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Preface

Generative Programming and Component Engineering (GPCE) is a leading re-
search conference on automatic programming and component engineering. These
approaches to software engineering have the potential to revolutionize software
development as automation and components revolutionized manufacturing. The
conference brings together researchers and practitioners interested in advanc-
ing automation for software development. It is also a premier forum for cross-
fertilization between the programming language and software engineering re-
search communities.

GPCE arose as a joint conference, merging the prior conference on Generative
and Component-Based Software Engineering (GCSE) and the Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG). The
proceedings of the previous GPCE conferences were published in the LNCS series
of Springer as volumes 2487, 2830, and 3286. In 2005 GPCE was co-located with
the International Conference on Functional Programming (ICFP) and the sym-
posium on Trends in Functional Programming (TFP), reflecting the vigorous
interaction between the functional programming and generative programming
research communities. GPCE and ICFP are both sponsored by the Association
for Computing Machinery.

The quality and breadth of the papers submitted to GPCE 2005 was impres-
sive. All 86 papers, including 5 papers for tool demonstrations, were rigorously
reviewed by 17 highly qualified Program Committee members. The members of
the Program Committee first provided in-depth individual reviews of the sub-
mitted papers, and then debated the merits of the papers through an extended
electronic Program Committee meeting. After much (friendly) argument, 25 reg-
ular papers and 2 tool demonstration papers were selected for publication. The
Program Committee provided extensive technical feedback to the authors of the
submitted papers. The conference program was complemented with three invited
talks, three extended tutorials, and three all-day workshops.

The accepted papers are grouped into eight topic areas: aspect-oriented pro-
gramming,component engineeringandtemplates,demonstrations,domain-specific
languages, generative techniques, generic programming, meta-programming and
transformation, and multi-stage programming. The invited talks were from lead-
ing innovators in the field: Oscar Nierstrasz on object-oriented reengineering
patterns, Oege de Moor on the AspectBench compiler for AspectJ, and Bernd
Fischer on certifiable program generation.

The program chairs would like to thank foremost the authors of the submit-
ted papers: their research is the justification for this conference. Both program
chairs were impressed by the expertise and diligence of the Program Committee
members and their co-reviewers. Their technical dedication, as reflected in the
quality of their reviews, was the foundation of the strength of these proceedings.



VI Preface

The general chair, Eugenio Moggi, was tireless in steering the program chairs
towards a technically superb program. The publicity chair, Eelco Visser, went
beyond the call of duty in raising awareness of the conference in the software
engineering and programming languages research communities. Andrew Malton
and Jeff Gray solicited and organized a workshop and tutorial program of interest
to researchers and practitioners alike. Tarmo Uustalu graciously served as local
arrangements chair, providing a hospitable atmosphere in the beautiful venue
of Tallin, Estonia. The paper submissions and the reviewing process were ably
supported by the Web-based EasyChair system (http://www.easychair.org/).
The program chairs would like to extend our appreciation to Andrei Voronkov,
who developed EasyChair and is the leading force behind its continued develop-
ment. His personal attention to our conference greatly facilitated managing the
volume of reviews and discussions amongst the Program Committee. Finally,
we would like to recognize the importance of the gentle guidance of the GPCE
Steering Committee. Their long-term dedication is the core that binds together
this research community.

July 2005 Robert Glück
Michael Lowry
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Éric Tanter, Jacques Noyé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Semi-inversion of Guarded Equations
Torben Æ. Mogensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Generative Techniques I

A Generative Programming Approach to Interactive Information
Retrieval: Insights and Experiences

Saverio Perugini, Naren Ramakrishnan . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Optimizing Marshalling by Run-Time Program Generation
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Samuel Kamin, Barış Aktemur, Philip Morton . . . . . . . . . . . . . . . . . . . . . 293

Statically Safe Program Generation with SafeGen
Shan Shan Huang, David Zook, Yannis Smaragdakis . . . . . . . . . . . . . . . . 309



Table of Contents XI

A Type System for Reflective Program Generators
Dirk Draheim, Christof Lutteroth, Gerald Weber . . . . . . . . . . . . . . . . . . . 327

Sorting Out the Relationships Between Pairs of Iterators, Values, and
References
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Object-Oriented Reengineering Patterns

An Overview

Oscar Nierstrasz1, Stéphane Ducasse2, and Serge Demeyer3

1 Software Composition Group, University of Bern, Switzerland
2 Laboratoire d’Informatique, Systèmes, Traitement de l’Information,

et de la Connaissance, Université de Savoie, France
3 Lab On REengineering, University of Antwerp, Belgium

Abstract. Successful software systems must be prepared to evolve or
they will die. Although object-oriented software systems are built to
last, over time they degrade as much as any legacy software system. As
a consequence, one must invest in reengineering efforts to keep further
development costs down. Even though software systems and their busi-
ness contexts may differ in countless ways, the techniques one uses to
understand, analyze and transform these systems tend to be very sim-
ilar. As a consequence, one may identify various reengineering patterns
that capture best practice in reverse- and re-engineering object-oriented
legacy systems. We present a brief outline of a large collection of these
patterns that have been mined over several years of experience with
object-oriented legacy systems, and we indicate how some of these pat-
terns can be supported by appropriate tools.

1 Introduction

A legacy software system is a system that you have inherited and is valuable to
you. Successful (i.e., valuable) software systems typically evolve over a number of
years as requirements evolve and business needs change. This leads to the well-
documented phenomenon that such systems become more complex over time,
and become progressively harder to maintain, unless special measures are taken
to simplify their architecture and design [13].

Numerous problems manifest themselves as a legacy system begins to turn
into a burden. First of all, knowledge about the system deteriorates. Documen-
tation is often missing or obsolete. The original developers or users may have
left the project. As a consequence, inside knowledge about the system may be
missing. Automated tests that document how the system functions are rarely
available.

Second, the process for implementing changes ceases to be effective. Simple
changes take too long. A continuous stream of bug fixes is common. Maintenance
dependencies make it difficult to implement changes or to separate products.

Finally, the code itself will exhibit various disagreeable symptoms. Large
amounts of duplicated code are common, as are other “code smells” such as
violations of encapsulation, large, procedural classes, and explicit type checks.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 1–9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 O. Nierstrasz, S. Ducasse, and S. Demeyer

Concretely, the code will manifest architectural problems such as improper
layering and lack of modularity, as well as design problems such as misuse of
inheritance, missing inheritance and misplaced operations. Excessive build times
are also a common sign of architectural decay.

Since the bulk of a (successful) software system’s life cycle is known to reside
in maintenance, and “maintenance” is known to consist largely in the introduc-
tion of new functionality [14], identifying and resolving these problems becomes
critical for the survival of legacy systems.

a z

xxx

yyy

Yyy

Xxx

z

Requirements

Code

Designs

model capture and analysis

problem assessment

migration

Fig. 1. The Reengineering life cycle

To this end, it is useful to distinguish reverse engineering from reengineer-
ing of software systems [2]. By “reverse engineering”, we mean the process of
analyzing a software system in order to expose its structure and design at a
higher level of abstraction, i.e., the process of extracting various models from
the concrete software system. By “reengineering” we refer to the process of trans-
forming the system to a new one that implements essentially the same functional
requirements, but also enables further development.

The process of reverse- and re-engineering consists of numerous activities,
including architecture and design recovery, test generation, problem detection,
and various high and low-level refactorings. In Figure 1 we see an ideal depiction
of the reverse- and re-engineering life cycle [3,10].

Although the motivations for reengineering a legacy system may vary consid-
erably according to the business needs of the organization, the actual technical
steps taken tend to be very similar. As a consequence, it is possible to iden-
tify a number of generally useful process patterns that one may apply while
reverse- and re-engineering a legacy system. We provide a brief overview of
these patterns in Section 2. By the same token, there exist various tools that
can help support the reengineering process. In Section 3 we present a brief
outline of some of the tools we have developed and applied to various legacy
systems.
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2 Reengineering Patterns

The term “pattern” used in the context of software usually evokes the notion of
“design patterns” — recurring solutions to design problems. Reengineering pat-
terns are not design patterns, but rather process patterns — recurring solutions
to problems that arise during the process of reverse- and re-engineering.

We distinguish patterns from “rules” or “guidelines” because each pattern
must be interpreted in a given context. Patterns are not applied blindly, but en-
tail tradeoffs. Just as one would never deliberately implement a software system
applying all of the GOF patterns [7], one should not blindly apply reengineering
patterns without considering all the consequences.

We were able to mine a large number of reengineering patterns during the
course of Famoos, a European project1 whose goal was to support the evolu-
tion of first-generation object-oriented software towards object-oriented frame-
works. Famoos focussed on methods and tools to analyse and detect design
problems in object-oriented legacy systems, and to migrate these systems to-
wards more flexible architectures. The main results of Famoos are summarized
in the Famoos Handbook [4] and in the book “Object-Oriented Reengineering
Patterns” [3].

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute Responsibilities

Transform Conditionals
to Polymorphism

Fig. 2. Reengineering pattern clusters

In Figure 2 we see how various clusters of reengineering patterns can be
mapped to our ideal reengineering life cycle. Each name represents a collection
of process patterns that can be applied at a particular stage during the reengi-
neering of a legacy system.

Setting Direction contains several patterns to help you determine where to
focus your re- engineering efforts, and make sure you stay on track. First Con-
tact consists of a set of patterns that may be useful when you encounter a
legacy system for the first time. Initial Understanding helps you to develop a
first simple model of a legacy system, mainly in the form of class diagrams.

1 ESPRIT Project 21975: “Framework-based Approach for Mastering Object-Oriented
Software Evolution”. www.iam.unibe.ch/∼scg/Archive/famoos
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Detailed Model Capture helps you to develop a more detailed model of a partic-
ular component of the system. Tests: Your Life Insurance focusses on the use of
testing not only to help you understand a legacy system, but also to prepare it for
a reengineering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will be
accepted by its users. Detecting Duplicated Code can help you identify locations
where code may have been copied and pasted, or merged from different versions
of the software. Redistribute Responsibilities helps you discover and reengineer
classes with too many responsibilities. Transform Conditionals to Polymorphism
will help you to redistribute responsibilities when an object-oriented design has
been compromised over time.

Since a detailed description of the patterns is clearly out of the scope of a
short paper, let us just briefly consider a single pattern cluster. First Contact
consists of patterns that can be useful when first encountering a legacy system.
There are various forces at play, which one must be conscious of. In particular,
legacy systems tend to be large and complex, so it will be difficult to get an
overview of the system. Time is short, so it is important to gather quality infor-
mation quickly. Furthermore, first impressions are dangerous, so it is important
not to rely on a single source of information.

One has various resources at hand: the source code, the running system, the
users, the maintainers, documentation, the source code repository, the changes
log, the list of bug requests, the test cases, and so on. Even if some of these are
missing or unreliable, one must take care to not reject anything out of hand.

In Figure 3 we see a map of the patterns in this cluster, and how they relate to
each other. As with each pattern cluster, patterns support each other to resolve
the forces at play. The First Contact cluster resolves the forces by balancing
what you learn from the users and maintainers with what you learn from the
source code.

In Figure 4 we see a capsule summary of one of the better-known patterns of
this cluster. The name is typically an action to be performed, that expresses the
key idea of the pattern. Not every pattern is always relevant in every context,
so one must be clear about the intent of each pattern, the problem it solves, the
key idea of the solution, and the tradeoffs entailed. In this particular pattern,
the context of a demo is used as a device to help the user to focus on concrete
rather than abstract qualities of the application, while communicating typical
use cases and scenarios to the engineer. Each pattern may also include hints,
variants, examples, rationale, related patterns, and an indication of what to do
next. Known uses are very important, since only established best practices can
truly be considered “patterns”.

3 Reengineering Tools and Techniques

It is easy to put too much faith into tools. For this reason the reengineering
patterns put more emphasis on process than tools. (As a popular saying puts it:
“A fool with a tool is still a fool.”)
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Verify what 
you hear

Talk
about it

talk with 
developers

System experts
talk with 

end users

Chat with the 
Maintainers

Interview
During Demo

Software system

read it
read

about it

compile it

Read all the Code 
in One Hour

Skim the 
Documentation

Do a Mock 
Installation

Fig. 3. First Contact

Nevertheless, certain activities can be streamlined with the help of carefully
chosen tools. In particular, the process of reverse engineering can be aided by
tools that build models from source code. Note that it is not a question of gener-
ating UML diagrams from source code. (10’000 class diagrams do not necessarily
aid program comprehension more than 1’000’000 lines of source code.)

One the other hand, during Initial Understanding, a key pattern is Study the
Exceptional Entities. Very often it is the software entities that are very large,
very small, most tightly coupled, inherit the most, inherit the least, etc., that tell
one the most about how a software system works. It may be that these outliers
are indicative of design problems, but this need not be the case.

CodeCrawler is a tool that presents simple visualizations of software en-
tities based on direct metrics [12]. A polymetric view, is a two-dimensional vi-
sualization of nodes (as entities) and edges (as relationships) that maps various
metric values to attributes of the nodes and edges. For example, different metrics
can be mapped to the size, position and color of a node, or to the thickness and
color of the edge.

Polymetric views can be generated for different purposes: coarse-grained
views to assess global system properties, fine-grained views to assess proper-
ties of individual software artifacts, and evolutionary views to assess properties
over time.

Figure 5 shows a System Complexity View which is coarse grained view [11].
The figure shows the hierarchies of CodeCrawler itself. Each node represents
a class, and each edge represents an inheritance relationship. The height of a
node represents the number of methods, the width represents the number of
attributes and the (greyscale) color represents the number of lines of code. A
System Complexity View can help one to quickly identify many kinds of out-
liers. For example, tall, isolated, dark nodes have many methods, many lines of
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Name Interview During Demo

Intent Obtain an initial feeling for the appreciated functionality of a software
system by seeing a demo and interviewing the person giving the demo.

Problem How can you get an idea of the typical usage scenarios and the main
features of a software system?

Solution Observe the system in operation by seeing a demo and interviewing
the person who is demonstrating. Note that the interviewing part is at
least as enlightening as the demo.

Hints The user who is giving the demo is crucial to the outcome of this pattern
so take care when selecting the person. Therefore, do the demonstration
several times with different persons giving the demo.

Tradeoffs Pro: Focuses on valued features.
Con: Provides anecdotal evidence only.
Difficulties: Requires interviewing experience.

Example (Description of a typical interview ...)

Rationale Because users must start from a working system, they will adopt a pos-
itive attitude in explaining what works. The interviewer can ask precise
questions, get precise answers, thus digging out the expert knowledge
about the system’s usage.

Known Uses Commonly used for evaluating user-interfaces.

Related
Patterns

See Customer Interaction Patterns [17]

What Next Carry out several attempts of Interview During Demo with different
kinds of stakeholders. Perform these attempts before, after or interwo-
ven with Read all the Code in One Hour and Skim the Documentation.
Afterwards, consider to Chat with the Maintainers to verify some of
your findings.

Fig. 4. A pattern in a nutshell

code, and few attributes, and they may be signs of procedural classes with long,
algorithmic methods.

CodeCrawler is built on top of Moose, a reengineering environment that
offers a common infrastructure for various reverse- and re-engineering tools
[5,15]. At the core of Moose is a common meta-model for representing soft-
ware systems in a language-independent way. Around this core are provided
various services that are available to the different tools. These services include
metrics evaluation and visualization, a repository for storing multiple models, a
meta-meta model for tailoring the Moose meta-model, and a generic GUI for
browsing, querying and grouping.

Some other tools that have been developed either in the context of Famoos,
or subsequently as clients of Moose, include:

– Duploc— detects duplicated code in large software systems in a language-
independent way [6,16].

– ConAn— applies formal concept analysis to detect implicit contracts in
object-oriented software [1].
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Legend:

Class

NOM

NOA

LOC

Inheritance

Fig. 5. A System Complexity view of CodeCrawler

– Van— analyzes version histories of software systems to uncover trends [8].
– TraceScraper— analyzes run-time traces of instrumented software to cor-

relate features with software artifacts [9].

4 Conclusions

Given the premise that “the only constant is change”, any interesting software
system must evolve to stay interesting. As a consequence, however, we must
invest in reengineering if the architecture and design of the system is to stay
abreast of the changing requirements. Even though every system is different, we
can identify various useful reengineering patterns that ease the process of under-
standing a complex legacy system, identifying its problems, and transforming it
to a more flexible design.

The patterns we have documented include only those for which we have
personally witnessed success. The Famoos reengineering patterns therefore rep-
resent only a starting point, and not a definitive work. What is important is
that each pattern document best practice as experienced by experts in the field,
as opposed to new research ideas that have not yet been proven in industrial
contexts. There is clearly much research that can be done to investigate, for
example, the synergy between tools and reengineering patterns, but one must
not confuse the two.

We hope that the value of reengineering patterns, and more generally process
patterns, will increasingly be recognized and encouraged as an effective means
to improve the state of the art and disseminate best practice.
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1. Gabriela Arévalo. High Level Views in Object Oriented Systems using Formal
Concept Analysis. PhD thesis, University of Berne, January 2005.

2. Elliot J. Chikofsky and James H. Cross, II. Reverse Engineering and Design Re-
covery: A Taxonomy. In Robert S. Arnold, editor, Software Reengineering, pages
54–58. IEEE Computer Society Press, 1992.
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Abstract. abc is an extensible, optimising compiler for AspectJ. It has been de-
signed as a workbench for experimental research in aspect-oriented programming
languages and compilers. We outline a programme of research in these areas, and
we review how abc can help in achieving those research goals.

1 Goals

Aspect-oriented programming has become hugely successful as a highly disciplined
form of program generation. Unlike many other forms of program generation, it is based
on the idea of transforming program execution rather than program syntax: an aspect
observes a base program, and when certain programmer-specified events occur, it runs
some extra code of its own. This basis of transforming executions rather than syntax
make aspects less brittle than more traditional forms of meta-programming. The most
popular implementation of these ideas is AspectJ, an extension of Java [19].

While there is general consensus about the importance of aspects, the design space
for aspect-oriented programming languages is not yet well understood. Many questions
need to be answered, for example:

Definition of events. What is the nature of events observed by an aspect? Are they
individual actions (like a method call)? Or perhaps the call stack (as in AspectJ’s
cflow construct) [33]? Or perhaps the complete history of the computation to date,
as some kind of trace [12, 32]? Some authors have even suggested constructs that
inspect events that may happen in the future [18, 21].

Definition of patterns. How do we describe the events that can be intercepted? In
AspectJ, the language of patterns is fairly simple and restricted. Many authors
have suggested a notation based on logic programming would be appropriate e.g.
[15, 22], but would that render compile times unacceptably high? Other proposals
include the use of temporal logic [30], regular expressions [3], and even context-
free grammars to describe traces [32].

Modular reasoning. Is it desirable to hide some events, to allow for modular reason-
ing, where a module can be freely replaced by another implementation, without

� This work was supported, in part, by IBM, and by EPSRC in the United Kingdom, and NSERC
in Canada.
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affecting system behaviour [2]? Indeed, what is the correct notion of ‘modular rea-
soning’ in the context of aspects [20]? Such modular reasoning may also be facili-
tated by identifying aspects that are harmless in the sense that they do not interfere
with the operation of the base program [10, 28].

Adding state to existing classes. Aspects often need to add state to existing classes, in
the form of new fields and methods to manipulate those new fields. What are ap-
propriate language mechanisms for that, and how do they interact with inheritance?
Recent work on improved virtual types [8], and nested inheritance [26] address
similar issues in a principled way — can they succesfully be combined with as-
pects?

Aspect composition. How are aspects composed? In AspectJ, the interaction between
aspects is controlled via precedence declarations, but in comparison to other work
on feature composition such declarations are not very expressive [7]. Recently the
connection between feature-oriented programming and aspects has been made ex-
plicit, and this has suggested improvement to AspectJ [23]. Perhaps earlier works
on object and module calculi may be adapted to give a rigorous account of aspect
composition [9]?

Overheads and optimisation. What are the overheads of using aspects at runtime?
Until recently, it was believed such overheads are negligible. Indeed, in [25] a very
nice explanation is given (in terms of partial evaluation) of how one can do much
of the event-pattern matching at compile-time instead of runtime. Even with those
optimsations, however, precise measurements have shown that the use of cflow
and around can still lead to substantial loss of performance [13]. What are the
optimisations for eliminating such overheads? A first step towards addressing these
issues is presented in [6].

The goal of abc, the AspectBench Compiler for AspectJ, is to provide a workbench
for experimental research in all these areas. abc is a full implementation of the AspectJ
language, with an extensible frontend and a framework for implementing sophisticated
analyses and optimisations. abc is freely available under the LGPL [1].

2 Architecture

The frontend of abc is based on Polyglot, a framework for experimenting with exten-
sions of Java [27]. In Polyglot, all compiler passes are implemented as non-destructive
rewriting of the AST; the rewrite operations themselves are encoded direct in Java via
the visitor pattern. Furthermore, Polyglot features the use of delegates to enable ex-
tensions to add further members in the middle of the inheritance hierarchy. This func-
tionality is similar to the intertype declarations of AspectJ, but it is encoded in pure
Java.

The backend of abc is based on Soot, a framework for analysing and transform-
ing Java bytecode [31]. It most notably provides a typed, stackless intermediate repre-
sentation named Jimple — this is much more convenient for analysis and transforma-
tion than normal bytecode. The backend includes the advice weaver that inserts extra
code (named advice in AspectJ) at points specified by the patterns (called pointcuts in
AspectJ).
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Details of the architecture are depicted in Figure 1. The frontend reads Java and
class files, and based on these it produces an abstract syntax tree (AST) for the AspectJ
program. The separator then strips out all aspect-specific features, into a pure Java AST
and a datastructure that we call the AspectInfo. The AspectInfo contains all information
necessary to weave the aspects into bytecode: it could thus be thought of as a meta-
program that is executed by later phases of the compiler. In the next step, we alter the
type hierarchy as required for the aspects (by adding new members introduced via in-
tertype declarations, as well as new superclasses and interfaces as stipulated by declare
parents declarations). At this point we can generate Jimple code for the pure Java parts
of the program. We then weave in the advice, and apply any optimisations necessary,
before finally producing bytecode.

Backend

.java

Aspect
Info

.class

Code generation and static weaving

Separator

AspectJ
AST

Java
AST

IR

Java
bytecode

Advice weaving and postprocessing

Jimple

Polyglot−based frontend

Frontend

Fig. 1. Architecture of abc
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3 Example Extensions

The design of abc was guided by a number of small extensions of our own, which are
described in [5]. The largest example that we have investigated thus far is the addition
of trace matches with free variables [3]. This allows one to write patterns that range
not over individual events like method calls, but instead over program traces. Such
proposals were made earlier by [12,32]: our contribution is the introduction of variable
binding in the patterns. This feature allows one to track the behaviour of individual
objects.

To illustrate, consider the safe usage of iterators. We wish to check at runtime that
no iterator is used after its underlying collection has been modified. In our extension of
AspectJ, this would be written as shown in Figure 2. In the header of the trace match,
we declare the free variables bound in the pattern, here an iterator i and a datasource.
Next we declare three symbols, which make up the alphabet of interest: the creation of
an iterator, the next operation, and the modification of the datasource. We then specify
the pattern that should trigger an exception: create an iterator, do zero or more next
operations, modify the datasource, and then do one more next. Of course one might also
argue that calling Iterator.hasNext() would be an error after modifying the datasource:
the pattern is easily modified to accommodate that if desired.

This example does in fact highlight another important direction for future work on
AspectJ, namely the ability to check this type of property at compile time. AspectJ

// track iterator i on data source ds
tracematch (Iterator i, DataSource ds) {
// declare alphabet of interest
sym create iter after returning(i):

call(Iterator DataSource.iterator())
&& target(ds);

sym call next before :
call(Object Iterator.next())
&& target(i);

sym update source after:
call(∗ DataSource.update(..))
&& target(ds);

// regular pattern that will trigger extra code
create iter call next∗

update source call next
{

throw new
ConcurrentModificationException();

}
}

Fig. 2. Example trace match
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already has rudimentary features (declare warning/error) for this purpose, and it is
natural to extend them so that the language provides a continuum of dynamic and static
property checking. The type of static analysis to realise this vision is likely to be similar
to that of [11, 16]; furthermore these analyses can serve to optimise the use of trace
matches. Other related proposals are [14, 24]. In fact, these works point towards the
possibility of a generalised language of queries instead of AspectJ’s existing pointcut
language, where each query has a dynamic interpretation as well as a static approxima-
tion for compile-time checking.

4 Evaluation

The first version of abc was released on October 22, 2004. Now is therefore a good
time to take stock, and evaluate its success to date. Perhaps the best indicator is the
extent to which abc has been adopted by other research groups. At the time of writing,
we are aware of over 10 teams worldwide who use abc for their own research projects.
To mention just a few examples of such extensions by others: LoopsAJ, an extension
for loop join points for use in scientific computing [17]; SCoPE, an extension that sup-
ports static conditional pointcut evaluation [4]; J-LO, an extension for supporting the
dynamic checking of temporal properties [30]; and Cona, an extension which supports
contracts for AspectJ [29].

We believe that this provides good evidence that abc is an adequate framework to
attack the research problems listed in Section 1. Indeed, all of these topics are currently
under investigation in the abc project. Given the success of abc in gaining adoption by
others, we are also urgently pursuing the problem of combining independent language
extensions.
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Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tib-
ble. Optimising AspectJ. In Programming Language Design and Implementation (PLDI),
pages 117–128. ACM Press, 2005.

7. Don Batory. A tutorial on feature-oriented programming and the AHEAD tool suite. In Sum-
mer school on Generative and Transformation Techniques in Software Engineering, Lecture
Notes in Computer Science, to appear, 2005.

8. Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative to virtual
types. In European Conference on Object-oriented Programming (ECOOP), pages 523–549,
1998.

9. Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parameterized aspect calculus: A core
calculus for the direct study of aspect-oriented languages. Technical Report 03-13, De-
partment of Computer Science, Iowa State University, Ames, Iowa, 2003. Available from:
http://www.cs.iastate.edu/∼cclifton/papers/TR03-13.pdf.

10. Daniel S. Dantas and David Walker. Harmless advice. In Foundations of Object-
Oriented Languages (FOOL ’05), 2005. Workshop proceedings available from:
http://homepages.inf.ed.ac.uk/wadler/fool/program/.

11. Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: path-sensitive program verification in
polynomial time. In Programming Language Design and Implementation (PLDI), pages
56–68, 2002.
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Abstract. Code generators based on template expansion techniques are easier
to build than purely deductive systems but do not guarantee the same level of
assurance: instead of providing “correctness-by-construction”, the correctness of
the generated code depends on the correctness of the generator itself. We present
an alternative assurance approach, in which the generator is extended to enable
Hoare-style safety proofs for each individual generated program. The proofs en-
sure that the generated code does not “go wrong”, i.e., does not violate certain
conditions during its execution.

The crucial step in this approach is to extend the generator in such way that
it produces all required annotations (i.e., pre-/postconditions and loop invari-
ants) without compromising the assurance provided by the subsequent verifica-
tion phase. This is achieved by embedding annotation templates into the code
templates, which are then instantiated in parallel by the generator. This is feasi-
ble because the structure of the generated code and the possible safety properties
are known when the generator is developed. It does not compromise the provided
assurance because the annotations only serve as auxiliary lemmas and errors in
the annotation templates ultimately lead to unprovable safety obligations.

We have implemented this approach and integrated it into the AUTOBAYES

and AUTOFILTER program generators. We have then used it to fully automat-
ically prove that code generated by the two systems satisfies both language-
specific properties such as array-bounds safety or proper variable initialization-
before-use and domain-specific properties such as vector normalization, matrix
symmetry, or correct sensor input usage.

1 Introduction

Program generation has a significant potential to improve the software development
process and promises many benefits, including higher productivity, reduced turn-around
times, increased portability, and elimination of manual coding errors. However, the key
to realizing these benefits is of course generator correctness—nothing is gained from
replacing manual coding errors with automatic coding errors. Moreover, following the
motto “trust but verify” there should be some more explicit evidence for the correctness
of the generated code than just trust in the correctness of the generator itself, or as has
been argued, “rigorous arguments must be provided to demonstrate the correctness of
the translator and/or the generated code” [WH99].

Several approaches have been explored to ensure and demonstrate correctness. In
deductive program synthesis [SW+94, Kre98], the program is generated as byproduct of
an existence proof for a theorem derived from the specification; other approaches based
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on refinement [Smi90, BG+98] or translation verification [WB96] can offer similar
“correct-by-construction” guarantees. However, code generators based on these ideas
are difficult to build and to scale up, and have not found widespread application. Code
generators that are based on template expansion techniques are easier to build but can
currently not guarantee the same level of assurance. Traditionally, they are only vali-
dated by testing, which requires significant effort that can quickly become excessive, in
particular for applications in high-assurance domains like aerospace. For example, the
aerospace software development standard DO-178B [RTC92] mandates that the imple-
mentation of the generator is tested to the same level of criticality the generated code
requires.

We are developing and implementing an alternative approach that is not based on
the verification or validation of the generator but instead focuses on the safety of each
individual generated program. Our core idea is to extend the generator itself such that
it produces all logical annotations (i.e., pre-/postconditions and loop invariants) that are
required for formal safety proofs in a Hoare-style framework. These proofs certify that
the generated code does not “go wrong”, i.e., does not violate certain conditions during
its execution. The crucial aspect of the approach is to ensure that errors in the original
code generator or in the certification extension do not compromise the assurance pro-
vided by the subsequent verification phase, or, in other words, that the proofs are correct
and actually prove the safety properties claimed.

We have integrated this approach into the program generators AUTOBAYES [FS03]
and AUTOFILTER [WS04]. We have then used it to fully automatically prove that code
generated by the two systems satisfies both language-specific properties such as array-
bounds safety or proper variable initialization-before-use and domain-specific proper-
ties such as vector normalization, matrix symmetry, or correct sensor input usage.

This paper summarizes our previous work on certifiable program generation. More
details can be found in the cited references.

2 AUTOBAYES and AUTOFILTER

AUTOBAYES and AUTOFILTER are two domain-specific program generators that fol-
low a schema-based approach to code generation. This extends the “plain” template
expansion techniques by adding semantic constraints to the templates. AUTOBAYES

[FS03] works in the scientific data analysis domain and generates parameter learning
programs, while AUTOFILTER [WS04] generates state estimation code based on vari-
ants of the Kalman filter algorithm. Both systems share a large common core (e.g.,
symbolic subsystem, certification subsystem, and target code generators) but have their
individual schema libraries. They are implemented in SWI-Prolog and together com-
prise approximately 100 kLoC. Both systems work fully automatically and can generate
code of considerable size and complexity (approximately 1500 LoC with deeply nested
loops) within a few seconds.

Schemas. A schema comprises a parameterized code fragment (i.e., template) together
with a set of constraints that determine whether the schema is applicable and how the
parameters can be instantiated. The constraints are formulated as conditions on a prob-
lem model, which allows the problem structure to directly guide the application of the
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schemas and thus constrains the search space. The parameters are instantiated by the
code generator, either directly on schema application or by recursive calls with a modi-
fied problem. The schemas are organized hierarchically into a schema library which fur-
ther constrains the search space. Schemas represent both fundamental building blocks
(i.e., algorithms) and solution methods (i.e., transformations) of the domain; they are
thus similar to the lemmas used in purely deductive systems but they can contain ex-
plicit calls to a meta-programming kernel in order to construct code.

Symbolic Computations. Symbolic computations are used in AUTOBAYES and
AUTOFILTER to support schema instantiation and code optimization. The core of the
symbolic subsystem is a small rewrite engine which supports associative-commutative
operators and explicit contexts. It thus allows rules as for example x/x →C �x �=0 1
where →C � x �=0 means “rewrites to, provided x �= 0 can be proven from the current
context C.” Expression simplification and symbolic differentiation are implemented
on top of the rewrite engine. The basic rules are straightforward; however, vectors
and matrices require careful formalizations, and some rules also require explicit meta-
programming, e.g., when bound variables are involved.

Intermediate Code. The code fragments in the schemas are formulated in an imperative
intermediate language. This is essentially a “sanitized” variant of C (i.e., no pointers, no
side effects in expressions etc.); however, it also contains a number of domain-specific
constructs like vector/matrix operations, finite sums, and convergence-loops.

Optimization. Straightforward schema instantiation and composition produces
suboptimal code; worse, many of the suboptimalities cannot be removed completely
using a separate, after-the-fact optimization phase. Schemas can thus explicitly trigger
large-scale optimizations which take into account information from the code gener-
ation process. For example, all numeric routines restructure the goal expression using
code motion, common sub-expression elimination, and memoization; since the schemas
know the goal variables, no dataflow analysis is required to identify invariant sub-
expressions, and code can be moved around aggressively, even across procedure bor-
ders.

Target Code Generation. In a final step, the optimized intermediate code is translated
into code tailored for a specific run-time environment. We currently have target code
generators for the Octave and Matlab environments, and can also produce standalone
Ada, C, and Modula-2 code. Each target code generator employs one rewrite system to
eliminate the constructs of the intermediate language which are not supported by the
target environment (“desugaring”) and a second rewrite system to clean up the desug-
ared code; most rules are shared between the different code generators.

Problem Specifications. Schema-based program generation does not necessarily re-
quire a logical conjecture as starting point for a proof. The Code derivation can there-
fore begin with a specification in a more application-oriented domain-specific language.
Our specification languages combine some target language constructs (e.g., declara-
tions) with established scientific and engineering notations (e.g., differential equations).
This allows a concise and fully declarative formulation of the problem together with
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some details of the desired configuration and architecture of the code to be gener-
ated. AUTOBAYES uses a specification language that is very close to the generative
statistical models used in Bayesian statistics, while AUTOFILTER uses a more control
engineering-oriented notation to formulate process models.

3 Certification Architecture

Our certification approach generally follows similar lines as proof carrying code (PCC)
[Nec97]; in particular, the role of the extended code generator as producer of annotated
target code is very similar to that of a certifying compiler [NL98, CL+00] in the PCC
approach. However, there are also some key differences. First, since we target code gen-
eration instead of compilation, we work on the source code level instead of the object
code level. On the positive side, since some safety properties can be formulated more
naturally (e.g., initialization-before-use) or only (e.g., loop variable restrictions) on the
source code level, this allows us to formulate and support more safety properties rel-
evant to application domains. In particular, high-level domain-specific properties such
as matrix symmetry or frame safety [LPR01] are inherently defined on the source code
level. On the negative side, these domain-specific properties make the annotation gen-
eration (see Section 5) more difficult. Fortunately, unlike a general purpose compiler,
a domain-specific code generator embodies enough domain knowledge to provide the
information required. Second, the proofs are not tightly integrated into the code and are
currently not even distributed together with the code; hence, our approach provides cer-
tifiable rather than certifying program generation. However, this is not a fundamental
deficit and could be changed relatively straightforwardly, if necessary. Third, we apply
a different prover technology and our architecture allows choosing from different off-
the-shelf fully automated theorem provers (ATP) for first-order logic instead of relying
on a customized higher-order system. However, the ATP can essentially be considered
as a black box.
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Fig. 1. Certifiable program generation: System architecture
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Figure 1 shows the overall architecture of a certifiable program generation system.
At its core is the original code generator which is extended for certification purposes
and complemented by a verification condition generator (VCG), a simplifier, an ATP,
a proof checker, and a domain theory. These components and their interactions are de-
scribed in the rest of this paper and in more detail in [WSF02, DF03, DFS05]. As in
the PCC approach, the architecture distinguishes between trusted and untrusted compo-
nents, shown in Figure 1 in red (dark grey) and blue (light grey), respectively. Trusted
components must be correct because any errors in them can compromise the assurance
provided by the overall system. Untrusted components, on the other hand, are not cru-
cial to the assurance because their results are double-checked by at least one trusted
component. In particular, the assurance provided by a certifiable program generation
system does not depend on the correctness of its two largest components: the original
code generator (including the certification extensions), and the ATP; instead, we need
only trust the safety policy, the VCG, the domain theory, and the proof checker.

4 Source-Level Safety Certification

The purpose of safety certification is to demonstrate that the code does not violate cer-
tain conditions during its execution. A safety property is an exact characterization of
these conditions based on the operational semantics of the language. It is formally de-
fined as an entailment relation that formalizes when the evaluation of an expression and
the execution of a statement are safe in a given environment. A safety policy is a set
of proof rules and auxiliary definitions which are designed to show that safe programs
satisfy the safety property of interest. The intention is that a safety policy enforces a
particular safety property and strictly speaking an off-line proof is required to show
the policy correct with respect to the property [DF03]. Since the calculus is sound and
complete (modulo the completeness of the logic underlying the formulation of the anno-
tations), it does in particular prevent us from proving unsafe programs safe. The proof
rules can be formalized concisely using the usual Hoare triples P {c} Q, i.e., if the
condition P holds before and the command c terminates, then Q holds afterwards (see
[Mit96] for more information about Hoare-style program proofs).

For each notion of safety which is of interest a safety property and the correspond-
ing safety policy need be formulated. The formulation of the safety property is usu-
ally straightforward, and the proof rules for any given safety policy can fortunately be
constructed systematically, by instantiating a generic rule set that is derived from the
standard rules of the Hoare-calculus [DF03]. The basic idea is to extend the standard
environment of program variables with a “safety environment” of “safety” or “shadow”
variables which record safety information related to the corresponding program vari-
able. The rules are then responsible for maintaining this environment and producing the
appropriate safety obligations.

Figure 2 shows the rules instantiated for the relatively simple case of memory safety.
Here the safety environment consists of shadow variables xhi that are used to record the
dimension of the corresponding arrays x. The only statement that affects the value of
a shadow variable is thus the declaration of an array (cf. the adecl-rule). However, all
rules also need to produce the appropriate safety formulas safemem(e) for all immediate



22 E. Denney and B. Fischer

subexpressions e of the statements. Since the safety property defines that an expression
is safe if all access to array variables are within the bounds given by the corresponding
shadow variables, safemem(x[e]) for example simply translates to 1 ≤ e ≤ xhi.

(decl)
Q {var x} Q

(adecl)
Q[n/xhi] {var x[n]} Q

(skip)
Q {skip} Q

(assign)
Q[e/x] ∧ safemem(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x] ∧ safemem(x[e1]) ∧ safemem(e2) {x[e1] := e2} Q

(if )
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safemem(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safemem(b) {while b inv I do c} Q

(for)
P {c} I [i + 1/i] I ∧ e1 ≤ i ≤ e2 ⇒ P I [e2 + 1/i] ⇒ Q

I [e1/i] ∧ safemem(e1) ∧ safemem(e2) {for i := e1 to e2 inv I do c} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q

(assert)
P ⇒ P ′ P {c} Q′ Q′ ⇒ Q

P {pre P ′ c post Q′} Q

(cons)
P ⇒ P ′ P ′ {c} Q′ Q′ ⇒ Q

P {c} Q

Fig. 2. Proof rules for memory safety

We have defined five different safety properties and implemented the corresponding
safety policies. Array-bounds safety (array) requires each access to an array element
to be within the specified upper and lower bounds of the array. Variable initialization-
before-use (init) ensures that each variable or individual array element has been explic-
itly assigned a value before it is used. Both are typical examples of language-specific
properties. Matrix symmetry (symm) requires certain two-dimensional arrays to be sym-
metric. Sensor input usage (inuse) is a variation of the general init-property which guar-
antees that each sensor reading passed as an input to the Kalman filter algorithm is
actually used during the computation of the output estimate. These two examples are
specific to the Kalman filter domain. The final example (norm) ensures that certain one-
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dimensional arrays represent normalized vectors, i.e., that their contents add up to one;
it is specific to the data analysis domain.

The VCG directly implements the generic rules and, starting with the initial post-
condition true, applies them to the statements in the usual backwards style, emitting
the constructed safety obligations along the way. Since it is part of the trusted compo-
nent base, it has been designed to be “correct-by-inspection”, i.e., deliberately simple.
Hence, it does not implement any optimizations or even apply any simplifications. Con-
sequently, the generated obligations tend to be large and must be simplified separately
before they can be tackled by the ATP. The resulting proofs can be sent to a proof
checker to ensure that the ATP produced a valid proof.

5 Annotation Generation

As Figure 2 shows, the proof rules require logical annotations, in particular loop invari-
ants. The construction of these annotations is usually the limiting factor for the practical
application of Hoare-style verification tools, e.g., ESC [FL+02]. Fortunately, the anno-
tations are untrusted. They are never directly used as safety obligations themselves but
only serve as lemmas for use by the trusted VCG. Due to the soundness of the calcu-
lus, an error in an annotation can, at worst, lead to the construction of an invalid safety
obligation. As an example, consider the while-rule. If the constructed invariant I is too
strong (e.g., I ≡ false), then it is easy to show that the postcondition Q follows but
impossible to show that the precondition P constructed from the loop body c holds. If
the invariant is too weak (e.g., I ≡ true), then it will generally be impossible to show
that either the precondition or the postcondition follows, unless of course the program
is trivially safe. Similar arguments hold for the other rules as well. Even compatible
“parallel” errors in the generation of the code and the annotations will not compromise
the assurance. In the worst case, the generated code will be functionally wrong but if
the proof succeeds, it will still execute safely. This role of the annotations thus allows us
to extend the untrusted code generator to produce both code and annotations, without
compromising the assurance provided by the safety proofs.

The central question though is how this can be achieved. Obviously, there is no free
lunch, and ultimately the annotations have to be provided by the developer. This can
be done in the form of annotation templates that are integrated into the schemas and
instantiated in parallel with the code templates by the generator. The basic process to
extend the generator comprises the following four steps:

1. Analyze the generated code and identify the location and structure of the required
annotations.

2. For each location, identify the schemas that produced the respective code fragment.
3. For each affected schema, generalize the respective annotations to appropriate

meta-annotations (e.g., replace program variables by meta variables).
4. For each meta-annotation, formulate an appropriate annotation template or meta-

program that generates the annotation at the time of schema application, and inte-
grate it into the schema.

Like building the generator in the first place, this an expensive manual process. It has
to be repeated until all schemas are covered, and started again for each new safety



24 E. Denney and B. Fischer

property. Moreover, the annotations are cross-cutting concerns, not only on the level of
the generated programs, but also on the level of the program generator. This can make
the extension of the generator quite hard work. However, it remains feasible because
the overall structure and the purpose of the generated code as well as the possible safety
properties are already known when the generator is extended.

· · ·
var a[n] ; var b[m]
· · ·

/*A : */ for i := 1 to n
inv ∀j · 1 ≤ j < i ⇒ 1 ≤ a[j] ≤ m
do a[i] := f(i) ;
post ∀i · 1 ≤ i ≤ n ⇒ 1 ≤ a[i] ≤ m
· · ·

/*B : */ for i := 1 to n
inv 1 ≤ a[i] ≤ m
do b[a[i]] := g(i) ;
· · ·

Fig. 3. Code fragment with annotations

The code fragment shown in Figure 3, which is taken in simplified form from code
generated by AUTOBAYES, illustrates how the process works. It uses the loop at A to
initialize the array a with an unspecified expression f(i), and then uses a in the second
loop at B to write the also unspecified expression g(i) indirectly into b. In order to prove
these array accesses safe, the invariant needs to restrict the contents of the a-elements
to the valid index range of b, i.e., a[i] has to be between 1 and m.

The question is now how and where to construct this invariant. However, when we
write the schema that generates the first loop, we also already know that the a-elements
will be used to index into b. This is part of the domain knowledge that is required to build
the original code generator. In a first step, we thus extend this schema by an annotation
template or meta-program that constructs the (local) invariant and postcondition given
at A. The annotation template can focus on the locally relevant information, without
needing to describe all the global information that may later be necessary for the proofs
because the schemas are not combined arbitrarily but only along the hierarchy given in
the schema library.

Unfortunately, these local annotations are in general still insufficient to prove the
postcondition at the end of larger code fragments. In our example, we still need to get
the information about the values in a into the loop invariant at B. Since this limited
information transport is a recurrent problem, we do not pass around the constructed
annotations during generation, but rely on a separate annotation propagation phase af-
ter the code has been constructed. The propagation algorithm can be seen as a very
crude approximation of a strongest postcondition predicate transformer. It pushes the
generated local annotations forward along the edges of the syntax tree as long as the
information can be guaranteed to remain unchanged. Because the generator produces
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code with restricted aliasing only, the test for which statements influence which anno-
tations can easily be accomplished without a full static analysis by maintaining a set of
modified variables during propagation.

The propagation phase also adds a few default annotations as it traverses the code,
for example bounds on the loop variables. These could in principle also be reconstructed
by the VCG, but that would complicated the implementation of the trusted VCG. The
fully annotated and propagated code is then used by the VCG.

6 Experimental Results

We have used the approach described here to certify different safety properties for code
generated by AUTOBAYES and AUTOFILTER. Table 1 summarizes the relevant num-
bers for four representative examples. The first two examples are AUTOFILTER spec-
ifications. ds1 is taken from the attitude control system of NASA’s Deep Space One
mission [WS04]. iss specifies a component in a simulation environment for the Space
Shuttle docking procedure at the International Space Station. In both cases, the gen-
erated code is based on Kalman filter algorithms, which make extensive use of matrix
operations. The other two examples are AUTOBAYES specifications which are part of a
more comprehensive analysis [FH+03] of planetary nebula images taken by the Hubble
Space Telescope. segm describes an image segmentation problem for which an iterative
numerical clustering algorithm is synthesized. Finally, gauss fits an image against a
two-dimensional Gaussian curve. This requires a multivariate optimization which is im-
plemented by the Nelder-Mead simplex method. The code generated for these two ex-
amples has a substantially different structure from the state estimation examples. First,
it contains many deeply nested loops, and some of them do not have a fixed (i.e., known
at generation time) number of iterations but are executed until a dynamically calculated
error value becomes small enough. In contrast, in the Kalman filter code, all loops are
executed a fixed number of times. Second, all array accesses are element by element
and there are no operations on entire matrices (e.g., matrix multiplication).

For each of the examples, Table 1 lists the size |S | of the specification, the size |P |
of the generated program (including comments but without annotations), the applicable
safety policies, the sizes |A | and |A∗ | of the generated and propagated annotations, and
finally the numbers N and Nfail of generated and invalid safety obligations as well as the
generation and proof times Tgen and Tproof. All times are wall-clock times rounded to the
next second and were obtained on a 2.4GHz standard Linux PC with 4GB memory. The
generation times also include generation, simplification, and file output of the safety
obligations; code generation alone accounts for approximately 90% of the times listed
under the array safety policy. The proof times are based on using the E-Setheo [MI+97]
prover which was able to discharge all valid obligations; they do not include the time
spent on the invalid obligations. A more detailed analysis of the results achieved with
different ATPs is available in [DFS05].

The table shows that the generated annotations can amount to a significant frac-
tion of the generated code and, after propagation, can even dominate it. It also shows
substantial differences in the size of the annotations required for the different safety
properties; in particular, it also shows that array-bounds safety (which is the core prop-
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Table 1. Results of safety certification

Example |S | |P | Policy |A | |A∗ | N Nfail Tgen Tproof

ds1 48 431 array 0 19 1 - 6 1
init 87 444 74 - 11 84
inuse 61 413 21 1 8 202
symm 75 261 865 - 71 794

iss 97 755 array 0 19 4 - 25 3
init 88 458 71 - 40 88
inuse 60 361 1 1 32 -
symm 87 274 480 - 66 510

segm 17 517 array 0 53 1 - 3 1
init 171 1090 121 - 8 109
norm 195 247 14 - 4 12

gauss 18 1039 array 20 505 20 - 21 16
init 118 1615 316 - 54 259

erty guaranteed by PCC) requires almost no local annotations and can often be certified
with only the default annotations added by the propagator. The number of generated
safety obligations also varies substantially for the different safety properties. However,
the proof effort remains tractable, and in most of the cases the ATP was able to success-
fully discharge all obligations in less than 15 minutes wall clock time.

In general, of course, an obligation can fail to be proven for a number of reasons.
First, there may of course be an actual safety violation in the code. This is the case
for the two invalid obligations that are produced for the sensor input usage property.
The deeper reason for this, however, is not a flaw in the code generator but a sloppy
specification that declares a vector that is not completely used. Second, the (generated)
annotations may be insufficient or wrong. Annotation errors can come from any part of
the schema, or from the propagation phase: an annotation might not be propagated far
enough, or it might be propagated out of scope. Third, the theorem prover may time-out,
either due to the size and complexity of the obligation, or due to an incomplete domain
theory. For certification purposes, however, it is important to distinguish between unsafe
programs and any other reasons for failure, and in the case of genuine safety violations,
to locate the unsafe parts of the program.

7 Conclusions

We have described an extension to the AUTOBAYES and AUTOFILTER program gener-
ators which can automatically ensure important safety properties for the generated code.
The core idea of our approach is to extend the generator itself in such way that it pro-
duces all logical annotations (i.e., pre-/postconditions and loop invariants) required for
Hoare-style safety proofs without compromising the assurance provided by the proofs.
In principle, the prover can fail to prove some valid proof obligations and thus raise false
alarms but in practice we were able to design the system such that all valid obligations
could be discharged fully automatically.
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Our approach can be seen as “PCC for code generators” because it enables safety
proofs for the generated code. We believe that it can directly be applied to code gener-
ators based on template expansion techniques in general, not only to our own systems.
However, we believe also that our techniques could as well be used in a response to the
recently announced Grand Challenge of developing a verifying compiler. We further
believe that in principle any verification technique that can be guided by an appropri-
ate form of annotations can be combined successfully with a certifiable code generator,
not just the Hoare-style certification using the VCG/ATP combination described here.
Another interesting research direction would thus be to combine annotation generation
with other techniques, for example static analysis.

For future work, we plan to extend the system in two main areas, in addition to
continually increasing the systems’ generative power with more algorithmic schemas,
more specification features, and more control over the derivation.

First, we are developing a more declarative and explicit modeling style. Much of the
domain knowledge used by the system in deriving code is currently implicit; by making
it explicit this can be used to (among other things) facilitate traceability between the
code and it derivation in the generated documentation.

Second, we continue to extend the certification power of the system with more poli-
cies, more automation, and an integrated approach to documentation generation. In par-
ticular, we are now developing an “annotation inference” technique which addresses
many of the difficulties of annotation generation. This will also enable us to easily ap-
ply our certification techniques to code generators other than our own.

Acknowledgements. Mike Whalen and Johann Schumann contributed substantially to
the development and implementation of the certifiable program generation approach.
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Abstract. Domain-Specific Languages (DSLs) represent a proven ap-
proach to raising the abstraction level of programming. They offer high-
level constructs and notations dedicated to a domain, structuring pro-
gram design, easing program writing, masking the intricacies of under-
lying software layers, and guaranteeing critical properties.

On the one hand, DSLs facilitate a straightforward mapping between
a conceptual model and a solution expressed in a specific programming
language. On the other hand, DSLs complicate the compilation process
because of the gap in the abstraction level between the source and target
language. The nature of DSLs make their compilation very different from
the compilation of common General-Purpose Languages (GPLs). In fact,
a DSL compiler generally produces code written in a GPL; low-level
compilation is left to the compiler of the target GPL. In essence, a DSL
compiler defines some mapping of the high-level information and features
of a DSL into the target GPL and underlying layers (e.g., middleware,
protocols, objects, . . . ).

This paper presents a methodology to develop DSL compilers, cen-
tered around the use of generative programming tools. Our approach
enables the development of a DSL compiler to be structured on facets
that represent dimensions of compilation. Each facet can then be imple-
mented in a modular way, using aspects, annotations and specialization.
Because these tools are high level, they match the needs of a DSL, fa-
cilitating the development of the DSL compiler, and making it modular
and re-targetable.

We illustrate our approach with a DSL for telephony services. The
structure of the DSL compiler is presented, as well as practical uses of
generative tools for some compilation facets.

1 Introduction

“Generative software development aims at modeling and implementing system
families in such a way that a given system can be automatically generated from
a specification written in one or more textual or graphical domain-specific lan-
guages [7]”.

At the design level, generative software development emphasizes the role of
Domain-Specific Languages (DSLs) as a way to bridge the gap between high-
level modeling and General-Purpose Languages (GPLs). Nevertheless, from the
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programming language viewpoint, there is a lack of methodology and a lack
of tools to support the development of DSL compilers. The purpose of this
paper is to apply some of the mainstream techniques promoted by the generative
programming community to develop DSL compilers.

What is a DSL? From a programmer viewpoint, a DSL is typically created to
model a program family [4]. The commonalities and the variabilities found in
the target program family suggest abstractions and notations that are domain
specific [6]. In contrast with GPLs such as Java or C++, a DSL has a narrow
application scope and must be readable for domain experts.

In general, a program in a textual DSL is a concise set of high-level dec-
larations, focusing on what to compute, as opposed to how to compute it. As
an illustration, consider the telephony domain, and more specifically service
creation. Conceptually, telephony services represent variations in creating, mod-
ifying and terminating a communication between parties. While this program
family in a GPL covers the full implementation of services, its counterpart in a
DSL corresponds to variations of service logic, abstracting over implementation
details.

From a language designer viewpoint, a DSL makes domain-specific informa-
tion an integral part of the programming paradigm. As such the programmer
can be viewed as being prompted by the language to provide domain-specific
information. This information may take the form of domain-specific types, syn-
tactic constructs and notations. It serves domain-specific concerns, such as li-
brary interfacing, optimization, instrumentation, profiling and verification of the
generated code. As of now, there are neither specific methodology, nor dedicated
support tools, well suited to handle the compilation of both the high-level nature
of a DSL and the richness of the built-in domain-specific information.

Challenges in DSL compilation. When mapping a DSL to a GPL, the higher
level the DSL is, the more program generation is needed to bridge the gap with
the target execution environment. Concretely, one program line written in a DSL
commonly compiles into many lines in GPL. For instance, we have developed
a DSL for telephony services, named SPL [2], that compiles into Java. An SPL
program is on average 4 times more concise than its Java counterpart.

Not surprisingly, GPL-translated programs include rather large program tem-
plates. The process of generating these templates can be quite complex, relying
on various conditions, and requiring a number of instantiations by computing
and inserting constants. Without any dedicated tool support, this process can
be quite laborious and error-prone. The resulting generator is often cumbersome
and hard to debug. Additionally, the lack of tool support makes it difficult to
have a modular treatment of the domain-specific concerns exposed by a program.

This paper. We propose a methodology to develop DSL compilers. The key idea
of this methodology is to rely on generative programming tools [8]. These tools
enable modeling the high-level nature of DSLs and the richness of the built-
in domain-specific information in terms of program generation. This modeling
can be done in the context of various generative programming approaches. Our
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methodology is composed of two steps: compiling program logic and performing
generative programming.

First, the DSL program logic is translated into an abstract GPL representa-
tion. This representation is abstract because it includes operations whose inter-
pretation is not necessarily defined yet; it may thus not be executable. Although
abstract, this translation generates a representation that encodes domain-specific
information and that is localized in code regions of interest for further compila-
tion treatment. In doing so, the representation is amenable to generative tools
that represent the second step of our methodology.

Generative programming tools are used to define the compilation of domain-
specific facets of a DSL in terms of program generation processes. One category
of facets addresses the mapping of a DSL program into a target execution envi-
ronment. A second category of facets is devoted to the compilation of language
abstractions. A third category of facets defines code generation processes that
are specific to the subject DSL program. This approach modularizes the pro-
cess of generating a DSL compiler. Furthermore, each generative programming
approach provides a paradigm, associated abstractions and tools dedicated to a
specific family of program generation. The compiler developer can thus choose
the most appropriate generative programming approach for a given facet.

Our approach is illustrated by three generative programming approaches,
namely AOP [13], annotations [3], and program specialization [5,10]; conceptu-
ally other approaches can be considered. AOP is well-suited to introduce cross-
cutting behaviors in GPL-translated programs (e.g., prologue and epilogue code
of API invocations). Annotations enable non-functional concerns to be intro-
duced in the compilation process (e.g., resource management). Program special-
ization can address optimization-oriented program generation (e.g., customiza-
tion of software components).

Refining facets further leads us to distinguish between functional and non-
functional facets. On the one hand, the functional facets define program genera-
tion processes that make the GPL-translated program executable. On the other
hand, non-functional facets enrich the language execution in terms of require-
ments like performance, reliability and security.

Contributions.

– A methodology to develop DSL compilers. We define a methodology
to develop a DSL compiler. We introduce a GPL-translated abstract rep-
resentation of the program logic. This representation is structured so that
further compilation can produce a spectrum of implementation variants.

– A novel use of generative programming tools. Our methodology re-
lies on a novel use of generative programming. This methodology facilitates
the generative programming process required by DSL compilation: high-
level generative programming paradigms can be used to modularly process
domain-specific information and abstractions.

– A case study. We use our methodology to develop a compiler for a DSL ded-
icated to the creation of telephony services. We present aspects, annotations
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and specialization opportunities that model various compilation dimensions
of this DSL.

Outline. The rest of this paper is organized as follows. Section 2 introduces our
case study, a DSL for telephony services. Section 3 presents our methodology to
develop a DSL compiler. Section 4 focuses on compiling the program logic. Sec-
tion 5 and 6 presents the compilation of functional and non-functional language
units. Finally, Section 7 discusses our approach, and Section 8 concludes.

2 Case Study

Our approach to developing DSL compilers is illustrated by a DSL to create
telephony services. We choose the Session Initiation Protocol (SIP) [14,15] as
the underlying signaling protocol. This protocol is used for Voice over IP (VoIP)
and third generation mobile phones. It is standardized by the IETF1 and adopted
by the ITU.2

SIP is a rapidly emerging protocol that places telephony into mainstream
computer science. It is combined with a number of existing protocols to handle
various aspects of communications (e.g., transport and real-time streaming).
It relies on the client-server model. SIP platforms provide rich programming
interfaces in languages like C# and Java. The general-purpose nature of these
programming interfaces make them very large and intricate to use. This situation
is demonstrated by JAIN SIP, a standardized Java interface to SIP [9,16], which
consists of 130 classes and more than 3000 methods.

Theneed for aDSL in this domain stems fromthreemain reasons.First,modern
telephony is a software intensive area because of the host of new functionalities it
offers. Second, programming telephony services now requires extensive expertise in
SIP and its companion protocols, distributed programming, networking, and SIP
programming interfaces. Third, a study of existing telephony services shows that
programming a service logic in a given platform with a GPL is quite a laborious
and error-prone process [1]. It requires recurring code patterns as the prologue and
epilogue of invocations of the SIP programming interface.

We have developed a DSL named Session Processing Language (SPL) that
enables telephony services to be defined concisely, using high-level abstractions
and notations [2]. SPL enables the programmer to concentrate on the service
logic, abstracting over low-level intricacies such as the protocol details and the
underlying platform programming interface.

An SPL program defines a telephony service to which users can subscribe.
The session is a key notion in SPL; it structures the development of a telephony
service. A session consists of a set of handlers and a state. A handler defines a
treatment for a protocol request or a platform event. A handler may be omitted,
if no service logic is associated with it. A state allows some data to be main-
tained across a set of handlers. SPL offers different kinds of sessions that form
1 IETF: Internet Engineering Task Force.
2 ITU: International Telecommunications Union.
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1 service Counter {
2 processing {
3 local void log (int);
4
5 registration {
6 int count;
7
8 response outgoing REGISTERREGISTER() {
9 count = 0;
10 return forward;
11 }
12
13 void unregisterunregister() {
14 log (count);
15 }
16
17 dialog {
18 response incoming INVITEINVITE() {
19 response resp = forward;
20 if (resp != /SUCCESS) {
21 return forward 'sip:secretary@company.com';
22 } else {
23 count++;
24 return resp;
25 }
26 }}}}}

Fig. 1. The counter service in SPL

a hierarchy. A simple counter service written in SPL, exhibiting this hierarchy,
is displayed in Figure 1.

The innermost session is the dialog: it manages a communication between
parties. A dialog is created by the INVITE request, confirmed by the ACK request,
and terminated by the BYE request. A dialog session defines handlers for the SIP
requests and platform events pertaining to the communication management. In
the counter service, an INVITE handler is defined to process incoming calls. This
handler systematically forwards (i.e., routes) a call to the user who subscribed
to this service. If this forward does not succeed (e.g., the user is busy), the
call is forwarded to a secretary. Otherwise, the call is accepted, a counter is
incremented, and the response is returned to the caller. The session variable
count used in this handler is defined in the session surrounding a dialog, namely
the registration session. Such a session is created for each user of the counter
service that registers on the SIP platform by sending the REGISTER request.
This session defines a state that consists of a unique variable (count), initialized
in the REGISTER handler. A user is unregistered either when his registration lease
expires or when the REGISTER request contains a zero-lease. Both situations are
viewed by SPL as a unique event named unregister, for which a handler can
be defined in the SPL program. In our example, the unregister handler invokes
a function that logs the counter, when the session is terminated. At the top of
the session hierarchy is the service session. Such a session is created when the
service is deployed on the platform and deleted when it is undeployed.

SPL abstracts over a number of protocol and platform issues among which
is the statefulness of a transaction. Let us explain this issue because it illus-
trates the gap between SPL and a SIP platform. This issue will later be used in
examples. A transaction consists of a request and the response it triggers. Exist-
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ing SIP platforms provide separate interface entries for processing requests and
responses. A telephony program may process a request and its response inde-
pendently; such a transaction is said to be stateless. Alternatively, a telephony
program may need to match a response with the original request to continue
some treatment initiated when the request got processed. Such a transaction is
said to be stateful because it requires the platform to retain enough information
to link a response to the original request. SPL abstracts over these implemen-
tation details. As shown in the INVITE handler, when the INVITE request is
forwarded, the response is treated within the same handler. Statefulness of the
transaction is determined by analyzing the service. In fact, SPL offers stateful-
ness throughout the session hierarchy. In our example, the count variable is used
in both the registration and dialog sessions. When a SIP message is processed
by an SPL program, its GPL-translated version executes some code to trigger
the corresponding handler and to extract the appropriate state.

3 A Methodology to Develop DSL Compilers

Our starting point in developing a DSL compiler is to define a direct translation
of the program logic into a GPL representation. This translation is direct in that
it generates abstract GPL code, not necessarily executable, where DSL mecha-
nisms are not yet expanded but rather left uninterpreted. Although abstract, this
translation encodes domain-specific information into the GPL representation, in
a context where it can later be interpreted.

In our telephony case study, for example, while the routing of a SIP message
in SPL is not concerned with statefulness, this property is explicitly encoded in
the GPL-translated version.

The GPL-translated program logic can then be the input to various inter-
pretations guiding two compilation dimensions: functional and non-functional
language units. On the one hand, the functional units of the language are in-
tended to complement the GPL-translated program logic to make it executable.
On the other hand, the non-functional units of the language address implemen-
tation refinements or enrichments. The compilation of functional units varies
with respect to both the target GPL and the target execution environment. In
addition to these dimensions, the compilation of non-functional units may vary
with respect to requirements like performance, reliability and security.

Whether or not functional, the compilation of DSL units can be decomposed
into treatments that are inherent to either the target execution environment, the
language or the program. These three categories of treatment are named facets.

The goal of the execution environment facet is to bridge the gap between
the DSL execution model, possibly implicit, and the target execution environ-
ment. The DSL execution model is supposed to be high level and portable,
abstracting over the intricacies of the target execution environment. The execu-
tion environment facet is intended to generate the necessary code to interface
the GPL-translated program logic with the underlying layers. Considering the
SPL case, the execution environment facet bridges the gap between the explicit
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event-handling architecture of JAIN SIP and the implicit SPL model based on
request handlers. For example, default request handlers need to be introduced
to create and delete session states, whenever an SPL program does not define
handlers for the corresponding requests.

The language facet is concerned with the interpretation and expansion of lan-
guage mechanisms, whether or not explicit in the GPL-translated program logic.
Such a facet generates recurring code patterns intrinsic to the language. For exam-
ple, routing operations of all SPL services need to be analyzed to determine their
statefulness.This information ismade explicit in theGPL-translatedprogram logic
by adding some information in each invocation of the routing operations.

Lastly, the program facet invokes compiler treatments that are specific to the
subject program. For instance, in the case of SPL, the request handler necessi-
tates specific state extraction operations, depending on what session variables
occur. Such a treatment is specific to a given SPL service and thus part of the
program facet.

4 Compiling the Program Logic

The goal of compiling the logic of a program is to produce a representation
that abstracts over implementation details while being amenable to generative
programming tools. To be applied successfully, generative programming tools
generally introduce some constraints on the program structure and may require
program generation parameters. Program structure is needed to make the GPL-
translated program logic match the granularity of the program entities manipu-
lated by the generative programming tools. The program generation parameters
are typically needed to customize the program generation process or the execu-
tion generated program. These parameters may correspond to compilation data
that are domain-specific information and are encoded in the translated program
or/and in generative programming declarations (e.g., an aspect declaration).

Our approach enables the program generation process to be modularized:
each module is responsible for a “slice” of program generation needed to com-
pile a given DSL. This modularization is particularly well-fitted to explore the
implementation scope offered by the high-level nature of a DSL.

An example of a GPL-translated program logic is displayed in Figure 2. It is
the SPL program (showed in Figure 1) compiled into Java for a JAIN SIP inter-
face [16]. This interface is typical of a client-server model in that it requires a tele-
phony service to implement a SipListener interface, providing processRequest
and processResponse methods. Additionally, a method is declared to handle
various platform timeouts. Also, private methods have been introduced to handle
the registration and un-registration of the service owner, as well as the forward-
ing of call invitations (responses are treated in processResponse). As can be
noticed in handler INVITE, for example, the service logic has been straightfor-
wardly translated into Java: expressions manipulating variables are reproduced
verbatim; message routing is translated into invocations of sendRequest for the
SPL forward and sendResponse for the returning responses.
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1 public class public class Counter Counter implements implements SipListener {SipListener {
2 [...]
3 private void handler_REGISTERhandler_REGISTER (Request rq, String method) {
4 count = 0;
5 sendRequest (false, rq_request);  /**  SPL, line 10  **/
6 }
7 private void handler_unregisterhandler_unregister (Request rq, String method) {
8 local.log (count);  /**  SPL, line 14  **/
9 sendRequest (false, rq_request); /**  SPL: default behavior  **/
10 }
11 private void handler_INVITEhandler_INVITE (Request rq, String method) {
12 sendRequest (true, rq_request);  /**  SPL, line 19  **/
13 }
14
15 public void processRequest (RequestEvent requestEvent) {
16 String method = rq_request.getMethod();  
17 if (method.equals (Request.REGISTER)) {  /**  SPL, line 5  **/
18 if (!registrar.hasExpiresZero (rq_request)) {
19 if (!registrar.hasRegistration (rq_request)) {  /**  SPL, line 8  **/
20 handler_REGISTER (rq_request, method);
21 } else { /**  SPL: default behavior  **/
22 sendRequest (false, rq_request);
23 } 
24 } else if (registrar.hasRegistration (rq_request)) {  /**  SPL, line 13  **/
25 handler_unregister (rq_request, method);
26 } else { /**  SPL: default behavior  **/
27 sendRequest (false, rq_request);
28 }
29 } else if (method.equals (Request.INVITE)) { /** SPL, line 18  **/
30 handler_INVITE (rq_request, method);
31 } else { /**  SPL: default behavior  **/
32 sendRequest (false, rq_request);
33 }
34 }
35
36 public void processResponse (ResponseEvent responseEvent) {
37 String method = rs_request.getMethod();
38 rs_responseCode = rs_response.getStatusCode();  
39 if (method.equals (Request.INVITE)) {  /**  SPL, line 18  **/
40 if (rs_responseCode >= 300) {  /**  SPL, line 20  **/
41 AddressFactory addressFactory = getAddressFactory(); 
42 SipURI sipURI = addressFactory.createSipURI ("secretary", "company.com");
43 rs_request.setRequestURI (sipURI); 
44 sendRequest (false, rs_request);  /** SPL, line 21  **/
45 } else {
46 count++; 
47 sendResponse (true, rs_response);  /**  SPL, line 24  **/
48 }
49 } else { /**  SPL: default behavior  **/
50 sendResponse (false, rs_response);
51 }
52 }
53
54 public void processTimeout (TimeoutEvent timeoutEvent) {[...]}
55 }}

Fig. 2. Java-translated program logic

Let us now examine how to compile the program logic using generative pro-
gramming approaches.

4.1 Aspect-Oriented Programming

The AOP approach consists of a join point language, to identify locations in
the program execution, and an advice language, to define additional behavior at
these locations [11].
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Our goal is to produce a GPL-translated program logic that matches the
expressivity of the join point language. That is, to structure the translated pro-
gram so that it matches the granularity of the join point identification and the
semantics of the associated advice. Conceptually, to fit the AOP approach, DSL
compilation must introduce specific code structuring and communicate compi-
lation data.

The GPL-translated program logic needs some structuring when some code
is to be inserted at some program point. Identifying the target program point
requires language entities such as a method definition or invocation, variable
occurrences, and declarations. As a result, a sequence of commands may need to
be placed into a method in a translated program to enable code to be inserted
before, after, or around its execution. The top of Figure 2 shows private methods
that have been introduced by the DSL compiler to easily insert code as the
prologue and epilogue of invocations of SPL request handlers.

Compiling the program logic also involves collecting or computing informa-
tion about the DSL program that needs to be made explicit in the translated
program. This strategy separates the production of the information and its ex-
ploitation, leaving its interpretation to other compilation passes. In the context
of AOP, passing information can either be made by adding extra arguments to
operations or by introducing specific instance variables. The latter case is further
discussed in Section 5.2.

In principle, functional DSL units correspond to aspects that can performed
statically since, intuitively, these aspects refine the static compilation process. In
contrast, non-functional units may compile into both static and dynamic aspects.
Static aspects may be used to expand the implementation of specific operations,
whereas dynamic aspects may define conditional monitoring actions.

A key advantage of our approach is to permit a DSL compiler to be designed
and structured in terms of modules, that is, aspects. Each aspect defines a specific
DSL behavior whose cross-cutting nature makes it an ideal target for AOP.

4.2 Annotations

Annotations can be included in the translated program to make some infor-
mation explicit as the DSL program gets mapped into a lower-level represen-
tation. Annotations are traditionally used as extra information describing non-
functional language issues.

Like aspects, annotations modularize the compilation of a DSL in that they
introduce information that are later interpreted with respect to a given annota-
tion processor.

Different sets of annotations have different goals. There may be annotations
to make resource management explicit, or annotations intended to trigger check
pointing of some state. When compiling the program logic, the aim is to generate
annotations that are as self-contained as possible to minimize the work of the
annotation processor occurring at a later phase. To do so, the location of an
annotation is a key parameter. Also, arguments to the annotation may be needed
as additional input to the annotation process.
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4.3 Program Specialization

Program specialization is another use of a generative programming tool for
DSL compilation. It addresses the optimization of DSL implementation building
blocks. The idea is that a DSL can often be seen as a language gluing software
components together. Because these components can be glued in a variety of
contexts they must be highly generic. While this approach has obvious soft-
ware engineering advantages, in practice, it may entail a significant performance
penalty. To alleviate this problem, program specialization enables generic soft-
ware components to be customized with respect to the context in which they
are used. Because software components are invoked by compiler-generated code,
the customization contexts can be determined by definition of the DSL compiler.
Furthermore, since components are fixed, or slowly evolving, their specializabil-
ity can be determined precisely. As a result, this program transformation can be
made fully predictable, which is not the case for arbitrary program transforma-
tions like most program optimizations.

5 Compiling Functional Units

Compilation of functional units fits particularly well with AOP: it incrementally
refines the semantics of language mechanisms, whether or not explicit in the
source program. We do various forms of code expansion triggered by method
names and instance variables.

We use a wide-spread and well-tested AOP tool, AspectJ [12], to define the
compilation of various functional units needed for SPL. Limitations discussed
in the following examples are not intrinsic to the AOP approach but are rather
specific to AspectJ tool. These limitations are further discussed in Section 7.

5.1 Execution Environment Facet

The goal of functional execution environment facets is to bridge the gap between
the DSL execution model and the target execution environment. In our case
study, these facets are intended to generate the necessary code to interface the
program logic with the underlying JAIN SIP platform.

public aspectpublic aspect Environment {Environment {

public Request Counter.rq_request;
public SipProvider Counter.rq_sipProvider;

pointcut processRequestprocessRequest(): execution(public void Counter.processRequest (RequestEvent));
before(RequestEvent rq_Event, Counter obj): processRequestprocessRequest() && args(rq_Event) && target(obj) {
obj.rq_request = rq_Event.getRequest();
obj.rq_sipProvider = (SipProvider) rq_Event.getSource();

}
[...]

}}

Fig. 3. An aspect for an execution environment facet
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The aspect program presented in Figure 3 introduces code that implements
the SPL model in terms of the JAIN SIP event-handling architecture. To do so,
the inserted code extracts the current request message from the event object
generated by JAIN SIP. Dispatch over the type of request can then be done
to invoke the appropriate Java-translated SPL handler. In addition, code to
extract the sipProvider object is generated to enable further processing of the
SIP message (e.g., message headers and transaction creation).

Thanks to the functional execution environment facet presented above, the
Java-translated program logic does not have to deal with the intricacies of the
underlying JAIN SIP platform. Such a strategy helps to isolate target-dependent
program generation in compiler modules, corresponding to aspects.

5.2 Language Facet

Functional language facets are concerned with the interpretation and expansion
of language mechanisms. In our case study for example, state management and
statefulness of routing operations require generating recurring code patterns.
The corresponding aspects are discussed below.

State management. As illustrated in Figure 2, the Java-translated program logic
does not include code for attaching a state to a session, and managing this state
across the session life-cycle. For example, the state associated with a registration
session needs to be created when processing a REGISTER request and deleted
either when the request failed or the session ends. We have developed a language
facet in AOP dedicated to state management. An excerpt of this facet is depicted
in Figure 4.

The first advice specifies the code to execute for creating a registration
state when processing a REGISTER request. However, since the handler for the
REGISTER request is not mandatory in SPL, the corresponding method may not
be present in the Java-translated program. If so, some code must be inserted to
catch a REGISTER request and create the registration state. However, the pattern
matching capability of the pointcut language does not permit to test the non-
existence of a method invocation. To remedy this problem, this information is
encoded as flags introduced into the aspect program. These flags enable the ap-
propriate advice to be selected, as illustrated by the use of the handler REGISTER
flag.

Statefulness. In the Java-translated program logic, the first argument of the
sendRequest method determines the statefulness of the routing operation. This
information has been made explicit in the Java-translated program logic thanks
to an analysis of the SPL program. The aspect program shown in Figure 5
describes the recurrent code fragment that needs to be executed when processing
such an operation. In this example, calls to sendRequest are compiled into
either stateless or stateful routing operations depending on the value of its first
argument.

The use of functional language facets enables the translated program to be
closer to the program logic. For example, state management requires a precise
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public aspect public aspect Language {Language {

private boolean handler_REGISTER   = true;
private boolean handler_REREGISTER = false;
private boolean handler_unregister = true;

pointcut registerregister(): execution(private void Counter.handler_REGISTER (Request, String));
before(Request rq, String method, Counter obj): registerregister() && args(rq, method) && target(obj) {
State state = new State();
int ident   = obj.env.getId (obj.rq_request);
obj.env.setEnv (ident, state);
obj.state = state;

}

pointcut processRequestprocessRequest(): execution(public void Counter.processRequest (RequestEvent));
before(Counter obj): processRequestprocessRequest() && target(obj) {
if (!handler_REGISTER) {
String method = obj.rq_request.getMethod();
if (method.equals (Request.REGISTER)) {
if (!obj.registrar.hasExpiresZero (obj.rq_request)) {
if (!obj.registrar.hasRegistration (obj.rq_request)) {
State state = new State();
int ident   = obj.lib.env.getId (obj.rq_request);
obj.lib.env.setEnv (ident, state);
obj.state = state;

}}}}}
[...]

}}

Fig. 4. An aspect for a language facet (1)

public aspect public aspect Language {Language {
[...]
pointcut rq_sendRequestrq_sendRequest(): call(public void Counter.sendRequest (boolean,Request)) &&
(withincode(public void Counter.processRequest (..)) || withincode(* Counter.handler_* (..)));

void around(boolean b, Request r, Counter obj): rq_sendRequestrq_sendRequest() && args(b,r) && target(obj) {
try {
if (b) {
ClientTransaction ct = obj.rq_sipProvider.getNewClientTransaction (r);
ct.sendRequest();
return;

} else {
obj.rq_sipProvider.sendRequest (r);
return;

}
} catch (Exception ex) {}

}
[...]

}}

Fig. 5. An aspect for a language facet (2)

understanding of the SIP protocol to determine when sessions need to be created
and deleted. Such intricacies are factorized into the language facet, preventing
the compiler writer to address all the DSL implementation issues at once.

5.3 Program Facet

Functional program facets are concerned with the generation of code that is spe-
cific to a program. For example, creation and manipulation of the state attached
to a session depends on the session variables and the handlers that use them.

Such a situation is illustrated by the SPL program shown in Figure 1, where
the count variable is used in the REGISTER handler (line 9). This variable occur-
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public aspect public aspect Program {Program {

public int Counter.count;
public class public class State State implements implements Lib.State {Lib.State {
private int count;
void setCount (int x) { count = x; };
int getCount () { return count; };

}}

pointcut set_count(): set (int Counter.count);
void around(int count, Counter obj): set_count() && args(count) && target(obj) {
obj.state.setCount(count);

}

pointcut get_count(): get (int Counter.count);
int around (Counter obj): get_count() && target(obj){
return obj.state.getCount();

}
}}

Fig. 6. An aspect for a program facet

rence leads to the declaration of an aspect, displayed in Figure 6, that inserts
the class definition State and the methods to access the instance variable. Fur-
thermore, this aspect specifies that each occurrence of the count variable in the
Java-translated program logic must be replaced by an access to the state.

Functional program facets allow defining DSL compilation at the granularity
of a program, using implicit or explicit information from the source program.

6 Compiling Non-functional Units

Non-functional DSL units are compiled by exploiting information that refines
or extends the resulting program implementation. Just like functional units,
compilation of non-functional units cover all of the DSL facets, that is, execution
environment, language and program.

6.1 Execution Environment Facet

Program specialization [5,10] has been successfully used to customize an exe-
cution environment according to a specific usage context. In our case study,
the JAIN SIP platform is responsible for invoking specific methods in the Java-
translated program logic for processing requests and responses. When no method
is defined in the Java program, the platform does not need to pass the SIP mes-
sage to the SPL service. Instead, it can directly perform the default platform
behavior. Such a filtering of messages is similar to packet filtering in networking
where only packets of interest are channeled to the application layer. Program
specialization has already been applied in this context [18] and has demonstrated
its benefits. In our case study, a similar strategy would aim to specialize the mes-
sage filtering of the JAIN platform with respect to request names of interest to
a program logic.

This approach enables automatically and systematically specializing highly
generic software components, such as JAIN SIP components, according to a
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customization context derived from the program logic, such as an SPL service.
Beyond performance, specialization opens opportunity to reduce the foot-print
of a software layer.

6.2 Language Facet

Chander et al. [3] have recently proposed an approach to resource-bounds check-
ing. Their approach limits the resource usage accordingly to a policy, specify-
ing the resources that a program can use, along with the corresponding usage
bounds. The key idea is to ensure that for each operation that consumes re-
sources, an adequate amount is still available. They propose to annotate a pro-
gram with a consume e command specifying that e units of resource are used,
and with an acquire e command specifying that e units of resources must be
reserved. One of the advantages of this approach is to make it possible to use
a theorem-prover to prove that adequate checks are being performed to guaran-
tee correct resource usage for a given program. The verifier is composed by two
components: a safety condition generator that extracts logical predicates (safety
conditions) whose validity implies resource-usage safety and a prover that proves
the predicates.

Figure 7 illustrates the use of this approach. The left of this figure shows
an SPL program where a list of callers is defined: three persons authorized to
contact the service owner. If not authorized, a call is redirected to a list of four
operators until one of them picks up the phone. In the telephony domain, the
forwarding action represents a critical resource because it triggers a chain of
operations that may be costly in the telephony platform.

The Java-translated program logic is displayed in the right of Figure 7. An-
notations have been introduced for routing operations and the loop command.

service limit_forward {
processing {
uri<4> operators = <...>;
uri<3> callers = <...>;

registration {
dialog {
response incoming INVITEINVITE() {
foreach (caller in callers) {
if (FROM == caller) 
return forward; 

}
return forward operators;

}}}}}

public void processRequest(RequestEvent requestEvent) {
[...]
if (method.equals (Request.INVITE)) {  
//@ acquire 4
Header f_h = rq_request.getHeader(FromHeader.NAME);
String FROM = f_h.toString();
int i = 0;
int size = callers.size();
while (i < size) {  
String caller = (String)callers.get(i);
if (FROM.compareTo (caller) == 0) {  
//@ consume 1
rq_sipProvider.sendRequest(rq_request);    
return;

}
i++;
}
//@ inv(i <= 3, 3 - i)
//@ consume 4
rq_sipProvider.sendRequest(operators, rq_request);
return;  
}

}
[...]

Fig. 7. Annotations for a language facet
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Through annotation analysis, we can determine that this example requires, at
worst, the reservation of four resource units (acquire 4 ), corresponding to the
case where no operator picks up the phone. As a result, we can assure that
enough resources have been reserved before the program execution. Note that
our consume annotations are made explicit in the translated program but they
could just as well be incorporated in a library by extending the existing JAIN
API.

This example illustrates the use of an existing tool to perform some non-
functional processing of DSL programs. That is, resource-bounds checking is
introduced by re-using an existing annotation language and underlying tools.
In doing so, the DSL compiler writer is guided by the annotation language to
determine the required non-functional information to be provided in the trans-
lated program. This strategy prevents him from re-doing an analysis of this
non-functional domain. Furthermore, annotations allow a modularization of the
compiler in that their processing is left to a later phase, performed by dedicated
existing tools.

6.3 Program Facet

Unlike functional program facets that define compiler treatments specific to a
subject program, non-functional program facets correspond to information col-
lected on a given program. If we consider the example shown in Figure 7, an
extension of the annotation approach could collect the acquire annotations for
each SPL handler, to compute the maximum number of routing operations per-
formed by the SPL program. This number could then be used by a security policy
of the execution environment. In doing so, some restrictions could be enforced
on the number of routing operations performed by an SPL program, to preserve
the platform performance. This enforcement can occur prior to the program ex-
ecution with respect to currently available resources. This process could be seen
as admission control. The approach could be extended to all of the resources
consumed by a program. As a result, a telephony service would be accompanied
by a list of the resources required for its execution.

Note that this program facet is different from the language facet, presented
in Section 6.2. Indeed, the language facet did not address resource consump-
tion globally to the service; it only ensured that a consumed resource had been
previously allocated.

An important issue in the telephony domain is service billing. By examining
the kind of compilation treatments on billing operations, one can observe that it
amounts to defining non-functional aspects, analogous to monitoring activities
(e.g., logging). As an example, some timer could be enabled in the handler that
starts a call session, and disabled in the handler terminating a call.

7 Discussion

Our methodology for DSL compiler development is to translate the logic of a
program into a GPL representation that is amenable to generative program-



44 C. Consel et al.

ming approaches. One of these approaches relies on AOP to introduce specific
behaviors at some locations in the GPL-translated program.

Our methodology for DSL compiler development heavily relies on generative
programming approaches and corresponding tools. In doing so, their features,
or even limitations, need to be take into account when developing the compiler.
Concretely, limitations regarding AOP were discussed earlier. In fact, they did
not concern the approach but rather the AspectJ tool used for our experiments.
For example, variable introduction is only possible at the level of a class, not
inside a method. Moreover, AspectJ aspects are context-insensitive in that they
cannot directly manipulate the variables that are in the scope of a cross-cutting
point. This feature would permit defining finer grained advice and improve the
quality of the generated code.

The generality of meta-programming [17] makes it an alternative approach to
AOP, as well as most other generative programming approaches. In this context,
a DSL compiler resembles an interpreter annotated so as to execute the static
language actions and to produce code for the dynamic language actions. Meta-
programming tools give a fine-grained control over program generation, which
can occur at any program point. A key issue that needs to be explored is how
to modularize DSL compilation with meta-programming, to mimic what we do
with AOP, annotations and program specialization.

8 Conclusion and Future Work

In this paper, we present a new methodology to develop DSL compilers. Our
methodology is composed of two steps: compiling program logic and performing
generative programming. Compiling a program logic produces a GPL-translated
representation that abstracts over implementation details while being amenable
to generative programming tools. These tools allow to model the high-level na-
ture of DSLs, and the richness of the built-in domain-specific information, in
terms of program generation.

Our approach modularize the program generation process of a DSL com-
piler. Each generative programming approach provides a paradigm, associated
abstractions and tools, dedicated to a specific family of program generation. The
compiler developer can thus choose the most appropriate generative program-
ming approach for a given compilation dimension.

We have used our methodology to develop a compiler for a DSL dedicated to
the creation of telephony services. We present aspects, annotations, and special-
ization opportunities that model various compilation dimensions of this DSL.
This case study demonstrates that a DSL can make use of generative program-
ming approaches and techniques in very effective ways. In essence, a DSL exposes
information about programs that can be mapped by our approach into the realm
of generative programming.

Compared to traditional approaches for compiler development, our methodol-
ogy enables to have a modular treatment of the domain-specific concerns exposed
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by a program. The resulting compilation process of a DSL is made simpler and
less error-prone.
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Abstract. We present a domain-specific-language (DSL) for writing in-
stances of a class of filter programs. The values in the language are
symbolic and independent of a concrete precision. Efficient code genera-
tion is required to fit the program onto a target device limited in both
memory and processing power. We construct an interpreter for the DSL
in a language specific to the device which contains the semantics of the
target instruction set embedded within a declarative meta-language. The
compiler is automatically generated from the interpreter through special-
isation. This extension of the instruction set allows the construction of
an interpreter for the DSL that is both simple and clear. In particular
it allows us to declare static representations of the symbolic values, and
have the specialisation of the code produce operate upon these values in
the instruction set of the target device.

1 Introduction

Our target domain is the sensor architecture of a wearable computer. This do-
main has tight constraints on the energy usage of system components; requiring
the use of micro-controllers which are power efficient. Such devices have a lim-
ited instruction set, little data memory, and a small store for program code. The
current method for programming such devices is to write code directly in assem-
bly language. A C compiler exists, but the size of the code produced makes it
impractical for real programs.

The class of programs that execute in this domain are hard real-time pro-
cesses. They input the raw sensor readings, which are filtered to identify features
for further processing by the application on the main processor. The sensor is
responsible for polling the data, filtering it, and communicating the result over
a bus to the main processor.

From the designer’s viewpoint, the filter is a set of equations defining the re-
lations between input and output. The equations are composed of simple arith-
metic operations but their semantics are defined over arbitrary precision bit-
strings. This abstract viewpoint is a long way from the actual implementation
as a series of instructions.
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Our goal is to construct a DSL for the designer that matches their abstract view
as closely as possible.This abstract programcompiles into a concrete executable for
the target device. In order to compile the code, the arbitrary precision values must
be refined into appropriate approximations using static precision. It is important
that the efficiencyof this generated code shouldmatch thatof anassembly language
programmer — otherwise the generated program will fail to fit upon the device.

To meet this compilation goal the equational system specified in the DSL
must be converted into a sequence of device instructions. The equations of the
DSL contain no explicit control flow; there is a single implicit loop around the
set of equations in the program. This loop forms an infinite loop around the
statements in the generated program; each filter is designed to execute for as long
as there is power to the sensor. Within the loop there are a series of expressions
that compute the value of each of the variables in the filter. Each iteration of
the main loop is a single input/output cycle on the sensor and can be scheduled
between the hard temporal constraints.

Our compilation technique is to write an interpreter for the DSL, and auto-
matically generate a compiler from that interpreter through specialisation. The
novel aspect of the technique is that the interpreter cannot be constructed di-
rectly in the target language. Instead the interpreter is constructed in two parts;
an interpreter of the target instruction set is embedded within a declarative
meta-language to form an extension of the target language, and an interpreter
of the DSL is written in this extension. The extension consists of operations in
the meta-language and calls to the target interpreter.

In order to compile a DSL program into the target language, the DSL in-
terpreter is specialised with respect to the program. The specialiser operates on
the meta-language, and has no direct knowledge of either the DSL or the target
language. Specialisation of the DSL interpreter produces a result in which the
calls to the target interpreter are left in the residual. These calls to the target
interpreter are syntactically isomorphic to the target instruction set. By careful
construction of the DSL interpreter we produce a residual program that is writ-
ten in the meta-language but only contains calls to the target interpreter. Thus
the resultant code is syntactically isomorphic with the target language and can
be converted by a simple syntax conversion. This process compiles code from the
DSL to the target language using a specialiser that performs source-to-source
transformations only within the meta-language.

2 Target Device

Our target device is a PIC-16F84[1] micro-controller. We have chosen this device
as it is representative of many real-world applications in the robotics and per-
vasive computing fields. The main attractions of the device are low cost (under
a dollar) and low power consumption (several milli-watts). Unfortunately this
simple design creates limited resources and an awkward programming model.

Each micro-controller uses 8-bit logic and arithmetic. Operations are per-
formed in a nominated working register, the other registers are devoted to status
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and control flags and a scratch area for the programmer. As external memory is
not connected to these devices, the scratch area (about 60 8-bit locations) forms
the only memory available for the programmer to use1 The program is limited
by the size of the program memory to about 1000 instructions.

The program and data memories are not shared, and it is not possible for
the device to modify its program memory while it is running. This limits the
possibilities for generative or self-modifying code but it does make analysis of
PIC programs easier.

The instruction set of the PIC supports basic arithmetic operations (addition
and subtraction) but more complex operations (eg multiplication and division)
must be written by the programmer. There is support for logical AND, and
both inclusive and exclusive OR. Control flow is limited, with decisions being
performed by conditional skip instructions. These can either execute the next
instruction, or skip over it, depending on the value of a bit in the register file.
Logical shifts are not supported, although rotation can be performed through a
register and the carry bit, a single bit at a time. Logical shifts can be constructed
from combinations of rotate sequences and masking.

The PIC uses a normal model of control-flow; each instruction in the program
has an integer label and a register called the PC selects the current instruction.
Execution of each instruction affects the PC and so directs the flow of control
through the program. The important point is that the target machine is imper-
ative and the active program point is part of the state being passed through
the computation. This differs from the control flow in our meta-language and
we shall explain how we have embedded this imperative state machine in a logic
language in Section 5.

The code density of PIC programs is low because of the decisions made to se-
lect this instruction set. Logical shifts and rotations of multiple bits take several
instructions which are costly both in processor cycles, and slots in the limited
program space. Each conditional split in the control flow must be constructed
from multiple instructions. Implementing multiple precision arithmetic is costly
as we must extract bit-string from different locations and merge them in order
to perform operations. This requires both shifting of data within registers and
conditional code to interpret values at different precisions. However, as we will
show this implementation can be achieved by specialising away the conditional
code flows and choosing efficient combinations of operations. Implementing ar-
bitrary precision (that is dynamically changing precision) would not be feasible
because this approach could not reduce the code synthesised for the PIC.

3 Approach

We are constructing an interpreter of a domain language (D). This interpreter
can then be partially evaluated with a specific program in that language. The
evaluation compiles the program into the language that the interpreter is written
1 There is also an EEPROM but it requires several cycles and instructions to access,

and has a limited lifespan.
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in. If we could construct this interpreter directly in our target language (T ), then
our compiler would be complete as shown in Equation 1 (the first Futamura
projection). However, T is not rich enough to support such an interpreter, as
argued in Section 2, and thus intDT is not directly constructible.

∀i : � �spec�(intDT , PD) �(i) = �PT �(i) (1)

If we assume that do have intDT available, and that we have a rich meta-
language (M) that we use as an intermediate, then we can write a second in-
terpreter (intTM ) that can be composed with the first. So intTM executes the
instructions of intDT which executes the target program. Partial evaluation of
the first interpreter with respect to the second, will produce an interpreter of D
that is written in M . The structure of this interpreter will retain the semantics
of the target language (T ), as parts of the predicates that model each instruction
will be left in the residual code. This process is shown in Equation 2 where we
term the language of the final interpreter M ′, as it contains the embedding of
the semantics of the instructions in T . Programs in M ′ have all of the expres-
sive power of M , but the parts of them using the predicates that model T are
syntactically isomorphic to programs in T .

�specM �(intTM , intDT ) = intDM ′ (2)

We have constructed both intDM ′ , and intM
′

M directly. These are the DSL
interpreter and the target interpreter respectively. Handwriting the DSL inter-
preter requires some care, as we must ensure that when it is specialised against
a program all of the predicates that do not share a syntactic isomorphism with
T are correctly analysed as static and removed from the residual. Ensuring that
all calls to isomorphic predicates remain within the residual is easier, as we have
a single dispatch point within the target interpreter that we can explicitly tag
as rescall in the BTA. The Ciao package supports these explicit annotations.

One advantage of this manual construction is illustrated by our compilation
process in Equation 3. The only external tool that we require is a specialiser for
the meta-language, there is no need to write any analysis or transformation tools
that natively understand either the source language (D) or the target language
(T ).

∀i : � �specM �(intDM ′ , progD) �(i) = �progT �(i) (3)

A predicate written in M ′ is syntactically isomorphic to a program in T iff it
contains a conjunction of terms that are syntactically isomorphic to T . A term
is syntactically isomorphic to a program in T iff it is a call to a predicate in the
target interpreter or a call to a predicate that is itself syntactically isomorphic
to T . More informally, when a program in the meta-language reduces to one that
consists only of calls to predicates that model the instruction set of the target,
then the residual program is syntactically isomorphic with a target program as
we can perform a simple syntactic substitution to rewrite it as PIC assembly
code.
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In the remainder of this paper, we describe the construction of the languages
and interpreters required to implement this approach. The DSL language (D) is
described in Section 4 and the construction of its interpreter in M ′ is covered
in Section 6. The target has been described in the preceding section, embedding
the interpreter of the target language in M is detailed in Section 5.

4 Domain Specific Language — D

The aim of a DSL is to allow the construction of clear programs. This clarity
is achieved by abstracting away details that are constant within the domain.
In the case of D all necessary control-flow in the program has been removed.
Each program written in D is a set of equations defined over variables. Some
variables are nominated as representing the input and output streams, some as
stateful variables that preserve their values between iterations of the filter, and
the rest are transient. An implicit outer loop exists around the equations that
loops forever.

In order to remove the control flow within the loop we use the semantics
of a simulation language for variable access. The implicit outer loop separates
the execution of the program into discrete cycles. Each variable in the language
maintains two states, one for the current cycle, and one for the next cycle. All
variable updates write to the state for the next cycle. All variable accesses read
from the state for the current cycle. Between cycles the contents of the next
state are copied into the current state. This bi-state for each variable removes
dependencies in the program code and means that equations can be evaluated
in any order without affecting the result of the computation for each cycle. An
example of this type of program is shown in Figure 1.

input(z), output(x), state(q,a,h,p,r)

pminus = q + (a * p * a)

zpred = h * x

resid = z - zpred

k = (h * pminus) / (r + (h * pminus * h))

x = (resid * k + x)

p = (1 - (k * h)) * pminus

Fig. 1. Example DSL program : Kalman Filter

4.1 Variables

Each variable in the DSL has arbitrary precision; it is represented as a pair of bit
positions and a bit-string. The bit-string contains the value of the bits between
the given upper and lower bit of the variable. Each item in the bit-string has
the value 0 or 1, and each position n has a coefficient of 2n except for the upper
position which has a coefficient of −2n. The radix point is between positions 0
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and −1. Each value is 2s-complement, and we round towards negative infinity.
This means that all of the bits in the positions above the bit-string are sign-
extended from the top bit given, and all of the bits in the positions below the
bit-string are zero.

This definition of the value represented by each variable means that although
we only hold a finite portion of the bit-string that exactly represents the value,
all of the possible bit-positions for the variable are well-defined. This definition
is shown in Figure 2.

bit(n, var(u, l, bs)) =

⎧⎨
⎩

s n ≥ u
bs[n − l] l ≤ n ≤ u
0 n < l

where
s = bs[u − l]

(x0, x1, ...)[n] = xn

Fig. 2. Definition of bit-positions within a variable

The most basic function that we can define on these values is transformation;
mapping from a value represented at one precision, to the closest representation
of the value at another precision. This function is not invertible, as information
is lost when mapping from a higher precision to a lower precision. This lost
information means the function is not injective, and will map several values
onto the same representation in the lower precision.

The transformation function is shown in Figure 3. The simplicity of the
function definition is a result of the bit being well defined in all positions in
the original precision. This results in a lack of corner cases and thus a uniform
definition.

trans(var(u, l, bs), ou, ol) = var(ou, ol, obs)
where ∀n : ol ≤ n ≤ ou

obs[n − ol] = bit(n,var(u, l, bs)

Fig. 3. Transformation function

Each variable in the target language must have a fixed precision; the DSL
program implicitly defines a minimum value for these precisions. It is beyond the
scope of this paper to describe the different techniques of assigning precisions to
the intermediate variables in a computation. Broadly the different approaches
can be described as analytical techniques [2] that preserve correctness, or statis-
tical techniques that manage the propagation of error [3,4,5]. We assume that a
solution for the set of precisions is known that correctly represents the intention
of the programmer, and this set of precisions is supplied to the DSL interpreter
— that the bit-positions of each variable are static data. With this assumption
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Operation Intermediate Precision

(au, al) + (bu, bl) ( max(au, bu) + 1, min(al, bl) )
(au, al) − (bu, bl) ( max(au, bu) + 1, min(al, bl) )
(au, al) · (bu, bl) ( au + bu, al + bl )
(au, al) / (bu, bl) ( au − bl, al − bu ) ⊂ ( au − bl, inf )

Fig. 4. Intermediate and output precisions

we focus on the automatic generation of a code operating in a given fixed-point
form, rather than determining the value of that form.

4.2 Operations

Defining a transformation function first makes the definition of individual op-
erations simpler. We no longer have to consider the various cases of which bits
are contained in a value representation, and which are not. The set of opera-
tions that we support in the language is addition, subtraction, multiplication
and division. Each operation first transforms both operands to an intermediate
precision (this is the necessary precision to preserve correctness for each bit in
the output), performs the operation between two values of that precision and
then transforms the resultant value to an output precision. The intermediate
precision may be larger than the output precision, for example in the case of
addition where carry chains must be computed to determine the correct result.
For each operation the intermediate precision with respect to a given pair of
input precisions is shown in Figure 4. The value produced at this intermediate
precision is then transformed to the precision of the target variable as the output
precision.

For addition, subtraction and multiplication it is possible to statically de-
termine this required precision from the precision of the operands alone. For
a division operation this produced precision is dependent on the actual values
supplied to the operation, and the safe approximation is a bit-string of infinite
length as any divisor that is not a power of 2 will produce a repeating binary
string as a result. We can still use the expression bu−al as a safe approximation
of the upper bit in the precision as we assume that we cannot divide by zero.
The safe approximation is not representable so we use the precision that repre-
sents a subset of the values representable in the safe case. This is unavoidable
when performing division on a machine with finite resources. The pseudo code
in Figure 5 shows the process for performing each operation in the language.

The basic operations can be combined into expressions by the programmer.
We assume standard associativity for each operator. Each expression is a simple
tree of operations that we flatten into a sequence of basic operations. This re-
quires the introduction of temporary variables to hold each intermediate result
within the expression. The language that we have described thus far is exe-
cutable and can be used by the designer to develop programs and test their
correctness. Arbitrary precision arithmetic in the DSL is captured in the pseudo
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perform(op,var(au,al,av),var(bu,bl,bv),ru,rl) =

(iu,il) = Select from Fig.4 based on op

ai = trans(var(au,al,av),iu,il)

bi = trans(var(bu,bl,bv),iu,il)

rs = perform op on ai and bi

defined(ru,rl) ->

return var(ru,rl,trans(var(iu,il,rs),ru,rl))

undefined(ru,rl) ->

ru = iu

rl = il

return var(ru,rl,rs)

Fig. 5. Pseudo code for each operation

code by undefined precisions for the output of an operation. This operation is
not feasible on the target device. The implementation on the target requires ru
and rl to be static values passed to the DSL interpreter. For intermediate values
these precisions are constrained in the same manner as the temporary variables
in Section 4.1.

5 Embedding the Target Language — M ′ = M + T

The meta-language (M) is Ciao [6] (a dialect of Prolog). Prolog is used because
of the maturity of analysis and specialisation tools for the language and their
state of integration into Ciao — in the form of Ciaopp [7]. The choice of language
for M must be well-suited for the construction of the target interpreter. Most of
the operations within the interpreter are mappings from one domain to another.
These maps have a natural form as logical predicates. Prolog is both typeless
and symbolic with a simple encoding of anything as data (even predicates) that
allows a rapid cycle of formulating ideas and testing them as code. The most
important feature in Prolog for our needs is that it features dynamic syntax.
When writing code at several different language levels it is necessary to test the
parts in isolation without constructing a correctly typed framework for them.

Each instruction in the target language maps to a predicate. M ′ is the com-
bination of the Prolog language with calls to these predicates. Each transforms
an initial state to an output state as directed by its parameters. An example
is given in Figure 6. The addwf instruction retrieves two values from the initial
memory state (one from the working register 0, and one specified in the first
parameter), adds the two values, and then depending on the second parameter,
either stores the result in the working register, or in the specified register. The
carry and zero bit are set according to the result.

The memory state is represented by a simple list of pairs of integers, one
with the location label and one with the current value bound to that label. The
lookup and store operations retrieve the value from a label, and produce a new
state with the label set to the given value. These operations are expressed clearly
in a declarative language as shown in Figure 7.
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addwf(S,F,D,S3) :-

lookup(0,S,W),

lookup(F,S,X),

Ans is W+X,

AnsM is Ans mod 256,

(D=:=1 -> store(S,F,AnsM,S2)

; store(S,0,AnsM,S2)),

statusBits(Ans,S2,S3).

Fig. 6. Sample implementation of T in M

mTransAd( (L,V1), L, (V1->V2), (L,V2) ).

mTransAd( (L,V), L2, (_->_), (L,V) ) :- L \== L2.

mTrans( S, L, X, S2) :- map(S,mTransAd(L,X),S2).

lookup(Ad,(_,S),V) :- mTrans(S,Ad,(V->_),_).

store((D,S),Ad,V,(D,S2)) :- mTrans(S,Ad,(_->V),S2).

Fig. 7. State transition predicates

These predicates map directly onto the target instruction set although they are
executable in a logical language. In the PIC micro-controller each instruction is
located at an address in memory and the semantics of the instruction-set specify
how the state transitions affect the PC, indirectly controlling which instruction is
executed next. In the target language T a program is comprised of a list of instruc-
tions. The control-flow is contained implicitly in the sequencing of the list. When
T is embedded within M the control-flow through the instructions is the Prolog
control-flow around the calls to the target predicates. In general this can be more
complex than a simple sequence, although programs in M ′ that are syntactically
isomorphic to T are a simple sequence of conjunctions by definition.

The interpreter of T implements the semantics of the individual instructions,
rather than emulating the machine that executes them. This subtle difference
allows Prolog code to be freely interleaved with calls to the target interpreter.
The resulting code can be executed natively in M as the explicit threading of the
state gives a well defined meaning to the program. If a partial evaluation removes
any surrounding Prolog control flow decisions (reducing them to conjunctions)
then the resultant code has a syntactic one-to-one mapping with a PIC assembly
language program. The syntactic mapping has to relocate the program to an
absolute address in the program memory, but as all control-flow in T is relative
this is a trivial mapping.

One difficulty this abstract control-flow poses is how to interpret the skip
instructions that conditionally skip or execute the next instruction. In the PIC
with each instruction bound to a location the PC can be incremented to im-
plement skipping. When a program in T is embedded in M there is no direct
relationship between one instruction and the next in the control flow. This rela-
tion now depends on the Prolog code which calls the two instruction predicates.
This difficulty is overcome using the higher-order features of the symbolic meta-
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pic(Inst) :- Inst =.. [P,skipping(S),S].

pic(Inst) :- Inst =.. [P,skipping(S),_,S].

pic(Inst) :- Inst =.. [P,skipping(S),_,_,S].

pic(Inst) :- Inst =.. [_,(_,_)|_],

call(Inst).

Fig. 8. State dispatcher

extendSign(S,(_,_,8),S).

extendSign(S,(Ad,Bit,Fill),Sout) :-

Fill<8,

OrMask is 255 - (1<<Fill)+1,

AndMask is (1<<Fill)-1,

pic(btfss(S,Ad,Bit,S2)),

pic(andlw(S2,AndMask,S3)),

pic(btfsc(S3,Ad,Bit,S4)),

pic(iorlw(S4,OrMask,Sout)).

alignByteInW((D,M),V,B,Sout) :-

member(var(V,_,Vu,_,_,_,_),D),

B>Vu,

bitAddr((D,M),V,Vu,SignByte),

aligned((D,M),V,Vu,SignBit),

extendSign((D,M),(SignByte,SignBit,0),Sout).

Fig. 9. Example DSL interpreter operation

language. The entire state is encapsulated within a functor (eg S 	→ skip(S))
when the skip condition holds. Then each PIC call is wrapped in a dispatcher
that checks whether to execute or skip the predicate that is passed in. There is
minimal change to programs written in M ′, and the interpreter merely requires
the addition of a dispatcher as shown in Figure 8.

Implementing the target interpreter in M creates a language M ′ that allows
a clear construction of the DSL interpreter. The clarity is achieved through inter-
leaving declarative logic (symbol manipulation, backtracking and query solving)
with calls that implement the semantics of instructions in T . The predicates
implementing T must be passed ground values for instruction parameters, and
must be fully deterministic. When backtracking is used to enumerate possible
code generations in the DSL interpreter each execution of an instruction must
generate a single transition in the state. Multiple transitions for a single instruc-
tion with ground parameters will generate spurious call traces and erroneous
partial evaluations.

6 Interpreter of D in M ′

Using the combination of the target interpreter and the meta-language that form
M ′ it is now possible to write an interpreter for D. Throughout this paper we
have argued that it is not possible to write such an interpreter directly in T .
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The overhead of interpreting instructions, and maintaining a state for D and its
mapping onto the device would consume all available resources.

Writing the interpreter in M ′ solves these problems. The state of the inter-
preter is composed of a static precision (upper and lower bit-position) for each
variable, and a dynamic value (bit-string). The bit-string requires a mapping
between partitions of the string and memory locations on the target device. The
mapping can be defined declaratively in M ′ and passed to the interpreter as a
static value. The only remaining dynamic values are the values of the bit-string
— these must fit within the program memory for the filter to be executable.

We consider two representations of the bit-string. In a packed representation
the lowest eight bits of the string occupy one location, each partition of eight
bits occupies a sequential location in memory. In a modulo representation each
bit n of a location maps to a position that is n mod 8. These two representations
have a trade-off; packed variables take less memory but mod variables require
less instructions to operate upon.

