
rCOS: Refinement of Component and Object Systems�

Zhiming Liu1, He Jifeng1,��, and Xiaoshan Li2

1 International Institute for Software Technology,
United Nations University, Macao SAR, China

{lzm, hjf}@iist.unu.edu
2 Faculty of Science and Technology,

University of Macau, Macao SAR, China
xsl@umac.mo

Abstract. We present a model of object-oriented and component-based refine-
ment. For object-orientation, the model is class-based and refinement is about
correct changes in the structure, methods of classes and the main program, rather
than changes in the behaviour of individual objects. This allows us to prove re-
finement laws for both high level design patterns and low level refactoring. For
component-based development, we focus on the separation of concerns of in-
terface and functional contracts, leaving refinement of interaction protocols in
future work. The model supports the specification of these aspects at different
levels of abstractions and their consistency.

Based on the semantics, we also provide a general definitional approach to
defining different relational semantic models with different features and con-
straints.

Keywords: Object-Orientation, Component-Based Development, Refinement,
Specification, Consistency.

1 Introduction

Today’s software engineering is mainly concerned with systematic development of large
and complex systems. To cope with the scale of the problem traditional software engi-
neers divide the problem along three axes:

1. Along the temporal axis the development activities are divided into three stages of
requirements specification, design and implementation.

2. Different activities in each stage deal with different aspects of the system. Require-
ment analysis is split into specification of aspects of static data structure, control
flows or processes and operations or services. Similarly, design may be split into
design strategies for concurrency, design strategies for efficiency and design strate-
gies for security. These strategies are commonly expressed as design patterns [13].
Finally implementation may be split into databases, user interfaces and libraries for
security.

� This is a revised and extended version of the combination of the papers [17,31]. This work is
partly supported by e-Macao project funded by the Government of Macao, and the research
grant 02104 MoE and the 973 project 2002CB312000 of MoST of P.R. China.

�� On leave from East China Normal University, Shanghai, China.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 183–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 Z. Liu, H. Jifeng, and X. Li

3. The third axis is that of system evolution and maintenance [20,24] where each
evolutionary or maintenance step enhances the system by iterating through the re-
quirements to implementation cycle.

Unfortunately in practical software engineering, all aspects are specified using infor-
mal techniques and therefore this approach does not give the desired assurances and
productivity. The main problems are, among others, the following:

– Since the requirements specification is informal there is no way to ascertain its
completeness resulting in a lot of gaps.

– The gaps in requirements are filled by ad-hoc decisions taken by programmers who
are not qualified for the job of requirement analysis. This results in code of poor
quality.

– There is no traceability between requirements and implementation making it very
expensive to accommodate changes and maintain the system.

– Most of the tools are for project management and system testing. Although these
are useful, they are not enough for ensuring the semantic correctness of the im-
plementation for a requirements specification and semantic consistency of changes
made in the system.

Formal methods, on the other hand, attempt to complement the informal engineering
methods by techniques for formal modelling, specification, verification and refinement
[46,15]. Formal methods were born and has grown up in those years of structured analy-
sis and design. So we have theories of formal specification, verification, refinement, de-
composition and composition. In principle, a formal system development starts with an
abstract specification and transforms it into a program through a number of refinement
steps. A formal method is supported by a sound logical framework. These have helped
in improving the quality of software systems so that they are more correct and safer to
use. However, they do not yet support the three dimensional development process well.
It is still a great challenge to scale up formal methods to industry scale because of the
problems listed below.

– Formal methods have inherited the same disadvantages from the one-dimensional
“water-fall model” of development activities. They suffer even more seriously from
those disadvantages as a specification of the whole system at any level, e.g. the
requirement level, in a formal notation is not understandable to most system engi-
neers, not to mention about formal verification.

– Because of the theoretical goal of completeness and independence, refinement cal-
culi, including those for object-oriented programming [22,23,1,8], provide only re-
finement rules for a small change in each step. Refinement calculi can therefore
be difficult to be used in practice. Data refinement always requires definition of a
semantic relation between the programs (their state space) and is hard to be applied
systematically and to deal with “big-step refinement”.

– There is no clear separation of concerns making it difficult for domain experts,
architects and programmers to collaborate towards a single solution. The existing
object-oriented models, e.g. [22,23,1,8], focus on much programming aspects and it
is not clear what kind of properties of an object-oriented program can be described

rCOS: Refinement of Component and Object Systems 185

and proven in such a model. Therefore, these models cannot be used for software
development as we do not know from what a specification that the system is to be
developed or refined.

– It is not easy for software engineers to build correct and proper models, from low
level designs or implementations, that can be verified by model checking tools.

– There is no explicit support for productivity enhancing techniques such as compo-
nent based development.

So far, both the formal methods and the methods adopted by practical software
engineers are far from meeting the quality and productivity needs of the industry. The
industry continues to be plagued by high development and maintenance costs and poor
quality. However, recently there have been encouraging developments in both
approaches. The software engineering community has started using precise models
for early requirements analysis and design [37,12]. Theories and methods for object-
oriented, component-based and aspect-oriented modelling and development are gaining
attention of the formal methods community1. There are various attempts at investigating
formal aspects of object-oriented refinement, design patterns, refactoring and coordina-
tion [5,17,31].

In this article, we present a calculus of Refinement of Component and Object
Systems (rCOS)2. It captures the essential features of object-orientation including ref-
erence types, inheritance, dynamic binding, and visibility. Unlike the object logic in [1],
rCOS is class-based and refinement is about correct changes in the structure, methods
of classes and the main program, rather than changes in the behaviour of individual
objects. For component-based development, we are concerned with the separation of
concerns of interfaces, functional contracts and interaction protocols. In this paper, we
focus on interfaces and functional contracts. rCOS reflects the basic object-oriented
and component-based principles of component and class decomposition, task delega-
tion and data encapsulation. It allows refinement for both high level design patterns
and low level refactoring [34].

We briefly introduce in Section 2, as our semantic basis, the notion of designs in
Unifying Theories of Programming [19]. In Section 3, we define the model for object
systems. We present refinement calculus of object-oriented designs in Section 4.1. We
then show in Section 5 how the model for object systems is extended to deal with
component systems. In Section 6, we conclude the article with discussion and related
work.

2 Semantic Basis

We take a classical approach to modelling the execution of a program in terms of a
relation between the states of the program. However, the concept of state is more gen-
eral than what programmers usually understand and it depends on what the modeler

1 In addition to the well-established conferences such OOPSLA and ECOOP, many new confer-
ences and workshops on component systems, object systems and aspect-oriented techniques.

2 rCOS is produced by LATEX command {\large r}\textsc{COS}. In [17], the calculus was
named as OOL.

186 Z. Liu, H. Jifeng, and X. Li

wants to observe of the execution of a program. For example, for a terminating se-
quential program, we are only interested in the initial inputs and final outputs. For a
possible non-terminating program, we need an observable by which we can describe if
the program terminates for some inputs. For concurrent and communicating program,
we would like to observe the possible traces of interactions, divergencies and refusals,
in order to verify if program is deadlock free and livelock free. If we are interested in
real-time programs, we need to observe the time. Identification of what to observe in
different kinds of systems is one of the core ideas of the Unifying Theories of Program-
ming [19].

We call what to be observed of a program P the observables or alphabet of the
program, denoted by α(P) and simply α when there is no confusion. An observable of P
may take different values for different executions or runs, but from the same value space
called the type of the observable. Therefore, an observable is also a variable. Though
not all observables have to appear in a program text, but they are all needed to define
the semantics of the program.

Given an alphabet α, a state of α is a (well-typed) mapping from α to the value
spaces of the observables. A program P with an alphabet α is then defined as a pair
of predicates, called a design and represented as Pre � Post, with free variables in α. It
means that if the value of observables satisfies the precondition Pre at the beginning of
the execution, the execution will generate observables satisfying the postcondition Post,
and thus defined as the implication

(Pre � Post)
def
= Pre ⇒ Post

2.1 Programs as Designs

This subsection briefly shows how the basic programming constructs can be defined as
designs. For details, we refer the reader to [19].

For an imperative sequential program, we are interested in observing the values
of the input variables inα and output variables outα. Here we take the convention that
for each input variable x ∈ inα, its primed version x′ is in an output variable in outα,
that gives the final value of x after the execution of the program. We use a Boolean
variable ok to denote whether a program is started properly and its primed version ok′

to represent whether the execution has terminated. The alphabet α is defined as the
union inα ∪ outα ∪ {ok, ok′}, and a design is of the form

(p(x) � R(x, x′))
def
= ok ∧ p(x)⇒ ok′ ∧R(x, x′)

where

– p is a predicate over inα and R is a predicate over outα,
– p is the precondition, defining the initial states
– R is the postcondition, relating the initial states to the final states.
– ok and ok′: describe the termination, they do not appear in expressions or assign-

ments of program texts

The design represents a contract between the “user” and the program such that if the
program is started properly in a state satisfying the precondition it will terminate in a
state satisfying the postcondition R.

rCOS: Refinement of Component and Object Systems 187

A design is often framed in the form

β : (p � R) def= p � (R ∧ w′ = w)

where w contains all the variables in inα but those in β.
Before we define the semantics of a program, we first define some operations on

designs.

– Given two designs such that the output alphabet of P is the same as primed version
of the input alphabet of Q, the sequential composition

P(inα1, outα1); Q(inα2, outα2)
def= ∃m · P(inα1, m) ∧ Q(m, outα2)

– Conditional choice: (D1 � b � D2)
def= (b ∧ D1) ∨ (¬b ∧ D2)

– Demonic and angelic choice operators:

D1 � D2
def
= D1 ∨ D2 D1 	 D2

def
= D1 ∧ D2

– while b do D is defined as the weakest fixed point

X = ((D; X) � b � skip)

We can now define the meaning of primitive commands program commands as
framed designs in Table 1. Composite statements are then defined by the operations on
designs.

Table 1. Basic commands as designs

command: c design: [[c]] description

skip {} : true � true does not change anything, but termi-
nates

chaos {} : false � true
any thing, including non-terminating,
can happen

x := e {x} : true � x′ = val(e) side-effect free assignment; updates x
with the value of e

m(e; v)
[[var in, out]];

[[in:=e]]; [[body(m)]]; [[v:=out]];
[[end in, out]]

m(in; out) is the signature with input
parameters in and output parameters
out; body(m) is the body command of
the procedure/method

In general, when defining a particular programming language, the preconditions
are usually strengthen with some well-definedness conditions of the commands, and a
program or command c is generally of the form

[[c]]
def
= D(c)⇒ Spec

where Spec is a design. Some of the well definedness conditions may even be dynamic.
Strengthening precondition with well-definedness conditions allows us to treat cor-

recting a unwell-defined command to a well-formed one as refinement. This is essential
to support incremental and iterative development as most cases of unwell-defined are
due to the insufficiency of data or services. Therefore, adding more data, services and
components, without altering the existing ones, will be refinement in our framework.

188 Z. Liu, H. Jifeng, and X. Li

In this article, we will add variables about dynamic typing, visibility, etc, to define
object-oriented programs. This ensures that the logic of rCOS is a conservative exten-
sion to that for imperative programs. Therefore, all the laws about imperative commands
will remain valid without the need of reproving. rCOS can be further extended to deal
with features of communication, interaction, real-time and resources. If we adding vari-
ables for traces, refusals and divergencies into the alphabet, different kinds of seman-
tics of communicating processes can be defined as designs [19,10]. Also, using clock
variables in the alphabet, we can define real-time programs as designs too [43]. It is
possible to further extend rCOS to describe resource consumptions, such as memory
and processor nodes, by introducing resource variables [21].

