaction are thus invisible to other transactions in the
system. A writer transaction, on the other hand, acquires a TMObject by installing an
indirection object. Borrowing again from DSTM, we refer to this indirection object as
a locator. Figure 1 illustrates the object acquisition process. ASTM locators, like those
of DSTM, contain three pointers: one for the acquirer’s transaction descriptor, and one
each for old and new versions of the data object. Before acquiring an object a writer
instantiates a new locator and a new version of the data object, which it copies from
the most recently committed version, found in the current TMObject. The writer then
acquires the target TMObject by using an atomic CAS to swing it to the new locator.

 Start

CAS
Copy

TM Object
Transaction

New Object

Old Object

New Locator

New Active
Transaction

New Version
Data Object −

Data Object

Fig. 1. Acquiring a previously unacquired object

A transaction may be in any of three states: ACTIVE, ABORTED, or COMMIT-
TED. With contention, a writer’s acquire attempt may fail, or it may find an ACTIVE
transaction’s locator in the TMObject. The contention manager is invoked to determine
which transaction should proceed. If the contention manager indicates that transaction
A should abort its competitor B, A attempts to do so by CASing B’s descriptor’s state
from ACTIVE to ABORTED. Otherwise the current transaction retries the acquire (pos-
sibly after waiting for some time to let its competitor complete execution). Once all
operations for a transaction are complete, it is committed upon successfully changing
the descriptor state from ACTIVE to COMMITTED. Immediately prior to committing, a
transaction must perform one final validation of objects on its private read list.

A TMObject that points directly to a data object is said to be in the unacquired state;
a TMObject that points to a locator is in the acquired state. If TMObjects were to re-
main in the acquired state after a writer completes, then subsequent reads would suffer
indirection overhead, as described in Section 3.3. To spread the overhead of cleanup
over time, and to avoid it entirely when the subsequent access is a write, we leave
the work to readers. A reader that finds an object in the acquired state with a transac-
tion that is either COMMITTED or ABORTED first converts the object to the unacquired

360 V.J. Marathe, W.N. Scherer III, and M.L. Scott

 Start

 Old Locator

CAS

Transaction

Committed
Transaction

Old Object

New Object

New Version

Old Version
TMObject

Data Object −

Data Object −

Fig. 2. Cleanup while opening an acquired object in read mode

state. Figure 2 illustrates this conversion. A reader detects contention when an acquired
TMObject’s locator refers to an ACTIVE transaction.

In workloads dominated by reads, ASTM objects will tend to stay in the unacquired
state, improving performance through lack of indirection. In workloads dominated by
writes, objects will tend to stay in the acquired state, avoiding the overhead of cleanup.
Additionally, ASTM uses eager acquire by default for objects opened in writable mode.
ASTM thus seems positioned to perform well for a variety of workloads. Our experi-
mental results (Section 5) confirm this expectation.

4.2 Workload Effect: Readers vs. Writers

As in DSTM, an ASTM transaction that opens N objects in write mode requires N +1
CASes: N to acquire the objects, and one to commit. However, subsequent readers may
perform up to N CASes to return the objects to an unacquired state. For write-dominated
workloads, these cleanup CASes are rare.

With a roughly uniform mix of reads and writes, transactions that include reads are
likely to perform several cleanup CASes. In this case, TMObjects could repeatedly flip
between acquired and unacquired states. Readers would become slower, due both to the
extra level of indirection in acquired TMObjects and to the extra CASes needed to revert
objects from the acquired to unacquired states. These CASes could also interfere with
writers, slowing them down as well. As the results in Section 5 will show, however,
overall system throughput for ASTM is always competitive with the better existing
STM. We attribute this primarily to the division of labor between reads and writes, and
to the use of eager acquire: Compared to DSTM, we avoid an extra level of indirection
for unacquired objects; compared to OSTM, the benefits of eager acquire significantly
outweigh the performance lost from flipping transactional object states.

In the best case, an individual transaction may find all its objects unacquired and
incur no indirection overhead. In the worst case, it may find all its objects acquired. In
addition to indirection overhead, it would then incur the costs of cleanup for objects
opened in read mode plus contention-induced slowdown for writes. In Section 5, we as-
sess benchmarks with transactions that fall in several points on the read-write spectrum.
We intend to continue exploring reader-writer tradeoffs as future research.

Adaptive Software Transactional Memory 361

4.3 Lazy ASTM

As described so far, ASTM uses eager acquire for objects opened in write mode. Sup-
pose that transaction A detects a conflict with B when attempting to open some object
of mutual interest. If A is doomed to fail, detecting the conflict early may allow it to
abort, and avoid unnecessary work. Similarly, if B is doomed to fail, A has the oppor-
tunity to kill it right away. As noted in Section 3, however, the tradeoff can go the other
way. We cannot in general be sure which transaction(s) might eventually succeed. In an
obstruction-free system like ASTM, the contention manager simply makes an informed
guess. If A waits for—or aborts itself in favor of—B, and B fails to commit, we have
incurred a significant cost. Similarly, if A aborts B but then itself fails to commit, the
work of B was wasted. Either way, this cost could have been avoided if A had delayed
its acquire. Even if A rightly kills B, it is possible that B would have detected an incon-
sistency and aborted itself soon after, suggesting that we may have wasted the overhead
of contention management.

To evaluate these tradeoffs, we have developed a lazy variant of ASTM that ac-
quires no objects until commit time. Like the default Eager ASTM, Lazy ASTM uses
contention management; both are obstruction-free. Lazy acquire reduces the window in
which transactions may see each other as competitors.

As in Eager ASTM, each TMObject in Lazy ASTM can be in the acquired or unac-
quired state. Readers perform cleanup as necessary. Writers, on the other hand, do not
eagerly acquire target TMObjects. Instead, a transaction maintains a private write list in
its descriptor, in addition to the read list. This write list is revalidated (as is the read list)
when opening each new transactional object. Essentially, a transaction remains invisible
to other transactions until commit time. As a result, several transactions may open the
same object in write mode at the same time. At commit time, a transaction attempts to
acquire the TMObjects in its write list by swapping in pointers (using CAS) to newly
created locators, each corresponding to the respective TMObject. The CAS will fail if
any other transaction has modified the object in-between. But where OSTM sorts ob-
jects and uses recursive helping to guarantee lock-freedom, ASTM traverses the write
list unsorted and relies on the contention manager to arbitrate conflicts.

4.4 Adapting to Acquire Semantics

Transactions that are doomed to fail tend to detect contention late in their lifetime with
lazy acquire, after doing a lot of wasted work. On the other hand, with eager acquire,
doomed transactions can interfere with other transactions, delaying or aborting them.
Unfortunately there is no way in general to distinguish between these scenarios. In fact,
our experiments so far seem to suggest that the tradeoffs largely “cancel out”: Though
eager acquire is usually a little faster, neither dramatically outperforms the other in most
cases. This suggests to us that eager acquire is usually preferable, in order to avoid the
bookkeeping complexity of maintaining write lists.

In one specific case, however, our experimental results (Section 5) reveal a signif-
icant advantage for lazy acquire: transactions that access a large number of objects in
read-only mode, that perform early release on many of these (thereby reducing the win-
dow of contention with other potentially conflicting transactions), and that access only

362 V.J. Marathe, W.N. Scherer III, and M.L. Scott

a few objects in write mode. A common example is a reader transaction that uses early
release incrementally while following a linked path through a data structure. Such a
transaction may suffer delays if it encounters objects eagerly acquired by writers. Lazy
acquire significantly reduces contention windows for this workload.

The next logical step in our quest for adaptivity in ASTM is to dynamically select
an object acquisition strategy. From our observations on the synergy between lazy ac-
quire and early release, we invoke a history-based heuristic for a transaction to adapt to
the better acquire strategy (eager or lazy) based on observations made by past transac-
tions. The final version of our system (“Full ASTM”) defaults to eager acquire, since
this provides the best performance in most cases (details in Section 5). We main-
tain rolling averages for percentages of writes and of early releases that follow at
least one write across transactions executed by a thread. So long as the percentage
of writes is below a threshold w and the percentage of early releases exceeds an-
other threshold r, subsequent transactions use lazy acquire; otherwise they use eager
acquire.

Our heuristic assumes that transactions will tend to behave similarly to those re-
cently completed. It also reflects the quadratic cost of incremental validation: Even a
modest number of writes will result in overhead significant enough to overcome the
benefits from reduced contention windows in lazy acquire / early release. In our exper-
iments, we have set the early release threshold r at 50% and the write access threshold
w at 25%. Limited experimentation with other values suggests that results are largely
insensitive to the exact percentage used.

As in Eager ASTM, readers clean up transactional objects if necessary, and writers
use indirection objects (DSTM-style locators). Full ASTM remains obstruction-free; it
requires contention management.

5 Experimental Results

In this section we provide a detailed empirical analysis of the main aspects of the STM
system design space addressed in this paper: acquire semantics, acquire methodology,
object referencing style, and progress guarantees. We present experimental results for a
variety of concurrent data structures to assess the extent to which ASTM successfully
adapts to the offered workload. We use DSTM and OSTM as a baseline against which
to compare our results.

Experiments were conducted on a 16-processor SunFire 6800, a cache-coherent
multiprocessor with 1.2GHz UltraSPARC III processors. The testing environment was
Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a JSR166 update from Doug
Lea [12]. We measured throughput over a period of 10 seconds for each benchmark,
varying the number of worker threads from 1 to 48. Results were averaged over a set of
six test runs. In all experiments, we use the Polka contention manager [18] for DSTM
and for all three variants of ASTM (Eager, Lazy, Full); Scherer and Scott report this
manager to be both fast and stable. We perform incremental revalidation in all sys-
tems for all benchmarks, rechecking the consistency of previously opened objects when
opening anything new.

Adaptive Software Transactional Memory 363

5.1 Write-Dominated Workloads

In DSTM and Eager ASTM, objects opened in write mode are immediately acquired,
and the transaction is free to forget the original transactional objects. Validation, more-
over, is trivial: If the transaction descriptor is still ACTIVE, all objects opened in write
mode are consistent. Because they acquire objects lazily, OSTM and Lazy ASTM must
maintain a write list in addition to the read list, and must revalidate objects on both lists
incrementally. ASTM defaults to eager acquire mode, but when it switches to lazy ac-
quire mode, it incurs the same write list maintenance and validation overhead as OSTM
and Lazy ASTM.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

50

of Threads

KT
x

/ s
ec

DSTM
OSTM
eagerASTM
lazyASTM
ASTM

Fig. 3. IntSet performance results

In write-dominated workloads, OSTM and Lazy ASTM suffer significantly from the
bookkeeping and incremental validation overhead for maintaining write lists for trans-
actions. DSTM and Eager ASTM, however, do not incur these overheads. Our strategy
of having ASTM acquire objects eagerly by default enables ASTM to remain in ea-
ger acquire mode for write-dominated transactions. To assess the impact of this design
choice, Figure 3 shows STM performance results on the IntSet benchmark. IntSet main-
tains a sorted list of integers ranging between 0. . . 255 (the range has been restricted in
all benchmarks to deliberately increase contention). Concurrent threads continuously
insert and delete nodes in the list. A transaction opens all visited nodes in write mode.
DSTM, Eager ASTM and ASTM all perform comparably: an order of magnitude bet-
ter than OSTM and Lazy ASTM. Experiments with modified versions of the code (not
shown here) reveal that most of the overhead in OSTM and Lazy ASTM comes from
extra bookkeeping; the remainder comes from incremental validation and sorting (in
OSTM). Notice that Lazy ASTM livelocks (drops from low throughput to essentially
none) when we move from one to two processors.

Figure 4 shows performance results for the LFUCache benchmark [17]. This pro-
gram uses a priority queue heap to simulate cache replacement in an HTTP web proxy

364 V.J. Marathe, W.N. Scherer III, and M.L. Scott

via the least-frequently used (LFU) algorithm [16]. The LFU replacement policy as-
sumes that the most frequently accessed pages are most likely to be accessed next. A
transaction typically reads a page, increments its frequency count, and rearranges the
heap (if necessary).

0 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

500

of Threads

KT
x

/ s
ec

DSTM
OSTM
eagerASTM
lazyASTM
ASTM

Fig. 4. LFUCache performance results

To approximate the demand on a real web cache, we pick pages randomly from a
Zipf distribution. As a result, a small set of pages is accessed most frequently; transac-
tions are essentially write-dominated (for page i, the cumulative probability of selection
is pc(i) ∝

∑
0<j≤i 1/j2). DSTM, Eager ASTM and ASTM perform comparably. Lazy

ASTM suffers from bookkeeping overhead; OSTM additionally incurs overhead from
sorting and recursive helping.

5.2 Read-Dominated Workloads

As discussed in Section 3, the style in which unacquired objects are referenced has a
considerable impact on read performance. DSTM uses indirection objects (locators),
while OSTM arranges for unacquired transactional objects to point to data objects di-
rectly. All three ASTM variants adapt their object referencing style to the underlying
workload. We illustrate this facet of ASTM’s performance relative to OSTM and DSTM
using two read-dominated benchmarks: IntSetRelease (another sorted list of integers),
and RBTree (a concurrent red-black tree).

IntSetRelease is a highly concurrent IntSet variant in which transactions open ob-
jects in read mode and release them, early, while moving down the list. Once found,
the nodes to be updated are upgraded to write mode. DSTM performs the worst due to
indirection overhead. ASTM and Eager ASTM perform the best, with Lazy ASTM and
OSTM incurring minor overheads from bookkeeping (both) and sorting (OSTM). Even
though most objects are typically released early, writes always occur at the very end of
a transaction. For this reason, ASTM tends to remain in eager acquire mode.

Adaptive Software Transactional Memory 365

0 4 8 12 16 20 24 28 32 36 40 44 48
0

40

80

120

160

200

of Threads

KT
x

/ s
ec

DSTM
OSTM
eagerASTM
lazyASTM
ASTM

Fig. 5. IntSetRelease performance results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

500

600

of Threads

KT
x

/ s
ec

DSTM
OSTM
eagerASTM
lazyASTM
ASTM

Fig. 6. RBTree performance results

RBTree is a concurrent red-black (balanced) search tree. As in the linked-list bench-
marks, threads repeatedly perform randomized insertions and deletions. A transaction
typically opens objects in read mode as it searches down the tree for the right place to
perform an insertion or deletion. Subsequently, it upgrades to write mode only those
nodes that are needed to rebalance the tree. Performance results appear in Figure 6.
All the ASTMs and OSTM perform comparably well. Since no early releases are in-
volved in transactions, ASTM remains in eager acquire mode. Since most nodes are
never upgraded to write mode, DSTM yields the lowest throughput.

5.3 Conflict Window

Although lazy object acquisition leads to bookkeeping and validation overheads, it
helps reduce the window of contention between transactions. As per our discussion in

366 V.J. Marathe, W.N. Scherer III, and M.L. Scott

0 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

50

60

70

80

90

of Threads

KT
x

/ s
ec

DSTM
OSTM
eagerASTM
lazyASTM
ASTM

Fig. 7. RandomGraphList performance results

Section 4.3, early release can lead to a situation in which lazy acquire might be expected
to significantly outperform eager acquire. We see this situation in the RandomGraphList
benchmark.

RandomGraphList represents a random undirected graph as a sorted linked list in
which each node points to a separate sorted neighbor list. To increase contention, we
restrict the graph size to 256 nodes, numbered 0. . . 255. Transactions randomly insert
or delete a node. For insertions, transactions additionally select a small randomized
neighbor set for the target node. Transactions traverse the adjacency list (using read and
early release as in IntSetRelease) to find the target node. They then read and update that
node’s neighbor list, together with the neighbor list of each of its new neighbors.

Transactions are very long in RandomGraphList. With eager acquire, the window of
conflict is very large. Figure 7 shows STM throughputs for RandomGraphList. Lazy ac-
quire is a clear winner, with throughput more than a factor of five higher than that of ea-
ger acquire. With eager acquire, reader transactions encounter unnecessary contention
with writer transactions (for objects that would be released early anyway), leading to
virtually serialized access to the main node list. DSTM bears the additional indirection
overhead and hence performs the worst. Here, synergy between lazy acquire and early
release significantly reduces the number of read-write conflicts. Eager ASTM performs
a little better than DSTM, but significantly worse than Lazy ASTM. Lazy ASTM lags a
little behind OSTM up to 16 threads; since data access patterns are random (due to ran-
dom neighbor sets), transactions in Lazy ASTM apparently livelock on each other for
a while before someone makes progress. OSTM, being lock-free, does not suffer from
this delay. After 16 threads though, the overhead of recursive helping in OSTM causes
reduction in its throughput. ASTM follows Lazy ASTM’s performance curve, and is
more or less competitive with both OSTM and Lazy ASTM. Because ASTM defaults
to eager acquire mode, the first few transactions use eager acquire and are consequently
very slow. Thereafter, ASTM switches to lazy acquire mode and starts catching up with
Lazy ASTM and OSTM.

Adaptive Software Transactional Memory 367

6 Concluding Remarks

The possibility of automatically converting sequential code to concurrent code has made
STM an attractive topic of research, and recent work [2, 3, 5, 8] has brought it to the
verge of practical utility. Much will now depend on the constants: Is the overhead rel-
ative to lock-based code small enough to be outweighed by the (clear and compelling)
semantic and software engineering benefits?

In this paper we have presented a detailed analysis of the design space of modern
STMs, identifying four key dimensions of STM system design. Various choices in this
space lead to varied performance tradeoffs. Consequently no single STM performs the
best (or comparably) in all possible scenarios. Our analysis has led us to create a new
STM system that adapts to the offered workload, yielding throughput comparable to the
best existing system in all scenarios we have tested. The object acquisition methodol-
ogy, adaptive object referencing style, and obstruction-free nature of ASTM have been
carefully selected to give maximum throughput in all cases. We have also demonstrated
the feasibility of adapting acquire semantics via simple history-based heuristics.

Although our analysis of the STM design space is fairly exhaustive, another design
dimension remains unexplored: tradeoffs in visible vs. invisible reads [17, 18]. Pre-
liminary results from our exploration of read strategies (not shown here) suggest that
adapting between the two may improve performance. We also forsee future work in
greater exploration of execution scenarios that favor eager or lazy acquire semantics.
Finally, we will strive to find ever better adaptation heuristics.

Acknowledgments

We are grateful to Sun’s Scalable Synchronization Research Group for donating the
SunFire machine and for providing us with a copy of their DSTM code.

References

[1] G. Barnes. A Method for Implementing Lock-Free Shared Data Structures. In Proc. of the
5th Ann. ACM Symp. on Parallel Algorithms and Architectures, pages 261–270, 1993.

[2] K. Fraser. Practical Lock-Freedom. Technical Report UCAM-CL-TR-579, Cambridge
University Computer Laboratory, Feb. 2004.

[3] K. Fraser and T. Harris. Concurrent Programming without Locks. Submitted for publication,
2004.

[4] R. Guerraoui, M. P. Herlihy, and B. Pochon. Toward a Theory of Transactional Contention
Managers. In Proc. of 24th Ann. ACM Symp. on Principles of Distributed Computing, July
2005.

[5] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Proc. of 18th
Ann. ACM Conf. on Object-Oriented Prog., Sys., Langs., and Apps., Oct. 2003.

[6] M. P. Herlihy. A Methodology for Implementing Highly Concurrent Data Structures. In
Proc. of the 2nd ACM Symp. on Principles & Practice of Parallel Prog., Mar. 1990.

[7] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction Free Synchronization: Double-
Ended Queues as an Example. In Proc. of 23rd Intl. Conf. on Distributed Computing Sys.,
pages 522–529, May 2003.

368 V.J. Marathe, W.N. Scherer III, and M.L. Scott

[8] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Mem-
ory for Dynamic-sized Data Structures. In Proc. of 22nd Ann. ACM Symp. on Principles of
Distributed Computing, July 2003.

[9] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-
Free Data Structures. In Proc. of the 20th Ann. Intl. Symp. on Computer Architecture, pages
289–300, May 1993.

[10] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition for Concurrent
Objects. ACM Trans. on Prog. Langs. and Sys., 12(3):463–492, 1990.

[11] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared
Memory Primitives. In Proc. of the 13th Ann. ACM Symp. on Principles of Distributed
Computing, pages 151–160, 1994.

[12] D. Lea. Concurrency JSR-166 Interest Site. http://gee.cs.oswego.edu/dl/concurrency-
interest/.

[13] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design Tradeoffs in Modern Software
Transactional Memory Systems. In Proc. of 14th Workshop on Langs., Compilers, and
Run-time Support for Scalable Sys., Oct. 2004.

[14] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional Memory.
Technical Report TR 868, Dept. of Computer Science, University of Rochester, May 2005.

[15] M. Moir. Transparent Support for Wait-Free Transactions. In Proc. of the 11th Intl. Work-
shop on Distributed Algorithms, pages 305–319. Springer-Verlag, 1997.

[16] J. T. Robinson and M. V. Devarakonda. Data Cache Management Using Frequency-Based
Replacement. In Proc. of the 1990 ACM SIGMETRICS Conf. on Measurement and Model-
ing of Computer Sys., pages 134–142, 1990.

[17] W. N. Scherer III and M. L. Scott. Contention Management in Dynamic Software Transac-
tional Memory. In Proc. of Workshop on Concurrency and Synchronization in Java Progs.,
pages 70–79, July 2004.

[18] W. N. Scherer III and M. L. Scott. Advanced Contention Management in Dynamic Software
Transactional Memory. In Proc. of 24th Ann. ACM Symp. on Principles of Distributed
Computing, July 2005.

[19] N. Shavit and D. Touitou. Software Transactional Memory. In Proc. of 14th Ann. ACM
Symp. on Principles of Distributed Computing, pages 204–213, Aug. 1995.

[20] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple Reservations and the
Oklahoma Update. IEEE Parallel and Distributed Technology, 1(4):58–71, Nov. 1993.

[21] J. Turek, D. Shasha, and S. Prakash. Locking without Blocking: Making Lock Based Con-
current Data Structure Algorithms Nonblocking. In Proc. of the 11th ACM Symp. on Prin-
ciples of Database Sys., pages 212–222, 1992.

Optimistic Generic Broadcast

Piotr Zieliński

University of Cambridge,
Computer Laboratory

piotr.zielinski@cl.cam.ac.uk

Abstract. We consider an asynchronous system with the Ω failure de-
tector, and investigate the number of communication steps required by
various broadcast protocols in runs in which the leader does not change.
Atomic Broadcast, used for example in state machine replication, re-
quires three communication steps. Optimistic Atomic Broadcast requires
only two steps if all correct processes receive messages in the same or-
der. Generic Broadcast requires two steps if no messages conflict. We
present an algorithm that subsumes both of these approaches and guar-
antees two-step delivery if all conflicting messages are received in the
same order, and three-step delivery otherwise. Internally, our protocol
uses two new algorithms. First, a Consensus algorithm which decides in
one communication step if all proposals are the same, and needs two
steps otherwise. Second, a method that allows us to run infinitely many
instances of a distributed algorithm, provided that only finitely many of
them are different. We assume that fewer than a third of all processes
are faulty (n > 3f).

1 Introduction

State machine replication [7] is a common way of increasing fault-tolerance of
client-server systems. As opposed to centralized systems, where clients send re-
quests to a single server, in this approach, each request is broadcast to a group
of servers. In order for this approach to work, client requests must be delivered
to all the servers in the same order. The broadcast primitive that ensures this
property is called Uniform Atomic Broadcast1.

We consider an asynchronous system with the Ω leader oracle [3], and investi-
gate the number of communication steps required by various broadcast protocols
in runs in which the leader does not change. Atomic Broadcast is expensive in
the sense that it requires three communication steps: one for the client request
to reach the servers and two for the servers to agree on the order of the requests
[4,10,12]. Two approaches have been proposed in the literature to deal with this
problem: Optimistic Atomic Broadcast and Generic Broadcast.

1 “Uniform” abstractions offer guarantees to all processes as opposed to only correct
ones. All abstractions considered in this paper are uniform, so from now on we will
omit this word from abstraction names.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 369–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 P. Zieliński

Algorithm
no conflicting

messages
all messages
same order

conflicting
messages
same order

general
scenario

Chandra and Toueg [3] 3 3 3 3
Opt. Atomic Broadcast [14] 4 2 4 4
Generic Broadcast [16] 2 4 4 4
This paper 2 2 2 3

Fig. 1. Latency degree comparison of several broadcast algorithms

Optimistic Atomic Broadcast [14] takes advantage of the fact that in many
networks messages tend to arrive at different processes in the same order. Pro-
tocols implementing this primitive are able to deliver messages in two commu-
nication steps as long as all processes receive messages in the same order.

Generic Broadcast [1,16] achieves better efficiency by introducing a binary
conflict relation on messages, requiring only that conflicting messages are de-
livered in the same order by all processes. For example, two “read” requests or
any two requests operating on unrelated objects are non-conflicting and can be
delivered in different orders.

In this paper, we present an algorithm that implements both of these ap-
proaches at the same time. Optimistic Generic Broadcast, as we call it, guaran-
tees message delivery in two communication steps if all correct processes receive
all conflicting messages in the same order. When this condition does not hold,
all messages are delivered within three communication steps. Both of these la-
tencies match the respective lower bounds [10,16]. Our algorithm requires that
fewer than a third of all processes are incorrect (n > 3f), which is necessary to
deliver messages in two steps [15].

Fig. 1 gives a short comparison of several algorithms. We consider four scenar-
ios: without conflicting messages, with correct processes receiving all messages
in the same order, with correct processes receiving conflicting messages in the
same order, and with no restrictions. For each of these scenarios, Fig. 1 shows the
number of communication steps required to deliver messages, formally known as
latency degree [17]. The comparison shows that our algorithm is, in terms of
latency, strictly better than the other protocols. This remains true even if we
ignore the third column, which is specific to our algorithm.

Our Generic Broadcast protocol uses a new Consensus algorithm. If the leader
is correct and does not change, this algorithm decides in one communication
step if all proposals are the same, and in two steps otherwise. In the literature,
algorithms have been proposed that satisfy only the first condition [2], only the
second condition [3,9,11,17], or both but the first only for the privileged value
[6]. To the best of our knowledge, the Consensus algorithm presented in this
paper is the first to meet both conditions fully.

The paper is structured in the following way. Section 2 introduces our asyn-
chronous system model, and gives precise definitions of Consensus, Atomic
Broadcast, and Generic Broadcast. Sections 3 and 4 describe our Optimistic

Optimistic Generic Broadcast 371

Generic Broadcast algorithm. Section 5 presents the implementation of One-Two
Consensus. Finally, Section 6 shows how to implement infinitely many Consensus
instances at the same time, which is used by our Generic Broadcast algorithm.
Correctness of the presented algorithms is only argued informally; for rigorous
proofs, see the extended version of this paper [18].

2 System Model

Our system model consists of n processes, out of which at most f can fail by
crashing. We assume that less than a third of the processes are faulty (n > 3f).
Processes communicate through asynchronous reliable channels. In other words,
there is no time limit on message transmission time, and messages between
correct processes never get lost.

We assume that each process is equipped with an unreliable leader oracle Ω,
which eventually outputs the same correct leader at all correct processes. The
extended version of this paper [18] shows that Ω is the weakest failure detector
that allows us solve (Optimistic) Generic Broadcast in an asynchronous sys-
tem, provided at least one pair of messages conflict. In the special case when
no messages conflict, Generic Broadcast becomes identical to Uniform Reliable
Broadcast [8].

In the Consensus problem, processes submit proposals and are required to
eventually agree on one of them. Formally, we require the following properties:

Uniform Validity. If a process decides on x, then some process proposed x.
Uniform Agreement. No two processes decide differently.
Termination. If all correct processes propose, then they eventually decide.

In Atomic Broadcast, processes broadcast messages, which are delivered by all
processes in the same order. Formally [5],

Validity. If a correct process broadcasts a message m, then all correct processes
will eventually deliver m.

Uniform Agreement. If a process delivers a message m, then all correct pro-
cesses eventually deliver m.

Uniform Integrity. For any message m, every process delivers m at most once,
and only if m was previously broadcast.

Uniform Total Order. If some process delivers message m′ after message m,
then every process delivers m′ only after it has delivered m.

Generic Broadcast is identical to Atomic Broadcast, except that only conflicting
messages must be delivered in the same order:

Uniform Partial Order. If some process delivers message m′ after message
m conflicting with m′, then every process delivers m′ only after it has deliv-
ered m.

The notion of conflict is captured by a binary conflict relation on the set of
all possible messages, which is a parameter of the problem [16]. For example,

372 P. Zieliński

one might consider a relation on read and write requests in which all pairs of
messages conflict unless both of them are reads. We assume that the conflict
relation and therefore the (infinite) set of all possible messages are both known
to all processes in advance.

3 Basic Generic Broadcast Algorithm

We say that a run is stable if the (correct) leader output by the Ω failure detector
is the same at all correct processes and never changes. In this section, we will
present a simplified version of our Generic Broadcast algorithm, which is correct
in stable runs with correct senders but might not make progress in other runs.
In Section 4, we will show how to extend this algorithm to obtain a fully correct
Generic Broadcast implementation.

3.1 Partial Order on Messages

Our algorithm operates by making processes agree on the delivery order of each
pair of conflicting messages. More precisely, processes cooperate in building a
partial order “→” on conflicting messages and deliver messages in any order
consistent with this partial order. For any two messages m and m′, relation
m → m′ requires m to be delivered before m′. Since non-conflicting messages can
be delivered in any order, the relation “→” is defined only for pairs of messages
{m, m′} that conflict. For these, we expect that eventually either m → m′ or
m′ → m.

The following diagram shows an example with four messages. All pairs of
messages conflict, except for m2 and m3, which can be delivered in different
orders by different processes.

m1
� m2

�
�

�
�

��
m3

� � m4

�

m1
� m2

�
�

�
�

��
m3

� � m4

.................

Processes deliver messages in any order consistent with the partial order “→”.
In the first example, “→” is defined for all pairs of conflicting messages. Pro-
cesses can deliver the four messages in one of two orders m1, m2, m3, m4 or
m1, m3, m2, m4, both consistent with “→”. Messages m2 and m3 can be deliv-
ered in different orders by different processes; this does not violate the Partial
Order property because these messages do not conflict.

In the second example, the relation between conflicting messages m2 and m4

is not known (yet). As a result, none of them can be delivered. However, what-
ever the order of m2 and m4 will be, one of the orders: m1, m3, m2, m4 and
m1, m3, m4, m2 will be consistent with “→”. These two orders share a common
prefix m1, m3, so messages m1 and m3 can be delivered straight away.

Optimistic Generic Broadcast 373

1 when receive(m) do
2 for all possible non-received messages m′ conflicting with m do
3 firstm,m′ .propose(m)

4 when firstm,m′ .decide(m) do
5 set m → m′

6 when m is undelivered and
7 m → m′ for all undelivered messages m′ conflicting with m do
8 deliver(m)

Fig. 2. Basic Generic Broadcast algorithm

Another way of looking at the delivery process is realizing that m1 can be
delivered because m1 → m for all m �= m1. After m1 has been delivered, we
can deliver m3 because m3 → m for all undelivered m’s conflicting with m3.
Conflicting messages m2 and m4 will be delivered only when their order is known.

3.2 Basic Algorithm

In our algorithm, processes agree on the partial order “→” by using Consensus
to agree on the delivery order of every pair of conflicting messages. In other
words, for each unordered pair {m, m′} of conflicting messages, we use a separate
instance of Consensus. In each such instance firstm,m′ , each process p proposes
the message m or m′ that arrived at p first.

The resulting partial order is built based on decisions of the Consensus in-
stances firstm,m′ . If the instance decides on m, then m is deemed to be the
first message of the two (m → m′). Hence, if the instance firstm,m′ = firstm′,m
decides on m′, then m′ → m. Messages are delivered in an order consistent
with “→”. Section 4 will explain why cycles do not appear in stable runs, and
explain how to deal with them in other runs.

The basic algorithm is shown in Fig. 2. Senders broadcast their messages
using ordinary broadcast. When a process receives a message m, it proposes m
to instances firstm,m′ for all messages m′ conflicting with m that have not been
received (yet). In other words, the process proposes m to precede all such mes-
sages m′ in the delivery order. An undelivered message m is delivered once
m → m′ holds for all possible undelivered messages m′ conflicting with m.

Since the set of all messages is usually infinite, the receive(m) action involves
executing infinitely many instances of Consensus. Section 6 will show how to
accomplish this with finite resources. Until then, we will stick with the “infinite”
version of the algorithm because it is easier to understand.

The algorithm satisfies Uniform Integrity and Uniform Partial Order. For
the former, we assume the existence of an artificial message ⊥, which is never
sent and conflicts with all other messages. Therefore, delivering any message m
requires m → ⊥, which means that some process must have proposed m to
firstm,⊥, so some process must have broadcast m.

374 P. Zieliński

To prove Uniform Partial Order, we will assume, to derive a contradiction,
that conflicting messages m and m′ are delivered in different orders at different
processes. This would mean that m → m′ at one of the processes, and m′ → m
at another, which is impossible by the Uniform Agreement property of the un-
derlying Consensus.

3.3 Delivery Latency

In this section, we will explain why, in stable runs, the basic algorithm delivers
all messages in three communication steps. We will also see that if, in addition,
all conflicting messages arrive at all correct processes in the same order, then all
these messages are delivered in two communication steps.

We assume that the underlying Consensus algorithm satisfies the following
two properties:

C1: In stable runs in which all correct processes propose the same value, the
decision is made one communication step after all correct processes pro-
posed.

C2: In stable runs, all correct processes decide on the value proposed by the
leader two communication steps after the leader proposed (even if other
processes have not proposed).

Section 5 presents a Consensus algorithm with these properties.
Any message broadcast by a correct process is received by the leader in

one communication step. Property C2 ensures that the order is decided two
communication steps later, giving three communication steps in total for de-
livery latency. If all correct processes receive conflicting messages in the same
order, then they propose the same order to Consensus instances. Therefore,
Property C1 implies that decision will be made in one communication step,
giving two communication steps in total for delivery latency.

4 Full Generic Broadcast Algorithm

Before presenting the full version of the algorithm, we will highlight two main
problems with the basic version in unstable runs.

4.1 Cycles

Cycles in the relation “→” built by the basic algorithm lead to a deadlock. In stable
runs, cycles do not appear becausePropertyC2ensures that “→” reflects the linear
order of message reception at the leader. In unstable runs, however, different parts
of the “→” relation might have been proposed by different processes.

As an example, consider a system with three processes p1, p2, p3. Each of
these processes receives three messages m1, m2, m3 in a different order:

p1 : m1, m2, m3 executes firstm1,m2
.propose(m1),

p2 : m2, m3, m1 executes firstm2,m3
.propose(m2),

p3 : m3, m1, m2 executes firstm3,m1
.propose(m3).

Optimistic Generic Broadcast 375

If all of the above proposals become decisions, then the cycle

m1 → m2 → m3 → m1

will be formed, and as a result none of these messages will ever be delivered.
To cope with cycles, we introduce the notion of blocked messages. We say

that a message is blocked if it belongs to a cycle, or it is a successor of a blocked
message. In our example, all three messages are blocked, and any message m4

with, say, m2 → m4 would be blocked as well. Obviously, blocked messages will
never be delivered by the basic algorithm. In the full version of the algorithm,
we will sometimes deliver blocked messages to break cycles and avoid deadlocks.

4.2 Faulty Senders

Another problem with the basic algorithm are faulty senders. If a sender crashes,
then its messages might reach only a subset of the correct processes. For Consen-
sus instances, this means that not all the correct processes propose, and therefore
it can happen that only some of the correct processes decide. Since these deci-
sions are directly related to message deliveries, the Uniform Agreement property
might be violated.

A common solution to this problem is to make processes rebroadcast every
received message, thereby implementing Non-Uniform Reliable Broadcast [7].
Thus, if a correct process receives a message, then all correct processes will.
As a result, all correct processes will propose, decide, and deliver the message.

Therefore, to ensure Uniform Agreement, it is sufficient to guarantee that
every delivered message has been received by at least one correct process. For
this reason we introduce the notion of a process “seeing” a message. We say that
a process sees a message m if it has received, in some instance of Consensus,
a message containing m. Recall that a message is delivered only if at least one
Consensus instance decided on it. Since the decision of any Consensus instance
must have been seen by at least one correct process [18], every delivered message
has been seen by a correct process, which is exactly what we need.

The problem discussed here could also be solved by making the senders use
Uniform Reliable Broadcast [8]. This abstraction, however, requires two commu-
nication steps, which would slow our algorithm down by one step.

4.3 Algorithm

Fig. 3 shows the full version of our algorithm. To resolve cycles and be able to
deliver blocked messages, we use an auxiliary Atomic Broadcast protocol. The
latency of this Atomic Broadcast protocol affects only unstable runs because
cycles cannot appear in stable ones.

A process reacts only to messages m received for the first time. It rebroad-
casts m to other processes using both ordinary broadcast and also Atomic Broad-
cast. The rationale behind the former is to ensure that if one correct process re-
ceives a message, then eventually all correct processes will. As mentioned before,

376 P. Zieliński

1 when receive(m) do
2 if m is received for the first time then
3 broadcast (m)
4 abcast(m)
5 for all possible non-received messages m′ conflicting with m do
6 firstm,m′ .propose(m)

7 when see(m) do
8 receive(m)

9 when firstm,m′ .decide(m) do
10 set m → m′

11 when m is undelivered and
12 m → m′ for all undelivered messages m′ conflicting with m do
13 deliver1(m)

14 task cycle-resolution is
15 repeat forever
16 wait until abdeliver(m)
17 see(m)
18 wait until m has been delivered or
19 all undelivered messages conflicting with m are blocked
20 if m has not been delivered yet then
21 deliver2(m)

Fig. 3. Full Generic Broadcast algorithm

Atomic Broadcast is used to resolve cycles. Finally, as in the basic version, the
process executes firstm,m′ .propose(m) for all possible messages m′ conflicting
with m that were not received before m. The order “→” is constructed in the
same way as in the basic version.

In the full version, messages can be delivered either normally or during cycle
resolution. To distinguish these two kinds of deliveries, we call the former 1-
delivery, and the latter 2-delivery. Messages are 1-delivered in exactly the same
way as in the basic version.

If a process has seen a message, it behaves as if it had received it. The decision
of any Consensus instance must have been seen by at least one correct process.
Therefore, any 1-delivered message has been seen by a correct process, who
broadcast it, so that all correct processes would eventually receive that message
and propose it to some Consensus instances. This property is vital for Uniform
Agreement.

The cycle resolution task loops over messages delivered by the underlying
Atomic Broadcast protocol. For each such message m, the task executes see(m)
and waits until one of the two conditions holds. If m has already been delivered,
then the loop goes to the next iteration. Otherwise, if all undelivered messages
conflicting with m are blocked, then m is delivered. The rationale behind this
strategy is that, since none of the blocked messages can be 1-delivered, it is safe
to deliver m, thereby, possibly, breaking the cycle. The use of Atomic Broadcast

Optimistic Generic Broadcast 377

ensures that the messages m chosen to break cycles are the same at different
processes.

To show that lines 18–19 always terminate, we must prove that all never-
blocked messages m′ conflicting with m will eventually be delivered. Since m′ is
not blocked, the graph of paths m′ ← m1 ← · · · ← mk of undelivered messages
does not contain cycles, and forms a tree rooted at m′. The leaves of this tree
will be successively 1-delivered, resulting eventually in 1-delivery of m′.

4.4 Example

Both m1 and m3 can be 1-delivered because the only message conflicting with
them (m2) is their successor. Messages m1 and m3 can be delivered in any
order; this does not violate Partial Order because they do not conflict. Assume
that, at the same time, the cycle-resolution task abdelivers m1. Since the only
message conflicting with it (m2) is blocked by the cycle m2 → m4 → m5 → m2,
message m1 is 2-delivered if it has not been 1-delivered yet.

After m1 and m3 have been delivered, no other message can be 1-delivered,
because all messages are blocked. If now the cycle resolution task abdelivers m2,
then since all undelivered messages conflicting with it (m4, m5) are blocked, m2

is 2-delivered. This delivery breaks the cycle, and now all undelivered messages
conflicting with m4 (i.e., m5 and m6) are its successors, so m4 is 1-delivered.
Conflicting messages m5 and m6 cannot be delivered until the processes agree
on their order. If, for example, m5 → m6, then message m5 will be 1-delivered,
followed by m6.

m1
� m2

� m4
� m6

�
�

�
�

�� ��
�

�
�

� ...
...

...
...

..

m3 m5

�

5 One-Two Consensus

Our Generic Broadcast algorithm uses One-Two Consensus shown in Fig. 4.
This algorithm uses three underlying Consensus instances: 1, 2, and L. When a
process p proposes x, it first broadcasts the pair (x, p), and then uses instance 1
to propose x, instance 2 to propose the pair (x, p), and instance L to propose the
current output of its leader oracle Ω. Instances 1 and L make a decision in one
communication step, provided that all correct processes propose the same value.
We achieve this by using the algorithm by Brasileiro et al. [2], which requires
n > 3f . Instance 2 decides in two communication steps, however, it requires only
the correct leader to have proposed. This can be implemented with the Paxos
algorithm [11].

378 P. Zieliński

1 when propose(x) by process p do
2 broadcast (x, p)
3 propose1(x)
4 propose2(x, p)
5 proposeL(l) where l is the leader output by Ω

6 task decide at process p is
7 wait until decideL(l)
8 wait until one of the conditions is true and decide on x
9 condition 1: decide1(x) and receive(x, l)
10 condition 2: decide2(x, l)
11 condition 3: decide1(x) and decide2(y, q) with q �= l

Fig. 4. One-Two Consensus

When process p wants to decide, it first waits until instance L decides on
some leader l. In stable runs, in which the output of Ω is the same at all correct
processes, this should happen within one communication step. Then, process p
waits until one of the three conditions in Fig. 4 holds. The first two conditions
correspond to instances 1 and 2 deciding on the value proposed by the leader.
If all correct processes propose the same value, then the first condition will hold
in one communication step. If the leader is correct, then the second condition
will hold in two communication steps. The third condition is a fall-back designed
for unstable runs; processes adopt the decision from instance 1, provided that
instance 2 did not decide on the value proposed by the leader.

5.1 Thriftiness

Aguilera et al. [1] define a Generic Broadcast algorithm to be thrifty if it uses
the underlying oracle (here Ω) only when some conflicting messages are received.
Our algorithm is not thrifty; the one-two step Consensus described above uses
Ω in all cases. To make our algorithm thrifty, we need a Consensus algorithm
that, if all correct processes propose the same value, decides in one step, without
using Ω. This property is a stronger version of C1, which we call C1*.

The algorithm by Brasileiro et al. [2] satisfies C1*; it decides in one step if all
correct processes propose the same value, without using Ω, otherwise it starts an
underlying Consensus algorithm. This means that it does not satisfy C2; if cor-
rect processes propose different values, it may take three steps to decide, instead
of two. For our Optimistic Generic Broadcast algorithm this means four steps
in general stable runs instead of three. In terms of latency, such an algorithm is
still strictly better than both Generic Broadcast [1,13,16] and Optimistic Atomic
Broadcast [14], however might be slower than the one proposed by Chandra and
Toueg [3] (Fig. 1).

Guerraoui and Raynal [6] proved that no Consensus algorithm based on Ω
can be both configuration-efficient and oracle-efficient, which in our case implies

Optimistic Generic Broadcast 379

1 I is the family of disjoint sets of virtual instances, initially empty

2 when receive event e tagged with the set Ie do
3 for each I ∈ I do
4 split I into I ∩ Ie and I \ Ie

5 create a new physical instance AI for I = Ie \ ⋃ I, and add I to I
6 eliminate empty sets from I
7 for each I ∈ I do
8 if I ∩ Ie �= ∅ then
9 send the event e to instance AI

Fig. 5. Emulating infinitely many virtual instances

that Properties C1* and C2 cannot hold at the same time. This observation
makes us conjecture that no thrifty Generic Broadcast algorithm can achieve
the latencies from the bottom row in Fig. 1.

The underlying Atomic Broadcast protocol, employed by our algorithm to
break cycles, also uses Ω [3]. However, in the absence of conflicting messages,
cycles cannot be created. Therefore, instead of processes performing abcast(m)
immediately after receiving m (as in Fig. 3), they can defer it until they have
received some conflicting messages. This modification prevents the algorithm
from using Atomic Broadcast if no conflicting messages are received.

6 Handling Infinitely Many Instances

Our Generic Broadcast algorithm uses infinitely many Consensus instances. This
section explains how to implement an infinite number of virtual instances of
a distributed algorithm using only finitely many physical instances at every
process. As we will see, this is possible provided that there are only finitely many
different virtual instances. For example, in our Generic Broadcast algorithm from
Fig. 3, a process proposes the same message m to an infinite number of instances
of Consensus.

Let us start with finitely many virtual instances, and denote these by i1,
i2, . . . , ik. The usual approach is to tag any event (a message or a function call)
with the identifier of the instance. Each process runs k physical instances of the
algorithm. Every event tagged with ik is directed to the k-th instance, and every
event produced by the k-th instance is tagged with ik. In this case, virtual and
physical instances are the same, so this method can be used only with finitely
many virtual instances.

To implement an infinite number of virtual instances, some of them must
share a single physical instance. Algorithm in Fig. 5 maintains a family I of
disjoint sets of virtual instances, initially empty. Each element I ∈ I is a set of
virtual instances that share a single physical instance denoted as AI . All events
generated by AI are tagged with the set I.

380 P. Zieliński

When an event tagged with a set of virtual instances Ie arrives, the process
does the following. First, if some virtual instances sharing the same physical
instance start to differ, the physical instance is cloned. This is done by splitting
elements I ∈ I into I ∩Ie and I \ Ie, so that every element of I is either a subset
of Ie or disjoint with it. When such a split happens, the physical instance AI is
replaced with two new instances AI∩Ie and AI\Ie

, both identical to AI . Also, a
new physical instance is created for Ie \

⋃
I to ensure that every virtual instance

corresponds to some physical instance; in other words, we want to make sure
that for each i ∈ Ie there is I ∈ I with i ∈ I. Finally, the event is sent to all
physical instances corresponding to any virtual instances in Ie.

6.1 Representing Sets

The above method can be used to execute an infinite number of Consensus
instances at the same time, provided that we can represent infinite sets of in-
stances in a finite form. For use in the algorithm from Fig. 5, the families of repre-
sentable sets must be closed under subtraction and intersection. Closeness under
set union is not necessary; Ie \

⋃
I can be computed by iteratively subtracting

elements of I from Ie. In this section, we will briefly present such representations
for some families of sets useful in our Generic Broadcast algorithm.

Border sets. Finite sets can be trivially represented by listing their elements.
The family of border sets contains all sets that are either finite (F) or are comple-
ments of finite sets (F). For example, the set {m1, m2} consists of all messages
except for m1 and m2. The representation of a border set consists of the finite
set F and a flag indicating whether the set is F or F . The family of border sets
is closed under negation and intersection (which implies subtraction):

F1 ∩ F2 = F1 ∩ F2, F1 ∩ F2 = F1 \ F2,

F1 ∩ F2 = F2 \ F1, F1 ∩ F2 = F1 ∪ F2.

M-sets. How can we use border sets to represent sets such as “the set of all non-
received messages conflicting with m”? Of course, that depends on the conflict
relation. It is often the case that messages can be divided into a small number of
categories (e.g., “read” and “write”), such that conflict properties of messages
are determined by the categories they belong to. Consider a system with k
categories C1, . . . , Ck, where Ci is the set of all messages in the i-th category.
For any border sets B1, . . . , Bk satisfying Bi ⊆ Ci, we define a m-set

〈B1, . . . , Bk〉 = B1 ∪ · · · ∪Bk

to be the set containing all messages from sets B1, B2, . . . , Bk.
As an example consider a system with two categories: “read” and “write”;

any two requests conflict unless they are both reads. Assume that requests w1,
w2, r1, and r2 have been received. The set of all non-received requests conflicting
with r2 is 〈∅, {w1, w2}〉, that is, no read requests and all possible write requests
except for w1 and w2.

