
Priced Timed Automata:
Algorithms and Applications

Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen�,��

Aalborg University

Abstract. This contribution reports on the considerable effort made re-
cently towards extending and applying well-established timed automata
technology to optimal scheduling and planning problems. The effort of
the authors in this direction has to a large extent been carried out as part
of the European projects Vhs [22] and Ametist [17] and are available
in the recently released Uppaal Cora [12], a variant of the real-time
verification tool Uppaal [20,5] specialized for cost-optimal reachability
for the extended model of priced timed automata.

1 Introduction and Motivation

Since its introduction by Alur and Dill [2] the model of timed automata has
established itself as a standard modeling formalism for describing real-time sys-
tem behavior. A number of mature model checking tools (e.g. Kronos, Uppaal,
IF [11,20,16]) are by now available and have been applied to the quantitative
analysis of numerous industrial case-studies [25].

An interesting application of real-time model checking that has recently been
receiving substantial attention is to extend and re-target the timed automata
technology towards optimal scheduling and planning. The extensions include
most importantly an augmentation of the basic timed automata formalism al-
lowing for the specification of the accumulation of cost during behavior [7,3].
The state-exploring algorithms have been modified to allow for “guiding” the
(symbolic) state-space exploration in order that “promising” and “cheap” states
are visited first, and to apply branch-and-bound techniques [6] to prune parts
of the search tree that are guaranteed not to improve on solutions found so far.
Also new symbolic data structures allowing for efficient symbolic state-space
representation with additional cost-information have been introduced and im-
plemented in order to efficiently obtain optimal or near-optimal solutions [19].
Within the Vhs and Ametist projects successful applications of this technology
have been made to a number of benchmark examples and industrial case stud-
ies. With this new direction, we are entering the area of Operations Research
and Artificial Intelligence with a well-established and extensive list of existing
techniques (MILP, constraint programming, genetic programming, etc.). How-
ever, what we put forward is a completely new and promising technology based
� BRICS, Aalborg University, Denmark.

�� Work partially done within the European IST project AMETIST.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 162–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Priced Timed Automata: Algorithms and Applications 163

t1
(3, −)

t2
(−, 5)

t3

(10, 7)

Processor costs:
Processor 1 - Idle: 2 -
InUse: 5
Processor 2 - Idle: 1 -
InUse: 4

Fig. 1. Task graph scheduling problem with 3 tasks and 2 processors

on the efficient algorithms/data structures coming from timed automata analy-
sis, and allowing for very natural and compositional descriptions of even highly
non-standard scheduling problems with timing constraints.

Abstractly, a scheduling or planning problem may be understood in terms
of a number of objects (e.g. a number of different cars, persons) each associated
with various distinguishing attributes (e.g. speed, position). The possible plans
solving the problem are described by a number of actions, the execution of
which may depend on and affect the values of (some of) the objects attributes.
Solutions, or feasible schedules, come in (at least) two flavors:

Finite Schedule: a finite sequence of actions that takes the system from the initial
configuration to one of a designated collection of desired goal configurations.

Infinite Schedule: an infinite sequence of actions that – when starting in the
initial configuration – ensures that the system configuration stays indefinitely
within a designated collection of desired configurations.

In order to reinforce quantitative aspects, actions may additionally be equip-
ped with constraints on durations and have associated costs. In this way one
may distinguish different feasible schedules according to their accumulated cost
or time (for finite schedules) or their cost per time ratio in the limit (for infinite
schedules) in identifying optimal schedules. It is understood that independent
actions, in terms of the set of objects the actions depend upon and affect, may
overlap time-wise.

One concrete scheduling problem is that of optimal task graph scheduling
(TGS) consisting in scheduling a number of interdependent tasks (e.g. perform-
ing some arithmetic operations) onto a number of heterogeneous processors. The
interdependencies state that a task cannot start executing before all its prede-
cessors have terminated. Furthermore, each task can only execute on a subset
of the processors. An example task graph with three tasks is depicted in Fig. 1.
The task t3 cannot start executing until both tasks t1 and t2 have terminated.
The available resources are two processors p1 and p2. The tasks (nodes) are an-
notated with the required execution times on the processors, that is, t1 can only
execute on p1, t2 only on p2 while t3 can execute on both p1 and p2. Further-
more, the idling costs per time unit of the processors are 2 and 1, respectively,
and operations costs per time unit are 5 and 4, respectively.

Now, scheduling problems are naturally modeled using networks of timed
automata. Each object is modeled as a separate timed automaton annotated with
local, discrete variables representing the attributes associated with the object.

164 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

Interaction often involves only a few objects and can be modeled as synchronizing
edges in the timed automata models of the involved objects. Actions involving
time durations are naturally modeled using guarded edges over clock variables.
Furthermore, operation costs can be associated with states and edges in the
model of priced timed automata (PTA) which was, independently, introduced in
[7] and [3]. The separation of independent objects into individual processes and
representing interaction between objects as synchronizing actions allows timed
automata to make the control flow of scheduling problems explicit. In turn, this
makes the models intuitively understood and easy to communicate. Figure 2
depicts PTA models for the task graph in Fig. 1 and is explained in detail in
Section 4.2.

Fig. 2. Screen shot of the Uppaal Cora simulator for the task graph scheduling
problem of Fig. 1

The outline of the remainder of the paper is as follows: In Sections 2 and 3
we introduce the model of PTA, the problem of cost-optimal reachability and
sketch the symbolic branch-and-bound algorithm used by Uppaal Cora for
solving this problem. Then in Section 4 we show how to model a range of
generic scheduling problems using PTA, provide experimental results and de-
scribe two industrial scheduling case-studies. Finally, in Section 5, we comment
on other PTA-related optimization problems to be supported in future releases of
Uppaal Cora.