2.2 Refinement of Designs

The refinement relation between designs is then defined to be logical implication. A
design D2 = (α, P2) is a refinement of design D1 = (α, P1), denoted by D1
 D2, if P2

entails P1 if

∀x, x′, . . . , z, z′ · (P2 ⇒ P1)

where x, x′, . . . , z, z′ are variables contained in α. We write D1 = D2 if they refine each
other.

If they do not have the same alphabet, we can use data refinement. Let ρ be a map-
ping from α2 to α1. Design D2 = (α2, P2) is a refinement of design D1 = (α1, P1) under
ρ, denoted by D1
ρ D2, if (ρ; P1)
 (P2; ρ). It is easy to prove that chaos is the worst
program, i.e. chaos
 P for any program P. For more algebraic laws of imperative pro-
grams, please see [19].

The following theorem is the basis for the fact that the notion of designs can be used
for defining a semantics of programs.

Theorem 1. The notion of designs is closed under programming constructors:

((p1 � R1); (p2 � R2)) = ((p1 ∧ ¬(R1;¬p2)) � (R1; R2))
(p1 � R1) � (p2 � R2) = (p1 ∧ p2) � (R1 ∨R2)
(p1 � R1) 	 (p2 � R2) = (p1 ∨ p2) � ((p1 ⇒ R1) ∧ (p2 ⇒ R2))
((p1 � R1) � b � (p2 � R2)) = ((p1 � b � p2)) � (R1 � b � R2)

3 Object Systems

In this section we introduce to the syntax and semantics of rCOS for object systems.

3.1 Syntax

In rCOS, an object system (or program) S is of the form Cdecls •Main, consisting of
class declaration section Cdecls and a main method Main. The main method is a pair
(glb, c) of a finite set glb of global variables declaration and a command c. The class

rCOS: Refinement of Component and Object Systems 189

declaration section Cdecls is a finite sequence of class declarations cdecl1; . . . ; cdeclk,
where each class declaration cdecli is of the following form

[private] class M [extends N] {
private U1 a1 = u1, . . . , Um am = um;
protected V1 b1 = v1, . . . , Vn bn = vn;
public W1 d1 = w1; . . . Wk dk = wk;
method m1(T11 x1; T12 y

1
; T13 z1){c1};

· · · ;
m�(T�1 x�; T�2 y

�
; T�3 z�){c�}

}

Note that

– Each part in the body of the declaration is optional too.
– A class can be declared as private or public, but by default it is assumed to be

public. We can understand the class section as a Java-like package and Main as
an application program using the package. Only a public class or a primitive type
can be used in the global variable declarations glb of Main. Later in Section 4.1,
structural refinement laws allow us to add, delete, change (e.g. adding, deleting or
changing attributes or methods), decomposing or composing private classes and as-
sociations among them without changing the behaviour of the system. Refinement
is also allowed for consistent change in public classes and the main method.

– N and M are distinct names of classes, and M is called the direct superclass of N.
– Attributes annotated with private are private attributes of the class, and similarly,

the protected and public declarations for the protected and public attributes. Types
and initial values of attributes are also given in the declaration.

– The method declaration declares the methods, their value parameters (Ti1 xi), result
parameters (Ti2 y

i
), value-result parameters (Ti3 zi) and bodies (ci). The body of a

method ci is a command that will be defined later.

We will use Java convention to write a class specification, and assume an attribute pro-
tected when it is not tagged with private or public. We have these different kinds of
attributes to show how visibility issues can be dealt with. We can have different kinds
of methods too for a class. However, we omit the declaration of private or public meth-
ods for the simplicity of the theory. Instead, we assume all methods are public and can
be inherited by a subclass.

Symbols

To make the presentation precise we assume the following disjoint infinite sets of sym-
bols,

– VNAME denotes the set of symbols of variables names and we use x, y, and z and
their versions with subscripts when we talk about arbitrary variables.

– CNAME is used for the set of class names. We use C, D, M and N with possible
subscripts to range over this set.

– ANAME is the set of symbols to be used as names of attributes, ranged over by a
with possible subscripts.

190 Z. Liu, H. Jifeng, and X. Li

Commands

rCOS supports typical object-oriented programming constructs, but it also allows some
commands for the purpose of specification and refinement:

c ::= skip | chaos | var T x = e | end x | c; c | c � b � c | c � c
| b ∗ c | le.m(e, v, u) | le := e| C.new(x)

where b is a Boolean expression e is an expression, and le is an expression which may
appear on the left hand side of an assignment and is of the form le ::= x | le.a where x

is a simple variable and a an attribute. Unlike [41] that introduces “statement expres-
sions”, we use le.m(e; v; u) to denote a call of method m of the object denoted by the
left-expression le. Expressions e, v and u are the actual value input parameters result
parameters and actual value-result parameters, respectively. They can be changed dur-
ing the execution of the method call and with final output returned in the actual result
and value-result parameters. The command C.new(x) is to create a new object of class C
with the initial values of its attributes as declared in C and assign it to variable x. Thus,
C.new(x) uses x with type C to store the newly created object.

Expressions

Expressions, which can appear on the right hand sides of assignments, are constructed
according to the rules below.

e ::= x | a | null | e.a | (C)e | f(e)

where null represents the special object of the special class NULL and has null as its
unique object, e.a is the a-attribute of e, and (C)e is type casting. Notice that we do not
define NULL as a subclass of any other class as we do not allow multiple inheritance.

3.2 Semantics

rCOS adopts an observation-oriented and relational semantics. To formalize the behav-
ior of an object-oriented program, we have to take into account the following features:

– A program operates not only on variables of primitive types, such as integers,
Boolean values, but also on objects of reference types.

– To protect attributes from illegal accesses, the model has to address the problem of
visibility of attributes to the environment.

– An object can be associated with any subclass of its originally declared one. To
validate expressions and commands in a dynamic binding environment, the model
must keep track of the current type of each object.

– The dynamic type M of an object can be casted up to any superclass N and later
casted down to any class which is a subclass of N and a superclass of M or M itself.
We therefore need to record both the casted type N and the dynamic type M of the
object.

rCOS: Refinement of Component and Object Systems 191

Static Semantics. The class declaration section Cdecls of a program defines the types
(value space) and static structure of the program:

– pricname: the set {C | C is declared in Cdecls} of the private class names declared in
Cdecls. We also use pubcname to record the sets of names of the public classes in
declared in Cdecls. Let cname be the union of these two sets.

– superclass: the partial function {M → N | Class M extends N is declared in Cdecls},
recording that N is a direct superclass of M. We define the general superclass class
relation � as transitive closure of superclass, and N � M if N � M or N = M.

– pri, prot, and pub: they associate each class name C ∈ cname to its private attributes
pri(C), protected attributes prot(C), and public attributes pub(C), respectively:

pri(C)
def
= {〈a : T, d〉 | T a = d is (declared as) a private attribute of C}

prot(C)
def
= {〈a : T, d〉 | T a = d is a protected attribute of D � C for some D ∈ cname}

pub(C)
def
= {〈a : T, d〉 | T a = d is a public attribute of D � C for some D ∈ cname}

– op: it associates each class C ∈ cname to its set of methods (op)(C)

(op)(C)
def
= {m → (x : T1, y : T2, z : T3, c) |

m(x : T1; y : T2; z : T3){c} is declared as method of C}

We define the following notations

1. The function attr is the union of pri, prot and pub; for each C, attr(C) is the set of
attributes declared in C itself.

2. The function Attr extends attr(C) for each C to include the protected and public
attributes that C inherited from its super classes, i.e. Attr(C) contains all attributes
directly accessible in methods of C.

3. The function AAttr extends attr(C) for each C to include all attributes of C and those
of it superclasses. Thus, AAttr(C) determines the whole state space of an object
of class C and when an object C is created, all attributes in AAttr(C) need to be
initialized.

4. init(C.a) denotes the initial value of attribute a of C.
5. dtype(C.a) denotes the declared type T if 〈a : T, d〉 ∈ AAttr(C). This is used to calcu-

late the declared type of an attribute expression in C inductively:
(a) dtype(a) def= dtype(C.a)

(b) dtype(e.a) def= dtype(dtype(e).a)

We call the tuple 〈cname, superclass, (pri, prot, pub), op〉 a program structure, denoted by
ΩCdecls. We take the whole declaration section as a command which sets up the struc-
ture:

[[Cdecls]]
def
= {ΩCdecls} : true � Ω′

Cdecls = 〈cname, superclass, (pri, prot, pub), op〉

Definition 1. A class declaration section Cdecls is well-defined, denoted D(Cdecls), if
the following conditions hold

1. each class name M ∈ cname and the name of its direct superclass N are distinct,
2. if M ∈ cname and superclass(M) = N, then N ∈ cname,

192 Z. Liu, H. Jifeng, and X. Li

Bank

name
address

w ithD raw (A ccount a, amount)
getBalance(A ccount a, alD)
op enA cc(name, amount)

*

Acount

aN o: integer
balance: integer

getBalance()
w ithD raw (amount)

CA

w ithD raw (amount)

SA

w ithD raw (amount)

Fig. 1. A bank system

3. any type used in declarations of attributes and parameters is either a primitive
built-in type or a class in cname,

4. the superclass relation � is acyclic,
5. any attribute of a class is not redeclared in its subclasses, i.e. we do not allow

attribute hiding and alias in a subclass3,
6. the names of the attributes of each class are distinct,
7. the names of the methods of each class and the names of parameters of each meth-

ods are distinct respectively.

A well-defined declaration section corresponds to a UML [4] class diagram, and thus it
and its semantics can be used for formalisation of UML class diagrams, such as the one
in Figure 1. For related work on formal support to UML-based development, we refer
to our work in [32,33,47].

Type, Values and Objects. We assume a set T of built-in primitive types. We also
assume an infinite set REF of object identities (or references), and null ∈ REF. A value
is either a member of a primitive type in T or an object identity in REF with its dynamic
typing information. Let the set of values be

VAL
def=

⋃
T ∪ (REF× CNAME)

For a value v = 〈r, C〉 ∈ REF× CNAME, we use ref(v) to denote r and type(v) to denote C.

Definition 2. An object o is either the special object null, or a structure 〈r, C, σ〉, where

– reference r, denoted by ref(o), is in REF,
– C, denoted by type(o), is a class names.
– σ is called the state of o, denoted by state(o), and it is a mapping that assigns each

a ∈ AAttr(C) to a value in dtype(a) if dtype(a) ∈ T and otherwise to the null object
or a value in REF× CNAME. We use o.a to denote σ(a)

3 If we allow attribute hiding and alias, we have to introduce special object variables this and
super. We not consider this problem in this paper.

rCOS: Refinement of Component and Object Systems 193

We extend the equality relation on values to the relation on both values and objects

(v1 = v2)
def
=

(
(type(v1) = type(v2) ∧ type(v1) ∈ T ∧ (v1 = v2))∨
∀a ∈ AAttr(type(v1)) · (v1.a = v2.a)

)

Notice that this equality ignores the references of objects, but only concerns about the
structure and the primitive attributes of the objects in the structure.

Some Notations. Let O be the set of all objects, including null. The following notations
will be employed in the semantics definitions.

– For a non-empty finite sequence of elements s = 〈s1, .., sk〉, we define the head
element head(s) = s1, and the tail sequence tail(s) = 〈s2, .., sk〉.

– For sets S and S1, S1 � S is the set difference removing elements in S1 from S. Let
� have higher associativity than the normal set operators like ∪ and ∩.

– For a mapping f : D −→ E, d ∈ D and r ∈ E,

f ⊕ {d → r} def
= f ′ where f ′(b)

def
=

{ r, if b = d;
f(b), if b ∈ {d}� D.