Optimistic Generic Broadcast 381

The family of m-sets is closed under subtraction and intersection:

〈B1, . . . , Bk〉 ∩ 〈B′
1, . . . , B

′
k〉 = 〈B1 ∩B′

1, . . . , Bk ∩B′
k〉,

〈B1, . . . , Bk〉 \ 〈B′
1, . . . , B

′
k〉 = 〈B1 \B′

1, . . . , Bk \B′
k〉.

Sets of message pairs. In our Generic Broadcast algorithm, each Consensus
instance is identified by an unordered pair of messages. By {m, M} we denote
the set of pairs containing m and one element of the m-set M :

{m, M} = { {m, m′} : m′ ∈M }

For example, M can be the set of all possible non-received messages m′ con-
flicting with a given message m. Consider the receive(m) routine from our
Generic Broadcast algorithm in Fig. 3. We can replace infinitely many invo-
cations of firstm,m′ .propose(m) with a single firstm,M .propose(m). The family
of sets {m, M} can be used in the algorithm from Fig. 5 because it is closed
under intersection and subtraction (we assume m �= m′):

{m, M} ∩ {m, M ′} = {m, M ∩M ′},
{m, M} \ {m, M ′} = {m, M \M ′},

{m, M} ∩ {m′, M ′} =

{
{m, {m′}} if m ∈M ′ and m′ ∈ M,

{m, ∅} otherwise,

{m, M} \ {m′, M ′} =

{
{m, M \ {m′}} if m ∈M ′ and m′ ∈ M,

{m, M} otherwise.

7 Conclusion

We presented a new algorithm that solves the Generic Broadcast problem, in
which conflicting messages must be delivered in the same order by all processes.
In stable runs, our algorithm delivers messages in three communication steps.
If all conflicting messages are received by all correct processes in the same or-
der, then all messages are delivered within two communication steps. In terms
of latency degree [17], this algorithm is strictly better than any proposed so
far [1,3,13,14,16], and matches several lower bounds [10,15,16]. Although we
implicitly assumed that only the main n processes are allowed to broadcast mes-
sages, our model can easily be extended to allow external processes to broadcast
as well.

In our algorithm, for each pair of conflicting messages, processes use Con-
sensus to agree on their order. Messages are delivered in any order consistent
with the agreed partial order. In unstable runs, circular dependencies can occur,
and these are broken using Atomic Broadcast. The abstract formulation of the
algorithm uses infinitely many instances of Consensus at the same time. Since
there are only finitely many different instances, this can be emulated with finite
resources, as we show in this paper. The new underlying Consensus algorithm

382 P. Zieliński

uses one-step [2] and two-step [11] algorithms to decide in one communication
step if all proposals are the same, and in two otherwise (in stable runs).

Although our Generic Broadcast algorithm is optimal in terms of latency de-
gree, its message and computation complexities may still be prohibitive. There-
fore, we see our contribution in the lower-bound matching algorithm. Further
research will be required to optimize it for practical applications.

References

1. Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Thrifty Generic Broadcast. Lecture Notes in Computer Science, 1914:
268–282, 2000.

2. Francisco Brasileiro, Fab́ıola Greve, Achour Mostefaoui, and Michel Raynal. Con-
sensus in one communication step. Lecture Notes in Computer Science, 2127:42–50,
2001.

3. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

4. Bernadette Charron-Bost and André Schiper. Uniform Consensus is harder than
Consensus. Technical Report DSC/2000/028, Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, May 2000.

5. Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multi-
cast algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421,
2004.

6. Rachid Guerraoui and Michel Raynal. The information structure of indulgent
Consensus. Technical Report PI-1531, IRISA, April, 2003.

7. Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcast and related problems.
In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97–146. ACM
Press, New York, 2nd edition, 1993.

8. Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broad-
casts and related problems. Technical Report TR94-1425, 1994.

9. Michel Hurfin and Michel Raynal. A simple and fast asynchronous consensus
protocol based on a weak failure detector. Distributed Computing, 12(4):209–223,
1999.

10. Idit Keidar and Sergio Rajsbaum. On the cost of fault-tolerant Consensus when
there are no faults. ACM SIGACT News, 32, 2001.

11. Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, December
2001.

12. Leslie Lamport. Lower bounds on Consensus. Unpublished note, March 2002.

13. Fernando Pedone and André Schiper. Handling message semantics with Generic
Broadcast protocols. Distributed Computing, 15(2):97–107, 2002.

14. Fernando Pedone and André Schiper. Optimistic Atomic Broadcast: a pragmatic
viewpoint. Theoretical Computer Science, 291(1):79–101, 2003.

15. Fernando Pedone and André Schiper. On the inherent cost of Generic Broadcast.
Technical Report IC/2004/46, Swiss Federal Institute of Technology (EPFL), May
2004.

16. Fernando Pedone and André Schiper. Generic Broadcast. In Proceedings of the
13th International Symposium on Distributed Computing (DISC’99), 1999.

Optimistic Generic Broadcast 383

17. André Schiper. Early Consensus in an asynchronous system with a weak failure
detector. Distributed Computing, 10(3):149–157, April 1997.

18. Piotr Zieliński. Optimistic Generic Broadcast. Technical Report 638, Computer
Laboratory, University of Cambridge, July 2005. http://www.cl.cam.ac.uk/

TechReports/UCAM-CL-TR-638.html.

Space and Step Complexity Efficient

Adaptive Collect

Yehuda Afek and Yaron De Levie

School of Computer Science,
Tel-Aviv University, Israel 69978

Abstract. Space and step complexity efficient deterministic adaptive
to total contention collect algorithms are presented. One of them has an
optimal O(k) step and O(n) space complexities, but restrict the processes
identifiers size to O(n). Where n is the total number of processes in the
system and k is the total contention, the total number of processes active
during the execution. Unrestricting the name space increases the space
complexity to O(n2) leaving the step complexity at O(k). To date all
deterministic adaptive collect algorithms that we are aware of are either
nearly quadratic in their step complexity or their memory overhead is
exponential in n.

1 Introduction

In most asynchronous read/write shared memory algorithms each of n processes
has its own dedicated register into which it writes new information it has. To
collect the information written by others a process reads all the other regis-
ters. Obviously, this implementation of a collect operation is wait-free but not
adaptive. An implementation of a high level operation is adaptive if the step
complexity of the operation is a function of the actual number of processes ac-
tive rather than n the total number of processes in the system. Three measures
of the number of active processes have been defined [AAF+99], total contention,
interval contention, and point contention. In an algorithm that is adaptive to
total contention the step complexity of a high level operation is a function only
of the total number of different processes that have been active in the algorithm
execution before this operation terminates1.

Following [AKWW] the focus of this paper are adaptive to total contention
collect algorithms that are efficient both in space and step complexities. To date
all the deterministic adaptive collect algorithms that we are aware of [AKWW,
AFG02, MA95, AF03, AST99] are either exponential in space complexity or
nearly quadratic in the step complexity (see Table 1).

1 In interval contention the step complexity of a high level operation is a function
only of the total number of different processes that are active during the specific
operation sub-execution interval. In point contention the step complexity of a high
level operation is a function only of the maximum number of different processes that
are simultaneously active at some point during the operation sub-execution interval.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 384–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Space and Step Complexity Efficient Adaptive Collect 385

In this paper deterministic collect algorithms are presented. The first is an
O(n3) space O(k) adaptive step complexity algorithm (§ 4.1). Where n is the
total number of processes in the system, k is the total contention of an oper-
ation and {1 . . .N} is the processes identifiers name space. The second algo-
rithm (§ 4.2) reduces the space complexity to O(n) for the price of increas-
ing the step complexity to O(k log log k) and restricting the identifiers size of
processes to O(n) (i.e., N = O(n)). The O(k) steps O(n) space algorithm (§
4.3) is an extension of the second algorithm. Finally we remove the restric-
tion on the name space from the third algorithm and obtain an O(n2) space
and O(k) step complexity unrestricted name space collect algorithm (also in §
4.3).

Table 1. Results summary. Section 5 algorithms are slightly less efficient than Sub-
section 4.3 algorithm but much simpler.

Ref Step complexity Space
& assumptions 1-st Store by a process Collect complexity

[AFG02] O(k) O(k) O(2n)
Unrestricted

[AKWW] O(k/δ) O(k2/δ log n) O(n2+δ)
Unrestricted

Subsection 4.3 O(min(k, n3/8)) O(k) O(n)
N = O(n)

Subsection 4.3 O(k) O(k) O(n2)
Unrestricted

Section 5 O(min(k,
√

n)) if (k ≤ n1/3) then O(k) O(n)
N = O(n) else O(min(n, k log k))

Section 5 O(k) if (k ≤ n2/3) then O(k) O(n2)
Unrestricted else O(k log k)

[AKWW]
Randomized O(k) O(k) O(n1.5)
N = O(n)

In [AKWW], Attiya et al. provided a randomized O(n1.5) space collect al-
gorithm whose expected step complexity is O(k) while assuming that N is of
size O(n). (This assumption could be relaxed also in this randomized algorithm
by using the Moir-Anderson [MA95, AF98] renaming algorithm, resulting in a
O(n2) space complexity and worst case step complexity of O(k4) (instead of
O(k2)), but remaining with linear expected step complexity.)

In [AFK04] Attiya, Fich and Kaplan prove that any O(f(k))-adaptive to total
contention one-shot collect algorithm requires at least Ω(f−1(n)) multi-writer
registers. That is, if the adaptive step complexity is O(k) then the algorithm
requires at least Ω(n) multi-writer registers. Hence, the deterministic algorithms
presented in [AKWW, AFG02] still leave a large gap between the corresponding
space complexity upper and lower bounds. In this paper we close the gap when

386 Y. Afek and Y. De Levie

the identifiers size of processes is restricted to O(n) (N = O(n)), and the gap
has been substantially reduced when N is unrestricted.

In [AF03, AST99] collect algorithms that adapt to point contention are given.
Being point contention adaptive these algorithms assume that the register size
is O(n) times larger than the register size in the algorithms discussed above.

All algorithms in this paper use a new collect building block, called Telescopic
Watermark Collect (TWC), that has the following two properties: O(N1.5) space
complexity, and O(k) step complexity if the identifier size of an incoming process
is at most quadratic in the number of processes that have accessed the building
block so far. To derive from this collect object the first algorithm, which is an
O(n3) space, O(k) steps collect, processes in their first store operation go through
an adaptive (also in the output name space) MA-renaming (n× n)-matrix (see
Figure 2(b))). Then, the new id a process obtains from the MA-renaming is
used as the id with which the process performs a store operation in a TWC in
which NTWC = n2 (i.e., of (n3) space). Notice that in this algorithm there is no
restriction on the identifiers size of participating processes.

To reduce the space complexity of this algorithm we use a smaller size TWC
object and a smaller size MA-renaming matrix. However, such smaller structures
may not have room for all n processes. That is, when k the total number of
processes that participate in the collect is large enough, processes may fail to
obtain a new id from the MA-renaming, or may not fit into the smaller TWC
structure. For such processes we either apply recursive divide and conquer or,
add a backup structure whose step complexity may be worse but is used only
when it is guaranteed that k is above a certain threshold, such as k > n1/4 or
n1/3 and spending that many steps would not hurt the adaptive-linearity of the
algorithm.

The model used in the paper is given in Section 2. Preliminary building blocks
used in our algorithms are described in Section 3. The linear step linear space
algorithm is constructed in Section 4 via a sequence of constructions. In Section
5 we present two additional algorithms with a much simpler presentation and
space complexities as efficient as the above, but with a slightly less efficient step
complexity (k log k instead of k). Finally in Section 6 concluding remarks are
provided. Due to space limitation some proofs and the code have been omitted
from this extended abstract and can be found at [AD].

2 Model

Following [AFG02, AKWW], here is a brief description of the model. We use the
standard asynchronous shared-memory model of computation. A system consists
of n processes, p1, ..., pn, communicating by reading and writing to atomic shared
registers. Each process has a unique identifier from the name space {1, ..., N}.

An algorithm is f(k) adaptive to total contention if there is a non-decreasing
function f such that the step complexity of each of its operations is O(f(k)),
where k is the total number of different processes that have been active since the
beginning of the algorithm execution up to the end of the operation execution.

Space and Step Complexity Efficient Adaptive Collect 387

A collect algorithm provides two operations store and collect. A store(val)
operation by process pi sets val to be the latest value for pi. A collect opera-
tion returns a view, a set of values, one for each processor such that, V [pi] the
value for process pi, is the last value stored by pi before the collect has started
or concurrently with the collect operation. And the view returned by a collect
operation Cl that completely follows another collect operation Ce is at least as
updated as Ce. That is each V [pi] of Cl is the same or a later value that was
written by pi.

3 Algorithms Preliminaries and Building Blocks

As described in the Introduction each of our algorithms is constructed from a
collection of building blocks (structures). In its first store operation a process
traverses a sequence of these structures until it captures a node in one of the
structures and uses the register associated with that node as its dedicated register
for the rest of the algorithm execution. In each subsequent invocation of store
a process updates directly the register it has captured in the first invocation.
Therefore, in the following algorithms we mostly describe and analyze the capture
and collect operations. In a collect operation a process scans the relevant portions
of the data structures that were traversed during the preceding store operations,
and collects the information found in all the captured registers.

In all our algorithms, in its first invocation of a store operation a process
goes (in the capture procedure) through several structures and may go through
a renaming process several times. Each time taking the previously obtained id
and generating a newer id either by going through a renaming algorithm or
by some other arithmetics. In all these algorithms when process pj starts the
first store operation it assigns its original id into a variable called namej. As
it renames itself the id in idj may change while going from one building block
to the next, but namej always holds the original name of the process. In each
building block the parameter N denotes the largest id that any process may
access this building block with. The parameter n denotes the maximum number
of processes that may access the object or building block.

A key building block used in all our algorithms is the Telescopic Watermark
Collect object (TWC). In this section we provide a step wise construction of the
Telescopic Watermark object from smaller building blocks, which are: Water-
mark Collect (WC), and Divided Watermark Collect (DWC).

Notation:

– A process pj accesses each of the building blocks WC, DWC, and TWC
with input parameters namej and idj . Each of these building blocks takes
a parameter N , e.g., TWC(N), which is the largest id a process may access
this building block with. Copies of the building block are later generated
with different values of N .

– Each of the collect algorithms in Sections 4 and 5 is denoted by (steps,
space) − Collect, indicating this algorithm has steps step complexity and

388 Y. Afek and Y. De Levie

space space complexity. E.g., (k, n2)-Collect denotes an O(k) step O(n2)
space adaptive collect algorithm.

3.1 Watermark Collect(N)

Assume that magically we have an adaptive renaming oracle that renames the
processes as they access it with numbers in the range 1, . . . , f(k) where k is the
total number of processes that have showed up so far, e.g., f(k) = 2k− 1. Then
if f is linear, a (n, k)-Collect algorithm is simple to obtain by giving each pro-
cess a register in an O(n) size array of registers indexed by the new id (call it
index) a process has obtained. To ensure that a collect operation scans only the
“occupied” portion of the array we “watermark” the array with a corresponding
array of flags. In its first store operation a process sets all the flags in the array
from the entry that corresponds to the register it has captured in the array until
the first flag.

The Watermark Collect is basically that. The most suitable renaming we
found is the AF-renaming (Attiya Fouren) Reflectors Network - that provides
a (2k − 1)-renaming in O(N) steps and O(N2) space [AF98], which are thus
the complexities of the Watermark Collect. We append the renaming object
with an array A each entry of which consists of three registers name, value and
flag (see Figure 1(a)). In the capture operation (called by the first invocation
of the store operation) a process pj uses its idj to rename itself to obtain a
new id, called index. It then captures register A[index] and sets all the flags
in A[index].f lag, A[index − 1].f lag, . . . , A[1].f lag. To collect the values stored
in the Watermark Collect a process sweeps through the array A from A[1] to
the first un-set Flag entry, reading all the values associated with these entries.
Clearly the store operation takes O(N) steps (due to the renaming cost), the
collect takes O(k) steps and the space complexity is O(N2) (again due to the
Reflectors Network in the AF renaming).

N N,()
Watermark Collect

N N,()
Watermark Collect

1≤ ≤ ⎡⎢ ⎤⎥id N N id N⎡⎢ ⎤⎥ < ≤ ⎡⎢ ⎤⎥2

N⎡⎢ ⎤⎥ −1

N N id N⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥ −() < ≤1

N N,()

(a) (b)

O(N) steps
[AF98]

.

(2k−1)−renaming

Watermark Collect

1 02n−1

Fig. 1. (a) Watermark Collect(n, N) (b) Divided Watermark Collect(N) constructions

Space and Step Complexity Efficient Adaptive Collect 389

Notice that replacing the AF-renaming in this construction with any O(k)-
renaming algorithm with O(k) step complexity and O(S) space complexity re-
sults in an O(k) steps collect algorithm with O(n + S) space complexity.

3.2 Divided Watermark Collect(N)

The main problem with the Watermark Collect is the high cost of a store oper-
ation and of space, due to the AF-renaming. On the other hand, the cost of the
collect operation is O(k). As a first step in alleviating this issue we reduce the
cost of the store operation on the account of increasing the cost of the collect
operation until they are both O(

√
N). At the same time we also reduce the space

complexity. This is achieved by using smaller size Watermark Collect objects and
assigning processes to the different Watermark Collects according to their ids.
Specifically, the Divided Watermark Collect is constructed from a sequence of
�
√

N � Watermark Collects(�
√

N �), which results in a O(
√

N) steps store and
O(k +

√
N) collect with O(N1.5) space.

In its capture operation a process pj such that, i�
√

N� < idj ≤ (i + 1)�
√

N�
invokes the capture method of the i’th Watermark Collect object with input
parameters (namej , idj mod �

√
N �) (see Figure 1(b)). To perform a collect,

a process collects the values from all the �
√

N � Watermark Collects as was
described above.

3.3 Telescopic Watermark Collect(N)

To turn the non-adaptive Divided Watermark Collect into an adaptive collect
we assume that the ids with which processors enter the object are adaptive.
That is we assume that magically each process arrives with an id in the range
1, . . . , f(k) where k is the total number of processes that have showed up so
far, e.g., f(k) = k2 (if MA-renaming is used). We then construct a sequence of
increasing in size Divided Watermark Collect objects and send processes with
small ids to small DWC objects. In this way the step complexity of the store
operation is a function of the complexity of the DWC that is used. For example,
if a process with id = t accesses a DWC(O(t)) then its store step complexity
(in the corresponding DWC) is O(

√
t). Since t = O(k2) (assuming f(k) = k2)

the resulting step complexity is O(k). To collect the values from this sequence of
DWC objects structure we associate with each DWC a flag (similar to the flags
in the Watermark object). The flag of a DWC is set if any process stored a value
to any DWC of equal or larger size. In the collect operation a process collects
the values from all the DWCs whose flag is set (until the first one whose flag is
not set).

That is, the Telescopic Watermark Collect object consists of a telescopic
sequence of increasing in size DWC collect objects, each twice the size of the
previous one. The first one is for constant name space C and the last is for name
space N . I.e., there are ≈ log N DWC’s(see Figure 2(a)). Finally, another array,
called sweep array, of size ≈ log N , is used to hold the flag registers associated
with each DWC.

390 Y. Afek and Y. De Levie

()n2

N

C
C id N

2

⎡
⎢⎢

⎤
⎥⎥

< ≤

id N≤

C id C< ≤ 2

1≤ ≤id C

2 4C id C< ≤

(a) (b)

DWC (2C)

DWC (4C)

DWC (N)

DWC (C)

Matrix
[MA]

Watermark Collect
Telescopic

Renaming

n

n

Fig. 2. (a) Telescopic Watermark Collect(N) (b) Unrestricted Name Space (k, n3)-
Collect constructions

In its capture operation (called by the first store operation) a process uses its
id to decide into which DWC it stores its value. A process with id ≤ C selects
the first one, where as with 2i−1C < id ≤ 2iC selects the i’th DWC (see Figure
2(a)). The process also sets the flags in the Sweep Array according to the DWC
it has selected. To perform a collect, a process collects from the smallest DWC
until the first DWC whose flag is not set. On each such DWC the collect will be
as described in subsection 3.2.

The Telescopic Watermark Collect thus consumes O(N1.5) space and pro-
vides O(k) step complexity if the size of the id of any incoming process is at
most quadratic in the number of processes that have accessed this building block
before this process finishes. The space complexity is dominated by the space
requirement of the largest DWC(N), which is

√
N Watermark collects each con-

suming (by the AF-renaming in it) O(N) space.

Lemma 1. The Telescopic Watermark Collect provides O(k) step complexity if
the size of the id of any incoming process is at most quadratic in k.

4 Stepwise Construction of Linear Step and Linear Space
Collect Algorithm

4.1 Unrestricted Name Space (k, n3)-Collect

As was described above a straightforward method to construct a collect object
from the TWC is to frontend a TWC(n2) with a Moir Anderson adaptive O(k2)-
renaming matrix [AF98, MA95], which takes O(k) steps and O(n2) space. We
thus derived an O(k) steps collect with O(n3) space (see the construction in
Figure 2(b)).

Space and Step Complexity Efficient Adaptive Collect 391

4.2 Restricted Name Space (k log log k, n)-Collect

Consider a MA-renaming (n1/4×n1/4) matrix followed by a TWC(n1/2). As long
as k ≤ n1/4 this construction provides an O(n) space collect structure that re-
quires O(k) steps for both store and collect operations. If k > n1/4 then processes
may fail to obtain a name in the MA-renaming in their capture procedure. In this
event a special flag associated with this MA-renaming is set and these processes
are then recursively divided into n1/4 groups each of at most n3/4 processes (see
Figure 3). I.e., a process with idj such that, i�n3/4� < idj ≤ (i+1)�n3/4� (where
in this case idj is the name with which the process started), enters group i and
replaces its idj with idj mod �n3/4�. In each group we repeat the above recur-
sively. E.g., in the first level of the recursion, each group is of size at most n3/4,
and contains MA-renaming (n

3
4 · 14 × n

3
4 · 14) matrix followed by a TWC(n

3
8). Pro-

cesses in a group in the first level that fail to obtain a name in the MA-renaming
(n

3
16 × n

3
16) matrix are then recursively divided into n

3
4 · 14 groups, each of size

n
3
4 · 34 . This divide and conquer step is repeated recursively O(log 4

3
(logq n)) times,

getting at the bottom O(n) groups each capable of containing a constant number
q ≥ 2 of processes. In each such group at the bottom level there is a constant
size array, where each process captures the entry indexed by the id with which
it had entered this level.

nn3
4

n1
4

n1
4n3

4

1
4()

n3
4

1
4()

n1
4

Matrix
Renaming

[MA]

Renaming
Matrix
[MA]

TWC() TWC()

. . .

Fig. 3. Restricted Name Space (k log log k, n)-Collect construction

392 Y. Afek and Y. De Levie

In a collect operation a process essentially performs a DFS on the flagged
portion of the tree of groups and in each such flagged group it performs a col-
lect. I.e., if the group is not at the bottom level it performs the collect on the
corresponding TWC of the group, otherwise it performs the collect on the cor-
responding constant size array. A collect on the array simply requires going
through all the entries of the array collecting all the values from the captured
entries.

Lemma 2. At level i there are n1−(3/4)i

groups each capable of containing at
most n(3/4)i

processes.

Observation 1. At each level, a process may belong only to one group while
trying to capture a node.

Observation 2. if k ≤ n1/4 all the processes capture a node in the first group.

Lemma 3. The store operation in the first invocation takes O(min(k, n1/4))
steps.

Definition 1. kG is the number of processes that enter the MA-renaming asso-
ciated with group G while trying to capture a node.

Definition 2. Si is the set: {G | G is a group at level i s.t., kG > 0}.

Lemma 4. The collect operation on all the groups in Si (i = 1 . . . log log n),
takes O(k) steps.

Proof. In case level i < log log n (not the bottom level), the collect operation on
the TWC associated with group G ∈ Si takes O(kG) steps. This follows Lemma
1 and the fact that the identifiers size of processes that enter the TWC in this
group is ≤ kG

2 . Due to Observation 1,
∑

G∈Si

kG = k, and therefore, the step

complexity of the collect operation on all the groups in Si is O(k).
In case i = log log n (bottom level), the collect operation on a group takes

O(1) steps. Due to observation 1, there are no more than k groups in Si. There-
fore, the step complexity of the collect operation on all the groups in Si is O(k).

Lemma 5. The total number of groups the collect operation visits is O(k log
logn).

Corollary 1. The collect operation takes O(k) steps if k ≤ n1/4 (Observation
2), and O(k log log n) = O(k log log k) otherwise.

Lemma 6. The space complexity is O(n).

Proof. Each group G at level i (except the bottom level) contains two data
structures, MA-Renaming and TWC. The MA-Renaming is a (n(3

4)i

)
1
4×(n(3

4)i

)
1
4

matrix and therefore consumes O(n(3
4)i

)
1
2) space. The TWC is for processes with

identifiers of size at most (n(3
4)i

)
1
2 and therefore consumes O(((n(3

4)i

)
1
2)1.5) =

Space and Step Complexity Efficient Adaptive Collect 393

O(n(3
4)i+1

) space. Hence, the space required by each group at level i is dominated
by the TWC and is thus O(n(3

4)i+1
).

At level i there are n1−(3
4)i

groups (lemma 2). Therefore, in each level except
the bottom level, the space complexity of all the groups together is

O(n(3
4)i+1

) · n1−(3
4)i

= O(n1− 1
4 ·(3

4)i

).

Following Lemma 2 there are log 4
3
(logq n) levels where q is the size of the

group at the bottom level which is ≥ 2. Therefore the total space complexity of
the construction in all the levels except the bottom one is

O(
log log(n)−1∑

i=0

n1− 1
4 ·(3

4)i

).

We claim (the proof is omitted from this extended abstract) that the above
summation is < 15n

Clearly the space required by the groups at the bottom level is O(n) ��

4.3 Restricted Name Space (k, n)-Collect

In the last algorithm we achieved (k log log k, n)-collect assuming a restricted
name space (N = O(n)). Whereas the store step complexity of that algorithm is
already O(k), the step complexity of the collect is O(k log log k). The complexity
of the collect would have been linear in k if (1) in each visited group G the
number of steps spend is linear in the number of processes k′

G that have entered
G’s TWC in the capture procedure, and (2) the number of groups visited by
a collect is O(k). Neither (1) nor (2) are satisfied in the (k log log k, n)-collect
described above but with some modifications it will satisfy them.

Notation: Let TWCG be the TWC in group G, k′
G the total number of pro-

cesses which have entered TWCG in the capture procedure, and nG the maximum
number of processes which may enter group G.

To satisfy point (1) above we ensure that any process which captures a node in
a TWCG has identifier of size at most O(k′2

G). The first n
1/4
G ×n

1/4
G MA-renaming

matrix does not provide this, since it is possible that more than n
1/4
G processes

reach this MA-renaming but only a few of them obtain a new name. And their
new name sizes may be in the order of n

1/2
G . To this end, a second n

1/4
G × n

1/4
G

MA-renaming matrix is inserted before the TWCG such that each process that
obtained a name in the first n

1/4
G ×n

1/4
G MA-renaming matrix goes through this

second renaming matrix of the same size (see Figure 4). Lets distinguish between
two cases, k′

G ≤ n
1/4
G and k′

G > n
1/4
G . In the former each process obtains a new

identifier of size O(k′2
G) in the second renaming matrix. In the Latter these

processes obtain “good enough” identifiers in the first MA-renaming. Still, a
process which did not obtain a name in the second MA-renaming may not enter
the TWC with the identifier it got from the first MA-renaming, since another

394 Y. Afek and Y. De Levie

process might have gotten the same id from the second MA-renaming. Therefore,
in this case we add to this identifier a n

1/4
G offset and enlarge the TWC to

a TWCG(2n
1/2
G) such that it accommodates this new identifier size. All these

changes do not affect the collect operation which remain unchanged.

2 n

n1
4

n1
4

n1
4

n3
8

n3
8

n1
4

newId2newId
1

newId n1
1

4+

TWC()
Renaming

Matrix
[MA]

Matrix
Renaming

[MA]

. . .

Renaming
Matrix
[MA]

Fig. 4. This construction is Fig. 3 after all the modifications to get (k, n)-Collect.
Processes that obtain a new name in a MA-renaming exit the matrix on the right,
processes that fail exit at the bottom.

To satisfy Point (2) above we ensure that when a collect operation goes
down one level from group G it visits only one child group unless at least Ω(n3/8

G)
processes entered group G in their capture procedure. In the capture procedure at
any group G, a process that fails to obtain a name in the first MA-renaming goes
through yet another third MA-renaming matrix of size n

3/8
G × n

3/8
G (see Figure

4). A process that does not get a new id in the third MA-renaming continues
as usual to one of the n

1/4
G groups, not before it turns on a flag indicating that

these groups are being used (which means that kG > n
3/8
G . n

1/4
G , kG is the

number of processes which visit group G). If a process does get a new id it goes
down into a new child group of G, of the same size as the other child groups, and
continues in the same way it would have done in any of the other child groups.
The only change in the collect operation is that when it goes down to the next
level its path is divided only if kG > n

3/8
G (instead of kG > n

1/4
G).

Space and Step Complexity Efficient Adaptive Collect 395

These two changes improve the step complexity of the collect to O(k) while
asymptotically, not affecting the space complexity.

Lemma 7. The store operation takes O(min(k, n3/8)) steps.

Lemma 8. The collect operation in a visited TWCG takes O(k′
G) steps if k′

G >
0, O(1) otherwise.

Lemma 9. The total number of groups the collect operation visits is O(k).

Proof. The lemma is proved by showing that each process that performs capture
(out of the k processes) is responsible for O(1) groups that the collect visits.

We assign all the groups visited by a collect operation to the different pro-
cesses that perform capture. The assignment is such that a capturing process
maybe assigned many fractions of groups, however the assignment completely
covers all the groups. The lemma is proved by showing that the sum of all frac-
tions assigned to a capturing process is O(1).

1. The root group is assigned to the first process that starts executing the
capture procedure.

2. A process which enters Group G is assigned O(n− 1
8

G) out of the n
1
4
G+1 groups

that G is divided into.

To prove that the assignment completely covers all the groups visited by a
collect operation we distinguish between two cases. Whether the collect visits
all the child groups of G, or visits just one child group of G. In the former
more than n

3
8
G capturing processes entered G covering all the child groups since

n
3
8
G · O(n− 1

8
G) = O(n

1
4
G). In the latter more than n

1
4
G capturing processes entered

G covering the child group since n
1
4
G · n

− 1
8

G = n
1
8
G > 1.

To complete the proof note that the sum of assignments each capturing pro-
cess receives is at most

1 +
log log(n)−1∑

i=0

n− 1
8 (3

4)i

The proof that this expression < 31 is omitted from this extended abstract. ��

Corollary 2. The collect operation takes O(k).

Unrestricted case: This algorithm has an unrestricted name space variant by
simply sending a process in the capture procedure first through a MA-renaming
(n×n) matrix and using the obtained id as the id with which it enters the above
algorithms. The structure of each algorithm is then initiated for n2 processes,
i.e., replace n with n2 in the above. This results in (k, n2)-Collect unrestricted
name space algorithm.

396 Y. Afek and Y. De Levie

5 Simple Linear Space and Nearly Linear Step Collect
Algorithm

In this section we provide two considerably simpler algorithms which are built
from three basic building blocks, a Telescopic Watermark Collect(N) (Section
3.3), an IDs Tree(N), and the Moir Anderson renaming matrix as suggested in
[MA95, AF98].

The IDs Tree(N) data structure (which is used with different values of N)
is a balanced binary tree with N leaves. With each internal node we associate
a register - Flag. The leaf nodes of the IDs Tree are the nodes that processes
attempt to capture in the first invocation of a store operation, and with each
leaf node a < value ; name > pair of registers is associated. The leaf nodes of
each IDs Tree are arranged in an array indexed by processes id’s. To capture a
leaf-node in a store operation a process accesses that node (without contention,
it is the only process with that id) and then marks the flags along the path from
this leaf-node to the root of the tree. To collect the values stored in an IDs Tree
a process performs a DFS traversal of the flagged portion of the tree. Clearly the
store operation on the IDs Tree takes O(log N) steps and the collect operation
takes O(min(k log(N), N)) steps. The space complexity is O(N).

Restricted Name Space (k log k, n)-Collect. In the capture operation (see Figure
5(a)) called by the first invocation of the store operation a process first tries to
obtain a new id with the MA adaptive renaming matrix of size n1/3 × n1/3. If
it obtains a new name then it runs with it in a TWC(n2/3). Otherwise it runs
with its name, the original id, in an IDs Tree(n).

n
1
3

n
1
3

()n
2

3

n2

()n2

()n
4

3

Matrix
Renaming

[MA]

1 . . . n

Watermark Collect

Matrix
Renaming

[MA]

1 . . .

)IDs Tree(n

n

n

IDs Tree

Watermark Collect
Telescopic

(a) (b)

Telescopic

Fig. 5. (a) Restricted Name Space (k log k, n)-Collect (b) Unrestricted Name Space
(k log k, n2)-Collect constructions

To perform a collect, a process collects from both the TWC(n2/3) and the
IDs Tree(n). Thus a (min(k log k, n), n)-collect algorithm has been obtained.

Unrestricted Name Space (k log k, n2)-Collect. An unrestricted name space vari-
ant of the above is obtained using the same ideas and following the structure
depicted in Figure 5(b).

Space and Step Complexity Efficient Adaptive Collect 397

6 Concluding Remarks

While for processes with identifiers of size O(n), an optimal O(n) space O(k)
step complexity collect algorithm has been presented, it is still open to find an
algorithm with such complexities for the unrestricted name space case.

A major theme of this paper is the relations between adaptive renaming
algorithms and adaptive collect algorithms. Clearly replacing the MA-renaming
by a more efficient, in both space and step, renaming algorithm would induce a
more efficient, in space, collect algorithm for the unrestricted name space case.

Many renaming and collect algorithms work in the same method as the algo-
rithms in this paper, of capturing a node in a network of nodes
[MA95, AF98, AFG02]. In the renaming algorithms the total number of nodes is
the name space of the new names, each node represents a new id. In the collect
on the other hand, the number of nodes relates to the space complexity and does
not necessarily effect the other qualities of the algorithm.

The algorithms in this paper combine a linear-adaptive step complexity
renaming algorithm which is not optimal in the space of new names (MA-
renaming), with an optimal renaming algorithm which is not adaptive in the
step complexity (AF-renaming). By cascading these two algorithms we made
the step complexity of the latter effectively adaptive. Still this is not useful for
a linear adaptive renaming algorithm, but because in the first store operation
of the collect it is only necessary to capture a unique node and not a unique
number, this is enough to get a linear collect algorithm.

The adaptive collect algorithms presented in Section 4.3 may be used to
construct an adaptive atomic snapshot algorithm by carefully modifying Afek et
al. [AAD+93]. The resulting atomic snapshot algorithm runs in O(k2) steps and
O(n) multi-writer registers if the name space is restricted (N = O(n)) and with
O(n2) multi-writer registers if the name space is unrestricted.

Acknowledgements. We would like to thank Hagit Attiya and the DISC-05
anonymous referees for helpful comments.

References

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and
Nir Shavit. Atomic snapshots of shared memory. J. ACM, 40(4):873–890,
1993.

[AAF+99] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou.
Long-lived renaming made adaptive. In PODC ’99: Proceedings of the
eighteenth annual ACM symposium on Principles of distributed computing,
pages 91–103, New York, NY, USA, 1999. ACM Press.

[AD] Yehuda Afek and Yaron De Levie. Space and step complexity efficient
adaptive collect. http://www.cs.tau.ac.il/∼afek/papers/collect.pdf.

[AF98] Hagit Attiya and Arie Fouren. Adaptive wait-free algorithms for lattice
agreement and renaming (extended abstract). In PODC ’98: Proceedings
of the seventeenth annual ACM symposium on Principles of distributed
computing, pages 277–286, New York, NY, USA, 1998. ACM Press.

398 Y. Afek and Y. De Levie

[AF03] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention.
J. ACM, 50(4):444–468, 2003.

[AFG02] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with
applications. Distributed Computing, 15(2):87–96, 2002.

[AFK04] Hagit Attiya, Faith Ellen Fich, and Yaniv Kaplan. Lower bounds for
adaptive collect and related objects. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on Principles of distributed comput-
ing, pages 60–69, New York, NY, USA, 2004. ACM Press.

[AKWW] Hagit Attiya, Fabian Kuhn, Mirjam Wattenhofer, and Roger Wattenhofer.
Efficient adaptive collect using randomization. In Distributed algorithms,
pages 159–173. Also in DISC ’04: 18th International Symposium on Dis-
tributed Computing.

[AST99] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived adaptive collect
with applications. In FOCS ’99: Proceedings of the 40th Annual Sympo-
sium on Foundations of Computer Science, pages 262–272, 1999.

[MA95] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-
lived renaming. Science of Computer Programming, 25(1):1–39, 1995.

Observing Locally Self-stabilization in a

Probabilistic Way

Joffroy Beauquier, Laurence Pilard, and Brigitte Rozoy

Laboratoire de Recherche en Informatique - CNRS,
Université Paris-Sud - Bât. 490 91405,

Orsay Cedex, France
beauquier@lri.fr - (0)1.69.15.67.96

pilard@lri.fr (0)1.69.15.66.34
rozoy@lri.fr (0)1.69.15.66.09

Regular Track

Abstract. A self-stabilizing algorithm cannot detect by itself that stabi-
lization has been reached. For overcoming this drawback Lin and Simon
introduced the notion of an external observer: a set of processes, one
being located at each node, whose role is to detect stabilization. Fur-
thermore, Beauquier, Pilard and Rozoy introduced the notion of a local
observer: a single observing entity located at an unique node. This en-
tity is not allowed to detect false stabilization, must eventually detect
that stabilization is reached, and must not interfere with the observed
algorithm.

We introduce here the notion of probabilistic observer which realizes
the conditions above only with probability 1. We show that computing
the size of an anonymous ring with a synchronous self-stabilizing algo-
rithm cannot be observed deterministically. We prove that some syn-
chronous self-stabilizing solution to this problem can be observed prob-
abilistically.

1 Introduction

The notion of self-stabilization was introduced by Dijkstra [Dij74]. He defined an
algorithm as self-stabilizing when “regardless of its initial state, it is guaranteed
to arrive at a legitimate state in a finite number of steps”. Such a property
is very desirable for any distributed algorithm, because after any unexpected
perturbation modifying the memory state, the algorithm eventually recovers
and returns to a legitimate state, without any outside intervention.

Dijkstra’s notion of self-stabilization, which originally had a very narrow
scope of application, is proving to encompass a formal and unified approach
to fault-tolerance under a model of transient failures for distributed algorithms
[Dol00, Tel94].

It has been objected to the self-stabilizing approach that 1) a self-stabilizing
algorithm only eventually recovers, involving that during some time the be-
haviour is not correct, 2) a process can never know whether or not the algorithm
is stabilized [Dol00].

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 399–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 J. Beauquier, L. Pilard, and B. Rozoy

There is little that you can do against the first point because it is inherently
bounded to the very definition of self-stabilization.

The only studies dealing with the second issue are the important paper by Lin
and Simon [LS92] and the paper [BPR04]. Obviously, no detection of stabilization
from the inside is possible since any local variable used for that purpose could
be corrupted. Meanwhile it is perfectly feasible to detect stabilization from the
outside (for instance and although it is just a theoretical remark, when a bound
on the number of steps before stabilization is known, simply by counting). “From
the outside” can be replaced by “from the inside but using stable memory”
(memory not subject to failures).

By restricting their attention to ring networks, Lin and Simon in [LS92]
propose a new model, in which it is meaningful to say that a process knows that
the ring is stable. This model introduces the notion of a distributed observer,
located at each node of the network. This observer is responsible for detecting
stabilization and does not influence the self-stabilizing protocol. As the observer
involves, at each node, the presence of a stable memory, such a distributed
observer is suited only for small local area networks, in which strong security and
reliability can be ensured. It is unrealistic for large or heterogeneous networks.

In [BPR04], a local observer has been introduced. This local observer is lo-
cated at only one node of the network, then only one node has to dispose of some
stable memory. The local observer is responsible for detecting stabilization and
does not influence the self-stabilizing protocol. In [BPR04], it is proven that if
there exists a synchronous self-stabilizing distributed solution for some problem
in a distinguished network, then there exists a synchronous self-stabilizing dis-
tributed solution, not necessarily the same, for the same problem, that can be
observed by a local observer.

In this paper, we raise the question of determining whether or not the stabi-
lization detection is feasible by a local observer in an anonymous and synchronous
network. We prove that there exists a self-stabilizing algorithm for some problem
P, for which there is no deterministic observation. Then we introduce the notion
of local and probabilistic observer and we prove that such an observer can detect
the stabilization of another self-stabilizing algorithm solving P.

The plan of the paper is the following. First, we describe the distributed
systems and we introduce the formal definition of a local and probabilistic ob-
server. Then, we prove that the problem of determining the size of a synchronous,
anonymous and one-way ring cannot be observed by a local deterministic ob-
server. Next, we introduce a self-stabilizing algorithm which computes the size
of a synchronous, anonymous and one-way ring. Finally, we prove that this al-
gorithm can be observed by a local and probabilistic observer.

2 Model

In this section, we define a distributed algorithm and we state what it means
for a distributed algorithm to be self-stabilizing. We use the classical model for
distributed algorithms of [Tel94] and the notion of a local observer of [BPR04].

Observing Locally Self-stabilization in a Probabilistic Way 401

We recall the definition of a deterministic observer and we define a probabilistic
observer.

Distributed algorithm. A distributed algorithm A = (C, A) is an automaton,
where C is the set of all states (called configurations) of A and A is the set of all
transitions (called actions) of A. An execution of A, noted e = c1a1c2a2 . . . is a
maximal sequence of configurations and actions of A such that ci+1 is reached
from ci by the execution of the action ai. The sequence is maximal if it is either
infinite, or it is finite but no action of A is enabled in the last configuration. All
computations considered in this paper are assumed to be maximal.

An algorithm A is self-stabilizing for a specification SP if and only if there
exists a sub-set CL of the set of the configurations of A such that: (i) every
execution of A contains at least one configuration in CL, (ii) every execution of
A with an initial configuration in CL verifies SP and CL is closed. We call CL
the set of legitimate configurations of A.

We use the definition of a probabilistic self-stabilizing algorithm defined in
[BGJ99].

A probabilistic algorithm A is self-stabilizing for a specification SP if and
only if there exists a sub-set CL of the set of the configurations of A such that:
(i) the probability for an execution to reach a configuration in CL is equal to 1,
(ii) the probability for an execution from a configuration in CL to stay in CL is
equal to 1.

Observer. As it is described in [BPR04], an observer has the following fea-
tures. (1) The observer is located at a process of the network. If the network is
anonymous, the location of the observer is arbitrary. (2) The observer is not
allowed to detect stability with any information depending on the network (for
instance the size). (3) The observer cannot interfere with the algorithm, which
means that the executions of the algorithm are the same with or without the ob-
server. (4) The observer is not subject to any type of corruption. (5) The observer
observes the behavior of the local process (sequential sequence of instructions)
and tries to match part of this behavior with some predefined sequences. (6) The
announcement of the stabilization obeys some safety and liveness conditions.

The observer can be viewed as a mechanism having a predetermined set of
sequences of actions as a parameter. The mechanism observes the local behavior
of a process and continuously tries to match one of its sequences to the ob-
served behavior. As soon as a matching is performed, the observer announces
the stablilization.

The observer must satisfy three conditions :

1. Safety. The observer does not announce if the algorithm is not stabilized.
2. Liveness. Once the algorithm is stabilized, the observer eventually

announces.
3. Non-interference. The executions of the algorithm are the same with or with-

out the observer.

Definition 21 (Deterministic observer). If A is a self-stabilizing algorithm
and O a deterministic observer of A, we have: (safety) as long as A is not

402 J. Beauquier, L. Pilard, and B. Rozoy

stabilized, O returns false, and (liveness) once A is stabilized, O eventually re-
turns true. We say that A is an observable algorithm.

The deterministic and probabilistic observers have different safety and live-
ness conditions. A probabilistic observer is defined with a parameter α.

Definition 22 (Probabilistic observer). If A is a self-stabilizing algorithm
and Oα a probabilistic observer of A, we have: (liveness) the observer announces
eventually the stabilization with probability 1; (safety) ∀ε ∈]0, 1], ∃α used by the
observer: Proba(correct announcement by Oα) > 1− ε.

In the safety property, ε is the margin of error of the announcement. For
each margin of error ε allowed for the announcement, there exists a value of the
parameter α such that the probability for a false announcement is less than ε.
α is used to compute predetermined sequences of the observer. Intuitively the
smaller ε is, the higher α is.

3 Impossibility Result with a Deterministic Observer

In [BPR04], the following result has been proven: for any problem pb in a syn-
chronous and distinguished (presence of a leader) network, we have: if there exists
a self-stabilizing algorithm A solving pb, then there exists a self-stabilizing al-
gorithm B solving pb and which is observable in a deterministic way. In this
section, we raise the following question: does the result remain true if the net-
work is anonymous? For this purpose, we present a synchronous and anonymous
problem which cannot be observed in a deterministic way. This problem is the
computation of the size of a synchronous, anonymous and one-way ring. (Syn-
chronous means that a computation proceeds by rounds. In each round, each
process is activated. Anonymous means that processes are indistinguishable: no
id’s, same code).

Theorem 31. Let A be a self-stabilizing algorithm computing the size of a syn-
chronous, anonymous and one-way ring. There is no deterministic observer forA.

Proof.

Proof by contradiction.
Let Obs be a deterministic observer of A. Let R be a ring and n be the size of
R. We execute A and Obs on R. Obs is located at an arbitrary process of the
ring. Let P0 be this process. For the need of the proof, the processes of R are
named as follows: for all i in [0, n−1], Pi is the successor of P(i+1)mod n.

Let StatePi be the local state of the process Pi ∈ R at the initial round
(StatePi includes all messages contained in the input channel of Pi).

Let e be an execution ofA andObs on R, from the configuration: StateP0 , . . . ,
StatePn−1 . Let r be the round of e where Obs announces the stabilization.

Observing Locally Self-stabilization in a Probabilistic Way 403

Now, let R′ be a ring and n′ be the size of R′ such that n′≥r+1 and n′ �=n.
We execute A and Obs on R′. Obs is located at an arbitrary process of the ring.
Let P ′

0 be this process. For the need of the proof, the processes of R are named
as follows: for all i in [0, n−1], P ′

i is the successor of P ′
(i+1)modn

.
Let e′ be an execution of A and Obs on R′, with this initialization:
∀i ∈ [0, n′−1] : StateP ′

i mod n
= StatePi .

We say that Pi ∈ R is the associate of P ′
j ∈ R′ if and only if i = j mod n. For

instance, P0 is the associate of P ′
0 and P ′

2n, if it exists. If P is the associate of
P ′, then P and P ′ have the same initialization in e and in e′.

If A is deterministic and since the ring is one-way then all actions executed by
a process at a round depend only on the local states of P and of its predecessor.
Thus, the observer sees exactly the same actions in P0 and P ′

0 during the first r
rounds of e and e′.

If A is probabilistic, then all actions executed by a process at a round also
depend on probabilistic choices in the execution e. In this case, we choose e′ such
that all probabilistic choices in e are the same than in e′. Thus, the observer sees
exactly the same actions in P0 and P ′

0 during the first r rounds of e and e′.
Obs announces during the round r in e, so Obs announces during the round

r in e′. But the size of R is different from the size of R′, thus Obs makes a false
announcement in e′. Therefore Obs is not an observer for A.

�

4 Positive Result with a Probabilistic Observer

Let pb be the problem of computing the size of a synchronous, anonymous and one-
way ring. We proved in section 3, that ifA is a self-stabilizing algorithm solving pb,
then it cannot exist any deterministic observer forA. We introduce in this section
a self-stabilizing algorithm RS solving pb and observable in a probabilistic way.
In the first part, we describe this algorithm, then its probabilistic observer.

4.1 The Algorithm

In the sequel we note n the size of the ring.

Specification of the Algorithm

The algorithm is probabilistic as it is defined in [BGJ99] and verifies the following
specification SP : (i) each process knows eventually the size of the ring with
probability 1, and (ii) a process that knows the size of the ring does not modify
this value with probability 1.

