From (Meta) Objects to Aspects:
A Java and AspectJ Point of View

Pierre Cointe', Hervé Albin-Amiot"2, and Simon Denier!

1 OBASCO group, EMN-INRIA, LINA (CNRS FRE 2729),
Ecole des Mines de Nantes, 4 rue Alfred Kastler, La Chantrerie,
44307 Nantes Cedex 3, France
{Pierre.Cointe, Herve.Albin-Amiot, Simon.Denier}@emn.fr
2 Sodifrance, 4, rue du Chateau de I’Eraudiére, 44324 Nantes, France

Abstract. eWe point some major contributions of the object-oriented
approach in the field of separation of concerns and more particularly
design-patterns and metaobject protocols. We discuss some limitations of
objects focusing on program reusability and scalability. We sketch some
intuitions behind the aspect-oriented programming (AOP) approach as
a new attempt to deal with separation of concerns by managing scat-
tered and tangled code. In fact AOP provides techniques to represent
crosscutting program units such as display, persistency and transport
services. Then AOP allows to weave these units with legacy application
components to incrementally adapt them. We present a guided tour of
AspectJ illustrating by examples the new concepts of pointcuts, advices
and inter-type declarations. This tour is the opportunity to discuss how
the AspectJ model answers some of the issues raised by post-object ori-
ented programming but also to enforce the relationship between reflective
and aspect-oriented languages.

1 Lessons from Object-Oriented Languages

More than twenty years of industrial practices have clearly enlightened the con-
tributions but also the limitations of object-oriented technologies when dealing
with software complexity [I5]. Obviously, OO languages have contributed to
significant improvements in the field of software engineering and open middle-
ware [30/9]. Nevertheless, programming the network as advocated by Java made
clear that the object model[33] even extended with the design of reusable micro-
architectures such as patterns or frameworks was not enough to deal with critical
issues such as scalability, reusability, adaptability and composability of software
components [2[19].

In this introduction, we develop some limitations but also two of the main
contributions of the OO. approach. These “pro and cons” put together, have
challenged new open research ideas in the field of programming languages design
and contributed to the emergence of new paradigms such as aspect-oriented
programming [19J31].

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 70-[34] 2005.
© Springer-Verlag Berlin Heidelberg 2005

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 71

1.1 Limitations (CONS)

A first source of problems when programming in the large, is the lack of mech-
anisms to modularize crosscutting concerns and then to minimize code tangling
and code scatteringE. A second source of problems is the difficulty of represent-
ing micro-architectures by using only classes and their methods. A third source
of problems is the need of mechanisms to incrementally modify the structure or
the behavior of a program. Considering object-oriented programming as THE
final technololgy to solve these issues has made clear some well known drawbacks
[OUTOTH]:

1. Classes schizophrenia: as already quoted by Borning in 1986, classes play too
many roles and there is some confusion around the concerns of a class as an
object generator, a class as a method dispatcher and an (abstract) class as
a part of the inheritance graph.

2. Granularity of behavioral factoring: when expressing behavioral concerns
there is no intermediate level of granularity between a method and a class.
For instance, there is no way in Java to factorize and then manipulate a
set of methods as a whole. Similarly, a Java package - seen as a group of
related classes - has not direct manipulable representation at the code level.
Then, there is a real need for stateless groups of methods a la trait [28] to
implement and compose mixin modules.

3. Class inheritance and transversal concerns: inheritance is not the solution
for reusing crosscutting non-functional behaviors such as security or dis-
play that are by essence non hierarchical. For instance in Java, even very
elementary state-less concerns such as being colorable, traceable, memoiz-
able, movable, paintable, clonable, runnable, serializable, ... must be ex-
pressed by interfaces to be reused. Unfortunately, these interfaces do not
provide any method implementations but only method specifications, lim-
itating reusability.

4. Design patterns traceability: patterns provide reusable micro-architectures
based on explicit collaborations between a group of classes [I6]. Unfortu-
nately they have no direct representation (reification) at the programming
language level raising traceability and understandability issues [I8].

1.2 Contributions (PRO)

On the one hand, the Model View Controller developed for Smalltalk has pro-
vided the user with a problem-oriented methodology based on the expression and
the combination of (three) separate concerns related to user-interfaces design.
The MVC was the precursor of event programming - in the Java sense - and con-
tributed to make explicit the notion of join point, e.g., some well defined points

1 As stated in [31], crosscutting concerns refer to functionalities which do not naturally
fit in usual module boundaries, scattering can be observed when a functionality must
be called from many places and tangling when an individual operation may need to
refer to many functionalities.

72 P. Cointe, H. Albin-Amiot, and S. Denier

in the execution of a model used to dynamically weave the codes associated to
the view and the controller.

On the other hand, object-oriented languages have demonstrated that refiec-
tion was a general conceptual framework to clearly modularize implementation
concerns and to separate them from the functional /business logic. The principle
is to introduce a metalevel description and two operations to switch between
the base level (user) to this metalevel (implementor). Nevertheless, reflection is
solution oriented since it relies on the protocols of the language to build a new
solution by opening the system [29].

Our purpose is to develop now those two OO contributions to point later
some interesting relationships between objects, design patterns and aspects.

The Model-View-Controller (MVC) was the first attempt to make the
notion of concerns explicit when designing the user interface. MV C was also the
inspirator of the well known Observer design pattern (see B.3)).

The main idea was to separate, at the design level, the model itself describ-
ing the application as a class hierarchy and two separate concerns: the display

public class Counter extends Object{

private int value;

public int getValue(){
return value;

}

public void setValue(int nv){
value=nv;
// this.changed();

}

public int incr(int delta){
this.setValue(value+delta);
return delta;

}

public void incr(){

this.incr(1);

}

public void raz(){
this.setValue(0);

}

public String toString(){
return "Q@" + value;

}

public static void main(String[] args) {
Counter cl1 = new Counter();
cl.incr(); cl.incr(6); cl.raz();

}

Fig. 1. The Counter class

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 73

and the controller, themselves described as two other separate class hierarchies.
At the implementation level, standard object encapsulation and class inheri-
tance were not able to express these crosscutting concerns and not able to pro-
vide the coupling between the model, its view, and its controller. This coupling
necessitated:

— the introduction (for instance at the root level of the class model) of a depen-
dence mechanism in charge of notifying the observers when a source-object
state changes. This mechanism is required to automatically update the dis-
play when the state of the model changes.

