
A Dynamic Binding Strategy for Multiple Inheritance
and Asynchronously Communicating Objects

Einar Broch Johnsen and Olaf Owe

Department of Informatics, University of Oslo, Norway
{einarj, olaf}@ifi.uio.no

Abstract. This paper considers an integration of asynchronous communication,
virtual binding, and multiple inheritance. Object orientation is the leading para-
digm for concurrent and distributed systems, but the tightly synchronized RPC
communication model seems unsatisfactory in the distributed setting.
Asynchronous messages are better suited, but lack the structure and discipline
of traditional object-oriented methods. The integration of messages in the object-
oriented paradigm is unsettled, especially with respect to inheritance and
redefinition.

Asynchronous method calls have been proposed in the Creol language, reduc-
ing the cost of waiting for replies in the distributed environment while avoiding
low-level synchronization constructs such as explicit signaling. A lack of reply to
a method call need not lead to deadlock in the calling object. Creol has an opera-
tional semantics defined in rewriting logic. This paper considers a formal opera-
tional model of multiple inheritance, virtual binding, and asynchronous commu-
nication between concurrent objects, extending the semantics of Creol.

1 Introduction

Object orientation is the leading paradigm for concurrent and distributed systems. The
importance of such systems is increasing in society, driving the need for formal models
and reasoning support for object-oriented distributed systems. With the current domi-
nation of languages such as Java and C++, one may think that there is only one way to
understand object-oriented languages. In the setting of distributed systems, these lan-
guages may be criticized for their approach to concurrency as well as to communica-
tion. An alternative approach is taken in the Creol language: concurrent objects typed by
interfaces which communicate by means of asynchronous method calls. This communi-
cation model integrates asynchronous message passing with the high-level structuring
mechanism of method definition and invocation [20].

In this paper we discuss multiple inheritance in the setting of open distributed sys-
tems and consider the combination of multiple inheritance and virtual (or late) binding.
Multiple inheritance provides a flexible way to combine class hierarchies, but is gener-
ally considered error-prone. Multiple inheritance is often explained in terms of run-time
data structures such as virtual pointer tables [38], which are complex and hard to under-
stand. High-level formal treatments are scarce (e.g., [34,6,3,15]) but needed to clarify
intricacies, thus facilitating design and correctness reasoning for programs using mul-
tiple inheritance. In this paper, an operational semantics capturing multiple inheritance
and virtual binding of methods for Creol is defined, extending work reported in [22].

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 274–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Binding Strategy for Multiple Inheritance 275

In particular, common restrictions on the name space of methods to avoid name
conflicts either severely limit the use of class inheritance or become impractical in large
class hierarchies and break the encapsulation principle for class inheritance. In order to
maintain local reasoning control without abandoning common features of virtual bind-
ing such as method overloading and overriding, virtual binding of method calls must
be handled carefully. For this purpose, a dynamic pruned binding strategy is introduced
in this paper and formalized with an operational semantics given in rewriting logic.
Rewriting logic [29] is chosen due to its high level of abstraction with inherent support
for distribution, concurrency, and asynchronous communication, as well as its simu-
lation and model checking facilities through the Maude tool [8,30]. This allows us to
focus the formalization on issues related to inheritance and virtual binding. The strategy
is integrated in the Creol interpreter in Maude. An example demonstrates that a form of
binding anomaly is avoided with this strategy.

Paper Overview. Sect. 2 provides a background discussion on multiple inheritance.
Sect. 3 introduces the Creol language. Sect. 4 extends Creol with mechanisms for mul-
tiple inheritance and pruned virtual binding, Sect. 5 illustrates the mechanisms, and
Sect. 6 defines its operational semantics. Sect. 7 considers related work and Sect. 8
concludes the paper.

2 Inheritance: Reuse of Behavior and Reuse of Code

Inheritance is a powerful feature of object orientation, but its exact role as a structur-
ing mechanism for programs varies between different object-oriented languages. With
single inheritance, a class is derived from one direct ancestor class, while with multi-
ple inheritance there may be several direct ancestors. Inheritance may be understood
as a mechanism for sharing and specialization of behavior as well as code. Formal ap-
proaches to inheritance tend to favor the first interpretation and understand inheritance
in terms of behavioral reuse, obeying the substitutability principle: As a subclass is a
specialization of a superclass, an object of the subclass may masquerade as an object of
the superclass. This interpretation of inheritance has led to an active field of research on
behavioral subtyping [2,27,14], identifying conditions for safe substitutability. A type
describes a collection of objects which share the same externally observable behavior.
Subtyping provides a powerful structuring mechanism for defining, specializing, and
understanding the external behavior of objects.

A class describes a collection of objects which share the same internal structure; i.e.,
attributes and method definitions. Code inheritance provides an equally powerful mech-
anism for defining, specializing, and understanding the imperative structure of classes
through code reuse and modification. Class extension and method redefinition are con-
venient both for development and understanding of code. Calling superclass methods
in a subclass method enables reuse in redefined methods, making the relationship be-
tween the method versions explicit. Thus, this facility is clearly superior to cut-and-
paste programming with regard to the ease with which existing code may be inspected
and understood and it is also clearly superior to inheritance mechanisms which do not
distinguish between locally defined and inherited definitions. A denotational semantics
for code sharing and reuse based on single inheritance is given in [9].

276 E.B. Johnsen and O. Owe

Although many languages identify the subclass and subtype relations, in particular
for parameter passing, several authors argue that inheritance relations for code and for
behavior should be distinct [10,2,5,37]. From the pragmatic point of view, combining
these relations leads to severe restrictions on code reuse which seem unattractive to pro-
grammers. From a reasoning perspective, the separation of these relations allows greater
expressiveness while providing type safety. In order to solve the conflict between unre-
stricted code reuse in subclasses, and behavioral subtyping and incremental reasoning
control [27,37], we use behavioral interfaces [19,21] to type object variables (i.e., ref-
erences) and external (remote) calls, and allow multiple inheritance for both interfaces
and classes. Interface inheritance is restricted to a form of behavioral subtyping, whereas
class inheritance may be used freely for code reuse. A class may implement several in-
terfaces, provided that it satisfies their syntactic and semantic requirements. An object of
class C supports an interface I if the class C implements I. Reasoning control is ensured
by substitutability at the level of interfaces: an object supporting an interface I may be
replaced by another object supporting I or a subinterface of I in a context depending on
I, although the latter object may be of another class. Subclassing is unrestricted in the
sense that implementation claims and class invariants are not in general inherited.

With distinct inheritance and subtyping hierarchies, class inheritance could allow
a subset of the attributes and methods of a class to be inherited. However, this would
require considerable work establishing invariants for parts of the superclass that appear
desirable for inheritance, either anticipating future needs or while designing subclasses.
The encapsulation principle for class inheritance states that it should suffice to work
at the subclass level to ensure that the subclass is well-behaved when inheriting from
a superclass: Code design as well as new proof obligations should occur in the sub-
class only. Situations that break this principle are called inheritance anomalies [28,32].
Reasoning considerations therefore suggest that all attributes and methods of a super-
class are inherited, but method redefinition may violate the semantic requirements of an
interface of the superclass.