In M ′ we can declare disjoint clause bodies for each representation that
map to different calls to target instructions. This method requires no run-time
overhead and no extra code in the interpreter as back tracking at specialisation
time will select the appropriate clause in each context.

Clarity is the result of operating directly on the same symbolic values in both
interpreters. Performing an operation on bit-strings has a simple declaration as
a uniform loop over a window of bits. Writing the same operation on locations
which hold partitions of the bit-string is more complex as there are more cases
to consider. All loops and queries within the interpreter that are dependent
on the positions and sizes of bit-strings will be statically unrolled into target
call sequences. Depending on the relative alignment of bits between a pair of
registers, we must perform a different series of target instructions to implement
the DSL operation.

In order to encode each DSL operation as a uniform loop over bits, we re-
quire an intermediate operation in the interpreter; alignment. This operation
is composed of target calls and declarative logic. We show the simplest case of
alignment in Figure 9. In this case we are attempting to extract a range of bit
positions that are above those stored in the state, we extend the sign of the top
bit in the represented value.

The alignment operation uses the variable declarations in the DSL state
to find the bit-positions that are stored. It can then map these bits onto the
representation in memory. There are several possible cases to be considered,
each of which forms a predicate body. The requested bits may be above, below
or within the stored bit-string. The representation of the value affects whether
the bits are within a single location or span several locations.

Given the alignment operation, each DSL operation is constructed as a uni-
form loop over bit-positions. The iterations of the loop that access bits out-
side the string will be specialised away. The structure of a pseudo DSL opera-
tion is given in Figure 10, showing the uniform operation on 8-bit partitions of
the value, regardless of the precision and representation in memory. The x[u,l]
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o = a · b ⇐⇒ ∀p ∈ [ol..ou] : p − ol ≡ 0 (mod 8)
carry[p+n,p+8], o[p+7,p] = a[p+7,p] · b[p+7,p] · carry[p+7,p]

Fig. 10. Mapping Of Intermediate Binary Operation

notation indicates the bits l to u in the variable x, which are instances of the
alignment operation.

7 Application

We have given a formulation of the DSL interpreter that operates on a program,
a declaration of the variable precisions and a declaration of variable represen-
tations. When this interpreter is specialised with respect to these parameters
it produces a residual program in M ′ that we can convert to PIC assembly
language.

The trade-off in choosing how to represent each variable is complex and hard
to express. The trade-off is a constraint problem where the set of constraints to
solve is specific to each program in the DSL. This constraint problem could be
specified as a transformation of the program into a constraint language, but the
formulation would be difficult.

As M ′ is a logic language we can use the declaration of representation to
generate possible variable representations for the program. Each of these gen-
erated values can be supplied to the interpreter to automatically generate code
using the representation. Each of these generated codes can be compared to find
a target program that matches a given constraint (eg code size or memory us-
age). This example shows how the search space of the DSL interpreter can be
explored to find solutions (target programs) that match criteria that are difficult
to express directly as search problems.

The low code density of the PIC limits the complexity of an operation that
we can demonstrate code generation upon. We will use the alignment case shown
in Figure 9 and an entry point that includes an interpreter state with a single
variable. The variable uses a packed representation within the PIC memory, its
lowest bit is aligned with the lowest bit in a register location, and its higher
bits are spanned onto the next location. This call to the alignment operation is
shown in Figure 11.

The specialiser removes the static arguments to the call, which include the
variable being accessed. The resultant code has eliminated the declarations that
access the interpreter state and produced constant values as the parameters
to the PIC calls. The variables in the resultant code are renamed to preserve
sharing, which leaves the state threading intact in the produced code. The output
is a straight-line code sequence composed entirely of calls to the PIC predicates,
and can be syntactically transformed into the PIC program shown.

The interpreter state and all interpretive overhead has been removed from
this operation, as the code does not modify the layout of variables in memory.
Supplying different memory layouts, and variable representations produces the
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:- entry alignByteInW(( [var(x,packed,6,-4,10,2,_)],S ), x, 7,

( [var(x,packed,6,-4,10,2,_)],S2)).

alignByteInW(A,E) :-

pic(btfss(A,11,1,B)),

pic(andlw(B,0,C)),

pic(btfsc(C,11,1,D),

pic(iorlw(D,255,E)).

PIC program:

BTFSS 11,1

ANDLW 0

BTFSC 11,1

IORLW 255

Fig. 11. Specialisation of getSign predicate

appropriate access code. In larger interpreter fragments (such as multi-precision
addition and multiplication) there is a more complex trade-off between the choice
of representation, and the size of the residual code.

An alternative approach to implementing the DSL on the target device would
be to write a library performing multi-precision operations. The contrast with
our approach is dramatic, both in terms of complexity and the efficiency of
the final code. The declaration of the alignment operation defines a series of
condition checks and an appropriate body to execute in each specific context.
This overhead is removed entirely by the specialiser.

Writing each DSL operation as a library function would require a set of cases
that contain all of the used calls (eg 8-bit / 16-bit). Each case would need to
be written separately, increasing the complexity of the implementation. Any
unused bits in the computation, such as using an 8-bit multiplier on a pair of
6-bit values would introduce unnecessary overhead and the performance of the
program would suffer. Our approach avoids this problem by using the specialiser
to automatically determine which expansion is necessary in each context. A
library approach would also require the precision for each variable to be passed to
the routine. In contrast our approach reduces these values to constants, and they
are implicitly defined when needed so they require no storage. The disadvantage
is that unrolling the code in this way increases the program size.

8 Related Work

The approach of code generation by abstract operations is detailed in delayed
code generation [8]. This method of producing object code for a smalltalk com-
piler uses intermediate operations between the source and target languages that
contain abstract values. These values can be operated on through deferred oper-
ations that can eliminate intermediate steps in the object code. This approach
differs from our method in that these operations are performed upon syntax
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trees within the compiler. We execute our operations directly through a partial
evaluation and reduce expressions based on the static analysis performed within
the specialiser.

The uses of partial evaluation have been studied extensively [9,10], and in
particular the use within meta-programming to compile domain specific lan-
guages [11]. The novelty of our approach in comparison to these techniques is
the construction of the domain interpreter within an extension of the target
language. This extension allows us to use the expressive power of the declar-
ative meta-language to write our interpreter clearly and simply. The elements
of the target language are residualised during the specialisation, where-as the
operations in the meta-language are entirely static. This produces a syntactic
isomorphism between the residual program and the target language.

The connection between macro languages and multi-stage computations has
been investigated in a functional setting by Ganz et al [12]. They formalise their
macro language (MacroML) as a MetaML interpreter and use the features in
MetaML to show that their language is type-safe (that macros cannot create
type errors in the final program) and stage-safe (that macro expansion does not
rely on run-time evaluations).

This work differs from our own in that we are using an untyped language
as the meta-language, and rather than explicit staging constructs we are using
online partial evaluation to separate the stages and perform the macro com-
putation. Our work focuses on how to use an implicitly staged computation to
perform macro operations; these are not limited to the operations in a conven-
tional macro language as we can freely mix data values between the stages, al-
lowing some runtime values to effect compile-time computations. Of course these
runtime values are restricted by the static analysis used within the specialiser.

The approach in Sh [13] uses static meta-programming to embed a shader
language in C++ templates. The shader programs are constructed at run-time by
recording the operations executed in the meta-language. This reuses the bulk of
the C++ compiler for parsing, grammar checking and code generation. This ap-
proach is similar to our embedding within a host compiler, although the recording
of operations is performed at partial-evaluation time by the specialiser leaving
no runtime overhead.

Previous work in compiling embedded languages [14,15] has looked at embed-
ded typed languages within an existing typed functional language. This allows
the meta-language to act as a host compiler and produce code for the DSL. This
differs from our approach as we are embedding a lower level untyped language
that contains the semantics of the executable target domain. In particular, the
construction of our interpreter is similar to the handwritten cogen of [14], in
that we have deliberately written the output of a theoretical specialisation. We
cover this aspect of the work in Section 3.

Herrman and Langhammer show a similar approach to our work in [16]. A
DSL for image processing operations is constructed for a similar class of filter
programs. Efficiency is also a concern in that domain and their system generates
code from an interpreter to remove the interpretative overhead. The construction
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of their interpreter uses explicit staging constructs rather than a specialisation
approach.

9 Conclusions and Future Work

We have presented a language that uses a high level symbolic representation of
our problem domain. This representation has been compiled into an efficient ex-
ecutable form for an extremely low level micro-controller with limited resources.

We have shown that embedding the target language in our choice of meta-
language allows the construction of an interpreter that would not be feasible
otherwise. This interpreter is both simple, and clear, and when specialised it
produces a residual program that is syntactically isomorphic with with the target
language. This achieves compilation from the domain language into the target
language by a specialiser that only operates in, and on the meta-language.

Our next step will be to investigate the compiler on a realistic target from the
domain. We will show how efficient the compilation process is, and investigate
optimisation techniques on the generated code.
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Abstract. Domain-specific languages (DSL) provides high-level func-
tions making applications easier to write, and to maintain. Unfortu-
nately, many applications are written from scratch and poorly docu-
mented, which make them hard to maintain. An ideal solution should
be to rewrite them in a appropriate DSL. In this paper, we present TeMa
(Template Matcher), an automatic tool to recognize high-level functions
in source code. Preliminary results show how TeMa can be used to re-
formulate Fortran code into Signal Processing Language (SPL) used in
SPIRAL. This opens new possibilities for domain-specific languages.

1 Introduction

With domain-specific languages, algorithms are described in a more abstract and
compact way than with traditional imperative programming languages. Express-
ing algorithms at a higher level of abstraction adds portability and improves pro-
grammer productivity for code writing and maintenance. Moreover, the higher
the representation of the program, the more aggressive the compiler optimiza-
tions can be: for instance a generative approach can yield from a mathematical
formula in SPIRAL [16] a finely tuned code for a particular architecture, explor-
ing both algorithmic variations and traditional code optimizations. The same
benefit appears also for code verification.

However, this approach assumes that the user specifies his algorithm using a
domain-specific language. Starting from an existing C or Fortran program and
finding in it fragments that correspond to domain specific templates would be
desirable but seems difficult to obtain. The reason is that it amounts to algo-
rithm recognition, an old problem in computer science. Basically, one would like
a compiler or analyzer to automatically find that lines 10 to 23 are an implemen-
tation of a DFT for instance. A natural solution would be to search the code for
patterns of known functions (matrix-matrix product, tensor product or direct
sum for the DFT). Such a facility would enable many important techniques:

– Program comprehension and reverse engineering: we can rewrite part of the
code with a higher level language, enhancing code maintenance and porta-
bility.

– Program optimization: if we have the necessary items in our library or if
we can use a generative approach, we may replace lines 10 to 23 by an
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automatically tuned version. We may even replace the relevant part of the
code by a completely different implementation.

– Program verification: if we know that the program specification asks for a
DFT and the analyzer does not find it, we may suspect an error.

– Hardware-software co-design: if we recognize in the source program a piece
of code for which we have a hardware implementation (e.g. as a co-processor
or an Intellectual Property component) we can remove the code and replace
it by an activation of the hardware.

The pattern could be a naive implementation of the function but obviously the
approach is interesting only if the detection abstracts away some variations be-
tween the code fragment and the reference implementation. Program variations
can arise from data structure variations (coming from scalar promotion, array
expansion, structures instead of arrays,. . . ), control variations (coming from loop
fusion, unroll, skewing,...), organization variations (coming for permutation of
program statements) or semantic variations (using associativity or commutativ-
ity for instance). Obviously, the abstraction obtained depend on the range of
variations handled by the detection.

In this paper, we present an approach to automatically find, in linear time,
all possible instances of a given template in a program. Implemented in the TeMa
tool and connected with a more expressive method already described in [1], the
method is able to find the parameters of the template corresponding to a partic-
ular instance. It handles many implementation variations and extends previous
works by handling variations concerning data structures using arrays. Experi-
mental results on SPEC benchmarks show that our method is able to abstract
away many variations. Finally, preliminary results show that this technique is
able to reformulate Fortran code into Signal Processing Language (SPL) used in
SPIRAL. This opens new possibilities for domain-specific languages.

The paper is organized as follows: Section 2 introduces the notations and
definitions used in the paper. Section 3 describes the algorithmic content of TeMa
and provides a classification of program variations handled. Finally, section 4
presents the TeMa tool and provides experimental results.

2 Background

SPL [21] (Signal Processing Language) is a domain-specific language for describ-
ing matrix factorizations, and thus fast algorithms for computing matrix-vector
products. In particular, it can be used for describing fast signal transforms such
as FFT or WHT. An SPL program is an expression involving a variety of op-
erations including composition, direct sum and tensor product. Let us give an
example of SPL program. Briefly recall that given two matrices A and B, the
tensor product of A and B, is the matrix A ⊗ B = [aijB]. The WHT (Walsh-
Hadamard Transform) over a sampled signal of 2n elements can be written

WHT2n = F2 ⊗ . . . ⊗ F2 n times , where F2 =
[

1 1
1 −1

]
denotes the FFT trans-
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form over 2-dimensionnal vectors. The SPL program computing the WHT over
23-dimensionnal input vectors can thus be written:

(tensor (F 2) (tensor (F 2) (F 2)))

In addition to improve readability and thus maintenance, recovering an SPL
program from a C or Fortran program allows to benefit of the SPL compiler
optimizations.

The approach investigated in this paper is to recognize within the program
the slices corresponding to naive implementations of SPL functions, then to re-
build the SPL formula. The naive implementations to find are expressed with
program patterns. A pattern is a schema of program with wildcards values and
functions. For example, figure 1 gives the pattern of a reduction, where wild-
cards are denoted by �. One contribution of this paper is the algorithm to

s = �
do i = 1,n
s = �(s,�)

enddo
return s

Fig. 1. Pattern of a reduction

quickly find all possible instances of a pattern within a program. In the TeMa
tool presented thereafter, it is connected with a more expensive method already
described in [1] to check if the program slices found are effectively instances of
the pattern. In case of success, our exact method provides the corresponding
values of �.

Finding instances of a pattern in a program means finding all program
slices equivalent to an instance of the pattern. But what does exactly means
«equivalent» ? We will consider a weak version of semantic equivalence called
Herbrand-equivalence and denoted by ≡H. Instead of indicating whether two al-
gorithms compute the same (mathematical) function, Herbrand-equivalence just
indicates if they used the same mathematical formula, syntactically. In this way,
Herbrand-equivalence can be considered as a true algorithmic equivalence. Even
if Herbrand-equivalence is weaker than semantic equivalence, and seems to be
easier to check, it has been unfortunately proven undecidable [2].

Our detection algorithm uses a powerful extension of automata called tree-
automata. A tree automaton is a tuple A = (Σ, Q, Qf , Δ), where Σ is a signature,
Q the set of states, Qf ⊂ Q the set of final states, and Δ a set of transition rules
of the type f(q1 . . . qn) −→ q, where n ≥ 0, f ∈ Σ and q, q1, . . . , qn ∈ Q. Tree
automata were introduced by Doner [5,6] and Thatcher and Wright [17,18] in
the context of circuit verification. Most of usual operations on word automata
(determinization, minimization, cartesian product, ...) extend naturally to tree
automata [4].
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3 Detecting SPL Functions

In this section, we present our method to detect SPL functions in a given C or
Fortran program. We also present our preliminary approach to build an SPL pro-
gram from relevant program slices. Finally, we evaluate the detection capabilities
of our method in terms of program variations handled.

3.1 Overview of the Method

Figure 2 gives the main steps of our method. The slicing method search through
the program the slices which potentially implement an SPL function. Then we
check whether the slices are equivalent to a given SPL function by applying our
exact instantiation test, already described in [1].

Fig. 2. Overview of the method
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The aggregation allows to detect slices with multiple output statements,
which is not allowed by previous steps. This is typically the case of matrix
operations. Once implementations of SPL functions are found in program, it re-
mains to substitute them by the relevant call to the SPL function (substitution).
The program is then ready to be translated into an SPL program.

The contributions of this paper are the slicing method and the aggregation.
We also propose a preliminary approach to recover SPL programs from relevant
program slices. These important steps are described thereafter.

3.2 Slicing Method

The aim of our detection algorithm is to provide the parts of the program which
potentially compute the same arithmetic expression than an instance of the
pattern. The main idea is to walk through the pattern and the program def-use
chains as long as pattern and program operators are equal. If the method reaches
the last statement of the pattern, all reached program statements will be yield
as a candidate slice, meaning that they may be Herbrand-equivalent since the
expressions computed may have the same sequence of operators.

Algorithm Build_Automaton

Input: The pattern or the program.
Output: The corresponding tree automaton.

1. Associate a new state to each assignment statement.
2. For each state:

q = r = f(φ(Q1) . . . φ(Qn))

Add the transitions: f(q1 . . . qn) −→ q, for each qi ∈ Qi.
3. For each state:

q = r = �(φ(Q1) . . . φ(Qn))

Add the transitions: qi −→ q, for each qi ∈ Qi (input transitions).
And: f(q . . . q) −→ q, for each operator f used in the pattern and the program,
including constants (0-ary operators) (looping transitions).

Fig. 3. Build_Automaton

The pattern and the program are assumed to be given in scalar SSA-form,
a classical form in compilation that provides def-use chains. We first associate
to the program and the pattern a tree automaton allowing to step them easily.
This is done by using the algorithm described in figure 3. Basically, each state
corresponds to a statement (step 1), and the transitions to a state are driven by
def-use chains, and labeled by the statement operator (step 2). Pattern wildcards
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are handled as Kleene star in word automata. Note that the wildcard value is a
particular case of wildcard function �(. . .) with arity 0. Step 3 of the method
builds a loop for these states with any operator which appears in the program.

Consider the pattern and the program given in figure 4. For sake the of clarity,
we have chosen a pattern and a program with unary operators which will lead
to the word automata given in figure 5. But of course, our method can handle
operators with any arity. The φ-functions can be seen as multiplexers selecting
the last definition for a given value.

r1 = 1
do i = 1,n

r2 = �(φ(r1,r3))
r3 = 1+r2

enddo
r4 = exp(r3)

z1 = 1
t = 0
a = tan(t)
do i = 1,10
z2 = 1/(φ(z1,z3))
z3 = 1+z2

enddo
r = exp(z3)

Fig. 4. Pattern (left) and Program (right)

The idea is now to step simultaneously the two automata up to the pattern
final state while the operators are equal. The two automata have as many entry
points as constant leaves (1(), 2() here), and we have to start a comparison
from each couple of leaves. The operations corresponds to the definition of the
cartesian product of the pattern and program automata. The detected slices can
then be computed by collecting all program states along the paths from initial
states to each state with a final pattern state (qfinal, .). The detection step is
summarized in the algorithm described in figure 6.

Let us summarize our algorithm. Given a pattern and a program we first com-
pute their tree-automata by applying Build_Automaton. The slices of “good”
candidates are then obtained by stepping simultaneously AT and AP . This task
is achieved by Output_Slices. We finally apply the exact equivalence test de-
scribed in [1] to check whether the slices are instances of patterns or not.

3.3 Aggregation

Our method is able to detect template occurrences with only one output state-
ment. We present thereafter an extension to detect slices with several outputs
by using an aggregation hierarchy of domain-specific functions.

Motivating example. The templates to match often use an array. Yet our
method is able to detect the occurrences with only one output statement. Figure
7 provides an example of matching, where the template is the daxpy function of
BLAS 1. Our slicing method yields the candidates slices S1 and S2, but the
candidate S1 ∪ S2 where a = 2, x = [s(1), s(2), s(3), u] and y = [1, 1, 1, v] is
missing since its outputs are shared by several statements.
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Fig. 5. Pattern automaton (left), and Program automaton (right)

Algorithm Output_Slices

Input: AT and AP , pattern and program automata.
Output: {s1 . . . sn}, the last statements of each candidate slice.

1. Compute the Cartesian product A = AT ×AP .
2. Mark the nodes with a final state of AT , and emit the AP part of marked states.
3. For each marked node q:

Compute the set of previous states S lice(q) = {q′, q′ −→∗ q}.
Then return the AP part of S lice(q).

Fig. 6. Output_Slices

Aggregation hierarchy. One can remark that daxpy is constituted of
1-dimension daxpy instances. Another solution would be to detect «atomic»
daxpy using the slicing method, then to aggregate them to make a larger daxpy.

In a more general manner, consider an algorithm A which produces an array,
and a family of algorithms (Ai)i, where Ai outputs the i-th array cell of A for
each possible input:

Ai(I) ≡H A(I)[i]

For each relevant input I and array index i. Then A is said to be an aggregation
of the Ai.

Aggregation induces a hierarchy between algorithms, and particularly be-
tween templates. Typically, a daxpy is an aggregation of several scalar daxpy ,
and a matrix-vector product is an aggregation of dot products. Figure 8 provides
an aggregation hierarchy between some BLAS 1 and 2 functions. A → B means
“B is an aggregation of A instances”.
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do i = 1,n
y(i) = a*x(i) + y(i)

enddo
return y

S1 do i = 1,3
S1 s(i) = 2*s(i) + 1
S1 enddo
S2 u = 2*u + v

Fig. 7. Two detections of daxpy

Fig. 8. Aggregation hierarchy of BLAS 1 and 2 functions

A solution is to detect the templates of the hierarchy by using the slicing
method. Then we aggregate them in a bottom-up manner, from the leaves func-
tions to the top functions. If A is an aggregation of (Ai)i, all combinations of
Ai instances are aggregated, and yielded as A instances. The aggregation is just
a concatenation of slice outputs, as stated in the motivating example.

3.4 SPL Code Generation
Once the program is rewritten by using SPL functions, it remains to generate
the corresponding SPL program. The preliminary approach investigated in this
paper, but not yet implemented, is to select the program slices which can be
completely unrolled, then to use the data-flow dependences to build the corre-
sponding SPL program. The output of the SPL generation step is thus a set
of unrollable program slices, and their corresponding SPL program. Unrolling
is possible whenever the program slice uses for loops with bounds as expres-
sions with constants and surrounding loop counters. The reaching definitions can
be easily computed on the unrolled program slice by using usual methods [15].
These restrictive conditions lead to select the slices which can be unrolled, then
to translate them into an SPL program. We believe that this approach is able
to recover SPL programs corresponding to relevant program slices.

3.5 Program Variations Detected

The efficiency of our approach directly depends on its capacity to recognize SPL
functions in a source code. A common way to evaluate an algorithm recogni-
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tion system is to provide the different kinds of pattern variations it can handle
[20,9,13,14]. We provide thereafter a detailed description of each variation. We
also state whether our algorithm is able to detect them.
Organization variations. Any permutation of independent statements and

introduction of temporary variables. The following example provides an or-
ganization variation with legal permutations (LP), garbage code (GC) and
temporaries (T):

s = a(0)
c = 0
do i = 1, n
s = s + a(i)
c = c + 1

enddo
return s + c

s = a(0)
c = 0

GC garbage = 0
do i = 1, n

LP c = c + 1
T temp = a(i)

do j = 1, p
GC garbage = garbage + 1

enddo
s = s + temp

GC garbage = garbage + a(i)
enddo
OUTPUT = s + c

Our algorithm works on a def-use graph, which avoids the artificial prece-
dence constraints due to the text representation of the program. This allows
our algorithm to handle legal permutations and garbage code. Our method
compares two by two the operators used in the template and the program
without handling variables, this allows to handle temporaries.

Data structure variations. The same computation with a different data struc-
ture. The following example gives a data structure variation with arrays and
non-recursive structures:

s(0) = a(0)
do i = 1, 2*n

s(i) = s(i-1) + a(i)
enddo
OUTPUT = s(2*n)

s.sum1 = a(0)
do i = 1, n

s.sum1 = s.sum1 + a(i)
enddo
s.sum2 = a(n+1)
do i = n+2, 2*n

s.sum2 = s.sum2 + a(i)
enddo
OUTPUT = s.sum1 + s.sum2

One of the important add-on of the paper is the ability of the detection to
cope with different representation of arrays. Transformations such as scalar
promotion (transforming an array section into as many scalars) or array
expansion (the reverse) are handled thanks to the aggregation step.

Control variations. Any control transformation as if-conversion, dead-code
suppression and loop transformations as peeling, splitting, skewing, etc. The
following example give a control variation with a simple peeling:
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s = a(0)
do i = 1,n

s = s + a(i)
enddo
OUTPUT = s

s = a(0)
s = s + a(1)
do i = 2,n-1
s = s + a(i)

enddo
s = s + a(n)
OUTPUT = s

In a general manner, we are abe to hande any variation which does not affect
the operators nest of the expression computed by the program.

Each of these variations provide an Herbrand-equivalent slice, which our al-
gorithm is able to detect in a general way. But we are not able to detect non-
Herbrand-equivalent variations, such as semantics variations, which uses seman-
tics properties of operators such as associativity or commutativity. Nevertheless,
experimental results given thereafter shows that our method finds a large amount
of correct candidates.

4 Experimental Results

In this section, we present TeMa, the implementation of our algorithm recog-
nition system. We provide experimental results on SPEC benchmarking suite
demonstrating the power of our slicing method. In addition, we show how TeMa
can be used to recover an SPL program from a naive implementation of the
Walsh-Hadamard transformation.

TeMa (Template Matcher) is the implementation of our algorithm recognition
system, including the slicing method, the exact instantiation test, the aggrega-
tion method described in figure 2 and the substitution. For the moment, TeMa
does not implements the SPL code generation. TeMa has been implemented in
Objective Caml, and represents 10 kloc. TeMa is declined in two versions: a batch
version for automatic usage such as benchmarking, or systematic discovery of
patterns in a large application ; and an interactive version with a GUI which aims
to be used in re-engineering, program comprehension or software maintenance.
Our front-end is able to handle C and Fortran 90 programs. C front-end uses
the LLVM compiler infrastructure [11], which is based on gcc front-end. Thus
TeMa is able to handle any C real-life application. We have also implemented
our own Fortran 90 front-end. Most Fortran 90 programs are correctly handled,
but some syntactic constructions are not yet accepted, and need to be modified
by hand. Our front-end has handled with success all fortran programs of SPEC
benchmarking suite.

We have applied our slicing method to detect potential calls to the BLAS
library [12] in LINPACK [7] and four programs involved in the SPEC benchmark-
ing suite [8]. Our pattern base is constituted of direct implementations of BLAS
functions from the mathematical description. Figure 9 shows the results.

It appears that 50% of candidates do not match, 25% are instances of pat-
terns with one-dimension vectors, and 25% of candidates are correct and can be
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LINPACK 171.swim 172.mgrid 177.mesa 183.equake
43.85 s 11.99 s 20.12 s 16.96 s 644 s

A ixamax C xaxpy E xnrm2 G xxdot I xger K xsyr
B xasum D xdot F xscal H xgemv J xspr2 L xtrmv

Fig. 9. For each SPEC program, we provide each BLAS function found, the number of
non-equivalent slices (# Wrong), the number of equivalent slices with one statement
(# Trivial), and the number of other equivalent slices (# Substituted). The execution
times are given for a Pentium 4 1,8 GHz with 256 Mo RAM.

replaced by a call to BLAS. We present the different kind of candidates involved
in these categories. Most of the incorrect detections are due to the approxima-
tion of the dependences with φ-functions. Neither loop iteration count, nor if
conditions, nor complex dependences due to array index functions are taken into
account.

25% of the slice is constituted of interesting candidates whose substitution
can potentially increase the program performance. Our algorithm seems to have
discovered all of them, and particularly hidden candidates. Indeed, most slices
found are interleaved with the source code, and deeply destructured. Our method
has been able to detect a dot product in presence of a splitting and a loop unroll,
which constitute important program variations that a grep method would not
catch. The same remark applies on equake program. Two versions of matrix-
vector product appear, one hand optimized and the other not. Both are de-
tected whereas a method based on regular expressions would detect only the
second.

TeMa allows to recover SPL programs by recognizing and substituting SPL
functions including matrix composition, direct sum and tensor product. Consider
the following program, which is a naive implementation of the Walsh-Hadamard
Transform (WHT):
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c(1) = f2
do iter = 2,5
rank = 2 ** (iter - 1)

⊗ do i = 0,1
⊗ do j = 0,1
⊗ do k = 0,rank-1
⊗ do l = 0,rank-1
⊗ c(iter,i*rank+k,j*rank+l) = f2(i,j)*c(iter-1,k,l)
⊗ enddo
⊗ enddo
⊗ enddo
⊗ enddo

enddo
wht = c(5)

TeMa detects the slice marked by ⊗ as a tensor product between f2 and
c(iter - 1), and substitutes it in the following manner:

c(1) = f2
do iter = 2,5
rank = 2 ** (iter - 1)
c(iter) = f2 ⊗ c(iter-1)

enddo
wht = c(5)

Applying by hand our preliminary SPL code generation method, we finally
obtain the following SPL program:

(tensor (F 2)(tensor (F 2)(tensor (F 2)(tensor (F 2)(F 2)))))

Even if the SPL generation is not yet implemented, the rewriting of the program
with high-level functions increases readability, making TeMa a promising tool to
improve program comprehension and help programmers in the tedious task of
software maintenance.

5 Related work

We first present related work about program slicing as a tool to help software
maintenance, then we present some methods for pattern detection, and more
specifically algorithm recognition.

Program slicing was first introduced by Mark Weiser [19], to help program-
mers to debug their code. He defined a slicing criterion as a pair (p, V ), where
p is a program point and V a subset of program variables. A program slice on
the slicing criterion (p, V ) is a subset of program statements that preserves the
behavior of the original program at the program point p with respect to the
program variables in V . Weiser has shown that computing the minimal subset of
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statements which satisfies this requirement is undecidable [19]. However an ap-
proximation can be found by computing consecutive sets of indirectly relevant
statements, according to data-flow and control-flow dependences.

Cimetile et al. [3] defined a method to identify slices verifying given pre-
conditions and post-conditions. They first compute a symbolic execution of the
program, which assign to each statement its pre-condition, then they use a the-
orem prover to extract the slices. They need user interaction to associate post-
condition variables to program variables. Moreover, as the problem of finding
invariant assertions is in general undecidable, symbolic execution can require
user interaction in order to prove some assertions and assert some invariants. No
practical evaluation of their method, or theoretic study of complexity is given,
but their method seems to be costly. Moreover, the need of user interaction
makes the method inappropriate in a fully automatic framework.

Several approaches encode the knowledge about the functions to be identi-
fied in the form of programming plans, and can be classified as either top-down
or bottom-up methods. Top-down methods [9,10] use the knowledge about the
goals the program is assumed to achieve and some heuristics to locate both
the program slice and the plan from the library which can achieve these goals.
Bottom-up methods [13,20] start from the program statements and try to find
the corresponding plans. Wills [20] represents programs by a particular kind of
dependence graph called flow-graph, and patterns by flow-graph grammar rules.
The recognition is performed by parsing the program’s graph according to the
grammar rules. She finally obtain a parsing tree which represents a hierarchi-
cal description of a plausible project of the program. This approach is a pure
bottom-up code-driven analysis based on exact graph matching. Patterns are
represented by grammars rules, encoding a hierarchy among them, but making
the pattern base difficult to maintain. Organization variation is partially sup-
ported and temporary variables can be handled by adding specific rules. All
others algorithmic variations can be handled only if they are explicitly described
in the pattern base.

Metzger and Wen [14] have built a complete environment to recognize and
replace algorithms. They first normalize the program and pattern AST by ap-
plying classical program transformations (if-conversion, loop-splitting, scalar ex-
pansion...). Then they look for good candidate slices within the program. The
candidate slices are SCCs of the dependence graph, containing at least one for
statement. Their equivalence test is based on an isomorphism between the slice
and pattern AST. Obviously, this approach is low cost, and scalable. One may
point out the large amount of candidate slices given by their method, but it is
not a real problem due to the low complexity of their equivalence test. Orga-
nization variations, resulting from the permutation of independent statements
or the introduction of temporaries are not handled by the algorithm itself, but
by pre-treatments applied to the program. Reuse of temporaries accross loop
iterations for instance is not handled. In the same way, the control variations
supported are bounded to pre-treatments.



76 C. Alias and D. Barthou

6 Conclusion

In this paper, we have presented an automatic method to find high-level func-
tions in a given program, and its implementation in the tool TeMa. We have
also proposed a preliminary approach to reformulate Fortran or C code into Sig-
nal Processing Language (SPL). Our detection method has been validated by
recognizing BLAS functions in different kernels of the SPEC benchmarking suite.
Our method is able to detect a large amount of program variations such as loop
transformations (unroll, splitting, tiling, etc...) and appears to be scalable, and
thus applicable to real-life applications. In addition, the rewriting of the program
with high-level functions increases readability, making TeMa a promising tool to
improve program comprehension and help programmers in the tedious task of
software maintenance.

In future works, we would like to automatize the generation of SPL code,
and validate it on benchmark applications. Additionnaly to portability and soft-
ware maintenance, it should also increase performance since SPL enable specific
algorithmic optimizations, which were not possible at a lower level of semantics.
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Abstract. Domain-specific languages (DSLs) have been proposed as a
solution to ease the development of programs within a program family.
Sometimes, however, experience with the use of a DSL reveals the pres-
ence of subfamilies within the family targeted by the language. We are
then faced with the question of how to capture these subfamilies in DSL
abstractions. A solution should retain features of the original DSL to
leverage existing expertise and support tools.

The Bossa DSL is a language targeted towards the development of
kernel process scheduling policies. We have encountered the issue of pro-
gram subfamilies in using this language to implement an encyclopedic,
multi-OS library of scheduling policies. In this paper, we propose that
introducing certain kinds of modularity into the language can furnish
abstractions appropriate for implementing scheduling policy subfamilies.
We present the design of our modular language, Bossa Nova, and assess
the language quantitatively and qualitatively.

1 Introduction

Domain-specific languages (DSLs) have been proposed as a solution to ease the
development of programs within a program family. A DSL is designed according
to the results of a domain analysis, and provides high-level, domain-specific
abstractions that facilitate programming in the domain and enable verification
of domain-specific properties. Such languages have made programming accessible
to non-experts in areas as varied as web-services [1,4,31] and animation [10].

Despite the success of DSLs, such languages are limited by the scope of the
initial domain analysis. The ease of programming with a DSL may, however,
lead programmers in unanticipated directions. In particular, experience with a
DSL may reveal subfamilies within the family targeted by the language. We
must then consider how to extend the DSL to provide appropriate abstractions
for capturing these subfamilies. A solution should maintain the character of the
DSL, to leverage the expertise and support tools developed around the language.

One approach that can enable a DSL to adapt to unanticipated needs is to
embed the language in an existing richer general-purpose language [10,14,29].
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The DSL can then inherit host-language features such as types, modules, and
objects as the need arises. The inherited features, however, are determined by
what the host language provides, and not by domain needs. Accordingly, code can
be difficult to understand, because information is not structured according to its
role in the domain, and difficult to verify, because the general-purpose nature of
the inherited features precludes introducing constraints to ease verification. We
propose instead that DSL extensions should be individually designed according
to domain requirements and in harmony with existing abstractions of the DSL.
The language can then be embedded or directly compiled, as convenient. We
illustrate our proposal in the context of the Bossa DSL for process scheduling
[19,20], which we extend with two forms of modularity.

The Bossa DSL. A process scheduler is the part of an operating system (OS)
kernel that allocates the CPU to processes. Because the time at which a pro-
cess gets access to the CPU affects the timing of all its subsequent actions,
process scheduling has a profound effect on application behavior. From real-
time systems to multimedia applications to energy-restricted embedded systems
and beyond, applications have varied scheduling needs that cannot be met by
a single scheduler. Not surprisingly, many scheduling policies have been pro-
posed [2,6,9,15,24,25,28,30,33,34,35]. Still, few of these scheduling policies are
available in commonly used OSes. Furthermore, implementing a scheduling pol-
icy in a legacy OS kernel is outside the expertise of most application developers.

To ease the implementation of scheduling policies in legacy OSes, we have
developed the Bossa framework. Bossa extends a legacy OS with a documented
scheduling interface [19] and provides a DSL for implementing scheduling poli-
cies [20]. It has been used to implement a variety of scheduling policies, including
those for interactive, multimedia, and real-time applications. We have observed
significant benefits in the understandability, conciseness, and safety of Bossa
schedulers, as compared to direct coding at the OS level. These features have
enabled undergraduate students with no previous kernel programming experi-
ence to implement schedulers in the Linux kernel without crashing the machine.

The Bossa DSL was designed to facilitate the implementation of one schedul-
ing policy at a time. The ease of scheduler programming in Bossa, however, has
lead us to begin implementing an encyclopedic multi-OS library of scheduling
policies. This work has highlighted some properties of scheduling policies that
were not taken into account in the original design of the language. We have
observed that the policies found in the scheduling literature are often classified
in families, and that the Bossa implementations of policies within a family have
much in common. Furthermore, the code specific to a policy variant is intertwined
with the code generic to the family, making it difficult to identify policy-specific
features. These issues have called for the introduction of modularity in the Bossa
DSL, to enable the separation of concerns and to enhance code reuse.

This paper. In this paper, we address the needs identified in implementing an
encyclopedic multi-OS library of scheduling policies by extending the Bossa DSL
with two forms of modularity: modules and transition aspects. Modules separate
scheduling concerns while transition aspects permit a module to adapt other
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modules in a controlled way. The extensions are designed according to a careful
analysis of the requirements of the scheduling domain. We assess the exten-
sions on the implementation of a variety of scheduling policies. As compared
to an embedded-language approach where the DSL inherits features from the
host language, we find that our approach leads to policies that are more un-
derstandable, because information is structured according to the needs of the
domain, and more verifiable, because we can constrain the module system in a
way that eases verification. The resulting language, Bossa Nova, has been im-
plemented by translation into the Bossa DSL, for which an implementation has
previously been developed [19,20]. Experiments with Bossa Nova have shown no
performance overhead as compared to Bossa.

This work represents a case study in what happens when a DSL meets real
programming needs. Specifically, we illustrate:

– Motivations for introducing new abstractions into a DSL.
– Goals that should be taken into account in designing these abstractions.
– The choice of specific features that the abstractions should provide to meet

these goals.

While the design choices presented here are specific to Bossa, our contributions
are to identify individual motivations, goals, and features that should be taken
into account in extending DSLs and to illustrate the benefits that can be achieved
by this approach.

The rest of this paper is structured as follows. Section 2 presents the Bossa
DSL. Section 3 motivates the need for modularity, and presents our design
choices. Section 4 assesses the resulting language, Bossa Nova, on numerous ex-
amples and compares the proposed forms of modularity to existing approaches.
Finally, Section 5 describes related work and Section 6 concludes.

2 Bossa in a Nutshell

We introduce the Bossa DSL using excerpts of an implementation of an Earliest-
Deadline First (EDF) scheduling policy [7,22], shown in Figure 1. This policy
manages a set of periodic processes, each of which is associated with a deadline
within its current period. Process election chooses the process with the nearest
deadline. The complete policy and a grammar of the Bossa DSL are available at
the Bossa web site, http://www.emn.fr/x-info/bossa. We focus on the main
features of the language: declarations and event handlers.

Declarations. The declarations of a scheduling policy define the process at-
tributes, process states, and processes ordering used by the policy.

The process declaration (Figure 1, lines 2-3) lists the policy-specific at-
tributes associated with each process. For the EDF policy, these are the period
and the Worst-Case Execution Time (WCET) supplied by the process, a timer
that is used to maintain the period, the offset of the deadline within each period,
and the process’s absolute deadline within the current period.
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scheduler EDF = { 1

process = { time period; time wcet; timer period timer; 2

time deadline; time absolute deadline; } 3

states = { RUNNING running : process; READY ready : select queue; 4

READY yield : process; BLOCKED blocked : queue; 5

BLOCKED period yield : queue; TERMINATED terminated; } 6

ordering criteria = { lowest absolute deadline } 7

handler (event e) { 8

On block.* { e.target => blocked; } 9

On bossa.schedule { 10

if (empty(ready)) { yield => ready; } 11

select() => running; 12

if (!empty(yield)) { yield => ready; } 13

} 14

On unblock.timer.period timer { 15

e.target.absolute deadline = now() + e.target.deadline; 16

start relative timer(e.target.period timer, e.target.period); 17

switch e.target in { 18

case period yield: { 19

e.target => ready; 20

if (!empty(running) && (e.target > running)) { running => ready; } 21

} 22

case running, ready: { e.target => ready; } 23

case READY, BLOCKED, TERMINATED: { } 24

} 25

} 26

. . . 27

} 28

} 29

Fig. 1. An excerpt of the EDF scheduling policy

The states declaration (lines 4-6) lists the set of process states that are
distinguished by the policy. Each state is associated with a state class (RUNNING,
READY, BLOCKED, or TERMINATED) describing the schedulability of processes in
the state. For example, the ready state is in the READY state class, meaning
that it contains processes that are ready to run. A state is also associated with
an implementation as either a process variable (process) or a queue (queue).
Finally, the ready state is designated as select, indicating that processes are
elected from this state.

The ordering criteria (line 7) describes how to compare two processes in
terms of a sequence of criteria based on the values of their attributes. Higher or
lower values are favored using the keywords highest and lowest, respectively.
The EDF policy favors the process with the lowest absolute deadline.
Event handlers. Event handlers describe how a policy reacts to scheduling-
related events that occur in the kernel. Examples of such events include process
blocking and unblocking and the need to elect a new process.
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The EDF policy defines 11 event handlers. Handlers are parameterized by
an event structure, e, that includes the target process, e.target, affected by the
event, if there is one. The event-handler syntax is based on that of a subset of
C, to make the language easy to learn. The syntax provides specific constructs
and primitives for manipulating processes and their attributes. These include
constructs for testing the state of a process (exp in state), testing whether there
is any process in a given state (empty(state)), testing the relative priority of two
processes (exp1 > exp2), and changing the state of a process (exp => state).

A block.* event occurs when a process blocks. The associated handler of
the EDF scheduling policy (line 9) simply sets the state of the target process to
blocked. A bossa.schedule event occurs when the kernel would like the policy
to elect a new process. The associated handler (lines 10-14) uses the primitive
select() to choose the highest priority process according to the ordering criteria
from the state designated as select, i.e., ready. It also manages any yielded
process. Finally, an unblock.timer.period timer event occurs when a process’s
period timer timer expires, indicating the start of a new process period. The
associated handler (lines 15-26) resets the absolute deadline of the target process
(line 16), restarts the timer (line 17), and reschedules the target process for its
computation in the new period (lines 18-25). If the process is in the period -
yield state, meaning that it has completed its computation during its previous
period, then its state is changed to ready, indicating that it is newly able to run
(line 20). If the target process is in the running state or the ready state, then
it is repositioned in the ready queue according to its new priority (line 23).

3 Modularity for Bossa

In the Bossa DSL presented above, a scheduling policy is implemented as a single
unit, defining a complete set of event handlers. In our experience in developing
a library of scheduling policies, we have observed that when scheduling policies
are part of the same family, there is much commonality between their implemen-
tations. We first illustrate this commonality in the case of policies for managing
periodic processes, such as EDF, and argue that this commonality motivates the
need for modularity. We then propose a module system tailored to the needs of
scheduling policies, which forms the basis of a modular variant of the Bossa DSL,
named Bossa Nova. Finally, we briefly describe a second form of modularity, a
variant of aspects, that we have also found useful in Bossa Nova.

3.1 The Need for Modules

Many scheduling policies have been developed for managing periodic processes,
including Deadline Monotonic (DM) [7], Earliest-Deadline First (EDF) [7], Fixed
Utilization Priority (FUP) [13], Least Compute Time (LCT) [13], Least-Laxity
First (LLF) [7], Rate Monotonic (RM) [7], and Shortest Completion Time (SCT)
[13]. The set of periodic policies thus amounts to a program subfamily. In imple-
menting these policies in Bossa, we have observed that only the ordering criteria
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EDF

EDF

DM

DM

FUP

FUP

LCT

LCT

LLF

LLF
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SCT

SCT

AbsoluteDeadline ElapsedTime

Common Timer

Fig. 2. Modular decomposition of a subset of the family of periodic policies (modules
are boxed, policies are unboxed)

and the code calculating the values used in this criteria differ among them. In-
deed, among these policies, the average size of the Bossa implementation is 123
lines, of which 100 are common to all of the policies.

One strategy in the face of this large amount of common code is to implement
a scheduling policy by copying code from the Bossa implementation of another
policy in the same subfamily. Nevertheless, we find that code that is common
to the subfamily is mixed with code that is specific to a given policy, requiring
careful rewriting of the copied code. This issue suggests the need for a modular
programming strategy that separates these concerns, leading to a collection of
standard modules that are useful in implementing policies of a given subfamily.
Such a modular decomposition of the periodic policies is illustrated in Figure 2.

3.2 Modules for Process Scheduling

The design of our module system is guided by the requirements of the scheduling
domain. As a scheduling policy is a critical component of an OS, its implemen-
tation must be understandable and verifiable. Our experience in implementing a
library of scheduling policies has further shown the need for code reuse. Accord-
ingly, we structure the module system according to the following principles. To
enhance understandability, the module system organizes a scheduling policy as
a centralized scheduler, giving a global view of the policy behavior, and a collec-
tion of modules, each implementing a single scheduling functionality. To enhance
verifiability, the module system provides fine-grained control over external ac-
cess to module elements, making it clear where it is valid to reason in terms of
properties local to a module. Finally, to enhance reusability, modules do not re-
fer directly to the other modules making up a given policy. Instead, information
about the relationships between modules is localized in the scheduler.

In the rest of this section, we describe how the requirements of understand-
ability, verifiability, and reusability influence the design of the interaction be-
tween the module system and the main features of Bossa: process states, process
attributes, and event handlers. In each case, the various constraints identified
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scheduler EDFSched = { 1

states = { RUNNING running : process; READY ready : select queue; 2

READY yield : process; BLOCKED period yield : queue; 3

BLOCKED blocked : queue; TERMINATED terminated; } 4

modules { EDF(), 5

AbsoluteDeadline(), 6

Timer (running, ready, period yield), 7

Common (running, ready, yield, blocked, terminated) } 8

process { EDF.period reads Timer.period, 9

EDF.wcet reads Timer.wcet, 10

EDF.absolute deadline reads AbsoluteDeadline.absolute deadline, 11

AbsoluteDeadline.period timer reads Timer.period timer } 12

ordering criteria { EDF } 13

handler { unblock.timer.period timer : AbsoluteDeadline, Timer; } 14

} 15

Fig. 3. The scheduler used in the Bossa Nova implementation of the EDF policy

are checked by the Bossa Nova compiler. We use the Bossa Nova implementation
of the EDF scheduling policy shown in Figures 3 and 4 as an example.

Process states. A main activity of a scheduling policy is to adjust process states,
taking into account both OS requirements and the strategy of the policy. Thus,
the set of process states manipulated by a policy gives a sense of the scope of the
policy’s scheduling strategies. To provide a global view of the policy, we define
the states centrally in the scheduler, as shown in lines 2-4 of Figure 3. States are
then passed to the modules as needed, as shown in lines 5-8 of Figure 3.

A module may only explicitly refer to the states among its parameters. A
state change operation exp => state, however, implicitly references the current
state of the process exp. We allow this state to be any state defined by the
scheduler. This strategy implies that the module does not have to be aware of the
complete set of states defined by the policy, and thus facilitates code reuse, but
limits the ability to reason about state contents across the handlers of a module.
When a module needs to be sure that only it can affect the set of processes in
a given state, it can annotate the associated parameter as unshared. Such a
parameter must be instantiated by the scheduler to a state that is not passed to
any other module and no other module can remove processes from the state. An
example of such a parameter is period yield (Figure 4, line 16), in which the
Timer module stores processes that have completed their computation within
a given period. The state used by the scheduler to instantiate this parameter
(Figure 3, line 7) is only passed to this module. A global analysis of the scheduling
policy shows that no other module removes processes from this state.

Process attributes. Process attributes record process information that persists
across successive events. Because this information is typically specific to a sin-
gle scheduling functionality, process attributes are declared locally to the mod-
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module EDF() { 1

process = { requires time period; requires time wcet; 2

requires time absolute deadline; } 3

ordering criteria = { lowest absolute deadline } 4

} 5

module AbsoluteDeadline() { 6

process = { time deadline; time absolute deadline; requires timer period timer; } 7

handler (event e) { 8

On unblock.timer.period timer { 9

e.target.absolute deadline = now() + e.target.deadline; 10

next(); 11

} 12

} 13

} 14

module Timer(RUNNING process running, READY select queue ready, 15

BLOCKED unshared queue period yield) { 16

process = { time period; time wcet; timer period timer; } 17

handler (event e) { 18

. . . 19

On unblock.timer.period timer { 20

start relative timer(e.target.period timer, e.target.period); 21

switch e.target in { 22

case period yield: { 23

e.target => ready; 24

if (!empty(running) && e.target > running) { running => ready; } 25

} 26

case running, ready: { e.target => ready; } 27

case READY, BLOCKED, TERMINATED: { } 28

} 29

} 30

} 31

} 32

module Common(. . .) { . . . } 33

Fig. 4. The modules used in the Bossa Nova implementation of the EDF policy

ule defining the functionality. To facilitate communication between modules, all
process attributes are implicitly exported for read access. To enable reasoning
about the behavior of a module across its various handlers, however, write access
is only allowed in the defining module. Finally, to enhance reusability, a module
imports an attribute without mentioning the name of the defining module, by
simply annotating the attribute declaration with requires. The link between
exported and imported attributes is made in the scheduler.

As shown in lines 2-3 of Figure 1, the Bossa implementation of the EDF
policy declares five attributes, relating to the management of the process pe-
riod (period, wcet, and period timer) and the process deadline (deadline
and absolute deadline). In the Bossa Nova implementation (Figure 4), the



86 J.L. Lawall et al.

unblock.preemptive.*

block.*

unblock.timer.period_timer

EDFSched scheduler

Common module

bossa.schedule

system.clocktick
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unblock.preemptive.*

bossa.schedule

EDF module

AbsoluteDeadline module

unblock.timer.period_timer

Timer module

system.clocktick

unblock.timer.period_timer

Fig. 5. Composition of handlers in the EDF scheduling policy

former are localized in the Timer module and the latter are localized in the
AbsoluteDeadline module. The EDF module imports the period, wcet, and
absolute deadline attributes, which it declares using requires, as shown in
lines 2-3 of Figure 4. These attributes are instantiated in the process declaration
of the scheduler (Figure 3, lines 9-11), which declares that the EDF period and
wcet attributes read the corresponding attributes of the Timer module and the
EDF absolute deadline attribute reads that of the AbsoluteDeadline module.

Event handlers. Event handlers react to OS events. Because multiple scheduling
functionalities may need to react to the same event, multiple modules may define
a handler for a given event. In this case, the scheduler lists the names of the
modules defining a given handler in the order in which the definitions are to be
composed. Execution begins with the handler defined by the first module in the
list. A handler uses next() to invoke the next handler in the composition.

Figure 5 illustrates the composition of some of the handlers in the EDF
policy. Both the Timer module and the AbsoluteDeadline module define an un-
block.timer.period timer handler. That of the Timer module (Figure 4, lines
20-30) represents a complete implementation of a minimal handling of the event:
it restarts the timer and reschedules the target process. This handler is thus
at the end of any composition sequence. The handler of the AbsoluteDeadline
module (Figure 4, lines 9-12) extends this behavior by updating the locally
defined absolute deadline attribute and then invoking the next handler.

There are some constraints on the use of next() to ensure the integrity of the
individual modules and of the composition. A handler typically updates process
attributes and changes process states. When these operations are essential to
the implemented scheduling functionality and are not idempotent, it is essential
that the handler be invoked exactly once. To meet this requirement, a handler
that appears before the end of a composition sequence must use next() exactly
once along every control-flow path. In exceptional cases, a module may simply
provide a default definition for a handler, but not require that this definition
be used. Such a handler can be declared to be overrideable. If all subsequent
handlers in a composition are declared as overrideable, then next() may be
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omitted along some or all control-flow paths. Finally, handlers used at the end
of a composition sequence may not invoke next(). This constraint ensures that
the module writer intended the handler to be used in this position.

3.3 Aspects for Process Scheduling

Modules isolate the data and code associated with a given scheduling functional-
ity. We have found, however, that the data associated with a scheduling function-
ality may need to be updated in response to actions, such as state changes, that
take place in other modules. For example, the module ElapsedTime, used by sev-
eral periodic policies (see Figure 2), maintains the running time of each process.
Obtaining this value requires storing the current time whenever the process en-
ters the RUNNING state and recording the difference between the current time and
the stored time whenever the process leaves this state. Such state changes can
occur in any module. As it is not desirable to let other modules make arbitrary
side effects to the process attributes of ElapsedTime, the ElapsedTime module
itself must be able to adapt other modules with the appropriate computations.

The need to update an attribute value when executing a particular kind of
code elsewhere in the policy implementation amounts to a crosscutting concern.
Accordingly, we look to Aspect-Oriented Programming [18] for inspiration, and
add a form of aspects to Bossa Nova. We refer these aspects as transition aspects,
because they account for some kind of transition in the system. A transition
aspect implementing the behavior required by ElapsedTime on state transitions
is as follows, where the state class names refer to the associated sets of states:

transition(process p) = {
On READY => RUNNING { p.start time=now(); }
On RUNNING => READY, BLOCKED { p.elapsed time+=now()−p.start time; }

}

Transition aspects are similar to aspects in languages such as AspectJ [17],
but are restricted to the updating of attributes in response to current conditions.
Accordingly, an aspect can only be attached to a state change or attribute refer-
ence, and cannot itself perform state changes. When multiple aspects apply to a
single construct, they are ordered such that an aspect that defines an attribute
appears before all aspects that reference the attribute; mutually recursive refer-
ences are rejected by the Bossa Nova compiler. This ordering ensures that each
attribute reference obtains an up-to-date value.

4 Evaluation

We now evaluate the forms of modularity provided by Bossa Nova. We first con-
sider the benefits of modularity in programming scheduling policies and then
compare the dedicated approach used in Bossa Nova to the approaches to mod-
ularity found in general-purpose languages.
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Family Periodic Round Robin Proportion
Module Common Timer AbsoluteDeadline ElapsedTime RR Proportion
Lines of code 68 47 28 45 35 29

Policy-specific
module Scheduler Modular Monolithic

Periodic DM 23 22 160 109
(sharing illustrated in Figure 2) EDF 26 34 203 123

FUP 20 27 162 110
LCT 9 26 150 106
LLF 45 39 272 161
SCT 42 35 237 147
RM 9 26 150 106

Family total 503 862
Round Robin Basic round robin 15 28 146 96
(sharing Common and RR) Best [3] 74 30 207 158

Family total 182 254
Proportion Basic proportion 48 32 177 124
(sharing Common and Proportion) Move-to-rear [6] 41 29 167 123

Family total 179 247

Fig. 6. A comparison of the lines of code used in the modular and monolithic imple-
mentations of various scheduling policies. “Family total” is explained in the text.

4.1 Benefits of Modularity in Implementing Scheduling Policies

We evaluate Bossa Nova with respect to a selection of policies from our on-going
development of an encyclopedic, multi-OS library of scheduling policies. All of
these policies are available at the Bossa web site.

Code sharing. We use the families of periodic, round-robin, and proportional
scheduling policies to illustrate the effect of modularity on the amount of code
that must be written to implement a new policy in a given family. Figure 6 shows
the number of lines of code in the shared modules, and in a variety of scheduling
policies in these families. All the policies use modules; the SCT, LLF, and Best
policies also use transition aspects. In each case, the modular implementation
is around 50% larger than the monolithic implementation. This increase is due
to the introduction of the scheduler and the repetition of keywords (process,
handler, etc.) between modules. In general, the extra code is eliminated by the
Bossa Nova compiler, which generates a monolithic Bossa DSL implementation.

To amortize the cost of creating generic modules, they must be used by many
different policies. The “Family total” entry associated with each family in Figure
6 shows the total number of lines in the policy-specific modules and schedulers
added to the number of lines in one instance of each of the generic modules
used by the family. This value excludes the Common module, which we may
assume to be sufficiently widely used that its amortized cost is negligible. For
the periodic family, the total number of lines that must be implemented in the
modular case is 58% of the total number of lines required in the monolithic case.
For the round-robin and proportional families, the ratio is 72%, reflecting the
fact that fewer policies have been implemented in these families.

Separation of concerns. Even when a scheduling policy is not part of a fam-
ily, modularity can be useful to separate concerns. The Borrowed Virtual Time
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policy provides scheduling for both real-time and interactive processes [9]. This
policy uses three main process attributes: the actual virtual time (AVT), the
effective virtual time (EVT), and the warp. These attributes depend on several
other process attributes, and the relevant calculations appear in multiple event
handlers, making the monolithic implementation long (almost 300 lines) and dif-
ficult to understand. In the Bossa Nova implementation, each of the AVT, EVT,
and warp is managed by a separate module. These modules highlight how the
attributes are computed and the relationships between them. For the AVT, a
twelve-line computation is required to compute the value whenever a process be-
comes newly able to run. This code is isolated in a transition aspect that delimits
the computation and makes explicit the conditions under which it applies.

Isolation of OS-specific behavior. Often the details of the interaction with the
target OS are orthogonal to the concerns of a given scheduling policy. In this case,
we can use a module to isolate OS-specific behavior, thus simplifying the policy
implementation and making it easy to use a scheduling policy with multiple
OSes. In the examples in this paper, the Common module encapsulates the
interaction with the OS (see Figure 2). We have implemented this module for
use with Linux 2.4. In this implementation, the treatment of unblocking and
yielding is specific to this OS, while other operations are generic.

4.2 Comparison to the Approaches of General-Purpose Languages

We have designed module and aspect systems specific to the problem of imple-
menting scheduling policies, rather than reusing existing approaches. To justify
our choice, we compare our module and aspect systems to existing general-
purpose approaches, in terms of the understandability, verifiability, and reusabil-
ity of scheduling code.

Understandability. Key to the understandability of a Bossa Nova scheduling
policy is the scheduler, which gives an overview of the set of modules used by the
policy, the information that is defined by each module, and the information that
is shared between modules. Module systems that can provide such a global view
include Units [11] and a variant of CLOS mixins [5], in which a module either
defines new behaviors or describes how to combine the information provided by
other modules. Both of these approaches, however, allow a combining module
to be itself combined with other modules, and thus there may be no single unit
that gives a complete view of the program. Furthermore, in both approaches,
a combining module cannot declare data, as we require for the declaration of
process states. Other approaches, such those found in Object-Oriented languages
or ML [23], allow modular units to be created and used throughout the program
and thus provide no global view. While one could organize programs written in
such languages so that a single module creates the connections between all of
the other modules, there would be no guarantee that this style is respected.

Verifiability. The verifiability of a Bossa Nova scheduling policy is enhanced by
the constraints on access to process states, process attributes, and event han-
dlers, that make it possible to reason about module behavior across a sequence
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of events. General-purpose module systems either forbid external access to mod-
ule information, e.g. using Java’s private modifier, or allow unlimited external
access, e.g. using Java’s public modifier. There is, however, no built-in way to
provide read and write access in the defining module but only read access in
other modules or to constrain the number of invocations of a given function.

Reusability. The reusability of the modules of a Bossa Nova scheduling policy is
enhanced by the property that a module does not explicitly mention the names of
other modules. In Object-Oriented languages, relationships between classes are
expressed using inheritance, which requires naming the superclass. Traits [27],
CLOS mixins, and Units allow defining modules that are externally combined,
and thus do not mention the names of other modules. Traits, however, does not
allow modules to define local state, and CLOS mixins and Units do not provide
a unique global view.

Aspects. Aspect ordering is a major problem in understanding, verifying, and
reusing aspects defined using traditional approaches. For example, AspectJ relies
on a combination of defaults based on the order in which aspects are declared and
explicit directives [17]. These approaches are fragile, burden the programmer,
and do not take the semantics of the aspects into account. In our approach,
aspect ordering is determined by def-use relationships reflecting the semantics
of the aspects and the needs of the domain.

In summary, while some general-purpose approaches to modularity provide
some of the features that we require for Bossa Nova, none provides either the
domain-specific distinctions between different kinds of values or the fine-grained
control over the use of program entities that we require.

5 Related Work

To illustrate the strategies taken to incorporate advanced language features in
DSLs, we consider some other DSLs that provide module systems.

Some embedded DSLs inherit the module system of the host language. Leijen
and Meijer embed a language for constructing database queries in Haskell [21].
They argue that it is possible to exploit the Haskell module system, but their
use of this module system does not exhibit any domain-specific properties. El-
liot takes a similar approach in a DSL for animation [10]. Other embedded DSLs
provide domain-specific module systems. Verischemelog is a hardware descrip-
tion language embedded in Scheme [16]. As this language targets Verilog users,
it explicitly provides a module system based on that of Verilog, rather than us-
ing that of the host Scheme implementation. Thus, Verilog’s use of modules is
compatible with our approach: language abstractions are designed according to
domain needs rather than relying on what is provided by a host language.

Module systems have also been developed from scratch for DSLs, as we have
done for Bossa Nova. Risla is a compiled DSL for use in banking applications [32].
After several years of use, the abstraction facilities of the language were found to
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be insufficient and the language was extended with a module system. The task of
implementing the extension was facilitated by the use of language specification
tools. The nesC DSL for networked embedded systems was designed from the
start around the use of components, implemented using a dedicated module
system [12]. NesC applications have been found to require little new code, instead
relying on a large number of small components, suggesting the appropriateness
of the module system and the overall language design to the targeted domain.

6 Conclusion

In this paper we have presented the Bossa Nova language, which provides mod-
ules and transition aspects for implementing scheduling policies. These forms of
modularity enable substantial code reuse when implementing multiple scheduling
policies within a single family, allow separation of concerns in complex policies,
and separate policy-specific code from OS-specific details. Furthermore, the use
of forms of modularity dedicated to the scheduling domain improves the un-
derstandability and verifiability of scheduling code as compared to the use of
approaches found in general-purpose languages. These observations suggest that
rather than inheriting language features, as done in an embedded language, it is
more fruitful to construct DSL extensions directly, based on an analysis of the
needs of the domain.

We have used the language to extend our library of scheduling policies with
policies from a range of policy families, including both classical policies and
policies developed in recent research. In on-going work, we are adding to the
set of policies and families represented. As a practical example, we are currently
applying Bossa Nova and our library of scheduling policies to the use of a stan-
dard PC as a Personal Video Recorder (PVR).1 A PVR must provide a variety
of video services, such as encoding, decoding, and picture-in-picture. These ser-
vices need to maintain a specific rate, but may have unpredictable computation
requirements. Existing PVR software does not provide any quality of service
guarantees and indeed less is known about how a scheduling policy can provide
such guarantees for processes with unpredictable computation requirements than
for processes with strict computation bounds. The ease of generating new policy
variants and combinations in Bossa Nova can aid in evaluating existing policies
and new variants in this setting.
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Abstract. This paper presents AOP++, a generic aspect-oriented pro-
gramming framework in C++. It successfully incorporates AOP with
object-oriented programming as well as generic programming naturally
in the framework of standard C++. It innovatively makes use of C++
templates to express pointcut expressions and match join points at com-
pile time. It innovatively creates a full-fledged aspect weaver by using
template metaprogramming techniques to perform aspect weaving. It
is notable that AOP++ itself is written completely in standard C++,
and requires no language extensions. With the help of AOP++, C++
programmers can facilitate AOP with only a little effort.

1 Introduction

Aspect-oriented programming (AOP)[1] is a new programming paradigm for
solving the code tangling problems of object-oriented programming (OOP) by
separating concerns in a modular way. Many crosscutting concerns that cannot
be expressed by entities such as classes or functions in OOP can be abstracted
and encapsulated into aspects. The so called aspect code and component code
can be decoupled cleanly instead of tangled together. Aspects can have influence
upon the component code in many ways. For instance, aspects can change the
static structure of the component code by introductions, as well as change the
dynamic behaviour by advices. The influence is injected by the aspect weaver.
First the weaver identifies points in component code where aspects are to be
inserted, which are called join points. Several join points can form a pointcut
expression which is declared by each aspect to specify its scope. Then the weaver
weaves the aspect code into every join point of the component code.

In existing AOP systems such as AspectJ[13] for Java and AspectC++[7]
for C++, the aspect code is often written in a meta level language which is
different from (usually a superset of) the language used by the component code.
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That means AOP usually requires language extensions as well as special AOP-
aware (pre-)compilers, therefore aspects and components cannot be expressed in
a uniform manner.

Though both C++ and Java are object-oriented programming languages,
C++ is very different from Java in many aspects. C++ has many character-
istic language constructs such as template, multiple inheritance and operator
overloading. They are not optional features of the language, but indispens-
able parts that make C++ a harmonious whole. Template mechanisms and
subsequent generic programming (GP)[5][9] and template metaprogramming
techniques[20][10] enable the application of generative programming[12] con-
cepts in C++ to create active libraries[19] supporting multiple programming
paradigms[14] including OOP, GP and even functional programming (FP)[2][3].
Different paradigms in C++ can cooperate with each other harmoniously to
solve complex programming problems in a more natural manner.

The C++ language is so complicated that even some commercial C++ com-
pilers fail to support all its features (especially the complex template mech-
anisms) well. The syntax and semantics of C++ is too complex to add new
language extensions, especially significant radical extensions such as aspect-
orientation. We should not expect an AOP-aware (pre-)compiler to behave better
than professional C++ compilers at dealing with complex generic components.
Even so, it would be less likely to persuade developers to learn and accept the
language extensions and use a specific AOP-aware compiler instead of their fa-
vorite standard C++ compilers.

AOP++ presented in this paper is a generic aspect-oriented programming
library/framework for C++ that adopts an approach which is quite different
from that used by AspectJ or AspectC++. It is remarkable that the aspect
weaver and all the aspect code are completely written in standard C++. No
extra language extension is required, so no proprietary AOP-enabled compiler is
ever needed. With the help of AOP++, C++ programmers can facilitate AOP
with only a little effort.

AOP++ can be considered as an active library that defines a new domain-
specific sublanguage for AOP and extends the C++ compiler’s ability through
its aspect weaver. It makes heavy use of complex template metaprogramming
techniques to perform aspect weaving at compile time within the framework of
standard C++.

AOP++ is tightly coupled with the C++ language. As a consequence, all
language features, especially template mechanisms and generic programming are
supported intrinsically by AOP++. That means it can apply AOP to the realm
of GP paradigm such as STL containers and generic components from other
modern C++ template libraries. In fact, the aspect code itself is written as
C++ templates and is generic by nature.

The infrastructure of AOP++ is depicted in Fig. 1. It is remarkable that
aspect weaving all takes place in standard C++ compiler by metaprograms.
Details will be described in later sections.
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Fig. 1. Infrastructure of the AOP++ Framework

The rest of this paper is organized as follows: Section 2 gives an overview
of the AOP++ framework, including its overall infrastructure, disciplines of
the component code and definitions of pointcut expressions and introductions /
advices / aspects; A typical example is presented in Sect. 3 to demonstrate the
power of AOP++; Implementation approaches are explained in Sect. 4; Section 5
gives a brief discussion of related work; Finally, Section 6 summarizes the paper
and gives some directions of the possible future work.

2 The AOP++ Framework

2.1 Overview

AOP++ is mainly composed of the following parts:

Pointcut Expression is an important building block of AOP++ for identify-
ing join points in the component code. There are two categories of pointcut
expression: type pattern represents a collection of types, which is used to
specify the scope of introductions; while method pattern represents a collec-
tion of functions, which is used primarily to specify the scope of advices.
Both type pattern and method pattern can be defined recursively. Type op-
erators can be applied to existing ones to build up composite type patterns
or method patterns.

Base Classes for Aspects are the implementation basis for the user-defined
aspect code. They provide basic mechanisms for the aspect code to interact
with the component code through a collection of reflection API.

Aspect Weaver is the core of AOP++. It does aspect weaving at compile time.
Two weavers are included: the introduction weaver weaves introductions into
user-defined classes, while the advice weaver weaves advices into user-defined
functions.
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2.2 Disciplines of the Component Code

In order to make AOP++ work, the component code must be written according
to some simple disciplines.

2.2.1 Class Definitions
User-defined classes must be defined in a special way to enable introduction
weaving, that is, to inherit from template class aop::introd. The declaration
looks like this:
class SimpleClass : public aop::introd<SimpleClass> { /* ... */ };

If a user-defined class originally inherits from other class(es), for example:
class ComplexClass

: public A, public B, private C { /* ... */ };

The disciplined code looks like this:
class ComplexClass : public aop::introd<ComplexClass>

::public_bases<A, B>::private_base<C> { /* ... */ };

2.2.2 Function Implementations
There are two ways to discipline function implementations to enable advice
weaving in AOP++.

The common way is planting a local hook variable of type aop::advice,
aop::ctor advice or aop::dtor advice in the function body, with function
type (and name) provided as template parameters, while function arguments
are provided to the constructor of the hook variable. Here are some examples:

void MyClass::mf(int i) {

// do not forget the implicit "this" argument

aop::advice<void (MyClass::*)(int), &MyClass::mf> hook(this, i);

// original implementation code

}

void f(double d, const MyClass& c) {

aop::advice<void (double, const MyClass&), f> hook(d, c);

// original implementation code

}

MyClass::MyClass(int i) {

aop::ctor_advice<MyClass(int)> hook(this, i);

// original implementation code

}

MyClass::~MyClass() {

aop::dtor_advice<MyClass()> hook(this);

// original implementation code

}

There is another way to enable advice weaving for functions in dynamic linked
libraries (or shared libraries). This style of advice weaving is also performed at
compile time but is pluggable at runtime, we call it pluggable advice weaving.
For example, a member function void Dynamic::mf()’s implementation in file
“dynamic.cpp” is compiled into a dynamic linked library. The disciplined code
can be put in another file named “dynamic aop.cpp”:
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void Dynamic::mf()

{ return aop::dynamic_advice<void (Dynamic::*)(), &Dynamic::mf>(this); }

2.3 Type Pattern

Type pattern in AOP++ is a mechanism to represent collections of types at
compile time.

A type pattern can be simply a type (atomic type pattern), or it can be de-
fined recursively using or type, and type, not type, derived or const or not,
which are called type operators. For example, the type pattern that matches any
type which is derived from ClassA or ClassB is

aop::or_type<aop::derived<ClassA>, aop::derived<ClassB> >

The same type pattern can be represented in AspectJ as ClassA+ ||
ClassB+ and in AspectC++ as derived(ClassA) || derived(ClassB).

There is also a special wildcard type pattern any type which obviously
matches any type, and a type pattern null type which matches no type. In ad-
dition, AOP++ provides several predefined type patterns which are frequently
used, such as integral type, class type, arithmetic type and abstract
type, etc.

Type patterns in AOP++ have a peculiar capability that is lacking in other
AOP frameworks to represent template types. When applying AOP to C++
libraries such as the STL, we need to represent concept like “std::vector<T>
where T is any derived type of MyClass”, and it is easy to write out the type
pattern in AOP++:

std::vector<aop::derived<MyClass> >

AOP++ provides a mechanism called compile-time lambda expression[10]
to presents type patterns which impose specific relationships between template
parameters. For example, we can express the type pattern “std::pair<T, T>
where the two T’s are the same.” in AOP++ as follows:

std::pair<_, _>

Note that the predefined type patterns described previously all correspond
to lambda type pattern expressions composed of type traits in the Boost Type
Traits Library[4]. For instance, aop::integral type and boost::is integral
type< > are equivalent type patterns.

AOP++ also provides a mechanism to do type pattern matching. Users can
determine whether a type is contained in a type pattern expression at compile
time by using aop::matches template:

aop::matches<TypePattern, Type>::value

value is of type bool that evaluates to true or false at compile time.
The introduction weaver uses a similar way to determine whether a class is

in the scope of an introduction.
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2.4 Method Pattern

Method pattern can be viewed as a special kind of type pattern that concerns
with functions or overloaded operators.

AOP++ uses several helper class templates to wrap up functions to types,
so as to manipulate them more easily.

Given a global function f and a member function A::mf:

void f(int i, std::string s);

void A::mf(int i, std::string);

The corresponding method patterns can be defined as following:

aop::method<void (int, std::string), f>

aop::method<void (A::*)(int, std::string), &A::mf>

Because of that there is no type to represent constructors or destructors
directly in C++, AOP++ uses an alternative way to define method patterns for
them. Given:

Point::Point(int x, int y);

Point::~Point();

Their corresponding method patterns are:

aop::ctor<Point (int, int)>

aop::dtor<Point ()>

In AspectJ, the same constructor can be represented as “Point.new(int,
int)”.

Wildcards can be used for method names in method patterns as well. The
pattern below matches “any non-static non-const member function defined in
class MyClass or any of its derived classes”:

aop::methods<aop::any_type (aop::derived<MyClass>::*)(...)>

It is equivalent to “* MyClass+.*(..)” in AspectJ or “% derived (MyClass)
::%(...)” in AspectC++.

It is possible to specify a collection of member functions with exactly the
same name. The macro below defines a method pattern named draw methods
that matches “any non-static non-const member function named ‘draw’ in class
Component or any of its derived classes, which takes a reference to Graphics as
its parameter and has no return value”:

AOP_DEFINE_METHODS(void (derived<Component>::*)(Graphics&), draw,

draw_methods);

Similar to type patterns, method patterns can be combined by applying type
operators and type, or type and so forth to form composite method patterns.

Type pattern and method pattern in AOP++ are simplified pointcut con-
cepts. There is no distinct call, execution, within or cflow and so forth
pointcuts in AOP++. AOP++ simply uses method pattern to represent the
execution of functions.
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2.5 Introduction

Introduction is used for modifying user-defined classes and their hierarchies. It
changes the static structure of the component code at compile time. Introduction
can introduce new base classes for user-defined classes, or add new members
(member variables or member functions) to them.

A user-defined introduction in AOP++ is a class template which is derived
from template class aop::introd base. Extra base classes, member variables
and member functions to be introduced into user-defined classes can be specified
by just declaring base classes, member variables and member functions of the
user-defined introduction class itself respectively.

An important part of user-defined introduction is an inner type named scope,
which specifies the scope within which the introduction takes effects in terms of
a type pattern.

For example, the code listed below shows how to declare a user-defined in-
troduction named MyIntrod which introduces an extra base class, a member
variable and a member function to the user-defined classes A and B:

template <typename Arg>

struct MyIntrod : aop::introd_base<Arg>

::public_base<IntroducedBaseClass> {

typedef aop::or_type<A, B> scope;

int introduced_member_variable;

void introduced_member_function();

static const int introduced_static_member_variable = 0;

static void introduced_static_member_function();

};

There are also abstract introductions. An abstract introduction just leaves
its scope definition empty, or holds pure virtual functions, waiting for derived
introductions to complete the definition.

An introduction can be declared to “dominate” some other introductions by
defining in its definition a type pattern named dominates which includes the
dominated introductions as follows:

typedef aop::or_type<IntroductionA<Arg>, IntroductionB<Arg> > dominates;

That means, it will reside at a higher level than those dominated introduc-
tions in the introduction hierarchies generated by the introduction weaver (see
Sect. 4 for detail).

2.6 Advice

Advice is used for defining additional code that should be executed at runtime.
It changes the dynamic behaviour of the component code at runtime. However,
advice weaving is done at compile time.
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AOP++ currently supports three kinds of advices: before, after and around.
Around advice is only available for pluggable advice weaving. All user-defined
advices should be class templates that inherit from aop::advice base. Inner
type named scope is a method pattern specifying the functions to be advised.

The before, after and around methods in advice are member functions, each
takes the same parameter list as that of the method to be advised, or a tuple
which wraps up all the arguments by reference as its only parameter in situations
when the advised methods have different signatures, or even takes no argument
and gets these arguments via member functions of its advice base. AOP++
will automatically choose the correct way to pass the actual arguments to the
before, after and around methods. These arguments can be read or even modified
in the before, after and around methods, to perform extra work or change the
behaviour of the advised functions.

Below is a simple example illustrating how to define an advice containing
before and after methods for tracing any AOP++-enabled functions.

template <typename Arg>

struct TracingAdvice : aop::advice_base<Arg> {

typedef aop::any_type scope;

void before()

{ clog << "TracingAdvice::before " << this->method_name() << endl; }

void after()

{ clog << "TracingAdvice::after " << this->method_name() << endl; }

};

There are also abstract advices. An abstract advice just leaves its scope
definition empty, or holds pure virtual before / after / around functions,
waiting for derived advices to complete the definition.

An advice can be declared to dominate some other advices by defining in
its definition a type pattern named dominates which includes the dominated
advices as follows:

typedef aop::or_type<AdviceA<Arg>, AdviceB<Arg> > dominates;

That means, it will precede those dominated advices in the advice chain
generated by the advice weaver (see Sect. 4 for detail).

2.7 Aspect

Like data and functions can be encapsulated into a class, several introductions
and advices can be encapsulated into a single aspect to emphasize their logical
relation. Figure 2 shows an aspect that adds synchronization support for generic
containers. We take std::vector for example here. (Suppose we could revise
the standard containers to make them AOP++-enabled.)
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template <typename Arg>
struct vector_monitor

: aop::aspect_base<Arg> {
typedef recursive_read_write_mutex Mutex;
typedef recursive_read_write_lock Lock;

struct monitorable : aop::introd_base<Arg> {
typedef std::vector<aop::any_type> scope;

mutable Mutex mutex;
};

struct read_monitor : aop::advice_base<Arg> {
typedef aop::methods<aop::any_type
(std::vector<aop::any_type>::*)(...) const>
scope;

Lock lock;

read_monitor()
: lock(this->this_object->mutex)

{}
void before() { lock.read_lock(); }

void after() { lock.unlock(); }
};

struct write_monitor : aop::advice_base<Arg> {
typedef aop::methods<aop::any_type

(std::vector<aop::any_type>::*)(...)>
scope;

Lock lock;

write_monitor()
: lock(this->this_object->mutex)

{}
void before() { lock.write_lock(); }
void after() { lock.unlock(); }

};

typedef aop::type_list<
monitorable,
read_monitor,
write_monitor> aspect_list;

};

Fig. 2. The Synchronized Aspect for vectors

We can also specify aspect precedence by defining a type pattern named
dominates which includes the dominated aspects. If an aspect “dominates” an-
other aspect, that means all introductions and advices in it dominate those in
the other.

2.8 Reflection

It is important for aspects to have the ability interacting with the corresponding
component code. AOP++ provides a rich reflection API through introd base
and advice base for the purpose. Aspect programmers can access type infor-
mation of the component code, get arguments of the method being advised and
so on. The APIs can be divided into two categories — compile time reflection
and runtime reflection.

2.9 Putting It All Together

Once the component code is correctly disciplined and all the introductions, ad-
vices and aspects are defined, we need to tell AOP++ which of them are expected
to take effect on the component code:

namespace aop {

typedef template_list<

Introd1, Introd2, ...,

Advice1, Advice2, ...,

Aspect1, Aspect2, ...

> aspect_list;

}
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Only introductions / advices / aspects in the aop::aspect list will be wo-
ven into the component code. Users can maintain different aspect list config-
urations for different projects, and define a preprocessor macro AOP ASPECTS to
specify the header including the expected aspect list. Aspect weaving can also
be disabled by defining a null aspect list or a preprocessor macro AOP DISABLE.

3 Example: Implementing the Observer Pattern

In this section, we demonstrate how to use AOP++ to implement the famous
observer pattern described in [8]. Given classes FigureElement, Point, Line and
Canvas as in Fig. 3.

class FigureElement {
public:

virtual void setXY(int, int) = 0;
virtual ~FigureElement();

};

class Point : public FigureElement {
int _x;
int _y;

public:
Point(int x, int y);
void setXY(int x, int y);
void setX(int x);
void setY(int y);
int x();
int y();

};

class Line : public FigureElement {
Point p1;
Point p2;

public:
Line(int x1, int y1, int x2, int y2);
Line(const Point& p1, const Point& p2);
void setXY(int x, int y);
void setP1(const Point &p);
void setP2(const Point &p);

};

class Canvas {
std::list<FigureElement*> elements;

public:
void addFigureElement(FigureElement* fe);
...

};

Fig. 3. Definition of FigureElement and Its Derived Classes

template <typename _Observer>
struct Subject {

typedef _Observer Observer;
typedef std::list<Observer*> ObserverList;

void attach(Observer* obs) {
observers.push_back(obs);

}

void detach(Observer* obs) {
observers.remove(obs);

}

void notify() {
typedef

typename ObserverList::iterator
iterator;

for (iterator it = observers.begin();

it != observers.end(); ++it) {
(*it)->update(static_cast<
typename Observer::Subject*>(this));

}
}

virtual ~Subject() {}

private:
ObserverList observers;

};

template <typename _Subject>
struct Observer {

typedef _Subject Subject;

virtual void update(Subject* subject) = 0;
virtual ~Observer() {}

};

Fig. 4. Generic Components for the Observer Pattern
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template <typename Arg>
struct MoveMethods {

AOP_DEFINE_METHODS(void (aop::derived<FigureElement>::*)(int, int),
setXY, setXY_method);

AOP_DEFINE_METHODS(void (Point::*)(int), setX, setX_method);
AOP_DEFINE_METHODS(void (Point::*)(int), setY, setY_method);
AOP_DEFINE_METHODS(void (Line::*)(const Point&), setP1, setP1_method);
AOP_DEFINE_METHODS(void (Line::*)(const Point&), setP2, setP2_method);

typedef aop::or_type<
setXY_method, setX_method, setY_method, setP1_method, setP2_method> scope;

};

Fig. 5. The Move Events of FigureElements

template <typename Arg>
struct SubjectObserverProtocol

: aop::aspect_base<Arg> {

struct SubjectIntrod
: aop::introd_base<Arg>

::public_base<Subject<Canvas> > {
typedef FigureElement scope;

};

struct StateChangedAdvice
: aop::advice_base<Arg> {

typedef
typename MoveMethods<Arg>::scope
scope;

void after()
{ this->this_object->notify(); }

};

struct ObserverIntrod
: aop::introd_base<Arg>
::public_base<Observer<FigureElement> > {

typedef Canvas scope;

virtual void update(FigureElement* fe) {

// update the canvas according to fe
}

};

struct SubjectAddedAdvice
: aop::advice_base<Arg> {

AOP_DEFINE_METHODS(
void (Canvas::*)(FigureElement*),
addFigureElement, scope);

typedef aop::advice_base<Arg> base;
typedef typename base::arg_list arg_list;

void after(arg_list& args) {
// attach the Canvas to the FigureElement
aop::arg<1>(args)

->attach(this->this_object);
}

};

typedef aop::type_list<
SubjectIntrod,
StateChangedAdvice,
ObserverIntrod,
SubjectAddedAdvice> aspect_list;

};

Fig. 6. The Aspect for implementing the Observer Pattern

A Canvas holds a list of FigureElement objects and is responsible for render-
ing them. Now we want the Canvas to be notified to update its display whenever
any one of its FigureElement is moved. Obviously the Canvas acts as the ob-
server, while the FigureElement and its derived classes act as the subjects.

The first step is to discipline the above classes to be AOP++-enabled.
The second step is to define generic components supporting the observer

pattern, which is shown in Fig. 4. This approach is similar to those used in the
Loki Library[6].

Before writing aspects using AOP++, let’s define the pointcut expression
that denotes the move event of a FigureElement in Fig. 5.

Now the aspects can be written as in Fig. 6.
It is also possible to make the concrete subject and observer classes as well

as the state-changed pointcut as template parameters so as to generalize the
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above SubjectObserverProtocol aspect to accommodate general situations.
The generalized aspect is called a parameterized aspect.

Several other design patterns such as the visitor pattern[8] can also be applied
in this manner. The generic components are similar to those in the Loki Library,
while their integration with user-defined components is automatically done by
reusable parameterized aspects in an aspect-oriented manner.

4 Implementation

AOP++ makes extensive use of template metaprogramming in its implementa-
tion.

Pointcut expressions including type patterns and method patterns are all
represented using the C++ type system. Type patterns are defined by simple
types and type operators, also with some predefined shortcuts for defining often-
used type patterns. Method patterns are method pointers wrapped up in method,
methods, ctor or dtor templates.

There are two aspect weavers in AOP++, the introduction weaver and the
advice weaver. A mechanism similar to the template aop::matches in Sect. 2.3 is
used to determine whether a join point is covered by the scope of an introduction
or advice. The following is a simplified description of the work flow of the aspect
weaver.

Introduction weaving takes place while defining the base class(es) for a user-
defined type. It first filters all introductions (both standalone and those em-
bedded in aspects) from the aop::aspect list, then determines whether the
scope of an introduction covers the current join point (that is, the user-defined
class which is being defined). If the answer is yes, the introduction is rele-
vant and will be woven into the definition of the class; otherwise it is simply
discarded. Then all relevant introductions will be instantiated with the cur-
rent join point in their template parameter using a class template similar to
Loki::GenLinearHierarchy template[6], and form a linearized class hierarchy
in which the introductions are lined up and inherit one another (the order will
be influenced by the domination declarations of introductions) with the user-
defined base classes at the top of the hierarchy while the class being defined at
the bottom. Hence extra base classes, member functions and member variables
are “injected” into user-defined classes.

Consider a class C defined as follows:

class C : public aop::introd<C>::public_bases<A, B> { /* ... */ };

Suppose three introductions Introd1, Introd2 and Introd3 are injected into
class C. The resulting inheritance structure generated by our introduction weaver
is shown in Fig. 7.

Advice weaving takes place while defining the extra hook variable (which
uses the scope guard idiom) of a user-defined method. The weaver first fil-
ters all advices (both standalone and those embedded in aspects) from the
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C

introd<C>::public_bases<A, B>

introd_with_base_list<C, SORTED_INTROD_LIST, type_list<A, B> >

Introd3<introd_arg<C, INTROD2> > = INTROD3

introd_base<introd_arg<C, INTROD2> >

Introd2<introd_arg<C, INTROD1> > = INTROD2

introd_base<introd_arg<C, INTROD1> >

Introd1<introd_arg<C, type_list<A, B> > > = INTROD1

introd_base<introd_arg<C, type_list<A, B> > >

gen_hierarchy<type_list<A, B> >

gen_hierarchy<aop::type_list<B> >

A B

Fig. 7. The Generated Inheritance Structure of Class C

aop::aspect list whose scope covers the current join point (that is, the func-
tion being defined), and creates a list of all the relevant advices (called an advice
chain)in the corresponding aop::(dynamic )advice, aop::(dynamic )ctor
advice or aop::(dynamic )dtor advice classes. The constructor of the advice
class will call the around and before member functions of every relevant advice
one by one in order (the order will be influenced by the domination declarations
of the advices), the destructor will call corresponding after member functions
in reverse order.

The arguments of the method are passed to constructor of the hook variable,
from which they will then be passed to every before / after / around member
functions of the advices automatically in appropriate manner.

5 Related Work

AOP++ invents a brand-new approach to support aspect-oriented programming
paradigm in C++. By using template metaprogramming techniques, AOP++
creates a full-fledged aspect-oriented programming framework which does not
depend on any language extensions or privileged AOP-aware compilers. All con-
cepts and components in AOP++ are all built on standard C++ constructs.
This makes it easy to be accepted by C++ programmers.

AOP++ distinguishes itself from several previous approaches to simulate
AOP in C++[16][17][21] by its characteristic aspect weaver.

The previous approaches [16] and [17] exploit techniques similar to mixin-
based programming[18] to wrap up existing component with mixin layers, while in
[21], the component class must be declared as a template with an extra “Aspect”
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template parameter. In all of them, the aspect user has to declare which aspects
are desired for each class by defining an aspects list for every user-defined class
explicitly and manually. the aspect list can be long and the manual definition
is error-prone and cumbersome. Furthermore, all code that refers to the user-
defined classes has to be changed to use the classes wrapped up with aspects
explicitly. The most important crosscutting nature of AOP cannot be expressed.

On the contrary, aspect weaving in AOP++ is done implicitly and automat-
ically at compile time behind the scenes by the aspect weaver according to the
scope definition of each aspect. The component programmer need not concern
about what aspects will be injected into which user-defined classes or functions
at all.

6 Conclusion and Future Work

The main contributions of AOP++ are:

1. It innovatively makes use of C++ templates to express pointcut expressions
and match join points at compile time.

2. It innovatively creates a full-fledged aspect weaver by using C++ template
metaprogramming techniques to perform aspect weaving.

3. It successfully extends and applies AOP to the GP paradigm in standard
C++. It bridges the gap between AOP and GP. This includes dual meaning:
(1) GP techniques can be used in the aspect code and (2) AOP++ makes
it possible to apply AOP to generic components in modern C++ template
libraries.

Due to limitations of the C++ language itself, there are also some limitations
of AOP++, such as that the weaved code is a structural and behavioural ap-
proximation to what is expected, but not exactly the same, and it is difficult to
implement some advanced features such as join points for field access, privileged
aspects, etc.

The main limitation of AOP++ is that it is not 100% transparent to the
component programmer. Existing component code has to be revised according
to some disciplines in order to enable AOP++ to act on them, though the
disciplines are simple and straightforward, and may be applied automatically
by a simple pre-processor. We believe that this does not really contradict the
philosophy of AOP which demands the separation of the component code and
the aspect code. The reason is that the revision is done just once in a uniform
manner regardless of whatever aspects will be woven later. The disciplines are
the keys for bridging the component code and the aspect code. The benefit
we achieved is that no language extensions are imposed upon programmers. In
addition, all the client code which uses the component code needs not to be
changed to enjoy the benefit of AOP++.

Our future work includes:

1. Further enhancement of AOP++, including more dynamic features such as
support for cflow. It is likely that they will introduce more runtime overhead
upon the user program.
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2. Investigate the possibility of integrating support for AOP++ in modern IDEs
to facilitate the development of AOP programs.

3. Study the development model of the AOP paradigm and the interactions
between aspects in AOP++, construct reusable generic AOP libraries for
tracing, debugging, performance profiling, program visualization and verifi-
cation, concurrent programming, etc.

4. Study the relation between AOP and other new programming paradigms
such as explicit programming[15] and try to combine them in the framework
of AOP++.
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Abstract. Model-driven architecture (MDA) aims at automating soft-
ware design processes. Design models are divided into platform-indepen-
dent models (PIMs) and platform-specific models (PSMs). A model com-
piler transforms the former models into the latter automatically. We
can regard PIMs as a new kind of reusable software component because
they can be reused even if a platform is changed. However, a generated
PSM is useless if it does not satisfy system limitations such as memory
usage and real-time constraints. It is necessary to allow a modeler to
customize transformation rules because model modifications for dealing
with these limitations may be specific to an application. However, cur-
rent model compilers do not provide the modeler sufficient customization
methods. In order to tackle this problem, we propose a method for con-
structing an extensible model compiler based on aspect orientation, a
mechanism that modularizes crosscutting concerns. Aspect orientation
is useful for platform descriptions because it crosscuts many model el-
ements. A modeler can extend model transformation rules by defining
new aspects in the process of modeling. In this paper, an aspect-oriented
modeling language called AspectM (Aspect for Modeling) for supporting
modeling-level aspects is introduced. Using AspectM, a modeler can de-
scribe not only crosscutting concerns related to platforms but also other
kinds of crosscutting concerns. We believe that MDA is one of the ap-
plications of aspect-oriented mechanisms. The contribution of this paper
is to show that a model compiler can actually be constructed based on
aspect-oriented mechanisms.

1 Introduction

Model-driven architecture (MDA) aims at automating software design processes.
Design models described in Unified Modeling Language (UML) are divided into
platform-independent models (PIMs) and platform-specific models (PSMs). A
model compiler transforms the former models into the latter automatically. The
current MDA primarily focuses on platform-related issues. However, model trans-
formations are not limited to these concerns, as in the case of application-specific
optimization. A PSM generated by a model compiler is useless if the PSM does
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not satisfy system limitations such as memory usage and real-time constraints.
It is necessary to allow a modeler to customize transformation rules because
model modifications for dealing with these limitations may be specific to an
application. It would be useful to apply the idea of active libraries[5] to model
compiler construction. However, most current model compilers support only spe-
cific kinds of platforms, and do not provide the modeler sufficient customization
methods.

This paper proposes a method for constructing an extensible model compiler
based on aspect orientation[12] in order to tackle the above problem. Aspect
orientation is a mechanism that modularizes crosscutting concerns as aspects.
Platform descriptions also can be regarded as crosscutting concerns. For ex-
ample, descriptions for conforming a model to a specific database middleware
cut across many elements in a model. There are several reasons why adopting
aspect-oriented mechanisms for describing database concerns is useful: persis-
tence can be modularized; persistence aspects can be reused; and applications
can be developed unaware of the persistent nature of the data[18]. The approach
of [18] is effective not only at the programming level but also at the modeling
level. In this paper, an aspect-oriented modeling language called AspectM (As-
pect for modeling) is introduced for supporting modeling-level aspects. Using
AspectM, a modeler can describe not only crosscutting concerns related to plat-
forms but also other kinds of concerns related to model transformation. That is,
a modeler can extend model transformation rules by defining new aspects in the
process of modeling: that is, defining model transformation rules at the same
level of ordinary modeling. Using AspectM, we can realize not only MDA but
also techniques for supporting early aspects and crosscutting properties at the
requirement-related and architectural levels[6]. MDA and aspect orientation are
not different software development principles; rather, we believe that MDA is an
application of aspect-oriented mechanisms. The contribution of this paper is to
show that a model compiler can be actually constructed based on aspect-oriented
mechanisms.

The remainder of this paper is structured as follows. In Section 2, we illustrate
the process of model transformation using a simple example. In Section 3, we pro-
pose a method for model transformations based on aspect-oriented mechanisms.
We introduce AspectM for supporting the method, and provide a technique for im-
plementing AspectM in Section 4. We show a model transformation example using
AspectM in Section 5. In Section 6, we evaluate AspectM qualitatively based on
our experience. In Section 7, we introduce some related work, and discuss future
directions of this research. Section 8 concludes the paper.

2 Motivation

Here,we illustrate typicalmodel transformation steps inMDA, showhowplatform-
specific concerns cut across model elements, and demonstrate how aspect-oriented
mechanisms can be applied to describe these crosscutting concerns.
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Message

- subject
- name
- message

MessageProfile

- messageID
- date
- subject
- name

PostMessageForm

- messageID
- date
- subject
- name
- message

+ getMessageID()
+ setMessageID()
+ getDate()
+ setDate()
+ getSubject()
+ setSubject()
+ getName()
+ setName()
+ getMessage()
+ setMessage()

ActionForm

PostMessageAction

+ execute()

PIM PSM

Step1: merge two PIMs
Step2: convert the merged class
             to an action form bean
Step3: create an action class

Transformation steps

Action

<<refer>>

Fig. 1. An example of a model transformation

2.1 Model Transformation Steps in MDA

The steps of model transformation can be explained using the following simple
bulletin board system as an example: a user submits a message to a bulletin
board, and the system administrator observes administrative information such as
daily message traffic. This system must be developed using the web application
framework called Struts[22].

We define PIMs that do not depend on a specific platform, and transform
these PIMs into PSMs targeted to Struts, the platform of this system. Figure
1 illustrates this transformation process. There are two PIMs in this example1.
One is the Message class, and the other is the MessageProfile class. The for-
mer is a PIM defined from the viewpoint of a user. The latter, which includes
administrative information such as message id and date, is a PIM defined from
the viewpoint of a system administrator. Although these PIM classes represent
different viewpoints in the system, the substance of the classes should be the
same. All attributes included in the Message class and the MessageProfile
class are necessary for handling a message. The following shows the steps of
transformation of PIMs to a PSM.

Step 1: The two PIM classes, Message and MessageProfile, are merged into
a single class whose name is PostMessage. Attributes/Operations that have
the same name (signature) are merged into a single attribute/operation.

Step 2: In Struts, a request from a web browser is stored in an action form bean
class. The PostMessage class is transformed to an action form bean class.
First, the name of the PostMessage class is changed to PostMessageForm
because an action form bean class must have a name ending with the string

1 In general, PIMs and PSMs are described as sets of UML diagrams. In this example,
we use only class diagrams for simplicity.
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Form. Next, the parent class of the PostMessageForm is set to the
ActionForm framework class because it is specified in Struts that a bean
class must inherit the ActionForm class. After that, a set of accessors (set-
ter/getter) is added to the PostMessageForm class. The transformations in
Step 2 are needed for every data request. That is, the transformations cut
across classes related to the requested data.

Step 3: In Struts, an action logic that handles a request from a web browser is
defined as the execute operation in an action class. First, the action class
PostMessageAction is created, and its parent class is set to the Action class
prepared in Struts. Next, the execute operation is added to the
PostMessage-Action class. The execute operation gets the data of the re-
quest from the corresponding action form bean class, and executes a business
logic.

We can implement a model compiler that supports the above transformation
steps because each step is clearly defined. We can also develop a new model
compiler that supports other platforms. A series of PSMs can be generated from
a single PIM by applying different model compilers. MDA enables us to shift
from code-centric product-line engineering (PLE)[5] to model-centric PLE.

2.2 Advantages of Introducing Aspect Orientation

In this paper, we introduce aspect-oriented mechanisms for describing model
transformation rules. As pointed out in the above, platform-specific descrip-
tions are one of the crosscutting concerns that can be well dealt with by aspect
orientation. Although MDA and aspect orientation at the modeling level are
considered different technologies, they are closely related, as we claim in this
paper. Applying aspect orientation to model compiler construction, we obtain
the following advantages: a modeler can extend model transformation rules by
defining new aspects in the process of modeling; a modeler can describe not only
crosscutting concerns related to platforms but also other kinds of crosscutting
concerns including optimization, persistence, and security; and aspect orienta-
tion can be applied at the modeling level, at which design information can be
used to represent crosscutting concerns.

3 Applying Aspect Orientation to Model Compiler
Construction

3.1 Aspect Orientation at the Modeling Level

Aspect-oriented programming (AOP), a modularization mechanism for separat-
ing crosscutting concerns, is based on the join point model (JPM) consisting of
join points, pointcuts, and advice. Program execution points including method
invocations and field access points are detected as join points, and a pointcut
extracts a set of join points related to a specific crosscutting concern from all
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join point(class)

join point(class)

join point(class)

classA||classB
(extract join point
 whose name is
 classA or classB)

pointcutclassA

attributes

operations

classB

attributes

operations

classC

attributes

operations

classA

attributes

operations

new attributes

new operations

classB

attributes

operations

new attributes

new operations

advice

add new attributes
add new operations

weave

Fig. 2. Aspect orientation at the modeling level (example)

join points. A compiler called a weaver inserts advice code at the join points
selected by pointcut definitions.

Although JPMs have been proposed as a mechanism at the programming
level, they can be applied to the modeling level as shown in Figure 2. In this
example, a class is regarded as a join point. The pointcut definition ’classA ||
classB’ extracts the two classes classA and classB from the three join points
class A, classB, and classC. Model transformations such as add new attributes
and add new operations are regarded as advice. In Figure 2, new attributes and
operations are added to the two classes, classA and classB.

3.2 JPMs for Model Transformations

There has been research supporting modeling-level aspect orientation based on
a specific AOP language such as AspectJ[13]: an aspect at the modeling level is
converted to an aspect in AspectJ[21]. However, there are problems with these
approaches: a PSM is limited to a specific AOP language; most current AOP
languages are based on a few fixed set of JPMs; and we cannot separate cross-
cutting concerns that cannot be separated by current AOP languages. Indeed,
there are several kinds of JPMs as shown in [14]. In order to deal with this prob-
lem, multiple JPMs should be supported at the modeling level, and these JPMs
should not correspond to specific kinds of AOP languages.

AspectM, an aspect-oriented modeling language proposed in this paper, sup-
ports six kinds of JPMs: PA (pointcut & advice), CM (composition), NE (new
element), OC (open class), RN (rename), and RL (relation). Table 1 shows model
transformation types and corresponding JPMs. With aspect composition based
on these JPMs, the model transformation in Section 2 can be realized as shown
in Table 2. Model elements including classes, methods, and relations specific to
Struts are woven into the original PIMs.
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Table 1. JPMs for model transformation

No Model transformation type PA CM NE OC RN RL

1 change a method body ©
2 merge classes ©
3 add/delete classes ©
4 add/delete operations ©
5 add/delete attributes ©
6 rename classes ©
7 rename operations ©
8 rename attributes ©
9 add/delete inheritances ©

10 add/delete aggregations ©
11 add/delete relationships ©

Table 2. Model transformation steps for Struts

Step Model transformation PA CM NE OC RN RL

step 1 1-1) merge Message and MessageProfile ©
into PostMessage

step 2 2-1) rename PostMessage to PostMessageForm ©
2-2) add an inheritance relation ©

between ActionForm and PostMessageForm

2-3) add accessors to PostMessageForm ©
step 3 3-1) create an action class PostMessageAction ©

3-2) add an inheritance relation ©
between Action and PostMessageAction

3-3) add the execute method to PostMessageAction ©
3-4) add the body of the execute method ©

PA is an AspectJ-like JPM. A join point is a method execution, and advice
changes a behavior at join points selected by a pointcut. Three kinds of advice
can be described: before (a pre-process is added), after (a post-process is
added), and around (a process is replaced). PA is used when we want to add
platform-specific logics to PIMs. CM is a Hyper/J-like JPM[4]. In this case, a
join point is a class, and advice merges classes selected by a pointcut: operations
with the same name are merged into a single operation, and attributes with
the same name are merged into a single attribute. CM is used in the case of
converting multiple PIM classes to a single PSM class. NE is a JPM for adding
a new model element to a UML diagram. In this case, a join point is a UML
diagram such as a class diagram. Advice adds a new class to a class diagram
selected by a pointcut. NE can be used to add a platform specific class to PIMs.
OC is a JPM for realizing the facility of an open class. In this case, a join point
is a class, and advice inserts operations or attributes. OC, which is similar to an
inter-type declaration in AspectJ, is used in the case of adding platform-specific
operations or attributes to PIMs. Figure 2 in Section 3.1 is an example of an OC.
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RN is a JPM for changing a name, in which a join point is a class, an operation,
and an attribute. Advice changes the names of classes, operations, and attributes
selected by a pointcut. RN is used for following the naming conventions specified
in a platform. RL is a JPM for changing the relation between two classes, in which
case, a join point is a class, and advice adds an inheritance, an aggregation, and
a relationship between two classes selected by a pointcut. There is a case that
a class must inherit a specific class defined in an application framework such as
Struts. RL is used in this situation.

4 AspectM

AspectM is an aspect-oriented modeling language that supports the six JPMs
introduced in Section 3. In AspectM, an aspect can be described in either a
diagram or an XML (eXtensible Markup Language) format. AspectM is defined
as an extension of the UML metamodel. Figure 3 shows the AspectM diagram
notations and the corresponding XML formats. AspectM is not only a diagram
language but also an XML-based AOP language. In this section, we show the
syntax of AspectM, which has two aspects: an ordinary aspect and a compo-
nent aspect. A component aspect is a special aspect used for composing aspects.
In this paper, we use simply the term aspect when we need not to distinguish
between an ordinary aspect and a component aspect. An aspect can have pa-
rameters for supporting generic facilities. By filling parameters, an aspect for a
specific purpose is generated. Using these kinds of aspects, a set of transforma-
tion steps can be described as a generic software component.

4.1 Notation

The notations of aspect diagrams are similar to those of UML class diagrams. An
oval at the upper left portion of a diagram indicates that the diagram represents
an aspect. A box at the upper right indicates parameters. This box can be omitted
when there is no parameter. An aspect with parameters is called a template. Italic
text in a diagram must be specified by a modeler. Types of JPMs (jpm-type), join
points (joinpoint-type), and advice (advice-type) are shown in Table 3.

Diagrams of ordinary aspects are separated into three compartments: 1) as-
pect name and JPM type, 2) pointcut definitions, and 3) advice definitions. An
aspect name and a JPM type are described in the first compartment. A JPM
type is specified using a stereo type. Pointcut definitions are described in the sec-
ond compartment. Each of them consists of a pointcut name, a join point type,
and a pointcut body. In pointcut definitions, we can use three predicates: cname
(class name matching), aname (attribute name matching), and oname (operation
name matching). We can also use three logical operations: && (and), || (or),
and ! (not). The following are examples of pointcut definitions: ’oname(setX) ||
oname(setY)’ (two operations setX and setY are selected from all join points);
’!aname(attribute*)’ (attributes not starting with a string attribute are se-
lected); ’cname(classA) || cname(classB)’ (two classes classA and classB
are selected); and ’cname(class*) &&oname(set*)’ (operations, which belong
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<aspect name=aspect-name type="ordinary"
        jpm=jpm-type>
  [<params>
    { <param> @parameter@ </param> } *
   </params>]
  { <pointcut name=pointcut-name
              type=joinpoint-type>
      <pointcut-body>
        pointcut-body
      </pointcut-body>
    </pointcut> } +
  { <advice name=advice-name
            type=advice-type
            ref-pointcut=pointcut-name>
     <advice-body>
        advice-body
     </advice-body>
    </advice> } +
</aspect>

a) ordinary aspect

<<jpm-type>>
aspect-name

pointcut-name : joinpoint-type
  {pointcut-body=pointcut-body}
      :
      :

advice-name [pointcut-name] : advice-type
  {advice-body=advice-body}
      :
      :

aspect @parameter@
    :
    :

 

<aspect name=aspect-name type="component" >
  [<params>
    { <param> @parameter@ </param> } *
   </params>]
  { definition of ordinary aspect
       or
    definition of component aspect} +
  { <aspect-precedence>
     <from>aspect-name</from>
     <to>aspect-name</to>
    </aspect-precedence> } +
</aspect>

b) component aspect

 aspect-name

aspect

<<precede>>

<<precede>>

@parameter@
    :
    :

<<jpm-type>>
  aspectA

pointcut defs

advice defs

aspect
<<jpm-type>>
  aspectB

pointcut defs

advice defs

aspect

<<jpm-type>>
  aspectC

pointcut defs

advice defs

aspect

c) parameter setting

<aspect name=aspect-name
        template="template-name" >
  {<set-param name="@parameter@">
     parameter-value
   </set-param> } +
</aspect>aspect-name

aspect @parameter@=parameter-value
    :
    :

<<generic-aspect-name>>

Fig. 3. AspectM diagram notations and XML formats

to classes starting with a string class and start with a string set, are se-
lected if joinpoint-type is operation). Although we support only predicates for
name matching in the current AspectM, we plan to support predicates including
is-attribute-of(class),is-operation-of(class),is-superclass-of(class),
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Table 3. Types of JPM, join point, and advice

JPM type Join point type Advice type

PA operation before, after, around

CM class merge-by-name

NE class diagram add-class, delete-class

OC class add-operation, delete-operation
add-attribute, delete-attribute

RN class, operation, attribute rename

RL class add-inheritance, delete-inheritance
add-aggregation, delete-aggregation
add-relationship, delete-relationship

   <<CM>>
MergeClasses

inputClasses:class
  {pointcut-body="cname(Message)
         ||cname(MessageProfile)"}

merge[inputClasses]:merge-by-name
  {advice-body="PostMessage"}

aspect <aspect name="MergeClasses"
        type="ordinary" jpm="CM">
  <pointcut name="inputClasses"
            type="class">
    <pointcut-body>
      cname(Message)||cname(MessageProfile)
    </pointcut-body>
  </pointcut>
  <advice name="merge" type="merge-by-name"
          ref-pointcut="inputClasses">
    <advice-body>PostMessage</advice-body>
  </advice>
</aspect>

Fig. 4. Example of aspect notation

and is-subclass-of(class). Advice definitions are described in the third com-
partment. Each of them consists of an advice name, a pointcut name, an advice
type, and an advice body. A pointcut name is a pointer to a pointcut definition in
the second compartment. Advice is applied at join points selected by the point-
cut. The left side of Figure 4 shows a transformation rule corresponding Step 1
in Section 2: the JPM type is CM; the two classes Message and MessageProfile
are join points selected by the pointcut definition; and the merge-by-name type
advice is applied at these join points.