The variable sizeP of a process P contains the current ring size value esti-
mated by P . The legitimate configurations CL of RS are the configurations of
RS in which: ∀P, sizeP = n. An execution e of RS satisfies the specification SP
if and only if e has a suffix containing only legitimate configurations.

404 J. Beauquier, L. Pilard, and B. Rozoy

Let E be the set of all executions of RS, e be an element of E and re be a
round of e. Let P be a process and let sizeP (re) be the value of sizeP at round
re.
Convergence : the probability for an execution to reach a legitimate configura-
tion is equal to 1: ∀e ∈ E, Proba(∀P : sizeP (re) = n) re → +∞−−−−−−−−−−→ 1 ;
Correctness : the probability for an execution from a legitimate configuration to
stay in a legitimate configuration is equal to 1:
∀e ∈ E, Proba(∀r′e > re, ∀P : sizeP (r′e) = n) re → +∞−−−−−−−−−−→ 1

Description of the Algorithm

The ring is anonymous, then all processes in the ring execute the same program.
Processes communicate by token passing.

When creating a token T , process P assigns a period of life to T in lifeT .
Then P saves this period in lifeP . Now P has to wait the end of this period for
creating another token. To do this, the process has a counter cptP such that:
at the begining of each round, cptP is incremented by 1 and, when the process
creates a new token, cptP is reset to 0. Thus, when cptP ≥ lifeP , the period of
life of the last token created by P is over. Furthermore, every time P creates a
token, the assigned period of life of the token is incremented by 1.

A process also assigns to each created token T a counter cptT which is ini-
tialized to 1. Moreover, at each round, if T is transmitted, then its counter is
incremented by 1. A process relays all tokens which have not exhausted their pe-
riods of life (cptT < lifeT). Thus, eventually all token disappears and eventually
two distincts tokens created by P cannot be in the ring at the same round.

Finally, a process assigns to a token a color. The process randomly chooses
the color between black and white (equiprobability) and stores this color in
colorP .

In summary, the variables of a process are:

1. colorP : the color of the last token created by P ;
2. cptP : the number of rounds since P has created its last token. At a round,

if P creates a token, then cptP is reset to 0, elsewhere cptP is incremented
by 1;

3. lifeP : the period of life of the last token created by P . When P creates a
token, lifeP is incremented by 1;

4. sizeP : the size of the ring computed by P . sizeP is the output variable of the
algorithm.

The variables of a token Token(colorT , cptT , lifeT) are:

1. colorT : the color of the token (constant during the life of T);
2. cptT : the number of processes visited by the token. cptT is initialized to 1,

then is incremented by 1 at each round (this variable also counts the number
of rounds since T has been created);

3. lifeT : the period of life of the token (constant during the life of T).

Observing Locally Self-stabilization in a Probabilistic Way 405

Computation of the size of the ring. Between two token creations, a process
analyses all tokens that it receives. Each token received by P is either recognized
or not. A token is recognized by P if and only if colorP = colorT and cptP = cptT .
“P recognizes a token T ” means that T is possibly the last token created by P .

In order to compute the size of the ring, a process P has two arrays: SP [] and
FP [] in which P counts respectively the number of recognized and not recognized
tokens among those received. More precisely, if P receives and recognizes a token
T such that cptT = i, then P marks a success in i, i.e. P executes the action
SP [i] := SP [i] + 1. Otherwise, if P receives but does not recognize a token T
such that cptT = i, then P marks a failure in i, i.e. P executes the action
FP [i] := FP [i] + 1.

Finally, a process P computes the size of the ring in sizeP :

sizeP := inf
{

i > 0 :
SP [i]

SP [i] + FP [i]
≥ 0.9

}
Figure 1 contains the algorithm executed by processes. Each round a process
executes the procedure Compute-Size().

Informal Explanation of the Algorithm

Example 1. Figure 2 shows an example of execution. Let r be a round and P be a
process creating a token T at round r. Let us suppose that the value of lifeP is 11
at round r−1 and that P chooses black for T . Thus, at round r, P initializes its
variables: colorP := •; cptP := 0; lifeP := 12 and P creates T (•, 0, 12). According
to the algorithm RS, T is transmitted if and only if cptT < lifeT . Thus T
circulates around the ring until round r+12.

At round r+5, P receives T with cptT = cptP = 5 and colorT = colorP = •.
Thus, at round r+5, P marks a success in 5. At round r+10, P receives T for
the second time with cptT = cptP = 10 and colorT = colorP = •. Thus, at round
r+10, P marks a success in 10.

At round r+12, Q2 receives T with cptT = lifeT . Thus Q2 does not trans-
mit T . T disappears from the ring. During all the token circulation, lifeP and
lifeT remains constant, thus during all the token circulation, lifeP = lifeT . Thus,
when T disappears, P knows that fact and then, if P does not receive any token
during the round, creates a new token.

We call real-token a token created by the execution of the function Create-
Token() and false-token a token resulting from a bad initialization.

We note SP [i](r), the value of the variable SP [i] at round r. We note SP [i],
the value of the variable SP [i] at the current round. We use the same notation
for all variables.

In the sequel k denotes a strictly positive integer.

Ratio for multiples of the size. If a process P receives a real-token T with
cptT = n, then T has performed one complete circulation around the ring.

406 J. Beauquier, L. Pilard, and B. Rozoy

Procedure Create-Token() =

colorP := uniformly at random choice in {white, black}
cptP := 0
lifeP := lifeP +1
Send Token(colorP , 1, lifeP) to the successor of P

Procedure Compute-Size() =

cptP := cptP +1
mP := value of the received channel of P

Part 1: P receives a token T .
if mP = Token(colorT ,cptT ,lifeT) then

(1) P marks a success or a failure
if cptP = cptT ∧ colorP = colorT then SP [cptT] := SP [cptT]+1

else FP [cptT] := FP [cptT]+1

(2) P updates sizeP .

sizeP := inf
{

i > 0 : SP [i]

SP [i]+FP [i]
≥ 0.9

}
(3) If T does not reach its period of life, then P transmits T ,
(4) else if the last token created by P has disappeared then P creates a new token.
if cptT < lifeT

then Send Token(colorT ,cptT +1,lifeT) to successor of P
else if cptP ≥ lifeP then Create-Token()

Part 2: P does not receive any token.
if the last token created by P has disappeared then P creates a new token.

else if cptP ≥ lifeP then Create-Token()

Fig. 1. The algorithm

Q1

Q2Q3

Q4

P

round r+1

P = (, 1, 12)

12

1 Q1

Q2Q3

Q4

P

round r+2

P = (, 2, 12)

2
12

Q1

Q2Q3

Q4

P

round r+5

P = (, 5, 12)

512

P marks a success in 5

Q1

Q2Q3

Q4

P

round r+10

P = (, 10, 12)

12 10

Q1

Q2Q3

Q4

P

round r+11

P = (, 11, 12)

12

11 Q1

Q2Q3

Q4Q1

Q2Q3

Q4

P

12 0

P marks a success in 10

......

round r+12

P = (, 0, 13)

P

12
12

round r

P = (, 0, 12)

P creates a token

13 0

The token will not be transmitted
P creates another token

Fig. 2. Behaviours of successes and failures for multiples of the size (⊕ represents the
white color)

Thus T has been created by P , colorP = colorT and cptP = cptT when P
receives T (for the first time). Then P recognizes T . In the same way, if a pro-
cess P receives a real-token T with cptT = kn, then T has performed k entire
traversals of the ring. Thus T has been created by P , colorP = colorT and

Observing Locally Self-stabilization in a Probabilistic Way 407

Q1

Q2Q3

Q4

(, 1, 12)

Q1

Q2Q3

Q4

(, 0, 12)

?

Q1

Q2Q3

Q4

(, 3, 12)

Q1

Q2Q3

Q4

(, 2, 12)

?(, 2, 7)
?(, 3, 7)?

?

?

? ?

?
?

?

? ?

?

? ?

?

P

round r+1

1

12

0
7

12 0

P

round r
P and Q3 create a token

P

12 3

round r+3
Q3 marks in 3

round r+2
Q2 marks a failure in 2

P

12
2

...

(, 7, 20)

(, 2, 9)

(, 0, 7)

(, 1, 5)

(, 3, 9)
(, 2, 5)

(, 8, 20)(, 1, 7)

(, 4, 9) (, 3, 5)

(, 9, 20)

(, 5, 9) (, 4, 5)

(, 10, 20)

Q1 marks a failure in 1

Fig. 3. Behaviours of successes and failures for not multiples of the size (©? represents
black or white)

cptP = cptT when P receives T (for the kth time). P recognizes T . Thus, if a
process P receives a token T such that cptT = kn, then:

(i) either T is a real-token, then T has been created by P , colorP = colorT

and cptP = cptT , and then P marks a success in cptT ;
(ii) or T comes from a bad initialization of the system; T is a false-token.

Note that in the ring, there are at most n false-tokens, because the capacity
of a channel is 1. Moreover, cptT is incremented by 1 at each round. Thus for
each token T and for all j ≥ 1, cptT = j is true during at most one round
in an execution. Therefore P marks something in j at most one time for each
false-token and so P marks in kn at most n times during an execution. Thus, P
marks at most n failures in kn during an execution.

P creates an infinite number of tokens. Each of them are recognized by P
when they return to P after an entire traversal of the ring. Thus, P marks an
infinite number of successes in n. Furthermore, we have seen that P marks at
most n failures in n. Thus, for all process P we have:

lim
r→+∞

(
SP [n](r)

SP [n](r) + FP [n](r)

)
= 1 ≥ 0.9

Example 2. Figure 3 shows the same execution as in figure 2, but considers the
behavior of several processes. At round r, P creates a token T .

Suppose that Q3 creates a token T ′ at round r, with lifeT ′ = 7. Suppose
that Q1, Q2 and Q4 do not create any token at round r. At round r, we have:
Q1=(©? , 1, 5), Q2=(©? , 7, 20), Q3=(©? , 0, 7) and Q4=(©? , 2, 9). We will see
that Q1, Q2 and Q4 mark failures when they receive T , but not necessarily Q3.

For a sake of clarity, starting from round r+1, figure 3 only shows the token
T created by P .

At round r+1, process Q1 receives T with cptT �= cptQ1
Thus whatever the

color of Q1 is, Q1 marks a failure in 1. Note that cptT �= cptQ1
is due to the

fact that P and Q1 have not created their last token at the same round. In
the same way, at round r+2, process Q2 receives T with cptT �= cptQ2

. Thus
whatever the color of Q2 is, Q2 marks a failure in 2. At round r+3, process Q3

receives T with cptT = cptQ3
. This equality is due to the fact that P and Q3

have created their last token at the same round. Now, the color of Q3 determines
if Q3 marks a success or a failure when it receives T . If colorQ3 = •, then Q3

marks a success in 3, else a failure. Note that, when Q3 created its last token,

408 J. Beauquier, L. Pilard, and B. Rozoy

there was a probability 1/2 for Q3 to choose the same color as P , i.e. black.
Thus, when Q3 receives T , there is a probability 1/2 for Q3 to mark a success
and the same probability to mark a failure.

Ratio for not multiples of the size. If a process P receives a real-token T with
cptT �= kn, then T has not performed an entire number of turns around the
ring. Then T has not been created by P . Let Q �= P be the creator of T .
When P receives T : either colorP �= colorT and thus P does not recognize T , or
colorP = colorT and thus P recognizes T if and only if cptT = cptP . P and Q
choosing their color independently, the probability of having colorP = colorT is
equal to 1/2. Thus, when P receives a token T such that cptT is not a multiple
of n, we have:

Proba(P marks a success in cptT) ≤ Proba(P marks a failure in cptT)
Thus, for all process P and ∀i ∈ N

∗+ such that i is not a multiple of n, we have:

Proba

(
SP [i](r)

SP [i](r) + FP [i](r)
≥ 0.9

)
r → +∞−−−−−−−−−→ 0

Conclusion. Let us recall that a process P computes the size of the ring in its
variable sizeP :

sizeP := inf
{

i > 0 :
SP [i]

SP [i] + FP [i]
≥ 0.9

}
Then the ratio allows us to distinguish between the multiples of the size and
the other values. Indeed, only multiples of the size have a ratio value greater
than or equal to 0.9. On the other hand, the inf allows us to choose the smallest
multiple.

4.2 Proof of the Algorithm

In the proof, we use the following notation: RP [i] =
SP [i]

SP [i] + FP [i]
Progression of Each Process

Lemma 41. Let P be a process. For each round r and for each l≥1: if cptP (r) =
lifeP (r) = l, then ∃ r′ ≥ r such that lifeP (r′) = l + 1,

Proof.
By contradition.

Let r0 be the first round during which the ring does not contain any false token.
Note that all tokens have a bounded life, thus eventually all false tokens disappear.

Let P be a process such that cptP (r0) = lifeP (r0) = l. Let us suppose that
∀r ≥ r0, lifeP (r) = lifeP (r0). If P never created any token from the round r0, P
has necessarily received a token at each round after round r0. Since all tokens
eventually disappear, there exists at least one process in the ring which creates
an infinite number of tokens. Let P∞ be the set of processes which create an
infinite number of tokens and let P �∞ be the set of processes which create a finite
number of tokens. 1 ≤ |P∞| ≤ n− 1 and 1 ≤ |P �∞| ≤ n− 1.

Let r1 ≥ r0 be the last round where a process in P �∞ creates a token.
If Q ∈ P∞, Q creates an infinite number of tokens, thus we have:

Observing Locally Self-stabilization in a Probabilistic Way 409

∀i,∃rQ ≥ r1, ∀r ≥ rQ : lifeQ(r) > i
⇒ ∃rQ ≥ r1, ∀r ≥ rQ : lifeQ(r) > nn + 1
⇒ ∃r ≥ r1, ∀r′ ≥ r, ∀Q ∈ P∞ : lifeQ(r′) > nn + 1
Let r2 ≥ r1 be a round such as : ∀r ≥ r2, ∀Q ∈ P∞ : lifeQ(r) > nn + 1

Between rounds r2 and r2 + nn, we have: ∀P ∈ P �∞, P does not create any
token, and ∀Q ∈ P∞, Q has created at most one token.
But |P∞| ≤ n− 1.
Thus, between rounds r2 and r2 + nn, there exists a sequence of n rounds in
which no token is created and at most n− 1 tokens circulate in the ring.
Therefore, during this sequence of n rounds, there exists at least one round
during which P does not receive any token, and then, during this round, P
creates a token. Contradiction.

�

Corollary 41. ∀P a process:
1. ∀i ∈ N

∗+, P creates an infinite number of tokens T such that lifeT ≥ i
2. ∀i ∈ N

∗+, P receives an infinite number of tokens T such that cptT = i.

Ratio for Multiples of the Size

Theorem 41. ∀i ∈ N
∗+ such that i is a multiple of n, we have:

lim
r→+∞RP [i](r) = 1

Proof.
Let i = kn, with k ∈ N

∗+.
If P receives a token T such that cptT = i, then either (i) T is a false-token,

then P can mark a failure in i, or (ii) T is a real-token, then P is the creator of
T and P marks a success in i.
(i) As the ring contains at most n false-tokens, P marks at most n failures in i.
(ii) Lemma 41 involves that each process sends an infinite number of tokens with
an increasingly large value of period of life. Thus, P marks an infinite number
of successes in i.
Thus: ∀i = kn, lim r→+∞ RP [i](r) = 1

�

Ratio for Not-multiples of the Size

Lemma 42. ∀i ∈ N
∗+ such as i is not a multiple of n, we have: when P receives

a token T such as cptT = i: Proba(P marks a success in i) ≤ Proba(P marks a
failure in i)

Proof.
Let i ∈ N

∗+ be not multiple of n.
When P receives a false-token T such as cptT = i:

Proba(colorP = colorT) = Proba(colorP �= colorT) = 1
2 , and

Proba(cptP = cptT) ≤ Proba(cptP �= cptT)
Thus, Proba(P marks a success in i) ≤ Proba(P marks a failure in i)

410 J. Beauquier, L. Pilard, and B. Rozoy

If P receives a real-token T such as cptT = i, then T has been created for i
rounds by the process Q �= P . Let r be the round where Q created T .
Case (i): If P has created a token T ′ at round r, then when P receives T , we
have: Proba(cptP = cptT = i) ≤ 1, and

Proba(colorP = colorT) = Proba(colorP �= colorT) = 1
2

Thus, Proba(P marks a success in i) ≤ Proba(P marks a failure in i)
Case (ii): If P has not created a token at round r, then when P receives T , we
have: cptP �= cptT . Thus, Proba(P marks a success in i) ≤ Proba(P marks a
failure in i).

�
Theorem 42. ∀i ∈ N

∗+ such as i is not a multiple of n, we have:
Proba (RP [i](r) ≥ 0.9) r → +∞−−−−−−−−−→ 0

Proof Outline.

1/21/2

1

0

1

0

Fig. 4. Variance

According to lemma 42, if i
is not a multiple of n, then the
probability for P to mark a fail-
ure in i is greater than the prob-
ability for P to mark a success
in i. Thus the average value of
RP [i](r) is smaller than or equal

to 0.5. But the average value is not sufficient to conclude. Indeed, the average
value of the two functions draw in the figure 4 is 0.5, but the variance value of
the first function is 0 while the variance value of the second function is +∞. In-
tuitively, if the ratio is of the form of the first function then the theorem is true,
else the theorem is false. Note that, if RP [i](r) = 1/2 = 0.5, then P has marked
one success among two marks, and only 8 consecutive successes are enough to set
RP [i](r) above 0.9. But, if RP [i](r) = 500/1000 = 0.5, then P has marked 500
successes among 1000 marks, and 4000 consecutive successes must be marked
by P in order to increase RP [i](r) above 0.9. Thus, when time passes, it is more
and more difficult to have RP [i](r) greater than 0.9.

Using a technique similar to the proof of Bienaymé-Tchebycheff inequality,
we prove that Proba(RP [i](r) ≥ 0.9) ≤ 1

8.(0,4)3.N2 . The detailed proof, is left for
the complete version of the paper.

Theorem 43. ∀i ∈ N
∗+ such as i is not a multiple of n, we have:

Proba (∀r′ ≥ r : RP [i](r′) ≥ 0.9) r → +∞−−−−−−−−−→ 0

Proof Outline. We use a similar argument as for theorem 42. The detailed proof
is left for the complete version of the paper.

Conclusion

Theorem 44 (Convergence). Let E be the set of all possible executions of
RS, e be an element of E and r be a round of e.

Proba(∀ process P : sizeP (r) = n) r → +∞−−−−−−−−−→ 1

Observing Locally Self-stabilization in a Probabilistic Way 411

Proof Outline. This theorem results from theorems 41 and 42. We compute a
finite multiplication of probabilities to obtain this result. The detailed proof is
left for the complete version of the paper.
Theorem 45 (Correctness). Let E be the set of all possible executions of RS,
e be an element of E and r be a round of e.

Proba (∀r′ ≥ r, ∀ process P : sizeP (r′) = n) r → +∞−−−−−−−−−→ 1

Proof Outline. This theorem results from theorems 41 and 43. We also compute
a finite multiplication of probabilities to obtain this result.

The proof is based on the fact that
(∑∞ 1

N2

)
∼ 1

N . The detailed proof is left
for the complete version of the paper.

4.3 The Observer

In the sequel, we do not make the predefined sequences of the observer explicit
(for the sake of simplicity) but we rather describe in a informal way what the ob-
server tries to match. The transcription of this informal observation into formal
sequences is straightforward.

Behaviour of the Observer. The observer has two arrays: SObs[] and FObs[].
∀i ≥ 1, SObs[i] and FObs[i] are initialized to 0. If P is the observed process, then
the observer counts in these arrays the number of modifications that P executes
in SP [] and FP []. Let sP [i] and fP [i] be the initial values of SP [i] and FP [i]
respectively. Note that the observer considers neither sP [i], nor fP [i].

Let n be the size of the ring. If a process P receives a false-token T such
that cptT = n, then P can mark a failure in n when it receives T , for instance
if colorT �= colorP . But P can receive at most n false-tokens like that, because
a ring of size n can contain at most n false-tokens at the initialization. On the
other hand, if P receives a real-token T such that cptT = n, then P is the creator
of T , then P marks a success in n. Thus: ∀r ≥ 0,FP [n](r) ≤ fP [n] + n.

Since the counter of a token is incremented by 1 at each round, all false-
tokens which cause a failure in n will arrive during the first n rounds. Then, for
the value i, the observer does not count the first i tokens that arrived at P . For
that the observer has a counter countObs. This counter is initialized to 0 and is
incremented by 1 at each round.
Let P be the observed process. The observer executes:

(a) At each round, countObs := countObs + 1
(b) ∀i≥1, P marks a success in i and countObs>i ⇒ SObs[i] := SObs[i] + 1
(c) ∀i≥1, P marks a failure in i and countObs>i ⇒ FObs[i] := FObs[i] + 1

The observer announces the stabilization if and only if sizeP is such that:

1. FObs[sizeP] = 0 and
2. ∀i < sizeP : FObs[i] > 0 and
3. SObs[sizeP] ≥ sizeP +α, where α depends on ε.

412 J. Beauquier, L. Pilard, and B. Rozoy

We have: FObs[n] = 0 is always true. Thus, if sizeP > n, the second condition
is never satisfied. Therefore, the observer cannot announce if sizeP > n.

If sizeP < n, the probability for FObs[sizeP] to satisfy the first condition
decreases as the number of sizeP tests increases. The third condition forces the
observer to wait for sizeP to be sufficiently tested before announcing.

Proof of the observer.

Theorem 46. ∀ε ∈ [0, 1[, ∃α : Proba(false announcement by Obsα) ≤ ε

Proof.

Let Prob = Proba(false announcement) ≤
∑+∞

i=1 Proba(false announcement on i)
Let T be a false token. From round n+1, if T circulates the ring, then cptT > n.
Thus P never marks any failure in n from round n+1. Moreover, according to (a)
and (c), the observer only counts the failures marked by P in n from round n+1.
Therefore, FObs[n] = 0 is always true. Then if sizeP > n the second condition
is never satisfied. Therefore, the observer cannot announce if sizeP > n and we
have:

if i > n, then Proba(false announcement on i) = 0
⇒ Prob ≤

∑n−1
i=1 Proba(false announcement on i)

If i < n then Proba(false announcement on i)
≤ Proba(FObs[i] = 0, with i having been tested at least i + α times)
≤

(
1
2

)i+α (according to the lemma 42)

So, we have:

Prob ≤
n−1∑
i=1

(
1

2

)i+α

=

(
1

2

)α

∗
n−1∑
i=1

(
1

2

)i

≤
(

1

2

)α

By choosing α ≥ − logε
log2 , we obtain: Proba(false annoucement) ≤ ε

�

Theorem 47. The observer eventually announces the stabilization with proba-
bility 1.

Proof.

According to theorem 45, we have: Proba (∀r′ ≥ r, ∀P : sizeP (r′) = n) r→+∞−−−−−−→ 1
Let us prove that: Proba(observer announces on n) r → +∞−−−−−−−−−→ 1
First condition: FObs[n] = 0.

(*) FObs[n] = 0 is always true.
Second condition: ∀i < n : FObs[i] > 0

According to corollary 41, ∀i ∈ N
∗+ : i < n, P receives an infinite number of

tokens T such that cptT = i. Moreover, according to theorem 42, if P receives
a token T such that cptT < n, then the probability for P to mark a success in
cptT is less than the probability for P to mark a failure in cptT . Therefore:

(**) Proba(∀i < n : FObs[i](r) > 0) r → +∞−−−−−−−−→ 1
Third condition: SObs[n] ≥ n + α

Observing Locally Self-stabilization in a Probabilistic Way 413

According to corollary 41, P creates at least 2n+α tokens with a period of
life ≥ n, thus: P marks at least 2n+α successes in n and the observer marks at
least n+α successes in n. Therefore:

(***) eventually, (SObs[n] ≥ n+α)
According to (*), (**) and (***), we have:

Proba(observer announces on n) r → +∞−−−−−−−−−→ 1
Thus the observer eventually announces the stabilization with probability 1.

�

5 Conclusion

In this paper, we introduce the notion of a local and probabilistic observer for
self-stabilizing algorithms. Our result is that, if the network is uniform and
synchronous, then some problems having a self-stabilizing solution do not have
any self-stabilizing solution that can be observed by a local and deterministic
observer, but have a self-stabilizing solution that can be observed by a local and
probabilistic observer. Computing the size of the ring is not only a particular
example, but the first step for extending the probabilistic observation to a larger
class of problems. The reason why is that, once the size is known for sure (in
fact almost sure), it is easier to observe self-stabilizing snapshots, leading to the
observation of more complex stabilizations.

References

[BGJ99] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing
and space optimal leader election under arbitrary scheduler on rings. Tech-
nical Report 99-1225, Universite Paris Sud, 1999.

[BPR04] Joffroy Beauquier, Laurence Pilard, and Brigitte Rozoy. Observing locally
self-stabilization. Journal of High Speed networks, 2004.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, nov 1974.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
[LS92] Chengdian Lin and Janos Simon. Observing self-stabilization. In Maurice

Herlihy, editor, Proceedings of the 11th Annual Symposium on Principles
of Distributed Computing, pages 113–124, Vancouver, BC, Canada, August
1992. ACM Press.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni Press,
Cambridge, 1994.

Asymptotically Optimal Solutions for Small

World Graphs

Michele Flammini1, Luca Moscardelli1, Alfredo Navarra1,
and Stephane Perennes2

1 Department of Computer Science, University of L’Aquila, Italy
{flammini, moscardelli, navarra}@di.univaq.it

2 MASCOTTE project, I3S-CNRS/INRIA/Univ. Nice, Sophia Antipolis, France
Stephane.Perennes@sophia.inria.fr

Abstract. We consider the problem of determining constructions with
an asymptotically optimal oblivious diameter in small world graphs un-
der the Kleinberg’s model. In particular, we give the first general lower
bound holding for any monotone distance distribution, that is induced
by a monotone generating function. Namely, we prove that the expected
oblivious diameter is Ω(log2 n) even on a path of n nodes. We then fo-
cus on deterministic constructions and after showing that the problem
of minimizing the oblivious diameter is generally intractable, we give
asymptotically optimal solutions, that is with a logarithmic oblivious
diameter, for paths, trees and Cartesian products of graphs, including
d-dimensional grids for any fixed value of d.

1 Introduction

A generic graph G is said to represent a Small-World when each node can “easily
and quickly” reach any other one using just local information or, in other words,
if the resulting “oblivious” diameter is polylogarithmic in the number of the
involved nodes. In the literature such a property is also known as “six degrees of
separation” coming from Miligram’s experiments [12,15], that showed an average
distance of six hops between any two USA citizens in delivering mails. Recently
such a property has been extensively studied and formalized by the Kleinberg’s
works formalizing the so-called “small-world phenomena” [9,7,8]. The relevance
of such a topic results from its numerous applications in social, natural and
peer-to-peer networks [1,13,14,16], where the common property is the partial
knowledge of the environment and the wish of sharing information.

In the Kleinberg’s model, a two dimensional square mesh is augmented by
the random addition of one directed outgoing arc or “long link” per node. Thus,
besides its four adjacent nodes in the mesh, a generic node x has a further
neighbor y chosen with probability Px[y] = 1

Hxdist2(x,y) , where dist(x, y) is the
Manhattan distance between x and y in the mesh and Hx =

∑
y �=x

1
dist2(x,y) is

a normalizing coefficient. As a consequence, the closer y is from x, the higher
is the probability to have the long link (x, y). Kleinberg proposed a greedy al-
gorithm for routing on the augmented graph that at each step always chooses

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 414–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Asymptotically Optimal Solutions for Small World Graphs 415

the link (eventually the long one) whose endpoint is closest to the target node
according to the original distances without long links. He proved an O(log2 n)
expected number of hops performed by such an algorithm for connecting every
source-destination pair. Starting from such results, considerable effort has been
then devoted in investigating several variants of the original model in terms of
network topology, number and probability distribution of the long links, starting
knowledge of each node and so forth (see for instance [3,5,4,10,11]).

1.1 Related Work

The basic Kleinberg’s model [9] was extensively studied in the recent years due
to its applications and characterizations of several environments. For instance
such a model was used to generate search protocols in peer-to-peer networks [16]
and to evaluate the World Wide Web diameter [1].

In [5] and independently in [10] is proved the tightness of Kleinberg’s results
for n×n mesh networks, that is, the greedy routing algorithm performs Θ(log2 n)
hops to connect any pair of nodes, while the diameter of the network is Θ(log n).
In [10], the authors also extend their results to the case in which each node
of the grid has the additional knowledge of the long links of the log n closest
ones, obtaining O(log

3
2 n) steps for the 2-dimensional case and O(log1+ 1

d n) in
the general d-dimensional model. The O(log1+ 1

d n) bound is also achieved in [5]
by an oblivious greedy algorithm.

A nice characterization of small-world graphs is given in [11], where a limit
separating small-world from “large-world” graphs is defined. Namely, considering
a d-dimensional grid and a probability distribution of the long links according
to the inverse power r of the covered distance, the authors showed a poly-log
expected diameter when d < r < 2d, but polynomial when r > 2d. They also
presented a framework to construct classes of small-world graphs with Θ(log n)
expected diameter.

In [4], treewidth aspects and their relations with social networks are con-
sidered. Informally, the treewidth of a graph represents the “distance” of its
structure from a tree. Its relevance is given by the fact that many classes of
graphs have a bounded treewidth, like for instance trees, outer-planar graphs
and series-parallel graphs, and many NP -hard problems can be polynomially
solved when restricted to bounded treewidth graphs. In [4] an almost tight up-
per bound of O(log2 n) on the expected diameter is provided for any graph G

of n nodes with bounded treewidth. For the lower bound, in fact, an Ω(log2 n
log log n)

holds on directed rings of n nodes [2].

1.2 Our Contribution

In this paper we consider the problem of determining constructions with an
asymptotically optimal oblivious diameter in small world graphs under the Klein-
berg’s model.

In particular, we give the first general lower bound holding for any non in-
creasing distance distributions, that is induced by a non increasing generating

416 M. Flammini et al.

function. Namely, we prove that the expected oblivious diameter is Ω(log2 n)
even on a path of n nodes. Such a result is particularly relevant because, as
shown in [9,11], only highly decreasing distance distributions are expected to
have good performances. However, we extend the lower bound also to non de-
creasing distance distributions, thus including all the monotone ones.

Even if our results are related to the ones in [2], there are two major dif-
ferences. First of all, the expected oblivious diameter investigated in this paper
is a slightly different measure from the expected delivery time of [2], which ac-
cording to Kleinberg’s model is the average delivery time between all the source-
destination pairs. As a consequence, while our lower bound is higher than the
one of [2] and is obtained by exploiting a novel and unrelated approach, it does
not directly apply to the expected delivery time. Moreover, our results hold for
undirected paths and the ones in [2] for directed rings.

We then focus on deterministic constructions. We show that unfortunately
the problem adding at most k outgoing long links per node so as to minimize the
oblivious diameter is generally intractable. We then give asymptotically optimal
solutions, that is with a logarithmic oblivious diameter, for paths, trees and
Cartesian products of graphs, including d-dimensional grids for any fixed value of
d. Clearly, our upper bounds hold also for the expected delivery time considered
by the previous authors.

The paper is organized as follows. In the next section we introduce the ba-
sic notation and definitions. Section 3 deals with the general lower bound for
distance distributions. In Section 4 we prove the intractability of the oblivious
diameter minimization problem and in Section 5 we give the above mentioned
asymptotically optimal deterministic construction for the different topologies.
Finally, in Section 6, we give some conclusive remarks and discuss some open
questions.

2 Definitions

We model a network as a symmetric digraph G = (V, A) of n nodes in which
V = {1, . . . , n}. We denote as short links all the edges in A. Small World Graphs
(SWG) are build from G by adding directed long arcs, also called long links, that
are arbitrary couples in V × V .

Definition 1 (Small World Graph). Given a digraph G = (V, A) and Â ⊂
V × V), SWG(G, Â) is the digraph H = (V, A∪ Â) obtained by adding to G the
long links in Â.

- For any two nodes x, y ∈ V , dist(x, y) is the distance between x and y, that
is, the one in the network G.

- The outdegree and the indegree of SWG(G, Â) are always considered to be
the ones of the digraph with arc set Â.

A greedy or oblivious algorithm for routing on SWG(G, Â) at each step
chooses one of the links, including the long ones, whose endpoint is closest to
the target node according to the distances in G.

Asymptotically Optimal Solutions for Small World Graphs 417

Definition 2 (Oblivious Routing). In SWG(G, Â)

- A path P =< x0, x1, x2, . . . , xk > from x0 to xk is said to be oblivious if,
for any i ∈ {0, 1, 2, . . . , k − 1}, (xi, xi+1) ∈ A ∪ Â and for any y such that
(xi, y) ∈ A ∪ Â, dist(xi+1, xk) ≤ dist(y, xk).

- The oblivious distance from x to y in SWG(G, Â) is the maximum length of
an oblivious path from x to y.

- The oblivious diameter OD(SWG(G, Â)) of SWG(G, Â) is the maximum
oblivious distance between two nodes in V .

Given a network G and an integer k > 0, a relevant design goal is that of
determining a small world graph SWG(G, Â) with minimum oblivious diameter
among the ones with maximum outdegree bounded by k.

Definition 3 (Small World Diameter). Given an integer k > 0, the small
world diameter ODk(G) of a network G is the minimum oblivious diameter of
a small world graph SWG(G, Â) with outdegree k.

In the basic Kleinberg’s model [9] long links are chosen randomly according
to given probabilistic distributions. As a consequence, the oblivious diameter of
the resulting small world graph is a random variable and we are interested in
determining distributions reducing its expected value.

Since any deterministic construction of a small world graph is a particular
probabilistic one, we are mostly interested in “truly” random solutions in which
long links selecting probabilities of distinct nodes are independent and have a
low dependence from the target nodes. This avoids deterministic constructions
to appear as special cases.

On this respect, a possible reasonable random distribution is the one in which
the probability of a long link depends only on its length.

Definition 4. A probabilistic distribution is distance generated or is a distance
distribution if there exists a function f : N → R

+ such that Pr((x, y) ∈ Â) =
f(dist(x,y))∑

z∈V f(dist(x,z)) .

Notice that the probabilistic distributions on meshes based on the Kleinberg’s
model [9] are then induced by the family of the functions f(d) = d−α.

3 Distance Generated SWG

According to the results shown in [9,11], distance distributions achieving a low
oblivious diameter should have the property that the probability of the long
links is a highly decreasing function of their length. However, in this section we
show that even under such an assumption we cannot hope to have an expected
oblivious diameter of an order lower than log2 n, and that the same holds in the
reverse case in which probabilities increase with the distance, even in a simple
path Pn of n nodes.

418 M. Flammini et al.

In order to prove the claim, we prove a slightly stronger statement for a
broader class of distance distributions. Namely, given a fixed positive number
p ≤ 1, once an outgoing long link at a given node x has been drawn according
to the distance distribution, it is installed or added to the graph with a given
probability rx ≤ p, otherwise it is removed (with probability at least equal to
1−p), independently of all the other long links. We call the resulting distribution
a p-distribution. Our results will then follow as a corollary of the p-distributions
ones considering the special case p = 1.

In the following we restrict on paths Pn of n nodes with node set V =
{1, ..., n} and arc set A = {(x, x+1), (x+1, x)|1 ≤ x < n}. Let Lx be the random
variable “length of the long link of x”. Given a function f : N → R

+, we will
always implicitly assume that the probabilities of Lx are given by the distance
distribution generated by f , that is Pr(Lx = d) = a · f(d)/

∑
y∈V f(dist(x, y)),

where a is the number of nodes at distance d from x.
The following lemma will be useful for proving the final result.

Lemma 1. Given a path Pn and a non increasing generating function f : N →
R, for any two nodes x, y such that x < y ≤ n/2, Pr(Lx ≤ j) ≥ Pr(Ly ≤ j) for
any j < x.

Proof. Since f is not increasing, Pr(Lx ≤ j) = 2
∑ j

i=1 f(i)

2
∑x−1

i=1 f(i)+
∑n−x−1

i=x f(i)
≥

2
∑ j

i=1 f(i)

2
∑y−1

i=1 f(i)+
∑n−y−1

i=y f(i)
= Pr(Ly ≤ k). ��

Theorem 1. For any non increasing function f on a path Pn and any p-distance
distribution generated by f , E(OD(SWG(G, Â))) = Ω(min(n, log2(n)√

p)).

Proof. We show that E(OD(SWG(G, Â))) ≥ k min(n, log2(n)√
p) with k = 1/n0,

where n0 is a suitably large (constant) number specified in the sequel.
In order to prove the claim, we show that starting from node n/4 (from

now on called the S-node), at least one node in the destination segment, that is
between n/4 and n/2, has expected oblivious distance at least k min(n, log2(n)√

p).
We divide the proof in three cases.

– p < 1
n . In this case, the expected oblivious diameter is clearly at least n

8 ,
since the probability of maintaining at least one long link between n/4 and
n/2 is lower than 1/2. Thus the claim holds as k ≤ 1/8.

– 1
n ≤ p < 1

log4 n
. In this case, since the expected oblivious diameter is at

least equal to the expected number of steps needed from n/4 to meet the
first maintained long link, that is 1/p, it is sufficient to observe that 1

p =
log2 n√

p
1

log2 n
√

p
> log2 n√

p . Thus again the claim holds as k ≤ 1.
– p > 1

log4 n
. In this case we prove the claim by induction on the number of

nodes in the path as described in the remaining part of the proof.

As base of the induction we consider a path Pn0 , where n0 is the suitably
large integer defining the constant n0. Clearly the claim for Pn0 is true as k = 1

n0
.

Asymptotically Optimal Solutions for Small World Graphs 419

Now, given any n > n0, assuming the claim true for any Pn′ with n′ < n, we
prove that it holds also for Pn.

For any i = 2, 3, . . . , log n − 4 log log n − log k, let P i be the subpath of n
2i

nodes whose S-node, that is the one placed at one fourth of its length, coincides
with the one of Pn. In other words, P i is given by the segment of Pn going
from n

4 −
n

2i+2 + 1 to n
4 + 3n

2i+2 . Clearly, by assumption, each P i has at least
k log4 n ≥ k log2n√

p nodes.
Any oblivious path going from the S-node of P i to any of the nodes in its

destination segment, that is between nodes n
4 and n

4 + n
2i+2 , cannot use any long

link starting from P i and ending outside P i, or starting before n
4 , that is at

lefthand side of the S-node. Moreover, if pi is the probability that node n
4 has a

long link of length at most n
2i , then by Lemma 1 pi is an upper bound on the

probability of having long links of length at most n
2i for all the nodes in P i greater

than n
4 , i.e., in the righthand side of its S-node, which is also an upper bound to

the probability for such nodes of having a long link falling inside P i. Considering
the long links starting from P i and ending outside P i, or starting before n

4 , as
removed, the routing is then performed according to a (p · pi)-distribution.

By the inductive hypothesis, with this induced distribution in P i, at least
one node in the destination segment has expected oblivious distance at least
k min(n

2i ,
log2(|Pi|)√

p·pi
) from the S-node.

If the minimum is n
2i then n

2i ≥ log2 n√
p > k log2 n√

p and the claim holds by
observing that the S-nodes of Pn and P i coincide and the destination segment
of P i is contained in the one of Pn.

If n
2i is not the minimum, it must be k

log2(n
2i)√

p·pi
< k log2(|Pn|)√

p , otherwise the
claim holds by the same arguments of the previous case. Therefore

√
pi >

log2 n

2i

log2 n
> 1 − 2i

log n and pi > (1 − 2i
log n)2 > 1 − 4i

log n . So the probability pi

that from the S-node there exists a long link longer than n
2i is 1− pi < 4i

log n .
Being this true for every i = 2, 3, . . . , log n− 4 log log n− log k, let us denote

by g(n) the highest expected number of steps needed in Pn to reach a node in its
destination segment from its S-node, or analogously the expected length of the
longest oblivious path from the S-node to one of the nodes in the destination
segment. We can recursively calculate g(n) using the inductive hypothesis on
shorter paths in the following way.

We distinguish the cases in which either there exists a long link starting from
the S-node (with probability at most p) or we are forced to move on a short link
(with probability at least 1− p).

– If there exist a long link starting from the S-node, denoting by L its length
we distinguish four subcases.
• The long link is toward a node to the left of the S-node: we move through

a short link and recurse on the path of length n−4 having the node n
4 +1

as its S-node.
• L ≤ n

8 : we move along the long link and we recurse on the path of length
n− 4L having the node n

4 + L as its S-node.

420 M. Flammini et al.

• n
8 < L ≤ n

2 : we move along a short link and recurse on the path of length
2L− 4 having the node n

4 + 1 as its S-node.
• L > n

2 : we move along a short link and recurse on the path of length
n− 4 having the node n

4 + 1 as its S-node.
– If we are forced to move through a short link, we recurse on the path of

length n− 4 having the node n
4 + 1 as its S-node.

Notice that in all the cases the destination segment of the shorter path on
which we recurse is included in the one of Pn. Then,

g(n) ≥ 1 + (1− p)g(n− 4) + p
(∑n

8
l=2 Pr(L = l)g(n− 4l)+

+
∑n

2
l= n

8 +1 Pr(L = l)g(2l− 4) +
∑n

l= n
2 +1 Pr(L = l)g(n− 4)

)
≥

≥ 1+(1−p)g(n−4)+p
∑n

8
l=2 Pr(L = l)g(n−4l)+p

∑n
l= n

8 +1 Pr(L = l)g
(

n
8

)
≥

≥ 1 + (1− p)g(n− 4) + p
∑log n−1

i=4 Pr
(

n
2i < L ≤ n

2i−1

)
g
(
n− 4n

2i−1

)
+

+p · Pr
(
L > n

8

)
g
(

n
8

)
.

The last term of the above inequality is minimized when the probabilities
multiplying the terms with the lower arguments of g, that is Pr(L > n

8) and
Pr(n

2i < L ≤ n
2i−1) for the lowest values of i, are maximized. Recalling that

Pr(L > n
2i) = pi < 4i

log n for every i = 2, 3, . . . , log n− 4 log log n− log k, pushing
probabilities as much as possible to such terms, it can be easily shown that the
last term of the above inequality is minimized when Pr(L > n

8) = 12/ logn

and Pr(n
2i < L ≤ n

2i−1) = 4/ logn for i between 4 and log n
4 . This actually

holds only if we consider intervals of L for which we previously bounded pi,
that is if log n

4 < log n − 4 log log n, that can be obtained by setting n0 to a
suitably large integer such that log n0

4 < log n0 − 4 log log n0. Therefore, g(n) ≥
1 + (1− p)g(n− 4) + p

∑ log n
4

i=4

(
4

log ng
(
n− 4n

2i−1

))
+ p 12

log ng
(

n
8

)
.

By the inductive hypothesis, since k ≤ 1
110 , it is then possible to show that

g(n) ≥ 1 + k log2 n√
p .

��

An analogous proof obtained by considering as S-node node n
2 shows the

following theorem.

Theorem 2. For any non decreasing function f on a path Pn and any p-
distance distribution generated by f , E(OD(SWG(G, Â))) = Ω(min(n, log2(n)√

p)).

4 Complexity Results

Starting from the results shown in the previous section, we now focus on the
determination of efficient deterministic constructions minimizing the oblivious
diameter.

Unfortunately, the resulting optimization problem is generally intractable.

Asymptotically Optimal Solutions for Small World Graphs 421

Theorem 3. Given a graph G and an integer k > 0, deciding if ODk(G) ≤ 2
is an NP -complete problem.

Proof. Let us first observe that the decision problem belongs to the class NP .
In fact, given a graph G = (V, A) and a SWG(G, Â), it is possible to compute in
polynomial time the length of all the oblivious paths connecting a node u ∈ V
to a generic node z ∈ V . For this task for every v ∈ V − {z} let us define Fv

as the set of all the adjacent nodes reachable from v through an oblivious path
directed to z. Then, for every v ∈ V , let gz(v) = max{gz(w) + 1|w ∈ Fv} be the
length of the longest oblivious path from v to z. Clearly gz(z) = 0, while gz(v)
for any other node v ∈ V can be computed in an incremental way such that at
the i-th step, the oblivious distances of all the nodes at distance at most i in G
from z are evaluated. Thus, in at most |V | steps all the gz(v) can be computed
for all the nodes v ∈ V . The oblivious diameter of SWG(G, Â) will then be
OD(SWG) = maxu,z∈V {gz(u)}.

In order to prove the NP-completeness of the problem, we provide a polyno-
mial time reduction from the Minimum Set Cover problem (MSC) (known to be
NP-complete; see [6]). In this problem we have a universe set U = {u1, . . . , um}
of m elements, a family {S1, . . . , Sf} of f subsets of U and an integer k ≤ f ; we
want to decide if there exist k subsets Sj1 , . . . , Sjk

that cover U , i.e., such that⋃k
i=1 Sji = U .
Starting from an instance IMSC of MSC, we construct a Small World Graph

H = (V, A ∪ Â) with oblivious diameter at most equal to 2 if and only if IMSC

admits a cover of k subsets.

...

zm,tz1,1

q1 qf

s

r

clique

Fig. 1. The reduction graph of Theorem 3

Let t = k2 + k + 1 and G = (V, A), with V = {r} ∪ {s} ∪ V1 ∪ V2 and
A = {(r, s), (s, r)} ∪A1 ∪A2 ∪A3 (see Figure 1),
V1 = {qi | i = 1, . . . , f},
V2 = {zj,h | j = 1, . . . , m ∧ h = 1, . . . , t},

and
A1 = {(s, qi), (qi, s) | i = 1, . . . , f},
A2 = {(qi, qj) | i = 1, . . . , f ∧ j = 1, . . . , f ∧ i �= j},
A3 = {(qi, zj,h), (zj,h, qi) | uj ∈ Si ∧ h = 1, . . . , t}.

422 M. Flammini et al.

Informally, in the reduction graph, each subset Si corresponds to the sub-
graph induced by node qi and all the nodes zj,h such that uj ∈ Si that are
connected to qi.

The idea underlying our construction is that, in order to obtain an oblivious
diameter equal to 2, the only way is to put k long links in Â from r ∈ V to the k
nodes qi associated to the subsets of the cover, and the same for each node in V2.

Assume there are k covering sets Sl1 , . . . , Slk , we show that there exists a
SWG(G, Â) having oblivious diameter at most 2. First of all, notice that node
s is at distance at most 2 from all the other nodes and the same holds for all
the nodes in V1, since there is a clique between them (the arcs in A2). Moreover,
node r is at distance at most 2 from node s and from all the nodes in V1. Finally,
the nodes in V2 are at distance at most 2 from s and all the nodes in V1.

It remains to show that it is possible to choose at most k long links per node
in such a way that the oblivious distance from node r to the nodes in V2, from
every node in V2 to node r and between any couple of nodes in V2, is at most 2.

Let us consider Â = Â1 ∪ Â2 ∪ Â3 with
Â1 = {(r, qli) | 1 ≤ i ≤ k},
Â2 = {(zj,h, qli) | 1 ≤ j ≤ m ∧ 1 ≤ h ≤ t ∧ 1 ≤ i ≤ k} and
Â3 = {(qi, r) | 1 ≤ i ≤ f}.

The oblivious path between r and the nodes in V2 is of length 2 since its first
arc is a long link in Â1 whose endpoint is adjacent to the destination. Similarly,
the oblivious path between two nodes in V2 is of length 2 since its first arc is a
long link in Â2. The oblivious path between a node in V2 and r is of length 2
since its second arc is a long link in Â3.

In order to conclude the proof, it remains to show that if there are no k
covering sets, then no SWG(G, Â), having oblivious diameter at most 2, exists.
Consider the oblivious paths between r and the nodes in V2. Since there are no
k covering sets, for any choice of the k long links outgoing from r, after the first
move there must exist at least t nodes in V2 at distance greater than 1 from s
and from each of the endpoints of the long links of r. Recalling that t > (k+1)k,
since from s and from each of such endpoints at most k other nodes at distance
grater than 1 can be reached in a further step, there must exist at least one node
in V2 that is not reachable in 2 steps from r. ��

5 Deterministic Results for Specific Topologies

In this section we show that truly random constructions cannot achieve the
performance of deterministic ones on basic topologies such as paths, trees and
Cartesian products of graphs, including d-dimensional grids.