— the instrumentation of (some) methods of the model to raise an event each
time the state of the model changed, e.g, each time a given instance variable
gets a new value.

To discuss in more details the MV pattern, we transpose for Java the well
known Counter example used by Smalltalk teachers. The principle is to de-
velop the model first, as the Counter class, and then to introduce its associated
CounterView and CounterController classes.

The Counter Class provides two accessors methods and some basic behav-
iors such as incrementing, reseting and “stringing” (representing as a text).
None of these methods makes any assumption about the views and the con-
trollers used to build the user-interface. Indeed, the associated CounterView
and CounterController classes are defined separately.

Nevertheless, to use this Counter class according to the MV paradigm, the
developer has to manually manage state changes by inserting a this.changed ()
sentence every time the value field receives a new value. If the class is well
designed, this insertion can be localized in only one point. In our case, since
incr, raz, ...refer to it, only the setter method setValue has to be modified.

The CounterView Class aggregates its Counter but also its CounterControl
ler. The constructor establishes the dependant link between the Counter model
and its view. In fact, every time the counter executes a this.changed(), the
view will by notified by receiving an update () message. This update will refresh
the view by redisplaying the new value of the Counter model.

Obviously the first challenge raised by the MV was to automate the transfor-
mation of the model and the generation of the associated views and controllers.
The second challenge was to proceed this generation in a non invasive way from
the model side.

Metalevel Architectures a la Smalltalk and a la CLOS have clearly
illustrated the potential of reflection to deal with separation of concerns|30].
The reflective approach makes the assumption that it is possible to separate in
a given application, its why expressed at the base level, from its how expressed
at the metalevel.

In the case of a reflective object-oriented language a la Smalltalk, the prin-
ciple is to reify at the metalevel its structural representation, e.g., its classes,

74 P. Cointe, H. Albin-Amiot, and S. Denier

public class CounterView extends View {
private Counter model, CounterController controller;
private CounterView() {
model = new Counter();
model .addDependent (this); // dependency link

}
public void update(){
model.getValue() .toString() .displayAt(...);
}
}
public class CounterController extends MouseMenuController {
private Counter model, CounterView view;

Fig. 2. The CounterView and MouseMenuController classes

their methods and the error-messages but also its computational behavior, e.g.,
the message sending, the object allocation and the class inheritance. Depending
on which part of the representation is accessed, reflection is said to be structural
or behavioral. Meta-objects protocols (MOPs) are specific protocols describing
at the meta-level the behavior of the reified entities. Specializing a given MOP
by inheritance, is the standard way [8/I7] to extend and to open the base lan-
guage with new mechanisms such as explict metaclasses [3], multiple-inheritance,
concurrency, distribution [24], aspects [4] or reified design patterns.

The design of metaobject protocol such as ObjVlisp, CLOS or ClassTalk
contributed to the development of techniques to introspect and to intercess with
program structures and behaviors [7I2126)3]. The minimal ObjVliisp model was
built upon two classes: Object the root of inheritance tree, Class the first meta-
class and as such the root of the instantiation link, plus MethodDescription, the
reification of object methods. Then object creation (structural reflection) and
message sending (behavioral reflection) can be expressed as two compositions of
primitive operations defined in one of these three classed?:

— Class.allocate 0 Object.initialize
— Class.lookup 0 MethodDescription.apply

In the case of an open middleware [23], the main usage of behavioral re-
flection is to control message sending by interposing a metaobject in charge
of adding extra behaviors/services (such as transaction, caching, distribution)
to its base object. Nevertheless, the introduction of such interceptors/wrappers
metaobjects requires to instrument the base level with some hooks in charge of
causally connecting the base object with its metaobject. Those metaobjects pre-
figured the introduction of AspectJ crosscuts, e.g., the specification of execution
points where extra actions should be woven in the base program [20/13].

2 The dot notation Class.allocate meaning the allocate method defined in the
Class class.

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 75

2 The Java Class Model and Its Associated MOP

The Java model is close to the ObjVlisp one, the main difference being that
Class - the first metaclass - is final making Class and then the associated class
model non extensible [7]. In fact, the Java reflective APH provides mainly a
self-description of its class architecture and a related MOP mainly dedicated to
its introspection.

2.1 Exposing the Java Class Model

On Figure Bl we recognize the Object class and the Class metaclass. Then the
Constructor, Field and Method classes reify the three main kind of Java class
members. Each of them implement the Member interface and specialize the
AccessibleObject class introduced to interact with the security manager and get
its authorization to intercede with the fields of an object. This simplified figure
summarizes also - at the level of every class and using the common Smalltalk
notation - the names of the metaobject protocols from which we would like to
point out:

1. Class.forName to reify a class and then to get the reification of its different
members,

2. Class.newInstance and Constructor.newInstance to allocate new
objects,

3. Method.invoke to call compiled method,

4. Field.get and Field.set to read/write instance variables.

These methods give access to the description and then the control of some key
events associated to OO program execution; respectively object creation, mes-
sage sending and field references. They can be used as developed below to explicit
and then to specialize by inheritance the associated mechanisms.

