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Abstract. In 2-player non-zero-sum games, Nash equilibria capture the
options for rational behavior if each player attempts to maximize her
payoff. In contrast to classical game theory, we consider lexicographic
objectives: first, each player tries to maximize her own payoff, and then,
the player tries to minimize the opponent’s payoff. Such objectives arise
naturally in the verification of systems with multiple components. There,
instead of proving that each component satisfies its specification no mat-
ter how the other components behave, it often suffices to prove that each
component satisfies its specification provided that the other components
satisfy their specifications. We say that a Nash equilibrium is secure if
it is an equilibrium with respect to the lexicographic objectives of both
players. We prove that in graph games with Borel winning conditions,
which include the games that arise in verification, there may be several
Nash equilibria, but there is always a unique maximal payoff profile of
a secure equilibrium. We show how this equilibrium can be computed in
the case of ω-regular winning conditions, and we characterize the mem-
ory requirements of strategies that achieve the equilibrium.

1 Introduction

We consider 2-player non-zero-sum games, i.e., non-strictly competitive games. A
possible behavior of the two players is captured by a strategy profile (σ, π), where
σ is a strategy of player 1, and π is a strategy of player 2. Classically, the behavior
(σ, π) is considered rational if the strategy profile is a Nash equilibrium [7] —
that is, if neither player can increase her payoff by unilaterally changing her
strategy. Formally, let vσ,π

1 be the real-valued payoff of player 1 if the strategies
(σ, π) are played, and let vσ,π

2 be the corresponding payoff of player 2. Then
(σ, π) is a Nash equilibrium if (1) vσ,π

1 ≥ vσ′,π
1 for all player 1 strategies σ′, and

(2) vσ,π
2 ≥ vσ,π′

2 for all player 2 strategies π′. Nash equilibria formalize a notion
of rationality which is strictly internal : each player cares about her own payoff
but does not in the least care (cooperatively or adversarially) about the other
player’s payoff.
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Choosing Among Nash Equilibria. A classical problem is that many games
have multiple Nash equilibria, and some of them may be preferable to others.
For example, one might partially order the equilibria by (σ, π) � (σ′, π′) if both
vσ,π
1 ≥ vσ′,π′

1 and vσ,π
2 ≥ vσ′,π′

2 . If a unique maximal Nash equilibrium exists
in this order, then it is preferable for both players. However, maximal Nash
equilibria may not be unique. In these cases external criteria, such as the sum
of the payoffs for both players, have been used to evaluate different rational
behaviors [9,14]. These external criteria, which are based on a single preference
order on strategy profiles, are cooperative, in that they capture social aspects of
rational behavior. We define and study, for the first time, an adversarial external
criterion for rational behavior. Put simply, we assume that each player attempts
to minimize the other player’s payoff as long as, by doing so, she does not decrease
her own payoff. This yields two different preference orders on strategy profiles,
one for each player, and gives rise to a new notion of equilibrium.

Adversarial External Choice. According to our notion of rationality, among
two strategy profiles (σ, π) and (σ′, π′), player 1 prefers (σ, π), denoted (σ, π) �1

(σ′, π′), if either vσ,π
1 > vσ′,π′

1 , or both vσ,π
1 = vσ′,π′

1 and vσ,π
2 ≤ vσ′,π′

2 . In other
words, the preference order �1 of player 1 is lexicographic: the primary goal of
player 1 is to maximize her own payoff; the secondary goal is to minimize the
opponent’s payoff. The preference order �2 of player 2 is defined symmetrically.
It should be noted that, defined in this way, adversarial external choice cannot
be internalized uniformly over all games by changing the payoff functions of the
two players: if vσ,π

1 = vσ′,π′

1 and vσ,π
2 ≤ vσ′,π′

2 , then uniform internalization would
require to increase vσ,π

1 by an arbitrarily small ε > 0.

Secure Equilibria. The two orders �1 and �2 on strategy profiles, which
express the preferences of the two players, induce the following refinement of
the Nash equilibrium notion: (σ, π) is a secure equilibrium if (1) (vσ,π

1 , vσ,π
2 ) �1

(vσ′,π
1 , vσ′,π

2 ) for all player 1 strategies σ′, and (2) (vσ,π
1 , vσ,π

2 ) �2 (vσ,π′

1 , vσ,π′

2 )
for all player 2 strategies π′. Note that every secure equilibrium is a Nash equi-
librium, but a Nash equilibrium need not be secure. The name “secure” equi-
librium derives from the following equivalent characterization. We say that a
strategy profile (σ, π) is secure if any rational deviation of player 2 —i.e., a
deviation that does not decrease her payoff— will not decrease the payoff of
player 1, and symmetrically, any rational deviation of player 1 will not decrease
the payoff of player 2. Formally, (σ, π) is secure if for all player 2 strategies π′,
if vσ,π′

2 ≥ vσ,π
2 then vσ,π′

1 ≥ vσ,π
1 , and for all player 1 strategies σ′, if vσ′,π

1 ≥ vσ,π
1

then vσ′,π
2 ≥ vσ,π

2 . The secure profile (σ, π) can thus be interpreted as a contract
between the two players which enforces cooperation: any unilateral selfish devi-
ation by one player cannot put the other player at a disadvantage if she follows
the contract. It is not difficult to show (see Section 2) that a strategy profile
is a secure equilibrium iff it is both a secure profile and a Nash equilibrium.
Thus, the secure equilibria are those Nash equilibria which represent enforceable
contracts between the two players.
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Motivation: Verification of Component-Based Systems. The motivation
for our definitions comes from verification. There, one would like to prove that
a component of a system (player 1) can satisfy a specification no matter how
the environment (player 2) behaves [3]. Classically, this is modeled as a strictly
competitive (zero-sum) game, where the environment’s objective is the com-
plement of the component’s objective. However, the zero-sum model is often
naive, as the environment itself typically consists of components, each with its
own specification (i.e., objective). Moreover, the individual component specifi-
cations are usually not complementary; a common example is that each com-
ponent must maintain a local invariant. So a more appropriate approach is to
prove that player 1 can meet her objective no matter how player 2 behaves as
long as player 2 does not sabotage her own objective. In other words, classical
correctness proofs of a component assume absolute worst-case behavior of the
environment, while it would suffice to assume only relative worst-case behavior
of the environment —namely, relative to the assumption that the environment
itself is correct (i.e., meets its specification). Such relative worst-case reasoning
called assume-guarantee reasoning [1,2,13] so far has not been studied in the
natural setting offered by game theory.

Existence and Uniqueness of Maximal Secure Equilibria. We will see
that in general games, such as matrix games, there may be multiple secure
equilibrium payoff profiles, even several incomparable maximal ones. However,
the games that occur in verification have a special form. They are played on
directed graphs whose nodes represent system states, and whose edges represent
system transitions. The nodes partitioned into two sets: in player 1 nodes, the
first player chooses an outgoing edge, and in player 2 nodes, the second player
chooses an outgoing edge. By repeating these choices ad infinitum, an infinite
path through the graph is formed, which represents a system trace. The objective
ϕi of each player i is a set of infinite paths; for example, an invariant (or “safety”)
objective is the set of infinite paths that do not visit unsafe states. Each player i
attempts to satisfy her objective ϕi by choosing a strategy that ensures that the
outcome of the game lies in the set ϕi. The objective ϕi is typically an ω-regular
set (specified, e.g., in temporal logic), or more generally, a Borel set [8] in the
Cantor topology on infinite paths. We call these games 2-player non-zero-sum
graph games with Borel objectives. Our main result shows that for these games,
which may have multiple maximal Nash equilibria, there always exists a unique
maximal secure equilibrium payoff profile. In other words, in graph games with
Borel objectives there is a compelling notion of rational behavior for each player,
which is (1) a classical Nash equilibrium, (2) an enforceable contract (“secure”),
and (3) a guarantee of maximal payoff for each player among all behaviors that
achieve (1) and (2).

