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Abstract. Coordination languages are intended to simplify the develop-
ment of complex software systems by separating the coordination aspects
of an application from its computational aspects. Coordination refers to
the ways the independent active pieces of a program (e.g. a process, a
task, a thread, etc.) communicate and synchronise with each other. We
review various approaches to introducing probabilistic or stochastic fea-
tures in coordination languages. The main objective of such a study is
to develop a semantic basis for a quantitative analysis of systems of in-
terconnected or interacting components, which allows us to address not
only the functional (qualitative) aspects of a system behaviour but also
its non-functional aspects, typically considered in the realm of perfor-
mance modelling and evaluation.

1 Introduction

An early example of a Coordination Language was Linda [1]; Gelernter and
Carriero offer the following equation [2]:

Concurrent Programming = Computation + Coordination

The intention being that Coordination Languages are “glue” languages for
controlling the various computational components of a concurrent program.

Linda is an example of a Shared Data Space coordination language – the glue
is provided by interaction through a shared tuple space. Alternative ways of
synchronising components could be Message Passing, as in the Manifold model
[3], or broadcast (cf Sands use of the CBS calculus [4]).

In this paper we consider various ways in which probabilities/quantities can
be added to this basic paradigm; we distinguish between a data-driven and a
schedule-driven approach. We also consider ways in which mobility can be added.

Our main objective is to develop a semantic basis for a quantitative analy-
sis of networks. A quantitative analysis allows in general for the consideration
of more “realistic” situations. For example, a probabilistic analysis allows for
establishing the security of a system up to a given tolerance factor expressing
how much the system is actually vulnerable. This is in contrast to a qualitative
analysis which typically might be used to validate the absolute security of a given
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system. In a distributed environment quantitative analysis is also of a great prac-
tical use in the consideration of timing issues which involve the asynchronous
communications among processes running with different clocks.

The rest of this paper is structured into three main parts. First we con-
sider how probabilities/quantities might be added to a Linda-like language. We
consider a data-driven approach as presented in [5]; we also consider a schedule
driven approach where probabilities/quantities are explicitly attached to parallel
operators. We then consider a slightly more complicated language which includes
mobility by introducing located processes and distributing the tuple space. For
this part we will survey the approaches in [6,7,8]. We consider two alternatives:
one in which nodes are visited with a certain probability (the discrete case) and
the other in which nodes are visited at a certain rate (the continuous case). Fi-
nally, we consider an analysis framework for studying the properties of networks
of processes; we briefly consider two variants which correspond to the discrete
and continuous case respectively.

2 Linda

Linda [1] is a coordination language that relies on an asynchronous and associa-
tive communication mechanism based on a shared global space called the Tuple
Space (TS), consisting of a multiset of tuples. The Linda language provides four
simple operations for manipulating tuples by introducing, removing and reading
tuples from the space TS. These operations allow processes to communicate and
synchronise by interacting with the Tuple Space.

In order to investigate the introduction of quantitative information in the
Linda paradigm, [5] introduces a minimal language, called Linda Calculus or
LinCa, which includes the Linda core calculus expressed via only three con-
structs: prefix, parallel composition and replication. The syntax is presented in
Table 1. nil represents the inactive process. The out(e) action causes a tuple
to be deposited into the tuple space. The in t (x) and read t (x) actions both
input tuples from the tuple space; the tuple is required to match the pattern
t and the fields of the matching tuple are bound to the components of x. The
in action removes one matching tuple from the tuple space whereas read is
non-destructive.

The original Linda language also includes an action eval which is similar
to out(e), but capable of creating processes: for each tuple element which is
a function, this primitive creates a new process to evaluate the function. Once
all functions have been evaluated, eval will place the resulting tuple into the
tuple space.

The semantics of LinCa is shown in Table 2. This is a small-step operational
semantics. The configurations or states consist of a process and a tuple space,
TS . The tuple space is essentially a multiset; ⊕ represents multiset union and
− represents multiset subtraction. We use � to represent pattern matching; the
exact details of how a tuple matches a pattern need not concern us in this paper.
We have omitted the symmetric rule for parallel composition. Finally, we use the
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Table 1. The LinCa syntax

P ::= nil null process

| out(e).P output prefix

| in t (x).P input prefix

| read t (x).P non-destructive input prefix

| P | P parallelism

| !in t (x).P replication

Table 2. LinCa semantics

[out(e).P,TS ] −→ [P, TS ⊕ e]

∃e ∈ TS : e � t

[in t (x).P, TS ] −→ [P [e/x],TS − e]

∃e ∈ TS : e � t

[read t (x).P,TS ] −→ [P [e/x], TS ]

[P, TS ] −→ [P ′,TS ′]
[P | Q,TS ] −→ [P ′ | Q,TS ′]

[in t (x).P, TS ] −→ [P ′,TS ′]
[!in t (x).p,TS ] −→ [P ′ | !in t (x).P,TS ]

notation P [e/x] to represent the process P where all instances of the components
of x (i.e. x1, . . . , xn) have been replaced by corresponding ”values” from e.

2.1 Adding Probabilities/Quantities

In the recent literature three proposals have been presented aimed at extending
the basic coordination model à la Linda with quantities (probabilities, priorities,
rates). These proposals follow two main approaches:

– Data Driven: In this approach the quantitative information is added to the
data (tuples); it is adopted in [5] to define two quantitative versions of the
core Linda language LinCa called PrioLinCa and ProbLinCa respectively
(cf. Section 2.2). The main objective of [5] is the investigation of the ex-
pressive power of the different quantitative extensions compared to the basic
paradigm.