2.2 Using the Java MOP

ReflectiveObject. One key issue when using reflection is to control the execu-
tion flow by monitoring some key events (called hooks [29] or join points [20])
such as field accessing or message sending. The idea is to superimpose additional
behaviors before, instead of, or after such events for instance to check pre or post
conditions. In that perspective, the Java MOP can be used to explicit and then
monitor the accesses to members (field or method) by introducing such hooks
to execute extra code. This MOP makes possible the expression of the following
rewriting rules expliciting method calls and field references in a Smalltalk way:

1. o.selector(args...arg,) — o.receive(“selector” arga, ...argy)
2. o.field — o.instVarAt(“field”, value)
3. o.field = value — o.instVar At Put(“field”, value)

3 We present here the java.lang.reflect package as provided by Java 1.4.

76 P. Cointe, H. Albin-Amiot, and S. Denier

The ReflectiveObject class uses the Java MOP to explicit these transforma-
tion rules via its receive and instVarAt methods.

public class ReflectiveObject {
public Object receive(String selector, Object[] args) {
Method mth = null; Object r = null; Class[] classes = null;
int lo = 0;
if (args != null) {
lo = Array.getLength(args);
classes = new Class[lo];
}
for (int i = 0; i < lo; i++) {classes[i] = args[i].getClass();}
try {
// LOOKUP join point
mth = getClass().getMethod(selector, classes);
// before method call
r = mth.invoke(this, args); // APPLY join point
// after method call
} catch (Exception e) {System.out.println(e); }
return r;
}
public Object receive(String selector) {
return receive(selector, null);
}
public Object receive(String selector, Object argl) {
return receive(selector, new Object[] { argl });
}
public Object receive(String selector, int argl) {
return receive(selector, new Object[] { new Integer(argl) });
}
public void instVarAtPut(String name, Object value) {
try {
Field f = this.getClass().getDeclaredField(name);
if (!Modifier.isStatic(f.getModifiers()))
f.setAccessible(true);
// before field reference
f.set(this, value); // SET reference join point
// after field reference
} catch (Exception e) {
System.out.println("ReflectiveObject.instVarAtPut "+ e);}

More precisely:

1. receive: computes the signature of the associated message by extracting the
class of every argument (selector and classes), looking up for an associated
method in the class of the receiver (composition of getClass and getMethod)

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 7

inherits from

implements __ - [Constructor] [Field] [Method]

java.lang.0Object (getClass, clone)
java.lang.Class(getName, newInstance, forName,
getDeclaredMethods, getDeclaredFields,
getDeclaredConstructors)
java.lang.reflect.Member (getName, getDeclaringClass, getModifiers)
java.lang.reflect.AccessibleObject (isAccessible, setAccessible)
java.lang.Reflect.Field(get, set, setInt)
java.lang.Reflect.Method (invoke)
java.lang.Reflect.Constructor (newInstance)

Fig. 3. The Java class model and its associated MOP

and then apply this method to its arguments (invoke). Obvioulsy, receive
can be specialized to call extra methods before, around or after the APPLY
join poimﬂ.

2. instVarAtPut: computes the representation of a field given by its name
(composition of getClass and getDeclaredField) checks if it is an in-
stance or a class variable (isStatic), turns the accessible security right to
true (setAccesible) and change its value (set). Consequently,
as soon as Counter is defined as a subclass of ReflectiveObject, its
Counter.setValue method body can be rewritten as: this.instVarAtPut
(¢‘value’’, new Integer(nv)).Then, instVarAtPut could be overridden
to notify the dependents. More generally, this method can be specialized to
call extra methods, before, after and around the SET reference join point.

MemoizingObject. The idea is to specialize the previous receive method to
memoize the already computed results in a cache. For simplification purpose,
we made the assumption that receive takes only one argument with type int.
The implementation is as follows; when a receive is executed, we extract the
first argument n and wrap it to a Java Integer, we check if the result as already
been computed and cached for this argument. If true we directly returns the
memoized result. If false, we call the super method in charge of realizing the
computation and we record the result:

4 receive allows also the computation of the selector to perform & la Smalltalk the
method to call: new ReflectiveObject() .receive(‘‘get’’ + ‘‘class’’)

78 P. Cointe, H. Albin-Amiot, and S. Denier

public class MemoizingObject extends ReflectiveObject {
public static HashMap cache = new HashMap();
public Object receive(String selector, Object[] args) {
int n = ((Integer)args[0]).intValue();
Integer N = new Integer(n);
if (cache.containsKey(N)){return (Integer)cache.get(N);}
else {
Integer r = (Integer)super.receive(selector, args);
cache.put(N,r);
return r;
}
}
}

The example below develops how to use this memoization concern to compute
factorial numbers by the way of the EFP.fact method expressed in term of the
Memoizing0Object.receive method:

public class EFP extends MemoizingObject {
static EFP f = new EFP();
public static int fact(Integer n){
int pn = n.intValue();
if (pn == 0)
return 1;
else
return pn * ((Integer)f.receive("fact",
(new Integer(pn - 1)))).intValue(Q);

}
public static void main(String[] args) {
try {
System.out.println("The cache " + memo);
Integer r= (Integer)f.receive("fact", 4);
System.out.println("The cache " + memo + r);
r= (Integer)f.receive("fact", 5);
System.out.println("The cache " + memo + r);
} catch (Exception e) {
System.err.println("MemoizingObject.Main" + e);
}
}

/* Running EFP.main will produce :

The cache{}

The cache{2=2, 4=24, 1=1, 3=6, 0=1}24

The cache{2=2, 4=24, 1=1, 3=6, 5=120, 0=1}120
*/

ClassInspector uses the previous MOP to introspect a given Java class and
pretty print its “signature”. The main idea is to get its direct superclass, its

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 79

interfaces and then to enumerate the signature of its different declared members:
fields, methods and constructors.

public class ClassInspector {
private java.io.PrintStream out = System.out;

public void inspect(Class aClass) {
Field[] fields; Method[] methods; Constructor[] constructors;
Class[] interfaces = aClass.getInterfaces();
out.print(aClass.toString() + " extends "
+ aClass.getSuperclass() .getName());
for (int j = 0; j < interfaces.length; j++) {
out.println("implements" + interfaces[j].getName());
}
out.println("");
out.println("--> declared fields");
fields = aClass.getDeclaredFields();
for (int j = 0; j < fields.length; j++)
out.println(" " + fields[j].toString());
out.println("--> declared methods");
methods = aClass.getDeclaredMethods();
for (int j = 0; j < methods.length; j++)
out.println(" " + methods[j].toString());
out.println("--> declared constructors");
constructors = aClass.getDeclaredConstructors();
for (int j = 0; j < comstructors.length; j++)
out.println(" " + constructors[j].toString());
}
public static void main(String[] args) {
ClassInspector desc = new ClassInspector();
try {
desc.inspect(Class.forName("fmco.Counter"));
} catch (ClassNotFoundException e) {
System.err.println(e);
}
}
}

Annex [A2] gives an example of using ClassInspector to “pretty print” our
Counter class. The purpose is to check the members introduced by the AspectJ
weaver, as soon as Counter is crosscutted by the CounterObserver aspect

(see B3).