Diagrams of component aspects are separated into two compartments: 1) as-
pect name, and 2) a set of ordinary aspects or component aspects. A component
aspect consists of the aspects specified in the second compartment. A stereo type
<<precede>> indicates the precedence of aspects as shown in Figure 3 b). This
is important when multiple aspects are applied to the same join points.

By filling parameter values, an aspect for a specific purpose is generated. The
name of a template is specified in a stereo type.

An aspect can be represented in XML format as shown in the right side of
Figure 3. The notations [] and {} show an option and a repetition, respectively.
The notations ∗ and + in {} show an occurrence of more than zero and more
than one. An aspect is represented by the aspect tag distinguished by the type
attribute. A set of parameters is specified by the params tag. In an ordinary
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Aspect diagram(XML)

XSLT processor

   XSLT style sheet
         for
converting aspect(XML)
  to XSLT style sheet

   XSLT style sheet
         for
converting UML(XML)
        to UML(XML)

XSLT processorUML diagram (XML) UML diagram (XML)

PIM PSM

The first transformation phase

The second transformation phase

Fig. 5. Implementation of AspectM model compiler

aspect, pointcuts and advice are specified by the pointcut tag and advice tag,
respectively. In a component aspect, definitions of ordinary aspects or other com-
ponent aspects are specified after parameter definitions. After that, precedences
of aspects are specified using the aspect-precedence tag. Parameters are set
using the set-param tag. The right side of Figure 4 shows the XML descriptions
corresponding to the diagrams on the left.

4.2 Implementation

We have developed a prototype of AspectM. The tool for supporting AspectM
consists of a model editor and a model compiler. The model editor facilitates
editing UML and aspect diagrams. The model editor can save diagrams in the
XML format. The model compiler can be implemented as an XML transforma-
tion tool because UML class diagrams can be represented in XML. The AspectM
model compiler, which consists of two phases, transforms PIM classes into PSM
classes as shown in Figure 5. The first transformation phase converts an aspect
in the form of XML to an XSLT (XSL Transformation) style sheet with addi-
tional Java classes using an XSLT processor. The second transformation phase
converts PIM classes in XML form to the corresponding PSM classes in XML
form using the style sheet generated in the first transformation phase.

5 MDA with AspectM

5.1 Aspect Descriptions for Model Transformations

Figure 4 shows Step 1 of transformation in the bulletin board system. In this
step, the MergeClasses aspect, whose JPM type is CM, is defined for merging
two PIM classes Message and MessageProfile into the PostMessage class.

Although the MergeClasses aspect in Figure 4 is useful, there is a problem in
terms of reusability because the aspect cannot be applied to other models. The



Model Compiler Construction Based on Aspect-Oriented Mechanisms 119

pointcut body and the advice body are specific to the bulletin board system. In
order to deal with the problem, a generic mechanism can be used. The following
is a generalized version of the mergeClasses in XML form. A string enclosed by
’@’ is a parameter.

;; generic MergeClasses aspect
<aspect" name="Generic-MergeClasses" type="ordinary" jpm="CM">
<params>

<param>@input-classes@</param>
<param>@merged-class@</param>

</params>
<pointcut" name="inputClasses" type="class">

<pointcut-body>@input-classes@</pointcut-body>
</pointcut>
<advice name="merge" adviceType="merge-by-name"

ref-pointcut="inputClasses">
<advice-body>@merged-class@</advice-body>

</advice>
</aspect>

;; specific mergeClasses aspect
<aspect name="MergeClasses" template="Generic-MergeClasses">
<set-param name="@input-classes@">

cname(Message)||cname(MessageProfile)
</set-param>
<set-param name="@merged-class@">PostMessage</set-param>

</aspect>

Steps 2 and 3 can be also realized with the same approach. The following
aspect describes a transformation step that adds an inheritance relation between
the ActionForm class and an action form bean class. The <relation> is a tag
for adding or deleting a relation such as an inheritance, an aggregation, or a
relationship.

<aspect name="Generic-InheritActionForm" type="ordinary" jpm="RL">
<params>

<param>@sub-class@</param>
</params>
<pointcut name="super-sub-classes" type="class">

cname(org.apache.struts.action.ActionForm)||cname(@sub-class@)
</pointcut>
<advice name="inherit-action-form" type="add-inheritance">

<ref-pointcut>super-sub-classes</ref-pointcut>
<advice-body>
<relation>

<end1>org.apache.struts.action.ActionForm</end1>
<end2>@sub-class@</end2>

</relation>
</advice-body>

</advice>
</aspect>

We can compose a set of related aspects within a component aspect. The fol-
lowing aspect, which generates an action form bean from PIM classes, composes
aspects that describe Step 1 and 2.

<aspect name="Generic-Classes2ActionFormBean" type="component">
<params>

<param>@input-classes@</param>
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<param>@merged-class@</param>
</params>
<aspect name="MergeClasses" template="Generic-MergeClasses">

<set-param name="@input-classes@">@input-classes@</set-param>
<set-param name="@merged-class@">@merged-class@</set-param>

</aspect>
<aspect name="SetActionFormBeanName" template="Generic-SetActionFormBeanName">

<set-param name="@class@">@merged-class@</set-param>
</aspect>
<aspect name="InheritActionForm" template="Generic-InheritActionForm">

<set-param name="@sub-class@">concat(@merged-class@,"Form")</set-param>
</aspect>
<aspect name="AddAccessors" template="Generic-AddAccessors">

<set-param name="@class@">concat(@merged-class@,"Form")</set-param>
</aspect>

</aspect>

Four generic aspects are used for defining this component aspect. The defini-
tions of the two generic aspects Generic-SetActionFormBeanNameand Generic-
AddAccessors are omitted here due to limitations of space. Sub-aspects are ap-
plied in the order of appearance when the aspect-precedence tags are omitted.
The concat is a library function for concatenating two strings.

5.2 Extension of Model Transformations

Adopting AspectM, we can extend the functionality of the model compiler by
adding aspect definitions. This extensibility is effective for defining application-
specific model transformations. The following is the aspect that deletes the date
attribute when the two classes Message and MessageProfile are merged.

<aspect name="DeleteAttribute" type="ordinary" jpm="OC">
<pointcut name="postMessageClass" type="class">

<pointcut-body>cname(PostMessage)</pointcut-body>
</pointcut>
<advice name="deleteDate" adviceType="delete-attribute"

ref-pointcut="postMessageClass">
<advice-body>date</advice-body>

</advice>
</aspect>

This kind of aspect is useful for product-line engineering in which a variety
of PSMs are generated from a single set of PIMs. A specific PSM, a model of a
specific product, may have to be optimized in terms of memory resources. The
above aspect, which eliminates the date attribute unused in a specific product,
is applied after the MergeClasses aspect is applied. Using AspectM, a process
of tuning up can be componentized as an aspect.

5.3 Descriptions for Other Crosscutting Concerns

AspectM can also describe the type of crosscutting concern that AspectJ sup-
ports. The following is an aspect for logging setter method calls. Log.write()
is a log writer.
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<aspect name="LoggingSetter" type="ordinary" jpm="PA">
<pointcut name="allSetter" type="method">

<pointcut-body>oname(set*)</pointcut-body>
</pointcut>
<advice name="logSetter" adviceType="before" ref-pointcut="allSetter">

<advice-body>Log.write()</advice-body>
</advice>

</aspect>

6 Discussion

It is not easy to quantify the effectiveness of AspectM because MDA based on as-
pect orientation is still young. In this section, we evaluate AspectM qualitatively
based on our experience.

We can extend the functionality of the model compiler by adding aspect
definitions. However, it is not realistic for a modeler to define all of the aspects
needed to construct a model compiler from scratch. It is necessary for model
transformation foundations, aspects commonly applied to many transformations,
to be pre-defined by model compiler developers. For example, it is preferable to
prepare aspect libraries that support de facto standard platforms such as J2EE
and .NET. It is also useful to construct aspect libraries that support platform-
independent model transformations commonly applied to many applications:
fusion of classes having certain kinds of patterns, generation of setter/getter
methods, change of naming conventions, and so on. Although aspect libraries are
effective, it may be inconvenient to construct them by defining aspect diagrams
because the number of aspect definitions tends to be large. It would be more
convenient to use XML formats in the case of aspect library development. If a
set of aspect libraries could be provided by model compiler developers, modelers
would have only to define application-specific aspects as shown in Figure 6.

AspectM includes JPMs supported by major AOP languages. However, it
is still not clear whether all kinds of model transformations can be described
by the six JPMs. We think that there are situations for which new kinds of
JPMs must be introduced. It would be better if a modeler can modify the As-
pectM metamodel using the model editor. This function can be considered as a
modeling-level reflection, a kind of compile-time reflection.

In AspectM, we regard mechanisms explained by extended JPMs as aspect
orientation. This definition might be slightly different from that of ordinary as-
pect orientation. If AspectM is not available, the users cannot describe such a
transformation rule within UML since AspectM deals with meta concerns and
UML deals with base-level concerns. In AspectJ, for example, a crosscutting con-
cern can be described in Java but the resulting code will be tangled. This means
that an aspect in AspectJ is not a meta concern. For this reason, it could be
argued that AspectM is not an aspect-oriented language but a meta language for
model transformations. However, AspectM can describe not only model transfor-
mation rules but also ordinary crosscutting concerns such as logging. AspectM
unifies lightweight meta-programming with ordinary aspect orientation by ex-
tending the idea of JPMs. It is not necessarily easy to separate platform-specific
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Aspect library
  for J2EE

Aspect library
  for .NET

Aspect library
  for product line B

Aspect library
  for product line A

(Aspect in the form of XML)

Application-specific
  aspect

Application-specific
  aspect

(Aspect in the form of diagram)

UML diagram

UML diagram

provided as libraries defined by a modeler

weave

Fig. 6. Software development process using AspectM

concerns with only ordinary aspect orientation. In [18], not only AspectJ but
also Java reflection is used for describing database concerns. The approach of
AspectM can be considered reasonable.

7 Related Work

There has been research that has attempted to apply aspect-oriented mecha-
nisms in the modeling phase. D.Stein et. al. proposed a method for describing
aspects as UML diagrams[21]. In this work, an aspect at the modeling-level was
translated into the corresponding aspect at the programming language level,
for example an aspect in AspectJ. Y.Han et. al. proposed a meta model and
modeling notation for AspectJ[11]. An aspect in AspectM is not mapped to an
element of a specific programming language, but operates on UML diagrams.
U.Aßmann and A.Ludwig claimed that aspect weaving could be represented as
graph rewriting[1]. A UML diagram also can be regarded as graph. J.Sillito et.
al. proposed the concept of usecase-level pointcuts, and showed the effectiveness
of JPMs in early modeling phases[20]. E.Barra et. al. proposed an approach to
an AOSD working method, using the new elements added in UML 2.0[3].

There is a standard model transformation language called QVT (Queries,
Views, and Transformations)[17] in which model elements to be transformed are
selected by query facilities based on OCL (Object Constraint Language)[23],
and are converted using transformation descriptions. Since the purpose of QVT
is to describe model transformations, QVT does not provide facilities for de-
scribing crosscutting concerns explicitly. AspectM can describe not only model
transformation rules but also other kinds of crosscutting concerns.

Domain-specific aspect-oriented extensions are important. Early AOP re-
search aimed at developing programming methodologies in which a system was
composed of a set of aspects described by domain-specific AOP languages[12].
Domain-specific extensions are necessary not only at the programming stage
but also at the modeling stage. J.Gray provided significant research on topics
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including aspect orientation, model-driven developments, and domain-specific
languages[8][9]. He proposed a technique of aspect-oriented domain modeling
(AODM), and introduced a language called ECL (Embedded Constraint Lan-
guage), an extension of OCL. ECL included the idea of QVT and provided fa-
cilities for adding model elements such as attributes and relations. Although the
approach of AODM was similar to AspectM, the purpose of AODM was to realize
domain-specific languages. He also proposed an approach that used a program
transformation system as the underlying engine for weaver construction[10].
M.Shonle et. al. proposed an extensible domain-specific AOP language called
XAspect that adopted plug-in mechanisms[19]. Adding a new plug-in module,
we can use a new kind of aspect-oriented facility. CME (Concern Manipulation
Environment)[4] adopted an approach similar to XAspect.

AspectM can be considered an XML-based AOP language. There are sev-
eral AOP languages that can describe aspects in XML formats. AspectWerkz[2]
is one such language. However, aspects in AspectWerkz are strongly related to
an AspectJ-like JPM, and do not support multiple JPMs as in AspectM. Us-
ing AspectM, we can use multiple pieces of design information in describing
modeling-level pointcuts. This is one of the advantages of applying aspect ori-
entation to the modeling level. Another approach for enriching pointcuts is to
adopt the functional XML query language XQuery[24]. M.Eichberg, M.Mezini,
and K.Ostermann investigated the use of XQuery for specification of pointcuts[7].

Introducing AspectM, model transformation rules can be accumulated as
reusable software components. This approach is similar to that of Draco[16]
proposed by J. Neighbors in 1980s. In Draco, software development processes
were considered as a series of transformations: requirements are transformed
into analysis specifications; analysis specifications are transformed into design
specifications; and design specifications are transformed into source code. These
transformations were componentized in Draco. J. Neighbors claimed that soft-
ware development processes could be automated by composing these transfor-
mation components. In AspectM, these components can be described by aspects.

8 Conclusion

We proposed a method for constructing an extensible model compiler based on
aspect orientation. A modeler can extend model transformation rules by defining
new aspects in the process of modeling. We believe that the idea of AspectM
will provide a new research direction for model compiler construction.
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Abstract. This paper presents FeatureC++, a novel language exten-
sion to C++ that supports Feature-Oriented Programming (FOP) and
Aspect-Oriented Programming (AOP). Besides well-known concepts of
FOP languages, FeatureC++ contributes several novel FOP language
features, in particular multiple inheritance and templates for generic pro-
gramming. Furthermore, FeatureC++ solves several problems regard-
ing incremental software development by adopting AOP concepts. Start-
ing our considerations on solving these problems, we give a summary of
drawbacks and weaknesses of current FOP languages in expressing incre-
mental refinements. Specifically, we outline five key problems and present
three approaches to solve them: Multi Mixins, Aspectual Mixin Layers,
and Aspectual Mixins that adopt AOP concepts in different ways. We
use FeatureC++ as a representative FOP language to explain these
three approaches. Finally, we present a case study to clarify the benefits
of FeatureC++ and its AOP extensions.

1 Introduction

Feature-Oriented Programming (FOP) [5] is an appropriate technique to imple-
ment program families and incremental designs [7,3,1,6]. It aims to cope with
the increasing complexity, lacking reusability and customizability of nowadays
software systems. Aspect-Oriented Programming (AOP) [16] is a related pro-
gramming paradigm and has similar goals: It focuses mainly on separating and
encapsulating crosscutting concerns to increase maintainability, understandabil-
ity, and customizability [9,17]. However, it does not focus explicitly on incremen-
tal designs or program families.

One contribution of this article are our investigations in the symbiosis of
FOP and AOP. Our aim is to combine the strengths of both approaches with
regard to the implementation program families. Doing so, we firstly review well-
known problems of FOP, in particular shortcomings in crosscutting modularity.
We argue that certain features of AOP can help to solve these problems. Mainly,
the ability to handle dynamic crosscutting and homogeneous crosscuts, as well
as the growing acceptance, motivates us to choose AOP. We propose three ways
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to do this symbiosis (as we will explain): Multi Mixins, Aspectual Mixin Layers,
and Aspectual Mixins. These three approaches cope with the present problems of
the FOP paradigm in different ways. They contribute several ideas in improving
crosscutting modularity in the face of incremental software development and
program families.

Current research in this direction focuses mainly on Java. AspectJ 1 and the
AHEAD Tool Suite (ATS)2 are prominent examples. Although used in a large
fraction of applications like operating systems, realtime embedded systems, or
databases C++ is rarely considered. Current solutions for C++ utilize tem-
plates [31], simple language extensions [29], or C preprocessor directives. These
approaches are complicated, hard to understand, and not applicable to larger
software systems. Thus motivated, this article presents FeatureC++3, a lan-
guage proposal for FOP in C++. Using FeatureC++, we explain the use and
the benefits of the three AOP extensions integrated into a FOP language.

Besides basic concepts known from other FOP languages FeatureC++
further exploits useful concepts of C++, e.g. multiple inheritance or generic
programming support. Moreover, it solves different problems of object-oriented
languages in implementing incremental designs, namely (1) the constructor prob-
lem [30,13], which occurs when minimal extensions have to be unnecessarily ini-
tialized, (2) the extensibility problem [14], which is caused by the mixture of class
extensions and variations, and (3) hidden overloaded methods in C++, which
are hindering for step-wise refinements. Whereas these solutions are known from
previous work, the consistent embedding into a C++-based FOP/AOP language
is new. We perceive them as indispensable for successful FOP languages.

To underpin our language proposal we have implemented a first prototype,
available at our web site. Using a case study, we illustrate how to use Fea-
tureC++. The study reveals the advantages of FeatureC++ and its AOP
extensions compared to common FOP approaches.

The remaining article is structured as follows: Section 2 gives necessary back-
ground information. In Section 3, we introduce the basic language concepts and
features of FeatureC++. Section 4 reviews drawbacks and weaknesses of FOP
and suggests three approaches to overcome them. In Section 5, we present a case
study that explains the use of FeatureC++ and its advantages. Section 6
reviews related work. Finally, Section 7 concludes the paper.

2 Background

Pioneer work on software modularity was made by Dijkstra [12] and Parnas [27].
Both proposed the principle of separation of concerns that suggests to separate
each concern of a software system in a separate modular unit. Following this prin-
ciple leads to maintainable, comprehensible software that can be easily reused,
customized and extended.
1 http://eclipse.org/aspectj/
2 http://www.cs.utexas.edu/users/schwartz/Hello.html
3 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/



FeatureC++: On the Symbiosis of FO and AOP 127

AOP was introduced by Kiczales et al. [16]. The aim of AOP is to sep-
arate crosscutting concerns. Common object-oriented methods fail in this con-
text [16,11]. The idea behind AOP is to implement orthogonal features as aspects.
This prevents the known phenomena of code tangling and scattering. The core
features are implemented as components, as with common design and implemen-
tation methods. Using pointcuts and advices, an aspect weaver brings aspects
and components together. Pointcuts specify the join points of aspects and com-
ponents, whereas advices define which code is applied to these points. AspectJ
and AspectC++4 are prominent AOP extensions to Java and C++.

FOP studies feature modularity in program families [5]. The idea of FOP
is to build software (individual programs) by composing features. Features are
basic building blocks that satisfy intuitive user-formulated requirements on the
software system. Features refine other features incrementally. This step-wise re-
finement leads to a layered stack of features. Mixin Layers are one appropriate
technique to implement features [31]. The basic idea is that features are often
implemented by a collaboration of class fragments. A Mixin Layer is a static
component encapsulating fragments of several different classes (Mixins) so that
all fragments are composed consistently. Advantages are a high degree of mod-
ularity and an easy composition [31].

AHEAD is an architectural model for FOP and a basis for large-scale com-
positional programming [5]. AHEAD generalizes the concept of features and
feature refinements. Features consist not only of code but of several types of ar-
tifacts, e.g., makefiles, UML-diagrams, documentation. The AHEAD Tool Suite
(ATS) provides a tool chain for AHEAD and FOP based on Java. The included
Jak language supports Java-based Mixin Layers.

3 FeatureC++ Language Overview

FeatureC++ is a C++ language extension to support FOP. The following
paragraphs give an overview of the most important language concepts.

3.1 Introduction to Basic Concepts

class A class B class C

layer 1

layer 2

layer 3

Fig. 1. Stack of Mixin Layers

To implement FeatureC++, we have
adopted the basic concepts of the ATS: Fea-
tures are implemented by Mixin Layers. A
Mixin Layer consists of a set of collaborating
Mixins (which implement class fragments).
Figure 1 depicts a stack of three Mixin Layers
(1 − 3) in top down order. The Mixin Layers
crosscut multiple classes (A−C). The rounded boxes represent the Mixins. Mix-
ins that belong to and constitute together a complete class are called refinement
chain. Refinement chains are connected by vertical lines. Mixins that start a re-
finement chain are called constants, all others are called refinements. A Mixin A
4 http://www.aspectc.org/

P
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that is refined by Mixin B is called parent Mixin or parent class of Mixin B. Con-
sequently, Mixin B is the child class or child Mixin of A. Similarly, we speak of
parent and child Mixin Layers. In FeatureC++ Mixin Layers are represented
by file system directories. Therefore, they have no programmatic representation.
Those Mixins found inside the directories are assigned to be members of the
enclosing Mixin Layers.

3.2 Basic Language Features

To reuse established language concepts and to increase the users acceptance,
FeatureC++ adopts the syntax from the Jak language. The following para-
graphs introduce the most important language concepts and features:

Constants and Refinements. Each constant and refinement is implemented
as a Mixin inside exactly one source file. The root of a refinement chain is formed
by these constants (see Fig. 2, Line 1). Refinements are applied to constants as

1 class Buffer {
2 char *buf;
3 void put(char *s) {/∗ . . . ∗/}
4 };
5 refines class Buffer {
6 int len;
7 int getLength() {/∗ . . . ∗/}
8 void put(char *s) {
9 i f (strlen(s) + len < MAX_LEN )

10 super::put(s); }
11 };

Fig. 2. Constants and refinements

1 class Buffer {/∗ . . . ∗/};
2
3 // two buffer variations
4 class FileBuffer : Buffer {/∗ . . . ∗/};
5 class SockBuffer : Buffer {/∗ . . . ∗/};
6
7 // buffer extension : sync . support
8 refines class Buffer{ Lock lock; };

Fig. 3. Deriving variations vs. extensions

well as to other refinements. They are declared by the refines keyword (Line 5).
Usually, they introduce new attributes (Line 6) and methods (Line 7) or extend5

methods of their parent classes (see Fig. 2, Line 8). To access the extended
method the super keyword is used (Line 10). Super refers to the type of the
parent Mixin. It has a similar syntax to the Java super keyword and a similar
meaning to the proceed keyword of AspectJ and AspectC++.

Solving the Extensibility Problem. FeatureC++ solves the extensibility
problem [14]: implementation added to a class by creating a new subclass leaves
the class’ existing subclasses outdated.6 It is caused by the divergence of variation
and extension. Imagine an abstract buffer class with several subclasses, e.g.,
FileBuffer, SockBuffer. These classes are buffer variations. With common object-
oriented languages the extensibility problem occurs: If one wants to extend the
5 We do not use the term ’override’ because we want to emphasize that usually method

refinements reuse the parent method. This is more an extension than an overriding.
6 The original definition regards the extension of designs by new operations and data

types. However, following Cardone et al. [7] we deal with this problem in the context
of class hierarchy extensions.
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buffer class by subclassing, the existent buffer variations (the other subclasses)
are not affected.

FeatureC++ solves the extensibility problem as follows: extensions are ex-
pressed as refinements whereas variations are derived using common inheritance.
The variations FileBuffer and SockBuffer, depicted in Figure 3, inherit from the
most specialized form of Buffer (in our example the synchronized buffer) re-
gardless of their position and the position of the extension in the refinement
chain. This facilitates the easy localized extension of (abstract) classes and the
attended automatic extension of all variations.
Constructor Propagation. FeatureC++ solves the constructor problem
[30,13]: in common object-oriented languages, e.g., Java and C++, constructors
are not inherited automatically and have to be redefined for each subclass. The
idea of FOP is to refine existing classes by many minimal extensions. In many
cases these extensions do not need explicit new initializations. FeatureC++
solves the constructor problem by propagating all constructors of parent classes
’down’ to their subclasses. That means, that all defined constructors of a refine-
ment chain are available in the resulting generated class.

Besides constructors, also hidden overloaded methods are propagated down
the refinement chain. Background is that C++ does not allow to access over-
loaded methods of a base class. These hidden methods are propagated too (see [2]
for more details).

3.3 C++-Specific Language Features

The section so far has introduced features that are mostly adopted from Jak. The
following language features are novel to FOP and exploit C++ capabilities. This
makes FeatureC++ more powerful than current approaches, e.g. in supporting
generic programming.
Multiple Inheritance. Multiple inheritance is a useful concept of object-
oriented languages to express refinements. Figure 4 depicts a buffer refinement
that adds synchronization and logging support using multiple inheritance. The
corresponding functionality is implemented by inheriting from Semaphore and
Logging and extending the buffer functionality.

1 refines Buffer : public
2 Semaphore ,
3 Logging {/∗ . . . ∗/};

Fig. 4. Refining a buffer using
multiple inheritance

1 refines template <class T> class Buffer {
2 void push(T &) {/∗ . . . ∗/}
3 T& pop() {/∗ . . . ∗/}
4 };

Fig. 5. Declaring a refinement as template

Generic Programming. To implement generic solutions, FeatureC++ sup-
ports generic programming, in particular class and method templates. Generic
programming is essential to program families. The ability to parameterize refine-
ments improves the variability in composing individually customized programs.

FeatureC++: On the Symbiosis of FOP



130 S. Apel et al.

Figure 5 depicts a buffer refinement that uses a template parameter to de-
termine the storage data type at instantiation time. Method templates are used
analogously.
Further Language Features. C++ supports a lot of language features which
are not available in Java. Currently, we support refinements of destructors and
structs. Furthermore, we overload the keyword this to additionally providing
access to the type of the enclosing Mixin. this::Buffer refers to the type of the
current position in the refinement chain, instead of the type of the composed
class.

4 Aspect-Oriented Extensions

FOP has several well-known problems in modularizing crosscutting concerns [24].
These problems degrade the modularity of program family members and decrease
maintainability, evolvability, and customizability. We investigate solutions for the
following selected problems, which are relevant for program family development:
(1) weaknesses in expressing dynamic crosscutting, (2) inability to express ho-
mogeneous crosscutting concerns, (3) refinements have to be hierarchy-conform,
(4) problem of method interface extensions, and (5) excessive method extensions.

We briefly review these problems (see [2,24] for a further discussion).

1. FOP has weaknesses in expressing dynamic crosscutting, which e.g. depends
on the runtime control flow. FOP copes mainly with static crosscutting. Dy-
namic crosscutting is only supported in terms of intercepting and extending
methods. AOP languages handle dynamic crosscutting in a more elegant
and robust way. Novel innovative pointcut approaches (e.g. [26]) show the
strength of AOP in this respect.

2. A second problem is that FOP languages deal only with heterogeneous cross-
cutting concerns, which apply different code at different positions. AOP, in-
stead, copes mainly with homogeneous concerns that extend the base code
at different join points with the same code fragments.

3. A third problem is that refinements to a given feature base must match the
structure of this base, in particular, the class structure. A reorganization of
the structure or the raising to a new abstraction level, as described in [24],
is not possible.

4. A further problem occurs if method refinements need to extend the signature
of the refined method, i.e. the argument list. This is only possible with an
inelegant workaround.

5. A final problem are excessive method extensions in case of refinements that
crosscut a large fraction of existing classes. For each method a crosscut de-
pends on, the programmer has to introduce an extended method. This prob-
lem is caused by the inability of FOP to modularize homogeneous crosscut-
ting concerns.

We perceive solutions to the listed problems as a benefit for implementing
incremental designs and as an improvement of FeatureC++ against common
FOP approaches. In the following, we present our investigations in solving these
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problems using AOP language features as wildcards, pointcuts and advices. We
present only preliminary approaches. A detailed analysis of the impact of these
approaches on real-world applications, robustness, and code quality is part of
future work.

1 refines class Buffer% {};
2
3 refines class Buffer {
4 void put%(...) {} };

Fig. 6. Two Multi Mixins

Multi Mixins. Our first attempt was to
tackle the problems of excessive method ex-
tensions and hierarchy-conformity. The idea
is to allow Mixins to refine a whole set of par-
ent Mixins instead of refining only one parent
Mixin. Because of this refinement multiplic-
ity we call these Mixins Multi Mixins.

The sets of parent Mixins are specified by wildcards. Figure 6 shows two
Multi Mixins that use wildcards to specify the Mixins and methods they refine.
The unspecified sub-strings are denoted by ’%’. The first Mixin refines all classes
that start with ”Buffer” (Line 1). The semantics of such Class Multi Mixins are
straightforward: The term Buffer% has the same effect as if one creates a set of
new refinements for each found Mixin that matches the pattern (Buffer% ). The
second Multi Mixin, called Method Multi Mixin, refines all methods of Buffer
that start with ”put” (Line 3). Similar to AOP languages, a join point API
provides access to the arguments.

Both types of Multi Mixins ease the encapsulation of static homogeneous
crosscuts by using wildcards to specify the set of target join points. Furthermore,
Multi Mixins solve the problem of excessive method extensions by refining mul-
tiple methods using one extension. In this way also the hierarchical structure of
the parent Mixin Layer is changed.

Aspectual Mixin Layers. The key idea behind Aspectual Mixin Layers is
to embed aspects into Mixin Layers. Each Mixin Layer contains a set of Mix-
ins and a set of aspects. Doing so, Mixins implement static, heterogeneous, and
hierarchy-conform crosscutting, whereas aspects express dynamic, homogeneous,
and non-hierarchy-conform crosscutting. In other words, Mixins refine other Mix-
ins and depend, therefore, on the structure of the parent layer. These refinements
follow the static structure of the parent features. Aspects refine a set of parent
Mixins by intercepting method calls and executions as well as attribute accesses.
Therefore, aspects are able to implement advanced dynamic crosscutting and ho-
mogeneous, non-hierarchy-conform refinements.

Figure 7 shows a stack of Mixin Layers that implements some buffer function-
ality, in particular, a basic buffer with iterator, a separated allocator, synchro-
nization, and logging support. Whereas the first three features are implemented
as common Mixin Layers, the Logging feature is implemented as an Aspectual
Mixin Layer. The rationale behind this is that the logging aspect captures a
whole set of methods that will be refined (dashed arrows). This refinement is
not hierarchy-conform and depends on the runtime control flow (dynamic cross-
cutting). Moreover, the use of wildcards prevents the programmer from excessive
method extensions.

FeatureC++: On the Symbiosis of FOP
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Buffer Iterator Allocator Lock
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Fig. 7. Implementing a logging fea-
ture using Aspectual Mixin Layers
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Fig. 8. Refining an Aspectual Mixin Layer

1 refines aspect LogAspect {
2 void print () { changeFormat(); super::print (); }
3 pointcut log() = call("%�Buffer ::put(...)") || super::log();
4 };

Fig. 9. An aspect embedded into a Mixin Layer

A further highlight of Aspectual Mixin Layers is that aspects can refine other
aspects by using the refines keyword. To access the methods and attributes of
the parent aspect, the refining aspect uses the super keyword. Figure 8 shows
an Aspectual Mixin Layer that refines the logging aspect by additional join
points to extend the set of intercepted methods. Beside this, the logging console
(implemented as a Mixin) is refined by additional functionality, e.g. a modified
output format. Generally, aspects can refine the methods of parents aspect as well
as the parent pointcuts. Extending pointcuts increases the reuse of existing join
point specifications (as in the logging example). Note that refining/extending
aspects is conceptually different than applying aspects themselves. Whereas the
latter case applies the aspects first, the former case results in a transformation
of the aspect code before applying them to the target program.

To express aspects in Aspectual Mixin Layers we adopt the syntax of As-
pectC++. Figure 9 depicts an aspect refinement that extends a logging feature,
including a logging aspect. It extends a parent method in order to adjust the
output format (Line 2) and refines a parent pointcut to extend the set of target
join points (Line 3). Both is done using the super keyword.

Aspectual Mixins. The idea of Aspectual Mixins is to apply AOP language
concepts directly to Mixins. In this approach, Mixins refine other Mixins as with
common FeatureC++, but they also define pointcuts and advices (see Fig. 10).
In other words, Aspectual Mixins are similar to Aspectual Mixin Layers but
integrate pointcuts and advices directly into Mixins.

In this sense, Aspectual Mixins are related to Classpects [28] that unify AOP
and OOP language concepts. However, we see problems regarding this intermix-
ing of Mixins (attributes, methods, refinements) and aspect elements (pointcuts,
advices). Combining both may lead to a dependency of life time of the aspect
and the Mixin subset. Usually, aspects are not instantiated directly by the user
but triggered by the matching join points (as in AspectJ). Instead, Mixins are
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1 refines class Buffer {
2 int length () {/∗ . . . ∗/}
3 pointcut log() = call("%�Buffer ::%(...) ");
4 };

Fig. 10. Combining Mixins and AOP elements

instantiated by the user. Currently, we are not sure what the instantiation of an
Aspectual Mixin results in: (1) The aspect subset is instantiated as well (as in
Caesar [24]). (2) The aspect subset is instantiated only once (as in AspectJ ). The
problem of the former case is that often only one instance is needed. The latter
case may lead to problems in accessing the internals of the Aspectual Mixin. For
instance advices must not access instance attributes of the enclosing Aspectual
Mixin. A deeper analysis of the consequences is important and part of future
work.

4.1 Summary

All three approaches provide solutions for certain problems of FOP. They deal
with the problems in different ways and contribute improved techniques for im-
plementing incremental designs. Whereas Multi Mixins only solve the problem
of hierarchy-conform refinements and method extensions, the Aspectual Mixins
and Aspectual Mixin Layers can solve all stated problems. However, the Aspec-
tual Mixin approach yields some problems regarding the instantiation and life
time. Moreover, it is currently not clear if the mixture of aspect and Mixin sub-
sets leads to deeper problems. Currently, Aspectual Mixin Layers are the only
implemented variant (see [2]).

A further highlight of all three AOP extensions is a specific bounding mech-
anism that supports a robust incremental design. Originally it was proposed by
Lopez-Herrejon and Batory [21]. They argue that with regard to program family
evolution features should only affect features of prior development stages. Cur-
rent AOP languages, e.g. AspectJ and AspectC++, do not follow this principle.
This decreases aspect reuse and complicates incremental design. Consequently,
our three extensions follow this principle. To achieve this bounding mechanism,
the user-declared join point specifications must be restructured: Type names in
wildcards are translated to match only the types of the current and the parent
layers. Each wildcard expression that contains a type name is translated into a
set of new expressions that refer to all type names of the parent classes. Fig-
ure 11 shows a synchronization aspect that is part of an Aspectual Mixin Layer.
It has two parent layers (Base, Log) and several child layers. FeatureC++
transforms the aspect and the pointcut as depicted in Figure 12. This transfor-
mation works similar for Aspectual Mixins. In case of Multi Mixins we have to
add a mechanism for combining wildcard expression logically. Unfortunately, we
have no formal evidence that this transformation does not capture inadvertently
classes of later development stages. This is part of future investigations.

FeatureC++: On the Symbiosis of FOP
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1 aspect SyncAspect {
2 pointcut sync() :
3 call("%�Buffer ::put(...)");
4 };

Fig. 11. A simple pointcut ex-
pression

1 aspect SyncAspect_Sync {
2 pointcut sync() :
3 call("%�Buffer_Sync::put (...)")
4 || call("%�Buffer_Log::put (...)")
5 || call("%�Buffer_Base::put (...)");
6 };

Fig. 12. Transformed pointcut

Finally, we want to emphasize that all three approaches are not specific to
FeatureC++. All concepts can be applied to other FOP or AOP languages. We
have implemented a first prototype of FeatureC++ including the support for
Aspectual Mixin Layers. The implementation is described in [2] and a prototype
is available at our web site.

5 A Case Study

This section introduces a case study that gives an overview of the functional-
ity of FeatureC++. We choose the stock information broker example, adopted
from [24], in order to point to the benefits of Aspectual Mixin Layers compared to
common FOP approaches. We show how FeatureC++ overcomes the problems
discussed in Section 4. The case study was implemented using our prototype.

1 class StockInformationBroker {
2 DBBroker m_db;
3 public:
4 StockInfo &collectInfo(StockInfoRequest &req) {
5 string *stocks = req.getStocks ();
6 StockInfo *info = new StockInfo ();
7 for (unsigned int i = 0; i < req.num (); i++)
8 info ->addQuote(stocks[i], m_db.get(stocks[i]));
9 return *info; }

10 };
11
12 class Client {
13 StockInformationBroker &m_broker;
14 public:
15 void run(string *stocks , unsigned int num) {
16 StockInfo &info = m_broker.collectInfo(StockInfoRequest( stocks , num ));...}
17 };

Fig. 13. Stock Information Broker

Stock Information Bro-
ker. A stock information
broker provides information
about the stock market.
The central abstraction is
the StockInformationBroker
(SIB) that allows to lookup
for information of a set of
stocks (see Fig. 13). A Client
can pass a StockInfoRequest
(SIR) to the SIB by calling the method collectInfo. The SIR contains the names
of all requested stocks. Using the SIR, the SIB queries the DBBroker in order
to retrieve the requested information. Then, the SIB returns a StockInfo (SI)
object which contains the stock quotes to the client.

All classes are encapsulated in a Mixin Layer. In other words, this Mixin
Layer implements a basic stock information broker feature (BasicSIB). Figure 14
shows a relevant subset of this feature.

Pricing Feature as Mixin Layer. Now, we want to add a Pricing feature that
charges the clients account depending on the received stock quotes. Figure 15
depicts this feature implemented using common FOP concepts. Client is refined
by an account management (Lines 16-22), SIR is refined by a price calculation
(Lines 2-5), and SIB charges the account when passing information to the client
(Lines 10-12).
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1 class StockInformationBroker {
2 DBBroker m_db;
3 public:
4 StockInfo &collectInfo(StockInfoRequest &req) {
5 string *stocks = req. getStocks();
6 StockInfo *info = new StockInfo();
7 for (unsigned int i = 0; i < req.num(); i++)
8 info ->addQuote (stocks [i], m_db.get(stocks [i]));
9 return *info; }

10 };
11
12 class Client {
13 StockInformationBroker & m_broker ;
14 public:
15 void run(string *stocks , unsigned int num) {
16 StockInfo &info = m_broker . collectInfo(StockInfoRequest(stocks , num));...}
17 };

Fig. 14. The basic stock information broker (BasicSIB)

There are several problems to this approach: (1) The Pricing feature is ex-
pressed in terms of the structure of the BasicSIB feature. This problem is caused
by the inability of FOP to express non-hierarchy-conform refinements. It would
be better to describe the Pricing feature using abstractions as product and cus-
tomer. (2) The interface of collectInfo was extended. Therefore, the Client must
extend the method run in order to pass a reference of itself to the SIB. This
is an inelegant workaround and increases the complexity. (3) The charging of
clients cannot be dynamically altered, e.g. depending on the runtime control
flow. Moreover, it is assigned to the SIB which is clearly not responsible for this
function.

1 refines class StockInfoRequest {
2 float basicPrice();
3 float calculateTax();
4 public:
5 float price();
6 };
7
8 refines class StockInformationBroker {
9 public:

10 StockInfo &collectInfo(Client &c, StockInfoRequest &req) {
11 c.charge(req);
12 return super:: collectInfo(req); }
13 };
14
15 refines class Client {
16 float m_balance;
17 public:
18 float balance ();
19 void charge(StockInfoRequest &req);
20 void run(string *stocks, unsigned int num) {
21 StockInfo &info = super:: m_broker .collectInfo(* this ,
22 StockInfoRequest(stocks , num)); ... }
23 };

Fig. 15. The pricing feature using FOP (Pricing)

FeatureC++: On the Symbiosis of FOP
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1 aspect Charging {
2 pointcut collect (Client &c, StockInfoRequest &req) =
3 call("%�StockInformationBroker:: collectInfo(StockInfoRequest�&)")
4 && args(req) && that(c);
5 advice collect (c, req) : after(Client &c, StockInfoRequest &req) {
6 c.charge(req); }
7 };
8
9 refines class StockInfoRequest {

10 float basicPrice();
11 float calculateTax();
12 public:
13 float price();
14 };
15
16 refines class Client {
17 float m_balance;
18 public:
19 float balance ();
20 void charge(StockInfoRequest &req);
21 };

Fig. 16. The pricing feature using Aspectual Mixin Layers (Pricing)

Pricing Feature as Aspectual Mixin Layer. Figure 16 depicts the Pricing
feature implemented by an Aspectual Mixin Layer. The key difference is the
Charging aspect. It intercepts calls to the method collectInfo (Lines 2-4) and
charges the calling client depending on its request (Lines 5-6). This solves the
problem of the extended interface because the client is charged by the aspect
instead by the SIB. An alternative is to pass the clients reference to the extended
collectInfo method (not depicted). In both cases, the Client does not need to
extend the run method.

A further advantage is that the charging of client’s accounts can be made
dependent to the control flow (using the cflow or if pointcut). This makes it
possible to implement the charging function variable. Finally, our example shows
that by using Aspectual Mixin Layers we have to refine only these classes that
play the roles of product (SIR) and customer (Client).

Summary. Although the stock information broker example is very simple, it re-
veals the benefits of FeatureC++ and Aspectual Mixin Layers. FeatureC++
has all advantages of common FOP approaches. Furthermore, it is able to el-
egantly handle dynamic crosscutting, interface extensions, and non-hierarchy-
conform refinements. Furthermore, Aspectual Mixin Layers can modularize ho-
mogeneous crosscuts and prevent excessive method extensions by using aspects
(not shown). Due to the lack of space a description of a logging feature (homoge-
neous concern) that extends the broker application at multiple join points (pre-
venting excessive method extensions) is omitted. The implementation is straight-
forward and was described many times. Table 1 summarizes the contribution of
Aspectual Mixin Layers.

We readily admit that this simple case study cannot prove our ideas, and we
do not intend to do so. This case study serves as proof of concept only and has
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Table 1. Advantages of FeatureC++ Aspectual Mixin Layers

problem solution example

homogeneous
crosscuts

pointcuts and advices logging code is included in a set
of methods

interface
extensions

method interception, argument passing
by aspects

the pricing aspect passes the
clients reference to the SIB

hierarchy-
conformity

refine only structure relevant Mixins;
other are modified by aspects

refines Client as customer and
SIR as product

dynamic
crosscutting

use specific pointcuts (cflow, etc.) charge clients depending on their
runtime state

method
extensions

wildcards in pointcut expressions match all methods with price
transfer

the aim to ease the understanding of our ideas. Mature case studies are supposed
to flesh out our theses in future work.

6 Related Work

Work in several fields is related: programming support for incremental designs,
AOP-related techniques, and the combination of AOP and FOP.

Programming support for incremental designs. One appropriate way to
implement features of program families in a modular way are Mixin Layers [31].
Mixin Layers can be implemented using C++ templates [31], P++ [29], Jak [5],
Java Layers [8], Jiazzi [23], and Delegation Layers [25]. All these approaches
leave aside the problem of lacking crosscutting modularity.

Theconstructorproblemin incrementaldesignswas introducedbySmaragdakis
et al. [30]. JavaLayers solve it by automatic constructor propagation fromparent to
childclasses [8].Eiseneckeretal.utilize staticC++meta-programming [13].Several
approaches solve the extensibility problem, introduced by Findler et al. [14]: Java
Layers [8], Jak [5], Jiazzi [23]. Regarding the constructor problem and extensibility
problem, FeatureC++ is inspired by these approaches.

Aspects and separation of concerns. [24,19,20,21] discuss the drawbacks
of current aspect-oriented languages, in particular no module boundaries, no
feature cohesion, etc. FeatureC++ overcomes these problems by combining
FOP and AOP concepts. This increases the crosscutting modularity and feature
cohesion. Further, this preserves clear module boundaries and allows to scope
aspect bindings.

Hyper/J supports multi-dimensional separation of concerns for Java [32].
This approach to software development is more general than that of Fea-
tureC++ because it addresses the evolution of all software artifacts, e.g.,
documentation, makefiles, etc. However, Hyper/J has a lot of similarities to
AHEAD [4]. Since FeatureC++ can be embedded into AHEAD it is an ap-
propriate complement to Hyper/J.

FeatureC++: On the Symbiosis of FOP
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The Law of Demeter for Concerns (LoDC) states that concerns should only
know other concerns that contribute to its own functionality [18]. Following this
principle (1) eases the incremental evolution of software by adding concern by con-
cern and (2) minimizes the number of feature interactions. FeatureC++ follows
LoDC and enables a clear encapsulation of concerns. The supported bounding
mechanism scopes aspects in order to reduce unpredictable feature interactions.

Classpects combine capabilities of aspects and classes to unify the design
of layered module systems [28]. They are related to Aspectual Mixins, whereas
classpects unify advices and method bodies (advices can be explicitly invoked),
but do not support mixin-based refinements.

AspectJ-like languages can express Mixins too. Using static introductions,
several classes (and methods) can be refined. In the face of heterogeneous cross-
cuts, for each target class a new aspect must be introduced. Otherwise, one
aspect declares all introductions. The problem of the first approach is that it
does not support feature cohesion. Moreover, the target classes are defined at
development time. Therefore, an easy exchange of the target layers is not possible
(because class names change which is not the case with Mixins). The second ap-
proach merges multiple refinement chains into one aspect. This may destroy the
logical structure. Furthermore, our Multi Mixins can be seamlessly integrated
into Mixin Layers and support the FOP paradigm. Moreover, they support in-
cremental development by a novel bounding mechanism (see Sec. 4.1).

Aspects, Features, and Collaborations Mezini et al. show that using AOP
as well as FOP standalone lacks crosscutting modularity [24]. They propose
CaesarJ for Java as a combined approach. Similar to FeatureC++, CaesarJ
supports dynamic crosscutting using pointcuts. In contrast to FeatureC++,
CaesarJ focuses on aspect reuse and on-demand remodularization. Lieberherr et
al. [19] introduce Aspectual Collaborations that encapsulate aspects into modules
with expected and provided interfaces. The main focus is similar to CaesarJ.

Kendall explores the connection between role modeling and AOP [15]. How-
ever, she does not consider the embedding of aspects into collaborations. Further-
more, her approach has several drawbacks regarding cohesive role refinements.

Colyer et al. propose the principle of dependency alignment : a set of guide-
lines for structuring features in modules and aspects with regard to program
families [10]. They distinguish between orthogonal and weak-orthogonal fea-
tures/concerns.

Loughran et al. support the evolution of program families with Framed As-
pects [22]. They combine the advantages of frames and AOP in order to serve
unanticipated requirements. Frames are related to Aspectual Mixins and Aspec-
tual Mixin Layers. Both allow to parameterize aspects at instantiation time.

7 Conclusion

This paper has presented FeatureC++, a novel FOP language extension to
C++ that additionally adopts AOP concepts. Besides common FOP concepts it

.
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supports several useful C++-specific extensions, e.g. multiple inheritance, generic
programming. After an introduction to FeatureC++, this paper contributes a
summary of several weaknesses of FOP in modularizing crosscutting concerns. We
have explained how the weaknesses lead to problems in implementing incremen-
tal designs. Consequently, we propose three approaches to solve these problems,
in particular, Multi Mixins, Aspectual Mixin Layers, and Aspectual Mixins. All
these approaches adopt language concepts of AOP. A further highlight is a special
bounding mechanism that supports a robust incremental development of program
families. All three approaches are completely independent of FeatureC++ and
can be applied to other FOP/AOP languages. Currently, we have implemented
a prototype of FeatureC++ that supports most of the discussed language fea-
tures, including Aspectual Mixin Layers. One can download a preliminary version
of FeatureC++ at our web site7. Our case study has shown that FeatureC++
with its AOP extensions is able to elegantly express dynamic crosscutting, homo-
geneous crosscuts, non-hierarchy-conform refinements, and to cope with excessive
method extensions and interface extensions.

In future work we want to investigate further in the relationship and sym-
biosis of FOP and AOP. In particular, we are interested in refining and evolving
pointcuts and advices, as well as in different bounding mechanisms. Further-
more, we plan to implement and evaluate Multi Mixin and Aspectual Mixins.
More complex case studies shall prove our results.
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Abstract. The expressiveness of AspectJ’s dynamic join point model
has been shown in many useful applications, while the static join point
model (also called lexical shadows) has been studied less. We propose a
notion of shadow programming that exposes a program’s adapted lex-
ical shadow information to compile time language constructs to enable
customized static analysis and more expressive join point selection mech-
anisms. In particular, within the framework of the AspectJ language and
compiler, we have designed and implemented two compile time language
constructs, called Statically Executable Advice and Pointcut Evaluator
respectively, to show how the lexical shadow information can be used.

1 Introduction

Aspect-oriented programs consist of base programs and a list of aspects. As-
pects are composed with base programs using a so called join point model [10].
In AspectJ’s terminology, join points are well-defined points during a program
execution, around which extra aspectual code(i.e.,advice) can be executed; point-
cut designators pick out certain join points and expose values at those points.
To compile aspect-oriented programs, aspect weavers (for example, the AspectJ
compiler) are needed to parse the base programs and aspects, and to match lex-
ical points in the program text against the pointcut designators. The matched
lexical points are called join point shadows [16,7], and advice code will be in-
jected into those places. At run time, the advice will be executed on dynamic
join points that are run time instances of the lexical shadows.

In Aspect-Oriented Programming(AOP) [10,5] languages like AspectJ, dy-
namic join point models have been extensively studied and their expressiveness
has been shown in many interesting applications, while much less has been done
on the lexical shadow side. Shadows have only served as internal implementation
constructs for AOP language compilers so far, however, it is also our view that
a lot more can be exploited for other purposes as well. The examples include,
but are not limited to, static program analysis and to support more expressive
join point selection mechanisms.

Following this thought, this paper presents a notion of shadow programming,
in which shadow information is exposed to aspect programmers who can take ad-
vantage of the information to reason about the program’s static properties using
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supported compile time facilities. In particular, to show the feasibility and the
usefulness of this notion, two compile time facilities, called Statically Executable
Advice and Pointcut Evaluator respectively, are presented for programmers to
write compile time program analyzers and to define sophisticated join point se-
lection algorithms. We have implemented both facilities as extensions to the
AspectJ language and the compiler. We believe more compile time facilities can
be developed along this direction.

Outline. The rest of the paper is organized as follows. Section 2 discusses
the motivations of this work. Section 3 introduces our lexical join point model
adapted from AspectJ’s internal lexical shadow structures. Section 4 presents
the two shadow programming facilities and their use cases. Section 5 briefly de-
scribes the implementations. Section 6 compares this work with other related
work and Section 7 concludes the paper.

2 Motivations

2.1 Compile Time Program Analyzers

To make programs more understandable, efficient or evolvable, it is important for
programmers to follow some programming conventions. For example, an object’s
clients should never directly access the object’s fields, if there are corresponding
getters and setters available.

Unfortunately, most programming conventions are not checked by modern
programming language compilers that usually just do regular type checking and
code generation. Our observation is that the lexical shadow notion of aspect-
oriented programming language compilers contains rich static information about
program structure, which can serve as excellent ground for nontrivial program-
ming convention checking. As a matter of fact, the AspectJ language has already
supported very simple program property compile time checking. For example, to
check that in any getter method, there should not be any operation to change
an object’s states, one can put the following declare error statement in an aspect:

aspect Foo {

declare error : set(* *.*) && withincode(* *.get*(..))
: "Side effect operations not allowed!";

}

When this aspect is compiled with a base program, the AspectJ compiler will
try to match the program text against the pointcut designator expression set(*

*.*)&& withincode(* *.get*(..)), and if any match is detected, the specified
error message will be printed out along with the corresponding program text’s
lexical address (file name and line number), so that we know a violation has
occurred. However, this feature is still very primitive in two senses: (1) the
conventions it can characterize are limited to those that can be directly expressed
using AspectJ’s pointcut designators; (2) programmers have no direct access to
the lexical shadow information that is important to implement more complex
compile time checkers, as we will see later.
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In fact, the aforementioned declare error statement fails to report the complete
violation set. If a getter method does not directly update a field, instead, it calls
another getter method that updates a field, it can only report the violation of
the latter method, while treating the former one as a nonviolation. Note that this
misbehavior is not due to a programming bug, but due to the fact that AspectJ’s
declare error mechanism is limited in its expressiveness. Exposing lexical shadow
information for programmers to access is essential for realizations of such kind
of compile time checkers.

In [12], motivated by another programming convention checker, the Law of
Demeter checker, we proposed an extension to AspectJ, called Statically Exe-
cutable Advice, which allows programmers to define more complex computation
using lexical shadow information. That proposal can be realized only if lexical
shadow information is accessible to programmers at compile time. Observing
that, now we have refined the proposal and implemented it in the AspectJ com-
piler (version 1.1). In this paper, we discuss its applications in a broader context
of reasoning about program properties using exposed shadow information.

2.2 More Expressive Join Point Selection Mechanism

Many aspect-oriented programming languages follow AspectJ’s join point se-
lection mechanism, called pointcut designators [10]. In this mechanism, there
are static primitive pointcut designators such as call, execution, get, and set to
match method or constructor call sites, method or constructor bodies, field read
accesses and updates respectively. Programmers can use a simple pattern lan-
guage to specify the signatures of those lexical points to be selected. Logical
connectors ‖ , & , and ! can be used to further refine selections. There are
also dynamic pointcut designators including cflow,this,target, args and if. They
refine join points selection at run time, and we will not cover them in this
paper.

The expressiveness of the AspectJ’s pointcut designator selection language
is still very limited. One of the limitations is that it does not support join point
selection based on particular properties of a lexical shadow other than those that
can be directly expressed in the simple pattern language syntax. For example,
one cannot select a call site call(* *.store()) (call to a method named store) such
that the target type has a field named id, which is useful in enterprise applications
to map an instance of a class back to a persistent store. As a matter of fact,
asking whether AspectJ can support selection of join points based on special
properties of classes/methods has been one of the most common questions in
the AspectJ user community. Just as two additional examples from the AspectJ
users mailing list, people were asking how to select the executions of a method in
a class but not in its subclasses [8] and how to select the executions of a method
in nonanonymous classes [15]. They are either very difficult or impossible to be
expressed in AspectJ’s pointcut designator language in its current form.

New pointcut selection primitives have been proposed to address this issue.
For example, in another AOP system, JBoss AOP [9], a new pointcut expression
hasField(..) has been proposed and implemented to help specify the aforemen-
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tioned field scenario. But those extensions tend to be specific, and more general
solutions are still needed.

Since the properties that a programmer wants to specify about program lexi-
cal points can be arbitrary, any general solution suggests programmer accessible
lexical shadow information and a mechanism to reason about shadow informa-
tion. Based on the programmer accessible shadow assumption, we propose a
new pointcut designator expression called Pointcut Evaluator as a general ap-
proach to this problem and it has also been implemented in the framework of
the AspectJ compiler (version 1.1).

3 Lexical Join Point Model

3.1 Lexical Shadows in AspectJ Compiler

We briefly introduce what lexical shadows are in the AspectJ language and com-
piler. According to the AspectJ language model, join points are points in the
execution of a program. Join points are also called dynamic join points, because
they exist only at run time. Each dynamic join point has its corresponding static
part in the program text, which is called lexical shadow [16,7]. The AspectJ com-
piler operates on potential lexical shadows and matches those shadows against
pointcut designators. For matched shadows, extra code will be injected to call
advice at an appropriate time and to construct dynamic join point instances that
are accessible to advice code at run time through a keyword variable thisJoin-
Point.

Lexical shadows are abstractions of entities in a program, and they contain
rich static information about those entities. As an example, a method call shadow
contains the name of the method, the static types of the target object and the
arguments, and in which method body(which is another shadow) the call is
invoked. Currently, there are nine kinds of shadows in the AspectJ language and
compiler [7]. The most common ones are method(or constructor) execution 1,
method(or constructor) call, field get, and field set.

So far shadows have only served for the compiler’s internal implementation’s
purpose, i.e., for matching programming entities against pointcut designators.
Our goal is to make shadow information available to programmer accessible
compile time facilities. The shadow class structure of the AspectJ compiler is
for its internal use only and thus is unsuitable for programmers to access. We
have designed and implemented a new structure based on the compiler’s shadow
structure information. We call the new structure lexical join point structure.

3.2 Lexical Join Point Structure

Fig. 1 is the UML diagram of our abstraction of lexical join points.
1 The term execution may be a little confusing to those who are not very familiar with

AspectJ, since it sounds like a run time thing. You can just view it as the body of
a method or a constructor.
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Fig. 1. Lexical Join Points

A program consists of a set of lexical join points, each of which fits into
one of the two categories: NonEnclosingLexicalJoinPoint and EnclosingLexicalJoin-
Point. An EnclosingLexicalJoinPoint may contain any number of NonEnclosingLex-
icalJoinPoint objects.

Lexical join points are further classified according to their kinds. The nine
concrete classes2 correspond to the nine kinds of shadows defined in the AspectJ
language respectively. Some of the lexical join point classes implement signature
interfaces (indicated as circled lines in the figure) so that programmers can access
needed information through well-defined APIs. Those signature interfaces are all
defined in AspectJ’s public reflective API package org.aspectj.lang.reflect, which
should be familiar to AspectJ programmers. Letting lexical join point classes
implement specialized signature interfaces deliver better API accessibility to
programmers, while in the current AspectJ language, programmers only have
direct access to the general Signature interface and in programs, they often have
to cast it down to more specialized interfaces according to the kind of the current
join point.

The signature interfaces lend the programmers the capability to access type
hierarchy information as well, which could come from one of two sources. The
first source is Java’s reflection system where class Class provides entry points to
type information about a loaded class. This is a feasible source since AspectJ is
using a byte code weaving approach and it is fair to assume that all the base

2 Abstract class names are in the italic font, the circled lines represent interface types
and the dashed lines represent implementation relationship between classes and
interfaces.
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program classes have been in the byte code form before weaving time. The other
source is AspectJ compiler’s internal type information abstracted as class TypeX,
which collects all the class information in the program, either from source text or
byte code. Class TypeX has almost the same APIs as Java’s reflective Class and
thus it is easy to unify them into a general one. To simplify our implementation,
we use the reflection system as our source for type hierarchy information. For
example, for any lexical join point object, we can ask in which static type this
lexical join point is defined by calling method

Class getDeclaringType()

which is declared in interface Signature. In the next section, we will see examples
how to make use of type information to reason about programs at compile time.

4 Shadow Programming Facilities

We show how we can take advantage of the exposed lexical join point information
in two shadow programming facilities we have designed and implemented in the
AspectJ compiler.

4.1 Statically Executable Advice

AspectJ’s declare error construct is a useful static checking feature, but it is
not expressive enough to check complex program properties. By extending As-
pectJ’s declare mechanism, we can support user-defined complex static checking
logic using available lexical join point information. This new construct is called
Statically Executable Advice that can be declared in an aspect definition using
the following syntax.

declare advice : pointcut expression : Identifier ;

The pointcut expression can be any legal AspectJ pointcut expression as long
as no cflow, if, args, this and target is used in it3. We add this restriction because
we want the pointcut expression to be statically resolvable, so that we can apply
statically executable advice at compile time. The Identifier has to be the name of
a user-defined class implementing interface IStaticallyExecutableAdvice as shown
in Listing 1.

The idea is that for each of the declare advice declarations, the AspectJ com-
piler will load the class indicated by Identifier and create an instance from it.
During the pointcut matching phase, if a shadow matches the specified pointcut
expression, the compiler will create a lexical join point object corresponding to
the shadow and call the corresponding method on the Identifier instance with
the new lexical join point object as the argument. For example, if the current
lexical shadow is a method call and it matches the pointcut expression, then the

3 In AspectJ’s terminology, a pointcut designator without cflow, if, args, this and target
is called a statically determinable pointcut.
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onCall method will be invoked on the Identifier instance with a MethodCall lexi-
cal join point created from the shadow as the argument. In addition, the start()
method will be invoked before the whole compilation process begins and the
finish() method will be invoked after the whole compilation process has finished.

Listing 1. IStaticallyExecutableAdvice.java

interface IStaticallyExecutableAdvice {

void beforeExecution(Execution e);

void afterExecution(Execution e);

void beforeInitialization(Initialization ini);

void afterInitialization(Initialization ini);

void onCall(Call c);

void onField(Field f);

void start();

void finish();

}

Please note that for each of the two direct subclasses of class EnclosingLexi-
calJoinPoint, namely Execution and Initialization, there are both before and after
methods declared for it. But for each of the two direct subclasses of class NonEn-
closingLexicalJoinPoint there is only an on method. The semantics is that if an
enclosing lexical join point, say e, matches the pointcut expression, then its be-
fore method will be executed prior to all of the on methods for the matched
nonenclosing lexical join points enclosed in e, and its after method will be exe-
cuted after all of those on methods. This temporal order is important to simulate
the lexical scopes of shadows.

One of the major advantages of using the declare advice construct is that we
can make use of AspectJ’s pointcut designator selection mechanism to specify
where in the program we want to apply the checking logic. This expressiveness is
similar to the traversal strategies and Visitor methods in the Demeter system [13]
in that pointcut expressions play the roles of traversal strategies and statically
executable advice methods play the roles of Visitor methods.

The following use cases exposes the usage and features of the statically exe-
cutable advice.

Case 1: Side Effect Checking for Getters. As discussed in Section 2.1,
AspectJ’s declare error mechanism is not expressive enough to statically report
whether a getter method may have side effects (change the states of some ob-
jects). We need to check the following properties:

1. If a getter method directly has field updating operations, then this method
has side effect;

2. If a getter method calls some non-getter methods (whose names do not start
with get”), we assume non-getter methods always have side effects and so is
this getter method;
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3. If a getter method calls other getter methods, then whether that getter
method has side effect depends on those methods, and we need to record
this dependency information for future processing;

4. After having processed all of the getter methods, then from the methods that
have been marked as having side effects, we compute the transitive closure
following the reversed dependency relationships and mark those methods as
having side effect as well;

5. All of the unmarked getter methods are side effect free methods.

It is easy to see that even this simple program property cannot be easily
checked. Fortunately, with our new statically executable advice construct, one
can implement this static checker elegantly.

First, we need to specify what shadows we want to check and what is our
class that implements the static checker. It is specified using our declare advice
construct in an aspect as in Listing 2.

Listing 2. CheckerAspect.java

public aspect CheckerAspect {

declare advice : withincode(* *.get*(..)) : EffectFreeChecker;

}

Basically, we need to check every lexical shadow occurring in the body of a
getter method, which is specified as pointcut designator expression withincode(*
*.get*(..)). Class EffectFreeChecker, which implements interface IStaticallyExe-
cutableAdvice, is the class whose instance does the actual checking. A supporting
class MethodNode maintains a global map that maps a getter method’s signature
to its corresponding MethodNode instance. Each MethodNode instance maintains
the side effect dependency relationships of other MethodNode instances on itself.
The supporting class MethodNode also maintains a global list of MethodNode
instances that have been identified as having side effect.

With this supporting class, we now only need to implement three statically
executable advice methods in class EffectFreeChecker (Listing 3).

When the compiler matches a field operation within the body of a getter
method, the above onField method is invoked. If the operation happens to be
a Set operation (determined by line 3, Listing 3), then that enclosing getter
method is directly marked as with side effect.

On the other hand, as shown in the onCall method, if a method call shadow
is matched in a getter method, we first make sure this call is also to a getter
method (if not, we immediately mark the enclosing getter method “having side
effect”), then we establish the side effect dependency relationships for future
processing(lines 11 - 12, Listing 3).

Once all of the shadows in the program have been processed, the finish()
method is invoked. The sole purpose of the finish method is to call a util-
ity method reachTransitiveClosure() that starts from the nodes in the side ef-
fect method node list and marks every MethodNode instance reachable via the
transitive closure of dependency relationships as having side effect. After this
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Listing 3. EffectFreeChecker.java

1 class EffectFreeChecker implements IStaticallyExecutableAdvice {

public void onField(Field f) {

3 if(f instanceof Set)

MethodNode.addSideEffectNode(f.getEnclosing().getSignature());

5 }

public void onCall(Call c) {

7 if(!c.getName().startsWith("get")) {

MethodNode.addSideEffectNode(c.getEnclosing().getSignature());

9 return;
}

11 MethodNode theCall = MethodNode.getMethodNode(c.getSignature());

theCall.addDependencyRel(c.getEnclosing().getSignature());

13 }

public void finish(){

15 reachTransitiveClosure();

}

17 //other empty methods are skipped

}

process finishes, all the getter methods that have side effects will have been
marked so.

When the base program and aspect CheckerAspect(Listing 2) are compiled
using our extended AspectJ compiler, the getter method side effect checking will
be executed automatically during the compilation process.

The implementation of this checker is very succinct due to two reasons: (1)
the exposed lexical join point information adapted from shadows is available to
the statically executable advice construct for free, while traditional approaches
typically require a lot of parsing and abstract syntax tree traversals to get similar
information; (2) as pointed out earlier, AspectJ’s pointcut designator expression
can declaratively instruct the compiler to only run the checker on relevant shad-
ows, which otherwise would require a lot more code.

Case 2: Law of Demeter Checker. The Law of Demeter [14] (LoD) is another
example of a programming convention we would like to check.

The class form of the LoD is a variant of the LoD. A class is less coupled with
other classes if it follows the class form of the LoD. The essence is to restrict the
classes whose methods can be invoked in a class’s method. It can be summarized
as: in a method of a class, we can only call methods on the following set of classes

– the class itself;
– classes of the class’s fields;
– classes of the method’s parameters;
– classes whose constructors are invoked in the method body.
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It is clear that checking the class form of the LoD only requires statically
available information. But we could not implement a sound checker in AspectJ,
because using its dynamic join point model we could only do checking on a per-
execution basis. With our new statically executable advice construct, we have
easily implemented a sound LoD static checker.

Listing 4. LoDCheckerAspect.java

public aspect LoDCheckerAspect{

declare advice : (execution(* *.*(..)) || call(* *.*(..)) || call(*.new(..)))

&& withincode(* *.*(..))

: LoDChecker;

}

Listing 5. LoDChecker.java

1 public class LoDChecker implements IStaticallyExecutableAdvice {

HashSet permissibleTypes = new HashSet();

3 List potentialViolations=new ArrayList();

Class thisClass;

5 public void onCall(Call c) {

if(c instanceof ConstructorCall) {

7 permissibleTypes.add(c.getDeclaringType());

return;
9 }

java.lang.reflect.Field[] fields = thisClass.getDeclaredFields();

11 for(int i=0; i<fields.length; i++) {

if(c.getDeclaringType() == fields[i].getType())

13 return;
}

15 if(permissibleTypes.contains(c.getDeclaringType()))
return;

17 potentialViolations.add(c);

}

19 public void beforeExecution(Execution e) {

permissibleTypes.clear();

21 thisClass = e.getDeclaringType();

permissibleTypes.add(thisClass);

23 Class[] paraTypes = e.getParameterTypes();

for(int i=0; i<paraTypes.length; i++)

25 permissibleTypes.add(paraTypes[i]);

}

27 public void afterExecution(Execution e) {

Iterator it = potentiallyViolations.iterator();

29 while(it.hasNext()) {

Call c =(Call)it.next();

31 if(!permissibleTypes.contains(c.getDeclaringType()))
System.err.println("An LoD violation at: " + c.getSourceLocation());

33 }

potentialViolations.clear();

35 } }
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Listing 4 uses declare advice to specify where in the program the checks
take place and which class implements the checking logic. We need to capture
all method call sites residing in a method body to check their target types.
We also need to capture constructor calls since they provide permissible types
and we want to collect them. The shadows corresponding to execution(* *.*(..))
are the method bodies we are checking. Listing 5 is the implementation of the
LoDChecker class that performs all the necessary checking for the class form of
the LoD.

The instance of class LoDChecker maintains the permissible types (in a Hash-
Set, Listing 5) in the context of a method body. Within a method body, if the
compiler finds any constructor call shadow(Listing 5, lines 6 - 9), its type is added
to the set of permissible types for the method; if a method call shadow is found
instead, we first check whether the target type is one of the field types or already
known permissible types, if not, then this call may be a violation call (Listing 5,
lines 10 - 17). We cannot determine whether a method call site really violates
the LoD until we have processed every shadow in the method body, since there
may be other constructor calls coming after that method call, which will bring
about more permissible types. This explains why we only report violations in
the afterExecution method, right before the process leaves a method body being
checked.

Summary. Our experiences with the two static checkers suggest that with the
lexical join point information exposed at compile time, one can use statically ex-
ecutable advice to implement static checkers to check nontrivial program prop-
erties. Of course, the program properties that can be checked in this construct
also depend on the expressiveness of AspectJ’s pointcut designators. With more
expressive designators added in, we can check even more interesting properties.

4.2 Pointcut Evaluator

As discussed earlier, in practice, there are many requirements for mechanisms
to select join points based on properties of shadows, which usually cannot be
expressed using the simple pattern matching syntax supported by AspectJ in its
current form. The exposed lexical join points provide excellent grounds for more
expressive join point selection mechanisms. One such mechanism is a compile
time facility called Pointcut Evaluator which we propose and have implemented
in the AspectJ compiler.

Again, using AspectJ’s declare mechanism, in an aspect’s definition, one can
declare a pointcut evaluator variable which can be referred later in a pointcut
designator definition. Here is the syntax.

declare evaluator : Identifier

: Identifier

[ : Instantiation Option ] ;

The first Identifier is the name of an evaluator variable that will refer to an
instance, while the second one is the name of a class, from which the instance
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referred by the evaluator variable will be instantiated. The class has to imple-
ment a simple interface IPointcutEvaluator as shown in Listing 6. The optional
Instantiation Option controls how the evaluator variable instance is instantiated,
and currently, the option can be either perCompile (it is the default option, if no
option is specified), or perPCD. Option perCompile indicates that there will be
just a singleton instance associated with the evaluator variable during the whole
compilation process; while option perPCD indicates that for each pointcut des-
ignator definition, there will be a separate instance associated with an evaluator
variable used in the designator.

Listing 6. IPointcutEvaluator.java

public interface IPointcutEvaluator {

public boolean eval(LexicalJoinPoint ljp);

}

A declared pointcut evaluator variable can be referred in a pointcut designa-
tor to refine the join point selection. An evaluator variable can appear anywhere
in a pointcut designator where an AspectJ’s standard primitive designator is
expected. When the AspectJ compiler is matching a potential shadow against a
pointcut designator, and if an evaluator variable is used in the designator, then
the eval method will be called on the instance referred by the evaluator variable,
with a LexicalJoinPoint object constructed from the shadow as the argument.
Then the boolean return value from the eval method will be used together with
logical connectors and the standard primitive designators to determine the final
matching of the shadow. We will see how it is used in the following use case.

Use case: Contract checking for equals/hashCode. Modern software sys-
tems often rely on their components to obey some contracts [17] to ensure that
systems behave correctly. Usually type systems cannot check contracts and thus
they cannot be statically enforced. One such example is the contract between
method equals(Object) and method hashCode() in Java’s Object class. As docu-
mented in the Java API documents, under the entry of class Object, this contract
is literally specified as the following statement:

– If two objects are equal according to the equals(Object) method, then calling
the hashCode method on each of the two objects must produce the same
integer result.

The importance of this contract is evident from the fact that it has caught
significant attentions from both professional programmers [1] and academic re-
searchers [4]. To address this contract, in his well known book Effective Java [1],
Joshua Bloch makes it a rule that Always override hashCode when you override
equals.

The rationale of that rule is that if you have overridden the equals method
without overriding the hashCode in a class, it is almost certain that the class
will fail to obey the aforementioned contract. Following that rule (which is stat-
ically checkable) itself, however, will not guarantee that contract will be obeyed.
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Instead, we cannot determine it until run time. So to determine whether a class
obeys this contract, both compile-time and runtime checking is required.

It is impossible to implement this contract checking in the current AspectJ
language, not just because it cannot provide the needed static checking support,
but also because its pointcut designator mechanism is not expressive enough
for what is needed for the dynamic checking. It is not easy to implement this
in other software engineering tools either. But our pointcut evaluator construct
provides an elegant solution to this task.

Listing 7 and Listing 8 are the implementation of this contract checker using
the pointcut evaluator facility.

Listing 7. ContractCheckingAspect.java

aspect ContractCheckingAspect {

declare evaluator: withHashCode : HashCodeChecker;

pointcut p(Object b): execution(* *.equals(Object)) && args(b) && withHashCode;

after(Object b) returning(boolean r): p(b) {

if(r) { //equals returns true, then test the contract.

if(thisJoinPoint.getThis().hashCode() != b.hashCode())

System.err.println("Contract violation!");

}

}

}

Listing 8. HashCodeChecker.java

public class HashCodeChecker implements IPointcutEvaluator {

public boolean eval(LexicalJoinPoint ljp) {

//only returns true if the class overrides hashCode method

Class thisType = ljp.getDeclaringType();

Method[] methods = thisType.getDeclaredMethods();

for(int i=0; i<methods.length; i++)

if(methods[i].getName().equals("hashCode"))
return true;

//if it overrides equals(), must also override hashCode()

if((ljp instanceof MethodExecution) && ljp.getName().equals("equals"))

System.err.println("Must also override hashCode()!");

return false;

}

}

In aspect ContractCheckingAspect(Listing 7), a pointcut evaluator variable
withHashCode is declared to refine the join point selection of pointcut desig-
nator p, which captures executions of equals method only if the target class
also overrides the hashCode method. The static determination whether a class
overrides hashCode actually is implemented by class HashCodeChecker(Listing
8), from which the instance referred by variable withHashCode is created. Class
HashCodeChecker also checks the rule (a class that overrides equals must also
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override hashCode) at compile time. The after advice in Listing 7 does the run
time checking of the contract

5 Implementations

The implementations of the statically executable advice and pointcut evaluator
facilities turned out to be seamless in the Eclipse AspectJ compiler (version 1.1),
due to the compiler’s extensibility.

There are two important concepts in the architecture of the AspectJ compiler,
which are Shadow and Shadow Munger [7]. Shadow as an abstraction of the
program text provides the grounding for our exposed lexical join point model, on
which our two compile time facilities are based. Shadow munger is an abstraction
of compile time actions when a shadow matches a pointcut designator expression.
Two examples of shadow munger are declare error processor and advice weaver,
which respectively prints out a specified error message and weaves the advice into
the appropriate places when a shadow in the program is matched. The statically
executable advice construct is just implemented as another shadow munger,
called AdviceMethodLauncher. It constructs a lexical join point object from the
matched shadow and uses it as the argument to call an IStaticallyExecutableAdvice
method corresponding to the shadow on the instance created in the declare advice
statement.

On the other hand, in a pointcut designator, a pointcut evaluator variable is
treated the same as other standard primitive pointcuts, except that its semantics
is to invoke the eval method on the instance referred by the evaluator variable
with the lexical join point object corresponding to the current shadow as the
argument. Its returning value is used to determine the matching of the shadow
against the pointcut designator.

6 Related Work

Josh by Chiba and Nakagawa [2] is a new AOP language based on a compile
time reflection library called Javassist. In Josh, programmers can have pointcut
designators that are implemented as static Java methods using the Javassist API
to access static information of the base program, just as we can refine the join
point selections in pointcut evaluators using exposed lexical join point informa-
tion. Our approach has a better integration with AspectJ’s well accepted join
point model, while Josh users have to program in two models, namely AspectJ-
like join point model pointcuts and Javassist’s compile time reflection model.
Our exposed lexical join point information is obtained almost for free from the
AspectJ compiler’s internal shadow information, while Josh has to get similar
information from a special compile time reflection library.

Eichberg, Mezini and Ostermann [3] use the XQuery language as a join point
selection mechanism while the underlying shadow model is an XML representa-
tion of class information (translated from class files using a special tool). How-
ever, programmers should find our model more accessible, since in our model,
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there is no need for special translation from Java programs to their XML repre-
sentations.

There are also expressive pointcut languages [6,19,11,18] based on logic pro-
gramming and its unification mechanism. These languages support join point
selection on various data models, including the abstract syntax tree, the static
type system, execution trace and heap objects. Arbitrary pointcut predicates can
be written with regard to the data models to select join points. Aspects written
in these pointcut languages tend to be less coupled to syntactic properties of
base programs, and thus better aspect reusability can be achieved, just as the
case in our shadow programming model. Due to logic programming’s declara-
tive nature and its built in unification mechanism, pointcut expressions in those
languages are very concise.

SCoPE [20] is an extended AspectJ compiler that optimizes conditional point-
cuts (if pointcuts) so that when if pointcuts only refer to statically available infor-
mation, the SCoPE compiler can evaluate them at compile time and thus there
is no runtime overhead associated with them, just like our Pointcut Evaluator
facility. The expressiveness of these two features are comparable.

7 Conclusion

We observe that shadow information in AOP languages, particularly in AspectJ,
can be also exploited for tasks other than compiler implementations, such as
customized compile-time analysis and more expressive join point selection. The
notion of shadow programming is proposed to expose the shadow information
for usage by compile-time facilities. Concretely in the AspectJ language and
compiler, we have designed and implemented the exposed shadow information
and API as our lexical join point structure. Two shadow programming facilities,
statically executable advice and pointcut evaluator, have been designed and im-
plemented. Use cases for them have been presented exposing their usefulness and
feasibility. We believe that more shadow programming facilities can be developed
along this line and they will broaden the application domain of AOP languages.
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Abstract. In meta programming with concrete object syntax, object-level pro-
grams are composed from fragments written in concrete syntax. The use of small
program fragments in such quotations and the use of meta-level expressions with-
in these fragments (anti-quotation) often leads to ambiguities. This problem is
usually solved through explicit disambiguation, resulting in considerable syn-
tactic overhead. A few systems manage to reduce this overhead by using type
information during parsing. Since this is hard to achieve with traditional parsing
technology, these systems provide specific combinations of meta and object lan-
guages, and their implementations are difficult to reuse. In this paper, we general-
ize these approaches and present a language independent method for introducing
concrete object syntax without explicit disambiguation. The method uses scan-
nerless generalized-LR parsing to parse meta programs with embedded object-
level fragments, which produces a forest of all possible parses. This forest is
reduced to a tree by a disambiguating type checker for the meta language. To
validate our method we have developed embeddings of several object languages
in Java, including AspectJ and Java itself.

1 Introduction

Meta-level programs analyze, transform, and generate object-level programs. It is com-
monly agreed that such program manipulations are best carried out on a structured
representation of the object program in order to achieve compositionality of trans-
formations and to guarantee well-formedness of the resulting program. Furthermore,
structured representations support type safety and hygiene more easily. However, the
notation for structured representations is usually verbose and rather different from the
notations of the language under consideration, rendering it impractical as a syntax for
object programs. Using the concrete syntax of the object language as a notation for this
structured representation provides the best of both worlds. The meta program can be
written using the concise, well-known syntax of the object language, while the under-
lying representation is still structured.

Syntactically checked concrete object syntax is now available in many meta pro-
gramming systems. Syntax macro systems such as <bigwig> [6], code generators such
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as Jak (JTS/AHEAD) [4] and Meta-AspectJ (MAJ) [22], and program transformation
systems such as ASF+SDF [14], DMS [5], Stratego/XT [20] and TXL [12] all pro-
vide concrete object syntax. Some of these systems are designed for a specific object
language, others are configurable for different object languages. In [20] we presented
a general architecture for introducing concrete syntax for any object language in any
meta language. The approach employs modular syntax definition in SDF and Scanner-
less Generalized-LR (SGLR) parsing for defining the syntax and parsing the combined
meta and object language [19,10].

A remaining problem of concrete object syntax is that the syntax of the combined
meta and object languages is usually highly ambiguous if the object language is embed-
ded using a single pair of quotation and anti-quotation symbols. Most systems solve this
by using a different quotation and anti-quotation symbol for each non-terminal of the
object language, leading to considerable syntactic clutter and requiring the meta pro-
grammer to be intimately familiar with the syntactic structure of the object language.
Because of the irregularity of the embedding, the set of syntactic categories that can be
quoted and unquoted is usually limited. Moreover, in a language with manifest typing
that already requires programmers to declare the types of all variables, the disambigua-
tion of quotations feels redundant. For example, consider the following fragment written
in Jak (part of the JTS/AHEAD Tool Suite [4]):

Stmt s = stm{ if($exp(exp )) {$stm(stm ); }; }stm;

Here a statement s is constructed from an expression exp and a statement stm . The
syntactic categories of the quotation of the entire fragment and the antiquotation of the
variables within it are explicitly indicated using identifiers.

Meta-AspectJ (MAJ) [22], an extension of Java for the generation of AspectJ pro-
grams, reduces the need for different quotation and anti-quotation symbols by means of
a context-sensitive parser, taking variable declarations into account during parsing. For
example, in MAJ the Jak fragment above can be written as follows:

Stmt s = ‘[ if(#exp) { #stm } ]

The syntactic categories of the fragment and the variables are inferred from the explicit
declaration of their types in the program. Thus, MAJ requires from the programmer less
knowledge of the embedding and the syntactical details of the object language. How-
ever, the implementation of MAJ is specific to the embedding of AspectJ in Java, and is
not easily reusable for embeddings of other languages, due to a number of limitations.
First, the scanner for meta and object language is the same, which precludes embed-
ding of languages with a different lexical syntax. Second, it is not possible to extend
the meta language with concrete object syntax for multiple languages, since the imple-
mentations of context-sensitive parsing do not compose. Finally, the implementation of
parsing and type checking is tangled, which leads to complex and hard to maintain code
that has limitations that might surprise users. For example, MAJ cannot always handle
overloaded methods that are invoked with quoted arguments.

In this paper, we describe an extension of our general architecture for concrete
object syntax with type-based disambiguation that allows embeddings with minimal
syntactic overhead. The main characteristic of our approach is that ambiguities are pre-
served by the parser and are solved in a separate phase by an extension of a type checker
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Fig. 1. Architecture of generalized type-based disambiguation

that operates on an abstract syntax forest. This separation of phases is illustrated in Fig-
ure 1. As a result, language embedding and assimilation (expansion of embedded object
code to the meta language) can remain compositional. Therefore, it is easy to add new
object languages and to combine object language embeddings. Since ambiguities are
solved after assimilation, the implementation of disambiguation for a meta language
is object language independent. However, we require that the representation of object
programs in the meta language is typed and that distinct syntactical categories have a
different type in this representation (see Section 4.4 and 5). Disambiguation is achieved
by a natural and orthogonal extension of the type system. By separating the issue of
disambiguation from the type checker, we can handle ambiguities in complex typing
situations for free, hence reducing the number of exceptions and heuristics. Also, the
approach is not restricted to a single meta language. Disambiguation is implemented
as an extension of the type checker of the meta language, so the method is restricted to
statically typed meta languages, and not applicable to untyped languages. Furthermore,
the method is particularly suitable (and desirable) for languages that use manifest typing
(e.g. C, Java, C#). We have no experience with meta languages using type inference.

We proceed as follows. In the next section we recapitulate the embedding and as-
similation of an object language in a meta language. In Section 3 we examine the ambi-
guities caused by such embeddings and previous solutions used for them. In Section 4
we present a generalized type-based disambiguation method for concrete object syntax.
In Section 5 we describe our experience with the method in a generic disambiguation
implementation for Java as a meta language with embeddings of AspectJ and Java itself.
In Section 6 we discuss previous, related, and future work.

2 Meta Programming with Concrete Object Syntax

In this section, we recapitulate the general method for adding support for concrete object
syntax to a meta language, which was presented in [20,11]. Introduction of concrete ob-
ject syntax in a meta language requires (1) embedding the syntax of the object language
in the meta language and (2) assimilation of the embedded object code fragments to
the meta language, expressed in terms of the underlying structured representation. The
generality of the approach is based on syntax definition in the modular syntax definition
formalism SDF for defining the embedding and the transformation language Stratego
for the assimilation. We illustrate the approach with the introduction of concrete syntax
for Java in Java.
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module JavaJava

imports Java-15-Prefixed Java-15

exports
context-free syntax

[A] "|[" Expr "]|" -> MetaExpr {cons("ToMetaExpr")}

[B] "#[" MetaExpr "]" -> Expr {cons("FromMetaExpr")}

Fig. 2. Syntax definition for simple embedding of Java in Java

2.1 Embedding

The embedding of an object language in a meta language requires the combination of
syntax definitions for both languages. From this combined syntax definition a parser is
generated, which is used to parse meta programs that use concrete object syntax. Thus,
the embedding of Java in Java is achieved by the module in Figure 2. The module im-
ports the Java syntax twice; once as the meta language and once as the object language.
To avoid confusion between the two languages (or language roles in this case), the non-
terminals of the meta language are prefixed with ‘Meta’ by renaming them in the import
declaration.

Next, to actually integrate the meta and object language, the combination of these
syntax definitions is extended with productions that determine the possible transi-
tions from the meta language to the object language (quotation) and vice versa (anti-
quotation). A quotation quotes a fragment of an object-level program and embeds it in a
meta-level program. Production A in Figure 2 defines that an object-level Expr between
|[ and ]| can be used as a meta-level MetaExpr. The cons annotation in the produc-
tion declares the constructor to be used in the abstract syntax tree. The following Java
statement illustrates the quotation of a Java method call:

Expression x = |[ resultSet.getInt(4) ]|

The meaning of this statement is Java code for the construction of the abstract syntax
tree corresponding to the quoted fragment, as will be further discussed below.

An anti-quotation is an escape from a quotation to the meta-level, to splice in pieces
of object code computed elsewhere. Production B in Figure 2 declares that a MetaExpr
between #[ and ] can be used as an object-level Expr. For example, in the following
quotation the method argument is an expression foreignkey that is determined from
some domain specification:

Expression x = |[ resultSet.getInt(#[ foreignkey ]) ]|;

2.2 Assimilation

Assimilation transforms a program with embedded object code to a pure meta-level
program by translating the embedded fragments to code in the meta language that con-
structs the underlying abstract syntax tree representation. For example, in our Java in
Java embedding we use the Eclipse JDT Core DOM [15] for representing the object
programs. Hence, the Java constructs must be translated to invocations of the methods
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in this API. The following Stratego rewrite rules illustrate the assimilation for some
Java language constructs. The first rule translates a return statement, the second rule a
method invocation. The Stratego rewrite rules use concrete object syntax as well.

Assimilate(rec) : |[ return; ]| -> |[ _ast.newReturnStatement() ]|

Assimilate(rec) : |[ e .y (e* ) ]| -> |[

{| MethodInvocation x = _ast.newMethodInvocation();

x .setName(~e:<AssimilateId(rec)> y );

x .setExpression(~e:<rec> e );

bstm* | x |} ]|

where <newname> "inv" => x

; <AssimilateArgs(rec | x )> e* => bstm*

In the assimilation rules we use a small extension {|stmt*|expr|} of Java, called an
eblock, that allows the inclusion of statements in expressions. The value of an eblock is
the expression. In the assimilation rules, the italic identifiers (e.g. e , y , and e* ) in-
dicate meta-level variables, a convention we use in all the code examples. ~e: denotes
an anti-quotation where the result is a Java expression. <s > p applies the rewriting s

to the pattern p . s => p matches the result of s to p . newname creates a fresh, unique,
name, which guarantees hygiene in the assimilation. AssimilateArgs is a helper strat-
egy that assimilates a list of expressions to arguments of the method invocation.

As an example, consider the result of assimilating the last example above, which
illustrates the advantage of concrete syntax.

MethodInvocation inv = _ast .newMethodInvocation();

inv .setName(_ast .newSimpleName("getInt"));

inv .setExpression(_ast .newSimpleName("resultSet"));

List<Expression> args = inv .arguments();

args .add(foreignkey );

Expression x = inv ;

In the examples of this paper, the assimilation is embedding specific, since the mapping
of the object language to an existing API is inherently embedding specific. However,
if there is a fixed correspondence between the syntax definition and the API, then the
assimilation can be generic. This is typically the case if the API is generated from the
syntax definition using an API generator such as ApiGen [8].

3 Ambiguity in Concrete Object Syntax

In this section we discuss how ambiguities can arise when using concrete object syntax.
Also, we discuss how these ambiguities are handled in related work.

3.1 Causes of Ambiguity

Lexical State. If a separate lexical analysis phase is used to parse a meta program, then
ambiguities will arise if the lexical syntax of the object language is different from the
meta language. The set of tokens of both languages cannot just be combined, since
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[A] "|[" CompUnit "]|" -> MetaExpr {cons("ToMetaExpr")}

[B] "|[" TypeDec "]|" -> MetaExpr {cons("ToMetaExpr")}

[C] "|[" BlockStm "]|" -> MetaExpr {cons("ToMetaExpr")}

[D] "|[" BlockStm* "]|" -> MetaExpr {cons("ToMetaExpr")}

[E] "#[" MetaExpr "]"-> ID {cons("FromMetaExpr")}

[F] "#[" MetaExpr "]"-> Expr {cons("FromMetaExpr")}

Fig. 3. Syntax definition for embedding of Java in Java

the tokens of both languages are only allowed in certain contexts of the source file.
For example, pointcut is a keyword in embedded AspectJ, but should not be in the
surrounding Java code.

Quotation. Ambiguous quotations can occur if the same quotation symbols are used
for different non-terminals of the object language. If the object code fragment in the
quotation can be parsed with both non-terminals, then the quotation itself is ambiguous
as well. For example, consider the SDF productions A and B in Figure 3 that define a
quotation for a compilation unit and a type declaration. With these two quotation rules,
the fragment |[ class Foo { } ]| is ambiguous, since the quoted Java fragment can
be parsed as a compilation unit as well as a type declaration. Note that not all quotations
are ambiguous: if the object code includes a package declaration or imports, then it can-
not be parsed as a type declaration. A similar ambiguity issue occurs if the embedding
allows quotation of lists of non-terminals as well as single non-terminals. For example,
consider the SDF productions C and D in Figure 3 for quoting block statements. A quo-
tation containing a single statement is now ambiguous, since it can be parsed using both
production rules.

Anti-Quotation. Similar ambiguity problems occur when using the same anti-quotation
symbols for different non-terminals of the object language. For example, consider the
anti-quotations E and F in Figure 3 for identifiers and expressions. The anti-quotation
in |[ #[a ] + 3 ]| is ambiguous, since #[a ] can represent an identifier as well as a
complete expression.

3.2 Solutions

Lexical State. Most systems use a separate scanner. The consequence is that the lexical
analysis must consider lexical states and will often assume fixed quotation symbols
to determine the current state. Alternatively, the scanner can interact with the parser
to support a more general determination of the lexical state. Some other systems just
take the union of the lexical syntax, hence forbidding reserved keywords of the object
language in the meta language. MAJ also reserves several keywords to work around
lexical ambiguities (e.g. pointcut is a meta keyword) and some of these keywords are
not even part of the object language (e.g. VarDec and args). ASF+SDF and Stratego
both use scannerless parsing for parsing meta programs. Lexical ambiguities are not
an issue in scannerless parsing, since they inherently only occur if a separate scanner is
used.
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Explicit Typing. Ambiguous quotations and anti-quotations can be solved by requir-
ing explicit disambiguation by using different quotation symbols. For example, JTS
uses different quotations for the class example: prg{...}prg for compilation units
and cls{...}cls for class declarations. Stratego uses the same solution, but the dis-
ambiguated versions of the quotations are optional: if there is no ambiguity, then the
general quotation symbols can be used. For example, |[ package foo; class Foo
{} ]| is not ambiguous (it is a compilation unit), but a plain class declaration requires
an explicit disambiguation, e.g. comp-unit |[ class Foo {} ]|.

JTS solves ambiguities between quotations of a single non-terminal and a list of
non-terminals in two different ways. First, there are specific quotations for lists, for
example xlst{...}xlst for the arguments of a method call. Second, some non-
terminals only have a single quotation instead of two, where this single quotation always
represents a list. In Stratego, list quotations are explicitly disambiguated, e.g. bstm* |[
x = 5; ]|.

Context-sensitive Parsing. MAJ uses context-sensitive parsing to solve ambiguous quo-
tations and anti-quotations, by using type information at parse-time to infer the type of
the quotation or anti-quotation to be parsed. Concerning list quotations, if infer is
used, MAJ uses a single element if possible and an array if it must be a list. If the type
of the variable is declared, then this type is considered. For example, the quotation in
the statement Stmt[] stms = ‘[ x = 4; ]; will be parsed to the construction of
an array instead of a single statement. Hence, explicit disambiguation of the quotation
itself is not necessary. Unfortunately, MAJ does not implement full support for the type
system of Java and uses common interfaces for conceptually different AST classes to
workaround issues in the quotation inference. Section 5 discusses these problems in
more detail.

Grammar Specialization. ASF+SDF is a system with first order types. It translates
this type system to a context-free grammar, thus parsers can be generated that accept
only type correct meta programs. As a result, neither quoting of object fragments, nor
anti-quoting of meta variables, nor explicit typing is necessary in ASF+SDF. However,
the type system is limited to first order types only. Remaining ambiguities are cur-
rently solved by using heuristic disambiguation filters, such as injection count. In [18]
a type-based solution for these ambiguities is presented, where grammar generation is
no longer necessary.

4 Generalized Type-Based Disambiguation

In summary, quotation and anti-quotation can be used to introduce concrete syntax for
object-level program fragments, but need some form of disambiguation. Explicit disam-
biguation methods introduce syntactic clutter that obscures meta programs. Reduction
of this syntactic clutter can be achieved by using type information for disambiguation.
While MAJ does a great job at achieving this for the specific embedding of AspectJ
in Java, its implementation is hard to generalize to other object languages and to the
combination of multiple object languages, because of the poor compositionality of its
context-sensitive parsing algorithm.
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Fig. 4. Architecture of embedding and assimilation framework with type-based disambiguation

In this section, we introduce an alternative approach that generalizes easily to ar-
bitrary object languages. Indeed it is generic in the embedded object language and can
easily be transposed to other meta languages, considering the restrictions on the type
system, as mentioned in the introduction. We illustrate the method with the embedding
of Java in Java, but stress that the architecture and implementation is object language
independent. The basic idea of the approach is to perform type-based disambiguation of
an abstract syntax forest after assimilation. The architecture of our method is illustrated
in Figure 4. In the rest of this section we describe the elements of the pipeline.

4.1 Syntax Definition and Parsing

The first stage of the pipeline consists of parsing the meta program with a parser gen-
erated from the combined syntax definition. This phase preserves all the ambiguities in
the meta program, by employing generalized-LR parsing. The result is a parse forest,
that is, a compact representation of all possible parses of the program. At points where
multiple parses are possible the forest contains ambiguity nodes consisting of a set of all
alternative parse trees, or in fact forests, since ambiguities can be nested. As a technical
note, we actually consider abstract syntax forests, that is parse forests with irrelevant
information such as whitespace, comments, and literals removed. For example, the Java
assignment statement dec = |[ class Foo {} ]|; is parsed to the following abstract
syntax forest in term notation (where we have elided some details of the structure of
class declarations having to do with modifiers and such):

Assign(ExprName(Id("dec")),

1> ToMetaExpr( CompUnit(... ClassDec(... Id("Foo")...) ...) )

2> ToMetaExpr( ClassDec(... Id("Foo") ...) )

3> ToMetaExpr([ ClassDec(... Id("Foo") ...) ] ) )

In this forest it is clear that the right-hand side of the assignment is ambiguous and
has three alternative parses. We use the notation 1>...n> to indicate the alternatives
of an ambiguity node. The three alternatives are a compilation unit containing a class
declaration, a class declaration on its own, and a singleton list of a body declaration
declaring an inner class (see Section 3.1 for a discussion of ambiguities caused by
lists). The ToMetaExpr constructor represents a transition from the meta language to
the object language (see Figure 3).
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4.2 Assimilation

The second stage in the pipeline is assimilation, i.e., the translation of the embedded
language fragments to their implementation in the meta language as described in Sec-
tion 2.2. The only difference is that assimilation now transforms a forest instead of
a tree. If the assimilation rules are compositional (i.e. the transformed fragments are
small) there is no interference between regular assimilation rules and ambiguities, that
is, ambiguities are preserved during assimilation. Thus, after assimilation, the abstract
syntax forest only contains meta language constructs and ambiguity nodes. For exam-
ple, the following code fragment shows the intermediate result after assimilation of the
example above to the Eclipse JDT Core DOM (again some details have been elided).

1> {| CompilationUnit cu_0 = _ast.newCompilationUnit(); ...

TypeDeclaration class_0 = _ast.newTypeDeclaration();

class_0.setName(_ast.newSimpleName("Foo"));

... | cu_0 |}

2> {| TypeDeclaration class_1 = _ast.newTypeDeclaration();

class_1.setName(_ast.newSimpleName("Foo"));

... |class_1 |}

3> {| List<BodyDeclaration> decs_0 = new ArrayList<BodyDeclaration>();

decs_0.add( ... );

... | decs_0 |}

4.3 Type-Based Disambiguation

In the final stage of processing the meta program, ambiguities are resolved. The disam-
biguation operates on an abstract syntax forest of the meta language without any traces
of the object language. Thus, the disambiguation phase does not have to be aware of
quotations and anti-quotations, or of their contents. The disambiguation is implemented
as an extension of a type checker for the meta language that analyses the abstract syntax
forest and eliminates the alternatives that are not type correct. The algorithm for disam-
biguation is sketched in Figure 5. From within the type checker the disambiguate
function is invoked for every node node in the abstract syntax forest after typing it.

The disambiguate function distinguishes three cases, which we discuss in reverse
order. If the node node is not ambiguous it is just returned. If one of the sub-nodes of
node is ambiguous, its alternatives are lifted to the current node by lift-ambiguity.
Its definition states that if n is equal to some ambiguity node within a context c[.],
the context is distributed over the ambiguity (We give an example of distribution of an
assignment shortly). Finally, if the node node is directly ambiguous or after lifting the
ambiguities from its sub-nodes, the resolve function is used to resolve the ambiguity.

The resolve function takes an ambiguous node and removes from it all alternatives
that are not type correct. This may result in an empty set of alternatives (#node’ ==
0), which indicates a type error, a singleton set (#node’ == 1), which indicates that the
ambiguity is solved, or a set with more than one alternative (#node’ > 1). In the latter
case, if the ambiguity involves a statement or declaration no more context information
can be used to select the intended alternative, hence it is reported as an ambiguity error.
Otherwise, in the case of an expression, the ambiguity is allowed to be lifted into its
parent level, where it may be resolved due to context information.
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disambiguate(node ) =

if node is ambiguous then
return resolve(node )

else if node has ambiguous child then
return resolve(lift-ambiguity(node ))

else return node

resolve(node ) =

node’ := remove from node all alternatives which are not type correct

if #node’ == 0 then report type error

else if #node’ == 1 then return node’

else if #node’ > 1 then
if node’ contains a meta statement or declaration then
report ambiguity error

else return node’

lift-ambiguity(node ) =

if node == c [1> node1 2> node2 ... j> nodej ] then
return 1> c [node1 ] 2> c [node2 ] ... j> c [nodej ]

Fig. 5. Algorithm for type-based resolution of ambiguities

To illustrate the lifting and elimination of ambiguities, consider the ambiguity be-
tween the compilation unit, type declaration and list of body declarations in the assimi-
lated example. If this ambiguous expression occurs in an assignment, i.e.

dec = 1> CompUnit 2> TypeDec 3> List<BodyDec>

then the ambiguity will be lifted out of the assignment (for brevity, the actual expression
has been replaced by its type). This will result in a new ambiguity node with three
alternatives for this assignment, i.e.

1> dec = CompUnit 2> dec = TypeDec 3> dec = List<BodyDec>

Depending on the type of the variable dec , two of these assignments will most likely
be eliminated. For example, if the variable has type TypeDec, then the CompUnit and
List<BodyDec> assignments will be eliminated, since these assignments cannot be
typed. Note that this mechanism requires variables to be declared with a reasonably
specific type. That is, if the variable dec has type Object then all the assignments can
be typed and an ambiguity error will be reported.

Similarly, ambiguities are lifted out of method invocations: For example,

f(1> CompUnit 2> TypeDec 3> List<BodyDec>)

is lifted to

1> f(CompUnit) 2> f(TypeDec) 3> f(List<BodyDec>)

If f is just defined for one of these types, then just one of the invocations can be typed.
Thus, the other invocations will be eliminated. On the other hand, if f is overloaded
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or defined for a supertype of two or more of the types, then the ambiguity will be
preserved. It might be eliminated later, if the result types of f are different. If this is not
the case, then an ambiguity will be reported, similar to an ambiguous method invocation
in plain Java.

4.4 Explicit Disambiguation

For cases that are inherently ambiguous or just unclear, explicit disambiguation can be
used. Most systems introduce special symbols for this purpose, but due to our integra-
tion in the type checker one may use casting to ensure the type checker that some-
thing should a have certain type. The implementation of the explicit disambiguation
comes for free, since incorrect casts cannot be type checked. Thus, these alternatives
will be eliminated. For example, in our running example a cast to a compilation unit
(CompilationUnit) |[ public class Foo {} ]| will cause the alternatives to be
eliminated. In this way, any object language construct can be disambiguated, not only
the ones that the developer of the embedding happens to support.

However, there is a situation where not even casting will help. Our method requires
that the underlying structured representation of the object language is typed and that
distinct syntactical categories in the object language have a different type in this repre-
sentation. For example, if the structured representation is a universal data format such
as XML or ATerms, then our method will not be able to disambiguate the concrete ob-
ject syntax, since the different syntactical categories are not represented by different
types in the meta language. Fortunately, a sufficiently typed representation is preferable
anyway, since it would otherwise be possible to construct invalid abstract syntax trees.
Note that similar problems occur in a dynamically typed languages. As mentioned in
the introduction, our method is most suitable for statically typed languages.

5 Experience

To exercise the general applicability of our method to the embedding of different object
languages, we implemented two large embeddings. Small fragments of the first appli-
cation have already been presented in several examples: the embedding of Java in Java
using assimilation to the Eclipse JDT Core DOM. We call this embedding JavaJava. The
second application embeds AspectJ in Java and mimics the object language specific im-
plementation of MAJ. Although AspectJ is a superset of Java, these two applications are
quite different, since the embedding of AspectJ assimilates to the MAJ abstract syntax
tree. The applications substantiate our claims, but also give some interesting insights in
the limitations and the relation to object language specific implementations.

JavaJava. The implementation of JavaJava consists of a syntax definition (small frag-
ment presented in Figure 3) and a set of assimilation rules that translate Java 5.0 abstract
syntax tree constructs to the Eclipse JDT Core DOM [15] (examples have been shown
in Section 2.2).

The mapping from the syntax definition to the Eclipse DOM is natural, since both
are based on the Java Language Specification. Furthermore, the DOM is well-designed
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and uses distinct classes to represent distinct syntactical categories. Because of this, our
type-based disambiguation works quite well for JavaJava.

An interesting issue is the types of containers used in the DOM. The DOM uses un-
parameterized standard Java collections, as opposed to arrays, or type specific contain-
ers. So although the DOM itself can represent parameterized types in an object program,
the DOM implementation itself does not use parameterized types. Our disambiguating
type checker would benefit from parameterized collections, by harvesting the additional
type information about the elements of a collection (e.g. List<Expression>). Fortu-
nately, parameterized types and unparameterized types can be freely mixed, i.e. we can
still use parameterized types in meta programs. However, we prefer a more precisely
typed DOM, such that unchecked conversions or explicit casts can be avoided. Note
that this shows that a sufficiently typed representation is important for our method.

Meta-AspectJ. We developed the embedding of AspectJ in Java to compare our gener-
alized and staged disambiguation solution to a specific implementation, namely MAJ.
For this, we also had to study the behaviour of MAJ in more detail. Our syntactical em-
bedding is based on a modular AspectJ and Java syntax definition in SDF and exactly
mimics the syntax of MAJ. The syntactical embedding was very easy to implement
using SDF: basically we just have to combine the existing syntax definitions in a new
module. The syntax definition also supports the explicit disambiguations of MAJ, but
these are not really necessary, since casts can be used in our embedding method. For
the underlying structured representation we use the MAJ AST.

We learned that our generalized implementation of disambiguation in a separate
type checker has the advantage that it is much easier to implement support for more ad-
vanced Java constructs. For example, our implementation fully supports disambiguation
of quotations in method invocations by performing complete method overload resolu-
tion, which MAJ does not. So, given the following overloaded method declarations:

Stmt foo(CompilationUnit cu) { ... }

JavaExpr foo(ClassDec dec) { ... }

our implementation can disambiguate invocations of the foo method that take quoted
AspectJ code as an argument:

Stmt stmt = foo(‘[ class MyClass {} ]);

JavaExpr expr = foo(‘[ class MyClass {} ]);

On the other hand, MAJ as an object language specific implementation provides some
additional, object language specific, functionality that is not available in our general-
ized implementation. For instance, MAJ supports the conversion of Java (meta-level)
values to AspectJ (object-level) expressions. For example, an array can be used as a
variable initializer without converting it to the object-level by hand. Unfortunately, this
conversion cannot be handled in a generic way, since it is not applicable to all object
languages. However, for the specific embedding of Java in Java this could be added to
the type checker (see future work).

We have not implemented the infer feature of MAJ, which supports inferring the
type of a local variable declaration. Hence, the types of all variables should be de-
clared in our implementation. The infer feature itself is not hard to implement, but we
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would have to introduce heuristics to disambiguate ambiguous expressions, since no
type is declared for the variable. MAJ applies such heuristics, for example by choosing
a ClassDec if the type of the variable is infer, even if a MajCompilationUnitwould
also be possible. To work around incorrect choices, similar abstract syntax tree classes
implement a common interface. For example, ClassDec and MajCompilationUnit
implement the common interface CompUnit. This is a nice example of the problem
mentioned in Section 4.4: distinct syntactical categories share a common interface.
Thus, the declaration CompUnit c = ‘[class Foo {}]; will result in an ambigu-
ity error in our approach.

6 Discussion

Previous Work. We use the modular syntax definition formalism SDF [19], with inte-
grated lexical and context-free syntax and declarative syntactical disambiguation con-
structs. It is implemented using scannerless generalized LR parsing [19,10]. SDF is
developed in the context of the ASF+SDF Meta-Environment [14], but is used in sev-
eral other projects such as ELAN [9]. Our Stratego/XT [21] program transformation
system uses SDF for parsing, in particular of meta programs with concrete object syn-
tax [20]. Stratego is not statically type checked. Therefore, it employs quoting with
explicit typing, where necessary.

The ASF+SDF Meta-Environment is a meta programming system based on term
rewriting. It uses grammar specialization to resolve ambiguities caused by object lan-
guage fragments. To let the type system of ASF+SDF deal with parametric polymor-
phism, in [18] a separate disambiguating type checker replaces the grammar generation
scheme. This solution instantiates the framework described in this paper for ASF+SDF.