Priced Timed Automata: Algorithms and Applications 165

2 Priced Timed Automata

In this section we give a formal definition of priced timed automata (PTA) and
their semantics1. Let X be a set of clocks. Intuitively, clocks are non-negative
real valued variables that can be reset to zero and grow at a fixed rate with
the passage of time. A priced timed automaton over X is an annotated directed
graph with a distinguished vertex called the initial location. In the tradition of
timed automata, we call vertices locations. An edge is decorated with a guard,
an action and a reset set. We say that an edge is enabled if the guard evaluates
to true and the source location is active. A reset set is a set of clocks. The
intuition is that the clocks in the reset set are set to zero whenever the edge is
taken. Note that following edges is instantaneous and thus takes no time. Finally,
locations are labeled with invariants. Intuitively, an invariant must evaluate to
true whenever its location is active. Both guards and invariants are conjunctions
of simple constraints x �� k, where x is a clock in X , k is a non-negative integer
value, and �� ∈ {<, ≤, =, ≥, >}. Let B(X) be the set of all such expressions. The
previous definition is in fact that of a timed automaton. To form a priced timed
automaton, we annotate the edges and the locations with costs and cost rates,
respectively. The above is summarized in the following definition.

Definition 1 (Priced Timed Automata). Let X be a set of clocks and Act
a set of actions. A priced timed automaton over X and Act is a tuple A =
(L, E, l0, I, P), where L is a set of locations, E ⊆ L × B(X) × Act × 2X × L is
a set of edges, l0 ∈ L is the initial location, I : L → B(X) assigns invariants
to locations, and P : L ∪ E → N0 assigns cost rates and costs to locations and
edges, respectively.

The semantics of a PTA is defined as a priced transition system. A priced
transition system is a labeled transition system, where the transition relation is
given by a partial function from transitions to the non-negative reals, intuitively
being the cost of the transition. We write s

a→p s′ whenever the function is
defined on the transition (s, a, s′) and the cost is p.

Definition 2 (Priced Transition System). A priced transition system is a
tuple T = (S, s0, Σ, →), where S is a (possibly infinite) set of states, s0 ∈ S is
the initial state, Σ is a set of labels, and →: (S × Σ × S) ↪→ R≥0 is a partial
function from transitions to the non-negative reals.

In case of PTA, a state consists of the active location l ∈ L and a valuation
of all clocks v : X → R≥0 such that the invariant of l evaluates to true for v.
There are two types of transitions between these states: discrete transitions and
delay transitions. That is, transitions that instantaneously change the control lo-
cation of the automaton without time passing and transitions that pass time in
a fixed control location, respectively. Consequently, the labels of the correspond-
ing priced transition system consists of the labels of the priced timed automaton
and the non-negative reals. We formalize this in the following definition.
1 We ignore the syntactic extensions of discrete variables and parallel composition of

automata and note that these can be added easily.

166 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

ċ = 1

l0

y := 0

x ≤ 2

ċ = 2

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3
y ≤ 2

l2

Fig. 3. A priced timed automaton, A

Definition 3 (Semantics of a Priced Timed Automaton). The semantics
of a PTA A = (L, E, l0, I, P) over clocks X and actions Act is given by a priced
transition system T = (S, s0, Σ, →), where S = {(l, u) ∈ L × R

X
≥0 | u |= I(l)} is

the set of states satisfying the invariants, s0 = (l0, u0) is the initial state for u0
evaluating to zero for all clocks in X, Σ = Act ∪ R≥0 is the set of labels, and →
consists of discrete and delay transitions as defined below.

Discrete transitions are the result of following an enabled edge in the PTA.
As a result, the destination location is activated and the clocks in the reset set
are set to zero. The cost of the transition is given by the cost of the edge.

Definition 4 (Discrete transitions). A transition (l, v) a→p (l′, v′) is a dis-
crete transition iff there is an edge (l, g, a, r, l′) from l to l′, such that the guard,
g, evaluates to true in the source state (l, v), v′ is derived from v by resetting all
clocks in the reset set, r, and p = P (e) is the cost of the edge.

Delay transitions are the result of the passage of time and do not cause a
change of location. A delay is only valid if the invariant of the active location is
satisfied by all intermediary states. The cost of a delay transition is given by the
product of the duration of the delay and the cost rate of the active location.

Definition 5 (Delay transitions). A transition (l, v) d→p (l, v′) is a delay
transition iff p = d · P (l), v′ = v + d,2 and the invariant of l is satisfied by the
source, target and all intermediary states, i.e., for all non-negative delays d′ less
than or equal to d we have v + d′ |= I(l).

For networks of timed automata we use vectors of locations and the cost rate
of a vector of locations is the sum of cost rates in the locations of the vector.

Example 1. Now consider the priced timed automaton A in Fig. 3 having two
clocks x and y, a single goal location l2 and two locations l0 and l1 with cost
rate 1 and 2 respectively. Below we offer three sample traces of A:

α0 = (l0, x = 0, y = 0) −→0 (l1, x = 0, y = 0) 2−→4 (l1, x = 2, y = 2)
−→0 (l2, x = 2, y = 0)

2 v + d is the clock valuation derived from v by incrementing all clocks by d.

Priced Timed Automata: Algorithms and Applications 167

α1 = (l0, x = 0, y = 0) 2−→2 (l0, x = 2, y = 2) −→0 (l1, x = 2, y = 0)
1−→2 (l1, x = 3, y = 1) −→0 (l2, x = 3, y = 0)

α2 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)
1−→2 (11, x = 2, y = 1) −→0 (l2, x = 2, y = 0) ��

3 Optimal Scheduling

We now turn to the definition of the optimal reachability problem for PTA and
provide a brief and intuitive overview of Uppaal Cora’s branch and bound
algorithm for cost-optimal reachability analysis.