2.3 Some Drawbacks of the Java MOP

The previous examples have demonstrated how the Java API (via the
Reflective Object class) can be used to incrementally modify the behavior
of a program by controlling message sending or field accessing. Nevertheless the
proposed solutions are difficult to generalize since:

80 P. Cointe, H. Albin-Amiot, and S. Denier

— as for the fact and setValue examples, we need to manually transform
regular Java codes to explicit the usage of receive and instVarAtPut,

— contrary to Smalltalk, the associated rewriting rules have to deal with Java
primitive types and necessitates the introduction of casts and wrappers which
make the translations more complex,

— EFP and Counter have to subclass ReflectiveObject to get the associated
reflective behaviors. Since Java only provides single inheritance it is a strong
constraint for a class to use this specialization mechanism to get reflective
facilities.

At the conceptual level, we can reformulate these drawbacks as the difficulty to
systematically reify message sending and field accessing in a non-invasive way
and as the problem of modularizing extra code performed “around” such events
without using standard class inheritance. At the implementation level, we should
discuss the extra execution cost induced by metaprogramming, and the inherent
complexity of opening the Java class model [29].

3 A Guided Tour of AspectJ

“A characteristic of aspect-oriented programming, as embodied in AspectJ, is the
use of advice to incrementally modify the behavior of a program. An advice decla-
ration specifies an action to be taken whenever some condition arises during the
execution of the program. The condition is specified by a formula called a point-
cut designator. The events during execution at which advice may be triggered are
called joint points. In this model of aspect-oriented programming, join points are
dynamic in that they refer to events during the execution of the program [32].”

Aspect]J is a general purpose language built as a super set of Java (see
[1] and chaper 6 of [I4]). The main idea is to introduce a new unit called an
aspect in charge of modularizing crosscutted concerns. This unit looks like a class
definition but supports the declaration of pointcuts and advice. These pointcuts
are used by a specific compiler to weave the advice with regular Java code.

From an industrial perspective, it is the first largely diffused language used to
develop or reengineer relevant applications according to aspect-oriented design
[14]. From an academic perspective, AspectJ is historically the first aspect-
oriented language and the natural candidate to expose the relationships between
objects, metaobjects and aspects by answering some issues raised by post-object-
oriented programming.

3.1 The Join Point and Advice Models

The main intuition behind AOP is to introduce a join point model raising events
every time an interesting point is reached during the execution of a program.
Then the idea is to propose a pointcut language to select specific join points and
an an advice language to express some extra code to be woven at those pointcuts.
In the case of AspectJ both the pointcut language and the advice language are
extensions of Java. More precisely and revisiting [19] we propose the following
definitions:

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 81

— Join point: a well defined point in the execution of a program. As an extension
of Java, AspectJ proposes about ten different kinds of those points related
to object-oriented execution; method call, method execution, field reference
(get and set), constructor call, (static) initializer execution, constructor ex-
ecution, object (pre) initialization, exception handler execution [21].

— Pointcut (when): an expression designating a set of join points that option-
ally exposes some of the values in the associated execution context. These
pointcuts can be either user-defined or primitives. These pointcuts can be
composed (like predicates) according to three logical operators : logical and
(&& operator), logical or (]| operator) and logical negation (! operator).

— Advice (how/what): a declaration of what an aspect computes at intercepted
join points. In fact a method like mechanism used to declare that certain
code should execute when a given pointcut matched. The associated code
can be told to run before the actual method starts runing, after the actual
method body has run and instead/around the actual method body. Notice
that AspectJ provides a reification of the current join point by introducting
the new thisJoinPoint pseudo variable (see the DummyTrace?2 aspect in[3.2).

— Inter-type declaration (introductions): declarations of members that cut
across multiple classes or declarations of change in the inheritance relation-
ship between classes. In a reflective way, those declarations are used to open
a class by statically introducing new members or by changing its super class
or super interfaces.

— Aspect: a modular unit of crosscutting implementation, composed of point-
cuts and advice, plus ordinary Java member declarations. An AspectJ aspect
declaration has a form similar to that of a Java class declaration.

The rest of this section is a guided tour of AspectJ introducing step by
step the previous concepts and illustrating them with examples. We will distin-
guish between behavioral crosscutting affecting the run time behavior and static
crosscutting affecting the class and object structures (page 185 of [21]).

3.2 Behavioral Crosscutting

The principle is to modularize simple crosscutting concerns such as monitoring,
tracing and memoizing with AspectJ aspects and then to adapt existing Java
classes such as Counter and FP by weaving their associated advice.

Introducing Pointcuts (Counter and the Daemon aspect). Coming back
to the Counter class exposed in Figure[I] we still want to notify a dependent (an
observer) every time its value field is changed. Contrary to the MOP approach,
we expect to proceed without editing the definition of the Counter class and
without evading its setValue method. The AspectJ solution is to modify auto-
matically and a posteriori the code of the Counter class by weaving the advice
associated to the Daemon aspect. This aspect allows to monitor the write access
to the Counter.value field as follows:

82 P. Cointe, H. Albin-Amiot, and S. Denier

— declaration of a user defined changed poincut designator associated to the
Counter.value set event:

— declaration of an after advice which method body will be executed after a
set event occur. More precisely after a logical combination of a changed and
an args and a target. The two primitives pointcuts (args and target) are
used to catch - in the dynamic context - the values of the current receiver r
and the current argument n.

public aspect Daemon {
// pointcut designator
pointcut changed(): set(int Counter.value);
// after advice
after(int n, Counter r): changed() && args(n) && target(r){
r.getDependent () .update(n);
}
}

Obviously, poincuts enables to abstract over control flow [25]. In particular,
it becomes easy to materialize the execution trace of different method calls. The
next three examples develop how to define trace aspects within AspectJ.