Examples. Consider the game graph shown in Fig. 1. Player 1 chooses the
successor node at square nodes and her objective is to reach the target s4, a
reachability (co-safety) objective. Player 2 chooses the successor node at diamond
nodes and her objective is to reach s3 or s4, also a reachability objective. There
are two player 1 strategies: σ1 chooses the move s0 → s1, and σ2 chooses s0 → s2.
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Fig. 1. A graph game with reachability objectives
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Fig. 2. A graph game with Büchi objectives

There are also two player 2 strategies: π1 chooses s1 → s3, and π2 chooses
s1 → s4. The strategy profile (σ1, π1) leads the game into s3 and therefore gives
the payoff profile (0,1), meaning player 1 loses and player 2 wins (i.e., only
player 2 reaches her target). The strategy profiles (σ1, π2), (σ2, π1), and (σ2, π2)
give the payoffs (1,1), (0,0), and (0,0), respectively. All four strategy profiles
are Nash equilibria; for example, in (σ1, π1) player 1 does not have an incentive
to switch to strategy σ2 (which would still give her payoff 0), and neither does
player 2 have an incentive to switch to π2 (she is already getting payoff 1).
However, the strategy profile (σ1, π1) is not a secure equilibrium, because player 2
can lower player 1’s payoff (from 1 to 0) without changing her own payoff by
switching to strategy σ2. Similarly, the strategy profile (σ1, π2) is not secure,
because player 1 can lower player 2’s payoff without changing her own payoff by
switching to σ1. So if both players, in addition to maximizing their own payoff,
also attempt to minimize the opponents payoff, then the resulting payoff profile
is unique, namely, (0,0). In other words, in this game, the only rational behavior
for both players is to deny each other’s objectives.

This is not always the case: sometimes it is beneficial for both players to
cooperate to achieve their own objectives, with the result that both players win.
Consider the game graph shown in Fig. 2. Both players have Büchi objectives:
player 1 (square) wants to visit s0 infinitely often, and player 2 (diamond) wants
to visit s4 infinitely often. If player 2 always chooses s1 → s0 and player 1
always chooses s2 → s4, then both players win. This Nash equilibrium is also
secure: if player 1 deviates by choosing s2 → s0, then player 2 can “retaliate”
by choosing s0 → s3; similarly, if player 2 deviates by choosing s1 → s2, then
player 2 can retaliate by s2 → s3. It follows that for purely selfish motives (and
not some social reason), both players have an incentive to cooperate to achieve
the maximal secure equilibrium payoff (1,1).

Outline and Results. In Section 2, we define the notion of secure equilibrium
and give several interpretations through alternative definitions. In Section 3 we
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prove the existence and uniqueness of maximal secure equilibria in graph games
with Borel objectives. The proof is based on the following classification of strate-
gies. A player 1 strategy is called strongly winning if it ensures that player 1 wins
and player 2 loses (i.e., the outcome of the game satisfies ϕ1 ∧ ¬ϕ2). A player 1
strategy is retaliating if it ensures that player 1 wins if player 2 wins (i.e., the
outcome satisfies ϕ2 → ϕ1). In other words, a retaliating strategy for player 1
ensures that if player 2 causes player 1 to lose, then player 2 will lose too. If
both players follow retaliating strategies (σ, π), they may both win —in this
case, we say that (σ, π) is a winning pair of retaliating strategies— or they may
both lose. We show that at every node of a graph game with Borel objectives,
either one of the two players has a strongly winning strategy, or there is a pair of
retaliating strategies. Based on this insight, we give an algorithm for computing
the secure equilibria in graph games in the case that both players’ objectives are
ω-regular. In Section 4, we analyze the memory requirements of strongly winning
and retaliating strategies in graph games with ω-regular objectives. Our results
(in Table 1 and 2) consider safety, reachability, Büchi, co-Büchi, and general
parity objectives. We show that strongly winning and retaliating strategies often
require memory, even in the simple case that a player pursues a reachability ob-
jective. In Section 5, we generalize the notion of secure equilibria from 2-player
to n-player games. We show that there can be multiple maximal secure equilibria
in 3-player graph games with reachability objectives.

2 Definitions

In a secure game the objective of player 1 is to maximize her own payoff and then
minimize the payoff of player 2. Similarly, player 2 maximizes her own payoff and
then minimizes the payoff of player 1. We want to determine the best payoff that
each player can ensure when both players play according to these preferences. We
formalize this as follows. A strategy profile (σ, π) is a pair of strategies, where σ
is a player 1 strategy and π is a player 2 strategy. The strategy profile (σ, π) gives
rise to a payoff profile (vσ,π

1 , vσ,π
2 ), where vσ,π

1 is the payoff of player 1 if the two
players follow the strategies σ and π respectively, and vσ,π

2 is the corresponding
payoff of player 2. We define the player 1 preference order �1 and the player 2
preference order �2 on payoff profiles lexicographically:

(v1, v2) ≺1 (v′1, v
′
2) iff (v1 < v′1) ∨ (v1 = v′1 ∧ v2 > v′2),

that is, player 1 prefers a payoff profile which gives her greater payoff, and if two
payoff profiles match in the first component, then she prefers the payoff profile
in which the player 2’s payoff is minimized; symmetrically,

(v1, v2) ≺2 (v′1, v
′
2) iff (v2 < v′2) ∨ (v2 = v′2 ∧ v1 > v′1).

Given two payoff profiles (v1, v2) and (v′1, v
′
2), we write (v1, v2) = (v′1, v

′
2) iff

v1 = v′1 and v2 = v′2, and (v1, v2) �1 (v1, v
′
2) iff either (v1, v2) ≺1 (v′1, v′2) or

(v1, v2) = (v′1, v
′
2). We define �2 analogously.
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Definition 1 (Secure strategy profiles). A strategy profile (σ, π) is secure if
the following two conditions hold:

∀π′. (vσ,π′

1 < vσ,π
1 ) → (vσ,π′

2 < vσ,π
2 )

∀σ′. (vσ′,π
2 < vσ,π

2 ) → (vσ′,π
1 < vσ,π

1 )

A secure strategy for player 1 ensures that if player 2 tries to decrease player 1’s
payoff, then player 2’s payoff decreases as well, and vice versa.

Definition 2 (Secure equilibria). A strategy profile (σ, π) is a secure equi-
librium if the strategy profile is a Nash equilibrium and it is secure.

