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Abstract. Component-oriented programming yields a tension between higher-
order features (deployment, reconfiguration, passivation), encapsulation, and
component sharing. We propose a discipline for component-oriented program-
ming to address this issue, and we define a process calculus whose operational
semantics embodies this programming discipline. We present several examples
that illustrate how the calculus supports component sharing, while allowing
strong encapsulation and higher-order primitives.

1 Introduction

Wide-area distributed systems and their applications are increasingly built as heteroge-
neous, dynamic assemblages of software components. This modular structure persists
during execution: such systems provide the means to control their run-time modular
configuration, which encompasses automatic deployment, unanticipated evolution, pas-
sivation, run-time reconfiguration, and introspection. This expressive power conflicts
with the strong encapsulation properties generally expected from modular programs.

A key tension point is component sharing, which allows two remote components
to encapsulate a common component, as depicted in Figure 1, where the component
L (e.g. a software library) is shared among C and D. How does one preserve encap-
sulation in this case? In particular, what happens to L and D if A removes C from
the configuration? How can C replace L by L′, without necessarily impacting D? Es-
sentially, the difficulty lies in combining (1) encapsulation with fine-grain, objective
control over communications, (2) locality passivation, migration, and replication, and
(3) access to shared components with simple communication rules.

Previous models of component-oriented programming do not completely address
these three requirements. Models that do not address requirement (3) comprise process
calculi with hierarchical localities that feature local communications only (i.e., no di-
rect communication between arbitrarily distant localities in the locality forest) [5, 4, 14,
3, 8, 18]. Indeed, sharing is representable in such models, but at the expense of com-
plex routing rules which are difficult to maintain. Models that do not have this routing
complexity problem, but are weak on requirement (1), include the Cell calculus [15]
and process calculi with localities that do not restrict communications betwen locali-
ties [10, 12, 20, 19, 11, 1, 16]. The tKlaim calculus [9] is a recent variant of Klaim
that allows the establishment of different communication topologies between localities.
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Fig. 1. A configuration with sharing

However, such calculus still falls short of full encapsulation of sub localities, since there
is no objective control over process migration and execution.

Our starting point to solve the issue of component sharing is that, from the stand-
point of the latter kind of models (weak on (1)), the problem is reminiscent of the
aliasing problem in object-oriented languages [13]: sharing is easy, but encapsulation
is problematic. To solve this problem, Clarke et al. introduce ownership types [6, 7],
which attribute to each object o an owner that controls the references to o. We adapt
this idea of ownership to the setting of process calculi. However, instead of design-
ing a type system to preserve encapsulation, we enforce it at the level of the oper-
ational semantics, as follows. We split the usual hierarchical forest of localities into
two graphs: the ownership forest and the containment graph. Locality passivation must
be local for the ownership forest, and communication must be local for the contain-
ment graph. As in type systems for ownership, we require, by scoping constraints in
our semantics, that owners be dominators: the owner of a component c dominates (in
the ownership forest) all the components holding references to c. Owing to this con-
dition, the aliasing problem does not arise: when updating a component c, its owner
has access to all references to c. Moreover, the containment graph may be an arbi-
trary directed graph, which allows component sharing. The resulting language, an ex-
tension of the Kell calculus [18], turns out to be an interesting model of component-
oriented programming, as we show by encoding key aspects of the Fractal component
model [2].

Our main contributions are as follows: (1) we propose a programming discipline
for component-oriented programming to address the issue of component sharing, while
preserving encapsulation and higher-order features; (2) we define a process calculus
whose operational semantics embodies this programming discipline; (3) we argue that
our calculus is suitable to represent most idioms of component-oriented programming,
by reviewing key concepts from a concrete component model; (4) additionally, we pro-
pose a new, more modular, presentation of the Kell calculus.

The paper is organized as follows. §2 briefly presents the Fractal model, discusses
the modeling of Fractal components in the Kell calculus, and introduces informally sev-
eral examples of component sharing. §3 extends the Kell calculus with primitive com-
ponent sharing. §4 shows how to program several component sharing examples within
the obtained calculus. §5 concludes the paper with a discussion of future research.
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2 Components and the Kell Calculus

After giving an informal description of the Kell calculus [18], which is our starting
point, we present the main elements of a concrete component model, the Fractal
model [2]. We discuss to which extent Fractal component configurations without
sharing can be interpreted as processes of the Kell calculus. We then present various
examples of component configurations with sharing, and explain informally how we
extend the Kell calculus with sharing to deal with these examples.

2.1 The Kell Calculus

The Kell calculus is a higher-order process calculus with hierarchical localities (called
kells), local communication, and locality passivation. Actions in the Kell calculus are
communication actions and passivation actions. Communication is said to be local as it
may occur only within a kell, between a kell and its sub kells, or between a kell and its
immediate parent, as illustrated below.