Section 2 describes previous work on hosting arbitrary object languages in any host
language [11], which generalizes the approach taken for Stratego [20] to any general
purpose programming language. In the examples of [11], Java was used as the host
language and we also embedded Java as the object language in Java. However, ex-
plicit disambiguation was required and an untyped underlying representation was used.
The contribution of generalized type-based disambiguation, as presented in the cur-
rent paper, is the introduction of a disambiguating type checker to remove the need for
explicit typing. Moreover, the implementation is generic in the embedded object lan-
guage. Thus, we obtain a similar notation as found in ASF+SDF, but can handle more
than simple first order type systems, and use no disambiguation heuristics.

Related Work. The subject of embedding the syntax of object languages into host
languages has a long history. The following discussion is meant to position our work
more precisely. Early work on syntactic embeddings revolves around the concept of
syntax macros [17]. They allow a user to dynamically extend a general purpose pro-
gramming language with syntactic abstractions. These abstractions are defined in pro-
grams themselves. Implementations of this idea have been limited to certain subclasses
of grammars, like LL(1) and LALR, as an argument of a fixed macro invocation syntax.
Thus, these approaches can not be transferred to our setting of hosting arbitrary object
languages.
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The work of Aasa [1] in ML is strongly related to our setting. By merging the pars-
ing and type checking phases for ML, and using a generalized parsing algorithm, this
system can cope with arbitrary context-free object languages. It uses a fixed set of quo-
tation and anti-quotation symbols that allow explicit typing to let the user disambiguate
in case the type system can not decide. As opposed to this solution, our approach com-
pletely disentangles parsing from type checking, and allows user defined quotation and
anti-quotation symbols.

DMS [5] and TXL [12] are specialized meta programming environments similar to
ASF+SDF and Stratego/XT. In DMS the user can define AST patterns using concrete
syntax, which are quoted and guarded by explicit type declarations. TXL has an in-
tuitive syntax with keywords that limit the scope of object code fragments, instead of
quoting symbols that surround every code fragment. Each code fragment, and each first
occurrence of a meta variable is explicitly annotated by a type in TXL.

The Jakarta Tool Suite [4] and the Java Syntax Extender [2] are Java based solutions
for meta programming and extensible syntax. Our framework, consisting of scannerless
generalized-LR parsing and type-based disambiguation, is more general than the pars-
ing techniques used by these systems. JTS uses explicit quotation and explicit typing,
which can be avoided with our framework. Maya [3] uses extensible LALR for pro-
viding extensible syntax. Multi-dispatch is used to allow multiple implementations of
new syntax, where the alternatives have access to the types of the arguments. Unfortu-
nately, a separate scanner and LALR limit the syntactical flexibility. MAJ [22] obtains
type-based disambiguation for the embedding AspectJ in Java, using context-sensitive
parsing. We contribute by disentangling the parser from the type checker, resulting in
an architecture that can handle any context-free object language. Our architecture stays
closer to the original Java type system, in order to limit unexpected behavior.

Camlp4 [13] is a preprocessor for OCaml for the implementation of syntax exten-
sions using an extensible top down recursive descent parser. New language constructs
are translated to OCaml code by syntax expanders that are associated to the syntax
extensions. Camlp4 provides quotations and anti-quotations to allow the generation of
OCaml code using concrete syntax. The contents of quotations is passed as a string to
a quotation expander, which can then process the string in arbitrary ways. A default
quotation expander can be defined, but all other quotations have to be typed explictly.
The same holds for syntactically ambiguous anti-quotations. As opposed to Maya, the
syntax and quotation expanders can not use type information to decide what code to
produce.

The method of disambiguation we use is an instance of a more general language de-
sign pattern called “disambiguation filters” [16]. Although there are lightweight meth-
ods for filtering ambiguities that are very close to the syntactic level [10], disambigua-
tion filters can generally not be expressed using context-free parsing. For example, any
parser for the C language will use an extra symbol table to disambiguate C programs.
Either more computational power is merged in parsers, or separate disambiguation fil-
ters are implemented on sets of parse forests [7]. We prefer the latter approach, because
it untangles parsing from abstract syntax tree processing.

The problem of disambiguating embedded object languages is different from dis-
ambiguation issues in type checkers, such as resolution of overloaded methods and
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operators. First, disambiguation in type checkers can be done locally, based on the
types of the arguments of the expression. Hence, lifting of the ambiguity, an essen-
tial part of our algorithm, is not used in such type checkers. Second, in our approach
large fragments of the program can be ambiguous and are represented in completely
different ways. For typical ambiguities in programming languages, such as overloaded
operators, the alternatives can conveniently be expressed in a single tree.

Future Work. We are considering to widen the scope of the framework in two di-
rections. Firstly, we would like to experiment with languages that have other kinds of
type systems, such as languages with type inferencing and languages with union types.
Secondly, the assimilation of an embedded domain-specific language (beyond object
languages) often requires more complex transformations of the meta program and the
object fragments. Applying type-based disambiguation after assimilation is a problem
in this case. Extending the type checker of the host language with object language spe-
cific functionality is one of the options to investigate for this purpose.

7 Conclusion

We have extended an existing generic architecture for implementing concrete object
syntax. The application of a disambiguating type checker, that is separate from a gener-
alized parser, is key for providing single quotation and anti-quotation operators without
explicit typing. This approach differs from other approaches due to this separation of
concerns, which results in object language independence. It can still handle complex
configurations such as Java embedded in Java. We have validated our design by means
of two different realistic embeddings of object languages into Java, and comparing the
results to existing systems for meta programming. The instances of our framework con-
sist of meta programming languages that use manifest typing (i.e. Java), combined with
object languages that have a well-typed meta representation (e.g., Eclipse JDT Core
DOM). We explicitly do not provide heuristics to automate or infer types, such that
the architecture’s behavior remains fully declarative and is guaranteed to be compatible
with the type system of the meta programming language.
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Abstract. Being able to define and use different aspect languages, in-
cluding domain-specific aspect languages, to cleanly modularize concerns
of a software system represents a valuable perspective. However, combin-
ing existing tools leads to unpredictable results, and proposals for exper-
imentation with and integration of aspect languages mostly fail to deal
with composition satisfactorily and to provide convenient abstractions
to implement new aspect languages. This paper exposes the architecture
of a versatile AOP kernel and its Java implementation, Reflex. On top
of basic facilities for behavioral and structural transformation, Reflex
provides composition handling, including detection of interactions, and
language support via a lightweight plugin architecture. We present these
facilities and illustrate composition of aspects written in different aspect
languages.

1 Introduction

The existing variety of toolkits and proposals for Aspect-Oriented Programming
(AOP) [13] illustrate the fact that the design space of AOP is still under explo-
ration. Low-level toolkits (e.g. [8]) can be used to explore the design space and
create specific AOP systems, but they require redeveloping an ad hoc software
layer to bridge the gap with a proper high-level interface, and they do not ad-
dress the issue of aspect language design. In this respect, there are proposals of
both general-purpose and domain-specific aspect languages. Domain specificity
presents many benefits: declarative representation, simpler analysis and reason-
ing, domain-level error checking, and optimizations [10]. Several domain-specific
aspect languages were indeed proposed in the “early” ages of AOP [14, 18, 20],
and, after a focus on general-purpose aspect languages, the interest in domain-
specific aspect languages has been revived [1, 5, 21, 26].

When several aspects are handled in the same piece of software, it is attractive
to be able to combine several AO approaches, for instance various domain-specific
aspect languages [22]. Yet, combining AO approaches is hardly feasible with to-
day’s tools, since the tools are not meant to be compatible with each other: each
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tool eventually affects the base code directly. This tends to jeopardize correctness
when different aspects implemented with different tools interact.

Since most approaches rely upon common implementation techniques, we
propose to provide a versatile AOP kernel, which supports core semantics,
through proper structural and behavioral models. Designers of aspect languages
can thus experiment more comfortably and rapidly with an AOP kernel as a
back-end, focusing on the best ways for programmers to express aspects, may
they be domain specific or generic. The crucial role of such a kernel is that of a
mediator between different coexisting approaches: detecting interactions between
aspects and providing expressive means for their resolution.

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

(Section 4)

(Section 5)

(Section 6)

Fig. 1. Architecture of an AOP kernel

This paper illustrates the evolution of Reflex, originally a system for partial
behavioral reflection in Java [25], into an AOP kernel. This experiment gives a
first picture of what an AOP kernel may look like and of its benefits. Instead of
focusing the discussion on a specific closed proposal, it raises, in a practical man-
ner, the issue of determining what the building blocks of AOP are and how they
can be combined in a flexible and manageable way. The proposed architecture of
an AOP kernel consists of three layers (Fig. 1): a transformation layer in charge
of basic weaving, supporting both structural and behavioral modifications of the
base program; a composition layer, for detection and resolution of interactions;
a language layer, for modular definition of aspect languages.

The following section overviews related work, further highlighting the moti-
vation of this work. Section 3 exposes the running example of this paper. We
then present the different layers of our AOP kernel following Fig. 1. Section 4
illustrates the core of Reflex as a reflective Java extension, explaining how as-
pects are mapped to this transformation layer. Section 5 discusses support for
aspect composition. Section 6 describes a plugin architecture for modular aspect
language support, explaining how plugins are used to bridge the gap between an
aspect language and the core reflective infrastructure. Section 7 concludes.

2 Related Work

We now review several proposals related either to multi-language AOP or to
extensible aspect languages.

XAspects [22] is a plugin mechanism for domain-specific aspect languages,
based on AspectJ [15]. An aspect language is implemented as a plugin generating
AspectJ code, while the global compilation process is managed by the XAspects
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compiler. XAspects suffers a number of limitations: the compilation process is
particularly heavyweight as it requires two full run of the AspectJ compiler; it is
unclear whether controlling the visibility of structural changes made to base code
is at all feasible; detection and resolution of aspect interactions is not tackled.
More importantly, the XAspects compiler provides plugins with the plain binary
representation of a program: no higher-level intermediate abstractions are made
available to implementors of aspect languages.

Furthermore, although using AspectJ as both the transformation and compo-
sition layer of an AOP kernel (Fig. 1) is interesting because of the direct support
for expressing crosscutting abstractions, there are several reasons that limit the
validity of AspectJ as an AOP kernel. AspectJ is a mature, production-quality
aspect language whose practitioner perspective results in limited versatility. In
particular, AspectJ is poorly expressive with respect to aspect composition, as
will be discussed later, and does not address detection of aspect interactions. We
rather concur with Douence et al. that automatic detection of aspect interactions
should be provided [11].

Brichau et al. [4] present an approach to building composable aspect-specific
languages with logic metaprogramming. Aspect-specific languages are uniformly
defined and composed using the same Prolog-like base language: an aspect lan-
guage is implemented as a set of logic rules in a logic module. This approach
provides means not only to compose aspects written in different aspect lan-
guages, but also to actually compose languages themselves. A drawback of this
approach is that aspect languages do not really shield the programmer from the
inherent power of the logic metaprogramming approach: no aspect-specific syn-
tax is provided, aspects are defined in the same logic framework as languages.
Finally, this work does not address detection of aspect interactions.

The Concern Manipulation Environment (CME) developed at IBM [9] is
a large-scale project aiming to support aspect-oriented software development at
any level (analysis, design, implementation, etc.), with respect to any computing
environment (programs in various languages, UML diagrams, etc.). The moti-
vation for developing a flexible infrastructure with advanced building blocks to
experiment with various AOSD approaches is definitely shared with our work.
However, the wide variety of target formats has a serious impact on the con-
cern assembly language: assembly directives are usually specified open-endedly
as strings. We rather aim at a higher-level conceptual model to reason about
transformation. Finally, detection of aspect interactions is not considered.

Josh [7] is an open AspectJ-like language, which makes it possible to exper-
iment with new means of describing pointcuts and advices. Due to its inlining-
based implementation of aspect advices in base code, Josh lacks convenient sup-
port for stateful aspects and per-instance aspects. Also, issues related to aspect
composition are not addressed.

Finally, abc, the AspectBench Compiler is an extensible framework for exper-
imenting with new language features in AspectJ [2]. The spirit of abc is similar
to Josh, but since abc is a compiler, not a load-time tool, it provides a powerful
framework for static analysis. By sticking to AspectJ as the basic language, abc
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presents the inconvenience that both the complexity of AspectJ and that of the
abc infrastructure (basically a full compiler infrastructure) may be an overkill
for simple extensions. As of today, the proposal does not explicitly address the
possibility of mixing different aspect languages, and aspect composition is still
limited to what AspectJ supports.

This work aims to address the limitations highlighted above: there is a need
for a versatile kernel for multi-language AOP providing high-level abstractions to
implement new aspect languages, and supporting both detection and resolution
of interactions between aspects written in different languages.

3 Running Example

The running example of this paper is a multi-threaded program manipulating a
buffer, to which three aspects expressed in different languages are applied. The
Buffer class defines the put and get methods of an unsynchronized buffer.

First, the buffer is made thread safe using SOM (Sequential Object Mon-
itors) [5], which makes it possible to code separately the scheduling strategy
of the buffer. This strategy is implemented in the BufferScheduler (discussed
in [5]). A small domain-specific aspect language (DSAL) is used to specify that
a buffer instance should be scheduled by an instance of this scheduler, as follows:
schedule: Buffer with: BufferScheduler;

The second aspect is implemented using a general-purpose aspect language,
AspectJ [15]. It implements an argument checking policy: validation behavior
can be attached to join point arguments, either producing exceptions in case
of invalid arguments, or simply skipping the invalid call. In our example, we
use an argument checker aspect for the buffer, BufferArgChecker, which skips
invocations of put with a null parameter.

The last aspect is used to attach a unique identifier (UID) to objects. This
basically consists in adding a private field to hold the identifier, properly initial-
ized, as well as a getter method and the associated interface. It is implemented
directly with Reflex. This aspect is provided as a library, with a simple entry
point for configuration. To apply it to the buffer, a configuration class1 is used:

public class BufferUIDConfig {

public static void initReflex(){

UID.applyTo("Buffer");

} }

Now the question is: what happens when all three aspects are applied to
the same base program, all affecting the same Buffer class? Are calls to the
getUID method synchronized via SOM, although this is not necessary since it is
inherently thread safe? Are rejected calls synchronized as well, or can we make
sure that only accepted calls to the buffer are synchronized and scheduled?

1 Configuration classes are the basic mechanism provided to configure Reflex at start
up: their initReflex methods are called prior to the execution of the application.
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Proposal. Our proposal consists in using an AOP kernel on top of which the
different aspect languages are implemented, and having this system report on
interactions and offer expressive means for the specification of their resolution.
With both SOM and AspectJ available on top of Reflex, applying the three
aspects above is done as follows:

java reflex.Run -som buffer.som -aspectj BufferArgChecker.aj

-configClass BufferUIDConfig Main

When loading the class Buffer, Reflex detects the interactions and issues
warnings, such as:

[WARNING] don’t know how to compose SOM and BufferArgChecker.

[WARNING] composing arbitrarily (sequence).

The programmer is informed of the unspecified interaction between SOM and
ArgChecker. The desired semantics here is to avoid scheduling a request if it is
to be rejected (this is correct since validating arguments is thread safe). This can
be specified by declaring a composition rule stating a nesting relation between
the two aspects. This declaration can be done in a configuration class:

public class CompConfig {

public static void initReflex(){

API.rules().add(new Wrap("BufferArgChecker", "SOM"));

} }

As we will see in Sect. 5, Wrap is a composition operator that has the same
semantics as precedence in AspectJ. The wrapped aspect (SOM) is only in-
voked if proceed is invoked by the wrapper aspect (BufferArgChecker). If Buffer-
ArgChecker rejects a call, it returns without calling proceed; hence SOM does
not apply, meaning that a reification of the call as a request put in a pending
queue until scheduled is avoided. Running Reflex with this composition specifi-
cation is done by adding CompConfig to the list of configuration classes.

4 Overview of Reflex

The analysis of AOP features that led us to the proposal of AOP kernels [24]
is concerned with asymmetric approaches to AOP, whereby an aspect basically
consists of a cut and an action: a cut determines where an aspect applies, while
an action specifies the effect of the aspect. Depending on the aspect language,
specification of the binding between a cut and an action may not be decoupled:
in traditional reflective systems, the binding between a hook in base code and
a metaobject is usually standardized and not customizable, while in a language
like AspectJ, it is tied to the action (advice definition).

Reflex relies on the notion of an explicit link binding a cut to an action. As
a matter of fact, most practical AOP languages, like AspectJ, make it possible
to define aspects as modular units comprising more than one pair cut-action.
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In Reflex this corresponds to different links, with one action bound to each cut.
Furthermore, AspectJ supports higher-order pointcut designators, like cflow. In
Reflex, the implementation of such an aspect requires an extra link to expose the
control flow information. There is therefore an abstraction gap between aspects
and links: aspects are typically implemented by several links. This abstraction
gap is discussed in more details and illustrated in Sect. 6.

Links are a mid-level abstraction, in between high-level aspects and low-
level code transformation. This section overviews and illustrates how such an
abstraction is provided and used in Reflex.

4.1 Types of Links

Cuts and actions can be either structural or behavioral. For instance, the UID
aspect consists of a selection of structural elements, i.e. a structural cut (in that
case, a set of classes), and a modification of a structural element, i.e. a structural
action (adding several members to a class). Conversely, SOM relies on a selection
of behavioral elements, i.e. a behavioral cut (method invocations), to which a
behavioral action is associated (reifying calls as requests to be scheduled).

Our Java implementation of the model underlying Reflex is based on bytecode
transformation using Javassist [8]. Due to the limitations of the Java standard
environment with respect to modifying class definitions, we have to distinguish
between two types of links. A structural link, termed S-link, binds a structural
cut to an action, which can be either structural or behavioral. An S-link is
applied, i.e. its associated action is performed, at load time. A behavioral link,
called B-link, binds a behavioral cut to an action. A B-link applies at runtime.

We now illustrate structural links (Sect. 4.2) with the implementation of UID,
and then show behavioral links (Sect. 4.3) with the implementation of SOM and
ArgChecker. Finally, in Sect. 4.4, we discuss how Reflex operates at load time
with respect to the different types of links.

4.2 Structural Links

A structural link binds a structural cut to some action (either structural or
behavioral). In Reflex, a structural cut is a class set, defined intentionally by a
class selector. For instance, the following class selector defines a cut consisting
of the Buffer class only:

bufferSelector = new ClassSelector(){

boolean accept(RClass aClass){

return aClass.getName().equals("Buffer");

}};

A class selector can base its decision on any introspectable characteristics
of a reified class object, down to the constituents of method bodies (expressions
in a method body are reified if needed). The object model of Reflex wraps and
extends that of Javassist: RClass objects give access to their RFields, RMethods
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and RConstructors (all RMembers); both methods and fields give access to their
bodies as a sequence of RExpr objects.

An action bound to a structural cut is implemented in a load-time metaobject,
instance of a class implementing the LTMetaobject interface. For instance, a
UIDAdder is a metaobject that applies our UID aspect to a given class2:

public class UIDAdder implements LTMetaobject {

static final String UID_FIELD = "private long _uid;";

static final String UID_GET = "public long getUID(){return _uid;}";

static final RClass UID_INTERFACE =

API.getRClass("reflex.lib.uid.UIDObject");

void handleClass(RClass aRClass) {

aRClass.addField(MemberFactory.newField(UID_FIELD, aRClass));

aRClass.addMethod(MemberFactory.newMethod(UID_GET, aRClass));

aRClass.addInterface(UID_INTERFACE);

} }

Since a load-time metaobject is part of the class loading process, it is a
singleton created when the link is defined. A structural link is represented by
an SLink object. For instance, the following excerpt defines a uidLink, which
binds the previous bufferSelector to a UIAdder object:

SLink uidLink =

API.links().addSLink(bufferSelector, new UIAdder(), "UID");

Configuration of the UID aspect (Sect. 3) is implemented as follows: the UID
class holds a single S-link whose class selector is progressively updated by calls
to applyTo.

4.3 Behavioral Links

This section is both a summary and an update of the model presented in [25].
This model is based on a standard model of behavioral reflection, where hooks
are inserted in a program to delegate control to a metaobject at appropriate
places. The particularity of our model lies in the possibility to flexibly group
hooks into hooksets, and in having explicit and configurable links binding hook-
sets to metaobjects. A hookset corresponds to a set of program points, or static
cut (pointcut shadow in AspectJ terminology [19]), and the metaobject corre-
sponds to the action to be performed at these program points (advice in AspectJ
terminology). The link is characterized by several attributes; for instance an acti-
vation condition may be attached to the link in order to avoid reification when a
dynamically-evaluated condition is false. An exhaustive discussion of the mecha-
nisms provided for specifying the dynamic part of a behavioral cut (e.g. residues)
can be found in [23].

2 The UID code could have been defined in a real class rather than with plain strings.
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Defining a B-link. The BufferArgChecker aspect is defined in AspectJ3:

public aspect BufferArgChecker {

pointcut checked(): execution(Buffer.put(..));

around(): checked() { /* check args and possibly skip execution */ }

}

This aspect is translated into the following Reflex API calls by the AspectJ
plugin (Sect. 6):

(1) Hookset putBuffer = new PrimitiveHookset(

MsgReceive.class, new NameCS("Buffer"), new NameOS("put"));

(2) BLink buffCheck = API.links().addBLink("BufferArgChecker",

putBuffer, new MODefinition.Class(BufferArgChecker.class));

(3) buffCheck.setControl(Control.AROUND);

(4) buffCheck.setScope(Scope.GLOBAL);

First, the cut of the aspect, i.e. executions of put on a Buffer is defined
as a hookset (1). A primitive hookset is defined by first giving an operation
class, e.g. MsgReceive. An operation class represents a kind of operation we
are interested in: this corresponds to a join point kind in AspectJ. The set of
operations in Reflex is open, meaning the core of Reflex does not support any
operation by itself, and can be extended [25]. The definition of the hookset then
requires a class selector, which we already presented in the previous section
(NameCS is a utility that selects classes based on their names); and an operation
selector, which is a predicate selecting operation occurrences (NameOS is a utility
also doing name-based selection) in program text. Primitive hooksets can be
composed in order to obtain more complex hooksets.

The B-link is then defined by associating this hookset to the appropriate
metaobject (2). Metaobjects can be obtained either as new instances of a class
of metaobjects, or from a factory. BufferArgChecker is a metaobject class im-
plementing the desired validation behavior. At this stage the link is defined and
operational. Still, we specify some of its attributes: the control attribute is set
to around (3), and since a single instance of the metaobject suffices, the scope
of the link is set to global (4).

As we have just seen, a B-link is represented at load time by a BLink object.
Because of our implementation approach, a B-link is set up at load time and
applied at runtime. An RTLink object represents a B-link during execution: it
makes it possible to access and change metaobjects and activation conditions
associated to a link at the appropriate level (object, class, or link). An RTLink
object hence provides a link-specific runtime API for localized metaprogram-
ming. There is a one-to-one relation between a BLink and an RTLink4.
3 For the sake of clarity, the advice accesses arguments via the thisJoinPoint object

rather than via context exposure. Context exposure is briefly mentioned later.
4 Due to implementation restrictions, the causal connection between both represen-

tations is not fully established: runtime changes to the definition of a link will not
affect already-loaded classes (some changes are prohibited to avoid inconsistencies).
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SOM is implemented similarly: the hookset for SOM consists of the entry
points of the public methods of the classes to synchronize. The metaobject
(scheduler), is instance-specific, hence the link has scope object. Furthermore,
since a SOM scheduler needs to act both before and after a method invocation,
the control is set to before-after.

Context exposure. The particularity of the implementation of SOM is that
it makes use of the facilities of Reflex to specify the protocol between a cut
and an associated action. This protocol is implemented as a metaobject protocol
(MOP). If no custom protocol is specified, the default MOP for a given operation
is used [25]. This is usually not efficient because it means reifying information
that may not be needed at the metalevel.

In SOM, the scheduler gets control before method invocations via invocation
of its enter method, which receives the name of the invoked method and its
arguments, and after via its exit method, which does not take any parame-
ter. Both enter and exit are defined in the som.Scheduler base class. This
specialized MOP is specified as follows:

somLink.setMOCall(Control.BEFORE, "som.Scheduler", "enter",

new Parameter[]{ nameParam, argsParam });

somLink.setMOCall(Control.AFTER, "som.Scheduler", "exit");

The description of parameter generation (such as nameParam and argsParam)
is open and relies on the extended Java language supported by the Javassist
compiler, which is both expressive and efficient [8].

Apart from making it possible to program metaobjects without using overly
generic protocols, MOP specialization represents a great source of performance
improvement. The good performance and scalability of SOM, demonstrated
in [5], was obtained thanks to this mechanism. A specialized MOP can be spec-
ified at the global level of operations like in traditional reflective systems where
the reification of an operation occurrence is standardized and common. But it
can also be specified more locally, at the link level, and even at the hookset level.
This makes it possible to specialize context exposure at a fine-grained level.

4.4 Process Overview

In order not to modify the standard Java execution environment, behavioral
links are set up at load time: during the B-link setup phase (BLS), hooks, along
with necessary infrastructure, are installed in base code at the places indicated
by the hookset definitions. Conversely, structural links are applied at load time.
Since they can influence B-link setup, for instance by inserting a method whose
execution is subject to a behavioral cut, the S-link application phase (SLA) is
carried out before the BLS phase.

This two-phase process is illustrated in Fig. 2. Both phases follow a similar
scheme: when a class is loaded, a selection step (a diamond in Fig. 2) determines
the set of links that potentially apply. In SLA, links that select the loaded class
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Fig. 2. Reflex operates in two phases at load time; (1) S-link application (SLA); (2)
B-link setup (BLS)

are determined, while in BLS, selection goes down to operation occurrences
in the class definition. If more than one link potentially apply, a detection-
resolution-composition step (DRC in Fig. 2) occurs. Resolution is driven by
user specifications; the kernel reports any unresolved interaction. Then links are
appropriately composed. DRC is presented in Sect. 5. Finally, S-links are applied
(in SLA), and B-links are set up (in BLS) after generating hook code.

5 Link Composition

Aspect composition is a challenging and multi-faceted issue, which is inherently
impossible to resolve automatically. Five dimensions related to aspect compo-
sition have been identified in the literature, although we are not aware of any
proposal addressing them all:

– implicit cut: an aspect that should apply whenever another applies [4, 11];
– mutual exclusion: an aspect that should not be applied whenever another

applies [4, 11, 16];
– aspects of aspects: an aspect that applies onto another aspect [11];
– visibility of aspectual changes: when an aspect performs structural changes,

their visibility to other aspects should be controllable [6];
– ordering and nesting of aspects: when several aspects apply at the same

program point, their order of application must be specified [4, 11, 27].

AspectJ does not provide any support for mutual exclusion and visibility
of aspectual changes, and is limited in terms of aspects of aspects and order-
ing/nesting of aspects. Conversely, Reflex provides initial support for these five
dimensions of aspect composition. We hereby only briefly discuss implicit cut,
aspects of aspects and visibility of aspectual changes, and pay more attention to
mutual exclusion and ordering/nesting of aspects (details can be found in [23]).

An implicit cut is obtained by defining a link whose cut is shared with another
link, and aspects of aspects are obtained by links whose cut affects the action
(metaobject) of another link.

During the transformation process presented in Sect. 4.4, both the applica-
tion of S-links and the setup of B-links effectively introspect and modify code
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raising the issue of whether these modifications should be visible to others. In
Reflex, a general-purpose collaboration protocol makes it possible to selectively
expose or see changes made by other links. By default, Reflex ensures that
structural changes made to a class are not visible to other links when they intro-
spect the class. This avoids unwanted conflation of extended and non-extended
functionalities, as discussed in the meta-helix architecture [6]. For our example,
the default behavior of Reflex ensures that SOM does not see the getUID method
added by the UID aspect, and hence this method is not subject to scheduling.

5.1 Interaction Detection

Brichauet al. [4], as well as AspectJ, only address means to specify composition,
while Klaeren et al. [16] focus on means to detect interactions. But, as argued
by Douence et al., both detection and resolution of aspect interactions are cru-
cial [11]. Thus we consider them as fundamental features of an AOP kernel.

Our approach follows a detection-resolution-composition (DRC) scheme [11].
The kernel ensures that interactions are detected, and notifies an interaction
listener upon underspecification. The default interaction listener simply issues
warning as shown in Sect. 3, but it is possible to use other listeners, e.g. for on-
the-fly resolution. The kernel provides expressive and extensible means to specify
the resolution of aspect interactions; from such specifications, it composes links
appropriately.

An aspect interaction occurs when several aspects affect the same program
point (execution or structure). This work is limited to a static approximation of
aspect interactions. Hence we may detect spurious interactions, i.e. that do not
occur at runtime. In the process illustrated in Fig. 2, selection steps determine
the subset of links that (potentially) apply. If more than one link applies, then
there is an interaction. For S-links, there is an interaction when a class being
loaded belongs to more than one class set; for B-links, there is an interaction
when an operation occurrence in program text belongs to more than one hookset.

In order to support mutual exclusion between aspects, Reflex provides link
interaction selectors. An interaction selector can be attached to a link, and will
be queried whenever the link is involved in an interaction, in order to determine
whether it actually applies or not, depending on the other links present in the
interaction. Resolving an interaction is hence carried out in two steps: 1) select-
ing, within the current interaction, the subset of links that should be applied,
and 2) ordering and nesting the links of the subset. In the following section,
we explain how this is supported in the case of B-links. The case of S-links is
simpler due to the fact that S-links do not have a control attribute; nesting does
not make sense.

5.2 Ordering and Nesting

The interaction between two before-after aspects can be resolved in two ways:
either one always applies prior to the other (both before and after), or one
“surrounds” the other [4, 11].
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These alternatives can be expressed using composition operators, seq and
wrap, dealing with sequencing and wrapping. Note that AspectJ only supports
wrapping. Considering aspects that can act around an execution point (like Ar-
gumentChecker in the example), the notion of aspect nesting as in AspectJ
appears: a nested advice is only executed if its parent around advice invokes
proceed. Around advices cannot be simply sequenced in AspectJ: they always
imply nesting, and hence their execution always depends on the upper-level
around advice [27].

In Reflex, link composition rules are specified using composition operators.
The rule seq(l1, l2) uses the seq operator to state that l1 must be applied be-
fore l2, both before and after the considered operation occurrence. The rule
wrap(l1, l2) means that l2 must be applied within l1, as clarified hereafter.

Kernel operators. User composition operators are defined in terms of lower-
level kernel operators not dealing with links but with link elements. A link ele-
ment is a pair (link, control), where control is one of the control attributes: for
instance, b1 (resp. a1) is the link element of l1 for before (resp. after) control.
There are two kernel operators, ord and nest which express respectively ordering
and nesting of link elements. nest only applies to around link elements: the rule
nest(r, e) means that the application of the around element r nests that of the
link element e. The place of the nesting is defined by the occurrences of proceed
within r. Sequencing and wrapping can hence be defined as follows:

seq(l1, l2) = ord(b1, b2), ord(r1, r2), ord(a1, a2)
wrap(l1, l2) = ord(b1, b2), ord(a2, a1), nest(r1, b1), nest(r1, r2), nest(r1, a2)

Composition operators. Reflex makes it possible to define a handful of user
operators for composition on top of the kernel operators. For instance, Seq and
Wrap are binary operators that implement the seq and wrap operators as defined
above:

class Wrap extends CompositionOperator {

void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(a(l2), a(l1));

nest(r(l1), b(l2)); nest(r(l1), r(l2)); nest(r(l1), a(l2));

} }

The methods b (before), r (around), a (after), ord, and nest are provided by
the CompositionOperator abstract class. The way user operators are defined in
terms of kernel operators is specified in the expand method.

Higher-level composition operators can also express mutual exclusion be-
tween links. For instance, in Event-based AOP, binary operators like fst (resp.
snd) are proposed, expressing that if the left child applies, then the right child
does not apply (resp. applies) [12]. fst can be implemented by specializing Seq,
using a link interaction selector stating that l2 does not apply if l1 does.

At the kernel level no language support is provided to define rules conve-
niently: they need to be manually instantiated, node by node (recall the example



A Versatile Kernel for Multi-language AOP 185

in Sect. 3). Language support for Reflex configuration (discussed in Sect. 6) can
be used to define languages dedicated to composition, or to define languages that
include syntactic support for composition. For instance, the notion of precedence
of the Reflex version of AspectJ is implemented with Wrap.

5.3 Hook Generation

When detecting link interactions, the composition algorithm of Reflex generates
a hook skeleton based on the specified composition rules. During this generation
Reflex issues warnings whenever composition is under-specified. Users are free
to ignore them and let Reflex arbitrarily compose the non-specified parts. The
hook skeleton is then used for driving the hook generation process. In order to
support nesting of aspects with proceed, Reflex adopts a strategy similar to
that of AspectJ, based on the generation of closures.

6 Plugin Architecture for Open Language Support

A versatile AOP kernel provides means to modularly define aspect languages,
either general-purpose or domain-specific, so that programmers can implement
aspects at the level of abstraction that most suits their needs. In Reflex, an
aspect language is implemented by a translator to kernel configuration, called a
plugin. A plugin takes as input an aspect program written in a given language
and outputs, either on-line or off-line, the adequate Reflex configuration: links,
metaobject classes, selectors, etc., together with calls to the kernel API. The
SOM DSAL and (a subset of) AspectJ are the two first aspect languages we
have developed for the Reflex AOP kernel5.

Bridging the Abstraction Gap. A Reflex plugin is typically expected to
bridge the abstraction gap between the aspect level and the kernel level. At the
kernel level, the main conceptual handle is the notion of links. Though making
it possible to abstract from low-level details, links are lower-level abstractions
than aspects. As a result, an aspect is typically implemented by several links.

This abstraction gap can be observed in different scenarios, for instance con-
sidering AspectJ support. First, an AspectJ aspect definition may include several
pointcuts and advices, plus inter-type declarations; each will be implemented by
(at least) one link. Second, the implementation of aspects with higher-order
pointcuts requires several links. For instance, if the ArgumentChecker aspect is
extended with a control flow restriction so that nested calls to checked calls are
not checked (using !cflowbelow(p)), two B-links will be used: the advice link
for binding the validation behavior, and the cflow link for exposing control flow
information of the nested pointcut p. The cflow link is a before-after link using
a simple counter (increased on before, decreased on after). The restriction that

5 All the code (including plugins and the running example) can be obtained from:
http://reflex.dcc.uchile.cl.
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SP AJP

BufferUID

Config
CompConfig

buffer.som BufferArgChecker.aj

SOM BAC

som adv cfl
wrap(adv,cfl)

wrap(BAC,SOM)
uid

KERNEL

B-LINKS S-LINKSRULES

aspects

plugins

linksets

links & rules

Fig. 3. The running example with the different aspects and their mapping in the Reflex
AOP kernel

the around advice only applies when not below the control flow of an already-
checked call is implemented by adding an activation condition to the advice link
that checks the value of the counter.

The major issue with this abstraction gap is related to composition. Compo-
sition of links related to the same pointcut-advice should be addressed: in the
case of control flow above, depending on the order in which the two links are
composed, one either obtains the semantics of the cflow pointcut designator
(first cflow link, then advice link), or that of cflowbelow (first advice link, then
cflow link).

Links related to the same aspect may also need to be composed. For this
issue, AspectJ adopts a syntactic rule whereby advice precedence is defined by
the order of definitions in the aspect file. We believe this (implicit) syntactic rule
is error-prone (just imagine moving code around). Our approach rather makes
such a composition issue explicit and offers more flexible means for its resolution.

When composing aspects that may be written in different languages (im-
plemented by different plugins), the aspect programmer does not care about
links. However, all the composition mechanisms of Reflex (interaction notifica-
tion, composition rules, resolution and generation) work with links, not aspects.
In order to support traceability of a link back to its associated aspect-level en-
tity, we introduce linksets as a means to group a set of links that are part of the
same higher-level conceptual entity.

A linkset is therefore the counterpart, in the kernel world, of an entity in the
aspect world. The mapping is defined by the plugin. Reflex accepts linksets in
composition rules: they stand for all their links. This semantics is similar to that
of AspectJ, where an aspect stands for all its advices in a precedence relation.

Illustration. Fig. 3 illustrates the overall architecture of our running example.
The application of SOM to Buffer is expressed using the SOM DSAL, imple-
mented by the SOM Plugin (SP): it results in the definition of one B-link (som),
embedded in a linkset (SOM). The BufferArgChecker (BAC) aspect is expressed in
AspectJ, implemented by the AspectJ Plugin (AJP): it results in the definition of
one linkset BAC, encapsulating two B-links, one for the advice (adv) and one for
the cflow (cfl) links, and in the definition of a composition rule wrap(adv, cfl)
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to ensure the cflowbelow semantics. The UID aspect is expressed in the con-
figuration class BufferUIDConfig, directly adding an S-link (uid). And finally,
composition between SOM and BufferArgChecker is done in the configuration
class CompConfig, declaring a composition rule wrap(BAC, SOM).

7 Conclusion

We have proposed an architecture for versatile kernels for multi-language AOP:
basic facilities for behavioral and structural transformation, composition han-
dling and language support. The Reflex kernel relies on a reflective model that
provides mid-level abstractions to designers of aspect languages: links are a sim-
ple abstraction for both transformation and composition. We have exposed the
major features of composition support in the Reflex kernel: automatic detec-
tion of interactions between aspects and expressive, extensible means for their
explicit resolution. A plugin architecture makes it possible to modularly define
aspect languages, bridging the abstraction gap between links and aspects. We
have illustrated the resolution of interactions between aspects defined in dif-
ferent aspect languages. Future work includes experimenting with more aspect
languages in complex scenarios in order to study the scalability of our approach
and refine our initial treatment of aspect composition.
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[23] É. Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, Univ. of Nantes and Univ. of Chile, November 2004.
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Abstract. An inverse of a program is a program that takes the output of the
original program and produces its input. A semi-inverse of a program is a program
that takes some of the input and some of the output of the original program and
produces the remaining input and output. Inversion is, hence, a special case of
semi-inversion.

We propose a method for inverting and semi-inverting programs written as
guarded equations. The semi-inversion process is divided into four phases: Trans-
lation of equations into a relational form, refining operators, determining evalu-
ation order for each equation of the semi-inverted functions and translation of
semi-inverted functions back to the original syntax. In cases where the method
fails to semi-invert a program, it can suggest which additional parts of the pro-
grams input or output are needed to make it work.

1 Introduction

Many programming problems involve making two programs that are each others semi-
inverses, for example encryption and decryption of text, where the encryption program
takes a clear text and a key and produces a cypher text while the decryption program
takes a cypher text and key and produces the clear text. It is usually up to the program-
mer to ensure that the two programs are, indeed, semi-inverses and to maintain this
property when the programs are modified.

Ideally, the programmer should only write one of the two programs and then let
the computer derive the other. While this is not realistic for all cases (a public-key
encryption function is, for example, deliberately made difficult to semi-invert), it can
be useful to have systems that works only some of the time, as long as “some of the
time” isn’t “nearly never”.

In general, semi-inversion means taking a program and producing a new program
that as input takes part of the input and part of the output of the original program and as
output produces the rest of the input and output of original program.

Not all semi-inverses of programs are well-defined: The provided parts of input
and output may not be sufficient to uniquely determine the remaining parts. But it is
always possible to extend an ill-defined semi-inverse to a well-defined semi-inverse
by providing additional parts of the input or output. In the extreme, one can provide
all of the input (and possibly some of the output) of the original program as input to
the semi-inverse. This makes the output of the semi-inverse uniquely determined by
its input, though there might be cases where the semi-inverse is a partial function. For
example, it is possible to define a semi-inverse that takes all of the input and output

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 189–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of the original program. This semi-inverse will produce an empty output, but is defined
only on input/output pairs where the output is what the original program would produce
for the given input.

Our approach will ask for extra inputs to semi-inverses when it is unable to find
a well-defined semi-inverse. Even semi-inverses that are mathematically well defined
may require extra inputs by the method, as it may not be able to find a program that
implements the mathematical semi-inverse.

2 Formalism for Semi-inverses

We start by recalling the familiar definition of inverse functions:
A partial function g is the inverse of an injective partial function f if for all x in f ’s

domain we have that f (x) = y ⇒ g(y) = x. g is only defined on the range of f .
The equation for semi-inverses is not as simple, as we need to talk about parts of

inputs and outputs.
Projections [10,9] have been used in theory about partial evaluation to talk about

parts of the input. They could also be used here, but we prefer less heavy machinery, so
we introduce extractions.

Extractions. An extraction for a domain α is a total and surjective function from α to
a domain β. Intuitively, an extraction finds some information about its input and injects
this into an output domain β in such a way that there are no redundancies.

A simple extraction is the function that takes the first component of a pair, but there
are also more complex extractions, such as any total predicate (in which case the output
domain is the set of boolean values). We will, in practice, use only simple extractions
that “throw away” parts of tuples, including the identity function and the function that
throws away all input, i.e., whose range is the one-element domain (called “unit” in
SML and “()” in Haskell).

We call a pair of extractions p : α → β and q : α → γ a division of α if the function
(p,q) : α → β× γ defined by (p,q)(x) = (p(x),q(x)) is bijective. Intuitively, this means
that no part of (or information about) x is thrown away by both p and q and no part of
(or information about) x is retained by both p and q.

Note that the bijection requirement is on the type of the arguments and results of
the function, it is not required that the division is bijective on the set of valid argu-
ment/result pairs of the function. Indeed, this would generally not be possible, as the
result is functionally dependent on the argument.

The semi-inverse equation. Given a partial function f : α → β and a division (p,q) of
α×β, where p : α×β → γ1 and q : α×β → γ2, we say that a partial function g : γ1 → γ2

is a semi-inverse of f with respect to (p,q) if f (x) = y ⇒ g(p(x,y)) = q(x,y).
Example: If f (x,y) = x+y and p((x,y),z) = (x,z), q((x,y),z) = y then the function

g defined by g(x,z) = z− x is a semi-inverse of f with respect to (p,q), as x + y = z ⇒
y = z− x.

Not all divisions define valid semi-inverses for a function. For example, if p and q
were reversed in the example above, then g would not be well-defined (there would be
no unique result).
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fid = function identifiers
vid = variable identifiers
cid = constructor identifiers
oid = operator identifiers
pid = predicate identifiers
num = numbers

Program → Function+

Function → Equation+

Equation → fid Pattern | Guard = Exp

Pattern → num
| vid
| (Pattern, . . . ,Pattern)
| cid Pattern

Guard → ε
| pid Exp
| Guard && Guard

Exp → num
| vid
| (Exp, . . . ,Exp)
| cid Exp
| fid Exp
| oid Exp
| let Pattern = Exp in Exp

Fig. 1. Syntax

3 Language

The programming language that we use in this paper is a first-order functional language
where each function is given as a set of equations using pattern-matching and guards.
The equations of a function are unordered and their domains must, hence, be visibly
disjoint through their patterns and guards, i.e., for any given input at most one equation
will have matching pattern and guard. We allow partial functions, so it is allowed that
some inputs have no matching equation. If at any point during execution no matching
equation for a call can be found, the result of the entire computation in undefined.

Patterns can have repeated variables, which means that the matching values must
be equal. A let-expression does not introduce a new scope, so if a variable defined
in a let-pattern is defined previously in the same equation, the two definitions must
define equal values, just like repeated variables in a pattern. This is different from the
usual semantics of let-expressions in functional languages, but it is convenient for the
inversion method, as repeated uses of a variable in the original program may become
repeated definitions of it in a semi-inverted program. Translation to and from traditional
first-order functional languages is not difficult.
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In an equation, all variables occurring in the guards must also occur in the pattern on
the left-hand side of the equation. Variables occurring in the expression must be defined
in the pattern on the left-hand side of the equation or in an enclosing let-expression.

Values can be numbers, (possibly empty) tuples of values or elements of recursive
datatypes in the style of ML or Haskell. The syntax is reminiscent of Haskell (in spite
of the semantic differences) and can be seen in figure 1. Note that the “|” in the rule for
Equation is part of the syntax of a guarded equation and not a grammar symbol denoting
choice of several production. We have not specified the set of operators or predicates,
though the latter must at least include an equality test. We also allow partial functions
that return the empty tuple as predicates. These are considered to succeed if the call
returns a value and fail if the function call is undefined. Such functional predicates may
be constructed from “normal” functions during semi-inversion.

The syntax shows constructors, operators and predicates as prefix operators operat-
ing on one argument, which may be a tuple. When writing programs in the language,
we will, for readability, sometimes use infix notation for these.

Example. A sample program is shown below.

i2p (0, 0) | true = nil
i2p (n, i) | n>0 = insert (i2p (n-1,i ‘div‘ n), n, i ‘mod‘ n)

insert (xs, n, 0) | true = n : xs
insert (x:xs, n, i) | i>0 && x/=n = x : insert (xs, n, i-1)

The function i2p takes two numbers n and i and produces a list of the numbers 1 . . .n
permuted with the permutation with index i, where 0 ≤ i < n! (using one of several
possible enumerations of permutations).

The guard x �= n in the second equation for insert is not strictly required to make
the equations disjoint, but it turns out we will need the bit of invariant it represents to
make a nontrivial semi-inversion. We will discuss this issue later.

4 Semi-inversion of a Program

A semi-inverted program will consist of a set of semi-inverses of the original functions,
possibly having none or several different semi-inverses of some of the original functions
using different divisions.

The user specifies which semi-inverses he desires by specifying a function and di-
vision for each. These specifications forms the initial set of desired semi-inverses.

We may, in the course of transformation, find that we need to call other semi-
inverted functions. We will, then, add their specifications to the list of desired semi-
inverses and attempt to make definitions of these.

We may, also, find that we are not able to make a definition of a desired semi-
inverse, as we can not uniquely define its output in terms of its input. In this case, we
add the specification to a list of invalid semi-inverses and start over. When we want to
add a semi-inverse f ′ to the list of desired semi-inverses, we must first check the list
of invalid semi-inverses. If the specification of f ′ is found there, we must go back and
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see if we can use another (not invalidated) semi-inverse instead. If we can not go back
(i.e., if f ′ is in the initial, user specified, top-level list of semi-inverses), semi-inversion
has failed, but the information gathered by the method may suggest alternative semi-
inverses that may be useful in spite of not being exactly what the user desired.

To summarize, we need to implement the following:

1. A procedure for determining if a specification of a semi-inverse is invalid, given a
list of semi-inverses already found to be invalid.

2. A procedure for finding out which other semi-inverses are needed to define a de-
sired semi-inverse.

3. A procedure to construct the definition of a valid semi-inverse.
4. A procedure for suggesting which extra inputs should be added to an invalid semi-

inverse in an attempt to extend it to a valid semi-inverse.

Given these, we can keep updating the lists of desired and invalid semi-inverses until all
desired semi-inverses are definable in terms of predefined operators and other desired
semi-inverses and and none of them are in the list of invalid semi-inverses. We will,
eventually, reach such a state as we can, in the worst case, add all of the inputs of the
original functions as extra inputs to the semi-inverses, which makes them trivially valid.

Example. We will semi-invert i2p from figure 3 with a division (p,q), where
p(n, i,xs) = (n,xs) and q(n, i,xs) = i, i.e., making a function i2p’ that takes a num-
ber n and permutation xs of the numbers 1 . . .n and returns i, where i is the index of the
permutation. We initialize the list of desired semi-inverses to hold one semi-inverse of
i2p with the division (p,q) as defined above.

4.1 Desequentialisation

The remaining parts of the transformation are simplified if we don’t have nested ex-
pressions or patterns and if the order of evaluation is less explicit, so we first translate
each equation to an unordered set of relations between tuples of variables. We call this
process desequentialisation.

Figure 2 shows the syntax of the relational form and figure 3 shows the desequen-
tialisation of a single equation. I translates an equation into an equation in the relational
form. Ip translates a pattern into a set of relations and Ie translates an expression into a
set of relations. Iv is an auxiliary function that is used when a singleton variable is re-
quired. If necessary, it adds an extra relation that binds a non-variable to a new variable.
The guards are left unchanged by this transformation. Note that constructed syntax is
shown in typewriter font to distinguish from meta-level syntax used to define the
translation function (which is shown as “normal” text). Function calls are translated
into calls of relations between input and output variables (using the function name as
name for the relation). Guards are already relational, so they are just added to to the set
of relations.

Note the similarity between the relations for patterns and structure-building expres-
sions: It is not a priori given which side defines the other. The same will be true for
some of the other relations: They can be read either as defining the left-side variables
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fid = function identifiers
vid = variable identifiers
cid = constructor identifiers
oid = operator identifiers
pid = predicate identifiers
num = numbers

Program → Function+

Function → Equation+

Equation → fid Vars where Relation∗

Vars → vid
| (vid, . . . ,vid)

Relation → vid = num
| Vars = Vars
| vid = cid Vars
| fid Vars
| pid Vars
| Vars = oid Vars

Fig. 2. Syntax of relational form

in terms of the right-side variables or vice versa. They can even be read “sideways”,
determining any subset of the variables in terms of the rest (like semi-inverses). This
undirected view of the relations will be the essence of the semi-inversion method.

Example. The example program from section 3 is shown below in relational form.

i2p (x1,x2,x3) where
{x1 = 0, x2 = 0, x3 = nil}

i2p (n,i,x1) where
{n>0, insert (x2,n,x3,x1), i2p (x4,x5,x2), x4 = sub1 n,
x5 = div (i,n), x3 = mod (i,n)}

insert (xs,n,x1,x2) where
{x1 = 0, x2 = : (n,xs)}

insert (x1,n,i,x2) where
{x1 = : (x,xs), x2 = : (x,x3), i>0, x/=n, insert (xs,n,x4,x3), x4 = sub1 i}

Note that n-1 has been translated as sub1 n instead of using a binary subtraction opera-
tor. While this is not strictly necessary, it will make the example a bit less cumbersome.

4.2 Refining Operators

In order to make semi-inversion of operators possible more often, we can refine the
operators in different ways:
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f ∈ fid = function identifiers
x,y,xi ∈ vid = variable identifiers
c ∈ cid = constructor identifiers
o ∈ oid = operator identifiers
k ∈ num = numbers

I : Equation → Equation′
I[ f P | G = E] = f (Vi ∪Vo) where (Ri ∪Ro ∪Rg)

where (Ri,Vi) = Ip[P], (Ro,Vo) = Ie[E], Rg = Ig[G]

Ip : Pattern → RelationSet ×Vars
Ip[(P1, . . . ,Pn)] = (R1 ∪·· ·∪Rn, (x1, . . . ,xn))

where (R1,x1) = Iv(Ip[P1]), · · · , (Rn,xn) = Iv(Ip[Pn])
Ip[k] = ({x = k},x) where x is a new variable
Ip[y] = ({},y)
Ip[c P] = (R∪{x = c V},x)

where (R,V ) = Ip[P] and x is a new variable

Ig : Guard∗ → RelationSet
Ig[ε] = {}
Ig[p E] = R∪{p V}

where (R,V ) = Ie[E] and x is a new variable
Ig[G1 && G2] = Ig[G1]∪ Ig[G2]

Ie : Exp → RelationSet ×Vars
Ie[k] = ({x = k},x) where x is a new variable
Ie[y] = ({},y)
Ie[(E1, . . . ,En)] = (R1 ∪·· ·∪Rn, (x1, . . . ,xn))

where (R1,x1) = Iv(Ie[E1]), · · · , (Rn,xn) = Iv(Ie[En])
Ie[c E] = (R∪{x = c V},x)

where (R,V ) = Ie[E] and x is a new variable
Ie[ f E] = (R∪{ f (V ∪ x)},x)

where (R,V ) = Ie[E] and x is a new variable
Ie[o E] = (R∪{x = o V},x)

where (R,V ) = Ie[E] and x is a new variable
Ie[let P = E1 in E2] = (R0 ∪R1 ∪R2 ∪{V0 = V1},V2)

where (R0,V0) = Ip[P], (R1,V1) = Ie[E1], (R2,V2) = Ie[E2]

Iv : RelationSet ×Vars → RelationSet ×vid
Iv[(R,V )] = (R,V ) if V ∈ vid
Iv[(R,V )] = (R∪{x = V},x) if V /∈ vid

where x is a new variable

Fig. 3. Translation to relational form

– The guard of an equation may restrict the range of inputs to an operator enough
that it makes semi-inversion possible more often. For example, if the guard ensures
x is even, we can refine the relation z = x div 2 to x = 2 ∗ y, where any of the two
variables can define the other.

– Related operators with the same inputs may be combined into one operator that is
easier to semi-invert. For example, z = div (x,y) and v = mod (x,y) can be com-
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bined into one relation (z,v) = divmod (x,y), using an operator divmod, that re-
turns both fraction and remainder after division by y. Given this, we can from z, v
and y find x, which can’t be found from any one of the two relations individually
even when all of z, v and y are known.

– Relations of the form (x1, . . . ,xn) = (y1, . . . ,yn) are translated into separate relations
x1 = y1, . . . ,xn = yn.

We may combine several of these approaches, for example by joining two related oper-
ators and then use the guard to restrict the range.

Example. The operators used in the program are sub1, div and mod. sub1 requires
no refinement as any of the two variables defines the other. div and mod, on the other
hand, can be combined as they both take the same arguments. This means we replace
the relations x5 = div (i,n), x3 = mod (i,n) with (x5,x3) = divmod (i,n).

4.3 Resequentialisation

When semi-inverting an relational equation f Vf where R with respect to a division
(p,q), where p and q are functions from the tuple Vf to the input and output tuples of the
semi-inverted equation, we need to check if a thusly defined semi-inverse is valid, i.e.,
if the value of q(Vf ) is uniquely defined from the value of p(Vf ) through the relations
R. Hence, we need to determine which variables can be computed from which others,
starting from p(Vf ). We do this by resequentialisation, which orders relations by data
dependency. We keep a list of known variables K and a list S of relations from R that
depend only on the variables in K. At the end, the relations in S will be in a valid
evaluation order.

K = p(Vf ) (treated as a set of variables)
S = ε
while there is a relation r in R that is determined by K

S := S, r;
R := R\ {r}
K := K ∪Vars(r)

A relation r is determined by K if all variables in the relation can be defined through
variables that are already contained in K. For structural relations (tuples and construc-
tors), this means that all variables on any one side of = must be defined. Predicates
normally need all variables in order to be defined, but equality predicates can be re-
solved if any one side is defined.

Arithmetic operators are treated as relations between input and output. For example
z = x + y is a relation between three variables.

Semi-inverting an operator is possible when all variables can be uniquely deter-
mined from those that are known. For the z = x + y example, this is true when any two
of the variables are known. For all standard operators, we list the subsets of inputs and
outputs that can make the remaining defined, each with the name of the correspond-
ing semi-inverse operator. For example, the operator + will be described by the list
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[z = +(x,y), x = −(z,y), y = −(z,x)]. What this means is that the first relation in the
list can be replaced by any of the other relations.

For function calls, we don’t know a priori which semi-inverses of the function are
valid. We will, hence, assume that any non-empty subset of the variables in the relation
is enough to define the remaining variables, unless this subset corresponds to a semi-
inverse in the list of invalid semi-inverses. If we later need to invalidate the semi-inverse,
we must redo the resequentialisation.

If, at the end, K contains all variables in the relation set (or even just in q(Vf )), we
know that we can evaluate q(Vf ) from p(Vf ), so we can semi-invert the current equation
for f with respect to (p,q), assuming the called semi-inverses are all valid. We add the
called semi-inverses to the list of desired semi-inverses, so we will check their validity
later.

If, on the other hand, at the end of resequentialisation there are variables from q(Vf )
that are not contained in K, the semi-inverse is not valid. So we add it to the list of
invalid semi-inverses and start over.

Example. We recall that we want to semi-invert i2p with the first argument and the
result known. In the relational form in section 4.1, this means the first and last parameter.

Starting with the first equation for i2p, we initialise K to {x1, x3}, so we can imme-
diately add x1 = 0 and x3 = nil to S. As one side of the equality x2 = 0 is known, we
can add this too and add x2 to K, which concludes resequentialisation of this equation
with S equal to

x1 = 0, x3 = nil, x2 = 0

The second equation starts with K = {n, x1}. We can immediately add n>0 to S. The
list of valid semi-inverses of the sub1 operator is [y = sub1 x, x = add1 y], so we
can add x4 = sub1 n to S and x4 to K. At this point, we can only add semi-inverses
of functions to the list. We choose insert, where we know two of the four parameters.
Hence, we add insert with known second and last parameter to the list of desired
semi-inverses, add insert (x2,n,x3,x1) to S and x2, x3 to K. We can then add
i2p (x4,x5,x2) to S and x5 to K. We already have this semi-inverse in the list of
desired semi-inverses, so we continue.

We replaced x5 = div (i,n) and x3 = mod (i,n) by (x5,x3) = divmod(i,n),
where the semi-inverses of divmod are described by [(z,v) = divmod (x,y),
x = MLA (z,y,v)] with MLA (z,y,v) meaning z*y+v, provided 0≤v<y (and unde-
fined otherwise). Hence, we can add (x5,x3) = divmod(i,n) to S and i to K. This
concludes the resequentialisation of the second equation for i2p with S equal to

n>0, x4 = sub1 n, insert (x2,n,x3,x1), i2p (x4,x5,x2), (x5,x3) = divmod(i,n)

We added a semi-inverse of insert with second and fourth parameters known to the list
of desired semi-inverses, so we need to resequentialise the equations for that. Skipping
details, we get the sequences

x2 = : (n,xs), x1 = 0
x2 = : (x,x3), x/=n, insert (xs,n,x4,x3), x1 = : (x,xs), x4 = sub1 i, i>0

for the two equations. We have now resequentialised all desired semi-inverses.



198 T.Æ. Mogensen

4.4 Translation Back into Guarded Equation Form

When we have resequentialised all desired semi-inverses, we translate each equation
from relational form back into “normal” syntax.

Resequentialisation gives us a list of relations that defines a possible order of evalu-
ation. Together with a division, we wish to translate this into an equation in the original
syntax, i.e., into something of the form f ′ P | G′ = E where P is a pattern for p(Vf ),
E is an expression that defines the value of q(Vf ) in terms of the variables in P, and the
guard G′ is a guard using these same variables.

We start with the patterns. P will be created from p(Vf ) by finding a relation where a
variable in p(Vf ) is related to a structure (tuple or constructor application), substituting
this structure for the variable in the pattern, and then repeating this process for the
variables in the substructure.

x,y,xi ∈ vid = variable identifiers
c ∈ cid = constructor identifiers

Mp : Relation∗ →Vars → Pattern×Relation∗
Mp[S](x1, . . . ,xn) = ((p1, . . . , pn), Sn)

where (p1, S1) = Mp[S]x1, . . . ,(pn, Sn) = Mp[Sn−1]xn)
Mp[{x = k}, S]x = (k, S)
Mp[{x = (x1, . . . ,xn)}, S]x = Mp[S](x1, . . . ,xn)
Mp[{x = c x1}, S]x = (c (p1), S1))

where (p1, S1) = Mp[S]x1)
Mp[{x = y}, S]x = Mp[S]y
Mp[r, S]x = (p1, (r, S1))

where (p1, S1) = Mp[S]x
Mp[ε]x = (x, ε)

Fig. 4. From relations to pattern

Figure 4 shows how a pattern and a reduced list of relations is made from a variable
or tuple of variables and a relation list. The rules are applied in precedence from top to
bottom. If no other rule applies, the last is used, so the variable itself is used as pattern.
Note that this procedure may result in a variable occurring several times in a pattern,
but this is O.K., as we allow nonlinear patterns.

Relations in S that only contain variables from the pattern can be considered as tests
and will be part of the new guard, so we remove such relations from the set and build
an expression from the remaining relations. Figure 5 shows how the new guard and the
reduced list of relations are constructed by Mg and Mg, respectively, from the relation
list S and the set V of variables in the pattern p returned by Mp.

Figure 6 shows how we build an expression given a list of relations R and a tuple
of desired variables Vout (where Vout = q(Vf )). To choose the correct semi-inverses for
operators and function calls, we maintain a list of known variables. This is initialised to
be the set of variables contained in the pattern returned by Mp.

All intermediate results are bound in let-expressions, but (for readability) some of
these can later be unfolded, e.g., when the bound variable is used only once.
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Mg,Mg : Relation∗ →Vars → Relation∗
Mg[ε]V = true
Mg[r, S]V = r && Mg[S]V if the variables in r are contained in V
Mg[r, S]V = Mg[S]V if the variables in r are not all contained in V

Mg[ε]V = ε
Mg[r, S]V = r, Mg[S]V if the variables in r are not all contained in V
Mg[r, S]V = Mg[S]V if the variables in r are contained in V

Fig. 5. From relations to guard and relations

Combining all of the above, we get that if we have a function f, a list of relations S,
a set of input variables Vin and a set of output variables Vout , we construct an equation
f p | g = e, where

(p, S1) = Mp[S]Vin

V = the set of variables in p
g = Mg[S1]V
S2 = Mg[S1]V
e = Me[S2]V

Example. If we apply the translation function to the sequences found in section 4.3,
we get the equations shown below.

i2p’ (0,nil) | true = 0
i2p’ (n,x1) | n>0 =

let x4 = sub1 n in
let (x2,x3) = insert’ (n,x1) in

let x5 = i2p’ (x4,x2) in
let i = MLA (x5,n,x3) in i

insert’ (n,n:xs) | true = (xs, 0)
insert’ (n,x:x3) | x/=n =

let (xs,x4) = insert’ (n,x3) in
let x1 = (x:xs) in

let i = add1 x4 in
let true = i>0 in (x1, i)

We can unfold some of the let-expressions, replace prefix operators with infix operators
and eliminate the redundant test to get a more readable result as shown here:

i2p’ (0,nil) | true = 0
i2p’ (n,x1) | n>0 =

let (x2,x3) = insert’ (n,x1) in i2p’ (n-1,x2) * n + x3
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x,y,xi ∈ vid = variable identifiers
c ∈ cid = constructor identifiers
f ∈ fid = function identifiers
o ∈ oid = operator identifiers
o ∈ pid = predicate identifiers

Me : Relation∗ → vid∗ → Exp
Me[S]V = Vout if Vout ⊆V
Me[x = k, S]V = let x = k in Me[S]({x}∪V )
Me[x = y, S]V = let x = y in Me[S]({x}∪V ) if y ∈V
Me[x = y, S]V = let y = x in Me[S]({y}∪V ) if x ∈V
Me[x = (y1, . . . ,yn), S]V = let x = (y1, . . . ,yn) in Me[S]({x}∪V )

if {y1, . . . ,yn} ⊆V
Me[x = (y1, . . . ,yn), S]V = let (y1, . . . ,yn) = x in Me[S]({y1, . . . ,yn}∪V )

if x ∈V
Me[x = c Y, S]V = let x = c Y in Me[S]({x}∪V ) if Y ⊆V
Me[x = c Y, S]V = let c Y = x in Me[S](Y ∪V ) if x ∈V
Me[Y2 = o Y1, S]V = let Z2 = o′ Z1 in Me[S](Z2∪V )

where Z1 ⊆ (Y1 ∪Y2)∩V, Z2 = (Y1 ∪Y2)\Z1
and o′ is a semi-inverse of o with inputs corresponding to Z1

Me[ f Y, S]V = let Z2 = f ′ Z1 in Me[S](Z2∪V )
where Z1 ⊆ Y ∩V, Z2 = Y \Z1
and f ′ is a valid semi-inverse of f with inputs corresponding to Z1

Me[p (y1, . . . ,yn), S]V = let true = p (y1, . . . ,yn) in Me[S]V

Fig. 6. From relations to expression

insert’ (n,n:xs) | true = (xs, 0)
insert’ (n,x:x3) | x/=n =

let (xs,x4) = insert’ (n,x3) in (x:xs, x4+1)

4.5 Joining Equations

The language demands that the equations of a function must have disjoint domains
through their patterns and guards. There is no guarantee that this will be true of the
semi-inverted equations, even if it was true for the original equations.

If two or more equations of a semi-inverted function have overlapping domains, we
can do several things:

– See if we can refine the guards by considering the domains of operators: If an
operator is applied to variables in the pattern and the operation is not defined on all
possible values, we can add a guard that restrict the variables to the defined domain
of the operator.

– If a predicate is part of the expression, it and all required let-bindings of variables
used in the predicate can be copied into the guard.

– Invalidate the semi-inverse.
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The first of these options is preferable, but it only rarely works.
The second option may cause duplicated work, so we will use this only if the dupli-

cated code doesn’t involve function calls.
Invalidating the semi-inverse is simple (we already have a mechanism for that) and

can always be done, but requires that we rerun part of the transformation, see below, so
we use it as a last resort.

Note that the presence of overlapping domains may be undecidable if the guards are
nontrivial. Hence, we may sometimes reject equations where there is no overlap because
we are unable to see this. Alternatively, we can restrict guards to a form that makes
disjointedness decidable. This would require the extraction of guards from relations to
only extract guards in this form.

4.6 Adding Extra Arguments to Make Semi-inverses Valid

In the simplest case, the user specifies a number of desired semi-inverses, we desequen-
tialise, resequentialise and find that the specified semi-inverses are valid, possibly in the
process adding a few more required semi-inverses to the set and validating these. We
then translate back, and if the domains of the equations are disjoint, we are done.

If, however, resequentialisation or joining of equations find that a desired semi-
invariant is not valid, we add it to the list of invalid semi-inverses. We then rerun re-
sequentialisation for all semi-inverses in the desired list and do the subsequent back-
translation and joining of equations, repeating all of this as needed. If we find that we
are still unable to define the top-level user-specified semi-inverses, we need to have
extra inputs added to these in order to make them valid.

In the extreme, we can move all remaining parts of the input of the original function
from the output of the semi-inverse to its input, in which case the semi-inverse will
surely be valid: All intermediate variables can be computed from the original input, and
the patterns and guards used to distinguish the original equations will also distinguish
the equations of the semi-inverse.

But we will usually want to add as little of the original input as possible as extra
input to the semi-inverse. Fortunately, when we discover that a semi-inverse in invalid,
we will often have information that is useful in deciding which part of the input to add:

– If resequentialisation fails to sequentialise all relations in the relation set, we can
look at the variables not in K. If one of these represents a part of the original input
and is enough to make other variables defined (possibly through an as yet not val-
idated semi-inverse function), this is an obvious choice for additional input to the
semi-inverse.

– If we find that the equations for a semi-inverse do not have disjoint domains, a part
of the input that would make them disjoint is an obvious additional parameter. This
may be a variable that is used in the guards of the original equations or a variable
that correspond to a part of the input where patterns made the original equations
disjoint.

Example. The equations of i2p’ are disjoint as n is 0 in the first equation and required
to be greater than 0 in the second. The equations of insert’ are disjoint as the first
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element of the list is equal to n in the first equation and required to be different from
n in the second. Note that this exploits the “unneeded” guard x�=n from the original
definition of insert. The guard represents part of a non-trivial invariant of i2p: The
permuted lists do not have repeated elements.

The relations between the original and semi-inverted functions are:

i2p(n, i) = p ⇔ i2p’(n, p) = i
insert(xs,n, i) = ys ⇔ insert’(n,ys) = (xs, i)

5 Conclusion

The main new contribution of this paper is working on semi-inverses, where most pre-
vious work has focused on true inverses. This is enabled by a number of smaller contri-
butions: Using a relational intermediate form with no a priori order of evaluation and
a resequentialisation analysis to discover a valid order of evaluation for a semi-inverse
and determining if one such exist. Additionally, the method, when it fails, can provide
guidance to the user for finding extra information that can lead to useful semi-inverses
as alternatives to those initially specified.

Our definition of extractions is also, we believe, new. It is used similarly to the way
projections [10,9] have been used for describing incomplete input in partial evaluation,
but it is a better fit to strict languages as these don’t normally work on the partially
undefined values that projections yield.

Due to space constraints, the example did not show backtracking on invalidated
semi-inverses. If true inversion of the program from figure 3 is attempted, the method
will find that the desired semi-inverse of insert is not valid (due to overlapping equa-
tions), so backtracking is made to the top level, where extra inputs are requested. Adding
n as the extra input gives the semi-inverse shown above.

The example required an invariant of the input to the semi-inverse to be specified
in order to work. This invariant was a property of the output of the original program,
but became a property of the input to the semi-inverse. As such it is to be expected that
tests are required in the semi-inverse to verify that the input actually has this property.

Ideally, a semi-inversion method should discover such invariants, but it is unrealis-
tic to expect it to always do so, as discovery of nontrivial invariants is uncomputable.
As a consequence, it may sometimes be necessary to provide such invariants as extra
information to the semi-inversion process. In the example, the invariant concerns one
of the original function parameters, so adding a guard to the original program was easy.
If the invariant concerns variables that do not occur in a pattern, it may be necessary
to add a “partial identity function”, i.e., a function that returns its input as result but is
only defined on values that obey the invariant. Turchin [14] call such partial identity
functions “filters”. Adding such redundant guards or filters is conceptually similar to
using binding time improvements [6,3,1] to improve the result of partial evaluation.

5.1 Related Work

Prolog [13] and similar languages have long had the ability to run programs backward
or partly backward, so each program is its own inverse and semi-inverse. Prolog relies
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on backtracking and may fail to terminate when not run with sufficient variables in-
stantiated. We avoid both backtracking and nontermination by requiring extra inputs to
be added when there isn’t sufficient information to uniquely choose an equation, but in
doing so may fail to produce a semi-inverse program in some cases where Prolog is able
to find solutions with a similar subset of inputs specified. The relational form used as
an intermediate step in our transformation also has a resemblance to Prolog. Inversion
of relational programs is investigated in [8] and [11], but the relational form is quite
different, as the programs are variable-free many-to-many relations constructed from
relational combinators, which makes inversion relatively simple.

Other work on inverting programs [4,2,5] also avoid backtracking by requiring de-
terministic choice in the inverted programs. These methods can, however, only make
true inverses and simply give up if they can’t find a non-backtracking inverse program.
In the main, these methods work by direct inversion of all data and control flow, so they
are not easily extended to semi-inversion, where data and control flow is partly forwards
and partly backwards.

We have been able to find one work, [12], that mentions the possibility of transform-
ing a program to a semi-inverse (there called a partial inverse) and shows an example of
semi-inverting multiplication on unary numbers to division. The method can introduce
backtracking (and does so in the example). Our method can semi-inverse multiplication
of unary numbers to non-backtracking divison.1

5.2 Future Work

A prototype implementation of an early version of the semi-inversion method presented
here has been implemented as a student project. It is able to do the example semi-
inversion shown in this paper, but lacks backtracking on invalid semi-inverts.

Some of the transformation steps used in this paper, such as the order in which vari-
ables are defined in the semi-inverted programs, are under-specified. Good heuristics
for these steps need to be found.

The method for obtaining disjoint equations after semi-inversion is fairly crude, and
it is plausible that the more advanced methods used in [4] could be applied. However,
semi-inversion can often do with less powerful methods than complete inversion, partly
because some of the original inputs may be retained so guards of the original program
can be reused and partly because one might be able to find another semi-inverse to use
instead of the one that failed, an option not available for full inversion.

Larger, more realistic, examples need to be examined, such as deriving a decryption
function from an encryption function as mentioned in the introduction. We can not
expect the method to be amenable to encryption methods based on prime numbers, as
their invertibility often rely on nontrivial number theoretic properties, but it is possible
that the method can work with cyphers that work by manipulating bitstrings. This needs
to be determined, however.

1 This requires constraining one argument of the multiplier to be non-zero, as division by a
possibly zero value will cause overlapping equations in the semi-inverse.
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Abstract. We describe the application of generative programming to a
problem in interactive information retrieval. The particular interactive
information retrieval problem we study is the support for ‘out of turn
interaction’ with a website – how a user can communicate input to a
website when the site is not soliciting such information on the current
page, but will do so on a subsequent page. Our solution approach makes
generous use of program transformations (partial evaluation, currying,
and slicing) to delay the site’s current solicitation for input until after
the user’s out-of-turn input is processed. We illustrate how studying out-
of-turn interaction through a generative lens leads to several valuable in-
sights: (i) the concept of a web dialog, (ii) an improved understanding of
web taxonomies, and (iii) new web interaction techniques and interfaces.
These notions allow us to cast the design of interactive (and responsive)
websites in terms of the underlying dialog structure and, further, suggest
a simple implementation strategy with a clean separation of concerns. We
also highlight new research directions opened up by the generative pro-
gramming approach to interactive information retrieval such as the idea
of web interaction axioms.

1 Introduction

Generative programming has been typically been applied to problems at the
crossroads of programming languages and software engineering such as modu-
larizing cross-cutting concerns, synthesizing programs from formal specifications,
and automatically generating program documentation. We describe here a novel
application of generative programming to a problem in interactive information
retrieval [1].
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1.1 Motivating Example

Everybody has experienced the frustration in interacting with automated infor-
mation systems where the system does not let the user progress through the
dialog without answering a currently posed question. For instance,

1 System: Welcome to the automated flight reservation system.
2 System: Please say the date on which you wish to travel.
3 Sallie: I’d like to fly from New York to Brussels next week.
4 System: Sorry, I didn’t understand. Please specify a date.
5 Sallie: If you can tell me available dates, I can choose.
6 System: Please say the date on which you wish to travel.
7 Sallie: [Hangs up]

The mental mismatch between Sallie’s conception of the task and the system’s
design is manifest in the above interaction. The system is expecting a date in
Line 3 whereas Sallie specifies her choice of source and destination cities. Even
though this information is going to be relevant further into the interaction, the
system insists on specifying date before going further. Similar inconveniences
happen while interacting with websites. A site presents hardwired choices of
hyperlinks to pursue and even though the user’s input is pertinent and probably
solicited deeper in the site, there is no way for the user to circumvent the given
navigation structure.

Our solution to the above situations, where the user cannot answer a cur-
rently posed question, but does have some other information pertinent to the
task at hand, is to provide a capability for out-of-turn interaction. For instance,
we would provide a capability for the user to speak something into the browser,
and in this way supply out-of-turn input. Such ‘unsolicited reporting’ has been
recognized [2] as a simple form of mixed-initiative interaction, a dialog manage-
ment strategy where the two participants take turns exchanging the initiative.
Using out-of-turn interaction, the user is empowered to complete an information-
finding task in the manner that best suits her conception. Moreover, we show
that out-of-turn interaction, irrespective of when it happens, can be supported
uniformly by a generative programming approach. A website that currently pro-
vides a hardwired choice of completion options can be automatically converted
into one that supports out-of-turn interaction!

The idea behind our approach is quite simple: we liken out-of-turn interaction
to non-sequential evaluation of a computer program, e.g., partial evaluation. We
model an information seeking interaction as a computer program so that user
inputs correspond to values for program variables (ref. Fig. 1, left). When the
user provides input in the order in which they are requested, we are sequen-
tially evaluating the program, i.e., interpreting it. In a web hierarchy, this would
correspond to plain browsing. When the user provides out-of-turn input, we
jump ahead to nested program segments that involve that input and simplify
them out via partial evaluation. By employing sequences of such interpretations
and partial evaluations, we can support complex interactions that involve both
responsive as well as out-of-turn inputs.
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if (Alabama)

   ...

if (Alaska)

   if (Senate)

      if (Republican)

         ...

   if (House)

      if (Republican)

         ...

if (Arizona)

   ...

if (California)

   ...

if (Georgia)

   if (Senate)

      if (Democrat)

         /* Zell Bryan Miller */

      if (Republican)

         /* C. Saxby Chambliss */

   if (House)

      ...

if (Virginia)

   ...

   if (Senate)

      if (Democrat)

         /* Zell Bryan Miller */

      if (Republican)

         /* C. Saxby Chambliss */

   if (House)

      ...

if (Alabama)

   ...

if (Arizona)

   ...

if (California)

   ...

if (Georgia)

   if (Senate)

         /* Zell Bryan Miller */

   if (House)

      ...

if (Virginia)

   ...

      if (Democrat)

         /* Zell Bryan Miller */

      if (Republican)

         /* C. Saxby Chambliss */

if (Alabama)

   ...

if (California)

   ...

if (Georgia)

         /* Zell Bryan Miller */

         /* Zell Bryan Miller */

Georgia

Democrat

Georgia

Democrat Senate

Senate

Fig. 1. Staging web interactions using program transformations. The top series of
transformations mimic an in-turn (i.e., browsing) interaction sequence with the user
specifying (Georgia: Senate: Democrat), in that order (ref. Fig. 2, left). The bottom
series of transformations correspond to an out-of-turn interaction sequence where the
user specifies (Democrat: Senator: Georgia), in that order (ref. Fig. 2, right). Notice
that we can stage both interaction sequences here with the same program transforma-
tion! All programs shown here are partial evaluations of the starting program (left).

1.2 Implementing Out-of-Turn Interaction Generatively

Now, since a given program can be transformed in numerous ways, the designer
need only write the program in one way but the use of program transforma-
tions enables us to realize all possible interaction sequences. Further, since par-
tial evaluation subsumes interpretation, there is no need to distinguish between
an in-turn or out-of-turn input. This enables a simple implementation strategy
with a clean separation of concerns. An input, supplied using any of a vari-
ety of user interfaces, is communicated to a server where it is used to partially
evaluate a program. The resulting program is rendered as a website and pre-
sented back to the user. Fig. 1 depicts these ideas using Project Vote Smart
(PVS; www.vote-smart.org), a website which indexes the webpages of the US
Congressional Officials and asks a user to make a selection for state, branch
of Congress, and party, in that order, to access an official’s page. Fig. 2, left
and right, illustrates how the sequences staged by the top and bottom series
of program transformations in Fig. 1, respectively, might be rendered on the
web.

Our generative approach makes enabling out-of-turn interaction in an exist-
ing website a fairly mechanical process. The approach requires four components:
a representation, transformer, out-of-turn interaction interface, and generator. A
representation of the site’s hyperlink structure, such as that in Fig. 1 (left), can
be extracted from the original site and stored in its server from which it will be
transformed to stage user interaction. Such a representation can be easily gen-
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⇓ ⇓

⇓ ⇓

⇓ ⇓

Fig. 2. Retrieving the webpage of the Senator Miller in PVS. (left) In-turn interaction
sequence: the user specifies values for relevant politician attributes by progressively
clicking on the presented hyperlinks (Georgia: Senate: Democrat), in that order. (right)
Out-of-turn interaction sequence: user specifies (Democrat: Senate: Georgia), in that
order, using out-of-turn interaction via voice.

erated from a depth-first traversal of the site using either an off-the-shelf web
crawler or web scripting languages (e.g., Python) to build a customized bot. The
out-of-turn interaction interface captures and communicates the user’s out-of-
turn input (i.e., a string) to a web server. We have built an out-of-turn interaction
toolbar interface, called Extempore, using XUL (XML User Interface Language).
Extempore is embedded into a traditional web browser as a plug-in [3]. We also
have implemented a voice interface using SALT (Speech Application Language
Tags) to capture out-of-turn speech utterances (illustrated in Fig. 2, right). A
server-side program or web service transforms the representation given a set of
(in-turn or out-of-turn) user input terms (communicated via a hyperlink click or
the out-of-turn interface). Lastly, the generator produces a webpage containing
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hyperlink labels corresponding to the variables at the topmost level of nesting
in the representation.

Initially we simply run the representation through the generator to create
the top-level page of the site. The resulting webpage is aesthetically identical to
the original site’s homepage except that each hyperlink now represents a request
to invoke the transformation operator on the representation wrt the hyperlink’s
label rather than a request for a static page. Once this initialization is complete,
a communicate-transform-generate loop responds to each user interaction (hy-
perlink click or out-of-turn input). The user communicates an input using the
available interaction interfaces (hyperlinks or the out-of-turn interface). This in-
put is used to transform the representation. Then the generator produces the
resulting page from the new representation. Notice that there is no longer a
need to store and retrieve any static pages. The current page is always gener-
ated dynamically from the the topmost level of nesting of the mostly recently
transformed representation. The malleability of the representation stages the in-
teraction and provides the illusion of a website containing a hardwired hierarchy
of hyperlinks. When the representation reduces to the modeling of a single page,
the user is redirected to that webpage. Note also that the representation is the
only site-specific component in our framework.

1.3 Outline

Our research began by exploring the use of partial evaluation to transform rep-
resentations of websites, for realizing out-of-turn interaction [3]. One of the first
lessons we learned was that program transformers have a novel use (hitherto
unexplored) as stagers, i.e., devices to mediate and manage interaction between
two entities. In this sense, a partial evaluator is not just a pre-processor before a
compiler, it is an active participant in an interaction loop between the human and
the information system. This led us to investigate other program transformers
(e.g., currying) and study their staging properties. We are now able to develop
complex (web) dialogs as compositions of these primitive stagers [4], especially
those involving mixed-initiative interaction. This paper begins by presenting
these notions. Studying dialog simplification in this context then leads us to an
improved understanding of web taxonomies. Next, we present new web interac-
tion techniques and associated interfaces that exploit properties of taxonomies
and which allow us to support complex dialogs. We conclude by introducing the
idea of web interaction axioms and their potential role in interactive systems.

2 Related Research

Concepts from generative programming (partial evaluation [5], currying [6], pro-
gram slicing [7], and continuations [8]), have been traditionally studied and em-
ployed in systems such as compilers and debuggers. While there are established
and effective models for classical information retrieval (e.g., vector-space [9]),
models for solutions to interactive information retrieval (IR) problems are in
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their infancy. Generative programming suggests helpful metaphors for devel-
oping such models. However, generative programming is under-explored in the
interactive IR community.

Belkin et al. introduced the idea of an ‘interaction script’ [10] which can be
thought of as a program for interaction, though expressed in English rather than
program codes and is only intended to be sequentially evaluated. Slicing [11],
and source-to-source rewrite rules [12] have been used to restructure web appli-
cations. Graunke et al. [13] describe an approach to automatically restructure
batch programs for interactive use on the World Wide Web. An important issue
addressed is maintaining state across web interactions which use the stateless
HTTP protocol. Their approach involves first-class continuations from program-
ming languages [8], e.g., via the call/cc (call-with-current-continuation) facility
provided by Scheme. Since first-class continuations can be saved and resumed,
they are an ideal construct for saving and restoring state between user interac-
tions over the web. Using a similar idea based on continuations, Queinnec [14]
developed a model for a web server intended to address state maintenance prob-
lems caused by connections terminated prematurely, pressing the ‘back button,’
and window cloning. Lastly, Quan et al. [15] explore the idea of using contin-
uations and currying to postpone, save, and resume interactions with intrusive
dialog boxes, including partially-filled ones, in traditional application software,
such word processors and e-mail clients. The common theme of these efforts,
including our research, is the appeal to concepts from programming languages
to achieve a rich and expressive form of a human-computer interaction. Our
work differs from all these efforts in its focus on out-of-turn interactions (and
dialogs involving them). We believe that the generative programming approach
presented here suggests useful metaphors for developing interactive information
systems and also lends insights into representations for complex dialogs.

3 Web Dialogs

In studying the nature of dialogs supported in our framework, we started to think
of a program transformation in terms of the number of interaction sequences it is
capable of staging, which we refer to as the transformer’s interaction paradigm.
For example, our use of partial evaluation in PVS is capable of staging interac-
tion sequences representing all permutations of state, branch, party or, in other
words, 3,240 (= 540 × 3!) sequences. PVS has 540 paths from its root to each
leaf corresponding to the 540 members of the US Congress. In general, a par-
tial evaluator can support m × n! sequences assuming that each of the m paths
through the site has a consistent dialog length of n. Studying program transform-
ers via the number of sequences they support revealed that partial evaluation
could stage m × n! sequences in a given site, but no less. In other words, while
partial evaluation can support all orders of supplying inputs, it cannot enforce
an order. This property prevented us from, e.g., staging dialogs involving state,
branch, party, where the party information must be supplied second. This ‘all or
nothing’ nature of partial evaluation arises because, without factoring a program
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into multiple units, there is no way to prevent expressions containing particular
remaining variables from being simplified by a partial evaluator.

This compelled us to develop a dialog notation, where the specific inputs (e.g.,
Alabama, Senate, Democrat) are abstracted into their categories (e.g., state,
branch, party) and used as dialog slots in the context of a program transformer.
The syntax of our notation uses the abbreviation of a program transformation
(e.g., PE for partial evaluator) over a sequence of such slots. For example, we
represent a dialog where values for state, branch, party may be communicated in
any order as PE

state branch party . Such an expression succinctly compacts a set of
interaction sequences; contrast this with the programs in Fig. 1 where the inputs
are woven into the dialog structure. Next we incorporated additional program
transformers in order to achieve a finer level of control over the number of inter-
action sequences stagable. For example, a currier stages a different number of
sequences than a partial evaluator, i.e., C

state branch party �= PE
state branch party .

The former only permits the user to supply a prefix of the remaining dialog
options at any point in the interaction, whereas the latter makes no such restric-
tion. Next we can begin to nest program transformers on top of each other to
create complex dialogs (i.e., dialogs composed of smaller dialogs, or subdialogs).
For instance, PE

PE
a b

P E
c d

precludes sequences such as ≺c a b d�. This notation pro-
vided a concise way to specify complex dialogs (i.e., much more compact than
enumerating each individual interaction sequence to be supported). In addition,
using a small set of reduction rules [4], which indicate how any dialog (described
in this notation) should be simplified each time a user supplies an input, we are
able to stage a variety of web dialogs in our generative framework.

4 An Improved Understanding of Web Taxonomies

Dialog simplification in the staging transformations framework can be viewed
as pruning branches of a website based on user input. This led us to investigate
functional dependencies in information hierarchies, a concept which implicitly
captures what should remain and what should be pruned out when a user sup-
plies input.

4.1 Functional Dependencies on the Web

Intuitively, an FD of the form x → y exists in a website when all paths (from
the root to a leaf) through the site containing x also contain y. Notice that
x → y does not necessarily mean that y → x. In the generative approach,
since representations change dynamically after every interaction, the set of FDs
satisfied by a site also changes dynamically. As some paths through the site
are pruned out by partial evaluation, new dependencies emerge. For instance,
communicating ‘Senate’ to PVS out-of-turn at the top level, causes the ‘Virginia
→ Republican’ FD to emerge. This FD is not present in the original site because
not all politicians in Virginia are Republicans (but the Senators are). In the
untransformed PVS site, there are 129 FDs!
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The set of FDs a site satisfies can be mined from a relational representation
of the paths through the site, where each tuple in the relation corresponds to a
path, using standard algorithms from association rule mining [16]. We added a
mining component to our generative framework to discover FDs. Since FDs must
be re-computed at every step, we would like to optimize the process of mining
them. While non-intuitive, it happens to be helpful to postpone computing the
current set of FDs until after the user’s input has been processed. In other
words, rather than discovering that the ‘Virginia → Republican’ FD (among
many others) exists after the user supplies ‘Senate’, only compute that FD if
and when the knowledge of its existence is required (e.g., if the users supplies
‘Virginia’ next!). This lazy discovery not only prevents us from computing FDs
that are irrelevant to the task at hand, but also results in a more efficient and
simple mining procedure. For example, if the user does supply ‘Virginia’ next,
we need only observe that the only party option remaining is ‘Republican’ to
conclude that the ‘Virginia → Republican’ FD held before the input ‘Virginia’
was processed – a procedure more efficient than examining all pairs of terms
(which co-occur) a priori as candidates for potential FDs.

FDs servemultiple uses in the generative framework.First, and most obviously,
they suggest a simple strategy to perform input expansion. For instance, if a user
communicates ‘Washington, DC’ at the top level of PVS we can safely expand this
input to ‘Washington,DCHouseDemocrat’, without changing the semantics of the
request, because the ‘Washington, DC →{House, Democrat}’ dependency exists.
Second, the exploitation of FDs results in cleaner representations, by consolidating
series’ of nested conditionals without else clauses, thereby relieving the user from
having to click through several pages, each with only one link.

Further, we can generalize the notion of FDs to say that an FD of the form
x → y exists in a website when at least t% of the paths through the site contain-
ing x also contain y. Using FDs of this sort for input expansion makes interactive
IR approximate. Approximate interactive IR is important as it enables a host
of new and compelling queries and suggests novel user interfaces. We shall have
more to say about these two items in section 5 when we discuss new interaction
techniques. In summary, we have illustrated how our generative approach led to
the concept of a web FD and a new way to conduct query expansion on the web
which together led to approximate interactive IR on the web.

4.2 Levelwise and Non-levelwise Taxonomies

Thus far, we have focused on out-of-turn inputs in a levelwise taxonomy, where
each input (e.g., Virginia) addresses a distinct information category (e.g., state).
With very minor modifications, we can extend our approach to work with non-
levelwise taxonomies – those where no such organization exists. For instance,
consider the web directory in Fig. 3 (left). Notice that in this website, unlike
PVS, each level does not correspond to an information category (e.g., state or
party). For instance, a hyperlink labeled ‘soccer’ resides at levels two and three.

To capture input expansion in non-levelwise sites, we use the concept of a
negative FD: x → ¬ y, that holds when none of the paths through the site



A Generative Programming Approach to Interactive Information Retrieval 213

1

2

sports

3

recreation

4

soccer

5

events

6

travel

7

outdoors

8

movies

9

news

10

players

11

baseball

12

soccer

13

europe

14

soccer

15

boating

1

2

sports

3

recreation

4

soccer

5

events

7

outdoors

8

movies

9

news

10

players

12

soccer

14

soccer

1

3

recreation

4

sports

14

outdoors

8

movies

9

news

10

players

12

events

Fig. 3. (left) Hypothetical hierarchical web directory with characteristics similar to
those in Yahoo!. (right and center) Customized versions of (left) wrt ‘soccer’.

containing x also contain y. Some intuitive negative FDs in PVS are, ‘Demo-
crat → ¬ Republican’, ‘House → ¬ Senate’, and ‘Virginia → ¬ Ohio’. Notice
that any negative FD x → ¬ y implies y → ¬ x. When the user communi-
cates ‘Senate’ out-of-turn, we can partially evaluate wrt to Senate=true and
House=false. The reader will notice that negative FDs in a levelwise site in-
volve only the labels of hyperlinks at the same level. However this is not the
case in non-levelwise sites, thus providing the motivation for negative FDs. For
instance, the following are some negative FDs that hold in the site illustrated
in Fig. 3 (left): ‘sports → ¬ {boating, europe, outdoors, recreation, travel}’ and
‘soccer → ¬ {baseball, boating, europe, travel}’. Thus, when a user says ‘soccer’
out-of-turn in Fig. 3 (left), we can partially evaluate the program in Fig. 4 (left)
wrt soccer=true and baseball, boating, europe, and travel set to false
which yields the program in Fig. 4 (right) which models Fig. 3 (right).

Notice that there are no salient structural properties of websites that ulti-
mately influence the characteristics of their FDs (e.g., only FDs, only negative
FDs, or a mixture of the two). The type of each FD currently satisfied by a
site is dependent only on the current relationships between the co-occurrence
of terms (labeling hyperlinks) on paths through the site (term y co-occurs on
all/no paths containing term x). There are ways alternate to path containment
in which terms can co-occur (e.g., two terms co-occur if the distinct paths which
contain them lead to the same leaf vertex, i.e., the terms are used to index the
same page) and using these criteria lead to additional types of FDs [17]. Fur-
ther, notice the t threshold in our generalized notion of an FD defines the type
of FD (t=0 specifies a negative FD and t=100 indicates an FD) for a particular
co-occurrence criteria.

The distinction between levelwise and non-levelwise sites encouraged us to
study the properties of web hierarchies to discern which program transforma-
tions are applicable to certain types of hierarchies. This analysis led to our
development of a partial order of graph-theoretic classes of hierarchical hyper-
media [17] which formally characterize websites by the relationships among the
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1 if (sports) if (sports) if (sports)

2 if (soccer) if (soccer)

3 if (movies) if (movies) if (movies)

4 page = 8; page = 8; page = 8;

5 if (news) if (news) if (news)

6 page = 9; page = 9; page = 9;

7 if (players) if (players) if (players)

8 page = 10; page = 10; page = 10;

9 if (events) if (events) if (events)

10 if (baseball);

11 page = 11;

12 if (soccer); if (soccer)

13 page = 12; page = 12; page = 12;

14 if (recreation) if (recreation) if (recreation)

15 if (travel)

16 if (europe)

17 page = 13;

18 if (outdoors) if (outdoors) if (outdoors)

19 if (soccer) if (soccer)

20 page = 14; page = 14; page = 14;

21 if (boating)

22 page = 15;

Fig. 4. (left) Programmatic representation of the website modeled by Fig. 3 (left). (cen-
ter) Representation of the site in Fig. 3 (center) resulting from slicing (left) wrt music.
(right) Representation of site in Fig. 3 (right) resulting from partially evaluating (cen-
ter) wrt only soccer=true.

terms modeling the site’s hyperlink labels. This ordering helps connect our work
to the hypermedia and interactive visualization community who have developed
a similar taxonomy [18]. We refer the reader to [17] for a discussion of the formal
details of the classes, detecting them, and proofs of their properties.

4.3 A General Program Transformation: Program Slicing

Even though we were able to generalize the support for out-of-turn interaction to
non-levelwise sites, we still wanted to develop a general purpose program transfor-
mation technique than simply applying a combination of FDs and partial evalua-
tion. One reason for this is that often only a subset of the terms in the consequent of
a negative FDemployed are necessary for partial evaluation. For example, partially
evaluating the program in Fig. 4 (left) wrt sports=true and recreation=false
results in the same program as would a partial evaluation wrt to sports=true and
boating, europe, outdoors, recreation, and travel set to false. This encour-
aged us to study non-semantic-persevering transformations (ref. Table 1), such as
program slicing [7], to generalize our approach to different forms of hierarchical
hypermedia in a single framework. The idea involves slicing a program to retain
only those sequences annotated with the user’s out-of-turn input [19]. Program
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Table 1. Comparison of partial evaluation and program slicing along a syntax- vs.
semantic-preserving dichotomy

Syntax-preserving Semantic-preserving

Partial evaluation × √
Program slicing

√ ×

slicing [7] is a theoretical operation used to extract statements that affect (or are
affected by) the computation of a variable of interest at a point of interest from a
program. There are several varieties of slicing; backward and forward slicing are
the two most relevant for our purposes. Slicing has been predominately applied to
problems in software engineering such as debugging and reverse engineering [7].
However, it has been applied applied to web application development [11]. Our use
of it here helps relate it to interactive IR.

When the user says ‘soccer’ out-of-turn in Fig. 3 (left) we forward slice the
program in Fig. 4 (left) wrt the soccer variable at all program points. This leads
to the (page assignment) statements at lines 4, 6, 8, 13, and 20 from which we
backward slice the program. The result is a representation of the site containing
only paths involving hyperlinks labeled ‘soccer’ leading to leaf webpages contain-
ing information about soccer (ref. Fig. 4, center). Finally, we partially evaluate
the program wrt the variable modeling the user’s input (‘soccer’) statically set
to true thereby removing all expressions involving it, since it has now been sup-
plied. This results in a program modeling the new site (ref. Fig. 4, right) from
which an actual site can be recreated. This program transformation technique
generalizes out-of-turn interaction to all of the classes of hierarchical hypermedia
that we identified.

4.4 A Duality in Uses of Program Slicing

The instructive nature of our use of generative programming suggested that an
attempt to compute web FDs via program transformation might reveal more
insight. We developed a technique which uses program slicing to mine web FDs
from a programmatic representation of a website. We refer the reader to [17]
for the details of the program transformation technique and rather focus on
its implications here. We use partial evaluation and program slicing as pruning
operators. There is a tradeoff between these two program transformations in
the context interactive IR. Specifically, one can think of program slicing as a
transformation for

1. directly pruning a website (as illustrated above in Fig. 4), or
2. extracting information (i.e., FDs) about what to prune from a site and then

using this information with partial evaluation to conduct the same site prun-
ing as in (1).

Studying this duality reveals that there might be simpler or more effective meth-
ods for realizing out-of-turn interaction with instances of specialized classes in
our taxonomy, akin to that illustrated in section 4.2 for levelwise sites.
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Towards a Taxonomy of Program Transformations for Interactive IR
Thus far, we have seen that our generative approach using only partial evaluation
works for only levelwise sites, the most specific class in our partial order. In addi-
tion, we have illustrated an alternate program transformation technique, based
on slicing, to realize out-of-turn interaction in all of the classes of hierarchical
websites we identified. This suggests that additional specialized transformation
techniques might exist for classes in our lattice between the most general and
most specific class. Developing a mapping between classes of hierarchical hyper-
media and generative techniques for interacting with them moves us closer to a
generative programming model for interactive IR.

This section has described many insights and made several connections. To
recap, we have seen that

1. our simplification rules, involving program transformers, led to the idea of a
web FD,

2. web FDs led to a new way to conduct query expansion on the web and,
ultimately, approximate interactive IR,

3. the application of partial evaluation as a pruning operator led to classes of
hierarchical hypermedia,

4. supporting out-of-turn interaction with instances of the classes led to two
new generative approaches: one involving a combination of FDs and partial
evaluation and another involving program slicing which generalizes out-of-
turn interaction to each class,

5. the two new generative approaches and a method to mine FDs with slicing
led to a duality in uses of program slicing, and

6. we are optimistic that this duality will lead to a taxonomy of program trans-
formations for interactive IR.

Overall, this generative programming thread resulted in an improved under-
standing of web taxonomies and new research issues.

4.5 New Research Issues for Web Taxonomies

Many large web taxonomies, such as Yahoo! and the Open Directory Project
at dmoz.org, are modeled as a DAG (Directed Acyclic Graph), owing to the
presence of symbolic links. A symbolic link is a special type of hyperlink which
makes a directed connection from a webpage along one path through a website
to a page along another path. One obvious use of symbolic links is multiclassi-
fication. For example, information about music is classified under both the arts
and computers categories in Fig. 3 (left). Rather than classify information under
more than one category, a designer might classify it under only one category,
but include a symbolic link from one category to another (e.g., from the arts
sub-tree to the computers sub-tree, or vice versa) to give the user the illusion
that the item is classified in both categories. Representing a website modeled
as a DAG using a program is challenging and requires the use of unconditional
branches (e.g., gotos) or functions to factor common branches. This viewpoint
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leads us to associate a symbolic link with a kludge for out-of-turn interaction. We
hypothesize that designers include symbolic links to address the fact that users
do not have facilities to interact out-of-turn. Testing this hypothesis suggests
that we should mine the uses of symbolic links on the web to identify the typical
contexts in they are employed. Replacing symbolic links with new interaction
techniques which more naturally support users’ information-seeking activities re-
lieves the designer from having to anticipate where and how to include symbolic
links in a taxonomy to accommodate users with diverse informational goals.

Lastly, notice that we might generalize our definition of an FD even further
to capture and expose the various relationships that might exist between the
terms that label hyperlinks in websites. For instance, rather than saying that
the x → y FD holds if t% of the paths through the site involving x also involve
y, we might say the x → y FD holds if M (x, y) � t, where M is a term similarity
metric from IR (e.g., cosine or Jaccard’s [20]) and t is a threshold. Thus, another
research issue that this thread revealed involves experimentation to identify the
metrics and threshold values that are appropriate for a given (class of website,
information-seeking goal) pair to be supported.

5 New Web Interaction Techniques and Interfaces

5.1 User Interfaces for Approximate Interactive IR

Approximate retrieval in a web taxonomy, introduced above, is important be-
cause, by exposing term relationships (similarities), it can help a user assimilate
the underlying domain by dependency exploration. It also can reveal hidden
aspects of the domain. For example, a user that communicates ‘Senate Senior’
and observes that it expands to ‘Senate Senior Democrat’ might conclude that
the Senior leadership in the Senate is largely Democratic, an inference difficult
to make simply by browsing the site. Such approximate interactive IR suggests
that we might expand a query in real-time for the user or permit the user to set
the expansion threshold (from no expansion to as much expansion as possible)
and dynamically observe the links that are removed or added as the user, e.g.,
moves a slider bar UI widget to dynamically adjust the threshold.

5.2 Dialog Continuations

Our footing on the generative landscape suggested investigating addition tech-
niques from programming languages employed in program transformations, such
as continuations. We then used continuations to design a new web interaction
primitive, dialog continuations, intended to address the destructive nature of
program transformations on interaction. To support procedural tasks, we must
allow for new subdialogs to be dynamically invoked at the behest of the user,
who also determines any partial input that might be applicable at that point.
To achieve this functionality, we explicitly manipulate dialog continuations, bor-
rowing an important notion from the programming languages literature [8]. A
continuation indicates a ‘promise to do something’ and summarizes the amount
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web: (website × interaction technique × user input) ⇒ personalized website
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program-theoretic: (program × transformation × variable) ⇒ interaction paradigm

Fig. 5. The connection between the web and program-theoretic domains

of work remaining at a point of execution in a program. While all languages
employ continuations internally, only some (e.g., Scheme) allow the user to ex-
plicit manipulate and reason about them. To cascade one dialog onto another,
we essentially replace the current continuation with a fresh dialog that has been
partially evaluated with the user’s chosen input, and jump to this dialog. This
allows the user to both abandon a given line of conversation (since the requisite
information has been obtained) and find themselves in the middle of another
line of inquiry.

We have implemented a real-time query expansion interface and various dia-
log continuation interfaces for users to interactively explore the PVS data. They
are available for demonstration from our project webpage at http://oot.cps.
udayton.edu.

6 Discussion

We have described the insight gained by the virtue of a generative program-
ming lens for interactive IR. The central theme of our generative approach is
to pose interactive information retrieval as the application of a program trans-
formations to a programmatic representation of a website based on partial user
input (ref. Fig 5, bottom). The creativity in our work (ref. Fig. 5) arises from
relating concepts in the web domain (e.g., sites, interactions) to notions in the
program-theoretic domain (e.g., programs, transformations). An additional op-
portunity for creativity involves varying the (program, transformation) pair to
achieve a desired form of interaction. The predominate form of interaction dis-
cussed in this article is out-of-turn interaction.

The generative techniques showcased here can be implemented with many
software tools or programming languages. Our implementation employs PHP
for the transformation, generative, and mining components and XUL, SALT,
and JavaScript for the user interaction interfaces. Our generative approach has
not only been instructive, but also has led to a simple implementation strat-
egy. We implemented the entire framework using less then 1000 lines of code,
where the constituent components each occupy approximately equal amounts
of code and are cleanly factored. The framework contains no code specific to a
targeted website. The representation is the only component which contains site-
specific information and is supported as plug-in basis (or simply stored on the
original website’s server). For further implementation details, including caching
and sessioning, see [4]. We have applied these techniques and our framework
to several websites: (i) GAMS (Guide to Available Mathematical Software) at
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gams.nist.gov, (ii) Project Vote Smart at vote-smart.org, (iii) CITIDEL
(Computing and Information Technology Interactive Digital Educational Li-
brary) at citidel.org [21], (iv) the Open Directory Project at dmoz.org, and
(v) the Online Virginia Tech Timetables of Classes accessible through vt.edu.
We refer the reader to [3,4,17] for the details of these case studies.

In summary, the insight exposed by our use of generative programming has
(i) helped us connect our work to other communities, (ii) driven the development
of new concepts, and (iii) led to new research issues. In particular, we connected
our work to the discourse analysis (dialog) and hypermedia/visualization com-
munities. The concept of an FD on the web, while simple, suggested a new way
to do query expansion on the web and led to approximate retrieval in large web
taxonomies. In addition, borrowing notions like continuations from programming
languages led to new, richer, and more conversational, ways of interacting with
websites. We intend to continue to investigate the use of generative programming
for interactive IR. For example, we might use a language’s support for reflection
to permit the user to dynamically query the program for the choices that are still
unspecified as a way of enquiring ‘what may I say at this point in the dialog?’

Another compelling line of future work entails investigating what the ax-
iomatic semantics of a program modeling a website imply about the forms of
interaction supported by the site. In other words, what are the web interaction
analogs to the axiomatic semantics of a program modeling web interaction? An
example of a simple (and obvious) interaction axiom which can be inferred from
the program is ‘no customer shall reach the thank you page without first paying
for the items in their shopping cart.’ We are optimistic that this work will help us
automatically reason about interacting with a site from program axioms. We an-
ticipate such automated reasoning to become more important with the growth of
initiatives advocating for more automation, such as the semantic web [22] which
aims to lift the communication paradigm of the web from human-to-computer to
computer-to-computer. For this reason, we believe that the generative approach
espoused here is especially timely. The long-term goal of this work is to use the
insight detailed here to develop general, but automated, models for the design
of interactive (and responsive) websites.
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Abstract. Saving the internal data of an application in an external form
is called marshalling. A generic marshaller is difficult to optimize because
the format of the data that will be marshalled is unknown at the time
the marshaller is implemented. On the other hand, efficient marshallers
can be written for specific kinds of data. In this paper we use run-time
program generation (RTPG) to produce specialized marshallers. We use
Jumbo, a Java compiler supporting programmer-specified RTPG. We
show that RTPG is easily employable. Speedups in order of magnitude
can be achieved in some cases. We study the case where the data consist
of a large number of objects of a single class and the case where there
are objects of many classes. In the latter case, “just-in-time” heuristics
allow us to limit RTPG costs and gain considerable speedups.

1 Introduction

Marshalling is the term used for saving the internal data of an application in an
external form. Once marshalled, objects can be passed to other applications. Java
RMI (remote method invocation) and CORBA are examples of systems which
marshal data for transmission to remote machines. Another term for marshalling
is serialization. The reverse process is called unmarshalling.

Serialization generally involves writing large amounts of data, and so is often
a performance bottleneck. (According to [1], Java serialization accounts for 25–
65% of a remote method invocation.) For any particular type of data, it can be
heavily optimized. However, optimizing a general-purpose marshaller is difficult
because the format of the data to be marshalled is not known at compile-time.
Such marshallers are guided by a description of the data that becomes available
only at run-time; it is provided either by the client of the marshalling code, or,
as in the case we consider here, by the language’s reflection mechanism.

Run-time program generation (RTPG) is the use of programs that write
other programs at run-time. RTPG can produce efficiencies by taking advantage
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of information not known at compile time. Since this is precisely the situation
we have just described, marshalling is a natural application for RTPG.

Our research group has developed Jumbo [2,3], a compiler for Java that
incorporates an easy-to-use run-time program generation mechanism. Jumbo is
distinguished by its implementation strategy [4] and by its consequent generality:
virtually any Java program can be generated at run-time. This makes Jumbo
particularly easy to learn and use. Thus, we believe it can make the writing of
run-time program generators a routine matter [5,6].

In this paper, we demonstrate the practicality of RTPG by applying Jumbo
to the problem of optimizing marshalling in Java [7,8,9]. Interestingly, the im-
plementers of the generic marshaller in Sun’s standard Java library (java.-
io.ObjectOutputStream) thought its efficiency so important that critical parts
of their implementation are written in C++. This takes this class beyond the
routine and has the specific drawback that the code cannot be verified. It also
renders the implementation unsuitable as a starting point for our experiment.
Hence, we start from a pure Java implementation of serialization, provided by
Kaffe [10]. We demonstrate that run-time program generation is easy to employ
— requiring no more skill than ordinary programming — and can deliver very
substantial speedups relative to the pure Java code. (We were not specifically
attempting to catch up with Sun’s implementation, but we have done so in some
cases; we discuss this in section 7.)