5.1 Paths

We give a slightly more general deterministic construction for node weighted
paths that will be useful both for unweighted paths, that is with uniform weights,
and for trees.

Asymptotically Optimal Solutions for Small World Graphs 423

Let Pw
n be a path of n > 1 nodes with weights wx ≥ 1, wx ∈ Z, associated

to nodes x ∈ {1, 2, . . . , n}, and let W =
∑n

x=1 wx.
LetW = {W1, W2, . . . , W�log2 W�} be a partition of the set {1, 2, . . . , W} such

that Wi = {z|W2i ≤ z < W
2i−1 } for all i = 1, 2, . . . , �log2 W �.

In case of maximum outdegree at most equal to 1, we perform the determin-
istic construction in the following way.

Let u be the first node of the path such that
∑u

x=1 wx ≥ W
2 . We assign a

long link from node 1 to node u and from node u + 1 to node n, plus their
opposite ones from u to 1 and from n to u + 1, respectively. Let those four links
be considered of level 1. We now recursively consider the subpaths [2, . . . , u− 1]
and [u + 2, . . . , n− 1], assigning for each of them four long links of level 2 in the
same way, that is, dividing the current subpath in two weight-balanced portions.
The long links are assigned till at most the �log W �-th level is reached. Let us
say that a node is of level i if it is the end-point of a long link of level i (by
construction it cannot be the endpoint of long links of different levels).

Lemma 2. In the above construction an oblivious path from a node x with
weight wx ∈Wi to a node y with weight wy ∈ Wj has length at most 4(i+ j−1).

Proof. First of all, it is easy to check that a node with weight in Wi is of level at
most i. In fact, after assigning the long links of level i, the recursive construction
is applied to subpaths consisting of nodes whose weights sum is less than W

2i , so
that no node with weight in Wi can exist in them. Thus, a long link to each node
in Wi must be assigned before applying the recursive construction after level i.
Clearly such a long link is of level at most i.

Let us now consider a generic source-destination pair (x, y) and let wx ∈ Wi

and wy ∈ Wj be the weights of x and y, respectively. In order to prove that the
oblivious path OPx,y from x to y is bounded by 4(i + j − 1), we need to show
the following properties:

1) The difference between the levels of two consecutive nodes in OPx,y is at
most 1.

2) The maximum number of consecutive nodes of the same level in OPx,y is at
most 4.

3) The sequence of the levels met from the source to the destination alongOPx,y

determines a particular node z for which the subsequence from the source to
z is not increasing while the one from z to the destination is not decreasing.
Eventually, z can coincide with the source or with the destination, thus
yielding a monotonic function.

In fact, if the above properties hold, since the level of node x is at most i and
the one of node y is at most j, the claim holds by observing that OPx,y meets
at most all the levels from i to 1 and then (if j ≥ 2) from 2 to j, and for each
level at most 4 consecutive nodes, so that |OPx,y| ≤ 4(i + j − 1).

To prove 1) it is sufficient to notice that, by construction, the levels of two
adjacent nodes of Pn (without considering the long links) differ of at most 1,
while two nodes connected by a long link are of the same level.

424 M. Flammini et al.

By construction, the nodes of a given level i ≥ 2 are included in groups of
at most four ones under long links of level i− 1 and there are no crossing links.
Hence to move from a quadruple of level i to another one of the same level we
have to encounter at least two nodes of level i−1. The nodes of level 1 are just 4.
Property 2) then follows directly by observing that in no oblivious path a node
can appear twice.

In order to prove 3) it is sufficient to show that if a node xi of level i =
2, . . . , �log2 W � is reached from a node xi−1 of level i − 1 in OPx,y, than no
node of level less than i can appear in the remaining part of OPx,y. As already
observed, by construction xi and at most other three nodes of level i are included
under a long link li−1 of level i− 1 and there not exist crossing links. Therefore,
assuming by contradiction that a node of level smaller than i is reached in the
remaining part of OPx,y, it follows that one of the two endpoints of li−1, say x̌,
has to be reached first. If x̌ ≡ xi−1 the contradiction follows directly by observing
that in no oblivious path a node can appear twice. In the other case, it follows
since the long link connecting xi−1 to x̌ had to be chosen previously given the
obliviousness of the path OPx,y. ��

Theorem 4. OD1(Pn) = O(log n).

Proof. The claim is a direct consequence of Lemma 2. In fact, in the special case
in which all the weights of the nodes are equal to 1, thus summing up to W = n,
the levels are at most �log2 n� and the length of any oblivious path is bounded
by 4(2�log2 n� − 1) (see Figure 2). ��

......

Fig. 2. The deterministic construction for the path

We now extend these results to the general case in which the maximum
outdegree is bounded by a given k > 0. The corresponding construction is quite
similar to the previous one.

Let W = {W1, W2, . . . , W�log2k W�} be a partition of the set {1, 2, . . . , W}
such that for all i = 1, 2, . . . , �log2k W �, Wi = {z| W

(2k)i ≤ z < W
(2k)i−1 }.

Let u0 = 0, and having determined u0, . . . , uj−1, let uj, j = 1, . . . , 2k− 1, be
the first node of the path such that

∑uj

x=uj−1+1 wx ≥ W
2k . Finally, let u2k = n.

Notice that u0 does not correspond to any node of the path, but it has been set to
0 to simplify the description of the construction. We assign two pairwise opposite
long links between uj +1 and nodes uj+1, . . . , umin{j+k,2k} for j = 0, . . . , 2k− 1.
Let those links be considered of level 1. We now recursively consider the subpaths
[uj + 2, . . . , uj+1 − 1] for j = 0, . . . , 2k − 1, assigning to each of them long links
of level 2 in the same way, that is, dividing the current subpath in 2k weight-
balanced portions. The long links are assigned till at most the �log2k W �-th level

Asymptotically Optimal Solutions for Small World Graphs 425

is reached. Again, a node is said of level i if it is the end-point of a long link of
level i.

Arguments similar to the ones for outdegree 1 prove the following claims.

Lemma 3. In the above construction the oblivious path from a node x with
weight wx ∈Wi to a node y with weight wy ∈ Wj has length at most 4(i+ j−1).

Theorem 5. ODk(Pn) = O(logk n).

5.2 Trees

We now present a deterministic construction having outdegree 1 for trees based
on their standard separation property. Namely, it is possible to determine a
heavy path (u1, . . . , uh) starting from the root r = u1 and descending at each
step in one of the subtrees having largest cardinality, till reaching a leaf. Let Uj ,
j = 1, . . . , h, be the set of the sons of uj not equal to uj+1. As it can be easily
checked, the deletion of the heavy path separates the tree into several subtrees
with roots in Uj, j = 1, . . . , h. Each of such subtrees has size at most equal to
the half of the one of the original tree.

On the heavy path we apply the outdegree 1 construction for weighted paths
shown in the previous subsection, assigning to each node uj a weight equal to
the total number of nodes in the subtrees rooted at nodes in Uj plus 1.

In each subtree we recursively do the same construction.

Theorem 6. For a tree T with n nodes OD1(T) = O(log n).

Proof. Let the eccentricity e(n) of a tree of n nodes be the maximum length of
an oblivious path starting from the root of the tree to one internal node and vice
versa, according to the above construction. We first show that e(n) = O(log n).

Consider an oblivious path between the root and a generic node x of the
tree. By construction, considering the heavy path determined from the root, it
is easy to check that if x belongs to a subtree rooted at a node in Uj , node uj

of the heavy path must be a node of the oblivious path from the root to x. By
Lemma 2, the length of the oblivious path from the root to uj depends on the
weight wj of uj . More precisely, if i is the maximum value such that wj < n

2i−1 ,
such a length is bounded by 4i.

The same arguments hold for the oblivious path from x to the root, which
must step through uj .

Thus, for i ≥ 1, the following recursive inequality holds: e(n) ≤ 4i + 1 +
e
(

n
2max{1,i−1}

)
, where the addition of 1 is due to the oblivious step from uj to

the appropriate subtree with root in Uj , while the maximum between 1 and
i − 1 below the last factor is due to the fact that such a subtree has size at
most wj < n

2i−1 and according to the standard separation property of the tree
at most equal to n/2. It is easy to check how such inequality implies e(n) ≤
10 logn + 10 = O(log n).

If we consider now the oblivious diameter of the deterministic construction,
it is easy to see that it is at most twice e(n/2) plus the oblivious diameter of a

426 M. Flammini et al.

11r

x

x

T

T

s

s

d

d

1 1
1 1

1
1 2

1

w
w

w
w

w
w

2

1
3

5
6

9

Fig. 3. The heavy path and the associated weights

heavy path (generated from the root or recursively in one of the subtrees). In
fact, for any source-destination pair (xs, xd), there must exist a minimal subtree
T̄ ⊆ T (eventually the whole tree) generated during the construction containing
both xs and xd. Consider the heavy path of T̄ and let ūs and ūd the two nodes
such that Ūs and Ūd include the roots of the subtrees containing xs and xd,
respectively. The oblivious path is then obtained by the concatenation of the
oblivious ones from xs to ūs, from ūs to ūd and from ūd to xd.

Since the maximum sum of the node weights of the heavy path of T̄ is at
most n, by Lemma 2 the oblivious distance of ūs and ūs is O(log n).

Therefore, OD1(T) ≤ 2 + 2e
(

n
2

)
+ O(log n) = O(log n). ��

5.3 Cartesian Products

Given any two digraphs G1 = (V1, A1) and G2 = (V2, A2), the Cartesian product
of G1 and G2, denoted as G1�G2, is a digraph having |V2| rows or horizontal
components and V1 columns or vertical components. Routing along each row
is done according to G1 and in each column according to G2. More precisely,
G1�G2 has node set {(x, y)}|x ∈ V1, y ∈ V2} and arc set {((x, y), (x, y′))|(y, y′) ∈
A2} ∪ {((x, y), (x′, y))|(x, x′) ∈ A1}.

Lemma 4. For every two digraphs G1 and G2, ODk1+k2(G1�G2) =
ODk1(G1) +ODk2(G2).

Proof. We use along each row (resp. column) the same construction with out-
degree k1 (resp. k2) for G1 (resp. G2). Clearly, this yields outdegree at most
k1 + k2. The lemma then follows by observing that the oblivious paths from
a node (x, y) to another node (x′, y′) in G1�G2 are all and only the ones
alternating in all the possible ways horizontal and vertical moves according
to the oblivious paths from x to x′ in G1 and from y to y′ in G2, so that
ODk1+k2(G1�G2) = ODk1(G1) +ODk2(G2). ��

As far as we restrict to Cartesian products of paths, it is also possible to ob-
tain deterministic constructions having outdegree equal to 1. Consider in fact the
n×n grid resulting from the product P 2

n ≡ Pn�Pn of two paths of n nodes. The
idea is to alternate the nodes of the grid for vertical and horizontal movements
according to the long links of our deterministic construction withoutdegree 1 for

Asymptotically Optimal Solutions for Small World Graphs 427

P�n
2 � in a chessboard like fashion, thus obtaining at each node of the grid either

horizontal or vertical long links. Thus, for any odd (resp. even) row the odd
(resp. even) nodes represent a horizontal copy of P�n

2 � and for any odd (resp.
even) column the even (resp. odd) nodes represent a vertical copy.

By extending such a construction to d-dimensional grids P d
n , that is to Carte-

sian products of d paths of n nodes, it is possible to prove the following lemma
(details will appear in the full version of the paper).

Theorem 7. Given any integer d ≥ 2, OD1(P d
n) = O(d2 log N), where N = nd

is the number of nodes of P d
n .

Again such a construction is asymptotically optimal, that is with an oblivious
diameter logarithmic in the total number of nodes, for the most significant cases
of grids having a constant number of dimensions.

6 Conclusion and Future Work

We have given the first general lower bound on the expected oblivious diame-
ter holding for any monotone distance distribution. Moreover, after showing the
intractability of the problem in the deterministic case, we have given asymptot-
ically optimal constructions for paths, trees and Cartesian products of graphs,
including d-dimensional grids for any fixed value of d.

Many problems are left open. First of all, even if as proved in the literature
only non increasing distance distributions are expected to yield a low oblivious
diameter, can our lower bound be extended to completely arbitrary distance
distributions?

Moreover, the lower bound concerns only path topologies, that is one-
dimensional grids. Although it is intuitively clear that the oblivious diameter
can only get worse in higher dimensional grids due to the possibility of having
long links changing many dimensions at the same time, for such topologies we
don’t have a formal proof yet.

Another worth investigating issue is that of determining randomized or de-
terministic constructions always achieving a polylogarithmic oblivious diameter
when at most a polylogarithmic number of outgoing long links per node are
allowed.

Is there a construction achieving an O(logk n) oblivious diameter for trees in
case of at most k outgoing long links per node?

It would be also interesting to give asymptotically optimal deterministic so-
lutions for broader classes of networks, like for instance for grids having a non
constant number of dimensions.

An important final remark is that, differently from the classical problem of
determining bounded degree graphs with a minimum diameter, in the considered
specific small world graphs deterministic constructions seem to be more effective
than probabilistic ones. Is this true in general, that is when there is no restriction
on the topology?

428 M. Flammini et al.

References

1. Adamic, L. A. The Small World Web. In Proc. of the 3rd European Conference
on Research and Advanced Technology for DIGITAL LIBRARIES (ECDL) (1999),
vol. 1696, Lecture Notes in Computer Science, Springer-Verlag, pp. 443–452.

2. Aspnes, J., Diamadi, Z., and Shah, G. Fault-tolerant routing in peer-to-peer
systems. In Proc. of the 21st annual symposium on Principles of distributed com-
puting (PODC) (2002), ACM Press, pp. 223–232.

3. Barriere, L., Fraigniaud, P., Kranakis, E., and Krizanc, D. Efficient rout-
ing in networks with long range contacts. In Proc. of the 15th International Con-
ference on Distributed Computing (DISC) (2001), Springer-Verlag, pp. 270–284.

4. Fraigniaud, P. A new perspective on the small-world phenomenon: Greedy rout-
ing in tree-decomposed graphs. In Proceedings of the 13th Annual European Sym-
posium on Algorithms (ESA) (2005, to appear).

5. Fraigniaud, P., Gavoille, C., and Paul, C. Eclecticism shrinks even small
worlds. In Proc. of the 23rd annual ACM symposium on Principles of distributed
computing (PODC) (2004), ACM Press, pp. 169–178.

6. Garey, M., and Johnson, D. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

7. Kleinberg, J. Small-world phenomena and the dynamics of information. In Proc.
of the 14th Advances in Neural Information Processing Systems (NIPS) (2001).

8. Kleinberg, J. The Small-World Phenomenon and Decentralized Search. SIAM
News 37, 3 (2004).

9. Kleinberg, J. M. The small-world phenomenon: an algorithm perspective. In
Proc. of the 32nd ACM Symposium on Theory of Computing (STOC) (2000),
pp. 163–170.

10. Martel, C., and Nguyen, V. Analyzing Kleinberg’s (and other) small-world
models. In Proc. of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC) (2004), pp. 179–188.

11. Martel, C., and Nguyen, V. Analyzing and characterizing small-world graphs.
In Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) (2005), pp. 311–320.

12. Milgram, S. The small world problem. Psychology Today 2 (1967), 60–67.
13. Walsh, T. Search in a small world. In Proc. of the 16th International Joint

Conference on Artificial Intelligence (IJCAI) (1999), pp. 1172–1177.
14. Wang, X. F., and Chen, G. Complex networks: small-world, scale-free, and

beyond. IEEE Circuits and Systems Magazine 3, 1 (2003), 6–20.
15. Watts, D. J., and Strogatz, S. H. Networks, Dynamics and Small-World

Phenomenon. American Journal of Sociology 105, 2 (1999), 493–527.
16. Zhang, H., Goel, A., and Govindan, R. Using the small-world model to improve

freenet performance. SIGCOMM Computer Communication Review 32, 1 (2002),
79–79.

Deciding Stability in Packet-Switched FIFO

Networks Under the Adversarial Queuing Model
in Polynomial Time �, ��

Maria J. Blesa

ALBCOM Research Group,
Dept. Llenguatges i Sistemes Informàtics,

Universitat Politècnica de Catalunya,
Ω-213 Campus Nord, E-08034 Barcelona, Spain

mjblesa@lsi.upc.edu

Abstract. In spite of the importance of the fifo protocol and the re-
search efforts invested in obtaining results for it, deciding whether a
given (packet-switched) network is stable under fifo has remained an
open question for several years. In this work, we address the general case
of this problem and try to characterize the property of stability under
fifo in terms of network topologies. Such a characterization provides us
with the family of network topologies that, under the fifo protocol, can
be made unstable by some adversarial traffic pattern. We show that the
property of stability under fifo is decidable in polynomial time.

1 Introduction

Since the emergence of computer networks, protocols were used for the estab-
lishment of ordered communications among computers. Communication takes
place at different levels: low level protocols define for example the bit- and byte-
ordering, their transmission, and the error detection and correction of the bit
stream; high level protocols deal for example with the data packet formatting,
the packet routing and the packet scheduling.

In this paper, we are interested in this latter functionality, in which the pro-
tocol (also called scheduling policy) determines the order in which the packets
requiring to cross a link are scheduled to be forwarded. Most scheduling pro-
tocols aim at moving information across a network in an efficient and reliable
manner. This often requires congestion and flow control, error detection and cor-
rection, and handshaking to coordinate the information transfer. Most network
communication protocols are implemented as part of the operating system on
the computers wishing to communicate. The first-in-first-out (fifo) protocol is
� Partially supported by EU Programmes under contract numbers IST-2001-33116

(FLAGS), IST-2004-15964 (AEOLUS), COST-295 (DYNAMO), and by the Spanish
CICYT projects TIC-2001-4917-E and TIC-2002-04498-C05-03 (TRACER).

�� The reader is addressed to an extended technical report version of the paper in [6],
for details on the proofs of the theorems.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 429–441, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 M.J. Blesa

still one of the most popular, important and effective scheduling policies, in spite
of its simplicity. The fifo protocol schedules queued packets according to a local
criterion in which the highest priority is given to the packet that has arrived
first in the queue. This locality property makes the fifo protocol easy to be
implemented.

Appropriate models to study networking systems that implement specific
communication protocols are needed. Those models could help us to understand
better the dynamics of nowadays’ communication networks, and therefore to
detect and overcome the conditions leading to undesirable negative effects, as
well as helping on their further prevention. One of those undesirable negative
effects is the lack of stability.
Stability refers to the fact that the number of packets in the system remains
bounded (by a bound that can be a function of the system parameters, but
not dependent on time) as the system dynamically evolves in time. Stability
is studied in relation to the three main components modeling a synchronous
communication system (G,A,P): the network G, the traffic pattern defined by A,
and the protocol P . Networks are modeled by directed graphs in which the nodes
represent the hosts, and the arcs represent the links between those hosts. The
traffic pattern controls where and how packets join the system and, optionally,
defines their trajectory. The protocols considered are usually greedy.1

A strongest notion of stability is that of universal stability. Universal stability
can be addressed from the network or from the protocol point of view. A network
G is universally stable if, for any protocol and any traffic pattern, the resulting
system is stable. A protocol P is universally stable if, for any network and any
adversary the resulting system is stable.

According to the classification introduced in [3], we will also differentiate and
refer to the property of stability in the case in which packets follow simple paths
as simple-path stability, leaving then the term stability to refer to the case in
which packets follow paths.2

The Adversarial Queueing Theory (aqt) model proposed by Borodin et al. [7]
has become an important model to study stability issues in packet-switched
communication networks. These models have been shown to be good theoreti-
cal frameworks for describing the traffic pattern in both connectionless networks
(such as the Internet) and short-term connection networks, as well as connection-
oriented networks (such as atm networks). Adversarial models allow to analyze
the system in a worst-case scenario, since they have replaced traditional stochas-
tic arrival assumptions in the traffic pattern by worst-case inputs. The aqt model
1 (Store and forward) greedy protocols are those forwarding a packet across a link e

whenever there is at least one packet waiting to traverse e. At each time step, only
one packet from those waiting is forwarded through the link; the rest are kept in a
queue at the link. Greedy protocols are also called work-conserving protocols.

2 We consider a path through a digraph a traversal of consecutive vertices along a
sequence of arcs, in which repeated vertices (but no arcs) within the path are per-
missible. When there are no repeated vertices in the path (and therefore no arcs
either), then it is called a simple path.

Deciding Stability in Packet-Switched FIFO Networks 431

considers the time evolution of a packet-routing network as a game between an
adversary, which produces the traffic pattern, and a queueing policy. The system
is considered to be synchronous. At each time step the adversary may inject a
set of packets to some of the nodes. In the case of static routing, the adversary
specifies the route that every injected packet must traverse before arriving to its
destination. When arriving to destination, packets are considered to disappear
from the system. If more than one packet wishes to cross an edge e at the same
time step, then the queueing policy chooses exactly one of these packets. The
remaining packets wait in the queue. This game then advances to the next time
step. The goal of the adversary is to try to prevent the protocol from guaran-
teeing load and delay bounds. On the contrary, the main goal of the model is to
study conditions for stability of the network under different protocols.

In order not to trivially overload the system and in order to be able to guar-
antee delay bounds, it is necessary to restrict the traffic arriving to the network.
The constraints on the traffic pattern must ensure that, over long periods of
time, the maximum traffic injected in a link is roughly the amount of traffic that
the link can forward. Two parameters (r, b) constraint an adversary in the aqt
model, where b ≥ 0 is the burstiness and 0 < r < 1 is the injection rate. Let
Ne(I) be the number of packets injected by the adversary in a time interval I,
whose path require to traverse a particular edge e. The adversary must obey the
following (leaky-bucket) constraint:

Ne(I) ≤ �r|I|�+ b. (1)

Recent research on stability has mainly considered the aqt model and has
put special interest in the fifo protocol (see, e.g., [7,4,8,17,18,9,5,19]).

Our motivations and contributions. Universal stability of networks is a non-trivial
property; since it is a predicate quantified over all protocols and adversaries, it
might at first appear that it is not a decidable property. One of the deepest results
in the context of network stability in the adversarial queueing model establishes
that, to the contrary, this is not the case [4]. The question of characterizing net-
works that are universally stable, and algorithmically recognizing such networks,
naturally arises next. This question was also recently answered in [3] by fully char-
acterizing the property under different network representation and considering
different restrictions on the packet trajectories. Moreover, in the same work it is
shown that deciding universal stability of networks requires polynomial time.

Concerning the protocol point of view, it is known that ftg, nfs, sis and
lis are universally stable, while fifo, lifo, ntg and ffs are not [4].3 For those

3 The protocol last-in-first-out (lifo) gives priority to the packet which entered the
queue the latest. Concerning injection times, shortest-in-system (sis) gives priority
to the packet introduced last into the system, while longest-in-system (lis) gives it
to the one that has been in the system the longest. Concerning the distance to the
destination, nearest-to-go (ntg) assigns highest priority to the packet that is closest
to its destination and ftg (Furthest To Go) to the packet that is farthest. Similarly,
nearest-from-source (nfs) and farthest-from-source (ffs) consider the distance to
the source.

432 M.J. Blesa

queueing polices which are not universally stable, a weaker notion of stability is
addressed, that of the stability under a protocol. Here the problem is to decide
which networks are stable, and which are not, under a fixed queuing policy P. In
the best case, a characterization of stability under the protocol P can be obtained.
To the best of our knowledge, only two results are known in this sense: Deciding
stability under the ntg-lis4 and ffs protocols is polynomially solvable and it
is, moreover, equivalent to deciding universal stability of networks [3,1].

In this paper we address the problem of deciding stability under the fifo
protocol. In spite of the importance of this property and this protocol, the as-
pects concerning its decidability and complexity were still, since some years, an
open question in the area. In this work, we show that the property of stability
under fifo is decidable in polynomial time and do a step forward towards the
characterization of the property.

Taking the characterization of (network) universal stability as starting refer-
ence [3], and using similar techniques as the ones we used there, we propose two
characterizations of the stability under fifo. These characterizations are com-
posed by two candidate sets of forbidden subdigraphs. One of them is actually
the characterization of the property. The eligibility of one or the other candidate
set as the decisive characterization depends on the stability of the digraph U1

(see Figure 1). In the case that U1 is unstable under fifo, the characterization
would be the same as the characterization of the digraphs that are universally
stable [3]. This would have some nice implications since, in the case this holds, a
digraph would be universally stable if and only if it is stable under fifo. In spite
of the simplicity of the network topology in U1, some important questions about
it remain still open nowadays. One of these particular questions is concerned
with its stability under the fifo protocol.

Organization. The paper is organized as follows. In Section 2 we introduce some
preliminaries of the work; this includes a review of the results existing in the
literature which are concerned with stability under fifo, and also the notation
used in the forthcoming of the paper. In Section 3, the family of digraphs which
are stable under fifo are presented. Also in this section, the family of digraphs
which are not stable are introduced by its minimal representants. The property of
stability under fifo is characterized in Section 4 in terms of those unstable min-
imal representants. In the same section, a polynomial-time algorithm is given for
deciding the property of stability under the fifo protocol. The work concludes
in Section 5, where some open questions as well as some possible extensions of
the work are pointed out.

2 Preliminaries

The first-in-first-out (fifo) greedy protocol is probably one of the most com-
monly used scheduling protocols. fifo is used in many contexts in computer
environments, either internally (e.g., in operating systems to process I/O device

4 The protocol ntg-lis works as ntg, but solves ties using the lis protocol.

Deciding Stability in Packet-Switched FIFO Networks 433

interruptions or information exchange between processes) or externally (e.g.,
as communication protocol for information exchange between computers). One
of its main advantages, specially when implementing it, is that its criterion to
schedule packets is completely based on simple local properties. In the fifo pro-
tocol, highest priority is given to the packet that has arrived first in the queue.
Observe that, when two packets arrive to the queue at the same time then they
have to be queued in some order, which we will assume that is decided arbitrarily
by the adversary.

2.1 Previous Results on FIFO in the AQT Model

Due to its relevance, much attention has been put on the study of stability con-
ditions in aqt under the fifo protocol. Already the pioneering work of Borodin
et al. [7] showed that ring topologies are not stable under fifo for the extreme
injection rate r = 1. It is however of higher interest to find bounds when ad-
versaries work in underloaded conditions, i.e., when their injection rate r < 1.
Thus, the consecutive improvement of the lower bounds for instability under
fifo was one of the research subjects in the last years. As time and research
advanced, this lower bound was dropping from r ≥ 0.85 [4], to r ≥ 0.84 [11],
r ≥ 0.8357 [8], r ≥ 0.771 [17], r ≥ 0.749 [16], and finally to r > 0.5 [19]. A step
further was done recently, when fifo was shown to be unstable at arbitrarily
low rates [5,15]. The existence of a network-dependent upper bound was shown
in [8], which was recently generalized to r ≤ 1/d [19,9], where d is the length of
the longest route traversed by any packet.

However, as we have pointed out before, the aspects concerning its decidabil-
ity and complexity were still, since some years, an open question in the area.

2.2 Digraph Subdivision Operations

We use standard graph terminology to denote the following digraphs: directed k-
cycles, acyclic digraphs, and unicyclic digraphs. A directed k-cycle is a directed
(simple) cycle with k vertices, where k ≥ 2. We say that two directed (simple)
cycles are embedded when they share one or more edges, and they are collar-
chained when they only share one vertex but no edges (e.g., in Figure 1, the two
cycles in digraph U2 are collar-chained, while the multiple cycles in the other
digraphs are embedded). A unicyclic digraph is a digraph that contains only one
(simple) cycle.

We will characterize the property of stability under fifo in terms of a family
of forbidden subdigraphs. To this aim, we first need to identify the families
of digraphs which are stable under this protocol. Then the simplest digraphs
which are not stable should be identified. The family of the digraphs which are
not stable under fifo will be then defined by iteratively applying subdivision
operations to those simplest digraphs. We consider the following subdivision
operations:

– The subdivision of an arc (u, v) in a digraph G consists in the addition of a
new vertex w and the replacement of (u, v) by (u, w) and (w, v).

434 M.J. Blesa

e1

e2

f

U1

e1

f2

f1

e2

U2

e1

e2

f

U1
1

e3

e1

e2

U2
1

f1

f2 e2

e1

f2 f1

U3
1

e1

f

e21 e22

U4
1

Fig. 1. Minimum forbidden subdigraphs characterizing stability under fifo. The two
candidate sets to consider are either {U1,U2} or

{U1
1,U2

1,U3
1,U4

1,U2

}
; the former would

characterize the stability under fifo in the case that U1 is not stable under that
protocol, while the latter would characterize it in the case that U1 is stable under fifo.

– The subdivision of a 2-cycle (u, v), (v, u) in a digraph G consists in the
addition of a new vertex w and the replacement of (u, v), (v, u) by the arcs
(u, w), (w, u), (v, w) and (w, v).

Then, given a digraph G, we will denote as E (G) the family of digraphs formed by
G and all the digraphs obtained from G by successive arc or 2-cycle subdivisions.
Note that, a strongly connected digraph remains so when applying arc or 2-cycle
subdivisions to it. In the following, we will be using digraphs and networks as
synonyms. All the digraphs considered in this paper are strongly connected and
they may have multiple edges (arcs) but no loops.5 Since we deal with static
routing, a packet transmitted over those digraphs follows a predefined (and non-
changing) path. To keep lighter the notation, a path is specified by the sequence
of its edges or by the concatenation of sub-paths. Moreover, the names used to
denote the digraphs and their edges correspond to the ones depicted in Figure 1.

3 Stability of Digraphs Under FIFO

In this section, we show which digraphs are stable under fifo as well as those
simplest digraphs which are not stable under this protocol. By applying subdivi-
sion operations to those simplest unstable digraphs the whole family of digraphs
which are not stable under fifo will be determined.

In the following lemma, we enounce the known property that the instability
of any of the subdigraphs of a digraph produces automatically instability in the
graph.

5 Multiple edges share the same pair of different endpoints. The endpoints of a loop
is the same vertex.

Deciding Stability in Packet-Switched FIFO Networks 435

Lemma 1 ([4]). If H is a subdigraph of G and H is unstable, then G is also
unstable.

This property is maintained when acyclically connecting digraphs which are
stable under fifo. Given two digraphs G1 and G2, let us denote as G1→2 the
family of digraphs formed by joining G1 and G2 with arcs that go only from G1

to G2.

Lemma 2. If digraphs G1 and G2 are stable under fifo, then so is any digraph
G ∈ G1→2.

Proof. Assume that the adversary working against G has rate r and burstiness
b. Any packet injected into G1 by this adversary will get out of G1 within a
bounded number of time steps t1, because G1 is stable under fifo. Some of the
packets leaving G1 might join G2. Let us consider a time interval of t2 steps
starting right after the t1 time steps mentioned before. The packets joining G2

during that t2 time steps must have been introduced in the system during the
last t1 + t2 steps; moreover, there are at most r(t1 + t2) + b of those packets.

We want to show that all the packets coming from G1 together with the pack-
ets injected directly in G2 could have been generated by an adversary working
only against G2. Consider that such an adversary has rate 1 > r′ > r and bursti-
ness b′ ≥ b. During any interval t ≥ t2, the total amount of packets introduced
into G2 would be r′t+ b′. In order for those packets to be generated by the men-
tioned adversary, it must hold that r′t + b′ = r′t + b′− ((r′ − r)t2 + b′− rt1 − b),
which holds when considering t2 = rt1/(r′ − r).

As a consequence of Lemmas 1 and 2 we can state the following:

Theorem 1. A digraph G is stable under fifo if and only if all its strongly
connected components are stable under fifo.

All directed acyclic graphs6 and (isolated) directed cycles on any number of
vertices are known to be universally stable [7,4], thus being also stable under the
fifo protocol. Let us re-write these known properties as Lemma 3.

Lemma 3 ([7,4]). All acyclic digraphs and k-cycles (where k ≥ 2) are stable
under fifo.

Observe that an uniclycic digraph G can be seen as composed by a k-cycle,
and different lines connected acyclically to it. By extension, every digraph with
more than one cycle can be seen as an acyclic connection of two stable subdi-
graphs if any two cycles are neither collar-chained nor embedded. In this case,
the cycles are acyclically connected by directed non-empty paths. The following
lemmas can be stated as a consequence of Lemmas 2 and 3.

Lemma 4. All unicyclic digraphs are stable under fifo.
6 Note that this includes directed trees and multi-trees, i.e., directed trees with single

arcs and multi-arcs.

436 M.J. Blesa

Lemma 5. All digraphs with more than one cycle in which any pair of cycles
are neither collar-chained nor embedded are stable under fifo.

In a strongly connected digraph, every vertex can be accessed from any other
vertex of the digraph. Note that all the directed acyclic digraphs as well as all
the digraphs formed by acyclic connections are not strongly connected. However,
in the context of communication networks strongly connected topologies are
of highest interest. Beyond the directed cycle and unicyclic digraphs, the next
networks to consider are then the digraphs U1 and U2 depicted in Figure 1, which
are the smallest non-unicyclic strongly connected digraphs, i.e., the smallest
strongly-connected digraphs with more than one cycle. Observe that U1 is the
smallest network that has two embedded cycles, and that U2 is the smallest
network that has two collar-chained cycles. In the following, we show that neither
the digraph U2, nor any of its extensions, are stable under fifo.

Lemma 6. The digraphs in E (U2) are not stable under fifo.

However, it remains still an open question (as it was already pointed out
in [3]) whether the digraph U1 is stable under fifo. Instead, let us consider the
digraphs U1

1, U2
1, U3

1 and U4
1 depicted in Figure 1, which are the next strongly

connected digraphs to consider after U1 (in terms of their size). Digraphs U1
1 and

U2
1 are obtained from U1 when considering multi-edges, while digraphs U3

1 and
U4

1 are obtained from U1 when subdividing arcs. The digraphs that result from
2-cycle subdivisions of U1 contain U2 as a subdigraph, and so they can be made
unstable under the fifo protocol. Although no result concerning the stability of
U1 under fifo is known, we show in the following that neither digraphs U1

1, U2
1,

U3
1 or U4

1, nor any of their extensions are stable under fifo.

Lemma 7. The digraphs in E
(
U1

1

)
∪ E

(
U2

1

)
∪ E

(
U3

1

)
∪ E

(
U4

1

)
are not stable

under fifo.

However, a quite high injection rate (r ≥ 0.929, see appendix) is needed
to produce instability in this networks, which indicates that, although possible,
it is not “easy” to make a system unstable under fifo with these underlying
topologies.

Observe that, by considering the family of digraphs composed by U2, U1
1, U2

1,
U3

1, U4
1 and their extensions, the only digraphs which are not included are those

which have as subdigraph a digraph in

E (U1) \
{
E (U2) ∪ E

(
U1

1

)
∪ E

(
U2

1

)
∪ E

(
U3

1

)
∪ E

(
U4

1

)}
,

i.e., those whose strongly connected components are exactly U1. If U1 is stable
under fifo, then those digraphs are also because of Lemma 2; if U1 is not stable
under fifo, then those digraphs can be made also unstable but, in this case,
they would not be the smallest forbidden subdigraphs because they contain U1.

4 Characterizing Stability Under FIFO

In this section two candidate sets of forbidden subdigraphs are proposed for the
characterization of the stability under fifo. The choice of the right candidate

Deciding Stability in Packet-Switched FIFO Networks 437

Algorithm 1 : Stability under fifo (sup. U1 is not stable under fifo)

input: A strongly connected digraph G = (V, E)
compute a (any) directed k-cycle C = (e1 . . . ek) of k ≥ 2 vertices, and let

CV ← {v | ∃e ∈ C : e = (v, u)} ⊆ V (set of vertices of the cycle C)
CE ← {e | e ∈ C} ⊆ E (set of arcs of the cycle C)

if G does not have a directed k-cycle of k ≥ 2 vertices then
return yes

else
Let G′ = (V, E \CE) be the digraph resulting after removing from G the arcs in C
if there are two different vertices u, v ∈ CV connected in G′ by a directed path
then

return no
else

return yes
end if

end if

has a penchant for one subset or the other depending on the stability of U1.
Whatever the decisive characterization is, we can state the stability under fifo
can be decided in polynomial time.

Theorem 2. If the digraph U1 is not stable under fifo, then any digraph G
is stable under fifo if and only if it does not contain as subdigraph a digraph
from E (U1)∪E (U2). Otherwise, if the digraph U1 is stable under fifo, then any
digraph G is stable under fifo if and only if it does not contain as subdigraph a
digraph from E

(
U1

1

)
∪ E

(
U2

1

)
∪ E

(
U3

1

)
∪ E

(
U4

1

)
∪ E (U2).

Proof. If the digraph U1 is not stable under fifo then, according to Theorem 6
and the fact that the instability of a subdigraph implies the instability of the
whole digraph, no digraph G containing as subdigraph a digraph from E (U1) ∪
E (U2) is not stable. If G does not contain as subdigraph a digraph from E (U1)∪
E (U2) then all its strongly connected components must consist of at most one
simple directed cycle. Therefore, G is stable under fifo according to Lemma 3
and Theorem 1.

If the digraph U1 is stable under fifo then, according to Lemmas 6 and 7,
together with the fact that the instability of a subdigraph implies the insta-
bility of the whole digraph, no digraph G containing as subdigraph a digraph
from E

(
U1

1

)
∪ E

(
U2

1

)
∪ E

(
U3

1

)
∪ E

(
U4

1

)
∪ E (U2) is stable. If, on the contrary,

G does not contain as subdigraph a digraph from that set, then all its strongly
connected components either consist of at most one simple directed cycle (and
then, according to Lemma 3 and Theorem 1, G would be stable under fifo), or
they contain as a subdigraph the digraph U1 (which here we have assumed that
is stable under fifo).

This result, when put in relation with Lemmas 3, 4, 5, 6, and 7, can be stated
in terms of digraphs’ properties.

438 M.J. Blesa

Algorithm 2 : Stability under fifo (sup. U1 is stable under fifo)

input: A strongly connected digraph G = (V, E)
compute a (any) directed k-cycle C = (e1 . . . ek) of k ≥ 2 vertices, and let

CV ← {v | ∃e ∈ C : e = (v, u)} ⊆ V (set of vertices of the cycle C)
CE ← {e | e ∈ C} ⊆ E (set of arcs of the cycle C)

if G does not have a directed k-cycle of k ≥ 2 vertices then
return yes

else
Let G′ = (V, E \CE) be the digraph resulting after removing from G the arcs in C
if there are two different vertices u, v ∈ CV connected in G′ by a directed path
then

P ← such a directed path connecting u ∈ CV and v ∈ CV in G′

if |CV | = k > 2 then
return no

else if |P | > 1 or there is another directed path P ′ �= P in G′ between two
different vertices in CV then

return no
end if

end if
compute the strongly connected components of G′

if a strongly connected component of G′ contains a directed k-cycle of k ≥ 2
vertices then

return no
else

return yes
end if

end if

Corollary 1. If the digraph U1 is not stable under fifo, then a strongly con-
nected digraph G is stable under fifo if and only if G has just a directed k-cycle
(on any k ≥ 2). Otherwise, if the digraph U1 is stable under fifo, then a strongly
connected digraph G is stable under fifo if and only if G has just a directed k-
cycle (on any k ≥ 3) or a 2-cycle with at most one multi-edge.

Then, instead of detecting the proposed forbidden subdigraphs by means of
subdigraph homeomorphism (which would be NP-complete [10]), the stability
of digraphs under fifo can be decided in polynomial time by detecting the
proposed forbidden subdigraphs in terms of the digraphs’ properties outlined in
Lemmas 4, and 5, and Corollary 1.

Theorem 3. The stability under fifo of a given digraph can be decided in poly-
nomial time.

Proof. Algorithms 1 and 2 check stability under fifo of a given strongly con-
nected digraph G according to Lemmas 4, and 5, and Corollary 1. Both algo-
rithms run in polynomial time. Algorithm 1 would be applied in the case that

Deciding Stability in Packet-Switched FIFO Networks 439

U1 is not stable under fifo, while Algorithm 2 would be applied in the case that
U2 is stable under fifo.

According to Theorem 1, the strongly connected components of the digraph
need to be computed first. Thus the result follows by combining the computa-
tion of the strongly connected components of the given digraph (with complexity
O(|V | + |E|) using Tarjan’s algorithm [20] based on depth-first search –DFS–)
either with Algorithm 1 or Algorithm 2.

5 Conclusions, Remarks, Open Questions and Further
Work

In spite of the importance of the fifo protocol and the research efforts invested
in obtaining results for it, deciding whether a given network is stable under
fifo was still an open question. We have addressed this problem and tackled
the general case, i.e., the decidability and complexity of stability under the fifo
protocol, and . In this work, we have shown that the property of stability under
fifo is decidable in polynomial time.

We wanted to identify which network topologies determine that a system
under fifo is (or is not) stable and then, be able to provide a characterization
of the property. Taking the characterization of (network) universal stability as
starting reference, we have proposed an (open) characterization of the stability
under fifo (see Theorem 2). The characterization is composed by two candidate
sets of forbidden subdigraphs. The eligibility of one or the other candidate set
as the decisive characterization depends on the stability of the digraph U1 (see
Figure 1). In the case that U1 is unstable under fifo, the characterization would
be defined by U1 and U2, and it would be the same as the characterization of the
digraphs that are universally stable [3]. This would have some nice implications
since, in the case this holds, a digraph would be universally stable if and only if it
is stable under fifo. In the case that U1 is stable under fifo, the characterization
would be defined by U2, U1

1, U2
1, U3

1, and U4
1.

Some important questions remain still open concerning the stability under
fifo, being of course the most important one that of finding out whether U1 can be
made unstable under fifo , which would establish the decisive characterization.

In the same way as we proceeded in this work, other variants of stability
can be tackled. Different variants can be defined according to the constraints
on the packet trajectory and, as it was shown in [3], this influences strongly
the characterization of the stability properties. Keeping the representation of
the network as a directed graph, we can consider also the property of simple-
path stability under fifo. The characterization of this property is also an open
question nowadays. A first step to it would be to study what is the behaviour
of the smallest digraphs which are known not to be universally stable, when the
system schedules the packets according to the fifo policy. Those digraphs are
exactly the ones depicted in Figure 2, which characterize the universal stability
of networks [3]. The following lemma states the simple-path instability under
fifo of the digraphs in E (S3) ∪ E (S4).

440 M.J. Blesa

e2

e1

f2 f1

S1

e11 e12

e21 e22

f

S2

e21

e22

f1 e1

f22

f21

S3

e21

e22

f1 e1

f22

f21

g2

g1

S4

Fig. 2. Minimum forbidden subdigraphs characterizing simple-path universal stabil-
ity [3]. The digraphs S3 and S4 will belong to the set of forbidden subdigraphs char-
acterizing the property of simple-path stability under fifo. In order to know which
digraphs complete that characterization, the stability under fifo of the digraphs S1

and S2, their extensions, and the digraphs with the same basic topology but multi-
edges, need to be studied.

Lemma 8. The digraphs in E (S3) ∪ E (S4) are not simple-path stable under
fifo.

This is a first step into the characterization of the property of simple-path
stability under fifo, however the simple-path stability of the digraphs in E (S1)∪
E (S2), together with other digraphs which do not contain any digraph in E (S3)∪
E (S4) as a subdigraph, have to be deeply studied before converging to a char-
acterization of the property.

The characterization of stability (and variants) under protocols other than
fifo are still also an open question in this topic. To the best of our knowledge,
only the characterization of stability (and variants) under ffs and ntg-lis are
additionally known [1,3]. Establishing the characterization of the stability under
lifo would be of higher interest, because this protocol is gaining popularity in
the last years due to the discovery of the significant quality improvement on
the performance of interactive real-time services, such as ip telephony and ip
teleconferencing [12,13,14].

Acknowledgments

The author would like to thank the unknown referees for their comments and
suggestions.

References

1. C. Àlvarez, M. Blesa, J. Dı́az, A. Fernández, and M. Serna. The complexity of
deciding stability under FFS in the adversarial model. Information Processing
Letters, 90(5):261–266, 2004.

2. C. Àlvarez, M. Blesa, J. Dı́az, A. Fernández, and M. Serna. Adversarial models
for priority-based networks. Networks, 45(1):23–35, 2005.

3. C. Àlvarez, M. Blesa, and M. Serna. A characterization of universal stability in
the adversarial queueing model. SIAM Journal on Computing, 34(1):41–66, 2004.

Deciding Stability in Packet-Switched FIFO Networks 441

4. M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu.
Universal stability results for greedy contention–resolution protocols. Journal of
the ACM, 48(1):39–69, 2001.

5. R. Bhattacharjee, A. Goel, and Z. Lotker. Instability of FIFO at arbitrarily low
rates in the adversarial queueing model. SIAM Journal on Computing, 34(2):318–
332, 2004.

6. Blesa, M.J.: Deciding Stability under FIFO in the Adversarial Queuing model
in polynomial time. Research Report LSI-05-3-R, Dept. Llenguatges i Sistemes
Informàtics, UPC (2005). url www.lsi.upc.edu/dept/techreps/techreps.html

7. A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial
queueing theory. Journal of the ACM, 48(1):13–38, 2001.

8. J. Dı́az, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis, and D. Thilikós.
Stability and non-Stability of the FIFO Protocol. In 13th annual ACM Symposium
on Parallel Algorithms and Architectures (spaa’01), pages 48–52, 2001.

9. J. Echagüe, V. Cholvi, and A. Fernández. Universal stability results for low rate
adversaries in packet switched networks. IEEE Communication Letters, 7(12):578–
580, 2003.

10. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(4):111–121, 1980.

11. A. Goel. Stability of networks and protocols in the adversarial queueing model for
packet routing. Networks, 37(4):219–224, 2001.

12. M. Hamdi. LCFS queuing for real-time audio-visual services in packet networks.
In IEEE International Workshop on Audio-Visual Services over Packet Networks
(avspn’97), 1997.

13. M. Hamdi, R. Noro, and J.-P. Hubaux. Fresh Packet First scheduling for voice
traffic in congested networks. Technical Report SSC034, Computer Science De-
partment, Swiss Federal Institute of Technology (EPFL), 1997.

14. M. Hamdi. Fresh Packet First scheduling for interactive services in the Internet.
in 4th International Conference on Information Systems Analysis and Synthesis
(isas’98). 1998.

15. D. Koukopoulos, M. Mavronicolas, and P. Spirakis. FIFO is unstable at arbitrarily
low rates (even in planar networks). Electronic Colloquium on Computational
Complexity, 10(16), 2003.

16. D. Koukopoulos, S. Nikoletseas, and P. Spirakis. The range of stability for hetero-
geneous and FIFO queueing networks. Electronic Colloquium on Computational
Complexity, TR01-099, 2001.

17. D. Koukopoulos, S. Nikoletseas, and P. Spirakis. Stability behavior of FIFO pro-
tocol in the adversarial queueing model. In A. K. Y. Manolopoulos, S. Evripidou,
editor, 8th Panhellenic Conference on Informatics (pci’2001), volume 2563 of Lec-
ture Notes in Computer Science, 2001. Springer-Verlag.

18. D. Koukopoulos, S. Nikoletseas, and P. Spirakis. Stability issues in heterogeneous
and FIFO networks under the adversarial queueing model. In 8th International
Conference on High Performance Computing (hipc’01), volume 2228 of Lecture
Notes in Computer Science, pages 3–14, 2001. Springer-Verlag.

19. Z. Lotker, B. Patt-Shamir, and A. Rosén. New stability results for adversarial
queuing. SIAM Journal on Computing, 33(2):286–303, 2004.

20. R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

Compact Routing for Graphs Excluding a Fixed

Minor

(Extended Abstract)

Ittai Abraham1, Cyril Gavoille2, and Dahlia Malkhi3

1 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel

ittaia@cs.huji.ac.il
2 Laboratoire Bordelais de Recherche en Informatique,

University of Bordeaux, Bordeaux, France
gavoille@labri.fr

3 School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel,

and Microsoft Research, Silicon Valley Center
dalia@microsoft.com

Abstract. This paper concerns compact routing schemes with arbitrary
node names. We present a compact name-independent routing scheme
for unweighted networks with n nodes excluding a fixed minor. For any
fixed minor, the scheme, constructible in polynomial time, has constant
stretch factor and requires routing tables with poly-logarithmic number
of bits at each node.