1. Receipt of local message a〈Q〉.T on port a bearing process Q and continuation T
by local trigger (input construct) a〈x〉 � P .

a〈Q〉.T | (a〈x〉 � P ) → T | P{Q/x}

2. Receipt of message a〈Q〉.T residing in sub kell b by local trigger a↓〈x〉 � P .

b[a〈Q〉.T ].S | (a↓〈x〉 � P ) → b[T ].S | P{Q/x}

In pattern a↓〈x〉, the arrow ↓ denotes a message that should come from a sub kell.
3. Receipt of message a〈Q〉.T residing out of the enclosing kell by local trigger

a↑〈x〉 � P .
a〈Q〉.T | b[a↑〈x〉 � P ].S → T | b[P{Q/x}].S

In input pattern a↑〈x〉, the arrow ↑ denotes a message that should come from the
outside of the immediately enclosing kell.

These constructs may be combined using join patterns [10] that are triggered only
when the required messages are simultaneously present, as in the following example
(note that | has higher precedence than �).

a〈Q〉.T | b[c〈R〉.U | (a↑〈x〉 | c〈y〉 � P )].S → T | b[U | P{Q/x, R/y}].S

Communication with other localities has to be explicitly programmed in the lan-
guage. For instance, in order to exchange messages, two sibling kells need the help of
their common parent, as depicted in the following example.

a[(c↓〈x〉 � c〈x〉) | b[c〈P 〉.Q] | e[(c↑〈x〉 � T )]]

→ a[(c↓〈x〉 � c〈x〉) | c〈P 〉 | b[Q] | e[(c↑〈x〉 � T )]]

→ a[(c↓〈x〉 � c〈x〉) | b[Q] | e[T {P/x}] ]
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In this example, the parent locality contains a permanent forwarder c↓〈x〉 � c〈x〉
that pulls messages of the shape c〈P 〉 out of its sub kells. This allows sub kells to
receive these messages using an up pattern c↑〈x〉. The construction (ξ � P ) denotes a
replicated trigger, i.e., a trigger which persists after a reaction, and is in fact a shorthand
for νt.Yt,ξ,P | t〈Yt,ξ,P 〉, where Yt,ξ,P = (t〈y〉 | ξ � P | y | t〈y〉).

Passivation in the Kell calculus is depicted in the following example, where the kell
named a is destroyed, and the process Q it contains is used in the guarded process P .

a[Q].T | (a[x] � P ) → T | P{Q/x}

Assume, for instance, that we want to model the dynamic update of component b, where
the new version P of the component program is received on channel a. We could do
so, in one atomic action, using the following join pattern where the new version b[P ] is
spawned, replacing the previous b component.

a〈P 〉 | (a〈x〉 | b[y] � b[x]) | b[Q] → b[P ]

2.2 The Fractal Component Model and Its Interpretation in the Kell Calculus

Fractal is a general component model which is intended to implement, deploy, monitor,
and dynamically configure complex software systems, including in particular operating
systems and middleware. This motivates the main features of the model: composite
components (to have a uniform view of applications at various levels of abstraction),
introspection capabilities (to monitor and control the execution of a running system),
and re-configuration capabilities (to deploy and dynamically configure a system).

A Fractal component is a run-time entity which is encapsulated, which has a dis-
tinct identity, and which is either primitive or composite (built from other components).
Bindings between components are described explicitly, either by local, primitive bind-
ings, using explicit component interfaces, or by remote, composite bindings, using com-
ponents whose role is to embody communication paths. Features like encapsulation and
interfaces are rather standard. The originality of the Fractal model lies in its reflective
features and in its ability to define component configurations with sharing. In order to
allow for well scoped dynamic reconfiguration, components in Fractal can be endowed
with controllers, which provide a meta-level access to a component internals, allowing
for component introspection and the control of component behaviour. A Fractal com-
ponent consists of two parts: contents, that correspond to its internal components, and
a membrane, which provides so-called control interfaces to introspect and reconfigure
the internal features of the component. The membrane of a component is typically
composed of several controllers.

Representing a Fractal component (without sharing) in the Kell calculus is rela-
tively straightforward. A component named a, takes the form a[P | Q], where pro-
cess P corresponds to the membrane of the component, and process Q, of the form
c1[Q1] | . . . | cn[Qn], corresponds to the contents of the component, with n sub com-
ponents c1 to cn. Interfaces of a component can be interpreted as channels on which a
component can emit or receive messages. The membrane P is composed of controllers
implementing the control interfaces of the component.
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The Fractal model specifies several useful forms of controllers, which can be com-
bined and extended to yield components with different reflective features. Let us briefly
describe some of them, and sketch their interpretation in the Kell calculus.