– For an object o = 〈r, M, σ〉, an attribute a of M and a value d,

o⊕ {a → d} def
= 〈r, M, σ ⊕ {a → d}〉

– For a set S ⊆ O of objects,

S � {〈r, M, σ〉} def
= {o | ref(o) = r}� S ∪ {〈r, M, σ〉}

ref(S)
def
= {r | r = ref(o), o ∈ S}

For a given class declaration section Cdecls, we use ΣCdecls to denote the set of all
objects of the classes declared in Cdecls, called the object space of Cdecls. ΣCdecls
corresponds to the set of all UML object diagrams [4] of the UML class diagram of
Cdecls [32]. We call the pair (ΩCdecls, ΣCdecls) a program context and denote it by
ΞCdecls. When there is no confusion, we omit the subscript Cdecls from these notations.
All the dynamic semantic definitions in the rest of this section are given under a fixed
context, that is defined by a given class declaration section. Therefore the evaluation
value(e) of an expression e is carried out in the context Ξ and the semantics [[c]]Ξ defines
the state change by the execution of c in the context Ξ.

Dynamic Semantics. In rCOS, we define the behavior of an object program by a
design over a set of observables or state variables. We first identify the state variables
and define their states.

Variables. Now we look at what variables can be changed during the execution of the
program.

194 Z. Liu, H. Jifeng, and X. Li

System Configuration. First, we introduce a variable Π whose value is the set of objects
created so far. We call Π the current configuration of the program in [41]. During the
execution of the program, the value of Π is set in the powerset 2Σ that satisfies the
following conditions:

1. objects in Π are complete: if o ∈ Π and a ∈ AAttr(type(o)) with a class type, then
o.a is either null or there is an object o1 ∈ Π and ref(o.a) = ref(o1), and

2. Objects are uniquely identified by their references: for any objects o1 and o2 in Π

if ref(o1) = ref(o2) then
(a) type(o1) = type(o2), and
(b) ref(state(o1)) = ref(state(o2)), where for each a : T ∈ AAttr(type(o))

ref(state(o))(a)
def
=

{
ref(o.a) if T ∈ cname
o.a if T ∈ T

When a new object is created or the value of an attribute of an existing object is mod-
ified, the system configuration Π will be changed. For each class C, we use variable
Π(C) to denote the set of existing objects of class C.

External Variables. A set glb = {x1 : T1, . . . , xk : Tk} of variables with their types are
declared in the main method of the program, where each type Ti is called the declared
type of xi, denoted as dtype(xi), and it is either a built-in primitive type or a public class
in pubcname. Their values will be modified by methods and commands of the main
method containing them.

Local Variables. A set localvar identifies the local variables which occur in the local
variable declaration and undeclaration commands. This set includes self whose current
value represents the current active object, parameters of methods of classes, and other
variables introduced by the local declaration command. We assume that localvar and glb
are disjoint.

Because method calls may be nested inside a method body, self and a parameter of
a method may be declared a number of times with possible different types before it
is undeclared. A local variable x has a sequence of declared types and is syntactically
represented in the form of (x : 〈T1, . . . , Tn〉). We use TypeSeq to denote the sequence of
types of x, and T1 is the most recently declared type of x and denoted by dtype(x).

We use x as a variable to denote the value of a local variable x. This value comprises
a finite sequence of values, whose first (head) element, which is simply denoted by x

itself, represents the current value of the variable. We use the conventions that x : 〈T〉
and x for x for an external variable x : T ∈ glb.

Visibility. We introduce a variable visibleattr to hold the set of attributes which are vis-
ible to the command under execution. There the value of visibleattr defines the current
execution environment. Before executiing a method of an object o, visibleattr is set to set
Attr(o) of the attributes of the current type of o, including all the declared attributes of
the class, the protected and public attributes of its super classes and all public attributes
of public classes; and it will be reset to the global environment consisting of all the
public attributes of the public classes after the execution of the method. We will de-
fine auxiliary commands that set and reset the execution environments when we define

rCOS: Refinement of Component and Object Systems 195

the semantics of a method invocation. Notice that the value space of visibleattr is the
powerset of {C.a | C ∈ CNAME, a ∈ ANAME}.

We use

– var to denote the union of glb and localvar,
– VAR to denote the union of var plus Π and visibleattr, and we call it the set of dynamic

variables,
– glb is the set of elements of VAR excluding those out of glb,
– for a set V of variables, V′ to denote the set of the primed versions of the variables

of V.

States. We now define the notion of states in the object-oriented setting.

Definition 3. For a program S = Cdecls •Main, a (dynamic) state of S is a mapping Γ

from the variables VAR to their value spaces that satisfies the following conditions:

1. If x ∈ VAR and dtype(x) ∈ T then Γ (x) is a value in dtype(x),
2. If x ∈ VAR and dtype(x) ∈ cname then Γ (x) is

(a) either null, or
(b) a value in v ∈ REF× CNAME such that there exists an object o ∈ Γ (Π) for

which ref(o) = ref(v) and type(o) � type(v).
This attachment of an object o to a variable x provides the information about
type casting: type(o) is the current (based) type of x, denoted as atype(x), and
type(v) is the casted type of x.

Two states Γ1 and Γ2 are equal, denoted by Γ1 = Γ2, if

1. Γ1(x) = Γ2(x) for any x ∈ VAR such that dtype(x) ∈ T ,
2. for any x ∈ VAR and dtype(x) ∈ cname

(a) Γ1(x) = null if and only if Γ2(x) = null, and
(b) if oi ∈ Γi(Π) and ref(Γi(x)) = ref(oi), then type(Γ1(x)) = type(Γ2(x)) and

o1 = o2.

For state Γ and a subset V ⊆ VAR, Γ (Π↓V) projects Π onto V and it is defined as follows:

1. if x : C ∈ V, C ∈ cname, o ∈ Γ (Π) and ref(Γ (x)) = ref(o), then o ∈ Γ (Π↓V)
2. if o ∈ Γ (Π↓V) and a is an attribute of type(o) with a class type, o1 ∈ Γ (Π) and

ref(o.a) = ref(o1), then o1 ∈ Γ (Π↓V)
3. Γ (Π↓V) only contains objects constructed from Γ (Π) and the values of the external

variables following the above two rules.

In particular, when we restrict a state Γ on the external variables glb and projects Π

onto these variables, we obtain an external state in which all objects in the system con-
figuration are attached to variables. Therefore, the restriction plays the role of garbage
collection.

For a given state, each expression e, visible(e) is true if and only if one of the fol-
lowing conditions holds:

196 Z. Liu, H. Jifeng, and X. Li

1. e is a declared simple variable x ∈ var, or
2. e ≡ self.a and there exists a class name N ∈ cname such that N � atype(self) and

N.a ∈ visibleattr, or
3. e is of the form e1.a and e1 is not self such that visible(e1), there exists a N � type(e1)

and N.a ∈ visibleattr.

Condition (2) says that if type(self) is C and atype(self) is D, then the attributes of D can
be accessed in the method bodies of the methods D which are inherited or over rewritten
from the casted class C. Condition (3) ensures an attribute of an object other than self
can be directly accessed if and only if it is an attribute in the casted type, i.e. the type of
the expression itself. This would become clearer after understanding the semantics of a
method invocation.

3.3 Evaluation of Expressions

The evaluation of an expression e under a given state determines its type type(e) and its
value that is a member of type(e) if this type is a built-in primitive type, otherwise a value
in REF× CNAME. The evaluation makes use of the system configuration. An expression
can only be evaluated when it is well-defined. Some well-definedness conditions are
static that can be checked at compiling time, but some are dynamic. The evaluation
results of expressions are given in Table. 2, where we only give an example (at the
bottom of the table) about well-defined expression on built-in primitive types.

Notice the definition of type casting (C)e requires that the base type e be a subclass
of C. This is implemented in Java by the testing command C.class.isInstance(e). This
covers all the following both casting up when the casted type type(e) is a subclass of C
too, and casting down when type(e) is superclass of C.

Semantics of Commands. A typical aspect of an execution of an object-oriented pro-
gram is about how objects are to be attached to program variables (or entities [38]).
An attachment is made by an assignment, the object creation of an object or passing a
parameter in a method invocation. With the approach of UTP, these different cases are
unified as an assignment of a value to a program variable. Also, all other programming
constructs will be defined in exactly the same way as their counter-parts in a procedural
language. We only define the commands which are typical for object-orientation and
the definition for the other commands remains same as in the imperative programming
as we introduced in Section 2, provided they are well-defined. The semantics [[c]] of each
command c has its well-defined condition D(c) as part of its precondition and thus has
the form of D(c) ⇒ (p � R) or D(c) ∧ p � R.

Assignments. An assignment le := e is well-defined if both le and e are well-defined
and current type of e matches the declared type of le

D(le := e)
def
= D(le) ∧ D(e) ∧ (type(e) ∈ cname⇒ (e = null) ∨ (type(e) � dtype(le)))

Notice that the well-definedess checking here includes dynamic type matching. How-
ever, for a language with strong typing, the strong static typing condition would be

rCOS: Refinement of Component and Object Systems 197

Table 2. Evaluation of Expressions

Expression Evaluation

null D(null)
def
= true, type(null)

def
= NULL, ref(null)

def
= null

x

D(x)
def
= visible(x) ∧ (dtype(x) ∈ T ∨ dtype(x) ∈ cname)
∧ dtype(x) ∈ T ⇒ head(x) ∈ dtype(x)
∧ dtype(x) ∈ cname ⇒

ref(head(x)) ∈ ref(Π(dtype(x)))

type(x) def=
{

dtype(x) dtype(x) ∈ T
type(head(x)) otherwise

le.a

D(le.a)
def
= D(le) ∧ le �= null

∧ dtype(le) ∈ cname ∧ visible(le.a)

type(le.a) def= type(state(le)(a))

ref(le.a)
def
= ref(state(le)(a))

(C)e
D((C)e)

def
= D(e) ∧ type(e) �∈ T ∧ atype(e) � C

type((C)e)
def
= C

ref((C)e)
def
= ref(e)

e/f
D(e/f)

def
= D(e) ∧ D(f) ∧ dtype(e) = Real
∧ dtype(f) = Real ∧ value(f) �= 0

value(e/f)
def
= value(e)/value(f)

enough dtype(e) � dtype(le), as it implies type(e) � dtype(le). Also, together with the
well-definedness D(e), when e is an object D(le := e) ensures that atype(e) � dtype(le).

There are two cases of assignment. The first is to (re-)attach a value to a variable
(i.e. change the current value of the variable), but this can be done only when the type of
the object is consistent with the declared type of the variable. The attachment of values
to other variables are not changed.

[[x:=e]]
def
= {x} : D(x:=e) � (x′ = 〈value(e)〉 · tail(x))

As we do not allow attribute hiding or redefinition in subclasses, the assignment to a
simple variable has not side-effect, and thus the Hoare triple

{o2.a = 3} o1 := o2 {o1.a = 3}

is valid in our model, where o1 : C1 and o2 : C2 are variables, C2 � C1 and a : Int is
protected attribute of C1. This has made the theory simpler than the Hoare-Logic based
semantics for object-oriented programming in [41].

The second case is to modify the value of an attribute of an object attached to an
expression. This is done by finding the attached object in the system configuration Π
and modifying its state accordingly. Thus, all variables attached to the reference of this
object will be updated.

[[le.a := e]]
def
= {Π(dtype(le))} : D(le.a:=e) �(

Π(dtype(le))′ = Π(dtype(le))�
{o⊕ {a → value(e)} | o ∈ Π ∧ ref(o) = ref(le)}

)

198 Z. Liu, H. Jifeng, and X. Li

For example, let x be a variable of type C such that C has an attribute d of D and D
has an attribute a of integer type. x.d.a := 4 will change state of x = 〈r1, C, {d → r2}〉,
where reference r2 is the identity of 〈r2, D, {a → 3}〉 to x = 〈r1, C, {d → r2}〉, but the r2

is now the identity of the object 〈r2, D, {a → 4}〉.
This semantic definition shows the side-effect of an assignment and does reflect the

object-oriented feature pointed out by Broy in [6] that an invocation to a method of
an object which contains such an assignment or an instance creation defined later on,
changes the system configuration Π .