For shortest-path labeled routing scheme in planar graphs, we prove
an Ω(nε) space lower bound for some constant ε > 0. This lower bound
holds even for bounded degree triangulations, and is optimal for polyno-
mially weighted planar graphs (ε = 1/2).

1 Introduction

Consider a distributed network of nodes connected via a network in which each
node has an arbitrary network identifier. A routing scheme allows any source
node to route messages to any destination node, given the destination’s network
identifier. The fundamental trade-offs in compact routing schemes is between
the space used to store the routing table on each node and the stretch factor
of the routing scheme, the maximum ratio over all pairs between the length of
the route induced by the scheme and the length of a shortest-path between the
same pair.

The trivial solution to routing on shortest paths (stretch factor 1) is for each
node to store a routing table with Ω(n) entries that contains the next hop of an
all pairs shortest-path algorithm. This solution is very expensive as it requires
each node to store Ω(n log n) bits. Thus, network designers are faced with two
conflicting goals: reduce both the stretch factor and the size of the routing tables.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 442–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Compact Routing for Graphs Excluding a Fixed Minor 443

In this paper we assume a network with arbitrary node names. This model is
called the name-independent model because the designer of the routing scheme
has no control over node names. So node names cannot encode any topological
awareness, like for instance the X, Y -coordinates in a geographic network. This
routing problem may appear daunting: In order to route to a node, we must
first somehow gain knowledge about its location in the network, but, in order
to have some guarantees on the stretch factor, we must do so without exceeding
too much the distance to the target.

A weak variant of this fundamental problem is called labeled routing. In this
version of the problem, the designer of a solution may pick node names that
contain (bounded size) information about their location in the network. This
variant is useful in many aspects of network theory, but less so in practice:
Knowledge of the labels needs to be disseminated to all potential senders, as
these labels are not the addresses by which nodes of an existing network, e.g.,
an IP network, are known. Furthermore, if the network may admit new joining
nodes, all the labels may need to be re-computed and distributed to any potential
sender. Finally, various recent applications pose constraints on nodes addresses
that cannot be satisfied by existing labeled routing schemes. E.g., Distributed
Hash Tables (DHTs) require nodes names in the range [1, n], or ones that form
a binary prefix.

There is a subtle distinction between a designer-port model and a fixed-port
model. In the fixed-port model (also known as the adversarial port model) the
names of outgoing links, or ports, from each node may be arbitrarily chosen by
an adversary from the set {1, . . . , n}. In the designer-port model they may be
determined by the designer of the routing scheme. Our routing scheme applies
to the fixed-port model.

In this paper we are interested in the design of fixed-port name-independent
compact routing schemes with low space and stretch, typically with O(1) stretch
and Õ(1) memory per node1. Unfortunately, it is known that, even for the la-
beled variant, any routing scheme of stretch O(k) applying on all graphs requires
Ω(n1/k) bit memory in the worst-case [32,36]. Identifying large realistic fami-
lies of networks supporting low stretch and memory name-independent routing
schemes is a wide open question. Here, we restrict our attention to families of
graphs excluding a fixed minor, so including all families closed under taking mi-
nors (by The Minor Theorem of Robertson & Seymour). For instance, it includes
all graphs of bounded treewidth or bounded genus.

A graph H is a minor of G if H is a subgraph of a graph obtained by a series
of edge contractions2 of G. The study of graphs excluding a fixed minor has lead
to fundamental graph theory results. In the context of routing, several natural
classes of networks can be defined by their forbidden minor. Among them are
trees [27] (excluding K3) and series parallel networks [18] (excluding K4) that

1 The notation Õ(·) indicates complexity similar to O(·) up to poly-logarithmic factors.
2 The contraction of the edge e with endpoints u, v is the replacement of u and v with

a single node whose incident edges are the edges other than e that were incident to
u or v [37].

444 I. Abraham, C. Gavoille, and D. Malkhi

capture many network backbone structures, and planar graphs (excluding K5 or
K3,3) that capture the structure of two dimensional maps.

1.1 Related Work

The space-stretch trade-off has been extensively studied under various models
and extensions. We refer the reader to Peleg’s book [30] and to the surveys of
Gavoille and Peleg [20,22] for comprehensive background.

There is a large body of work on special families of graphs. For the labeled
model: graphs with bounded treewidth [31], bounded chordality [14,15,16] (i.e.,
graphs for which every induced cycle is bounded), and more recently, graphs (or
metrics) with bounded doubling dimension [10,24,33,34] (i.e., graphs for which
any radius-2r ball can be covered by a bounded number of radius-r balls). For
the name-independent model: trees [1,27], graphs with bounded growth dimen-
sion [5]. Observe that planar graphs are not captured by any of these families.

No low memory and stretch name-independent routing schemes are known
for planar graphs, however several schemes have been proposed for this family
for the labeled variant.

Surprisingly, for stretch 1, the complexity of the size of the routing tables is
not known. The best scheme up to date has been proposed by Lu [28]: the node
labels range in [1, n], the routing tables are of 7.181n + o(n) bits (per node),
and each routing decision takes O(log2+ε n) bit operations for every fixed ε > 0.
Earlier, it was proved that, actually, genus-g graphs support n log g + O(n) bit
routing tables [21], that provides 8n + o(n) bits in the planar case. They also
showed in [21] that if each node is forced to route along a shortest-path tree fixed
by an adversary, then any routing scheme requires Ω(n) bits in the worst-case
(this actually extends to Ω(n log r) bits for a Kr,n−r, so setting r = 2 for planar).
However, if the designer of the scheme has freedom to optimize the routes among
those of equal costs, then only the Ω(

√
n) bit lower bound for trees applies [17].

Furthermore, this lower bound concerns only schemes that assign node labels in
[1, n] exactly. Better results exist for some particular subclass of planar graphs.
In [12], it is proved that quadrangulations3 where all inner nodes have degree
at least 4 (these include the subgraphs of a grid bounded by a circuit) have a
labeled routing scheme with O(deg(v) log n) bit memory for each node v. For
other particular plane graphs, namely the non-positively curved plane graphs, a
labeled O(log2 n) bit routing scheme exists [11].

To summarize, if poly-log node labels are allowed, then no trivial lower bound
on the memory is known for the shortest-path labeled routing scheme problem
in general planar graphs, whereas O(n) is the upper bound [21,28].

The situation is however quite different if routing schemes with stretches > 1
are considered. For instance routing in Euclidian plane graphs4 is investigated
in [8,9]. It is shown that plane triangulations having the diamond property (which

3 I.e., plane graphs where all the inner faces are of length 4.
4 I.e., a planar graphs embedded in the plane whose edges are weighted by the Eu-

clidean distance between their endpoints.

Compact Routing for Graphs Excluding a Fixed Minor 445

is the case for classical triangulations as the Delaunay, greedy and minimum-
weight triangulations) have a constant stretch labeled routing scheme where node
labels are the coordinates and the memory requirement of each node v consists
only in the coordinates of v and of its neighbors, therefore is O(deg(v) log n)
bits. The same results hold for all plane graphs possessing both the diamond
property and the good convex polygon property. For general planar graphs,
Frederickson and Janardan have presented in [19] two schemes. The first one
achieve O(n4/3 log n) bits in total (the sum of the routing table size over all
the nodes), stretch 3, and uses O(log n) bit node labels. The second one uses
O((1/ε)n1+ε log n) bit in total, for every fixed ε > 0, stretch 7, and O((1/ε) log n)
bit node labels. Recently, Thorup [35] improves the stretch bound thanks to an
extension of his distance oracles for planar graphs. He obtained a labeled routing
scheme with stretch 1 + ε in which for a fixed ε > 0, routing tables and node
labels have O((1/ε) log2 n) bits. For Euclidean metrics, Hassin and Peleg show
in [25] a labeled scheme with O(log n) out going edges per node, O(log n)-hop
routes, and 1 + ε stretch. The out degree is further reduced to a constant by
Abraham and Malkhi [4].

1.2 Our Contributions

Our first contribution is a name-independent routing schemes for unweighted
graphs excluding a fixed minor. We prove the following.

Theorem 1. For every n-node unweighted graph excluding a fixed Kr,r minor,
there is a polynomial time constructible name-independent routing scheme with
constant stretch factor, in which every node v requires routing tables of Õ(1) bits
and O(log2 n/ log log n)-bit headers.

The general result follows since graphs excluding a Kr,r minor exclude Kr+1

minor and thus exclude any fixed graph H on r + 1 nodes. Note that the result
was not known even for trees, i.e., H = K3. For H = K3,3, it is important
to observe that the Õ(1) memory 1 + ε stretched labeling routing scheme of
Thorup [35] for planar graphs cannot be extended to name-independent scheme
since in that case a stretch of 3 at least is required if less than Ω(n log n) bits
are used [3].

Our scheme is based on a cover for graphs excluding a Kr,r minor which
is a novel variant of the Klein, Plotkin, and Rao [26] partitioning algorithm.
While the scheme in [26] gives a partition algorithm with weak diameter bounds,
no information is given about the structure of the short paths that bound the
diameter. Our covering algorithm gives an explicit structure to the short paths
formed. This explicitness may be of independent interest and is presented in
Section 3. Moreover, we show how to utilize this structure for an efficient routing
scheme in Section 4.

Our second contribution is a lower bound. As said previously in the introduc-
tion, no (trivial) lower bounds are known for stretch 1 labeled routing schemes
in planar graphs. Based on the distance labeling lower bound of [23], we prove

446 I. Abraham, C. Gavoille, and D. Malkhi

in Section 5 an Ω(nε) lower bound on the label length (the length of the local
routing tables plus the node label length). This bound holds even in the quite
simple case: a bounded degree triangulation.

Theorem 2. Every shortest-path labeled routing scheme on polynomially
weighted n-node planar graphs of bounded degree requires a total label length
(the length of all the routing tables and node labels in the graph) of Ω(n1+1/2)
bits. Moreover, the (maximum) label length is Ω(n1/4) for some weighted bounded
degree triangulations. For unweighted planar graphs, the two bounds are respec-
tively Ω(n1+1/3) and Ω(n1/6).

Observe that there is a labeled scheme using only Õ(
√

n) bit node labels for
weighted5 graphs of treewidth O(

√
n) [31] (thus including planar graphs). So,

in a sense Theorem 2 is optimal. However, no shortest-path routing scheme is
known to achieve Õ(

√
n) routing tables but with Õ(1) node labels.

1.3 Outline of Techniques

Awerbuch and Peleg introduced sparse covers [6] in order to build a hierarchal
routing scheme for general graphs [7]. Their scheme is based on tree covers
with geometrically increasing radii. Typically each node of the graph belongs to
O(kn1/k) trees of the cover, where k ≥ 1 is a parameter. For each radius ρ and
source node s, the ball of radius ρ centered at s is contained in some trees of
radius O(kρ). Roughly speaking, the routing task for s consists in seeking the
target t in each tree it belongs to. However, this high level description hides
many difficulties to implement, and tree routing plays an important role [6,7,1].

The situation for graphs excluding a fixed minor is quite different. It is cur-
rently an open question to design a sparse cover for such graphs with trees (or
clusters) of strong radius O(ρ) so that each node belongs to O(1) such clusters.
Klein, Plotkin, Rao [26] achieve sparse covers in which clusters have only weak-
diameter O(ρ), i.e., the shortest paths between any two nodes of a cluster can
go outside the cluster itself. For our application, it means that a node v might
potentially be involved, for the routing between many pairs of nodes, in several
clusters that do not contain v. Therefore the naive approach of using [7] with a
cover based on [26] may require Ω(n) nodes to participate in routing for Ω(n)
clusters and hence require Ω(n2) bits in total.

Instead, we present a novel partitioning algorithm for graphs excluding a
Kr,r minor for constant r. Our cover borrows from [26] but has some subtle
differences. Using a new analysis we prove explicit properties on the structure of
short paths between nodes in the same cluster. Our decomposition creates a set of
clusters and trees, such that each node belongs to a constant number of clusters
and trees. For every u, v of a same cluster, we construct a path connecting them
of length O(ρ) that is “well-structured”. It decomposes in at most r particular
subpaths, called tail-connections : each tail-connection is an upward path towards
a root of one tree and a downward path on another tree (see Section 3).
5 With polynomial edge weights.

Compact Routing for Graphs Excluding a Fixed Minor 447

Given this partition, we create an intricate rooted tree for each cluster that
takes advantage of the cover properties. Finally, we present a single-source rout-
ing scheme in the fixed-port model in order to route on these trees. Our scheme
uses the unweighted designer-port construction of [1,2] in a non-trivial man-
ner over several overlapping trees in order to route efficiently both inside and
outside of the cluster, and some recent results from graph minor theory [13]
(see Section 4).

Due to space constrains some proofs of this extended abstract have been
moved in the full version.

2 Preliminaries

Consider an unweighted connected graph G = (V, E) with n nodes. Each node
has an arbitrary unique network identifier consisting of polylog(n) bits. Using
standard hashing techniques it is possible to generalize the model and assume
nodes have arbitrarily long unique labels.

For a set of nodes U ⊆ V , let G[U] be the subgraph induced by U . Given a
subgraph H ⊂ G, let dH(u, v) denote the length of a shortest path in H from
u to v. Given v ∈ V , let dH(v, U) = minu∈U dH(u, v), and let BH(v, ρ) =
{u ∈ H | dH(u, v) ≤ ρ}. We denote by diam(H) = maxu,v∈H dH(u, v) the
(strong) diameter of H , and degH(v) the degree of v in H .

For an index j ≥ 0 and a rooted tree T with root τ ∈ T let C(T, j) =
{v ∈ T | jρ ≤ dT (v, τ) < (j + 1)ρ}, specifically in our construction we will use
j’s such that either j ∈ N or j + 1/2 ∈ N.

Let T be a tree with root τ , a node v ∈ T , and a number k. The tail of v
of length k on T , denoted by tail(T, v, k), is the path of length min {k, dT (v, τ)}
from v towards τ on T .

For a node τ ∈ G, let BFS(G, τ) be a breadth-first search tree of G rooted
at τ . Let r ∈ (N) be a parameter, and let R = {1, 2, . . . , r}.

Definition 1. (Tail-connected) Given a parameter ρ ∈ N, cluster H ⊆ G, and
a collection of rooted trees T , two nodes u, v ∈ H are tail-connected if there are
trees T1, T2 ∈ T such that tail(T1, u, (r + 2)ρ + 1) and tail(T2, v, (r + 2)ρ + 1)
intersect.

Definition 2. (r-Tail-Connected) Nodes u, v ∈ H are r-tail-connected if there
exists 2r−2 nodes u = x1, x2, . . . , x2r−1, x2r−2 = v ∈ H (not necessarily distinct)
such that for any even i, dH(xi, xi+1) ≤ 1, and for any odd i, xi, xi+1 are tail-
connected.

3 The Weak Diameter Cover

Theorem 3. For every graph G = (V, E) excluding a Kr,r minor, and param-
eter ρ > 0, there exists a polynomial algorithm that constructs a collection of
connected components Hρ and a collection of trees Tρ such that:

448 I. Abraham, C. Gavoille, and D. Malkhi

1. (Cover) For every v ∈ V , there exists H ∈ Hρ such that BG(v, ρ/4) ⊆ H.
2. (Sparse clusters) For every v ∈ V , | {H ∈ Hρ | v ∈ H} | ≤ 2r.
3. (Sparse trees) For every v ∈ V , | {T ∈ Tρ | v ∈ T} | ≤ 2O(r log r).
4. (Weak diameter) For every H ∈ Hρ, and every u, v ∈ H, the nodes u, v are

r-tail-connected with trees in Tρ.

The rest of the section is devoted to the proof of Theorem 3. We first describe
a partitioning algorithm of a graph G that depends on a parameter ρ > 0. It
returns a cluster H and implicitly graphs Gi, Hi and trees Ti, for i ∈ R.

Actually, in order to create a partition of the graph into clusters, we apply
this algorithm for all possible choices of indices ji ≥ 0 (see also the proof of
Theorem 3).

Partitioning algorithm: Initially H1 = G1 = G. Given Gi and Hi set a root
τi ∈ Hi and choose an index ji. Let Ti = BFS(Gi, τi). Let Hi+1 be a connected
component of the subgraph graph induced by the nodes

Hi ∩ C(Ti, ji)

Let Gi+1 be the connected component of

Gi ∩
⋃

�∈{ji−i,...,ji,...,ji+i}
C(Ti, �)

that contains Hi+1. If i = r then return H = Hi+1 and stop. Otherwise repeat.
For the analysis it will be convenient to use the following notation: for all

u ∈ Gi and i ∈ R, let taili(u) = tail(Ti, u, (i + 1)ρ + 1).

Lemma 1. Let H be the graph returned after the partitioning algorithm and
assume that ji > r + 1 for each i ∈ R. Let X ⊆ H be any r nodes of H. If for
each x �= x′ ∈ X and i, i′ ∈ R the tails taili(x) and taili′(x′) are pairwise disjoint
then G contains a Kr,r minor.

Proof. In order to show that G contains a Kr,r minor we construct two sets,
each one containing, r connected subgraphs, each subgraph called hereafter left
or right super node. The super nodes are chosen to be pairwise disjoint and
such that each left-right pair of super nodes are connected by an edge with one
endpoint in each super node. Then, by contracting all the edges of all the super
nodes, and then keeping theses nodes and the left-right edges, it will prove that
G has a Kr,r minor.

For x ∈ X , let Lx =
⋃

i∈R taili(x). The left super nodes of the Kr,r will be the
sets {Lx | x ∈ X}. Observe that each left super node indeed induces a connected
subgraph and that theses super nodes are pairwise disjoint by the assumption.

For the right super nodes, for all i ∈ R let Ui denote the subtree of Ti formed
by the paths from each x ∈ X to τi the root of Ti. The right super nodes will be
the Vi for i ∈ R, where Vi = Ui \

⋃
x∈X taili(x). Observe that each Vi induces a

Compact Routing for Graphs Excluding a Fixed Minor 449

Fig. 1. A schematic drawing of one stage in the algorithm. Note that the paths of Ti

from τi to nodes in Hi+1 may use some nodes in Gi outside Hi.

connected subtree of G. Since ji > r + 1 for all i ∈ R and X ⊆ Hi+1 ⊆ C(Ti, ji)
then |taili(x)| = (i + 1)ρ + 1 hence dGi(X, Vi) > iρ for all i ∈ R.

The super edges will be the edges in Ti connecting each Vi with each taili(x) ∈
Lx for each i ∈ R, x ∈ X . Since all tails, for distinct x ∈ X , are disjoint, we are
left only with showing that all Vi’s are pairwise disjoint and disjoint from all the
tails.

To do so, we prove that for every x ∈ X and i ∈ R, the path on Ti from
x to τi is disjoint from Vj and {tailj(y) | y ∈ X \ {x}} for all i < j. Seeking a
contradiction, assume that for some x ∈ X and i ∈ R the path on Ti from x
to τi intersects some node v ∈ Gj which is part of another super node (either
v ∈ Vj ⊆ Gj or v ∈ tailj(y) ⊆ Gj for y �= x) for some i < j.

Recall that dGj (x, Vj) > jρ. To arrive to a contradiction we will show that:
(1) v ∈ Vj , (2) the path P on Ti from x to v has length ≤ (i + 1)ρ, (3) by
induction, that for i ≤ � ≤ j we have P ⊆ G�. For � = j this is a contradiction
since i < j and it implies that dGj (x, v) ≤ jρ.

Observe that v ∈ Gj ⊆
⋃

�∈{ji−i,...,ji,...,ji+i} C(Ti, �). Since Ti is a BFS
tree then the path from x to the root τi on Ti can intersect v only if v ∈⋃

�∈{ji−i,...,ji} C(Ti, �) hence dTi(x, v) ≤ (i + 1)ρ. This completes the first induc-
tion base for � = i of (3). This also implies that the path P must be a sub-path
of taili(x) and that length of P is at most (i + 1)ρ, proving (2). Since the tails
are disjoint by assumption, it must be that v ∈ Vj , proving (1).

450 I. Abraham, C. Gavoille, and D. Malkhi

For the second base � = i + 1 observe that v ∈ Gi+1 and Ti is a BFS tree so
the path P on Ti from x to v is contained inside Gi+1.

Assume P ⊆ G� for i < � < j we prove P ⊆ G�+1. Since x ∈ H�+1 ⊆ C(T�, j�)
and G�+1 is the connected component that contains x inside the subgraph in-
duced by the nodes G�∩

⋃
m∈{j�−�,...,j�,...,j�+�} C(T�, m) then dG�

(x, G�\G�+1) >

�ρ ≥ (i+1)ρ. Hence a path in G� from x to v of length ≤ (i+1)ρ does not leave
G�+1. This completes the inductive step.

Hence for � = j we have P ⊆ Gj and |P | ≤ (i + 1)ρ this is a contradiction to
dGj (x, Vj) > jρ since i < j. ��

Lemma 2. If G has no Kr,r minor and ji > r + 1 for all i ∈ R then every two
nodes of H are r-tail-connected.

Proof. Fix u, v ∈ H . If dH(u, v) ≤ r then u, v are r-tail-connected since every
node is trivially tail-connected to itself. Let u = x1, x2, . . . , xt−1, xt = v be a
shortest path from u to v on H for some t > r.

We recursively define a set of nodes y1, . . . , yr as follows. Let y1 = u. Given
y1, . . . , yi let yi+1 be the node x� with highest index � such that yi and x�−1

are tail-connected. Hence for any index � ≤ m ≤ t node yi and xm are not
tail connected. Observe that this process can create at most r nodes y1, . . . , yr

until v is reached. Suppose v is not reached at stage r − 1 and consider the set
y1, . . . , yr−1, v then from Lemma 1 there are two nodes that are tail-connected
in this set. But by the construction of the sequence only yr−1 and v can be
tail-connected. ��

Proof (of Theorem 3). Creating the cover is done by running the partition algo-
rithm in the following manner. Note that the output of the partition algorithm
(a cluster H and implicitly for each i ∈ R graphs Gi,Hi, trees Ti) depends only
on the choice of the roots τ1, . . . , τt of the trees, the indices j1, . . . , jt, and the
choice of connected components H1, . . . , Ht. We fix a consistent choice of roots.
Each time a root τi is to be chosen from subgraph Hi, we choose it as the node
with minimal lexicographic order among the nodes in Hi.

The sets Hρ and Tρ consist of all the clusters H and trees Ti for all possible
choices of connected components and all possible choices of indices j1, . . . , jr

such that for each i ∈ R either ji ∈ N or ji + 1/2 ∈ N.
Property 1. (Cover). It follows from the simple observation that for any v ∈ G

and tree BFS tree T spanning G with root τ there must exist some integer j ∈ N

such that either BG(v, ρ/4) ⊂ C(T, j) or BG(v, ρ/4) ⊂ C(T, j + 1/2). Then,
given any v, we construct by induction a sequence of indices j1, . . . , ji such that
BG(v, ρ/4) ⊆ Hi+1, and thus, for i = t, returning a cluster H ∈ Hρ containing
BG(v, ρ/4).

Property 2. (Sparse clusters). Due to the fact that for every i ∈ R, ji ∈ N or
ji + 1/2 ∈ N, then a node belongs of at most 2i−1 graphs Hi. This is true since
for each graph Hi that v belongs to, it belongs to at most two graphs of type
Hi+1. Hence the number of clusters a node belongs to is at most 2r.

Property 3. (Sparse trees). For each graph Gi that v belongs to, it belongs to
at most 2i+1 graphs Gi+1 due to the use of 2i+1 stripes in the definition of Gi+1.

Compact Routing for Graphs Excluding a Fixed Minor 451

Hence for each i ∈ R, by simple induction, a node belongs to
∏

1≤j≤i 2j + 1 ≤
(2i + 1)!! graphs Gi. Therefore a node belongs to at most

∑
i∈R(2i + 1)!! =

2O(r log r) trees by summing over all Gi+1 for all i ∈ R.
Property 4. (Weak diameter). When ji > r + 1 for each i ∈ R this follows

directly from Lemma 2. If there is some i ∈ R for which ji ≤ r + 1 then any two
nodes in H are tail-connected via tree Ti. ��

4 Name-Independent Routing Scheme for Weak
Diameter Cover

Theorem 1. For every n-node unweighted graph excluding a fixed Kr,r minor,
there is a polynomial time constructible name-independent routing scheme with
constant stretch factor, in which every node v requires routing tables of Õ(1) bits
and O(log2 n/ log log n)-bit headers.

The key ingredient of our routing scheme is the following lemma:

Lemma 3. Let H, T be the set of clusters and trees obtained from the cover
algorithm with parameter ρ on a graph excluding a fixed Kr,r minor. There exists
an error-reporting name-independent routing scheme such that

1. Each node v stores Õ(1) bits per tree of T it belongs to.
2. Each node v stores Õ(1) bits per cluster of H it belongs to.
3. For any H ∈ H and s, t ∈ H, searching for t from s in H will find t at cost

O(ρ).
4. For any H ∈ H and s ∈ H, t �∈ H, searching for t from s in H will cost O(ρ)

until an error report is sent back to s.

Lemma 3 is proven by constructing for every H ∈ H a rooted tree TH .
Consider first the case that H has a strong diameter of O(ρ). Hence TH can
simply be a spanning BFS tree of H . In this case we can use the following result
for single-source tree routing on unweighted trees on graphs excluding a fixed
minor.

Lemma 4. Let F be a forest (i.e., a set of disjoint trees) of an n-node graph G
excluding a fixed minor. Then there exists polynomial time constructible scheme
with Õ(1) bit routing tables for each v ∈ G such that for each tree T ∈ F there
is a name-independent single-source error-reporting routing scheme on T (in the
fixed port model) with cost O(diam(T)).

The construction and proof of Lemma 4 is an extension of the scheme in
[1,2] with results from graph minor theory [13] that imply that graphs excluding
a fixed minor have constant arboricity. The arboricity [29] of a graph G is the
minimum number of forests into which the edges of G can be partitioned. In the
full version we show in the proof of Lemma 4 how to utilize this fact, for routing
on any tree T ∈ F which is a subgraph of G, in order to bound the routing table

452 I. Abraham, C. Gavoille, and D. Malkhi

size when converting from the designer ports used in [1] to the standard fixed
port model.

However, H may not have a small strong diameter so routing outside the
cluster must occur. At a high level, the idea of the construction is as follows.
According to the partition algorithm, the route between every pair of nodes x,
y in H is a route containing at most r pairs of intersecting tails, with at most a
single edge from one pair to the next.

In the following we sketch the main ideas for the case of r = 3. The high
level idea is to build a tree TH that will span H but will also go outside H . The
root of Th is an arbitrary node r1 ∈ H . The diameter of TH will be O(ρ). Each
branch may leave H once or twice along tail-connected paths (for the case of
r = 3).

More specifically, when stepping outside H , we only do it along tail-connected
paths, which are composed of two parts: Going upward in some tree Tk, and then
downward on some tree T�. Consider in TH the case where we have a branch
containing u � w � v, such that u and v belong to H , the left � stands for
a path on tree Tk and the right � stands for a path on T�, and w is a node in
the intersection between the two tail paths, w ∈ Tk ∩ T�. We collapse the each
of the paths � into a single edge, entering and leaving a virtual node which we
denote by 〈u, k, �, z〉 where z = dTk

(u, w).
We build a rooted tree TH , a set of clusters M = {M(x) | x ∈ H}, and a

data structure {S(x) | x ∈ H} with the following properties:

1. TH spans H , i.e., H ⊆ TH

2. The nodes of TH \H are virtual nodes. A real node x may have children that
are virtual nodes of the form 〈x, k, �, z〉 where x ∈ H, k, � ∈ R, z ∈ O(ρ).

3. A virtual node in T has only real children.
4. Each three node path in T , x→ v → u, where v is a virtual node 〈x, k, �, z〉,

corresponds to a tail-connection between x and u formed by trees x ∈ Tk, u ∈
T� and the intersection node w ∈ Tk ∩ T� such that dTk

(x, w) = z.
5. By expanding each three node path in T , x → v → u, where v is a virtual

node, to its corresponding path in G, the diameter of the this graph is O(ρ).
6. For each node x with virtual children there exists a set of nodes M(x) ⊂ H

such that: (1) |M(x)| ≤ ρ. (2) G[M(x)] is connected. (3) For every x, y ∈ H ,
M(x) ∩M(y) = ∅.

7. For each node x with virtual children, the data structure S(x) of o(log2 n)
bits contains routing information that allows reaching any node of M(x) at
cost O(ρ).

Now suppose we have built the tree. There remains the problem of building a
name-independent scheme for it. A useful result here would be the single-source
name-independent scheme we have presented in [1] (Lemma 4). This would give
us stretch O(1) with Õ(1) memory per node. However, it cannot be employed
easily, since some nodes in TH are outside the cluster H , and may not maintain
specific information about TH (or else, they might need to maintain information
about too many trees). Additionally, nodes in TH may have neighbors outside
TH , which prevents us from using the result in [1] directly.

Compact Routing for Graphs Excluding a Fixed Minor 453

The solution we develop emulates the virtual tree of TH . We need to address
three issues.

1. Each (regular) node v must distinguish its neighbors in TH from any other
neighbors it may have in G. The solution is based on having bounded arboric-
ity. We use a partition of the edges into a constant number of forests. This
allows nodes to store only Õ(1) bits of information about all their children
in the tree.

2. Each node u must recognize its virtual children, and be able to route to them.
To solve this, first note that for any u, there are O(ρ) possible combinations of
trees Tk, T� and nodes w along upward tails within distance O(ρ). Therefore,
u utilizes O(ρ) virtual children. We allocate for u a set of ρ nodes, denoted
M(u), each of which emulates one virtual child. So whenever an algorithm
on TH calls to use a path from u to w, we first search a node within M(x)
that emulates w. Then obtain the necessary information from it and route
back to u. This side-track information lookup incurs a cost of O(ρ) hops.
Then we use this information to simply route on Tk toward w.

3. The emulation of a virtual node w must be able to reach any child v of w
in TH . The route is along the tree T�. Our solution is to define for TH a
subtree of T� that contains H , as well as all nodes in T� within distance O(ρ)
from H . To be more precise, we define a forest F (�, j) which is the subgraph
of T� that spans a constant O(r) number of consecutive levels C(T�, ·). Let
j = j� be the index that generated H�. The diameter each tree in F (�, j) is
O(ρ) hence we can route on the tree T in F (�, j) that contains both w and
v. Using the single-source name-independent scheme of [1] on T ∈ F (�, j),
node w can route to v via the root of the tree T ∈ F (�, j) at a cost of O(ρ).

We now go back to describe the construction of the tree TH . We start by
choosing a root r1 arbitrarily. The first component of the tree TH is simply a
BFS tree of a set C1 containing all nodes reachable within H via length 8ρ paths
from r1.

In the next step, we bring in nodes r2, r3, ... that have distance greater than
8ρ from TH , and are tail-connected with r1. We do not include in the tree all the
nodes along the tails from r1 to ri. Rather, we define a virtual node 〈r1, k, �, z〉,
that records the name Tk of the tree of the upward tail, the name T� of the tree
of the downward tail, and the distance z upward on Tk of the intersection with
T�. The virtual node is added to the tree, as well as the edges (ri, 〈r1, k, �, z〉),
(〈r1, k, �, z〉 , ri). We also add all nodes with paths of length 4ρ in H from ri. We
then set TH =

⋃
i Ci. In order to store node r1’s virtual children information,

we designate as M(r1) the ρ closest nodes to r2.
In the next step, we bring in one at a time nodes ri that are at distance at

least 8ρ from TH , and that are tail connected to some node x in TH . For each
such node x, we repeat the process for r1 above. Finally, we insert into TH all
remaining nodes, which must be at distance at most O(ρ) within H .

Due to space constrains the construction for general r and the proof of
Lemma 4, Lemma 3 and Theorem 1 will appear in the full version.

454 I. Abraham, C. Gavoille, and D. Malkhi

5 Lower Bounds

Theorem 2. Every shortest-path labeled routing scheme on polynomially
weighted n-node planar graphs of bounded degree requires a total label length
(the length of all the routing tables and node labels in the graph) of Ω(n1+1/2)
bits. Moreover, the (maximum) label length is Ω(n1/4) for some weighted bounded
degree triangulations. For unweighted planar graphs, the two bounds are respec-
tively Ω(n1+1/3) and Ω(n1/6).

Let us consider the problem of labeled routing in planar graphs along
shortest-path. To strengthen our lower bound we assume that the routing table
and the node label of any target t are merged into a single routing label, denoted
by L(G, t) for a graph G. So in this model, the routing decision in the source s
is taken with full knowledge of L(G, s) and L(G, t). Observe that in this model,
we make no assumptions on headers (rewritable and of arbitrary length). We
also assume the designer-port model, i.e., the designer can permute the port
numbers in order to optimize the maximum label length, however the ports of v
must range in {1, . . . ,deg(v)}.

Our proof is based on the planar graph construction of [23]. This graph,
denoted Gk for some parameter k, was used to prove lower bounds for distance
labeling schemes in planar graphs. For this labeling problem each node of a graph
receives a label such that distances between any two nodes can be computed from
their labels only. There is no general relation between both labeling problems,
routing and distance, and thus a lower bound on distance labeling cannot be
applied to labeled routing as a black box. Nethertheless, in the full version we
show how to adapt the Gk construction to force a costly routing decision.

References

1. I. Abraham, C. Gavoille, and D. Malkhi, Routing with improved communication-
space trade-off, in 18th International Symposium on Distributed Computing
(DISC), vol. 3274 of Lecture Notes in Computer Science, Springer, Oct. 2004,
pp. 305–319.

2. ——, Routing with improved communication-space trade-off, Tech. Report RR-
1330-04, LaBRI, University of Bordeaux 1, 351, cours de la Liberation, 33405
Talence Cedex, France, July 2004.

3. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, Compact name-
independent routing with minimum stretch, in 16th Annual ACM Symposium on
Parallel Algorithms and Architecture (SPAA), ACM PRESS, June 2004.

4. I. Abraham and D. Malkhi, Compact routing on euclidian metrics, in Proceedings
of the twenty-third annual ACM symposium on Principles of distributed computing
(PODC), ACM Press, 2004, pp. 141–149.

5. I. Abraham and D. Malkhi, Name independent routing for growth bounded net-
works, in 17th Annual ACM Symposium on Parallel Algorithms and Architecture
(SPAA), ACM Press, July 2005. To appear.

6. B. Awerbuch and D. Peleg, Sparse partitions, in 31th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society Press, Oct.
1990, pp. 503–513.

Compact Routing for Graphs Excluding a Fixed Minor 455

7. B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-
off, SIAM J. Discret. Math., 5 (1992), pp. 151–162.

8. P. Bose and P. Morin, Competitive online routing in geometric graphs, Theoretical
Computer Science, 324 (2004), pp. 273–288.

9. ——, Online routing in triangulations, SIAM Journal on Computing, 33 (2004),
pp. 937–951.

10. H.T.-H. Chan, A. Gupta, B.M. Maggs, and S. Zhou, On hierarchical routing in
doubling metrics, in 16th Symposium on Discrete Algorithms (SODA), ACMSIAM,
Jan. 2005.

11. V.D. Chepoi, F.F. Dragan, and Y. Vaxes, Distance and routing labeling schemes
for non-positively curved plane graphs, Journal of Algorithms, (2004). To appear.

12. V.D. Chepoi and A. Rollin, Interval routing in some planar quadrangulations, in
8th International Colloquium on Structural Information & Communication Com-
plexity (SIROCCO), Carleton Scientific, June 2001, pp. 89–104.

13. M. DeVos, G. Ding, B. Oporowski, D.P. Sanders, B. Reed, P.D. Seymour, and
D. Vertigan, Excluding any graph as a minor allows a low tree-width 2-coloring,
Journal of Combinatorial Theory, Series B, 91 (2004), pp. 25–41.

14. Y. Dourisboure, Compact routing schemes for bounded tree-length graphs and
for k-chordal graphs, in 18th International Symposium on Distributed Computing
(DISC), vol. 3274 of Lecture Notes in Computer Science, Springer, Oct. 2004, pp.
365–378.

15. Y. Dourisboure and C. Gavoille, Improved compact routing scheme for chordal
graphs, in 16th International Symposium on Distributed Computing (DISC), vol.
2508 of Lecture Notes in Computer Science, Springer, Oct. 2002, pp. 252–264.

16. F.F. Dragan and I. Lomonosov, On compact and efficient routing in certain graph
classes, in 15th Annual International International Symposium on Algorithms and
Computation (ISAAC), vol. 3341 of Lecture Notes in Computer Science, Springer,
Dec. 2004, pp. 402–414.

17. T. Eilam, C. Gavoille, and D. Peleg, Compact routing schemes with low stretch
factor, Journal of Algorithms, 46 (2003), pp. 97–114.

18. P. Flocchini and F.L. Luccio, Routing in series parallel networks., Theory Com-
put. Syst., 36 (2003), pp. 137–157.

19. G.N. Frederickson and R. Janardan, Efficient message routing in planar net-
works, SIAM Journal on Computing, 18 (1989), pp. 843–857.

20. C. Gavoille, Routing in distributed networks: Overview and open problems, ACM
SIGACT News - Distributed Computing Column, 32 (2001), pp. 36–52.

21. C. Gavoille and N. Hanusse, Compact routing tables for graphs of bounded
genus, in 26th International Colloquium on Automata, Languages and Program-
ming (ICALP), vol. 1644 of LNCS, Springer, July 1999, pp. 351–360.

22. C. Gavoille and D. Peleg, Compact and localized distributed data structures,
Journal of Distributed Computing, 16 (2003), pp. 111–120. PODC 20-Year Issue.

23. C. Gavoille, D. Peleg, S. Pérennès, and R. Raz, Distance labeling in graphs,
Journal of Algorithms, 53 (2004), pp. 85–112.

24. A. Gupta, R. Krauthgamer, and J.R. Lee, Bounded geometries, fractals, and
low-distortion embeddings, in 44th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Oct. 2003, pp. 534–543.

25. Y. Hassin and D. Peleg, Sparse communication networks and efficient routing in
the plane, Distributed Computing, 14 (2001), pp. 205–215.

26. P. Klein, S.A. Plotkin, and S. Rao, Excluded minors, network decomposition, and
multicommodity flow, in 25th Annual ACM Symposium on Theory of Computing
(STOC), ACM Press, 1993, pp. 682–690.

456 I. Abraham, C. Gavoille, and D. Malkhi

27. K.A. Laing, Brief announcement: name-independent compact routing in trees, in
24th Annual ACM Symposium on Principles of Distributed Computing (PODC),
ACM Press, 2004, pp. 382–382.

28. H.-I. Lu, Improved compact routing tables for planar networks via orderly span-
ning trees, in 8th Annual International Computing & Combinatorics Conference
(COCOON), vol. 2387 of LNCS, Springer, Aug. 2002, pp. 57–66.

29. C.S.J. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London
Math. Soc, 36 (1961), pp. 445–450.

30. D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Mono-
graphs on Discrete Mathematics and Applications, 2000.

31. ——, Proximity-preserving labeling schemes, Journal of Graph Theory, 33 (2000),
pp. 167–176.

32. D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables,
Journal of the ACM, 36 (1989), pp. 510–530.

33. A. Slivkins, Distance estimation and object location via rings of neighbors, in
24th Annual ACM Symposium on Principles of Distributed Computing (PODC),
ACM Press, July 2005. To appear. Also appears as Cornell CIS technical report
TR2005-1977.

34. K. Talwar, Bypassing the embedding: Algorithms for low dimensional metrics, in
36th Annual ACM Symposium on Theory of Computing (STOC), June 2004, pp.
281–290.

35. M. Thorup, Compact oracles for reachability and approximate distances in planar
digraphs, in 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press, Oct. 2001, pp. 242–251.

36. M. Thorup and U. Zwick, Compact routing schemes, in 13th Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), ACM Press, July 2001,
pp. 1–10.

37. D.B. West, Introduction to Graph Theory (second edition), Prentice Hall, 2001.

General Compact Labeling Schemes for

Dynamic Trees

Amos Korman

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, 76100 Israel

amos.korman@weizmann.ac.il

Abstract. An F - labeling scheme is composed of a marker algorithm
for labeling the vertices of a graph with short labels, coupled with a
decoder algorithm allowing one to compute F (u, v) of any two vertices
u and v directly from their labels. As applications for labeling schemes
concern mainly large and dynamically changing networks, it is of interest
to study distributed dynamic labeling schemes.

A general method for constructing labeling schemes for dynamic trees
was previously developed in [28]. This method is based on extending an
existing static tree labeling scheme to the dynamic setting. This approach
fits many natural functions on trees, such as distance, routing, nearest
common ancestor etc.. The resulted dynamic schemes incur overheads
(over the static scheme) on the label size and on the communication
complexity. In particular, all their schemes yield a multiplicative over-
head factor of Ω(log n) on the label sizes of the static schemes. Following
[28], we develop a different general method for extending static labeling
schemes to the dynamic tree settings. Our method fits the same class of
tree functions. In contrast to the above paper, our trade-off is designed
to minimize the label size on expense of communication.

Informally, for any k we present a dynamic labeling scheme incur-
ring multiplicative overhead factors (over the static scheme) of O(logk n)
on the label size and O(k logk n) on the amortized message complexity.
In particular, by setting k =

√
n, we obtain dynamic labeling schemes

with asymptotically optimal label sizes and sublinear amortized message
complexity for the routing and the nearest common ancestor functions.

1 Introduction

Motivation: Global information maintenance using local data structures plays
an extensive role in the areas of distributed computing and communication net-
works. Its goal is to cheaply store useful information about the network and
make it readily and conveniently accessible. This is particularly significant when
the network is large and geographically dispersed, and information about its
structure must be accessed from various local points in it.

Recently, a number of studies focused on a localized network representation
method based on assigning a (hopefully short) label to each vertex, allowing one
to infer information about any two vertices directly from their labels, without

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 457–471, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

458 A. Korman

using any additional information sources. Such labeling schemes have been de-
veloped for a variety of information types, including vertex adjacency [8, 7, 21],
distance [29, 26, 19, 18, 16, 22, 34, 10, 2], tree routing [13, 35], flow and con-
nectivity [25], tree ancestry [5, 6, 24], nearest common ancestor in trees [3] and
various other tree functions, such as center, separation level, and Steiner weight
of a given subset of vertices [30]. See [17] for a survey.

By now, the basic properties of localized labeling schemes for static (fixed
topology) networks are reasonably well-understood. In most realistic contexts,
however, the typical setting is highly dynamic, namely, the network topology
undergoes repeated changes. Therefore, for a representation scheme to be prac-
tically useful, it should be capable of reflecting online the current up-to-date
picture in a dynamic setting. Moreover, the algorithm for generating and revis-
ing the labels must be distributed, in contrast with the sequential and centralized
label assignment algorithms described in the above cited papers.

The dynamic models investigated in this paper concern the leaf-dynamic
tree model in which at each step a leaf can be added to or removed from the
tree and the leaf-increasing tree model in which the only topological event that
may occur is that a leaf joins the tree. We present a general method for con-
structing dynamic labeling schemes which is based on extending existing static
tree labeling schemes to the dynamic setting. This approach fits a number of
natural tree functions, such as routing, nearest common ancestor relation and
distance. Such an extension can be naively achieved by calculating the static
labeling from scratch after each topological change. Though this method yields
a good label size, it may incur a huge communication complexity. Another naive
solution would be that each time a leaf u is added as a child of an exist-
ing node v, the label given to u is the label of v concatenated with F (u, v).
Such a scheme incurs very little communication but the label sizes may be
huge.

Before stating the results included in this paper, we list some previous related
works.

Related works: Static labeling schemes for routing on trees were investigated
in [13]. For the designer port model, in which each node can freely enumerate
its incident ports, they show how to construct a static routing scheme using
labels of at most O(log n) bits on n-node trees. In the adversary port model, in
which the port numbers are fixed by an adversary, they show how to construct
a static routing scheme using labels of at most O(log2 n

log log n) bits on n-node trees.
They also show that the label sizes of both schemes are asymptotically optimal.
Independently, a static routing scheme for trees using (1 + o(1)) log n bit labels
was introduced in [35] for the designer port model. A static labeling scheme for
the nearest common ancestor relation on trees (which includes in particular the
ancestry relation) was developed in [3] using labels of O(log n) bits on n-node
trees.

In the sequential (non-distributed) model, dynamic data structures for trees
have been studied extensively (e.g., [32, 9, 20, 4]). For comprehensive surveys on
dynamic graph algorithms see [12, 15].

General Compact Labeling Schemes for Dynamic Trees 459

Labeling schemes for the ancestry relation in the leaf-dynamic tree model
were investigated in [11]. They assume that once a label is given to a node
it remains unchanged. Therefore, the issue of updates is not considered even
for the non distributed setting. For the above model, they present a labeling
scheme that uses labels of O(m) bits, where m is the number of nodes added
to the tree throughout the dynamic scenario. They also show that this bound is
asymptotically tight. Other labeling schemes are presented in the above paper
assuming that clues about the future topology of the dynamic tree are given
throughout the scenario.

The study of dynamic distributed labeling schemes was initiated by [28].
Dynamic distributed distance labeling schemes on trees were investigated in [28]
and [27]. In [28] they present a dynamic labeling scheme for distances in the leaf-
dynamic tree model with message complexity O(

∑
i log2 ni), where ni is the size

of the tree when the i’th topological event takes place. The protocol maintains
O(log2 n) bit labels, when n is the current tree size. This label size is proved in
[19] to be asymptotically optimal even for the static (unweighted) trees scenario.

In [27] they develop two β-approximate distance labeling schemes (in which
given two labels, one can infer a β-approximation to the distance between the
corresponding nodes). The first scheme applies to the edge-dynamic tree model,
in which the vertices of the tree are fixed but the (integer) weights of the edges
may change (as long as they remain positive). The second scheme applies to the
edge-increasing tree model, in which the only topological event that may occur
is that an edge increases its weight by one.

In scenarios where at most m topological events occur, the message com-
plexities of the first and second schemes are O(mΛ log3 n) and O(m log3 n +
n log2 n log m) , respectively, where Λ is some density parameter of the tree. The
label size of both schemes is O(log2 n+log n logW) where W denotes the largest
edge weight in the tree. This label size is shown in [19] to be asymptotically op-
timal even for the static weighted trees scenario.

The study of methods for extending static labeling schemes to the dynamic
setting was also initiated in [28]. There, they assume the designer port and con-
sider two dynamic tree models, namely, the leaf-increasing and the leaf-dynamic
tree models. Their approach fits a number of natural functions on trees, such
as distance, routing, nearest common ancestor relation etc.. Their resulted dy-
namic schemes incur overheads (over the static scheme) on the label sizes and
on the communication complexity. Specifically, given a static F -labeling scheme
π for trees , let LS(π, n) be the maximum number of bits in a label given by
π to any vertex in any n-node tree, and let MC(π, n) be the maximum num-
ber of messages sent by π in order to assign the static labels in any n-node
tree. Assuming MC(π, n) is polynomial1 in n, the following dynamic schemes

1 The actual requirement is that the message complexity is bounded above by some
function f which satisfies f(a + b) ≥ f(a) + f(b) and f(α · n) = Θ(f(n)) for any
constant α > 0. These two requirements are satisfied by most natural relevant func-
tions, such as c · nα logβ n, where c > 0, α ≥ 1 and β > 0. For simplicity, we assume
MC(·, n) itself satisfies these requirements.

460 A. Korman

are derived. For the leaf-increasing tree model, they construct a dynamic F -
labeling scheme πinc. The maximum label given by πinc to any vertex in any
n-node tree is O(log n · LS(π, n)) and the number of messages sent by πinc is
O(log n ·MC(π, n)). In the case where nf , the final number of nodes in the tree,
is known in advance, they construct a dynamic F -labeling scheme with label size
O

(
log nf log n
log log nf

· LS(π, n)
)

and message complexity O
(

log n
log log nf

· LS(π, nf)
)
. For

the leaf-dynamic tree model, they construct two dynamic F -labeling schemes.
Let ni be the size of the tree when the i’th topological event takes place. The
first dynamic F -labeling scheme has label size O(log n · LS(π, n)) and message
complexity O

(∑
i log ni · MC(π,ni)

ni

)
+ O(

∑
i log2 ni) and the second dynamic

F -labeling scheme has label size O
(

log2 n
log log n · LS(π, n)

)
and message complexity

O
(∑

i
log ni

log log ni
· MC(π,ni)

ni

)
+ O(

∑
i log2 ni).