Introducing Before and After Advice (DummyTracel). The idea is to
define a DummyTrace aspect to visualize the computation of the two mutually
recursive methods FP.odd and FP.even are associated to the FP (standing for
Functional Programming) class. defined in Annex 5.1. The first expected trace
looks like the left part of Figure[dl We define the DummyTracel aspect as follows:

— a traceCounter field counting the number of the traced method calls. It is
used to indent the outputs,

— two calleven and callodd poincut descriptors monitoring the FP.even and
FP.odd method calls,

— four advice in charge of wrapping these method calls by printing in the standard
output the value of the n argument before the associated pointcut and the
value of the same argument plus the computed b result after the pointcut.

-->Before calleven(3) -->call(FP.even(..)) 3
-->Before callodd(2) -->call(FP.odd(..)) 2
-->Before calleven(1) -->call(FP.even(..)) 1
-->Before callodd(0) -->call(FP.odd(..)) O
false<--After callodd(0) false<--call(FP.odd(..)) O
false<--After calleven(1) false<--call(FP.even(..)) 1
false<--After callodd(2) false<--call(FP.odd(..)) 2
false<--After calleven(3) false<--call(FP.even(..)) 3

Fig. 4. FP class crosscuted by the DummyTrace aspects (DummyTracel at left, Dum-
myTrace2 at right)

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 83

public aspect DummyTracel {
int traceCounter=0;
void indent(){
for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}
}

pointcut calleven(): call(static boolean FP.even(int)) ;
pointcut callodd(): call(static boolean FP.odd(int)) ;

before(int n): calleven() && args(m){
traceCounter++; indent();
System.out.println("-->Before calleven(" + n + ")");

}

after(int n) returning (boolean b) : calleven()&& args(n){
indent () ;
System.out.println(b + "<--After calleven(" + n + ")");
traceCounter--;

}

after(int n) returning (boolean b) : callodd()&& args(n){
indent () ;
System.out.println(b + "<--After callodd(" + n + ")");
traceCounter--;

}

before(int n): callodd() && args(n){
traceCounter++; indent();
System.out.println("-->Before callod(" + n + ")");
}
}

Using Wildcards in Pointcut Signature (DummyTrace2). Our first ver-
sion of the trace aspect can be improved by i) using only one pointcut desig-
nator to declare the methods to be traced and then by ii) factorizing the two
before/after advice.

— AspectJ supports the use of wild cards in the signatures of pointcuts. The *
character matches any number of characters and .. matches zero and more
arguments [21]. Consequently the expression static boolean FP.*(int)
designates all the static methods defined in FP taking only one int as argu-
ment and returning a boolean.

— AspectJ introduces also the thisJoinPoint pseudo-variable to provides re-
flective dynamic information about the kind of join point, its signature and
its context.

By combining wildcard and join point reification, we get a more concise and
more generic aspect which corresponding execution trace is given in the right
part of Figure [l

84 P. Cointe, H. Albin-Amiot, and S. Denier

public aspect DummyTrace2 {
int traceCounter=0;
void indent (){
for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}
}
pointcut boolean_FP_int(): call(static boolean FP.*(int)) ;

before(int n): boolean_FP_int() && args(n){
traceCounter++; indent();

System.out.println("-->" + thisJoinPoint.toShortString() + " " + n);
}
after(int n) returning (boolean b) : boolean FP_int()&& args(n){
indent();
System.out.println(b + "<--" + thisJoinPoint.toShortString() + " " + n);
traceCounter—-;
}

}

Introducing Abstract Aspect (the TraceProtocol Aspect). Since its
pointcut descriptor explicitly refers to the FP class, the DummyTrace2 aspect
cannot be reused to trace any kind of method in any kind of class. But quoting
page 340 of [20]): “AspectJ provides a simple mechanism of pointcut overriding
and advice inheritance. To use this mechanism a programmer defines an ab-
stract aspect, with one or more abstract pointcuts, and with advice on the poin-
cut(s). This, then, is a kind of library that can be parameterized by aspects that
extend it”.

To make the trace aspect reusable, we introduce the abstract TracePro-
tocol aspect, its associated abstract trace pointcut descriptor and its two
before/after advice:

abstract aspect TraceProtocol {
int traceCounter=0;
void indent (){

for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}
}

abstract pointcut trace();

before(int n): trace() && args(n){
traceCounter++;
indent();
System.out.println("-->" + thisJoinPoint.toShortString() + " " + n);
}
after(int n) returning (int r): trace() && args(n){
indent () ;
System.out.println(r + "<--" + thisJoinPoint.toShortString() + " " + n);
traceCounter--;
}
}

Then we can provide different concrete implementations of this trace proto-
col. For instance, to trace the fact and fib static methods also associated to
FP together with the incr method of Counter we define the Tracing aspect as
an extension of TraceProtocol:

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 85

public aspect Tracing extends TraceProtocol {
pointcut trace()
call(int Counter.incr(int)) ||
call(static int FP.fact(int)) ||
call(static int FP.fib(int));

Introducing Around Advice (the Memoizing Aspect). The around ad-
vice allows to use a join point for adding extra behavior to the proceeding of the
standard code execution or by replacing this standard code execution by a to-
tally new code. The Memoizing aspect illustrates how to use it in the case of the
FP.fact static method. As for MemoizingObject class in section 2.2 the princi-
ple is to memoize all the already computed results in a cache. Then when a new
call occurs, if the result is already cached then it is directly returned, otherwise
the computation is done in a regular way due to the proceed construction, the
result cached and returned:

public aspect Memoizing {
public static HashMap cache = new HashMap();

pointcut callfact(): call(static int FP.fact(int)) ;

int around(int n): callfact() && args(n){
Integer N = new Integer(n);
if (cache.containsKey(N)){
return ((Integer)cache.get(N)).intValue();
}
else {
int r = proceed(n);
cache.put (N, new Integer(r));
return r;
}
}
}

A few enhancements would transform this skeleton aspect into a more generic,
multiple methods caching aspect. Compared to the usage of reflection and the
definition of the Memoizing0Object we observe a symetry between the super and
proceed as two constructs allowing to call some overridden behaviors. Obviously
the AspectJ solution looks better since the definition of the FP class is not
impacted by the definition of a Memoizing concern.