2.1 Multiple Inheritance

The focus of this paper is the formalization of an operational semantics for code reuse
through class level multiple inheritance. Multiple inheritance seems desirable because
it provides much better possibilities for sharing than single inheritance, allowing named
features (attributes and methods) from several classes to be integrated. The combination
of single inheritance and interfaces is sometimes proposed as an alternative to multiple
inheritance, but this approach has some difficulties. In particular virtual binding does
not integrate directly with delegation, and the use of private methods as well as program
variables from superclasses is problematic. Tempero and Biddle show how the reusabil-
ity of the Java Core API is adversely affected by the lack of multiple inheritance [39].

Multiple inheritance is found in languages such as C++ [38], CLOS [12], Eiffel
[31], Full Maude [8], POOL [2], and Self [7]. Although multiple inheritance provides
a flexible way to describe class hierarchies, it is avoided or only allowed in a restricted
version (such as interfaces, abstract classes, or traits) in many languages, e.g., Java and
C#. Apart from semantic issues, two important arguments against multiple inheritance
are: (1) the run-time system of languages with multiple inheritance is more complex and

A Dynamic Binding Strategy for Multiple Inheritance 277

less efficient, and (2) inheriting from many classes increases the possibility of program-
mer mistakes. However, efficient run-time systems for languages with multiple inheri-
tance have been developed [25,38]. In order to address argument (2), formal methods
may contribute to a better understanding of existing multiple inheritance mechanisms
and hopefully contribute to mechanisms with better support for reasoning. The multiple
inheritance relation is transitive and defines a class hierarchy structured as a directed
acyclic graph. A class in the class hierarchy extends the features declared in its inher-
ited classes (or superclasses), possibly overloading or redefining some of these features.
We shall say that a feature is defined above a class C if it is defined in C or in at least
one of the classes inherited by C.

2.2 Naming Policies for Conflict Resolution

From a reasoning perspective, the difficulties regarding multiple inheritance occur when
the name spaces of several inherited classes conflict, both with regard to program vari-
ables and methods [24]. A name conflict is vertical if a name occurs in a class and in
one of its ancestors, corresponding to overridden method declarations. A name conflict
is horizontal if the name occurs in distinct branches of the graph. While vertical name
conflicts are fairly well understood, different solutions have been proposed to deal with
horizontal name conflicts. One approach is to remove ambiguities by explicit resolution.
This is achieved if a name which is inherited from several superclasses is redefined in
the subclass or directed to a superclass definition through qualification [38]. If a class is
multiply inherited, qualification by class path leads to a duplication of attributes while
qualification by class name leads to unification (virtual classes in C++). This choice
leads to one or two copies of the attributes of class A in Fig. 1b. Path qualification is
not always sufficient to distinguish two inherited instances of a class and may therefore
fail, as illustrated by Fig. 1c. Explicit resolution can also be achieved by renaming at-
tributes and methods [2,31], thus eliminating name conflicts. When there are no name
conflicts, the inheritance graph may be linearized and the need for explicit support for
multiple inheritance in the run-time system is avoided. This is also the case with mixin-
based inheritance [4], and with traits [35]. Mixins and traits are integrated in the linear
inheritance graph to extend and modify the resulting behavior of the superclass. How-
ever linearization has been criticized for changing the parent-child relationship between
classes in the inheritance hierarchy [36].

Ambiguities may also be seen as a natural feature of multiple inheritance, occur-
ring when related methods in different superclass hierarchies are given the same name.
From this point of view it seems less desirable to apply a naming discipline which forces
the programmer to modify names a posteriori, making the class definitions more diffi-
cult to understand. Taking this approach, ambiguities are addressed by implicit resolu-
tion. Three approaches can be used to explain implicit resolution of ambiguous method
names. First, methods with the same name may be seen as equally appropriate. In this
case the method definitions may nondeterministically compete for selection, as in Full
Maude [8] and the Join-calculus [15]. (Redefinition is not supported by Full Maude,
whereas renaming is required in the Join-calculus.) Second, methods of the same name
may be jointly selected, extending the binding strategy of Beta to multiple inheritance.
Third, ambiguities may be solved by fixing the order of the inherited classes; this way

278 E.B. Johnsen and O. Owe

A

B C

D

x
m

mm
B

D

B
x x mm

B C

D

A

B
m

m

D

Fig. 1. Examples of class inheritance: (a) single inheritance, (b) a common ancestor in the inher-
itance graph, (c) duplicate inheritance, and (d) multiple inheritance

the strategy for selecting method definitions will be unambiguous [12,22,7]. This seems
desirable as it leaves the programmer in control.

2.3 Virtual Binding

Virtual binding (or dynamic dispatch) is a powerful mechanism of object orientation,
originally introduced in [11] for single inheritance in Simula. A method is virtually
bound if the body corresponding to a method invocation is selected at run-time. Virtual
binding is applied when the actual class of an object is not statically known. Tradition-
ally, this happens when a method invoked from a class is overridden above the actual
class of the object. When objects are typed by interfaces, many classes may implement
the same interface. Consequently all external method calls are virtually bound.

Combined with class inheritance, virtual binding allows programming with the so-
called template method pattern [16]: a base class provides architecture and subclasses
provide the specialized (auxiliary) methods, while code reuse is supported for the ar-
chitecture. The mechanism can be illustrated by an object of class D which executes
a method defined in its superclass A (cf. Fig. 1a) and this method makes a call to a
method m. With virtual binding, the code selected for execution will be associated to
the first matching signature for m above D; i.e., the method in B is selected. However it
is unsettled how to virtually bind method invocations in a class hierarchy with multiple
inheritance, if methods are defined in different classes in the hierarchy. In the example
of Fig. 1b, a strategy is needed to clearly express which method definition to select
among the candidates for m.

Formal models of possible solutions to multiple inheritance may contribute to better
understanding and use of multiple inheritance, and facilitate reasoning about code in-
heritance. A denotational account of multiple inheritance has been given [6], but virtual
binding is not considered as name conflicts are assumed not to occur.

An operational semantics in rewriting logic allows executable experimentation with
different strategies for virtual binding. For this purpose, we consider multiple inheri-
tance in the setting of the Creol language, which has a complete formalization in rewrit-
ing logic. In previous work [22], an ordered solution was proposed in which the binding
strategy did not distinguish a virtual call from a superclass (A in Fig. 1a) and a stan-
dard call from the subclass (C in Fig. 1a). In this paper a novel version of the ordered
approach is considered in which the order may vary between calls, as the ordering is
dynamically decided by the context of each call. This new approach, called pruned

A Dynamic Binding Strategy for Multiple Inheritance 279

binding, avoids renaming while providing better support for the encapsulation princi-
ple. Calls are always bound to specializations of the definition found by static analysis,
allowing reasoning reuse for virtual calls in the setting of multiple inheritance.