Cost-optimal reachability is the problem of finding the minimum cost of
reaching a given goal location. More formally, an execution of a PTA is a path
in the priced transition system defined by the PTA (see above), i.e., α = s0

a1→p1

s1
a2→p2 s2 · · · an→pn sn. The cost, cost(α), of execution α is the sum of all the

costs along the execution, i.e.
∑

i pi. The minimum cost, mincost(s) of reaching
a state s is the infimum of the costs of all finite executions from s0 to s. Given a
PTA with location l, the cost-optimal reachability problem is to find the largest
cost k such that k ≤ mincost((l, v)) for all clock valuations v.

Example 2. Referring to example 1, the accumulated cost of the three traces are,
respectively, cost(α0) = cost(α1) = 4 and cost(α2) = 3. Thus, among the three
suggested traces, α2, leads to l2 with minimum cost. In fact, as we shall see later,
this is the minimum cost by which l2 may be reached by any trace of A. ��

Since clocks are defined over the non-negative reals, the priced transition
system generated by a PTA can be uncountably infinite, thus an enumerative,
explicit state approach to the cost-optimal reachability problem is infeasible. In-
stead, we build upon the work done for timed automata by using priced symbolic
states. Priced symbolic states provide symbolic representations of possibly infi-
nite sets of actual states and their association with costs. The idea is that during
exploration, the infimum cost along a symbolic path (a path of symbolic states)
is stored in the symbolic state itself. If the same state is reached with different
costs along different paths, the symbolic states can be compared, discarding the
more expensive state.

Analogous to timed automata, a priced symbolic state of a PTA can be
represented as a location and a priced zone. Priced zones describe sets of clock
valuations and their associated costs. The set of clock valuations is described
as a simple constraint system over clocks and differences between clocks, called
zones. The cost is an affine hyperplane in an |X | + 1 dimensional Euclidean
space, where each point is a clock valuation and an associated cost, i.e., for each
clock valuation in the zone, the hyperplane provides a cost of that valuation.
We observe that the constraint system describing a zone can be simplified by
adding an additional clock, 0, that by definition is zero in all valuations. Then
constraints on individual clocks can be represented as constraints on differences

168 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

between clocks, e.g., x < 5 becomes x − 0 < 5. A zone be efficiently represented
as a difference bound matrix or DBM [13]. It represents the constraint system
describing the zone as a |X | + 1 dimensional matrix, with entries cij meaning
xi−xj ≤ cij for clocks xi, xj ∈ X∪{0}. Extending the data structure to a priced
DBM, we add an affine hyperplane. The offset point is the unique valuation such
that all valuations in the zone are component-wise equal or larger than the offset
point. Alternatively, the cost at the origin could be given.

Definition 6 (Priced Zone). A priced zone over a set of clocks X is a pair
(Z, f), where Z is a zone, i.e., a conjunction of constraints on clocks or differ-
ences between clocks, and f is an affine function over X providing the cost of
the clock valuations satisfying the constraints of Z.

Without going into details on how to compute the successors of a priced sym-
bolic state, we notice that the representation of priced zones as priced DBMs
support the necessary operations to do so. In particular, the data structure sup-
ports computing the set of delay successors of a priced zone and computing the
projection of a priced zone (for resetting clocks). The crucial addition compared
to regular DBMs is the efficient manipulation of the hyperplane in such a man-
ner, that any state in the resulting zone is associated with the lowest cost of
immediately reaching that state from a state in the predecessor. Also, given two
symbolic states S and S′, computing whether one dominates the other is effi-
ciently computable. E.g. S is dominated by S′ if for all states s in S, s is in S′

and the cost of s in S′ is lower than the cost in S.

0 1 2 3
0

1

2

x

y

(Z0, x)

0 1 2 3
0

1

2

x

y

(Z1, x)

0 1 2 3
0

1

2

x

y

(Z2, x + y)

(Z′
2, x + y)

0 1 2 3
0

1

2

x

y

(Z3, x + 1)

Fig. 4. Symbolic exploration of A using priced zones

Priced Timed Automata: Algorithms and Applications 169

Example 3. Figure 4 illustrates a symbolic exploration of the priced timed au-
tomaton A from Fig. 3 in terms of the following symbolic trace:

Γ = (l0, (Z0, x)) −→ (l1, (Z1, x))
−→ (l1, (Z2, x + y)) −→ (l2, (Z3, x + 1))

where Z0 = (x = y ∧ x ≤ 2), Z1 = (y = 0 ∧ x ≤ 2), Z2 = (y ≤ 2 ∧ x ≤ 3 ∧ 0 ≤
x−y ≤ 2) and Z3 = (y = 0∧2 ≤ x ≤ 3). The zone Z ′

2 = (1 ≤ y ≤ 2∧2 ≤ x ≤ 3)
is the subset of Z2 for which the edge from l1 to l2 is enabled. Now, from the
final symbolic state (l2, (Z3, x + 1)) we see that we may reach l2 with cost 3
given as the minimum value of the affine function x + 1 with respect to the
constraints of the zone Z3. This minimum value is clearly obtained at the state
(l2, x = 2, y = 0). Now, we may follow this state backwards within the given
symbolic trace Γ constantly selecting the predecessor-state with minimum cost.
In this way we are to (re)produce the concrete minimum-cost trace:

α2 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)
1−→2 (l1, x = 2, y = 1) −→0 (l2, x = 2, y = 0) ��

Cost := ∞
Passed := ∅
Waiting := {S0}
while Waiting �= ∅ do

select S ∈ Waiting //based on branching strategy
C ← infimum(S)
if Passed ≤/dom S and C + remain(S) < Cost then

Passed ← Passed ∪ {S}
if S ∈ Goal then

Cost ← C

else
Waiting ← {S ′ | S ′ ∈ Waiting or S → S ′}

return Cost

Fig. 5. Branch and bound algorithm for cost optimal reachability analysis of priced
timed automata. The algorithm works on priced symbolic states and uses auxiliary
functions for computing the infimum cost of all states in a symbolic state and for
checking whether a symbolic state dominates another symbolic state.