Our contribution: Following [28], we present a different method for construct-
ing dynamic labeling schemes. Our method is also based on extending existing
static labeling schemes to the dynamic setting. However, our resulted dynamic
schemes incur a different trade-off between the overhead factors on the label sizes
and the message communication. In comparison to [28], our trade-off gives better
performances for the label size on expense of communication. Our approach fits
the same class of tree functions as described in [28]. The following results apply
for both the designer port model and the adversary port model in which the port
numbers are fixed by an adversary. Given a static F -labeling scheme π for trees,
let LS(π, n) and MC(π, n) be as before. Let k(x) be a reasonable2 sublinear
function of x. For the leaf-increasing tree model, we construct the dynamic F -
labeling scheme SDLk(x). Consider any scenario on a dynamically growing tree
such that the final number of nodes in the tree is n. The maximum label given
by SDLk(x) to any vertex in the tree is O(logk(n) n · LS(π, n)), and the number
of messages used by SDLk(x) is O(k(n) logk(n) n · MC(π, n)).

For the leaf-dynamic tree model, we construct the dynamic F -labeling scheme
DLk(x) with the following complexities. The maximum label given by DLk(x) to
any vertex in any n-node tree is O(logk(n) n · LS(π, n)) and the number of mes-

sages used by DLk(x) is O
(∑

i k(ni)(logk(ni)ni)
MC(π,ni)

ni

)
+O(

∑
i log2 ni), where

ni is the size of the tree when the i’th topological event takes place. We note that
by setting k(n) =

√
n, we obtain dynamic labeling schemes with asymptotically

the same label size as the static ones and sublinear amortized message complex-
ity. In particular, we get non dynamic labeling schemes with sublinear amortized
message complexity and asymptotically optimal label size for the routing and
the nearest common ancestor functions.

2 We require that both k(x), logk(x) x and k(x)
logk(x) x

are not decreasing functions. The

above requirement is satisfied by most natural sublinear functions such as αxε logβ x,
α logβ log x etc..

General Compact Labeling Schemes for Dynamic Trees 461

Paper outline: We start with preliminaries in Section 2. In Section 3 we present
the FSDLk

p schemes which will be used in section 4, where we introduce the dy-
namic labeling schemes for the leaf-increasing and the leaf-dynamic tree models.
In section 5 we discuss how to reduce the external memory used for updating
and maintaining the labels.

2 Preliminaries

Our communication network model is restricted to tree topologies. The net-
work is assumed to dynamically change via vertex additions and deletions. It
is assumed that the root of the tree, r, is never deleted. The following types of
topological events are considered.
Add-leaf: A new vertex u is added as a child of an existing vertex v. Subse-
quently, v is informed of this event.
Remove-leaf: A leaf of the tree is deleted. Subsequently, the leaf’s parent is
informed of this event. We consider two types of dynamic models. Namely, the
increasing-dynamic tree model in which the only topological event that may oc-
cur is of type add-leaf, and the leaf-dynamic tree model in which both types of
topological events may occur. For simplicity, we assume that initially the tree
consists of a single vertex, namely, its root.

Incoming and outcoming links from every node are identified by so called
port-numbers. When a new child is added to a node v, the corresponding ports
are assigned a unique port-number, in the sense that no currently existing two
ports of v have the same port-number. We consider two main variations, namely,
the designer port model and the adversary port model. The former allows each
node v to freely enumerate its incident ports while the latter assumes that the
port numbers are fixed by an adversary.

Our Method is applicable to any function F such that for every two vertices
u and v in the tree the following condition is satisfied.

(C1) For every vertex w, such that w is on the path between u and v, F (u, v)
can be calculated in polynomial time from F (u, w) and F (w, v).

In particular, our method can be applied to the nearest common ancestor relation
and the labeling for routing, thereby extending static labeling schemes such as
those of [3, 13, 35] to the dynamic setting. We further assume, for simplicity
of presentation, that F is symmetric, i.e., F (u, v) = F (v, u). A slight change
to the suggested protocols handles the more general case, without affecting the
asymptotic complexity results.

A labeling scheme π = 〈Mπ,Dπ〉 for a function F on pairs of vertices of a
tree is composed of the following components:

1. A marker algorithm Mπ that given a tree, assigns labels to its vertices.
2. A polynomial time decoder algorithm Dπ that given the labels L(u) and L(v)

of two vertices u and v, outputs F (u, v).

462 A. Korman

In this paper we are interested in distributed networks where each vertex
in the tree is a processor. This does not affect the definition of the decoder
algorithm of the labeling scheme since it is performed locally, but the marker
algorithm changes into a distributed marker protocol.

Let us first consider static networks, where no changes in the topology of the
network are allowed. For these networks we define static labeling schemes, where
the marker protocol M is initiated at the root of a tree network and assigns
static labels to all the vertices once and for all.

We use the following complexity measures to evaluate a static labeling scheme
π = 〈Mπ,Dπ〉.

1. Label Size, LS(Mπ, n): the maximum number of bits in a label assigned by
Mπ to any vertex on any n-vertex tree.

2. Message Complexity, MC(Mπ, n): the maximum number of messages sent
byMπ during the labeling process on any n-vertex tree. (Note that messages
can only be sent between neighboring vertices).

We assume that the static labeling scheme assigns unique labels. For any
static labeling scheme, this additional requirement can be ensured at an extra
additive cost of at most n to MC(n) and log n to LS(n).

Example 1. The following is a possible static labeling scheme StatDFS for the
ancestry relation on trees based on the notion of interval schemes ([33], cf. [3l]).
Given a rooted tree, simply perform a depth-first search starting at the root,
assigning each vertex v the interval I(v) = [a, b] where a is its DFS number and
b is the largest DFS number given to any of its descendants. The corresponding
decoder decides that v is an ancestor of w iff their corresponding intervals, I(v)
and I(w), satisfy I(v) ⊆ I(w). It is easy to verify that this is a correct label-
ing scheme for the ancestry relation. Clearly, MC(StatDFS, n) = O(n) and
LS(StatDFS, n) = O(log n).

Labeling schemes for routing are presented in [13]. They consider both the
designer port model and the adversary port model. The schemes of [13] are de-
signed as a sequential algorithm, but examining the details reveals that these
algorithms can be easily transformed into distributed protocols. In the designer
port model, we get a static labeling scheme for routing with label size and com-
munication complexity similar to those of the StatDFS static labeling scheme.
In the adversary port model we get a static labeling scheme for routing with
linear communication and O(log2 n

log log n) label size. The label sizes of both schemes
are asymptotically optimal.

The dynamic labeling schemes involve a marker protocol M which is acti-
vated after every change in the network topology. The protocol M maintains
the labels of all vertices in the underlying graph so that the corresponding de-
coder algorithm will work correctly. We assume that the topological changes
occur serially and are sufficiently spaced so that the protocol has enough time
to complete its operation in response to a given topological change before the
occurrence of the next change.

General Compact Labeling Schemes for Dynamic Trees 463

We distinguish between the label M(v) given to each node v to deduce the
required information in response to online queries, and the additional external
storage Memory(v) at each node v, used during updates and maintenance op-
erations. For certain applications (and particularly routing), the label M(v) is
often kept in the router itself, whereas the additional storage Memory(v) is
kept on some external storage device. Subsequently, the size of M(v) seems to
be a more critical consideration than the total amount of storage needed for the
information maintenance.

For the leaf-increasing tree model, we use the following complexity measures
to evaluate a dynamic labeling scheme π = 〈Mπ,Dπ〉.

1. Label Size, LS(Mπ, n): the maximum size of a label assigned by the marker
protocol Mπ to any vertex on any n-vertex tree in any dynamic scenario.

2. Message Complexity,MC(Mπ, n): the maximum number of messages sent by
Mπ during the labeling process in any scenario where n is the final number
of vertices in the tree.

Finally, we consider the leaf-dynamic tree model, where both additions and
deletions of vertices are allowed. Instead of measuring the message complexity
in terms of the maximal number of nodes in the scenario, for more explicit time
references, we use the notation n̄ = (n1, n2, . . . , nt) where ni is the size of the
tree immediately after the i’th topological event takes place. For simplicity, we
assume n1 = 1 unless stated otherwise. The definition of LS(Mπ, n) remains
as before, and the the definition of the message complexity changes into the
following.
Message Complexity, MC(Mπ, n̄): the maximum number of messages sent by
Mπ during the labeling process in any scenario where ni is the size of the tree
immediately after the i’th topological event takes place.

3 The Finite Semi-Dynamic F -Labeling Schemes FSDLk
p

In this section, we consider the leaf-increasing tree model. Given a static F -
labeling scheme π = 〈Mπ,Dπ〉, we first fix some integer k and then, for each
integer p ≥ 1, we recursively define a dynamic scheme FSDLk

p which acts on
growing trees and terminates at some point. Each dynamic scheme FSDLk

p is
guaranteed to function as a dynamic F -labeling scheme as long as it operates.
Scheme FSDLk

p may terminate only when n, the number of nodes in the current
tree, is at least kp. Moreover, the overheads (over π) of Scheme FSDLk

p are O(p)
on the label size and O(p·k) on the communication complexity. These schemes are
used in the next section as building blocks for our dynamic F -labeling schemes.
We start with the following definition.

A finite semi-dynamic F -labeling scheme is a dynamic F -labeling scheme
that is applied on a dynamically growing tree T and terminates at some point.
I.e., the root can be in one of two states, namely, 0 or 1, where initially, the root
is in state 1 and when the root changes its state to 0, the scheme is considered to

464 A. Korman

be terminated. The requirement from a finite semi-dynamic F -labeling scheme
is that until the root changes its state to 0, the scheme operates as a dynamic F -
labeling scheme. For a finite semi-dynamic F -labeling scheme, S, let T S(S) be
the minimum number of vertices in the tree at the time S terminates. Assuming
T S(S) ≥ n, the complexities LS(S, n) and MC(S, n) are defined in the same
manner as they are defined for dynamic labeling schemes.

Let π = 〈MπDπ〉 be a static F -labeling scheme such that MC(π, n) is poly-
nomial in n (see footnote 1). Fix some integer k > 1. We now describe for each
integer p ≥ 1, the finite semi-dynamic F -labeling scheme FSDLk

p = 〈Mp,Dp〉.
Our dynamic schemes repeatedly engage the marker protocol of the static

labeling scheme, and use the labels it produces to construct the dynamic labels.
In doing so, the schemes occasionally apply to the already labeled portion of the
tree a reset operation (defined below) invoked on some subtree T ′ rooted at r′.

Sub-protocol Reset(T ′)

– r′ initiates broadcast and convergcast (see [29]) in order to calculate n(T ′),
the number of vertices in T ′.

– r′ invokes the static labeling scheme π on T ′.

We describe the finite semi-dynamic F -labeling schemes FSDLk
p in a recursive

manner. It will follow from our description that Scheme FSDLk
p terminates

immediately after some Sub-protocol Reset is invoked on the current tree, T .
We start by describing FSDLk

1 .

Scheme FSDLk
1

– Whenever a new node joins T , it sends a signal to r instructing it to invoke
Sub-protocol Reset(T). (Recall that in this sub-protocol, r calculates the
value n(T) which is the current number of nodes in T).

– If n(T) ≥ k then r changes it state to 0 and the scheme terminates.

Clearly FSDLk
1 is a finite semi-dynamic F -labeling scheme.

Given the finite semi-dynamic F -labeling scheme FSDLk
p−1 = 〈Mp−1,Dp−1〉,

we now describe the scheme FSDLk
p = 〈Mp,Dp〉.

Scheme FSDLk
p

1. We first initiate FSDLk
p−1 at r. At some point during the scenario, (after

some application of Sub-protocol Reset(T)), the root is supposed to change
its state to 0 in order to terminate Scheme FSDLk

p−1. Instead of doing so,
we proceed to step 2.

2. Let T0 be the tree at the time the last application of Sub-protocol Reset was
applied. Let n(T0) be the number which was calculated in the first step of
that sub-protocol and let Mπ(u) be the static label given to u ∈ T0 in the
second step of that sub-protocol.

3. If n(T0) ≥ kp then r changes its state to 0 and the scheme terminates.
Otherwise we continue.

General Compact Labeling Schemes for Dynamic Trees 465

4. r broadcasts a signal to all the vertices in T0 instructing each vertex u
to invoke Scheme FSDLk

p−1 on Tu, the future subtree rooted at u. Let
FSDLp−1(u) = 〈Mu

p−1,Dp−1〉 denote the scheme FSDLk
p−1 which is in-

voked by u. (Recall that Scheme FSDLk
p−1 is initiated on trees with initial

size 1, therefore each vertex u ignores its current neighbors in T0 and applies
Scheme FSDLk

p−1(u) only on itself and its future descendants).
5. For each vertex w, let u be the vertex in T0 such that w ∈ Tu. The label

given to w by the marker is composed of three fields as follows. Mp(w) =
〈Mπ(u), F (u, w),Mu

p−1(w)〉.
6. For a vertex z and i ∈ {1, 2, 3}, let Li(z) denote the i’th field of L(z). Given

two labels L(x) and L(y) of two vertices x and y, the decoder Dp operates
as follows.

– If L1(x) = L1(y) (which means that x and y belong to the same subtree
Tu for some u ∈ T0) then Dp outputs Dp−1(L3(x), L3(y)).

– If L1(x) �= L1(y) then this means that x ∈ Tu and y ∈ Tv where
both u and v belong to T0. Furthermore, u is on the path from x
to v and v is on the path from x to y. Therefore F (x, u) = L2(x),
F (u, v) = Dπ(L1(x), L1(y)) and F (v, y) = L2(y). The decoder proceeds
using Condition (C1) on F .

7. If at some point during the scenario, some vertex u ∈ T0 is supposed to
terminate FSDLp−1(u) by changing its state to 0, then instead of doing so,
it sends a signal to the root r which in turn invokes Sub-protocol Reset(T).
We proceed by going back to step 2.

By induction it is easy to show that Scheme FSDLk
p is indeed a finite semi-

dynamic F -labeling scheme. It follows directly from step 3 of Scheme FSDLk
p

that T S(FSDLk
p) ≥ kp.

Lemma 1. – LS(FSDLk
p, n) ≤ O(p · LS(π, n)).

– MC(FSDLk
p, n) ≤ 5pk · MC(π, n).

Proof. The existence of a static F -labeling scheme π with labels of at most
LS(π, n) bits implies that for any two vertices u and v in any n-node tree,
F (u, v) can be encoded using O(LS(π, n)) bits. This can be done by simply
writing the labels of the two vertices. The first part of the lemma follows by
induction. We now turn to prove the second part of the lemma using induction
on p.
Since MC(π, a) ≥ a for every a ≥ 1, it follows that for p = 1, MC(FSDLk

1) ≤
5k ·MC(π, n). Assume now thatMC(FSDLk

p) ≤ 5pk ·MC(π, n). Let us now con-
sider FSDLk

p+1. We distinguish between two types of messages sent by Scheme
FSDLk

p+1 during the dynamic scenario. The first type of messages consists of the
messages sent in the different applications of Scheme FSDLk

p. The second type
of messages consists of the broadcast messages in step 4 of Scheme FSDLk

p+1

and the messages resulted from the applications of step 7 of Scheme FSDLk
p+1

466 A. Korman

(which correspond to sending a signal to the root and applying Sub-protocol
Reset). Let us first bound from above the number of messages of the first type.
Recall that Scheme FSDLk

p+1 initially invokes Scheme FSDLk
p until the latter

is supposed to terminate. If at this point Scheme FSDLk
p+1 does not terminate,

then each vertex on the current tree invokes Scheme FSDLk
p on its future sub-

tree until one of these schemes is supposed to terminate. Again, if at this point
Scheme FSDLk

p+1 does not terminate, then each vertex on the current tree in-
vokes Scheme FSDLk

p on its future subtrees, on so forth. Note that the different
applications of FSDLk

p act on disjoint sets of edges and since we assume that
MC(π, (a+b)) ≥MC(π, a)+MC(π, b) is satisfied for every a, b ≥ 1 (see footnote
1), we get (by our induction hypothesis) that the number of messages of the first
type is at most 5pk ·MC(π, n).

Since T S(FSDLk
p) ≥ kp, we get that if step 2 of Scheme FSDLk

p+1 was ap-
plied i times, then the number of nodes in the tree is at least ikp. Therefore, by
step 3 of Scheme FSDLk

p+1 we get that step 2 of Scheme FSDLk
p+1 can be ap-

plied at most k times. Using the fact thatMC(π, a) ≥ a for every a ≥ 1, the total
number of messages of type 2 sent by FSDLk

p+1 is therefore at most 5kMC(π, n).
Altogether, we get that the number of messages sent by FSDLk

p+1 during the
dynamic scenario is at most 5pk·MC(π, n)+5k·MC(π, n) = 5(p+1)k·MC(π, n).
The second part of the lemma follows.

4 The Dynamic F -Labeling Schemes

Let π = 〈MπDπ〉 be a static F -labeling scheme such thatMC(π, n) is polynomial
in n (see footnote 1) and let k(x) be a sublinear function (see footnote 2). We
first construct the dynamic F -labeling scheme SDLk(x) for the leaf-increasing
tree model and then show how to transform it to our dynamic F -labeling scheme
DLk(x) which is applicable in the leaf-dynamic tree model.

4.1 The Dynamic F -Labeling Scheme SDLk(x)

We now describe our dynamic F -labeling scheme SDLk(x) in the leaf-increasing
tree model. Throughout the scheme SDLk(x), we invoke the schemes FSDLk

p for
different parameters k and p.

Scheme SDLk(x)

1. Invoke Scheme FSDL
k(1)
1 .

2. Recall that while invoking Scheme FSDLk
p , just before this scheme is sup-

posed to terminate, Sub-protocol Reset(T) is invoked in which n′, the number
of nodes in T , is calculated. For such n′, let p′ be such that k(n′)p′

≤ n′ <

k(n′)p′+1. Let p = p′ +2 and let k = k(n′). Instead of terminating the above
scheme, we proceed to step 3.

General Compact Labeling Schemes for Dynamic Trees 467

3. r invokes Scheme FSDLk
p (with the parameters defined in the previous step)

while ignoring step 1 of this scheme. I.e., we start directly in step 2 of Scheme
FSDLk

p.
At some point, Scheme FSDLk

p is supposed to terminate. Instead of termi-
nating it, we proceed by going back to step 2 of Scheme SDLk(x).

The proof of the following theorem appiers in the full version of this paper.

Theorem 1. SDLk(x) is a dynamic F -labeling scheme for the leaf-increasing
tree model, satisfying the following properties.

– LS(SDLk(x), n) ≤ O(logk(n) n · LS(π, n)).

– MC(SDLk(x), n) ≤ O(k(n)(logk(n) n)MC(π, n)).

4.2 The Dynamic F -Labeling Scheme DLk(x)

In this section we show how to use SDLk(x) in order to get the dynamic F -
labeling scheme DLk(x) which applies to the leaf-dynamic tree model. The de-
tails are omitted from this abstract.

Naively running SDLk(x) in the leaf-dynamic tree model while ignoring dele-
tions may result in a large label size relative to the size of the current tree. In
order to overcome this difficulty, we use the same method as used in [28]. Infor-
mally, our scheme DLk(x) invokes SDLk(x) while ignoring deletions completely.
In addition, our scheme DLk(x) invokes a sub-protocol for counting topological
events (using a technique inspired by [1]) until the number of topological events
becomes Θ(n). We then execute SDLk(x) from scratch. The number of messages
that the above sub-protocol uses in order to count the topological changes is
O(

∑
i log ni) when ni is the number of vertices in the tree when the i’th topo-

logical event takes place. We therefore get the following theorem.

Theorem 2. DLk(x) is a dynamic F -labeling scheme for the leaf-dynamic tree
model, satisfying the following properties.

– LS(DLk(x), n) ≤ O(logk(n) n · LS(π, n)).

– MC(DLk(x), n̄) ≤ O
(∑

i k(ni)(logk(ni) n)MC(π,ni)
ni

)
+ O(

∑
i log2 ni).

By setting k(x) =
√

n, we get the following corollary.

Corollary 1. – In the leaf-dynamic tree model, there exists a dynamic F -
labeling scheme with the same asymptotic label size as π and sublinear amor-
tized message complexity.

– In the leaf-dynamic tree model, there exist dynamic labeling schemes for the
nearest common ancestor relation and for the routing function (both in the
designer port model and in the adversary port model) using asymptotically
optimal label sizes and sublinear message complexity.

468 A. Korman

5 External Memory Complexity

Throughout this section some details are omitted from this abstract. We dis-
tinguish between three types of memory bits used by a node v. The first type
consists of the bits in the label M(v) given to v by the marker algorithm. The
second type consists of the memory bits used by the static algorithm π in order
to calculate the static labels. The third type of bits , referred to as the external
memory bits, consists of the additional external storage used during updates and
maintenance operations by the dynamic labeling scheme. As mentioned before,
for certain applications (and particularly routing), the label M(v) seems to be
a more critical consideration than the total amount of storage needed for the
information maintenance. In addition, the second type of memory bits are used
by the static algorithm π only when it is invoked which is done infrequently. We
note that one can construct static labeling schemes for all the above mentioned
functions (i.e., routing in the designer port model, routing in the adversary port
model, nearest common ancestor and distance) using linear message complexity
and asymptotically optimal label size. Moreover, at any vertex, the number of
memory bits used by these static algorithms is asymptotically the same as the
label size. The details concerning these static labeling schemes appear in the full
version of this paper.

In the following discussion, we try to minimize the number of external mem-
ory bits used by our dynamic schemes. Let us first describe the need for these
memory bits.

Consider either Scheme DLk(x) or Scheme SDLk(x) for some function k(x).
At any time during the scenario, there exist some k′, such that all the schemes
of the form FSDLk

l that are currently being invoked, are such that k = k′ and
l ≤ logk′ n, where n is the current number of nodes in the tree. Let p = logk′ n.
For each l ≤ p, each scheme FSDLk

l that is currently being invoked acts on a
different subtree of T . Therefore, a node v may participate at the same time
in different schemes FSDLk

l for different l’s (actually, it can participate in at
most one scheme FSDLk

l for each l ≤ p). As a result, each vertex v must know
which of its edges correspond to each subtree Tl, the subtree containing v on
which Scheme FSDLk

l is invoked. Naively storing this information at v may
incur Ω(p · n) bits of memory. Note that v’s communication in Scheme FSDLk

l

is done either by communicating with its parent or by communicating with all
its children in Tl. Let El be the port numbers (at v) corresponding to the edges
connecting v to its children in Tl. It is therefore enough to ensure that v is able
to detect which of its port numbers is in El. We first consider our schemes in
the designer port model, and then discuss them in the adversary port model.

5.1 External Memory in the Designer Port Model

In the designer port model, in order to reduce the memory used at each node,
we exploit the fact that the tree Tl is a subtree of Tl+1. This is done as follows.
Each node v enumerates its ports from 1 to its degree so that the following is
maintained. For each i = 1, 2 · · · p, there exist an integer ai and a function φi

General Compact Labeling Schemes for Dynamic Trees 469

such that φi is a one to one and onto function from {1, 2 · · ·ai} to El. In other
words, v enumerates its port numbers so that the port numbers from 1 to ai

correspond to the edges connecting v to its children in Tl. Therefore, in order to
know the port numbers in El, v needs only to store the ai’s. This costs O(p log n)
memory bits and we therefore obtain the following lemma.

Lemma 2. In the designer port model, for any execution of Scheme DLk(x) or
Scheme SDLk(x) the maximal number of external memory bits used by a vertex
in any n-node tree is bounded from above by O(logk(n) n · log n).

5.2 External Memory in the Adversary Port Model

We first remark that in [28], the designer port model is assumed. Since port
numbers are used in the labels given by the dynamic schemes of [28], apply-
ing their scheme in the adversary port model may affect the label sizes of the
schemes. Specifically, let τ(n) be the maximum port number given by the adver-
sary to any node in any n-node tree, taken over all scenarios. Then the upper
bound on the label sizes of the general schemes proposed in [28] changes from
O(d logd n · LS(π, n)) to O(d logd n · (LS(π, n) + log τ(n))) (see Lemma 4.12 of
[28]).

In contrast, applying our schemes in the adversary port model may only
affect the external memory complexities. As discussed before, it is enough to
guarantee that each node v knows for each l < p which of its port numbers is in
El. The strategy we propose is that node v distributes the relevant information
to its children in T and collects it back when needed. Let ui be the child of v
corresponding to the i’th smallest port number of v. Let pl

i be the i’th smallest
port number of v in El and let j(pl

i) be such that pl
i leads to uj(pl

i)
.

In the leaf-increasing tree model, for each i, node ui keeps a table, denoted
Table(ui), containing p fields. Each field l in this table contains j(pl

i). If node v
wants to communicate with its children in Tl, it must collect the corresponding
port numbers. This is done by inspecting its children in T one by one starting
by u1, u2, etc.. Note that v can identify ui, as it is a local computation at v
to find out which of its ports has the i’th smallest port number. By inspecting
the l’th field in ui’s table, v is able to detect which of its ports leads to its
i’th smallest edge in El. Since the number of nodes v needs to inspect is the
same as the number of its children in Tl then this inspection does not affect the
asymptotic message complexity of the scheme. Since the number of bits in each
table Table(ui) is at most O(p · log n), we obtain the following lemma.

Lemma 3. In the adversary port model and the leaf-increasing tree model, the
maximal number of external memory bits used by a vertex in Scheme SDLk(n)

is bounded from above by O(logk(n) n · log n).

In the leaf-dynamic model, where deletions are allowed, several difficulties
may be encountered while trying to apply the strategy proposed above. The
details are omitted from this abstract and appear in the full version of this
paper, where we obtain the following lemma.

470 A. Korman

Lemma 4. Assuming the adversary port model and the leaf-dynamic tree model,
the maximal number of external memory bits used by a vertex in Scheme DLk(x)

is bounded from above by O(logk(n) n · log τ(n)).

References

[1] Y. Afek, B. Awerbuch, S.A. Plotkin and M. Saks. Local management of a global
resource in a communication. J. of the ACM 43, (1996), 1–19.

[2] S. Alstrup, P. Bille and T. Rauhe. Labeling schemes for small distances in trees.
In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2003.

[3] S. Alstrup, C. Gavoille, H. Kaplan and T. Rauhe. Nearest Common Ancestors:
A Survey and a new Distributed Algorithm. Theory of Computing Systems 37,
(2004), 441–456.

[4] S. Alstrup, J. Holm and M. Thorup. Maintaining Center and Median in Dynamic
Trees. In Proc. 7th Scandinavian Workshop on Algorithm Theory, July. 2000.

[5] S. Abiteboul, H. Kaplan and T. Milo. Compact labeling schemes for ancestor
queries. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2001.

[6] S. Alstrup and T. Rauhe. Improved Labeling Scheme for Ancestor Queries. In
Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002.

[7] M.A. Breuer and J. Folkman. An unexpected result on coding the vertices of a
graph. J. of Mathematical Analysis and Applications 20, (1967), 583–600.

[8] M.A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information
Theory, IT-12:148–153, 1966.

[9] R. Cole and R. Hariharan. Dynamic LCA Queries on Trees. In Proc. 10th
ACM-SIAM Symp. on Discrete Algorithms, 235–244, 1999.

[10] E. Cohen, E. Halperin, H. Kaplan and U. Zwick. Reachability and Distance
Queries via 2-hop Labels. In Proc. 13th ACM-SIAM Symp. on Discrete Algo-
rithms, Jan. 2002.

[11] E. Cohen, H. Kaplan and T. Milo. Labeling dynamic XML trees. In Proc. 21st
ACM Symp. on Principles of Database Systems, June 2002.

[12] D. Eppstein, Z. Galil and G. F. Italiano. Dynamic Graph Algorithms. In Al-
gorithms and Theoretical Computing Handbook , M. J. Atallah, ed., CRC Press,
1999, chapter 8.

[13] P. Fraigniaud and C. Gavoille. Routing in trees. In Proc. 28th Int. Colloq. on
Automata, Languages & Prog., LNCS 2076, pages 757–772, July 2001.

[14] P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In Proc.
19th Symp. on Theoretical Aspects of Computer Science, Mar. 2002.

[15] J. Feigenbaum and S. Kannan. Dynamic Graph Algorithms. In Handbook of
Discrete and Combinatorial Mathematics, CRC Press, 2000.

[16] C. Gavoille and C. Paul. Split decomposition and distance labelling: an optimal
scheme for distance hereditary graphs. In Proc. European Conf. on Combinatorics,
Graph Theory and Applications, Sept. 2001.

[17] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures.
J. of Distributed Computing 16, (2003), 111–120.

[18] C. Gavoille, M. Katz, N.A. Katz, C. Paul and D. Peleg. Approximate Distance
Labeling Schemes. In 9th European Symp. on Algorithms, Aug. 2001, Aarhus,
Denmark, SV-LNCS 2161, 476–488.

[19] C. Gavoille, D. Peleg, S. Pérennes and R. Raz. Distance labeling in graphs. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pages 210–219, Jan. 2001.

General Compact Labeling Schemes for Dynamic Trees 471

[20] J. Holm, K. Lichtenberg and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. of the ACM 48(4), (2001), 723–760.

[21] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proc.
20th ACM Symp. on Theory of Computing, pages 334–343, May 1988.

[22] H. Kaplan and T. Milo. Short and simple labels for small distances and other
functions. In Workshop on Algorithms and Data Structures, Aug. 2001.

[23] H. Kaplan and T. Milo. Parent and ancestor queries using a compact index. In
Proc. 20th ACM Symp. on Principles of Database Systems, May 2001.

[24] H. Kaplan, T. Milo and R. Shabo. A Comparison of Labeling Schemes for Ancestor
Queries. In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002.

[25] M. Katz, N.A. Katz, A. Korman and D. Peleg. Labeling schemes for flow and
connectivity. In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002.

[26] M. Katz, N.A. Katz, and D. Peleg. Distance labeling schemes for well-separated
graph classes. In Proc. 17th Symp. on Theoretical Aspects of Computer Science,
pages 516–528, February 2000.

[27] A. Korman and D. Peleg. Labeling Schemes for Weighted Dynamic Trees. In Proc.
30th Int. Colloq. on Automata, Languages & Prog., Eindhoven, The Netherlands,
July 2003, Springer LNCS.

[28] A. Korman, D. Peleg and Y. Rodeh. Labeling schemes for dynamic tree networks.
Theory of Computing Systems 37, (2004), 49–75.

[29] D. Peleg. Proximity-preserving labeling schemes and their applications. In Proc.
25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pages
30–41, June 1999.

[30] D. Peleg. Informative labeling schemes for graphs. In Proc. 25th Symp. on Math-
ematical Foundations of Computer Science, volume LNCS-1893, pages 579–588.
Springer-Verlag, Aug. 2000.

[3l] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
[32] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences 26(1), (1983), 362–391.
[33] N. Santoro and R. Khatib. Labelling and implicit routing in networks. The

Computer Journal 28, (1985), 5–8.
[34] M. Thorup. Compact oracles for reachability and approximate distances in planar

digraphs. J. of the ACM 51, (2004), 993–1024.
[35] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th ACM Symp.

on Parallel Algorithms and Architecture, pages 1–10, Hersonissos, Crete, Greece,
July 2001.

The Dynamic And-Or Quorum System

Uri Nadav1 and Moni Naor2

1 Dept. of Computer Science Tel-Aviv University
2 Dept. of Computer Science and Applied Mathematics, The Weizmann Institute

Abstract. We investigate issues related to the probe complexity of the
And-Or quorum system and its implementation in a dynamic environ-
ment. Our contribution is twofold: We first analyze the algorithmic probe
complexity of the And-Or quorum system, and present two optimal al-
gorithms. The first is a non-adaptive algorithm with O(

√
n log n) probe

complexity, which matches a known lower bound. The second is an adap-
tive algorithm with a probe complexity that is linear in the cardinality
of a quorum set (O(

√
n)), and requires at most O(log log n) rounds. To

the best of our knowledge, all other adaptive algorithms with same pa-
rameters (load and probe complexity) require θ(

√
n) rounds.

Our second contribution is presenting the ‘dynamic And-Or’ quorum
system - an adaptation of the above quorum system to a dynamic en-
vironment, where processors join and leave the network. It is based on
a dynamic overlay network that emulates the De-Bruijn network and
maintains the good properties of the quorum system(e.g.,load and avail-
ability). The algorithms suggested for the maintenance of these dynamic
data structures are strongly coupled with the dynamic overlay network.
This fact enables the use of gossip protocols which saves in message com-
plexity and keeps the protocols simple and local. All these qualities make
the ‘dynamic And-Or’ an excellent candidate for an implementation of
dynamic quorums.

1 Introduction and Motivation

Quorum systems (QS) serve as a basic tool providing a uniform and reliable way
to achieve coordination between processors in a distributed system. Quorum sys-
tems are defined as follows: A set system is a collection of sets S = {S1, . . . , Sm}
over an underlying universe U = {u1, . . . , un}. A set system is said to satisfy the
intersection property, if every two sets S, R ∈ S have a nonempty intersection.
Set systems with the intersection property are known as quorum systems and
the sets in such a system are called quorums.

We are interested in two aspects of quorum systems that arise from peer-to-
peer environments, where processors are loosely coupled and may join and leave
the network at will:

1. The setting in which the quorum operates is often dynamic, and should ac-
commodate changes in the quorum system over time. We address the prob-
lem of designing a quorum system that is fit for a scalable and dynamic
environment where processors leave and join at will.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 472–486, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Dynamic And-Or Quorum System 473

2. In a dynamic setting a global view of the system is usually hard to maintain
and is therefore not assumed. We are interested in solutions which use local
algorithms for the maintenance of the QS i.e., ones in which the input for a
processor only comes from its local view of its neighbors in the network.

This paper deals with the And-Or quorum system, presented by Naor and
Wool[16]. We examine the And-Or system both in a static environment where
the set of processors is fixed, and in a dynamic and scalable environment. We
conclude that it is very suitable for implementation in a dynamic setting.

1.1 Definitions and Preliminaries

The load on a system of processors, as defined in [16], captures the probability
of accessing the busiest processor. An access strategy μ, for a quorum system
Q, is a probability distribution over the quorums in Q, i.e.

∑
Q∈Q μ(Q) = 1. An

access strategy can be thought of as a method for choosing a quorum. The load
L(i) induced by a strategy on a processor i ∈ U is the probability that processor
i is chosen by the strategy, i.e. L(i) = Prμ[i ∈ Q]. The load of a strategy μ is
L(μ) = maxi∈U L(i). For a quorum system Q, the load L(Q) is the minimum
load induced by a strategy, over all strategies. Let c(Q) denote the size of the
smallest quorum in Q. Naor and Wool prove in [16] the following lemma:

Lemma 1 ([16]). The load of a quorum system Q is at least max{ 1
c(Q) ,

c(Q)
n }

which implies that L(Q) ≥ 1√
n
.

We assume that processors may temporarily fail(halt). The failure of a pro-
cessor occurs with some fixed probability p and is independent from failures of
other processors in the network (Random faults model). A quorum is said to be
alive if all of its elements are alive (non-faulty), and dead otherwise. The avail-
ability of a quorum system Q is measured by the global failure probability Fp

which is the probability that all quorums in Q are dead. This failure probability
measures how resilient the system is.

The availability measure tells us about the probability of a quorum set to
survive in the random-fault model, but tells us nothing about the complexity of
finding a live quorum. The probe complexity of a quorum system captures the
number of probes required for finding a live quorum (cf. [5],[18]). We use the same
probing model defined in [18], where a user learns the state of a processor with a
single probe (by sending a message and waiting a timeout period for the reply)
i.e., faults are detectable. It is also assumed that the state of a processor does
not change while the system is being probed. A lower bound on the algorithmic
probe complexity of a non-adaptive algorithm, as a function of the load was
given in [15]:

Theorem 1 ([15]). Let Q be a quorum system over a universe of processors
U with load L = L(Q). Assume that each element in U fails with some fixed
probability p ≤ 1

2 . Let X ⊂ U be a predefined set of elements (that corresponds
to a non-adaptive algorithm) s.t.,

474 U. Nadav and M. Naor

Pr[Xcontains a live quorum] ≥ 1
2
,

then

|X | ≥ 1
2 log (1/p) + 1

log (1/4L)
L .

In particular if L = O(1√
n
) then |X | = Ω(

√
n log n).

A non-adaptive algorithm for finding a live quorum decides on which proces-
sors to probe prior to gaining any knowledge as to which processors failed. Such
algorithms are attractive since they could be executed in parallel. An adaptive
algorithm on the other hand, can act in a number of rounds, such that in each
round the probe results of prior rounds are known.

1.2 Quorum System for P2P and Dynamic Environments

Recently, peer-to-peer applications gained enormous popularity, which led to an
extensive research on dynamic distributed data structures on overlay networks.
Most of the attention was put on dynamic hash tables (c.f [10][14][19][20][21]).
In these constructions data items are divided locally and on the fly between
active processors in the network. An overlay network is built up dynamically, as
processors join and leave the network.

The design of quorum systems for a dynamic environment raises two prob-
lems:

Integrity: When processors join or depart the system the quorum sets should
be modified. The integrity of the system is preserved in two aspects: First,
the intersection property must hold. Second, the adaptation should keep the
properties of the quorum system e.g., load and availability.

Locality: Even if the set of quorums is well defined, it is required of a user
to actually know the quorum structure in order to choose a quorum. In
a dynamic system a global view of the system is hard to maintain and is
therefore not assumed. The users of the quorum system are the processors
themselves. When a processor selects a quorum it has no knowledge of the
complete quorum structure and only has access to its close neighborhood.

We combine techniques from works on dynamic overlay networks together
with the And-Or quorum system and come up with a design that provides high
scalability and locality while preserving other measurements of quality from
classic research of quorum systems.

1.3 Related Work

Peleg and Wool defined the availability of quorum systems in [17] and studied the
availability of some quorum system classes. In [18] Peleg and Wool studied the
complexity of finding a live quorum or evidence for the lack of, in an adversarial-
fault model. In this model crash faults are assumed to be detectable, and a probe

The Dynamic And-Or Quorum System 475

action to a processor is assumed to have O(1) complexity. In [5] Hassin and Peleg
analyzed the probe complexity of several systems in the random-fault model.
Bazzi [3] introduced the term ‘cost of failures’. Given a network implementation
and an algorithm for finding a live quorum, the cost of failures measures the
average communication overhead caused by encountering a faulty processor. In
[15] Naor and Wieder defined the Algorithmic probe complexity as the actual
time and message complexity required for finding a live quorum.

In [16] Naor and Wool presented both the Paths quorum system and the
And-Or system, and showed that they both have asymptotically optimal load
and availability. In [15], Naor and Wieder suggested an adaptation of Paths
in a dynamic environment and showed that it maintains the optimal load and
availability of the original system. Malkhi et al [11] suggested a relaxation for
quorum systems in which the intersection of two quorums is only required with
some high probability. It was shown that such a relaxation results in a dramatic
improvement in the resilience of the system. Abraham and Malkhi [2] introduced
the ‘dynamic ε-intersecting system which is an adaptation of the ε-intersecting
system for a dynamic environment.

In [13] we have shown an embedding of the ‘And-Or tree’ structure over the
‘Distance-Halving’ overlay network [14], which served as a fault-tolerant storage
system. We use the same embedding here for the construction of a dynamic quo-
rum system. In quorum systems the major design goal is to ensure intersection
between quorums, whereas in storage systems, files reconstruction serves as the
main target. The intersection property of quorum-systems is necessary but not
sufficient for this matter. We wish to emphasize this difference in goals which
leads to entirely different algorithms and analyses. We also emphasize the fact
that the fault-model in [13] is adversarial, in contrast with a random-fault model
analyzed in this paper.

1.4 Results and Paper Organization

This paper is divided into two parts. In the first part, we analyze the algorith-
mic probe complexity of the And-Or quorum system (Section 2). We show a non-
adaptive algorithm for finding a live quorum with O(

√
n log n) probe complexity.

This matches a lower bound of Naor and Wieder [15]. We further show an adaptive
algorithm with a probe complexity of O(

√
n), which is optimal (up to constants).

Thus combined with the results in [16] the And-Or system is shown to have an ex-
cellent balance between many somewhat contradictory measures of quality.

The ‘Paths’ quorum system was already shown to achieve optimal load,
availability [16], and algorithmic probe complexity [15]. The adaptive algorithm
for paths requires O(

√
n) probes as in our case. However, it requires θ(

√
n)

rounds, whereas our algorithm only requires O(log log n) rounds. To the best of
our knowledge, no other algorithm with similar parameters works as fast. Our
algorithm also achieves early stopping in the case of no faults. Our contribution
is therefore twofold: First, our adaptive algorithm works very fast. Second, the
analysis is kept simple in contrast with the results in [16][15] which require heavy
tools from percolation theory.

476 U. Nadav and M. Naor

We should note however that the Paths quorum system has a better avail-
ability than And-Or, in the sense that it remains available for every failure
probability p < 1

2 . In contrast, it was shown in [16] that the And-Or has the
same asymptotic behavior, but for p < pc, where pc is a constant strictly less
than 1

2 .
In the second part of this paper (Section 4) we present and analyze ‘dynamic

And-Or’, a construction for a dynamic and scalable quorum system which could
be viewed as a dynamic adaptation of the And-Or system. We show that the
dynamic And-Or keeps the optimal load, availability and probe complexity of
the And-Or system.

The remainder of this paper is organized in the following way. In Section
2 we present the optimal adaptive and non-adaptive algorithms for finding a
live quorum in the random-fault model. Section 3 analyzes the And-Or quorum
system on a balanced binary tree which is incomplete. This structure is a step
towards the adaptation of the And-Or for a dynamic environment, which is
presented in Section 4. Section 4 then presents two different implementations
of the And-Or system in a dynamic environment. Finally, our conclusions and
open questions are presented in Section 5. We note that all proofs are omitted
from this version due to lack of space.

2 The And-Or Quorum System

We recall the construction of the ‘And-Or’ quorum system presented in [16].
Consider a complete binary tree of height h, rooted at root, and identify the 2h

leaves of the tree with systems processors. We define two collections of subsets
over the set of processors, using the following recursive definitions:

(i) For a leaf v, ANDset(v) = ORset(v) =
{
{v}

}
.

(ii) ANDset(v) =
{
S ∪R|S ∈ ORset(v.left) ∧R ∈ ORset(v.right)

}
.

(iii) ORset(v) = ANDset(v.left) ∪ANDset(v.right)

The And-Or quorum system is then composed of the collections ANDset
(root) and ORset(root). A natural recursive procedure can be used to generate
a set S ∈ ANDset(root). The procedure visits nodes of the tree, beginning at the
root and propagating downwards. It considers the nodes of the tree as AND/OR
gates (on even/odd levels). When visiting an AND gate it continues to both
its children, and when visiting an OR gate one of its children is chosen. The
leaves visited by the procedure form S. A similar procedure generates a set
R ∈ ORset(root). The And-Or structure induces the following properties:

Lemma 2 (from [16]). Consider a complete binary tree of height h rooted at
root. Let S ∈ ANDset(root) and R ∈ ORset(root) then |S ∩R| = 1, |R| = 2�

h
2 �

and |S| = 2�
h+1
2 �.

Lemma 2 states that each set S ∈ ANDset(root) intersects each set R ∈
ORset(root). This property is used to define the ‘And-Or’ quorum system: A

The Dynamic And-Or Quorum System 477

quorum in the And-Or system is any set Q = S ∪ R where S is a member of
ANDset(root) and R is a member of ORset(root). For a binary tree T we denote
the set of quorums with AndOr(T). The load of the And-Or system was shown
to be optimal (O(1√

n
)) in [16].

The And-Or system was shown to have a failure probability Fp which ex-
ponentially decays in n. For p ≤ 1

4 it was shown in [16] that Fp(AndOr) ≤
exp(−Ω(

√
n)).

2.1 A Non-adaptive Algorithm

We now show a non-adaptive algorithm for choosing a live quorum in the And-
Or quorum system. The probe complexity of this algorithm is O(

√
n log n) which

matches the lower bound of Theorem 1.
Let r be the root of a complete binary tree. We introduce the notion of

ANDset collection on internal nodes of the tree, in level h, denoted ANDset(r, h):

Definition 1 (ANDset(r, h)). Let T be a binary tree rooted at r with h levels.
Let T ′ be the same tree, where all the nodes in level h+1 or above are truncated,
and the nodes of level h serve as leaves. Then ANDset(r, h) equals the collection
ANDset(r) as defined on T ′.

The non-adaptive algorithm uniformly picks a set R ∈ ANDset(r, h) where

h = !log n− 2 log log n".

All processors which are descendants of nodes in R are then chosen. The cardi-
nality of such a set follows from Lemma 2.

Lemma 3. The cardinality of a set of processors S chosen by the non-adaptive
algorithm is O(

√
n log n).

Observation 1 follows directly from the definition of the recursive procedure
for selecting a member of ANDset(r):

Observation 1. Let S be a member of ANDset(r) then there exists a set R ∈
ANDset(r, h) and a collection {Sv : v ∈ R, Sv ∈ ANDset(v)} such that:

S = ∪v∈RSv.

From the high availability property of the And-Or, and from Observation 1
it follows that a live member of ANDset(r) is contained in the probed set, with
high probability1 .

Theorem 2 (Non-adaptive Probe Complexity). Let S denote the set of
processors chosen as described above, then S contains a live set from the collec-
tion ANDset(r) w.h.p .

In a similar way a subset of processors that contains a live member of
ORset(r) can be chosen. Joining such a set with a live member of ANDset(r)
yields a live quorum in the And-Or quorum system.
1 By “with high probability” (w.h.p.), we mean “with probability at least 1−O(n−α)

for some constant α > 0, for a system with n processors.”

478 U. Nadav and M. Naor

2.2 An Adaptive Algorithm

We present an adaptive algorithm for finding a live quorum for the And-Or
system which requires θ(

√
n) probes. By an adaptive algorithm we mean an

algorithm that probes several subsets of processors, in a number of rounds. The
algorithm is assumed to send all messages (probes) in a specific round prior
to getting any reply from any of the processors that are probed in this round.
Answers from probed processors are returned before some timeout, after which
the algorithm decides which processors to probe in the next round. The number
of rounds therefore determines the time complexity of the algorithm so it is
desired to have as small as possible number of rounds.

Our algorithm requires w.h.p. only O(log log n) rounds. Naor and Wieder
presented in [15] an adaptive algorithm for the Paths quorum system with a
θ(
√

n) probe complexity, however, their solution requires θ(
√

n) rounds.
As in the non-adaptive case, it is sufficient to show how to find a live member

of ANDset(root). A live member of ORset(root) can be found in a similar way.
To adaptively find a live member of ANDset(root), the algorithm first picks an
arbitrary set S ∈ ANDset(root) and probe its members. If S turns out to be
alive then the algorithm may finish. Otherwise, the set is being ‘corrected’, by
replacing the choices that turned out to be dead, in the following way.

Let parent(v) denote the internal node in the tree which is the parent of v. To
correct a choice of a dead processor v ∈ S, the leaves in the subtree v′ = parent(v)
are probed. If the newly probed processors contain a live member of ANDset(v′)
then the algorithm can finish. Otherwise, the last step is recursively repeated
with parent(v′). This process runs in parallel for each faulty processor v ∈ S.
Following from Observation 1, when all processes stop, the probed elements
contain a live member of ANDset(r). If a live member exists, then by the time
all the process reach the root of the tree, this live member is found. Algorithm
1 describes this process more formally.

We turn to the analysis of the probe complexity of the adaptive algorithm.
Step 2 of Algorithm 1 finds for each v ∈ S its lowest ancestor v′, for which a
live member in ANDset(v′) exists. Note that if v is alive then v′ = v. Denote

Algorithm 1 Adaptive Find Live Quorum

Input: Oracle access to the state of processors (live or dead).

Output:A live member of ANDset(r) (or ‘fail’ in case none was found).

1. Probe the members of some set S ∈ ANDset(root).
2. For each v ∈ S which is dead, do the following:

(a) Set v′ = parent(v)
(b) Probe all leaves of v′

(c) While the leaves in the subtree v′ do not contain a live member of ANDset(v′),
set v′ ← parent(v′) and go back to stage 2b.