An attribute of a component is a configurable property that can be manipulated
by the means of an attribute controller. It can be interpreted as some value held in a
memory cell by a component membrane. A membrane providing an attribute controller
interface is easy to program, by emitting the current value of the attribute on a private
channel and by providing channels to read and update this value.

νs.(get↑〈r〉 | s〈v〉 � s〈v〉 | r〈v〉) | (set↑〈v′〉 | s〈v〉 � s〈v′〉) | s〈0〉
A contents controller supports an interface to list, add, and remove sub components in
the contents of a component. A membrane providing a simplistic contents controller
interface could be of the form Add | Rmv | . . ., with the following definitions (in which
the contents controller interface is manifested by the cc channel carrying the request
type (where \add means a name that is exactly add ), the name c of the targetted com-
ponent, and either the program of the added component (including both membrane and
contents) or a channel r to return the removed component).

Add =(cc↑〈\add , c, x〉 � c[x]) Rmv =(cc↑〈\rmv , c, r〉 � (c[x] � r〈c, x〉))
A less simplistic encoding would take into account additional details, such as exception
conditions (e.g, the possible absence of a component to remove). However, the above
definitions convey the essence of the contents controller.

A life-cycle controller allows an explicit control over the execution of a component.
As an illustration, we can define a membrane P providing a simple interface to suspend
and resume execution of sub components (where the life-cycle interface is manifested
by the lfc channel, and a sub component c is supended by turning it into a message on
a channel of the same name as the component).

P =Suspend | Resume | . . . Suspend =(lfc↑〈\suspend , c〉 � (c[x] � c〈x〉))
Resume =(lfc↑〈\resume, c〉 � (c〈x〉 � c[x]))

Again, a more realistic implementation would be more complex, but this section only
aims to show that capturing the operational essence of a reflective component model
such as Fractal (without component sharing) is relatively direct using the Kell calculus.
For another example, Schmitt and Stefani [17] provide an interpretation of a binding
controller, allowing a component to bind and unbind its client interfaces to server inter-
faces.

2.3 Component Sharing

Component sharing arises in situations where some resource must be accessed by sev-
eral client components. A first example of such a situation is that of a log service, which
merely provides client components the ability to register status information. Figure 1
depicts an example configuration, where L is the log service component, and C and D
are client components. In this case, communications are unidirectional, from the client
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i 〈k, l, x〉 � ni〈k, l, x〉)

Fig. 2. A router configuration

components to the shared component, and the log service maintains its own mutable
state. Passivation of a client does not affect the execution of the log service or the pro-
cessing of logging requests previously sent by that client.

Figure 1 can illustrate as well a second example of component sharing, that of a
shared programming library or module. In this case, the communication between client
components C and D and the library L is bidirectional (typically, a request/response
style of communication). The expected behavior in presence of passivation is different
from the first example: if a client is passivated, requests to functions in the library should
be suspended along with the rest of the client activity.

As a third example, consider a database service used by several components of a
system (for instance, a directory service), which can again be depicted as in Figure 1.
Here, the communications between clients and the service are bidirectional, but they are
no longer independent as in the previous example, for the database service maintains a
mutable state that can be viewed and updated by each client component.

The previous examples correspond to pure software architectures and describe con-
figurations on a single machine. One can also consider mixed software/hardware con-
figurations. For instance, consider the case of a router R connecting several networks
Ni with i ∈ I . Each network Ni connects machines mij with j ∈ Ji. There are several
ways to model such a configuration in the Kell calculus without sharing. If one wants to
model the networks as components and have messages be directly exchanged between
machines and the networks, and between the networks and the router, then the locality
of communications and the tree structure of kells impose the following shape:

R

⎡

⎣
∏

i∈I

Ni

⎡

⎣
∏

j∈Ji

mij [. . . ]

⎤

⎦

⎤

⎦

where
∏

i∈I Pi means the parallel composition of the processes Pi.
Such an approach is not satisfactory because the passivation of the router or of a

network, e.g., to model their failure, implies the passivation of several machines. A
solution consists of modelling a network Ni by a channel ni, as in Fig.2. Machines
send outbound messages on the channel msg with the destination machine address k, l,
where k is the destination network, and the message to deliver x. Each machine mij

contains a rule that forwards such messages to the local network ni. Each network
Ni is represented by the replicated pulling of messages on ni out of sub kells. The
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Fig. 3. A Kell calculus configuration with sharing

router pulls messages that are in a network different from their destination—ni〈k, l, P 〉
with i �= k—and routes them to the correct network. Finally, every machine mij picks
from the local network the messages that target it using the pattern n↑

i 〈\i, \j, x〉. This
encoding, however, does not model the fact that the networks are disjoint resources
shared by the machines and connected by a router.