– Schedule Driven: In this approach quantitative information is added to the
“processes”; this is the approach taken in pKLAIM [6,7] and StocKLAIM



Probabilistic Linda-Based Coordination Languages 123

[8], where the motivation is more analysis-oriented. We will describe these
two proposals in Section 3.2 and Section 3.3 in the context of a coordination
language which extends Linda with distributed programming and mobility
features.
We will also adopt this approach to define in Section 2.3 alternative versions
of the prioritised and probabilistic LinCa introduced in [5].

2.2 Data Driven Approach

The starting point of the approach in [5] is the observation that nondeterminism
is inherent in the definition of the Linda primitives. It occurs when a tuple
becomes available on which more than one in t (x) or read t (x) action were
suspended, or similarly when there is more than one tuple matching x in a
in t (x) or read t (x) operation. This nondeterminism can be controlled by
labelling tuples with quantities that can be interpreted respectively as priority or
probability. For the resulting models, called PrioLinCa and ProbLinCa, Bravetti
et al. have shown the following results:

– LinCa is not Turing complete (termination is decidable)
– PrioLinCa is Turing complete (encoding of RAM)
– ProbLinCa can solve the Leader Election problem; neither LinCa nor Pri-

oLinCa can.

PrioLinCa. In PrioLinCa priorities (positive natural numbers) are added as
attributes of tuples. The significant change in the language is in the semantics
of in and read. For example the rule for in becomes:

∃e ∈ TS : e � t ∀e′ ∈ TS : e′ � t ⇒ prio(e) ≥ prio(e′)
[in t (x).P,TS ] −→ [P [e/x],TS − e],

where prio(e) denotes the quantity labelling the tuple e. A matching tuple
is only removed from the tuple space if its priority is higher than any other
matching tuple.

Rather than use priorities, it is possible to take a probabilistic approach
which is exemplified by the alternative calculus called ProbLinCa.

ProbLinCa. In ProbLinCa weights (positive real numbers) are added as at-
tributes of tuples. A tuple is then selected with a probability which is propor-
tional to its weight. This is reflected in the semantics of the language by defining
transition rules which probabilistically determine the next state according to a
distribution which depend on the basic action of the starting state. Thus the
rule for in becomes:

∃e ∈ TS : e � t
[in t (x).P,TS ] −→ ρ

where ρ is a distribution on states which is computed as follows:

ρ(s) =

⎧
⎨

⎩

weight(e) · TS (e) if s = [P [e/x],TS − e],∑
e′∈TS:e′�t weight(e′) · TS (e′) e � t, e ∈ TS

0 otherwise.
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where TS (e) is the number of occurrences of the tuple e in TS . The probability
of picking a particular tuple is thus computed in the following way:

– if the tuple, e, matches the pattern, t, the probability is the weight of the
tuple times the number of occurrences of that tuple, normalised by the sum
of the weights times multiplicities of all matching tuples.

– otherwise, when e doesn’t match t, the probability is zero.

The rule for the read action determines an analogous distribution, while the
rule for out(e) deterministically (i.e. with probability 1) leads to the state where
the tuple e is added to the space independently of its weight:

[out(e).P,TS ] −→ ρ,

where ρ([P,TS ⊕ e]) = 1 and ρ(s) = 0 for all the other states.
Finally, the rule for the parallel composition P1 | P2 nondeterministically

chooses among the probability distributions determined by the transition rules
for P1 and P2.

2.3 Schedule Driven Approach

In this section we propose alternative quantitative extensions of LinCa by adopt-
ing a schedule driven approach. In this approach we add priorities or probabilities
to the operators – in particular, to the parallel operator.

A useful notion for the definition of a prioritised or probabilistic scheduler
is the notion of “active state” which identifies those processes (essentially those
prefixed by a in t (x) or read t (x) action) that are able to make a transition
(essentially are not blocked awaiting for a tuple to become available).

Definition 1. We define the set Active of active states as

Active = {[P, TS] | P ≡ in t (x).P ′ and ∃e ∈ TS : e � t}
∪ {[P, TS] | P ≡ read t (x).P ′ and ∃e ∈ TS : e � t}
∪ {[P, TS] | P ≡ out(e).P ′}.

Prioritised Scheduling. We replace the LinCa parallel composition P | P by the
prioritised parallel operator p1 : P1 | p2 : P2 where p1 and p2 are numbers (e.g.
positive natural numbers as in PrioLinCa) expressing some priorities. A priori-
tised scheduler will (nondeterministically) select the state with higher priority
among the active ones. Thus the semantics of the prioritised parallel operator
can be defined by the rule:

[P1,TS ] −→ [P ′
1,TS ′] and p1 ≥ p2

[p1 : P1 | p2 : P2,TS ] −→ [p1 : P ′
1 | p2 : P2,TS ′]

and the symmetric rule with P2 in the premise.
From this semantics we can retrieve the data driven semantics of PrioLinCa.