(d) Add the members of the live set to S.

The Dynamic And-Or Quorum System 479

by hv the distance from v to this v′. hv determines the number of rounds for
each process. The number of rounds of the algorithm is maxv∈S{hv}. Lemma
4 states that the expected height hv is constant and that w.h.p. for all v ∈ S,
hv ≤ 2 log log n:

Lemma 4. Let v ∈ S, then E[hv] = O(1), and moreover,

Pr[
∧
v∈S

hv ≤ 2 log log n] = 1−O(
1√
n

),

where the probability is taken over the occurrence of faults.

This guarantees that the number of rounds is at most 2 log log n. To show O(
√

n)
probe complexity, we need to prove there is a concentration around E[hv] w.h.p .
The variables hv are not independent since the trees may intersect, and there-
fore Chernoff inequality cannot be directly applied. This problem is addressed
through dividing the random variables hv into a logarithmic number of sets, such
that within each set, all variables are independent.

Theorem 3. The number of elements probed by the adaptive algorithm is w.h.p.
O(
√

n). The number of rounds required in Step 2c of the algorithm is w.h.p. at
most 2 log log n.

Early Stopping. We showed that a live quorum can be found in the And-Or
quorum system when each processor fails with some constant probability p, in
time θ(log log n) w.h.p . It is desirable that in a different fault model, for example
when the failure probability of a processor is o(1), the running time will shorten,
namely, achieving early stopping of the algorithm. When no faults occur at all,
the adaptive algorithm finds a live quorum in a single round. When the failure
probability is O(1

nc) for some constant c > 0, then w.h.p. no subtree generated
in the adaptive algorithm grows to a height of more than a constant. It can be
shown in this case that w.h.p. the number of steps required from the algorithm
is a constant.

3 The And-Or Quorum System on a Balanced Binary
Tree

Till now we have discussed the And-Or quorum system in the case the And-Or
structure is defined over a complete binary tree. In Section 4 we present two
ways of maintaining a binary tree over a dynamic environment of processors
which is incomplete. In such a case the definition of the recursive structures,
ANDset(root) and ORset(root) remains well defined. Lemma 2 can be extended
to show that the intersection property is maintained, so the AndOr(root) struc-
ture is a quorum system. However, the load, availability and probe complexity of
the new system are no longer guaranteed to be optimal as in the original And-Or

480 U. Nadav and M. Naor

system. To maintain the optimal properties of the And-Or we restrict ourselves
to balanced trees.

A family of trees is a set of trees {Ti}∞i=1 such that Ti has i leaves.

Definition 2 (Balanced Tree). A family {Ti}∞i=1 of trees is said to be balanced
if the following holds:

– Each node in the tree is either a leaf or has two children.
– There exists a constant c ≥ 0 s.t. for each tree Ti, the difference between the

levels of the leaves is bounded by c.

Theorem 4 states that the And-Or on balanced trees maintains optimal
asymptotic load and availability.

Theorem 4. Let T be a tree in a balanced family of trees with n leaves. Let
Q = AndOr(T) be the And-Or quorum system defined on T . The load of Q is
L(Q) = O(1√

n
). Also, when the processors fail independently with probability

p < pc, for a constant pc that depends only on the balance factor c, the global
fail probability is:

Fp(AndOr(T)) ≤ exp(−O(
√

n)).

4 The Dynamic And-Or Quorum System

In this section we present an adaptation of the Balanced And-Or quorum sys-
tem over a dynamic network. We present two implementations: The first is on
top of the Identity-Management scheme [12]. In this scheme a balanced binary
tree structure is maintained over the active processors in the network and the
embedding of the quorum system is straightforward. The second is on top of the
distance-halving network, which emulates the De-Bruijn network in a dynamic
environment (see [4,6] for other dynamic implementations of this network). In
this network, communication lines correspond to edges of a binary tree, so that
this implementation saves in the message complexity of finding a quorum.

For the entire section, we make the following simplifying assumption: An un-
derlying layer takes care of concurrent operations of Join/Depart/‘Use Quorum’,
so that the network implementation gets these operations sequentially (where
‘Use Quorum’ is an operation that sends a message to all the members of a
quorum). We refer the reader to [9] where techniques for achieving concurrency
in peer-to-peer networks are introduced.

4.1 A Dynamic And-Or Quorum System Using the
Identity-Management Scheme

The first implementation of the And-Or quorum system in a dynamic environ-
ment uses the Identity-Management scheme presented by Manku [12]. In this
scheme a balanced binary tree, with the active processors acting as its leaves,
is maintained at all times, as processors join and depart from the system. The

The Dynamic And-Or Quorum System 481

binary tree structure defines the hosts’ identities. Only leaf nodes of the tree cor-
respond to a processor’s identity. The internal nodes of the tree are conceptual.
The sequence of 0s and 1s along the path from the root to a leaf node constitutes
the identity of that leaf. The Identity-Management scheme keeps the tree struc-
ture balanced such that at each moment, all leaves are at one of three bottom
levels of the tree. This balanced tree is used as a balanced And-Or tree, which
was shown in Section 3 to generate a quorum system with optimal properties.

As was mentioned in Section 1.2, a dynamic environment raises two design
issues of integrity and locality. To maintain integrity when the tree structure
changes, all the quorums in use that are no longer legitimate quorums, must be
modified. In the Identity-Management scheme there are two distributed algo-
rithms that change the tree structure, one for joining a processor and one for
processor departure. The algorithms for modifying quorums during join/depart
are simple and are left for a full version of this paper.

To address the issue of locality we show how a processor can send messages
to a random quorum without any knowledge of the tree structure. We use the
fact that for each processor with identity x, level |x| − 2 is guaranteed to be
complete. Details are left for a full version of this paper.

4.2 A Dynamic And-Or Quorum System over the Distance Halving
Network

We now describe an adaptation of the balanced And-Or quorum system of Sec-
tion 3 to a dynamic environment over the distance halving (DH) network of
Naor and Wieder [14]. This implementation in contrast to the one of Section
4.1, strongly couples the quorum system with the dynamic network edges, sav-
ing in communication complexity of algorithms for selecting a quorum.

We use the same embedding of a binary tree over the DH-network, that
we defined in [13]. We briefly repeat the description of the DH-network and
of the binary tree embedding in it. The key idea behind most constructions of
distributed hash tables, is to partition a (continuous) range of keys (denoted I)
among the participating processors in the network. In our case I is the interval
[0, 1). Denote by x a set of n points in I. The point xi serves as the identity of
the ith processor, in a network of n processors. The points of x divide I into n
segments. Define the segment of xi to be s(xi) = [xi, xi+1) (i = 1, . . . , n−1) and
s(xn) = [xn, 1)∪ [0, x1). In the DH-network, each processor ui is associated with
the segment s(xi). If a point y is in s(xi) we say that ui covers y. Notice that
each point y ∈ I is covered by exactly one processor. When data is written to y
it is being stored in the processor that covers y, and remains stored in a single
processor throughout the lifetime of the DH-network.

For a set S ⊂ I and an identities vector −→x , we denote by CP−→x (S) the set of

processors that cover the points in S, i.e., CP−→x (S)
�
=

{
pi| ∃s ∈ S, s ∈ s(xi)

}
. In

case −→x is clear from context we omit it and simply write CP(S).
We recall the construction of the DH-network from [14]. We first define the

DH-graph Gc = (Ec, Vc). The vertex set of Gc is the unit interval I. The edge

482 U. Nadav and M. Naor

set of Gc is defined by the following functions:

�(y)
�
=

y

2
, r(y)

�
=

y + 1
2

,

where y ∈ I, and � and r abbreviates ‘left’ and ‘right’ respectively. The edge set
of Gc is then

Ec
�
= {(y, �(y)), (y, r(y))| y ∈ I}.

We denote by parent(x) the function that returns the parent of a point x ∈ I

in the DH-graph i.e., parent(x) =
{

2x, x < 1
2 ,

1− 2x, x ≥ 1
2 . A pair of processors (ui, uj)

are connected if there exists an edge (y, z) in the DH-graph, such that y ∈ s(xi)
and z ∈ s(xj).

To implement the And-Or system on a DH-network we identify an embed-
ding of a binary tree on the DH-graph. The �(·) and r(·) functions induce an
embedding of a complete binary tree on every point x in I, in a natural way.
The left child of a point x is �(x) and the right child is r(x).

An important parameter of the DH-network studied in [14] is the ratio be-
tween the largest and smallest cells induced by a composition. More formally:

Definition 3 (From [14]). The smoothness of −→x denoted by ρ(x) is defined to
be maxi,j

|xi|
|xj | . If ρ(x) is a constant independent of n we say that −→x is smooth.

The smoothness of a network is maintained by the join/depart algorithms, in
which processors choose their identities. Several methods for achieving smooth-
ness are described in [7,10,12,1,14]. In the following dynamic adaptation of the
And-Or system we assume both the network is kept smooth at all times, with a
constant factor ρ, and that each processor has an approximation of logn (up to
an additive factor). The Identity Management scheme [12] achieves a smoothness
factor ρ = 4. In this scheme a node can also approximate the value of log n up
to an additive constant of ±2.

The Dynamic And-Or Quorum System Based on a Smooth Distance
Halving Network. We first assume that at any moment, each processor has a
local variable l = �log n�, where n is the number of currently active processors
in the network. Similar methods can be used when only an approximation of l
within an additive constant is available.

The set of quorums is defined using an embedding of a binary tree T in
the DH-graph, rooted in an arbitrary fixed point r ∈ I with depth l. A set
S ∈ ANDset(r) is a set of points in I and so are sets in ORset(r). Note that T
has between n and 2n leaves. A quorum set is defined as the set of processors
that cover a quorum (of points in I) in AndOr(T), i.e.,

Q = {S ∪R| S = CP(S′), R = CP(R′), S′ ∈ ANDset(r), R′ ∈ ORset(r)}.

The Dynamic And-Or Quorum System 483

Observation 2. For any identities vector assignment −→x , Q is a quorum system.

When −→x is smooth each processor covers at most a constant number of leaves,
which guarantees Q posses of an O(1√

n
) load:

Theorem 5. Let Q be the dynamic And-Or quorum system as defined above. If
−→x is smooth then the load L(Q) = O(1√

n
).

Quorum Selection Through Gossip and Adaptation to Network Up-
dates. The fact that the edges of the And-Or tree correspond to real commu-
nication lines of the DH-network enables a gossip based protocol which saves
in message complexity. The dynamic And-Or presented in Section 4.1, requires
that a message be sent to each of the processors selected. Let r denote the ex-
pected number of routing hops per message. r is typically logarithmic in the
number of processors [1,14,20,21]. If a message is sent to m processors, the num-
ber of messages actually sent is blown to rm. In the And-Or system based on
the DH-network, messages can percolate through the nodes that cover the tree
in a similar manner to the recursive procedure for choosing a member of the
ANDset collection (see Section 2). In this manner the total number of messages
sent is less than 2

√
n.

To keep a quorum consistent with the changing tree structure, it is necessary
to modify the quorums in use as the network evolves. Each processor p, maintains
a local variable S(p) which is the set of all leaves (points in I), which are members
of a quorum in use, and are covered by p. p updates S(p) whenever one of the
following events occur: First, when l, the local approximation of the height of
the And-Or tree changes. Second, when the segment covered by p shrinks/grows,
as a result of neighbor join/depart.

When l increases, each leaf x in the tree splits into �(x), r(x). When l de-
creases, x becomes parent(x). p updates S(p), by ‘passing’ all members x ∈ S(p)
to either �(x) or r(x) or parent(x) in a manner that resembles the gossip pro-
tocol. In the case where the segment covered by p changes, p either inserts new
leaves into S(p) or deletes leaves in S(p) which are no longer covered by it, and
passes them to the new processors that cover them. Note that each update to
this distributed data structure, can be done by sending a messages via a single
edge in the DH-network.

Analyzing the Availability and Probe Complexity of the Dynamic
And-Or. In the dynamic And-Or environment we say a point x ∈ I is alive if
and only if the processor that covers it is alive. Otherwise it is said to be dead.
A subset of points in I is said to be alive iff all its members are alive. Note that
a live quorum of processors in the dynamic And-Or exists, iff a live quorum (of
points) exists on the embedded And-Or structure.

In the And-Or system the analysis of Fp was kept relatively simple due to
the fact that the failure probabilities of two disjoint subtrees are independent.
In the dynamic case however, though processors fail independently, the failure of
leaves in the tree is not independent. The status of two leaves is dependent only

484 U. Nadav and M. Naor

if they are covered by the same processor. In a smooth network each processor
covers at most a constant number of leaves in the embedded tree, so the event
that a leaf fails depends on at most a constant number of other such events.

Due to this limited dependency, we can use the technique of domination
by product measure which was introduced by Liggett et al.[8], and was used by
Naor and Wieder in [15] in a similar context. The intuition behind this technique
is that the above configuration is very similar to a configuration where each
processor covers exactly one leaf, in which case leaves fail independently of each
other and the availability analysis is as in the classic network.

The following theorem ensures high availability for the dynamic And-Or:

Theorem 6. There exists a constant pc > 0 such that for every p ≤ pc, the
failure probability of the dynamic And-Or quorum system over a smooth DH-
network is Fp = exp(−θ(

√
n)).

We now turn to discuss probe complexity in the dynamic case. We use essen-
tially the same algorithms described in Section 2, but here we first select a set
of leaves and then use the set of processors that cover them. The analysis here is
more complicated. The events that leaves in different subtrees contain live sets
are no longer independent since two points in disjoint trees can be covered by
the same processor.

We need to show that the non-adaptive algorithm applied to the dynamic
case finds a live quorum w.h.p., in order to attain O(

√
n log n) probe complexity.

The proof of Theorem 2 used the fact that for p ≤ 1
4 , an And-Or quorum system

on a subtree of height 2 log log n has a failure probability Fp ≤ 1
n . Theorem 6 for

the dynamic And-Or stated that for p small enough, the same applies.

Theorem 7. There exists a constant pc > 0 s.t., when the failure probability
p ≤ pc, then the set of processors chosen by the non-adaptive algorithm (Section
2), contains a live quorum w.h.p . This set is of size O(

√
n log n).

The adaptive algorithm for the dynamic case also works in the same way as
in the classic case. Again, Theorem 6 can be used to show that the local subtrees
generated in step 2c of Algorithm 1, have an expected constant height. Hence,
on average the algorithm probes θ(

√
n) processors. However, unlike in the classic

case, here there is dependency between the height of different subtrees, so Cher-
noff bound cannot be used to bound the probability of large deviation. Following
the Markov inequality, the probability for ω(

√
n) probes cannot be a constant.

Hence, with probability 1− o(1), the number of probes required is θ(
√

n). How-
ever, we did not show this happens with probability 1− n−α, α > 0. Therefore,
bounding the probe complexity of the adaptive algorithm with a bound lower
than O(

√
n log n) remains an open problem.

4.3 Comparing with Other Dynamic Quorum Constructions

Comparing with other dynamic constructions of quorum systems, the dynamic
And-Or system holds some advantages. Most of these advantages were already

The Dynamic And-Or Quorum System 485

stated and are summarized in Table 1. A major advantage of the dynamic And-
Or lays in the strong coupling between the combinatorial structure of the And-
Or and the overlay network structure. For example, in the Dynamic Paths [15],
whenever a processor joins or departs from the system a local computation of
a Voronoi diagram is required. In the dynamic And-Or, join/depart events only
require the insertion/deletion of a constant number of values to a set.

It was shown in [17] that for every quorum system, the global failure proba-
bility Fp

n→∞→ 1, when p > 1
2 . A ‘critical failure probability’ is the maximum p,

for which the system is available i.e., for which Fp converges to 0 as n goes to
infinity. It was shown in [15] that the critical probability for ‘Dynamic Paths’ is
1
2 . The critical value for the And-Or system is α = 3−√

5
2 < 1

2 . The best failure
probability p for which we have shown availability in the Dynamic And-Or, is
a constant greater than 0, but strictly less than α. The actual critical value re-
mains unknown, but in any case the ‘Dynamic Paths’ achieves a better result in
this criteria.

Table 1. A comparison between the dynamic And-Or, the dynamic Paths and the
dynamic probabilistic quorum system

Dynamic And-Or Dynamic Paths[15] Dynamic PQS[2]

Load θ(1√
n
) θ(1√

n
) θ(

√
log n√

n
)

Failure Probability e−Ω(
√

n) e−Ω(
√

n) e−Ω(n)

Adaptive Algorithmic PC O(
√

n) O(
√

n) O(
√

n log n)

Number of rounds θ(log log n) θ(
√

n) 1

Critical p 0 < pc ≤ 1
4

1
2

-

5 Conclusions and Open Questions

We have shown that the And-Or quorum system has an adaptive algorithm for
finding a live quorum, that operates in log logn rounds and has a O(

√
n) probe

complexity. Is there a quorum system with an optimal load for which there is an
adaptive algorithm that works in a constant number of rounds (and the same
probe complexity)? Recall that Naor and Wieder showed a lower bound on the
probe complexity as a function of the load for non-adaptive algorithms (Theorem
1). This can be viewed as a lower bound on single round algorithms. A more
general goal would be to extend this lower bound for adaptive algorithms with
an arbitrary number of rounds. A milestone would be to prove the optimality
of our algorithm for finding a live quorum in the And-Or system, or to find an
algorithm with better probe complexity.

In Section 4 we showed that most of the good properties of the And-Or quo-
rum system are maintained in the dynamic implementation over the DH-network.
We showed that the algorithmic probe complexity of our adaptive algorithm is
O(
√

n) on expectation and even with probability 1−o(1). However, showing the
probe complexity is O(

√
n) w.h.p. remains open as well.

486 U. Nadav and M. Naor

Acknowledgements

We would like to thank Ilan Gronau for thoroughly reading this paper, and Udi
Wieder and the anonymous referees for their useful comments.

References

1. I.Abraham, B.Awerbuch, Y.Azar, Y.Bartal, D.Malkhi, and E.Pavlov. A generic
scheme for building overlay networks in adversarial scenarios. IPDPS, 2003.

2. I.Abraham ,D.Malkhi. Probabilistic quorums for dynamic systmes. DISC, 2003.
3. R. Bazzi. Planar quorums. Distributed Algorithms, WDAG, 1996.
4. P.Fraigniaud, P.Gauron. An overview of the content-addressable network d2b.

PODC, 2003.
5. Y.Hassin, D.Peleg. Average probe complexity in quorum systems. PODC 2001.
6. M. F. Kaashoek, D. R. Karger. Koorde: A simple degree-optimal distributed hash

table. IPTPS, 2003.
7. D. Karger, M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer

systems. SPAA 2004.
8. T. Liggett, R. Schonmann, and A.Stacey. Domination by product measures. The

Annals of Probability, 25(1) 1997.
9. N.Lynch, D.Malkhi, and D.Ratajczak. Atomic data access in distributed hash

tables. IPTPS, 2002.
10. D.Malkhi, M.Naor, and D.Ratajczak. Viceroy: A scalable and dynamic emulation

of the butterfly. PODC, 2002.
11. D.Malkhi, M.Reiter, and R.Wright. Probabilistic quorum systems. PODC, 1997.
12. G. S. Manku. Balanced binary trees for ID management and load balance in

distributed hash tables. PODC, 2004.
13. U.Nadav, M.Naor. Fault-tolerant storage in a dynamic environment. DISC, 2004.
14. M.Naor, U.Wieder. Novel architectures for p2p applications: the continuous-

discrete approach. SPAA, 2003.
15. M.Naor, U. Wieder. Scalable and dynamic quorum systems. PODC, 2003.
16. M.Naor, A.Wool. The load, capacity, and availability of quorum systems. SIAM

Journal on Computing, 27(2), 1998.
17. D.Peleg, A.Wool. The availability of quorum systems. Inf. Comput., 123(2), 1995.
18. D.Peleg , A.Wool. How to be an efficient snoop, or the probe complexity of quorum

systems. SIAM Journal on Discrete Mathematics, 15(3), 2002.
19. S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker. A scalable content

addressable network. Proc ACM SIGCOMM, 2001.
20. I.Stoica, R.Morris, D.Karger, F.Kaashoek, and H.Balakrishnan. Chord: A scalable

Peer-To-Peer lookup service for internet applications. ACM SIGCOMM Confer-
ence, 2001.

21. B.Y. Zhao and J. Kubiatowicz. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical Report UCB CSD 01-1141, University of
California at Berkeley, 2001.

Byzantine Clients Rendered Harmless

Barbara Liskov1 and Rodrigo Rodrigues2

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge MA, USA
2 INESC-ID / Instituto Superior Técnico, Lisbon, Portugal

1 Introduction

The original work on quorum systems assumed that servers fail benignly, by
crashing or omitting some steps. More recently, researchers have developed tech-
niques that enable quorum systems to provide data availability in the presence of
arbitrary (Byzantine) faults [6]. Earlier work provides correct semantics despite
server (i.e., replica) failures and also handles some of the problems of Byzantine
clients [1,2,4,6, 9].

This paper describes the first protocols to handle all problems caused by
Byzantine clients. Our protocols ensure that bad clients cannot interfere with
good clients. Bad clients cannot prevent good clients from completing reads
and writes, nor can they cause good clients to see inconsistencies. In addition
bad clients that have been removed from operation can leave behind at most
a bounded number of “lurking” writes that could be done on their behalf by a
colluder.

2 BFT-BC Protocol

The initial Byzantine quorum algorithm [6] uses a group of 3f + 1 replicas to
survive f failures. Quorums are of size 2f + 1, which ensures that any two quo-
rums intersect in at least one non-faulty replica. Each replica maintains a copy
of the data object, along with an associated timestamp, and a client signature
that authenticates the data and timestamp.

Writes require two phases. First, the client contacts a quorum to obtain the
highest timestamp produced so far. The client then picks a timestamp higher
than this, signs the new value and timestamp, and proceeds to the second phase
where the new value is stored at a quorum of replicas. A replica allows write
requests only from authorized clients and overwrites what is stored only if the
timestamp in the request is greater than what it already has.

Reads usually require a single phase where the client queries a quorum of
replicas and returns the value with the highest timestamp (provided the signa-
ture is correct). An extension of this protocol [7] requires a second phase that
writes back the highest value read to a quorum (this ensures atomic semantics
for reads).

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 487–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

488 B. Liskov and R. Rodrigues

This protocol is not designed to handle Byzantine-faulty clients, which can
damage the system in several ways: associate different values with the same
timestamp; carry out the protocol partially, e.g., install a modification at just
one replica; choose a very large timestamp and exhaust the timestamp space; or
issue a large number of write requests and hand them off to a colluder who will
run them after the bad client has been removed from the system (the colluder
could be one of the replicas, or a completely separate machine).

To avoid these problems, we must limit what bad clients can do. But we
must also allow good clients to make progress, in spite of bad clients that might
collude with one another and/or with bad replicas.

The reason bad clients can do these bad things is that replicas act indepen-
dently. Replicas could collaborate to carry out client requests, but this would
change the Byzantine quorum approach into a state machine replication ap-
proach [3]. Our goal is to find a solution that preserves the spirit, efficiency, and
simplicity of Byzantine quorums, while avoiding problems caused by bad clients.

We have developed two protocols that accomplish this goal: a protocol that
requires 3 phases for writes, and an optimized protocol that usually requires only
2 phases. In both cases reads are done as above.

Our protocols use the client as a way of informing replicas about what other
replicas are doing. This communication takes the form of “proofs”, collections of
2f + 1 statements signed by different replicas, that vouch for a particular client
action. Clients collect proofs as they carry out steps of the protocol and present
them in later steps to show that what they are doing is permitted.

In the first step of our 3-phase write protocol, a client reads the current times-
tamp from a quorum of replicas. Each reply now includes a “prepare proof”, which
vouches for the legality of what is being returned. The client then selects the reply
with the largest timestamp, and produces a timestamp one larger than this.

In step 2, the client sends prepare requests to all replicas; these requests
include the new timestamp and a hash of the value it wants to write, the prepare
proof it obtained in step 1, plus a “write proof” that shows it completed its
previous write (or null if this is its first write). Replicas record prepare requests
and allow only one prepare per client for a write that hasn’t happened yet; a
replica uses the write proof to ensure it is up to date with respect to this client.
In addition the replica checks that the timestamp is one greater than that in the
prepare proof. If the replica accepts the request it sends a prepare certificate for
the requested timestamp and hash.

The client waits for a quorum of certificates: thus it collects a prepare proof.
In step 3 it sends this proof together with the value it wants to write to all
replicas. Replicas carry out the request if the proof is valid and the new value
matches the hash in the proof. In this case, the replica returns a write certificate
containing the new timestamp. The client collects a quorum of these certificates
and thus obtains the write proof it will use the next time it writes.

This protocol ensures that a bad client must write the same timestamp and
value at all replicas. In addition it prevents a bad client from preparing a number
of writes in advance, which could be carried out by a colluder after it has left the

Byzantine Clients Rendered Harmless 489

system. A further point is that good clients cannot be obstructed by bad ones since
they can use the largest timestamp they get in step 1 for either a read or write.

This protocol isn’t as efficient as the baseByzantine quorumprotocol because of
the prepare step. In a separate technical report[5] we present an optimized protocol
that merges phases 1 and 2 and does writes in only two phases most of the time.

3 Discussion

Our protocols are more efficient than those proposed previously. Furthermore they
enforce stronger constraints on the behavior of bad clients: we handle all problems
handled by previous protocols plus we limit the number of lurking writes that a bad
client can leave behind after it has left the system.

In addition we provide stronger safety and liveness guarantees than previous
protocols: in particular read operations cannot return null values, and reads termi-
nate in a constant number of rounds (at most two), independently of the behavior
of concurrent writers.

Our use of prepare proofs is what enables us to ensure liveness, since this allows
a client to complete a read using information it received from just one replica. No
previous protocol for Byzantine clients uses this technique. As a result most proto-
cols can only ensure that a readwill return the result of the latestwrite in a constant
number of rounds provided there are no concurrent writes.

References

[1] R. Bazzi and Y. Ding. Non-skipping timestamps for byzantine data storage systems.
In Distributed Computing, 18th International Conference, DISC 2004, pages 405–419,
Oct. 2004.

[2] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine distributed
storage. Technical Report RZ 3575, IBM Research, Feb. 2005.

[3] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proc. 3rd OSDI,
Feb. 1999.

[4] G. Goodson, J.Wylie,G.Ganger, andM.Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Proc. of the International Conference on Dependable Systems and
Networks, June 2004.

[5] B. Liskov and R. Rodrigues. Byzantine clients rendered harmless. Technical Report
MIT-LCS-TR-994 and INESC-ID TR-10-2005, July 2005.

[6] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Journal of Distributed Com-
puting, 11(4):203–213, 1998.

[7] D. Malkhi and M. Reiter. Secure and scalable replication in phalanx. In Proc. 17th
SRDS, Oct. 1998.

[8] D. Malkhi, M. Reiter, and N. Lynch. A Correctness Condition for Memory Shared
by Byzantine Processes. Unpublished manuscript, Sept. 1998.

[9] J. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. Technical Report
TR-02-38, University of Texas at Austin, Department of Computer Sciences, Aug.
2002.

Reliably Executing Tasks in the Presence
of Malicious Processors

Antonio Fernández1, Chryssis Georgiou2, Luis López1, and Agustı́n Santos1

1 LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Spain
2 Dept. of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

Problem and Motivation. The demand for processing large amounts of data has in-
creased over the last decade. As traditional one-processor machines have limited com-
putational power, distributed systems consisting of multitude of cooperating processing
units are used instead. An example of such a massive distributed cooperative compu-
tation is the SETI@Home project [5]. As the search for extraterrestrial intelligence
involves the analysis of gigabytes of raw data that a fixed-size collection of machines
would not be able to effectively carry out, the data are distributed to millions of volun-
tary machines around the world. A machine acts as a server and sends data (aka tasks)
to these client computers, which they process and report back the result of the task
computation. This gives rise to a crucial problem: how can we prevent malicious clients
from damaging the outcome of the overall computation?

In this work we abstract this problem in the form of a distributed system consisting
of a master fail-free processor and a collection of processors (workers) that can execute
tasks; worker processors might act maliciously. Since each task returns a value, we want
the master to accept only correct values with high probability. Furthermore, we assume
that the service provided by the workers is not free (as opposed to the SETI@Home
project). For each task that a worker executes, the master computer is charged with a
work-unit. Therefore, considering a single task assigned to several workers, our goal is
to have the master computer to accept the correct value of the task with high probabil-
ity, with the smallest possible amount of work. We explore two ways of bounding the
number of faulty processors and evaluate an algorithm that the master can run. Our pre-
liminary analytical results show that it is possible to obtain high probability of correct
acceptance with reasonable amount of work.

Prior/Related work. The problem we consider in this work can be viewed as a special
case of the voting problem [1] where a deciding agent decides on a value based on
values generated and sent by processing nodes; the goal is for the agent to reach the
correct decision with high probability. The voting problem has been considered in the
presence of malicious voters (e.g., [6]), and optimal strategies have been identified that
maximize the probability of correct decision. However, to the best of our knowledge, no
prior work involving malicious voters consider minimizing the amount of work while
restricting the probability of incorrect decisions of the voting procedure.

Do-All is the abstract problem of having a collection of processors to cooperatively
perform a collection of independent tasks in the presence of failures [2]. This problem
has been widely studied the last two decades in a variety of computation and failure
models. Recently, this problem was studied under Byzantine processors [4]. Although

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 490–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reliably Executing Tasks in the Presence of Malicious Processors 491

the idea of executing tasks in the presence of malicious nodes is the same, the model
and the problem we consider in this work are different.

Model and Algorithm. We assume there is a master processor M which has a task that
has to be executed. This task returns a value, which M wants to reliably obtain. M is
not capable of executing the task itself, so a set P of n (powerful) processors (called
workers), P = {1, ..., n}, is made available to M . We assume that the workers might
fail, and their faulty behavior is not restricted (e.g., send incorrect value, do not send
any value, etc). We want to minimize the (expected) number of workers that have to
run the task in order to obtain a failure probability of no more than ρ. The workers
are continuously waiting for M to give them a task to execute, they execute a task if
they are assigned one, and return the computed value. However, processors can be slow,
and messages can get lost or arrive late. In order to introduce these assumptions in the
model, we consider that there is a known probability d of M receiving the reply from
a given worker on time. We also consider two types of known bounds on the number
of faulty processors. We either assume that (i) there is a fixed bound f < n/2 on the
maximum number of processors that can fail, or (ii) there is a probability p < 1/2 of
any processor to be faulty.

We explore the following algorithm. First M chooses uniformly at random a subset
S from the set P . We consider two ways to do so: either M defines a probability q and
chooses each worker with that probability or it fixes a value s and chooses exactly s
workers. Then, M sends the task to the processors in S and waits T time for the replies
(T is a value set by M based on the value of d). M has a threshold τ and accepts
as correct any value v received from at least τ workers within time T . If there is no
such value, the algorithm has failed (it is repeated). Note that the (expected) work of an
execution of this algorithm is exactly the (expected) size of the set S.

Using Chernoff bounds we show that our algorithm guarantees a failure probabil-
ity of no more than ρ for: (a) q = 3(ln 2−ln ρ)

(1−2p)2npd and τ = 2np(1 − p)qd when we use

parameters p and q, with expected work E[|S|] = nq, (b) s = � 3(ln 2−ln ρ)
(1−2p)2pd � and

τ = 2sp(1 − p)d when we use parameters p and s, with work |S| = s, (c) q =
3(ln 2−ln ρ)n2

(n−2f)2fd and τ = 2f(n−f)qd
n when we use parameters f and q, with expected work

E[|S|] = nq, and (d) s = � 3(ln 2−ln ρ)n3

(n−2f)2fd � and τ = 2f(n−f)sd
n2 when we use param-

eters f and s, with work |S| = s. (For p < 1/6 the values for p = 1/6 should be
used. For f < n/6 the values for f = n/6 should be used.) More details can be found
in [3].

References

1. D. Blough and G. Sullivan. A comparison for voting strategies for fault-tolerant distributed
systems. In SRDS’90, pp.136–145, 1990.

2. C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of faults.
Siam J. on Computing, 27(5):1457–1491, 1998.

3. A. Fernández, C. Georgiou, L. López, and A. Santos. Reliably executing tasks in the
presence of malicious processors. Technical Report, 2005. (http://gsyc.info/
publicaciones/tr.)

492 A. Fernández et al.

4. A. Fernández, C. Georgiou, A. Russell, and A. Shvartsman. The Do-All problem with Byzan-
tine processor failures. Theoretical Computer Science, 333(3):433–454, 2005.

5. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@Home:Massively
distributed computing for SETI. Computing in Science and Engineering, 3(1):78–83, 2001.

6. M. Paquette and A. Pelc. Optimal decision strategies in Byzantine environments. In
SIROCCO’04, pp.245–254, 2004.

Obstruction-Free Step Complexity:
Lock-Free DCAS as an Example

Faith Ellen Fich2,�, Victor Luchangco1, Mark Moir1, and Nir Shavit1

1 Sun Microsystems Laboratories
2 University of Toronto

We propose obstruction-free step complexity, a new complexity measure for non-
blocking algorithms. We believe that this measure provides a more pragmatic
quantification of nonblocking algorithms than previous measures, providing bet-
ter guidance for designers of practical nonblocking algorithms.

In our opinion, the main shortcoming of existing complexity measures for non-
blocking algorithms is that they are targeted towardsworst-casebehavior in worst-
case scenarios, and say little about behavior in more common cases. This is true for
the sensitivity measure of Attiya and Dagan [1], and the d-local step complexity
of Afek et al. [2]. These measures are directed at evaluating the behavior of algo-
rithms under contention, i.e., when concurrent operations actively interfere with
each other’s progress. However, in practice, a well-designed system manages con-
tention so that it does not impact performance too greatly. Thus, these previous
measures do not evaluate the behaviour that is likely to be observed.

For any nonblocking algorithm, be it wait-free, lock-free or obstruction-free,
the obstruction-free step complexity of the algorithm is the maximum over all
reachable states of the number of steps required for any operation to complete
if the process executing the operation runs alone from that state.1

Obstruction-free step complexity is targeted towards a more pragmatic eval-
uation of the performance of nonblocking algorithms in real-world applications,
and is based on the assumption, evidenced by numerous technical papers, that
performance in uncontended cases is more important in many practical settings
than worst-case performance under contention. Moreover, by far the most com-
mon approach to dealing with contention is backoff, in which contended cases
are essentially turned into uncontended ones by delaying contending operations;
other contention management approaches behave similarly. This suggests that
even for applications and systems in which contention is significant, it is im-
portant to design algorithms that perform well while there is no contention. In
particular, if operations complete quickly as soon as contention subsides, then
contention management techniques such as backoff will be more effective, and

� The research of Faith Ellen Fich was financially supported by the Natural Sciences
and Engineering Research Council of Canada and the Scalable Synchronization Re-
search Group of Sun Microsystems, Inc.

1 Algorithms that can take an unbounded number of steps even in the absence of
contention have unbounded obstruction-free step complexity.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 493–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

494 F.E. Fich et al.

will produce progress more quickly. This is the motivation behind our proposed
complexity measure.

Because the obstruction-free step complexity of an algorithm bounds the
number of steps that a process takes when running alone from an arbitrary
reachable state, even one in which other processes may be in the midst of exe-
cuting the algorithm, it evaluates how amenable an algorithm is to contention
management strategies such as backoff.

It is important to distinguish obstruction-free step complexity from an al-
ternative measure, which we call completely contention-free step complexity: the
maximum number of steps any process takes if it runs alone from a “quiescent”
state (i.e., a state in which no process is in the midst of executing the algo-
rithm). This measure provides no insight into how amenable the algorithm is
to contention management. In particular, a lock-based algorithm may have very
low completely contention-free complexity, but a process that stops while hold-
ing a lock can prevent all the other processes from making progress indefinitely,
and no contention management can help in this case.

Taking an approach similar to that of [1,2], we use obstruction-free step
complexity to evaluate nonblocking implementations of multilocation synchro-
nization operations from unary ones. One difficulty in designing such algorithms
is deciding what an operation should do when it discovers that another opera-
tion is already accessing a location it wants to access. One option is to “abort”
the competing operation, causing the aborted operation to retry; another is to
“help” that operation complete. Aborting operations excessively can compro-
mise lock-freedom, as multiple operations can repeatedly abort each other. On
the other hand, if an operation always helps the competing operation, long chains
can form such that one operation must recursively help all the operations in the
chain, even if none of them are actively interfering.

In particular, we consider implementations of double-compare-and-swap from
compare-and-swap, and present the first algorithm with constant obstruction-
free step complexity. All previous lock-free algorithms use the recursive-helping
technique and therefore do not have constant obstruction-free step complexity.
To achieve constant obstruction-free step complexity, our algorithm introduces
a novel approach, which carefully helps only enough to ensure lock-freedom,
while avoiding long helping chains. Note that our result does not contradict
the separation result of [1], which considered the worst-case step complexity of
wait-free algorithms over all executions: our algorithm is only lock-free, and the
obstruction-free step complexity measure focuses only on the uncontended case.

References

1. Attiya, H., Dagan, E.: Improved implementations of binary universal operations. J.
ACM 48 (2001) 1013–1037

2. Afek, Y., Merritt, M., Taubenfeld, G., Touitou, D.: Disentangling multi-object
oeprations. In: Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing. (1997) 111–120

Communication-Efficient Implementation
of Failure Detector Classes �Q and �P �

Mikel Larrea and Alberto Lafuente

The University of the Basque Country,
20018 San Sebastián, Spain

{mikel.larrea, alberto}@si.ehu.es

1 Introduction

Several algorithms implementing failure detector classes �Q and �P have been
proposed in the literature. The algorithm proposed by Chandra and Toueg in [2]
uses a heartbeat mechanism and all-to-all communication to detect faulty pro-
cesses. The algorithms proposed by Aguilera et al. in [1] and by Larrea et al.
in [4] use heartbeats too, and rely on a leader-based approach. On the other hand,
the algorithm proposed by Larrea et al. in [3] uses a polling —or query/reply—
mechanism on a ring arrangement of processes. The leader-based and the ring-
based algorithms are more efficient than the all-to-all algorithm regarding the
number of messages exchanged (linear vs. quadratic). Compared to polling, the
heartbeat mechanism reduces the number of messages to the half. Therefore, a
heartbeat and ring-based algorithm should outperform the former ones.

We consider a finite set Π of n processes, Π = {p1, p2, . . . , pn}. Every pair
of processes is connected by a unidirectional, reliable and FIFO communication
link. Processes can fail by crashing, without recovery. We consider that processes
are arranged in a logical ring. The functions pred(p) and succ(p) respectively
denote the predecessor and the successor of a process p in the ring. Concerning
timing assumptions, we consider the model of partial synchrony proposed in [2].

2 The Algorithm

Fig. 1 presents the algorithm, which is based on the periodical sending of heart-
beat messages among processes in the ring. As a consequence, its cost in terms of
the number of messages periodically exchanged is linear. Regarding the number
of links that carry messages, the proposed algorithm is communication-efficient,
i.e., it eventually uses only n links to carry messages. Note that this number is
optimal for implementing either �Q or �P in a failure-free scenario. Intuitively,
every process must periodically inform that it is still alive by sending a message,
which gives us the minimum number of n links.

� Research partially supported by the Spanish Research Council (MCyT), under grants
TIC2001-1586-C03-01 and TIN2004-07474-C02-02, the Basque Government, under
grant S-PE04UN19, and the Gipuzkoa Provincial Council, under grant OF-846/2004.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 495–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

496 M. Larrea and A. Lafuente

Every process p executes the following:

predp ← pred(p) {p’s estimation of its nearest correct predecessor in the ring}
succp ← succ(p) {p’s estimation of its nearest correct successor in the ring}
Lp ← ∅ {Lp provides the properties of �Q}
Gp ← ∅ {Gp provides the properties of �P}
for all q ∈ Π: {Δp(q) is the duration of p’s time-out interval for q}

Δp(q) ← default time-out interval

cobegin

|| Task 1: repeat periodically
send (p-is-alive, Gp) to succp

|| Task 2: repeat periodically
if p did not receive (predp-is-alive, −) from predp

during the last Δp(predp) ticks of p’s clock then
Lp ← Lp ∪ {predp} {p suspects predp has crashed}
Gp ← Gp ∪ {predp}
predp ← pred(predp)
send (START sending heartbeats, p) to predp

|| Task 3: when receive (q-is-alive, Gq) for some q
if q ∈ Lp then {p was erroneously suspecting q}

Lp ← Lp − {succ(predp), . . . , q}
Δp(q) ← Δp(q) + 1
send (START sending heartbeats, q) to predp

predp ← q
if q = predp then

Gp ← (Gq − {p}) ∪ Lp

succp ← p’s nearest process following the ring /∈ Gp

|| Task 4: when receive (START sending heartbeats, new succ)
succp ← new succ

|| Task 5: repeat periodically
if succp �= succ(p) then

send (p-is-alive, Gp) to succ(p), . . . , pred(succp)

coend

Fig. 1. A heartbeat-based ring implementation of �Q and �P

References

1. M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable leader elec-
tion. In Proceedings of the 15th International Symposium on DIstributed Computing
(DISC’2001), pages 108–122, Lisbon, Portugal, October 2001. LNCS 2180, Springer-
Verlag.

2. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

3. M. Larrea, S. Arévalo, and A. Fernández. Efficient algorithms to implement un-
reliable failure detectors in partially synchronous systems. In Proceedings of the
13th International Symposium on DIstributed Computing (DISC’99), pages 34–48,
Bratislava, September 1999. LNCS 1693, Springer-Verlag.

4. M. Larrea, A. Fernández, and S. Arévalo. Eventually consistent failure detectors.
Journal of Parallel and Distributed Computing, 65(3):361–373, March 2005.

Optimal Resilience for Erasure-Coded

Byzantine Distributed Storage

Christian Cachin1 and Stefano Tessaro2,�

1 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
2 ETH Zurich, Department of Computer Science, CH-8092 Zürich, Switzerland

Summary. We consider distributed storage systems implemented by a set of n
servers and accessed by a possibly unbounded set of clients, for reading and
writing data. Servers and clients communicate by exchanging messages over a
fully connected asynchronous network. This model is suitable for heterogeneous
and wide-area networks, and, furthermore, avoids timing assumptions, which
may otherwise become a vulnerability of the system. We consider Byzantine
failures and assume that up to t servers and any number of clients may deviate
from the protocol in an arbitrary way.

The problem of implementing a storage system can be formalized as the
problem of simulating a multiple-writer multiple-reader read/write register by
the servers. Atomicity is the strongest consistency condition for registers, requir-
ing every execution to appear sequential, and it is the one considered here.

Previous fault-tolerant simulations of registers in a message-passing environ-
ment are based on replication of data (see e.g. [5,1]). An approach that wastes
less resources is based on information dispersal [6] and erasure coding. Here, the
data is split into blocks such that each server stores exactly one block, and the
information stored at the honest servers is enough to reconstruct the original
data. Keeping the dispersed blocks consistent in the presence of failures is not
trivial, however. However, most prior solutions for information dispersal in the
Byzantine-failure model do not support concurrent access to the stored data.
Only the recent protocol of Goodson et al. [4] addresses this question and en-
sures atomic semantics, but requires t < n

4 and still allows malicious clients to
write inconsistent data to the servers; a potentially expensive repair protocol is
used to recover from such “poisonous writes.” Cachin and Tessaro [2] introduce
verifiable information dispersal where the servers run a protocol to prevent that
inconsistent information is stored by malicious clients. Verifiable information
dispersal eliminates the need for a recovery operation and requires only t < n

3 ,
but is limited to a single writer and does not allow for concurrent updates.

The challenge with using erasure coding in the concurrent setting is that
no server stores the entire data, and in order to read correctly, a client must
receive data blocks belonging to the same data item from multiple servers. A
possible way for keeping track of multiple concurrently written versions of the
data is provided by (logical) timestamps: Whenever a new data item is written, it
receives a higher timestamp. Malicious parties, however, may be able to mount

� Work done at IBM Research, Zurich Research Laboratory.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 497–498, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

498 C. Cachin and S. Tessaro

a denial-of-service attack by making timestamps arbitrarily large. Bazzi and
Ding [1] considered this problem and solved it by introducing so-called non-
skipping timestamps, where the value of every timestamp is bounded by the
number of writes that have been executed previously in the system and where
no timestamp value can be “skipped.” Their solution supports the Byzantine
failure of t < n

4 servers.

Results. We provide a new fault-tolerant simulation of an atomic register for data
that is not self-verifying [5]. In particular, this is the first protocol for storage-
efficient distributed simulation of a multiple-writer multiple-reader read/write
register that provides atomic semantics and optimal resilience, i.e., tolerates the
failure of up to one third of the servers and of an arbitrary number of clients.
It follows the “listeners’ pattern” proposed by Martin et al. [5], but uses asyn-
chronous verifiable information dispersal [2] and asynchronous reliable broadcast
for tolerating Byzantine clients. Our protocol improves the storage and com-
munication efficiencies of Martin et al.’s protocol for the simulation of atomic
registers [5] and improves the resilience and the storage complexity of Goodson
et al.’s solution for erasure-encoded storage [4], and avoids potentially expensive
recovery operations. Like some of the previous work, our protocol uses interac-
tion among the servers. Additionally, we provide an improved implementation of
non-skipping timestamps based on threshold signatures [7] that withstands the
Byzantine failure of clients and of up to one third of the servers. The key man-
agement is much easier than in previous solutions: We require only the public
key of the service to be stored at the clients, but no client keys at the servers.
The details of our protocol can be found in the full version [3].

References

1. R. Bazzi and Y. Ding, “Non-skipping timestamps for Byzantine data storage sys-
tems,” in Proc. 18th International Conference on Distributed Computing (DISC
2004) (R. Guerraoui, ed.), vol. 3274 of Lecture Notes in Computer Science, pp. 405–
419, 2004.

2. C. Cachin and S. Tessaro, “Asynchronous verifiable information dispersal,” in Proc.
24th Symp. on Reliable Distributed Systems (SRDS 2005), Oct. 2005.

3. C. Cachin and S. Tessaro, “Optimal resilience for erasure-coded Byzantine dis-
tributed storage,” Research Report RZ 3575, IBM Research, Feb. 2005.

4. G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient Byzantine-
tolerant erasure-coded storage,” in Proc. International Conference on Dependable
Systems and Networks (DSN-2004), pp. 135–144, 2004.

5. J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal Byzantine storage,” in Proc. 16th
International Conference on Distributed Computing (DISC 2002) (D. Malkhi, ed.),
vol. 2508 of Lecture Notes in Computer Science, pp. 311–325, Springer, 2002.

6. M. O. Rabin, “Efficient dispersal of information for security, load balancing, and
fault tolerance,” Journal of the ACM, vol. 36, no. 2, pp. 335–348, 1989.

7. V. Shoup, “Practical threshold signatures,” in Advances in Cryptology: EURO-
CRYPT 2000 (B. Preneel, ed.), vol. 1087 of Lecture Notes in Computer Science,
pp. 207–220, Springer, 2000.

Agreement Among Unacquainted

Byzantine Generals�

Michael Okun

School of Computer Science, The Hebrew University of Jerusalem
mush@cs.huji.ac.il

Background. The Byzantine Agreement (BA) problem introduced by Pease,
Shostak and Lamport in [1] is one of the central problems in distributed com-
puting. It was extensively studied under various timing, topology, authentica-
tion and failure assumptions. In previous works it was assumed that the network
topology is known to the processors in advance, i.e., every processor has an a
priori knowledge of the true unique identifier of the processor to which it is
connected by each of its communication channels (see Fig. 1a).

2 C

3 B

1 D
link ID

link ID
1 C

2 B

3 A

link ID
1 A

2 D

3 C

2
3

1
3

3
1

2 3

22

1
1

C

BA

D

2
3

1
3

3
1

2 3

22

1
12

3

1
3

3
1

2 3

22

1
1

C

BA

Dlink ID
1 B

2 A

3 D

(a) (b) (c) (d)

Fig. 1. A system with 4 processors: (a) the standard model, (b) without topology
information, (c) anonymous model, (d) anonymous model without port awareness

This work deals with the BA problem when this assumption is relaxed. First,
we consider the case in which each processor has a unique identifier, but the pro-
cessors start without knowing the identifiers of the processors or the identifiers
of the links between the processors (see Fig. 1b). In this case there are several
reasonable models, all of which assume that each message carries an id of the
sender. The models vary according to the ways in which a faulty processor may
corrupt the id field in its messages. Specifically, we consider the following models:

(I1) A message sent by any processor always includes its unique true id.
In this case a faulty processor can prevent a correct processor p from directly
learning about its id iff it sends no messages to p throughout the whole BA
protocol.