In this paper, we extend the Kell calculus with explicit sharing, following the
ideas sketched in §1. Technically, in our extension, the ownership forest is captured
by the locality hierarchy. For instance, in configuration C = a[b[P ] | c[R | d[Q]]],
component a is the owner of components b and c, while c is the owner of component
d. The containment graph is captured via references to shared components: thus
the process ∗a denotes a reference to the component named a. For instance, in the
configuration D = a[H | b[P | ∗e] | c[R | ∗e] | e[Q]], component a is the owner
of component e, which is shared by components b and c as each of them holds a
reference ∗e. The scope of a component e, where it is accessible by references ∗e,
is the sub tree rooted at the owner of e, unless there is a deeper component named
e whose scope encompasses the reference. Note that the scope does not include e
itself. In our extension, a reference ∗e can be created and communicated, exactly
as a name. In the latter case, note that references may escape their original scope:
for instance, in the configuration D above, if H passivates component b, and sends
it outside of a, then the reference to the shared component e will escape its scope.
Allowing a component reference to escape its scope makes it possible to model
in a simple way a primitive form of dynamic binding for shared components. The
example of Fig.1 may then be represented in the Kell calculus with sharing as in
Fig.3.

Passivation in the new calculus takes place just as in the Kell calculus without shar-
ing. However, communications across kell boundaries now require a reference to that
kell to receive a message from it or to send a message to it.

b[a〈Q〉.T ].S | (a↓〈x〉 � P ) | ∗b → b[T ].S | P{Q/x} | ∗b
a〈Q〉.T | ∗b | b[a↑〈x〉 � P ].S → T | ∗b | b[P{Q/x}].S
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Process: P ::= 0 | x | P |Q | νa.P | a〈P̃ 〉.Q | a[P ].Q | ∗a | ξ̃ � P

Pattern: ξ ::= a[x] | aα〈η̃〉 | ∗a
Argument pattern: η ::= x | a | \a | a != b

Place pattern: α ::= • | ↑ | ↓

Formula: F ::= ε | r | r⊥ | F |F
Resource: r ::= M̃ | a↓(M̃) | a↑(M̃) | a[P ] | ∗a | a | s

Spot: s ::= � | a[�] | [�]

Message: M ::= a〈P̃ 〉

Fig. 4. Processes and formulas

3 The Calculus

The syntax of the calculus is depicted in Figure 4. It is based on a denumerable set of
variables x and a denumerable set of names a. Processes include the standard null pro-
cess 0, variables x, parallel composition P |Q, and name creation νa.P , plus some less
standard constructs. Messages have the shape a〈P̃ 〉.Q, where P̃ is a list of processes
(we use ·̃ in the following to denote a list of ·’s). In a〈P̃ 〉.Q, Q is called a continuation,
because it is triggered synchronously upon consumption of the message. Kells have the
shape a[P ].Q, where a is the name of the kell, P is its contents, and, as for messages,
Q is its continuation. The calculus admits references ∗a as processes, for referencing
remote kells named a, as informally described in §2.3. References are also used to send
names in messages, as illustrated in matching rules M-NAME, M-CST, and M-NEG be-
low. Finally, the calculus features first-class reduction rules, called triggers, which are
written ξ̃ � P . Here, ξ̃ denotes a list of patterns, where each variable and name is bound
at most once (see the definition of scoping below). A pattern ξ may be a kell pattern
a[x] for passivation of active kells, a reference ∗a, for suppression of containment links,
or a message pattern aα〈η̃〉, for plain communication. In the message pattern, η̃ denotes
a list of argument patterns of the shape x, a, \a, or a != b. The first two kinds of ar-
gument patterns respectively represent input of processes and names. The third kind \a
tests the equality of the corresponding message argument with a. The last kind a != b
checks that the argument is different from b, and inputs it as a. The direction α indicates
where the received message should come from: ↑ messages come from a parent kell, •
messages come from the current kell, and ↓ messages come from a sub kell.

Processes are scoped as follows. Name restriction is a binder, as usual. Moreover,
given a trigger ξ̃ � P , the defined identifiers DI(ξ̃) of ξ̃ bind in P . We define DI(ξ̃) as

follows. Given an argument pattern η, define DI(x) ∆= {x}, DI(a) ∆= DI(a != b) ∆=
{a}, and DI(\a) ∆= ∅. Then, let DI(ξ̃) be the disjoint union of all DI(ξ), for ξ in ξ̃,
with DI(a[x]) = {x}, DI(∗a) = ∅, and DI(aα〈η̃〉) the disjoint union of all DI(η),
for η in η̃. Let structural congruence ≡ be the smallest congruence including, as usual,
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associativity and commutativity of parallel composition, neutrality of 0 w.r.t. |, extrusion
of name restriction above |, ν, and a[·].P , and renaming of bound variables and names.