In Uppaal Cora, cost-optimal reachability analysis is performed using a stan-
dard branch and bound algorithm. Branching is based on various search strate-
gies implemented in Uppaal Cora which, currently, are breadth-first, ordinary,
random, or best depth-first with or without random restart, best-first, and user
supplied heuristics. The latter enables the user to annotate locations of the model
with a special variable called heur and the search can be ordered according to
either largest or smallest heur value. Bounding is based on a user-supplied, lower-
bound estimate of the remaining cost to reach the goal from each location, i.e.
an admissible heuristic.

170 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

The algorithm depicted in Fig. 5 is the cost-optimal reachability algorithm
used by Uppaal Cora. It maintains a Passed-list of symbolic states that have
been explored and a Waiting-list of symbolic state that need to be explored
and is instantiated with the initial symbolic state S0. The variable Cost holds
the currently best known cost of reaching the goal location; initially it is infinite.
The algorithm iterates until no more symbolic states need to be explored. Inside
the while-loop we select and remove a symbolic state, S, from Waiting based
on the branching strategy. If S is dominated by another symbolic state that has
already been explored or it is not possible to reach the goal with a lower cost
than Cost, we skip this symbolic state. Otherwise, we add S to Passed and if
S is a goal location we update the best known cost to the best cost in S. If not,
we add all successors of S to Waiting and continue to the next iteration. Note
that the algorithm does not terminate when the first goal location is discovered
which is custom with a best-first branch and bound algorithm. The reason is
that we allow various branching strategies some which do not guarantee the first
found goal location to be optimal.

4 Modeling

As mentioned earlier, one of the main strengths of using priced timed automata
for specifying and analyzing scheduling problems is the simplicity of the modeling
aspect in terms of compositional descriptions. In this section, we show how to
model well-known, generic scheduling problems, provide experimental results,
and describe two industrial case studies.

Scheduling problems often consist of a set of passive objects, called resources,
and a set of active objects, called tasks. The resources are passive in the sense
that they provide a service that tasks can utilize. Traditionally, the scheduling
problem is to complete the tasks as fast as possible using the available resources
under some constraints, e.g. limited availability of the resource, no two tasks
can, simultaneously, use the same resource, etc. The models we provide in this
section are all cost extensions of classical scheduling problems.

A generic resource model (see Fig. 6a) is a two-location cyclic process with
a single local clock, c. The two locations indicate whether the resource is Idle
or InUse. The resource moves from Idle to InUse, when a task initiates a
synchronization over the channel start and in the process, c is reset. The resource
will maintain InUse until the clock reaches some usage time, busy, it then
initiates synchronization over the channel done.

A generic task model (see Fig. 6b) is an acyclic process progressing from an
initial location, Init, to a final location Done, indicating task completion. Inter-
mediate locations describe acquiring resources and releasing them, i.e. the task
will transit to state Using by initiating synchronization over a start channel
and setting the busy variable of the resource. The task will remain here until
the resource initiates synchronization using the done channel.

To solve the scheduling problem, we pose the reachability question of whether
we can reach a state in which all tasks are in the location Done. In the following

Priced Timed Automata: Algorithms and Applications 171

InUse

c <= busy

Idle

c == busy

done! start?

DoneUsingInit
done?start!

busy = x

a) b)

Synchronization

Guard
Invariant

Variable update

Fig. 6. a) Resource template with clock c. b) Task template.

four sections we present some classical scheduling problems, all of which are slight
modifications of the generic templates.

4.1 Job Shop Scheduling

Problem: We are given a number of machines (resources) and a number jobs
(tasks) with corresponding recipes. A recipe for a job dictates the subset
of machines that the job should be processed by, the order in which the
processing should happen, and the duration of each processing step. Now,
the scheduling problem is to assign to each job a starting time for every
required machine such that no machine is occupied by two jobs at the same
time.

Cost: The model can be extended with costs by assigning to each machine an
idling cost and a operation cost.

Modeling : Figure 7a depicts a job and a machine. The model of the machine
is identical to the resource template, except that both locations have been
extended with cost rates. The job model is a “serial composition” of the task
template, i.e. the job serially requests the machines described by the recipe,
in this case machines 0, 1, and 2 for 7, 5, and 15 time units, respectively.

4.2 Task Graph Scheduling

Problem: This problem is described in Section 1.
Cost: We assign to each processor an energy consumption rate while idle and

while executing. Now, the overall objective is to find the schedule that min-
imizes the total cost while respecting a global (or task individual) deadline.

Modeling : The models for a task and a processor are depicted in Fig. 2. Again,
the processor model is an exact instance of the resource template with added
cost rates. Tasks 1 and 2 are exact instances of the task template, while
task 3 is not. The reason is that tasks 1 and 2 can only execute on one
processor each, while task 3 can execute on both, thus, task 3 is an extension
of the task template with a nondeterministic choice between the processors.
Furthermore, the edges leaving the initial state have been extended with a
guard specifying the dependencies of the task graph, i.e. task 3 requires tasks
1 and 2 to be finished, i.e. f[1] && f[2].

172 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

4.3 Vehicle Routing with Time Windows

Problem: We are given a depot owning a fleet of vehicles (resources) with lim-
ited capacity of some good and a number of dispersed customers (tasks) with
individual demands and time windows. The scheduling problem is to assign
routes to each vehicle such that customers are served within their time win-
dows and the total demand of a route does not exceed the capacity of the
vehicle. Usually, the unloading process is also associated with a delay linear
in the amount to unload and each vehicle is expected to return to the depot.

Cost: For a schedule, costs are incurred while vehicles are in operation (driver
salary, ds), i.e. away from the depot, and extra costs are added while driving
corresponding to the fuel consumption, fc.