Lemma 1 (Equivalent characterization). The strategy profile (σ, π) is a se-
cure equilibrium iff the following two conditions hold:

∀π′. (vσ,π′

1 , vσ,π′

2 ) �2 (vσ,π
1 , vσ,π

2 )

∀σ′. (vσ′,π
1 , vσ′,π

2 ) �1 (vσ,π
1 , vσ,π

2 )

Proof. Given (σ, π) is a Nash equilibrium strategy profile we have for all π′,
vσ,π′

2 ≤ vσ,π
2 . Since the strategy profile is also a secure strategy profile for all

strategy π′ we have (vσ,π′

1 < vσ,π
1 ) → (vσ,π′

2 < vσ,π
2 ). It follows from above that

for any arbitrary π′ the following condition hold:

(vσ,π′

2 = vσ,π
2 ∧ vσ,π

1 ≤ vσ,π′

1 ) ∨ (vσ,π′

2 < vσ,π
2 ).

Hence for all π′ we have (vσ,π′

1 , vσ,π′

2 ) �2 (vσ,π
1 , vσ,π

2 ). The argument for the other
case is symmetric.

Hence neither player 1 nor player 2 has any incentive to switch from the strat-
egy profile (σ, π) to increase the payoff profile according to their respective payoff
profile ordering.

Example 1 (Matrix games). A secure equilibrium need not exist in a matrix
game. We give an example of a matrix game where no Nash equilibrium is
secure. Consider the game M1 below, where the row player can choose row 1 or
row 2 (denoted r1 and r2, respectively), and the column player chooses between
the two columns (denoted c1 and c2). The first component of the payoff is the
row player payoff, and the second component is the column player payoff.

M1 =
[
(3, 3) (1, 3)
(3, 1) (2, 2)

]

In this game the strategy profile (r1, c1) is the only Nash equilibrium. But (r1, c1)
is not a secure strategy profile, because if the row player plays r1, then the
column player playing c2 can still get payoff 3 and decrease the row player’s
payoff to 1. In the game M2 there are two Nash equilibria, namely, (r1, c2) and
(r2, c1), and the strategy profile (r2, c1) is a secure strategy profile as well. Hence
the strategy profile (r2, c1) is a secure equilibrium. However the strategy profile
(r1, c2) is not secure.



Games with Secure Equilibria 147

M2 =
[

(0, 0) (1, 0)
(1
2 , 1

2 ) (1
2 , 1

2 )

]

Multiple secure equilibria can exist, as in the case, for example, in a matrix
game where all entries of the matrix are the same. We now present an example
of a matrix game with multiple secure equilibria profile. Consider the following
matrix game M3. The strategy profile (r1, c1) and (r2, c2) are both secure equi-
libria. The former has a payoff profile (2, 1) and the later has a payoff profile
(1, 2). Hence there can be multiple secure equilibria payoff profiles and in case
there are multiple secure equilibria payoff profiles the maximal payoff profile is
not always unique.

M3 =
[
(2, 1) (0, 0)
(0, 0) (1, 2)

]

3 2-Player Non-zero-sum Games on Graphs

We consider 2-player infinite path-forming games played on graphs. A game
graph G = ((V, E), (V1, V2)) consists of a directed graph (V, E), where V is the
set of states (vertices) and E is the set of edges, and a partition (V1, V2) of the
states. For technical convenience we assume that every state has at least one
outgoing edge. The two players, player 1 and player 2, keep moving a token
along the edges of the game graph: player 1 moves the token from states in V1,
and player 2 moves the token from states in V2. A play is an infinite path
Ω = 〈s0, s1, s2, . . .〉 through the game graph, that is, (sk, sk+1) ∈ E for all
k ≥ 0. A strategy for player 1, given a prefix of a play (i.e., a finite sequence of
states), specifies a next state to extend the play. Formally, a strategy for player 1
is a function σ: V ∗ · V1 → V such that for all x ∈ V ∗ and s ∈ V1, we have
(s, σ(x · s)) ∈ E. A strategy π for player 2 is defined symmetrically. We write
Σ and Π to denote the sets of strategies for player 1 and player 2, respectively.
A strategy is memoryless if it is independent of the history of play. Formally, a
strategy τ of player i, where i ∈ {1, 2}, is memoryless if τ(x · s) = τ(x′ · s) for
all x, x′ ∈ V ∗ and all s ∈ Vi; hence a memoryless strategy of player i can be
represented as a function τ : Vi → V . A play Ω = 〈s0, s1, s2, . . .〉 is consistent with
a strategy τ of player i if for all k ≥ 0, if sk ∈ Vi, then sk+1 = τ(s0, s1, . . . , sk).
Given a state s ∈ V , a strategy σ of player 1, and a strategy π of player 2, there
is a unique play Ωσ,π(s), the outcome of the game, which starts from s and is
consistent with both σ and π.

Objectives of the players are specified generally as sets ϕ ⊆ V ω of infinite
paths. We write Ω |= ϕ instead of Ω ∈ ϕ for infinite paths Ω and objectives ϕ.
We use boolean operators such as ∨, ∧, and ¬ on objectives to denote set union,
intersection, and complement. A Borel objective is a Borel set ϕ ⊆ V ω in the
Cantor topology on V ω. The following celebrated result of Martin establishes
that all games with Borel objectives are determined.

Theorem 1 (Borel determinacy [11]). For every 2-player graph game G,
every state s, and every Borel objective ϕ, either (1) there is a strategy σ of



148 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

player 1 such that for all strategies π′ of player 2, we have Ωσ,π′(s) |= ϕ, or
(2) there is a strategy π of player 2 such that for all strategies σ′ of player 1, we
have Ωσ′,π(s) |= ¬ϕ.

In verification, objectives are usually ω-regular sets. The ω-regular sets oc-
cur in the low levels of the Borel hierarchy (in Σ3 ∩ Π3) and form a robust and
expressive class for determining the payoffs of commonly used system specifica-
tions [10,16].

We consider non-zero-sum games on graphs. For our purposes, a graph game
(G, s, ϕ1, ϕ2) consists of a game graph G, say with state set V , together with
a start state s ∈ V and two Borel objectives ϕ1, ϕ2 ⊆ V ω. The game starts at
state s, player 1 pursues the objective ϕ1, and player 2 pursues the objective ϕ2
(in general, ϕ2 is not the complement of ϕ1). Player i ∈ {1, 2} gets payoff 1 if the
outcome of the game is a member of ϕi, and she gets payoff 0 otherwise. In the
following, we fix the game graph G and the objectives ϕ1 and ϕ2, but we vary the
start state s of the game. Thus we parameterize the payoffs by s: given strategies
σ and π for the two players, we write vσ,π

i (s) = 1 if Ωσ,π(s) |= ϕi, and vσ,π
i (s) = 0

otherwise, for i ∈ {1, 2}. Similarly, we sometimes refer to Nash equilibria and
secure strategy profiles of the graph game (G, s, ϕ1, ϕ2) as equilibria and secure
profiles at the state s.

3.1 Unique Maximal Secure Equilibria

Consider a game graph G with state set V , and Borel objectives ϕ1 and ϕ2 for
the two players.

Definition 3 (Maximal secure equilibria). For v, w ∈ {0, 1}, we write
Sv,w ⊆ V to denote the set of states s such that a secure equilibrium with
the payoff profile (v, w) exists in the game (G, s, ϕ1, ϕ2), that is, s ∈ Sv,w iff
there is a secure equilibrium (σ, π) at s such that (vσ,π

1 (s), vσ,π
2 (s)) = (v, w).