Consider the case where D inherits two unrelated classes B and C (Fig. 1d), both with
a method m. Assume that a D object calls a method inCwhich in turn calls m locally. With
the ordered approach this call will bind to the m of B rather than that of C, assuming no
redefinition of m in D. This binding is clearly undesirable since the m of B is not a redefi-
nition of that of C. The two m methods have no relationship since they are from unrelated
class hierarchies. The example in Sect. 5 demonstrates resulting problems. These prob-
lems are avoided with the pruned binding strategy. Furthermore, the strategy ensures the
principle that when the actual class of an object is smaller, each local call will be bound
to a smaller class. This principle is intuitive and is also useful for reasoning control.

3 A Language for Asynchronously Communicating Objects

This section provides a basis for the technical discussion which follows. We consider a
small object-oriented language which is a subset of Creol [20,22], a high-level language
for distributed concurrent objects. We distinguish data, typed by data types, and ob-
jects, typed by interfaces. The language allows both blocking and nonblocking method
calls, based on a uniform semantics. Attributes (instance variables) and method decla-
rations are organized in classes, which may have data and object parameters. Objects
are concurrent and have their own processor which evaluates local processes. A pro-
cess consists of program code with processor release points together with a local state,
representing remaining parts of method activations. Processes may be active, reflecting
autonomous behavior initiated at creation time by the run method, or reactive; i.e., in
response to method invocations. Due to processor release points, the evaluation of pro-
cesses may be interleaved. The values of an object’s program variables may depend on
the nondeterministic interleaving of processes. However, a method activation may have
local variables supplementing the object variables, in particular the values of formal
parameters are stored locally. An object may contain several (pending) activations of
the same method, possibly with different values for local variables.

Guards b in statements await b explicitly declare potential processor release points.
When a guard which evaluates to false is encountered during process evaluation, the
process is suspended and the processor released. After processor release, any enabled
pending process may be selected for evaluation. For the examples of this paper, it suf-
fices to consider guards as boolean expressions over program variables, but we intro-
duce reply guards in the operational semantics (cf. Sect. 6.5).

Statements can be composed sequentially or by conditional branching. Let S1 and
S2 denote statement lists. Sequential composition may introduce inner guards: await b
is a potential release point in S1;await b; S2. Assignment to local and object variables
is expressed as V : E for a disjoint list of program variables V and an expression list E,
of matching types. The reserved word self is used for self reference. In-parameters as
well as the self and caller pseudo-variables are read-only variables.

All object interaction happens through method calls. We consider here blocking
calls and nonblocking calls. (The full language provides more expressiveness [20].)

280 E.B. Johnsen and O. Owe

A nonblocking method call is written await x.m(E; V). The calling process emits the
call to an object x and suspends itself while waiting for a reply. When the reply arrives,
return values are assigned to V and evaluation continues.

A blocking method call, immediately blocking the processor while waiting for a
reply, is written x.m(E; V). When x evaluates to self, the call is said to be local. The
language does not support monitor reentrance (except for calls to self), mutual blocking
calls may therefore lead to deadlock. In order to evaluate local blocking calls, the evalu-
ation of the call will precede the continuation of the active process, thereby unblocking
the processor (self-reentrance).

Internal calls are not prefixed by an object identifier and are identified syntactically,
otherwise the call is external. All calls are virtually bound, except when the method
name is explicitly qualified by a class name, m@C. In our setting method calls can al-
ways be emitted, as a receiving object cannot block communication. Method overtaking
is allowed: if methods offered by an object are invoked in one order, the object may start
execution of the method activations in another order.

With nonblocking method calls, the object will not block while waiting for replies.
This approach allows flexibility in the distributed setting: suspended processes or new
method calls may be evaluated while waiting. If the called object never replies, deadlock
is avoided as other activity in the object is possible. However, when the reply arrives, the
continuation of the process must compete with other pending and enabled processes.

4 Multiple Inheritance

A mechanism for multiple inheritance is now considered, where all attributes and meth-
ods of a superclass are inherited by the subclass, and where superclass methods may be
redefined. In the syntax, the keyword inherits is introduced followed by an inheritance
list; i.e., a list of class names C(E) where E provides the actual class parameters.

Let a class hierarchy be a directed acyclic graph of parameterized classes. Each class
consists of a list of inherited classes, a set of attributes (program variables including
class parameters), and method definitions. The encapsulation provided by interfaces
suggests that external calls to an object of class C are virtually bound to the closest
method definition above C. However, the object may internally invoke methods of its
superclasses. In the setting of multiple inheritance and overloading, methods defined in
a superclass may be accessed from the subclass by qualified references. Vertical name
conflicts for method names are resolved in a standard way: the first matching definition
with respect to the types of the actual parameters is chosen while ascending a branch of
the inheritance tree. Horizontal name conflicts will be resolved dynamically depending
on the class of the object and the context of the call.

4.1 Qualified Names

Qualified names may be used to uniquely refer to an attribute or method in a class. For
this purpose, we adapt the qua construct of Simula to the setting of multiple inheritance.
For an attribute x or a method m declared in a class C, we denote by x@C and m@C
the qualified names which provide static references to x and m. By extension, if x or m

A Dynamic Binding Strategy for Multiple Inheritance 281

Syntactic categories. Definitions.
s in Stm v in Var
t in Label e in Expr
m in Mtd x in ObjExpr
p in MtdCall b in BoolExpr

p ::= m | x.m |m@classname |m < classname
S ::= s | s; S

s ::= skip | (S) |V := E | v := new classname(E)
| p(E; V) |await p(E; V) |await b | if b then S1 else S2 fi

Fig. 2. A subset of the Creol language for method definitions, with typical terms for each category.
Capitalized terms such as E denote lists, sets, or multisets of the given syntactic categories.

is not declared in C, but inherited from the superclasses of C, the qualified reference
m@C binds as an unqualified reference m from C.

Attribute names are not visible through an object’s external interfaces. Consequently
attribute names should not be merged if inheritance leads to name conflicts, and at-
tributes of the same name should be allowed in different classes of the inheritance hier-
archy [36]. In order to allow the reuse of attribute names, these will always be expanded
into qualified names. This is desirable in order to avoid run-time errors that may occur
if methods of superclasses assign to overloaded attributes. This qualification convention
has the following consequence: unlike C++, there is no duplication of attributes when
branches in the inheritance graph have a common superclass. Consequently if multiple
copies of the superclass attributes are needed, one has to rely on delegation techniques.

Instantiation of Attributes. At object creation time, attributes are collected from the
object’s class and superclasses. An attribute in a class C is declared by var x : T = e,
where x is the name of the attribute, T its type, and e its initial value. The expression
e may refer to the values of the class parameter variables V, as well as to the values
of inherited attributes by means of qualified references. The initial state values of an
object of class C then depend on the actual parameter values bound to V. These may be
passed as parameter values to inherited classes in order to derive values for the inherited
attributes, which in turn may be used to instantiate the locally declared attributes.