Modeling : Figure 7b depicts models for a customer and for a vehicle. The cus-
tomer model (having time window [30,90]) is a combination of the job model
and the model of task 3 above. The customer can acquire either vehicle, hence
the nondeterministic choice and the sequential part corresponds to acquiring
the vehicle to arrive (ComingHere) and to unload the goods (Unloading).
Note that besides updating the vehicle busy time with a driving distance,
the vehicle capacity, carcap, is updated to reflect the demand. The require-
ments for the time window are realized through guards and invariants on the
global time. The vehicle model is a slight variation of the resource template,
as the InUse location has been replaced by two locations to distinguish
between Driving and Unloading. Furthermore, there is an acyclic part re-
flecting the possibility of DrivingHome to the depot and thus completing
the route. In all locations except Home, there is a cost rate corresponding
to the driver salary and in the driving locations there is an added fuel cost.

4.4 Aircraft Landing

Problem: Given a number of aircrafts (tasks) with designated type and landing
time window, assign a landing time and runway (resource) to each aircraft
such that the aircraft lands within the designated time window while re-
specting a minimum wake turbulence separation delay between aircrafts of
various types landing on the same runway.

Cost: The cost extended problem associates with each aircraft an additional tar-
get landing time corresponding to approaching the runway at cruise speed.
Now, if an aircraft is assigned a landing time earlier than the
target landing time, a cost per time unit is incurred, corresponding to pow-
ering up the engines. Similarly, if an aircraft is assigned a later landing time
than the target landing time a cost per time unit is added corresponding to
increased fuel consumption while circling above the airport.

Modeling : Figure 7c depicts a runway that can handle aircrafts of types B747
and A420, and an aircraft with target landing time 153, type A420 and time
window [129,559]. Unlike the other models, the runway model has only a
single location in its cycle indicating both that the resource is IdleAndI-
nUse. A single location is used since the duration that a runway is occupied

Priced Timed Automata: Algorithms and Applications 173

a) Job: Machine:

Done

UsingM2

Done1UsingM1Done0

UsingM0

Init

done[2]?

start[2]!
busy[2] = 15

done[1]?start[1]!
busy[1] = 5

done[0]?

start[0]!
busy[0] = 7

InUse

c <= busy[1]
&& cost’ == 6

Idle

cost’ == 2

c == busy[1]

done[1]!
start[1]?

c = 0

b) Customer: Vehicle:

Init
time <= 90

ComingHere
time <= 90

Unloading

Done

carcap[0] >= 10

drive[0]!

busy[0] = dd[vehicleAt[0]][1],
car = 0,
carcap[0] -= 10

carcap[1] >= 10

drive[1]!

busy[1] = dd[vehicleAt[1]][1],
car = 1,
carcap[1] -= 10

time >= 30
unload[car]!
busy[car] = 50

done[car]?
vehicleAt[car] = 1

Idle
cost’ == ds

Driving

c <= busy[1] &&
cost’ == fc+ds

Unloading

c <= busy[1] &&
cost’ == ds

DrivingHome
c <= busy[1] &&
cost’ == fc+ds

Home

drive[1]?
c = 0

c == busy[1]
unload[1]?

c = 0

c == busy[1]
done[1]!

busy[1] = dd[vehicleAt[1]][0],
c = 0

c == busy[1]

c) Aircraft: Runway:

Approaching

time <= 153

Delayed time <= 559 &&
cost’ == 10

OnTime

time <= 153 &&
cost’ == 10

Done

time == 153

time == 153
land[A420]!

time >= 129

land[A420] ! Temp

IdleAndInUse

land[B747] ?
c[0] = 0

land[A420] ?
c[1] = 0

c[0]>=wait[B747][B747] &&
c[1] >= wait[A420][B747]

land[B747] ?
c[0] = 0

c[0] >=wait[B747][A420] &&
c[1] >= wait[A420][A420]

land[A420] ?
c[1] = 0

Fig. 7. Priced timed automata models for two classical scheduling problems

depends solely on the types of consecutively landing aircrafts. Thus, the
runway maintains a clock per aircraft type holding the time since the latest
landing of an aircraft of the given type and access to the runway is con-
trolled by guards on the edges. The nondeterminism of the aircraft model
does not distinguish between the runway to use, but whether to land early
([129,153]) or late ([153,559]). Choosing to land early, the aircraft model
moves to the OnTime location and must remain here until the target land-
ing time while incurring a cost rate per time unit for landing early, simi-
larly, the aircraft can choose to land late and move to Delayed may re-
main there until the latest landing time while paying a cost rate for landing
late.

174 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

4.5 PTA Versus MILP

We only provide experimental results for the aircraft landing problem comparing
the PTA approach to that of MILP. For performance results of the job shop and
task graph scheduling problems, we refer to [6,23,1].

RW Planes 10 15 20 20 20 30 44
Types 2 2 2 2 2 4 2

1 MILP (s) 0.4 5.2 2.7 220.4 922.0 33.1 10.6
MC (s) 0.8 5.6 2.8 20.9 49.9 0.6 2.2
Factor 2.0 1.08 1.04 10.5 18.5 55.2 48.1

2 MILP (s) 0.6 1.8 3.8 1919.9 11510.4 1568.1 0.2
MC (s) 2.7 9.6 3.9 138.5 187.1 6.0 0.9
Factor 4.5 5.3 1.02 13.9 61.5 261.3 4.5

3 MILP (s) 0.1 0.1 0.2 2299.2 1655.3 0.2 N/A
MC (s) 0.2 0.3 0.7 1765.6 1294.9 0.6
Factor 2.0 3.0 3.5 1.30 1.28 3.0

4 MILP (s) N/A N/A N/A 0.2 0.2 N/A N/A
MC (s) 3.3 0.7
Factor 16.5 3.5

Fig. 8. Computational result for the aircraft landing problem using PTA and MILP
on comparable machines

Figure 8 displays experimental results for various instances of the aircraft
landing problem using MILP and PTA. The results for MILP have been taken
from [4] and the results for PTA have been executed on a comparable computer.
Factors in bold indicate the performance difference in favor of PTA and similarly
for italics and MILP. The experiments clearly indicate that PTA is a compet-
itive approach to solving scheduling problems and for one non-trivial instance
it is even more than a factor 250 faster than the MILP approach. However, the
required computation time of the PTA approach grows exponentially with the
number of added runways (and thus clocks) while no similar statement can be
made for the MILP approach. The exponential growth of the PTA approach is
no surprise as reachability is exponential in the number of clocks. However, this
does not mean that PTA are unsuited for larger problems, but merely that the
models should be carefully considered to minimize the number of clocks. Fur-
thermore, techniques from timed automata theory to deal with clocks such as
omitting certain “inactive” clocks from locations has been extended to PTA.