On standard marshalling benchmarks — mainly long arrays or lists — a
straightforward use of RTPG speeds up the Kaffe implementation by an order
of magnitude. Cases involving many classes are more difficult because the cost
of the run-time program generation itself cannot be so readily amortized; an
adaptive method similar to that used in just-in-time compilers can be employed.

Our contributions in this paper are:

– Demonstrating that, with Jumbo, obtaining generative code based on non-
generative code is straightforward.

– Showing significant speedups for marshalling with RTPG.
– Showing that adaptive methods can be applied to reduce the cost of run-time

compilation.

The paper is structured as follows. In section 2, we discuss marshalling in
Java in more detail and give some ideas about where RTPG might help. Section
3 introduces Jumbo, and section 4 shows how Jumbo can be used to implement
the suggestions made in section 2. Section 5 gives performance comparisons
between Kaffe and Jumbo for the benchmark cases — large, homogeneous and
near-homogeneous collections, and heterogeneous collections. In section 6, we
discuss usage of “just in time” program generation to reduce the cost of run-
time compilation for heterogeneous data. In section 7, we briefly return to Sun’s
implementation that uses native code and ask two questions: Can our safe, run-
time-generated code compete with Sun’s implementation, and can we use RTPG
to produce further optimizations of that code? Finally, section 8 reviews related
work and section 9 presents our conclusions.
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2 Marshalling in Java

Java provides a simple API for serialization. A Java programmer doesn’t need
to write any serialization code, but must simply declare her classes to implement
the empty interface java.io.Serializable. If a class implements this interface,
an instance can be marshalled by passing it to java.io.ObjectOutputStream’s
(OOS) writeObject() method.

Sun provides a specification of serialization [11], and an implementation.
However, that implementation uses native methods, written in C/C++, to gain
efficiency. Therefore, it is not appropriate for our experiment. An implementation
in pure Java1 is provided by Kaffe [10]; we start our study there.

Throughout this paper we refer to Sun’s and Kaffe’s implementation as Sun
OOS and Kaffe OOS, respectively. The implementation for marshalling which
uses RTPG is referred as Jumbo OOS. (Actually there are two versions of Jumbo
OOS, but it will be clear from the context to which one we’re referring.) When
it doesn’t matter which OOS we’re referring to, we just say OOS.

We now explain Java serialization in detail, to highlight the places that can
be optimized by RTPG. The serialization format is roughly as follows: For each
object, first write a descriptor for its class and then write the object’s fields;
primitive fields are written directly, and object fields are written recursively using
the same format. To prevent outputting multiple copies of class descriptors or
objects – and to avoid infinite loops – each class and object is assigned an id
number, or handle; every class and object written is stored in a hashtable the
first time it is seen, and only its handle is output on subsequent sightings. The
pseudo code below outlines Kaffe OOS’s writeObject() method.

writeObject(obj) { //method in Kaffe OOS
if obj is null {
writeNull

} else if obj was already written { // look up the object in the hashtable
write object handle

} else if obj is an instance of Class or String {
write obj according to the specification for that particular case

} else if the object is an Array {
for each element i in obj

writeObject(i) //a recursive call
} else{ // first write class description of object

if class of obj was already written
write class handle

else
writeObject(class of obj) //recursive call to serialize class descriptor

// then write content of object
if obj is Serializable {

for each classDescriptor in the class hierarchy of obj
for each field in the classDescriptor

1 Actually there is one call to a native method, to test whether a class has a static
initializer. This test is not available in the reflection API [10].



224 B. Aktemur et al.

if the field is primitive
writePrimitive(field)

else
writeObject(field) // recursive call

} else { throw Exception(”obj is not serializable”) }
}

}

To summarize, each object is passed through a set of checks: Is the object
null? Was it already written to the stream? Is it an array? Was its class descriptor
already written? Is it Serializable? Finally, for each class descriptor in the
inheritance hierarchy of the object, we find the fields of that class. For each field,
if it is primitive, we write the actual value directly to the stream. Otherwise, we
marshal it by making a recursive call. Note the use of reflection in the above,
using class descriptors to discover the fields of the class.

We can optimize the serialization of objects of any class by generating a
marshaller specific to it when we first see an instance of that class. After the
specialized marshaller is generated, it can be used to serialize subsequent in-
stances. With this alteration, the general marshalling procedure becomes:

writeObject(obj) { //method in Jumbo OOS
if obj is null
writeNull

else if obj was already written // look up the object in the hashtable
write object handle

else{
// look for specialized marshaller in the hashtable
marshaller = getMarshallerFor(class of obj)
if marshaller is not null // marshaller is found

marshaller.write(obj)
else if obj is an instance of Class or String

// ... as above
if obj is Serializable {

// generate specialized marshaller and put it into hashtable
marshaller = ProgGen.generateMarshallerFor(obj)
storeMarshaller(marshaller)

// ... as above
}

}
}

The bold faced lines in the code above show when to look for a specialized
marshaller and when to generate it. As a technical point, the reader will note that
a specialized marshaller is not used for marshalling right after it is generated.
This is because the generated code writes only the handle of the class, but the
class descriptor needs to be written the first time an object of the class is seen.

We now introduce Jumbo. Readers familiar with it can skip the next section.
In section 4, we continue the present discussion by showing how to go from the
Kaffe code for serialization to the Jumbo code.
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3 Jumbo

Jumbo [3,5] is a staged compilation system for Java, allowing run-time program
generation. It provides a high degree of programmer control, source level speci-
fication, and binary-level operation.

In Jumbo, the programmer specifies code to be generated at run-time by
placing it within special quotation brackets: $< and >$. From the programmer’s
point of view, these brackets behave very much like ordinary string quotes, but
the values represented are of type Code, not string, and ordinary string opera-
tions cannot be applied. For this to work, the enclosed piece of program cannot
be arbitrary, but must be a parsable fragment. The effect of this restriction is
that these fragments can be partially compiled, with the result that no external
compiler has to be invoked at run-time to generate code. Since many computers
have a Java run-time, but no compiler, this is an important practical feature.

A quoted Java fragment can have holes that will get filled with Code values
not known at code-writing time. The syntax for holes is backquote (‘) followed
by a syntax category, followed by a Java expression of type Code in parentheses.
Consider

public Code infiniteLoopGen(Code body){

return $< while(true){

‘Stmt(body)

} >$;

}

The call infiniteLoopGen($< if(i == 3) break; i++; >$); would give us
Code equivalent to:

while(true){

if(i == 3)

break;

i++;

}

This code can now be used in a context where i is defined.
For expressions of primitive type, there is a second kind of anti-quotation,

one which evaluates the expression at program-generation time and then inserts
the value into the generated code as a constant. For example, ‘Int(x) means
that x is an int variable and its current value is to be inserted into the enclosing
Code (this is called lifting [12]).

Code is the main class in the Jumbo implementation. A Code value repre-
sents the partially compiled version of a program fragment and is represented
as a method. Its argument is the information about the usage context of that
fragment that is needed to fully compile the fragment; its result is the virtual
machine code thus calculated. Because it is a method, this program fragment is
represented as virtual machine code, rather than as source or as a syntax tree.

Detailed information on Jumbo is available in [3,5,2]. Jumbo can be obtained
at loome.cs.uiuc.edu/Jumbo/index.php.
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4 Jumbo Code for Marshalling

In section 2, we showed how to make use of program generation in Jumbo OOS.
In this section we discuss how to write the specialized marshaller generator
using Jumbo. We have implemented a class, called ProgGen, which produces the
marshallers. Before we explain ProgGen, let’s look at the specialized marshaller
that would be produced for the following class, representing a linked-list node:

public class Node implements Serializable{

int data;

Node next;

}

Its generated marshaller would be:

public class NodeMarshaller implements Marshaller {

JumboObjectOutputStream oos;

Field[][] fields;

int handle;

public void init(JumboObjectOutputStream oos,

Class clazz, int handle) {

this.oos = oos;

this.handle = handle;

... // initialize fields[][] here - omitted

}

public void write(DataOutput stream, Object obj) {

// Write the OBJECT tag and class handle to the stream

// These magic numbers are defined in Sun’s specification.

stream.writeByte(115);

stream.writeByte(113);

stream.writeInt(handle);

// write the ’data’ field

stream.writeInt(fields[0][0].getInt(obj));

// send the ’next’ field to Jumbo OOS to have it serialized

oos.writeObject(fields[0][1].get(obj));

}

}

Note that Jumbo generates byte code – not source code. We have given source
code for readability: the byte code generated is just what would be produced by
a Java compiler if presented with this source code.

When compared with the original OOS, the specialized marshaller is much
simpler. The next field of Node will also be serialized via the specialized mar-
shaller (provided that its run-time type is Node). The marshalling process will
end when next is a null pointer or an already serialized object.

ProgGen is obtained by a fairly straightforward massaging of the Kaffe OOS.
Basically, ProgGen and Kaffe OOS have code in one-to-one correspondence. How-
ever, ProgGen does not write data into a stream like Kaffe OOS does. Instead, it
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forms Code which does that job. To illustrate, let’s examine the writeFields()
method of Kaffe OOS. This is the method that actually writes the fields of an
object.

private void writeFields(Object obj, ObjectStreamClass osc){

ObjectStreamField[] fields = osc.fields;

String field_name;

Class type;

for (int i = 0; i < fields.length; i++){

field_name = fields[i].getName();

type = fields[i].getType();

if (type == Boolean.TYPE)

realOutput.writeBoolean(

getBooleanField(obj, osc.forClass(), field_name));

else if ... // check for other primitive types

else // non-primitive

writeObject(getObjectField(obj, osc.forClass(),

field_name, fields[i].getTypeString ()));

}

}

This method first gets all the fields in a class descriptor. Then, by using each
field’s descriptor, it fetches the value of the field from the object. This is done
in getXField() of OOS, which uses the getField() method below (exception-
handling is omitted here for clarity):

private int getIntField (Object obj, Class klass, String fname) {

Field f = getField(klass, fname);

return f.getInt(obj);

}

Field getField (Class klass, String name) {

final Field f = klass.getDeclaredField(name);

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

f.setAccessible(true);

return null;

}});

return f;

}

This work is done for each object, even if another object of that class was
already written. We shouldn’t have to find the field specifiers and field types
each time. Instead we can generate code with these values built in:

private Code writeFields(ObjectStreamClass desc, int hier) {

ObjectStreamField[] fieldDecls = desc.fields;

Code c = $< ; >$;

for (int i = 0; i < fieldDecls.length; i++){

Class type = fieldDecls[i].getType();
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if (type == Boolean.TYPE)

c = $< ‘Stmt(c)

stream.writeBoolean(

fields[‘Int(hier)][‘Int(i)].getBoolean(obj));

>$;

else if ... // other primitive types

else // non-primitive type. write the field via Jumbo OOS

c = $< ‘Stmt(c)

oos.writeObject(

fields[‘Int(hier)][‘Int(i)].get(obj));

>$;

}

return c;

}

In the code above, fields[][] holds the field specifiers. The first index
corresponds to the position of the class descriptor in the hierarchy, and the
second index corresponds to the position of the field in that class descriptor.
Note that the method requires hier as an argument. It doesn’t need the Object
obj parameter anymore, in contrast to the implementation of writeFields in
Kaffe OOS. The code shows that if the field is non-primitive, it is passed to
the Jumbo OOS to be written. In fact, we keep a one-element cache in the
specialized marshaller associated with each non-primitive field; if the run-time
type of the field is the same as the one in cache, we call the associated specialized
marshaller without passing the object to Jumbo OOS. This saves us from the
hashtable lookup that would occur in Jumbo OOS. If there is a cache miss, we
pass the object to Jumbo OOS, it does a hashtable lookup, writes the object and
then we update the cache. We do not give this code because of space limitations.

After we have the methods that return Code to serialize an object, we need
to generate the init method2, which will set up the data in the generated
marshaller. In particular, this method is where the class handle is assigned to
a data member of the serializer and where the fields[][] matrix is set. Note
that this happens only once per generated serializer. This initializer method is
constructed using code pieces from Kaffe OOS. Therefore writing this method is
again straightforward, and to save space we don’t provide the source code here.

The generated marshallers implement an interface called Marshaller, which
defines the methods init and write. Interfaces, or abstract classes, are normally
required in Java when ordinary code is to call generated code [3,5,2].

5 Performance

When using RTPG, the cost of run-time program generation must be taken into
account. For this cost to pay off, we need to use the generated program a lot; that
2 Java doesn’t provide the ability to pass arguments to the constructors of dynamically

loaded classes, so the class can only have a zero-argument constructor [3,13]. Thus
we define a normal method, init, and call it right after the object is created via the
zero-argument constructor.
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is, we need to marshal a large data set. Still, the running time of the generated
code — excluding compile time — is a useful quantity to know, because it gives
the upper limit of speed-up (to which the actual speed-up will converge, over
time). In this section, we give the performance of specialized marshallers, both
including and excluding the cost of run-time compilation.

The performance of marshalling code is highly dependent upon the properties
of the data being marshalled. Furthermore, it is not clear what should count as
a “realistic” workload for marshalling. Large data sets — which are the ones
we most care about, since these will be the most time-consuming to marshal
— are likely to consist of large numbers of a few kinds of objects; this would
be characteristic of video or audio streams, for example. On the other hand,
most data in Java consists of objects of many different types. From the point
of view of run-time program generation, these two scenarios have very different
performance characteristics. Accordingly, we show benchmarks of both kinds.
Specifically, we start by marshalling large, homogeneous collections of a class
called Dummy, which has several fields. Then we test a linked-list class, and a
class similar to Dummy, but with fields which can contain either of two types
of objects (one a subclass of the other). After showing benchmarks for these
homogeneous and near-homogeneous collections, we discuss a non-homogeneous
data set, containing objects of 66 different classes.

Table 1. Performance table for Dummy class. Crossover point is 250 objects

Object Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe

Count written OOS compilation OOS Jumbo Jumbo+comp.

1000 30000 6.6 26.9 152.9 23.1 5.68

10000 300000 121.1 140.6 1545.0 12.75 10.99

20000 600000 257.8 277.0 3121.4 12.1 11.27

These benchmarks are run as follows: All the tests are executed on a Linux
Debian, AMD Athlon XP 1700+ machine with 900MB memory. The timings are
in milliseconds. We use HotSpot as the Java Virtual Machine, which is the most
popular JVM3. When running a test, we first marshal a substantial number of
objects to give the virtual machine time to warm up. During this time, the JVM
loads classes and performs just-in-time optimization. Our experience has shown
that this approach gives more consistent results. After warming up the JVM,
we begin the test. We create a certain number of serializable objects, then pass
the objects to the OOS’s and measure the time spent. We call this a benchmark.
After a benchmark is done, we discard the objects and OOS’s —together with the
hashtables they contain— and run another benchmark with a different number
of objects. Thus, each benchmark begins with the Jumbo API and OOS’s loaded

3 Performance measurements with IBM’s JVM [14] actually show significantly better
speedups for Jumbo, but space prevents us from including these timings.
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and optimized, the specialized marshallers not generated. In the tables below,
each row represents a benchmark.

5.1 Homogeneous and Near-Homogeneous Data

Table 1 gives the results for marshalling objects of the Dummy class:

public class Dummy implements Serializable {

Simple simple1;

Simple simple2;

int id;

}

public class Simple implements Serializable {

int id;

}

The Jumbo OOS column does not include the run-time compilation cost, but
Jumbo+compilation does. We have shown timings for marshalling 1000 to 20000
objects. The “Bytes written” column gives the size of the data written to the
output stream. Jumbo OOS is at least 12 times faster than Kaffe OOS, when
run-time generation cost is not included.4

Table 2. Performance table for linked-lists of Dummy objects. Each list has fifty nodes.

Number Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe

of lists written OOS compilation OOS Jumbo Jumbo+comp.

10 19363 6.7 48.9 145.0 21.42 2.96

50 84479 45.1 71.9 723.9 16.04 10.06

100 186877 107.7 131.3 1496.6 13.88 11.39

150 246075 115.8 135.4 2145.9 18.52 15.84

200 352161 144.6 174.4 2896.0 20.02 16.60

In our next test, we marshal linked-lists of Dummy nodes (same as Node class,
but with data of type Dummy). Each linked list has 50 nodes. Jumbo OOS is up
to 20 times faster than Kaffe OOS in this test. (See Table 2.)

Inheritance affects the cost of marshalling because it requires that we test
the type of each field and not simply call the marshaller for the declared type of
the field5. In the previous benchmarks, we did not marshal any objects whose
classes had subclasses; thus, the actual type of every marshalled object was the
4 The crossover points we give were determined by direct observation, not by interpo-

lation from the presented data. We have omitted the timings for smaller data sets
for lack of space.

5 Remember that to eliminate some hashtable lookups, we associate a one-element
cache with each field. See Section 4.
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same as its declared type, and, in particular, the one-element cache always held
the right class. For the next benchmark (Table 3), we marshal Dummy objects,
but allow the fields of type Simple to contain either a Simple or a SimpleChild
object, determined randomly. The SimpleChild class is shown below.

public class SimpleChild extends Simple{

int otherId;

}

Table 3. Performance table for Dummy objects, allowing the fields to be either Simple

or SimpleChild. Crossover point is 280 objects.

Object Count Bytes written Jumbo OOS Jumbo + comp. Kaffe OOS Kaffe / Jumbo Kaffe / Jumbo+comp.

1000 30136 9.9 55.3 154.7 15.55 2.80

10000 334320 136.3 167.2 1637.0 12.0 9.79

20000 641548 285.1 303.9 3237.3 11.35 10.65

5.2 Non-homogeneous Data

Data commonly consist of many objects of a variety of classes. This has a sig-
nificant effect on the performance of our code because it implies a lot more
classes being generated and therefore a lot more program generation time. In
this section we examine the behaviour of Jumbo OOS on such data.

Table 4. Performance table for heterogeneous data. The objects come from a total of
66 classes.

Object Count Bytes written Jumbo OOS Jumbo + comp. Kaffe OOS Kaffe / Jumbo Kaffe / Jumbo+comp.

13210 128140 76.5 1504.1 1830.0 23.92 1.22

39630 372578 239.5 1690.9 5486.0 22.9 3.24

66050 617016 368.2 1837.9 9248.0 25.11 5.03

92470 861454 524.3 1899.5 12789.2 24.39 6.73

118890 1105892 657.4 2065.5 16499.7 25.09 7.99

For this purpose, we serialize Code objects. Code is the type of partially-
compiled program fragments, as described earlier. In total, the Code objects
indirectly touch 13210 objects, from 66 classes; 127 kilobytes were written to
the stream. The timings are given in Table 4. We start by marshalling just one
Code object, and increment by two on each row (i.e. marshal the object two
more times than on the previous row). In this test, Jumbo OOS is faster than
Kaffe OOS by approximately 25 times, when the cost of program generation is
not counted. However, when code generation time is counted, the improvement
relative to the Kaffe OOS goes down to about 1.22 in the worst case. The speed-
up will approach 25 as the size of the data set increases, but it only achieves an
eight-fold increase on the largest data set we tried.
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The generated code shows much less speed-up than for the homogeneous
case. Recall that the crossover point when marshalling Dummy objects was about
250 objects; now it is about 10500 objects. The problem, of course, is that we
are generating code for many classes that have a small number of instances. We
discuss this issue in the next section.

6 Just-in-time Program Generation

When marshalling heterogeneous data like Code, many classes are represented
by only a few objects, and the cost of generating the marshalling code for those
classes is not repaid. Our analysis of the test with heterogeneous data showed
that only 14 out of the 66 classes allocated more than 250 objects. (Recall that,
for Dummy objects, the crossover point was 250 objects.) Clearly, the remaining
52 classes will create a significant drag on the overall marshalling process.

To test the hypothesis that avoiding code generation for classes with few
objects will yield better results, we ran a set of tests using varying threshold
values: For each threshhold value, we generated code only for those classes which
produce at least that many objects in the benchmark. This depends upon our
having counted the number of objects for each class beforehand, so this does
not represent a viable implementation strategy; we are only attempting to prove
our hypothesis. We see (Table 5) that at a threshold value of 100, the generated
code produces nearly a four times speedup over Kaffe OOS (compared to 1.22
fold speedup when all marshallers are generated). Note that, even at the optimal
threshold value of 100, the speedup we can obtain in this situation is much less
than we did with the simpler, homogeneous collections, because (1) the cost of
run-time compilation is great due to the large number of classes and (2) many
objects are marshalled by non-generated code.

Table 5. Performance comparison when threshold value is used. Marshallers are gen-
erated only for classes known to have more than threshold number of instances.

Threshold Object Count Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

20 13210 659.5 1861.2 2.82

60 13210 527.6 1871.3 3.54

100 13210 482.9 1872.0 3.87

140 13210 515.6 1869.9 3.62

180 13210 551.7 1855.4 3.36

300 13210 592.8 1871.0 3.15

400 13210 706.5 1868.1 2.64

In this experiment, the number of instances of each class was known prior
to marshalling. What shall we do when we don’t know that? The situation is
similar to JIT compilation [15]. HotSpot keeps track of method calls and when
a method is called a certain number of times, it is optimized.
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Following this idea, our second version of the marshaller counts the number
of objects marshalled. Once it has reached the threshold value, it generates
specialized code and uses that for subsequent objects of the class. Note that
this version will be slower than the previous one, because all objects marshalled
prior to reaching the threshold value are marshalled by non-generated code. The
results are shown in table 6. Here, we don’t reach the previous speedup factor,
but instead reach 3.16 (again with a threshold value of 100).

Table 6. Marshalling 13210 objects, with different threshold values

Threshold Object Count Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

20 13210 920.3 1851.6 2.01

60 13210 669.5 1851.0 2.76

100 13210 585.6 1854.4 3.16

140 13210 594.8 1847.9 3.1

180 13210 606.9 1832.7 3.01

300 13210 629.8 1851.0 2.93

400 13210 732.5 1852.9 2.52

Our final version of the marshaller uses the “just-in-time” idea with a thresh-
old value of 100. We ask our last question: Does this version extract a significant
penalty when marshalling homogeneous data? Table 7 shows the timings for this
version of the marshaller, when marshalling collections of Dummy objects. This
table is comparable to Table 1, and it shows that the JIT approach has almost
no effect on performance for large homogeneous data sets.

Table 7. Performance when marshalling Dummy objects with threshold value of 100

Object Count Bytes written Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

1000 30000 37.0 151.7 4.09

10000 300000 149.9 1592.3 10.61

20000 600000 289.7 3167.4 10.93

It should be noted that if we have the opportunity to do off-line program
generation, using specialized marshallers is the obvious decision, because we
wouldn’t have the run-time compilation cost. In this case, we would generate the
specialized marshallers once before run-time and then at run-time we’d get the
benefit of using them. Unfortunately off-line compilation is not always possible.

7 Sun’s ObjectOutputStream

The aim of this paper is to show that RTPG using Jumbo is an easy and effective
way to achieve higher performance. In this, we have reached the end of our
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exposition. However, there are some loose ends to tie up. In particular, the
reader may wonder how our code stacks up against the marshalling code that is
delivered with HotSpot, which, as we have mentioned, uses unsafe, native code.
(To be more specific, it uses the sun.misc.Unsafe class to access arbitrary
memory addresses.) Another natural question is whether the kind of program
generation we have done can be applied to the HotSpot code.

Table 8. Performance of Jumbo OOS vs. Sun OOS. Marshalling Dummy objects, pro-
gram generation cost included, threshold value 100, incorporating lightweight hashtable

Object Count Bytes written Jumbo + compilation Sun OOS Jumbo+compilation / Sun

1000 30000 45.1 11.1 4.06

10000 300000 123.3 85.1 1.44

20000 600000 201.5 187.5 1.07

In table 8, we show the result of a test marshalling Dummy objects again,
comparing Jumbo OOS (with threshold value of 100) to Sun OOS. To be fair to
Jumbo OOS, we note that, in addition to using native methods, Sun OOS uses
a custom, lightweight hashtable implementation, which is considerably more ef-
ficient than the standard implementation in this context. We incorporated this
hashtable implementation into our code, too. In this test, Jumbo OOS is only
7% slower than Sun OOS on the largest data set, with 20,000 objects.

So, to summarize, while remaining entirely in the realm of verifiable Java
code, we have obtained an implementation that can marshal large data sets
nearly as fast as Sun’s implementation.

Finally, we have experimented with applying RTPG to Sun OOS. We im-
plemented Jumbo OOS and ProgGen using the same principles we discussed in
Section 2 and 4, but based on Sun OOS instead of Kaffe OOS. (Although Sun
OOS achieves its speed from using native methods in critical places, much of it is
written in Java.) Comparing this version of Jumbo OOS to Sun OOS, we achieve
speedups as high as 30% when run-time compilation cost is excluded. However,
the crossover point is around 12,000 objects for homogeneous data sets.

8 Prior Work

Most work on optimizing marshalling is not directly comparable to ours in that
the goal is not to optimize the existing, generic marshaller, but to create more
efficient marshallers for special cases. For example, Nester et al. [1] require that
classes that are to be marshalled must provide their own writeObject method,
and also depart from the Sun serialization format in other ways which are valid
in their environment, but not in general.

Manta [7] and Ibis [9] both use run-time code generation to produce special-
ized marshallers at run time. Their methods are different from ours: In Manta,
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a compiler is invoked at run time (again requiring that all computers have a
specified set-up in order to use their system); in Ibis, a specially built program
generator producing JVM code has been written just to generate serializers.

Run-time program generation is the topic of many papers. The system closest
to Jumbo is DynJava [16]. DynJava has certain restrictions, such as disallowing
run-time generation of class names, which suggest that the translation from
Kaffe OOS to DynJava might not be as straightforward as the translation to
Jumbo; these restrictions are fundamental, as DynJava is type-safe. Nonetheless,
we assume that, in general, DynJava could be used for marshalling much as we
have done. Serialization is used as an example in two papers on RTPG systems
that we know of. Neverov and Roe give the definition of a multi-stage language
called Metaphor [17], in which, in principle, serialization code can be generated
in a type-safe manner. However, they do not tackle the entire Java serialization
specification, and it is not clear whether their techniques could scale to this case.
Consel et al. [18] discuss marshalling for C, using the C-based Tempo system.

9 Conclusions

We have shown that marshalling code in Java can be highly optimized by gen-
erating marshallers at run-time. The speedup we obtained was an order of mag-
nitude when compared to the marshalling code of Kaffe. For some data sets we
nearly reached the speed of Sun’s object serializer, which extensively uses unsafe
native code, while staying entirely in the realm of verifiable byte code.

We applied a heuristic approach similar to just-in-time compilation to lower
the break-even point for heterogeneous data sets. Another method which can
further decrease runtime compilation cost is to optimize program generators
statically. This approach is discussed in [19].

We have also shown that the transformation from the classical code to pro-
gram generating code using Jumbo is straightforward. It does not require skills
beyond ordinary programming. We conclude that considering this fact and the
high speedup we obtained, optimizing marshalling is a potentially useful appli-
cation of run-time program generation.

Jumbo itself, and all the code used in the experiments for this paper, can be
obtained at loome.cs.uiuc.edu/Jumbo/index.php.
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Abstract. One of the themes in building reusable and maintainable software is 
identifying similarities and designing generic solutions to unify similarity 
patterns. In this paper, we analyze capabilities of J2EE to effectively unify 
similarity patterns found in Web Portals (WP). Our experimentation involved a 
family of WPs to support information sharing and team collaboration, built by 
our industry partner. While J2EE provides useful mechanisms for reuse of 
common services across components, we found its limitations in systematic 
across-the-board reuse in application domain-specific areas. To solve these 
problems, we applied a generative programming (GP) technique of XVCL on 
top of J2EE. By unifying similarity patterns, we increased the clarity of portal’s 
conceptual structure as perceived by developers, reducing also the size of the 
original J2EE WP by 61%. Our solution enhanced traceability of information 
that mattered during changes. Based on that we hypothesized that 
XVCL-enhanced J2EE WP would be easier to maintain than the original J2EE 
WP. In the paper, we describe our solution and evaluate its engineering merits 
in both quantitative and qualitative ways. 

1   Introduction 

Web Portals (WP for short) were introduced around 1998 when the WWW became a 
standard medium for accessing information. As an effective means for knowledge 
management and delivering business intelligence on demand, WPs have moved from 
the fringes of business to a core competency, in the span of a few short years. Today’s 
enterprises gain competitive advantage from quick development and deployment of 
custom WPs. WPs are developed and maintained under tight schedules. They are 
characterized by imprecise and frequently changed requirements. Portability and 
scalability are also important, as WPs may need support complete enterprise-wide 
services, accessible by thousands of clients simultaneously. All this creates unique 
challenges for WP engineering. Conventional engineering methods and processes must 
be substantially adjusted to meet the realities of the Web development and are in great 
demand. 

In our earlier study of 17 WPs, we found similarity rates of 17-63% [17], measured 
in terms of code contained in clones. We analyzed only simple clones, that is, similar 
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code fragments. It should be expected that taking into account design-level similarities, 
the rate of cloned code could be higher. Indeed, a project by our industry partner ST 
Electronics (Info-Software Systems) Pte. Ltd. fully confirmed this expectation [13]. 
Similarity rates in Active Server Pages (ASP) [1] WPs were around 60%, and in certain 
areas as high as 90%. By applying a generative programming (GP) technique of XVCL 
[22] on top of the ASP, a “generic WP” could be designed, turning the original WP into 
a WP product line architecture, from which many similar but distinct WPs could be 
derived at much a lower cost than it was possible with conventional methods. 
Maintenance productivity figures for the generic WP, as well as for WPs derived from it, 
were very encouraging, too. The results clearly indicated that, in this project, despite a 
careful model-based design, ASP and associated techniques were not effective in 
unifying many types of WP similarity patterns. 

The above studies hinted at a potential of GP to improve major Web engineering 
productivity indicators, such as development/maintenance effort or time-to-market. 
This motivated us to pursue research in similar direction on the J2EE platform, as 
described in this project. The JavaTM 2 Platform, Enterprise Edition (J2EE) is widely 
used for WP development. J2EE simplifies WPs by basing them on standardized, 
modular components, and providing many useful services for those components. This 
allows developers to focus on essential business logic of applications, while reusing the 
infrastructure code. Unlike ASP, J2EE supports inheritance, generics and other OO 
features via Java 1.5. An intriguing question was which of the problems observed in our 
earlier studies could be solved by J2EE and which still remained a challenge.  

Despite many powerful J2EE features, we have found that many similarity patterns 
in WPs could not be unified with generic design solutions expressed by J2EE 
mechanisms. This weakness of J2EE particularly showed in application 
domain-specific program areas. It led to many repetitions in WP development, at both 
design and implementation levels, which made reuse and maintenance more difficult.  

In this paper, we describe a possible solution to the above problems. The essence of 
our solution is synergistic application of J2EE mechanisms together with a generative 
programming (GP) technique of XVCL [22]: Whenever J2EE component mechanisms 
become to restrictive to conveniently unify certain similarity patterns in WPs, we apply 
GP to do the job. We call such an application of a GP together with conventional 
technologies a mixed strategy solution. 

We based our experiment on CAP-WP, a portal developed on the J2EE platform by 
our industry partner ST Electronics (Info-Software Systems) Pte. Ltd. CAP-WP 
supported collaborative work and included modules such as News or Forum. We 
studied both inter- and intra-module similarities in CAP-WP design. We applied XVCL 
to unify similarity patterns, with the goal of enhanced maintainability and reusability of 
the CAP-WP. By doing this, we increased the clarity of portal’s conceptual structure as 
perceived by developers, reducing also the size of the original CAP-WP by 61%. Our 
solution enhanced the visibility of relationships among program elements that mattered 
during changes, reducing the risk of update anomalies. Based on that we hypothesized 
that XVCL-enhanced WP would be easier to maintain than the original CAP-WP. We 
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conducted a controlled experiment in which we observed that the number of 
modifications required for the same WP enhancement, as well as the effort to 
implement them, was substantially smaller in our solution than in the original CAP-WP. 
We observed a similar correlation between non-redundancy of program representation 
and the number of modification points in other projects. Still, we realize that the 
artificial setting and small scope of the experiment only partially supports our 
hypothesis.  

In addition to the above mentioned portal simplifications, similarity unification with 
XVCL also paved a way to a WP product line architecture that could facilitate 
reuse-based development of other similar WPs. 

In other projects, we described XVCL solutions to generic design problems in Java 
[11] and C++ [2] class libraries. In yet other papers, we described capabilities of XVCL 
as a variability realization mechanism for product lines [22][23]. In this paper, we show 
that fundamental problems that we observed in other projects also manifest in Web 
Portals and modern component platforms such as J2EE provide only partial solution for 
them. We show that the roots of the problems are the same and a possible treatment can 
also be the same.  

This paper is organized as follows: In Section 2, we introduce the CAP-WP. In 
Section 3, we analyze J2EE mechanisms for reuse, focusing on those that were applied 
in CAP-WP. In Section 4, we analyze similarity patterns in CA-WP. In Section 5, we 
describe an XVCL-enhanced WP obtained by unifying similarity patterns. In Section 6, 
we compare the original CAP-WP and our solution, in quantitative and qualitative ways. 
Related work and conclusions end the paper. 

2   The Common Application Platform Web Portal (CAP-WP) 

A Common Application Platform Web Portal (CAP-WP for short), developed by ST 
Electronics (Info-Software Systems) Pte. Ltd, was a typical J2EE-based WP. CAP-WP 
supported News, Forum, Access Statistics, Posting/Feedback facilities, and many other 
functions typically found in collaborative environments. CAP-WP facilitated 
information sharing via management of users, HTML-content, images and video-clips. 
It could be used to help team members collaborate online in software development 
projects. 

The developers of CAP-WP utilized model-based design1 and J2EE mechanisms to 
achieve simplicity of the design, maintainability, and reusability within the scope of 
CAP-WP. As most of other component platforms, J2EE considerably influenced the 
design of CAP-WP. All the WP modules (such as News or Forums) were portlet 
components built on top of the J2EE portlet container, using the Portlet API. Portlet 
APIs conformed to Java Portlet Specification (JSR168). 

CAP-WP comprised 14 portlet modules built of 148 packages. A subset of the 
functional portlets in CAP-WP is illustrated in Fig. 1. 

                                                           
1 In model-based design, we create a model of an application from which we derive (generate or 

manually) parts of an application. 



240 Y. Jun and S. Jarzabek 

CAP-WP

Admin

Article

Bookmark

Folder

Forum

Link

News

Search

Statistics

Storage

Survey

System

Timesheet

Tools

 

Fig. 1. Some of the CAP-WP portlet modules 

In addition to the functional portlets shown in Fig. 1, CAP-WP also provided 
facilities for WP page configuration and customization. Developers could develop their 
own portlets on any J2EE platform and plug them into the CAP-WP system. Then, by 
simply registering those portlets and WP pages using the function provided by the 
Admin portlet in CAP-WP, new WP pages could be created freely, so consequently new 
WPs could be generated as well. 

3   J2EE’s Support for Reuse in CAP-WP 

CAP-WP benefited from J2EE mechanisms from the architecture level to the 
implementation of specific portlets. CAP-WP architecture was based on the five-layer 
J2EE model (   Fig. 2). Users interacted with dynamic HTML (the Client Layer), and 
JSP/Portlet played as the Presentation Layer. Portlet Container implemented the 
Business Layer. JDBC and MySQL Database were at the Data Access Layer and the 
Resource Layer. The five-layer architecture allowed developers to build modules 
comprising a collection of client and server components forming logical parts of an 
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   Fig. 2. Five-layer architecture in CAP-WP  Fig. 3. Elements of a typical WP page 
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application. Such modules are more meaningful than isolated components. Their reuse 
was further helped by suitable APIs. 

Portlet technology is an important reuse mechanism provided by J2EE. Portlets 
define generic functionality that can be reused in many variant forms. A portlet 
generates markup fragments for WPs. A specific WP, such as CAP-WP, normally adds 
a title, control buttons and other decorations to the markup fragment generated by the 
portlet. This new instantiated fragment is called a portlet window. WP then aggregates 
portlet windows into a complete document, a WP page displayed to the user. A WP page 
can be a composite of portlet-generated elements of various sizes, forming a 
hierarchical structure, as shown in   Fig. 3. Being independent of WPs and WP pages, 
J2EE portlets are generic and reusable.  

The advantage of portlet technology is that with the service provided by the portlet 
container, portlet actions can be separated from the WP core. Using portlets, developers 
do not need to completely re-implement the whole WP for each of the required products 
over and over again. Simply changing the portlets arrangements and making 
corresponding minor modifications to the WP configuration serve the purpose.  

J2EE design patterns are supportive to reuse and CAP-WP used many of them. 
CAP-WP used the J2EE Intercepting Filter pattern (to facilitate pre- and 
post-processing of a portlet request), the Front Controller pattern (to provide a 
centralized controller for handling portlet requests), and many others. The Data Access 
Object pattern (DAO) played a particularly important role. DAO provides an 
abstraction layer between the business logic and data source objects (the persistent 
storage). Business objects access data sources via data access objects. The DAO pattern 
separates the WP from the low-level database-access code for specific persistent 
storage (database) a WP uses. CAP-WP system used MySQL database. The DAO 
pattern made CAP-WP components easily portable across databases of other vendors. 

4   Analysis of Similarity Patterns in CAP-WP 

In the above section, we saw examples of J2EE mechanisms that CAP-WP developers 
used to achieve reuse. Here, we concentrate on similarity patterns in CAP-WP that 
could not be treated with J2EE mechanisms. By similarity patterns, we mean similar 
program structures of any kind and granularity, repeated many times within a program 
or across programs. Similarity patterns show as clones. We distinguished two kinds of 
clones, namely: 

 simple clones: contiguous segments of similar code such as class methods or 
fragments of method implementation, and 
 structural clones: patterns of inter-related classes emerging from design and 
analysis spaces; patterns of components at the architecture level; design solutions 
repeatedly applied by programmers to solve similar problems. 

4.1   Types of Similarity Patterns in CAP-WP 

Fig. 4 shows portlets implementing CAP-WP modules. Each portlet (Level 1) is built of 
different functional packages (Level 2), whose operations are implemented as portlet 
classes (Level 3).  



242 Y. Jun and S. Jarzabek 

In each of the 14 portlets (Level 1), there are four types of functional packages, 
namely Action, Request, Util and View (Level 2). Functional packages of the same type 
for different portlets are implemented by similar portlet classes (Level 3). We explain 
this structure and the nature of similarities in more details later. 

We classify similarity patterns in the CAP-WP into two types, namely: 

 inter-portlet similarities: similarity patterns across different portlets, and  
 intra-portlet similarities: similarity patterns within the same portlet. 

CAP-WP

Admin Article Bookmark Folder Forum Link News Search Statistics Storage Survey System Timesheet Tools

Action

Request

Util

View

Action

Request

Util

View

Action

Request

Util

View

Action
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Util
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Util

View
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Delete[P]RequestHandler
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ErrorCodeRequestKey

JNDINameConstants

Add[P]ViewHandler
Delete[P]ViewHandler

Update[P]ViewHandler

View[P]ViewHandler

Level 1
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Fig. 4. Similarities in CAP-WP 

Inter-portlet Similarities: Many functional packages were similar across CAP-WP 
portlets. We classified 66 functional packages found in 14 portlets into nine package 
types formed by functional packages that occurred in some or all of the CAP-WP 
portlets, in similar form. Four of those package types, namely Action, Request, Util and 
View, were in each of the 14 portlets. In addition, eight portlets contained Model 
package; seven portlets contained Dao and Dao.impl package; three portlets contained 
View.taglib package; finally, just one portlet contained View.servlet package.  

At Level 3 of Fig. 4, we indicated portlet classes any of the four functional packages 
shown at Level 2 was built of. Parameter P indicates a portlet (such as Link, News, etc.) 
a given portlet class belongs to. While similar, portlet classes implementing functional 
packages of different portlets P (e.g., Add[P]Action) also differed in various ways. 
However, the similarities were significant enough to consider each group of such 
portlet classes as a “generic” class. Consequently, functional packages of, e.g., Action 
type for different portlets were similar enough to consider them instances of a “generic” 
Action package (similarly for Request, Util and View packages). 

As an example, consider a group of 14 Add[P]Action classes. In all 14 classes, 
constructors were implemented in a similar way. Each class contained only two public 
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methods init(…) and service(…). Ten classes contained private method 
getUserTransaction (…), which did not exist in the remaining four classes.  

However, there were differences in both method signatures (e.g., different return 
type or different number and types of arguments), and the details of method 
implementation across classes. Fig. 5 shows signatures of method service(…) in classes 
AddBookmarkAction and AddNewsAction from portlet Bookmark and News, 
respectively.  

The differences in method implementation detailed ranged between small 
parametric variations to completely different implementation of a the same method in 
different classes. Fig. 6 shows different implementation of method init(…) in classes 
AddArticleAction and AddNewsAction from portlets Article and News. 

 

public class AddBookmarkAction implements 

Action { 

 //other methods 

 public AppResultSupport service (AppEvent 

event) throws ActionException { 

 … 

 } 

} 

public class AddNewsAction implements Action { 

  

//other methods 

 public AppResult service (AppEvent event, 

News news) throws ActionException { 

 … 

 } 

}  

Fig. 5. Comparison between service(…) methods across classes 

public class AddArticleAction implements Action { 

 private PortletConfig  _config = null; 

 public void init (PortletConfig config) throws 

PortletException  { 

  _config = config; 

 } 

} 

public class AddNewsAction implements Action { 

 

 public void init (PortletConfig config) throws

PortletException  { 

 } 

} 

Fig. 6. Comparison between init(…) methods across classes 

Intra-portlet Similarities: We also observed much similarity within functional 
packages for specific portlets. Consider Action package of portlet Survey as an example. 
This package contained 23 portlet classes, and all of them had the same class attributes 
and constructors. Methods in those classes were also very similar to each other. For 
example, we found method service(AppEvent event), shown in Fig. 7, recurring in 
those classes, with small variations highlighted in bold. Those variations in data type 
names and algorithmic details resulted from the overlapping impact of various features 
on classes (or specific methods). Some of such variations often cannot be unified with 
generics or templates in a simple way [11][2].  
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public AppResult service (AppEvent event) throws ActionException { 
 UserTransaction tx = null; 
 try  { 
  HashMap map = (HashMap) event.getEventObject (); 
  String surveyId = (String) map.get ("survey_id"); 
  String [] roles = (String []) map.get ("roleids"); 
  tx = getUserTransaction (); 
  tx.begin (); 
  SurveyAccess access = SurveyAccess.getInstance (); 
  for (int i = 0; i < roles.length; i++)  
   access.assignSurveyToRole (surveyId, roles [i]); 
  tx.commit (); 
  tx = null; 
  return new AppResultSupport (getClass ().getName (), null, true);
 } 
 catch (Exception ec)  { 
  throw new ActionException 
       (ErrorCode.ERROR_ASSIGN_SURVEY_ROLE, ec); 
 } 
 //other implementation details 
}  

Fig. 7. Method service(AppEvent event) 

Summary of observed similarities: Both the nature and degree of intra-portlet 
similarities were quite different from inter-portlet similarities. Intra-portlet similarities 
were mostly confined to simple clones, that is similar class constructors/methods or 
fragments of them. For example, in portlet classes AddArticleAction and 
UpdateArticleAction within Action package of portlet Article, about 75% of the code 
was contained in exact clones. Further 20% of the code was contained in clones that 
differed in various details. This leaves us with only 5% of unique code in each of the 
two classes. The cloning situation in other groups of portlet classes was similar. 

On the other hand, inter-portlet analysis revealed higher, design-level similarities 
that showed as groups of similar classes. The extent of inter-portlet similarities among 
portlet classes was normally less than that of the intra-portlet classes. Classes involved 
had similar class structure, but the specific method implementations inside were quite 
different. For example, portlet class AddArticleAction from Action package of portlet 
Article and AddLinkAction from Action package of portlet Link, had similar class 
constructors, method names and declarations. However, the class attributes and specific 
method implementations were quite different between these two classes. There were no 
identical code fragments. Still, the rate of similar code with slight variations was about 
40%.  

We conclude that both inter- and intra-portlet similarities were important and worth 
noticing. Their unification with suitable generic solutions could be beneficial from both 
maintainability and reusability perspective. Despite lower similarity rates, we expected 
much engineering benefit from unification of inter-portlet similarities, as groups of 
similar classes represented fundamental design concepts in the WP domain.  
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4.2   Why Did Conventional Methods Fail to Unify Similarities? 

Other than general OO techniques, we did not find any J2EE mechanisms that could 
help us design generic solutions unifying similarity patterns such as observed in the 
previous section. Here are specific examples illustrating the difficulties in unifying 
similarity patterns:  

/*Translate the HTTP request to a specific application event object.*/
 
 public AppEvent translateRequest (PortletRequest req,  
 RequestHandlerParam param) throws EventException { 
  String username = req.getRemoteUser (); 
  String id = req.getParameter ("link_id"); 
  HashMap map = new HashMap (); 
  map.put ("link_id", id); 
  map.put ("username", username); 
  return new AppEventSupport (EVENT_NAME, map); 
 } 

 

Fig. 8. Recurring method translateRequest(…) 

Method translateRequest(…) shown in Fig. 8 is repeated in four different classes in 
the Request package of portlet Link, in the same form. The method cannot be pushed up 
to the parent class, as the class attribute EVENT_NAME must be initialized differently 
in different classes. For example, in class ViewUserLinkGroupRequestHandler 
variable EVENT_NAME must be initialized as "wcap.portal.link.event. 
ViewUserLinkGroupEvent" while in class DeleteUserLinkRequestHandler such a 
variable needed to be initialized as "wcap.portal.link. event.DeleteUserLinkEvent". 

In some situations, to unify similar methods or classes, we need parameters 
representing algorithmic elements rather than data types. In yet other situations, we 
 

/**Render the content of the portlet based on the result generated**/ 
public void render (PortletRequest req, PortletResponse resp, AppResult [] result) 
         throws ViewException { 
 PortletContext context = _config.getPortletContext (); 
 PortletURL url = context.createPortletURL (); 
 try  { 
  url.setPortletModule ("Folder"); 
  url.setPortletTask (PortletTask.LIST); 
  url.setParameter ("content_id", req.getParameter ("content_id")); 
  resp.sendRedirect (url.toString ()); 
 } 
 catch (Exception e)  { 
  Log.error ("DeleteFileViewHandler.render –Unable to include view
         folder:" + e.getMessage ()); 
  throw new ViewException  
              (ErrorCode.ERROR_DELETE_FILE, e); 
 } 
}  

Fig. 9. Method render(...) 
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have to do with many small differences across implementations of the same method in 
different classes. We observe this in the classes in View package of portlet Folder. For 
example, method render(…) recurs in all the classes in that particular package with 
small changes highlighted in bold (as in Fig. 9). This happens when the impact of 
various features overlaps in code fragments, affecting data type names, constant values 
or details of algorithms. In such cases the developer has to create wrapper classes just 
for the purpose of parameterization. And those wrapper classes introduce extra 
complexity and hamper performance [11]. 

The differences among classes playing the same role in different portlets were a 
consequence of differences in portlet requirements. The differences were rarely 
confined to type parameters, and propagated across classes in rather ad hoc way, 
making abstracting commonalities to parent classes difficult. J2EE basically relies on 
the OO mechanisms to handle the above problems. The problems with applying 
conventional OO techniques to unify similar classes and class methods encountered in 
this project were very similar to those we observed in our earlier studies of class 
libraries [11][2]. 

The explosion of similar components in the original CAP-WP was a symptom of 
“feature combinatorics” problem first observed by Batory [5]: Our features are 
functions depicted at Level 2 and Level 3 in Fig. 4. Legal combinations of features lead 
to repetitions. For a domain with n optional features, in the worst case, 2n concrete 
programs have to be created. The impact of features often spreads through many 
component layers, and multiple components within each layer. The arbitrary nature of 
feature impact causes that similarity patterns are often irregular, difficult to unify with 
conventional programming techniques. The findings about the nature of similarities 
and their reasons from the WP domain resemble observations from our earlier studies 
[11][2]. 

5   XVCL-Enhanced J2EE Solution 

5.1   Introduction to XVCL 

XVCL (XML-based Variant Configuration Language) [19][22] is a general-purpose 
meta-language, method and tool for enhancing changeability and genericity of 
programs. First, we develop a program with one of the programming languages and 
with conventional design techniques, to achieve proper program modularization and 
required runtime properties such as performance or reliability. Then, we apply XVCL 
on top of a program to facilitate change and/or to inject extra levels of genericity into it. 

XVCL partitions a program into meta-components. XVCL meta-components are 
called x-frames. Meta-level partitioning is independent of (therefore, does not conflict 
with) decomposition into program modules (e.g., classes, functions, higher-level 
components and sub-systems). X-frames form a hierarchically structured architecture, 
called an x-framework (Fig. 10). Decomposition along x-frame boundaries, 
hierarchical organization of x-frames and unrestrictive parameterization of x-frames 
with XVCL commands are the main XVCL mechanisms to facilitate changeability and 
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genericity. The x-frame body is written in the base language, which could be a 
programming language such as Java, an architecture specification language, or a 
natural language such as English. 

XVCL commands allow composition of the x-frames, via <adapt> commands 
shown as arrows in Fig. 10. XVCL commands parameterize x-frames by marking 
variation points at which an x-frame can be customized. Meta-variables and 
meta-expressions offer a basic parameterization mechanism (via <set> and <value-of> 
commands). Further parameterization is achieved by selecting pre-defined options 
based on certain conditions (via <select> command), or modifying an x-frame contents 
by inserting code at designated break points (via <insert> and <break> commands). 

Customization of an x-framework is supported by the XVCL Processor (Fig. 10). 
The Processor traverses an x-framework, interprets XVCL commands embedded in 
visited x-frames and emits the output (e.g., a custom program) into one or more output 
files. The main navigation over the x-framework customization process is exercised by 
a specification x-frame, called an SPC for short (though each x-frame typically also 
contains customization instructions). Each SPC specifies a different customization of 
an x-framework that results in different output program. 

CAP-WP SPC

[O][P]Action

recurring
constructor

unique
methods

unique
attributes

recurring
attributes

unique
constructor

[O][P]RequestHandler [O][P]ViewHandler ......

recurring
methods

meta-fragments meta-fragments meta-fragments meta-fragments

according to
requirements

...........
...........

..............
Portlets

CAP-WP

CAP-WP Product Line X-framework

XVCL Processor

adapt

 

Fig. 10. Generating CAP-WP from a generic x-framework 

An x-framework enables us to handle variants at all the granularity levels, which 
makes XVCL a variability realization technique, with possible applications in design of 
product line architectures. In this context, customization of an x-framework generates a 
member of a product line, in our case a WP similar to CAP-WP. 
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5.2   Construction of Portlet Classes with XVCL 

Based on the analysis of similarities described in Section 4, we identified six major 
groups of similar classes, namely: 

1. [O][P]Action: 18 classes which belong to Action packages in all portlets, for 
combinations of operations — O: Add, Update, View and Delete, with different 
portlets — P, like Forum, Link, News, etc. 

2. [O][P]RequestHandler: 19 classes which belong to Request packages in all 
portlets, for combinations of operations O with different portlets — P. 

3. [O][P]ViewHandler: 18 classes which belong to View packages in all portlets, for 
combinations of operations O with different portlets — P. 

4. RequestKey: 9 classes with the same name appearing in Util packages in all 
portlets. 

5. ErrorCode: 8 classes with the same name appearing in Util packages in all portlets. 
6. JNDINameConstants: 9 classes with the same name appearing in Util packages in 

all portlets. 

For each of the above groups, we designed x-frames to unify differences among 
classes in a given group. For example, meta-class [O]NewsAction (Fig. 11) facilitates 
generation of all the four portlet classes in Action package of portlet News, namely 
AddNewsAction, UpdateNewsAction, DeleteNewsAction and ViewNewsAction. 
These four classes are identical except the differences in class names and some 
implementation details in method service(AppEvent event). The differences are 
handled by a <break> and <insert> command. The <break> point seviceDetail marks a 
variation point where method service(AppEvent event) can be customized, as needed 
in different classes. This customization is specified in the SPC (Fig. 12) : <adapt> 
commands for different options (indicating different classes) contain suitable <insert> 
commands that cater for differences among classes. 

meta-class name: [O]NewsAction 

package wcap.portal.news.action; 
public class @Action_CLASSNewsAction implements Action  

Text {   // attributes and methods here 
 public AppResult service (AppEvent event) throws ActionException { 
  System.out.println ("Returning result action for event" +   
         event.getEventName()); 

break   serviceDetail 

    try { 
   NewsFacade ts = NewsFacade.getInstance(); 
   InitialContext initialcontext = new InitialContext(); 
   UserTransaction ut = (UserTransaction) initialcontext.lookup 
     (JNDINameConstants.USER_TRANSACTION);
   ut.begin(); 
   try { 
    ut.commit(); 
   } 
   //other implementation code … 

text 

  return new AppResultSupport (@Action_CLASS, @Return, true); 
 } 
} 

 

Fig. 11. Meta-class [O]NewsAction 
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The SPC of Fig. 12 controls the overall process of generating all the classes in 
package Action of portlet News. First, the SPC <set>s the value of meta-variable 
Action_CLASS to <Add, Update, Delete, View> for the different class names and the 
value of meta-variable Return to <news, news, null, news> as the parameters of return 
object. Values of those meta-variables are propagated down to the <adapt>ed 
meta-components. 

SPC 

set Action_CLASS=<Add, Update, Delete, View> 
set Return = <news, news, null, news> 

while using-items-in=Action_CLASS 
select option=”Action_CLASS” 

adapt [O]NewsAction 
 insert  serviceDetail 

Add 
  text

News news= 
(News)event.getEventObject(); 
if (news == null) 
 return new AppResultSupport 
 ("AddNewsAction", null, true);

adapt [O]NewsAction 
insert serviceDetail Update 

 
 text

News news= 
(News)event.getEventObject(); 

Delete adapt [O]NewsAction 
adapt [O]NewsAction 

insert  serviceDetail 

 
 

View 
 

 text News news = null;  

Fig. 12. SPC to construct classes in Action package for portlet News 

The value of Action_CLASS is a list. Command <while> iterates over its body four 
times. In each iteration, Action_CLASS accepts one value from the list, in the 
left-to-right order. Based on that value, the processor <select>s a suitable option (such 
as Add, Update or otherwise) and generates code for appropriate class(es) 
(AddNewsAction, UpdateNewsAction and all the remaining classes, respectively). 
Generation is done by <adapt>ing the meta-class [O]NewsAction. To generate class 
DeleteNewsAction, we just adapt the meta-class without inserting any code at the 
break point for there is nothing in class DeleteNewsAction at this point. For the 
remaining classes, we inserted different code according to the different 
implementations in method service(AppEvent event) at this point. 

Methods that recur in portlet classes without changes, such as method 
translateRequest(…) in Fig. 8, are included “as is”. Methods that recur in portlet 
classes with some changes are adapted, depending on the context. For example, we 
parameterized method render(…) (Fig. 9) with meta-variables as shown in  
Fig. 13. 

Such adaptations are achieved by means of parameterization via meta-variables and 
meta-expressions, insertions of code and specifications at designated break points, 
selection among given options based on conditions, code generation by iterating over 
sections of meta-components, etc. Parameterization via meta-variables and 
meta-expressions plays an important role in building generic, reusable programs. It 
provides the means for creating generic names and controlling the traversal and 
adaptation of a meta-component architecture.  
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meta-fragment name: render        

text 

/**Render the content of the portlet based on the result generated**/ 
 public void render (PortletRequest req,  PortletResponse resp, 
   AppResult [] result) throws ViewException  { 
  PortletContext context = _config.getPortletContext (); 
  PortletURL url = context.createPortletURL (); 
  try  { 
   url.setPortletModule ("Folder"); 
   url.setPortletTask (PortletTask.LIST); 
   url.setParameter (@urlParameters); 
   resp.sendRedirect (url.toString ()); 
  } 
  catch (Exception e)  { 
   Log.error (@errorMessage); 
   throw new ViewException  
            (@exceptionType, e); 
  } 
 } 

 

Fig. 13. Meta-fragment render.xvcl 

A reference to a meta-variable, such as @exceptionType, is replaced by the 
meta-variable’s value during processing x-framework. The value of meta-variable 
exceptionType may be <set> to ErrorCode.ERROR_UPLOAD_FILE, ErrorCode. 
ERROR_RETRIEVE_FILE, ErrorCode.ERROR_UPDATE_FILE, etc., as required at 
the adaptation point. For example, to produce method render (Portlet Request req, 
PortletResponse resp, AppResult [] result) for class UpdateFile ViewHandler, we 
<set> the value of meta-variable exceptionType to ErrorCode.ERROR_UPDATE_FILE, 
and for classes ViewFileViewHandler and DownloadFileViewHandler, we <set> the 
value of this variable to ErrorCode.ERROR_RETRIEVE_FILE. 

By unifying the similarity patterns at the meta-level as described above, we obtained 
a generic, XVCL-enhanced CAP-WP. Mechanisms implemented into our new 
CAP-WP provide a generic way to deal with variant features affecting major CAP-WP 
components. In future work, we plan to analyze WPs similar to CAP-WP, and extend 
the solution described in this paper to form a CAP-WP product line architecture like in 
Fig. 10. 

6   Analysis of the Results 

We applied XVCL to unify similarity patterns, taking into account both inter- and 
intra-module similarities in CAP-WP. Our solution represented each similarity pattern 
with a unique generic meta-level structure. Not only did such unification reduce the 
solution size by 61% (Fig. 14), but most importantly it increased the clarity of portal’s 
conceptual structure as perceived by developers. In particular, it reduced the number of 
conceptual elements a programmer had to deal with and enhanced the visibility of 
relationships among program elements that mattered during changes: Rather than 
maintaining multiple variant code structures delocalized across the CAP-WP, in 
XVCL-enhanced solution a programmer dealt with one generic structure, with full 
 



 Applying a Generative Technique for Enhanced Genericity and Maintainability 251 

visibility of customizations required to produce instances of variant structures, as well 
as their exact locations. The non-redundancy of the XVCL-enhanced CAP-WP, 
achieved by generic meta-level structures unifying similarity patterns, reduced the risk 
of update anomalies.  

with comments without comments

Original CAP-WP XVCL-enhanced J2EE
 

Fig. 14. Size comparison of the original CAP-WP and XVCL-enhanced solution 

Based on the above analysis, we hypothesized that our solution, by enhancing 
traceability of information that mattered during changes, could facilitate easier 
maintenance. To test this hypothesis, we conducted a controlled experiment in which 
we implemented the same functional enhancement in both the original CAP-WP and 
our solution. The number of required modifications to implement the enhancement in 
our solution was 443 as compared to 1182 modifications in the original CAP-WP. This 
63% reduction of modifications points interestingly correlates with 61% reduction of 
the solutions size counted in LOC. Reduction of modification points is not surprising as 
it is a direct consequence of unifying similar code structures with generic meta-level 
structures: One modification point in the meta-level structure usually maps to many 
modification points in its instances. We observed a similar correlation between 
non-redundancy of program representation and the number of modification points in 
other projects [11].  

We also observed that due to improved traceability of information and conceptual 
clarity of the XVCL-enhanced CAP-WP, most of the modifications were easier to 
implement. Modifications done at one point of a meta-level representation consistently 
propagated to all the affected components. If the impact of change was not uniform in 
all such components, the exceptions could just be handled at the specific adaptation 
point, without directly modifying the component involved. The XVCL-enhanced 
CAP-WP solution effectively explicated and separated the impact of various sources of 
change.  

Consider the meta-class [O]NewsAction (Fig. 11) which facilitates generation of 
classes AddNewsAction, UpdateNewsAction, DeleteNewsAction and 
ViewNewsAction. These four classes are identical except the differences in class 
names and some implementation details in method service(AppEvent event). Suppose 
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there is a method foo() shared by the four classes requires some modifications during 
maintenance. In the original CAP-WP, we must examine four different locations and 
repeat the change four times. In our solution, we need modify method foo() only once 
in the meta-class [O]NewsAction and the changes propagate from there to all the four 
classes by adapting [O]NewsAction (Fig. 12). In case the change to method foo() is not 
uniform across classes, the differences can be specified at relevant adaptation points. 
We realize that the artificial setting and small scope of the experiment only partially 
supports our claims. 

The size of a solution is just one among many factors that collectively determine the 
complexity of a program solution as perceived by a programmer. For example, by 
applying data compression techniques, we do not make a program any simpler for a 
programmer to understand. While in general code size reduction need not necessarily 
imply a simpler program, in the case of our experiment we found a correlation between 
the size and engineering qualities of the solutions. 

To further support the hypothesis of improved maintainability of our solution, we 
analyzed experiences from the industrial application of XVCL to Web WP engineering 
[15]. This industrial project involved evolution from a single WP to an 
XVCL-enhanced generic WP, with more than 20 different WPs produced based on the 
generic WP. Despite differences in underlying technologies, the nature of problems 
solved with XVCL in this project was the same as in the CAP-WP project described in 
this paper. Therefore, productivity figures and qualitative analysis of the solution 
published in [15] further support, although only indirectly and speculatively, our 
hypothesis of improved maintainability of the J2EE-enhanced CAP-WP. 

Imposing XVCL on top of the J2EE CAP-WP did not create major conceptual or 
technical difficulties, either. However, despite those benefits, design in terms of 
meta-components is not easy and also different from the conventional program design. 
A limitation of XVCL is that, being generic, x-frames can be difficult to understand. 
The verbose XML syntax also has negative impact on understanding x-frames. These 
problems can be mitigated by carefully designing x-frameworks according to XVCL 
design rules, and by re-factoring the design as an x-framework evolves. We are also 
developing XVCL Workbench to facilitate x-framework development. The XVCL 
Workbench includes tools such as a smart x-frame editor that hides XML syntax and 
displays graphical views of x-frames, and a static analysis tool that helps us understand 
an x-framework. We refer to other papers for a comprehensive discussion of trade-off 
involved in enhancing conventional program solutions with XVCL. 

7   Related Work 

Modular decomposition with information hiding [14], macros, generics in Ada or Java 
[10], templates in C++, other forms of parameterization such as higher order functions 
[21], inheritance with dynamic binding, and design patterns [9] are some of the 
conventional design techniques to achieve genericity. Aspect-Oriented Programming 
[12] and MDSOC [20] support genericity by separating cross-cutting concerns. In 
AHEAD [4], genericity is supported by feature composition and refinement. AHEAD 
models software as a mathematical structure of nested equations, making it possible to 
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study formal properties of refinements and resulting programs. Many techniques 
described under the umbrella of generative techniques [8] achieve forms of separation 
of concerns that is supportive to genericity (although avoiding repetition may not be a 
prime goal of these techniques). Domain analysis [15] is essential in identifying 
high-level, large granularity patterns of similarity. Generic solutions unifying such 
patterns are most beneficial for programmer’s productivity as they can significantly 
reduce the size and complexity of the solution. Software architectures [6][7], 
architectural styles [17] and patterns [7] help developers avoid repeatedly designing the 
same solution by providing component plug-in plug-out capability. 

8   Conclusions 

We analyzed capabilities of J2EE to effectively unify similarity patterns found in Web 
Portals (WP). Our experimentation involved a portal, called CAP-WP, to support 
information sharing and team collaboration, built by our industry partner. While J2EE 
provides useful mechanisms for reuse of services common to component-based 
systems, we found its limitations in systematic across-the-board reuse in application 
domain-specific areas. To solve these problems, we applied a generative programming 
(GP) technique of XVCL on top of J2EE. Our solution reduced the size of the original 
CAP-WP by 61% and increased the clarity of portal’s conceptual structure as perceived 
by developers. It also enhanced traceability of information that mattered during 
changes, hopefully leading to improved maintainability of our solution over the 
original J2EE portal. In the paper, we described our solution and evaluated its 
engineering merits in both quantitative and qualitative ways. 

In addition, the approach paved the way to a WP product line: The meta-structures of 
the XVCL-enhanced-J2EE solution could become building blocks of a WP product line 
architecture facilitating rapid development of other, WPs, similar to CAP-WP.  

An important characteristic of the presented approach is synergistic application of a 
GP technique together with conventional OO and component-based development 
techniques. In such a “mixed strategy” solutions, a developer uses the OO paradigm to 
define a class/component structure of a program solution, and a GP technique (e.g., 
XVCL) to deal with genericity and changeability concerns. We believe that the GP 
techniques can add much value to the existing technologies for Web engineering. In the 
future, we plan to analyze WP functional and platform variants, and extend our solution 
to form a WP product line architecture. We plan to further investigate essential 
properties of WPs and technologies used for Web engineering in industries. We plan to 
investigate engineering qualities of “mixed strategy” with XVCL applied on top of 
other Web technologies.  
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Abstract. With Gaussian Elimination as a representative family of nu-
merical and symbolic algorithms, we use multi-stage programming, mon-
ads and Ocaml’s advanced module system to demonstrate the complete
elimination of the abstraction overhead while avoiding any inspection of
the generated code. We parameterize our Gaussian Elimination code to
a great extent (over domain, matrix representations, determinant track-
ing, pivoting policies, result types, etc) at no run-time cost. Because the
resulting code is generated just right and not changed afterwards, we
enjoy MetaOCaml’s guaranty that the generated code is well-typed. We
further demonstrate that various abstraction parameters (aspects) can
be made orthogonal and compositional, even in the presence of name-
generation for temporaries and other bindings and “interleaving” of as-
pects. We also show how to encode some domain-specific knowledge so
that “clearly wrong” compositions can be statically rejected by the com-
piler when processing the generator rather than the generated code.

1 Introduction

In high-performance, symbolic, and numeric computing, there is a well-known
issue of balancing between maximal performance and the level of abstraction at
which code is written. Furthermore, already in linear algebra, there is a wealth
of different aspects that may need to be addressed. For example, implementa-
tions of the widely used Gaussian Elimination (GE) algorithm — the running
example of our paper — may need to account for the representation of the ma-
trix, whether to compute and return the determinant or rank, how and whether
search for pivot, etc. Furthermore, current architectures demand more and more
frequent tweaks which, in general, cannot be done by the compiler because the
tweaking often involves domain knowledge. A survey [3] of Gaussian elimination
implementations in an industrial package Maple found 6 different aspects and
35 different implementations of the algorithm, as well as 45 implementations of
directly related algorithms. We can manually write each of these implementa-
tions optimizing for particular aspects and using cut-and-paste to “share” simi-
lar pieces of code. We can write a very generic GE procedure that accounts for
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all the aspects with appropriate abstractions [16]. The abstraction mechanisms
however – be they procedure, method or a function call – have a significant cost,
especially for high-performance numerical computing [3].

A more appealing approach is generative programming [7,33,25,29,17,36].
The approach is not without problems, e.g., making sure that the generated
code is well-formed. This is a challenge in string-based generation systems,
which generally do not offer such guarantees and therefore make it very dif-
ficult to determine which part of the generator is at fault when the generated
code cannot be parsed. Other problems is preventing accidental variable capture
(so-called hygiene [21]) and ensuring the generated code is well-typed. Lisp-style
macros, Scheme hygienic macros, camlp4 preprocessor [9], C++ template meta-
programming, Template Haskell [8] solve some of the above problems. Of the
widely available maintainable languages, only MetaOCaml [2,23] solves all the
above problems including the well-typing of the generated code [32,30].

But more difficult problems remain. Is the generated code optimal? Do we
still need post-processing to eliminate common subexpressions and fold con-
stants, remove redundant bindings? Is the generator readable, resembling the
original algorithm, and extensible? Are the aspects truly modular? Can we
add another aspect to it or another instance of the existing aspect without
affecting the existing ones? Finally, can we express domain-specific knowledge,
e.g., one should not attempt to use full division when dealing with matrices
of exact integers, nor is it worthwhile to use full pivoting on a matrix
over Q.

MetaOCaml is generative: generated code can only be treated as a black
box: it cannot be inspected and it cannot be post-processed (i.e., no intensional
analysis). This approach gives a stronger equational theory [31], and avoids the
danger of creating unsoundness [30]. Furthermore, intensional code analysis es-
sentially requires one to insert both an optimizing compiler and an automated
theorem proving system into the code generating system [28,18,4,34]. While this
is potentially extremely powerful and an exciting area of research, it is also ex-
tremely complex, which means that it is currently more error-prone and difficult
to ascertain the correctness of the resulting code.

Therefore, in MetaOCaml, code must be generated just right (see [30] for
many simple examples). For more complex examples, new techniques are neces-
sary, e.g., abstract interpretation [20]. But more problems remain [6]: generating
binding statements (“names”), especially when generating loop bodies or condi-
tional branches; making continuation-passing style (CPS) code clear. Many au-
thors understandably shy away from CPS code as it quickly becomes unreadable.
But this is needed for proper name generation. The problems of compositional-
ity of code generators, expressing dependencies among them and domain-specific
knowledge remain.

In this paper we report on progress of solving these problems using GE as
our running example. Specifically, our contributions:

– Extending a let-insertion, memoizing monad of [12,20] for generating con-
trol structures such as loops and conditionals. The extension is non-trivial



258 J. Carette and O. Kiselyov

because of control dependencies and because let-insertion, as we argue, is a
control effect on its own.

– Implementation of the doM-notation (patterned after do-notation of Haskell)
to make monadic code readable.

– Use of functors (including higher-order functors) to modularize the genera-
tor, express aspects (including results of various types) and assure compos-
ability of aspects even for aspects that use state and have to be accounted
in many places in the generated code.

– Use functor type sharing constraints to encode domain-specific knowledge.

The rest of this paper is structured as follows: The next section introduces
code generation in MetaOCaml, the problem of name generation, and continua-
tion-passing style (CPS) as a general solution. We also introduce the monad
and the issues of generating control statements. Section 3 describes the use of
parametrized modules of OCaml to encode all of the aspects of the Gaussian
Elimination algorithm family in completely separate, independent modules. We
briefly discuss related work in section 4. We then outline the future work and
conclude. Appendices give samples of the generated code (which is available in
full at [5]).

2 Generating Binding Statements, CPS, and Monad

We build code generators out of primitive ones using code generation combi-
nators. MetaOCaml, as an instance of a multi-stage programming system [30],
provides exactly the needed features: to construct a code expression, to combine
them, and to execute them. Figure 1 shows the simplest code generator one, as
well as more complex generators.

let one = .<1>. and plus x y = .<.~x + .~y>.

let simplest_code = let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

=⇒.<fun x_1 -> fun y_2 -> (x_1 + (y_2 + 1))>.

let simplest_param_code plus one = let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

let param_code1 plus one =

let gen x y = plus (plus y one) (plus x (plus y one)) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

let param_code1’ plus one =

let gen x y = let ce = (plus y one) in plus ce (plus x ce) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

param_code1’ plus one

=⇒.<fun x_1 -> fun y_2 -> ((y_2 + 1) + (x_1 + (y_2 + 1)))>.

Fig. 1. Code generation and combinators. =⇒ under an expression shows the result of
its evaluation

We use MetaOCaml brackets .<...>. to generate code expressions, i.e., to
construct future-stage computations. We use escapes .~ to perform an immediate
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code generating computation while we are building the future-stage computation.
The immediate computation in simplest_code is the evaluation of the function
gen, which in turn applies plus. The function gen receives code expressions
.<x>. and .<y>. as arguments. At the generating stage, we can manipulate
code expressions as (opaque) values. The function gen returns a code expression,
which is inlined in the place of the escape. MetaOCaml can print out code
expressions, so we can see the final generated code. It has no traces of gen and
plus: their applications are done at the generation stage.

The final MetaOCaml feature, .! (pronounced “run”) executes the code ex-
pression: .! simplest_code is a function of two integers, which we can apply:
(.! simplest_code) 1 2. The original simplest_code is not a function on
integers – it is a code expression.

To see the benefit of code generation, we notice that we can easily parameter-
ize our code, simplest_param_code, and use it to generate code that operates
on integers, floating point numbers or booleans – in general, any domain that
implements plus and one.

The generator param_code1 has two occurrences of plus y one, which may
be quite a complex computation and so we would rather not do it twice. We
may be tempted to rely on the compiler’s common-subexpression elimination
optimization. When the generated code is very complex, however, the com-
piler may overlook common subexpressions. Or the subexpressions may occur
in such an imperative context where the compiler might not be able to deter-
mine if lifting them is sound. So, being conservative, the optimizer will leave
the duplicates as they are. We may attempt to eliminate subexpressions as in
param_code1’. However, the result of param_code1’ plus one still exhibits
duplicate sub-expressions. Our let-insertion optimization saved the computa-
tion at the generating stage. We need a combinator that inserts the let ex-
pression in the generated code. We need a combinator letgen to be used as
let ce = letgen (plus y one) in plus ce (plus x ce) yielding the code
like .<let t = y + 1 in t + (x + t)>. But that seems impossible because
letgen exp has to generate the expression .<let t = exp in body>. but
letgen does not have the body yet. The body needs a temporary identifier
.<t>. that is supposed to be the result of letgen itself. Certainly letgen can-
not generate only part of a let-expression, without the body, as all generated
expressions in MetaOCaml are well-formed and complete.

The key is to use continuation-passing style (CPS). Its benefits were first
pointed out by [1] in the context of partial evaluation, and extensively used by
[12,20] for code generation. Now, param_code2 plus one gives us the desired
code.

let letgen exp k = .<let t = .~exp in .~(k .<t>.)>.

let param_code2 plus one =

let gen x y k = letgen (plus y one) (fun ce -> k(plus ce (plus x ce)))

and k0 x = x

in .<fun x y -> .~(gen .<x>. .<y>. k0)>.

param_code2 plus one

=⇒.<fun x_1 -> fun y_2 -> let t_3 = (y_2 + 1) in (t_3 + (x_1 + t_3))>.
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Comparison of the code that did let-insertion at the generating stage
let ce = (plus y one) in plus ce (plus x ce)
with the corresponding code inserting let at the generated code stage
letgen (plus y one) (fun ce -> k (plus ce (plus x ce)))
clearly shows the difference between direct-style and CPS code. What was
let ce = init in ... in direct style became init’ (fun ce -> ...) in
CPS. For one thing, let became “inverted”. For another, what used to be an
expression that yields a value, init, became an expression that takes an extra
argument, the continuation, and invokes it. The differences look negligible in the
above example. In larger expressions with many let-forms, the number of paren-
theses around fun increases, the need to add and then invoke the k continuation
argument become increasingly annoying. The inconvenience is great enough for
some people to explicitly avoid CPS or claim that numerical programmers (our
users) cannot or will not program in CPS. Clearly a better notation is needed.

The do-notation of Haskell [27] shows that it is possible to write CPS code in
a conventional-looking style. The do-notation is the notation for monadic code
[24]. Not only can monadic code represent CPS [13], it also helps in composability
by offering to add different layers of effects (state, exception, non-determinism,
etc) to the basic monad [22] in a controlled way.

A monad [24] is an abstract data type representing computations that yield
a value and may have an effect. The data type must have at least two opera-
tions, return to build trivial effect-less computations and bind for combining
computations. These operations must satisfy monadic laws : return being the
left and the right unit of bind and bind being associative. Figure 2 defines the
monad used throughout the present paper and shows its implementation.

type (’v,’s,’w) monad = ’s -> (’s -> ’v -> ’w) -> ’w

let ret (a :’v) : (’v,’s,’w) monad = fun s k -> k s a

let bind a f = fun s k -> a s (fun s’ b -> f b s’ k)

let fetch s k = k s s and store v s k = k (v::s) ()

let k0 s v = v

let runM m = m [] k0

let l1 f = fun x -> doM { t <-- x; f t}
let l2 f = fun x y -> doM { tx <-- x; ty <-- y; f tx ty}

let retN a = fun s k -> .<let t = .~a in .~(k s .<t>.)>.

let ifL test th el = ret .< if .~test then .~th else .~el >.

let ifM test th el = fun s k ->

k s .< if .~(test s k0) then .~(th s k0) else .~(el s k0) >.

Fig. 2. Our monad

Our monad represents two kinds of computational effects: reading and writing
a computation-wide state, and control effects. The latter are normally associated
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with exceptions, forking of computations, etc. – in general, whenever a computa-
tion ends with something other than invoking its natural continuation in the tail
position. In our case the control effects manifest themselves as code generation.

In Figure 2, the monad (yielding values of the type v) is implemented as
a function of two arguments: the state (of type s) and the continuation. The
continuation receives the current state and the value, and yields the answer of
the type w. The monad is polymorphic over the three type parameters. Other
implementations are possible. Except for the code in Figure 2, the rest of our
code treats the monad as a truly abstract data type. The implementation of the
basic monadic operations ret and bind is conventional and clearly satisfies the
monadic laws. Other monadic operations construct computations that do have
specific effects. Operations fetch and store v construct computations that read
and write the state. In our case the state is a list (of polymorphic variants), which
models an open discriminated union, as we shall see later.

The operation retN a is the let-insertion operation, whose simpler version
we called letgen earlier. It is the first computation with a control effect: indeed,
the result of retN a is not the result of invoking its continuation k. Rather,
its result is a let code expression. Such a behavior is symptomatic of control
operators (in particular, abort).

Finally, runM runs our monad, that is, performs the computation of the
monad and returns its result, which in our case is the code expression. We run
the monad by passing it the initial state and the initial continuation k0. We can
now re-write our param_code2 example of the previous section as param_code3.

let param_code3 plus one =

let gen x y = bind (retN (plus y one)) (fun ce ->

ret (plus ce (plus x ce)))

in .<fun x y -> .~(runM (gen .<x>. .<y>.))>.

let param_code4 plus one =

let gen x y = doM { ce <-- retN (plus y one);

ret (plus ce (plus x ce)) }
in .<fun x y -> .~(runM (gen .<x>. .<y>.))>.

let ifM’ test th el = doM {
testc <-- test; thc <-- th; elc <-- el;

ifL testc thc elc}
let gen a i = ifM’ (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)

in .<fun a i -> .~(runM (gen .<a>. .<i>.))>.

=⇒.<fun a_1 i_2 ->let t_3 = (Some a_1.(i_2)) in if (i_2 >= 0) then t_3 else None>.

let gen a i = ifM (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)

in .<fun a i -> .~(runM (gen .<a>. .<i>.))>.

=⇒.<fun a_1 i_2 ->if (i_2 >= 0) then let t_3 = (Some a_1.(i_2)) in t_3 else None>.

That does not seem like much of an improvement. With the help of camlp4
pre-processor, we introduce the doM-notation [5], patterned after the do-notation
of Haskell. The function param_code4, written in the doM-notation, is equivalent
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to param_code3 – in fact, the camlp4 preprocessor will convert the former into
the latter. And yet, param_code4 looks far more conventional, as if it were indeed
in direct style.

We can write operations that generate code other than let-statements, e.g.,
conditionals: see ifL in Figure 2. The function ifL, albeit straightforward, is
not as general as we wish: its arguments are already generated pieces of code
rather than monadic values. We “lift it”, see ifM’. We define functions l1,
l2, l3 (analogues of liftM, liftM2, liftM3 of Haskell) to make such a lifting
generic. However we also need another ifM function, with the same interface (see
Figure 2). The difference between them is apparent: in the code above with ifM’,
the let-insertion happened before the if-expression, that is, before the test that
the index i is positive. If i turned out negative, a.(i) would generate an out-
of-bound array access error. On the other hand, the code with ifM accesses the
array only when we have verified that the index is non-negative. This example
makes it clear that the code generation (such as the one in retN) is truly an effect
and we have to be clear about the sequencing of effects when generating control
constructions such as conditionals. The form ifM handles such effects correctly.
We need similar operators for other OCaml control forms: for generating case-
matching statements and for- and while-loops.

3 Aspects and Functors

The monad represents finer-scale code generation. We need tools for larger-scale
modularization; we can use any abstraction mechanisms we want to structure
our code generators, as long as none of those abstractions infiltrate the generated
code.

While the Object-Oriented Design community has acquired an extensive vo-
cabulary for describing modularity ideas, the guiding principles for modular
designs has not changed since they were first articulated by Parnas [26] and
Dijkstra [10]: information hiding and separation of concerns. To apply these
principles to the study of Gaussian Elimination, we need to understand what
are the changes between different implementations, and what concerns need to
be addressed. We also need to study the degree to which these concerns are inde-
pendent. A study of Gaussian Elimination [3] shows that the following variations
occur:

1. Domain: In which (algebraic) domain do the matrix elements belong to.
Sometimes the domains are very specific (e.g., Z, Q, Zp and floating point
numbers), while in other cases the domains were left generic, e.g., multivari-
ate polynomials over a field. In the roughly 85 pieces of code surveyed [3] 20
different domains were encountered.

2. Container: Whether the matrix is represented as an array of arrays, a one-
dimensional array, a hash table, a sparse matrix, etc., and whether indexing
is done in C or Fortran style. Additionally, if a particular representation had
a special mechanism for efficient row exchanges.
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3. Output choices: Whether just the reduced matrix, or additionally the rank,
the determinant, and the pivoting matrix are to be returned. In the larger
algorithm family, routines like Maple’s LinearAlgebra:-LUDecomposition
have up to 26 + 25 + 22 = 100 outputs.

4. Fraction-free: Whether the Gaussian Elimination algorithm is allowed to
use unrestricted division, or only exact (remainder-free) division.

5. Pivoting: Whether to use no, column-wise, or full pivoting.
6. Augmented Matrices: Whether all or only some columns of the matrix

participate in elimination. We currently do not implement this aspect.

In addition to the above variations, there are two aspects that recur frequently:

1. Length measure: For stability reasons (numerical or coefficient growth), if
a domain possesses an appropriate length measure, this is sometimes used
to choose an “optimal” pivot.

2. Normalization and zero-equivalence: Whether the arithmetic opera-
tions of the domain give normalized results, and whether a specialized zero-
equivalence routine is to be used.

These are separated out from the others as they are cross-cutting concerns: in the
case of the length measure, a property of the domain will influence the pivoting
method if pivoting is to be performed.

The simplest parametrization is to make the domain abstract. As it turns
out, we need the following to exist in our domains: 0, 1, +, ∗, (unary and binary)
−, at least exact division, normalization, and potentially a relative size measure.
The simplest case of such domain abstraction is param_code1 in Fig. 1. There,
code-generators such as plus and one were passed as arguments. We need far
more than two parameters, so we have to group them. Instead of the group-
ing offered by regular records, we use OCaml structures (i.e., modules) so we
can take advantage of extensibility, type abstraction and constraints, and espe-
cially parameterized structures (functors). We define the type of the domain,
the signature DOMAIN, which different domains must satisfy:

module type DOMAIN = sig

type v type ’a vc = (’a,v) code

type kind (* Field or Ring ? *)

val zero : ’a vc val one : ’a vc

val plus : ’a vc -> ’a vc -> (’a vc, ’s, ’w) monad

(* times, minus, uminus, div elided for brevity *)

val better_than : (’a vc -> ’a vc ->

((’a,bool) code, ’s, ’w) monad) option

val normalizerf : ((’a,v -> v) code ) option

end

module IntegerDomain : DOMAIN = struct

type v = int type kind = domain_is_ring

type ’a vc = (’a,v) code

let zero = .< 0 >. and one = .< 1 >.
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let plus x y = ret .<.~x + .~y>.

let better_than = Some (fun x y -> ret .<abs .~x > abs .~y >. )

let normalizerf = None

...

end

The types above are generally lifted twice: once from the value domain v to
the code domain ’a vc, and once more from values to monadic computations
(’a vc, ’s, ’w) monad.

One particular domain instance is IntegerDomain. The notation
module IntegerDomain : DOMAIN makes the compiler verify that our
IntegerDomain is indeed a DOMAIN, that is, satisfies the required signature. The
constraint DOMAIN may be omitted; in that case, the compiler will verify the type
when we try to use that structure as a DOMAIN. In any case, the errors such as
missing “methods” or methods with incorrect types will be caught statically,
even before any code generation takes place. The abstract type domain_is_ring
encodes a semantic constraint that the full division is not available. While the
DOMAIN type may have looked daunting to some, the implementation is quite
straightforward. Other domains such as float and arbitrary precision exact ra-
tional numbers Num.num are equally simple.

Parameterizing by the kind of container representing a matrix is almost as
straightforward. Our containers are parametric over a DOMAIN, i.e., functors from
a DOMAIN module to the actual implementation of a container. The functor sig-
nature CONTAINER2D specifies that a container must provide functions dim1 and
dim2 to extract the dimensions, functions get and set to generate container
getter and setters, the cloning generator copy and functions that generate code
for row and column swapping. The inclusion of these functions in the signature
of all containers makes it simpler to optimize the relevant functions depending
on the actual representation of the container while not burdening the users of
containers with efficiency details.

The use of a functor for making a container parametric is fairly straightfor-
ward. More interesting is the aspect of what to return from the GE algorithm.
One could create an algebraic data type (as was done in [3]) to encode the various
choices: the matrix, the matrix and the rank, the matrix and the determinant,
the matrix, rank and determinant, and so on. This is wholly unsatisfying as
we know that for any single use, only one of the choices is ever possible, yet
any routine which calls the generated code must deal with these unreachable
options. Instead we use a module type with an abstract type res for the result
type; different instances of the signature set the result type differently. Given
below is this module type and one instantiation, which specifies the output of
a GE algorithm as a 3-tuple contr * Det.outdet * int of the U-factor, the
determinant and the rank.

module type OUTPUT = sig

type contr type res

module D : DETERMINANT module R : RANK module P : TRACKPIVOT

val make_result : (’a,contr) code ->
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((’a,res) code,

[> ‘TDet of ’a D.lstate | ‘TRan of ’a R.lstate | ‘TPivot of ’a P.lstate]

list, (’a,’w) code) monad

end

module OutDetRank(Dom:DOMAIN)(C: CONTAINER2D)

(Det : DETERMINANT with type indet = Dom.v and type outdet = Dom.v)

(Rank : RANK) = struct

module Ctr = C(Dom)

type contr = Ctr.contr

type res = contr * Det.outdet * int

module D = Det module R = Rank module P = DiscardPivot

let make_result b = doM { det <-- D.fin (); rank <-- R.fin ();

ret .< ( .~b, .~det, .~rank ) >. }
end

As is apparent from the output choices, several different quantities may need
to be tracked in a particular GE implementation. We therefore need to be able
to conditionally generate variables representing the tracking state, and weave
in corresponding tracking code. We may need to (independently) keep track of
the rank, the determinant and the permutation list. The tracking state variables
then become part of the state that is tracked by our monad. To have all this
choice when needed, and yet have our code be modular and composable as well
as ensuring that the generated code does not contain any abstraction artifacts,
it is important to make this state modular. For example,

module type DETERMINANT = sig

type indet type outdet type ’a lstate

type tdet = outdet ref

val decl : unit ->

(unit, [> ‘TDet of ’a lstate ] list, (’a,’b) code) monad

val upd_sign : unit ->

((’a,unit) code, [> ‘TDet of ’a lstate ] list, (’a,’b) code) monad

...

end

to track determinant we should be able to generate code for: defining variables
used for tracking (decl), updating the sign or the absolute value of the deter-
minant, converting the tracking state to the final determinant value of the type
outdet. GE of a floating-point matrix with no determinant tracking uses the
instantiation of DETERMINANT where outdet is unit and all the functions of that
module generate no code. For integer matrices, we have to track some aspects of
the determinant, even if we don’t output it. The determinant tracking aspect is
complex because tracking variables, if any, are to be declared at the beginning
of GE; the sign of the determinant has to be updated on each row or column
permutation; the value of the determinant should be updated per each pivoting.
We use lstate to pass the tracking state, e.g., a piece of code for the value of the
type Dom.v ref, among various determinant-tracking functions. The lstate is
a part of the overall monadic state. Other aspects, e.g., rank tracking, may use
the monadic state for passing of rank tracking variables. To be able to compose
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determinant and rank tracking functors – each of which may (or may not) use
the monadic state for passing its own data – we make extensive use of open
records (a list of polymorphic variants appeared to be the easiest way to im-
plement such a union, in a purely functional way). This lets us freely compose
determinant-tracking, rank-tracking, and other aspects.

The GE generator functor itself is parameterized by the domain, container,
pivoting policy (full, row, nonzero, no pivoting), update policy (with either
‘fraction-less’ or full division), and the result specification. Some of the argument
modules such as PIVOT are functors themselves (parameterized by the domain,
the container, and the determinant functor). The sharing constraints express ob-
vious constraints on the instantiation of Gen, for example, pivoting, determinant
etc. components all use the same domain. It must be stressed that all structures
(i.e., module instances) are stateless, and so we never have to worry that dif-
ferent aspect functors (such as CONTAINER2D and PIVOT) are instantiated with
different but type-compatible instances of DOMAIN. That is, we are not concerned
module Gen(Dom: DOMAIN)(C: CONTAINER2D)(PivotF: PIVOT)

(Update: UPDATE with type baseobj = Dom.v and type ctr = C(Dom).contr)

(Out: OUTPUT with type contr = C(Dom).contr and type D.indet = Dom.v

and type ’a D.lstate = ’a Update.D.lstate) = struct

module Ctr = C(Dom)

module Pivot = PivotF(Dom)(C)(Out.D)

let gen =

let zerobelow b r c m n brc =

let innerbody i = doM {
bic <-- Ctr.get b i c;

whenM (l1 LogicCode.not (LogicCode.equal bic Dom.zero ))

(seqM (retLoopM (Idx.succ c) (Idx.pred m)

(fun k -> Update.update b r c i k) )

(Ctr.set b i c Dom.zero)) } in

doM {
seqM (retLoopM (Idx.succ r) (Idx.pred n) innerbody)

(Update.update_det brc) } in

let dogen a = doM {
r <-- Out.R.decl ();

c <-- retN (liftRef Idx.zero);

b <-- retN (Ctr.mapper Dom.normalizerf (Ctr.copy a));

m <-- retN (Ctr.dim1 a);

n <-- retN (Ctr.dim2 a);

() <-- Update.D.decl ();

() <-- Out.P.decl ();

seqM

(retWhileM (LogicCode.and_ (Idx.less (liftGet c) m)

(Idx.less (liftGet r) n) )

( doM {
rr <-- retN (liftGet r);

cc <-- retN (liftGet c);

pivot <-- l1 retN (Pivot.findpivot b rr m cc n);
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seqM (retMatchM pivot (fun pv ->

seqM (zerobelow b rr cc m n pv)

(Out.R.succ ()) )

(Update.D.zero_sign () ))

(Code.update c Idx.succ) } ))

(Out.make_result b) } in

.<fun a -> .~(runM (dogen .<a>.)) >.

end

at all about value sharing. Aspects such as determinant tracking may be stateful
so that the determinant update code have access to the determinant tracking
variables declared previously. But that state is handled via the monadic state.
As we have shown, open unions make the overall monadic state compositional
with respect to the state of various aspects.

In addition to the “regular” type sharing constraints shown in the Gen func-
tor, there are also “semantic” sharing constraints, shown in the following struc-
ture of the UPDATE signature:

module DivisionUpdate

(Dom:DOMAIN with type kind = domain_is_field)

(C:CONTAINER2D)

(Det:DETERMINANT with type indet=Dom.v) = struct ... end

This structure implements an update policy of using Dom.div operation without
restrictions – which is possible only if the domain has such an unrestricted opera-
tion. A domain such as the integer domain may still provide Dom.div of the same
type, but that operation may only be used when we are sure that the division
is exact. Our type sharing constraint expresses such domain-specific knowledge:
instantiating DivisionUpdate with IntegerDomain leads to a compile-time er-
ror, when compiling the generator code. Thus, in some cases we can use module
types for “semantic” constraints that cannot normally be expressed via the types
of module members.
module GenIV5 = Gen(IntegerDomain)

(GenericVectorContainer)(FullPivot)

(FractionFreeUpdate(IntegerDomain)(GenericVectorContainer)(IDet))

(OutDetRank(IntegerDomain)(GenericVectorContainer)(IDet)(Rank))

module GenFA1 = Gen(FloatDomain)

(GenericArrayContainer)(RowPivot)

(DivisionUpdate(FloatDomain)(GenericArrayContainer)(NoDet(FloatDomain)))

(OutJustMatrix(FloatDomain)(GenericArrayContainer)(NoDet(FloatDomain)))

We can instantiate the Gen functor as shown above and inspect the gener-
ated code, e.g., by printing GenFA1.gen. The code can then be “compiled” as
!. GenFA1.gen or with off-shoring. The code for GenIV5 (Appendix A) shows
full pivoting, determinant and rank tracking. The code for all these aspects
is fully inlined; no extra functions are invoked and no tests other than those
needed by the GE algorithm itself are performed. The GE function returns a
triple int array * int * int of the U-factor, determinant and the rank. The
code generated by GenFA1 (Appendix B) shows absolutely no traces of determi-
nant tracking: no declaration of spurious variables, no extra tests, etc. The code
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appears as if the determinant tracking aspect did not exist at all. The generated
code for the above and other instantiations of Gen can be examined at [5]. The
website also contains benchmark code and timing comparisons.

4 Related and Future Work

The monad in this paper is similar to the one described in [12,20]. However the
latter papers used only retN and fixpoints (for generation-time iterations). This
paper does not involve monadic fixpoints because the generator is not recur-
sive, but heavily relies on monadic operations for generating conditionals and
loops.

Blitz++ [33] and C++ template meta-programming in general similarly elim-
inate levels of abstraction. With traits and concepts, some domain-specific knowl-
edge can also be encoded. However overhead elimination critically depends on
full inlining of all methods by the compiler, which has been reported to be
challenging to insure. Furthermore, all errors (such as type errors and concept
violation errors, i.e., composition errors) are detected only when compiling the
generated code. It is immensely difficult to correlate errors (e.g., line numbers)
to the ones in the generator itself.

ATLAS [36] is another successful project in this area. However they use much
simpler weaving technology, which leads them to note that generator complex-
ity tends to go up along with flexibility, so that these routines become almost
insurmountable barriers to outside contribution. Our results show how to sur-
mount this barrier, by building modular, composable generators. SPIRAL [28]
is another such even more ambitious project. But SPIRAL does intentional code
analysis, relying on a set of code transformation “rules” which make sense, but
which are not proved to be either complete or confluent. The strength of both of
these project relies on their platform-specific optimizations performed via search
techniques, something we have not attempted here.

The highly parametric version of our Gaussian Elimination is directly influ-
enced by the generic implementations available in Axiom [16] and Aldor [35].
Even though the Aldor compiler frequently can optimize away a lot of abstrac-
tion overhead, it does not provide any guarantees that it will do so, unlike our
approach.

We should also mention early work [15] on automatic specialization of mathe-
matical algorithms. Although it can eliminate some overhead from a very generic
implementation (e.g., by inlining aspects implemented as higher-order functions),
specialization cannot change the type of the function and cannot efficiently han-
dle aspects that communicate via a private shared state.

The paper [14] describes early simple experiments in automatic and manual
staging, and the multi-level language based on an annotated subset of Scheme
(which is untyped and has no imperative features). The generated code requires
post-processing to attain efficiency.

We are looking into encapsulating staging annotations into just a few func-
tors, so that the rest of the code (in particular, the Gen functor that puts it all
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together) should be annotation-free and thus can be used as is in a one-stage
environment (pure OCaml) as well as in a multi-stage environment (generating
extensions). The one-stage code is a good baseline for benchmarks and regression
tests. Obtaining a generating extension from properly modularized OCaml code
(along the lines of our Gen) is an exciting area of our future research.

To the best of our knowledge, nobody has yet used functors to abstract code
generators, or even mixed functors and multi-stage programming.

We plan to further investigate the connection between delimited continua-
tions and our implementations of code generators like ifM. As well, by using
some additional syntactic sugar (for ifM, whileM, etc.), the available notation
should be even more direct-style, and potentially clearer. We also would like to
extend our monad to a monad transformer.

There are many more aspects which can also be handled: Input variations
(augmented matrices), error reporting (i.e. asking for the determinant of a non-
square matrix), memory hierarchy issues, loop-unrolling [6], warnings when zero-
testing is undecidable and a value is only probabilistically non-zero, etc. The
larger program family of LU decompositions contains more aspects still.

5 Conclusion

In this paper we have demonstrated numerical code extensively parameterized by
complex aspects at no run-time overhead. The combination of stateless functors
and structures, and our monad with the compositional state makes aspects freely
composable without having to worry about value aliasing. The only constraints
to compositionality are the typing ones plus the constraints we specifically im-
pose, including semantic constraints (e.g., rings do not have full division).

There is an interesting relation with aspect-oriented code [19]: in AspectJ,
aspects are (comparatively) lightly typed, and are post-facto extensions of an
existing piece of code. Here aspects are weaved together “from scratch” to make
up a piece of code/functionality. One can understand previous work to be more
akin to dynamically typed aspect weaving, while we have started investigating
statically typed one.
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to mathematical algorithms. In System Modelling and Optimization, 1995.

16. Richard D. Jenks and Robert S. Sutor. AXIOM: The Scientific Computation Sys-
tem. Springer Verlag, 1992.

17. III John V.W. Reynders and Julian C. Cummings. The POOMA framework.
Comput. Phys., 12(5):453–459, 1998.

18. Ken Kennedy, Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis
Gannon, Lennart Johnsson, John Mellor-Crummey, and Linda Torczon. Telescop-
ing languages: A strategy for automatic generation of scientific problem-solving
systems from annotated libraries. Journal of Parallel and Distributed Computing,
61(12):1803–1826, December 2001.

19. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
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Appendix A

The code generated for GenIV5, fraction-free GE of the integer matrix repre-
sented by a flat vector, full pivoting, returning the U-factor, the determinant and
the rank.

# val resIV5 : (’a,

Funct4.GenIV5.Ctr.contr ->

Funct4.OutDetRank(Funct4.IntegerDomain)(Funct4.GenericVectorContainer)

(Funct4.IDet)(Funct4.Rank).res) code =

.<fun a_405 ->

let t_406 = (ref 0) in let t_407 = (ref 0) in

let t_408 = arr = (Array.copy a_405.arr) (a_405) in

let t_409 = a_405.m in let t_410 = a_405.n in

let t_411 = (ref 1) in let t_412 = (ref 1) in

while (((! t_407) < t_409) && ((! t_406) < t_410)) do

let t_413 = (! t_406) in let t_414 = (! t_407) in

let t_415 = (ref (None)) in

let t_435 =

begin (* full pivoting *)

for j_431 = t_413 to (t_410 - 1) do

for j_432 = t_414 to (t_409 - 1) do

let t_433 = (t_408.arr).((j_431 * t_408.m) + j_432) in

if (not (t_433 = 0)) then

(match (! t_415) with

| Some (i_434) ->

if ((abs (snd i_434)) > (abs t_433)) then

(t_415 := (Some ((j_431, j_432), t_433))) else ()

| None -> (t_415 := (Some ((j_431, j_432), t_433))))

else ()

done

done;

(match (! t_415) with

| Some (i_416) -> (* swapping of columns *)

if ((snd (fst i_416)) <> t_414) then begin

let a_424 = t_408.arr and nm_425 = (t_408.n * t_408.m)

and m_426 = t_408.m in

let rec loop_427 =

fun i1_428 -> fun i2_429 ->

if (i2_429 < nm_425) then

let t_430 = a_424.(i1_428) in

a_424.(i1_428) <- a_424.(i2_429);

a_424.(i2_429) <- t_430;

(loop_427 (i1_428 + m_426) (i2_429 + m_426))

else () in

(loop_427 t_414 (snd (fst i_416)));

(t_412 := (~- (! t_412))) (* adjust the sign of det *)

end else (); (* swapping of rows elided *)

(Some (snd i_416))

| None -> (None))
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end in

(match t_435 with

| Some (i_436) ->

begin (* elimination loop *)

for j_437 = (t_413 + 1) to (t_410 - 1) do

if (not ((t_408.arr).((j_437 * t_408.m) + t_414) = 0)) then begin

for j_438 = (t_414 + 1) to (t_409 - 1) do

(t_408.arr).((j_437 * t_408.m) + j_438) <-

((((t_408.arr).((j_437 * t_408.m) + j_438) * (* elided *)

done;

(t_408.arr).((j_437 * t_408.m) + t_414) <- 0

end else ()

done; (t_411 := i_436)

end;

(t_406 := ((! t_406) + 1)) (* advance the rank *)

| None -> (t_412 := 0));

(t_407 := ((! t_407) + 1))

done;

(t_408,

if ((! t_412) = 0) then 0 (* adjust the sign of the determinant *)

else if ((! t_412) = 1) then (! t_411)

else (~- (! t_411)), (! t_406))>.

Appendix B

The code generated for GenFA1, GE of the floating point matrix represented by
a 2D array, row pivoting, returning just the U-factor.

# val resFA1 : (’a,

Funct4.GenFA1.Ctr.contr ->

Funct4.OutJustMatrix(Funct4.FloatDomain)(Funct4.GenericArrayContainer)

(Funct4.NoDet(Funct4.FloatDomain)).res) code =

.<fun a_1 ->

let t_2 = (ref 0) in let t_3 = (ref 0) in

let t_5 = (Array.map (fun x_4 -> (Array.copy x_4)) (Array.copy a_1)) in

let t_6 = (Array.length a_1.(0)) in

let t_7 = (Array.length a_1) in

while (((! t_3) < t_6) && ((! t_2) < t_7)) do

let t_8 = (! t_2) in let t_9 = (! t_3) in

let t_10 = (ref (None)) in

let t_16 =

begin (* row pivoting *)

for j_13 = t_8 to (t_7 - 1) do

let t_14 = (t_5.(j_13)).(t_9) in

if (not (t_14 = 0.)) then

(match (! t_10) with

| Some (i_15) ->

if ((abs_float (snd i_15)) < (abs_float t_14)) then

(t_10 := (Some (j_13, t_14)))
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else ()

| None -> (t_10 := (Some (j_13, t_14))))

else ()

done;

(match (! t_10) with

| Some (i_11) -> (* swapping of rows *)

if ((fst i_11) <> t_8) then begin

let t_12 = t_5.(t_8) in

t_5.(t_8) <- t_5.(fst i_11);

t_5.(fst i_11) <- t_12; () end else ();

(Some (snd i_11))

| None -> (None))

end in

(match t_16 with

| Some (i_17) ->

begin (* elimination loop, elided *) end;

(t_2 := ((! t_2) + 1))

| None -> ());

(t_3 := ((! t_3) + 1))

done;

t_5>.
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Abstract. Previous work on semantics-based multi-stage programming
(MSP) language design focused on homogeneous designs, where the gen-
erating and the generated languages are the same. Homogeneous designs
simply add a hygienic quasi-quotation and evaluation mechanism to a
base language. An apparent disadvantage of this approach is that the
programmer is bound to both the expressivity and performance charac-
teristics of the base language. This paper proposes a practical means to
avoid this by providing specialized translations from subsets of the base
language to different target languages. This approach preserves the ho-
mogeneous “look” of multi-stage programs, and, more importantly, the
static guarantees about the generated code. In addition, compared to an
explicitly heterogeneous approach, it promotes reuse of generator source
code and systematic exploration of the performance characteristics of the
target languages.

To illustrate the proposed approach, we design and implement a trans-
lation to a subset of C suitable for numerical computation, and show that
it preserves static typing. The translation is implemented, and evaluated
with several benchmarks. The implementation is available in the online
distribution of MetaOCaml.

1 Introduction

Multi-stage programming (MSP) languages allow the programmer to use ab-
straction mechanisms such as functions, objects, and modules, without having
to pay a runtime overhead for them. Operationally, these languages provide
quasi-quotation and eval mechanisms similar to those of LISP and Scheme. In
addition, to avoid accidental capture, bound variables are always renamed, and
values produced by quasi-quotes can only be de-constructed by eval. This makes
reasoning about quoted terms as programs sound [18], even in the untyped set-
ting. Several type systems have been developed that statically ensure that all
programs generated using these constructs are well-typed (c.f. [19,1]).

Currently, the main examples of MSP languages include MetaScheme [7],
MetaML [20], MetaOCaml [10], and Metaphor [11]. They are based, respec-
tively, on Scheme, Standard ML, OCaml, and Java/C#. In all these cases,
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the language design is homogeneous, in that quoted values are fragments of the
base language. Homogeneity has three distinct advantages. First, it is convenient
for the language designer, as it often reduces the size of the definitions needed to
model a language, and makes extensions to arbitrary stages feasible at little cost.
Second, it is convenient for the language implementor, as it allows the imple-
mentation of the base language to be reused: In all three examples above, as in
LISP and Scheme implementations, the eval-like construct calls the underlying
implementation. In the case of MetaOCaml, the MetaOCaml compiler and the
bytecode runtime system can be used to execute generated programs at runtime.
Third, it is convenient for the programmer, as it requires learning only a small
number of new language constructs.

While the homogeneous approach described above has its advantages, there
are situations in which the programmer may wish to take advantage of the
capability of other compilers that are only available for other languages. For
example, very well-developed, specialized compilers exist for application domains
such as numerical computing, embedded systems, and parallel computation.

At first glance, this situation might suggest a need for heterogeneous quo-
tation mechanisms, where quoted terms can contain expressions in a different
language. Indeed, this approach has been used successfully for applications such
as light-weight components [8,9], FFT [6], and computer graphics [5]. But het-
erogeneous quotation mechanisms also introduce two new complications:

1. How do we ensure that the generated program is statically typed?
2. How do we avoid restricting a generator to a particular target language?

One approach to addressing the first issue is to develop specialized two-level type
systems. This means the language designer must work with type systems and
semantics that are as big as both languages combined. Another possibility is to
extend meta-programming languages with dependent type systems [13] and thus
give the programmers the ability to write data-types that encode the abstract
syntax of only well-typed object-language terms. Currently, such type systems
can introduce significant notational overhead for the programmer, as well as
requiring familiarity with unfamiliar type systems.

In principle, the second problem can be avoided by parameterizing the gen-
erators themselves by constructs for the target language of choice. However, this
is likely to reduce the readability of the generators, and it is not clear how a quo-
tation mechanism can be used in this setting. Furthermore, to ensure that the
generated program is statically typed, we would, in essence, need to parameter-
ize the static type of the generator by a description of the static type system of
the target language. The typing infrastructure needed is likely to be far beyond
what has gained acceptance in mainstream programming.

1.1 Contributions

This paper proposes a practical approach to avoiding the two problems, which
can be described as implicitly heterogeneous MSP. In this approach, the pro-
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grammer does not need to know about the details of the target-language rep-
resentation. Those details are supplied by the meta-language designer once and
for all and invoked by the programmer through the familiar interface used to
execute generated code. This is achieved by the language implementers provid-
ing specialized translations from subsets of the base language to different target
languages. Thus, the homogeneous “look” of homogeneous MSP is preserved. An
immediate benefit is that the programmer may not have to make any changes
to existing generators to target different languages. Additionally, if the transla-
tion itself is type preserving, the static guarantee about the type correctness of
generated code is maintained.