Accessing Inherited Attributes and Methods. If C is a superclass of C′, we introduce the
syntax await m@C(E; V) for nonblocking, and m@C(E; V) for blocking, internal calls to
a method above C in the inheritance graph. These calls may be bound without knowing
the exact class of the self object, so they are called static, in contrast to calls without @,
called virtual. We assume that attributes have unique names in the inheritance graph;
this may be enforced at compile time by extending each attribute name x with the name
of the class in which it is declared, which implies that attributes are bound statically.
Consequently, a method declared in a class C may only access attributes declared above
C. In a subclass, an attribute x of a superclass C is accessed by the qualified reference
x@C. This means that multiply inherited superclasses are shared, rather than duplicated.
Duplication may be achieved by class renaming in an inheritance list. The language
syntax is summarized in Fig. 2.

4.2 Virtual Binding

Let the nominal subtype relation ≺ be a reflexive partial ordering on types, including
interfaces. A data type may only be a subtype of a data type and an interface only of an

282 E.B. Johnsen and O. Owe

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

D

C
�
�
�
�
�

�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

D D

C

C’

Fig. 3. Binding calls to m, m@C, and m < C′ from class D

interface. If T ≺ T ′ then any value of T may masquerade as a value of T ′. For product
types R and R′, R ≺ R′ is the point-wise extension of the subtype relation; i.e., R and R′
have the same length l and Ti ≺ T ′

i for every i (0 ≤ i ≤ l) and types Ti and T ′
i in position

i in R and R′ respectively. To explain the typing and binding of methods, ≺ is extended
to function spaces A → B, where A and B are (possibly empty) product types:

A → B ≺ A′ → B′ = A ≺ A′ ∧B′ ≺ B

expressing the relationship between actual and formal parameters, but not subtyping
over function spaces, which are not part of the functional language. The static analysis
of an internal call m(E; V) will assign unique types to the in and out parameter depend-
ing on the textual context, say that the parameters are textually declared as E : TE and
V : TV. The call is type correct if there is a method declaration m : A → B in the class C,
possibly inherited, such that TE → TV ≺ A → B. The binding of an internal nonblocking
call await m(E; V) is handled as the corresponding blocking call m(E; V). An external
call to an object of interface I is type correct if it can be bound to a method declaration
in I in a similar way. The static analysis of a class will verify that it implements the
methods declared in its interfaces.

Let a class C be below a class C′ if C is C′, or is a direct or indirect subclass of
C′. Similarly, a method declaration inside a class C is below a class C′ if C is below
C′. We introduce the syntax m < C′ for constrained method calls, restricting the virtual
binding of m to methods below C′. (Static typing requires the class enclosing the call
to be below C′.) The pruned virtual binding of method calls is now explained. (The
formalization is given in Sec. 6.4.) At run-time, a call to a method of an object o will
always be bound above the class of o. Let m be a method declared in an interface I and
let o be an instance of a class C implementing I. There are two cases:

1. m is called externally, in which case C is not statically known. In this case, C is
dynamically identified as the class of o.

2. m is called internally from C′, a superclass of the actual class C of o. In this case
static analysis will identify the call with a declaration of m above C′, say in C′′.
Consequently, we let the call be constrained by C′′, and compilation replaces the
reference to m with a reference to m < C′′.

The dynamically decided context of a call may eliminate parts of the inheritance graph
above the actual class of the callee with respect to the binding of a specific call. If a

A Dynamic Binding Strategy for Multiple Inheritance 283

method name is ambiguous within the dynamic constraint, we assume that any solution
is acceptable. For a natural and simple model of priority, the call will be bound to the
first matching method definition above C, in a left-first depth-first order. (An arbitrary
order may be obtained by replacing the inheritance list by a multiset.)

It is easy to see that run-time binding always succeeds in any well-typed pro-
gram. When a method m : TE → TV in an object o of interface I is externally
called at run-time, the actual class C of o is dynamically decided and the virtual
binding mechanism will bind to a declaration m : A→ B such that TE → TV ≺ A →
B, taking the first such m when traversing the inheritance graph above C. Static
analysis guarantees that C implements I and consequently that at least one method
declaration of m above C may be bound to the call. An internal call m : TE → TV
is made by an object of a subclass D of C (from the static analysis) and the
virtual binding mechanism will bind to a declaration of m : A′ → B′ such that
TE → TV ≺ A′ → B′, following the binding strategy constrained by D. Because C
is inherited by D, the virtual binding is guaranteed to succeed. However, it is not
guaranteed that the declaration above C which was found by static analysis will
be selected. In order to ensure that a call to m in D will choose the declaration
above C, the method may be qualified as m@C in D. For virtual calls from a
superclass C′ of C, such qualification cannot be used. In order to ensure that a
virtually bound call from a superclass will select a specialization of the statically
found declaration, the binding will be constrained by C′. Even if no specialization
is found, the binding will succeed as the constraint does not remove the declara-
tion found by static analysis.

5 Example: Combining Authorization Policies

In a database containing sensitive information and different authorization policies, the
information returned for a request will depend on the clearance level of the agent mak-
ing the request. Let Any denote the interface of arbitrary objects, Agent the interface of
agents, and Auth an authorization interface with methods grant(x), revoke(x), auth (x),
and delay for agents x. The two classes SAuth and MAuth, both implementing Auth,
implement single and multiple authorization policies, respectively. Since the attribute
gr in SAuth is implemented as an object identifier, SAuth only authorizes one agent at
a time whereas MAuth authorizes multiple agents. The method grant(x) returns when
x becomes authorized, and authorization is removed by revoke(x). The method auth (x)
suspends until x is authorized, and delay returns once no agent is authorized.

class SAuth implements Auth
begin with Any

var gr: Agent= null
op grant(in x:Agent) == delay; gr := x
op revoke(in x:Agent) ==

if gr = x then gr := null fi
op auth(in x:Agent) == await (gr = x)
op delay == await (gr = null)

end

class MAuth implements Auth
begin with Any

var gr: Set[Agent] = /0
op grant(in x:Agent) == gr := gr ∪ {x}
op revoke(in x:Agent) == gr := gr \ {x}
op auth(in x:Agent) == await (x ∈ gr)
op delay == await (gr = /0)

end

284 E.B. Johnsen and O. Owe

Authorization Levels. Low clearance agents may share access to unclassified data while
high clearance agents have unique access to (classified) data. Proper usage is defined
by two interfaces, defining open and close operations at both access levels:

interface High
begin with Agent

op openH(out ok:Bool)
op access(in k:Key; out y:Data)
op closeH

end

interface Low
begin with Agent

op openL
op access(in k:Key; out y:Data)
op closeL

end

When the openH method returns, the calling agent would not know whether high access
was granted, unless a boolean out parameter is present.