In conclusion, PTA is a promising method for solving scheduling problems,
but further experiments need to be conducted before saying anything more
conclusive.

4.6 Industrial Case Study: Steel Production

Problem: Proving schedulability of an industrial plant via reachability analysis
of a timed automaton model was first applied to the SIDMAR steel plant,

Priced Timed Automata: Algorithms and Applications 175

which was included as a case study of the Esprit-LTR Project 26270 VHS
(Verification of Hybrid Systems). The plant consists of five processing ma-
chines placed along two tracks and a casting machine where the finished steels
leaves the system. The tracks and machines are connected via two overhead
cranes. Each quantity of raw iron enters the system in a ladle and depending
on the desired final steel quality undergoes treatments in the different ma-
chines for different durations. The planning problem consists in controlling
the movement of the ladles of steel between the different machines, taking
the topology (e.g. conveyor belts and overhang cranes) into consideration.

Performance: A schedule for three ladles was produced in [14] for a slightly
simplified model using Uppaal. In [15] schedules for up to 60 ladles were
produced also using Uppaal. However, in order to do this, additional con-
straints were included that reduce the size of the state-space dramatically,
but also prune possibly sensible behavior. A similar reduced model was used
by Stobbe [24] using constraint programming to schedule 30 ladles. All these
works only consider ladles with the same quality of steel. In [6], using a search
order based on priorities, a schedule for ten ladles with varying qualities of
steels is computed within 60 seconds CPU-time on a Pentium II 300MHz.
The initial solution found is improved by 5% within the time limit. Allowing
the search to go on for longer, models with more ladles can be handled.

4.7 Industrial Case Study: Lacquer Production

Problem: The problem was provided by an industrial partner of the European
AMETIST project as a variation on job shop scheduling. The task is to
schedule lacquer production. Lacquer is produced according to a recipe in-
volving the use of various resources, possibly concurrently, see Fig. 9. An
order consists of a recipe, a quantity, an earliest starting date and a delivery
date. The problem is then to assign resources to the order such that the
constraints of the recipes and of the orders are met. Additional constraints
are provided by the resources, as they might require cleaning when switching
from one type of lacquer to another, or might require manual labor and thus
are unavailable during the night or in weekends.

Cost: The cost model is similar to that of the aircraft landing problem. Orders
finished on the delivery date do not incur any costs (except regular produc-
tion costs which are not modeled as these are fixed). Orders finishing late are
subject to delay costs and orders finishing too early are subject to storage
costs. Cleaning resources might generate additional costs.

Modeling : Resources are modeled using the resource template. Resources requir-
ing cleaning are extended with additional information to keep track of the
last type of lacquer produced on the resource. Cleaning costs are typically a
fixed amount and are added to the cost when cleaning is performed. Orders
are modeled similarly to tasks in the task graph scheduling problem, except
that multiple resources may be acquired simultaneously. Storage and delay
costs are modeled similarly to costs in the aircraft landing problem.

176 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

5 Other Optimization Problems

At present Uppaal Cora supports cost-optimal location-reachability for PTAs.
However, a number of other optimization problems are planned to be included
in future releases. In the following we give a brief description of these extensions
with illustrating examples.

Infinite Schedules

For several planning problems the objective is to repeat a treatment or process
indefinitely and to do so in a cost-optimal manner. Now let α = s0

a1→p1 s1
a2→p2

s2 · · · an→pn sn · · · be an infinite execution of a given PTA, let cn (tn) denote
the accumulated cost (time) after n steps (i.e. cn =

∑n
i=1 pi). Then the limit of

cn/tn when n → ∞ describes the cost per time of α in the long run and is the
cost of α. The optimization problem is to determine the (value of the) optimal
such infinite execution α∗.

Example 4. Consider the priced timed automaton B of Fig. 10 being a cyclic
extension of the priced timed automaton A of Fig. 3. Below we offer two infinite
(cyclic) traces (* indicates the nested cycle):

β0 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)∗

2−→4 (l1, x = 3, y = 2) −→0 (l2, x = 3, y = 0)
1−→3 (l2, x = 3, y = 1) −→0 (l0, x = 0, y = 1)
1−→1 (l0, x = 1, y = 2) −→0 (l1, x = 1, y = 0)∗

β1 = (l0, x = 0, y = 0) −→0 (l1, x = 0, y = 0)∗ 2−→4 (l1, x = 2, y = 2)

−→0 (l2, x = 0, y = 0) 2−→6 (l2, x = 2, y = 2)
−→0 (l0, x = 0, y = 2) −→0 (l1, x = 0, y = 0)∗

For the two infinite traces β0 and β1 their cyclic nature entails that the limit of
cost per time is given as the ratio of cost per time of the nested cycles. Thus we
find that:

ratio(β0) = (4 + 3 + 1)/(2 + 1 + 1) = 2
ratio(β1) = (4 + 6)/(2 + 2) = 2.5

and hence that β0 offers the better solution. ��

In [8] the problem of identifying the optimal infinite execution (and the limit-
ratio of this execution) has been shown decidable for PTA using a so-called
“corner-point” abstraction which is an extension of the classical region-technique
for timed automata. In case of non-strict guards — as is the case of the priced
timed automaton of Fig. 10 — the “corner-point” abstraction is identical to the

Priced Timed Automata: Algorithms and Applications 177

dose spinner

lab

filling station

disperging line

disperser

wait
arbitrary,
if not specified

synchronize

mixing vessel uni

[0,4]

[2,4]

11.02

5.18

7.35

23.95

25.69

[6,6]

48.98

26.44

Fig. 9. A lacquer recipe. Each bar represents the use of a resource. Horizontal lines
indicate synchronization points. Timing constraints for how long resources are used or
separation times between the use of resources can be provided either as a fixed time or
time window.