Resources. The reduction relation is based on a labelled transition system (LTS), whose
labels represent a trade of resources r. As discussed below, such a trade is typically writ-
ten F1 � F2, where F1 and F2 are formulas, to express that the process undergoing
the transition offers the resources described by F2, provided the environment provides
the resources in F1. In particular, the reacting trigger ξ̃ � P trades some basic resources
(messages, passivated kells) against a reaction token written �: if the environment pro-
vides the expected resources, then the trigger reacts. When composing processes, the
corresponding transitions are composed, which may involve the annihilation of some
resource requests and corresponding offers, in case they meet.

As defined in Figure 4, there are two kinds of resources. Basic resources include
messages (M̃ | a↓(M̃) | a↑(M̃)), where M ::= a〈P̃ 〉, passivated kells (a[P ]), con-
sumed references (∗a), and permissions (a). They are generated directly from processes.
For example, a message a〈P 〉.Q trades a reaction token against a〈P 〉, yielding the tran-

sition a〈P 〉.Q ��a〈P 〉−−−−−→ Q. As explained in §2.1, we want to control the locality of
communications, so this transition should happen in the same kell as the transition in-
volving the reacting trigger, and trades involving � should only take place at the same
level as the reaction.

On the other hand, we cannot completely restrict trades to the level of the reaction,
e.g., because the consumed resources may come from shared kells, which syntactically
may reside far above the reaction site. This leads us to consider several kinds of reaction
tokens, each of them determining the position of the considered transition relatively to
the reacting trigger. These reaction tokens are called spots s ∈ Spots.

More precisely, consider a process S|b[a[(ξ � P )|Q]|R], where the reacting trigger
is ξ � P . We have just seen that resources matching the reaction token � provided by
ξ � P may only come from Q. Immediately above a, i.e., in R, trades may use the
information that the reaction lies in some sub kell named a. Thus, in R, � is viewed as
the sub reaction token a[�]. Further above a, e.g., from S, it becomes the less precise
internal reaction token [�], which only indicates that the reaction lies in some sub kell.

Formulas. Formulas are the labels of our LTS. Intuitively, they match the resources
offered and requested by the considered process. Formally, formulas are defined as in
Figure 4, and considered equivalent modulo the following equation schemes:

F1|F2 = F2|F1 (1) F |ε = ε|F = F (2)
r /∈ Spots

r|r⊥ = ε
(3) s|s⊥ = s (4) .

Equation (3) specifies that basic resources (non-spots) are used linearly: they may be
consumed only once; (4) specifies that one spot may satisfy several requests, as a join
pattern consumes several messages.

Transitions. The LTS is defined in Figure 5. Rule MATCH describes reaction, using
the notion of matching defined below, which is a three arguments judgement written
ξ : F → Θ, where Θ is a substitution. A substitution is an element of (Vars →fin

Processes) × (Names →fin Names), i.e., a pair of a finite map from variables to pro-
cesses and a finite map from names to names. Capture-avoiding substitution is defined
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MATCH
ξ : F → Θ

ξ � P
F ��−−−→ Θ(P )

REF

∗a ��a−−−→ ∗a
DOWN

a[M̃.P̃ |P ].Q
a�a↓(M̃)−−−−−−→ a[P̃ |P ].Q

UP

∗a|M̃.P̃
a[�]�a↑(M̃)−−−−−−−−→ ∗a|P̃

HERE

M.P
��M−−−−→ P

PASSIVATE
canon(P )

a[P ].Q
��a[P ]−−−−−→ Q

SUP

∗a ��∗a−−−−→ 0

NEW

P
F−→ Q a /∈ FN(F )

νa.P
F−→ νa.Q

PAR

P1
F1−−→ P ′

1 P2
F2−−→ P ′

2

P1|P2
F1|F2−−−−→ P ′

1|P ′
2

BOT

P
ε−→ P

HOT

P
F �s−−−→ Q

hot(F )
SN(F ) # {a} ∪ DN(P )

a[P ].R
F �a(s)−−−−−→ a[Q].R

COLD

P
F−→ Q

cold(F )
SN(F ) # {a} ∪ DN(P )

a[P ].R
F−→ a[Q].R

Fig. 5. The LTS

as usual on processes, and written Θ(P ). Define the negation F⊥ of a formula F by

distributing it over resources, given that r⊥⊥ = r. Let F1 � F2 denote F⊥
1 |F2. The

rule states that if ξ : F → Θ, then the trigger ξ � P has a transition to Θ(P ), under the
label F � �. Thus, the reaction happens only if the environment provides the resources
F (recall that spot � stands here for the firing of the trigger).