Let a class DB provide the actual operations on the database. We assume given
the operations access(in k:Key, high:Bool; out y:Data), where high defines the access
level, and clear(in x : Agent; out b : Bool) to give clearance to sensitive data for agent
x. Any agent may get low access rights, while only agents cleared by the database may
be granted exclusive high access. The class MAuth will authorize low clearance, and
SAuth will authorize high clearance. SAuth authorizes only one agent at a time.

class HAuth implements High
inherits SAuth, DB

begin with Agent
op openH(out ok:Bool) ==

await clear(caller;ok);
if ok then grant(caller) fi

op access(in k:Key; out y:Data) ==
auth(caller);
await access@DB(k,true; y)

op closeH == revoke(caller)
end

class LAuth implements Low
inherits MAuth, DB

begin with Agent
op openL == grant(caller)
op access(in k:Key; out y:Data) ==

auth(caller);
await access@DB(k,false; y)

op closeL == revoke(caller)
end

The code given here uses nonblocking calls whenever there is a possibility of local
deadlock. Thus, objects of the four classes above will be able to respond to new requests
even when used improperly, for instance when agent access is not initiated by open.
Notice that the caller pseudo-variable is used to pass on agent identity in local calls.
The with Agent clauses imply that Agent is the type of caller, ensuring strong typing.

The database itself has no interface containing access, therefore all database access
is through the High and Low interfaces. Notice also that objects of the LAuth and HAuth
classes may not be used through the Auth interface. This would have been harmful for
the authorization provided in the example. For instance, a call to grant to a HAuth
object could then result in high access without clearance of the calling agent! This
supports the approach not to inherit implementation clauses.

Combining Authorization Levels. High and low authorization policies may be com-
bined in a subclass HLAuth which implements both interfaces, inheriting LAuth and
HAuth.

A Dynamic Binding Strategy for Multiple Inheritance 285

class HLAuth implements High, Low
inherits LAuth, HAuth

begin with Agent
op access(in k:Key; out y:Data) == if caller=gr@SAuth

then access@HAuth(k; y) else access@LAuth(k; y) fi
end

Notice that the same database is used for both High and Low interaction. Although the
DB class is inherited twice, HLAuth gets only one copy (cf. Sect. 4.1).

The example demonstrates natural usage of classes and multiple inheritance. Nev-
ertheless, it reveals problems with the combination of inheritance and statically ordered
virtual binding: Objects of the classes LAuth and HAuth work well, in the sense that
agents opening access through the Low and High interfaces get the appropriate access.
However the addition of the common subclass HLAuth is detrimental, assuming a fixed
inheritance ordering: When used through the High interface, this class would allow mul-
tiple high access to data! Calls to the High operations of HLAuth will trigger calls to
the HAuth methods. From these methods the virtual internal calls to grant, revoke, and
auth will now bind to those of the MAuth class, if selected in a left-most depth-first
traversal of the inheritance tree of the actual class HLAuth. Note that if the inheritance
ordering in HLAuth were reversed, similar problems occur with the binding of Low
interaction.

The pruned binding strategy proposed in this paper ensures that the virtual internal
calls inside classes HAuth and LAuth will be bound in classes SAuth and MAuth,
respectively, regardless of the actual class of the caller (HAuth, LAuth, or HLAuth)
and of the inheritance ordering in HLAuth. In particular the grant call inside HAuth
will be understood as grant < SAuth, which may not bind to grant of MAuth.

6 An Operational Semantics of Inheritance and Virtual Binding

The operational semantics is defined using rewriting logic [29]. A rewrite theory is
a 4-tuple R = (Σ,E,L,R), where the signature Σ defines the function symbols of the
language, E defines equations between terms, L is a set of labels, and R is a set of
labeled rewrite rules. From a computational viewpoint, a rewrite rule t −→ t ′ may be
interpreted as a local transition rule allowing an instance of the pattern t to evolve into
the corresponding instance of the pattern t ′. Each rewrite rule describes how a part of
a configuration can evolve in one transition step. If rewrite rules may be applied to
non-overlapping subconfigurations, the transitions may be performed in parallel. Con-
sequently, concurrency is implicit in rewriting logic (RL). A number of concurrency
models have been successfully represented in RL [29,8], including Petri nets, CCS, Ac-
tors, and Unity, as well as the ODP computational model [33]. RL also offers its own
model of object orientation [8].

Informally, a state configuration in RL is a multiset of terms of given types. Types
are specified in (membership) equational logic (Σ,E), the functional sublanguage of RL
which supports algebraic specification in the OBJ [17] style. When modeling computat-

286 E.B. Johnsen and O. Owe

ional systems, configurations may include the local system states. Different parts of the
system are modeled by terms of the different types defined in the equational logic.

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules, supplementing the equations which
define the term language. Assuming that all terms can be reduced to normal form,
rewrite rules transform terms modulo the defining equations of E . Conditional rewrite
rules are allowed, where the condition is formulated as a conjunction of rewrites and
equations which must hold for the main rule to apply:

subconfiguration−→ subconfiguration if condition.

Rules in RL may be formulated at a high level of abstraction, closely resembling a
compositional operational semantics. In fact, structural operational semantics can be
uniformly mapped into RL specifications [30].

6.1 System Configurations

A method call will be reflected by a pair of messages, and object activity will be orga-
nized around a message queue which contains incoming messages and a process queue
which contains suspended processes, i.e. remaining parts of method activations. Mes-
sages have the general form message to dest where dest is a single object or class, or a
list of classes. A state configuration is a multiset combining Creol objects, classes, and
messages. (In order to increase the parallelism in the model, message queues could be
external to object bodies as shown in [20,22].) As usual in RL, the associative construc-
tor for lists, as well as the associative and commutative constructor for multisets, are
represented by whitespace.

In RL, objects are commonly represented by terms of the type 〈o : C |a1 : v1, . . . ,an :
vn〉 where o is the object’s identifier, C is its class, the ai’s are the names of the ob-
ject’s attributes, and the vi’s are the corresponding values [8]. We adopt this form of
presentation and define Creol objects and classes as RL objects. Omitting RL types,
a Creol object is represented by an RL object 〈Ob |Cl,Pr,PrQ,Lvar,Att,Lab,EvQ〉,
where Ob is the object identifier, Cl the class name, Pr the active process code, PrQ
a multiset of suspended processes with unspecified queue ordering, EvQ a multiset of
unprocessed messages, and Lvar and Att the local and object state, respectively. Let
τ be a type partially ordered by <, with least element 1, and let next : τ → τ be such
that ∀x .x < next(x). Lab is the method call identifier corresponding to labels in the
language, of type τ. Thus, the object identifier Ob and the generated local label value
provide a globally unique identifier for each method call.

The classes of Creol are represented by RL objects 〈Cl | Inh,Att,Mtds, Tok〉, where
Cl is the class name, Inh is the inheritance list, Att a list of attributes, Mtds a multiset
of methods, and Tok is an arbitrary term of type τ. When an object needs a method, it
is bound to a definition in the Mtds multiset of its class or of a superclass.