To see this, define the weight weight(s) of a state s = [P, TS] as the maximal
weight of a matching tuple for P if s is active; weight(s) = 0 otherwise. Then
assume that in the previous rule, priorities p1 and p2 are defined respectively as
weight([P1,TS ]) and weight([P2,TS ]).
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Table 3. Schedule Driven Probabilistic Semantics

[out(e).P,TS ] −→1 [P, TS ⊕ e]

∃e ∈ TS : e � t

[in t (x).P, TS ] −→1 [P [e/x], TS − e]

∃e ∈ TS : e � t

[read t (x).P,TS ] −→1 [P [e/x],TS ]

[Pi,TS ] −→p [P ′
i ,TS ′]

[|nj=1 pj : Pj ,TS ] −→p·p̃i [pi : P ′
i | |nj=1,j �=i pj : Pj ,TS ′]

[P [e/x], TS ] −→p [P ′,TS ′]
[A(e),TS ] −→p [P ′,TS ′]

if A(x) ≡ P

Probabilistic Scheduling. A probabilistic LinCa can be defined in the schedule-
driven approach by replacing the parallel operator P | P in the syntax of LinCa
by a probabilistic one p1 : P1 | p2 : P2, where p1 and p2 are probabilities,
that is real numbers in [0, 1]. Alternatively, we can let p1 and p2 range over the
interval [0, ∞): the normalisation process occurring at run-time guarantees that
our quantities will indeed be transformed into probabilities.

The semantics of this alternative probabilistic Linda language can be defined
in the usual SOS style via a probabilistic transition system (S, −→p), where the
the parameter p in the transition relation −→p on states specifies the probability
of a single step transition from one state to another. The rules defining −→p are
given in Table 3.

For the probabilistic parallel composition, in line with our previous work we
opted for a more convenient n-ary version rather than the binary version used
in Linda. In this rule the probability pi is normalised to take account of the
fact that the other branches of the parallel operator might be blocked. More
precisely, we define the cumulative probability, C[P,TS], of all active processes in
a parallel composition P = |nj=1 pj : Pj as

C[P,TS ] =
∑

j

{pj | [Pj ,TS ] ∈ Active}.

Then the normalised probability p̃i is given by pi

C[P,TS ]
if at least one of the two

processes in P is active, and zero otherwise.
Replication introduces a new parallel operator; we must add probabilities

to this:
[in t (x).P,TS ] −→q [P ′,TS ′]

[!in t (x).P,TS ] −→q [p : P ′ | (1 − p) :!in t (x).P,TS ]

This raises an issue about the choice of a value for p. This could be avoided
by adding named processes and recursion rather than replication. We therefore
introduce process constants, ranged over by A, and recursive definitions of the
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form A(x) ≡ P . The transition rule for recursion simply models the execution
of a call to a procedure named A.

As a comparison with the probabilistic semantics for ProbLinCa defined in
[5], we observe that the probabilistic model at the base of our semantics is gener-
ative according to the classification introduced in [9]: at each step the scheduler
can select the next state according to one single probability distribution over the
states. In the data driven semantics the probabilistic transition system conforms
to the reactive model of probability instead: the scheduler can choose among
different distributions depending on the (out/in/read) action taken. As a con-
sequence our semantics contains strictly more information than the data driven
semantics.

3 Distributed Tuple Spaces: KLAIM

The original Linda primitives are not completely adequate for programming dis-
tributed systems composed of mobile components. The KLAIM language (Kernel
Language for Agents Interaction and mobility) was introduced in [10] as a dis-
tributed mobile version of Linda which extends the Linda interaction model by
replacing the single shared tuple space with multiple distributed tuples spaces
and allowing for explicit manipulation of localities and locality names.

3.1 A Core KLAIM Calculus

As before we will identify a simple core language where we consider only the basic
constructs for prefixing, parallel composition and recursion. Moreover, we restrict
to the actions out, in and read excluding the other KLAIM primitives, namely
eval(P )@� which allows for a remote evaluation of the process argument1, and
newloc(u) which creates a new location accessible via the locality variable u. We
also omit the consideration of allocation environments, that is partial functions
used in the the full KLAIM language for the linking of symbolic names to physical
addresses of nodes. The syntax of this minimal language, which we call cKLAIM,
is given in Table 4.

The idea is to ‘localise’ processes P and their tuple spaces at some sites s
and to construct networks N out of such nodes. We assume that locations are
unique, i.e. only one process is attached to each location. The primitive actions
out, in and read must now specify the local tuple space they refer to; this is
done by introducing in their syntax the suffix “@�”.

The operational semantics of cKLAIM is a restriction of the semantics of
full KLAIM as presented in [10]. This is a two levels semantics: there are rules

describing local transitions P
action �� P ′ which are labelled with some (possible)

action, and a global network semantics N �� �� N ′ which specifies how a whole
network evolves. The transition relation �� �� is defined in terms of the local
semantics �� .
1 This is different from the operation eval(t) in Linda whose argument is a tuple.
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Table 4. cKLAIM Process and Network Syntax

P ::= nil null process

| out(e)@�.P output prefix

| in t (x)@�.P input prefix

| read t (x)@�.P non-destructive input prefix

| P | P parallelism

| !in t (x)@�.P replication

N ::= s :: P node

| N1 ‖ N2 composition

Table 5. Discrete and Continuous Time Network Syntax

N ::= s ::q P node

| N1 ‖ N2 composition

N ::= s ::λ P node

| N1 ‖ N2 composition

3.2 Probabilistic KLAIM

Our main motivation for adding probabilities/quantities to coordination lan-
guages is to support quantitative analysis of distributed systems. The techniques
that we have developed, based on Discrete or Continuous Time Markov Chains,
provide a strong link between program analysis and recent advances in Per-
formance Analysis [11]. A primary application of our work is in the study of
quantitative aspects in Language Based Security, relative to e.g. denial of ser-
vice, viruses, epidemiology, etc.

We will consider here only a probabilistic version of cKLAIM, and omit a
prioritised one. Based on the two layered semantics of cKLAIM we will intro-
duce probabilities both on the local and the global level. Locally we introduce
probabilities into the parallel construct (scheduling information); globally, we in-
troduce two different versions: in one we associate a probability with each node,
while in the other we associate a rate. As a result we obtain two probabilistic
extensions of KLAIM according to a discrete time and a continuous time Markov
chain model respectively.