Composing Memoizing and Tracing. AspectJ automatically compose dif-
ferent crosscutting aspects. In the case of FP, after the definition of the Memoiz-
ing and Tracing aspects and their associated callfact and trace pointcuts,
every call to the FP.fact static method will be memoized and traced. As shown
by Figure [after a first call of FP.fact(3) (left part) the results of fact(0),
fact(1), fact(2) and fact(3) are cached, then when calling FP.fact (5), only the
computations of FP.fact(5) and FP.fact (4) are proceeded (right part):

86 P. Cointe, H. Albin-Amiot, and S. Denier

fact(3) fact(5)
-->call(FP.fact(..)) 3 -->call(FP.fact(..)) 5
-->call(FP.fact(..)) 2 -->call(FP.fact(..)) 4
-->call(FP.fact(..)) 1 -->call(FP.fact(..)) 3
-->call(FP.fact(..)) O 6<--call(FP.fact(..)) 3
1<--call(FP.fact(..)) O 24<--call(FP.fact(..)) 4
1<--call(FP.fact(..)) 1 120<--call(FP.fact(..)) 5
2<--call(FP.fact(..)) 2 fact(5)=120
6<--call(FP.fact(..)) 3
fact(3)=6

Fig. 5. FP crosscutted by the Memoizing and Tracing aspects

Threading: The Concurrent Aspect. One recurrent question is how to make
concurrent the execution of objects. Java suggests to use a Runnable interface
in charge of adapting a class to the Java concurrency model. An AspectJ alter-
native programming idiom is to replace the standard execution of a main static
method by the launching of a new instance of an anonymous Thread. Coming
back to the clock example discussed in [5] we get:

public aspect Concurrent {
void around() : execution(public static void Clock.main(String[])) {
new Thread(){
public void run() {
System.out.println("Started in another thread");
proceed();
}
}.start();
}
}

3.3 Structural Crosscutting

In the tradition of reflective architecture, AspectJ provides a mechanism known
as inter-types declaration to open Java classes (and interfaces) by introducing
new members or by changing the inheritance relationship between classes (and
interfaces). Quoting the “Introduction to AspectJ” available at [I]; “unlike ad-
vice, which operates primarily dynamically, introduction operates statically, at
compile-time.”

AspectJ supports four kinds of such declarations introductions: field, method
and constructor introductions plus class hierarchy alteration. Their syntax is as
follows:

1. modifiers type ClassName.newFieldName [= expression]
adds the newFieldName to the ClassName class with optionally the initial
value associated to expression,

2. modifiers type ClassName.newMethodName (parameters) body
adds the newMethodName to the ClassName class with the corresponding
parameters and method body,

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 87

3. modifiers type InterfaceName.addedMethodName (parameters) body
adds the newMethodName to all the classes implementing the InterfaceName
class with the corresponding parameters and method body,

4. declare parents: ClassName extends SuperClassName
SuperClassName becomes the new direct superclass of ClassName,

5. declare parents: ClassName implements ListOfInterfaceNames
ClassName implements the new set of ListOf InterfaceNames.

In this section, we address the issue of representing the Observer design
pattern as an aspect. We revisit the presentation of [I§] about implementing
in AspectJ the different design patterns presented in [16]. Obviously, this is
an opportunity to reintroduce the Counter example and to come back to the
Smalltalk MVC.

The Observer Design Pattern as an Aspect. Quoting [16, page 294], the
intent of the Observer pattern is to “define a one-to-many dependency between
objects so that when one object changes state, all its dependents are notified and
updated automatically”. The key roles in the Observer design patten are subject
and observer. Here we made the assumption of the existence of two interfaces,
respectively Subject and Observer, plus a Printer class, all of them defined
in Annex [A.2] Then the idea is to use a CounterObserver aspect to adapt the
Counter and Printer classes to play the roles of subject and observer.

As shown by Figure [6l the aspect has to adapt the Counter class to make
it implement the Subject interface and in the same time to adapt the Printer
class to make it implement the Observer.

Notice that [12] uses “interface” introductions to address another issue dis-
cussed in [[IT] of providing an implementation of traits (set of stateless related
methods) in Java [2§].

The PatternObserverProtocol Aspect. modularizes the update logic and
the registration logic for observers. The update logic is handled by the after
stateChanges advice in charge of updating the list of observers whereas the
registration logic is due to a set of introductions. Seven of them are in charge
of adding the members subject, getSubject(), setSubject(), observers,
add0bserver (), removeObserver (), getObservers(), to the Observer and
Subject classes. Notice finally how the abstract aspect is parameterized both
by the abstract stateChanges(Subject) pointcut and the update abstract
method.

The CounterObserver Aspect. specializes the PatternObserverProtocol
for a configuration where Counter plays the role of a Subject and Printer the
role of an Observer. The introduction mechanism is used for this configuration
task. First we declare that Counter implements Subject and Printer imple-
ments Observer. Then we define a concrete update method for the Printer
class. Finally we declare the stateChanged pointcut to target and monitor every
call of the Counter.setValue(int) method.

88 P. Cointe, H. Albin-Amiot, and S. Denier

aspect CounterObserver extends PatternOberverProtocol {
pointcut stateChanges(Subject s):
target(s) && call(public void Counter.setValue(int));

declare parents: Counter implements Subject;
declare parents: Printer implements Observer;

public void Printer.update() {

this.print("update occured in Counter" + this.getSubject());
}
}

Testing the DemoPatternObserver. An important property of this design is
the lack of coupling between Counter, Printer and the PatternObserverProto
col abstract aspect. In fact, all coupling are localized in CounterObserver and
some client such as Client.main on Figure B Obviously, another aspect can
specialize PatternObserverProtocol to define its own schema involving other
classes. It is one possible reusable implementation of the Observer design pat-
tern: however it is not a universal one. For example, only one instance of the
pattern/aspect is allowed per subject, so there is no distinction between non-
related observers when updating.

Further Reading About the Join Point Model. This presentation of
AspectJ is quite short and does not present all the details of its join point
model. In particular we do not say anything about so called scoping join point
matching any join point where the associated code is defined within a given scope
or based on the control flow in which they occur. For more details see [1I21].