The proposed approach is studied in the case when the target language is
C. After a brief introduction to MSP (Section 2), we outline the details of what
can be described as an offshoring translation that we have designed and im-
plemented. The design begins by identifying the precise subset of the target
language that we wish to make available to the programmer (Section 3). Once
that is done, the next challenge is to identify an appropriate subset in the base
language that can be used to represent the target subset.

Like a compiler, offshoring translations are provided by the language imple-
mentor and not by the programmer. But the requirements on offshoring transla-
tors are essentially the opposite of those on compilers (or compiling translators,
such as Tarditi’s [21]): First, offshoring is primarily concerned with the target,
not the source language. The most expressive translation would cover the full
target language, but not necessarily the source language. In contrast, a com-
piler must cover the source but not necessarily the target language. Second, the
translation must be a direct mapping from source to target, and not a complex,
optimizing translation. The direct connection between the base and target rep-
resentations is essential for giving the programmer access to the target language.

To ensure that all generated programs are well typed, we show that the off-
shoring translation is type preserving (Section 4). This requires being explicit
about the details of the type system for the target language as well as the
source language, but is manageable because both subsets are syntactically lim-
ited. Again, this is something the language designer does once and benefits any
programmer who uses the offshoring translation.

Having an offshoring translation makes it easier for the programmer to ex-
periment with executing programs either in OCaml or C (using different C com-
pilers). We present a detailed analysis of changes in performance behavior for
a benchmark of dynamic programming algorithms (Section 5). Not surprisingly,
C consistently outperforms the OCaml bytecode compiler. We also find that in
several cases, the overhead of marshalling the results from the OCaml world to
the C world can be a significant bottleneck, especially in cases where C is much
faster than the OCaml bytecode compiler. And while C outperforms the OCaml
native code compiler in many cases, there are exceptions.

Due to space limitations, the paper only formalizes the key concepts that
illustrate the main ideas. Auxiliary definitions and proofs can be found in an
extended version of the paper available online [4].
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2 Multi-stage Programming

MSP languages [20,16] provide three high-level constructs that allow the pro-
grammer to break down computations into distinct stages. These constructs can
be used for the construction, combination, and execution of code fragments.
Standard problems associated with the manipulation of code fragments, such
as accidental variable capture and the representation of programs, are hidden
from the programmer (cf. [16]). The following minimal example illustrates MSP
programming in MetaOCaml:

let rec power n x = if n=0 then .<1>. else .< .~x * .~(power (n-1) x)>.

let power3 = .! .<fun x -> .~(power 3 .<x>.)>.

Ignoring the staging constructs (brackets .<e>., escapes .~e, as well as run .! e)
the above code is a standard definition of a function that computes xn, which
is then used to define the specialized function x3. Without staging, the last step
simply returns a function that would invoke the power function every time it
gets invoked with a value for x. In contrast, the staged version builds a function
that computes the third power directly (that is, using only multiplication). To
see how the staging constructs work, we can start from the last statement in
the code above. Whereas a term fun x -> e x is a value, an annotated term
.<fun x -> .~(e .<x>.)>. is not, because the outer brackets contain an es-
caped expression that still needs to be evaluated. Brackets mean that we want
to construct a future stage computation, and escapes mean that we want to
perform an immediate computation while building the bracketed computation.
In a multi-stage language, these constructs are not hints, they are imperatives.
Thus, the application e .<x>. must be performed even though x is still an unin-
stantiated symbol. The expression power 3 .<x>. is performed immediately,
once and for all, and not repeated every time we have a new value for x. In the
body of the definition of the function power, the recursive application of power
is escaped to ensure its immediate execution in the first stage. Evaluating the
definition of power3 first results in the equivalent of

.! .<fun x -> x*x*x*1>.

Once the argument to run (.!) is a code fragment that has no escapes, it is
compiled and evaluated, and returns a function that has the same performance
as if we had explicitly coded the last declaration as:

let power3 = fun x -> x*x*x*1

Applying this function does not incur the unnecessary overhead that the un-
staged version would have had to pay every time power3 is used.

3 Offshoring for Numerical Computation in C

This section presents an example of an offshoring translation aimed at supporting
implicitly heterogeneous MSP for basic numerical computation. The method for
defining the types and the syntax is presented, along with the resulting formal
definitions. The mapping from base to target is only described informally. It bears
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repeating that the programmer will not need to write her program generators
to explicitly produce the target language presented in this section. Rather, the
interface to generating target programs is written using the source-language
syntax (Section 3.3); however, the programmer does need to be aware of the
target subset definitions to be able to express her algorithms in a way that
makes the code they produce amenable to translation. The section concludes by
presenting the details of the programmer’s interface to offshoring, and discussing
the practical issue of marshalling values between the runtime systems of the base
and target languages.

3.1 Types for Target Subset

The types in the target C subset include:

1. Base numerical types int, char and double.
2. One- and two- dimensional arrays of these numerical types. One-dimensional

arrays are represented as C arrays. Two-dimensional arrays are implemented
as an array of pointers (C type *[]). While this representation is less efficient
than two-dimensional arrays in C, it was chosen because it allows for a
simpler translation, since it is a better semantic match with MetaOCaml
arrays. OCaml array types do not explicitly declare their size, so it is not
always possible to obtain a valid two-dimensional array type in C from a
type of two-dimensional arrays in OCaml.

3. Functions that take base types or arrays of base types as arguments and re-
turn base type values. This subset does not include function pointers, func-
tions with variable number of arguments, or functions that return void.

The C subset types are described by the following BNF:

Base types b ∈ {int, double, char}
Array types a ::= b [] | ∗ b []
Types t ::= b | a
Funtypes f ::= b (t0, . . . , tn)

3.2 Syntax for Target Subset

Figure 1 presents the BNF of the target C subset. The set is essentially a subset
of C that has all the basic numerical and array operations, first order functions,
and structured control flow operators. The target subset is not determined in
a vacuum but also involves considering what can be expressed naturally in the
source language. The main restrictions we impose on this subset are:

1. All declarations are initialized. This restriction is caused by the fact that
OCaml does not permit uninitialized bindings for variables, and representing
uninstantiated declarations in OCaml can add complexity.

2. No unstructured control flow statements (i.e., goto, break, continue and fall-
through non-defaulted switch statements). This restriction is motivated by
the lack of equivalent unstructured control flow operators in OCaml. For the
same reason, the increment operations are also limited.
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Type keyword t ∈ {int, double, char}
Constant c ∈ Int ∪ Float ∪ Char
Variable x ∈ X
Declaration d ::= t x = c | t x[n] = {c∗} | t *x[n] = {x∗}
Arguments a ::= t x | t x[ ] | t *x[ ]

Unary operator f (1) ∈ {(float) , (int) , cos , sin , sqrt}
Binary operator f [2] ∈ {+, -, *, /, %, &&, ||, &, |,∧, <<, >>, ==, !=, <, >, <=, >=}
For loop op. opr := <= | >=
Expression e ::= c | x | f (1) e | e f [2] e | x (e∗) | x[e] | x[e][e] | e ? e : e
Incr .expression i ::= x++ | x--
Statement s ::= e | return e | | {d∗; s∗} | x=e | x[e]=e | x[e][e]=e

| if (e) s else s | while (e) s | for(x = e; x opr e;i) s
| switch (e) {w∗default: s}

Switch branch w ::= case c: s break;
Fun. decl . g ::= t x (a∗){d∗; s∗}
Program p ::= d∗; g∗

Fig. 1. Grammar for the C target

3. Two-dimensional arrays are represented by an array of pointers (e.g., int
*x[]) instead of standard two-dimensional arrays.

4. For-loops are restricted to the most common case where the initializer is a
single assignment to a variable, and the mutator expression is simply incre-
ment or decrement by one. This covers the most commonly used C idiom,
and matches the OCaml for loops.

5. No do-while loop commands. OCaml does not have control flow statements
that correspond naturally to a do-while loop.

6. Return statements are not permitted inside switch and for statements. A
return can only appear at the end of a block in a function declaration or in
a terminal positions at both branches of the if statement. This restriction is
enforced by the type system (See Appendix A).

While this subset is syntactically restricted compared to full C, it still pro-
vides a semantically expressive first-order language. Many missing C constructs
can be effectively simulated by the ones included: for example, arithmetical
mutation operators (e.g., +=) can be simulated by assignments. Similarly do-
while loops can be simulated with existing looping constructs. Since staging in
MetaOCaml gives the programmer complete control over what code is gener-
ated, this imposes little burden on the programmer. This subset is particularly
well-supported by many industrial-strength compilers. Giving the programmer
safe access to such compilers is the main purpose of implicitly heterogeneous
MSP.

3.3 Types in Base Language

We now turn to the base language representation of the target language sub-
set: the types in the OCaml subset must match those of the C subset. OCaml
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Constant ĉ ∈ Int ∪ Bool ∪ Float ∪ Char

Variable x̂ ∈ X̂

Unary op. f̂ (1) ∈ {cos, sin, sqrt, float of int, int of float}
Limit op.. f̂ (2) ∈ {min, max}
Binary op. f̂ [2] ∈ {+, -, *, /, +., -., *., /., **, mod, land, lor, lxor,

lsl, lsr, asr, =, <>, <, >,≤,≥, &&, ||}
Expression ê ::= x̂ | x̂ (ê∗) | f̂ (1) ê | f̂ (2) ê ê | ê f̂ [2] ê | if ê then ê else ê

| !x̂ | x̂.(ê) | x̂.(ê).(ê)

Statement d̂ ::= ê | d̂; d̂ | let x̂ = ê in d̂ | let x̂ = ref ĉ in d̂

| let x̂ = Array.make ĉ ĉ in d̂ | x̂.(ê) ← ê

| let x̂ = Array.make matrix ĉ ĉ ĉ in d̂ | x̂.(ê).(ê) ← ê

| x̂:= ê | if ê then d̂ else d̂ | while ê do d̂ done

| for x̂=ê to ê do d̂ done | for x̂=ê downto ê do d̂ done

| match ê with ((ĉ → d̂)∗ | → d̂)

Program ŝ ::= λ(x∗).(d̂ : b̂) | let x̂ = ĉ in ŝ | let f(x̂∗) = d̂ in ŝ
| let x̂ = ref ĉ in ŝ | let x̂ = Array.make ĉ ĉ in ŝ
| let x̂ = Array.make matrix ĉ ĉ ĉ in ŝ

Fig. 2. OCaml Subset Grammar

base types bool, int, char, and float map to C int, char and double, (OCaml
booleans are simply mapped to C integers). The OCaml reference type (ref) is
used to model C variables of simple type. One- and two-dimensional arrays are
represented by OCaml b̂ array and b̂ array array types. To reflect the differ-
ent restrictions on them, we will also distinguish types for function arguments,
variable types and function declarations. The resulting types are as follows:

Base b̂ ∈ {int, bool, float, char}
Reference r̂ ::= b̂ ref

Array â ::= b̂ array | b̂ array array

Argument p̂ ::= b̂ | â

Variables t̂ ::= b̂ | r̂ | â

Function û ::= (p̂0, . . . , p̂n) → b̂

3.4 Syntax for Base Language

The syntax of the source subset is presented in Figure 2. Semantically, this subset
represents the first-order subset of OCaml with arrays and reference cells. We
point out the most interesting syntactic features of the OCaml subset:

1. Syntactically, let bindings are used to represent C declarations. Bindings
representing C function declarations are further restricted to exclude func-
tion declarations nested in the bodies of functions.

2. Assignments in C are represented by updating OCaml references or arrays.
3. We use a special syntactic form to indicate a top level entry function (anal-

ogous to C main).
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3.5 What the Programmer Sees

The programmer is given access to offshoring simply by making MetaOCaml
run construct (.!e) customizable. In addition to this standard form, the pro-
grammer can now write .!{Trx.run_gcc}e or .!{Trx.run_icc}e to indicate
when offshoring should be used and whether the gcc or icc compilers, re-
spectively, should be used to compile the resulting code. Additional arguments
can also be passed to these constructs. For example, the programmer can write
{Trx.run_gcc}e (resp. {Trx.run_icc}e) as follows:

.!{Trx.run_gcc with compiler = "cc"; compiler_flags="-g -O2"} ...

to use an alternative compiler cc with the flags -g -O2.

3.6 Marshalling and Dynamic Linking

The C and OCaml systems use different runtime representations for values. So,
to use the offshored program, inputs and outputs must be marshalled from one
representation to the other.

In our implementation of the translation described above, we generate a
marshalling function for the top-level entry point of the offshored function. The
marshalling function depends only on the type of the top-level function. First,
OCaml values are converted to their C representations. The standard OCaml
library provides conversions for base types. We convert arrays by allocating a
new C array, converting each element of the OCaml array, and storing it in the
C array. The C function is invoked with the marshalled C values. Its results are
collected, and marshalled back into OCaml. To account for updates in arrays,
the elements of the C are converted and copied back into the OCaml array.

Once a C program has been produced, the marshalling code is added, and
the result is then compiled into a shared library (a .so) file. To load this shared
library into MetaOCaml’s runtime system, we extend Stolpmann’s dynamic load-
ing library for OCaml [14] to support dynamic loading of function values.

4 Type Preservation

Showing that an offshoring translation can preserve typing requires formalizing
the type system for the target language, the source language, as well as the
translation itself. Here we give a brief outline of the technical development.

The type system for top-level statements in OCaml programs is defined by
the derivability of the judgment Γ̂ � p̂ : t̂ (Appendix B). Similarly, the type
system for C programs is defined by a judgment Γ � g (Appendix A). We
also provide the definition of translation functions (Appendix C). For example,
〈|ŝ|〉 = (g1, . . . , gn, l1, . . . , lm) translates a top-level OCaml program into a set of
C variable declarations and function definitions, and �Γ̂ � translates the OCaml
variable and function environment, Γ̂ , into the corresponding C environment.

Any valid term in the base language translates to a valid one in the tar-
get language. We define an operation |·| on variable declarations and function
definitions that translates them into a C type environment(see [4]).
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Theorem 1 (Type Preservation). If Γ̂ � ŝ : ân → b̂ and 〈|ŝ|〉 = (g, l), then
�Γ̂ � ∪ |l| ∪ |g| � g.

Proof. By induction over the height of first derivation. The details of the proof
are presented in the extended version of the paper [4]. ��

5 Effect on Performance Characteristics

This section summarizes some empirical measurements that we have gathered to
evaluate the performance impact of offshoring. The questions we wanted these
experiments to answer are: How does the performance of offshored code compare
to that of the same code executed with run? Does marshalling impose a signif-
icant overhead on offshoring? As MetaOCaml currently only supports bytecode
OCaml execution, would extending MetaOCaml to support native OCaml-style
compilation be an acceptable alternative to offshoring?

5.1 Benchmarks

As a benchmark, we use a suite of staged dynamic programming algorithms.
These algorithms were initially implemented to study how dynamic programming
algorithms can be staged [15]. The benchmark consists of (both unstaged and
staged) MetaOCaml implementations of the following algorithms [2]:

– forward, the forward algorithm for Hidden Markov Models. Specialization
size (size of the observation sequence) is 7.

– gib, the Gibonacci function, a minor generalization of the Fibonacci func-
tion. This is not an example of dynamic programming, but gives rise to the
same technical problems while staging. Specialization is for n = 25.

– ks, the 0/1 knapsack problem. Specialization is for size 32 (number of items).
– lcs, the least common subsequence problems. Specialization is for string

sizes 25 and 34 for the first and second arguments, respectively.
– obst, the optimal binary search tree algorithm. Specialization is a leaf-node-

tree of size 15.
– opt, the optimal matrix multiplication problem. Specialization is for 18 ma-

trices.

To evaluate offshoring, we compare executing the result of these algorithms
in MetaOCaml to executing the result in C using offshoring. 1

1 Platform specs. Timings were collected on a Pentium 4 machine (3055MHz, 8K
L1 and 512K L2 cache, 1GB main memory) running Linux 2.4.20-31.9. All ex-
periments are fully automated and available online [3]. We report results based on
version DP 002/1.25 of the benchmark. It was executed using MetaOCaml version
308 alpha 020 bytecode compiler, Objective Caml version 3.08.0 native code com-
piler, and GNU’s gcc version 2.95.3 20010315, and Intel’s icc version 8.0 Build

20031016Z C compilers.
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Table 1. Speedups and Break-Even Points from Offshoring to C

Name Unstaged Generate Compile Staged Run Speedup Speedup’ BEP
(ms) (ms) (ms) (μs)

forward 0.20 1.1 34. 0.37 530x 20.x 180
gib 0.13 0.26 19. 0.12 990x 5.3x 170
ks 5.2 36. 8300. 1.4 3700x 69.x 1600
lcs 5.5 46. 6400. 5.1 1100x 24.x 1100
obst 4.2 26. 5300. 4.6 910x 22.x 1300
opt 3.6 66. 8700. 3.4 1100x 44.x 2500

Using GNU’s gcc

Name Unstaged Generate Compile Staged Run Speedup Speedup’ BEP
(ms) (ms) (ms) (μs)

forward 0.20 1.1 33.0 0.35 580x 21.x 170
gib 0.13 0.26 20.0 0.098 1200x 6.4x 180
ks 5.2 36. 8100. 1.5 3500x 66.x 1600
lcs 5.5 46. 6500. 5.3 1000x 25.x 1200
obst 4.2 26. 5400. 4.5 940x 23.x 1300
opt 3.6 66. 9300. 3.3 1100x 46.x 2600

Using Intel’s icc

5.2 Comparing Offshoring with the OCaml Byte Code

Because of engineering issues with OCaml’s support for dynamic loading, MetaO-
Caml currently extends only the bytecode compiler with staging constructs, but
not the native code compiler. We therefore begin by considering the impact of
offshoring in the bytecode setting.

Table 1 displays measurements for offshoring with both gcc and Intel’s icc.
The columns are computed as follows: Unstaged is the execution time of the
unstaged version of a program. All times are averages, and are reported are
in milliseconds (ms) unless otherwise stated. We measure execution times us-
ing MetaOCaml’s standard library function Trxtime.timenew. This function
repeatedly executes a program until the cumulative execution time exceeds 1
second and reports the number of iterations and the average execution time per
iteration. Generate reports code generation times. Generation is considered the
first stage in a two-stage computation. The second stage is called Staged Run and
will be described shortly. Compile is the time needed to translate the generated
program and compile it with gcc (or icc in the second table), and dynamically
load the resulting binary. Staged Run reports the C program execution time,
including marshalling. The binary is generated by calling the C compiler with
the flags -g -O2. Speedup is computed as Unstaged divided by Staged Run.
Speedup’ is the ratio between Speedup with staging (without offshoring) and
staging with offshoring. BEP is the break-even point, i.e., the number of execu-
tions for a piece of code after which the initial overhead of offshoring (generation
and compilation) pays off. For example, we need at least 180 uses of forward
compiled using gcc before it is cheaper to use the staged version than to just
use the unstaged one.

In general, the results obtained for offshoring to C are encouraging. The
ratio between speedups (Speedup’) is always greater than 1. But it should be
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noted that the BEP’s are higher than for non-offshored staged execution within
MetaOCaml. This is primarily a result of the C compilation times being higher
than OCaml bytecode compilation times.

5.3 Marshalling Overhead

To assess the impact of marshalling on the runtime performance, we compare
the time to execute the benchmarks from within MetaOCaml against the time
it took to execute the same functions in a C program with no marshalling.

Table 2 displays the numbers for the gcc and icc compilers. Each program
is run multiple times externally using the same number of iterations obtained
from the measurements for the Unstaged Run in Figure 1. The Unix time
command is used to measure the time for each program. This time is then
divided by the number of iterations to obtain an average execution time per
program. The columns are computed as follows: Marshalling Overhead(G)
and Marshalling Overhead(I) show the difference in microseconds between
running each function from within MetaOCaml and running it externally us-
ing gcc and icc respectively. Percentage(G) and Percentage(I) show the
marshalling overhead as a percentage of the total time spent on the marshalled
computation.

In the forward example, we marshall a 7-element integer array. In gib, we
marshall only two integers, and thus have a low marshalling overhead. But
because the total computation time in this benchmark small, the marshalling
overhead is high. In ks, we marshall a 32-element integer array, and in lcs
benchmark, we marshall two 25- and 34-element character arrays, which ac-
counts for the high marshalling overhead in these benchmarks. Since both these
benchmarks perform a significant amount of computation, the proportion of time
spent marshalling is, however, lower than gib or forward. Similarly, obst and
opt have significant marshalling overheads since they must marshal 15-element
floating-point and 18-element integer arrays.

While the percentages given by both gcc and icc are comparable, there is
one benchmark ks which shows a large difference. This can be explained by the
fact that icc was able to optimize much better than gcc, reducing computation
time to the point that most of the time was spent in marshalling.

The data indicates that marshalling overhead is significant in this benchmark.
We chose the current marshalling strategy for implementation simplicity, and

Table 2. Marshalling Overhead for gcc and Intel’s icc Compiled Offshored Code

Name Marshalling (G) Percentage (G) Marshalling (I) Percentage (I)
Overhead (μs) Overhead (μs)

forward 0.19 50. % 0.22 63. %
gib 0.11 91. % 0.089 91. %
ks 0.37 26. % 1.4 96. %
lcs 3.8 74. % 4.2 79. %
obst 0.61 13. % 1.5 34. %
opt 0.61 17. % 0.24 7.4 %
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Table 3. Speed of Offshored vs. OCaml Native Compiled Code

Name OCamlOpt (μs) Tweaked (μs) Best GCC (μs) Speedup Speedup”
forward 0.29 0.25 0.13 2.2x 2.1x
gib 0.017 0.0095 0.0096 1.7x 0.95x
ks 23. 0.61 1.0 23.x 0.59x
lcs 24. 3.1 1.2 20.x 3.0x
obst 33. 10. 2.7 12.x 3.9x
opt 24. 4.9 2.8 8.3x 1.7x

Using GNU’s gcc

Name OCamlOpt (μs) Tweaked (μs) Best ICC (μs) Speedup Speedup”
forward 0.29 0.25 0.13 2.2x 1.8x
gib 0.017 0.0095 0.0091 1.8x 1.1x
ks 23. 0.61 0.061 380.x 10.x
lcs 24. 3.1 1.1 22.x 2.2x
obst 33. 10. 2.9 11.x 3.6x
opt 24. 4.9 3.1 7.8x 1.6x

Using Intel’s icc

not for efficiency. These results suggest that it would be useful to explore an
alternative marshalling strategy that allows sharing of the same data-structures
across the OCaml/C boundary.

5.4 Comparing Offshoring with the OCaml Native Compiler

One motivation for offshoring is that standard implementations of high-level
languages are unlikely to compile automatically generated programs as effectively
as implementations for lower-level languages such as C. The figures reported so
far relate to the MetaOCaml bytecode compiler. How does offshoring perform
against the native code compiler?

Table 3 displays measurements for execution times of the generated pro-
grams when executed using the native-code compiler for OCaml and the best
runtime when running the result of their translation in C. The columns are com-
puted as follows: OCamlOpt is the time for executing programs compiled with
the ocamlopt compiler with the options -unsafe -inline 50. Tweaked are
execution times for programs hand-optimized post-generation by the following
transformations2: currying the arguments to functions, replacing the uses of the
polymorphic OCaml operators min and max by their monomorphic versions, and
moving array initializations outside the generated functions. The same compiler
options as in OCamlOpt were used. Best GCC (Best ICC) is the execution
time for generated and offshored code with the best performing optimization
level (-O[0-4]). Speedup is the ratio of the OCamlOpt times to the Best
GCC (Best ICC) times, and Speedup” is the ratio of the Tweaked execu-
tion times Best GCC (Best ICC).

Without hand-optimizing the generated code, offshoring always outperforms
the native code compiler. After hand-optimizing the generated code, the situa-
2 Thanks to Xavier Leroy for pointing out that these changes would improve the

relative performance of the OCaml native code compiler.
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tion is slightly different. In two cases, the OCaml native code compiler outper-
forms gcc. In fact, for the ks benchmark, the OCaml compiler does much better
than gcc.

The tweaks that improved the relative performance of OCaml’s native code
compiler draw attention to an important issue in designing an offshoring transfor-
mation and in interpreting speedups such as the ones presented here: Speedups
are sensitive to the particular representation that we chose in the base language,
and the real goal is to give the programmer the ability to generate specific pro-
grams in the target language. Speedups reported here give one set of data-points
exhibiting the potential of offshoring.

6 Further Opportunities for Offshoring

The particular offshoring translation presented here is useful for building multi-
stage implementations of several standard algorithms. But there are other fea-
tures of C that have distinct performance characteristics, and which the pro-
grammer might wish to gain access to. We expect that the translation presented
here can be expanded fairly systematically. In particular, an offshoring transla-
tion can be viewed as an inverse of a total map from the target to the source
language. The backwards map would be a kind of OCaml semantics for the con-
structs in the target language. With this insight, several features of C can be
represented in OCaml as follows: Function pointers can be handled naturally
in a higher order language, although the representative base language subset
would have to be restricted to disallow occurrences of free variables in nested
functions. Such free variables give rise to the need for closures when compil-
ing functional languages, and our goal is not to compile, but rather to give the
programmer access to the notion of function pointers in C. If the programmer
wishes to implement closures in C, it can be done explicitly at the OCaml level.
For control operators, we can use continuations, and more generally, a monadic
style in the source language, but the source would have similar restrictions on
free variables to ensure that no continuation requires closures to be (automati-
cally) constructed in the target code. Targeting struct and union types should
be relatively straightforward using OCaml’s notion of datatypes. Dynamic mem-
ory management, bit manipulation, and pointer arithmetic can be supported by
specially marked OCaml libraries that simulate operations on an explicit mem-
ory model in OCaml. Arbitrary dimension arrays are a natural extension of the
two-dimensional representation that we have already addressed.

7 Conclusion

We have proposed the idea of implicitly heterogeneous MSP as a way of combin-
ing the benefits of the homogeneous and heterogeneous approaches. In particular,
generators need not become coupled with the syntax of the target language, and
the programmer need not be bound to the performance characteristics of the
base language. To illustrate this approach, we target a subset of C suitable for
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numerical computation, and take MetaOCaml as the base language. Experimen-
tal results indicate that this approach yields significantly better performance
as compared to the OCaml bytecode compiler, and often better performance
than the OCaml native code compiler. We have implemented this extension in
MetaOCaml. A fully automated version of our performance measurement suite
has been implemented and made available online [3]. An offshoring translation
targeting FORTRAN is under development.

Acknowledgments. We would like to thank John Mellor-Crummey and Gregory
Malecha, who read drafts of this paper and gave us several helpful suggestions.
We would also like to thank the reviewers and the editors for their detailed and
constructive comments. One of reviewers asked whether offshoring can be used
to produce highly-optimized libraries such as those used in the SPIN model
checker or in Andrew Goldberg’s network optimization library. We thank the
reviewer for the intriguing suggestion, and we hope that further experience with
offshoring will allow us to answer this question.
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A Type System for the C Fragment

The type system for the target language is defined for a particular Σ that assigns
types to constants and operators.
Expressions (Γ � e : t)

c : b ∈ Σ

Γ � c : b
Const

Γ (x) = t

Γ � x : t
Var

f(1) : b f(b1) ∈ Σ
Γ � e : b1

Γ � f(1) (e) : b
Op1

f [2] : b f [2](b1, b2) ∈ Σ
Γ � e1 : b1
Γ � e2 : b2

Γ � e1 f [2] e2 : b
Op2

Γ (x) = b (ti)
i∈{...n}

{Γ � ei : ti}i∈{...n}

Γ � x (ei)
i∈{...n} : b

FCall
Γ (x) = int

Γ � x++ : int
Inc

Γ (x) = int

Γ � x-- : int
Dec

Γ (x) = b [ ]
Γ � e : int

Γ � x[e] : b
Arr1

Γ (x) = ∗ b[ ]
Γ � e1 : int
Γ � e2 : int

Γ � x[e1][e2] : b
Arr2

Γ � e1 : int
Γ � e2 : t
Γ � e3 : t

Γ � e1 ? e2 : e3 : t
If
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Statements (Γ � s : t)
To indicate which terms must or can include a return statement, we define a

more general judgment Γ � s : r, where r is defined as follows:

r ::= t | ⊥

The r types indicate return contexts: if a statement is well-formed with re-
spect to the return context ⊥, no return statements are permitted in it. If the
return context is t, the judgment ensures that the rightmost leaf of the statement
is a return statement of type t. For example, the definition body of a function
with return type t, must be typed with t as its return context.

Γ � e : t1

Γ � e : ⊥ EStat

Γ (x) = b
Γ � e : b

Γ � x = e : ⊥ Assign

Γ (x) = b[ ]
Γ � e1 : int
Γ � e2 : b

Γ � x[e1] = e2 : ⊥SetArr1

Γ (x) = ∗b[ ]
Γ � e1 : int

Γ � e2 : int
Γ � e3 : b

Γ � x[e1][e2] = e3 : ⊥ SetArr2

Γ � e : int
Γ � s1 : r
Γ � s2 : r

Γ � if (e) s1 else s2 : r
IfS

Γ � e1 : int
Γ � s : ⊥

Γ � while (e1) s : ⊥While

Γ (x) = int
Γ � e1 : int

Γ � e2 : int
Γ � s : ⊥

Γ � for (x = e1; e2; x++) s : ⊥For
Γ � e : t

Γ � return (e) : t
Ret

Γ � cn : int
Γ � e : int

{Γ � si : ⊥}i∈{...n}

Γ � s : ⊥
Γ �

{
switch (e){
(case ci : si break; )i∈{...n} default : s}

}
: ⊥

Sw

{
Γ ∪ (dj)

j∈{...m} � si

}i∈{...n−1}
: ⊥

Γ ∪ (dj)
j∈{...m} � sn : r

Γ � {(dj)
j∈{...m} ; (sn)i∈{...n}} : r

Blk

Function definition (Γ � f)

Γ ∪ (ai)
i∈{...n} � {(dj)

j∈{...m} ; (sk)k∈{...z}} : b

Γ � (b f (ai)
i∈{...n} {(dj)

j∈{...m} ; (sk)k∈{...z}}) TFun

Program (Γ � g)

Γ � · Empty
Γ � b f (ai)

i∈{...n} s

Γ, b f (ai)
i∈{...n} � g

Γ � (b f (ai)
i∈{...n} s); g

ExtTop

B Type System for the OCaml Fragment

We do not show the detailed definition of the typing judgment for the OCaml
fragment due to lack of space (full definitions are available in the extended
version [4]). Instead, we just note that the type system of the MetaOCaml frag-

ment consists of three judgments: Γ � e : t , for expressions ; Γ � d : t̂ , for

statements; Γ � ŝ : t̂ , for programs.
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C Offshoring Translation

This section formalizes the translation from the OCaml subset to C.
OCaml types and expressions are translated directly into C expressions.

�t̂�

�int� = int
�bool� = int
�char� = char

�float� = double
�b array� = �b� [ ]

�b array array� = *�b�[ ]

�ê�

�ĉ� = c
�x̂� = x

�x̂(ê1, . . . , ên)� = x(�ê1�, . . . , �ên�)

�f̂(1)ê� = �f̂(1)��ê�

�f̂(2)ê1 ê2� = �f̂(2)��ê1��ê2�

�ê1f̂ [2]ê2� = �ê1��f̂ [2]��ê2�
�if ê1 then ê2 else ê3� = �ê1�?�ê2� : �ê3�

�!x̂� = x
�x̂.(ê)� = x[�ê�]

�x̂.(ê1).(ê2)� = x[�ê1�][�ê2�]

The statement subset of OCaml is translated to a pair (d, s), where d are
declarations of variables that are bound in OCaml let expressions, and s, the se-
quence of C statements that corresponds to OCaml statements. The translation
for OCaml statements {|d̂|} is written with a return context which can be ⊥ or �.

Return context a ::= ⊥ | �
If the return context is ⊥, the translation does not generate return statements

at the leaves; on the other hand, if the return context is �, bottoming out at a
leaf OCaml expression produces the appropriate C return statement.
{|d̂|}a = (d, s)

{|ê|}L = (·, �ê�) {|ê|}R = (·, return �ê�) {|x̂ := ê|}a = (·, x = �ê�) {|x̂.(ê1) ← ê2|}a =
(·, x[�ê1�] = �ê2�)

{|x̂.(ê1).(ê2) ← ê3|}a =
(·, x[�ê1�][�ê2�] = �ê3�)

{|d̂|}a = (l, s)

{|
{
let x̂ : t̂ = ê

in d̂

}
|}a = ((�t̂�x; l), (x = �ê�; s))

{|d̂1|}L = (l1, s1)

{|d̂2|}a = (l2, s2)

{|d̂1; d̂2|}a = (l1; l2, s1; s2)

{|d̂|}a = (l, s)

{|let x̂ : ref t̂ = ref ĉ in d̂|}a = ((�t�(c)x; l), (x = �c�; s))

{|d̂|}a = (l, s)

{|
{

letx : t̂ array =

Array.make ĉ1 ĉ2 in d̂

}
|}a =

(�t� x[] = {c2
c1 times}, l ; s)

{|d̂|}a = (l, s) ym fresh

{|let x̂ : t̂array array = Array.make matrix ê ĉ2 ĉ3 in d̂|}a =

(�t̂� ym = {�e�
c2 times}

c1 times

;
�t̂� ∗ x[ ] = {y1, . . . , yc1}; l, s)

{|d̂1|}a = (l1, s1)

{|d̂2|}a = (l2, s2)

{|if (ê) then d̂1 else d̂2|}a =
(·, if(�ê�){l1; s1} else {l2; s2})

{|d̂|}L = (l, s)

{|while (ê) do d̂ done|}a =
(·, while(�ê�){l; s})

{|d̂|}L = (l, s)

{|for x̂ = ê1 to ê2 do d̂ done|}a =
(int x, for (x = �ê1�; x<=s�ê2�;x++){l; s})

{|d̂|}L = (l, s)

{|for x̂ = ê1 downto ê2 do d̂ done|}a

= (int x, for (x = �ê1�;x>=�ê2�;x--){l; s})

{|d̂n|}Ln = (ln, sn) {|d̂|}L = (l, s)

{|match ê with ĉn → d̂nn | → d̂|}a =

case cn : {ln; sn; break}; default : {l; s}}
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OCaml programs ŝ are translated into a pair (g, l), where g is a sequence of
function definitions and l is a sequence of variable declarations.
〈|ŝ|〉 = (g, l)

〈|ŝ|〉 = (g, l)

〈|let x̂ : t̂ = ĉ in ŝ|〉 =
(g, (�t̂� x = c; l))

〈|ŝ|〉 = (g, l)

〈|let x̂ : ref t̂ = ref ĉ in ŝ|〉 =
(g, �t̂�x = c; l)

〈|ŝ|〉 = (g, l)

〈|
{
let x̂ : t̂ array =
Array.make ĉ1 ĉ2 in ŝ

}
|〉 =

(g, �t̂� x[ ] = {c2
c1 times}; l)

〈|d̂|〉 = (g, l) (yi fresh)i∈{1...c1}

〈|let x̂ : t̂ array array = Array.make matrix ê ĉ2 ĉ3 in d̂|〉a =

(g,
(

�t̂� yi = {�e�
c2 times}

)i∈{...c1}
;

�t̂� ∗ x[ ] = {y1, . . . , yc1}; l)

〈|ŝ|〉 = (g, l) {|d̂|}R = (ld, sd)

〈|let f̂ (x̂i : p̂i)
i∈{...n} : b̂ = d̂ in ŝ|〉 =

(�b̂�f (�p�i xi)
i∈{...n} {ld; sd; }; g, l)

{|d̂|}R = (l, s)

〈|λ (x̂i : p̂i)
i∈{...n} . (d̂ : b̂)|〉 =

((�b̂� procedure (�pi� xi)
i∈{...n} {l; s}), ·)
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Abstract. We describe our efforts to use source-level rewriting to opti-
mize run-time program generators written in Jumbo, a run-time program
generation system for Java. Jumbo is a compiler written in compositional
style, which brings the advantage that any program fragment can be ab-
stracted out and compiled to an intermediate form. These forms can be
put together at run-time to build complete programs. This principle pro-
vides a high level of flexibility in writing program generators. However,
this comes at the price of inefficient run-time compilation. Using source-
level transformations, we optimize the run-time generation of byte code
from fragments, achieving speedups of 5–15%. We discuss the optimiza-
tion process and give several examples.

1 Introduction

Jumbo[1,2,3,4] is a Java compiler with code quotation and anti-quotation for
run-time program generation (RTPG). In this, it is similar to such systems as
MetaML [5], MetaOCaml [6], ‘C [7,8,9], and DynJava [10]. However, it has a
unique design based on the principle that, if the static compiler is structured
“compositionally,” there need be only that one compiler — its back end can
serve as the code-generating engine for RTPG. We have in the past [3] described
the advantages of this approach, and will again briefly do so in Section 2. It does,
however, possess one distinct disadvantage: inefficiency. This paper describes our
on-going efforts to address this problem.

In each of the systems just mentioned, program generators are created by us-
ing a code quotation/anti-quotation syntax. For example, in Jumbo, the notation
$<while (x>0) ‘Stmt(getBody())>$ indicates that, at run time, a while state-
ment is to be generated with its body returned from the method call getBody().
Since the latter is not known at compile time, it is called a “hole.” Quotation
marks, $< and >$, can contain an entire compilation unit — an interface or list
of classes — or a fragment as small as a single variable or constant. Quoted code
cannot be compiled to Java virtual machine (JVM) code: either it has holes or
it is not a full class and is therefore missing necessary context, such as field dec-
larations. (Technically, it is legal to quote a complete compilation unit, without
holes, but it is pointless, since it could be compiled statically.)

� Partial support for this work was received from NSF under grant CCR-0306221.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 293–308, 2005.
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That fragments cannot be compiled all the way to bytecode does not mean
they cannot be compiled at all. Consider the case of a quoted class definition
with a hole where a method should go. In essence, we have a partial evaluation
problem: The compiler has two inputs — the quoted class and the method —
of which only the class is known at compile time. It is quite plausible that we
might apply the compiler to the class and obtain a “residual compiler” that will
receive the method and complete the compilation at run time. (The situation is
symmetric in the arguments. When the compiler sees the quoted method, it has
a similar problem, with two inputs — the method and its surrounding context
— of which it sees only one.)

How can we partially evaluate a compiler applied to an incomplete fragment?
The first point to note is that an ordinary compiler handles only compilation
units; when presented with a smaller fragment, it gives a syntax error; partial
evaluation cannot overcome that. The second point is that, given a compiler for
a real language, even if we provided a compilation unit (with holes), it would be
a practical impossibility to partially evaluate it mechanically.

In Jumbo, we address these problems in two ways. First, the Jumbo compiler
is compositional. This means it is structured in such a way that small fragments
are still meaningful to the compiler; they can be partially compiled, to an inter-
mediate representation we call Code. The Code value of a compound fragment
is a function solely of the Code values of its subfragments. Thus, in the example
above, when the method definition is supplied at run time, it is supplied in its
partially compiled form — not as source code or an abstract syntax tree (AST).
This Code value is somehow placed inside the Code value for the class, and the
result is compiled to JVM code.

Second, we have written a set of source-level transformations to optimize the
compilation of fragments. These are the subject of this paper. In pursuing this
strategy, we have also found that the compiler may need to be massaged to make
it more susceptible to transformations, though we have yet much to learn about
that process. The work is on-going; the results given here represent the current
state of our compiler.

In the paper, we elaborate on each of the themes mentioned above. Section 2
explains what we wish to achieve with our system; to give a preview, it argues
that the primary reason to insist on a single compiler is not to save development
time, but rather to ensure a high level of generality in the tool we produce. Sec-
tions 3 and 4 discuss compositional compilation in general, and its use in Jumbo,
respectively. Section 5 describes the analyses and transformations we have im-
plemented and Section 6 gives examples and timing results. In Section 7, we
discuss some of the difficulties presented by Java which have limited our success
in optimization, and ways to overcome them. Section 8 gives our conclusions.
Related work is noted throughout the paper, and is not segregated.

2 Trade-Offs in RTPG Systems

In previous work [3], we have argued that, in view of the many possible uses
of program generation and our relatively modest understanding of those uses,
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RTPG systems ought to be as general and flexible as possible. Generality has two
meanings here: First, it refers to the richness of the language in which generated
programs are expressed — the language inside quotations. Second, it refers to
the programmer’s freedom in dividing her program into fragments.

Is it legal to fill the hole in $<int m () {‘(hole) return x;} >$ with
the declaration $<int x=10;>$? How about filling $<if (y==x) ‘(hole) else
... >$ with $<break L;>$? Is the position of the hole in this fragment le-
gal: $<try ... catch (‘(hole)) { ... }>$? Can the hole in $<‘(hole)
class C { ... }>$ be filled with $<import java.util.*;>$? These are the

kinds of questions we would ask to probe the generality, in the second sense, of
an RTPG system.

Different systems make different trade-offs among the values of generality,
safety, and efficiency. On the whole, safety and efficiency compete with gen-
erality. Disallowing the insertion of variable declarations, for example, allows
the types of all variables used in a fragment to be known, and thereby pro-
motes safety and efficiency, but it certainly constrains the programmer’s ability
to structure the program-generating process.

In most work on run-time code generation, speed and safety are primary con-
cerns. We know of no system, other than Jumbo, in which the answers to all the
questions asked above would be “yes.” Consider the question of whether to allow
a fragment to contain a declaration whose scope extends beyond that fragment.
Partial evaluation-based systems [5,6,11,12] possess the “erasure property” —
erasing quotation marks leaves a valid program which is equivalent to the origi-
nal but is not staged. Thus, they follow ordinary scoping rules for declarations,
and the generation process cannot introduce new declarations. Template-based
approaches [11,13], which construct programs at run-time by combining pre-
compiled fragments, are inherently limited to fragments that generate machine
code; declarations produce no machine code. Other non-partial evaluation-based
system [7,10] restrict the introduction of declarations to permit faster code gen-
eration.

The design of Jumbo gives precedence to generality, in both its meanings. By
using the same compiler statically and dynamically, we ensure that the dynamic
language is the same as the static one. And by giving each node in the abstract
syntax tree its own semantics, and insisting that any node — even a declaration
— can be left as a hole to be filled in at run time, we ensure the ability to divide
up the program into almost arbitrary fragments.

Thus, by using a single compiler for both static and dynamic compilation,
we lower development cost — there is no extra work beyond writing the one
compiler — and get a system of great generality. On the other hand, we can
then offer no safety guarantees, and suffer from inefficiency at run time. The
latter is the problem we address in this paper.

3 Compositional Compilation

There would be nothing for us to do — we could achieve our goal trivially
— if we were willing to carry the compiler with us wherever code was to be



296 S. Kamin, B. Aktemur, P. Morton

generated, or to assume it existed everywhere. We could just emit source code
and invoke the compiler from the running program. However, this approach
is inherently inefficient, and more importantly, is extremely difficult to use in
practice because of portability issues and the fundamental reliance on exporting
source, which many organizations will not do.

Instead, Jumbo works by partially compiling each quoted fragment, produc-
ing a value of type Code. We will give the precise definition of Code shortly.
First, we discuss the structure of our compiler.

The idea of compositionality is that the Code value to which any AST trans-
lates is a function only of the abstract syntax operator at its root and the values
of each of its children. Thus, the compiler is really just a set of definitions of
abstract syntax operators, but with arguments of type Code rather than AST.
Examples are:

Code makeIfThen (Code cond, Code truebranch)

Code makeVariable(int flags, Type type, String name)

Code makeClass(int flags, String name, String supername,

StringList implementees, CodeList members)

This is the essential difference between this structure and a conventional
compilation structure: Instead of creating an AST and then generating JVM
code while traversing it, the abstract syntax operators themselves contain the
code to compile that syntactic construct.

A preprocessing step translates quoted fragments to abstract syntax opera-
tors, in the usual way. For example,1

Code safePointer (Code ptr, Code computation) {

return $< if (‘Expr(ptr) == null)

throw error();

else ‘Stmt(computation) >$;

}

becomes (0 is the code for binary operator “==”)

Code safePointer (Code ptr, Code computation) {

return makeStatements(

makeIfThenElse(

makeBinOp(0, ptr, nullConstant()),

makeThrow(makeSelfInvocation("", "error", new List())),

computation));

}

This program is now statically compiled — that is, as an ordinary Java
program. The calls to the abstract syntax operations are part of the program and
1 The syntactic category names are needed to allow parsing of holes within fragments.

The holes are replaced by special names — unknownExpr, unknownStmt, etc. — before
parsing. Zook et al. [14] describe a way to eliminate these using context-sensitive
parsing, but we have not yet implemented their technique in Jumbo.
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will be elaborated at run time, after the holes have been filled in. In particular,
at run time, Code values will be provided for the arguments to safePointer,
and the returned expression will be evaluated.

Eventually, this Code value will be placed inside the Code value for a com-
pilation unit, and be ready for the final step of compilation — generating Java
.class files containing JVM code. The method void generate () performs this
final step. Alternatively, Object create (String classname) calls generate,
and then loads the class file and returns an object of the class. generate is
for when Jumbo is used for off-line program generation, and create for true
run-time program generation.

We have achieved our goal of allowing for partial compilation even for frag-
ments of programs: the compilation of any fragment, compile(A), is its Code
value, obtained by evaluating the expression to which the fragment is translated
by the preprocessor. Holes are handled with no special effort — they are just
expressions within this larger expression which do not happen to be explicit calls
to abstract syntax operations. Mathematically, we can regard a fragment with
a hole, P [·], as being compiled to a function from Code to Code:

compileWithHole(P [·]) = λC : Code. compile(P [A])
where A is any fragment such that compile(A) = C.

Compositionality ensures that this function is well defined.

4 Jumbo

As discussed in [15,16], there are many choices for the Code type. A degen-
erate version of compositional compilation is to make Code be AST’s, and let
generate do all the work. In Jumbo, our goal is to put as much meaning as
possible into Code, leaving generate very simple. The most natural way to do
this is to make each Code value a function taking the compilation context (or
“environment”) to JVM code. This is how compositionality is achieved in defin-
ing abstract meanings of programs in denotational semantics [17], and it works
just as well when “abstract meaning” is replaced by “compilation.”

In Java, the situation is a bit more complicated, but for the most part we
follow this idea. Code values are represented by objects having a single method,
plus some additional information:

Code = ExportedDefinitions × (Environment → ClosedCode)

ExportedDefinitions = (ClassInfo + MethodInfo + FieldInfo)

Environment = stack of (ClassInfo + MethodInfo + LocalInfo)

ClosedCode = JVM code × integer × integer × VarDecls × Value

The first component of Code is the declarations exported from the code frag-
ment. The second is the function we have been referring to above, which we
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call eval; it does the actual translation to JVM code. Exported declarations are
just that: declarations that are in scope outside of this fragment. Based on the
exported declarations of a class’s members, the class can create a fairly complete
record of its contents, and that record (a ClassInfo) will be its exported declara-
tion. The eval method is given an environment containing all enclosing classes,
methods, and variables, and then generates code. The two integers in Closed-
Code give the next available location for local variables and the gensym seed,
needed to assign unique names to anonymous classes. The VarDecls value carries
the local variable declarations of that code fragment. The Value field gives the
constant value of an expression, if it has one; the Java language definition [18,
section 15.27] requires this.

In the implementation, Code is an abstract class with two methods: Declara-
tionList getDecls (), and ClosedCode eval (Environment).

The definition of Code is quite a delicate one, and we have gone through
several iterations. The current definition is parsiminious in the sense of having
as few components as we think is possible. We now explain briefly why this
definition works. In Java, names fall under two scope rules: names defined within
a method — local variables and inner classes — are in scope in statements that
follow the declaration (“left-to-right” scope), while names defined in a class —
fields and inner classes — are in scope everywhere within the class (with the
exception that fields are not in scope in their own initializers). The exported
definitions in Code are used to create the latter part of the environment; the
environment passed into the eval function of the methods of a class contains all
the fields and inner classes of that class. Names with left-to-right scope are passed
along in the environment from one statement to the next, using the VarDecls
in ClosedCode. Thus, the eval function for each statement gets an environment
containing all the names in scope at that statement.

(Aside to Java experts: This definition is actually a little bit too parsiminous,
in that it does not allow a proper treatment of free variables in inner classes.
The rule about inner classes is that each variable captured by an inner class
becomes a field of the inner class, and the constructors of the inner class must
assign the variable to its corresponding field. The question is, how do we know
which variables are actually used in an inner class? This information does not
come from the exported definitions of the inner class, since references are not
definitions, nor is it passed “left-to-right.” We finesse this problem by assuming
that all variables in scope in an inner class are referenced in that class. This
gives a correct, but obviously non-optimal, implementation of inner classes. An
earlier version of Jumbo had an additional “pass” — that is, another method
in Code — whose purpose was to gather free variable references in classes; we
removed it for reasons discussed in Section 7.)

So, our task comes down to this: In a Jumbo program, sections of quoted
code become expressions of type Code. At run time, these expressions will be
evaluated, producing a Code object whose getDecls and eval functions will
then be invoked. We wish to optimize this entire process, but mainly the eval
function of each Code value, since this is where most of the compilation occurs.
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5 Source-Level Optimization of Java

In this section, we describe the optimizations we apply. These take the form of
source-level transformations, including method inlining, constant propagation,
and various simplifications.

At present, these optimizations are not all applied automatically. A number
of transformations are “contractive” — simply put, they never make things worse
— and they are applied repeatedly in a “clean up” process. Others — such as
inlining — are potentially dangerous, in that they can lead to code expansion,
and the system must be told to perform them. (The user interface highlights
all inlinable methods and constructors, and the user clicks on the method name
to inline it.) We intend to explore methods of automating the entire process in
future research.

The transformations are mainly standard and will be described only briefly.
We emphasize that all are valid transformations in Java. The idea is not to build
an optimizer specific to our compiler, but to use the logic of Java to optimize
it. On the other hand, the specific choice of analyses and transformations was
made with knowledge of the compiler.

To simplify rewriting, we first normalize the code. There are three main parts
of the normalization step:

FQCN: Converts every name to its fully qualified version. For instance, a
field access x becomes this.x, and a field declaration Code c; becomes
uiuc.Jumbo.Compiler.Code c;. (uiuc is our university’s domain name, so
it is the root of package names that reside here.)

For-While: Converts for-loops to while-loops. Also, each while-loop’s condition
is replaced by true and taken inside the loop. The flow goes out of the loop
with a break-statement.

Flattening: Breaks complex expressions into simpler expressions. For instance,
after this step, all the arguments going into a method call will be simple
variables.

We can then apply the following rewrites. All must be applied “manually”
— that is, by explicitly requesting the rewriting engine to apply them. However,
Cleanup incorporates many of them in a fixpoint iteration; those are not normally
invoked manually.

Inlining: Inlines a method invocation. Replaces return-statements of the inlined
method with break-statements.

WhileUnroll: Unrolls the first iteration of a specified while loop.
AnonClassConvert: Converts anonymous classes to non-anonymous inner

classes.
ConstructorInlining: This transformation is described below.
Unflatten: Transforms the flattened program to a form that is more readable.
Cleanup: Runs the following rewrites in a fixpoint iteration. Each can be in-

voked manually, but there is little reason to do so.
Untupling: Extracts a field from a newly created object.
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UnusedDecl: Removes declarations that are never used.
UnusedScope: Removes scopes that have no semantic significance.
UnusedDef: Removes variable definitions that are not used.
UnusedReturn: Eliminates assignment of a method call when the assigned

variable is not used. The method call must still be executed for its side
effects.

IfReduction: Simplifies if-statements whose condition is a constant
boolean.

Arithmetic: Simplifies constant-valued arithmetic and logic expressions.
UnusedBreak: Removes break statements that make no difference to the

flow.
ConstantPropagation: Moves constant values through local variables.
CollapseSystemCalls: Collapses intern and equals calls made on

Strings.
ArrayLength: Replaces array.length expressions with the length, if

available.
Switch: Reduces constant switch statements to the match.
CopyAssignment: Propagates redundant assignments of variables and lit-

erals.
UnusedObject: Removes object creation statements if they are never used

and side-effect-free.
FieldValue: Propagates values through object fields assigned directly.
TightenType: Makes types more specific, if possible.
UnusedFieldAssign: Removes unused assignments to fields.
UnreachableCode: Removes code which is indicated to be unreachable by

the flow analysis.
ObjectEquality: Replaces (obj1 == obj2) with true, and (obj1 !=

obj2) with false, if it can determine whether the two objects point
to the same location; and vice versa.

PointlessCast: Removes cast expressions where the target of the cast is
already the right type.

WhileReduction: Removes while statements which only have a break as
the body and/or false as the condition.

InstanceOf: Attempts to resolve instanceOf expressions.
NullCheck: If it can prove that an object o is not null, then replaces o !=

null with true and o == null with false; and vice versa.

These rewriters use the information obtained from program analyses. The
analyses are Dominator, Flow, Use-Def and Alias. The first three are stan-
dard. Our alias analysis is described in [19].

5.1 Constructor Inlining

Most of our transformations and analyses are strictly intra-procedural. This
makes inlining very important for exposing opportunities for optimization. Con-
structors cannot be inlined like methods, because there is no notation to create
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an uninitialized object in Java; this is an implicit effect of each constructor. (If
we were optimizing JVM code instead of source, this would not be a problem.)
We might try to use the zero-argument constructor for this purpose, but it might
have an explicit definition that conflicts with the definition of the constructor we
are attempting to inline. We solve this problem by adding annotations, contain-
ing the statements of the constructor, to object creation sites. Other rewriters
then see the constructor code as though it was just an inlined method. The
constructor itself, which resides in a separate class, cannot be optimized, but
values propagated out of it can be used in the calling program. The annotations
must be removed before the optimized program is written; for this reason, the
annotations must have the property that they can be removed at any time and
leave a program with the same meaning as when they were there.

6 Examples

We demonstrate the effect of our optimizations via three examples. The first is
a complete (but small) class, without holes. The other two are the classic (in the
field of program generation) exponentiation function, and a program to generate
finite-state machines.

For each example, we show the original program, with quoted fragments.
The latter will be preprocessed away and transformed to calls to abstract syntax
operators, as described in Section 3. The resulting program is an ordinary Java
program that will be compiled into JVM code and executed. At run time, the
various Code values produced by these expressions will be brought together to
form a Code value representing a class. A call to generate or create will turn
this Code value into a Java .class file. In our examples, we are not executing
the generated programs, since we are interested only in code generation time.
In each test, we let the virtual machine “warm up” — load the Jumbo API,
java.lang, and other classes — before executing the programs, then run each
test 500 times. Our measurements exclude I/O time for outputting the .class
file.

To obtain the optimized versions of the programs, each quoted fragment is
optimized, in isolation, after it is preprocessed, using the rewritings described in
the Section 5.

For each run — original or optimized — we measure the overall time, and
we also measure the time spent in the method Class.forName. This method
does the run-time look-up for names used but not defined in the program (for
example, classes defined in imported packages). It consumes such a large portion
of run-time compilation time — more than 50% in most cases — that its effect on
speed-up is often substantial. Furthermore, these calls are impossible to eliminate
by any static optimization, since the imports must be elaborated on the target
machine (i.e. at run time). Since this cost is specific to Java, it is interesting to
see what speed-up we would be getting if this cost could be ignored.

The tables in this section have two columns for each of three different Java
virtual machines: Sun’s HotSpot, Kaffe (an open source VM), and IBM’s pro-
duction VM. (HotSpot is included because it is the the most widely used virtual
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machine, but none of the three is distinctly better than the others, nor is any of
them the “definitive” virtual machine.) For each VM, we give the overall execu-
tion time and the execution time excluding forName calls; these are the “w” and
“w/o” columns, respectively. The tables have three rows: unoptimized time, op-
timized time, and speed-up ((unoptimized time - optimized time) / unoptimized
time).

The timings are in seconds. Tests were run on an AMD Duron 1GHz proces-
sor, with 790 MB of memory, running Debian Linux.

6.1 Simple Class

To get a kind of baseline, we show the results of optimizing a complete, but
simple, class. The tests just invoke generate on this code:

$<

public class Temp {

int x;

int id() {

return 12;

}

}

>$

When presented with a complete class without holes, the rewriters ought to
be able to reduce it to a very efficient form. However, the speedups are not as
great as we would hope. (In the case of the IBM JVM, the rewriting actually
produced a slow-down.) Reasons for this are discussed in Section 7.

Table 1. Run-time generation performance for the simple example

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 0.46 0.44 0.79 0.76 0.42 0.41

Rewritten 0.40 0.38 0.66 0.64 0.47 0.46

Speed-up 13.0% 13.6% 15.2% 15.8% -11.9% -12.2%

6.2 Exponent

The exponentiation function generator creates a function that computes xn for
given value of n. Table 2 gives the performance of the original and rewritten
programs.

interface ExpClass

{ public int exponent(int x); }
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public class Power {

public static ExpClass getExp(int n) {

Code r = $<1>$;

for(int i = 0; i < n; i++){

r = $<‘Expr(r) * x>$;

}

String cname = "Power"+n;

Code expcl = $<

public class ‘cname implements ExpClass {

public int exponent(int x) {

return ‘Expr(r);

}

}

>$;

return (ExpClass)expcl.create(cname);

}

}

Table 2. Run-time generation performance for the Exponentiation example

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 2.79 0.98 2.45 1.29 4.55 2.98

Rewritten 2.70 0.89 2.36 1.09 4.19 2.63

Speed-up 3.2% 9.2% 3.7% 15.5% 7.9% 11.7%

6.3 FSM

Another application of RTPG is generation of finite state machines (FSM). Table
3 gives the program generation timings for this example.2

The example is discussed in [3] and here we give its main class. Due to space
considerations, we do not give the source of other classes. (ArrayMonoList is
just a type of list; here it is used to collect all the cases in the switch statement
that is the heart of the FSM implementation.)

public class FSM {

String FSMclassname;

State[] theFSM;

2 It is notoriously difficult to understand the performance of Java virtual machines, and
Table 3 is an example. The calls to forName are a large percentage of the execution
time on all VMs. Furthermore, these calls are identical in optimized and unoptimized
code. Yet speed-ups in two cases actually decline when forName is discounted. This
is because, even though optimizations do not touch this method, it runs faster in
the optimized than in the original code. We have, at present, no explanation for this
behavior.
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FSM (String c, State[] M) { FSMclassname = c; theFSM = M; }

Code genFSMCode () {

ArrayMonoList body = new ArrayMonoList();

// Each state corresponds to a case in the switch statement

for (int i=0; i<theFSM.length; i=i+1){

body.addAll($<case ‘Int(i):

‘Stmt(theFSM[i].genStateCode("ch"))

break; >$);

}

Code result =$<

import java.util.*;

public class ‘FSMclassname {

static void runFSM (StringTokenizer in) {

int theState = 0;

while (true) {

char ch;

if (!in.hasMoreTokens()) return;

ch = in.nextToken().charAt(0);

switch (theState) {

‘Case(body)

default: return;

}

}

return;

}

static void addToBuffer(char ch){ ... }

static void emitbuffer(){ ... }

public static void main (String[] args) {

String input = ...; // obtain input from console

runFSM(new StringTokenizer(input));

}

}>$;

return result;

}

}

The constructor of this class takes a finite-state machine description in the
form of an array of states; the client sends the genFSMCode message to that
object and then invokes generate on the result. The created class contains a
main method that reads a string from the console and runs the client’s FSM
on it.

We haven’t shown an FSM description due to space limitations, but to give
a general idea, an FSM description is a set of states, and each state is a set of
transitions. Here is the definition of a single transition.
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new Transition(new Predicate1 (), 1, new Action2 ())

where

class Predicate1 implements Predicate {

public Code pred (String ch) {

return $<(’a’ <= ‘ch && ’z’ >= ‘ch)

|| (’A’ <= ‘ch && ’Z’ >= ‘ch )>$ ;

}

}

class Action2 implements Action {

public Code action(int s, String ch) {

return $<addToBuffer(‘ch);>$;

}

}

This transition, if it sees a letter, goes from its current state to state 1 and puts
the letter into the buffer.

Table 3. Run-time generation performance for the FSM example

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 13.10 4.93 14.01 8.82 8.92 3.89

Rewritten 12.25 4.76 13.48 7.78 8.37 3.70

Speed-up 6.5% 2.9% 3.9% 11.8% 6.2% 4.9%

7 Lessons Learned and Future Work

Compositional compilation can be applied to any language, yielding a compiler
that supports run-time program generation (once the quotation/anti-quotation
syntax is added). Each language will present different issues, both in construction
of the compiler and in optimizing run-time program generation. Java is in some
ways highly suitable for this treatment. Because it has no preprocessor and no
optimization pass to speak of, most of the compiler consists of a translator from
AST’s to low-level code — the process to which compositionality applies most
naturally. But in another sense, Java is too dynamic; some compilation steps must
be performed dynamically that, in other languages, can be performed statically.
Obviously, anything the must be done at run time cannot be optimized away. In
this section we discuss why we have not gotten better speed-ups, and our future
plans.

7.1 Optimization Problems

The major issue blocking rewriting is resolution of class names. The Java def-
inition requires that these names be resolved on the target machine. Thus, for
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example, the test to determine if a method override is legal — which must be
done for every method — cannot be eliminated, because the superclass is avail-
able statically only in the rare case when it is defined in the quoted fragment
itself.

Similarly, the normalization of class names (conversion of a short class name
to a fully qualified class name) for variable, field, and method declarations must
be done dynamically. This necessitates that the fields keeping track of type
information be mutable: The objects containing those fields are the class and
method objects created by getDecls, but normalized class names cannot be
filled in until eval is called. Moreover, these objects are returned from getDecls
to generate, so unless the fragment being optimized is in a place where the
generate call can be inlined — which it usually is not — the class and method
information have to be considered to have “escaped.” Propagating information
through mutable fields of objects that escape is very difficult.

One result is that the optimized code generator still contains type checks
which we would initially have expected could be eliminated, such as a check for
the validity of the return statement in $<int foo() { return 5; }>$.

Even if the fragment being optimized consists of a complete class, it is possi-
ble that the consumer of the fragment will compile it in a larger context: adding
import statements, adding sibling classes, or making it an inner class. Not know-
ing this context causes more class name resolution problems. For example, if an
enclosing class contains a field named ”java”, then ”java.lang.Object” repre-
sents a series of field lookups, not a fully qualified class name, Having an explicit
create or generate call available in the code being optimized resolves this dif-
ficulty, because it tells us that the fragment we see will not be placed in any
larger context. However, as noted above, this will not normally be the case.

7.2 Next Steps

We have continually refined our compiler in two ways. One is reducing the num-
ber of “passes” — that is, the number of functions in Code. The idea is that
putting more work in a single pass makes more information available locally;
with multiple passes, each called from generate, the connection from one pass to
another cannot be inferred except in those cases where we can see the generate
call and inline it. As mentioned in Section 4, the current structure is as compact
as we think is possible.

The other refinement is making the fields in the compiler’s classes final. There
is a bit more we can do along these lines.

More broadly, however, Java fundamentally limits optimizations because of
the requirement to locate classes dynamically. This entails run-time calls to
forName; in one case — the exponentiation example in HotSpot — forName
consumes 65% of run-time compilation time. We have also noted above how
dynamic class locating has a cascading effect: it requires that certain fields be
mutable, which in turn diminishes our ability to statically determine their values.

It would be an interesting exercise to see what we could achieve if we as-
sumed that imported classes could be looked up at compile time. But Jumbo
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is a compiler for Java, not an idealized or subsetted version of Java, and we
do not want to change that. Nor would this be a simple experiment: we have
pointed out in this section how this property of Java has pervasive effects in the
compiler; vacating this property would have correspondingly pervasive effects.
So, our current thinking is that it may be time to apply our approach to a more
conventional, less dynamic, language like C, and this is an avenue we are actively
exploring.

8 Conclusions

We have shown how source-level optimizations can improve the performance of a
program generation system based on the principle of compositional compilation.

The Jumbo compiler was first publicly released in 2003. We began the current
study from (the newest version of) that compiler, but found that composition-
ality alone was not enough to permit optimization. We rewrote the compiler to
be (a) more compositional — where the first definition of Code contained four
functions, the current one has two — and (b) more functional in style, making
greater use of final fields. It seems reasonable to us that, since RTPG can offer
very significant performance advantages, the compilers to support it might be
written so as to allow for more efficient code generation. In any case, in our fu-
ture development of Jumbo, we will think of it as a process of co-design: writing
optimizations that apply to the compiler, and modifying the compiler to make
the optimizations applicable.

Though our speed-ups are still modest, we consider our results encouraging.
There remain possibilities for further rewriting, even in Java, and we fully expect
to see better results as we develop both the optimizations and the compiler. We
are also exploring the application of our ideas to other, more static, languages.
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Abstract. SafeGen is a meta-programming language for writing stati-
cally safe generators of Java programs. If a program generator written in
SafeGen passes the checks of the SafeGen compiler, then the generator
will only generate well-formed Java programs, for any generator input.
In other words, statically checking the generator guarantees the correct-
ness of any generated program, with respect to static checks commonly
performed by a conventional compiler (including type safety, existence of
a superclass, etc.). To achieve this guarantee, SafeGen supports only lan-
guage primitives for reflection over an existing well-formed Java program,
primitives for creating program fragments, and a restricted set of con-
structs for iteration, conditional actions, and name generation. SafeGen’s
static checking algorithm is a combination of traditional type checking
for Java, and a series of calls to a theorem prover to check the validity
of first-order logical sentences constructed to represent well-formedness
properties of the generated program under all inputs. The approach has
worked quite well in our tests, providing proofs for correct generators or
pointing out interesting bugs.

1 Introduction

Program generators can play an important role in automating software en-
gineering tasks. A large amount of research has concentrated on meta-
programming tools for writing program generators more conveniently or
safely [4,5,15,7,13,11,2,6,3,17,18]. Nevertheless, such tools have not enjoyed
much practical adoption. Programming language designers typically find meta-
programming to be too unwieldy and undisciplined to be added as a general-
purpose language feature. Working programmers who routinely use and write
generators seem to find that advanced meta-programming infrastructure adds
very little to what they can do with simple, text-based tools. For instance, many
tens of thousands of programmers worldwide use code templates in the text-
based XDoclet tool [12] to generate code for interfacing with J2EE application
servers.

If a sophisticated meta-programming tool is to become mainstream, it should
offer significant value-added for the generator programmer, comparable to the
value added by high-level programming languages over assembly programming.
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In this paper, we explore one possible direction for adding such value. We present
SafeGen: a meta-programming language that offers static guarantees on the cor-
rectness of the generator, yet is expressive enough for many practical appli-
cations. That is, a generator written in SafeGen is analyzed statically and its
correctness is examined under all possible legal inputs, where the user specifies
what constitutes a legal input. If the analysis succeeds, the generator is guaran-
teed to only produce well-formed Java code. This addresses a common problem
in generator development and a major reason why meta-programming often ap-
pears too unwieldy and undisciplined: a generator may have bugs that cause it
to produce illegal programs but only under certain inputs. Such bugs can stay
undetected for a long time and may only be found by end users and not by the
generator writer.

To achieve well-formedness guarantees, SafeGen has an easy-to-analyze lan-
guage for describing generators. This offers restricted syntax for describing con-
trol flow, iteration, and name generation. Inputs to a SafeGen generator are
limited to legal Java programs. That is, SafeGen generates programs by exam-
ining existing Java programs at a level comparable to that of Java reflection. All
of SafeGen’s reasoning is done in a logic that deals with reflective entities (e.g.,
methods of a class, argument types of a method, etc.), as opposed to, say, integer
numbers. Intuitively, this makes SafeGen ideal for XDoclet-like [12] tasks. For
instance, SafeGen is appropriate for going over an existing Java class and creat-
ing a delegator, or wrapper, or interface, or GUI class that will work correctly
with the original class. In contrast, SafeGen is not appropriate for generation
tasks such as creating specialized versions of the FFT transformation for specific
matrix sizes and dimensions.

SafeGen statically checks the legality of code templates by combining tradi-
tional Java type checking algorithms with automated proofs of the validity of
logical sentences. That is, SafeGen expresses the structure of the generator as a
collection of first-order logic formulas, treated as axioms. Further axioms, also in
first-order logic, encode standard properties of Java at the static checking level
(e.g., the fact that a final class cannot be extended). Finally, correctness condi-
tions of the generator are described as first-order logic conjectures. SafeGen uses
an automated theorem prover, SPASS [16], to attempt to prove these correctness
conditions under all inputs, based on the axioms.

SafeGen’s contribution to the meta-programming research community is its
novel approach of combining logic on reflexive properties of valid programs with
program generation, to guarantee the legality of programs that are not generated
until the run-time of the generator. This approach makes SafeGen the only meta-
programming tool we know of that both guarantees at the compile time of the
generator the type-correctness of the generated program, and allows generation
of arbitrary pieces of code (potentially with references to free variables and
unknown types). SafeGen also shows that despite the restriction on control flow
and name generation, this approach still allows the expressiveness that is useful
for many program generation needs. This general logic-based approach is not
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limited to SafeGen’s current target language, Java, but could be applied to other
languages.

2 Motivation and Background

One can question whether static checking of a generator is a valuable feature.
After all, once the generator is used, the generated program will be checked
statically before it runs. So why try to catch these errors before the program
is even generated? The answer is that static checking is not intended to detect
errors in the generated program or even errors in the generator input, but errors
in the generator itself. Although these errors will be detected at compile-time of
the generated program, this is at least as late as the run-time of the generator.
Thus, static legality checking for generators is analogous to static typing for
regular programs. It is a desirable property because it increases confidence in the
correctness of the generator under all inputs (and not just the inputs with which
the generator was tested). To see the problem in an example, consider a program
generator that emits programs depending on two input-related conditions: (We
use MAJ [18] syntax: code inside a quote, ‘[...], is generated. The unquote
operator, #[...], is used to splice the result of an evaluated expression inside
quoted code.)

if (pred1()) emit( ‘[int i;] );
...
if (pred2()) emit( ‘[i++;] );

If, for some input, pred2 does not imply pred1, the generator can emit the refer-
ence to variable i without having generated the definition of i. This is an error
in the generator. However, it might not surface until after the generator writer
has tested and widely deployed the generator. This error will then be detected by
some random user. It should be the responsibility of a good meta-programming
language to prevent such errors by statically examining the generator.

The problem of guaranteeing the well-formedness of generated programs is
essentially a problem of analyzing the control-flow and data-flow of the generator.
For instance, in the above code fragment, the question is whether there is a valid
program path that reaches the second emit statement without passing through
the first. Similarly, consider a generator that introduces two new names in the
same lexical context:

emit( ‘[ int #[name1], #[name2]; ] );

For static well-formedness checking, we need to know that name1 and name2 do
not hold the same value (or we will end up with an illegal duplicate variable
definition in the generated program). This is a data-flow property.

We should note that an interesting special case of program generation already
offers strong legality guarantees for generated programs. Specifically, multi-stage
languages, such as MetaML[13], MetaOCaml[7] or MetaD[10] guarantee that the
generated program is type-correct by statically checking the generator. In this



312 S.S. Huang, D. Zook, and Y. Smaragdakis

sense, multi-stage languages represent the state of the art in static safety checking
of generators. Nevertheless, staging applies restrictions on the structure of the
generator and prohibits the expression of code templates in arbitrary fragments.
Both of our above code examples are not possible in a multi-stage language. In
the first example, identifiers in generated code (e.g., i) cannot refer to generated
variable definitions that are not in an enclosing lexical scope inside the generator
text. This is a drawback, even if the final program is expressible in a multi-stage
language: ideally, a good meta-programming language should allow its user to
express a generator in the style the user finds most convenient. In the second ex-
ample, it is not possible in a multi-stage language to have the name of a generated
definition vary depending on generator input.(Concretely, in MetaOCaml syn-
tax, we cannot write, .<let .~name:int = 0 in .~name + .~name)>., since
binding instances cannot be escaped. Similarly, we cannot escape a type, e.g.,
.<let i:.~typename = 0 in i+i>.)

These restrictions mean that multi-stage languages are ideal for program
specialization where the entire code to specialize is available, but not program
generation where the generated program may be partial and may need to cooper-
ate with other parts whose structure is not known until generator run-time. For
example, a common generation task for J2EE applications is to take as input an
arbitrary Java class and produce a Java interface that contains all of the class’s
public methods [14]. In this case, there is no code to specialize that is statically
known to the generator. If the generator is to reason about the well-formedness
of its output, it needs to do so using abstract properties of yet-unknown program
entities, such as “no two methods in the input class can have the same type sig-
natures”. This is exactly the kind of program generation that SafeGen intends to
support.1 From a technical standpoint, the problem is harder than multi-stage
programming, since there are no restrictions as to how the control and data-flow
of the generator can influence the contents of the generated program parts.

3 SafeGen Design

In this section we describe the main design of the SafeGen language. We first
give a high-level overview of SafeGen and then present the language in detail.

3.1 Overview of the Approach

Before we discuss the specifics of the SafeGen language, we will offer a quick
example of what SafeGen can do, which will hopefully illuminate the role of all
the distinct language features described in detail in the next sections. As we
have not yet defined all the elements of SafeGen syntax and functionality, we
will appeal to the reader’s intuition for our example.
1 We expect that the general approach used in SafeGen could also apply to program

specialization tasks. Nevertheless, as mentioned earlier, SafeGen’s current input lan-
guage and reasoning engine is limited to reflection-like properties, and cannot apply
to, say, generating specialized numerical code for a given array size and dimensions.
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A basic, but not too interesting, SafeGen generator is the following:

#defgen makeInterface (Class c) {
interface I {
#foreach(Method m : MethodOf(m,c)) { void #[m] (); }

}
}

The elements of this definition are as follows. The generator is called
makeInterface. It accepts a Java class as its argument. It generates an interface
named I (this name may be modified at generator runtime if the generator is
used multiple times in the same lexical context). For each method of the input
class, the generator produces a void, no-argument method by the same name in
the generated interface.

Although this generator is almost trivial, it is still challenging to determine
automatically whether it will output a valid interface for every input class. For
example, do all the declared methods have unique signatures? In its attempt to
prove that the generated code is well-formed, SafeGen relies on three kinds of
knowledge: assumptions about the input (in this example there are none other
than the fact that it is a class), general knowledge of Java typing, and the
assumption that the input comes from a well-formed Java program (e.g., the
input class, c, has methods with legal names). SafeGen uses the SPASS theorem
prover to attempt to prove well-formedness properties of the output under any
possible input. All knowledge that SafeGen has about the program is expressed
as first-order logic sentences. For instance, the following formula states that any
two members (either classes or interfaces) in a well-formed Java package need to
have different names. (We show here the formula in SPASS syntax in order to
be concrete about the level of interfacing with the theorem prover.)

formula(forall([c1, c2],
implies(and(equal(DeclaringPackage(c1),DeclaringPackage(c2)),

equal(Name(c1), Name(c2))),
equal(c1,c2))),

MEMBERS_IN_PACKAGE_DIFF_NAME).

The well-formedness conjectures that SafeGen tries to prove are also expressed
as logic sentences. For instance, the following is a conjecture that states that
generated methods cannot have the same name and type signatures if they are
in the same class.

forall([m1, m2],
implies(and(method(m1),

method(m2),
equal(DeclaringClass(m1), DeclaringClass(m2)),
equal(Name(m1), Name(m2)),
equal(Formals(m1), Formals(m2))),

equal(m1, m2)))
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In fact, this conjecture cannot be proven for the above generator,
makeInterface. All generated methods have the same signature and methods
can have the same names, since the same method name can be overloaded in the
input class, c. Therefore, in this example we see that the output is potentially
ill-formed.

3.2 Language Design

We describe next the syntax and main concepts of the SafeGen language. The
language is described through short examples, followed by a longer example in
the end. For a more thorough exposition, the syntax is shown in Figure 2 in the
Appendix.

Cursors. The two main concepts in the SafeGen language are those of a cursor
and a generator. A cursor is a variable ranging over all entities satisfying a first-
order logic formula over the input program. Thus, the input program is viewed
as a collection of logical facts about its type declarations. For instance, a cursor
expression in SafeGen would be:

Method m : MethodOf(m,c) & Public(m) & !Abstract(m)

This cursor, m, describes all non-abstract, public methods in class c (c is a
cursor assumed to have been defined earlier). In general, the values of cursors
are type-system-level entities in the input program (methods, arguments, classes,
interfaces, etc.). The logic predicates used to build cursors can be viewed best
as a reflection mechanism over Java programs. SafeGen has several predefined
predicates that correspond to Java reflection information and the user can create
new predicate symbols that represent arbitrary first-order logic formulas over the
predefined predicates. Since the logical sub-language used to define cursors in
SafeGen is a standard first-order logic, we postpone describing its specifics in
detail until later in the paper.

Generators. A SafeGen generator is a way to express Java code fragments.
Generators are defined with the #defgen primitive. For example, a trivial gen-
erator, always producing a constant piece of code, is:

#defgen trivialGen () {
class C { public void meth() {} }

}

A generator can receive input parameters that are either cursors or predicates
describing constraints on the inputs. For instance, the following defines a gen-
erator that accepts a single non-abstract class as argument. (The body of the
generator is elided.)

#defgen myGen (Class c : !Abstract(c)) { ... }

Similarly, one can define a new predicate that constrains the input of the
generator:
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#defgen myGen (input(Class c) => !Abstract(c)) { ... }

The above line defines a new predicate, called input, that is used to describe
properties of the generator input values—namely that they are non-abstract
classes. Note that (unlike predicate definitions that we will see later) the “im-
plies” (=>) operator is used for predicates defining generator inputs: the input
is not all classes that are non-abstract, just some classes that are guaranteed to
be non-abstract.

A SafeGen generator interfaces with the outside world through Java reflection
entities and strings. For instance, a generator that takes a Class argument, as
above, is implemented as a Java method that accepts a java.lang.Class object
as argument.

The body of a generator (enclosed in {...} delimiters) can contain any
legal Java syntax. This Java code is “quoted”—that is, it gets generated when
the generator executes. Quoted code can also contain three SafeGen constructs
that serve as “escapes”: they direct the control and data-flow of the generator,
allowing configuration of the generated code. These three SafeGen constructs
are #[...] (pronounced “unquote”), #foreach and #when.

The #[...] operator is used for adding fragments of Java code inside a larger
fragment. For instance, a generator can integrate the output of another. More
interestingly, a generator can derive code fragments by applying several built-in
functions on cursors. Available functions are: Name, Type, Formals, ArgNames,
ArgTypes, and Modifiers. Consider the example of the following generator:

#defgen myGen (Class c : !Abstract(c)) {
#[c.Modifiers] class #[c.Name] { }

}

This generates a new (empty) class with the same name and modifiers as the
input class.

Functions Name and Type only generate one identifier, while Formals gener-
ates an array of 〈ArgType, ArgName〉 pairs, separated by commas. Functions
ArgNames, ArgTypes, and Modifiers generate arrays of values, with ArgNames’s
output separated by commas. Clearly, not all functions can be applied to all
cursors. Formals, ArgNames, and ArgTypes can only be applied to Method cur-
sors. SafeGen also allows the syntax #[c] on a cursor c. This is a shortcut for
#[c.Name].

The control flow of the generator is affected by primitives #foreach and
#when, allowing iteration and conditional execution, respectively. SafeGen logic
formulas determine iteration and conditional generation—thus, all iteration ter-
minates and can only be over elements of the generator input.

The #foreach construct takes as argument a cursor definition. Inside the
body of the #foreach, the cursor name can be used to refer to the current
element in the range of the formula used to define the cursor. For instance,
consider the following generator:
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#defgen addFields (Class c) {
#foreach ( Field f : FieldOf(f,c) ) { int #[f]; }

}

This creates a sequence of definitions of integer variables, each named after a
field in the input class, c.

The #when construct’s syntax is #when ( LOGIC ) { CODE_TEMPLATE }, op-
tionally followed by #else { CODE_TEMPLATE }. That is, #when takes a logic
formula as a parameter. If the formula evaluates to true at run-time, the first
code template is generated. Otherwise, the code template following the #else
is generated. In the example below, the argument to the generator is a set of
Java interfaces (with no other constraints on them). If the set is not empty, then
the “implements” clause gets generated, followed by all the names of interfaces.
Otherwise, nothing gets generated.

#defgen maybeImplements ( input(Interface i) => true ) {
#when ( exists (Interface in) : input(in) ) {

implements #foreach(Interface i) { #[i] }
}

}

Note that the above example also indicates that the generator’s model ignores
low-level separator tokens. I.e., our generators operate on abstract syntax trees,
not parse trees. Thus, when the #foreach construct above generates multiple
interface names, they get added to an AST. But when actual code is generated,
they will be separated by commas, as Java requires.

User-Defined Predicates. For modularity and code reuse, SafeGen also allows
definitions of new predicates both inside and outside the body of a generator.
#defpred is used to give a name to a frequently used logic formula. The following
example declares a predicate myPred that can be used in logic formulas, just like
built-in predicates:

#defgen myGen ( ... ) {
#defpred myPred ( Class c ) = Public(c) & !Final(c); ...

}

Name Management and Hygiene. In the body of a generator, identifiers
that correspond to generated definitions are hygienically renamed to avoid name
conflicts. For instance, consider the following generator:

#defgen renameGen (input(Method m) => (m.Type = int) & noArg(m)) {
#foreach( Method m: input(m) ) { int result = #[m](); }

}

(For convenience, the generator uses a predicate noArg, which we can define
using #defpred. This constrains the input methods to accept no arguments.)

The result of the above generator will not be multiple definitions of variable
result. Instead, at generation time, the actual variables generated will have
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fresh names. Any references to these variables under the same cursor (or a cur-
sor defined over a sub-range) will be consistently renamed to refer to the right
variable. Since the renaming is only performed at the final output phase (i.e.,
when all generators have been called and the result is a complete Java com-
pilation unit) SafeGen can tell which identifiers need renaming. Sometimes, a
generator writer might indeed want to specify a name for a particular declara-
tion, without renaming. In these cases, we provide the keyword #name["..."].
The identifier between quotes is generated as is.

Predicates, Cursors, and Logic in Detail. The logic underlying Safe-
Gen is a sorted logic, with the basic sorts being: Class, Interface, Method,
Constructor, Field, Identifier. Accordingly, all variables and constants in
our domain are of one of these sorts. SafeGen does not provide any built-in
constants. However, the user implicitly “creates” constants of the Identifier
sort as needed. For example, if a user wishes to find all classes that implements
java.io.Serializable, she writes the logical sentence:

forall (Class c) : (exists (Interface i) :
( InterfaceOf(i, c) & i.Name = "java.io.Serializable"))

java.io.Serializable is then declared as a constant in the domain during the
compilation process.

The syntax for SafeGen logical sentences closely follows the syntax for first-
order logic sentences (with the addition of sorts for declared variables). SafeGen
provides logical operators forall, exists, =, &, | , =>, !, which correspond to
all the operators available in first-order logic. The full list of available predicates
and functions is shown in Figure 3 in the Appendix. For readers unfamiliar with
first order logic syntax, please refer to Figure 2, rule LOGIC for details.

Example. We can now consider a non-trivial generator written in SafeGen.
This is a realistic example, yet one that is short enough to study here and to
use later for illustrating SafeGen’s static checking process. The generator in
Figure 1 takes a set of non-abstract classes as input and creates subclasses of
the input classes with methods that just delegate to the superclasses’ methods.
(As explained earlier, the identifier Delegator is going to be renamed for each
of the generated classes as to not induce name conflicts.)

3.3 Static Checking

We can now see how our approach can reason about a generator and guarantee
that it produces well-formed programs under all inputs. Every well-formedness
property of the output program is expressed as a logical formula. For instance,
consider again our Section 2 example generator, for which we want to guarantee
that a generated reference is always bound to a definition:

if (pred1()) emit( ‘[int i;] ); ... if (pred2()) emit( ‘[i++;] );
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1. #defgen makeDelegator ( input(Class c) => !Abstract(c) ) {

2. #foreach( Class c : input(c) ) {

3. public class Delegator extends #[c] {

4. #foreach(Method m : MethodOf(m, c) & !Private(m)) {

5. #[m.Modifiers] #[m.Type] #[m] ( #[m.Formals] ) {

6. return super.#[m](#[m.ArgNames]);

7. }

8. }

9. }

10. }

11. }

Fig. 1. A generator that generates a delegator class for an input class

The above example written in SafeGen is:

#when(logic_1) { int i; } ... #when(logic_2) { i++; }

where logic_1 and logic_2 are first-order logic formulas defined using built-
in predicates and functions. Checking whether variable i is declared before use
becomes checking the validity of the logical implication logic_2 → logic_1.
If the theorem prover proves validity, we know that under any input to the
generator, the variable i would always be declared before it is used.

Other program well-formedness properties are also expressible in a similar
fashion. Determining how to translate a given program property into a logical
sentence is the role of the SafeGen implementation, described in the next section.

We should be explicit in that implementing checks for all well-formedness
properties of Java programs is a heavy engineering task. SafeGen currently does
not support all possible checks but we believe the omission is just a matter of en-
gineering. 2 The currently supported checks in SafeGen are fairly representative
in difficulty of the task and correspond to many valuable program correctness
properties (e.g., method typechecking). Specifically, the currently fully supported
tests are for the following properties.

– A declared super class exists.
– A declared super class is not final.
– Method argument types are valid.
– A returned value’s type is compatible with the method return type.
– The return statement for a void-returning method has no argument.

2 Any computable property can be expressed as the validity of a first-order logic for-
mula. The only question is whether a theorem prover can reason about such prop-
erties effectively. For several yet-unsupported properties (i.e., properties for which
SafeGen does not generate conjectures automatically) we have hand-produced logic
formulas corresponding to example SafeGen programs and we have confirmed that
we can reason about them in SPASS effectively. For instance, the conjecture in Sec-
tion 3.1 was hand-produced, although our longer example in the Appendix (Figure 4)
was automatically produced by the SafeGen compiler.
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Notably missing checks include access control (e.g., no access to “private”
variables outside class); checking for subtyping restrictions (e.g., a non-abstract
class supplies definitions for all its superclass’s abstract methods); checking for
referring only to defined variables; checks for duplicate definitions; checking for
correct declaration of exceptions; etc. We expect that many of them will be fully
supported soon.

4 SafeGen Implementation

The most interesting part of the SafeGen implementation is the static checker.
Therefore in this section we discuss how SafeGen produces axioms and proof
obligations for a theorem prover, based on the structure of the SafeGen program.

4.1 SafeGen Static Checking

Although the SafeGen checking algorithm is not a traditional type-checker, it is
easiest to present it in terms of type-checking, where both the names and the
types of the various entities can depend on logic predicates.

SafeGen has two type-checking processes. One is type checking for the meta-
language: legality of references to meta-variables, meta-level predicates, func-
tions, and generators. (Meta-variables are either cursors or logic variables intro-
duced by an exists or forall quantifier.) The second but much more complex
one, is type checking for templated Java code. SafeGen’s type system keeps two
separate environments to support these two processes: the meta scope, for the
generator, and the object scope, for the generated program.

Environment. A meta scope keeps track of meta level declarations: gener-
ators, predicates, and variables. A new meta scope is created by the follow-
ing keywords: #defgen, #defpred, #foreach, #when, and quantifier keywords
forall and exists. With the exception of #when, all of the keywords above cre-
ate new meta-variable declarations. In addition to keeping track of declarations,
#foreach and #when meta scopes are also associated with the logical sentences
under which they are created. Each meta scope is linked to at most one parent
meta scope. For example, in Figure 1, the meta scope created by #foreach on
line 4 has the #foreach scope created on line 2 as a parent. The declarations in
parent meta scopes are visible in the children scopes.

An object scope is much like a type environment for regular Java type check-
ing. It contains symbol tables for types, variables, and methods. However, there
are two unique elements of our object scope. First, all entries in the symbol table
(e.g., names of variables or method declared in the scope, and the types these
map to) may not be constants but dependent on a cursor over the input program.
Second, each entry in the symbol tables has a link to a meta scope within which
the entry is declared. For example, in Figure 1, class Delegator, declared on
line 3, is an entry in the type table, with a link to the meta scope created on line
2, by #foreach ( Class c : input(c)). This meta scope in turn has a parent
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meta scope corresponding to the #defgen in line 1. For an example of an object
scope entry with an unknown name, consider the method declared on line 5 of
Figure 1. The entry in the symbol table will contain the information that the
method name is equal to the value of m.Name and the corresponding meta scope
will be that defined by the #foreach on line 4 (with parent meta scopes those
on lines 2 and 1). Only meta scopes created with #defgen, #foreach, #when can
be linked from object scope entries.

Algorithm. SafeGen’s type checking algorithm involves two phases. Phase I
accomplishes the following two tasks:

1) Fully populate meta scopes and type check the meta language. Type check-
ing the meta language is simply ensuring that a) every use of a meta-variable,
predicate, function, or generator is defined, and b) if a meta variable is used as
an argument to predicates, functions or generator calls, it has the correct type.
For example, if meta-variables m, c are used in predicate MethodOf(m, c), m
should have a Method type, and c should have a Class or Interface type.

2) Collect type information in code templates. Object scopes are partially
populated with only type information for declared types, their methods, fields,
and inner types. No statements are inspected. There is no legality checking done
in this phase. This step is analogous to a conventional type checking algorithm,
where a first pass generates all the type information needed to type check the
statements inside of method bodies and static initializers. After the object scopes
are populated, we generate a logical representation of what is in the object
scopes: a sentence describing the types available, their methods, fields, inner
classes, etc. For the example in Figure 1, the initial segment of this sentence is:

forall([c],
implies(and(Class(c), input(c)),

exists([c’], and(Class(c’), Name(c’)=Delegator, ...)))))

We call this sentence fact. It will be used in Phase II of the type checking
algorithm, as described next.

Phase II is responsible for checking the type correctness of templated Java
code. The algorithm resembles regular Java type checking in that it utilizes
the symbol tables to look up information on variables, methods, and types.
However, the algorithm is complicated by the use of meta-variables and func-
tions in declarations and references. Therefore, SafeGen’s type system com-
bines the use of object scope symbol tables with the building of logical sen-
tences using the meta scopes (i.e., the meta scope associated with the cur-
rent object scope and all its parent meta scopes). For example, in Figure
1, we need to check whether the method call, super.#[m](#[m.ArgNames])
on line 6 is a valid call. The first step is to look up the superclass of the
current class using the symbol table. However, we find that super does not
point to an actual class with its own symbol tables, but to a meta-variable,
#[c]. In order to check whether super.#[m](#[m.ArgNames]) is a valid call,
we must construct a logical sentence to inquire: under all legal inputs to
this generator (any class that is !abstract), and under the logical context
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(encoded by the meta scope) in which this method call is used (namely,
#foreach(Class c:input(c)) {...#foreach(Method m:MethodOf(m,c))} ),
does the class #[c] always have a method with name #[m], and argument types
the type of #[m.ArgNames]? This question is expressed as a logical sentence, test.
The test sentence for the method call super.#[m](#[m.ArgNames]) is shown in
Figure 4 in the Appendix.

We then construct the sentence fact → test, where fact was constructed in
Phase I, as described earlier. fact needs to be the condition in the implication
because it states the existence of classes and methods that test might refer to.
Facts about the well-formedness of generator inputs are also part of the theorem
prover input, supplied as axioms. We next feed this sentence to the theorem
prover to test its validity. The full input to the theorem prover includes the logic
definition (i.e., predicates, functions, sorts), axioms about Java, and the fact →
test conjecture. This is typically many hundreds of lines long.

5 Discussion

Using the Theorem Prover. There are two approaches to using the theorem
prover to verify the correctness properties of code templates. We could construct
a large sentence that is the conjunction of all the type-correctness properties the
templated code should preserve, and ask the prover whether these properties hold
given the facts produced by the code templates. While this approach simplifies
our language implementation by delegating all type checking duties to the the-
orem prover, it has a major disadvantage. The checking would be all-or-nothing
and it would not produce very useful error messages to the users. When one of
the properties in the conjunction fails to be valid due to a contradiction, all we
receive from the theorem prover is a series of syntactic maneuvers that arrived
at the contradiction. It is very difficult to decipher these messages to determine
the exact property that failed. We can only inform the user that somewhere in
their program, there is an error. The problem is exacerbated by spurious errors
due to valid formulas that could not be proven: the user would be unable to tell
that the error is spurious if we just reject the entire program.

Therefore, we have chosen a second approach. SafeGen’s type checking algo-
rithm is a combination of traditional Java type checking and calls to the theorem
prover. We make calls to the theorem prover to check the validity of very specific
properties. For example, when we are type-checking a class declaration, and we
reach the declaration of a super class, we make two calls to the theorem prover.
One is to check that the declared super class exists. Another is to check that the
super class is a non-final class. This approach yields simpler logic formulas to
prove. At the same time, we are able to produce very precise error messages to
the user regarding exactly which property the code template failed to establish.

The one disadvantage of our approach is that we must make many calls to
the theorem prover in the process of compiling just one generator. There might
be a potential performance hit depending on how long the theorem prover takes
to return answers. However, as discussed next, we have not yet found this to be
a major cause of concern.
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Experience. SafeGen is still work in progress. Nevertheless, we have experi-
mented extensively with the checking process for formulas that correspond to
SafeGen programs. In fact, we first chose example SafeGen programs and ex-
pressed in logic their properties that we wanted to check, before trying different
theorem provers and eventually choosing SPASS.

The choice of theorem prover is largely orthogonal to the overall approach,
and we may switch in the future. The overriding factor we used in choosing a
theorem prover was its ability to arrive at a result without human guidance. We
cannot expect the user of SafeGen to hand-tune the logic whenever the theorem
prover fails. A theorem prover that fails to find either a definite proof of validity
or a counterexample would cause SafeGen to produce lots of spurious warnings
to users. After trying several (4) theorem provers, we chose SPASS because (in
our tests) it demonstrated the best ability to terminate much of the time without
human guidance. With our limited set of example validity tests, SPASS always
finds a proof for the valid sentences. For sentences that are not valid, SPASS
terminates with a decision roughly 50% of the time. It fails to terminate (during
the several minutes we observed it) the other 50% of the time. This means that,
for our examples, SafeGen issues no false positive errors. However, for half of the
true type errors SafeGen reported, SafeGen was only able to report a “possible
error”, because SPASS did not terminate with a decision (i.e., a counterexample)
that the sentence is not valid.

Because SafeGen makes a large number of calls to the theorem prover during
type-checking, the performance of the theorem prover was a consideration, as
well. So far, for the cases that SPASS was able to terminate, it terminates in
under 1 second. This is hardly surprising: most of the properties we want to
prove are quite shallow. For instance, for many type-checking tests, the types and
meta scopes match exactly even though they are complex expressions involving
cursors and logic predicates. Currently we set the time limit for each SPASS
proof attempt at 3 seconds.

It is worth noting that our delegator example in Figure 1 has a bug that
SafeGen readily detects: the superclass method is not always guaranteed to have
a return type. If the return type of method m, called in line 6, is void, then the
statement return super.#[m](#[m.ArgNames]) is not legal. The user should
instead use a #when clause, to detect whether the superclass method has a re-
turnable result and if not to just call it without attempting to return its value.

Another result of our experiments with properties of sample SafeGen gen-
erators is that we tuned our logic to limit its expressiveness but maximize the
number of proofs we can produce completely automatically. That is, when we
find in our examples that a specific pattern causes consistent difficulties in rea-
soning, we remove the logic feature it depends on. For instance, transitivity is
very hard to reason about. The superclass relation is transitive, but instead of
specifying the transitivity fully in our logic axioms, we only expand it three lev-
els. As a result, if the validity of a generator depends on a subtyping relation
between classes more than 3 links away in the subtyping hierarchy, then our
logic cannot express the proof and SafeGen will issue a spurious warning.
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Big Picture: Soundness and Why a New Language? The SafeGen static
checking algorithm is sound: if a generator is approved by SafeGen, it is guaran-
teed to be correct (with respect to the supported tests, of course—but with no
fundamental reason why these tests cannot be all possible Java well-formedness
tests). As in any static checking system, however, what matters most is not
soundness but usefulness. After all, soundness is easy to achieve by just rejecting
all programs. In the static checking arena, tools like ESC/Java [8] have garnered
a lot of attention by trying to be useful, even though they are not sound.

We view the soundness argument as tied to another major decision, namely
whether to support a hard-to-analyze programming language like Java as the
meta-language, or to design a small, specialized language like SafeGen. If we
were to implement our checking approach on a meta-programming system built
on top of Java (such as our MAJ system [18]), we would certainly have sacrificed
soundness to achieve usefulness. Java has several language constructs (including
dynamic dispatch, aliasing and assignments, exceptions) that make it hard to
be sound (i.e., guarantee correctness) while allowing a large percentage of the
correct programs. Instead, our choice of creating a new language was largely so
that we could be sound, yet useful. We believe that soundness is not a goal by
itself, yet it is valuable in terms of user perception. Sound static checking mech-
anisms (such as type systems) are much more easily accepted by programmers
than unsound tools (like lint or ESC/Java) because they feel more disciplined.
At the same time, we have aimed at making SafeGen expressive enough for most
program generation tasks that depend on reflection over existing programs.

Of course, SafeGen checking offers no guarantees of completeness: if we find
no proof of the correctness of the generator, it is by no means certain that
it is erroneous. Since first-order logic is undecidable, the proof process will not
always terminate. We have examined the possibility of restricting our language to
a broad but decidable fragment of first-order logic, such as the guarded fragment
[1]. (In fact, SPASS, with the right choice of parameters is a decision procedure
for the guarded fragment [9].) Nevertheless, we believe that this would limit
significantly the expressiveness of our logic. Furthermore, it is not clear whether a
guarantee of termination of the proof process with a decision is a very important
property in practice, unless it is a guarantee of termination in a very short
time, which seems impossible: such decision procedures typically have super-
exponential complexity.

6 Conclusions

In this paper we presented SafeGen, a meta-programming language with the dis-
tinguishing feature that it offers powerful correctness guarantees for generators
expressed in it. SafeGen statically checks its input to guarantee that only well-
formed code will be generated at the generator’s runtime. We demonstrated a
novel approach that combines traditional static type checking with representing
program correctness properties in logic. We believe that SafeGen is expressive
and useful, even though its syntax is restricted so we can represent all program
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correctness properties logically. We also believe that the approach of using logic
to control and reason about code generation is one that extends beyond the
implementation of SafeGen. It can be used for a different target language (from
Java), and with a different logic (from one based on Java reflexive properties),
suitable for other broad categories of generation needs.
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Appendix

GENERATOR_DEF : "#defgen IDENT (" ( INPUT )? ") {" CODE_TEMPLATE "}" ;

INPUT : CURSOR_DEC ("," INPUT )*

| INPUT_PRED_DEC ("," INPUT )* ;

CODE_TEMPLATE : JAVACODE

| "#foreach (" CURSOR_DEC ") {" CODE_TEMPLATE "}"

| "#when (" LOGIC ") {" CODE_TEMPLATE "}"

( "#else {" CODE_TEMPLATE "}" )?

| GENERATOR_DEF

| PRED_DEF ;

CURSOR_DEC : METATYPE IDENT ( ":" LOGIC )? ;

METATYPE : "Class" | "Interface" | "Method" | "Constructor" | "Field";

INPUT_PRED_DEC: IDENT "(" ( PRED_ARGS )? ") =>" LOGIC ;

PRED_DEF : "#defpred IDENT "(" ( PRED_ARGS )? ") =" LOGIC ;

PRED_ARGS : METATYPE IDENT ("," METATYPE IDENT)* ;

JAVACODE : Java syntax + "#[" + METAEXPR + "]" ;

METAEXPR : IDENT ( "." META_FUN )*

| IDENT "(" ( GEN_ARGS )? ")" ;

GEN_ARGS : IDENT ( "," IDENT )* ;

META_FUN : "Name" | "Type" | "Formals" | "ArgTypes" | "ArgNames" ;

LOGIC : "forall" METATYPE IDENT : "(" LOGIC ")"

| "exists" METATYPE IDENT : "(" LOGIC ")"

| IDENT "=" IDENT

| "!" LOGIC | LOGIC "&" LOGIC | LOGIC "|" LOGIC

| LOGIC "=>" LOGIC ;

Fig. 2. SafeGen syntax
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– Unary predicates: Public, Private, Protected, Static, Final, Abstract,
Transient, Strinctfp, Synchronized, Volatile, Native

– Binary predicates: PackageOf, ClassOf, InnerClassOf, InterfaceOf,
SuperClassOf, ConstructorOf, MethodOf, FieldOf, ExceptionOf,
ArgTypeOf

– Functions: Name, Type, Formals, ArgNames, ArgTypes, and Modifiers.

Fig. 3. Available predicates and functions in SafeGen

implies(

forall([c],

implies(

and(input(c), class(c)),

exists([del],

and(class(del),

equal(Name(del), Delegator),

forall([sc], equiv(equal(SuperClass(del), sc), equal(c, sc))),

forall([m],

implies(and(equal(DeclaringClass(m), c), method(m)),

exists([del_meth],

and(method(del_meth),

equal(DeclaringClass(del_meth), del),

equal(Name(m), Name(del_meth)),

equal(RetType(m), RetType(del_meth)),

equal(Formals(m), Formals(del_meth)))))))))),

forall([c],

implies(and(input(c), class(c)),

forall([m],

implies(

and(equal(DeclaringClass(m), c), method(m)),

exists([meth],

and(method(meth), equal(Name(meth), Name(m)),

exists([sc],

and(equal(DeclaringClass(meth), sc),

exists([c’],

and(equal(DeclaringClass(meth), c’),

equal(SuperClass(c’), sc),

equal(Name(sc’), Delegator))))),

equal(Formals(meth), Formals(m)))))))))

Fig. 4. SPASS Conjecture for type-validity of “super” call in example
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Abstract. In this paper we describe a type system for a generative
mechanism that generalizes the concept of generic types by combining it
with a controlled form of reflection. This mechanism makes many code
generation tasks possible for which generic types alone would be insuffi-
cient. The power of code generation features are carefully balanced with
their safety, so that we are able to perform static type checks on generator
code. This leads to a generalized notion of type safety for generators.

1 Introduction

Generators are a cornerstone of today’s software engineering, especially in the
area of enterprise application development [1]. There exists a large variety of
tools for the generation of database interfaces, GUIs and compilers, and even
CASE tools can be subsumed under the notion of generators. Besides these very
specialized examples of code generation technology, many systems have been
developed that offer a more generic approach toward code generation. Some
of these systems allow the user to extend a programming language with new
constructs which trigger the generation of customized code.

In many cases it is not easy for a user to develop own code generators, even
when using systems that support this explicitly. The user has to have knowledge
about how a generator receives its parameters, how code is represented and
processed, how code is emitted, and how a generator is deployed. The answers
to these questions vary greatly from technology to technology. Code generation is
a sensitive area because it depends on parameters, and the usual data structure
involved, a syntax tree, is not trivial. A generator may work well most of the time
but can potentially fail with some rare actual parameters, and an error may not
be obvious but express itself in some slightly malformed parts of generated code.
Using generators always bears the risk of introducing hard to find bugs, while a
good generator has the potential to provide an economic and solid solution to
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a common problem. Complexity in the development of code generators leads to
generators that are more error-prone.

In this paper we show how the concept of code generators can be made acces-
sible to the user directly in object-oriented languages and how a type system can
be extended to take generators into account. The aim is to make generators part
of a program and not of the compiler while retaining the safety properties of a
typed language. No internal knowledge of the compiler should be required, and
the generation process should be transparent for the user. Placing generators into
the language itself instead of into a compiler affects the language syntax as well
as its semantics and safety; the challenge lies in integrating the new constructs
syntactically without interfering with existing semantics. Typed languages usu-
ally offer a high degree of safety through the use of type systems, and type
checkers are able to detect many potential execution errors statically. With the
new concept of generators, however, new types of potential execution errors are
introduced, namely those that happen when code generation produces ill-typed
code. Consequently, code generation poses new challenges to type systems.

In Sect. 2 we introduce the Genoupe language, which integrates code genera-
tors into the C# language, by looking at source code examples. We also discuss
its general applicability to different problems. Section 3 presents the novelties
of Genoupe’s type system and discusses some malformed examples of Genoupe
code that cannot be given a correct type. Section 4 looks at related work and
explains how Genoupe is different to similar approaches. The paper concludes
with Sect. 5.

2 Object-Oriented Programming with Parameterized
Generators: The Genoupe Language

Our concept for the integration of generators into object-oriented programming
is called Genoupe. It was developed from the language Factory [2], which in-
tegrated reflective generators into Java, and implements a similar but strongly
revised concept for C#. Genoupe introduces a syntax that is reminiscent of that
of generic types, although it is not limited to classes or interfaces. Like for generic
types the template paradigm is used, but in contrast to simple genericity, the
template can contain generator code written in a special compile-time level lan-
guage. This sublanguage is kept in an imperative style and along the lines of
the C# language itself, so that a C# programmer will intuitively understand its
meaning. Also the type system is analogous to the runtime one, but simpler for
ordinary types, since we usually do not need as many features here for generation
as we usually want for runtime code. With respect to generated types the type
system gets somewhat more sophisticated, and we need a whole set of essentially
new type rules. However, this is well worth it because, as we will see in Sects. 3
and 4, the new type system makes it possible to detect parts of a generator that
can potentially generate malformed code, in contrast to just detecting code that
is malformed itself.
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In the Genoupe language a generator can be embedded into the source code
like an ordinary type definition. Source code files written in the Genoupe lan-
guage have the name suffix .genoupe and are compiled to ordinary C# source
files with the same name but .cs suffix (see Fig. 1). Each time a generator is
applied with new arguments, new types with unique names are created. If a
generator is applied more than once with the same arguments in a compilation
run, the corresponding code is generated only once.

Genoupe

Compiler

a.genoupe

ordinary code

+ generators

b.genoupe

ordinary code

c.genoupe

ordinary code

+ generators

a.cs

ordinary code

+ generated code

c.cs

ordinary code

+ generated code

b.cs

ordinary code

Fig. 1. The Genoupe compilation process

In a generator actual type parameters can be accessed through so called
generator variables. These are variables that, in contrast to runtime variables,
hold objects at generation-time and make them accessible in the generator code.
Analogous to the parameters in an ordinary method, each declared generator
parameter creates a generator variable, which can be used in generator expres-
sions. A generator expression describes a values that is used at generation-time,
just as an ordinary expression describes a value that is used at runtime. It is very
similar to an ordinary C# expression in the sense that most generator expres-
sions are valid C# expressions. One speciality of generator expressions is that,
with the same values assigned to the generator variables, two structurally equal
generator expressions describe the same value. We do not have non-deterministic
effects like, e.g., random values, which are not needed in code generators. As we
will see in Sect. 3.1, this will help us to rule out some potential generation errors
statically.