In RL’s object model [8], classes are not represented explicitly in the system config-
uration. This leads to ad hoc mechanisms to handle object creation, which we avoid by
explicit class representation. The Creol construct new C(E) creates a new object with
a unique object identifier, attributes as listed in the class parameter list and in Att, and
places the code from the run method in Pr.

A Dynamic Binding Strategy for Multiple Inheritance 287

6.2 Concurrent Transitions

Concurrent change is achieved in the operational semantics by applying concurrent
rewrite steps to state configurations. There are four different kinds of rewrite rules:

– Rules that execute code from the active process: For every program statement there
is at least one rule. For example, the assignment rule for the program V := E binds
the values of the expression list E to the list V of local and object variables.

– Rules for suspension of the active process: When an active process guard evaluates
to false, the process and its local variables are suspended, leaving Pr empty.

– Rules that activate suspended processes: When Pr is empty, suspended processes
may be activated. When this happens, the local state is replaced.

– Transport rules: These rules move messages into the message queues, representing
network flow.

When auxiliary functions are needed in the semantics, these are defined in equational
logic, and are evaluated in between the state transitions [29]. The rules related to method
calls, virtual binding, and object creation are now considered in detail. In the presenta-
tion irrelevant attributes are ignored in the style of Full Maude [8].

6.3 Method Calls

Blocking and nonblocking calls are given a uniform semantics. In the operational se-
mantics, objects communicate by sending messages. Two messages encode a method
call. We here assume that the types of the actual in- and out-parameters of the call have
been added to the method invocation as an additional argument Sig at compile time.
If an object o1 calls a method m of an object o2, with actual type Sig and actual pa-
rameters In, and the execution of m(Sig, In) results in the return values Out, the call is
reflected by two messages invoc(m,Sig,(n o1 In)) to o2 and comp(n,Out) to o1, which
represent the invocation and completion of the call, respectively. In the asynchronous
setting, invocation messages must include the caller’s identity, so completions can be
transmitted to the correct destination. Objects may have several pending calls to another
object, so the completion message includes a locally unique label value n, generated by
the caller.

A blocking call p(Sig, In; V), where V is a list of variables and p one of the forms
x.m, m@C, or m < C, is translated into an asynchronous call, !p(Sig, In), immediately
followed by a blocking reply statement, n?(V), where n is the label value uniquely
identifying the call:

〈o :Ob |Pr : p(Sig, In; V); S,Lab : n〉 = 〈o :Ob |Pr : !p(Sig, In);n?(V); S,Lab : n〉
A nonblocking call is understood as an asynchronous call followed by a reply guard:

〈o :Ob |Pr : await p(Sig, In; V); S,Lab : n〉
= 〈o :Ob |Pr : !p(Sig, In);await n?;n?(V); S,Lab : n〉

A reply guard await n? evaluates to true when a comp message with the label value
n has arrived, in which case the reply statement n?(V) will assign the return values to
V, otherwise the active process is suspended (see below). Consequently, it suffices to

288 E.B. Johnsen and O. Owe

consider asynchronous invocations, and blocking and guarded replies to capture both
blocking and nonblocking method calls.

When an object calls an external method, a message is placed in the configuration:

〈o :Ob |Pr : !x.m(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o :Ob |Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(m,Sig,(n o eval(In,(A; L)))) to eval(x,(A; L))

where x is an object expression, m a method name, and eval is a function which evalu-
ates an expression (list) in the context of a state. When x evaluates to o, the object creates
an invoc message to itself. Similarly, an internal call gives rise to the same invocation
message:

〈o :Ob |Pr : !p(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o :Ob |Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(p,Sig,(n o eval(In,(A; L)))) to o

where p is of the form m@C or m < C. The constraint C will be used in the virtual
binding as described below.

Transport rules take charge of messages, which eventually arrive at the destination’s
message queue:

(invoc(E) to o) 〈o : Ob |EvQ : Q〉 −→ 〈o : Ob |EvQ : Q invoc(E)〉
(comp(E) to o) 〈o : Ob |EvQ : Q〉 −→ 〈o : Ob |EvQ : Q comp(E)〉
These rules model loose distribution of objects. Message overtaking is captured by the
nondeterminism inherent in RL: messages sent by an object to another object in one
order may arrive in any order.

The caller may wait for a completion in a reply statement to synchronize on the
completion of the call, or in a reply guard. The reply statement n?(V) blocks until the
appropriate reply message has arrived in the message queue. This blocking is captured
by a rule requiring matching label values in the active statement and the event queue:

〈o :Ob |Pr : (n?(V); S),EvQ : Q comp(n,Out)〉
−→ 〈o :Ob |Pr : (V := Out; S),EvQ : Q〉

In the model, EvQ is a multiset; thus the rule will match any occurrence of comp(n,Out)
in the queue. Remark that blocking reply statements associated with calls to self require
special treatment in order to avoid deadlock [20].

6.4 Virtual and Static Binding of Method Calls

In order to allow concurrent and dynamic execution, the full inheritance graph will not
be statically given. Rather, the binding mechanism dynamically inspects the current
class hierarchy as present in the configuration. Our approach to virtual binding is to use
a bind message to be sent from a class to its superclasses, resulting in a bound message
returned to the object generating the bind message. This way, the inheritance graph is
explored dynamically and as far as necessary when needed. When the invocation of a

A Dynamic Binding Strategy for Multiple Inheritance 289

method m is found in the message queue of an object o, a message bind(o,m, In,C) can
be generated by dynamically retrieving the class C of the object. Here Sig is the method
signature as provided by the caller and In is the list of actual in-parameters:

〈o :Ob |Cl : C,EvQ : invoc(m,Sig, In) Q〉
−→ 〈o :Ob |Cl : C,EvQ : Q〉 (bind(m,Sig, In,o) to C)

The same applies to internal static calls m@C. Static method calls are generated without
inspecting the actual class of the callee, thus surpassing local definitions:

〈o :Ob |EvQ : invoc(m@C,Sig, In) Q〉 −→ 〈o :Ob |EvQ : Q〉 (bind(m,Sig, In,o) to C)

If a suitable m is defined locally in C, a process with the method code and local state is
returned in a bound message. Otherwise, the bind message is retransmitted to the su-
perclasses of C in a left-first, depth-first order. In order to easily traverse the inheritance
graph, an inheritance list is used as the destination of the bind message:

(bind(m,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉
−→ if match(m,Sig,M) then bound(get(m,M, In)) to o

else bind(m,Sig, In,o) to (I′ I) fi 〈C :Cl | Inh : I′,Mtds : M〉
The auxiliary predicate match(m,Sig,M) evaluates to true if m is declared in M with
a signature Sig′ such that Sig ≺ Sig′, and the function get returns a process with the
method’s code and local state from the method multiset M of the class. (Static checking
ensures that virtual binding will succeed.) Values of the actual in-parameters In, the
caller o′, and the label value n are stored locally. The process w resulting from the
binding is loaded into the internal process queue:

(bound(w) to o) 〈o :Ob |PrQ : W〉 −→ 〈o :Ob |PrQ : W w〉
Note that the use of rewrite rules rather than equations mimics distributed and concur-
rent processing of method lookup.