Similarly, MS v,w ⊆ Sv,w denotes the set of states s such that the payoff profile
(v, w) is a maximal secure equilibrium payoff profile at s, that is, s ∈ MS v,w iff
(1) s ∈ Sv,w and (2) for all v′, w′ ∈ {0, 1}, if s ∈ Sv′,w′ , then (v′, w′) �1 (v, w)
and (v′, w′) �2 (v, w).

We now define the notions of strongly winning and retaliating strategies, which
capture the essence of secure equilibria. A strategy for player 1 is strongly win-
ning if it ensures that the objective of player 1 is satisfied and the objective of
player 2 is not. A retaliating strategy for player 1 ensures that for every strategy
of player 2, if the objective of player 2 is satisfied, then the objective of player 1
is satisfied as well. We will show that every secure equilibrium either contains
a strongly winning strategy for one of the players, or it consists of a pair of
retaliating strategies.

Definition 4 (Strongly winning strategies). A strategy σ is strongly win-
ning for player 1 from a state s if she can ensure the payoff profile (1, 0) in the
game (G, s, ϕ1, ϕ2) by playing the strategy σ. Formally, σ is strongly winning
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for player 1 if for all player 2 strategies π, we have Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2). The
strongly winning strategies for player 2 are defined symmetrically.

Definition 5 (Retaliating strategies). A strategy σ is a retaliating strategy
for player 1 from a state s if for all player 2 strategies π, we have Ωσ,π(s) |=
(ϕ2 → ϕ1). Similarly, a strategy π is a retaliating strategy for player 2 from s
if for all player 1 strategies σ, we have Ωσ,π(s) |= (ϕ1 → ϕ2). We write Re1(s)
and Re2(s) to denote the sets of retaliating strategies for player 1 and player 2
from s. A strategy profile (σ, π) is a retaliation strategy profile at a state s if
both σ and π are retaliating strategies from s.

Example 2 (Büchi-Büchi game). Recall the game shown in Fig. 2. Consider the
memoryless strategies of player 2 at state s0. If player 2 chooses s0 → s3, then
player 2 does not satisfy her Büchi objective. If player 2 chooses s0 → s2, then at
state s2 player 1 chooses s2 → s0, and hence player 1’s objective is satisfied, but
player 2’s objective is not satisfied. Thus, no memoryless strategy for player 2
can be a winning retaliating strategy at s0.

Now consider the strategy πg for player 2 which chooses s0 → s2 if between
the last two consecutive visits to s0 the state s4 was visited, and otherwise it
chooses s0 → s3. Given this strategy, for every strategy of player 1 that satisfies
player 1’s objective, player 2’s objective is also satisfied. Let σg be the player 1
strategy that chooses s2 → s4 if between the last two consecutive visits to s2
the state s0 was visited, and otherwise chooses s2 → s3. The strategy profile
(σg, πg) consists of a pair of winning retaliating strategies, as it satisfies the
Büchi objectives of both players. If instead, player 2 always chooses s0 → s3,
and player 1 always chooses s2 → s3, we obtain a memoryless retaliation strategy
profile, which is not winning for either player: it is a Nash equilibrium at state
s0 with the payoff profile (0, 0). Finally, suppose that at s0 player 2 always
chooses s2, and at s2 player 1 always chooses s0. This strategy profile is again
a Nash equilibrium, with the payoff profile (0, 1) at s0, but not a retaliation
strategy profile. This shows that at state s0 the Nash equilibrium payoff profiles
(0, 1), (0, 0), and (1, 1) are possible, but only (0, 0) and (1, 1) are secure.

Definition 6 (Winning sets). We define the following state sets in terms of
strongly winning and retaliating strategies.

– The sets of states where player 1 or player 2 have a strongly winning strategy,
denoted by W10 and W01, respectively:

W10 = { s ∈ V : ∃σ ∈ Σ. ∀π ∈ Π. Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2) }

W01 = { s ∈ V : ∃π ∈ Π. ∀σ ∈ Σ. Ωσ,π(s) |= (ϕ2 ∧ ¬ϕ1) }
– The set of states where both players have retaliating strategies and there

exists a retaliation strategy profile whose strategies satisfy the objectives of
both players:

W11 = { s ∈ V : ∃σ ∈ Re1(s). ∃π ∈ Re2(s). Ωσ,π(s) |= (ϕ1 ∧ ϕ2) }
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– The set of states where both players have retaliating strategies and for every
retaliation strategy profile, neither the objective of player 1 nor the objective
of player 2 is satisfied:

W00 = { s ∈ V : Re1(s) �= ∅ and Re2(s) �= ∅ and
∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∧ ¬ϕ2) }

We show that the four sets W10, W01, W11, and W00 form a partition of the
state space. This result fully characterizes each state of a 2-player non-zero-sum
graph game with Borel objectives, just like the determinacy result (Theorem 1)
fully characterizes the zero-sum case. In the zero-sum case, where ϕ2 = ¬ϕ1, the
sets W10 and W01 specify the winning states for players 1 and 2, respectively,
W11 = ∅ by definition, and W00 = ∅ by determinacy. We also show that for all
v, w ∈ {0, 1}, we have MS v,w = Wv,w. It follows that for 2-player graph games
(1) secure equilibria always exist, and moreover, (2) there is always a unique
maximal secure equilibrium payoff profile. (Example 2 showed that there can be
multiple secure equilibria with different payoff profiles). The proof proceeds in
several steps.

Lemma 2. W10 = { s ∈ V : Re2(s) = ∅ } and W01 = { s ∈ V : Re1(s) = ∅ }.

Proof. We show the inclusion of one set in the other for both the direction:

1. W10 ⊆ { s : Re2(s) = ∅ } as a strongly winning strategy σ of player 1 to
satisfy (ϕ1 ∧ ¬ϕ2) against any strategy π of player 2 is a witness to exhibit
that there is no retaliation strategy for player 2.

2. It follows from Borel determinacy (Theorem 1) that from every state s in
V \ W10 there is a strategy π for player 2 to satisfy (¬ϕ1 ∨ ϕ2) against any
strategy of player 1. The strategy π is a retaliation strategy for player 2.
Hence we have V \ W10 ⊆ { s : Re2(s) �= ∅ }.

The claim is a consequence of the above facts.

Lemma 3. Consider the following sets:

T1 = { s ∈ V : ∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∧ ¬ϕ2) }

T2 = { s ∈ V : ∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∨ ¬ϕ2) }
Then T1 = T2.

Proof. The inclusion T1 ⊆ T2 follows from the fact that (¬ϕ1 ∧ ¬ϕ2) → (¬ϕ1 ∨
¬ϕ2). We show that T2 ⊆ T1. By the definition of retaliating strategies, if σ is
a retaliating strategy of player 1, then for all strategies π of player 2, we have
Ωσ,π(s) |= (ϕ2 → ϕ1), and thus Ωσ,π(s) |= (¬ϕ1 → ¬ϕ2). Symmetrically, if π is
a retaliating strategy of player 2, then for all strategies σ of player 1, we have
Ωσ,π(s) |= (¬ϕ2 → ¬ϕ1). The claim follows.

It follows from Lemma 2 and Lemma 3 that W00 = V \ (W01 ∪ W10 ∪ W11). It
also follows from Lemma 2 that the sets W01, W10, and W11 are disjoint. This
gives the following result.



Games with Secure Equilibria 151

Theorem 2 (State space partition). For all 2-player graph games with Borel
objectives, the four sets W10, W01, W11, and W00 form a partition of the state set.