Law 1. (le := e; le := f(le)) = (le := f(e))

Law 2. (le1 := e1; le2 := e2) = (le2 := e2; le1 := e1), provided le1 and le2 are distinct
simple names which do not occur in e1 or e2.

Note that the law might not be valid if lei are composite expressions. For instance, the
following equation is not valid when x and y have the same reference:

(x.a := 1; y.a := 2) = (y.a = 2; x.a = 1)

Object Creation. The C.new(le) is well-defined if

C ∈ cname ∧ D(le) ∧ dtype(le) � C

The command creates a new object, attaches the object to x and set the initial values of
the attributes to the attributes of x too.

[[C.new(le)]]
def
= {le, Π(C)}:

D(C.new(le)) � ∃r �∈ ref(Π)·(AddNew(C, r) ∧Modify(le))

where

AddNew(C, r)
def
= Π(C)′ = Π(C)
∪ {〈r, C, {ai → init(C.ai)}〉 | ai ∈ AAttr(C)}

Modify(le)
def
=

⎛

⎝
le ∈ localvar ∧ le

′
= 〈r, C〉 · tail(le)∧

TypeSeq′(le) = 〈C〉 · tail(TypeSeq(le))
∨ le �∈ localvar ∧ {le} : true � (le′ = (r, C))

⎞

⎠

Here we assume if dtype(C.ai) = M, the assignment ai → init(C.ai) is ai → M.new(C.ai).
For creation of objects, we have the following laws

Law 3. C1.new(x); C2.new(y) = C2.new(y); C1.new(x), provided x and y are distinct.

Law 4. If x is not free in the Boolean expression b, then

C.new(x); (P � b � Q) = (C.new(x); P) � b � (C.new(x); Q)

Local Variable Declaration and Undeclaration. Command var T x = e declares a vari-
able and initialises it:

[[var T x = e]]
def
= {x} : D(var T x = e) �

(x′ = 〈value(e)〉 · x) ∧ TypeSeq′(x) = 〈T〉 · TypeSeq(x)

rCOS: Refinement of Component and Object Systems 199

where

D(var T x = e)
def
= (x ∈ localvar) ∧ D(e) ∧ type(e) �∈ T ⇒ type(e) � T

We define [[var T x]]
def
= �d∈T[[var T x = d]].

Command end terminates the block of permitted use a variable:

[[end x]] def= {x}:D(end x) � x′ = tail(x) ∧ TypeSeq′(x) = tail(Tseq(x))

where D(end x)
def
= x ∈ localvar.

Declaration and undeclaration distribute over conditional choice.

Law 5. If x is not free in b, then

var T x = e; (P � b � Q) = (var T x = e; P) � b � (var T x = e; Q)
end x; (P � b � Q) = (end x; P) � b � (end x; Q)

Initialisation becomes void if the declared variable is updated immediately.

Law 6. (var T x = e;x := f)
 var T x = f

Note that the two commands in the above law are not equivalent it is possible that e is
not well-defined.

Assignment to a variable just before the end of its scope is irrelevant if it is well-
defined.

Law 7. (x := e; end x)
 end x

Both declaration and undeclaration are commutative.

Law 8. (var T1 x = e1; var T2 y = e2) = (var T2 y = e2; var T1 x = e1), provided y is
not in e1 and x does not appear in e2.

Law 9. (end x; end y) = (end y; end x)

Law 10. (var T x = e; end y) = (end y; var T x = e), provided y is not in e.

Method Call. For a method signature m(T1 x; T2 y; T3 z), let ve, re and vre be lists of
expressions. Command le.m(ve; re; vre) is well-defined if le is well-defined and it is a
non-null object such that a method m → (T1 x; T2 y; T3 z, c) is in the casted type type(le)
of le:

D(le.m(ve; re; vre))
def
= D(le) ∧ type(le) ∈ cname ∧ (le �= null)
∧ N ∈ cname · N � type(le)
∧ ∃(m → (T1 x; T2 y; T3 z, c)) ∈ op(N)

The execution of this method invocation assigns the values of the actual parameters
v and vr to the formal value and value-result parameters of the method m of the ob-
ject o that le refers to, and then executes the body of m under the environment of the
class owning method m(). After it terminates, the value of the result and value-result
parameters of m are passed back to the actual parameters r and vr.

[[le.m(ve; re; vre)]]
def
= (D(le.m(ve; re; vre)) ⇒

∃C ∈ cname · (atype(le) = C)

∧

⎛

⎜⎜⎝

[[var T1 x = ve, T2 y, T3 z = vre]];
[[var C self = le]];
[[Execute(C.m)]]; [[re, vre := y, z]];
[[end self, x, y, z]]

⎞

⎟⎟⎠

200 Z. Liu, H. Jifeng, and X. Li

where Execute(M.m) sets the execution environment, then executes the body and reset
the environment afterwards. There are the following cases:

Case 1: If m(T1 x; T2 y; T3 z) is not declared in C but in a superclass of C, i.e. there
exists a command c such that (m → (T1 x; T2 y; T3 z, c)) ∈ op(N) for some N � C,
then

Execute(C.m)
def
= ExC(superclass(C).m)

where if m() ∈ op(M) then

ExC(M.m)
def
= Set(C, M); SELFM

C (body(M.m)); Reset

else

ExC(M.m)
def
= ExC(superclass(M).m)

Case 2: If m(T1 x; T2 y; T3 z) is declared in class C itself, that is for some command c
(m → (T1 x; T2 y; T3 z, c)) ∈ op(C), then

Execute(C.m) def= Set(C, C); SELFC
C(body(C.m)); Reset

where
– body(C.m) is the body c of the method being called.
– The design Set(C, M) finds out all attributes visible to class M in order for the

invocation of method m of M to be executed properly, whereas Reset resets the
environment to be the set of variables that are accessible to the main program
only:

Set(C, C)
def
= {visibleattr} : true �

visibleattr′ =

⎛

⎝
{C.a | a ∈ pri(C)}∪⋃

C�N{C.a | a ∈ prot(N) ∪ pub(N)}∪⋃
N∈pubcname{N.a | a ∈ pub(N)}

⎞

⎠

and when C and M are different
Set(C, M)

def
= {visibleattr} : true �

visibleattr′ =

⎛

⎝
{C.a | a ∈ pri(M)}∪⋃

M�N{C.a | a ∈ prot(N) ∪ pub(N)}∪⋃
N∈pubcname{N.a | a ∈ pub(N)}

⎞

⎠

Reset
def
= {visibleattr} : true �

visibleattr′ =
⋃

N∈pubcname{N.a | a ∈ pub(N)}
Set and Reset are used to ensure data encapsulation that is controlled by
visibleattr and the well-definedness condition of an expression.

– The transformation SELFC on a command is defined in Table 3, which adds
a prefix self to each attribute and each method in the command. Notice that
as a method call may occur in a command that will change the execution en-
vironment, therefore after the execution of the nested call is completed the
environment needs to be set back to that of C.

rCOS: Refinement of Component and Object Systems 201

Table 3. The Definition of SELF

c or e SELFM
C (c) or SELFM

C (e)

skip skip
chaos chaos

c1 � b � c2 SELFM
C (c1)
 SELFM

C (b) � SELFM
C (c2)

c1 � c2 SELFM
C (c1) � SELFM

C (c2)

var T x = e T var x = SELFM
C (e)

end x end x

C.new(x) C.new(SELFM
C (x))

le := e SELFM
C (le) := SELFM

C (e)

le.m(ve; re; vre) SELFM
C (le).m(SELFM

C (ve); SELFM
C (re); SELFM

C (vre))

m(ve; re; vre) self.m(SELFM
C (ve); SELFM

C (re); SELFM
C (vre))

c1; c2 SELFM
C (c1); Set(C, M); SELFM

C (c2)

b ∗ c SELFM
C (b) ∗ (SELFM

C (c); Set(C, M))

le.a SELFM
C (le).a

f(e) f(SELFM
C (e))

null null
self self

x
{ self.x, x ∈

⋃
C�N Attr(N)

x, otherwise

Notice that semantics of a method call defines the method binging rules to ensure that

– only a method with a signature declared in the casted type or above the casted type
in the inheritance hierarchy can be accessed, and

– method that is executed is the one defined in the lowest position the inheritance
hierarchy from the current type of the active object.

We did not introduce the syntax super.m to explicitly indicate the call to a method
according to its definition in the superclass. There is no difficulty to introduce super.m
and define its semantics accordingly.

Example 1. To illustrate the semantics of a method invocation, we can consider the
bank system with the UML class diagram in Figure 1. We define Execute(C.m) for the
method withdraw() in the classes of current account and saving account CA and SA. We
assume all classes, except for Bank, are private classes, and further notice that

1. the body of withdraw() in the superclass Account is

balance > x � balance′ = balance− x

2. subclass SA inherits withdraw() from Account, and
3. subclass CA overwrites the body of withdraw() into

balance := balance − x

202 Z. Liu, H. Jifeng, and X. Li

For class CA,

Execute(CA.withdraw) = Set(CA, CA); SELFCA
CA(balance := balance− x); Reset

= visibleattr := {CA.blance, CA.aNo};
self.balance := self.balance − x;
visibleattr := ∅

According to the semantics of a method call to o.withdraw(e), where o is an object of CA,
the execution of this method call first attaches o to self, and then executes the method
according to the semantics of Execute(CA.withdraw) defined above. It shows that the
method is executed according to the current type CA and the method is the method of
the subclass.

For the case of a saving account

Execute(SA.withdraw)
= Set(SA, Account); SELFAccount

SA (Account.withdraw); Reset
= visibleattr := {SA.blance, SA.aNo};

self.balance > x � self.balance′ = self.balance − x;
visibleattr := ∅

Thus, the invocation to a withdraw method of a saving account is executed according to
the definition of the method in the superclass Account. ♣

Semantics of Object Systems. Having defined the semantics of a class declaration
section and a command, we combine them to define the semantics of an object program
(Cdecls •Main).

Recall that Main consists of a set externalvar of the external variables with their types
and a command c. For simplicity but without loss of expressive power, we assume that
any primitive command in c is in one of the following forms:

1. an assignment x := e such that x ∈ externalvar and e does not contain sub-
expressions of the form le.a. That is, we do not allow direct access to object at-
tributes in the main method.

2. a creation of a new object C.New(x) for a variable x ∈ externalvar,
3. a method call x.m(ve; re; vre), where x is a variable in externalvar.

Main is well-defined if the types of all variables in externalvar are either built-in primitive
types or public classes declared in pubcname:

D(Main)
def
=

∧

x∈externalvar

(dtype(x) ∈ pubcname ∨ dtype(x) ∈ T)

The semantics of Main is then defined to be

[[Main]]
def
= D(Main)⇒ [[c]]

Before Main is executed, the well-definedness of the declaration section has to be
checked and the local variables have to be initialised to empty sequences. For this we
define a design Init:

Init
def
= D(Cdecls) � visibleattr′ = ∅ ∧ (Π ′ = ∅)∧∧

x∈var
(x′ =< > ∧TypeSeq′(x) =< >)

rCOS: Refinement of Component and Object Systems 203

Definition 4. The semantics of an object program Cdecls •Main is defined to be the
following sequential composition

[[Cdecls •Main]]
def
= ∃Ω, Ω′, glb, glb′ · ([[Cdecls]]; Init; [[Main]])

This definition of the closed semantics allows us to hide the internal information in
the execution of a program, only observing the relation between the pre-state and post-
state of the external variables whose types are built-in primitive types, and the object
type information of the external variables whose types are declared as classes. We can-
not observe the information of the objects attached to these variables. We have a less
abstract definition for the semantics of an object program.