Internal Virtual Binding. The binding of an internal virtual call m < C′ constrained by
C′ is slightly more complex. When a match in a class C is found, the inheritance graph
of C is checked to ensure that C is below C′, otherwise the binding must resume:

(bind(m < C′,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉
−→ if match(m,Sig,M) then (find(C′,C) to C) (stopbind(m < C′,Sig, In,o) to C I)

else bind(m,Sig, In,o) to (I′ I) fi 〈C :Cl | Inh : I′,Mtds : M〉
(found(b,C′) to C) (stopbind(m,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉

−→ if b then bound(get(m,M, In)) to o else bind(m,Sig, In,o) to I fi
〈C :Cl | Inh : I′,Mtds : M〉

where stopbind is an additional message used to suspend binding while checking that
C is below C′. This is done by two auxiliary messages: The message find(C,o) to I
represents that o is asking I if C is found in I or further up in the hierarchy, whereas
found(b,C) to o gives the answer to o, where the boolean b is true if the request was
successful. This can be formalized by the rewrite rules (ignoring class parameter lists)

290 E.B. Johnsen and O. Owe

find(C,o) to ε −→ found(false,C) to o

find(C,o) to I C I′ −→ found(true,C) to o

(find(C,o) to C′ I) 〈C′ :Cl | Inh : I′〉 −→ (find(C,o) to I I′) 〈C′ :Cl | Inh : I′〉 if (C �= C′)

This search corresponds to breadth-first, left-first traversal of the inheritance graph.

6.5 Guarded Statements

Guards represent potential processor release points. Guards may be boolean or reply
guards. When a guard is encountered, the execution continues if the guard is enabled:

〈o : Ob |Pr : await g; S,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : S,Lvar : L,Att : A,EvQ : Q〉 if enabled(g,(A,L),Q)

Enabledness is defined by induction over the construction of guards by the predicate

enabled(n?,D,Q) = n in Q enabled(b,D,Q) = eval(b,D)

where D denotes a state, and the function in checks whether a completion message
corresponding to the given label value is in the message queue Q. Enabledness is ex-
tended to statement lists, considering the head statement, and considering unguarded
statements as enabled. When a non-enabled guard is encountered, the active process is
suspended on the process queue:

〈o : Ob |Pr : S,PrQ : W,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : ε,PrQ : (W 〈S, L〉),Lvar : ε,Att : A,EvQ : Q〉 if not enabled(S,(A; L),Q)

where 〈S,L〉 denotes the process with statements S and local state L. If there is no active
process, a suspended process can be reactivated if it is enabled:

〈o : Ob |Pr : ε,PrQ : 〈S,L〉 W,Lvar : L′,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : S,PrQ : W,Lvar : L,Att : A,EvQ : Q〉 if enabled(S,(A,L),Q)

This rule allows any enabled process to continue because PrQ is a multiset.

6.6 Object Creation and Attribute Instantiation

Object creation results in a new object with a unique identifier. The new object makes an
initial blocking call to its run method (if present in the class), thereby initiating active
object behavior and leaving the programmer in control of defining the initial release
point. New object identifiers are created by concatenating tokens n from the unbounded
set Tok to the class name. The identifier is returned to the object which initiated the
object creation.

A Dynamic Binding Strategy for Multiple Inheritance 291

〈o :Ob |Pr : v := new C(In); S,Lvar : L,Att : A〉 〈C :Cl |Att : A′,Tok : n〉
−→

〈o :Ob |Pr : v := newid; S,Lvar : L,Att : A〉 〈C :Cl |Att : A′,Tok : next(n)〉
〈newid:Ob |Cl : C,Pr : run,PrQ : ε,Lvar : ε,Att : ε,Lab : 1,EvQ : ε〉
inherit(newid,ε) to C(eval(In,(A,L)))

Here, newid denotes the new identifier. Before the new object can be activated, its
initial state must be created. This is done by collecting attribute lists, which consist of
program variables bound to initial expressions, from the classes inherited by C. The
initial expressions must be reduced to values and bound to the program variables in the
state. Class parameters and inherited attributes provide a mechanism to pass values to
the initial expressions of the inheritance list in a class. The variables bound by the class
parameters are stored first in the attribute list of a class in the textual order.

An inherit message, which sends an object identifier and a substitution to a class
inheritance list, causes the inheritance tree to be traversed in a right-first depth-first
order, while dynamically accumulating all inherited attributes and their initializing ex-
pressions, passing on appropriate class parameters as stated in the inheritance lists. The
traversal results in a list of attributes with initializing expressions, which are evaluated
by evalS from left to right and delivered to the new object. The attribute list is ordered
such that the attributes of a superclass precede those of a subclass, for all classes above
the class of the object. Consequently, the type system can guarantee that all variables
occurring in an initial expression of a program variable v have been instantiated before
v is instantiated.

inherit(o, IA) to nil = inherited(evalS((self �→ o) IA),ε) to o

inherit(o, IA) to (I C(In)) 〈C :Cl | Inh : I′,Att : IA′〉
= inherit(o,(pass(IA′, In) IA)) to (I I′) 〈C :Cl | Inh : I′,Att : IA′〉

The auxiliary function pass passes class parameters, given as expressions, to an attribute
list and evalS(IA,A) evaluates attributes in IA from left to right, given a state A.

pass(IA,ε) = IA

pass(((v �→ e) IA),e′ E′)(v �→ e′) pass(IA,E′)

evalS(ε,A) = ε
evalS((v �→ e) IA,A) = (v �→ eval(e,A)) evalS(IA,(v �→ eval(e,A)) A)

The resulting state is consumed by the new object by the equation

(inherited(A) to o) 〈o :Ob |Att : ε〉 = 〈o :Ob |Att : A〉
Notice again that the use of equations enables a new object to be created and initialized
in a single rewriting step.

In the presence of multiple inheritance, a class C may inherit a superclass several
times. The equation

A (v �→ e) A′ (v �→ e′) = A (v �→ e) A′

292 E.B. Johnsen and O. Owe

on attribute lists ensures that an attribute is only stored once. Thus multi-inheritance of
the same class is the same as inheriting the class once, keeping the leftmost instantiation.
Duplicate classes may be achieved by class renaming in inheritance lists.

7 Related Work

Formal models clarify the intricacies of object orientation and may thus contribute to
better programming languages in the future, making programs easier to understand,
maintain, and reason about. Work on object calculi such as the ς-calculus [1] capture
object-oriented features such as self-reference, encapsulation, and method calls. Con-
current object calculi [18,13] extend these mechanisms to multithreaded and distributed
systems, but the complexities of class inheritance are not addresses in [1,18,13]. A con-
current object calculus with single inheritance is presented by Laneve [26]. Methods
of superclasses are accessible and virtual binding is addressed due to a careful renam-
ing discipline. A denotational semantics for single inheritance with similar features is
studied by Cook and Palsberg [9]. Multiple inheritance is not addressed in these works.