ċ = 1

l0

y := 0

x ≤ 2

ċ = 2

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3
y ≤ 2

ċ = 3

l2

y ≤ 2

y ≥ 1; x := 0

Fig. 10. A cyclic priced timed automaton, B

discrete-time semantics of the automaton. The problem now reduces to that of
identifying a cycle with minimum mean-cost in the corresponding finite weighted
graph, a problem for which Karp’s algorithm [18] provides a cubic solution.
Figure 11 illustrates the discrete semantics of the priced timed automaton B of
Fig. 10.

Though the “corner-point” abstraction technique nicely demonstrates decid-
ability of the problem (and many other decision problems for timed automata) it
does not provide a practical implementation, which is still to be identified. How-
ever, a method for determining approximate optimal infinite schedules have been
identified and applied to the synthesis of Dynamic Voltages Scaling scheduling
strategies.

178 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

l0

0 1 2 3

0

1

2

3

+

+

+

+

+

+

+

+

+

1

11

1 1

1 l1

0 1 2 3

0

1

2

3

+

+

+

+ +

+ +

+

2

2

2

2

2

2

l2

0 1 2 3 4

0

1

2

3

+ +

+ +

+ +

3 3

3 3

+ : State
ċ

: Delay successor : Discrete successor

Fig. 11. Discrete time semantics for PTA, B

Multiple Cost Variables

Optimization problems may involve multiple cost variables (e.g. money, energy,
pollution, etc.). Currently Uppaal Cora is only capable of optimizing with
respect to single costs. However, for scheduling problems with multiple costs,
there might well be several optimal solutions due to “negative” dependencies
between costs, i.e. minimizing one cost variable (e.g. money) might maximize
others (e.g. pollution).

ċ = 1
ḋ = 4

l0

y := 0
d+= 1

x ≤ 2

ċ = 2
ḋ = 1

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3
y ≤ 2

l2

Fig. 12. A dual-priced timed automaton, C

Example 5. Figure 12 illustrates a dual-priced TA C extending the (single)
priced TA A of Fig. 3 with a second cost variable d. The following two traces
both reach the goal location l2 but with incompatible cost-pairs, namely (4, 2)
versus (3, 5).

γ0 = (l0, x = 0, y = 0) −→(0,0) (l1, x = 0, y = 0) 2−→(4,2) (l1, x = 2, y = 2)
−→(0,0) (l2, x = 2, y = 0)

γ1 = (l0, x = 0, y = 0) 1−→(1,4) (l0, x = 1, y = 1) −→(0,0) (l1, x = 1, y = 0)
1−→(2,1) (11, x = 2, y = 1) −→(0,0) (l2, x = 2, y = 0) ��

Priced Timed Automata: Algorithms and Applications 179

0 1 2 3
0

1

2

x

y

Z0

{(x, 4x)}
0 1 2 3

0

1

2

x

y

Z1

{(x, 4x)}

0 1 2 3
0

1

2

x

y

Z2

Z′
2

{(x + y, 4x − 3y + 1)}
0 1 2 3

0

1

2

x

y

Z3

{(x + 1, 4x − 2), (x + 2, 4x − 5)}

Fig. 13. Symbolic exploration of C using dual-priced zones

In [21] the notion of priced zone for PTA has been extended to multi-price TA
allowing efficient synthesis of solutions optimal with respect to a chosen primary
cost variable, but subject to user-specified upper bounds on the remaining sec-
ondary cost variables. More precisely, the symbolic exploration of multi-priced
TAs uses multi-priced zones of the type P = (Z, {c1, . . . , cn}), where ci is a
vector of affine cost-functions (one for each cost variable). Now, any concrete
trace to a given state will be associated with a cost-vector giving a value (cost)
for each of the involved cost variables. As illustrated by Example 5, two dif-
ferent traces to a given state may, in the multi-priced case, be associated with
incomparable cost-vectors in the sense that neither one dominates the other with
respect to component-wise ≤. In our symbolic treatment we deal with this phe-
nomenon by associating the zone Z with sets of cost-function vectors. Now for
any clock-valuation u ∈ Z the multi-priced zone P will associate not only the
set of cost-vectors {c1(u), . . . , cn(u)}) but also all convex combinations of these
vectors. We refer the interested reader to [21] for more information on this. In
the following example we try to illustrate our symbolic treatment.

Example 6. Figure 13 illustrates the symbolic exploration of the dual-priced TA
C of Fig. 12. In the final symbolic state the zone Z3 is associated with a set
containing two cost-function pair: {(x+1, 4x−2), (x+2, 4x−5)}. Now evaluating
these two pairs with respect to the extrema points of Z3 we obtain a set of 4

180 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

cost-pairs: {(3, 6), (4, 10), (4, 3), (5, 7)}, all combinations of which are (according
to the theory) realizable. Thus, in case we want to minimize c subject to the
condition that d stays below 4 it can be seen that c = 11

4 is the minimum
such value. ��

Uncertainty

Finally, scheduling problems may involve uncertainties due to certain actions
being under the control of an adversary. In this case the (optimal) scheduling
problem is a game-theoretic problem consisting of determining a winning and
optimal strategy for how to respond to any action chosen by this adversary. In [9]
the problem of synthesizing optimal, winning strategies for priced timed games
has been shown to be computable under certain non-zenoness assumptions. How-
ever, the problem is not solvable using zone-based technology, but needs general
polyhedral support in order to represent the optimal strategies (see [10] for a
methodology using HyTech).