The only changes to the syntax are thus, as before, the introduction of a
probabilistic parallel composition with scheduling probabilities p (in the discrete
time model) or scheduling rates λ (in the continuous time model) for nodes.
These changes are depicted in Table 5 with p and λ positive real numbers.

Local Semantics. Local transitions are labelled with an action label and are
of the form:

[P, TS] action �� p [P ′, TS].
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Table 6. The Local Structural Semantics

[out(t)@�.P, TS]
o(t)@� �� 1 [P, TS]

[in(t)@�.P, TS]
i(t)@� �� 1 [P, TS]

[read(t)@�.P, TS]
r(t)@� �� 1 [P, TS]

[Pj , TS]
µ ��

p [P ′
j , TS′]

[|ni=1pi : Pi, TS]
µ �� p·pj [ |nj �=i=1Pi | P ′

j , TS′]

[P [e/x], TS]
µ ��

p [P ′, TS′]

[A(e), TS]
µ ��

p [P ′, TS′]
with A(x) ≡ P

This does not correspond to an actual change of the (local) configuration of a
node but indicates the possibility of a local transition. It will be up to the global
scheduler to activate such a potential update. In the local semantics we only
consider how the process P changes, while the local tuple spaces TS remains
the same and again it will be the global semantics to determine or not an actual
update of TS.

The local semantics is defined in Table 6. As in the original semantics for
KLAIM, we use the label action to describe the activities performed in the
evolution; thus, for example o(t)@� refers to the action of sending the tuple t in
the tuple space specified by �, and r(t)@� is the action of consuming the tuple t
in the tuple space specified by �.

Global Semantics. The global semantics relies on the idea that state changes
(transitions) do occur at certain points in time. In the discrete time case, every
time step the scheduler selects one node to initiate an update of the whole net-
work according to a (normalised) probability q. In the continuous time case
jumps from one network state to another occur at rates specified by the schedul-
ing rates λ. These rates determine an exponentially distributed time between
transitions from one configuration of the network into another, according to a
continuous time Markov chain model (cf. e.g. [12,13,14]).

According to Table 5 a probabilistic KLAIM network is either of the form
N ≡ ‖n

i=1si ::qi Pi or N ≡ ‖n
i=1si ::λi Pi. We define a network configuration as a

pair [N, TS] with TS a global tuple space which is constructed out of the local
tuple spaces TSi, i.e. TS = (TS1, TS2, . . . , TSn) = (TSi)n

i=1. We will denote a
network configuration [N, TS] = [‖n

i=1si ::xi Pi, (TSi)n
i=1] also as:

‖n
i=1si ::xi [Pi, TSi] = s1 ::x1 [P1, TS1] ‖ s2 ::x1 [P2, TS2] ‖ . . . sn ::xi [Pn, TSn],

where xi = qi or xi = λi.
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Discrete Time Version. The discrete time semantics of KLAIM networks is
defined as a Discrete Time Markov Chain (DTMC) where the states are the
network configurations; we will denote by N the set of all such configurations. A
discrete time random process is a sequence {Xt}∞t=1 of random variables, i.e. of
functions Xt : Ω → S from a probability space Ω into a state space S. We will
restrict our presentation to finite2 state spaces S and identify random variables
X(t) = Xt with their associated probability distributions P(Xt = s), i.e. the
probability that the random variable Xi will be in state s. For finite state spaces
S we can represent this probability distribution with a (column) vector which
we will also denote by Xt.

A discrete time random process with initial distribution X0 is called a discrete
time Markov chain if the distribution for Xt+1 only depends on the previous
distribution Xt

P(Xt+1 = st+1 | X0 = s0, . . . , Xt = st) = P(Xt+1 = st+1 | Xt = st).

This allows us to determine the distribution Xt+1 via Xt+1 = XtP(t) where
P(t) is a stochastic matrix, i.e. a matrix with row sums equal to one. For so
called homogeneous DTMCs we have P(t) = P for all t and:

Xt = Xt−1P or Xt = Xt−nPn

In the case of the discrete time KLAIM networks we define their seman-
tics as a (homogeneous) DTMC as follows: The state space S is the set of all
possible network configurations N . We can restrict ourselves to the set of net-
work configurations N (N(0)) which are reachable from the initial configuration
N(0) = [N0, TS0] and assume that N (N(0)) is finite. The entries in the transi-
tion matrix P are then defined by using the rules in Table 7 as:

PNi,Nj =

⎧
⎨

⎩

∑
pij with Ni

��
pij �� Nj

0 otherwise.

The rules in Table 7 describe how a global scheduler can utilise potential local
transitions in order to update the global network configuration. The update is
triggered by one of the nodes, at s1, with a probability corresponding to its
scheduling probability pi. Each update involves at most two nodes at sites s1
and s2 in the context of the remaining nodes of the network, denoted by N . If
s1 = s2 the rules in Table 7 have to be applied in the obvious way.