Lemma 4. Consider the sets Sij for i, j ∈ { 0, 1 } as defined in Definition 3.
The following equalities hold:

S00 ∩ S01 = ∅; S00 ∩ S10 = ∅;

S01 ∩ S10 = ∅; S11 ∩ S01 = ∅; S11 ∩ S10 = ∅.

Proof. Consider a state s ∈ S10 and a secure equilibrium (σ, π) at s. Since the
strategy profile is secure and player 2 gets the least possible payoff, it follows that
for all player 1 strategies π′, the payoff for player 1 cannot decrease. Hence for
all player 2 strategies π′, we have Ωσ,π′(s) |= ϕ1. So there is no Nash equilibrium
at state s which assigns payoff 0 to player 1. Hence we have S10 ∩ S01 = ∅ and
S10 ∩ S00 = ∅. By symmetry, S01 ∩ S00 = ∅.

Consider a state s ∈ S11 and a secure equilibrium (σ, π) at s. Since the
strategy profile is secure, it ensures that for all player 2 strategies π′, if Ωσ,π′(s) |=
¬ϕ1, then Ωσ,π′ |= ¬ϕ2. Hence s �∈ S01. Thus we have S11 ∩ S01 = ∅, and by
symmetry S11 ∩ S10 = ∅.

Lemma 5. The following equalities hold:

MS 00 ∩ MS 01 = ∅; MS 00 ∩ MS 10 = ∅;

MS 01 ∩ MS 10 = ∅; MS 11 ∩ MS 00 = ∅.

Proof. The first three equalities follow from Lemma 4. The last equality follows
from the facts that (0, 0) �1 (1, 1) and (0, 0) �2 (1, 1). So if s ∈ MS 11, then
(0, 0) cannot be a maximal secure payoff profile at s.

Lemma 6. W11 = MS 11; W10 = MS 10; W01 = MS 01.

Proof. Consider a state s ∈ MS 10 and a secure equilibrium (σ, π) at s. Since
player 2 gets the least possible payoff and (σ, π) is a secure strategy profile, it
follows that for all strategies π′ of player 2, we have Ωσ,π′(s) |= ϕ1. Since (σ, π)
is a Nash equilibrium, for all strategies π′ of player 2, we have Ωσ,π′(s) |= ¬ϕ2.
Thus we have MS 10 ⊆ W10. Now consider a state s ∈ W10 and let σ be a strongly
winning strategy of player 1 at s, that is, for all strategies π of player 2, we have
Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2). For all strategies π of player 2, the strategy profile (σ, π)
is a secure equilibrium. Hence, s ∈ S10. Since (1, 0) is the greatest payoff profile
in the preference ordering of the payoff profiles for player 1, we have s ∈ MS 10.
Therefore W10 = MS 10. Symmetrically, W01 = MS 01.

Consider a state s ∈ MS 11 and let (σ, π) be a secure equilibrium at s. We
prove that σ ∈ Re1(s) and π ∈ Re2(s). Since (σ, π) is a secure strategy profile,
for all strategies π′ of player 2, if Ωσ,π′(s) |= ¬ϕ1, then Ωσ,π′(s) |= ¬ϕ2. In other
words, for all strategies π′ of player 2, we have Ωσ,π′(s) |= (ϕ2 → ϕ1). Hence
σ ∈ Re1(s). Symmetrically, π ∈ Re2(s). Thus MS 11 ⊆ W11. Consider a state
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s ∈ W11 and let σ ∈ Re1(s) and π ∈ Re2(s) such that Ωσ,π(s) |= (ϕ1 ∧ ϕ2). A
retaliation strategy profile is, by definition, a secure strategy profile. Since the
strategy profile (σ, π) assigns the greatest possible payoff to each player, it is a
Nash equilibrium. Therefore W11 ⊆ S11 ⊆ MS 11.

Lemma 7. W00 = MS 00.

Proof. It follows from Lemma 4 and Lemma 5 that MS 00 = S00 \ S11 = S00 \
MS 11. We will use this fact to prove that W00 = MS 00.

– Consider a state s ∈ MS 00. Then we have s �∈ (MS 11 ∪MS 10 ∪MS 11) ⇒ s �∈
(W11 ∪ W10 ∪ W01). By Lemma 2 we have W00, W11, W10, W01 is a partition
and hence we have s ∈ W00. It follows that MS 00 ⊆ W00.

– Consider a state s ∈ W00. We claim that there is a strategy σ for player 1
such that for all strategy π′ we have Ωσ,π′(s) |= ¬ϕ2. Assume by the way of
contradiction this is not the case. By Borel determinacy then we have there
is a strategy π′′ for player 2 such that for all σ′ we have Ωσ′,π′′(s) |= ϕ2.
It follows that either π′′ is a strongly winning strategy for player 2 or a
retaliation strategy such that player 2 gets payoff 1. Hence s �∈ W00, which
is a contradiction. Hence there is a strategy σ such that for all π′ we have
Ωσ,π′(s) |= ¬ϕ2. Similarly, there is a strategy π such that for all σ′ we have
Ωσ′,π(s) |= ¬ϕ1. We claim that (σ, π) is a secure equilibrium strategy profile.
By property of σ for any π′, Ωσ,π′(s) |= ¬ϕ2. Similar argument hold for π
as well. Hence we have (σ, π) is a Nash equilibrium strategy profile. For the
strategy profile (σ, π) we have the payoff profile is (0, 0) and it assigns the
least possible payoff to each player. Hence it is a secure strategy profile.
Hence s ∈ S00. Also s ∈ W00 ⇒ s �∈ W11 = MS 11. Hence s ∈ S00 \ MS 11.
This gives us W00 ⊆ MS 00.

Theorem 2 together with Lemmas 6 and 7 yields the following result.

Theorem 3 (Unique maximal secure equilibrium). At every state of a 2-
player graph game with Borel objectives, there exists a unique maximal secure
equilibrium payoff profile.

3.2 Algorithmic Characterization

We now give an alternative characterization of the sets W00, W01, W10, and W11.
The new characterization is useful to derive computational complexity results
for computing the four sets when player 1 and player 2 have ω-regular objec-
tives. The characterization itself, however, is general and applies to all objectives
specified as Borel sets.

Definition 7 (Cooperative strategy profiles). Given a game graph G with
state set V , and an objective ψ ⊆ V ω, we define the following sets:

〈〈1〉〉G ψ = {s ∈ V : ∃σ ∈ Σ. ∀π ∈ Π. Ωσ,π(s) |= ψ}
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〈〈2〉〉G ψ = {s ∈ V : ∃π ∈ Π. ∀σ ∈ Σ. Ωσ,π(s) |= ψ}
〈〈1, 2〉〉G ψ = {s ∈ V : ∃σ ∈ Σ. ∃π ∈ Π. Ωσ,π(s) |= ψ}

We omit the subscript G if it is clear from the context. Let s be a state in 〈〈1, 2〉〉ψ
and let (σ, π) be a strategy profile such that Ωσ,π(s) |= ψ. We refer to (σ, π) as
a cooperative strategy profile at s, and informally say that the two players are
cooperating to satisfy ψ.