We define the open semantics [[Cdecls •Main]]o of Cdecls •Main as

∃{Π}� glb, {Π ′} � glb′, Ω, Ω′·
([[Cdecls]]; Init; [[Main]]; [[Π ′ := Π↓externalvar]])

The open semantics allows us to observe the full information about the states of external
variables. We can insert the command Π ′ := Π↓externalvar at any point of the main
method without changing the open and close semantics of a program.

Lemma 1. For any object program S = Cdecls •Main with c as the command in the
main method, we have

1. [[S]] = ∃Π,Π ′ · [[S]]o.
2. If c is of the form c1; c2, let S2 be the program which replaces the command c with

c1; Π ′ := Π↓externalvar; c2, then [[S]]o = [[S2]]o.
3. If c is of the form c1; b ∗ (c2; c3); c4, let S3 be the program which replaces the loop in

Main with b ∗ (c2; Π ′ := Π↓externalvar; c3), then [[S]]o = [[S3]]o.
4. If c is of the form c1; (c2; c3) � b � c4; c5, let S4 be the program which replaces the

conditional choice in Main with (c2; Π ′ := Π↓externalvar; c3) � b � c4, then
[[S]]o = [[S4]]o.

5. If c is of the form c1; (c2; c3) � c4, let S5 be the program which replaces command c

in Main with c1; (c2; Π ′ := Π↓externalvar; c3) � c4, then [[S]]o = [[S5]]o.

4 Object-Oriented Refinement

We would like the refinement calculus to cover not only the early development stages
of requirements analysis and specification but also the later stages of design and im-
plementation. This section presents the results of our exploration on three kinds of
refinement:

1. Refinement relation between object systems.
2. Refinement relation between declaration sections (structural refinement).

We only present the definitions and some laws. For detailed study with proofs, we refer
to the full version of the paper in [16]. The refinement calculus is used in a case study
of the development of a Point of Sale Terminal (POST) [36].

204 Z. Liu, H. Jifeng, and X. Li

4.1 Refinement of Object Systems

We have defined the refinement relation between commands and shown some examples
in the previous section. We now define what we mean by a refinement between two
object programs and then focus on the structural refinement. The notation of structural
refinement is actually an extension to the notion of data refinement [19].

Definition 5. Let Si = Cdeclsi •Maini, i = 1, 2, be object programs which have the same
set of external variables externalvar. S1 is a refinement of S2, denoted by S1 �sys S2, if
the following implication holds:

∀externalvar, externalvar′, ok, ok′ · ([[S1]] ⇒ [[S2]])

Example 2. For any class declaration Cdecls, we have the following:

1. S1 = Cdecls • ({x : C}, C.new(x)) and S2 = Cdecls • ({x : C}, C.new(x); C.new(x)) are
equivalent.

2. We assume class C ∈ pubcname, 〈a : Int, d〉 ∈ attr(C), get(∅; Int z; ∅){z := a} and
update(){a := a + c} in op(C), then

Cdecls • ({x : C, y : Int}, C.new(x);x.update();x.get(y))

and

Cdecls • ({x : C, y : Int}, C.new(x);x.update();x.get(y); C.new(x))

are equivalent.

Proof. We give a proof for item (2) of this example. We denote the first program by S1

and the second by S2. Assume the declaration section is well-defined, as otherwise both
programs are chaos. Then it is easy to check the main methods are both well-defined.
The structural variables Ω are calculated according to the definition. Let d be the initial
value of attribute a of C and σ0 denote the initial state of an object of C when it is
created. We calculate the semantics of S1:

[[C.new(x);x.update(), x.get(y)]]

=
(

true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0〉} ∧ x′ = 〈r, C〉);
[[x.update(); x.get(y)]]

)

=

⎛

⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0〉} ∧ x′ = 〈r, C〉)∧
self′ =<> ∧Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉 | r = ref(x)});
[[x.get(y)]]

⎞

⎠

=

⎛

⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉}∧

x′ = 〈r, C〉) ∧ (self′ =< >);
[[x.get(y)]]

⎞

⎠

=

⎛

⎜⎜⎝

true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉}∧
x′ = 〈r, C〉) ∧ self′ =< >);

true � self′ =<> ∧z′ =<> ∧y′ = d + c∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞

⎟⎟⎠

=

⎛

⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉}∧

x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞

⎠

rCOS: Refinement of Component and Object Systems 205

The semantics [[S1]] hides Ω, Π , self and z by existential quantification. Let [[Cdecls]] be
true � Ω = ∅ ∧Ω′ = Ω0, we have [[S1]] equals to

∃
{

Ω, Ω′, self, self′, z, z′,
visibleattr, visibleattr′

}
· ([[Cdecls]]; Init; [[C.new(x);x.update(), x.get(y))]])

= true � ∃r ∈ REF · x′ = 〈r, C〉 ∧ y′ = c + d

The main method of S2 is the main method of S1 followed by command C.new(x) and
thus its semantics equals

[[C.new(x);x.update(), x.get(y)]]; [[C.new(x)]]

=

⎛

⎜⎜⎝

true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉}∧
x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)};

[[C.new(x)]]

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a → d + c}〉∧
x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)};

true � ∃p �∈ ref(Π) ·Π ′ = Π ∪ {〈p, C, σ0〉} ∧ (x′ = 〈p, C〉)

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

true � ∃r, p ∈ REF · ((p �= r)∧
Π ′ = {〈p, C, σ0〉, 〈r, C, σ0 ⊕ {a → d + c}〉}∧
x′ = 〈p, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞

⎟⎟⎠

Hiding the internal variables, [[S2]] equals

true � ∃p ∈ REF · x′ = (p, C) ∧ y′ = c + d

Thus, we have proved, S1 and S2 refines each other.

However, If we change the main methods of these two programs by adding another
x.get(y) to the end of both of them. They are not equivalent anymore. The final value of
y for the first program remains will be still d + c, but for the second one, the final value
of y gets the initial value d after the execution. ♣

The discussion at the end of the example shows that program refinement is not quite
compositional. In other words, for two main methods, Maini = (externalvar, ci), i = 1, 2,

Cdecls1 •Main1 �sys Cdecls2 •Main2

does not in general imply

Cdecls • (externalvar, c1; c) �sys Cdecls • (externalvar, c2; c)

The main reason for this is the global internal variable Π is hidden in the semantics. In
fact any program that has internal variables does not have such compositionality.

Theorem 2. Let Cdecls •Main, C be a public class declared in Cdecls and Cdecls1 be
obtained from Cdecls by changing C to a private class. Then if C is not referred in Main,

Cdecls •Main =sys Cdecls1 •Main

where =sys is the equivalence relation �sys ∩
sys.

The relation �sys is reflexive and transitive.

206 Z. Liu, H. Jifeng, and X. Li

4.2 Structure Refinement

The proof in Example 2 shows that the local variables and visibleattr of a program are
constants after each method invocation. When the main methods in the programs are
syntactically identical, the relation between their system states is determined by the
relation between the structure of these programs, i.e. their class names, attributes, sub-
superclass relations, and methods in the classes.

An object-oriented program design is mainly about designing classes and their
methods, and a class declaration section can in fact support many different application
main programs. The rest of this section focuses on structural refinement.

Definition 6. Let Cdecls1 and Cdecls2 be two declaration sections. Cdecls1 is a refine-
ment of Cdecls2, denoted by Cdecls1 �class cdecls2, if the former can replace the later
in any object system:

Cdecls1 �class Cdecls2
def
= ∀Main · (Cdecls1 •Main �sys Cdecls2 •Main)

Intuitively, it states that Cdecls1 supports at least the same set of services as Cdecls2. It is
obvious that �class is reflexive and transitive. We use =class to denote the equivalence
relation �class ∩
class. When there is no confusion, we omit the subscript when we
discuss about structural refinement.

A structural refinement does not allow to change the main method. So every public
class in Cdecls2 has to be declared in the refined declaration section Cdecls1, and every
method signature in a public class of Cdecls2 has to be declared in Cdecls1, otherwise
there are main methods which are well-defined under Cdecls2 but not under Cdecls1.
Also recall that a main method only change objects by method invocations to public
classes.

In the full version of rCOS for object systems [16], we have shown how struc-
tural refinement between two class declaration sections by structural transformations
and upwards and downwards simulations of public class methods. A structural trans-
formation between two declaration sections is actually a transformation between the
corresponding UML class diagrams of the declaration sections. In [16], a proof is given
to show that the two classes diagrams (class declaration sections) in Figure 2 refine each
other if C is the only public class.

4.3 Laws of Structural Refinement

The following refinement laws capture the basic principles in object-oriented design
and decomposition, and can be used to prove general object-oriented design patterns
within the UML framework:

1. Adding a class declaration: this allows us to add a class into the class diagram,
sequence diagrams and state machines of the methods of the new class.

2. Introducing a fresh private attribute to a class: this corresponds to adding a fresh
attribute of a primitive type to the class or adding a directed association from the
class to another in the class diagram.

3. Promoting a private attribute of a class to a protected attribute, and a protected at-
tribute to a public attribute: the same refinements can be applied to a class diagram.

rCOS: Refinement of Component and Object Systems 207

C

o :C1

get(Ø,x,Ø){
o.get (Ø,x,Ø)}

update(x, Ø,Ø){
o.update (x,Ø,Ø)}

C

o :C1

get(Ø,x,Ø){
o.get (Ø,x,Ø)}

update(x, Ø,Ø){
o.update (x,Ø,Ø)}

C1

a:Int
b: Int

get(Ø,x,Ø){x:=a}
update(x, Ø,Ø){a:=a+x}

C2

o3 :C3
o4 :C4
o5 :C5

get(Ø,x,Ø){
 var Int y ; o3.get (Ø,y ,Ø);

o4.get (Ø,x,Ø);x:=x+ y ;
 end y }
update(x, Ø,Ø){

o3.update (x,Ø,Ø) []
o4.update (x,Ø,Ø)}

C3

a3 :Int

get(Ø,x,Ø){x:=a3 }
update(x, Ø,Ø){a3 :=a3 +x}

C4

a4 :Int

get(Ø,x,Ø){x:=a4 }
update(x, Ø,Ø){a4 :=a4 +x}

C5

a5 :Int

get(Ø,x,Ø){x:=a5 }
update(x, Ø,Ø){a5 :=a5 +x}

Cdecls 1 Cdecls 2

Fig. 2. Example of Structural Refinement

4. Adding a fresh method into a class: this allows us to add a method signature into the
class in the class diagram, and add a sequence diagram, modify the state machine
to incorporate this method. The newly added methods must not violate any state
constraint required by the model.

5. Refining the body command of a method m(){c} in a class: this leads to the re-
placement of the subsequence diagrams corresponding to the occurrences of m(),
and refine the actions of transitions with m() as the triggering event in the state
machine of the class.

6. Introducing inheritance: If none of the attribute of class N is defined in class M or
any superclass of M, we can make M a direct superclass of N.

7. Moving some attributes from a class to its direct superclass.
8. Introducing a fresh superclass to a class: If M is not in the class declaration, we can

introduce M and make it a superclass of an existing class N.
9. Moving common attributes of classes which are direct subclasses of a class to the

superclass.
10. Moving a method from a class to its direct superclass.
11. Copying (not removing) a method of a class to its direct subclass.
12. Removing unused attributes: for a private attribute, it can be removed if it does not

appear in any method of the class; for a protected attribute, it can be removed if
it does not appear in any method of the class or any of its subclasses; for a public
attribute, it can be removed if it does not appear in any method. This is because the
main method does not access attributes directly.