As some nodes could be blocked — e.g. because no matching tuple is available
for an in to proceed — we have to use the normalised probabilities p̃i. For this
we define the set of active sites in a global configuration [P, TS] = ‖n

i=1si ::pi

[Pi, TSi] as:

Active([P, TS]) = {si | [Pi, TSi]
a �� p [P ′

i , TS′
i]}}

2 For countable infinite state spaces we have to use probability measures instead of
probability distributions.
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Table 7. Discrete Time Network Semantics

[P1, TS1]
o(t)@s2 ��

p [P ′
1, TS1]

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1, TS1]‖s2 ::p2 [P2, TS2 ⊕ t]‖N

[P1, TS1]
i(t)@s2 ��

p [P ′
1, TS1] ∃e ∈ TS2 : e � t

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1[x/e], TS1]‖s2 ::p2 [P2, TS2 − e]‖N

[P1, TS1]
r(t)@s2 �� p [P ′

1, TS1] ∃e ∈ TS2 : e � t

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1[x/e], TS1]‖s2 ::p2 [P2, TS2]‖N

i.e. a site si is active if its process Pi can make at least one local transition with
some action a and probability p. Then we define

p̃i =
pi

C[P,TS]
with C[P,TS] =

∑

j

{pj | sj ∈ Active([P, TS])}.

In a similar way we also have to normalise the local probability p. The active
actions of a local configuration (in some network context) are given by:

Active([Pi, TSi]) = {o(t)@sj | [Pi, TSi]
o(t)@sj �� p [P ′

i , TS′
i]}

∪ {i(e)@sj | [Pi, TSi]
i(t)@sj �� p [P ′

i , TS′
i] and ∃e ∈ TSj : e � t}

∪ {r(e)@sj | [Pi, TSi]
r(t)@sj �� p [P ′

i , TS′
i] and ∃e ∈ TSj : e � t}

and with this we get the normalised local transition probabilities as:

p̃ =
pi

C[P,TS]
with C[Pi,TSi] =

∑

j

{pj | aj ∈ Active([Pi, TSi])}.

If no node is active for a network configuration N we will force a diagonal
entry PN,N = 1 to guarantee that P is indeed a stochastic matrix. Opera-
tionally this corresponds to introducing a self-transition or loop for stuck network
configurations.

Continuous Time Version. In this model each node can initiate a network up-
date independently at any time with a certain probability which is proportional
to its rate. This parameter is specified by the superscript λ in the syntax of
a node. We assume that these rates are independent from the time and there-
fore each node “fires”, i.e. initiates an update, via a so called Poisson process
(see e.g. [13–Sect 2.4]).
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We model the continuous time semantics of KLAIM networks as a Continu-
ous Time Markov Chains (CTMC), i.e. as a particular continuous time random
process {Xt}t∈[0,∞). Like in the case of DTMCs the dependency between the
random variables Xt = X(t) in a CTMC is very restricted: it depends only on
(any) single previous moment. This means that there exist stochastic matrices
P(t), with t ∈ [0, ∞), such that we can compute the distribution Xt as:

Xt = Xt−�tP(�t).

The matrices P(t) form a semi-group, i.e. P(0) = I the identity matrix (pij(0) =
1 for i = j and pij(0) = 0 otherwise) and for any t, s ∈ [0, ∞) we have the so
called semi-group property: P(s + t) = P(s)P(t).

It is possible to obtain the P(t) matrices as solutions to certain linear differen-
tial equations (cf. e.g. [13]). This allows us to specify the P(t)s via the parameters
describing these differential equations. These parameters are referred to as the
rate or Q-matrix Q = (qij)ij which has the following properties:

– 0 ≤ −qii < ∞ for all i,
– qij ≥ 0 for all i �= j,
–

∑
j qij = 0 for all i.

From the Q-matrix of a system we can obtain the transition probabilities
P(t) via:

P(t) = exp(tQ) =
∞∑

n=0

(tQ)n

n!

In the case of the continuous time semantics for KLAIM networks we only
need to specify the rate matrix Q using the rules in Table 8:

QNi,Nj =

⎧
⎪⎨

⎪⎩

∑
wij for Ni

��
wij �� Nj

−
∑

j �=i wij for Ni = Nj

0 otherwise.

In Table 8 the relation ��
wij �� between two network configurations Ni and

Nj is labelled by rates wij which are obtained as a product between the firing
rate λk of the node which initiates the update and the normalised probabilities
p̃ of the local transitions occurring in the nodes involved in the update. The
normalisation of the local transition probabilities is again needed in order to
accommodate locally blocked transitions. The rates λ need no normalisation
and we need no special treatment of completely blocked network configurations
(this is achieved via the construction of the diagonal elements in Q and related
to the basic fact that exp(0) = 1).

The continuous time model realises true concurrency as several transitions
seem to happen in “parallel”. In fact, two transitions are actually never happen-
ing at exactly the same moment, as the probability for this is zero. However, after
a single time unit we can observe that two or more transitions have happened.
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Table 8. Continuous Time Network Semantics

[P1, TS1]
o(t)@s2 ��

p [P ′
1, TS1]

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1, TS1]‖s2 ::λ2 [P2, TS2 ⊕ t]‖N

[P1, TS1]
i(t)@s2 ��

p [P ′
1, TS1] ∃e ∈ TS2 : e � t

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1[x/e], TS1]‖s2 ::λ2 [P2, TS2 − e]‖N

[P1, TS1]
r(t)@s2 �� p [P ′

1, TS1] ∃e ∈ TS2 : e � t

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1[x/e], TS1]‖s2 ::λ2 [P2, TS2]‖N

This allows us to avoid considering “clashes” like for example two in(t) ac-
tions trying to access the same token: the probability of this happening vanishes.
We can however ask for the probability that either of the two in’s is executed
first and in this way determine the chances that the token in question has been
consumed by the first or the second in after a given time (or, as also could be
the case, that neither of them has already consumed the token).

