
Timing Analysis and Timing Predictability

Extended Abstract

Reinhard Wilhelm�

Informatik, Universität des Saarlandes, Saarbrücken

Abstract. Hard real-time systems need methods to determine upper
bounds for their execution times, usually called worst-case execution
times. This paper explains the principles of our Timing-Analysis meth-
ods, which use Abstract Interpretation to predict the system’s behavior
on the underlying processor’s components and use Integer Linear Pro-
gramming to determine a worst-case path through the program. Under
the assumption that non-trivial systems are subject of the analyses, ex-
haustive analyses can not be performed and some uncertainty about the
system’s behavior remains. Uncertainty, i.e., lack of information about a
system’s execution states incurs cost in terms of precision of the upper
and lower bounds on the execution times. Some cost figures are given for
missing information of different types. These are measured in machine
clock cycles. It is (intuitively) argued, that component-based software
design and the use of middleware may induce intolerable costs in terms
of precision.

1 Execution-Time Variability

Hard real-time systems need methods to determine upper bounds for their exe-
cution times, usually called worst-case execution times, WCET. Based on these
bounds, a schedulability analysis must check whether the underlying hardware
is fast enough to execute the system’s task such that they all finish before their
deadlines. This problem is nontrivial because performance-enhancing architec-
tural features such as caches, pipelines, and all kinds of speculation destroy
the traditional compositional methods to determine bounds on execution time.
These used so-called Timing Schemata [Sha89] for the statements of the pro-
gramming language describing how to use the bounds for the constituents of the
statements to compose bounds for the statement.

For example, upper bounds for a conditional statement would be computed
according to the rule:

u−bound(if cthen s1else s2)=u−bound(c)+max{u−bound(s1), u−bound(s2)}
Execution times for individual instructions were assumed to be constant and

available from a table in the manual of the processor.
� Work reported herein is supported by the Transregional Collaborative Research Cen-

ter AVACS of the Deutsche Forschungsgemeinschaft and by the European Network
of Excellence ARTIST2.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 317–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 R. Wilhelm

The above mentioned architectural features introduce “local non-
determinism” into the processor behavior; local inspection of the program can
not determine the contribution of an instruction to the program’s overall ex-
ecution time. The execution history determines this contribution. It depends
on whether in the actual state the instruction’s memory accesses hit or miss
the cache, whether the pipeline units needed by the instruction are occupied
or not, and whether branch prediction succeeds or fails. The variability of an
instruction’s execution time currently is roughly two orders of magnitude, with
an increasing tendency.

This variability of execution times exists on all levels of granularity [TW04],
not only for the individual memory access or the single instruction, but also for
a context switch, for a function call, for a task or a distributed system of tasks,
the communication of a message over a channel, and the delivery of a requested
service on top of some middleware.

Lack of information about a system’s execution time results from uncertainty
of the system environment (input data, timing of input events) and from the in-
terference on shared resources. For example, the variation in execution times for
individual instructions results from the competition between different memory
accesses and instructions for the caches and for functional units. The variation
of communication times is caused by competition for communication channels
with restricted bandwidth. This variance is at the heart of non-predictability,
since the safe strategy to deal with uncertainty is to assume worst cases and thus
overestimate real execution times. Overall, the remedy is over-provisioning.

1.1 Timing Analysis

Methods have been developed and tools based on them have been implemented
that bound the variance of instructions’ execution times [FHL+01, Wil05]. State-

Fig. 1. Architecture of a Timing Analysis tool

Timing Analysis and Timing Predictability 319

of-the-art Timing-Analysis methods split the task into a sequence of subtasks,
starting with a number of static analyses, which are based on the theory of
Abstract Intepretation [CC77]. The first attempt to determine properties of each
task’s control flow and the effective addresses of its memory accesses. They
use a variant of interval analysis [CH78] to determine the contents in processor
registers and the values of variables. These analyses are followed by another
one attempting to predict each task’s behavior on the processor components
such as caches and pipelines. Result of this phase are upper bounds on the
execution times of basic blocks. The control flow of each task is translated into
an integer linear program with the execution time of the program over all paths
as objective function. Maximizing this objective function determines a worst-case
path [LMW99, TFW00]. A more or less standard tool architecture has evolved
shown in Figure 1.