Observer Subject
addObserver (Observer)
update(_) removeObserver (Observer)
getSubject () Ob
setSubject (Subject) getObservers ()
L) L)
Vimplments [F—
1 1
Printer Counter
int value
print(String) getValue ()
toString () setValue (int)
Subject incr (int)
Observer subject incr()
raz()
toString ()
getSubject () Observers
setSubject (Subject) Vector observers
update() addObserver (Observer)
removeObserver (Observer)
getObservers ()

Fig. 6. Counter as a Subject in the Observer design pattern

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 89

abstract aspect PatternObserverProtocol {

abstract pointcut stateChanges(Subject s);

// Update Logic

after(Subject s, int value): stateChanges(s) && args(value){
for (int i = 0; i < s.getObservers().size(); i++) {

((Observer)s.getObservers() .elementAt(i)) .update();

}

}

// Registration Logic

private Vector Subject.observers = new Vector();

public void Subject.addObserver (Observer obs) {
observers.addElement (obs) ;
obs.setSubject (this);

}

public void Subject.removeObserver (Observer obs) {
observers.removeElement (obs) ;
obs.setSubject (null) ;

}

public Vector Subject.getObservers() { return observers; }

private Subject Observer.subject = null;

public void Observer.setSubject(Subject s) { subject = s; }

public Subject Observer.getSubject() { return subject; }

Fig. 7. The Observer Design Pattern as an Aspect

public static void Client. main(String[] args) {
Counter c1 = new Counter();
Printer scribe = new Printer();
cl.raz();
scribe.print(cl.toString());
cl.add0Observer(scribe);
cl.incr(3);
scribe.print(cl.toString());
cl.raz();
scribe.print(cl.toString());

}

/* Will produce

[Printer] @0

-->call(Counter.incr(..)) 3

[Printer] update occured in Counter@3

3<--call(Counter.incr(..)) 3

[Printer] @3

[Printer]update occured in Counter@0

[Printer] @0

*/

Fig. 8. Counter crosscutted by the CounterObserver and Tracing aspects

90 P. Cointe, H. Albin-Amiot, and S. Denier

4 Conclusion and Open Questions

In this paper we have discussed reflective and aspect-oriented languages two
fields of research boosted by the object-oriented community. For pointing out
the continuum between objects, metaobjects and aspects we have chosen Java
and AspectJ as the two test beds to express crosscutting concerns in a modular
way. Nevertheless, as demonstrated by the proceedings of conferences such as
Reflection, ICFP or AOSD (see http://aosd.net), meta-entities and aspects
are not limited to OO languages but can impact the design of all programming
languages including functional, logical and constraint based ones.

In this area, promising open research issues includes providing operational
and formal semantics for advice and pointcut models [13I32], using the same
general purpose language for defining advices and joint points versus developing
multi-paradigm languages, exploring the application of domain specific languages
to the definition of aspects, building a reflective kernel as a basis to implement
aspect-oriented languages [BI27] and in the opposite direction using AOP as a
basis for reflective and metalevel architectures [22], understanding the contribu-
tion of aspects to the field of generative programming [6/25], experimenting with
the refactoring of legacy codes based on reusable aspects [18].

Acknowledgments

This work is part of the new AOSD network of excellence and its language labora-
tory (see http://www.aosd-europe.net). It benefited from previous discussions
presented in [IO/IT].

References

1. AspectJ site. : See http://eclipse.org/aspect;j

2. Aksit, M., Black, A., Cardelli, L., Cointe. P., Guerraoui, R. (editor), and al.: Strate-
gic Research Directions in Object-Oriented Programming, ACM Computing Sur-
veys, volume 8, number 4, page 691-700, (1996).

3. Bouragadi-Sadani , M.N. , Ledoux, T., Rivard F.: Safe Metaclass Programming.
Proceedings of OOPSLA 1998. Editor Craig Chambers, ACM-Sigplan, pages 84-96,
volume 33, number 10, Vancouver, British Columbia, USA, October 1998.

4. Bouragadi-Sadani , M.N. ; Ledoux, T.: Supporting AOP Using Reflection. Chapter
12 of [14], pages 261-282, 2005.

5. Chiba, Shigeru.: Generative Programming from a Post Object-Oriented Program-
ming ViewPoint. Proceedings of the Unconventional Programming Paradigms
workshop. To appear as LNCS volume. Mont St Michel, France, 2005.

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Methods, Tools, and
Applications. Addison-Wesley (2000).

7. Cointe, P.: Metaclasses are First Class: The ObjVlisp Model. Proceedings of the
second ACM SIGPLAN conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA 1987). Editor Jerry L. Archibald, ACM
SIGPLAN Notices, pages 156-167, volume 22, number 12, Orlando, Florida, USA,
October 1987.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 91

. Cointe, P.: CLOS and Smalltalk : a Comparison. Chapter 9, pages 215-250 of [26].

The MIT Press, 1993.

. Cointe, P.: Les langages & objets. Technique et Science Informatiques (TSI), volume

19, number 1-2-3, pages 139-146, 2000.

Cointe, P., Noyé, J., Douence, R., Ledoux, T., Menaud, J.M., Muller, G., Sud-
holt, M.: Programmation post-objets. Des langages d’aspect aux langages de com-
posants. RSTI série L’objet. volume 10, number 4, pages 119-143, 2004. See also
http://www.lip6.fr/colloque-JFP.

Cointe, P.: Towards Generative Programming. Unconventional Programming Par-
adigms workshop, UPP 04. LNCS 3566, pp 302-312. J.-P. Banatre et al. Editors.
Springer Verlag, 2005.

Denier, S.: Traits Programming with AspectJ. RSTI série L’objet. Special issue on
Aspect-Oriented Programming (to appear). See also pages 62-78 of the unformal
proceeding at http://www.emn.fr/x-info/obasco/events/jfdlpa04/actes/,
2005.

Douence, R., Motelet, O., Sudholt, M.: A formal definition of crosscuts. Proceedings
of the 3rd International Conference on Reflection 2001, LNCS volume 2192, pages
170-186, (2001).

Filman, E. R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Devel-
opment. Addison-Wesley, 2005.

Gabriel, R.: Objects Have Failed. See http://www/dreamsongs/com/Essays.html
and also http://www.lip6.fr/colloque-JFP/

Gamma, E., Helm, R., Johnson. R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. 1995

Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., Bobrow, D.: Metaobject Proto-
cols Why We Want Them and What Else They Can Do. Chapter 4, pages 101-118
of [26]. The MIT Press, 1993.