3.3 Stochastic KLAIM

An alternative stochastic version of KLAIM is the proposal in [8]. The language
defined in this work, called StocKLAIM, extends a core subset of KLAIM by
associating to each action some specific rates representing the time taken by the
action to be executed. Similarly to the continuous time version of our pKLAIM,
this time is determined by random variables which are exponentially distributed,
so that the operational semantics of the language can be represented in terms
of stochastic processes and in particular as a Continuous Time Markov Chain.

In StocKLAIM the only source of probabilistic information is therefore the
action prefix process whose syntax (a, r).P allows for the specification of a rate
by instantiating the name r. All the other constructs of the language, namely
the choice P +P and the parallel composition P | P as well the network parallel
operator N ‖ N keep their nondeterministic syntax, so that for example no
information (coming e.g. from statistical or other form of data which are available
for a given application) can be specified at this level.

The straightforward relation of the structural operational semantics defined
via a labelled transition system with the CTMC model, makes various tools and
techniques which have been developed for stochastic model checking directly
available for the analysis of a network specified in StochKLAIM. In fact one
main motivation of this approach is towards the definition of logics and semantics
based tools for the performance modelling and analysis of mobile and distributed
application.
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Alternatively, a probabilistic model like the one offered by probabilistic
KLAIM (cf. Section 3.2) is more oriented (even when it is based on a CMTC
model) towards a quantitative analysis of networks based on tools and techniques
which are typical of program analysis; these are obtained by transforming the
approaches that have been developed for a purely qualitative static analysis of
program properties into probabilistic/quantitative ones suitable for a distributed
setting (cf. Section 4).

4 Analysis

Given a program in probabilistic Linda or a network in probabilistic KLAIM
we are interested in analysing properties such as the chances that a program
terminates, or the chance that a token (worm) moves from one node in the net-
work to another one in a given number of steps (or time interval). As in classical
program analysis, also probabilistic properties can be expressed as solutions to a
set of (in)equations. Since most properties are undecidable, an exact solution of
these (in)equations is often not possible. We are thus led to construct reasonable
approximations. Depending on the structure of the domain of the (in)equations
there are various options regarding a formal definition of “reasonable approxi-
mation”. In particular, we can consider the following two settings:

Order Theoretic: This is based on partial orders or lattice structures and
aims at computing the best “safe” solution. Classical Abstract Interpretation
[15,16] utilises the notion of a Galois Connection to achieve this aim.

Linear Structures: This is based on linear spaces or operator algebras and al-
lows for the construction of least squares solution as “closest” fit. Probabilis-
tic Abstract Interpretation [17] uses the so-called Moore-Penrose Pseudo-
inverse for this purpose.

In this paper we will assume the second setting as the base of our treatment.

4.1 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation (PAI) is a general framework introduced
in [17] for the static analysis of probabilistic programs. Similarly to the classical
abstract interpretation framework, it provides general techniques for construct-
ing approximations of the semantics of a system relatively to a given property of
interest. However, the correctness of these approximations which is guaranteed in
the classical case by the order-theoretic notion of Galois connection, is replaced
in PAI by a notion of closeness which includes some quantitative measurement of
the loss of precision. This is obtained by moving from the order-theoretic setting
of classical abstract interpretation to one based on linear spaces and linear op-
erators, where the notion of so-called Moore-Penrose pseudo-inverse (see below)
replaces the classical notion of a Galois connection. Moreover, the properties
of the Moore Penrose inverse guarantees the optimality of the approximations
constructed via PAI: they are the closest possible to the concrete semantics of
the given system.
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The definition of a probabilistic abstract interpretation is given in terms
of probabilistic domains. A probabilistic domain is essentially a space which
represents the distributions Dist(S) on a state space S. In the general case
including infinite dimensional vector spaces, a probabilistic domain is defined
as the Hilbert space H(S) = �2(S) on S (cf. [18,19]). However, in the finite
dimensional case this is equivalent to consider the simple vector space V(S),
built out of all linear combinations of elements from S with coefficients in R:

V(S) =
{∑

css | cs ∈ R, s ∈ S
}

.

For the purpose of this work it is sufficient for us to consider only finite dimen-
sional vector spaces, so we will present the PAI framework in this
restricted setting.

Definition 2. Let C an D be two probabilistic domains. A probabilistic abstract
interpretation is a pair of bounded linear operators A : C → D and G : D → C,
between (the concrete domain) C and (the abstract domain) D, such that G is
the Moore-Penrose pseudo-inverse of A, and vice versa.

A particular PAI technique similar to the classical abstract interpretation
technique defining a so-called induced abstract semantics consists in the follow-
ing: Given a linear operator Φ on some Hilbert space V expressing the probabilis-
tic semantics of a concrete system, and a linear abstraction function A : V �→ W
from the concrete domain into an abstract domain W , we compute the Moore-
Penrose pseudo-inverse G = A† of A. The abstract semantics can then be defined
as the linear operator on the abstract domain W :

Ψ = A ◦ Φ ◦ G.

Moore-Penrose Pseudo-Inverse. We can define the notion of a Moore-
Penrose pseudo-inverse of a bounded linear operator A ∈ B(H) on a Hilbert
space H purely algebraically (cf. Section 4.7 of [20], and Section 8.43 of [21]).
This is sufficient for the finite-dimensional setting, while for dealing with the
infinite-dimensional case we need some topological considerations [22].

Definition 3. Let C and D be two Hilbert spaces and A : C �→ D a bounded
linear map between them. A bounded linear map A† = G : D �→ C is the Moore-
Penrose pseudo-inverse of A iff

(i) A ◦ G = PA, and
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.