By rule REF, at the level of a reaction, a reference may generate a permission to
receive messages from the kell it points to. This permission is then used in rule DOWN

to actually consume the corresponding messages. By rule UP, a reference to the reacting
kell allows the reaction to consume messages from the kell holding the reference. By
rules HERE, PASSIVATE, and SUP, a reaction may consume messages, active kells, and
references at its top-level. In rule PASSIVATE, we use the notation canon(P ) to mean
that P has no active ν. This means that such ν’s must have been extruded before by
structural congruence. Formally, a context C is a process with exactly one occurrence
of the special variable �. Textual replacement of � with some process P (possibly with
capture) is written C{P}. A process P is in canonical form, written canon(P ), iff for
all context C �= �, if P = C{νa.Q}, then C{νa.Q} �≡ νa.C{Q}.

The other rules specify how the transition relation is closed under active contexts.
Rule NEW handles the case of ν. Rule PAR combines the resources of several parts
of the process. If one argument provides the resources requested by the other, then the
trade occurs. Formally, two derivations having an occurrence of the MATCH rule can
be put together using this rule: the restriction to only one active trigger per reaction is
enforced by the rule for reduction, presented below. Rule BOT closes transitions under
parallel composition with spectator processes.
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Rule HOT allows to wrap an already existing reaction inside some parent kell: a

transition P
F�s−−−→ Q is seen from the enclosing kell as a[P ].R

F�a(s)−−−−−→ a[Q].R, where

the operation a(s) over spots is defined by a(�) ∆= a[�], and a(b[�]) ∆= a([�]) ∆= [�].
The rule is subject to two side conditions. First, F must be hot, written hot(F ), which
means that F matches the syntax F ::= ε | b⊥ | b↓(M̃) | b↑(M̃) | F |F . Second one
must have SN(F ) # DN(P ) (see below). Intuitively, the presence of s in the label
of the conclusion imposes that the reaction occurs in P , so the side condition means
that a reacting kell only has three kinds of interactions with its context: 1) it (partially)
specifies the place of reaction; 2) it exhibits authorizations to access shared kells; 3) it
consumes messages through references to shared kells (in both directions). The second
side condition enforces the fact that references point to the closest kell in the hierarchy,
as informally stated in §2.3. We call the defined names DN(P ) of a process P the
set of all a’s such that P ≡ νb̃.Q|a[R]. for some Q, R, b̃, with a /∈ b̃. Moreover, a
formula is in canonical form iff, for each resource r, it does not contain both r and
r⊥. We define the scoped names SN(F ) of a formula F in canonical form as follows:

for resources r of the shape a↓(M̃), a↑(M̃), a, and a[�], let SN(r) ∆= {a}; for other

resources r, let SN(r) ∆= ∅. Additionally, let SN(F1|F2)
∆= SN(F1) ∪ SN(F2) and

SN(F⊥) ∆= SN(F ). The rule prevents resources consumed through a reference ∗a to
escape the scope of any kell named a. For instance, a request for a message of the shape
a↓(b〈P 〉) through a reference ∗a is supposed to be consumed in (one of) the closest
kell(s) named a. Such a request leads to the formula a⊥|a↓(b〈P 〉) � s: if a down
message is found in a, using formula a � a↓(b〈P 〉), then the reaction occurs. However,

if P1
a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ P2, then we do not want c[P1|a[Q1]]

a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ c[P2|a[Q1]]
to hold, because the message ought to be found in Q1. Here, DN(a[Q1]) = {a} which
is not disjoint from SN(a⊥|a↓(b〈P 〉)) = {a}. Note that this check is done only when
crossing kell boundaries. Indeed, we allow the presence of more than one kell named a
in parallel to the reacting trigger.

Symmetrically to rule HOT, rule COLD allows to transfer resources from kells con-
taining references ∗a to the reacting kell a, which may be syntactically distant. Let F

be cold, written cold(F ), iff F matches the syntax F ::= b[�]⊥ | b↑(M̃) | F |F . Rule
COLD says that any transition with a cold label is viewed identically from outside the
ambient kell, provided the scoping conditions are met. In practice, rule COLD is only
used to transfer the consumption of up messages (created by rule UP) through kells.