208 Z. Liu, H. Jifeng, and X. Li

We can also refine a class diagram by flattening it into a diagram without inheritance
relations between classes. Refinement rules are also available for the object-oriented
design patterns. General Responsibility Assignment Software Patterns (GRASP) [25] is
a frequently used object-oriented design technique. We have used the facade controller
in a requirement specification. One of the most important design patterns is called the
expert pattern, which shows how part of a functionality of a class can be delegated to
another class:

Law 11. (Expert) If a method of a class contains a subcommand that can be real-
ized by a method of another class, we can replace that subcommand with a method
invocation to the of the latter class (see Figure 3).

1n{c[c (o.x)]}

N
o

N

n{c[o.m]}

M

x

1m{c (x)}

M

x

1m{c (x)}

o

Fig. 3. Expert Pattern

Note that the sequence diagrams and state machines involving N :: m() are refined
accordingly. They are not shown here due to the length limit of this paper.

The Low-Coupling Pattern of GRASP, on the other hand, can help us remove un-
necessary associations to reduce the coupling between classes and simplify reuse and
maintenance.

Law 12. (Low Coupling) A call from one class to a method of another can be realized
via a third class that is associated with these two classes. This is shown in Figure 4.

M1

m1{c[o1.m3()]

M2

M3

m3()

o2

o3

o1
o: M1 o.o2.o3=o.o1.

m2{o3.m3()}

M2

M3

m3()

o3

M1

m1{c[o2.m2()]

o2

Fig. 4. Low Coupling Pattern

The High-Cohesion Pattern corresponds to the principle to decompose a complex class
into several related classes. A highly cohesive design makes reuse and maintenance
more flexible.

Law 13. (High Cohesion) Assume two methods m1() and m2() in a class M and m1
does not depend on m2 (though m2() may call m1()), we can decompose the class into
three associated classes so that the original class M only delegates the functionalities
to the newly introduced classes. There are two ways of doing this, as shown in Figure 5.

rCOS: Refinement of Component and Object Systems 209

 M 2

o : M (o . o = o . o . o) .
1 2 1

1 1

M 1

22 2m {o . .m }

y
 1 1

2m {c . [o . m] } 2 1 1

x
m {c (x)}

M o

 1

2

1

2 1
m {c [m]}
m {c (x)}

y
x

M

m {o . .m } 1 1 1

o
1

o
2

M

 M 2

22 2m {o . .m }

1 1

M 1

2

M

m {o . .m } 1 1

 1

2

1

2 1
m {c [m]}
m {c (x)}

x
m {c (x)}

y
x

M

m { c [o . m] } 2 1 1

m {o . m } 1 1 1

y

o

o 1

2

2

(a) (b)

Fig. 5. High Cohesion pattern

The case (a) in Law 13 requires M to be coupled with both M1 and M2; and in case (b)
M is only coupled with M2, but more interactions are needed between M2 and M1.

The other design patterns in [13], such as Adaptor Pattern, Observer Pattern, Strat-
egy Pattern and Abstract Factory Pattern can also be formalized.

In fact the laws above are also reversible and thus can be used for re-engineering.
This also implies the result in [5] that every object-oriented program can be converted
back to a normal form specification corresponding to an imperative program. Moreover,
such a normal form in our framework corresponds to the requirement specification in
terms of use cases [26,32]. In [25,29], the five GRASP patterns are systematically used
for the development of a case study.

5 Component Systems

Using components to build and maintain software systems is not a new idea. How-
ever, it is today’s growing complexity of these systems that forces us to turn this idea
into practice [45,9,18]. While component technologies such as COM, CORBA, and
Enterprise JavaBeans are widely used, there is so far no agreement on standard tech-
nologies for designing and creating components, nor on methods for composing them.
Finding appropriate formal approaches for specifying components, the architectures for
composing them, and the methods for component-based software construction, is cor-
respondingly challenging. In this section, we consider a contract-oriented approach to
the specification, design and composition of components. Component specification is
essential as it is impossible to manage change, substitution and composition of compo-
nents if components have not been properly specified.

5.1 Introduction

When we specify a component, it is important to separate different views about the
component. From its user’s (i.e. external) point of view, a component Comp consists

210 Z. Liu, H. Jifeng, and X. Li

of a set of provided services [45]. The syntactic specification of the provided services
is described by an interface, defining the operations that the component provides with
their signatures. This is also called the syntactic specification of a component. COM and
CORBA use IDL, and JavaBeans uses Java Programming Language to specify compo-
nent interfaces. Such a syntactic specification of a component does not provide any in-
formation about the effect, i.e. the functionality of invoking an operation of a component
or the behavior, i.e. the temporal order of the interface operations, of the component.

For the functional specification of the operations in an interface, it is however nec-
essary to know the conceptual state of the component. Consequently, the interface spec-
ification contains a so-called information model [9,11]. In the context of such a model,
we still specify an operation m by a design p(x) � R(x, x′) that is seen as a contract
between the component and its client [9,18]. This definition of a contract also agrees
with that of [39,40]. To use the service m, a client has to ensure the pre-condition p(x),
and when this is true the component must guarantee the post-condition Q. We then de-
fine a contract of an interface by associating the interface with a set of features that we
will call fields and assigning each a design MSpec(m) to each interface operation m. The
types of the fields are given in a data/class model.

The contract for the provided interface of a component allows the user to check
whether the component provides the services required by other components in the sys-
tem, without the need to know the design and implementation of the component. It also
commits (or requires) the designers of the component who have to design the com-
ponent’s provided services. A designer of the component under consideration (CuC)
may decide to use services provided by other components. These services are called
required services [45] of CuC. Components that provide the required services of CuC
can be built by another team or bought as a component-off-the-shelf (COTS). To use
a component to assemble a system, one needs to know the specifications of both its
provided and required services.

We will specify the design of a component by giving each operation m in the pro-
vided interface a program specification text MImpl(m) in rCOS. In MImpl(m), calls to
operations in a required interface are allowed. We can then verify whether MImpl(m)
refines the specification of m given in a contract of the provided interface. The verifier
of a component needs to know the contracts of the provided interfaces, the contracts of
the required interfaces, and the specification text for each operation m of the provided
interface. We can thus understand a component as a relation between contracts of the
required interfaces and contracts of the provided interface: given a contract for each
required interface, we can calculate a design of an m from MImpl(m) and check whether
it conforms to the specification MSpec(m) defined by the contract of the provided inter-
face. A design of a component can be further refined into an implementation by refining
the data/class model and then operation specifications MImpl(m).

A component assumes an architectural context defined by its interfaces. We connect
or compose two components Comp1 and Comp2 by linking the operations in the provided
interface of one component to the matching operations of a required interface of another.
For this, we have to check whether the provided interface of component Comp1 contains
the operations of a required interface of component Comp2, and whether the contract of
the provided interface of Comp1 meets the contract of the required interface of Comp2.

rCOS: Refinement of Component and Object Systems 211

If Comp1 and Comp2 match well, the composition Comp1||Comp2 forms another compo-
nent. The provided interface of Comp1||Comp2 is the merge of the provided interfaces of
Comp1 and Comp2. The required interfaces of Comp1||Comp2 are the union of required
interfaces of Comp1 and Comp2, excluding (by hiding) the matched interfaces of Comp1

and Comp2. For defining composition, interfaces can be hidden and renamed.
A component is also replaceable, meaning that the developer can replace one com-

ponent with another, may be better, as long as the new one provides and requests the
same services. A component is better than another if it can provide more services, i.e.
the contracts for its provided interfaces refine those of the other, with the same required
services. Component replaceability is based on the notion of component refinement.

In this section we present a model of components that allows us to

– describe and check the syntactic dependency and composability among compo-
nents in terms of interfaces,

– specify and reason about function composability and substitutability of a compo-
nent in terms contracts,

– correctness and substitutability of component designs and implementation with re-
spect the contract specification of the component.

We leave the specification, correctness and substitutability of interaction protocols of
components in future work.

5.2 Interfaces

An interface I is a set of operation (or method) signatures m(U x; V y; W z), where m is
called the name of the operation. An interface can be specified as a family of operation
signatures in the following format:

Interface I {
Method : m1(U1 x1; V 1 y

1
; W 1 z1);

. . . ;
mk(Uk xk; V k y

k
; W k zk)

}

Merge Interfaces

It is often the case that there are a number of components, each providing a part of the
operations in the required interface of another component. We thus need to merge these
components to provide one single interface to match the interface required by the other
component.

Two interfaces I1 and I2 are composable provided that every operation name that
appears in both I1 and I2 must be declared with the same signature. This condition is
not too restrictive as to use a component designed for an application in another or spe-
cialize a generic component for a special application, renaming or adding a connector
component [2,42] can be used to customize the component.

Definition 7. Let {Ik : | k ∈ K} be a finite family of composable interfaces. Their merge
�k∈KIk is defined by �k∈KIk

def
= ∪k∈KIk.

212 Z. Liu, H. Jifeng, and X. Li

5.3 Contracts

Only a syntactic specification of its interface is not enough for the use or the design
of a component. We also need to specify the effect, i.e. the functionality, of invoking
an interface operation. This requires one to associate the interface to a conceptual state
space, and a specification of how the states are changed by the operation under certain
pre-conditions. We view such a functional specification of an interface as a contract
between the component client and the component developer. The contract is the spec-
ification of the component that the developer has to implement. The contract is also
between a user of the component and a provider of an implementation of the inter-
face: the component has to provide the services promised by the specification provided
that the user uses the component according to the precondition. To define the conceptual
state space of a contract for an interface and the types for the parameters of the interface
operations, we assume that a type is either a primitive built-in or a class of objects. This
allows our framework to support both imperative and object-oriented programming in
the design of a component. The type definitions is given by a class declaration section
and it declares a class structure Ω, called the information model of the component.

Given an interface I, an information model Ω declared by a class declaration section,
a set A of variable declarations of the form T x where T is either a primitive type or a
class declared in Ω, called the type of x, we define the alphabet α as the union of sets
of the variables, the input and output parameters of the operations of I.

inα
def
= A ∪ {x ∈ x ∪ z |m(U x; V y; W z) ∈ I}

outα
def
= A ∪ {y ∈ y ∪ z |m(U x; V y; W z) ∈ I}

outα′ def
= {x′ | x ∈ outα}

α
def
= inα ∪ outα

A conceptual state for 〈I, Ω〉 is a well-typed mapping from the variables α to their value
spaces. It is in fact the state space Ξ determined by Ω, plus values of variables in outα
of primitive types that is a snapshot of the models consisting the current objects of the
classes and links by the associations or attributes that relate these objects, as well as
the values of variables of primitive types. As before, a specification of an operation
m(U x; V y; W z) in an alphabet α is a framed design β : Spec.

Definition 8. A contract is a tuple Contr = (I, Ω, A, MSpec, Init) where I is an interface,
Ω is the information model, A is a set of variables, called the fields of Contr, whose
types are either declared in Ω or primitive types, and MSpec a function that maps each
operation of I to a specification, and Init an initial condition that defines some values to
fields as their initial values.

If no field is of an object type, we will omit the information model from the specifica-
tion of a contract. In modular programming, a primitive contract is a specification of a
module that defines the behavior of the operations in its interface. However, later we
will see that contracts can be merged to form another contract and this corresponds to
the merge of a number of modules. In object-oriented programming, a primitive con-
tract specifies an initialized class, i.e. an object, whose public methods are operations in
the interface. This class wraps the classes in the information model Ω, and provides the

rCOS: Refinement of Component and Object Systems 213

interface operations to the environment. In the Java-like rCOS syntax, such a contract
can be written as

Interface I {Meth : {m() |m() ∈ I}};
Cdecls;
Class C implements I {Attr : A = Init;

Method : {m(){MSpec(m)} |m ∈ I};
main(){C.New(x)}
}

where main provides the condition Init when creating the new object of C attached to x

with the initial values of the attributes in A.
Contracts of interfaces can be merged only when their interfaces are composable

and the specifications of the common methods are consistent. This merge will be used
to calculate the provided and required services when components are composed.