It follows from the definitions that W10 = 〈〈1〉〉(ϕ1 ∧¬ϕ2) and W01 = 〈〈2〉〉(ϕ2 ∧
¬ϕ1). Define A = V \ (W10 ∪ W01), the set of “ambiguous” states from which
neither player has a strongly winning strategy. Let Wi = 〈〈i〉〉ϕi, for i ∈ { 1, 2 },
the winning sets of the two players, and let U1 = W1 \ W10 and U2 = W2 \ W01,
the sets of “weakly winning” states for players 1 and 2, respectively. Define
U = U1 ∪ U2. Note that U ⊆ A.

Lemma 8. U ⊆ W11.

Proof. Let s ∈ U1. By the definition of U1, player 1 has a strategy σ from the
state s to satisfy the objective ϕ1, which is obviously a retaliating strategy, be-
cause ϕ1 implies ϕ2 → ϕ1. Again by the definition of U1, we have s �∈ W10.
Hence, by the determinacy of zero-sum games (Theorem 1), player 2 has a strat-
egy π to satisfy the objective ¬(ϕ1 ∧ ¬ϕ2), which is a retaliating strategy, be-
cause ¬(ϕ1 ∧ ¬ϕ2) is equivalent to ϕ1 → ϕ2. Clearly we have Ωσ,π(s) |= ϕ1 and
Ωσ,π(s) |= (ϕ1 → ϕ2), and hence Ωσ,π(s) |= (ϕ1 ∧ ϕ2). The case of s ∈ U2 is
symmetric.

Example 2 shows that in general we have U � W11. Given a game graph G =
((V, E), (V1, V2)) and a subset V ′ ⊆ V of the states, we write G � V ′ to denote the
subgraph induced by V ′, that is, G � V ′ = ((V ′, E∩(V ′×V ′)), (V1∩V ′, V2∩V ′)).
The following lemma characterizes the set W11.

Lemma 9. W11 = 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2).

Proof. Let s ∈ 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2). The case s ∈ U is covered by Lemma 8, so
let s ∈ A \ U . Let (σ, π) be a cooperative strategy profile at the state s, that
is, Ωσ,π(s) |= (ϕ1 ∧ ϕ2). Observe that if t ∈ A \ U then t �∈ 〈〈1〉〉G(ϕ1) and
t �∈ 〈〈2〉〉G(ϕ2). Hence, by the determinacy of the zero-sum games, from every
state t ∈ A \ U , player 1 (resp. player 2) has a strategy σ (resp. π) to satisfy the
objective ¬ϕ2 (resp. ¬ϕ1) from the state s. We define a pair (σ + σ, π + π) of
strategies from s as follows. Let x ∈ A∗ be a prefix of a play.

– When the play reaches a state t ∈ U , the players follow their winning retal-
iating strategies from t. It follows from Lemma 8 that U ⊆ W11.

– If x ∈ (A\U)∗, that is, if the play has not yet reached the set U , then player 1
uses the strategy σ and player 2 uses the strategy π. If, however, player 2
deviates from the strategy π, then player 1 switches to the strategy σ from
the first state after the deviation, and symmetrically, if player 1 deviates
from σ, then player 2 switches to the π.
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It is easy to observe that both strategies (σ + σ) and (π + π) are retaliating
strategies and Ωσ+σ,π+π(s) |= (ϕ1 ∧ϕ2), because Ωσ+σ,π+π(s) = Ωσ,π(s). Hence
s ∈ W11.

Let s �∈ 〈〈1, 2〉〉G�A(ϕ1∧ϕ2). Then s �∈ W11, because for every strategy profile
(σ, π) we have either Ωσ,π(s) |= ¬ϕ1 or Ωσ,π(s) |= ¬ϕ2.

We now define two forms of ω-regular objectives, Rabin and parity objec-
tives. For an infinite path Ω = 〈s0, s1, s2, . . .〉, we define Inf(Ω) = { s ∈ V :
sk = s for infinitely many k ≥ 0 }.

– Rabin: We are given a set α ⊆ 2V × 2V of pairs such that α =
{ (E1, F1), (E2, F2), . . . , (Ed, Fd) }, where Ei, Fi ⊆ V for all 1 ≤ i ≤ d. A
Rabin objective has the form ϕRabin = { Ω ∈ V ω : there exists 1 ≤ i ≤
d such that Inf(Ω) ∩ Ei = ∅ and Inf(Ω) ∩ Fi �= ∅ }.

– Parity: For d ∈ N, we write [d] to denote the set {0, 1, . . . , d}, and [d]+ =
{1, 2, . . . , d}. We are given a function p: V → [d] that assigns a priority
p(s) to every state s ∈ V . A parity (or Rabin chain) objective has the form
ϕP = { Ω ∈ V ω : min

(
p(Inf(Ω))

)
is even }.

Every ω-regular set can be defined as a parity objective [17]. It follows from
Lemma 9 that in order to compute the sets W10, W01, W11, and W00, it suffices
to solve two games with conjunctive objectives and a model-checking (1-player)
problem for a conjunctive objective. If the objectives ϕ1 and ϕ2 are ω-regular
sets specified as parity objectives, then the conjunctions can be expressed as the
complement of a Rabin objective [17]. This gives the following result. (The size
of a game graph G is |V | + |E|).

Theorem 4 (Complexity of computing secure equilibria). Consider a
game graph G of size n, and two Borel objectives ϕ1 and ϕ2 for the two players.

– The four sets W10, W01, W11, and W00 can be computed as W10 =
〈〈1〉〉G(ϕ1 ∧ ¬ϕ2); W01 = 〈〈2〉〉G(ϕ2 ∧ ¬ϕ1); W11 = 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2),
where A = V \ (W10 ∪ W01); and W00 = V \ (W10 ∪ W01 ∪ W11).

– If ϕ1 and ϕ2 are ω-regular objectives specified as LTL formulas, then deciding
W10, W01, W11, and W00 is 2EXPTIME-complete. The four sets can be
computed in time O

(
n2� × 22� log �)

, where � = |ϕ1| + |ϕ2| [15].
– If ϕ1 and ϕ2 are parity objectives, then W10, W01, W11, and W00 can

be decided in co-NP. The four sets can be computed in time O
(
(nd)2d

)
,

where d is the maximal number of priorities in the priority functions for ϕ1
and ϕ2 [5,4].

4 ω-Regular Objectives

In this section we consider special cases of graph games, where the two players
have reachability, safety, Büchi, co-Büchi, and parity objectives. We fix a game
graph G with state space V . Given state sets R, S, B, C ⊆ V , these objectives
are defined as follows.
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1. Reachability: ϕR = {s0s1 . . . ∈ V ω : ∃k. sk ∈ R}. We refer to R as the
target set.

2. Safety: ϕS = {s0s1 . . . ∈ V ω : ∀k. sk ∈ S}. We refer to S as the safe set.
3. Büchi: ϕB = {s0s1 . . . ∈ V ω : ∀k. ∃l > k. sl ∈ B}. We refer to B as the

Büchi set.
4. co-Büchi: ϕC = {s0s1 . . . ∈ V ω : ∃k. ∀l > k. sl ∈ C}. We refer to C as the

co-Büchi set.

Parity objectives were defined in the previous section. Note that Büchi and co-
Büchi objectives are special cases of parity objectives with two priorities: in the
Büchi case, take the priority function p: V → [1] such that p(s) = 0 if s ∈ B, and
p(s) = 1 otherwise; in the co-Büchi case, take the priority function p: V → [2]+
such that p(s) = 2 if s ∈ C, and p(s) = 1 otherwise.