ċ = 5

l0

y := 0
x ≤ 2

l1

y = 0

ċ = 1

l3 x ≥ 2
c+ = 7

ċ = 10

x ≥ 2
c+ = 1

l2

l4

Fig. 14. A priced timed game automaton, D

Example 7. Consider the priced timed game automaton D of Fig. 14. Here the
cost-rates in locations l0, l2 and l3 are 5, 10 and 1 respectively. In l1 the adversary
may choose to move to either l2 or l3 (dashed arrows are under control of the
adversary). However, due to the invariant y = 0 this choice must be made
instantaneously. Obviously, once l2 or l3 has been reached the optimal strategy
for the controller is to move to the goal location l4 immediately. Note that there
is a discrete cost (respectively 1 and 7) on each discrete transition. The crucial
(and only remaining) question is how long the controller should wait in l0 before
taking the transition to l1. Obviously, in order for the controller to win this
duration must be no more than two time units. However, what is the optimal
choice for the duration in the sense that the overall cost of reaching l4 will be
minimal? Denote by t the chosen delay in l0. Then 5t + 10(2 − t) + 1 is the
minimal cost through l2 and 5t + (2 − t) + 7 is the minimal cost through l3.

Priced Timed Automata: Algorithms and Applications 181

As the adversary chooses between these two transitions the best choice for the
controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is minimum, which is
obtained for t = 4

3 giving a minimal cost of 14 1
3 . ��

References

1. Y. Abdeddaim, A. Kerbaa, and O. Maler. Task graph scheduling using timed au-
tomata. In Proc. of International Parallel and Distributed Processing Symposium,
pages 8–15, 2003.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.
Lecture Notes in Computer Science, 2034:pp. 49–62, 2001.

4. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. Transportation Science, 34(2):pp. 180–197, 2000.

5. G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In Formal Methods
for the Design of Real-Time Systems, number 3185 in Lecture Notes in Computer
Science, pages 200–236. Springer Verlag, 2004.

6. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn. Effi-
cient guiding towards cost-optimality in Uppaal. In Proc. of Tools and Algorithms
for the Construction and Analysis of System.s, number 2031 in Lecture Notes in
Computer Science, pages 174–188. Springer–Verlag, 2001.

7. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson,
Judi Romijn, and Frits Vaandrager. Minimum-Cost Reachability for Priced Timed
Automata. In Proc. of Hybrid Systems: Computation and Control, number 2034
in Lecture Notes in Computer Sciences, pages 147–161. Springer–Verlag, 2001.

8. P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as cheaply as possible. In
Proc. of Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes
in Computer Science, pages 203–218. Springer–Verlag, 2004.

9. P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Optimal strategies in priced timed
game automata. In Proc. of Foundations of Software Technology and Theoretical
Computer Science, volume 3328 of Lecture Notes in Computer Science, pages 148–
160. Springer–Verlag, 2004.

10. Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Synthesis
of optimal strategies using hytech. In Workshop on Games in Design and Verifi-
cation, volume 119(1) of Electronic Notes in Theoretical Computer Science, pages
11–31, Boston, MA, USA, July 2004. Elsevier Science Publishers.

11. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In Proc. of Computer Aided Verifica-
tion, volume 1427 of Lecture Notes in Computer Science, pages 546–550. Springer-
Verlag, 1998.

12. UPPAAL CORA. http://www.cs.aau.dk/∼behrmann/cora, Jan. 2005.
13. D. L. Dill. Timing assumptions and verification of finite-state concurrent sys-

tems. In J. Sifakis, editor, Proc. Of Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notex in Computer Science, pages 197–212.
Springer–Verlag, 1989.

14. A. Fehnker. Scheduling a steel plant with timed automata. In Proc. of Real-Time
and Embedded Computing Systems and Applications., page 280. IEEE Computer
Society, 1999.

http://www.cs.aau.dk/~behrmann/cora

182 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

15. T. Hune, K. Larsen, and P. Pettersson. Guided synthesis of control programs using
Uppaal. Nordic Journal of Computing, 8(1):43–64, 2001.

16. IF. http://www-verimag.imag.fr/∼async/IF, Jan. 2005.
17. Advanced Methods in Timed Systems (AMETIST). http://ametist.cs.

utwente.nl, Jan. 2005.
18. R. M. Karp. A characterization of the minimum mean-cycle in a digraph. Discrete

Mathematics, 23(3):309–311, 1978.
19. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and

J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed
automata. In Proc. of Computer Aided Verification, volume 2102, pages pp. 493+,
2001.

20. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1-2):134–152, 1997.

21. K. Larsen and J. Rasmussen. Optimal conditional reachability for multi-priced
timed automata. In Proc. of Foundations of Software Science and Computation
Structures, volume 3441 of Lecture Notes in Computer Science, pages 234–249.
Springer–Verlag, 2005.

22. Verification of Hybrid Systems (VHS). http://www-verimag.imag.fr/VHS/, Jan.
2005.

23. J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. of Tool and Algortihms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science, pages
220–235. Springer Verlag, 2004.

24. M. Stobbe. Results on scheduling the sidmar steel plant using constraint program-
ming. Internal report, 2000.

25. UPPAAL. http://www.uppaal.com, Jan. 2005.

http://www-verimag.imag.fr/~async/IF
http://ametist.cs.utwente.nl
http://ametist.cs.utwente.nl
http://www-verimag.imag.fr/VHS/
http://www.uppaal.com

	Introduction and Motivation
	Priced Timed Automata
	Optimal Scheduling
	Modeling
	Job Shop Scheduling
	Task Graph Scheduling
	Vehicle Routing with Time Windows
	Aircraft Landing
	PTA Versus MILP
	Industrial Case Study: Steel Production
	Industrial Case Study: Lacquer Production

	Other Optimization Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