2 Cost of Uncertainty

Software systems of realistic sizes to be run on powerful processor architectures
exhibit state spaces that are too big to be exhaustively analyzed. That’s why
the above listed sequence of static program analyses use abstraction to reduce
this space. The analyses compute at each program point invariants in the form
of over-approximations of the set of execution states that can be reached when
program execution reaches this point. In general, several invariants are computed
for a program point, one for each context, i.e., control flow path by which this
point can be reached. Differentiating by contexts is absolutely mandatory to
obtain enough precision. Each invariant expresses the computed information
about the processor’s components, e.g. contents of caches, occupancy of pipeline
units, state of the branch predictor etc. This information is then used to exclude
the possibility of cache misses, pipeline stalls etc. and thereby safely reducing
the assumptions about the execution times of instructions.

The information contained in the invariants is by necessity incomplete. First,
information about the program’s interference with the environment is not avail-
able, which may influence the program’s execution. This requires that information
on several possible control-flowpaths be merged. Second, the analyses are based on
an abstract model of the processor. This must be conservative with respect to the
timing behavior of the concrete processor, but may abstract from details. Third,
language features and software design methods can build unsurmountable barriers
for even the most powerful analyses as we will attempt to show next.

Figure 2 shows the basic notions we are dealing with. Firstly, the program
exhibits a variability in execution time depending on input, thus may have a
range of execution times between a best-case and a worst case execution time.
However, these two extreme cases can in general not be determined. With the
methods described above, one can determine safe lower and upper bounds. Any
worst-case guarantee can only be an upper bound. Useful bounds are not too
far away from the best-case and worst-case times, resp. A system exhibiting
predictable behavior will allow the analyses to arrive at precise bounds.

320 R. Wilhelm

t0 best
case

worst
case

upper
bound

lower
bound

variation of execution time

w.c. performance

w.c. guarantee

predictability

Fig. 2. Basic terms

We will now consider several types of missing information and their costs
in terms of precision. Costs are measured in machine cycles. The figures given
are taken from a currently popular architecture, a Motorola PowerPC processor
equipped with a realistic memory system. A cache analysis will have computed
safe, but approximate information about the cache contents at each program
point. Missing information about whether an accessed memory block is in the
cache has to be accounted for by the cache miss penalty, which is roughly 40
cycles. Depending on the write-back strategy of the cache, we may need to also
account for a write back, which means adding another 40 cycles.

Furthermore, assume that the clever designer decided to use virtual memory.
This comes with a translation-lookaside buffer (TLB). A TLB miss requires 12
reads and 1 write. Assuming that one can not safely exclude that these reads
and writes miss the cache. This means that a TLB miss that can not safely be
excluded has to be accounted for with at least 13×40 = 520 cycles. A page fault
costs around 2000 cycles.

Assume, that an object-oriented language has been used for the implemen-
tation of the system’s tasks. Dynamic method invocation uses a data structure
to identify the actual method to activate. An efficient implementation spend-
ing some memory overhead for virtual-function tables [WM97] still needs two
indirect references to activate the correct method. If we can not exclude the
possibility that these two table lookups cause page faults, a method invocation
costs 2 × 2000 cycles in the worst-case.

Now come the second-order effects. Let us consider a pointer to data whose
value can not be statically inferred. When analyzing an access through this
pointer, the analysis must assume accesses to all sets of the cache. With an access
to a known address, the cache analysis removes some information, namely the
memory block that may be replaced, but it also gains some information, namely
the memory block that was loaded into the cache. With unknown access, the
analysis only looses information; it must reflect, that one memory block may
be removed from each set of the cache, but does not know where the memory
block moves into the cache. This is a second-order effect, because it ruins the

Timing Analysis and Timing Predictability 321

Fig. 3. The ZEN open-source RT-CORBA middleware. Picture taken from [KKSC03]

information about cache contents for future accesses. Even worse are statically
unresolvable function pointers. Their damaging effect is of even higher order,
because for each indirect call through such a function pointer the worst-case
damage for all the potentially called functions has to be assumed.

Middleware has its motivation in the potential for reuse of software com-
ponents. Object request brokers have to be tailored for the use in real-time
systems. In CORBA, requests for services may be served remotely over the net.
No time guarantees can be given in this case. A real-time version of CORBA
called RT CORBA has been developed. Attempts have been undertaken to in-
crease its predictability [KKSC03]. Figure 3 shows the demultiplexing steps in
CORBA request processing. Demultiplexing uses a recursive data structure. To
achieve predictability, recursion depth of this data structure has been statically
bounded. Still, traversing it to demultiplex a service request potentially causes
several page faults and cache misses at very high costs in the case of uncertainty
about the memory state.