We characterize the memory requirements for strongly winning and retali-
ating strategies if both players have ω-regular objectives. A retaliation strategy
profile (σ, π) is called winning at a state s ∈ V if Ωσ,π(s) |= (ϕ1 ∧ϕ2). A strategy
σ is a winning retaliating strategy for player 1 at state s if there is a strategy π
for player 2 such that (σ, π) is a winning retaliation strategy profile at s. Until
the end of this section, let ϕR be a reachability objective, ϕS a safety objective,
ϕB a Büchi objective, ϕC a co-Büchi objective, and ϕP a parity objective.

Proposition 1 (Conjunctive objectives as parity objectives).

1. ¬ϕR is a safety objective and ¬ϕS is a reachability objective,
2. ¬ϕC is a Büchi objective, and ¬ϕB is a co-Büchi objective.
3. ¬ϕP , ϕS ∧ ϕP , and ϕC ∧ ϕP are parity objectives.

Proof. A negation of a parity objective with priority function p can be obtained
as the parity objective with the priority function p′(s) = p(s)+1. It follows that
the negation of a Büchi objective is equivalent to a co-Büchi objective and the
negation of a co-Büchi objective is equivalent to a Büchi objective.

If ϕP is a parity objective and ϕD is a safety objective or a co-Büchi objective
then the conjunction ϕD ∧ ϕP is equivalent to a parity objective. For example,
the conjunction of a parity objective ϕP and a coBüchi objective ϕD is a parity
objective with the following priority function:

p′(s) =

{
1 if s �∈ D,

p(s) + 2 if s ∈ D.

The result for conjunction of parity and safety objective follows from similar
construction.

While in zero-sum games played on graphs, memoryless winning strategies
exists for all parity objectives [6], this is not the case for non-zero-sum games.
The following two theorems give a complete characterization.

Theorem 5. If player 1 has a strongly winning strategy in a graph game where
both players have reachability, safety, Büchi, co-Büchi, or parity objectives ϕ1
and ϕ2, then player 1 has a memoryless strongly winning strategy if and only if
there is a “+” symbol in the corresponding entry of the Table 1.
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Table 1. Strongly winning strategies

ϕ2

ϕR ϕB ϕC ϕP ϕS

ϕS + + + + +
ϕC + + + + −

ϕ1 ϕB + + − − −
ϕP + + − − −
ϕR + − − − −

Table 2. Winning retaliating strategies

ϕ2

ϕR ϕB ϕC ϕP ϕS

ϕS + + + + +
ϕC + − − − −

ϕ1 ϕB + − − − −
ϕP + − − − −
ϕR + − − − −

Proof. For player 1, strongly winning a non-zero-sum game with objectives
ϕ1 and ϕ2 is equivalent to winning a zero-sum game with the objective
ϕ1 ∧ ¬ϕ2. Hence by existence of memoryless winning strategies for zero-sum
parity games [6] player 1 has memoryless strongly winning strategies if the ob-
jective ϕ1 ∧ ¬ϕ2 is equivalent to a parity objective. Using Proposition 1 it is
easy to observe that the objective ϕ1 ∧ ¬ϕ2 is equivalent to a parity objective
for all “+” entries in Table 1, except for safety–reachability, safety–safety, and
reachability–reachability games. For these three cases, it is easy to argue that
memoryless strongly winning strategies exist. The other “+” entries follow from
the existence of memoryless winning strategies for zero-sum parity games [6].

s1s2 s3

Fig. 3. A counterexample for memoryless strongly winning strategies

We now show that player 1 does not necessarily have a memoryless strongly
winning strategy in non-zero-sum games with “−” entries in Table 1. It suffices to
give counterexamples for the following four cases: co-Büchi–safety, Büchi–safety,
reachability–safety, and Büchi–co-Büchi games. The cases of reachability–Büchi
and reachability–co-Büchi games follow from the former two cases, respectively,
by symmetry. The cases of Büchi–parity and parity–parity games follow triv-
ially from the Büchi–co-Büchi case, and the case of parity–safety games fol-
lows trivially from the Büchi–safety case. The game graph of Fig. 3 serves as a
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counterexample for all four cases. For all the cases, let C = S = {s1, s2} and
B = R = {s2}.

For the co-Büchi–safety case, the player 1 strategy that chooses s1 → s3
for the first time and then always chooses s1 → s2 is strongly winning at the
state s1, but the two possible memoryless strategies are not strongly winning.
For all other cases, the player 1 strategy that alternates between the two moves
available at s1 is strongly winning, but again the two memoryless strategies
are not.

Theorem 6. If player 1 has a winning retaliating strategy in a graph game
where both players have reachability, safety, Büchi, co-Büchi, or parity objectives
ϕ1 and ϕ2, then player 1 has a memoryless winning retaliating strategy if and
only if there is a “+” symbol in the corresponding entry of the Table 2.

Proof. First we show that player 1 has memoryless winning retaliating strategies
in parity–reachability and safety–parity games. Recall the weakly winning sets
U1 = W1 \ W10 and U2 = W2 \ W01, where Wi = 〈〈i〉〉ϕi for i ∈ {1, 2}. In
U1 ⊆ W11 player 1 uses her memoryless winning strategy in the zero-sum game
with the objective ϕP . In W11 \ U1 player 1 uses a memoryless strategy that
shortens the distance in the game graph to the set U1. This strategy is a winning
retaliating strategy for player 1 in U1, because it satisfies the objective ϕP . We
prove that it is also a winning retaliating strategy for player 1 in W11 \ U1,
that is, satisfaction of the objective ϕR implies satisfaction of the objective ϕP .
Observe that R ∩ (W11 \ U1) = ∅. Otherwise there would be a state in W11 \ U1
in which the objective ϕR of player 2 is satisfied and player 2 has a strategy
to satisfy ¬ϕP , and hence the state belongs to W01; this however contradicts
W11 ∩ W01 = ∅. Therefore, as long as a play stays in W11 \ U1, the objective
ϕR cannot be satisfied. On the other hand, if player 2 cooperates with player 1
in reaching U1, then player 1 plays her memoryless retaliating strategy in U1.
The proof for safety–parity games is similar. There, the key observation is that
W11 \ U1 ⊆ S, where ϕS is the safety objective of player 1.

s1s0 s2s3 R1R2

Fig. 4. A counterexample for memoryless winning retaliating strategies

We now argue that player 1 does not have memoryless winning retaliating
strategies in games with “−” entries in Table 2. It suffices to give counterexam-
ples for the nine cases that result from co-Büchi, Büchi, or reachability objectives
for player 1, and Büchi, co-Büchi, or safety objectives for player 2. The remain-
ing seven cases involving parity objectives follow as corollaries, because Büchi
and co-Büchi objectives are special cases of parity objectives. The game graph of
Fig. 4 serves as a counterexample for all nine cases: take C1 = B1 = R1 = {s2}
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and B2 = C2 = S2 = {s0, s1, s2}, where C1, B1, and R1 are the co-Büchi, Büchi,
and reachability objectives of player 1, respectively, and B2, C2, and S2 are the
Büchi, co-Büchi, and safety objectives of player 2. It can be verified that in each
of the nine games neither of the two memoryless strategies for player 1 is a win-
ning retaliating strategy at the state s0, but the strategy that first chooses the
move s0 → s1 and then chooses s0 → s3 if player 2 chooses s1 → s0, is a winning
retaliating strategy for player 1.
Note that if both players have parity objectives, then at all states in W00 mem-
oryless retaliation strategy profiles exist. To see this, consider a state s ∈ W00.
There are a player 1 strategy σ and a player 2 strategy π such that for all strate-
gies σ of player 1 and π of player 2, we have Ωσ,π(s) |= ¬ϕ1 and Ωσ,π(s) |= ¬ϕ2.
The strategy profile (σ, π) is a retaliation strategy profile. If the objectives ϕ1
and ϕ2 are both parity objectives, then ¬ϕ1 and ¬ϕ2 are parity objectives as
well. Hence there are memoryless strategies σ and π that satisfy the above con-
dition.