In the finite dimensional case, the Moore-Penrose pseudo inverse of a linear
operator always exists and is unique; moreover various algorithms are known
for its construction [23]. A general technique for computing the Moore-Penrose
pseudo-inverse of infinite operators is to approximate them by a sequence of
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finite dimensional operators. For infinite dimensional operators — i.e. operator
algebras over infinite dimensional Hilbert spaces — various results guarantee
the existence of the Moore-Penrose pseudo-inverse for every operator. For the
general case we mention here the one in [20] (Theorem 4.24) which also states
how one can “construct” the Moore-Penrose Pseudo-Inverse.

Probabilistic Abstract Interpretation and Classification. In many cases the ab-
straction is a surjective function. An alternative view of abstraction in this case
is that it maps concrete values to equivalence classes. Equivalence relations can
be represented by a particular kind of operators, namely classification operators.
In the finite dimensional setting these can be described as follows.

We call an n × m-matrix K a classification matrix, if it is a 0/1-matrix,
where every row has exactly one non-zero entry and columns have at least one
non-zero entry. Classification matrices are thus particular kinds of stochastic
matrices. We denote by K(n, m) the set of all n × m-classification matrices. Let
X = {x1, . . . , xn} be a finite set. Then for each equivalence relation ≈ on X with
|X/≈| = m, there exists a classification matrix K ∈ K(n, m) and vice versa.

The Moore-Penrose pseudo-inverse of a classification matrix K ∈ K(n, m)
corresponds to its normalised transpose or adjoint (these coincide for real
K), i.e.

K† = N (KT ) = N (K∗).

where the normalisation operation N is defined for a matrix A by:

N (A)ij =

{
Aij

aj
if aj =

∑
i Aij �= 0

0 otherwise.

4.2 Analysis – Discrete Case

In order to exploit the framework of Probabilistic Abstract Interpretation in
the case of probabilistic KLAIM we need a semantics given in terms of linear
(transition) operators. This is provided by the operators P and P(t) introduced
in Section 3.2.

In the case of the discrete time model we have to consider a single step op-
erator P which describes the probabilistic transitions between (network) config-
urations. For KLAIM we can construct this operator either as a direct encoding
of the operational semantics (as in Section 3.2) or compositionally reflecting the
two-layered semantics:

The local semantics defines a Probabilistic Transition System (PTS) — this
is represented as a linear operator, in particular a stochastic matrix [24].

The global semantics is then constructed compositionally as the tensor prod-
uct of the local semantics [25].

Based on the concrete semantics given by P we can construct an abstract
induced semantics GPA using some abstraction operator A and its Moore-
Penrose pseudo inverse G = A†. This amounts effectively to a “simplification”
of the DTMC by reducing the dimension of the transition matrix P.
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Example 1. Consider the following 5 × 5 transition matrix:

P =

⎛

⎜
⎜
⎜
⎜
⎝

0 3
4

1
4 0 0

3
4 0 1

4 0 0
1
4

1
4 0 1

4
1
4

0 0 1
4 0 3

4
0 0 1

4
3
4 0

⎞

⎟
⎟
⎟
⎟
⎠

Suppose that we abstract states into one of two classes. This corresponds
to partition the set of states in two equivalence classes which can suitably be
represented via the classification operator K and its pseudo-inverse K†:

K =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 0
0 1
0 1
0 1

⎞

⎟
⎟
⎟
⎟
⎠

and K† =
( 1

2
1
2 0 0 0

0 0 1
3

1
3

1
3

)

In this case the abstract 2 × 2 transition matrix is:

K†PK =
( 3

4
1
4

1
6

5
6

)

,

which can then be safely used to replace P to simplify our analysis. Note that
in our PAI framework “safely” means that the approximation error we make is
controllable, that is always quantifiable.

In fact, one advantage of the use of linear operators is that we can measure
them. The standard way to measure the “size” of a linear operator is via an
operator norm which in turn may have its origins in a vector norm. This allows
us, for example, to quantify the error introduced by the abstraction. The close
relation between least squares approximation and the Moore-Penrose pseudo-
inverse (cf. e.g. [23]) guarantees that the abstract induced semantics is giving
the closest (with respect to the Euclidean norm) approximation to the concrete
behaviour among all the possible ones.

4.3 Analysis – Continuous Case

We can also apply this simplification technique to CTMCs. Concretely, we have
to construct the generator Q as described in Section 3.2. The probability that the
network configuration N(t) at any time t is Nj starting from initial configuration
Ni is then P(t)ij = P(N(t) = nj | N(0) = Ni) = (exp(tQ))ij .

In the same way as with the discrete time model we can simplify the operator
P(t) by subjecting it to an abstract interpretation.

In fact, the common method for effectively computing P(t) is closely related
to a particular form of probabilistic abstract interpretation. It is based on the fact
that every matrix — in particular the generator matrix Q — can be “abstracted”
into a so called Jordan canonical form, e.g. [26–Chap 7] or [27–Sect III.12].
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A Jordan matrix J is a square matrix of the form J = diag(Jr1(λ1), . . . ,Jrm

(λm) with Jri(λi) so called Jordan blocks, i.e. ri × ri matrices of the form:

Jri(λi) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 1
0 0 0 · · · 0 λi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λi 0 0 · · · 0 0
0 λi 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 0
0 0 0 · · · 0 λi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Theorem 1. [27–Thm III.12.2] Any complex square matrix A is similar to
a Jordan matrix J, i.e. there exists an invertible matrix X such that A =
X−1JX = X†JX.