Hannemann , J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ.
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA
2002. ACM SIGPLAN Notices, volume 37, number 11, pages 161-173.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C, Loingtier, J.-M.,
Irwin, J.: Aspect-Oriented Programming. ECOOP 1997 - Object-Oriented Pro-
gramming - 11th European Conference, volume 1241, pages 220-242. 1997
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ ECOOP 2001 - Object-Oriented Programming - 15th Euro-
pean Conference, LNCS volume 2072, pages 327-354. 2001

Kiselev, I.: Aspect-Oriented Progamming with AspectJ. Sams Publishing, 2003.
Kojarski, S., Lorenz, D., Hirschfeld, R.: Reflective Mechanism in AOP Languages.
Draft paper.

Ledoux, T.: OpenCorba: A Reflective Open Broker. Proceedings of the second
international conference on Meta-Level Architectures and Reflection. Cointe, P.:
editor. LNCS 1616, Pages 197-214, Saint-Malo, France, 1999.

McAffer, J,: Meta-level Programming with CodA. Proceedings of ECOOP 95. Page
190-214, Springer LNCS, Aarhus, Danemark, 1995

Mezini, M., Ostermann, K.: A Comparison of Program Generation with Aspect-
Oriented Programming. Proceedings of the Unconventional Programming Para-
digms workshop. To appear as LNCS volume. Mont St Michel, France, 2005.
Paepcke, A.: Object-Oriented Programming : The CLOS perspective. The MIT
Press, 1993.

92

27.

28.

29.

30.

31.

32.

33.

P. Cointe, H. Albin-Amiot, and S. Denier

Rodriguez, L., Tanter, E., Noyé J,: Supporting Dynamic Crosscutting with Partial
Behavioral Reflection : a Case Study. RSTI série L’objet. Special issue on Aspect-
Oriented Programming (to appear). See also pages 118-137 of the unformal pro-
ceeding at http://www.emn.fr/x-info/obasco/events/jfdlpa04/actes/, 2005.
Scharli, N., Ducasse, S., Nierstrasz, O., Black, P.: Traits: Composable Units of
Behaviour. ECOOP 2003 - Object-Oriented Programming - 17th European Con-
ference, Editor L. Cardelli. LNCS volume 2743, pages 248-274. 2003

Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial Behavioral Reflection: Spatial
and Temporal Selection of Reification. Proceedings of the 18th ACM SIGPLAN
conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA 2003. ACM SIGPLAN Notices, volume 38, number 11, pages 27-46.
Thomas, D.: Reflective Software Engineering - From MOPS to AOSD. Journal Of
Object Technology, volume 1, number 4, pages 17-26. October 2002.

Wand, M.: Understanding Aspects. Invited talk at ICFP 2003. Available at
www.ccs.neu.edu/home/wand /ICFP 2003.

Wand, M., Kiczales, G., Dutchyn, C.: A semantics for Advice and Dynamic Join
Points in AOP. ACM Toplas, volume 26, issue 5, pages 890-910. 2004.

Wegner, P.: Dimensions of Object-Based Language Design. Proceedings of the sec-
ond ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA 1987). Editor Jerry L. Archibald, ACM SIG-
PLAN Notices, pages 168-182, volume 22, number 12, Orlando, Florida, USA,
October 1987.

A Annex

A.1 FP: Our Testbed (Ugly Class)

public class FP extends ReflectiveObject{

public static int fact(int n) {

if (n == 0)
return 1;
else

return n * fact(n - 1);

public static int fib(int n) {

if (n <= 1)
return 1;
else

return fib(n - 1) + fib(n - 2);

public static boolean even(int n) {

if (n == 0)
return true;
else

return odd(n - 1);

public static boolean odd(int n) {
if (n == 0)
return false;

From (Meta) Objects to Aspects: A Java and AspectJ Point of View

class fmco.Counter extends java.lang.Object implements fmco.Subject
--> declared fields

private int fmco.Counter.value

public java.util.Vector fmco.Counter.ajc$...$observers
--> declared methods

public static void fmco.Counter.main(java.lang.String[])

public java.lang.String fmco.Counter.toString()

public int fmco.Counter.getValue()

public void fmco.Counter.setValue(int)

public void fmco.Counter.incr()

public void fmco.Counter.incr(int)

public void fmco.Counter.raz()

public void fmco.Counter.addObserver (fmco.0Observer)

public java.util.Vector fmco.Counter.getObservers()

public void fmco.Counter.removeObserver (fmco.0Observer)
—--> declared constructors

public fmco.Counter ()

Fig. 9. Counter crosscutted by CounterObserver

else
return even(n - 1);

}

public static void main(String[] args) {
System.out.println("fact(5)=" + fact(5));
System.out.println("fib(4)=" + £ib(4));

}

}

A.2 The Printer Class and the Subject and Observer Interfaces

public interface Subject {
public void addObserver(Observer o);
public void removeQObserver (Observer o);
public java.util.Vector getObservers();
}
public interface Observer {
void setSubject(Subject s);
Subject getSubject();
void update();
}
public class Printer {
public void print(String s){
System.out.println(" [Printer] " + s);
}
public String toString(){
return "aPrinter";

93

94 P. Cointe, H. Albin-Amiot, and S. Denier

}
public static void main(String[] args) {
new Printer().print("Hello Word");
}
}

A.3 Inspecting Counter Crosscutted by CounterObserver

The reader can check the presence of the obervers field as the one of the
add0bserver, getObservers, removeObserver methods, all of them introduced
by the CounterObserver aspect.

	Lessons from Object-Oriented Languages
	Limitations (CONS)
	Contributions (PRO)

	The Java Class Model and Its Associated MOP
	Exposing the Java Class Model
	Using the Java MOP
	Some Drawbacks of the Java MOP

	A Guided Tour of AspectJ
	The Join Point and Advice Models
	Behavioral Crosscutting
	Structural Crosscutting

	Conclusion and Open Questions
	Annex
	FP: Our Testbed (Ugly Class)
	The Printer Class and the Subject and Observer Interfaces

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