Usually generator expressions are used to introspect type parameters and
extract or construct the information that is needed for intercession, i.e., infor-
mation that represents code that should be made part of the generator output.
In order to make the value of a generator expression part of the generated code,
the generator expression is enclosed in @ characters and placed into the code
template at a position where the entity that is represented by the expression’s
value is allowed to occur. If we want, for example, to generate a certain type in
a declaration of a generated class, we would create a generator expression that
evaluates to a Type object representing the desired type. This generator expres-
sion would be placed, enclosed in @ characters, at the position in the source code
where we would normally place a type name. At generation time all generator ex-
pressions are evaluated and substituted by the code represented by their values.
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That is, if we had a generator expression of type Type, i.e., one that evaluated to
a Type object, Genoupe would substitute the generator expression by the name
of the type represented by the type object in the generated code. Genoupe makes
use of the standard C# metaobject protocol, so that it is obvious in most cases
which type represents which language entity.

In the following subsections we will consider some simple examples of
Genoupe source code, which will point up how Genoupe can be used. Some
applications for Genoupe, e.g., the generation of interfaces like GUIs or APIs,
are not discussed here. Information on those and further examples can be found
in [3,4].

2.1 Parametric Polymorphism

One of the simplest applications for Genoupe is parametric polymorphism. The
following generic stack generator has a single parameter T of type Type and
generates a stack class for elements of type T:

1 public class Stack(Type T)
2 {
3 private Stack s = new Stack();
4

5 public void push(@T@ x) {
6 s.push(x);
7 }
8

9 public @T@ pop() {
10 return (@T@) s.pop();
11 }
12 }

The generator parameter declaration in line 1 looks a bit similar to a method
declaration, and like in a method declaration, a generator can have an arbitrary
number of parameters with arbitrary type. In lines 5, 9 and 10 we insert generator
expressions containing only the generator parameter in order to generate correct
type declarations and type casts.

2.2 Class Extensions

Genoupe can be used for the generation of useful extensions. In contrast to
ordinary inheritance mechanisms, which also extend classes, a generator can
adapt the extension it generates to the class that is extended. This makes it
possible to address static crosscutting concerns [5].

The following code snippet shows a generator that takes a class T and an
array of field names FNames for that class. It generates a subclass of T that
extends it by a new method Randomize that assigns random values to the fields
of T. This can be useful, for example, for the generation of test data.
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1 public class Randomizeable(Type T, String[] FNames) : @T@
2 {
3 public void Randomize() {
4 Random r = new Random();
5 @if(FNames!=null) {
6 @foreach(FName in FNames) {
7 @const F = T.GetField(FName);
8 @if(F.FieldType==Double)
9 this.@F.Name@ = r.NextDouble();

10 else @if(F.FieldType==Boolean)
11 this.@F.Name@ = (r.NextDouble()>=0.5);
12 // ...handle other data types...
13 }
14 } else {
15 @foreach(Field in T.GetFields()) {
16 // ...generate assignments for all fields...
17 } }
18 } }

In line 5 we see the @if control construct of the generator language for con-
ditional generation. It checks if an array of field names has been given at all,
and only then the FNames array is used. In line 6 we see the @foreach con-
struct, which is used for iterative generation. Its only difference to the foreach
construct of C# is that the static type of the iterator variable needs not to be
declared. In line 7 we define a new generator variable with a constant value,
which is just syntactic sugar for our convenience. In the following lines, depend-
ing on the type of the respective field, we generate a statement that assigns
to the field a compatible random value. The field’s identifier is generated with
a corresponding generator expression of type String. In the else-clause of the
outermost @if, which is analogous to the aforementioned code, we handle the
case that an array of field names was not given by generating code that assigns
random values to all fields of T.

2.3 Proxies and Wrappers

A common pattern for modifying the behavior of existing classes or bridging
incompatibility is the use of proxies [6] and wrappers. With Genoupe both of
these can be generated automatically, which makes it possible to address dynamic
crosscutting concerns [5].

The following class generator takes a type parameter T and creates a subtype
of T that overrides and wraps T’s methods. A class generated by this generator
behaves like T but logs all method calls and exits, which can be useful for de-
bugging purposes.

1 public class Logger(Type T) : @T@
2 {
3 public String Log = new String();
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4

5 @foreach(M in T.GetMethods()) {
6 @const Pars = M.GetParameters();
7

8 public override @M.ReturnType@ @M.Name@
9 (@foreach(P in Pars) { @P.ParameterType@ @P.Name@ })

10 {
11 Log += @new Literal(M.Name)@+" called.\n";
12 base.@M.Name@(@foreach(P in Pars) { @P.Name@ });
13 Log += @new Literal(M.Name)@+" exiting.\n";
14 }
15 } }

In lines 8 and 9 we use generator expressions to generate the signature of each
of T’s public methods. A list of method parameter declarations is generated
by iterating over all the parameters and generating each parameter declaration
individually. The same approach is used in line 12 in order to generate the list of
arguments for a method call. The Literal objects constructed in lines 11 and
13 represent generated string literals, opposed to generated identifiers.

3 Generator Type Safety

When dealing with metaprograms, i.e., programs that process other programs
or themselves in some suitable representation, a whole set of new sources of
execution errors comes into play. Generation errors in generators are those parts
of the generator program that can potentially generate malformed code, which
in turn may cause execution errors when executed. Of course, we also want our
generators to be free of execution errors themselves. In addition to normal type
systems, which can only detect potential forbidden errors in the code that is
type checked, we need a new kind of type system that can also detect parts in
generators that can potentially generate ill-typed code. This requirement leads
to a new notion of type safety, which we want to call generator type safety. It is
the property of a generator not to be able to generate ill-typed code, i.e., code
that may cause a forbidden execution error. If a generator is not generator type
safe, it contains one or more generator type errors, i.e., parts in the generator
code that are responsible for the generation of ill-typed code. We call a type
system that can detect generator type errors a generator type system.

Before we describe the generator type system of Genoupe in the next section,
let us look at examples of malformed generators that can potentially generate
ill-typed code. The following generator generates a class with a single field:

1 class C(Type T)
2 {
3 @T@ x = 1;
4 }
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The fact that x is assigned a numerical value restricts its possible type. The
type parameter T however is not subject to any such restriction. This is clearly a
generator type error that leads to some arguments producing type-correct code
and others not.

The next example demonstrates another issue of type compatibility.

1 class C(T istype Component)
2 {
3 @T@ x = new Button();
4 }

The Genoupe keyword istype makes it possible to set a bound for type pa-
rameters, i.e., parameters of type Type. Line 1 signifies that parameter T is a
type parameter and that all possible arguments represent types that are either
class Component itself or one of its subclasses. In the generator body we define
a member variable x with type T, to which we assign a Button object. Button
is a subclass of Component, but what if T is a subclass of Component but not
compatible to Button, i.e., not either Button itself or one of its superclasses?
The generated code is type correct iff T is Button or one of its superclasses.

The following example is a class generator that has a string parameter ID. As
the name suggests, the string is used to generate the identifier of a local variable
in a method.

1 class C(String ID)
2 {
3 void m() {
4 int @ID@ = 1;
5 x++;
6 }
7 }

In line 5 we increment a variable x. Since there are no other variable definitions
in the generator, x must be defined in the preceding line where the identifier of
a variable is generated by a generator expression. If the generator is given the
argument "x", the generated code works just fine, otherwise it is ill-typed. This
is also known as the problem of inadvertent capture [7].

The next generator contains a conditional generation.

1 class C(String X)
2 {
3 @if(X.Equals("hello")) {
4 @T@ y = "world";
5 }
6

7 void m() {
8 Console.WriteLine(y);
9 }

10 }
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The definition of the member variable y is only generated when "hello" is the
string argument in X. Again, we have cases where this generates an error and
others where it does not.

Our last example illustrates a generator type error that can occur in iterative
generation.

1 class C(Type S, Type T)
2 {
3 @foreach(F in S.GetFields()) {
4 @F.FieldType@ @F.FieldName@;
5 }
6

7 void m() {
8 @foreach(F in T.GetFields()) {
9 Console.WriteLine(this.@F.FieldName@);

10 }
11 }
12 }

The first generative iteration replicates the field definitions of type parameter
S. The second one in method m generates statements that access and print the
values of fields as defined in type parameter T. Clearly this can only work if T
contains fields with identical name for all the field definitions in T, which is of
course the case when S and T are bound to the same type.

All these generator type errors also occur in real generators, and usually they
occur in a subtler way that makes them much harder to find. Such errors are
typically introduced, for example, when applying inconsistent changes: one part
of a generator is changed without adjusting other parts accordingly that are
affected by that change.

Note that the Genoupe language has another property which makes its gen-
erators safer than those in many other languages: if all the methods we use
in generator code terminate and we do not use generators recursively, which
is usually unnecessary, a generator is guaranteed to terminate. This is because
our looping construct, the @foreach, iterates over collections without modifying
them, and the collections contain of course only a finite number of elements. In
C++ templates, for example, we must use recursion when we want to repeat
something arbitrarily often. C++ templates can potentially recourse endlessly,
and only a limited recursion-depth prevents this [8]. In other technologies which
use a Turing-complete language for metaobject manipulation, like CLOS [9],
OpenC++ [10] or Jasper [11], generators potentially do not terminate as well.

3.1 The Genoupe Type System

In order to detect generator type errors, we developed a generator type system
which is compatible with and extends the type system of the host language C#.
Its notation is similar to the one used in [12]. It consists of rules with judgments
about the correctness of certain program parts in their pre- and postconditions,
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and only the programs that can be derived by those rules are considered type
correct. In some respects, however, our type system deviates from the way in
which type systems of object-oriented languages usually work. We use an en-
vironment Γ , which keeps track not only of the signatures of declared runtime
variables but also of the signatures of generator variables. The signature of a run-
time variable can contain generator expressions because its identifier and type
may be generated by them. For handling conditional and iterative generation of
declarations correctly, definitions that are generated conditionally or iteratively
have special signatures, and Γ is also used to store additional facts about the
code portion that is being type-checked.

Rather than delivering a complete description of the type system, this paper
focuses on explaining the main concepts by looking at some exemplary type
rules. These rules can be found in Table 1, and we will go through them one
after another. Rule [Env V ar] describes how the signature of a generated variable
can be included into Γ . The two judgments in the precondition state that we
need a correct generator expression of type String for the variable’s identifier,
and a correct generator expression of type Type for the variable’s type. The
: : symbol associates a generator expression with its type. In the postcondition
the new environment is a conjunction of the old Γ and the new signature. The
: symbol associates the identifier of a variable with its type. Rule [Env then]
allows us to register in Γ that a generator expression Gexpr evaluates to true.
The generator expression must be of type Boolean and the opposite, i.e., that
Gexpr evaluates to false, must not be registered in Γ already. As the name of
the rule suggests, this rule is used for type-checking in the then-clause of an @if
construct, where the generator expression describing the condition of the @if
is known to be true. Analogous to this, rule [Env loop] allows us to register in
Γ that an iterator variable of a @foreach contains an element of a particular
collection, which is the collection over which is iterated.

Rule [Def V ar] describes how a variable definition can be generated with
suitable generator expressions and what its signature looks like. The ∴ symbol
associates a signature to a definition. A signature is a set of facts that describe
a definition. Rule [Def @if ] describes the conditional generation of definitions.
In the second and third line of the precondition, we see that the facts Gexpr
and ¬Gexpr are included in the environment when we demand that the declara-
tions D1 and D2 have the signatures Sig1 and Sig2, respectively. Consequently,
the judgment in the postcondition states the correctness of an @if with D1 in
the then- and D2 in the else-clause. The signature of the @if , which becomes
part of the environment during type-checking, has two parts: one describing
the signature of the generated definition in the case that the condition is true
and one describing the signature of the generated definition when its not. Rule
[Def @foreach] describes the iterative generation of definitions. In the second
judgment of the precondition we demand that D is a correct definition with
signature Sig. The environment states that ID is an iterator variable which
contains an element of the collection described by Gexpr. The signature of the
resulting @foreach is again a special one: it signifies that for any generator vari-
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able X , with X being an element of some collection described by Gexpr, there
is a signature that looks like the signature of D, only that each occurrence of
ID in that signature is substituted by X .

The rules [Expr V ar 1], [Expr V ar 2] and [Expr V ar 3] will hopefully clarify
why we need these unusual elements in Γ . They all specify how we can use a
generated variable in a generated expression. Rule [Expr V ar 1] states that if
there is a generated variable declared in Γ , we can generate an expression that
uses it by generating its identifier with a corresponding generator expression.
Rule [Expr V ar 2] describes under which circumstances a variable can be used
that has been generated in the then-clause of a conditional generation: it can
be used if Γ states that Gexpr, the condition under which the variable was
generated, is true. Analogous to this rule, there is also one for using a variable
that has been generated in the else-clause of an @if. Finally, rule [Expr V ar 3]
handles the usage of variables that have been generated in a @foreach. Such a
variable can be used if Γ states that the usage of the variable is in the body of
a @foreach loop that loops over a collection described by the same generator
expression as the collection of the loop in which the variable was defined. This
means that the collections of the two loops are equivalent. In the loop in which
we generate code that uses the variable, the iterator variable may have a different
identifier. Therefore we substitute the X in the variable’s signature by the ID
of this loop’s iterator variable.

3.2 Limitations

Like most type systems, the Genoupe type system is restrictive: it forbids not
only programs that are obviously incorrect but also many others which do not
contain generator type errors. In the rules for the @if, for example, we require
that a conditionally generated variable must be used in the body of a conditional
with equivalent condition. Logically it would be enough, though, to require that
the condition of the defining conditional implies the condition of the condi-
tional in which the variable is used. Analogously, if variables are generated in
a @foreach, it would be sufficient to demand that they are used in a loop that
iterates over a subset of the collection in the defining iteration. Because the
underlying problems are undecidable, we did not try to solve them, although it
would be possible to address these issues using approaches from logical program-
ming like, for example, constraint solving and model checking. Note that this is a
popular way for type systems to deal with issues that restrict the way a language
is used but do not really limit its applicability: C# and Java, for example, do
not really check whether a method with a non-void return type returns a value;
they merely check if a superset of possible execution paths returns a value.

The possibility to generate arbitrary identifiers with generator expressions
brings about lexical problems: a generated identifier might be malformed, e.g.,
it might clash with a keyword, or might not be unique. Both these problems
could only be solved if we restricted the way identifiers can be generated. But
if we did that, we would lose flexibility and potentially the ability to produce
clear human-readable names, and the language would become more complicated.
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Table 1. Exemplary type rules of the Genoupe generator type system

[Env V ar]
Γ � Gexpr1: : String Γ � Gexpr2: : Type Gexpr1 /∈ Dom(Γ )

Γ ∪ {Gexpr1: Gexpr2} � �

[Env then]
Γ � Gexpr: : Boolean (¬Gexpr) /∈ Γ

Γ ∪ {Gexpr} � �

[Env loop]
Γ � Gexpr: : ICollection

Γ ∪ {ID ∈ Gexpr} � �

[Def V ar]
Γ � Gexpr1: : Type Γ � Gexpr2: : String

Γ � @Gexpr1@ @Gexpr2@; ∴ {Gexpr2: Gexpr1}

[Def @if ]

Γ � Gexpr: : Boolean
Γ ∪ Sig1 ∪ {Gexpr} � D1 ∴ Sig1

Γ ∪ Sig2 ∪ {¬Gexpr} � D2 ∴ Sig2

Γ � @if(Gexpr) { D1 } else { D2 }
∴ {Gexpr → Sig1, ¬Gexpr → Sig2}

[Def @foreach]
Γ � Gexpr: : ICollection Γ ∪ Sig ∪ {ID ∈ Gexpr} � D ∴ Sig

Γ � @foreach(ID in Gexpr) { D } ∴ {∀X ∈ Gexpr.Sig[X/ID]}

[Expr V ar 1]
(Gexpr1: Gexpr2) ∈ Γ

Γ � @Gexpr1@:Gexpr2

[Expr V ar 2]
{Gexpr, Gexpr → Gexpr1: Gexpr2} ⊆ Γ

Γ � @Gexpr1@: Gexpr2

[Expr V ar 3]

{ID ∈ Gexpr, ∀X ∈ Gexpr.(Gexpr′1: Gexpr′2)} ⊆ Γ
(Gexpr′1: Gexpr′2)[ID/X] = (Gexpr1: Gexpr2)

Γ � @Gexpr1@: Gexpr2

The more freedom we allow for the generation of identifiers, the more complex
a collision detection scheme would have to be in order to avoid this problem.
We decided not to implement any such restriction or detection scheme and take
the risk of lexical collisions, which is inherent when working with a textual
source code representation. The responsibility for handling the generation of
identifiers carefully lies with the programmer of a generator, for whom this is
usually unproblematic.

4 Related Work

Genoupe is an extension of genericity or parametric polymorphism found, for
example, in ADA or Java [13,14]. With parametric polymorphism it is possible
to program components that are uniformly reusable for many types. However,
these generic type parameterization mechanisms are at the same time type ab-
straction mechanisms: the construction of the type cannot be exploited in the
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parameterized software component – at most it can be exploited up to a bound,
known as bounded parametric polymorphism. Therefore it is useful for container
libraries, e.g., C++ Standard Template Libraries, but it is not as powerful as
Genoupe.

The original C++ template mechanism does not allow for the enforcement
of properties for actual type parameters as, for example, supported by the no-
tion of bounded parametric polymorphism [12,15]. Ad-hoc solutions to provide
some level of concept checking for C++ templates, like specialized macros [16]
and static interfaces [17], has been generalized by the introspection library ap-
proach in [18]. This approach targets user-customized checks for both compile-
time adaptation and diagnostics.

The new C++ templates standard allows in principle Turing-complete meta-
programming with static and dynamic reflection in C++ [19], sufficient, e.g., for
an interface generator for a relational database [20]. It is still less powerful than
Genoupe; for example, it is not possible to generate function names dependent on
a parameter. It does not support any static notion of generator type safety; type-
checks are done with the ordinary C++ type system. Furthermore, a template
metaprogram may not terminate. The Turing-completeness makes it impossible
to analyze the generating templates exhaustively.

Aspect oriented programming aims at handling of crosscutting concerns in
programs. AspectJ [5] is a Java extension for aspect oriented programming,
which offers two approaches: dynamic and static crosscutting. Crosscutting does
not help us with type-dependent generative problems, e.g., the implementation
of a transparent data-access layer. Static crosscutting allows to extend the sig-
nature of classes and interfaces, but not in an adaptive manner: we can add a
new method to a class from within an aspect – so-called member introduction –
but still the method has to be specified literally and cannot be made dependent
on some parameter. The generative approach to aspect-oriented programming
in [21] characterizes certain uniform patterns that arise in using the aspect ori-
ented style of inverting functional decomposition as amenable to be handled by
the incremental computation approach. Based on this insight the approach es-
tablishes a behavioral semantics for generative aspect-oriented features that are
oriented towards finite differencing [22].

The concept of runtime reflection dates back to Lisp [23] and has been subject
of major interest in the functional programming community. The combination of
parametric polymorphism with reflective features in Generic Haskell [24,25] ben-
efits from the theoretical well-understood type-system of the host language. In
the context of the object-oriented functional programming language CLOS [26,9],
a mature metaobject protocol has been elaborated. In [27] CLOS is used to prove
the value of metaprogramming by embedding representations of common object-
oriented design patterns [6] into programs. Multistage programming [28,29] is an
approach that focuses on runtime program generation and execution. The pro-
grammer is supported by constructs for partial evaluation and program special-
ization, whereas several properties of runtime generation can already be ensured
statically. An implementation of the multistage programming approach is pro-
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vided on top of the object-based functional programming language O’Caml [30].
The language Metaphor [31] results from extending the subset of an object-
oriented language like C# or Java by the multistage constructs of the functional
programming language MetaML [28,29], i.e., a construct for building represen-
tations of expressions, a construct for splicing code and a construct for running
staged evaluated code. With its multi-staged language design Metaphor achieves
type-safe generation of code that makes use of the reflection system of the base
language.

Jasper [11] is a reflective syntax processor for Java. It provides mechanisms
for static reflection. It does not follow the template approach; instead it allows for
metaprogramming through the extension/modification of the syntax processor
itself [32] – an architecture that is known as open compiler. It supports universal
metaprogramming and is as such more powerful, but less understood.

5 Conclusion

Genoupe implements a concept for generative programming that integrates re-
flection by means of a metalanguage into a template mechanism reminiscent of
genericity. It can be used to solve common problems of generative programming
and offers advantages compared to other languages with respect to the degree
of integration of the runtime and the metalanguage and safety:

– Genoupe places the concept of generators into the language instead of relying
on an external tool driven approach, thus minimizing the interface to the user
and avoiding potential errors.

– It integrates well with an object-oriented host language and can be seen as a
generalization of genericity. It uses similar syntax for runtime and generator
code, which makes it easy to use and understand.

– A wide range of common applications of generative programming can be
addressed.

– Genoupe offers an particular high degree of static safety for reflection by
means of a type system that is able to detect generator type errors.

More information about Genoupe and implementations of the Genoupe system
can be found on our project web site, http://www.genoupe.formcharts.org/.
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Abstract. Motivated by a wish to sort an array A while simultaneously
permuting another array B, iteration over array pairs (A,B) is consid-
ered.

Traditional solutions to this problem require an adaption of either the
algorithm or of the data structure. The generic programming approach
described in this paper involves the construction of an iterator adaptor:
an iterator pair. The different approaches are implemented in C++ and
compared with respect to flexibility and performance.

Our design is also compared with another iterator-based design. When
examining our solution, we identify the relationship between a reference
type and a value type as an independent abstraction. We find that a valid
“reference type” to a value type T is not necessarily T&. The reference pair
developed in this paper serves as an example of a reference type which
refers to a standard value pair without being a standard reference.

Our understanding of the relationships between iterator pairs, value
pairs, and reference pairs, makes our design simpler than the alternative.
It is argued that a recognition of these relationships is useful in many
other generic programming contexts as well.

Keywords: C++, iterators, reference types.

1 Introduction

A colleague of ours encountered the following sorting problem while developing
the commercial finite element software FemLab 3 [1].

Motivating problem: Consider two huge arrays A and B, where, for
each index i, the numbers Ai and Bi are related. The task is to sort A
while maintaining the inter-array relationship.

There are three fundamentally different approaches to this problem.

Algorithm-based Adapt the algorithm. Based on any sorting algorithm, it is a
simple matter to write a special-purpose sorting algorithm which is dedicated
to solving this particular situation.

Data structure-based Reorganize the data structure. Instead of having a pair
of arrays, data could be organized as an array of pairs. It is then trivial to
accomplish the task by reusing a general-purpose sorting algorithm such as
C++ std::sort.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 342–356, 2005.
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Iterator-based Reuse via generic programming (GP) as pioneered by Stepanov
and Lee in the design of STL, the C++ standard template library. Construct
an iterator adaptor which makes it possible to reuse std::sort without
redesigning the data structure.

For the developers of FemLab 3, it was not feasible to change the data struc-
ture. It would have required a major redesign of the implementation, and it is
also likely that it would have degraded the performance of other parts of the
program. Regarding the iterator-based approach, my colleague said that he con-
sidered the third alternative for a while, but settled for the more pragmatic first
alternative.

The motivation behind the present paper is to discuss the third alternative,
the iterator-based GP approach. The key idea is to develop a pair iterator,
a concept similar to the zip_iterator found in Boost [2]. One such solution
has previously been developed by Williams [3]. Independently, we designed an
alternative implementation. We compare the iterator-based versions with the
other approaches with respect to flexibility and performance. The iterator-based
approach is of course superior with respect to flexibility, but when it comes to
performance we find that the other approaches are faster.

However, the main issue which we want to discuss concerns the insights drawn
from comparing the iterator-based designs with each other. For random access
iterators, Williams introduces OwningRefPair as a value type in order to prop-
erly handle dereferencing. In our approach, we introduce pairs of references as a
convenient way to accomplish the same task. When studying the C++ standard
in more detail, we realize that our solution is not even standard compliant: the
standard requires that a random access iterator with value type T should have a
reference type T& [4–Ch. 24.1]. Similar restrictions remain also in the discussions
of the new iterator types [5]. However, we argue that the assumption that a value
type and a reference type always are related in this way is unnecessarily strict.
Our notion of a reference pair which behaves as a reference to a pair of values
illustrates that a value type T may well have different reference types, not only
T&.

Our presentation is organized as follows. Section 2 reviews the basics of C++
iterators. Section 3 recapitulates Williams’ implementation. Our approach is pre-
sented in Section 4. Section 5 compares the GP approaches with the traditional
approaches, particularly with respect to performance. Section 6 elaborates fur-
ther on the relationships between iterator types, value types and reference types.
Finally, Section 7 summarizes our findings.

2 Review of C++ Iterators

In order to make the paper accessible to a broader audience, we commence with
a brief review of C++ iterators, containers and algorithms. STL was proposed by
Stepanov and Lee in 1993, and soon thereafter adopted by the C++ standard.
See, e.g., the preface of [6] for an account of the historical background. Even
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though STL has its limitatations, see, e.g., [5], it has proven to be a very useful
tool for C++ programmers today.

STL provides generic containers and algorithms for many common program-
ming tasks. The containers and algorithms communicate via iterators. A key
feature of STL is the use of C++ templates. This makes the design type safe
and thus more robust, as well as fast, because the template instantiation allows
for efficient code optimization in link time.

Iterators have different semantics, depending on their category. The iterator
categories defined by STL are input iterators, output iterators, forward iterators,
bidirectional iterators and random access iterators. The most basic of these iter-
ator categories are input and output iterators, which provide input and output
access, respectively, as well as forward traversal. Forward iterators support both
input and output access, but are still limited to forward traversal. Bidirectional
iterators also support backward traversal, whereas random access iterators, in
addition to the requirements above, support random access.

The different categories allow the algorithms of STL to put different require-
ments on the iterators they use. The std::copy algorithm, for example, requires
only input and output iterators, whereas for example the std::sort algorithm
expects random access iterators.

Different containers provide iterators of different categories. An STL vector,
for instance, provides random access iterators, whereas an STL list only pro-
vides bidirectional iterators. But STL containers are not the only C++ mecha-
nisms that can be manipulated via iterators. The design of the iterator’s interface
has been carefully crafted to allow other data structures to be accessed through
iterators. An input stream, for example, can be adapted and used as an input
iterator, and a standard pointer does, in fact, qualify as a random access iterator.

As a simple example which illustrates the last point, let us consider an array
of hundred time stamps (hours and minutes) which is to be sorted. Assume that
the array is declared by

typedef std::pair<int,int> TimeStamp; // hour and minute

TimeStamp times[100]; // array of time stamps

After proper initialization, it is then a simple matter to sort the times by a call
to the standard sorting routine:

std::sort(times,times+100);

There are, of course, lots of things going on behind the scene. The call to
the generic sort is instantiated with pointers of type TimeStamp*, but the al-
gorithm needs to know more information about the underlying data types, for
example the corresponding value type and reference type. In this case, these
types are TimeStamp and TimeStamp&, respectively, and this is figured out by
using the auxiliary class iterator_traits. Another detail is that this call to
std::sort expects operator< to be used for comparing two arguments of type
const TimeStamp&. Since a time stamp is nothing but a standard pair instan-
tiated with two integers, this operator is provided automatically, assuming a
lexicographical ordering of the first and second members of the pair.
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Table 1. The common category for a pair of iterators is deduced from the categories
of the underlying iterators. Note that an input iterator and an output iterator can not
be paired.

input output forward bidirect. random

input input N/A input input input
output N/A output output output output

forward input output forward forward forward
bidirect. input output forward bidirect. bidirect.
random input output forward bidirect. random

It is, as already mentioned, not the purpose of the present section to ex-
plain STL in detail, but rather to review some of the concepts needed to discuss
generic approaches to our motivating problem. We also notice that the data
structure-based solution sketched in the introduction is very similar to the ex-
ample of sorting time stamps above. However, it is not always possible or viable
to restructure data in this way, which motivates our search for other approaches.

3 Pairing Off Iterators

In this section, we briefly summarize the solution reported by Williams [3]. In-
terestingly, his motivation for studying the problem was the same as ours, but
beside the required support for random access iterators he also handles the other
iterator categories. An auxiliary class, CommonCategory, is used to find the ap-
propriate iterator category according to Table 1.

Based on the common category of the iterators, the value type and the ref-
erence type of the pair iterator, which he calls PairIt, are chosen. Consider two
iterators I1 and I2 whose value types are T1 and T2, respectively. Using various
auxiliary classes, Williams creates the value types and the reference types of a
pair iterator PairIt<I1,I2> as follows.

– If the pair iterator is an input iterator, the value type is a plain pair,
std::pair<T1,T2>, and the reference type is pair<T1,T2>&. On dereferenc-
ing, the underlying iterators are dereferenced and an internal pair is created
which holds the result. A reference to the internal value is returned.

– If the pair iterator is an output iterator, Williams follows the standard which
prescribes that the value type should be void1 The reference type, however,
needs to be something different, since assignments to an object of this type
should forward the assignment to the underlying iterators. Williams solves
this task by introducing an OutputPair<I1,I2> class, which holds references
to the underlying iterators.

– Williams recognizes that the “biggest headache” is to support forward, bidi-
rectional, and random access iterators. Here, the standard prescribes that

1 This requirement is unnecessarily strict and a relaxation has consequently been
proposed [7–Article 445].
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if the value type is T, the reference type should be T&. Williams resolves
these requirements by introducing OwningRefPair<T1,T2> as the value type,
and consequently OwningRefPair<T1,T2>& as the reference type. The class
OwningRefPair<T1,T2> contains T1& first and T2& second as public
members. These members may refer to external data, or to data kept in
an internal buffer. The handling of the internal buffer requires a utility class
RawMem, in order to avoid the overhead of dynamic memory allocation.

In addition to figuring out the appropriate types to export by the iterator and
the handling of dereferencing, the iterator should of course also provide means
of traversal etc. These operations are all fairly straight-forward in the literal
sense of the word, since they just forward the appropriate call to the underlying
iterators. Therefore, we will not discuss the remaining operations further here.

In order to address the motivating problem, it is not necessary to know all
the details behind the scene. Listing 1 illustrates how the pair iterator could be
used to solve the problem at hand.

After the first call to std::sort, A is sorted and the elements of B are in
the order 2, 3, 4, 1, since the inter-array relationship is maintained. Notice that,

// A comparison function

bool compFirst(const std::pair<int,int> &l,

const std::pair<int,int> &r) {

return l.first < r.first;

}

// A comparison functor

struct CompSecond {

template<typename T1, typename T2>

bool operator()(const T1 &l, const T2 &r) {

return l.second < r.second;

}

};

int main() {

// Two "huge" arrays

int A[] = { 8,5,6,7 }, B[] = { 1,2,3,4 };

// An iterator pair for the pair of arrays

IteratorPair<int*, int*> p(A,B);

// Reuse standard C++ sort

std::sort(p,p+4,compFirst);

std::sort(p,p+4,CompSecond());

}

Listing 1: The iterator pair concept offers a convenient way to sort a pair of
arrays while maintaining an inter-array relationship
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since B originally was sorted, B now contains an encoding of the permutation
used to sort A. After the second call to std::sort, both arrays are restored into
their original state, since the functor used in this call compares with respect to
values in the second array.

Williams also observes that the example’s usage of a comparison function,
as in the first call to sort, requires unnecessary conversions between the value
type of the pair iterator, which is OwningRefPair<int,int>, and the standard
pair. Therefore, a functor such as Comp with a parameterized binary predicate
should be used instead, as in the second call. In Section 4.2, we present another
way of handling the comparisons.

4 An Alternative Design

When solving the motivating problem, we arrived at a design where the key idea
of an iterator pair is similar to Williams’ solution. However, we focused only
on random access iterators, and the comparisons between our designs therefore
apply to this category only.

The biggest difference between Williams’ design and ours concerns the value
type and the reference type: We argue that the natural value type for an iter-
ator pair should be a standard pair, and the reference type should be a pair of
references:

template <class Iterator1, class Iterator2>

class IteratorPair

{

public:

typedef typename iterator_traits<Iterator1>::value_type T1;

typedef typename iterator_traits<Iterator2>::value_type T2;

typedef typename iterator_traits<Iterator1>::reference R1;

typedef typename iterator_traits<Iterator2>::reference R2;

typedef pair<T1,T2> value_type;

typedef const ReferencePair<R1,R2> reference;

// ...

};

It is not possible to use std::pair<T1&,T2&>, since it would call for the
instantiation of the types T1&& and T2&&, and references to references are not
allowed. Therefore, we designed the ReferencePair<R1,R2>.

4.1 Reference Pairs and Reference Traits

Reference pairs are developed in parallel with iterator pairs. To obtain appropri-
ate types related to a reference, we find it convenient to also introduce reference
traits, see Listing 2. The Reference traits class is similar to the standard iterator
traits, and exports a value type and a reference type. In addition, inspired by [8],
reference traits also export a parameter type. Listing 3 shows how the reference
pair uses the reference traits. Note the usage of Parameter in the constructor.
For instance, consider dereferencing of an iterator of type
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IteratorPair<int*,IteratorPair<double*,char*> >

which leads to a reference of type

const ReferencePair<int&, const ReferencePair<double&,char&> >

The constructor of this type would have int& as its first parameter, which is the
same as its R1 type. Its second parameter, however, would be

const ReferencePair<double&,char&>&

which is not the same as R2, but a reference to R2 instead.
We also point out that the default constructor is private, since a reference pair

always should refer to something. Moreover, the assignment is marked as const,
since the references are not altered, only what they refer to. The importance of
these details are emphasized in Section 6.

// ReferenceTrait provide typedefs for a reference.

template<typename R>

struct ReferenceTrait {

typedef typename R::Value Value;

typedef typename R::Reference Reference;

typedef typename R::Parameter Parameter;

};

// For standard reference to type T, default typedefs are provided

template<typename T>

struct ReferenceTrait<T&>

{

typedef T Value;

typedef T& Reference;

typedef T& Parameter;

};

Listing 2: The reference trait is similar to the iterator trait

4.2 Sorting with operator<

The classes sketched above can be used for the motivating problem, exactly as in
Listing 1. The only change necessary is to use our IteratorPair instead of the
class PairIt, developed by Williams. It is natural to ask, though, if operator<
which is defined on std::pair can be used when sorting a pair of arrays, cf. the
example in Section 2. The answer is no, at least not without some extra ma-
chinery. The reason is that the sorting algorithm typically makes comparisons
between pivot which is of value type, and the object *it returned upon deref-
erencing, and this is of reference type. It would require an implicit conversion
from RefererencePair<T1,T2> to pair<T1,T2>, but this is not resolved by the
template overloading mechanism [4–Section 14.8.3]. Therefore, we provide para-
meterized comparison operators between pairs and reference pairs:
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template<typename R1, typename R2>

struct ReferencePair {

typedef typename ReferenceTrait<R1>::Value Value1;

typedef typename ReferenceTrait<R2>::Value Value2;

typedef typename ReferenceTrait<R1>::Parameter Parameter1;

typedef typename ReferenceTrait<R2>::Parameter Parameter2;

typedef pair<Value1,Value2> Value;

typedef ReferencePair<R1,R2> Reference;

typedef const ReferencePair<Parameter1,Parameter2>& Parameter;

R1 first; R2 second;

ReferencePair(Parameter1 a, Parameter2 b)

: first(a), second(b) { }

ReferencePair(const ReferencePair& x)

: first(x.first), second(x.second) { }

const ReferencePair & operator=(const ReferencePair & x) const {

first = x.first; second = x.second;

}

const ReferencePair & operator=(const Value & x) const {

first = x.first; second = x.second;

}

operator Value () const {

return Value (first, second);

}

//...

};

Listing 3: The reference pair uses the reference trait

template<typename T1, typename T2, typename R1, typename R2>

inline bool operator<(const pair<T1, T2>&, const ReferencePair<R1, R2>&);

In addition, we provide overloaded comparisons between reference pairs. The
extra operators introduced offers a working solution to our problem, without
the unnecessary construction of temporary pair objects which implicit conver-
sions requires. However, the usage of a C++ functor as in Listing 1 is probably
more elegant, since it does not clutter the name space with several overloaded
comparison operators.

5 Comparing the Approaches

We have summarized two different iterator-based versions which solve the moti-
vating problem, but how do these compare with the other approaches discussed
in Section 1 and with each other?



350 K. Åhlander

Below, we first discuss a few obvious advantages with the GP approach. Next,
we present performance measurements.

5.1 Advantages of the Iterator-Based Approach

The GP paradigm allows new data structures to reuse algorithms. The following
code snippet illustrates how three arrays are permuted simultaneously. The call
to std::sort will sort the vector v1 and permute the others accordingly.

int arr1[] = { 2,4,1,3 }; vector<int> v1(arr1,arr1+4);

double arr2[] = { 3.1, 2.2, 5.5, 0.1 }; char arr3[] = "RAND";

typedef vector<int>::iterator iterator;

typedef IteratorPair<iterator,IteratorPair<double*,char*> > MyIterator;

MyIterator p(v1.begin(),IteratorPair<double*,char*>(arr2,arr3));

sort(p,p+4);

Traditional approaches would have required either a new sorting routine, or
a restructuring of data. In either case, we find that the GP approach implies less
programming work.

The GP paradigm allows new algorithms to reuse data structures. In our ex-
ample, the iterator pair and the auxiliary classes were developed in order to
reuse the standard std::sort for the data structure of the motivating problem.
Thanks to the GP paradigm, we do not only solve this task, but we also get the
possibility to use the pairs of arrays with other algorithms as a bonus.

As a trivial example, the following code snippet illustrates how the std::copy
algorithm may be used in order to copy the values in the pair of arrays, A and
B, into an array of pairs, C.

int A[] = { 2,4,1,3 }; int B[] = { 20,40,10,30 };

typedef IteratorPair<int*, int*> MyIteratorPair;

typedef pair<int, int> MyValue;

MyIteratorPair AB(A,B);

MyValue C[4];

copy(AB,AB+4,C);

This additional power of the GP approach is not achieved with traditional
approaches.

5.2 Performance

The iterator-based approach clearly has major advantages, but can it compete
with respect to performance? To investigate this, we carried out several experi-
ments. Our performance experiments were carried out on a SUN UltraSPARC-
IIIi using the GNU compiler version 3.4.3 for Solaris 2.9, with optimization
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flag -O. For all our experiments, we present minimum time measurements of 5
consecutive iterations, in order to decrease random effects such as irregular work
load etc.

To begin with, we had of course to implement the traditional approaches
as well. The data-based approach was trivial to implement, see Section 2. We
needed to provide comparison functors though, since we do not want the second
member of the pair to affect the comparison. The algorithmic-based approach re-
quired more work, since we had to be careful to use the same underlying sorting
algorithm in all experiments. Based on the library std::sort routine, we devel-
oped a special version according to the algorithm-based approach. This routine
takes three random access iterators as parameters, indicating the beginning and
the end of the first array, which holds the keys, and the beginning of the second
array, which holds the related data. The g++ “introspective” sort routine is
a variation of quick sort, but it uses a limit on the recursion depth to avoid
the possibility of O(N2) complexity [9]. If the recursion limit is reached, the
algorithm switches to heap sort, thereby guaranteeing a worst case complexity
of O(N log N). In our experiments, we use arrays with random data, and it is
therefore very unlikely that the the recursion limit is encountered. To simplify
the development of our special sorting routine, we decided not to implement the
full introspective sorting algorithm, but only the quick sort recursion. In order
to make the comparisons fair, we discarded the very few experiments where the
recursion depth was reached.

Our first experiment investigates the performance when addressing the origi-
nal, motivating problem. For different array sizes, we create a pair of arrays with
random data. We measure the time to permute both arrays such that the first ar-
ray becomes sorted, while maintaing the inter-array relationship. Table 2 shows
the time measurements in milliseconds for the special sorting routine (Algo), for
standard sort of an array of pairs (Data), for our own GP implementation (GP 1),
and for Williams GP implementation (GP 2). The results are quite discouraging,
since the traditional sorting routines outperform the iterator-based versions. We
note though, that our GP version seems more efficient than Williams’, probably
because of the extra memory handling present in the OwningRefPair class.

Since the iterator-based approaches do incur some overhead, we had expected
somewhat worse performance for the GP versions, but we were surprised that
the degradation was as large as it was. In order to estimate an acceptable—or
at least a not easily avoidable—level of performance degradation, we studied the
performance drop when using the standard std::reverse_iterator, see Ta-
ble 3. The iterators used are double* (Forward), reverse_iterator<double*>
(Reverse), and finally a reverse iterator of a reverse iterator (Reverse2). Since
the performance degradation is considerable also in this case, we find that we,
at least with this compiler, may have to accept the performance degradation of
the pair iterators too. A plausible explanation for the performance difference is
that the optimizer may keep plain pointers in registers, when they are passed
as parameters to functions, whereas this is not possible for more complex types
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Table 2. Time measurements (milliseconds) when sorting pairs of arrays of different
sizes (N), using the algorithmic and data-based approaches as well as the iterator-based
approaches, where GP 1 is our implementation

N Algo Data GP 1 GP 2

100000 40 50 110 130
200000 110 120 220 270
300000 170 180 350 480
400000 230 260 520 640
500000 300 320 640 830

Table 3. Time measurements (milliseconds) when sorting arrays of different sizes (N),
using forward iterators, reverse iterators, and reverse reverse iterators

N Forward Reverse Reverse2

100000 30 60 50
200000 70 100 110
300000 110 160 170
400000 150 220 220
500000 200 280 260

Table 4. Time measurements (milliseconds) when sorting pairs of arrays of integer keys
and images, using the algorithmic and data-based approaches as well as the iterator-
based approaches, where GP 1 is our implementation. The fastest method, Perm, uses
the permutation obtained from sorting the keys.

N Algo Data GP 1 GP 2 Perm

1000 890 1080 1130 1080 100
2000 2010 2490 2530 1810 220
3000 3080 2950 3900 3710 320
4000 4180 6310 3580 3250 290
5000 3440 5310 4690 5490 550

Table 5. Time measurements (milliseconds) when sorting pairs of arrays of images, us-
ing the algorithmic and data-based approaches as well as the iterator-based approaches,
where GP 1 is our implementation

N Algo Data GP 1 GP 2

100 450 480 480 250
200 1040 1060 1150 610
300 1600 1670 1760 1090
400 2440 2450 2490 1380
500 3000 3200 3130 1900

such as pair iterators. This explanation is supported by the fact that Reverse2

is not much worse than Reverse.
We have found that the special sorting routines are faster than the GP ap-

proaches for sorting pairs of simple types, but how do they perform if we sort
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arrays of more complex data? As an example, consider the sorting of pairs of
integer keys and images, where each image is 256×256 characters. Table 4 shows
the results for this case. The special sort routine is—apart from the permuta-
tion based sorting algorithm discussed below—still fastest, but the difference is
smaller. One reason for this should be the extra overhead of copying images. In
this case, we also find that Williams’ implementation performs better than ours.
We believe that this is due to his handling of temporary storage. For small data
types, it incurs some overhead, but this overhead seems to pay off if the underly-
ing data types consume more memory. This trend is even more significant when
we sort pairs of arrays of images, see Table 5. In this case we use images both as
keys and as data, and the (somewhat artificial) comparison operator compares
two images with respect to their total brightness. In this experiment, the GP2
implementation is actually the winner.

Finally, we remark that it is a simple matter, see Listing 1, to use the pair
iterator and standard sort in order to obtain the actual permutation when sorting
a set of keys. If the objective is to sort an array of keys and a corresponding
array of memory consuming images, it is thus easy to first sort only the keys and
obtain the permutation, and then use the permutation to sort the images. With
this approach we need much fewer calls to image assignment, an operation which
is quite time consuming. As seen in the last column of Table 4, this solution is
much faster than any of the other approaches.

6 A Discussion on References

When comparing the design of the two GP approaches, we note that our solution
is not standard compliant, since the reference type of the iterator pair is not
a standard C++ reference to the value type. However, we do not think that
it is a mere coincidence that we are able to solve the problem at hand. Our
implementation works since the reference pair we use behaves as a reference.
Our example illustrates that the assumption that a value type T only has one
valid reference type T& is more strict than it has to be. This is similar to the more
well-known situation that there may be different pointer types—also known as
random access iterators—which refer to the same value type.

Sections 8.3.2 and 8.5.3 of [4] discuss references in detail. To keep the discus-
sion simple, we ignore const and volatile qualifiers here and suggest that the
key properties of a reference to type T are the following.

1. A reference must be initialized by an object of type T.
2. Changes to the reference affect only the object being referenced.
3. The reference cannot be changed to refer to another object.
4. The reference can be converted to the value type.
5. The value type can be deduced from the reference.

Thus, it is possible to define a valid reference type to type T as any type whose
objects meet these criteria. We then find that the value type pair<T1,T2> admits
not only the usual pair<T1,T2>& but also const ReferencePair<T1&,T2&> as
a valid reference type.
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As demonstrated by the time measurements in the previous section, our usage
of ReferencePair as the reference type to a pair iterator seems to perform
better, at least for simple value types, than the alternative implemented by
Williams. We also think that our design is simpler, since it is not necessary to
introduce an auxiliary class RawMem for handling an internal buffer. In addition
to these arguments, we would like to motivate the soundness of our design by
the following argument.

Let I1 and I2 be two iterator types, whose value types and reference types
are T1, R1 and T2, R2, respectively, and assume that the value type of R1 is
T1 and the value type of R2 is T2. Let us now consider the pairing Pair2

of two types to construct a new type. Thus, we may construct Pair<I1,I2>,
Pair<T1,T2>, and Pair<R1,R2> as new types. We now argue that relationships
between types should be preserved, in such a way that Pair<I1,I2> should
have Pair<T1,T2> as value type and Pair<R1,R2> should be its reference type.
Moreover, Pair<R1,R2> should have Pair<T1,T2> as its value type. This ar-
gument is similar to the formal definition of a functor, which maps objects
(in our case types) to objects, and morphisms (relationships between types)
to morphisms. The point we make is that IteratorPair<I1,I2>, the standard
std::pair<T1,T2>, and ReferencePair<R1,R2> preserve these relationships.

We therefore find the recognition of the reference relation as an entity in
its own right well motivated. This extra level of indirection may also be use-
ful in other contexts. As a simple example (cf. the discussion in [10–Ch. 2.4]),
we may use the reference concept in order to write a generic Swap (or, per-
haps a ref_swap) routine, as shown in Listing 4. The template meta function
ValueOfType is here used to deduce the appropriate value type corresponding to
a valid reference. It corresponds to the type transformation remove_reference
found in the Boost metaprogramming library. Note that this version of Swap also
handles swapping of two objects of the same value type referred to by different
reference types. This situation could also be resolved by parameter overloading.
This approach is however not very practical, since the number of overloaded
swap functions grow exponentially with the number of valid reference types to
a given value type.

7 Conclusions

We have investigated different approaches to the problem of sorting a pair of
arrays. We find that the algorithm-based version performs best, but it requires
the development of a dedicated sorting routine for this particular situation. Run-
ning time is of course only one software metric, and we stress that flexibility,
robustness, and programmer time in many situations are more important. The
data-based version also performs well and it is much easier to implement, if stan-
dard generic tools are used. The disadvantage is that the data-structures have to

2 We deliberately use capital P here, in order to distinguish this concept from
std::pair.
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be restructured, which often means that this approach is inadequate. Therefore,
we advocate the iterator-based approach.

We present the design of two different iterator-based approaches, ours, and
an implementation by Williams [3]. We acknowledge that his implementation
is more comprehensive, since he addresses all iterator categories, not only the

template<typename V>

struct ValueOfType {

typedef V type;

};

template<typename V>

struct ValueOfType<V&> {

typedef V type;

};

template<typename R1, typename R2>

struct ValueOfType<const ReferencePair<R1,R2> > {

typedef pair< typename ValueOfType<R1>::type,

typename ValueOfType<R2>::type > type;

};

template<typename R1, typename R2>

inline void

Swap(R1& a, R2& b)

{

const typename ValueOfType<R1>::type tmp = a;

a = b;

b = tmp;

}

int main {

IteratorPair<int*, int*> ip1, ip2;

pair<int,int> vp3;

// ...

Swap( *ip1, *ip2 );

Swap( *ip1, vp3 );

Swap( vp3, *ip1 );

Swap( (*ip2).first, ip2->second );

}

Listing 4: The Swap routine is generic with respect to valid references. The main
program illustrates four different calls to Swap. The first call to Swap shows that
ReferencePair behaves as a reference. The second and third calls illustrate calls
where different reference types are used to swap the same value type. The last
call simply swaps two integers
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random access iterator category required to solve the motivating problem. How-
ever, we find that our approach to treating random access iterators is simpler,
because we do not need to introduce an auxiliary class for managing an internal
memory buffer.

We notice, though, that our implementation is not standard compliant. The
reason for this is that the standard tacitly assumes that there is a one-to-one
correspondance between value types and reference types. We believe that this is
too strict. In our opinion, there may be several different types which can refer to
the same value type, and this is the insight which simplifies our design. We think
that this notion should be useful also in other situations where the objective is
to develop generic solutions.
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Abstract. Extending a programming language by new language con-
structs often implies extending its compiler by additional machinery. To
reduce the complex interweaving of compiler and extension implemen-
tations we present a simple and modular concept of lifting the often
needed additional preprocessing out of the base compiler implementa-
tion. Avoiding the introduction of standalone tools, this preprocessor
framework for extensions of Haskell is designed as a separate portable
library of monadic preprocessing functions based on Template Haskell.
Additional preprocessing passes expressed in this framework can then
much easier be carried along the series of ever advancing base compiler
versions. Taking Eden, a parallel programming extension of Haskell, as
an example we show that besides achieving improved portability and
reusability pass code sizes can be reduced considerably.

1 Introduction

Suppose you have designed a new, fancy domain-specific extension of Haskell [1],
possibly an extension for providing easy data base access, for interfacing to for-
eign languages, for providing faster computations by exploiting parallelism, or for
mobile computing. How do you implement your extension? Developing a whole
new compiler would mean reinventing the wheel, while extending an existing
Haskell compiler most often produces a deep entanglement of compiler interiors
with domain-specific implementation parts. That would result in reduced porta-
bility and maintainability, which is especially problematic if the base compiler
is subject to frequent version changes which usually have to be reproduced:

host language
�

extension
⇒

host implementation
�

extension implementation

v1.0 → v1.1 → v2.0 → . . .

v1.0 → . . . . . .

Having all your implementation extensions contained in a traditional library
seems like a nice idea. But a mere collection of subroutines would not be pow-
erful enough, since such extensions usually also need changes to the runtime
system and new optimisation passes run by the compiler. Following the idea
of active libraries [2] one solution to this could be to use meta-programming
tools to separate the domain-specific implementation from the compiler while
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expressing it as a library. This envisions having a compiler for a base language
and extensions of that language implemented as a set of attached libraries.

Eden [3] is such a domain-specific extension of Haskell which introduces con-
structs for parallel programming. Its first implementation consisted of a largely
modified GHC [4] which was very hard to maintain over GHC version changes.
To avoid these problems parts of the Eden-specific implementation have recently
been pulled out [5,6] of the GHC. Among others one thing that still remains to
be separated from the GHC is the preprocessing machinery for analysing and
transforming Eden code which still resides amidst GHC’s original code. This can
also often be the case for other domain-specific extensions.

Besides writing a library one could also suggest building a standalone tool for
preprocessing the sourcecode which can then be fed into the compiler manually.
Disadvantages include: the introduction of an extra tool which needs additional
care, manual and possibly erroneous operation by the user, the inability to use
compiler facilities (functionality needs to be rewritten) and compile-time infor-
mation and therefore probably a large reimplementation of compiler machinery.
Much more promising instead is a preprocessor library which remains separate
but can be glued on top of the compiler. The same has recently been done for the
foreign function interface Greencard by making the transition from an external
tool [7] to an integrated (active) library [8].

Contributions. In this paper we will use compile-time meta-programming fa-
cilities provided by Template Haskell [9] to implement a series of pre-GHC pre-
processing passes on domain-specific source code. The preprocessor code will
be automatically inserted into the source program and run prior to the com-
pilation of the actual program, meaning that an enriched program is created
which preprocesses itself. We will show how the new implementation (forming
an active library) can be separated from the GHC implementation, while only a
small hook for the invocation of the preprocessor needs to remain. The scheme
shown is generally applicable and in no way tied to the Eden implementation.
Advantages include a simplified addition of preprocessing passes, shorter and
more concise pass code, and enhanced maintainability. The scheme will be used
to rewrite and shorten existing passes and to express a simple kind of generic
parallel programming in Eden.

Plan of the paper. After introducing Template Haskell in the next section we
describe the preprocessor itself (Sect. 3), its pass construction mechanism (Sect.
4), and its main internal loop (Sect. 5). In Sect. 6 we apply the whole scheme to
the parallel functional language Eden. Finally Sect. 7 outlines related work and
Sect. 8 concludes.

2 The Tool

Active libraries can be built using Template Haskell [9], which is a typesafe
compile-time meta-programming extension of Haskell built into the GHC. Basi-
cally Template Haskell introduces a second layer of execution by allowing to label
Haskell expressions as ”to be executed by interpretation at compile-time”. This
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means that one can insert Haskell code that is meant to be run at compile-time
into regular Haskell code:

. . . Runtime Haskell . . . $(. . . Compile-time Haskell . . .). . . Runtime Haskell . . .︸ ︷︷ ︸
Splice

The result of this splice expression then has to be Haskell code described in an
abstract syntax which will replace the splice and be embedded as runtime Haskell
into the surrounding code. This corresponds to classical macro expansion, except
that the newly generated Haskell code will also be successively typechecked.
This is possible because splices are expanded by the GHCi interpreter during
the typechecking phase.

A set of data structures forming an abstract syntax of Haskell is defined to
be able to handle Haskell code as a value. There are types for patterns (Pat),
expressions (Exp), declarations (Dec), types (Type) and so on. Depending on its
position the code inside a splice has type Q Exp (part of a bigger expression)
or Q [Dec] (top-level declarations). The Q monad is introduced among other
things for encapsulating the generation of fresh names. A simple case expression
for instance could then be described like this:

(CaseE (AppE (VarE "f") (VarE "x")) [...]) :: Exp

[| case (f x) of ... |] :: Q Exp

The first row shows pure abstract syntax while the second row uses the quasi-
quotation [|.|] for automatic transformation of user-legible code into abstract
syntax. Quasi-quotation occurs inside a splice. Both versions can be used al-
though the first one is more expressive than the second. The same can be done
for declarations using [d|.|]. A binary tree declaration could then look like
this:

[DataD [] "Tree" ["a"]
[NormalC "Leaf" [(NotStrict,VarT "a")], NormalC "Node" ...] []

] :: [Dec]

[d| data Tree a = Leaf a | Node ... |] :: Q [Dec]

Example: Consider writing a function select which returns the ith value of
an n-tuple such that $(select 2 4) (a,b,c,d) returns b (see [9]):

select :: Int -> Int -> Q Exp
select i n = [| \ x -> $(return (CaseE (VarE "x") [alt])) |]
where alt = Match pat rhs []

vars = ["v"++(show j) | j <- [1..n]]
pat = TupP (map VarP vars)
rhs = NormalB (VarE (vars !! (i-1)))

A lambda abstraction is generated which contains a case for deconstructing
the tuple into its components v1 to vn before vi is selected and returned.
Note the nesting of another splice into the quasi-quotation.
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Quasi-quotation cannot only be used for the simple construction of code but also
for its deconstruction as the contained code will just be translated into abstract
syntax. Therefore we can write

do { abssyn_case <- [| case (f x) of ... |]; ... }

to extract the abstract syntax representation of the case expression which can
then be used inside the Q monad and be spliced back in modified form. The same
applies to declarations which can be decomposed by the [d|.|] operator.

In summary Template Haskell makes it possible to write Haskell programs
which modify themselves at compile-time, which is exactly what we need.

3 The Preprocessor

Having introduced our meta-programming tool we will now turn to building
the preprocessor. What we want to achieve is a preprocessor which takes a
program, applies a series of preprocessing steps to it and places back the result.
We want the preprocessor implementation to be separated from the base compiler
implementation but at the same time have it glued closely enough to it to avoid
getting an extra tool.

3.1 Overview

We have seen that the quasi-quotation mechanism of Template Haskell can also
be used to deconstruct declarations and expressions. Then why not let it embrace
and decompose a whole program? This suggests the following basic scheme for
preprocessing code with Template Haskell:

1. Textually embrace the given source code with quasi-quotes to get an abstract
syntax representation of the source code.

2. Let predefined preprocessing machinery work on the extracted code given in
abstract syntax (provided by the base compiler’s parser).

3. Surround all this with a splice which delifts the modified source from abstract
syntax back to regular Haskell code.

How can we operationally integrate that into a compiler? Simply by modify-
ing the compiler to textually insert two small predefined code blocks into the
source program before anything else happens. The source program would then
carry around the preprocessing code for modifying itself through the compilation.
The preprocessor then gets triggered before other regular compilation stages are
started.

In Fig. 1 the transition of regular source code to an identical code with
embedded preprocessing is shown. The two additional preprocessing code blocks
contain import statements to import the Template Haskell module, a Stager
module which contains the actual preprocessor functions, and a Tools module.
User imports remain untouched. The remaining code is contained inside quasi-
quotation brackets. After extraction into an abstract syntax representation ds it
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has to be decided which preprocessing passes will be run on the code. External
flags are read by getFlags and fed into buildPasses which will build a list
of preprocessing passes. doLoop then runs these passes on ds producing the
modified code ds’. After the loop has ended an announcement is printed that
all the following messages belong to the underlying Haskell compiler. At last,
the modified code ds’ is returned and reinserted by the surrounding splice.

module Main where

<import decls>

<type decls>

<class decls>

<function decls>

<main>

→

module Main where

<import decls>

import Language.Haskell.THSyntax

import qualified Stager as St

import qualified Tools as To

$(do ds <- [d|{
<type decls>

<class decls>

<function decls>

<main>

}|]

-- Build passes -----------------------

let passes = St.buildPasses To.getFlags

-- Preprocess code --------------------

ds’ <- St.doLoop ds passes

-- Announce original ghc messages -----

To.box "Base compiler messages"

-- Insert new sourcecode --------------

return ds’

)

Fig. 1. Transition from input source code to code with embedded preprocessor

This solution permits the smooth integration of the preprocessor into the
compiler implementation with only slight modifications while achieving techni-
cally a complete separation. In the following subsection we will discuss imple-
mentation aspects as well as advantages and drawbacks of the approach.

3.2 Technical Details

Figure 2 gives an overview of the workflow inside the GHC. The stages can be
roughly divided into the sections analysis, transformation and synthesis. Until
now additional analysis and transformation passes were usually placed in the
transformation section and worked on the Core syntax representation, which is
a subset of Haskell plus explicit type annotations and resembles the polymor-
phic lambda calculus. Due to complex functions and data structures for handling
Core, inserting an additional pass is a complex task. And with desugaring already
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having taken place it is additionally very hard to issue meaningful comments if
necessary because the reference back to the original code is lost. A better place
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Core syntax
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Execution of
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Former location
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Fig. 2. GHC workflow diagram with changes for preprocessor

for domain-specific optimisation passes is the analysis section where the full
source code is still available and for example error messages of the preproces-
sor can contain much more accurate position descriptions. For domain-specific
extensions it is especially important that their high-level constructs have not
already been boiled down to less meaningful constructs. Our new preprocessor
code will be inserted into the source program before any other GHC stage has
started.

But at the moment there are also three drawbacks to the taken approach
which partially are related to Template Haskell and may be removed in a future
version:

1. Quasi-quotation cannot handle source code which completely relies on lay-
out. Braces and semicolons have to be used sometimes.

2. Regenerating the modified code destroys the internal location tracking of
GHC. Regular errors discovered by GHC will not contain a line number but
only the message <at compiler-generated code>.

3. Since the preprocessor acts outside the base compiler’s passes, it has no
access to informations (like types) gained by the base compiler. If these are
required for an earlier pass, they have to be provided.

At the bottom line there is a clear trade-off: On the one hand we are able to work
on richer syntax, while on the other hand we have to face technical restrictions.
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4 The Passes

We have seen how the preprocessor is attached to the source program and how
it is run. But what should it do when it is run and how can that be specified?

4.1 Stateful Monadic AST Traversal

Quasi-quotation delivers the program to be preprocessed as an abstract syntax
tree (AST) of type [Dec]. Therefore we define a general type class Traverser
(see Fig. 3), which contains functions for the recursive traversal of that tree. For
each part of the mutually-recursive abstract syntax ([Dec], Dec, Exp, . . .) the
class contains a corresponding transformation function (tDecs, tDec, tExp, . . .).
The tMain function is the central starting point which eventually calls tDecs.
By default all these functions are defined to return the identical syntax tree. As
later each instance will represent a preprocessor pass, selected functions will be
overloaded to examine or modify the tree.

class (MonadState m s) => Traverser m s where

-- Functions ------------------------------------------------------

tName :: m s -> String

tMain :: m s -> [Dec] -> Q ([Dec], [Pass])

tDecs :: [Dec] -> m [Dec] tDec :: Dec -> m Dec

tDecs’ :: [Dec] -> m [Dec] tDec’ :: Dec -> m Dec

tBody :: Body -> m Body tExp :: Exp -> m Exp

tBody’ :: Body -> m Body tExp’ :: Exp -> m Exp ...

-- Defaults -------------------------------------------------------

tName _ = "Identity"

...

tExp = tExp’

tExp’ (VarE vname) = VarE vname -- variable

tExp’ (AppE e1 e2) = do e1’ <- tExp e1 -- application

e2’ <- tExp e2

return (AppE e1’ e2’)

tExp’ (LetE ds e) = do ds’ <- mapM tDec ds -- let

e’ <- tExp e

return (LetE ds’ e’) ...

Fig. 3. Monadic stateful traversal class Traverser (layout due to space limits)

To avoid extensive redefinitions when overloading only one alternative of a
transformation function, each traversal function is split into two layers. For ex-
ample the function tExp is accompanied by a second function tExp’. By default
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tExp’ is defined to continue the AST traversal without making any changes itself
while tExp is defined to immediately call tExp’. Within a Traverser instance,
one overloads tExp to implement modifications of an alternative of Exp (for ex-
ample LetE) and refers to the default tExp’ definitions for all other alternatives
by also declaring tExp x = tExp’ x.

For most preprocessing passes an internal state is needed. Therefore the whole
traversal is based on a predefined state monad (ST s) s (see [10], [11]) which is
shown in detail in Fig. 4. Functions for reading and changing the state are prede-
fined and can be used in any traversal function, which are all defined monadically.
The function tMain starts the pass by calling tDecs with the monad-specific
starting state; it returns the resulting code and additional passes created by the
current pass for subsequent execution and wraps up both in Template Haskell’s
Q monad.

data ST s a = ST (s -> (a, s))

class (Monad m) => MonadState m s | m -> s where

get :: m s -- read state

put :: s -> m () -- write state

update :: (s -> s) -> m s -- update state by function

get = update id

instance Monad (ST s) where

(ST m) >>= f = ST (\s -> let { (v, s’) = m s; ST m’ = f v } in m’ s’)

return v = ST (\s -> (v, s))

instance MonadState (ST s) s where

put s = ST (\_ -> ((), s ))

update f = ST (\s -> (s, f s))

Fig. 4. State monad definition

This completes the definitions needed to define a new preprocessor pass. In
total, the typical process of designing a pass would be to:

1. define a datatype s for representing the internal state of the pass
2. define an instance Traverser (ST s) s, overload functions to implement

the pass, use get/put/update inside these to work with the internal state

In Sect. 6.2 two example passes will be discussed in detail.

4.2 Global Actions

Many preprocessing passes only modify the abstract syntax tree very locally. For
instance for a typical let transformation in Haskell only the LetE alternative
of the transformation function tExp would have to be overloaded. On the other
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hand in the same passes one often needs to insert actions on the internal state
which are triggered on every part of the syntax tree. In the let transformation
one would for instance like to determine where each transformation happened;
this output of the form:

in function ’f’, in alternative ’(TreeNode l r)’, in ’case’: let

has to be collected from the place where the let transformation occured back
up to the AST root. This would result in the need to overload almost each trans-
formation function and update the pass state by location information. To avoid
that, we extend the Traverser class as shown in Fig. 5. As an example, only the
extension of tExp for the alternative AppE is shown; all other cases are extended
in the same way. Before descending into a branch of a source tree, the func-

class (MonadState m s) => Traverser m s where

-- Functions ------------------------------------------------------

...

tActionPre :: AbsSyn -> m () tActionPost :: AbsSyn -> m ()

-- Defaults -------------------------------------------------------

tActionPre _ = return () tActionPost _ = return ()

tExp’ e@(AppE e1 e2) = do tActionPre (AS4 e)

e1’ <- tExp e1

tActionPost (AS4 (AppE e1’ e2 ))

tActionPre (AS4 (AppE e1’ e2 ))

e2’ <- tExp e2

tActionPost (AS4 (AppE e1’ e2’))

return (AppE e1’ e2’) ...

Fig. 5. Traverser class extended by global actions (layout due to space limits)

tion tActionPre is evaluated; after finishing the branch traversal tActionPost
is called. (AbsSyn is defined as a collection of Dec, Exp, etc. to avoid having to
define tAction functions for each part of abstract syntax.) Both are by default
defined to leave the state unaltered, but can be overloaded to house a set of
global actions which is run before and after entering a node of the syntax tree.
A single action is run by runAction (see Fig. 6). As each action usually acts
only on one part of the state, this action has to be lifted to the full state by
applying the identity function to the remaining parts. The lifted function can
then be used to update the full state. An action set is run by sequencing a list
of runAction calls in an overloaded version of tActionPre or tActionPost.

All this allows us to define global actions separately and to attach selected
ones to a preprocessor pass. Predefined actions include: collecting position in
code, keeping an indentation level for output, accessing predecessor nodes in the
AST, and others. See Sect. 6.2 for an example on how to attach action sets to a
pass.
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runAction :: (MonadState m b) =>

AbsSyn -> ( AbsSyn->(a->a), (a->a)->(b->b) ) -> m ()

runAction x (action, lift) = do { update (lift (action x)); return () }

Fig. 6. Lift action into full state, run action, update state

5 The Loop

We have seen in the two previous sections how the preprocessor is started and
how a preprocessing pass can be coded. But how can we set up and execute
a series of passes? We start by defining a list of passes (see Fig. 7), which in
this case contains a pass for the automatic derivation of class instances and a
simplification pass.

type Passes = [Pass]

data Pass = forall m s . (Traverser m s) => Pass (m s)

passes :: Passes -- Example

passes = [Pass ( return (Derive ([],[])) :: (ST Derive) Derive ),

Pass ( return (Simplify [] ) :: (ST Simplify) Simplify )]

Fig. 7. Definition of passes

Preprocessing is started by a call to doLoop (see Fig. 1 and Fig. 8) which
applies the passes ps to the given code sc by calling doPasses. The total number
of performed passes is shown. doPasses successively applies each pass by first
announcing its start and then calling its specific version of tMain.

doLoop :: [Dec] -> Passes -> Q [Dec]

doLoop sc ps = do (sc’,n) <- doPasses sc 0 ps

To.box ((show n) ++ " pass(es) performed.")

return sc’

doPasses :: [Dec] -> Int -> Passes -> Q ([Dec], Int)

doPasses sc n [] = return (sc, n)

doPasses sc n ((Pass p):ps) =

do To.box ("Pass " ++ (show n) ++ ": " ++ (tName p))

(sc’, newps) <- tMain p sc

doPasses sc’ (n+1) (newps ++ ps)

Fig. 8. Loop functions doLoop and doPasses

New passes created by the current pass are executed right after the the
current pass has ended. This could for example be used to tidy up code by
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invoking a simplification pass after finishing an inlining pass. Note that there is
no automatic bail out mechanism, which means that the pass designer has to
make sure that the pass list terminates.

6 The Application

As a case study we are going to describe the application of the preprocessing
scheme to the implementation of the parallel functional language Eden. After
introducing the language and presenting two useful passes we will use the pre-
processor to provide a simple kind of static generic parallel programming.

6.1 Eden

In few words: Eden [3] extends Haskell with means for relocating the evaluation
of a function application to another network node, enabling the evaluation of
several expressions in parallel. A function embedded in a process abstraction by
applying
process :: (Trans a, Trans b) => (a -> b) -> Process a b

can be run in parallel to the continuing evaluation of its parent expression on
another processor by applying to its arguments a special application operator
(#) :: (Trans a, Trans b) => Process a b -> a -> b

The Trans context ensures that for both argument and result types correspond-
ing low-level sending and receiving functions exist. This part of the Eden im-
plementation has already been separated from the GHC implementation as far
as possible and expressed as a Haskell module. Being defined in Haskell, Eden
language constructs are represented within Template Haskell’s abstract syntax
tree as normal Haskell functions. (#) is implemented via the auxiliary function:
createProcess :: (Trans a,Trans b) => Process a b -> a -> Lift b

Its result is lifted into the data structure data Lift a = Lift a to keep local
demand (delivers real parallelism) instead of waiting for the process to return
(distributed sequentialism) because of waiting for the result (see [12]).

6.2 Two Passes for Eden

For controlling process creation order and steering evaluation depth in Eden one
frequently needs functions for controlling evaluation of data structures based on
the seq library function [12]. In Eden as well as in Glasgow Parallel Haskell [13]
these functions are united in a type class called NFData. Instances of this class
usually have to be derived by hand, a tedious and error-prone task. Figure 9
shows a pass which derives instances of NFData for every data declaration found
(and selected base types like tuples) and adds it to the program. Functions
xi1, xi2, and xi3 denote different evaluation depths; the most common xi2
(also known as rnf or deepSeq) demands the spine of a data structure which
means that the recursive structure is forced without touching anything else.
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newtype DeriveNFData = NFData [Dec] -- State: List of new instances

instance Traverser (ST DeriveNFData) DeriveNFData where

tName _ = "Derive NFData"

tMain p sc = do let startstate = NFData []

let ST f = tDecs (sc ++ basetypes)

let (_, NFData insts) = f startstate

return (sc ++ insts, [])

tDec d@(DataD c name vars cons ders) =

do tActionPre (AS1 d)

update (\(NFData insts) -> NFData (insts ++ inst))

tActionPost (AS1 d)

return d

where inst = [InstanceD ctxt iName decs]

ctxt = infer_context "NFData" d

iName = AppT (ConT "NFData") typ

typ = foldl (\z v -> AppT z (VarT v)) (ConT name) vars

decs = [FunD "xi1" [derive_xi1 con | con <- cons]] ++

[FunD "xi2" [derive_xi2 name con | con <- cons]] ++

[FunD "xi3" [derive_xi3 con | con <- cons]]

derive_xi1 :: Con -> Clause

derive_xi1 (NormalC cName cElems) =

(Clause [ConP cName pats] (NormalB rhs) [])

where pats = [WildP | _ <- [1..(length cElems)]]

rhs = TupE []

...

tDec x = tDec’ x

Fig. 9. Outline of NFData instance derivation

For every data declaration a corresponding instance inst of NFData is de-
rived and saved in the pass state; after finishing the pass, this list of instances
is added to the original source code sc. The type context ctxt of the instance
is determined by a separate function infer_context, which solves a context
equation. After defining the instance name its three functions xi1, xi2, and xi3
are generated and inserted as a list of declarations. For each of these functions
and each constructor alternative a corresponding function derive_xi{1,2,3} is
called to produce code handling the alternative.

The second example is a transformation pass shown in Fig. 10. The eager
transformation [3] is a let transformation exercising more demand on let-bound
process applications providing earlier process creation and thus better paral-
lelism. Until now this transformation was implemented as a transformation of
Core syntax. By expressing it as a preprocessor pass the code size has been re-
duced from around 300 lines to less than 30 lines, mostly by saving the effort
of rewriting compiler front-end mechanisms. As the transformation itself is very
similar to the previous example, we will only show the main functions and one
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newtype Eager = Eager (Int, ([String],[String]))

instance Traverser (ST Eager) Eager where

tName _ = "Eager transformation"

tMain p sc =

do let startstate = Eager (0, ([],[]))

let ST f = tDecs sc

let (sc’, Eager (count,(positions,_))) = f startstate

To.printToScreen positions

return (sc’, [])

tExp e@(LetE ds e1) =

do ds’ <- mapM tDec ds

e1’ <- tExp e1

... -- perform transformation, generate ds’’ and e’’

let e’ = (LetE ds’’ e’’)

tActionPost (AS4 e’)

return e’

where ...

tExp x = tExp’ x

tActionPost x =

sequence_ [ runAction x (aPos, liftPos) ]

where liftPos :: (([String],[String]) -> ([String],[String])) ->

(Eager -> Eager)

liftPos f (Eager (c, ps)) = Eager (c, f ps)

Fig. 10. Outline of eager transformation for Eden

attached global action aPos for saving the position where a transformation has
been carried out (see Sect. 4.2).

The action aPos (see Fig. 11) itself adds textual information about the posi-
tion of the traversal to the internal state. As the transformation can be triggered
many times during a traversal, we need to be able to keep a list of position de-
scriptions as a list of strings. When for example a function is encountered, a
corresponding position description is added as a prefix to every position descrip-
tion kept in the state. We add it as a prefix since the action is triggered during
an upwards traversal.

aPos :: AbsSyn -> (([String],[String]) -> ([String],[String]))

aPos (AS1 (FunD name cs)) =

\(fin,act) -> (fin, aPosAdd ("in function "++name++", ") act) ...

aPos _ = id

Fig. 11. Excerpt of action for position tracking
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6.3 Generic Programming in Eden

Generic programming [14] is all about being able to define functions which
work not only for arbitrary element types (parametric polymorphism) but for
arbitrary data structures (structural polymorphism). Imagine generalising the
length function on lists to a generic size function. The generic version can
then be specialised to show data type specific behaviour. Using the preprocessor
we can model a generic parallel map function working on data structures of kind
(∗ → ∗). Figure 12 first shows a generic zipWith class, instances of which will be
automatically generated for base types and all types occuring in the source pro-
gram by a deriving pass. Then the generic parallel map is defined which takes
a structure of processes and a structure of values, zips these together, exerts
enough demand to create all processes in parallel by applying xi2, and delifts
the resulting structure. This function is very useful in Eden and eliminates the
need to write that function over and over again for different data structures.

class GZipWith1 t where

gZipWith1 :: (a -> b -> c) -> t a -> t b -> t c

gParMap1 :: (NFData (t (Lift b)), GZipWith1 t, Functor t,

Trans a, Trans b) =>

t (Process a b) -> t a -> t b

gParMap1 ps vs = let papps = gZipWith1 createProcess ps vs

in (xi2 papps) ‘seq‘ (fmap deLift papps)

Fig. 12. Generic parallel map in Eden

7 Related Work

The work presented has been inspired by the work of Lynagh on Template
Haskell [15,16]. Both papers discuss ways of manipulating Haskell code which
are extended to a separate framework in this paper. Seefried et al. investigate
in [17] an approach similar to ours: Template Haskell is used to implement and
optimise an extension of a host language.

Also related to this work is the approach by Peyton Jones et al. in [18],
where so-called RULES pragmas can be inserted into the program which describe
source-to-source transformations executed by the compiler. The difference to our
approach is that these are restricted to function applications and cannot work on
expressions or whole programs. Another alternative [19] is developed by Tolmach
et al. which aims at defining a common external Core syntax format to help
developers write external optimisation passes for the GHC.

The idea of “separation of concerns” has been carried on by Veldhuizen et
al. in their work on active libraries [2,20]. This relates to our approach of sepa-
rating host compiler and extension implementations by pulling the latter into a
separate meta-programmed library.
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Norell and Jansson [21] introduce generic programming by generating func-
tions for translating every data type into a general representation on which
functions can be defined generically. They also plan to use Template Haskell to
express this code generation as a GHC extension. The “boilerplate” approach
[22] is another possibility of generic programming and has recently been inte-
grated into the GHC: Often nonrelevant traversal code has to be written to walk
through a data structure until a function can be applied to a certain part of that
structure. This work can be saved by using the automatically generated generic
gmapT function which traverses arbitrary data structures. Function application
is only triggered if the right part of the structure is encountered.

8 Conclusion

We have presented a monadic preprocessing scheme for extensions of the func-
tional language Haskell implemented on top of the Glasgow Haskell Compiler.
Being neither an extra tool nor a complicated hack of the underlying compiler
our approach is both general and portable: Following the idea of active libraries it
has been implemented via meta-programming in Template Haskell and designed
as a separate library. Each pass is defined by creating an instance of a monadic
class over the state of the pass. Actions global to the whole abstract syntax
tree are predefined separately and can easily be attached to a pass. This library,
together with a set of passes, can be ported from one base compiler version to
the next with only minimal compiler modifications. Our approach is therefore
especially useful for compiler writers as it makes their preprocessor implemen-
tation much more straightforward to port and to maintain. As an example we
have applied this scheme to the parallel Haskell dialect Eden where we observed
a considerable code size reduction and improved portability.

Future work. Future work areas include more preprocessing passes for Eden
like analysis and runtime information passes. The main focus however will be a
deeper investigation of generic parallel programming for Eden.

Acknowledgements. The author would like to thank Rita Loogen and Jost
Berthold for discussions on the topic, Holger Gast for pointing out the work of
Todd Veldhuizen on Active Libraries, and anonymous referees for their helpful
comments.
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Abstract. In this paper, we show how to combine a component system
and a macro system. A component system separates the definition of a
program fragment from the statements that link it, enabling indepen-
dent compilation of the fragment. A macro system, in contrast, relies
on explicit links among fragments that import macros, since macro ex-
pansion must happen at compile time. Our combination places macro
definitions inside component signatures, thereby permitting macro ex-
pansion at compile time, while still allowing independent compilation
and linking for the run-time part of components.

1 Introduction

Good programmers factor large software projects into smaller components or
modules. Each module addresses a specific concern, and a program consists of
a network of cooperating modules. First-order module systems provide name
management, encapsulation, and control over separate compilation [1]. However,
first-order module systems use internal linkage, in which modules refer directly
to other modules.

A module system can support component programming [2] by separating
module definition from linking. Thus, components use external linkage, in which
a component refers indirectly to other components through a parameterization
mechanism. Additionally, a component must be compilable and deployable by it-
self, apart from any linkages that use the component. In analogy to separate com-
pilation, we call this property independent compilation. A single independently
compiled component is therefore re-usable in various situations, linked with a
variety of other components. Although many module systems [3,4,5] support
component-style parameterization, we concentrate here on a system designed
expressly for component programming: Units [6].

Units and other component systems allow a component to import and export
values and types, but not macros. Macro support is desirable because macros
allow the definition of domain-specific language extensions, and components
may benefit from these extensions. Because Scheme [7] supports sophisticated,
lexically-scoped macros [8], implementors have devised module systems that sup-
port the import and export of macros [5,9,10,11,12], but these module systems do
not support component-style parameterization with independent compilation.
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This paper explains how to integrate macros and components while main-
taining the desirable properties of both. In particular, our macros respect the
lexical scope of the program and our components can be compiled before linking.

Section 2 introduces an example of a component-based program in PLT
Scheme, our implementation substrate. Section 3 explains how the use of macros
improves the program and introduces the macro system. Section 4 shows how
we combine macros and components, and Section 5 shows more uses of macros
in components. Section 6 discusses related work, and Section 7 concludes.

2 Programming with Units

Units are software components with explicit import and export interfaces. These
interfaces serve as the canonical mechanism for designing systems and communi-
cating documentation. Furthermore, since units are externally linked, they can
be independently compiled.

Using the PLT Scheme unit system, programmers can organize programs
as networks of components. Units are heavily used in the major applications
distributed with PLT Scheme, including DrScheme and the PLT web server.

2.1 The Unit System

Signatures are the interfaces that connect units. A signature specifies a set of
bindings that a unit may either import or export. A unit specifies one signa-
ture that lists its exported bindings, but it can specify many signatures listing
imported bindings to support importing from multiple different units.

Signatures are defined using the define-signature form:

(define-signature signature-id
(variable-id∗))

The unit/sig expression specifies an atomic unit as follows:

(unit/sig (import signature-id∗) (export signature-id)

definition-or-expression+)

The export signature indicates which definitions in the unit body are exported,
and the import signatures indicate what variables are bound in the unit body.
Unit expressions need not be closed. Like procedures, unit values close over the
unit expression’s free variables.

Units are externally linked ; that is, a unit expression cannot refer specifically
to the contents of another unit. Thus, compilation of a unit body does not require
knowledge of any other unit, so units are independently compilable. Unit com-
pilation depends only on signatures to determine import and export variables.
These variables are compiled to use an indirection that supports linking.

Programs use a separate linking form called compound-unit/sig to link
units together, satisfying each unit’s import signatures:
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(compound-unit/sig
(import (tag : signature)∗)
(link (tag : signature (unit-expr tag∗))+)
(export (var tag : identifier)∗))

The tags correspond to the nodes of the linkage graph, and the lists of tags
in the link clauses specify the edges of the graph. The result is another unit
whose imports are specified by the import clause and whose export signature
is computed from the variables listed in the export clause.

The invoke-unit/sig form invokes a unit with no imports:

(invoke-unit/sig unit-expr)

An invocation evaluates all definitions and expressions in the unit’s (atomic or
compound) body in order.

2.2 An Example

Throughout the rest of this paper, we use the example of a hotel registration
system that uses a database for persistent storage. The business logic consists
of the following code:1

(define-signature db-sig (query make-select-cmd))
(define-signature hotel-reg-sig (get-reservation get-empty-rooms))

(define hotel-reg-unit
(unit/sig (import db-sig) (export hotel-reg-sig)

;; get-reservation : string date → reservation
(define (get-reservation name date)

(———— (query (make-select-cmd ’reservations
(list ’room ’rate ’duration)
(list (cons ’name name) (cons ’date date)))

————)))
;; get-empty-rooms : date → (list-of (cons string number))
(define (get-empty-rooms date) ————)))

The third definition binds hotel-reg-unit to a unit satisfying the hotel-reg-sig
interface. It must be linked with a database unit that exports the db-sig interface
before it can be used.

The hotel-reg-unit component can be linked with any database component
that exports the db-sig interface. In turn, the hotel-reg-unit unit provides the
functionality represented by the hotel-reg-sig signature. This functionality may
be used by any number of different components in the system, such as a graphical
user interface for finding reservations and vacancies.

Assembling these components—the database code, the business logic, and
the user-interface code—creates a complete program:

(define hotel-program-unit
(compound-unit/sig

(import)

1 In the code fragments, we use ———— to indicate elided code.
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(link [HOTEL-DB : db-sig (PrestigeInc-db-unit)]
[HOTEL-REG : hotel-reg-sig (hotel-reg-unit HOTEL-DB)]
[GUI : hotel-gui-sig (hotel-gui-unit HOTEL-REG)])

(export)))

(invoke-unit/sig hotel-program-unit)

The hotel’s programmers can also write a web interface and assemble a second
view for the registration software:

(define hotel-servlet-unit
(compound-unit/sig

(import (SERVER : servlet-import-sig)
(link [HOTEL-DB : db-sig (GargantuWare-db-unit)]

[HOTEL-REG : hotel-reg-sig (hotel-reg-unit HOTEL-DB)]
[WEB-UI : servlet-sig (hotel-webui-unit SERVER HOTEL-DB)])

(export))))

The web server would then link hotel-servlet-unit against a unit providing con-
trolled access to the web server’s functionality and invoke the resulting unit.

Signatures not only control the linking process; they also guide programmers
in writing the components that implement and use the interfaces they represent.
The brief signature definition of db-sig, however, is insufficient as a guide to
implementing or using the the database unit. The true interface consists of not
only the set of imported names, but also the types of those names, descriptions of
their meanings, and advice on their use. Figure 1 shows an improved description
of the db-sig interface.

The comments in this revised signature specify function headers and contain
a usage example for query, a complex function. The example shows how to use
query to select two fields, f1 and f2 , from the table named tab1 . Only the rows
where field f3 is zero are processed. The argument function extracts the fields
from fieldset by position and concatenates them. The call to query returns the
accumulated list of concatenated strings.

The example exposes the awkwardness of the unadorned query function. The
results come back in a list of 3-tuples (also represented with lists) that must be
unpacked by position. This fragile relationship breaks when fields are reordered,
inserted, or deleted. The programmer should be able to refer to field values
by name rather than by position, and the database library should provide an
abstraction that manages the connection between field names and their offsets
in the result tuples. Ideally, the field names would be variables in the result-
handling code. Creating a variable binding based on arguments is beyond the
power of procedural abstraction, but it is a standard use of macros.

3 Programming with Macros

A declarative select form, specifically designed for expressing database queries,
is more robust and less awkward to use than the query function. It can express
the example query from Fig. 1 as follows:



Syntactic Abstraction in Component Interfaces 377

(define-signature db-sig
[;; query : select-cmd ((list-of string) → α) → (list-of α)
;; Applies the procedure to the each record returned, accumulating the final result.
query

;; a constraint is (pair-of symbol {string|number|boolean})

;; make-select-cmd : (list-of symbol) symbol (list-of constraint) → select-cmd
make-select-cmd

;; Example: to return a list of the concatenations of fields
;; ‘f1’ and ‘f2’ in table ‘tab1’ where ‘f3’ equals 0:
;;
;;
;;

(query (make-select-cmd (list ’f1 ’f2) ’tab1 (list (cons ’f3 0)))
(lambda (fieldset)

(string-append (list-ref fieldset 0) ":" (list-ref fieldset 1))))
])

Lines with “;;” are comments.

Fig. 1. Database interface

;; Example: to return a list of the concatenations of fields
;; ‘f1’ and ‘f2’ in table ‘tab1’ where ‘f3’ equals 0:
(select [(f1 f2 ) tab1 with (f3 = 0)]

(string-append f1 ":" f2 ))

The select form is implemented with a macro that compiles a select expression
into a call to the query function. In Scheme, a define-syntax expression binds
a compile-time function as a macro.

(define-syntax (macro-name stx)
macro-body)

A macro takes in and produces annotated s-expressions called syntax objects. In
a macro body, the syntax-case form matches a syntax object against patterns
and binds pattern variables, and the #’ operator creates a syntax object from
a template. Each pattern variable used in a template refers to the portion of
the input expression matched by that variable. The postfix ellipsis operator in
a pattern matches the previous pattern zero or more times (similar to Kleene
star); in a template it repeats the previous template for every match.

Figure 2 presents the select macro in the syntax-case [8] macro system. For
the above select example, this macro generates code equivalent to the query
example in Fig. 1.

The select macro uses field , table, f1 , v2 , and body as pattern variables, but
with and = are matched as literals. The macro uses the name field both as a
symbol (by putting it inside a quote form) passed to make-select-cmd and as
a variable name. Because body is placed within that lambda expression, field
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(define-syntax (select stx)
(syntax-case stx (with =)

[(select [(field . . . ) table with (f1 = v2 ) . . . ] body)
;; table, all field , and all f1 are identifiers
;; each v2 can be any expression
;; body is an expression
#’(query (make-select-cmd (list (quote field) . . . )

(quote table)
(list (cons (quote f1) v2) . . . ))

(lambda (fieldset)
(apply (lambda (field . . . ) body)

fieldset)))]))

Fig. 2. A simple select macro

is bound in body, and the evaluation of body is delayed until the procedure is
applied.

The macro expander invokes the select macro when it encounters an expres-
sion of the form (select ————). The macro’s parameter, here stx , is bound
to the select expression. Macro expansion replaces the select expression with
the result of the select macro and continues processing the program.

3.1 Respecting Lexical Scope

Unlike macros in LISP or C, Scheme’s macros respect lexical scoping.2 Variable
references introduced in a macro’s template are bound in the environment of
the macro’s definition (i.e. to the lexically apparent binding occurrence), instead
of the environment of the macro’s use. Hence, the macro’s user can use local
variables that coincide with those chosen by the macro implementer without
altering the macro’s behavior. In addition, templated identifiers that become
binding occurrences never capture references received through the macro’s ar-
gument. This property protects the meaning of the macro user’s code from the
macro definition’s choice of temporary variables.

For example, consider the definition of the select macro in Fig. 2. The tem-
plate contains a use of the query variable. Since the macro is defined at the
top-level, the expanded code always refers to the top-level variable of that name,
even if select is used in a context where query is shadowed by a local binding.

Scheme’s macro system stores information about the lexical context of iden-
tifiers in the syntax objects that macros manipulate. The following superscript
annotations are intended to illustrate the information that the syntax objects
carry:

2 Historically, a lexically-scoped macro system has also been called hygienic [13] and
referentially transparent [14].
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(define querytop ————)
(define-syntax (selecttop stx)

(syntax-case stx (with =)
[(select [(field . . . ) table with (f1 = v2 ) . . . ] body)
#’(querytop (make-select-cmd top (listtop (quotetop field) . . . ) ————)

————)]))

Thus, the following code

(let ([query loc "What is the meaning of life?"])
(selecttop [(f1 f2 ) tab1 with (f3 = 0)]

(string-append top f1 ":" f2 )))

expands into the following:

(let ([query loc "What is the meaning of life?"])
(querytop (make-select-cmd top (listtop (quotetop f1 ) (quotetop f2 )) ————)

————))

The macro system uses the lexical context information to ensure that the use of
querytop is not bound by query loc, but refers to the top-level binding.

The select macro also relies on the other guarantee of lexically-scoped macro
expansion. The macro expander uses another form of annotation on syntax ob-
jects to track identifiers introduced by macros. When those identifiers become
binding occurrences, such as fieldset in the template of select, they bind only
uses also generated by the same macro expansion. Consider this use of the select
macro:

(let ([fieldset (lambda (new-value) (set! last-field-seen new-value))])
(select [(f1 f2 ) tab1 with (f3 = 0)]

(fieldset (+ f1 f2 ))))

This expands into the following:

(let ([fieldset (lambda (new-value) (set! last-field-seen new-value))])
(query ————

(lambda (fieldset1)
(apply (lambda (f1 f2 ) (fieldset (+ f1 f2 )))

fieldset1))))

Again, the binding of fieldset1 does not capture the use of fieldset .
These two guarantees made by lexically-scoped macro systems are crucial

to writing and using reliable macros. Without static knowledge of the binding
structure of macros, reasoning about them becomes impossible.

However, consider the implications for programming with units. A macro
such as select which uses the query function must be defined in a context where
query is bound. Since query is a unit variable, it is only available to other units,
through an import clause. Thus the macro definition must occur within the body
of the importing unit:

(define hotel-reg-unit
(unit/sig (import db-sig) (export hotel-reg-sig)

(define-syntax select ————)
————))
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Putting the macro definitions in the client code, however, defeats the component
abstraction. The database component should provide everything necessary to
write client code—both dynamic and static constructs—so that every application
component can use these facilities.

One attempt at a solution might define select in the database component
and export it to the client components. With this solution, the client component
could not be compiled until it is linked with a particular database component,
for two reasons. First, compilation of a unit depends on the definition of every
syntactic extension used in its body. Second, the contents of a unit are not
available to other units until link-time. Thus if the definition of a macro resides
in a unit, then its clients cannot be compiled until link-time. Furthermore, the
same client unit might be compiled differently for every linkage it participates in.
Thus, this proposal violates the important property of component programming
that a component be independently compilable.

4 Signatures and Static Information

Our solution integrates macros and components by including macro definitions
in signatures. Since signatures specify the static properties of units, they are a
natural place to put syntactic extensions. In this section we present the design,
pragmatics, and implementation of the new unit system.

4.1 Extended Signatures

A signature contains the set of names that make up a unit’s interface. In the ex-
tended system, it also contains macro definitions that can refer to the signature’s
names.

The extended syntax of signature definitions is:

(define-signature signature-id
(variable-id∗

macro-definition∗))

With this extension, it is possible to put the select macro in the db-sig signature,
rather than manually copying it into every client unit:

(define-signature db-sig
[query
make-select-cmd
(define-syntax (select stx) ————)])

The syntax for units remains the same. When the db-sig signature is used in an
import clause, however, it also inserts the select macro into the unit:

(unit/sig (import db-sig) (export application-sig)
(select [(room rate) rooms with (available = true)]

(format "˜a, available for just $˜a" room rate)))
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Macro expansion of the unit body produces the desired target code:

(unit/sig (import db-sig) (export application-sig)
(query (make-select-cmd (list ’room ’rate)

’rooms
(list (cons ’available true)))

(lambda (fieldset)
(apply (lambda (room rate)

(format "˜a, available for just $˜a" room rate))
fieldset))))

The expansion of the macro does not depend on the particular version of the
database unit linked at run-time. In fact, the above unit may be linked to many
database units during the course of the same program execution.

4.2 Preserving Lexical Scope

As discussed in Sect. 3.1, respect for lexical scope is a critical property of
Scheme’s macro systems. It ensures that variable references behave in the natural
way. In particular, variable references inserted by a macro refer to the variables
in the macro definition’s context, not those in the context of the macro’s use.

The problem becomes more complex when we allow macros to occur inside
of signatures. When a signature macro refers to a signature variable, there is
no definite binding of the variable for the macro to refer to. Rather, when the
signature is instantiated, that is, when it is used in a unit’s import clause, the
instance of the macro will refer to the instance of the imported variable.

This observation suggests a natural extension of the principle of lexical scop-
ing for macros. In a signature, a free occurrence of a name in a #’-form should
have the same meaning as it does in the context of the signature definition, un-
less the name is also a signature element. In the latter case, the name should
refer to the variable linkage created when the signature is used in a unit import
clause.

To illustrate this principle, consider the example from earlier:

(define-signature db-sig
[query
make-select-cmd
(define-syntax (select stx)

(syntax-case stx (with =)
[(select [(field . . . ) table with (f1 = v2 ) . . . ] body)
#’(query (make-select-cmd (list (quote field) . . . ) ————)

(lambda (fieldset) (apply ————)))]))])

In the template for select, query and make-select-cmd must denote the unit
import variables. In contrast, list and apply must refer to the standard Scheme
procedures, because those were their meanings where the macro was defined. Any
other interpretation of macro definitions would violate the scoping principle of
Scheme. It is the task of the implementation to make sure that these properties
hold.
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4.3 Implementation

In order to compile units, the compiler must be able to completely expand the
definitions and expressions in a unit’s body and identify all imported and ex-
ported variables. The information necessary to do this is statically bound to the
signature names, and the compilation of a unit/sig form consists of fetching
this static information, eliminating the signatures from the code, and compiling
the resulting core unit form.

Signature definition. When the compiler encounters a define-signature
form, it builds a catalog consisting of the variable names and macro defini-
tions that the signature contains. The catalog contains syntax objects, which
are closed in the syntactic environment in which the macro signature occurs.
This ensures that when the macro definitions are imported into a unit, lexical
scoping is preserved.

Finally, it statically binds the signature name to a signature structure con-
taining the information above. Thus,

(define-signature db-sig
[query
make-select-cmd
(define-syntax (select stx) ————)])

binds db-sig to the static information

(make-signature ’db-sig
;; Variables
(list #’query #’make-select-cmd)
;; Macro names
(list #’select)
;; Macro definitions
(list #’(define-syntax (select stx) ————)))

When db-sig appears in the import clause of a unit/sig form, the compiler looks
up the static binding of db-sig and uses the catalog to eliminate the use of the
signature.

Signature elimination. The compiler translates unit/sig forms into an in-
termediate core unit form, replacing signatures with their contents. In the re-
sulting code, imported and exported variables are explicitly enumerated, and
all signature-carried macro definitions are inlined into the core unit body. This
elimination process respects scoping, as outlined in Sect. 4.2.

Consider the following example:

(define-signature db-sig
[query make-select-cmd (define-syntax select ————)])

(let ([query loc ————])
(unit/sig (import db-sig) (export application-sig) ————))

The select macro definition that occurs in the signature refers to a variable
whose name appears in the let binding. The macro definition must be closed in
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the environment of the signature definition so that those names are not captured
by the let binding. By using syntax objects in the signature catalog, we retain
the correct syntactic environment for the macro definition.

There are two problems to overcome in implementing unit/sig correctly.
First, the environment of the macro definitions is not quite complete; it lacks
bindings for the signature’s variables. Second, the names in the signature, being
closed in a different environment, will not bind the names in unit body.

To illustrate, we write querysig for the identifier closed in the signature’s
environment and queryunit for the identifier occurring in the unit body. Given
the unit/sig expression

(unit/sig (import db-sig) (export application-sig)
(queryunit ————)
(selectunit [(room rate) rooms with (available = true)] (———— rooms rate)))

if the variable names and macro definitions from db-sig were copied into the unit
body, their identifiers would still have sig superscripts.

(unit/sig (import (querysig make-select-cmdsig)) (export application-sig)
(define-syntax (selectsig stx) ———— #’querysig ————)
(queryunit ————)
(selectunit [(room rate) rooms with (available = true)] (———— rooms rate)))

Note that querysig is bound in the resulting unit body, so the environment for
the definition of selectsig is complete. Unfortunately, queryunit and selectunit

are still unbound in the unit body.
To solve this problem, the compiler must identify the unit’s local identifier

for each signature identifier. For example, given querysig, the compiler must
determine that the local name is queryunit. Each such pair of foreign and local
identifiers must have the same meaning. The compiler extends the environment
of the unit form with bindings that alias each local identifier to the corresponding
imported identifier.

In summary, the compiler copies each macro definition from its imported
signatures into the unit body, explicitly enumerates the imports and exports
(using the foreign names), and creates aliases for the local names. This pass
eliminates the signatures and produces an intermediate core unit form in which
all imported and exported variables are explicit, and the body consists of macro
definitions, definitions, and expressions.

Figure 3 shows the result of this translation, using unit as the syntax for
core unit forms and a define-alias instruction to create aliases. The define-
alias form can be implemented with the low-level primitives of the PLT Scheme
macro system.

Core units. Once the signatures have been eliminated, all import and export
variables are explicitly enumerated and the unit body contains all imported
macros definitions.

Compiling a core unit involves expanding the body—a simple process once
the macro definitions have been brought into the proper context—and compiling
imported and exported variables as cells managed by the unit linker rather than
primitive Scheme variables.
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(make-signed-unit
;; Metadata (intentionally omitted)
————
;; Core unit
(unit (import querysig make-select-cmdsig)

(export ————)
;; Imported macro definitions
(define-syntax (selectsig stx) ———— #’querysig ————)
;; Alias code
(define-alias (selectunit = selectsig)

(queryunit = querysig)
(make-select-cmdunit = make-select-cmdsig))

;; Code from unit/sig begins here
(queryunit ————)
(selectunit [(room rate) rooms with (available = true)] (———— room rate))))

Fig. 3. Translation into core unit

5 Static Programming

Many constructs can be expressed with a macro whose output depends only on
the macro’s input. The select macro (Fig. 2) is an example of such a construct.
However, the compilation of some constructs relies on information from other
locations in the program. For example, the pattern matching construct for al-
gebraic datatypes relies on the definition of the datatype being matched. PLT
Scheme’s macro system supports the implementation of these kinds of constructs
by letting macros communicate using compile-time variables.

A database has a statically-known structure called its schema that deter-
mines what queries are valid. We could add a mechanism to db-sig that lets
clients specify the schema. Then select would be able to check at compile time
that every query will succeed when run.

The database-table form lets a programmer express information about the
database’s relevant tables, fields, and types, and make the information accessible
to the select macro.

;; database-table’s syntax: (database-table table-name (field-name field-type) ...)
(database-table rooms (room number) (rate number) (available boolean))
(database-table reservations (room number) (name text) (when date))

Using these table declarations, the select macro can ensure that the table in
question is declared, and that it contains the given fields. It can also emit run-
time checks for the field types.

The database-table and select macros communicate through a compile-
time variable named schema, which contains a mutable box. Compile-time vari-
ables are introduced using the define-for-syntax form, and they exist during
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(define-for-syntax schema (box null))

(define-syntax (database-table stx)
(syntax-case stx ()

[(database-table table (field-name field-type) . . . )
#’(begin-for-syntax

(let ([table-record ’(table (field-name field-type) . . . )])
(set-box! schema (cons table-record (unbox schema)))))]))

Fig. 4. Implementation of database-table

(define-syntax (select stx)
;; get-table-info : identifier → table-info
;; Given a table name, returns the list of fields and types associated with it,
;; or raises an exception if the table is not known.
(define (get-table-info table-stx)

(let ([table-entry (assoc (syntax-object→datum table-stx) (unbox schema))])
(if table-entry

(cdr table-entry)
(raise-syntax-error ’select "unknown table" table-stx))))

;; check-field : identifier table-info → void
;; Checks that the given field name belongs to the table.
(define (check-field field-stx table-info)

(let ([field-record (assoc (syntax-object→datum field-stx) table-info)])
(unless field-record

(raise-syntax-error ’select "field not declared" field-stx))))

(syntax-case stx (with =)
[(select [(field . . . ) table with (f1 = v2 ) . . . ] body)
(let ([table-info (get-table-info #’table)])

(for-each (lambda (field-id) (check-field field-id table-info))
(syntax→list #’(field . . . )))

;; The resulting code is the same as before (see Fig. 2)
#’————)]))

Fig. 5. Implementation of select with static checking

macro expansion. See Fig. 4 for the implementation of schema and database-
table. The begin-for-syntax form in the expansion of the database-table
form indicates that the enclosed expression should execute during macro expan-
sion. The database-table form is similar to examples from previous work [12].

The new select macro checks the table name and fields it receives against the
information in the stored schema. The revised implementation shown in Fig. 5
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produces the same code as the previous select macro, but it additionally uses
helper procedures to check that the table and fields are declared. If they are not,
the macro signals a compile time error.3

Consider the following unit that uses the new db-sig facilities:

(unit/sig (import db-sig) (export application-sig)
(database-table rooms (room number) (rate number) (available boolean))
(database-table reservations (room number) (name text) (when date))
(select [(room rate) rooms with (available = true)] (cons room rate))
(select [(room duration) reservations with] (———— duration ————))

The first use of select is correct, but the second use triggers a compile-time error,
notifying the programmer that duration is not a valid field in the reservations
table.

The db-sig signature contains the definitions of the schema variable and
database-table macro alongside the select macro. Thus, when a unit’s import
specifies the db-sig signature, schema’s and database-table’s definitions are
copied into the unit’s body. Consequently, each unit with a db-sig import receives
its own schema box, keeping table definitions from mixing between different
units.

The select and database-table macros present other opportunities for
static extensions that we do not explore here. For example, the database-table
form could produce code to dynamically verify the accuracy of the static schema
description, and the select macro could add additional code to check whether
constant field specifications have the correct type.

6 Related Work

Bawden [16] has proposed a system of lexically-scoped, “first-class” macros based
on a type system. The “first-class” macros are statically resolvable, which pre-
serves compilability, but the values for the bindings used in a macro’s expansion
can be passed into and returned from functions. A “first-class” macro is defined
in a template that includes macro definitions and a listing of variables that the
macro is parameterized over, similar to our signatures. His system uses types
to statically track macro uses, whereas in our system signatures are statically
attached to units, avoiding the need for a type system.

Krishnamurthi’s unit/lang construct [17] allows programmers to specify the
programming language of a component in addition to its external interface. A
language contains new macro-like extensions (in fact, languages are more pow-
erful than macros) and run-time primitives. A unit/lang component internally
specifies which language it imports, similar to how our units specify their sig-
natures. However, the internally specified language position does not coordinate
with the externally linked component parameters, so lexically-scoped macros

3 A programming environment such as DrScheme [15] can use the information provided
to raise-syntax-error to highlight the source of the problem.
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cannot refer to these parameters. Our system also makes it simpler to mix to-
gether orthogonal language extensions, since there is no need to manually define
a language that contains the desired combination of extensions.

The Scheme community has formalized the principles of scope-respecting
macros. Kohlbecker et al. [13] first introduced the hygiene property for macros,
and subsequent papers developed referential transparency [8,14]. Recent papers
have addressed macros and internally-linked modules [11], including a notion of
phase separation for macros and modules [12]. Other work in macro semantics
from MacroML [18,19] has not addressed the full complexity of Scheme macros.
In particular, these systems do not model macros that can expand into macro
definitions.

A different line of research has developed module systems to support compo-
nent programming. Components are parameterized using collections of code that
obey static interfaces, but the information carried by these interfaces is generally
limited. In ML module systems [4,20,21], signatures contain types (and kinds,
i.e., types for types) and datatype shapes (used for pattern matching). Similarly,
the signatures in the original model of units [6] contain types and kinds. In the
Jiazzi unit system [22], signatures contain class shapes, which play a type-like
role.

The Scheme48 [5] module system provides some support for modules with
parameterized imports. However, the signatures for the imports only contain the
information that a binding is a macro, and the not macro itself. Consequently,
parameterized modules that import macros cannot be independently compiled.
We believe that our techniques could correct this problem.

7 Conclusion

We have designed and implemented an extension of the PLT Scheme unit sys-
tem that allows programmers to attach language extensions to signatures, thus
enriching the interfaces available to client code. Our extension preserves the
essential properties of the unit system, such as independent compilation and
external linking, as well as the lexical scoping principles of the macro system.
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Abstract. Component-oriented programming yields a tension between higher-
order features (deployment, reconfiguration, passivation), encapsulation, and
component sharing. We propose a discipline for component-oriented program-
ming to address this issue, and we define a process calculus whose operational
semantics embodies this programming discipline. We present several examples
that illustrate how the calculus supports component sharing, while allowing
strong encapsulation and higher-order primitives.

1 Introduction

Wide-area distributed systems and their applications are increasingly built as heteroge-
neous, dynamic assemblages of software components. This modular structure persists
during execution: such systems provide the means to control their run-time modular
configuration, which encompasses automatic deployment, unanticipated evolution, pas-
sivation, run-time reconfiguration, and introspection. This expressive power conflicts
with the strong encapsulation properties generally expected from modular programs.

A key tension point is component sharing, which allows two remote components
to encapsulate a common component, as depicted in Figure 1, where the component
L (e.g. a software library) is shared among C and D. How does one preserve encap-
sulation in this case? In particular, what happens to L and D if A removes C from
the configuration? How can C replace L by L′, without necessarily impacting D? Es-
sentially, the difficulty lies in combining (1) encapsulation with fine-grain, objective
control over communications, (2) locality passivation, migration, and replication, and
(3) access to shared components with simple communication rules.

Previous models of component-oriented programming do not completely address
these three requirements. Models that do not address requirement (3) comprise process
calculi with hierarchical localities that feature local communications only (i.e., no di-
rect communication between arbitrarily distant localities in the locality forest) [5, 4, 14,
3, 8, 18]. Indeed, sharing is representable in such models, but at the expense of com-
plex routing rules which are difficult to maintain. Models that do not have this routing
complexity problem, but are weak on requirement (1), include the Cell calculus [15]
and process calculi with localities that do not restrict communications betwen locali-
ties [10, 12, 20, 19, 11, 1, 16]. The tKlaim calculus [9] is a recent variant of Klaim
that allows the establishment of different communication topologies between localities.
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A D

B C

L L

F

Fig. 1. A configuration with sharing

However, such calculus still falls short of full encapsulation of sub localities, since there
is no objective control over process migration and execution.