Definition 9. Contracts (Ii, Ωi, Ai, MSpeci, Initi), i = 1, 2, are consistent if

1. I1 and I2 are composable.
2. If x is declared in both A1 and A2, it has the same type; and Init1(x) = Init2(x).
3. Any class name C in both Ω1 and Ω2 has the same class declaration in them.
4. MSpec1(m)⇔ MSpec2(m) for all m ∈ I1 ∩ I2.

This definition can be extended to a finite family of contracts.

Definition 10. Let {Contrk = (Ik, Ωk, Ak, MSpeck, Initk)} be a consistent finite family
of contracts. Their merge, (denoted by ‖k∈K Contrk), is defined by

I
def
= �kIk, Ω

def
= ⊗kΩk, A

def
= ⊗kAk,

Init
def
= ⊗kInitk, MSpec

def
= ⊗kMSpeck

where⊗ denotes the overriding operator, e.g. (MSpeck ⊗MSpeck+1)(m) = MSpeck+1(m)
if m ∈ Ik ∩ Ik+1; MSpeck(m) if m ∈ Ik but m �∈ Ik+1; MSpeck+1(m) otherwise.

A merge of a family of contracts corresponds the construction of a conceptual model
from the partial models of the application domain in the contracts. There are three cases
about the partial models:

1. The contracts do not share any fields or modelling elements in their conceptual
models. In this case, the system formed by the components of these contracts are
most loosely coupled. All communications are via method invocations. Such a sys-
tem is easy to design and maintain. Composing these components is only plug-in
composition.

2. The contracts may share fields, but their conceptual models do not share any com-
mon model elements. In this case, application domain is partitioned by the concep-
tual models of these contracts. And components of the system are also quite loosely
coupled and easy to construct and maintain. When composing these components,
some simple wiring is needed.

214 Z. Liu, H. Jifeng, and X. Li

3. The contracts share common model elements in their conceptual models. The re-
finement/design of the contracts has to preserve the consistency and integrity, gen-
erally specified by state invariants, of the model. The more elements they share,
the more tightly the components are coupled and the more wiring is needed when
composing these components.

Definition 11. We say that a contract Contr1 = (I1, Ω1, A1, MSpec1, Init1) is refined by
Contr2 = (I2, Ω2, A2, MSpec2, Init2), denoted by Contr1
 Contr2, if there is a mapping ρ

from A1 to A2 satisfying

1. The initial state is preserved: (x := Init1(x); ρ)
 (ρ; y := Init2(y)), where x is the
list of variables defined in A1, and y the list of variables in A2.

2. The behavior of the operations of Contr1 are preserved: every operation m declared
in I1 is also declared in I2 and (MSpec1(m);ρ)
 (ρ; MSpec2(m)).

The refinement relation between contracts will be used to define component refinement.
The state mapping ρ allows that a component developed in an application domain can
be used in another application domain if such a mapping can be found.

Theorem 3. Contract refinement enjoys the properties of program refinement.

1.
 is reflexive and transitive and a pre-order.
2. (An upper bound condition) The merge of a family of contracts refines any con-

tract in the family.
3. (A monotonicity condition) The refinement relation is preserved by the merge op-

eration on contracts. That is for two consistent families of contracts
{Contri

k | k ∈ K}, i = 1, 2. If they do have shared fields and Contr1k
 Contr2k for all
k ∈ K, then we have ‖k∈K Contr1k
‖k∈K Contr2k.

5.4 Component

A component consists of a provided interface and optionally a required interface, and
an executable code which can be coupled to the codes of other components via their
interfaces.

Definition 12. A component Comp is a tuple < O, I, Ω, A, MImpl, Init, R > where

– O is an interface, called the provided or (output) interface of Comp.
– I is an interface disjoint from O, called the internal interface of Comp
– Ω is an information model
– A is a set of fields whose types are all declared in Ω.
– MImpl maps each operation declared in O ∪ I to a pair (α, Q), where Q is a command

written in rCOS, and α is the alphabet obtained from A and the input and output
parameters of the operations in O ∪ I.

– R is the interface that is disjoint from O and I and consists of the operations (not
methods of classes in Ω) which are referenced in the program text MImpl(m) and
bodies of methods of classes in Ω but not in O ∪ I, where m ∈ O ∪ I. R is called the
input or required interface of Comp.

rCOS: Refinement of Component and Object Systems 215

We call Contr = (O, I, Ω, A, MImpl, Init) a generalized contract, as it has internal oper-
ations and MImpl provides the specification of each operation of O in terms a general
rCOS command.

We will use the 4-tuple (Contr, I, O, R) to denote a component, where Contr is a general-
ized contract for the interface O � I.

A contract for R is called a required services of the component and a contract of the
interface O a provided services. Operations in R can be seen as holes in the component
where their specifications or implementation given in other components that are to be
plugged in. Therefore, the provided services of a component depends on its required
services plugged in from other components. This leads to the definition of our semantics
of a component.

In the above definition, we introduced private operations so that we can hide an
output operation by making it a private operation. This will keep the definition MImpl
valid as the hidden operations may be called in MImpl(m). Hiding interface operations
allows to offer different services to different clients.

Definition 13. (Hiding) Let Contr = (O, I, A, Ω, MImpl, Init) be a general contract, and
H ⊆ O a set of operations. The notation Contr\H represents the contract

(O \ H, I ∪ H, Ω, A, MImpl, Init)

where S\S1 is set-subtraction.

Theorem 4. The hiding operator enjoys the following properties.

1. (Contr\H)
 Contr.
2. Contr\∅ = Contr.
3. Contr\H = Contr\(H ∩ O), where I is the interface of Contr.
4. (Contr\H1)\H2 = Contr\(H1 ∪ H2) = (Contr\H2)\H1

5. (‖k∈KContrk)\H = ‖k∈K(Contrk\H)

5.5 Semantics Components

Definition 14. The semantics of a component Comp is defined as a binary relation
between its required services and their corresponding provided services

[[Comp]](ContrR, Contr′
O)

def
= (ContrR >> Comp)
 Contr′

O

where the variable ContrR takes an arbitrary required service as its value, Contr′
O takes

a provided service for O, and the notation ContrR >> Comp denotes the provided service

(O, F(Ω), A, MSpec, Init)

where F(Ω) is the class model obtained from Ω by removing the methods of its classes,
and mapping MSpec is defined from the given required service

ContrR =< R, ΩR, AR, MSpecR, InitR >

216 Z. Liu, H. Jifeng, and X. Li

by the recursive equations MSpec(m) = M(MImpl(m)), where M replaces every call of
m(inexp, outvar) with the actual input parameters inexp, output parameters outvar and
value-result parameters vrexp of O by its corresponding specification.

M(m(inexp; outvar; vrexp))
def
=

⎛

⎝
var T1 x = inexp, T2 y = outvar, T3 z = vrexp;
MSpecR(m); outvar, vrexp := y, z;
end x, y, z

⎞

⎠

if m(T1 x; T2 y; T3 z) ∈ R

M(m(inexp; outvar; vrexp)) def=

⎛

⎝
var T1 x = inexp, T2 y = outvar, T3 z = vrexp;
MImpl(m); outvar, vrexp := y, z;
end x, y, z

⎞

⎠

if m(T1 x; T2 y; T3 z) ∈ O ∪ I

M(v := e)
def
= v := e

M(F(c))
def
= F(M(c)) for any comand c and context F

Notice that when a component Comp has an empty set of required interface operations,
Comp is a closed component and the notation Contr∅ >> Comp becomes a constant that
is the semantics of the closed program Comp.

For a given contract ContrR for the required interface of Comp, ContrR >> Comp is
a closed component. Let ContrO be a contract of the provided interface of Comp which
serves as the specification of the component. We say that Comp correctly realizes or im-
plements ContrO with a given required service ContrR if ContrO
 (ContrR >> Comp).

In a modular programming paradigm, a component can be designed and imple-
mented as a module in which each of the operations in the output interface is “pro-
grammed” using procedures or functions that are defined either locally in the module
or externally in other modules. In this case, the external modules that the component
calls methods from must be declared, as well as the types of the attribute values and
parameters of its methods. Therefore, a component is in fact not a single module, but an
artifact that contains all these declared types and modules. In an object-oriented para-
digm, such as Java, a component can be seen as a class that implements the interfaces in
O. Including the notation for interfaces and contracts in rCOS, the language provides
a formal model for components and the calculus of contract refinement and component
refinements.

5.6 Refinement and Composition of Components

For a component Comp with provided and required interfaces O and R, the semantics
[[Comp]] is a binary relation between the input services and output services.

Theorem 5. (Monotonicity and Upwards Closure [44]) Let Comp =< Contr, I, O, R >

and
R and
O are the refinement relations among contracts of R and among con-
tracts of O respectively. Then
R ◦[[Comp]]◦
O = [[Comp]], where ◦ denotes relational
composition.

Thus, for any required services ContrR
 Contr′
R, and provided services ContrO

Contr′
O, then

[[Comp]](ContrR, Contr′
O)⇒ [[Comp]](Contr′

R, ContrO)

rCOS: Refinement of Component and Object Systems 217

A component Comp1 is a refinement of a component Comp2, denoted by Comp2
 Comp1,
if Comp1 is a sub-relation of Comp2.

Definition 15. Component Comp1 is a refinement of Comp2 if R1 = R2 ∧ O1 = O2 and
for any required service ContrR1

,

(ContrR1
>> Comp2)
 (ContrR1

>> Comp1)

We therefore have when Comp1 refines Comp2, then for any given required service
ContrR and a contract a provided service ContrO as the specification, Comp1 realizes
ContrO with ContrR if Comp2 realizes ContrO with ContrR.

Definition 16. Let Compi = (Contri, Ii, Oi, Ri), i = 1, 2, be two components with con-
tracts Contri = (Oi ∪ Ii, Ωi, Ai). Assume that I1 ∩ I2 = ∅, O1 ∩ O2 = ∅ and R1 ∩ R2 = ∅.
The composition Comp1||Comp2 is defined to merge their contracts, output interfaces
and input interfaces, and to remove those input interfaces of each component that are
matched by the output interfaces in another:

Comp1||Comp2
def
= < Contr1‖Contr2, I1 ∪ I2, O1 � O2, R1\O2 ∪ R2\O1 >

Let I
def
= I1 ∪ I2, R

def
= R1\O2 ∪ R2\O1 and O

def
= O1 ∪ O2. The composition of Comp1 and

Comp2 is defined by

[[Comp1‖Comp2]](ContrR, Contr′
O)

def
= ∃ContrR1

, Contr′
O1

, ContrR2
, Contr′

O2
•

[[Comp1]](ContrR1
, Contr′

O1
)∧

[[Comp2]](ContrR2
, C′

O2
)∧

ContrR1
\(R1\O2)=Contr′

O2
\(O2\R1)∧

ContrR2\(R2 \ O1)=Contr′
O1

\(O1 \ R2)∧
ContrR =ContrR1

\(R1\O2)‖ContrR2
\(R2\O1)∧

Contr′
O = Contr′

O1
\(R2\O1)‖Contr′

O2
\(R1\O2)

This definition allows an output interface and thus part of provided service of one com-
ponent to be shared among a number other components. Hiding can be used to internal-
ize the part of a provided service of one component that is used in another component:
(Comp1‖Comp2)\(R1 ∩ O2)\(R2 ∩ O1).

Examples of component specifications and composition can be found in [31].
Client-server systems are often seen as applications in component software. The ar-
chitecture of such a system is organized as a layered structure and can be model with in
our model as shown in the full version [30] of paper [31].