3 On the Multiplicative Nature of Uncertainty in Layered
Systems

Real-life systems are not monolithic, but mostly structured into a layered hierar-
chy. Often, several layers interfere on a shared resource increasing the variability
of execution times. We have already seen, how the brokerage of a service by a

322 R. Wilhelm

middleware may cause page several faults. The page fault may cause a TLB miss,
which in turn may cause several cache misses. Variabilities on different layers
combine in a multiplicative way.

The sense behind all this is the following observation:

Observation 1. At each level, uncertainty has to be accounted for in terms of a
number of steps of lower levels. Let us assume that a step on level n costs mn−1

n

steps of level n − 1. Then it costs
∏

1≤i≤n−1 mi
i−1 machine cycles.

Hence, in the worst case, a negative amplification of mechanisms on different
layers will happen.

It should however be stressed that many modern powerful processors exhibit
timing anomalies [LS99], which relate execution times on the different levels
in more complex ways than the observation indicates. Timing anomalies are
counter-intuitive dependencies of a program’s execution times on the execution
times of individual instructions. Faster execution of an instruction can lead to
a longer execution time of the program, and slower execution of an instruction
to shorter time for the program. Timing anomalies often are caused by cyclic
influences between system components. One such dependency is the following:
the contents of the instruction cache determines whether instruction fetch hits
or misses the cache, a cache miss may prevent a branch prediction, a wrong
branch prediction may ruin the instruction-cache contents. The resulting timing
anomaly is, that the local worst case, a cache miss, prevents a branch mispre-
diction, which would have caused a greater damage than the cache miss. Thus,
the program runs faster in the case of the cache miss.

4 Towards a Rational Basis for Design

A promising approach to increase predictability would encompass all system
layers. It would start with a multiplicative term of the kind given in Observa-
tion 1. As stated above, the design would have to exclude timing anomalies or
bound the damage on cycles of dependencies. The design would then soften this
multiplicative rule by reducing the factors on some layers, if it could make these
layers behave predictably by static implementation decisions. This is a successful
strategy to achieve a synergistic, quantifiable reduction of variability.

I admit that this looks like a dream in the light of the fact that the trends
in systems development go towards less and less predictable systems. Experi-
ence with industrial projects lead me to believe that a discipline Design for
Predictability is needed to reverse these trends and arrive at systems whose be-
havior as far as consumption of time, space, and energy is predictable.

Acknowledgements

Joint work on increasing the predictability of real-time systems is enjoyed with
Lothar Thiele. Contributions to the discussion have come from Stephan Thesing,
Oleg Parshin, Reinhold Heckmann, and Peter Marwedel.

Timing Analysis and Timing Predictability 323

References

[CC77] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Con-
ference on Language Design for Reliable Software, volume 12(3), pages
77–94, Raleigh, NC, March 1977.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the Fifth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New
York, NY.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET de-
termination for a real-life processor. In EMSOFT, volume 2211 of LNCS,
pages 469 – 485, 2001.

[KKSC03] Arvind S. Krishna, Raymond Klefstad, Douglas C. Schmidt, and Angelo
Corsaro. Towards predictable real-time java object request brokers. In Real
Time Technology and Applications Symposium, pages 49–. IEEE, 2003.

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance es-
timation of embedded software with instruction cache modeling. Design
Automation of Electronic Systems, 4(3):257–279, 1999.

[LS99] Thomas Lundquist and Per Stenström. Timing anomalies in dynamically
scheduled microprocessors. In 20th IEEE Real-Time Systems Symposium,
1999.

[Sha89] Alan C. Shaw. Reasoning About Time in Higher-Level Language Software.
IEEE Transactions on Software Engineering, 15(7):875–889, 1989.

[TFW00] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and Precise WCET
Prediction by Separate Cache and Path Analyses. Real-Time Systems,
18(2/3):157–179, May 2000.

[TW04] Lothar Thiele and Reinhard Wilhelm. Design for timing predictability.
Real-Time Systems, 28:157 – 177, 2004.

[Wil05] Reinhard Wilhelm. Determination of bounds on execution times. In
Richard Zurawski, editor, Embedded Systems Handbook, pages 14–1,14–24.
CRC Press, 2005.

[WM97] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison Wesley,
1997.

	Execution-Time Variability
	Timing Analysis

	Cost of Uncertainty
	On the Multiplicative Nature of Uncertainty in Layered Systems
	Towards a Rational Basis for Design

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