5 n-Player Games

We generalize the definition of secure equilibria to the case of n > 2 players. We
show that in n-player games on graphs, in contrast to the 2-player case, there
may not be a unique maximal secure equilibrium. The preference ordering ≺i

for player i, where i ∈ {1, . . . , n}, is defined as follows: given two payoff profiles
v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n), we have v ≺i v′ iff (v′i > vi) ∨ (v′i =

vi ∧ (∀j �= i. v′j ≤ vj) ∧ (∃j �= i. v′j < vj)). In other words, player i prefers v′

over v iff she gets a greater payoff in v′, or (1) she gets equal payoff in v′ and v,
(2) the payoff of every other player is no more in v′ than in v, and (3) there is at
least one player who gets a lower payoff in v′ than in v. Given a strategy profile
σ = (σ1, . . . , σn), we define the corresponding payoff profile as vσ = (vσ

1 , . . . , vσ
n),

where vσ
i is the payoff for player i when all players choose their strategies from

the strategy profile σ. Given a strategy σ′
i for player i, we write (σ−i, σ

′
i) for

the strategy profile where each player j �= i plays the strategy σj , and player i
plays the strategy σ′

i. An n-player strategy profile σ is Nash equilibrium if for
all players i and all strategies σ′

i of player i, if σ′ = (σ−i, σ
′
i), then vσ′

i ≤ vσ
i .

Definition 8 (Secure n-player profile). An n-player strategy profile σ is
secure if for all players i and j �= i, and for all strategies σ′

j of player j, if
σ′ = (σ−j , σ

′
j), then (vσ′

j ≥ vσ
j ) → (vσ′

i ≥ vσ
i ).

Observe that if a secure profile σ is interpreted as a contract between the players,
then any unilateral selfish deviation from σ must be cooperative in the following
sense: if player j deviates from the contract σ by playing a strategy σ′

j (i.e.,
the new strategy profile is σ′ = (σ−j , σ

′
j)) which gives her an advantage (i.e.,

vσ′

j ≥ vσ
j ), then every other player i �= j is not put at a disadvantage if she

follows the contract (i.e., vσ′

i ≥ vσ
i ). By symmetry, the player j enjoys the same

security against unilateral selfish deviations of other players.
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Definition 9 (Secure n-player equilibrium). A n-player strategy profile σ
is a secure equilibrium if σ is both a Nash equilibrium and secure.

Similar to Lemma 1 we have the following result.

Lemma 10 (Equivalent characterization). An n-player strategy profile σ is
a secure equilibrium iff for all players i, there does not exist a strategy σ′

i of
player i such that σ′ = (σ−i, σ

′
i) and vσ ≺i vσ′

.

We give an example of a 3-player graph game where the maximal secure
equilibrium payoff profile is not unique. Recall the game graph from Fig. 3, and
consider a 3-player game on this graph where each player has a reachability
objective. The target set for player 1 is {s2, s3}; for player 2 it is {s2}; and for
player 3 it is {s3}. In state s1 player 1 can chose between the two successors
s2 and s3. If player 1 chooses s1 → s3, then the payoff profile is (1, 0, 1), and
if player 1 chooses s1 → s2, then the payoff profile is (1, 1, 0). Both are secure
equilibria and maximal, but incomparable.

6 Conclusion

We considered non-zero-sum graph games with lexicographically ordered objec-
tives for the players in order to capture adversarial external choice, where each
player tries to minimize the other player’s payoff as long as it does not decrease
her own payoff. We showed that these games have a unique maximal equilibrium
for all Borel winning conditions. This confirms that secure equilibria provide a
good formalization of rational behavior in the context of verifying component-
based systems.

Concretely, suppose the two players represent two components of a system
with the specifications ϕ1 and ϕ2, respectively. Classically, component-wise ver-
ification would prove that for an initial state s, player 1 can satisfy the objective
ϕ1 no matter what player 2 does (i.e., s ∈ 〈〈1〉〉ϕ1), and player 2 can satisfy
the objective ϕ2 no matter what player 1 does (i.e., s ∈ 〈〈2〉〉ϕ2). Together,
these two proof obligations imply that the composite system satisfies both spec-
ifications ϕ1 and ϕ2. The computational gain from this method typically arises
from abstracting the opposing player’s (i.e., the environment’s) moves for each
proof obligation. Our framework provides two weaker proof obligations that sup-
port the same conclusion. We first show that player 1 can satisfy ϕ1 provided
that player 2 does not sabotage her ability to satisfy ϕ2, that is, we show that
s ∈ (W10 ∪ W11): either player 1 has a strongly winning strategy, or there is
a winning pair of retaliation strategies. This condition is strictly weaker than
the condition that player 1 has a winning strategy, and therefore it is satisfied
by more states. Second, we show the symmetric proof obligation that player 2
can satisfy ϕ2 provided that player 1 does not sabotage her ability to satisfy ϕ1,
that is, s ∈ (W01∪W11). While they are weaker than their classical counterparts,
both new proof obligations together still suffice to establish that s ∈ W11, that
is, the composite system satisfies ϕ1 ∧ ϕ2 assuming that both players behave
rationally and follow the winning pair of retaliation strategies.
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It should be noted that the other possible lexicographic ordering of ob-
jectives captures cooperative external choice, where each player tries to max-
imize the other player’s payoff as long as it does not decrease her own pay-
off. However, cooperation does not uniquely determine a preferable behavior:
there may be multiple maximal payoff profiles for cooperative external choice,
even for reachability objectives. To see this, define (v1, v2) ≺co

1 (v′1, v
′
2) iff

(v1 < v′1)∨(v1 = v′1∧v2 < v′2), and (v1, v2) �co
1 (v1, , v

′
2) iff (v1, v2) ≺co

1 (v′1, v
′
2) or

(v1, v2) = (v′1, v′2). A symmetric definition yields �co
2 . A cooperative equilibrium

is a Nash equilibrium with respect to the precedence orderings �co
1 and �co

2 on
payoff profiles. Consider the game shown in Fig. 4, where each player has a reach-
ability objective. The target for player 1 is s2, and the target for player 2 is s3.
The possible cooperative equilibria at state s0 are as follows: player 1 chooses
s0 → s1 and player 2 chooses s1 → s2, or player 1 chooses s0 → s3 and player 2
chooses s1 → s0. The former equilibrium has the payoff profile (1, 0), and the
latter has the payoff profile (0, 1). These are the only cooperative equilibria and,
therefore, the maximal payoff profile for cooperative equilibria is not unique.
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regarding the formalization of rational behavior in game theory.
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