6 Conclusion

We have proposed a classical relational model (rCOS) for component-based and object-
oriented development. This model provides a smooth link between component-based
design and object-oriented development. It supports rigorous application of UML in an
iterative and incremental development process (RUP). The formalism is based on the
design calculus in Hoare and He’s Unifying Theories of Programming [19]. In a top-
down process, model provides the fundamental basis for Model Driven Development.
If we take a bottom-up approach, it supports re-engineering. Our message is: in order
to support programming in the large,

218 Z. Liu, H. Jifeng, and X. Li

– we need a multi-view modelling approach,
– a multi-notational modelling language is of a great advantage (though not everyone

has to use UML),
– consistent refinement of different views is important,
– different verification techniques may be applied to refinement of different views.

The semantic model allows us to specify a system at different levels of abstraction.
At the requirement, we can specify the functional requirements as use-case operations
defined as methods of use-case controller classes. Each of these operations can be ab-
stractly specified as a design in terms object creation, object destruction, and object
attributes modification. Objects at these levels can be decomposed latter. These use-
case operations can then refinement using the refinement laws for expert pattern, low
coupling, high cohesion and attribute encapsulation. For details of requirement analy-
sis and design by refinement, we refer the reader to [26,32]. With the refinement laws,
algebraic reasoning is also supported.

This paper not only presents a semantics, but also provides a definitional approach
to defining different semantics with different constraints and features.

6.1 Related Work

In the framework of ROOL [8], Borba, et al, also investigate refinement of object sys-
tems in [5]. Although, ROOL and rCOS share a number of common refinement laws,
rCOS supports more features, such as references, and enjoys more refinement laws
than ROOL.

There is an increasing amount of research in formal techniques for component-
based development, e.g. [7,3,14]. These models are channel-based and process oriented.
They can easily related to state machine models or automata and thus existing verifi-
cation techniques and model checking tools can be readily applied. These models are
flexible in describing interactions and coordinations among components due to the fine
granularity of the interaction actions, that is channel-based message passing. We are
aiming at a definitional semantic model that is easier to be related to software engineer-
ing concepts and terminology, such as provided services, required services and con-
tracts, and programming languages, object-oriented languages in particular. We hope
that this model will provide effective formal support to model-based development by
pattern-guided transformations.

rCOS is motivated by our work on formal support to UML-based software devel-
opment. We have studied the application of rCOS to support UML-based requirement
modelling, analysis and design process. rCOS is used in [32] for formalisation of
UML models of requirements, but a requirement model there only consists of a con-
ceptual class diagram and a use-case model directly specified by rCOS. Article [28]
uses rCOS for the specification of design class diagrams and sequence diagrams, but
without rules for model transformation. A tool for requirement analysis has been devel-
oped using this framework [27]. Algorithms are also designed for consistency checking
and executable code generation from a system model [35]. The technical report [16]
presents detailed study of rCOS for object systems with examples and proofs of laws.
A case study of the use of the refinement laws in software development is given in [36].

rCOS: Refinement of Component and Object Systems 219

These publications show how rCOS can be used to support engineering methods and
processes in software development.

6.2 Future Work

Future work includes the completion of the calculus rCOS for synchronization and
concurrency in both object and component systems. This requires the model of compo-
nents to be extended with the specification of the protocol in the interface, contract of a
component. We plan to use traces (or regular expressions of operations for this purpose.
The notion of designs of operations of active and reactive components have to be ex-
tended to reactive designs to capture synchronization. Consistency between the protocol
and the reactive designs have to be checked to avoid from deadlock and divergence.

We will work on case studies to test the theory and the method. We are also inter-
ested in a theory of tool integration within this framework.

Acknowledgments

We are grateful to the organizers of FMCO’04 to invite Zhiming Liu to give a talk
at the simposium and to the participants of the simposium for their comments. We
would like thank Dines Bjorner at Technical University of Denmark, Kung-Kiu Lau
at Manchester University, Anders Ravn at Aalborg University of Denmark and Uday
Reddy from Birmingham University of the UK for their helpful comments and discus-
sions at and after the seminars that Zhiming Liu gave on parts of the works when he
visited them. Our UNU-IIST fellows Jing Liu, Xiaojian Liu, Quan Long, Bhim Upad-
hyaya and Jing Yang contributed to the whole research project. They also read and gave
useful comments on this article. Zhiming Liu would also like to thank the students at
the University of Leicester and those participants of the UNU-IIST training schools and
courses who took his courses on Software Engineering and System Development with
UML for their feedback on the understanding of the use-case driven, incremental and
iterative object-oriented development and design patterns. Part of the work was also
presented at the Workshop on Predictable Software Component Assembly held in the
University of Manchester in 2004, and as an invited talk in Brazilian Symposium on
Formal Methods (SBMF 2004). The discussion and comments were very much useful
in bringing the presentation of the work into its current form.

References

1. M. Abadi and L. Cardeli. A Theory of Objects. Springer-Verlag, 1996.
2. R. Allen and D Garlan. A formal basis for architectural connection. ACM Transactions on

Software Engineering and Methodology, 6(3), 1997.
3. F. Arbab. Reo: A channel-based coordination of model for component composition. Mathe-

matical Structures in Computer Science, 14(3):329–366, 2004.
4. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.

Addison-Wesley, 1999.
5. P. Borba, A. Sampaio, and M. Cornélio. A refinment algebra for object-oriented program-

ming. In L. Cardelli, editor, Proc. ECOOP03, LNCS2743, pages 457–482. Springer, 2003.

220 Z. Liu, H. Jifeng, and X. Li

6. M. Broy. Object-oriented programming and software development - a critical assessment. In
A. McIver and C. Morgan, editors, Programming Methodology. Springer, 2003.

7. M. Broy and K. Stolen. Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Springer, 2001.

8. A. Cavalcanti and D.A. Naumann. A weakest precondition semantics for an object-oriented
language of refinement. Technical Report CS Report 9903, Stevens Institute of Technology,
Hoboken, NJ 07030, February 2000.

9. J. Cheesman and J. Daniels. UML Components. Component Software Series. Addison-
Wesley, 2001.

10. Y. Chen and J.W. Sanders. The weakest specifunction. Acta Informatica, 41(7), 2005.
11. J.K. Filipe. A logic-based formalization for component specification. Journal of Object

Technology, 1(3):231–248, 2002.
12. M. Fowler. What is the point of UML. In P. Srevens, J. Whittle, and G. Booch, editors,

<<UML>> 2003 -The Unified Modeling Language, 6th International Conference, LNCS
2863, San Fancisco, CA, USA, 2003. Springer.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, 1995.

14. G. Goessler and J. Sifakis. Composition for component-based modeling. Science of Com-
puter Programming.

15. J.A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, 1990.
16. J. He, Z Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical Report

322, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
17. J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. In Proceed-

ings of the Second ASIAN Symposium on Programming Languages and Systems (APLAS04),
LNCS 3302, pages 415–436, Taiwan, March 2004. Springer.

18. G.T. Heineman and W.T. Councill. Component-Based Software Engineering, Putting the
Pieces Together. Addison-Wesley, 2001.

19. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
20. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.
21. N. Jin and J. He. Resource models and pre-compiler specification for hardware/software. In

J.R. Cuellar and Z. Liu, editors, Proc. 2nd International Conference on Software Engineering
and Formal Methods (SEFM’04), Beijing, China, 28-30 September, 2004. IEEE Computer
Society.

22. C.B. Jones. Process algebra arguments about an object-oriented design notation. In A.W
Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice-Hall, 1994.

23. C.B. Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, 1996.

24. P. Kruchten. The Rational Unified Process – An Introduction (2nd Edition). Addison-Wesly,
2000.

25. C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001.
26. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In

COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.
27. X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML model of re-

quirements. In International Conference on Distributed Computing and Internet Technol-
ogy(ICDIT2004), LNCS 3347, pages 255–265, Bhubaneswar, India, 2004. Springer.

28. J. Liu, Z. Liu, J. He, and X. Li. Linking UML models of design and requirement. In Proceed-
ings of ASWEC2004, pages 329–338, Melbourne, Australia, 2004. IEEE Computer Society.

29. Z. Liu. Object-oriented software development in UML. Technical Report UNU/IIST Report
No. 228, UNU/IIST, P.O. Box 3058, Macau, SAR, P.R. China, March 2001.

rCOS: Refinement of Component and Object Systems 221

30. Z. Liu, J. He, and X. Li. Contract-oriented component software development. Technical
Report UNU/IIST, Report No 298, 2004. http://www.iist.unu.edu/newrh/III/1/page.html.

31. Z. Liu, J. He, and X. Li. Contract-oriented development of component systems. In Proceed-
ings of IFIP WCC-TCS2004, pages 349–366, Toulouse, France, 2004. Kulwer Academic
Publishers.

32. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for formal requirements analysis in
UML. In J.S. Dong and J. Woodcock, editors, Formal Methods and Software Engineering,
ICFEM03, LNCS 2885, pages 641–664. Springer, 2003.

33. Z. Liu, J. He, X. Li, and J. Liu. Unifying views of UML. Electronic Notes of Theoretical
Computer Science (ENTCS), 101:95–127, 2004.

34. Q. Long, J. He, and Z. Liu. Refactoring and pattern-directed refactoring: A formal perspec-
tive. Technical Report 318, UNU-IIST, P.O.Box 3058, Macau, January 2005.

35. Q. Long, Z. Liu, X. Li, and J. He. Consistent code generation from UML models. In Pro.
of Australian Software Engineering Conference (ASWEC’2005), pages 168–177, Brisbane,
Australia, 2005. IEEE Computer Sciety.

36. Q. Long, Z. Qiu, Z. Liu, L. Shao, and J. He. POST: A case study for rcos incremental
development. Technical Report 324, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.

37. S.J. Mellor and M.J. Balcer. Executable UML: a foundation for model-driven architecture.
Addison-Wesley, 2002.

38. B. Meyer. From structured programming to object-oriented design: the road to Eiffel. Struc-
tured Programming, 10(1):19–39, 1989.

39. B. Meyer. Applying design by contract. IEEE Computer, May 1992.
40. B. Meyer. Object-oriented Software Construction (2nd Edition). Prentice Hall PTR, 1997.
41. C. Pierik and F.S. de Boer. A syntax-directed hoare logic for object-oriented programming

concepts. Technical Report UU-CS-2003-010, Institute of Information and Computing Sci-
ence, Utrecht University, 2003.

42. B. Selic. Using UML for modelling complex real-time systems. In F. Muller and
A. Bestavros, editors, Languages, compilers, and Tools for Embedded Systems, Volume 1474
of Lecture Notes in Computer Science, pages 250–262. Springer Verlag, 1998.

43. A. Sherif, J. He, A Cavalcanti, and A. Sampaio. A framework for specification and valida-
tion of real-time systems using circus actions. In Z. Liu and K. Araki, editors, Theoretical
Aspects of Computing ICTAC 2004. First International Colloquium Guiyang, China, Sep-
tember 2004, Revised Selected Papers. LNCS 3407, pages 478 – 494. Springer, 2005.

44. M. Smyth. Powerdomain. Journal of Computer Science and System Sciences, 16:23–36,
1978.

45. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 2002.

46. J.M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 23(9):8–24, 1990.
47. J. Yang, Q. Long, Z. Liu, and X. Li. A predicative semantic model for integrating UML

models. In Z. Liu and K. Araki, editors, Theoretical Aspects of Computing – ICTAC 2004,
First International Colloquium, Guiyang, China, September 2004, Revised Selected Papers,
LNCS 3407, pages 170–186. Springer, 2005.

	Introduction
	Semantic Basis
	Programs as Designs
	Refinement of Designs

	Object Systems
	Syntax
	Semantics
	Evaluation of Expressions

	Object-Oriented Refinement
	Refinement of Object Systems
	Structure Refinement
	Laws of Structural Refinement

	Component Systems
	Introduction
	Interfaces
	Contracts
	Component
	Semantics Components
	Refinement and Composition of Components

	Conclusion
	Related Work
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