Our starting point to solve the issue of component sharing is that, from the stand-
point of the latter kind of models (weak on (1)), the problem is reminiscent of the
aliasing problem in object-oriented languages [13]: sharing is easy, but encapsulation
is problematic. To solve this problem, Clarke et al. introduce ownership types [6, 7],
which attribute to each object o an owner that controls the references to o. We adapt
this idea of ownership to the setting of process calculi. However, instead of design-
ing a type system to preserve encapsulation, we enforce it at the level of the oper-
ational semantics, as follows. We split the usual hierarchical forest of localities into
two graphs: the ownership forest and the containment graph. Locality passivation must
be local for the ownership forest, and communication must be local for the contain-
ment graph. As in type systems for ownership, we require, by scoping constraints in
our semantics, that owners be dominators: the owner of a component c dominates (in
the ownership forest) all the components holding references to c. Owing to this con-
dition, the aliasing problem does not arise: when updating a component c, its owner
has access to all references to c. Moreover, the containment graph may be an arbi-
trary directed graph, which allows component sharing. The resulting language, an ex-
tension of the Kell calculus [18], turns out to be an interesting model of component-
oriented programming, as we show by encoding key aspects of the Fractal component
model [2].

Our main contributions are as follows: (1) we propose a programming discipline
for component-oriented programming to address the issue of component sharing, while
preserving encapsulation and higher-order features; (2) we define a process calculus
whose operational semantics embodies this programming discipline; (3) we argue that
our calculus is suitable to represent most idioms of component-oriented programming,
by reviewing key concepts from a concrete component model; (4) additionally, we pro-
pose a new, more modular, presentation of the Kell calculus.

The paper is organized as follows. §2 briefly presents the Fractal model, discusses
the modeling of Fractal components in the Kell calculus, and introduces informally sev-
eral examples of component sharing. §3 extends the Kell calculus with primitive com-
ponent sharing. §4 shows how to program several component sharing examples within
the obtained calculus. §5 concludes the paper with a discussion of future research.
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2 Components and the Kell Calculus

After giving an informal description of the Kell calculus [18], which is our starting
point, we present the main elements of a concrete component model, the Fractal
model [2]. We discuss to which extent Fractal component configurations without
sharing can be interpreted as processes of the Kell calculus. We then present various
examples of component configurations with sharing, and explain informally how we
extend the Kell calculus with sharing to deal with these examples.

2.1 The Kell Calculus

The Kell calculus is a higher-order process calculus with hierarchical localities (called
kells), local communication, and locality passivation. Actions in the Kell calculus are
communication actions and passivation actions. Communication is said to be local as it
may occur only within a kell, between a kell and its sub kells, or between a kell and its
immediate parent, as illustrated below.

1. Receipt of local message a〈Q〉.T on port a bearing process Q and continuation T
by local trigger (input construct) a〈x〉 � P .

a〈Q〉.T | (a〈x〉 � P ) → T | P{Q/x}

2. Receipt of message a〈Q〉.T residing in sub kell b by local trigger a↓〈x〉 � P .

b[a〈Q〉.T ].S | (a↓〈x〉 � P ) → b[T ].S | P{Q/x}

In pattern a↓〈x〉, the arrow ↓ denotes a message that should come from a sub kell.
3. Receipt of message a〈Q〉.T residing out of the enclosing kell by local trigger

a↑〈x〉 � P .
a〈Q〉.T | b[a↑〈x〉 � P ].S → T | b[P{Q/x}].S

In input pattern a↑〈x〉, the arrow ↑ denotes a message that should come from the
outside of the immediately enclosing kell.

These constructs may be combined using join patterns [10] that are triggered only
when the required messages are simultaneously present, as in the following example
(note that | has higher precedence than �).

a〈Q〉.T | b[c〈R〉.U | (a↑〈x〉 | c〈y〉 � P )].S → T | b[U | P{Q/x, R/y}].S

Communication with other localities has to be explicitly programmed in the lan-
guage. For instance, in order to exchange messages, two sibling kells need the help of
their common parent, as depicted in the following example.

a[(c↓〈x〉 ! c〈x〉) | b[c〈P 〉.Q] | e[(c↑〈x〉 � T )]]

→ a[(c↓〈x〉 ! c〈x〉) | c〈P 〉 | b[Q] | e[(c↑〈x〉 � T )]]

→ a[(c↓〈x〉 ! c〈x〉) | b[Q] | e[T {P/x}] ]
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In this example, the parent locality contains a permanent forwarder c↓〈x〉 ! c〈x〉
that pulls messages of the shape c〈P 〉 out of its sub kells. This allows sub kells to
receive these messages using an up pattern c↑〈x〉. The construction (ξ ! P ) denotes a
replicated trigger, i.e., a trigger which persists after a reaction, and is in fact a shorthand
for νt.Yt,ξ,P | t〈Yt,ξ,P 〉, where Yt,ξ,P = (t〈y〉 | ξ � P | y | t〈y〉).

Passivation in the Kell calculus is depicted in the following example, where the kell
named a is destroyed, and the process Q it contains is used in the guarded process P .

a[Q].T | (a[x] � P ) → T | P{Q/x}

Assume, for instance, that we want to model the dynamic update of component b, where
the new version P of the component program is received on channel a. We could do
so, in one atomic action, using the following join pattern where the new version b[P ] is
spawned, replacing the previous b component.

a〈P 〉 | (a〈x〉 | b[y] � b[x]) | b[Q] → b[P ]

2.2 The Fractal Component Model and Its Interpretation in the Kell Calculus

Fractal is a general component model which is intended to implement, deploy, monitor,
and dynamically configure complex software systems, including in particular operating
systems and middleware. This motivates the main features of the model: composite
components (to have a uniform view of applications at various levels of abstraction),
introspection capabilities (to monitor and control the execution of a running system),
and re-configuration capabilities (to deploy and dynamically configure a system).

A Fractal component is a run-time entity which is encapsulated, which has a dis-
tinct identity, and which is either primitive or composite (built from other components).
Bindings between components are described explicitly, either by local, primitive bind-
ings, using explicit component interfaces, or by remote, composite bindings, using com-
ponents whose role is to embody communication paths. Features like encapsulation and
interfaces are rather standard. The originality of the Fractal model lies in its reflective
features and in its ability to define component configurations with sharing. In order to
allow for well scoped dynamic reconfiguration, components in Fractal can be endowed
with controllers, which provide a meta-level access to a component internals, allowing
for component introspection and the control of component behaviour. A Fractal com-
ponent consists of two parts: contents, that correspond to its internal components, and
a membrane, which provides so-called control interfaces to introspect and reconfigure
the internal features of the component. The membrane of a component is typically
composed of several controllers.

Representing a Fractal component (without sharing) in the Kell calculus is rela-
tively straightforward. A component named a, takes the form a[P | Q], where pro-
cess P corresponds to the membrane of the component, and process Q, of the form
c1[Q1] | . . . | cn[Qn], corresponds to the contents of the component, with n sub com-
ponents c1 to cn. Interfaces of a component can be interpreted as channels on which a
component can emit or receive messages. The membrane P is composed of controllers
implementing the control interfaces of the component.
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The Fractal model specifies several useful forms of controllers, which can be com-
bined and extended to yield components with different reflective features. Let us briefly
describe some of them, and sketch their interpretation in the Kell calculus.

An attribute of a component is a configurable property that can be manipulated
by the means of an attribute controller. It can be interpreted as some value held in a
memory cell by a component membrane. A membrane providing an attribute controller
interface is easy to program, by emitting the current value of the attribute on a private
channel and by providing channels to read and update this value.

νs.(get↑〈r〉 | s〈v〉 ! s〈v〉 | r〈v〉) | (set↑〈v′〉 | s〈v〉 ! s〈v′〉) | s〈0〉
A contents controller supports an interface to list, add, and remove sub components in
the contents of a component. A membrane providing a simplistic contents controller
interface could be of the form Add | Rmv | . . ., with the following definitions (in which
the contents controller interface is manifested by the cc channel carrying the request
type (where \add means a name that is exactly add ), the name c of the targetted com-
ponent, and either the program of the added component (including both membrane and
contents) or a channel r to return the removed component).

Add =(cc↑〈\add , c, x〉 ! c[x]) Rmv =(cc↑〈\rmv , c, r〉 ! (c[x] � r〈c, x〉))
A less simplistic encoding would take into account additional details, such as exception
conditions (e.g, the possible absence of a component to remove). However, the above
definitions convey the essence of the contents controller.

A life-cycle controller allows an explicit control over the execution of a component.
As an illustration, we can define a membrane P providing a simple interface to suspend
and resume execution of sub components (where the life-cycle interface is manifested
by the lfc channel, and a sub component c is supended by turning it into a message on
a channel of the same name as the component).

P =Suspend | Resume | . . . Suspend =(lfc↑〈\suspend , c〉 ! (c[x] � c〈x〉))
Resume =(lfc↑〈\resume, c〉 ! (c〈x〉 � c[x]))

Again, a more realistic implementation would be more complex, but this section only
aims to show that capturing the operational essence of a reflective component model
such as Fractal (without component sharing) is relatively direct using the Kell calculus.
For another example, Schmitt and Stefani [17] provide an interpretation of a binding
controller, allowing a component to bind and unbind its client interfaces to server inter-
faces.

2.3 Component Sharing

Component sharing arises in situations where some resource must be accessed by sev-
eral client components. A first example of such a situation is that of a log service, which
merely provides client components the ability to register status information. Figure 1
depicts an example configuration, where L is the log service component, and C and D
are client components. In this case, communications are unidirectional, from the client
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i 〈\j, l, x〉 � nj〈j, l, x〉)

⎤
⎦ |

∏
i∈I

(n↓
i 〈k, l, x〉 � ni〈k, l, x〉)

Fig. 2. A router configuration

components to the shared component, and the log service maintains its own mutable
state. Passivation of a client does not affect the execution of the log service or the pro-
cessing of logging requests previously sent by that client.

Figure 1 can illustrate as well a second example of component sharing, that of a
shared programming library or module. In this case, the communication between client
components C and D and the library L is bidirectional (typically, a request/response
style of communication). The expected behavior in presence of passivation is different
from the first example: if a client is passivated, requests to functions in the library should
be suspended along with the rest of the client activity.

As a third example, consider a database service used by several components of a
system (for instance, a directory service), which can again be depicted as in Figure 1.
Here, the communications between clients and the service are bidirectional, but they are
no longer independent as in the previous example, for the database service maintains a
mutable state that can be viewed and updated by each client component.

The previous examples correspond to pure software architectures and describe con-
figurations on a single machine. One can also consider mixed software/hardware con-
figurations. For instance, consider the case of a router R connecting several networks
Ni with i ∈ I . Each network Ni connects machines mij with j ∈ Ji. There are several
ways to model such a configuration in the Kell calculus without sharing. If one wants to
model the networks as components and have messages be directly exchanged between
machines and the networks, and between the networks and the router, then the locality
of communications and the tree structure of kells impose the following shape:

R

⎡
⎣∏

i∈I

Ni

⎡
⎣ ∏

j∈Ji

mij [. . . ]

⎤
⎦
⎤
⎦

where
∏

i∈I Pi means the parallel composition of the processes Pi.
Such an approach is not satisfactory because the passivation of the router or of a

network, e.g., to model their failure, implies the passivation of several machines. A
solution consists of modelling a network Ni by a channel ni, as in Fig.2. Machines
send outbound messages on the channel msg with the destination machine address k, l,
where k is the destination network, and the message to deliver x. Each machine mij

contains a rule that forwards such messages to the local network ni. Each network
Ni is represented by the replicated pulling of messages on ni out of sub kells. The
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A D

B C

L

F

*L *L

Fig. 3. A Kell calculus configuration with sharing

router pulls messages that are in a network different from their destination—ni〈k, l, P 〉
with i �= k—and routes them to the correct network. Finally, every machine mij picks
from the local network the messages that target it using the pattern n↑

i 〈\i, \j, x〉. This
encoding, however, does not model the fact that the networks are disjoint resources
shared by the machines and connected by a router.

In this paper, we extend the Kell calculus with explicit sharing, following the
ideas sketched in §1. Technically, in our extension, the ownership forest is captured
by the locality hierarchy. For instance, in configuration C = a[b[P ] | c[R | d[Q]]],
component a is the owner of components b and c, while c is the owner of component
d. The containment graph is captured via references to shared components: thus
the process ∗a denotes a reference to the component named a. For instance, in the
configuration D = a[H | b[P | ∗e] | c[R | ∗e] | e[Q]], component a is the owner
of component e, which is shared by components b and c as each of them holds a
reference ∗e. The scope of a component e, where it is accessible by references ∗e,
is the sub tree rooted at the owner of e, unless there is a deeper component named
e whose scope encompasses the reference. Note that the scope does not include e
itself. In our extension, a reference ∗e can be created and communicated, exactly
as a name. In the latter case, note that references may escape their original scope:
for instance, in the configuration D above, if H passivates component b, and sends
it outside of a, then the reference to the shared component e will escape its scope.
Allowing a component reference to escape its scope makes it possible to model
in a simple way a primitive form of dynamic binding for shared components. The
example of Fig.1 may then be represented in the Kell calculus with sharing as in
Fig.3.

Passivation in the new calculus takes place just as in the Kell calculus without shar-
ing. However, communications across kell boundaries now require a reference to that
kell to receive a message from it or to send a message to it.

b[a〈Q〉.T ].S | (a↓〈x〉 � P ) | ∗b → b[T ].S | P{Q/x} | ∗b
a〈Q〉.T | ∗b | b[a↑〈x〉 � P ].S → T | ∗b | b[P{Q/x}].S
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Process: P ::= 0 | x | P |Q | νa.P | a〈P̃ 〉.Q | a[P ].Q | ∗a | ξ̃ � P

Pattern: ξ ::= a[x] | aα〈η̃〉 | ∗a
Argument pattern: η ::= x | a | \a | a != b

Place pattern: α ::= • | ↑ | ↓

Formula: F ::= ε | r | r⊥ | F |F
Resource: r ::= M̃ | a↓(M̃) | a↑(M̃) | a[P ] | ∗a | a | s

Spot: s ::= � | a[�] | [�]

Message: M ::= a〈P̃ 〉

Fig. 4. Processes and formulas

3 The Calculus

The syntax of the calculus is depicted in Figure 4. It is based on a denumerable set of
variables x and a denumerable set of names a. Processes include the standard null pro-
cess 0, variables x, parallel composition P |Q, and name creation νa.P , plus some less
standard constructs. Messages have the shape a〈P̃ 〉.Q, where P̃ is a list of processes
(we use ·̃ in the following to denote a list of ·’s). In a〈P̃ 〉.Q, Q is called a continuation,
because it is triggered synchronously upon consumption of the message. Kells have the
shape a[P ].Q, where a is the name of the kell, P is its contents, and, as for messages,
Q is its continuation. The calculus admits references ∗a as processes, for referencing
remote kells named a, as informally described in §2.3. References are also used to send
names in messages, as illustrated in matching rules M-NAME, M-CST, and M-NEG be-
low. Finally, the calculus features first-class reduction rules, called triggers, which are
written ξ̃ � P . Here, ξ̃ denotes a list of patterns, where each variable and name is bound
at most once (see the definition of scoping below). A pattern ξ may be a kell pattern
a[x] for passivation of active kells, a reference ∗a, for suppression of containment links,
or a message pattern aα〈η̃〉, for plain communication. In the message pattern, η̃ denotes
a list of argument patterns of the shape x, a, \a, or a != b. The first two kinds of ar-
gument patterns respectively represent input of processes and names. The third kind \a
tests the equality of the corresponding message argument with a. The last kind a != b
checks that the argument is different from b, and inputs it as a. The direction α indicates
where the received message should come from: ↑ messages come from a parent kell, •
messages come from the current kell, and ↓ messages come from a sub kell.

Processes are scoped as follows. Name restriction is a binder, as usual. Moreover,
given a trigger ξ̃ � P , the defined identifiers DI(ξ̃) of ξ̃ bind in P . We define DI(ξ̃) as

follows. Given an argument pattern η, define DI(x) Δ= {x}, DI(a) Δ= DI(a != b) Δ=
{a}, and DI(\a) Δ= ∅. Then, let DI(ξ̃) be the disjoint union of all DI(ξ), for ξ in ξ̃,
with DI(a[x]) = {x}, DI(∗a) = ∅, and DI(aα〈η̃〉) the disjoint union of all DI(η),
for η in η̃. Let structural congruence ≡ be the smallest congruence including, as usual,
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associativity and commutativity of parallel composition, neutrality of 0 w.r.t. |, extrusion
of name restriction above |, ν, and a[·].P , and renaming of bound variables and names.

Resources. The reduction relation is based on a labelled transition system (LTS), whose
labels represent a trade of resources r. As discussed below, such a trade is typically writ-
ten F1 � F2, where F1 and F2 are formulas, to express that the process undergoing
the transition offers the resources described by F2, provided the environment provides
the resources in F1. In particular, the reacting trigger ξ̃ � P trades some basic resources
(messages, passivated kells) against a reaction token written �: if the environment pro-
vides the expected resources, then the trigger reacts. When composing processes, the
corresponding transitions are composed, which may involve the annihilation of some
resource requests and corresponding offers, in case they meet.

As defined in Figure 4, there are two kinds of resources. Basic resources include
messages (M̃ | a↓(M̃) | a↑(M̃)), where M ::= a〈P̃ 〉, passivated kells (a[P ]), con-
sumed references (∗a), and permissions (a). They are generated directly from processes.
For example, a message a〈P 〉.Q trades a reaction token against a〈P 〉, yielding the tran-

sition a〈P 〉.Q 	�a〈P 〉−−−−−→ Q. As explained in §2.1, we want to control the locality of
communications, so this transition should happen in the same kell as the transition in-
volving the reacting trigger, and trades involving � should only take place at the same
level as the reaction.

On the other hand, we cannot completely restrict trades to the level of the reaction,
e.g., because the consumed resources may come from shared kells, which syntactically
may reside far above the reaction site. This leads us to consider several kinds of reaction
tokens, each of them determining the position of the considered transition relatively to
the reacting trigger. These reaction tokens are called spots s ∈ Spots.

More precisely, consider a process S|b[a[(ξ � P )|Q]|R], where the reacting trigger
is ξ � P . We have just seen that resources matching the reaction token � provided by
ξ � P may only come from Q. Immediately above a, i.e., in R, trades may use the
information that the reaction lies in some sub kell named a. Thus, in R, � is viewed as
the sub reaction token a[�]. Further above a, e.g., from S, it becomes the less precise
internal reaction token [�], which only indicates that the reaction lies in some sub kell.

Formulas. Formulas are the labels of our LTS. Intuitively, they match the resources
offered and requested by the considered process. Formally, formulas are defined as in
Figure 4, and considered equivalent modulo the following equation schemes:

F1|F2 = F2|F1 (1) F |ε = ε|F = F (2)
r /∈ Spots

r|r⊥ = ε
(3) s|s⊥ = s (4) .

Equation (3) specifies that basic resources (non-spots) are used linearly: they may be
consumed only once; (4) specifies that one spot may satisfy several requests, as a join
pattern consumes several messages.

Transitions. The LTS is defined in Figure 5. Rule MATCH describes reaction, using
the notion of matching defined below, which is a three arguments judgement written
ξ : F → Θ, where Θ is a substitution. A substitution is an element of (Vars →fin

Processes) × (Names →fin Names), i.e., a pair of a finite map from variables to pro-
cesses and a finite map from names to names. Capture-avoiding substitution is defined
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MATCH
ξ : F → Θ

ξ � P
F ��−−−→ Θ(P )

REF

∗a ��a−−−→ ∗a
DOWN

a[M̃.P̃ |P ].Q
a�a↓(M̃)−−−−−−→ a[P̃ |P ].Q

UP

∗a|M̃.P̃
a[�]�a↑(M̃)−−−−−−−−→ ∗a|P̃

HERE

M.P
��M−−−−→ P

PASSIVATE
canon(P )

a[P ].Q
��a[P ]−−−−−→ Q

SUP

∗a ��∗a−−−−→ 0

NEW

P
F−→ Q a /∈ FN(F )

νa.P
F−→ νa.Q

PAR

P1
F1−−→ P ′

1 P2
F2−−→ P ′

2

P1|P2
F1|F2−−−−→ P ′

1|P ′
2

BOT

P
ε−→ P

HOT

P
F �s−−−→ Q

hot(F )
SN(F ) # {a} ∪ DN(P )

a[P ].R
F �a(s)−−−−−→ a[Q].R

COLD

P
F−→ Q

cold(F )
SN(F ) # {a} ∪ DN(P )

a[P ].R
F−→ a[Q].R

Fig. 5. The LTS

as usual on processes, and written Θ(P ). Define the negation F⊥ of a formula F by

distributing it over resources, given that r⊥⊥ = r. Let F1 � F2 denote F⊥
1 |F2. The

rule states that if ξ : F → Θ, then the trigger ξ � P has a transition to Θ(P ), under the
label F � �. Thus, the reaction happens only if the environment provides the resources
F (recall that spot � stands here for the firing of the trigger).

By rule REF, at the level of a reaction, a reference may generate a permission to
receive messages from the kell it points to. This permission is then used in rule DOWN

to actually consume the corresponding messages. By rule UP, a reference to the reacting
kell allows the reaction to consume messages from the kell holding the reference. By
rules HERE, PASSIVATE, and SUP, a reaction may consume messages, active kells, and
references at its top-level. In rule PASSIVATE, we use the notation canon(P ) to mean
that P has no active ν. This means that such ν’s must have been extruded before by
structural congruence. Formally, a context C is a process with exactly one occurrence
of the special variable �. Textual replacement of � with some process P (possibly with
capture) is written C{P}. A process P is in canonical form, written canon(P ), iff for
all context C �= �, if P = C{νa.Q}, then C{νa.Q} �≡ νa.C{Q}.

The other rules specify how the transition relation is closed under active contexts.
Rule NEW handles the case of ν. Rule PAR combines the resources of several parts
of the process. If one argument provides the resources requested by the other, then the
trade occurs. Formally, two derivations having an occurrence of the MATCH rule can
be put together using this rule: the restriction to only one active trigger per reaction is
enforced by the rule for reduction, presented below. Rule BOT closes transitions under
parallel composition with spectator processes.
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Rule HOT allows to wrap an already existing reaction inside some parent kell: a

transition P
F�s−−−→ Q is seen from the enclosing kell as a[P ].R

F�a(s)−−−−−→ a[Q].R, where

the operation a(s) over spots is defined by a(�) Δ= a[�], and a(b[�]) Δ= a([�]) Δ= [�].
The rule is subject to two side conditions. First, F must be hot, written hot(F ), which
means that F matches the syntax F ::= ε | b⊥ | b↓(M̃) | b↑(M̃) | F |F . Second one
must have SN(F ) # DN(P ) (see below). Intuitively, the presence of s in the label
of the conclusion imposes that the reaction occurs in P , so the side condition means
that a reacting kell only has three kinds of interactions with its context: 1) it (partially)
specifies the place of reaction; 2) it exhibits authorizations to access shared kells; 3) it
consumes messages through references to shared kells (in both directions). The second
side condition enforces the fact that references point to the closest kell in the hierarchy,
as informally stated in §2.3. We call the defined names DN(P ) of a process P the
set of all a’s such that P ≡ νb̃.Q|a[R]. for some Q, R, b̃, with a /∈ b̃. Moreover, a
formula is in canonical form iff, for each resource r, it does not contain both r and
r⊥. We define the scoped names SN(F ) of a formula F in canonical form as follows:

for resources r of the shape a↓(M̃), a↑(M̃), a, and a[�], let SN(r) Δ= {a}; for other

resources r, let SN(r) Δ= ∅. Additionally, let SN(F1|F2)
Δ= SN(F1) ∪ SN(F2) and

SN(F⊥) Δ= SN(F ). The rule prevents resources consumed through a reference ∗a to
escape the scope of any kell named a. For instance, a request for a message of the shape
a↓(b〈P 〉) through a reference ∗a is supposed to be consumed in (one of) the closest
kell(s) named a. Such a request leads to the formula a⊥|a↓(b〈P 〉) � s: if a down
message is found in a, using formula a � a↓(b〈P 〉), then the reaction occurs. However,

if P1
a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ P2, then we do not want c[P1|a[Q1]]

a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ c[P2|a[Q1]]
to hold, because the message ought to be found in Q1. Here, DN(a[Q1]) = {a} which
is not disjoint from SN(a⊥|a↓(b〈P 〉)) = {a}. Note that this check is done only when
crossing kell boundaries. Indeed, we allow the presence of more than one kell named a
in parallel to the reacting trigger.

Symmetrically to rule HOT, rule COLD allows to transfer resources from kells con-
taining references ∗a to the reacting kell a, which may be syntactically distant. Let F

be cold, written cold(F ), iff F matches the syntax F ::= b[�]⊥ | b↑(M̃) | F |F . Rule
COLD says that any transition with a cold label is viewed identically from outside the
ambient kell, provided the scoping conditions are met. In practice, rule COLD is only
used to transfer the consumption of up messages (created by rule UP) through kells.

Matching Figure 6 defines the matching relation. Rule M-PAR states that matching a
pattern ξ1|ξ2 is like matching ξ1 and ξ2 separately, and then combining the result. In
the rule, + denotes the union of finite maps with disjoint domains. By rule M-HERE,
matching a pattern a•〈η̃〉 against a resource a〈P̃ 〉 boils down to match η̃ against P̃
(as defined below). Rule M-ELSEWHERE handles the cases of down and up messages.
Given a pair ζ consisting of a name a and argument patterns η̃, we let ζα stand for aα〈η̃〉.
Similarly, given a list ζ̃ = ζ1| . . . |ζn, let ζ̃α = ζα

1 | . . . |ζα
n . The rule tunes the directions

(up or down) in order to allow rule M-HERE to apply coherently. Rules M-PASSIVATE

and M-SUP are straightforward. For message contents, Rule M-CST states that an es-
caped pattern \a matches itself, yielding no substitution. Rules M-NAME, M-NEG, and

.
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M-PAR
ξ1 : F1 → Θ1 ξ2 : F2 → Θ2

ξ1|ξ2 : F1|F2 → Θ1 + Θ2

M-HERE

η̃ : P̃ → Θ

a•〈η̃〉 : a〈P̃ 〉 → Θ

M-ELSEWHERE

ζ̃• : M̃ → Θ

ζ̃α : aα(M̃) → Θ

M-PASSIVATE

a[x] : a[P ] → {x �→ P}
M-SUP

∗a : ∗a → ∅
M-PROC

x : P → {x �→ P}
M-NAME

a : ∗b → {a �→ b}

M-CST

\a : ∗a → ∅
M-NEG

b �= c

a != b : ∗c → {a �→ c}
M-NIL

ε : ε → ∅
M-CONS

η : P → Θ1 η̃ : P̃ → Θ2

η, η̃ : P, P̃ → Θ1 + Θ2

Fig. 6. Matching

M-PROC handle the input of names and variables. Rules M-NIL and M-CONS dispatch
the results.

Reduction. Finally, reduction, written →, is the smallest relation satisfying the rule

P ≡ P ′ P ′ s−→ Q′ Q′ ≡ Q

P → Q
·

As exactly one spot is allowed, this rule guarantees that exactly one trigger fires.

4 Examples

Let us first present a simple example.

Example 1. Consider the following configuration.

A = a[(e↑1〈x〉 | e↑2〈y〉�P ) | c〈Q〉] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | (c↓〈z〉�R)]

The component a can emit the message c〈Q〉, which implies that a reference ∗a to a
can be used to access this message. Hence we have the following reduction where the
rule in kell l2 is triggered.

A → a[(e↑1〈x〉 | e↑2〈y〉 � P )] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | R{Q/z}]

The component a can also receive messages from both components l1 and l2 since it is
a shared sub component of both. Hence we have the following reduction where the rule
in kell a is triggered.

A → a[P{U, V/x, y} | c〈Q〉] | l1[∗a] | l2[∗a | (c↓〈z〉 � R)]

Let us now give an example of dynamic binding and reconfiguration in the calculus.
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Example 2. Consider the following configuration, which models a running component
receiving instructions to update its sub component c with a new code P (d), which uses
a service named d.

A = update〈c, P (d)〉 | ∗a | a[(update↑〈b, x〉 ! (b[y] � b[x])) | c[Pc] | d[Pd]]

It reduces in two steps to ∗a | a[(update↑〈b, x〉 ! (b[y] � b[x])) | c[P (d)] | d[Pd]], where
the references to d in P (d) have been dynamically bound to d[Pd].

We now review the examples of §2.3 within our calculus. First, assume given two
components Queue[. . .] and Pair [. . .], working as follows. They expect messages from
their parent components, on channels Queue.push,Queue.pop,Pair .fst , and so on.
The channels of these messages identify the action to execute. The messages contain a
return channel name and the corresponding arguments. On the return channel, Queue
and Pair send messages which have to be picked up as down messages by the client
parent component. For convenience, we use the syntactic sugar let x = a(P̃ ) in Q

for νb.a〈b, P̃ 〉|(b↓〈x〉 � Q), with some fresh b used as return channel. For instance,
let x = Queue.push(P, Q) in R uses the result x of pushing P on top of Q in R.

Example 3. The log service example can be represented as follows (reproducing the
configuration of Figure 1 with L = Log).

Log[∗Queue | . . . code to actually log . . .
| (Log.log↑〈x〉 | state 〈y〉 ! let z = Queue.push(x, y) in state〈z〉)]

| A[B[. . .] | C[∗Log | . . .]] | D[∗Log | F [. . .]]

In the rest of the program, the encapsulation links to Log are represented by occur-
rences of the reference ∗Log. The ownership of Log by, say, o is encoded by the fact
that the sub component Log appears at the top-level in o. The implicit scope of Log ,
restricted to processes encapsulated in o, ensures that o is a dominator of Log .

Example 4. The shared printer example can be represented as follows, where c stands
for “client”, and j stands for “job”.

Printer [∗Queue | ∗Pair | . . . code to actually print . . .
| (Printer .lpr↑(c, j) | state 〈q〉 ! let x = Pair .pair (c, j) in

let q′ = Queue.push(x, q) in
state〈q′〉)

| (Printer .lpq↑(r) | state 〈q〉 ! r〈q〉 | state〈q〉)]
| A[B[. . .] | C[∗Printer | . . .]] | D[∗Printer | F [. . .]]

The shared library example can be represented similarly. We can however empha-
size the code server aspect of the example with a representation that only requires a
unidirectional communication between the clients and the shared library. The shared
library is thus modelled as a code server that allows an instance of the library code to
be made available on request in the client component that requires it.

Example 5. The shared library example can be represented as follows, where !a〈P 〉
stands for νb.(a〈P 〉.b〈〉|(b〈〉 ! a〈P 〉.b〈〉)).
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∏
i∈I;j∈Ji

mij

[
∗Ni | (n↓

i 〈\i, \j, x〉 � x) | Pij

]
| R

⎡
⎣ ∏

i,j∈I;i�=j

(n↑
i 〈\j, l, x〉 � nj〈j, l, x〉)

⎤
⎦

|
∏
i∈I

Ni

[
∗R | (n↓

i 〈k, l, x〉 � ni〈k, l, x〉) | (msg↑〈k, l, x〉 � ni〈k, l, x〉)
]

Fig. 7. A better router configuration

Lib[!Lib.get〈P 〉] | A[B[. . .] | C[∗Lib | . . .]] | D[∗Lib | F [. . .]]

Finally, we review the router example from Figure 2, which is more direct than
Examples 3 and 4 because it does not require any data structure: we just assume that
names include integers.

Example 6. The router example is depicted in Fig.7. It is very similar to Fig.2: the
router is identical and shared between the networks, the networks are now kells shared
between machines and may directly pull messages out of machines and the router. This
encoding allows the failure of the router or a network to only impact inter-machine
communication, it also segregates messages in different networks.

5 Conclusion

Component sharing, as experienced with component models providing it, is a fea-
ture that proves extremely useful when describing or programming software archi-
tectures or systems with shared resources. We have presented in this paper an exten-
sion of the Kell calculus that provides a direct, formal interpretation of component
models with sharing. To our knowledge, this is the first calculus offering (1) encap-
sulation with fine-grain, objective control over communications, (2) locality passiva-
tion, migration and replication, and (3) access to shared components with simple com-
munication rules. Our approach draws on a distinction between ownership and con-
tainment inspired by recent works on ownership types and the control of aliasing in
object-oriented programming languages. In contrast to these works, however, our ap-
proach avoids the burden of a type system, by primitively distinguishing ownership
from containment, thus enforcing the programming discipline directly in the operational
semantics.

The work we have presented here is only preliminary, however. First, the standard
issues appearing when one introduces a new process calculus remain to be dealt with,
e.g., the development of a bisimulation-based behavioral theory, or of static analyses to
ensure semantic properties of processes. Furthermore, it would be interesting to study
the exact relation between approaches to object containment and ownership in object-
oriented languages and in the Kell calculus with sharing. At a minimum, we need to
investigate the different benchmarks used in the object-oriented programming commu-
nity and study how they are handled in our calculus.
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Second, two important, inter-related questions remain, that pertain (1) to the control
of communications with shared components, and (2) to the control over dynamic bind-
ing. The first issue concerns a potential security hole in our design. It can be succinctly
stated as follows: in the extended Kell calculus presented here, the construct νa.a[a[P ]]
is not a perfect firewall, while it is in the plain Kell calculus. This is due to the fact that
P may have references to shared kells, which may in turn allow P to emit and receive
messages from its environment. We see two posssible solutions to this problem.

First, one could annotate each kell construct a[·] with explicit sieves on communi-
cations with shared components. For instance, let us write a[P ]A, where A ::= ∅ | ∗ |
ã | ¬ã represents the names of shared components the present component is allowed
to communicate with. Then, define the interpretation of annotations by �∅� = Names,
�∗� = ∅, �ã� = Names \ ã, and �¬ã� = ã. The semantics of these consructs is given
by a simple modification of the rules HOT and COLD, given by adding textually the
side condition SN(F ) # �A� to both of them. With these new constructs and rules, we
recover the perfect firewall equation for νa.a[a[P ]∅]∅: P cannot communicate with the
environment outside of a.

The second, more radical solution is to introduce a second ν operator, say ∇,
that would not cross component boundaries. Channel names bound by ∇ would then
represent communication channels, while free names and names bound by ν would
represent global names. Distant communication would be restricted to channels,
thus preventing an incoming piece of code to arbitrarily communicate with distant
components. Global names would serve for matching against local messages. We
conjecture that the presence of ν and ∇ avoids the need for directional patterns
(↑, ↓, •). The calculus thus collapses to a simpler version. The second solution
might also turn out to solve the second problem (which is not the case of the first
solution): the distinction between local channels and global names might give rise to
a fine-grain account of dynamic binding, provided the pattern language is enriched
adequately.
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Abstract. The past decade of experience has demonstrated that the generic pro-
gramming methodology is highly effective for the design, implementation, and
use of large-scale software libraries. The fundamental principle of generic pro-
gramming is the realization of interfaces for entire sets of components, based
on their essential syntactic and semantic requirements, rather than for any par-
ticular components. Many programming languages have features for describing
interfaces between software components, but none completely support the ap-
proach used in generic programming. We have recently developed G, a language
designed to provide first-class language support for generic programming and
large-scale libraries. In this paper, we present an overview of G and analyze the
interdependence between language features and library design in light of a com-
plete implementation of the Standard Template Library using G. In addition, we
discuss important issues related to modularity and encapsulation in large-scale
libraries and how language support for validation of components in isolation can
prevent many common problems in component integration.

1 Introduction

In the 1980s Musser and Stepanov developed a methodology for creating highly
reusable algorithm libraries [1, 2, 3, 4], using the term “generic programming” for their
work.1 Their approach was novel in that their algorithms were not written based on any
particular data structure. Rather, the algorithms were written based on requirements that
a structure would have to meet for the algorithm to be correct. Such generic algorithms
could therefore operate on any data structure provided the structure met the specified
requirements. For example, a given generic algorithm could operate on linked lists, ar-
rays, red-black trees (representing ordered sequences), and even structures developed
independently of the generic library. Early versions of their generic algorithm libraries
were implemented in Scheme, Ada, and C.

In the early 1990s Stepanov and Musser took advantage of the template system in
C++ [5] to construct the Standard Template Library (STL) [6,7]. The STL became part of
the C++ Standard, which brought their style of generic programming into the mainstream.

1 The term “generic programming” is often used to mean any use of “generics”, i.e., any use of
parametric polymorphism or templates. The term is also used in the functional programming
community for function generation based on algebraic datatypes, i.e., “polytypic program-
ming”. Here, we use “generic programming” solely in the sense of Musser and Stepanov.
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Since then, the methodology has been successfully applied to the creation of libraries
for numerous domains [8, 9, 10, 11, 12].

The ease with which programmers implement and use generic libraries varies greatly
depending on the language features available for expressing polymorphism and require-
ments on type parameters. In [13] we performed a comparative study of modern language
support for generic programming, implementing a representative subset of the Boost
Graph Library [9] in each of six languages. While some languages performed quite well,
none were ideal for generic programming.

C++ was the most flexible of the languages studied, enabling straightforward expres-
sion of generic algorithms. C++ is flexible because it does not independently type check
or compile template definitions but instead delays checking and compilation until in-
stantiation. As a result, C++ templates are able to perform type-specific operations. For
example, the following template applies + to an object of type T.

template<class T> T inc(T x) { return 1 + x; }

When inc is instantiated with int, the + resolves to integer addition.

int main() { inc<int>(2); }

When inc is instantiated with double, the + resolves to floating point addition.

int main() { inc<double>(3.14159); }

However, the flexibility gained by delaying type checking and compilation has a price.
Templates are very difficult to validate in isolation for there is no support from the
type checker. Even worse, users of template library experience infamously bad error
messages when they make a mistake and trigger errors from deep inside the template.

At the other end of the spectrum are languages with parametric polymorphism2 such
as ML. Parametric polymorphism allows for separate type checking and compilation
but does not allow type-specific operations to be applied to an object whose type is a
type variable. For example, translating the above inc template to ML results in a type
error. In the code below, ’a is a type variable corresponding to T and x : ’a declares
a parameter with type ’a.

fun inc (x : ’a) = x + 1
// error: Can’t unify Time.time/word/real/int with ’a
// (Cannot unify with explicit type variable) Found near +( x, 1)

This restriction can be side-stepped with higher-order functions, where the type-specific
operations are parameters of the polymorphic function.

fun inc (x : ’a) (one : ’a) (add : ’a * ’a -> ’a) = add(x, one)

However, typical generic algorithms require dozens of type-specific operations and
adding dozens of parameters would make them difficult to use.

There is tension between the need for type-specific operations in generic algorithms
and the need for separate type checking and compilation. The language presented here,
named G, resolves this tension by combining parametric polymorphism with a rich
interface specification language that is tailored to generic programming. In [14] we laid
the foundation for G, defining a core calculus, named FG, based on System F [15, 16].
With FG we captured the essential features for generic programming in a small formal

2 C++ templates are often incorrectly categorized as a form of parametric polymorphism.
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system and proved type safety. The language G applies the ideas from FG to a full
programming language capable of implementing the entire STL.

1.1 Contributions

The contributions of this paper are the design and evaluation of a language for generic
programming:

• We give a high-level and intuitive description of the language G. A formal descrip-
tion of the idealized core of G, named FG, is presented in [14]. We leave a formal
description of the full language G for future work.

• We evaluate the design of G with respect to implementing the Standard Template
Library. The STL is a large generic library that exercises all aspects of the generic
programming methodology. The STL is therefore a fitting first test for validating
the design of G.

• We evaluate the design of G with respect to scalability issues in software develop-
ment. In particular, we show how G provides support for the independent validation
of components and support for component integration.

Many elements of G can be found in other programming languages, but G is unique
in providing a carefully selected combination of language features for generic program-
ming. In terms of interface description, the closest relative to G is Haskell’s type classes.
However, G differs in that 1) the concept feature in G integrates nested types and type
sharing (similar to ML), 2) model definitions in G obey normal scoping rules, and 3) G
explores design issues of type classes for non-type-inferencing languages.

1.2 Road Map

In Section 2 we review the essential ideas and terminology of generic programming
and in Section 3 we present an overview of the language G. We review the high-level
structure of the Standard Template Library in Section 4 and in Section 5 we report on
using G to implement the STL. In Section 6 we show how component development and
integration is facilitated by the G type system. Related work is discussed in Section 7
and we conclude the paper in Section 8.

2 Generic Programming

The defining characteristics of the generic programming methodology are:

• Algorithms are expressed with minimal assumptions about data abstractions, and
vice versa, making them maximally interoperable. This is accomplished by taking
a concrete algorithm and lifting the non-essential requirements. For example, an
algorithm on linked-lists becomes an algorithm on forward iterators.

• Absolute efficiency is required. Algorithms are never lifted to the point where they
lose efficiency. When a single generic algorithm can not achieve the best efficiency
for all input types, multiple generic algorithms are implemented and automatic al-
gorithm selection is provided.
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template<typename Iter, typename T>
// where Iter models Forward Iterator
// T is the same type as iterator_traits<Iter>::value_type
// T models Less Than Comparable
Iter lower_bound(Iter first, Iter last, const T& val) {

typename iterator_traits<Iter>::difference_type
len = distance(first, last), half;

Iter middle;
while (len > 0) {
half = len >> 1; middle = first;
advance(middle, half);
if (*middle < val) { first = middle; ++first; len = len-half-1; }
else len = half;

}
return first;

}

Fig. 1. Example of a generic algorithm in C++

The lower bound template in Fig. 1 is a simple example of a generic algorithm.
The algorithm is lifted from working on a particular data structure and is instead written
in terms of the Forward Iterator concept. A concept is a set of requirements on a type. A
type that meets the requirements is said to model the concept. The interface of a generic
algorithm is specified by requiring that its type parameters model certain concepts. Con-
cepts are not expressible in C++, so type requirements are specified in comments, as in
Fig. 1. Built-in pointer types, such as int*, and the iterator type for the std::list
class, are models of Forward Iterator.

A concept may incorporate the requirements of another concept, in which case the
first concept is said to refine the second. The Forward Iterator concept refines the Input
Iterator concept, adding the ability to pass through the sequence multiple times. The
Input Iterator concept is a refinement of Assignable, Copy Constructible, and Equality
Comparable. In addition, for a type X to model Input Iterator it must satisfy the following
requirements:

• Given any objects a and b of type X, the expressions ++a, *a, a==b, and a!=b must
be valid (these operations must be defined).

• The type X must specify two helper types: a value type, which is the return type
of the operator*, and a difference type, which must model Signed Integral and
be suitable for measuring distances between iterators. In general, we refer to such
helper types as associated types. The type X must provide access to these types
through iterator traits.

• Given objects a and b of type X, a == b implies *a is equivalent to *b.
• The increment and dereference operators must be constant time.

Associated types change from model to model. For example, the associated value
type for int* is int and the associated value type for list<char>::iterator is
char.
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The grouping of type requirements into concepts enables significant reuse: the Input
Iterator concept is directly used as a type requirement in over 28 of the STL algorithms.
The Forward Iterator is used in the specification of over 22 STL algorithms.

3 Overview of G
G is a statically typed imperative language with syntax and memory model similar to
C++. We have implemented a compiler that translates G to C++, but G could also be in-
terpreted or compiled to byte-code. Compilation units are separately type checked and
may be separately compiled, relying only on forward declarations from other com-
pilation units (even compilation units containing generic functions and classes). The
languages features of G that support generic programming are the following:

• Concept and model definitions;
• Constrained polymorphic functions, classes, structs, and type-safe unions;
• Implicit instantiation of polymorphic functions; and
• Concept-based function overloading.

In addition, G includes the usual types and control constructs of a general purpose
programming language.

Concepts are defined using the following syntax:

cid<tyid , . . .> { cmem . . . }; cmem ←
funsig | fundef // Required operations

| type tyid; // Associated types
| type == type; // Same-type constraints
| refines cid<type, . . .>;
| require cid<type, . . .>;

The grammar variable cid is for concept names and tyid is for type variables. The
type variables are place holders for the modeling type (or a list of types for multi-type
concepts). funsig and fundef are function signatures and definitions. In a concept, a
function signature says that a model must define a function with the specified signature.
A function definition in a concept provides a default implementation. Concepts may
be composed with refines and require. The distinction is that refinement brings in
the associated types from the “super” concept. The following is the definition of the
InputIterator concept in G.

concept InputIterator<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>; // this includes Assignable and CopyConstructible
require SignedIntegral<difference>;
fun operator*(X b) -> value@;
fun operator++(X! c) -> X!;

};

The modeling relation between a type and a concept is established with a model
definition using the following syntax.

decl ← model [<tyid , . . .>] [where { constraint, . . . }] cid<type , . . .> { decl . . .};
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A model may be parameterized with type variables in the <>’s and the where clause
introduces constraints on the type variables:

constraint ← cid<type, . . .> | type == type

The following statement establishes that all pointer types are models ofInputIterator.

model <T> InputIterator<T*> {
type value = T;
type difference = ptrdiff_t;

};

A model definition must satisfy all requirements of the concept. Requirements for as-
sociated types are satisfied by type definitions. Requirements for operations may be
satisfied by function definitions in the model, by the where clause, or by functions in
the lexical scope preceding the model definition. Refinements and nested requirements
are satisfied by preceding model definitions.

The syntax for generic functions is shown below. The name of the function is the
identifier after fun, the type parameters are between the <>’s and are constrained by the
requirement in the where clause. A function’s parameters are between the ()’s and the
return type of a function comes after the ->.

fundef ← fun id [<tyid , . . .>] [where { constraint, . . . }]
(type pass [id ], . . .) -> type pass { stmt . . . }

funsig ← fun id [<tyid , . . .>] [where { constraint, . . . }]
(type pass [id ], . . .) -> type pass;

decl ← fundef | funsig
pass ← mut ref // pass by reference

| @ // pass by value
mut ← const | ε // constant

| ! // mutable
ref ← & | ε

The default parameter passing mode in G is read-only pass-by-reference. Read-write
pass-by-reference is indicated by ! and pass-by-value by @.

The body of a polymorphic function is type checked separately from any instantia-
tion of the function. The type parameters are treated as abstract types so no type-specific
operations may be applied to them unless otherwise specified by the where clause. The
where clause introduces surrogate model definitions and function signatures (for all the
required concept operations) into the scope of the function. The distance function is
a simple example of a generic function in G.

fun distance<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last) -> InputIterator<Iter>.difference@ {

let n = zero();
while (first != last) { ++first; ++n; }
return n;

}

The dot notation used in the return type refers to an associated type, in this case the
difference type of the iterator.

assoc ← cid<type, . . .>.id | cid<type, . . .>.assoc
type ← assoc
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Inside distance we use the following three kinds of statements. The let statement
introduces a variable bound to the value of the expression on the right-hand side. The
scope is to the end of the enclosing block and the type of the variable is the type of the
right-hand side. G includes while, return, and the usual control constructs of C++.

stmt ← let id = expr; | while (expr) stmt | return expr; | . . .

Multiple functions with the same name may be defined, and static overload resolution is
performed by G to decide which function to invoke at a particular call site depending on
the argument types and also depending on which model definitions are in scope. When
more than one overload may be called, the more specific overload is called if one exists
(“more specific” is a preorder). The where clause and the concept refinement hierarchy
are a factor in the ordering.

The syntax for polymorphic classes, structs, and unions is defined below. The gram-
mar variable clid is for class, struct, and union names.

decl ← class clid polyhdr { classmem . . . };
decl ← struct clid polyhdr { mem . . . };
decl ← union clid polyhdr { mem . . . };
mem ← type id;
classmem ← mem

| polyhdr clid(type pass [id ], . . .) { stmt . . . }
| ~clid() { stmt . . . }

polyhdr ← [<tyid , . . .>] [where { constraint, . . . }]

Classes consist of data members, constructors, and a destructor. There are no member
functions; normal functions are used instead. Data encapsulation (public/private) is
specified at the module level instead of inside the class. Class, struct, and unions are
used as types using the syntax below. Such a type is well-formed if the type arguments
are well-formed and if the requirements in its where clause are satisfied.

type ← clid [<type, . . .>]

The syntax for calling functions (or polymorphic functions) is the C-style notation:

expr ← expr(expr, . . .)

Arguments for the type parameters of a polymorphic function need not be supplied at
the call site: G will deduce the type arguments by unifying the types of the arguments
with the types of the parameters and then implicitly instantiate the polymorphic func-
tion. All of the requirements in the where clause must be satisfied by model definitions
in the lexical scope preceding the function call. The following is a program that calls
the distance function, applying it to iterators of type int*.

fun main() -> int@ {
let p = new int[8];
let d = distance(p, p + 4);
return d - 4;

}

A polymorphic function may be explicitly instantiated using this syntax:

expr ← expr<|ty, . . .|>
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4 Overview of the STL

The high-level structure of the STL is shown in Fig. 2. The STL contains over fifty
generic algorithms. The STL generic algorithms are implemented in terms of a family
of iterator abstractions, and the STL containers each provide iterators. As a result, the
STL algorithms may be used with any of the STL containers. In fact, the STL algorithms
may be used with any data structure that exports iterators with the required capabilities.

Fig. 3 shows the hierarchy of STL’s iterator concepts. An arrow indicates that the
source concept is a refinement of the target. The iterator concepts arose from the re-
quirements of algorithms: the need to express the minimal requirements for each algo-
rithm. For example, the merge algorithm passes through a sequence once, so it only
requires the basic requirements of Input Iterator. On the other hand, sort heap requires
iterators that can jump arbitrary distances, so it requires Random Access Iterator.

The STL includes a handful of common data structures. When one of these data
structures does not fulfill some specialized purpose, the programmer is encouraged to
implement the appropriate specialized data structure. All of the STL algorithms can
then be made available for the new data structure at the small cost of implementing
iterators for the specialized data structure.

Many of the STL algorithms are higher-order: they take functions as parameters,
allowing the user to customize the algorithm to their own needs. The STL defines over
25 function objects for creating and composing functions.

The STL also contains a collection of adaptor classes, which are parameterized
classes that implement some concept in terms of the type parameter (which is the
adapted type). For example, the back insert iterator adaptor implements Output
Iterator in terms of any model of Back Insertion Sequence. The generic copy algorithm
can then be used with back insert iterator<list<int>> to append some integers
to a list. Adaptors play an important role in the plug-and-play nature of the STL and
enable a high degree of reuse.

Iterator InterfacesAlgorithms Containers

partition

merge

stable_sort

sort_heap

binary_search

Forward
Bidirectional

Random Access

list

vector

map

set

T[]

AdaptorsFunction Objects

multiplies

binder1st

mem_fun reverse_iterator

back_insert_iterator

stack

priority_queue
...

...
...

...

...

Fig. 2. High-level structure of the STL
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Fig. 3. Iterator concept hierarchy
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5 Analysis of G and the STL

In this section we analyze the interdependence of the language features of G and generic
library design in light of implementing the STL. A primary goal of generic program-
ming is to express algorithms with minimal assumptions about data abstractions, so we
first look at how the generic functions of G can be used to accomplish this. Another goal
of generic programming is efficiency, so we investigate the use of function overloading
in G to accomplish automatic algorithm selection. We conclude this section with a brief
look at implementing generic containers and adaptors in G.

Algorithms. Fig. 4 depicts a few simple STL algorithms implemented using generic
functions in G. The STL provides two versions of most algorithms, such as the overloads
for find in Fig. 4. The first version is higher-order, taking a predicate function as its
third parameter while the second version relies on operator==. Functions are first-
class in G, so the higher-order version is straightforward to express. As is typical in the
STL, there is a high-degree of internal reuse: remove uses remove copy and and find.

fun find<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last,
fun(InputIterator<Iter>.value)->bool@ pred) -> Iter@ {
while (first != last and not pred(*first)) ++first;
return first;

}
fun find<Iter> where { InputIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

while (first != last and not (*first == value)) ++first;
return first;

}
fun remove<Iter> where { MutableForwardIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

first = find(first, last, value);
let i = @Iter(first);
return first == last ? first : remove_copy(++i, last, first, value);

}

Fig. 4. Some STL Algorithms in G

Iterators. Fig. 5 shows the STL iterator hierarchy as represented in G. Required op-
erations are expressed in terms of function signatures, and associated types are ex-
pressed with a nested type requirement. The refinement hierarchy is established with
the refines clauses and nested model requirements with require. The semantic in-
variants and complexity guarantees of the iterator concepts are not expressible in G as
they are beyond the scope of its type system.

Automatic Algorithm Selection. To realize the generic programming efficiency goals, G
provides mechanisms for automatic algorithm selection. The following code shows two
overloads for copy. (We omit the third overload to save space.) The first version is for
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concept InputIter<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>;
require SignedIntegral<difference>;
fun operator*(X) -> value@;
fun operator++(X!) -> X!;

};
concept OutputIter<X,T> {
refines Regular<X>;
fun operator<<(X!, T) -> X!;

};
concept ForwardIter<X> {
refines DefaultConstructible<X>;
refines InputIter<X>;
fun operator*(X) -> value;

};
concept MutableForwardIter<X> {
refines ForwardIter<X>;
refines OutputIter<X,value>;
require Regular<value>;
fun operator*(X) -> value!;

};

concept BidirectionalIter<X> {
refines ForwardIter<X>;
fun operator--(X!) -> X!;

};
concept MutableBidirectionalIter<X> {

refines BidirectionalIter<X>;
refines MutableForwardIter<X>;

};
concept RandomAccessIter<X> {

refines BidirectionalIter<X>;
refines LessThanComparable<X>;
fun operator+(X, difference) -> X@;
fun operator-(X, difference) -> X@;
fun operator-(X, X) -> difference@;

};
concept MutableRandomAccessIter<X> {

refines RandomAccessIter<X>;
refines MutableBidirectionalIter<X>;

};

Fig. 5. The STL Iterator Concepts in G (Iterator has been abbreviated to Iter)

input iterators and the second for random access, which uses an integer counter thereby
allowing some compilers to better optimize the loop. The two signatures are the same
except for the where clause. We call this concept-based overloading.

InputIterator<Iter1>,
OutputIterator<Iter2, InputIterator<Iter1>.value> }

(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {
for (; first != last; ++first) result << *first;
return result;

}
fun copy<Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }
(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {

for (n = last - first; n > zero(); --n, ++first) result << *first;
return result;

}

The use of dispatching algorithms such as copy inside other generic algorithms is
challenging because overload resolution is based on the surrogate models from the
where clause and not on models defined for the instantiating type arguments. (This
rule is needed for separate type checking and compilation). Thus, a call to an over-
loaded function such as copy may resolve to a non-optimal overload. Consider the
following implementation of merge. The Iter1 and Iter2 types are required to model
InputIterator and the body of merge contains two calls to copy.
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fun merge<Iter1,Iter2,Iter3>
where { InputIterator<Iter1>, InputIterator<Iter2>,

LessThanComparable<InputIterator<Iter1>.value>,
InputIterator<Iter1>.value == InputIterator<Iter2>.value,
OutputIterator<Iter3, InputIterator<Iter1>.value> }

(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)
-> Iter3@ { ...
return copy(first2, last2, copy(first1, last1, result));

}

This merge function always calls the slow version of copy even though the actual
iterators may be random access. In C++, with tag dispatching, the fast version of copy is
called because the overload resolution occurs after template instantiation. However, C++

does not have separate type checking for templates.
To enable dispatching for copy, the type information at the instantiation of merge

must be carried into the body of merge (suppose it is instantiated with a random access
iterator). This can be done with a combination of concept and model declarations. First,
define a concept with a single operation that corresponds to the algorithm.

concept CopyRange<I1,I2> {
fun copy_range(I1,I1,I2) -> I2@;

};

Next, add a requirement for this concept to the type requirements of merge and replace
the calls to copy with the concept operation copy range.

fun merge<Iter1,Iter2,Iter3>
where { ..., CopyRange<Iter2,Iter3>, CopyRange<Iter1,Iter3> }
(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)

-> Iter3@ { ...
return copy_range(first2, last2, copy_range(first1, last1, result));

}

The final step of the idiom is to create parameterized model declarations for CopyRange.
The where clauses of the model definitions match the where clauses of the respective
overloads for copy. In the body of each copy range there is a call to copy which will
resolve to the appropriate overload.

model <Iter1,Iter2> where { InputIterator<Iter1>,
OutputIterator<Iter2, InputIterator<Iter1>.value> }

CopyRange<Iter1,Iter2> {
fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@
{ return copy(first, last, result); }

};
model <Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }
CopyRange<Iter1,Iter2> {

fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@
{ return copy(first, last, result); }

};

A call to merge with a random access iterator will use the second model to satisfy
the requirement for CopyRange. Thus, when copy range is invoked inside merge, the
fast version of copy is called. A nice property of this idiom is that calls to generic
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struct list_node<T> where { Regular<T>, DefaultConstructible<T> } {
list_node<T>* next; list_node<T>* prev; T data;

};
class list<T> where { Regular<T>, DefaultConstructible<T> } {

list() : n(new list_node<T>()) { n->next = n; n->prev = n; }
~list() { ... }
list_node<T>* n;

};
class list_iterator<T> where { Regular<T>, DefaultConstructible<T> } {

... list_node<T>* node;
};
fun operator*<T> where { Regular<T>, DefaultConstructible<T> }
(list_iterator<T> x) -> T { return x.node->data; }

fun operator++<T> where { Regular<T>, DefaultConstructible<T> }
(list_iterator<T>! x) -> list_iterator<T>!

{ x.node = x.node->next; return x; }

fun begin<T> where { Regular<T>, DefaultConstructible<T> }
(list<T> l) -> list_iterator<T>@

{ return @list_iterator<T>(l.n->next); }

fun end<T> where { Regular<T>, DefaultConstructible<T> }
(list<T> l) -> list_iterator<T>@ { return @list_iterator<T>(l.n); }

Fig. 6. Excerpt from a doubly-linked list container in G

algorithms need not change. A disadvantage of this idiom is that the interface of the
generic algorithms becomes more complex.

Containers. The containers of the STL are implemented in G using polymorphic
classes. Fig. 6 shows an excerpt of the doubly-linked list container in G. As usual,
a dummy sentinel node is used in the implementation. With each STL container comes
iterator types that translate between the uniform iterator interface and data-structure
specific operations. Fig. 6 shows the list iterator which implements operator*
in terms of x.node->data and operator++ with x.node = x.node->next.

Not shown in Fig. 6 is the implementation of the mutable iterator for list (the
list iterator provides read-only access). The definitions of the two iterator types
are nearly identical, the only difference is that operator* returns by read-only refer-
ence for the constant iterator whereas it returns by read-write reference for the mutable
iterator. The code for these two iterators should be reused but G does not yet have a
language mechanism for this kind of reuse.

In C++ this kind of reuse can be expressed using the Curiously Recurring Template
Pattern (CRTP) and by parameterizing the base iterator class on the return type of
operator*. This approach can not be used in G because the parameter passing mode
may not be parameterized. Further, the semantics of polymorphism in G does not match
the intended use here, we want to generate code for the two iterator types at library con-
struction time. A separate generative mechanism is needed to complement the generic
features of G. As a temporary solution, we used the m4 macro system to factor the com-
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mon code from the iterators. The following is an excerpt from the implementation of
the iterator operators.

define(‘forward_iter_ops’,
‘fun operator*<T> where { Regular<T>, DefaultConstructible<T> }
($1<T> x) -> T $2 { return x.node->data; } ...’)
forward_iter_ops(list_iterator, &) /* read-only */
forward_iter_ops(mutable_list_iter, !) /* read-write */

Adaptors. The reverse iterator class is a representative example of an STL adap-
tor.

class reverse_iterator<Iter>
where { Regular<Iter>, DefaultConstructible<Iter> }

{
reverse_iterator(Iter base) : curr(base) { }
reverse_iterator(reverse_iterator<Iter> other) : curr(other.curr) { }
Iter curr;

};

The Regular requirement on the underlying iterator is needed for the copy constructor
of reverse iterator and DefaultConstructible is needed for the default con-
structor. This adaptor flips the direction of traversal of the underlying iterator, which
is accomplished with the following operator* and operator++. There is a call to
operator-- on the underlying Iter type so BidirectionalIterator is required.

fun operator*<Iter> where { BidirectionalIterator<Iter> }
(reverse_iterator<Iter> r) -> BidirectionalIterator<Iter>.value

{ let tmp = @Iter(r.curr); return *--tmp; }

fun operator++<Iter> where { BidirectionalIterator<Iter> }
(reverse_iterator<Iter>! r) -> reverse_iterator<Iter>!

{ --r.curr; return r; }

Polymorphic model definitions are used to establish that reverse iterator is a model
of the iterator concepts. The following says that reverse iterator is a model of
InputIterator whenever the underlying iterator is a model of
BidirectionalIterator.

model <Iter> where { BidirectionalIterator<Iter> }
InputIterator< reverse_iterator<Iter> > {

type value = BidirectionalIterator<Iter>.value;
type difference = BidirectionalIterator<Iter>.difference;

};

6 Component Development Benefits

Generic programming has enabled programmers from all over the world to construct
and share interchangeable components. An example of this is the Boost collection of
C++ libraries [17]. While this has benefited programmer productivity, there is room to
improve: the cost of reuse is still too high. Programmers routinely run into compo-
nent integration problems such as namespace pollution, libraries with type errors, doc-
umentation inconsistencies, long compile times, and hard to understand error messages.
Many languages provide the necessary modularity to solve these problems, but lack the
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abstractions to express the STL. On the other hand, C++ can easily express the STL but
lacks modularity. The point of this section is to show that not only is G suitable for
expressing the STL but it also provides modularity.

Namespace pollution issues related to cpp macros are an old story, but generic pro-
gramming brings with it new and subtle issues. For example, function templates in C++

rely on argument dependent lookup (ADL) [18] to access user-defined operations, but
ADL breaks namespace modularity. There is tension in between the need to allow for
user-supplied operations while at the same time ensuring modularity. In G this tension
is resolved with concepts and where clauses that provide a mechanism for specifying
rich interfaces while at the same time separating library and user namespaces.

Users of generic libraries in C++ are plagued by long compile times and hard to un-
derstand error messages. The reason is C++’s lack of separate compilation and separate
type checking. G addresses both of these problems. In G, generic libraries can be com-
piled to object code so the user need only link them to the executable. Many of the
hard to understand error messages in C++ come from misuses of generic algorithms. For
example, the following G program misuses stable sort: it requires a random access
iterator but list only provides bidirectional.

4 fun main() -> int@{
5 let v = @list<int>();
6 stable_sort(begin(v), end(v));
7 return 0;
8 }

In C++ this would evoke pages of error messages with line numbers pointing deep inside
the implementation of stable sort. In contrast, the G compiler prints the following:

application stable_sort(begin(v), end(v)), Model
MutableRandomAccessIterator<mutable_list_iter<int>> needed to
satisfy requirement, but it is not defined.

Another problem that plagues generic C++ libraries is that type errors often go unno-
ticed during library development. This is because type checking of templates is delayed
until instantiation. A related problem is that the implementation may not be consistent
with the documented type requirements for a template, which can result in unexpected
compiler errors for the user.

These problems are directly addressed in G: the implementation of a generic func-
tion is type-checked with respect to its where clause. Thus, when a generic function
successfully compiles, it is guaranteed to be free of type errors and the implementation
is guaranteed to be consistent with the type requirements in the where clause.

Interestingly, while implementing the STL in G, the type checker caught several
errors in the STL as defined in C++. One such error was in replace copy. The imple-
mentation below was translated directly from the GNU C++ Standard Library, with the
where clause matching the requirements for replace copy in the C++ Standard [18].

196 fun replace_copy<Iter1,Iter2, T> where { InputIterator<Iter1>,
197 Regular<T>, EqualityComparable<T>,
198 OutputIterator<Iter2, InputIterator<Iter1>.value>,
199 OutputIterator<Iter2, T>,
200 EqualityComparable2<InputIterator<Iter1>.value,T> }
201 (Iter1@ first, Iter1 last, Iter2@ result, T old, T neu) -> Iter2@ {
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202 for ( ; first != last; ++first)
203 result << *first == old ? neu : *first;
204 return result;
205 }

The G compiler gives the following error message:

two branches of the conditional expression must have the same type
or one must be coercible to the other.

This is a subtle bug, which explains why it has gone unnoticed for so long. The type
requirements say that both the value type of the iterator and T must be writable to the
output iterator, but the requirements do not say that the value type and T are the same
type, or coercible to one another.

7 Related Work

There is a long history of programming language support for polymorphism, dating
back to the 1970s [15, 16, 19, 20]. An early precursor to G’s concept feature can be
seen in CLU’s type set feature [19]. In mathematics, the equivalent notion of algebraic
structure has been in use for an even longer time [21].

The concept feature in G is heavily influenced by the type class feature of
Haskell [22], with its nominal conformance and explicit model definitions. However,
G’s support for associated types, same type constraints, and concept-based overloading
is novel. Also, G’s type system is fundamentally different from Haskell’s: it is based
on System F [15, 16] instead of Hindley-Milner type inferencing [20]. This difference
has some repercussions. In G there is more control over the scope of concept operations
because where clauses introduce concept operations into the scope of the body. This dif-
ference allows Haskell to infer type requirements but induces the restriction that two type
classes in the same module may not have operations with the same name. A difference
we discuss in [14] is that inG, overlapping models may coexist in separate scopes but still
be used in the same program, whereas in Haskell overlapping models may not be used in
the same program. Haskell performed quite well in our comparative study of support for
generic programming [13]. However, we pointed out that Haskell was missing support
for associated types and work to remedy this has been reported in [23, 24].

Less closely related to G are languages based on subtype-bounded polymorphism
[25] such as Java, C#, and Eiffel. We found subtype-bounded polymorphism less suit-
able for generic programming and refer the reader to [13] for an in-depth discussion.
More recently, the object-oriented language Scala [26] has added abstract type mem-
bers based of the theory of dependent types. A comparison of this with G’s associated
types is planned for future work.

8 Conclusion

This paper presented the design of a new programming language named G and demon-
strated with an implementation of the Standard Template Library that this language is
well-suited to generic programming. We were able to implement all of the abstractions
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in the STL in a straightforward manner. Further, G is particularly well-suited for the
development of reusable components due to its support of separate type checking and
compilation. G’s strong type system provides support for the independent validation
of components and G’s system of concepts and constraints allows for rich interactions
between components without sacrificing namespace safety. As a result, the language
features present in G hold some promise to increase programmer productivity with re-
spect to the development and use of generic components.
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Mapping Features to Models: A Template

Approach Based on Superimposed Variants
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Abstract. Although a feature model can represent commonalities and
variabilities in a very concise taxonomic form, features in a feature model
are merely symbols. Mapping features to other models, such as behavioral
or data specifications, gives them semantics. In this paper, we propose a
general template-based approach for mapping feature models to concise
representations of variability in different kinds of other models. We show
how the approach can be applied to UML 2.0 activity and class models
and describe a prototype implementation.

1 Introduction

Feature modeling is an important method and notation to elicit and represent
common and variable features of the systems in a product line. It can be used at
any level of abstraction, including requirements, architecture and design, compo-
nents, and platforms; for any kind of artifacts, such as code, models, documen-
tation; and in all stages of product-line engineering. At an early stage, feature
modeling enables product-line scoping, i.e., deciding which features should be
supported by a product line and which should not. In design, the points and
ranges of variation captured in feature models need to be mapped to a common
product-line architecture. Furthermore, feature models allow us to scope and
derive domain-specific languages, which are used to specify product-line mem-
bers in generative software development [1,2,3]. Finally, feature models are also
useful in product development as a basis for estimating development cost and
effort, and automated or manual product derivation.

Although a feature model can represent commonalities and variabilities in a
very concise taxonomic form, features in a feature model are merely symbols.
Mapping features to other models, such as behavioral or data specifications,
gives them semantics. In this paper, we propose a general approach for map-
ping feature models to concise representations of variability in different kinds of
other models. In contrast to variability approaches in which separate model frag-
ments corresponding to different features are composed, our approach presents
the modeler with a model representing a superimposition of all variants whose
elements are related to the corresponding features through annotations. We ar-
gue that this approach is particularly desirable at the requirements level, as it
directly shows the impact of selecting a given feature on the resulting model.
The proposed approach is general; it works for any model whose metamodel is
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expressed in the Meta-Object Facility (MOF) [4] or a comparable modeling for-
malism, and it can be easily incorporated into an existing model editor. We give
the details of our approach for mapping feature models to UML 2.0 activity dia-
grams and indicate how it can be applied to other kinds of models. We describe
a prototype implementation of our approach. The sample models presented in
this paper are taken from a large model of an e-commerce platform, which we
used to test our approach.

The remainder of the paper is organized as follows. Section 2 reviews back-
ground concepts and related work on feature modeling. Next we describe the
idea in sections 3 and 4. Section 5 presents the details of template instantiation
algorithm. We describe the implementation of the prototype in section 6. We
discuss related work in section 7 and conclude the paper in section 8.

2 Background: Feature Modeling

Feature modeling was originally proposed as part of the Feature-Oriented Do-
main Analysis (FODA) method [5], and since then, it has been applied in a
range of business and technical domains (see [6] for list of applications with refer-
ences). In this work, we use cardinality-based feature modeling [7], which extends
the original feature modeling from FODA with feature and group cardinalities,
feature attributes, feature diagram references, and user-defined annotations.

A feature is a system property that is relevant to some stakeholder and is
used to capture commonalities or discriminate among systems in a family [1].
Features are organized in feature diagrams. A feature diagram is a tree with the
root representing a concept (e.g., a software system) and its descendant nodes
being features. A feature model consists of one or more feature diagrams plus
additional information such as feature descriptions, global constraints, binding
times, priorities, stakeholders, etc.

Figure 1(a) presents a small excerpt from a feature model describing a fam-
ily of online business-to-consumer (B2C) solutions; the entire model has over
350 features. The model contains one feature diagram, with eCommerce as its
root feature. The root feature has two solitary subfeatures: Storefront and
BusinessManagement. The symbol indicates that Storefront has a feature
cardinality of [1..1]. Feature cardinality is an interval denoting how often a fea-
ture with its subfeatures can be cloned as a child of its parent when specifying
a concrete system. The cardinality of [1..1] indicates that a feature must ex-
ist at least and at most once. On the other hand, the symbol indicates that
WishLists is an optional feature with cardinality [0..1]. Available checkout types
Registered and Guest, are members of a feature group. The group symbol
indicates group cardinality 〈1– k〉, where k is the group size. Thus available
checkout types can be any non-empty subset of the two checkout types. Grouped
features are indicated by the symbol ..

One can specify additional constraints such as requires or excludes. For exam-
ple, the feature PersistentBetweenSessions requires the system to implement
Registration because a wish list is stored in a customer’s account. Also, check-
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out type Registered requires feature Registration to be selected. In general,
additional constraints in cardinality-based feature models require tree-oriented
navigation and query facilities, and may involve logic, arithmetic, string, and
set operators on feature attributes and feature sets. Such constraints can be
adequately expressed using XPath 2.0 [8].

(a) Online B2C Feature Model (b) Feature configuration

Fig. 1. Sample online B2C feature model and its feature configuration

Semantically, a feature model describes a set of all possible valid configura-
tions [7]. Figure 1(b) presents a sample configuration of the online B2C feature
model. A configuration specifies a concrete system. In this example, checkout
for registered customers is the only available checkout type, the catalog is sub-
divided into categories, a product can be classified in multiple categories, the
catalog contains only electronic goods, etc.
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3 Basic Idea: Superimposed Variants

An overview of our approach is shown in Figure 2. A model family is represented
by a feature model and a model template. The feature model defines a hierarchy
of features together with the constraints on their possible configurations. The
model template contains the union of the model elements in all valid template
instances. The set of the valid template instances corresponds to the extent of
the model family. The model template is itself a model expressed in the same
target notation as the template instances. For example if we want to represent
a family of UML activity models, both the model template and the template
instances will be expressed using the UML activity modeling notation. The ele-
ments of a model template may be annotated using presence conditions (PCs)
and meta-expressions (MEs). These annotations are defined in terms of features
and feature attributes from the feature model, and can be evaluated with respect
to a feature configuration. A PC attached to a model element indicates whether
the element should be present in or removed from a template instance. MEs are
used to compute attributes of model elements, such as the name of an element
or the return type of an operation.

An instance of a model family can be specified by creating a feature configu-
ration based on the feature model. Based on the feature configuration, the model
template is instantiated automatically. The instantiation process is a model-to-
model transformation with both the input and output expressed in the target
notation. It involves evaluating the PCs and MEs with respect to the feature con-
figuration, removing model elements whose PCs evaluate to false and, possibly,
additional processing such as simplification (Section 5).

A particularly useful form of PCs are Boolean formulas over the set of vari-
ables, where each variable corresponds to a feature from the feature model. Given
a feature configuration, the value of a given Boolean variable is true if and only
if the corresponding feature is included in the feature configuration.

Manual configuration process

Feature model

Feature configuration

Refers to features
through annotations

Automatic template instantiation

conditions and meta−expressions
− Evaluation of presence

− Element removal
− Post−processing

Template instance

Model template
expressed in target notation and annotated

with presence conditions and meta−expressions

Fig. 2. Overview of the approach
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(b) Storefront instance

Fig. 3. Sample template activity diagram and its instance

As an example, consider the UML activity diagram in Figure 3(a), which
models the top-level activity of a storefront. This diagram is a template since
elements relevant to features WishLists, SendWishList and Registration have
been annotated with their PCs. The annotations are rendered using a coloring
scheme in which each different PC is assigned a different color.1 In this simple
example, each PC consists of a single variable corresponding to a single feature.
Figure 3(b) shows a template instance created based on the feature configuration
from Figure 1(b). PCs corresponding to feature SendWishList, which is not
included in the configuration, evaluated to false and the annotated elements
were removed from the template.

It is important to note that PCs are interpreted locally with respect to con-
tainment hierarchies defined in the metamodel of the target notation. In other
words, a PC on an element controls the presence of that element only with re-
spect to its container; if the container is removed, all contained elements are
also removed, regardless of their PCs. For that reason, we did not have to anno-
tate the guards on flows in Figure 3(a) because they are contained in the flows
according to the UML metamodel.

More complex PCs can be expressed using XPath [9]. Such conditions can
access feature attributes, count the number of feature clones in a configuration,
and use other XPath operations, as long as the XPath expression evaluates to
a Boolean value. If necessary, XPath can be easily extended with user-defined
functions.

MEs may be used to compute attributes of basic types, as well as refer-
ences to model elements. In this paper, we only consider computing references
to already existing elements. MEs can be expressed using XPath. As an exam-

1 The colors are assigned per diagram, and the number of colors needed is limited
since diagrams are usually split such that each diagram can fit on the computer
screen. Note that colors in this paper are indexed in order for the annotations to be
readable in black and white.
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ple, consider the activity diagram fragment in Figure 4. The type of the input
pin of action DisplayProducts is set to b2cSoln::Category or b2cSoln::
Catalog depending on the presence of the Categories feature in the feature
configuration.

Customer

select category

...

go to catalog1

1

1

2

2

                     2

DisplayProducts

if (//Categories)
then "b2cSoln::Category"      
else "b2cSoln::Catalog

System
Presence conditions:

!Categories

Categories 1

2

Fig. 4. Example of a type meta-expression

Product

−String weight

−String name
−float price

−...

Category

Catalog

Asset

Categories & !MultipleClassification

MultipleClassification | !Categories

MultipleClassification

Presence conditions:

AssociatedAssets

PhysicalGoods

true

Categories

MultiLevel

1

1

1

3

2

2

7

6

5

3

3

4

6

5

7

4

−product

−associatedAssets

*

−categories−products 1..*

−superCategory

−subCategories*

*

−products

−products
*

−categories
*

Fig. 5. Example of annotated class diagram

Figure 5 shows an annotated class diagram. Class Category is present in a
template instance if the feature Categories is selected. Feature MultiLevel im-
plies a containment hierarchy for Category. MultipleClassification implies
that Products can be classified under multiple categories. AssociatedAssets
implies the class Asset, which can be used for storing documents such as techni-
cal specifications and manuals and other media. Finally, PhysicalGoods implies
the attribute weight in Product.

The realization of our approach for a given target notation involves the fol-
lowing steps:
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1. decide on the form of PCs and MEs, for example Boolean formulas and/or
XPath expressions;

2. decide on implicit PCs. Model elements that are not explicitly annotated by
the user will have implicit PCs; implicit PCs will be explained shortly;

3. decide on the annotation mechanism and rendering options for the annota-
tions, e.g., if the target notation is UML, the annotations can be realized as
stereotypes; rendering options include labels, icons, and/or coloring;

4. decide on additional processing.

Steps 2–4 depend on the target notation. In the following sections, we will demon-
strate details for UML activity diagrams as a target notation. 2

4 Implicit Presence Conditions

When an element has not been explicitly assigned a PC by the user, an implicit
PC (IPC) is assumed. In general, assuming a PC of true is a simple choice
which is mostly adequate in practice; however, sometimes a more useful IPC for
an element of a given type can be provided based on the presence conditions
of other elements and the syntax and semantics of the target notation. For
example, according to UML syntax, a binary association requires a classifier
at each of its ends. Thus, a reasonable choice of IPC for a binary association
would be the conjunction of the PCs of both classifiers. This way, removing any
of the classifiers will also lead to the removal of the association. IPCs reduce
the necessary annotation effort of the user. For example, given the IPC for
associations as described, the association between Product and Asset in Figure
5 does not need to be annotated explicitly.

Table 1 shows our choice of IPCs for UML class and activity model elements.
An IPC for a given element is assumed based on its type. In order to determine
the IPC for a given model element, we look up the closest matching supertype
in Table 1 and take the corresponding IPC. For example, the IPC for instances
of Class and Action is true because their closest matching type in Table 1
is Element. Since ActivityFinalNode and FlowFinalNode are subclasses of
FinalNode according to the UML metamodel, the IPC for ActivityFinalNode
and FlowFinalNode is the same as for FinalNode in Table 1.

The choice of IPCs in Table 1 reflects the cardinality and other integrity
constraints specified in the UML metamodel. For class models, the IPC for all
elements except relationships is true. In the case of generalization, which is a
binary relationship, the IPC reflects the fact that such a relationship can exist in
a template instance only if the classifiers at both ends of the relationship are also
present in the template instance. The IPCs for dependencies and associations
need to handle the more general case of n-ary relationships. For activity models,
the IPC for all elements except control nodes, central buffer node, and call actions
is true. Control nodes have to have at least one incoming flow and/or at least

2 For simplicity, we limit ourselves to the intermediate level of activity diagrams as
defined in the UML Superstructure document [10].
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Table 1. Implicit presence conditions for UML class and activity model elements

Model
kind

Element type Implicit presence conditiona

General Element true

Class Generalization Conjunction of the PCs of the general and specific classifiers

Dependency true iff at least one client element’s PC evaluates to true and at
least one supplier element’s PC evaluates to true

Association true iff two or more memberEnd properties such that each has a
classifier with PCs evaluating to true as its type

Activity InitialNode Disjunction of the PCs of all outgoing flows

FinalNode Disjunction of the PCs of all incoming flows

DecisionNode and
ForkNode

true iff exactly one incoming flow’s PC evaluates to true and one
or more outgoing flows’ PCs evaluate to true

MergeNode and
JoinNode

true iff exactly one outgoing flow’s PC evaluates to true and one
or more incoming flows’ PCs evaluate to true

CentralBufferNode Disjunction of the PCs of all incoming and outgoing flows

CallOperationAction true iff accumulated PC of the called operation evaluates to true

CallBehaviorAction true iff accumulated PC of the called behavior evaluates to true

a PC stands for presence condition (both explicit or implicit). Names in typewriter font (except
true) refer to properties of the corresponding element.

one outgoing flow in an instance as specified in the metamodel. Central buffer
has to have at least one incoming flow or outgoing flow. Finally, the target of
call actions has to be present.

Control nodes are not intended to be annotated with PCs explicitly since
their IPCs will always be adequate. This is not true for relationships in class
models because we might want to remove a relationship in a template instance
even if the elements the relationship connects are not removed.

IPCs for call actions relfect the fact that removal of the target should also
force removal of all actions calling it. Accumulated PC of an element is true iff
PCs of all parents of that element evaluate to true.

5 Template Instantiation

A simple and general template instantiation process involves computing MEs
and removing elements whose PCs are false; however, the general process can
be specialized for a given notation with some additional processing steps, which
allow expressing templates in that notation more compactly. We have identified
two categories of such additional steps: patch application and simplification. A
patch is a transformation that automatically fixes a problem which may result
from removing elements. It is defined for situations in which there exists a unique
and intuitive solution to a problem created by element removal.

Simplification involves removing elements that have become redundant after
removing other elements. In the case of activity models, we found it useful to
provide automatic flow closure as a patch and removal of redundant control nodes
for simplification, which will be explained later.
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Fig. 6. Model templates with two optional actions without and with automatic flow
closure

The motivating example for automatic flow closure is presented in Figure 6.
The two actions HandleItemAvailability and ApplyShippingCosts are optional
and implement features InventoryTracking and PhysicalGoods, respectively.
The top part of the figure presents how the two optional actions would have to
be modeled without automatic flow closure. The bottom part contains the same
fragment expressed in a natural way thanks to the automatic flow closure. The
latter ensures that after removing an optional action the still remaining incoming
flow and outgoing flow will be closed. If desired, the closure can be prevented by
the user by annotating the flows such that they are removed together with the
action. It is easy to see that, without flow closure, the number of flows needed in
a chain of optional actions grows exponentially with the number of the actions.3

The complete template instantiation algorithm can be summarized as follows:

1. Evaluation of MEs and explicit PCs. The evaluation is done while travers-
ing the element containment hierarchy in the template in depth-first order.
Children of elements whose PCs evaluate to false are not visited because
they will be removed.

2. Removal analysis. Removal analysis involves computing IPCs and informa-
tion required for patch application, if any. The IPCs in Table 1 can be com-
puted in a single additional pass after computing the explicit PCs; however,
a different choice of IPCs could require multiple iterations. Furthermore,
given the IPCs in Table 1, the necessary analysis for automatic flow closure
can be performed separately after the IPCs are computed. Again, depending
on the choice of IPCs and patches, such separation may not be possible.

3. Element removal and patch application. In this step, elements whose PCs
are false are removed and patches, if any, are applied. Application of a patch
depends on its type and can be performed before or after removal.

4. Simplification. Simplification is performed at last.
3 It is interesting to note that removing an optional action from a sequence of actions in

an activity model corresponds to removing an optional statement from a statement
list in a textual language, e.g., when the C preprocessor removes a statement within
#ifdef and #endif in a C program. In the latter case, however, flow closure happens
naturally without the need for any additional processing.
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5.1 Template Instantiation for Activity Diagrams

The removal analysis for activity diagrams identifies situations where flows in-
terrupted by removed elements can be closed. The identification is performed
during removal analysis after all IPCs have been computed and proceeds as fol-
lows. Let F be the set of elements contained in an activity whose PCs (both
explicit and implicit) evaluated to false. We partition F into a set of regions R
such that elements in each region are connected, but no two elements from two
different regions are connected. Furthermore, let Ar be a set of flows adjacent
to the region r.

A region r is said to be closable iff

1. there is exactly one incoming and exactly one outgoing adjacent flow,4 i.e.,
Ar = {i, o} ∧ target(i) ∈ r ∧ source(o) ∈ r

2. there is a flow path connecting target(i) and source(o)
3. types of i and o are consistent i.e., both are control or object flows

All closeable regions are closed before elements with PCs being false are
removed. Closing a region r with Ar means that o is removed and the target of
i is set to the target of o. If a region is not closeable and Ar is not empty, there
is an annotation error because flows from Ar would become dangling after the
removal of region r. An annotation error can also occur if a flow is not within
the region itself, but its ends are.

Simplification for activity nodes involves removing redundant control nodes
such as (1) a DecisionNode or a ForkNode having one outgoing flow, and (2) a
MergeNode or a JoinNode having one incoming flow. More sophisticated control
flow simplification could also be applied at this point, such as merging parallel
flows without actions between a decision and merge nodes.

As an example of template instantiation for activity models with automatic
flow closure, consider the checkout items template in Figure 7 and its instance in
Figure 8(b). The instance implements the features selected in the feature config-
uration from Figure 1(b), where the only specified checkout method is for regis-
tered customers (feature Registered). Features Guest, QuickCheckoutProfile,
InventoryTracking and PhysicalGoods are not selected. Note that all control
nodes in the template are gray, indicating that they are not annotated and
therefore IPCs are assumed.

The result of removal analysis and patch application is shown in Figure 8(a).
Based on our configuration, the instantiation algorithm removes four regions:
blue (3) for QuickCheckoutProfile, green (2) for Guest checkout, magenta (4)
for InventoryTracking, and pink (5) for PhysicalGoods. Note that they are
all closeable and will be closed before removal. In the case of the blue (3) region,
the adjacent flows are those in red (1). Also note that the decision node type?
has been included in the blue region because its implicit PC evaluated to false.

4 We only allow one incoming and one outgoing flow. The reason is that in the case of
more than one incoming and/or outgoing flow, there is more than one way to close
the flows.
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(a) Checkout instance after region re-
moval

enter billing & shipping

address

select shipping

method

displayForm

Apply

Discounts

                 ...

Customer1 System1

[registered]

(b) Checkout instance after simpli-
fication

Fig. 8. Checkout template instance

The final result after simplification, which removed one decision node
customer type? and two merge nodes, is shown in Figure 8(b).

Examples of useful patches for class models include generalization chain clo-
sure and containment chain closure. They are the counterpart of automatic flow
closure for generalization and containment relationships: given the classifiers A,
B, and C, if A is connected to B and B is connected to C, removing B while the PCs
of the incoming relationship and the outgoing relationship are true will connect
A to C.
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6 Prototype Implementation

We have built a prototype to illustrate how our approach works in practice. The
prototype, fmp2rsm, is an Eclipse plug-in which integrates our Feature Modeling
Plug-In (fmp) [8] with Rational Software Modeler (RSM), a UML modeling tool
from IBM.5 The plug-in implements the template instantiation algorithm from
Section 5, and it also performs the automatic coloring of templates based on the
PC annotations. The implementation handles all of UML; however, at this point,
the convenience of additional processing is available only for activity models as
described in Section 5.1.

The plug-in works with four artifacts: (1) UML model template created using
RSM, (2) feature model created using fmp (Figure 1 contains screen shots of
fmp), and two variability profiles, (3) PC profile for PC annotations, and (4)
ME profile for ME annotations.

The PC profile offers two forms of PC annotations: Boolean formulas in
Disjunctive Normal Form (DNF) and the more general XPath expressions. Each
disjunct (i.e., a conjunction of literals) of a PC in DNF is represented as a stereo-
type, e.g., <<f1∧!f2∧f3>> for the Boolean formula f1f2f3, and can be created
on a selection of multiple features automatically through a menu operation in
fmp.6 Once created, the stereotype becomes available in RSM for annotating
template elements. Application of multiple such stereotypes is interpreted as a
disjunction. The more general annotations using XPath are created by apply-
ing the stereotype <<PC>>, which allows the user to enter the desired XPath
expression as the value of its expression:String property.

The ME profile contains several stereotypes structured similarly to <<PC>>,
but each applicable to elements of a specific type. For example, <<NameME>>
can be applied to any element of type NamedElement in order to compute
its name. Similarly, <<TypeME>> can be used to set the type property of any
TypedElement. For <<TypeME>>, an expression has to return fully qualified name
of either a primitive type (e.g., UML2::String), a class (e.g., b2cSoln::Category
as in Figure 4), an interface, or an enumeration. The ME profile could be auto-
matically generated based on the metamodel of a given notation.

7 Related Work

Variability mechanisms most commonly used in models are those already avail-
able in the target notation, such as using a decision node in an activity model to
decide between alternative flows or representing class variants as subclasses of an

5 The fmp2rsm plug-in can be downloaded at http://gp.uwaterloo.ca/fmp2rsm.
6 Each stereotype extends Element and has read-only properties encoding the actual

Boolean formula. The encoding uses fully qualified feature names which are available
as literals of an enumeration type that is automatically generated by fmp2rsm given
a feature model. In other words, the stereotype’s name is just for documentation
and may use abbreviated feature names.
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abstract class. Inheritance—a classical variability mechanism in class diagrams—
has also been adapted for activities [11] and statecharts [12, 13]. Limitations of
these approaches include the lack of static configuration, as in the case of dy-
namic choice such as a decision node, the potential of combinatorial explosion for
static inheritance hierarchies, and complexity increase and limited traceability
in the case of design patterns.

Another class of approaches is based on annotations expressing variability. In
the case of UML, such annotations are usually provided as a profile with stereo-
types, such as <<optional>> and <<variant>>, e.g., [14]. Although our approach
is also annotation-based, we provide a separate representation of variability in the
form of a feature model. Without the latter, there is no clear notion of features and
the user has to find and select variable elements in the model directly. Furthermore,
patching and simplification, as proposed in our approach, results in simpler tem-
plates. Finally, we provide full template support by means of MEs.

Wasowski describes automatic generation of variants of behavioral models
(in particular statecharts) by restrictions [15]. As in our approach, the modeler
creates a single model containing all variants. A variant is automatically created
using a form of partial evaluation and slicing based on specified restrictions. The
restriction approach differs from our template approach in several ways. First, it
involves more sophisticated analysis in which restrictions on inputs and outputs
are propagated throughout the model automatically. While this may result in a
significantly reduced annotation effort, the effect of automatic partial evaluation
and slicing may be hard to predict for the user. In a template approach, the
user has full control through explicit annotations. Another difference is that the
model to be restricted has to be semantically correct in the sense that it is
ready to be executed without any processing, whereas templates only need to be
syntactically well-formed. The restriction approach is adequate, particularly if
there is a variant that contains all of the initial model without any restrictions;
however, if this is not the case, it is likely that a template will be simpler than
an unrestricted model. For example, alternative flows can simply be attached
to an activity node, while the model restriction approach would require using a
decision node. Also, additional processing, such as automatic flow closure, further
reduces the complexity of a template, whereas in the model restriction approach,
each optional action would need an extra decision node. Finally, the template
can be easily adapted to any notation. This is different with the restriction
approach, which is semantics-based and needs to be individually developed for
each notation.

Another group of work are concern separation approaches, such as AHEAD
[16], and the hyperspace approach [17] and its UML realization HyperUML [18].
These approaches allow the composition of crosscutting model fragments. In par-
ticular, HyperUML uses feature models to represent the composition space of
UML model fragments. Mixin-based composition of statecharts [19,20] also falls
into this category, but with the particular focus on ensuring provably correct
composition. Concern separation approaches focus on separation. Templates, on
the other hand, work best if the user wants to see the model fragment correspond-
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ing to a feature embedded in the context of the entire model. For example, sepa-
rating the blue (3) region corresponding to the feature QuickCheckoutProfile
in Figure 8 as a component does not seem to be interesting. This is because the
fragment is not reusable and can be best understood in the context where it is
applied. Separation approaches are of particular interest when features should
be realized as components that can be composed in many ways, which is the
case in mature and highly flexible architectures. They are also preferred for rep-
resenting crosscutting concerns that can be meaningfully stated in separation,
such as logging or security. For example, the fact that the checkout activity re-
quires authorization can be expressed as a security annotation (a kind of join
point), leaving the insertion of call actions to the approprite authorization and
authentication activities to an aspect weaver.

A few modeling tools on the market support model templates in some form,
but usually in an ad hoc manner. For example, templates in Rational XDE are
modeled as parameterized collaborations, even though the template can contain
meta-code creating arbitrary models, i.e., the template instance is not a collabo-
ration. Obviously, variability can also be realized by direct model manipulation,
such as using composition directives [21] or XMI manipulation [22].

Finally, feature models have been previously used together with textual tem-
plates as the structure definition of template input, e.g., [23]. However, the ap-
plication to model templates is, to our knowledge, new.

8 Concluding Remarks

The purpose of this work can be seen from different perspectives: (1) giving
semantics to features in feature models by mapping them to other models and
(2) using feature models to provide a concise representation of variability con-
tained in other models. Expressing PCs and MEs in terms of features provides
traceability between features and their realization in models.

Although we think our approach is particularly useful at the requirements
level, it can be applied for models at any level, e.g., architecture and implemen-
tation models.

From the usability perspective, the approach is intuitive. Model templates
are in the target notation, so there is no need to learn new specialized languages
(except for simple feature models) and existing tools can also be reused. Implicit
conditions, patching, and simplification minimize annotation effort and decrease
visual complexity, which makes model templates more concise. Coloring makes it
easy to see what will be contributed by selecting a given feature. Model templates
can be created incrementally and simultaneously with the feature model.

During our case study we have observed that the majority of PCs are single
features. However the ability to write more complex PCs allows us to avoid
polluting the feature model with features related to the implementation details
of the template. For example, a “glue” element usually requires a PC being a
conjunction of features. If a PC could only be simple features, an additional
feature corresponding to the “glue” element would need to be introduced.



436 K. Czarnecki and M. Antkiewicz

A possible concern is that annotation is not always simple and may require
few iterations; however, further tool support can be offered, e.g., for filtering
model template parts relevant to certain features and subset of systems, and
automatic verification guaranteeing the well-formedness of all possible template
instances. Those additional capabilities, as well as support for element cloning
in model templates, will be covered in future work.
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Abstract. CAM/DAOP is a component and aspect based model and
platform implemented using Java/RMI and reflective techniques. Us-
ing CAM/DAOP we have developed several collaborative applications,
where the most relevant one is a Virtual Office application, which allows
dispersed users to collaborate as if they were co-located. Attendees of the
demonstration will see how to develop dynamic and adaptable applica-
tions with CAM/DAOP, from the design through to the implementation
phases. We will place emphasis on showing how to adapt the behavior
of CAM/DAOP applications at runtime, simply by modifying the archi-
tectural information provided during the application development.

1 Introduction

CAM/DAOP [1] is a component and aspect based model and platform. CAM
is a new model for designing component and aspect based applications. The
CAM model defines the main entities of a CAM application and the relation-
ships among them. The DAOP platform is a distributed component and aspect
platform that implements the CAM model and provides a dynamic weaving
mechanism that plugs software aspects into components at runtime.

Another relevant feature of our approach is the use of DAOP-ADL, an XML-
based architecture description language that is used to describe the structure of
CAM applications in terms of a set of components, aspects and composition
constraints. The most relevant issue is that this description can be automati-
cally generated from the UML-based CAM diagrams generated during design.
Moreover, the information generated with DAOP-ADL is loaded onto the inter-
nal structures of the DAOP platform when the application is initiated and it is
used at runtime by the DAOP platform to perform the dynamic composition of
components and aspects.

The development of CAM/DAOP applications is supported by an integrated
development process and environment that help software developers to under-
stand how to use aspect-oriented technologies, specifically CAM/DAOP. This
� This work is supported in part by Spanish MCYT Project TIC2002-04309-C02-02

and in part by European Commission grant IST-2-004349 ( European NoE on AOSD)
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process establishes the relationship among CAM, DAOP-ADL and DAOP and
guides software developers through the construction of CAM/DAOP applications
from the design to the execution phases. The IDE will automatically produce
the information generated in each phase of the process; in the case were the
automation were possible.

Due both to the use of the DAOP-ADL language and to the dynamic com-
position mechanism offered by the DAOP platform, our approach is especially
suitable for developing applications with high requirements of dynamic adapt-
ability. Up to now we have developed several collaborative applications using
CAM/DAOP; from simple applications such as chat applications or the Pic-
tionary game, to more complex ones such as a virtual office application1. These
applications are dynamic and distributed applications that are characterized by
high runtime interaction among the users connected in the same session, and
have high requirements of dynamic adaptability, so they are good candidates for
the testing of our approach.

The primary aim of this demonstration is to show how to develop dynamic
and adaptable component and aspect based applications with CAM/DAOP. The
demo will go through the different phases involved in the development of the
virtual office application: (1) the application design using the CAM model; (2)
the description of the application architecture using the DAOP-ADL language;
(3) the reuse of pre-implemented components and aspects; (4) the execution of
the application by the DAOP platform, and (5) the possibility of dynamically
adapting the behavior of the application at runtime by modifying the application
architecture described in the DAOP-ADL language.

2 The CAM/DAOP Approach

The main features provided by CAM/DAOP are the following: (1) it is possible
to separate any extra-functional property from components, modelling them as
aspects; (2) the behaviour of aspects and the pointcuts are described in different
and independent entities. Therefore, aspects become context-independent and
reusable parts; (3) the description of the pointcuts for all the aspects in an
application is centralized as part of the composition rules in DAOP-ADL. This
makes it easy to trace which aspects are applied to each component and when
they are applied - specially at design and architectural levels, and (4) it closes the
’gap’ between design and implementation using the DAOP-ADL language. The
execution of the application is driven by this information, which was provided
with the CAM model during the design phase.

The current implementation of CAM/DAOP uses Java to take advantage
of characteristics such as reflective programming, code mobility and RMI. A
CAM/DAOP application is a web application that is deployed by making both
the implementation of components and aspects and the description of the soft-
ware architecture accessible through a Web server. This information will be then
downloaded at runtime using an applet or the Java WebStart technology.
1 http://caosd.lcc.uma.es/CAOSDGroup/VirtualOffice.htm
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CAM/DAOP is related to other research efforts such as JAC [2], JAsCo [3] or
JBoss AOP [4] among others, all of them offering dynamic weaving mechanisms
at load time or at runtime. In addition to the weaving mechanism, another simi-
larity with JAsCo and AOP/JBoss is the application of the separation of aspects
to components, instead of objects as happens in most approaches. Furthermore,
AOP/JBoss share with CAM/DAOP the description of the aspect point cuts
in XML, externally and completely independently from the implementation of
aspects. Similar to AspectJ [5] and JAC, CAM/DAOP offers a set of tools to
help software developers to construct aspect-oriented applications.

3 The CAM/DAOP Development Process

The most unique feature of our approach is the use of the DAOP-ADL language
to explicitly describe the architecture of a CAM/DAOP application in XML,
and the fact that the use of the DAOP-ADL language establishes a clear ”rela-
tionship” among the different phases of the software development (from design
to execution). In fact, the DAOP-ADL language is the essence of the complete
development process, as described below (see figure 1):

1. First, software developers will use a UML editor to draw the UML diagrams
of the CAM/DAOP application (phase 1). These diagrams will be used by
our IDE to automatically generate part of the software architecture of the
application in DAOP-ADL (phase 2).

2. Once the software architect completes the description of the application ar-
chitecture in DAOP-ADL, the resulting XML document is stored in an ar-
chitecture repository (phase 2).

3. Then, during the implementation phase software developers will register their
components and aspects in a component and aspect repository tool (phase
3). The relevant issue is that this tool automatically generates the description
of these entities in DAOP-ADL. These XML descriptions are then automat-
ically incorporated as part of the architecture description when components
and aspects are selected. Components, aspects and the architectural XML
document are deployed in a web server (phase 4).

4. Finally, as mentioned before, the information in DAOP-ADL is loaded along
with components and aspects and it is consulted by the DAOP platform
at runtime to perform the late-binding between components and aspects.
Furthermore, this information can be modified at runtime to adapt the be-
haviour of applications developed on top of CAM/DAOP (phase 5).

4 The Virtual Office Application

A virtual office application is a virtual space where users join to collaborate. The
space is organized in rooms, which contain all the resources needed to collaborate,
such as documents and collaborative tools. Users navigate through the rooms
collaborating with other users they meet in the same room. In order to do that,
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Fig. 1. CAM/DAOP Development Process and IDE

it is important that users have awareness information about the location and
the state of all the resources in the environment (other users, tools, documents,
etc.). There are many aspects that are worthy of being separated in a virtual
office application. Some examples are: the authentication aspect, which checks
whether the user is registered in the system; the persistence aspect, which stores
and restores the distributed state of the virtual office; the awareness aspect that
notifies changes in the state of components, and the access control aspect that
checks which users have rights to access the environment resources.

5 Conclusions

After attending this demo those people interested in the construction of adapt-
able and extensible applications will have seen how the use of an aspect-oriented
approach that offers a dynamic weaving mechanism can help to develop this
kind of applications. Specifically, we will have shown our experience using CAM/
DAOP, our own component and aspect based dynamic platform.
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Abstract. Many current metamodeling environments still require manual 
programming to build full tool support for the modeling language, especially 
for language constraints, representational elements and graphical editing tools. 
Because of this, a considerable part of development resources has to be reserved 
for secondary assets of the final environment instead of its main vehicle, the 
modeling language itself. In this demonstration, we present the MetaEdit+ 
metaCASE tool, and show how metamodeling and tool support for domain-
specific modeling languages can be completed without programming. We will 
describe the metamodeling tool set of MetaEdit+ and explain how conceptual 
and representational metamodeling is carried out with it. Finally, we will look 
at the executable modeling environment derived from the metamodel. 

1   Introduction 

Many contemporary metamodeling environments still require a considerable amount 
of manual programming to build the modeling language definition and its tool support 
[1]. This can be explained as a way to offer complete control over the resulting 
modeling and code generation environment, but it also becomes a problem for their 
developers. Typically, such features as language constraints, representational 
elements and graphical editing tools are left to be coded by hand. This requires that a 
considerable amount of time and other resources be allocated to complete something 
that is secondary to the main objective: the development and integration of the 
modeling language and its code generation. 

MetaEdit+ is a metaCASE tool that provides an alternative solution for building 
complete tool support for domain-specific modeling (DSM) languages [4]. The tool 
implements the generic CASE tool functionality that can be configured into a 
complete and working CASE environment with a metamodel. Metamodeling is 
carried out with a tool set that allows definition of the metamodel and its 
representational elements, rules and constraints. Based on these definitions, 
MetaEdit+ provides the standard set of CASE tool functionality, including graphical 
editors, design data management, and integration with other tools via its API. The 
advantage of this approach over manual programming is the easier and faster  
metamodeling and deployment process – it is possible to get working DSM 
environment within hours instead of days and weeks, as is the case with tools that 
require additional manual programming. 
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2   Metamodeling with MetaEdit+ 

Metamodeling in MetaEdit+ is based on the GOPPRR metamodeling language [2, 4]. 
GOPPRR is an acronym formed from language’s base types which are Graph, Object, 
Port, Property, Relationship and Role. Graph is the top-level structure of the 
metamodel. It defines one language or diagram technique such as Class Diagram or 
State Transition Diagram. The actual semantics of the graph are defined as the 
bindings of objects, relationships, roles and ports within the graph. Properties are 
characterizing attributes that can be attached to each of these other types. 

For each of these base types, MetaEdit+ provides an editing tool for creating and 
modifying new types based on the base type (examples of such tools are shown in 
Figure 1). A new type is created by sub-typing it from the relevant base type, defining 
its name and defining a set of properties that are attached to this type. It is also 
worthwhile to note that this new type can be sub-typed further and it is therefore 
possible to build inheritance hierarchies of types in an object-oriented fashion. 

The created types are the fragments of the metamodel from which the complete 
language is built. To specify the rules of how they can be used together, tools like the 
Binding Tool – as shown in Figure 2 – are used. This describes how the objects within 
a graph can be connected together via relationships, roles and ports, and how often 
each kind of connection may occur. 

 

 
 

Fig. 1. The Object and Property type definition tools of MetaEdit+ 

 

 
 

Fig. 2. The binding and constraint definitions in MetaEdit+ 
 

M E
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Bindings are semantically powerful metamodeling constructs, sufficient for 
defining many structural rules of the modeling language. There are, however, other 
kinds of rules that refine and constrain the behavior and the use of the language. For 
example, for a State Transition Diagram one could set a constraint that states that 
“each start state may have only one From role that leaves it”. For defining this kind of 
rules, MetaEdit+ provides a Constraints Definer tool (also illustrated in Figure 2). As 
with the Binding Tool, the rules and constraints defined with this tool are enforced at 
run-time, ensuring the correctness of the models. 

In addition to such conceptual parts as types, bindings and rules, a complete 
metamodel also requires the definition of representational counterparts of these 
conceptual elements. MetaEdit+ provides a Symbol Editor tool for drawing such 
graphical symbols for objects, relationships and roles. Properties appear as part of 
these symbols and ports are tackled as part of object symbol definitions. An example 
of a symbol definition in Symbol Editor is shown in Figure 3. 

The conceptual and representational parts of the metamodel are used by MetaEdit+ 
to configure the modeling part of the tool, making typical CASE tool functionality 
immediately available for the user. An example of one such CASE tool feature, a 
Diagram Editor, is shown in Figure 4. 

 

 
 

Fig. 3. Symbol definition for object “State” in the Symbol Editor of MetaEdit+ 

 

 
 

Fig. 4. Diagram Editor of MetaEdit+ 

 

.
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As a technical note, MetaEdit+ is based on an implementation of the GOPPRR 
metamodeling language. Written in Smalltalk, it provides useful flexibility for the 
metamodeller. This not only enables easy sub-typing of the base types and their 
properties, but also unlimited reuse and linking of types. The metamodeling state is 
always “live”, i.e. the tool will automatically propagate changes in the metamodels 
into the models. 

3   Example of Extending the Environment: Code Generation 

In the previous section we discussed the issue of how to obtain tool support for a 
DSM language without manual programming. One of the key benefits cited for the 
DSM approach is the promise of 100% code generation when using domain-specific 
code generators. Domain-specific code generation, on the other hand, almost always 
require a specifically written code generator that is tailored for the given domain and 
target platform. While it is not possible to avoid manual programming in this case, 
MetaEdit+ provides a means to minimize the effort with its reporting and scripting 
language (shown in Figure 5). The language is specifically designed for the tasks of 
accessing, navigating and extracting information from the design data, and turning 
that information into text: program code, documentation or checking reports. The 
advantage here lies with the close integration of the language into MetaEdit+, and the 
reporting tool that saves a lot of routine effort for the developer of the code generator. 
 

 
 

Fig. 5. Code generator definition and generation output 

4   Conclusion 

In this demonstration we have presented an approach for building modeling and code 
generation tool support for DSM languages by configuring MetaEdit+ metaCASE 
environment with metamodels. The main benefit of this approach – that has been 
validated by several industry cases of developing and adopting the DSM with 
MetaEdit+ [3, 5] – is the fast and flexible metamodeling process. It not only sets the 

Metamodeling ade asy – MetaEdit+  M E
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metamodeler free to concentrate on the modeling language and code generator instead 
of secondary implementation issues, but also enables him or her to quickly prototype 
and test the language definition in a live environment. The same flexibility also 
applies to the maintenance of the deployed DSM environment: changes in metamodel 
and code generator propagate into the production environment and models 
automatically. 

An easy metamodeling experience has always been one of the main objectives of 
the development of MetaEdit+ and this will be the trend for the future development 
efforts as well. As for the forthcoming versions of MetaEdit+, we are about to provide 
means for graphical metamodeling and integration with other metamodeling 
languages and environments. There will be also such developments on the conceptual 
and representational metamodel elements as more functional symbol elements, 
dynamic ports and extensions in reporting and scripting language. It is also expected 
that the growing interest and awareness of metamodeling and DSM will raise new 
kinds of requirements for the tool vendors to consider. 
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