Matching Figure 6 defines the matching relation. Rule M-PAR states that matching a
pattern ξ1|ξ2 is like matching ξ1 and ξ2 separately, and then combining the result. In
the rule, + denotes the union of finite maps with disjoint domains. By rule M-HERE,
matching a pattern a•〈η̃〉 against a resource a〈P̃ 〉 boils down to match η̃ against P̃
(as defined below). Rule M-ELSEWHERE handles the cases of down and up messages.
Given a pair ζ consisting of a name a and argument patterns η̃, we let ζα stand for aα〈η̃〉.
Similarly, given a list ζ̃ = ζ1| . . . |ζn, let ζ̃α = ζα

1 | . . . |ζα
n . The rule tunes the directions

(up or down) in order to allow rule M-HERE to apply coherently. Rules M-PASSIVATE

and M-SUP are straightforward. For message contents, Rule M-CST states that an es-
caped pattern \a matches itself, yielding no substitution. Rules M-NAME, M-NEG, and

.
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M-PAR
ξ1 : F1 → Θ1 ξ2 : F2 → Θ2

ξ1|ξ2 : F1|F2 → Θ1 + Θ2

M-HERE

η̃ : P̃ → Θ

a•〈η̃〉 : a〈P̃ 〉 → Θ

M-ELSEWHERE

ζ̃• : M̃ → Θ

ζ̃α : aα(M̃) → Θ

M-PASSIVATE

a[x] : a[P ] → {x 
→ P}
M-SUP

∗a : ∗a → ∅
M-PROC

x : P → {x 
→ P}
M-NAME

a : ∗b → {a 
→ b}

M-CST

\a : ∗a → ∅
M-NEG

b �= c

a != b : ∗c → {a 
→ c}
M-NIL

ε : ε → ∅
M-CONS

η : P → Θ1 η̃ : P̃ → Θ2

η, η̃ : P, P̃ → Θ1 + Θ2

Fig. 6. Matching

M-PROC handle the input of names and variables. Rules M-NIL and M-CONS dispatch
the results.

Reduction. Finally, reduction, written →, is the smallest relation satisfying the rule

P ≡ P ′ P ′ s−→ Q′ Q′ ≡ Q

P → Q
·

As exactly one spot is allowed, this rule guarantees that exactly one trigger fires.

4 Examples

Let us first present a simple example.

Example 1. Consider the following configuration.

A = a[(e↑1〈x〉 | e↑2〈y〉�P ) | c〈Q〉] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | (c↓〈z〉�R)]

The component a can emit the message c〈Q〉, which implies that a reference ∗a to a
can be used to access this message. Hence we have the following reduction where the
rule in kell l2 is triggered.

A → a[(e↑1〈x〉 | e↑2〈y〉 � P )] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | R{Q/z}]

The component a can also receive messages from both components l1 and l2 since it is
a shared sub component of both. Hence we have the following reduction where the rule
in kell a is triggered.

A → a[P{U, V/x, y} | c〈Q〉] | l1[∗a] | l2[∗a | (c↓〈z〉 � R)]

Let us now give an example of dynamic binding and reconfiguration in the calculus.
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Example 2. Consider the following configuration, which models a running component
receiving instructions to update its sub component c with a new code P (d), which uses
a service named d.

A = update〈c, P (d)〉 | ∗a | a[(update↑〈b, x〉 � (b[y] � b[x])) | c[Pc] | d[Pd]]

It reduces in two steps to ∗a | a[(update↑〈b, x〉 � (b[y] � b[x])) | c[P (d)] | d[Pd]], where
the references to d in P (d) have been dynamically bound to d[Pd].

We now review the examples of §2.3 within our calculus. First, assume given two
components Queue[. . .] and Pair [. . .], working as follows. They expect messages from
their parent components, on channels Queue.push,Queue.pop,Pair .fst , and so on.
The channels of these messages identify the action to execute. The messages contain a
return channel name and the corresponding arguments. On the return channel, Queue
and Pair send messages which have to be picked up as down messages by the client
parent component. For convenience, we use the syntactic sugar let x = a(P̃ ) in Q

for νb.a〈b, P̃ 〉|(b↓〈x〉 � Q), with some fresh b used as return channel. For instance,
let x = Queue.push(P, Q) in R uses the result x of pushing P on top of Q in R.

Example 3. The log service example can be represented as follows (reproducing the
configuration of Figure 1 with L = Log).

Log[∗Queue | . . . code to actually log . . .
| (Log.log↑〈x〉 | state 〈y〉 � let z = Queue.push(x, y) in state〈z〉)]

| A[B[. . .] | C[∗Log | . . .]] | D[∗Log | F [. . .]]

In the rest of the program, the encapsulation links to Log are represented by occur-
rences of the reference ∗Log. The ownership of Log by, say, o is encoded by the fact
that the sub component Log appears at the top-level in o. The implicit scope of Log ,
restricted to processes encapsulated in o, ensures that o is a dominator of Log .

Example 4. The shared printer example can be represented as follows, where c stands
for “client”, and j stands for “job”.

Printer [∗Queue | ∗Pair | . . . code to actually print . . .
| (Printer .lpr↑(c, j) | state 〈q〉 � let x = Pair .pair (c, j) in

let q′ = Queue.push(x, q) in
state〈q′〉)

| (Printer .lpq↑(r) | state 〈q〉 � r〈q〉 | state〈q〉)]
| A[B[. . .] | C[∗Printer | . . .]] | D[∗Printer | F [. . .]]