As every Jordan block Jri(λi) is the sum of a diagonal Dri(λi) = diag
(λi, . . . , λi) and a strict upper triangular matrix Nri the same holds for Jor-
dan matrices, i.e. J = D + N. Furthermore, it is easy to see that N is nilpotent,
i.e. there exists a n ∈ N such that Nm is the null matrix, and that D and N
commute: DN = ND, see e.g. [26,27].

This allows for an efficient way of computing P(t) = exp(tQ): With the
Jordan canonical form J of Q, i.e. Q = X−1JX, we get:

exp(tQ) =
∞∑

k=0

1
k!

(tQ)k =
∞∑

k=0

tk

k!
(X−1JX)k =

∞∑

k=0

tk

k!
X−1JkX

= X−1

( ∞∑

k=0

1
k!

(tJ)k

)

X = X−1 exp(tJ)X

Furthermore, we can compute the exponential of a Jordan matrix J easily (ex-
ploiting the fact that D and J commute):

exp(tQ) = exp(tD + tN)) = exp(tD) exp(tN).

Finally, we observe that the exponential of diagonal matrices D is simply:

exp(diag(d1, d2, . . . , dn)) = diag(exp(d1), exp(d2), . . . , exp(dn))

and that for nilpotent matrices N the series

exp(N) =
∞∑

k=0

1
k!

Nk =
m∑

k=0

1
k!

Nk

degenerates to a finite sum, with m the nilpotency of N. In the case of diagonal-
isable matrices Q the Jordan canonical form is a diagonal matrix, i.e. N is the
null matrix, which means that we obtain P(t) = exp(tQ) = X−1 exp(tD)X =
X−1diag(exp(td1), exp(td2), . . . , exp(tdn))X.

This approach is a special instance of a general way for solving linear differ-
ential equations, see e.g. [28]. Unfortunately, the key property exp(X−1JX) =
X−1 exp(J)X does not hold if we consider proper abstractions, i.e. X† instead
of X−1, i.e. exp(X†JX) �= X† exp(J)X. This is due to the fact that (X†JX)k �=
X†JkX as XX† �= I. The factor XX† describes exactly the approximation error
we introduce by considering the abstract in place of the concrete semantics.
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5 Conclusions

We have explored the design space for adding quantitative information to coordi-
nation languages. We have used a basic Linda calculus for this. We showed that
one could either add priorities or probabilities; we also demonstrated how such
quantities could be added to the data in the tuple space or to the processes for
scheduling parallel threads. We have also shown how to add mobility, as in the
KLAIM language. We introduced probabilities both at the local (or process) level
and at the network level. We also presented a continuous-time model where we
use rates to determine how often a node is active. This information contributes
to the probability of network updates.

The probabilistic version of KLAIM we have introduced in this paper is
closely related to various probabilistic programming languages and probabilis-
tic process calculi proposed in the recent literature. Among these we mention
discrete time approaches — e.g. PCCS [29,30], PCCP [31], etc. — as well as
continuous time approaches — e.g. PEPA [11], Stochastic π calculus [32].

Work in performance analysis is often based on probabilistic process calculi,
for example, on Hillston’s PEPA [33], or EMPA by Bernardo and Gorrieri [34].
One of the long term aims of the work presented in this paper is the develop-
ment of semantics based approaches towards performance analysis along similar
lines as in classical program analysis. We also aim to investigate more closely
the relation of our work to recent work on probabilistic verification and model
checking, such as PRISM [35] and de Alfaro [36].

We have considered here a model based on Poisson processes which are some
of the simplest examples of continuous-time Markov chains. More complicated
continuous time behaviour could be considered, but this might require more
parameters than just rate to describe the time distributions [14]. The language
could also be extended so as to allow for a dynamic change of probabilities and
rates, i.e. for rate and probability which depend on the time. These last two
extensions require further work.

References

1. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

2. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35 (1992) 97–107

3. Arbab, F.: Manifold. Future Generation Computer Systems 10 (1994) 273–277
4. Sands, D., Weichert, M.: From gamma to cbs: Refining multiset transformations

with broadcasting processes. In El-Rewini, H., ed.: Proceedings of 31st Hawaii
International Conference on System Sciences. Volume VII., IEEE (1998) 265–274

5. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in
the tuple space coordination model. Theoretical Computer Science (To appear)

6. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In Nicola, R.D.,
Ferrari, G., Meredith, G., eds.: Proceedings of Coordination 2004. Number 2949 in
Lecture Notes in Computer Science, Berlin — Heidelberg — New York, Springer
Verlag (2004) 119–134



Probabilistic Linda-Based Coordination Languages 139

7. Di Pierro, A., Hankin, C., Wiklicky, H.: Continuous-time probabilistic KLAIM. In:
SecCo’04 — CONCUR Workshop on Security Issues in Coordination Models, Lan-
guages, and Systems. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

8. Nicola, R.D., Latella, D., Massink, M.: Formal modeling and quantitative analysis
of KLAIM-based mobile systems. In: 20th Annual ACM Symposium on Applied
Computing, ACM (2005)

9. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative and stratified models
of probabilistic processes. Information and Computation 121 (1995) 59–80

10. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24 (1998)
315–330

11. Hillston, J.: PEPA: Performance enhanced process algebra. Technical Report
CSR-24-93, University of Edinburgh, Edinburgh, Scotland (1993)

12. Tijms, H.C.: Stochastic Models – An Algorithmic Approach. John Wiley & Sons,
Chichester (1994)

13. Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, Cambridge (1997)

14. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory.
second edn. Vieweg Verlag (2002)

15. Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13 (1992) 103–180

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Verlag, Berlin – Heidelberg (1999)

17. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-
abilistic Abstract Interpretation. In: Proceedings of PPDP’00, Montréal, Canada,
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