(I2) A faulty processor may send messages with different ids, not necessarily
its own, however it cannot use an id belonging to a correct processor. This implies
that “identity theft” is not allowed in this model.
� This research was supported by Israeli Council for Higher Education and by Sally

Berg foundation.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 499–500, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

500 M. Okun

(I3) A faulty processor may include any id in its messages, even that of
correct processors, i.e., it is able to “fake” messages of correct processors.

In addition, we consider the case in which there are no identifiers at all
(anonymous processors). Two types of anonymous networks are examined:

(A1) The processors are port aware: each processor has an internal labeling
of its communication channels, which allows it to distinguish between messages
arriving via different channels (see Fig. 1c).

(A2) The processors are port unaware: each processor receives all its messages
through a single mailbox, and cannot associate a message with the link through
which it was received (see Fig. 1d).

We note that the above five models form a strict hierarchy, in the sense that
each model is the result of further relaxation of its predecessor.

Results. The BA problem has no deterministic solution in the A2 model even in
the presence of a single faulty processor. This can be shown by a simple valency
argument. On the other hand, Ben-Or’s randomized algorithm can be used to
achieve BA with probability 1 (whenever the number of faulty processors, f , is
less than 1/3 of the total number of processors, n). These characteristics of A2

are similar to the asynchronous BA case.
For A1 we found an efficient BA algorithm that runs in at most 6f +1 rounds,

for n > 3f [2]. It is based on the ideas of the Srikanth-Toueg (and similar) BA
algorithms, though some non-trivial adaptations were required.

Finding the exact number of rounds required for achieving BA in the various
models seems to be a much harder problem. The difficulty is that the Exponential
Information Gathering algorithms (which are the only known algorithms for the
standard BA that work in the optimal number of rounds), if at all, can be used
only for I1.

In the I2 model BA can be achieved in f + 1 rounds. The proof of this
(tight) upper bound is non-constructive, and is based on several new techniques
[3]. Further model relaxations increase the number of rounds: in I3, even for
f = 1, a relatively simple chain-argument shows that 3 rounds are required.
However, it is still not clear if the additional round is also necessary for higher
values of f .

Finding the exact number of rounds required for BA in the A1 model, or
even proving a sufficiently tight upper bound is also an open problem.

References

[1] M. Pease, R. Shostak, L. Lamport, Reaching Agreement in the Presence of Faults,
J. ACM 27(2) (1980) 228-234.

[2] M. Okun, A. Barak, On Anonymous Byzantine Agreement, Leibniz Center TR
2004-2, School of Computer Science, The Hebrew University, 2004, submitted for
publication.

[3] M. Okun, On the Round Complexity of Byzantine Agreement Without Initial Set-
Up, 2005, submitted for publication.

Subscription Propagation and Content-Based

Routing with Delivery Guarantees

Yuanyuan Zhao, Sumeer Bhola, and Daniel Sturman

IBM T.J.Watson Research Center
{yuanyuan, sbhola, sturman}@us.ibm.com

Abstract. Subscription propagation enables efficient content-based
routing in publish/subscribe systems and is a challenging problem when
it is required to support reliable delivery in networks with redundant
routes. We have designed a generic model and a highly-asynchronous
algorithm accomplishing these goals. Existing algorithms can be inter-
preted as different encodings and optimizations of the generic algorithm
and hence their correctness can be derived from the generic algorithm.

1 Introduction and Related Works

A content-based publish/subscribe system consists of publishers that generate
messages and subscribers that register interest in all future messages matching
a predicate. The system, implemented as a network of routing brokers, is re-
sponsible for routing published messages to interested subscribers. Information
providers and consumers are decoupled, since publishers need not be aware of
which subscribers receive their messages, and subscribers need not be aware of
the sources of the messages they receive.

Subscription propagation is a mechanism of propagating subscribers’ interest
throughout the broker network. It allows brokers to filter out and withhold from
sending messages to parts of the network where there are no interested sub-
scribers. This functionality is hence very important for efficiency and scalability
of content-based pub/sub systems. However, the task of designing a subscrip-
tion propagation algorithm is greatly challenged by several factors, especially: 1)
clients’ requirement of strong service guarantees such as reliable in-order, gapless
delivery; 2) the existence of multiple routing paths between publishers and sub-
scribers; 3) communication asynchrony, especially asynchrony among multiple
redundant paths; 4) failures.

As a result, most previous work on subscription propagation [1,2,3] did not
provide a solution that guarantees the correctness of content-based routing and
hence is not capable of supporting reliable delivery in the presence of failures
and multiple paths. We think this situation is due to lack of understanding of
the fundamentals of the subscription propagation problem. There is no coherent
theory of how subscription propagation algorithms should work in general. As a
result, designing subscription propagation algorithms typically becomes isolated
activities each dealing with different situations.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 501–502, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

502 Y. Zhao , S. Bhola, and D. Sturman

2 Our Contributions

We have studied the structure of the subscription propagation problem and its in-
teraction with content-based routing, reliable delivery and redundant routes and
defined a general model for subscription propagation and content-based routing.
We present the model in the context of a redundant routing tree where each tree
node can contain multiple brokers and each edge can contain multiple broker-
broker links. The model utilizes constructs that are inherently asynchronous and
fault tolerant. For example, it uses subscription and conjunction sets where sets
operations can inherently tolerate message duplication and re-ordering. Under
this model, we define the correctness criteria of subscription propagation and
content-based routing and a set of sufficient conditions for supporting reliable
delivery. These sufficient conditions, such as eventual montonicity, allow design-
ing of highly-asynchronous algorithms.

Using the formal model, we construct a generic asynchronous subscription
propagation and content-based routing algorithm. The algorithm supports reli-
able delivery in the presence of multiple routing paths, broker and link failures,
and communication asynchrony without requiring expensive distributed agree-
ment between redundant paths. It provides high network availability and effi-
ciency by allowing data message routing to choose any of the redundant paths.
The generic algorithm is further refined to utilize subscription aggregation.

Many existing algorithms can be interpreted as specializations of the generic
algorithm under different circumstances. For instance, algorithms that assume
FIFO links and single routing paths can optimize the size of subscription state
maintained at a broker. For the algorithms described in [5], the virtual time
vectors can be viewed as an optimization that reduces space consumption but
restricts when subscription changes can be applied. The correctness attribute of
the generic algorithm applies to these algorithms.

A detailed description of this work is available in [4].

References

1. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3):332383,
August 2001.

2. G. Cugola, E. D. Nitto, and A. Fuggetta. The jedi event-based infrastructure and
its application to the development of the opss wfms. IEEE Transactions on Software
Engineering, 27(9):827850, September 2001.

3. P. Triantafillou and A. Economides. Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS04), 2004.

4. Y. Zhao, S. Bhola, and D. Sturman. A general algorithmic model for subscription
propagation and content-based routing with delivery guarantees. Technical report,
RC23669, IBM Research, 2005.

5. Y. Zhao, D. Sturman, and S. Bhola. Subscription propogation in highly-available
publish/subscribe middleware. In ACM/IFIP/USENIX 5th International Middle-
ware Conference (Middleware 2004).

Asynchronous Verifiable Information Dispersal

Christian Cachin1 and Stefano Tessaro2,�

1 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
2 ETH Zurich, Department of Computer Science, CH-8092 Zürich, Switzerland

Summary. We consider the distribution of data by a client among a set of
n storage servers, of which up to t might be faulty exhibiting arbitrary, i.e.,
Byzantine, behavior. The goal is to ensure that clients can always recover the
stored data correctly, independently from the behavior of faulty servers or other,
faulty clients. An inefficient solution is based on replication such that every server
keeps a copy of the data. The classic alternative is information dispersal (IDA):
using an erasure code, the data is split into blocks such that each server holds
exactly one block and only a subset of the blocks is needed in order to reconstruct
the data.

A protocol for information dispersal based on IDA tolerating Byzantine
servers has been proposed by Garay et al. [4]. It relies on synchronous networks,
which are adequate for tightly coupled clusters but unrealistic for geographically
distributed or heterogeneous systems. An asynchronous system model is more
appropriate for such settings.

In this paper, we introduce the notion of verifiability for information dis-
persal in asynchronous networks with a computationally bounded adversary.
Intuitively, verifiability means that whenever the honest servers accept to store
some data, then the data is also consistent and no two distinct honest clients can
reconstruct different data. This notion of verifiability originates in the related
context of secret sharing [3,1].

We propose a new scheme for asynchronous verifiable information dispersal
that is also storage- and communication-efficient and achieves optimal resilience
t < n

3 . The scheme, called AVID, integrates an asynchronous reliable broadcast
protocol with erasure coding and achieves communication complexity O(n|F |)
bits for storing a file F , which is an order of magnitude more efficient than what
results from the previously known approach, which needs O(n2|F |) bits. The
storage blow-up of the scheme is asymptotically optimal.

Several optimizations are presented for lowering the storage requirements,
including one that uses error-correcting codes, called AVID-ECC, and one using
reliable broadcast, called AVID-RBC. One of the optimized schemes leads directly
to a communication-efficient protocol for asynchronous reliable broadcast with
Byzantine faults, which communicates only O(n|m|) bits instead of O(n2|m|) for
broadcasting a large message m. We also consider how to provide confidentiality
for the stored data such that it can only be read by authorized users. All details
can be found in the full version [2].

� Work done at IBM Research, Zurich Research Laboratory.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 503–504, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

504 C. Cachin and S. Tessaro

Comparison. Garay et al. [4] propose a synchronous information dispersal
scheme without Byzantine clients. It is based on a gateway, through which
clients access the servers. The gateway broadcasts the file to all servers and
every server applies an information dispersal algorithm to compute its block. An
inefficient asynchronous dispersal protocol results from replacing the gateway
by a Byzantine-fault-tolerant reliable broadcast protocol. The resulting scheme,
which we call asynchronous GGJR, satisfies our verifiability property, but has
communication blow-up Θ(n2).

An asynchronous solution for erasure-coded storage tolerating also Byzantine
client failures has recently been proposed by Goodson et al. [5]. Here, inconsis-
tently written data can only be detected at read-time; the content of the storage
system is then rolled back to restore the data to the last correctly written data.
The major drawback of this approach is that retrieving data can be very ineffi-
cient in the case of several failed write operations, and that consistency depends
on correct clients. The protocol requires t < n

4 .
The following table summarizes the performance of the schemes. Our main

scheme achieves better storage blow-up and tolerates more corrupted servers
than the protocol of Goodson et al. [5], which has a better (i.e., constant) com-
munication blow-up, but does not provide verifiability. Obtaining verifiability
is what seems to cause an increase by a factor of Θ(n) in the communication
complexity.

Scheme Model Storage Blow-up Comm. Blow-up

GWGR [5] t < n
4
, no verifiability n

n−3t
+ o(1) O(1)

asynchronous GGJR t < n
3
, verifiability n

n−t
+ o(1) Θ(n2)

AVID (this paper) t < n
3
, verifiability n

n−2t
+ o(1) O(n)

AVID-RBC (this paper) t < n
3
, verifiability n

n−t
+ o(1) O(n)

AVID-ECC (this paper) t < n
4
, verifiability n

n−3t
O(n)

References

1. C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous verifiable
secret sharing and proactive cryptosystems,” in Proc. 9th ACM Conference on Com-
puter and Communications Security (CCS), pp. 88–97, 2002.

2. C. Cachin and S. Tessaro, “Asynchronous verifiable information dispersal,” in Proc.
24th Symp. on Reliable Distributed Systems (SRDS 2005), Oct. 2005.

3. P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in
Proc. 28th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 427–
437, 1987.

4. J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and
retrieval,” Theoretical Computer Science, vol. 243, no. 1–2, pp. 363–389, 2000.

5. G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient Byzantine-
tolerant erasure-coded storage,” in Proc. International Conference on Dependable
Systems and Networks (DSN-2004), pp. 135–144, 2004.

Towards a Theory of Self-organization

E. Anceaume1, X. Defago2, M. Gradinariu1, and M. Roy3

1 IRISA, Rennes, France
{anceaume, mgradina}@irisa.fr

2 JAIST and PRESTO, JST, Japan
defago@jaist.ac.jp

3 LAAS-CNRS, Toulouse, France
roy@laas.fr

Self-organization is an evolutionary process in which the effects of the envi-
ronment are minimal; i.e., where the development of new, complex structures
primarily takes place in and throughout the system itself. Natural phenom-
ena, living forms, or social systems (e.g., growing crystals, cells aggregation,
ant colonies) are examples of self-organizing systems in which a global order of
the system emerges from local interactions. In the newly emerging fields of dis-
tributed systems (p2p, ad-hoc networks, sensor networks, cooperative robotics),
self-organization has become one of the most desired properties. The major fea-
ture of all recent scalable distributed systems is their extreme dynamism in
terms of structure, content, and load. In peer-to-peer systems, self-organization
is handled through protocols for node arrival and departure, based either on a
fault-tolerant overlay network, such as in CAN, Chord, Pastry, or on a localiza-
tion and routing infrastructure [2]. In ad-hoc networks, self-organizing solutions
have been designed to cluster ad-hoc nodes [4]. Self-organizing algorithms have
also been developed to arrange mobile robots into predefined geometric patterns
(e.g., [3]).

Informal definitions for self-organization, or the related self∗ properties (e.g.,
self-configuration, self-healing or self-reconfiguration) have been proposed pre-
viously [4]. Zhang and Arora [4] propose the concepts of self-healing and self-
configuration in wireless ad-hoc networks.

The correctness proofs for self-organizing systems should be based on a well-
founded theoretical model that can capture the dynamic behavior of these sys-
tems. Hence, the characterization of the self-organizing aspects of these systems
cannot solely focus on the non-dynamic periods since they may be absent or
very short. Moreover, defining self-organization as a simple convergence process
towards a stable predefined set of admissible configurations is inadequate for two
reasons. First, it may be impossible to clearly characterize the set of admissi-
ble configurations since, in dynamic systems, a configuration should include the
state of some key parameters that have a strong influence on the dynamicity of
the system. These parameters can seldom be quantified a priori (e.g., the status
of batteries in sensor networks, or the data stored within p2p systems). Second,
due to the dynamic behavior of nodes, it may happen that no execution of the
system converges to one of the predefined admissible configurations.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 505–506, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

506 E. Anceaume et al.

We propose a formal specification of the self-organization notion. Our spec-
ification is based on the locality principle, i.e., the fact that interactions and
knowledge are both limited in scope. We formalize this idea [1], leading first to
the notion of local self-organization. Intuitively, a locally self-organizing system
should reduce the entropy of the system in the neighborhood of each node. For
example, a locally self-organizing p2p system forces components to be adjacent
to components that improve, or at least maintain, some property or evalua-
tion criterion. We then formalize the notion of self-organization by imposing
the system to be locally self-organizing at all its nodes, and by ensuring that
despite its dynamicity, the system entropy progressively decreases. That is, self-
organization strongly relies on the local self-organization property, and on the
behavior of the system during the connection/disconnection actions. Accord-
ing to this behavior, the system guarantees different levels of self-organization,
namely, the weak and the strong self-organization. The weak self-organization is
defined in terms of two properties. The weak liveness property says that either
(1) infinitely often, there are static fragments, i.e., sequences of configurations
with no connections/disconnections, during which the knowledge of the system
enriches, or (2) all processes have reached a stable state. The safety property
states that, during all static fragments, system knowledge does not decrease.
The weak self-organization definition applies to static fragments. Nothing is
guaranteed during dynamic ones (i.e., sequences of configurations in which con-
nections/disconnections occur). For instance, the weak liveness does not forbid
processes to reset their neighbors lists after each connection/disconnection. To
prevent the system from “collapsing” during dynamic fragments, strong self-
organization specifies a stronger property guaranteeing that for all the processes
of which the neighborhood is unchanged, information is maintained. Specifically,
this ensures the existence of a non-empty group of processes for which local in-
formation has been maintained between the end of a static fragment and the
beginning of the subsequent one. The second contribution of this work is a case
study. Using our framework we prove the weak self-organization of Pastry and
CAN, two well known peer-to-peer overlays.

Future investigation focuses on the design of a probabilistic extension of our
model motivated by the fact that connection/disconnection actions are well-
modeled by probabilistic laws.

References

1. E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. Towards a theory of self-
organization. Technical Report 1694, IRISA, 2005.

2. Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv., 36(4):335–371, 2004.

3. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation of
geometric paterns. SIAM Journal of Computing, 28:1347–1363, 1999.

4. H. Zhang and A. Arora. Gs3 : Scalable self-configuration and self-healing in wireless
networks. Proc. of the 21st Annual ACM Symposium on Principles of Distributed
Computing (PODC’02), pages 58–67, 2002.

Timing Games and Shared Memory

Zvi Lotker1, Boaz Patt-Shamir2, and Mark R. Tuttle3

1 CWI
lotker@cwi.nl

2 Tel Aviv University
boaz@eng.tau.ac.il

3 HP Labs
mark.tuttle@hp.com.

Abstract. We model a simple problem in advertising as a strategic tim-
ing game, and consider continuous and discrete versions of this game. For
the continuous game, we completely characterize the Nash equilibrium
for two players. For the discrete game, we give an efficient algorithm to
compute the Nash equilibrium for n players.

We consider a model with a single shared register, a stream of readers arriving
at a constant rate in the interval [0, 1], and a set of writers that each write to
the register one time. We interpret the value of the register as an advertisement,
the readers as customers, and the writers as advertisers. The register represents
any public space such as an ad on a web page or an entry in a system directory.
The register’s value might be a link to a web site or a pointer to some service,
resource, or product. Since the advertiser’s goal is to maximize the number of
customers seeing its ad, and since the customers arrive at a constant rate, this is
equivalent to maximizing the length of time the ad is in the register before it is
overwritten by another ad. Since each advertiser can write its ad to the register
only once, when should it write?

We model this problem as a non-cooperative, complete-information strategic
game, a game we call the publicity game. The publicity game is a symmetric
game with n players, each player i chooses a number xi ∈ [0, 1], and the payoff
to player i is the distance from xi to the next point. Formally, given the choices
x1, . . . , xn of the players, we define bigger(i) = {xj | xj ≥ xi and j �= i} and
next(i) = min bigger(i). The payoff for player i is defined by

ui(x1, x2, . . . , xn) =
{

next(i)− xi if bigger(i) �= ∅
1− xi otherwise

Note that if two players happen to choose the same value, the payoff to both of
them is 0. We consider other payoffs to colliding players in the full paper.

Our publicity game is a new variant of “timing games” like “War of Attrition”
[2,3,5], but our payoffs do not change with time as in that game, and the work of
Baye et al. [1] is also related to some of our results for the two-player game. Our
game superficially resembles the Hotelling location games [4], but these games
either are zero-sum or they involve pricing, and are fundamentally different.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 507–508, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

508 Z. Lotker, B. Patt-Shamir, and M.R. Tuttle

The publicity game has only mixed-strategy equilibria:

Theorem 1. There is no equilibrium of pure strategies for the publicity game.

It is not hard to bound the game value of symmetric equilibria:

Theorem 2. If v is a symmetric equilibrium value for the publicity game with n
players, then 1/(n + 1) < v < 1/n.

In fact, as we now show, we can compute this game value quite accurately, and
prove it is unique.

We cannot compute the game value for n players exactly, but we can find a
closed form for the special case of two players.

Theorem 3. There is a Nash equilibrium for the two-player publicity game de-
fined by

f1(x) =
{

1
1−x , if 0 ≤ x ≤ 1− 1

e

0 , otherwise

This equilibrium in unique up to a set of points in [0, 1] of measure zero, and the
expected payoff for each player is 1

e .

We can approximate the game value for n players if we restrict attention to
a discrete version of the publicity game that restricts players to choosing one
of the k + 1 points

{
0, 1

k , 2
k , . . . , 1

}
. In the full paper, we give an algorithm

Equilibrium(n, k, ε) that approximates the symmetric equilibrium value v to
within ε by doing a binary search for v and inductively computing the probabili-
ties the symmetric equilibrium assigns to the discrete points in the unit interval.

Theorem 4. There is a unique symmetric equilibrium to the discrete publicity
game, and Equilibrium(n, k, ε) computes the equilibrium value to within ε.

This algorithmic approach to finding the equilibrium for the n-player game is
interesting, because the differential equations that characterize the equilibria to
general n-player games are often quite hard to solve.

This paper is a first step toward understanding the effect of delayed actions
on the outcome of timely games. These games arise naturally in many situations
such as recommendation systems and other economic systems. To this end, we
have defined and analyzed a simple game we called the publicity game. To the
best of our knowledge, this is the first time this game is explicitly addressed.

References

1. M. R. Baye, D. Kovenock, and C. de Vries. A general linear model of con-
tests. Mimeo, 1998. Unpublished manscript available from http://www.nash-

equilibrium.com/baye/Contests.pdf.
2. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
3. K. Hendricks, A. Weiss, and C. Wilson. The war of attrition in continuous time with

complete information. International Economic Review, 29(4):663–680, Nov. 1988.
4. H. Hotelling. Stability in competition. Economic Journal, 39:41–57, 1929.
5. J. Maynard Smith. The theory of games and the evolution in animal conflicts.

Journal of Theoretical Biology, 47:209–221, 1974.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 509 – 510, 2005.
© Springer-Verlag Berlin Heidelberg 2005

 A Lightweight Group Mutual k-Exclusion
 Algorithm Using Bi-k-Arbiters

Yu-Chen Kuo and Huang-Chen Lee

Department of Computer and Information Science, Soochow University,
100 Taipei, Taiwan, ROC

yckuo@cis.scu.edu.tw

Abstract. In this paper, we propose a bi-k-arbiter quorum structure for the
group mutual k-exclusion problem in distributed systems. We design a light-
weight group mutual k-exclusion algorithm adopting the bi-k-arbiter to solve
the group mutual k-exclusion problem. Adopting bi-k-arbiters, the concurrent
processes accessing to the same resource could use the lightweight quorum to
reduce the message complexity.

Extended Abstract

The mutual exclusion problem is a problem to guarantee that concurrent processes
accessing to a shared resource must execute in a mutually exclusive way. In [3],
Joung introduced the group mutual exclusion, which is an extension of mutual exclu-
sion problem while exploring concurrency. In the group mutual exclusion problem,
there are m resources and it allows more than one process to access the same resource,
simultaneously. The processes accessing to a same resource constitute a group. How-
ever, if two groups request to access different resources at the same time, only one
group is allowed. The group mutual k-exclusion problem [5] is an extension of the
group mutual exclusion problem. It allows that at most k groups can access k different
resources at the same time.

In the past, numerous solutions for the group mutual exclusion problem had been
proposed [1-5]. Among them, the quorum-based approach [3] is an important algo-
rithm to solve the problem. It utilized m-group [3] quorum structure to achieve the
group mutual exclusion. Informally, a quorum is a set of some processes in a system.
The system may have some quorums that could constitute a type of quorum structure,
such as m-groups or k-arbiters [4], etc. Each quorum structure is used to solve a par-
ticular problem.

An m-group is a list (C1, C2, …, Cm) of m quorum sets, each of which is used to
control the access of one of m resources. In an m-group, ∀Qi∈Ci must intersect
∀Qj∈Cj, 1≤i,j≤m. In the quorum-based group mutual exclusion algorithm adopting m-
groups, a process requesting to access a resource i is required to obtain the permission
from every member of a quorum Qi∈Ci. Due to the intersection property (viz.,
∀Qi∈Ci intersects ∀Qj∈Cj, 1≤i,j≤m), no two processes access to different resources
can be proceeded at the same time.

In this paper, we propose a bi-k-arbiter quorum structure, extended from k-arbiters
[4], to solve to the group mutual k-exclusion problem. An ordered pair B=(C, L),

510 Y.-C. Kuo and H.-C. Lee

where C and L contain complete quorums Qc and lightweight quorums Ql of U, re-
spectively, is a bi-k-arbiter under U if B satisfies the following properties:

1. Complete Quorum Intersection Property: ∀ cQ1 , cQ2 ,…, c
kQ 1+ ∈C, ∅≠

+≤≤ 11 ki

c
iQ .

2. Lightweight Quorum Intersection Property: ∀ l
iQ ∈L and ∀ c

jQ ∈C, ∅≠∩ c
j

l
i QQ .

3. Quorum Containing Property: ∀ l
iQ ∈L, ∃ c

jQ ∈C such that c
j

l
i QQ ⊂ .

4. Complete Quorum Minimality Property: ∀ c
iQ , c

jQ ∈C, c
j

c
i QQ ⊄ .

5. Lightweight Quorum Minimality Property: ∀ l
iQ , l

jQ ∈L, l
j

l
i QQ ⊄ .

For example, let C={{1,2,3,4,5,6},{1,2,3,7,8,9},{1,4,5,7,8,10},{2,4,6,7,9,10},
{3,5,6,8,9,10}} constructed from the binomial(5, 2)-arbiter [4] and L={{1,2,3},
{2,4,6}, {3,5,6},{4,7,10}}. It is not hard to verify that B=(C, L) is a bi-2-arbiter under
U={1,2,3,4,5,6,7,8,9,10} and k=2.

Intuitively, a bi-k-arbiter can be applied to develop the lightweight group mutual k-
exclusion algorithm as follows: A process A requesting to access a resource i is re-
quired to obtain the permission of a quorum Qc∈C. However, A will first try to collect
the permission of a lightweight quorum Ql∈L. If there is a process B which had col-
lected the permission of a complete quorum Qc∈C and access the resource i already,
then due to the lightweight quorum intersection property, we observe that Qc Ql Ø.
Thus, A can be granted by some node in Qc to access the resource i, immediately. The
message complexity of A can be reduced. Otherwise, if no such B exists, by the quo-
rum containing property, A will continue to collect the permission from Qc−Ql(for
some Qc∈C and Ql⊂Qc) until a complete quorum is obtained. On the other hand, if
there are k+1 groups of processes requesting to access k+1 resources, due to the com-
plete quorum intersection property, those k+1 complete quorums must have at least
one common member. The common member will be the arbiter to reject the lowest
priority (ordered by the timestamp) request. The group mutual k-exclusion problem
could be solved. Furthermore, since the bi-k-arbiter is extended from the k-arbiter, the
bi-k-arbiter inherits the property of k-arbiters [4] that it allows a process to request
more than one resource in a single request message. The message complexity could
further be reduced when a process requests more than one resource at a time.

References

1. R. Atreya, N. Mittal: A distributed group mutual exclusion algorithm using surrogate-
quorums, Technical Report (2003), The University of Texas at Dallas

2. J. Beauquier, S. Cantarell, A. K. Datta, F. Petit: Group mutual exclusion in tree networks,
Journal of Information Science and Engineering, Vol. 19, No 3 (2003) 415-432

3. Y.-J. Joung: Quorum-based algorithms for group mutual exclusion, IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, No. 5 (2003) 463-476

4. Y.-C. Kuo: A simple scheme to construct k-arbiters with uniform quorum sizes, Journal of
the Chinese Institute of Engineers, Vol. 26, No. 5(2003),709-714

5. K. Vidyasankar: A simple group mutual l-exclusion algorithm, Information Processing
Letters, Vol. 85(2003),79-85

Could Any Graph Be Turned into

a Small-World?

Philippe Duchon1, Nicolas Hanusse1, Emmanuelle Lebhar2, and
Nicolas Schabanel2

1 LABRI, University of Bordeaux, Bordeaux, France
{duchon, hanusse}@labri.fr

2 LIP, École Normale Supérieure de Lyon, Lyon, France
{elebhar, nschaban}@ens-lyon.fr

1 Introduction

In the last decade, effective measurements of real interaction networks have
revealed specific unexpected properties. Among these, most of these networks
present a very small diameter and a high clustering. Furthermore, very short
paths can be efficiently found between any pair of nodes without global knowl-
edge of the network (i.e., in a decentralized manner) which is known as the
small-world phenomenon [1]. Several models have been proposed to explain this
phenomenon [2,3]. However, Kleinberg showed in [4] that these models lack the
essential navigability property: in spite of a polylogarithmic diameter, decentral-
ized routing requires the visit of a polynomial number of nodes in these models.

He proposed a navigable model defined as a grid augmented by additional
random links according to a specific distribution. This raised an essential ques-
tion to capture the small-world phenomenon: are there only specific graph met-
rics that can be turned into small-worlds by the addition of shortcuts? We show
that the navigability property is not specific to the grid topology, and that a
wide family of graphs can be turned into navigable small-worlds by the addition
of one random link per node. In a second step, we try to catch the dimensional
phenomenon showing that if two independent graphs can be augmented into two
navigable small-worlds then their cartesian product can also be (e.g. any product
of arbitrary length tori). In all the following, we consider infinite graphs, but our
definitions and results apply as well to families of finite graphs (see [5]).
Turning graphs into small-worlds. In the following, an underlying metric δH

of a graph G is the metric given by a spanning connected subgraph H , and
bH,u(r) is the number of nodes at distance ≤ r from u in H . Also, a routing
algorithm for a graph H , augmented by random links, is said decentralized if it
only uses δH and the knowledge of the nodes it has previously visited as well as
their neighbors; crucially, it can only visit nodes that are neighbors of previously
visited nodes. Definition 1 is inspired by the work of Kleinberg [4].

Definition 1. A graph H augmented by random links is a navigable small-world
if there exists a decentralized algorithm that, for any two nodes u and v, computes
a path, using the underlying metric δH , from u to v in the augmented graph by

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 511–513, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

512 P. Duchon et al.

visiting an expected number of nodes bounded by a polylogarithmic function of
bH,v(δH(u,v)).
Kleinberg showed in [4] that adding one random link according to a harmonic
distribution whose exponent equals the dimension of the regular n×· · ·×n grid,
turns the grid into a navigable small-world. But this approach fails for instance
on unbalanced n × m grids (with m . n), since the “dimension” varies with
the distance: balls of small radius grow like r2 but larger balls grow like r1+ε(r),
where ε(r) → 0 as r grows.

n

m

It appears that defining the random link distribution in terms of ball growth
in the original base graph, rather than in terms of distance between nodes, al-
lows to generalize Kleinberg’s process to a wide class of graphs. Precisely, we
say that a bounded degree infinite graph H (resp., family of finite graphs H) is
an α-moderate growth graph if the size of the ball centered on each node u of
H (resp., of H ∈ H) can be written as bH,u(r) = rdu(r), where the “apparent
dimension from u”, du(r), verifies: ∂du(r)

∂r ≤ α
r ln r .

This class includes all graphs with non-increasing “apparent dimension”
du(r) (e.g., unbalanced grids). Thanks to the regularity of ball growth in this
class, adding one random link of length r according to 1/(bH,u(r) log1+ε r) yields
navigable small-worlds. Our theorem below covers graphs whose balls grow like
rO(log log r) or slower, and, in particular, all known Cayley graphs (since the ex-
istence of groups of intermediate growth, between polynomial and e

√
r, is still

open). We also show that the cartesian product of two moderate growth graphs
can be turned into a small-world, even though it may not belong to the class
itself. This reveals that the small-world phenomenon of a network may rely on
multiple underlying structures.

Theorem 1. Any α-moderate growth infinite graph H (resp., family of graphs
H), augmented by one long range link per node u, pointing to a random node
v at distance r with probability proportional to 1

bH,u(r) logq r , for any q > 1,
is a navigable small-world. any pair of nodes at distance � from each other is
O(ln1+q+α ln 5 �).

Given any two moderate growth graphs, their cartesian product G augmented
by one long range link per node u, pointing to a random node v at distance r
with probability proportional to 1

bG,u(r) logq′ r
, for all q′ > q0, for some constant

q0 > 0, is a navigable small-world.

References

1. Milgram, S.: The small world problem. Psychology Today 61 (1967)
2. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393

(1998)

Could Any Graph Be Turned into a Small-World? 513

3. Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network
model. Phys. Rev. 60 (1999) 7332–7342

4. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Pro-
ceedings of the 32nd ACM Symp. on Theory of Computing (STOC). (2000) 163–170

5. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned
into a small world? To appear in Theoretical Computer Science special issue on
Complex Networks (2005) Also available as Research Report LIP-RR2004-62.

Papillon: Greedy Routing in Rings

Ittai Abraham1, Dahlia Malkhi2, and Gurmeet Singh Manku3

1 Hebrew University of Jerusalem
ittaia@cs.huji.ac.il

2 Hebrew University of Jerusalem and Microsoft Research
dalia@microsoft.com

3 Google
manku@google.com

Abstract. We construct the first n-node degree-d ring-based network
with worst-case greedy routes of length Θ(log n/ log d) hops.

We study greedy routing over uni-dimensional metrics1 defined over n nodes ly-
ing in a ring. greedy routing in graph (V, E) with distance function δ : V ×V →
R+ entails the following decision: Given target node t, node u with neighbors
N(u) forwards a message to v ∈ N(u) such that δ(v, t) = minx∈N(u) δ(x, t). The
distance metric we use over n nodes placed in a circle is the clockwise-distance
between pairs of nodes (the full paper contains a similar study of the absolute-
distance metric):

δclock(u, v) = v − u if v ≥ u, n + v − u otherwise.
Let Δclock denote the worst-case greedy route length with δclock. Δclock denotes
the average greedy route length over all-pairs.

Summary of results. We construct a family of network topologies, the Papillon2 ,
in which greedy routes are asymptotically optimal. Papillon has greedy routes
of length Δclock = Θ(log n/ log d) hops in the worst-case when each node has d
out-going links. Papillon is the first construction that achieves asymptotically
optimal worst-case greedy routes.

Upon further investigation, two properties of Papillon emerge: (a) greedy
routing does not send messages along shortest paths, and (b) Edge congestion
with greedy routing is not uniform – some edges are used more often than
others. We exhibit the first property by identifying routing strategies that result
in paths shorter than those achieved by greedy routing. In fact, one of these
strategies guarantees uniform edge-congestion.

1 The principles of this work can be extended to higher dimensional spaces. We focus
on one-dimension for simplicity.

2 Our constructions are variants of the well-known butterfly family, hence the name
Papillon.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 514–515, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Papillon: Greedy Routing in Rings 515

The Papillon network. The intuitive idea of the Papillon construction is as fol-
lows. Nodes are arranged in m levels, where n = κmm. A node at level i has links
to nodes one level down (wrapping at zero). Level-i links cover nodes between
the current node, and distance roughly κi hops away, where hops are counted by
the logical ordering of the nodes on the ring, and cut the distance to the target
to roughly κ(i−1). In essence, Papillon is a geometric analogue of the bitonic
butterfly network.

The reason that greedy routing works on Papillon is the following. So long
as the current node’s level i is too small, i.e., the distance to the target is more
than κi, any link followed serves simply to go down the levels until we wrap at
level zero and reach level m−1. When the current level i is large enough, i.e., the
distance to the target is at most κi, then one of the level links cuts the distance
to κi−1. In this manner, eventually the target is reached.

Pclock(κ, m) is a directed graph for any κ, m ≥ 1. Let n = κmm. Let �(u) ≡
(m − 1)− (u mod m). Each node has κ links. For node u, these links are to
nodes (u + x) mod n, where x ∈ {1 + imκ�(u) | i ∈ [0, κ− 1]}.

Theorem 1. For Pclock(κ, m), Δclock ≤ 3m− 2 and Δclock ≤ 2m− 1.

Putting d = κ, we obtain that in an n-node, degree-d network, worst-case
routes are Θ(log n/ log d). Curiously, greedy routing is not along shortest paths.

Theorem 2. There exists a non-greedy strategy for Pclock with routes of
length at most 2m− 1. The average is at most 1.5m. The strategy is congestion-
free, with uniform load on edges for all-pairs communication.

Previous results. With Θ(log n) out-going links per node, several graphs over n
nodes in a circle support greedy routes with Θ(log n) greedy hops. Determinis-
tic graphs with this property include variants of Chord, and this is also the known
lower bound on any uniform graph (i.e., whose link-distances are the same from
every node) with distance function δclockwise. Randomized graphs which trade
degree-d with route lengths Θ((log2 n)/d) on average include randomized-Chord
and Symphony, with a gap to the known lower bound on uniform randomized
network of Ω(log2 n

d log log n).
Papillon extends the above results by constructing a non-uniform graph with

Δclock = Θ(log n/ log d) in an n-node degree-d network, which is asymptotically
optimal. Previously, this tradeoff was achieved on butterfly-like networks only
with non-greedy routing (Viceroy, Ulysses, and Mariposa) or by greedy routing
assisted with look-ahead. For d = o(log n), this beats the lower bound on uni-
form, randomized greedy routing networks (and it meets it for d = O(log n)).
In the specific case of d = log n, our greedy routing achieves O(log n/ log log n)
average route length.

Please see http://arxiv.org/abs/cs.DC/0507034 for further details.

An Efficient Long-Lived Adaptive
Collect Algorithm�

Burkhard Englert

California State University Long Beach, Dept. of Comp. Engr. & Comp. Science,
Long Beach, CA 90840

englert@cecs.csulb.edu

Abstract. We present a new long-lived, efficient, adaptive collect algo-
rithm. Namely, our algorithm adapts to K-contention - it has the prop-
erty that if during an operation the interval contention k exceeds a pre-
determined constant K the step complexity is O(N). If, it falls below K,
the processors executions will eventually have adaptive step complexity
of O(k3). Moreover, for K such that K3 ≤ N our algorithm requires only
O(N2) shared memory registers.

1 Summary

To solve many well known problems such as atomic snapshot or renaming, it
is essential that processors are able to gather information about each other. A
simple way in which communication can be established is through the use of an
array of Single-Writer Multi-Reader (SWMR) registers where each processor has
a unique array entry assigned to it. Only a fixed processor is allowed to write
to each array location while all processors can read all array entries. To update
information about itself a processor writes into its array entry and to collect
information about the other processors it reads all entries in an arbitrary order.
Such a collect algorithm with step complexity O(N), however, where N is the
total number of processors in the system, is possibly inefficient if only few of the
N processors are actually participating. This motivated researchers to look for
adaptive algorithms whose step complexity only depends on the number of the
concurrently participating processors.

Motivated by Lamport’s MX algorithm [5], many adaptive algorithms have
since been designed. Recently, a number of different adaptive collect algorithms
were presented [1,2,3,4]. The algorithm by Attiya, Fouren and Gafni [3] for ex-
ample, has an asymptotically optimal O(k) step complexity, but it is a one-shot
algorithm and the memory consumption is exponential in N . More recently
Attiya, Kuhn, Wattenhofer and Wattenhofer [4] presented a new randomized
adaptive collect algorithm with asymptotically optimal step complexity and
polynomial memory overhead. For any constant γ > 1 they also presented a
new deterministic collect algorithm with O(k2/((γ − 1) logn)) step complexity
� An extended abstract of this paper appears in the Proceedings of the DPNA 2005

(IEEE-ICPADS 2005) workshop.

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 516–518, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Long-Lived Adaptive Collect Algorithm 517

and O(nγ+1)/(γ − 1) logn) memory complexity. However, their algorithms are
one-shot, not long-lived and hence adapt only to total contention with respect
to shared memory operations. On the other hand the collect algorithm by Afek,
Stupp and Touitou [1] is long-lived and adapts to the point contention (and hence
to interval contention) k. It is designed for low contention, has step complexity
O(k3) and uses O(N3) shared memory registers. As a result, if the interval con-
tention k during the execution of a collect is high such that k3 >> N , where N
is the number of processors in the system, their algorithm [1] is less efficient than
a ”straightforward” collect algorithm where processors read all N SWMR regis-
ters in any order. Moreover, since such a ”naive” algorithm only requires O(N)
shared memory cells but the long-lived adaptive collect algorithm by Afek, Stupp
and Touitou [1] requires O(N3) shared memory registers, a significant memory
overhead is encountered. In this sense it is very desirable to have an algorithm
that itself can ”adapt” to low or high (interval) contention.

We call such an algorithm adaptive to K-contention. The constant K can be
determined in advance. For example, if, as in [1], the adaptive step complexity is
O(k3), we can let K be the largest integer such that K3 < N . Our new algorithm
provides a mechanism to switch back and forth between the two approaches solely
based on the interval contention a processor encounters.

Our paper makes the following contributions:

– We present a new long-lived adaptive collect algorithm. Previous algorithms
[1] were designed for low contention and their performance suffers if the
contention encountered exceeds K such that K3 > N . Our algorithm is
efficient since it guarantees that a processor never needs to perform more
than O(N) steps in a collect operation. Moreover, our algorithm guarantees
that if the interval contention k of two successive operations by a processor p
is less than K and the contention of all other operations by other processors
that occur or are active between these two operations is also less than K,
then the step complexity of the second operation by p is O(k3).

– Our algorithm introduces a mechanism that allows processors to switch back
and forth from operation to operation between reading the registers of all
other processors and an adaptive execution.

– Our algorithm requires only O(N2) shared memory registers (instead of
O(N3) [1]) thereby reducing the memory complexity overhead encountered
by long-lived adaptive collect algorithms.

Acknowledgement. We are grateful to Eli Gafni for helpful discussions and
comments.

References

1. Y. Afek, G. Stupp and D. Touitou. Long-lived adaptive collect with applications.
Proc. of the 40th Ann. Symp. on Foundations of Computer Science: 262-272, Oc-
tober 1999.

518 B. Englert

2. H. Attiya and A. Fouren. Algorithms adaptive to point contention. In J. ACM,
50(4): 444-468, July 2003.

3. H. Attiya, A. Fouren and E. Gafni. An adaptive collect algorithm with applications.
Distributed Computing, 15(2): 87-96, 2002.

4. H. Attiya, F. Kuhn, M. Wattenhofer and R. Wattenhofer. Efficient Adaptive Collect
using Randomization. Proc. 18th Annual Conference on Distributed Computing
(DISC), 2004.

5. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1): 1-11. February 1987.

Author Index

Abraham, Ittai 442, 514
Afek, Yehuda 384
Aiyer, Amitanand 48
Alvi i, Lorenzo 48
Anceaume, Emmanuelle 505
Attiya, Hagit 122, 169

Badishi, Gal 18
Bazzi, Rida A. 48
Beauquier, Joffroy 399
Bhola, Sumeer 501
Blesa, Maria J. 429
Brodsky, Alex 137

Cachin, Christian 497, 503
Chockler, Gregory 152

David, Matei 137
De Levie, Yaron 384
Defago, Xavier 505
Delporte-Gallet, Carole 184
Duchon, Philippe 511

Engelhardt, Kai 229
Englert, Burkhard 516

Fauconnier, Hugues 184
Fernández, Antonio 490
Fich, Faith Ellen 78, 137, 493
Flammini, Michele 414
Freiling, Felix C. 93

Gafni, Eli 63
Gavoille, Cyril 442
Georgiou, Chryssis 490
Goldwasser, Shafi 288
Gradinariu, Maria 505
Guerraoui, Rachid 122, 184, 244, 303

Hanusse, Nicolas 511
Harris, Tim 108
Hendler, Danny 169
Herlihy, Maurice 303, 324
Herzberg, Amir 2, 18

Junqueira, Flavio 3

Keidar, Idit 18
Korman, Amos 457
Kouznetsov, Petr 122
Kuhn, Fabian 273
Kuo, Yu-Chen 509

Lafuente, Alberto 495
Larrea, Mikel 495
Lebhar, Emmanuelle 511
Lee, Huang-Chen 509
Liskov, Barbara 487
López, Luis 490
Lotker, Zvi 507
Luchangco, Victor 78, 493
Lynch, Nancy 152

Malkhi, Dahlia 199, 339, 442, 514
Manku, Gurmeet Singh 514
Marathe, Virendra J. 354
Marzullo, Keith 3
Mitra, Sayan 152
Mittal, Neeraj 93
Mitzenmacher, Michael 1
Moir, Mark 78, 493
Moore, Brad T. 214
Moscardelli, Luca 414
Moscibroda, Thomas 273
Moses, Yoram 229

Nadav, Uri 472
Naor, Moni 472
Navarra, Alfredo 414
Nieberg, Tim 273

Okun, Michael 499
Oprea, Florin 199

Patt-Shamir, Boaz 507
Pelc, Andrzej 260
Penso, Lucia Draque 93
Perennes, Stephane 414

s

520 Author Index

Pilard, Laurence 399
Pochon, Bastian 303
Purcell, Chris 108

Rajsbaum, Sergio 63
Rodrigues, Rodrigo 487
Roy, Matthieu 505
Rozoy, Brigitte 399
Ruppert, Eric 244

Santos, Agust́ın 490
Schabanel, Nicolas 511
Scherer III, William N. 354
Scott, Michael L. 354
Shavit, Nir 78, 493
Sivilotti, Paolo A.G. 214
Sturman, Daniel 501

Sudan, Madhu 288
Sun, Ye 324

Tauber, Joshua 152
Terry, Doug 339
Tessaro, Stefano 497, 503
Tuttle, Mark R. 507

Vaikuntanathan, Vinod 288
Venkatesan, S. 93
Völzer, Hagen 33

Wattenhofer, Roger 273

Zhao, Yuanyuan 501
Zhou, Lidong 199
Zieliński, Piotr 369

	Frontmatter
	Invited Talks
	Digital Fountains and Their Application to Informed Content Delivery over Adaptive Overlay Networks
	Securing the Net: Challenges, Failures and Directions

	Regular Papers
	Coterie Availability in Sites
	Keeping Denial-of-Service Attackers in the Dark
	On Conspiracies and Hyperfairness in Distributed Computing
	On the Availability of Non-strict Quorum Systems
	Musical Benches
	Obstruction-Free Algorithms Can Be Practically Wait-Free
	Efficient Reduction for Wait-Free Termination Detection in a Crash-Prone Distributed System
	Non-blocking Hashtables with Open Addressing
	Computing with Reads and Writes in the Absence of Step Contention
	Restricted Stack Implementations
	Proving Atomicity: An Assertional Approach
	Time and Space Lower Bounds for Implementations Using {\itshape k}-CAS
	(Almost) All Objects Are Universal in Message Passing Systems
	Ω Meets Paxos: Leader Election and Stability Without Eventual Timely Links
	Plausible Clocks with Bounded Inaccuracy
	Causing Communication Closure: Safe Program Composition with Non-FIFO Channels
	What Can Be Implemented Anonymously?
	Waking Up Anonymous Ad Hoc Radio Networks
	Fast Deterministic Distributed Maximal Independent Set Computation on Growth-Bounded Graphs
	Distributed Computing with Imperfect Randomness
	Polymorphic Contention Management
	Distributed Transactional Memory for Metric-Space Networks
	Concise Version Vectors in WinFS
	Adaptive Software Transactional Memory
	Optimistic Generic Broadcast
	Space and Step Complexity Efficient Adaptive Collect
	Observing Locally Self-stabilization in a Probabilistic Way
	Asymptotically Optimal Solutions for Small World Graphs
	Deciding Stability in Packet-Switched FIFO Networks Under the Adversarial Queuing Model in Polynomial Time<Superscript>,</Superscript>
	Compact Routing for Graphs Excluding a Fixed Minor
	General Compact Labeling Schemes for Dynamic Trees
	The Dynamic And-Or Quorum System

	Brief Announcements
	Byzantine Clients Rendered Harmless
	Reliably Executing Tasks in the Presence of Malicious Processors
	Obstruction-Free Step Complexity: Lock-Free DCAS as an Example
	Communication-Efficient Implementation of Failure Detector Classes $\diamondsuit\mathcal{Q}$ and $\diamondsuit\mathcal{P}$
	Optimal Resilience for Erasure-Coded Byzantine Distributed Storage
	Agreement Among Unacquainted Byzantine Generals
	Subscription Propagation and Content-Based Routing with Delivery Guarantees
	Asynchronous Verifiable Information Dispersal
	Towards a Theory of Self-organization
	Timing Games and Shared Memory
	A Lightweight Group Mutual {\itshape k}-Exclusion Algorithm Using Bi-{\itshape k}-Arbiters
	Could any Graph be Turned into a Small-World?
	Papillon: Greedy Routing in Rings
	An Efficient Long-Lived Adaptive Collect Algorithm

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