The shared library example can be represented similarly. We can however empha-
size the code server aspect of the example with a representation that only requires a
unidirectional communication between the clients and the shared library. The shared
library is thus modelled as a code server that allows an instance of the library code to
be made available on request in the client component that requires it.

Example 5. The shared library example can be represented as follows, where !a〈P 〉
stands for νb.(a〈P 〉.b〈〉|(b〈〉 � a〈P 〉.b〈〉)).
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∏

i∈I;j∈Ji

mij

[
∗Ni | (n↓

i 〈\i, \j, x〉 � x) | Pij

]
| R

⎡

⎣
∏

i,j∈I;i�=j

(n↑
i 〈\j, l, x〉 � nj〈j, l, x〉)

⎤

⎦

|
∏

i∈I

Ni

[
∗R | (n↓

i 〈k, l, x〉 � ni〈k, l, x〉) | (msg↑〈k, l, x〉 � ni〈k, l, x〉)
]

Fig. 7. A better router configuration

Lib[!Lib.get〈P 〉] | A[B[. . .] | C[∗Lib | . . .]] | D[∗Lib | F [. . .]]

Finally, we review the router example from Figure 2, which is more direct than
Examples 3 and 4 because it does not require any data structure: we just assume that
names include integers.

Example 6. The router example is depicted in Fig.7. It is very similar to Fig.2: the
router is identical and shared between the networks, the networks are now kells shared
between machines and may directly pull messages out of machines and the router. This
encoding allows the failure of the router or a network to only impact inter-machine
communication, it also segregates messages in different networks.

5 Conclusion

Component sharing, as experienced with component models providing it, is a fea-
ture that proves extremely useful when describing or programming software archi-
tectures or systems with shared resources. We have presented in this paper an exten-
sion of the Kell calculus that provides a direct, formal interpretation of component
models with sharing. To our knowledge, this is the first calculus offering (1) encap-
sulation with fine-grain, objective control over communications, (2) locality passiva-
tion, migration and replication, and (3) access to shared components with simple com-
munication rules. Our approach draws on a distinction between ownership and con-
tainment inspired by recent works on ownership types and the control of aliasing in
object-oriented programming languages. In contrast to these works, however, our ap-
proach avoids the burden of a type system, by primitively distinguishing ownership
from containment, thus enforcing the programming discipline directly in the operational
semantics.

The work we have presented here is only preliminary, however. First, the standard
issues appearing when one introduces a new process calculus remain to be dealt with,
e.g., the development of a bisimulation-based behavioral theory, or of static analyses to
ensure semantic properties of processes. Furthermore, it would be interesting to study
the exact relation between approaches to object containment and ownership in object-
oriented languages and in the Kell calculus with sharing. At a minimum, we need to
investigate the different benchmarks used in the object-oriented programming commu-
nity and study how they are handled in our calculus.
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Second, two important, inter-related questions remain, that pertain (1) to the control
of communications with shared components, and (2) to the control over dynamic bind-
ing. The first issue concerns a potential security hole in our design. It can be succinctly
stated as follows: in the extended Kell calculus presented here, the construct νa.a[a[P ]]
is not a perfect firewall, while it is in the plain Kell calculus. This is due to the fact that
P may have references to shared kells, which may in turn allow P to emit and receive
messages from its environment. We see two posssible solutions to this problem.

First, one could annotate each kell construct a[·] with explicit sieves on communi-
cations with shared components. For instance, let us write a[P ]A, where A ::= ∅ | ∗ |
ã | ¬ã represents the names of shared components the present component is allowed
to communicate with. Then, define the interpretation of annotations by �∅� = Names,
�∗� = ∅, �ã� = Names \ ã, and �¬ã� = ã. The semantics of these consructs is given
by a simple modification of the rules HOT and COLD, given by adding textually the
side condition SN(F ) # �A� to both of them. With these new constructs and rules, we
recover the perfect firewall equation for νa.a[a[P ]∅]∅: P cannot communicate with the
environment outside of a.

The second, more radical solution is to introduce a second ν operator, say ∇,
that would not cross component boundaries. Channel names bound by ∇ would then
represent communication channels, while free names and names bound by ν would
represent global names. Distant communication would be restricted to channels,
thus preventing an incoming piece of code to arbitrarily communicate with distant
components. Global names would serve for matching against local messages. We
conjecture that the presence of ν and ∇ avoids the need for directional patterns
(↑, ↓, •). The calculus thus collapses to a simpler version. The second solution
might also turn out to solve the second problem (which is not the case of the first
solution): the distinction between local channels and global names might give rise to
a fine-grain account of dynamic binding, provided the pattern language is enriched
adequately.
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