Formalizations of multiple inheritance in the literature are usually based on the
objects-as-records paradigm. This approach focuses on subtyping issues related to sub-
classing, but issues related to method binding are not easily captured. Even access to
methods of superclasses is not addressed in Cardelli’s denotational semantics of multi-
ple inheritance [6]. Rossi, Friedman, and Wand [34] propose a formal definition of mul-
tiple inheritance based on subobjects, a run-time data structure used for virtual pointer
tables [25,38]. This formalism focuses on compile time issues and does not clarify mul-
tiple inheritance at the abstraction level of the programming language.

Multiple inheritance is supported in languages such as C++ [38], CLOS [12], Eiffel
[31], POOL [2], and Self [7]. As discussed in Sect. 2.1, horizontal name conflicts in
C++, POOL, and Eiffel are removed by explicit resolution, after which the inheritance
graph may be linearized. Multiple dispatch, or multi-methods[12], gives a more pow-
erful binding mechanism, but does not handle the problems considered here, since they
appear even for methods without any parameters. Also reasoning about multi-methods
is difficult in case of redefinition.

A natural semantics for virtual binding in Eiffel is proposed in [3]. This work is
similar in spirit to ours and models the binding mechanism at the abstraction level
of the program, capturing Eiffel’s renaming mechanism. Mixin-based inheritance [4]
and traits [35] also depend upon linearization to be merged correctly into the single
inheritance chain. Linearization changes the parent-child relationship between classes
in the inheritance hierarchy [36]. Consequently understanding, e.g., method binding
quickly becomes difficult.

Full Maude [8] and the Join-calculus [15] model multiple inheritance by disjoint
union of methods. Name ambiguity lets method definitions compete for selection. The
definition selected when an ambiguously named method is called, may be nondeter-
ministically chosen. Alternatively, programmer control may be improved if inherited
classes are ordered [7,12], resulting in a deterministic binding strategy. However, the

A Dynamic Binding Strategy for Multiple Inheritance 293

ordering of superclasses may result in surprising but “correct” behavior. The example
of Sect. 5 displays such surprising behavior regardless of how the inherited classes are
ordered.

The dynamically typed prototype-based language Self [7] proposes an elegant pri-
oritized binding strategy to solve this problem, although a formal semantics is not given.
The strategy is based on combining ordered and unordered multiple inheritance. Each
superclass is annotated with a priority, and many superclasses may have the same pri-
ority. A name is only ambiguous if it occurs in two superclasses with the same priority,
in which case a class related to the caller class is preferred. However, explicit class
priorities may have surprising effects in large class hierarchies: names may become
ambiguous through inheritance. If neither class is related to the caller the binding does
not succeed, resulting in a method-not-understood error.

The pruned binding strategy proposed in this paper solves these issues without
the need for manually declaring (equal) class priorities and without the possibility of
method-not-understood errors: Calls are only bound to intended method redefinitions.
The new binding strategy seems particularly useful during system maintenance to avoid
introducing unintentional errors in evolving class hierarchies, as targeted by the Creol
language [23]. In particular, we have given an operational semantics based on dynamic
and distributed traversal of the available classes, rather than through virtual pointer ta-
bles. Our approach may therefore be combined with dynamic constructs for changing
the class inheritance structure, such as adding a class C and enriching an existing class
with C as a new superclass, which could be useful in open reconfigurable systems.

8 Conclusion

The treatment of ambiguous naming in object-oriented languages with multiple inher-
itance is unsettled. Disallowing naming ambiguities when inheriting multiple super-
classes imposes undesirable restrictions with regard to, e.g., programming flexibility
and code maintenance. Ordering inherited classes solves ambiguities by fixing the bind-
ing strategy above a given class. However, virtual binding combined with a fixed order
may lead to surprising but “correct” effects. This paper has proposed the pruned bind-
ing strategy to ensure that overriding is intended. This strategy dynamically restricts
the ordered inheritance graph depending on the context of the call, using the concept of
constrained method call (m <C). This construct is also useful for fine grained program-
mer control of virtual binding in the case of multiple inheritance. The pruned binding
strategy and constrained method calls remove unintended effects of ordered inheritance
while ensuring that binding will always succeed. The binding strategy is combined with
intentional redirection through qualified references and with redefinition in the subclass.
In this paper, an operational semantics for the proposed binding strategy has been given
in rewriting logic. Although the formalization is given in the setting of Creol, the mech-
anisms presented here could easily be lifted to another setting.

Acknowledgment. The authors would like to thank Stein Krogdahl for interesting dis-
cussions on multiple inheritance and virtual binding. The comments of the FMCO
anonymous referees have improved the presentation.

294 E.B. Johnsen and O. Owe

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, NY, 1996.
2. P. America and F. van der Linden. A parallel object-oriented language with inheritance and

subtyping. In N. Meyrowitz, editor, Proc. of the Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 161–168. ACM Press, Oct. 1990.

3. I. Attali, D. Caromel, and S. O. Ehmety. A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Languages and Systems, 18(6):711–729, 1996.

4. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Proc. of the
Conf. on Object-Oriented Programming: Systems, Languages, and Applications / Eur. Conf.
on Object-Oriented Programming, pages 303–311. ACM Press 1990.

5. K. B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe polymor-
phic object-oriented language. ACM Transactions on Programming Languages and Systems,
25(2):225–290, 2003.

6. L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2-
3):138–164, 1988.

7. C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symb. Computation, 4(3):207–222, 1991.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting logic. Theoretical Computer Science,
285:187–243, Aug. 2002.

9. W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. Infor-
mation and Computation, 114(2):329–350, Nov. 1994.

10. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In 17th Symp. on
Principles of Programming Languages (POPL’90), pages 125–135. ACM Press, Jan. 1990.

11. O.-J. Dahl and K. Nygaard. Class and subclass declarations. In J. Buxton, editor, Simulation
Programming Languages, pages 158–174. North-Holland, 1968. Reprinted in M. Broy and
E. Denert, eds., Software Pioneers — Contributions to Software Engineering, Springer, 2002.

12. L. G. DeMichiel and R. P. Gabriel. The common lisp object system: An overview. In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, Eur. Conf. on Object-Oriented
Programming (ECOOP’87), LNCS 276, pages 151–170. Springer, 1987.

13. P. Di Blasio and K. Fischer. A calculus for concurrent objects. In U. Montanari and V. Sas-
sone, editors, 7th Intl. Conf. on Concurrency Theory (CONCUR’96), LNCS 1119, pages
655–670. Springer, Aug. 1996.

14. C. Fischer and H. Wehrheim. Behavioural subtyping relations for object-oriented for-
malisms. In T. Rus, editor, 8th Intl. Conf. on Algebraic Methodology and Software Tech-
nology (AMAST 2000), LNCS 1816, pages 469–483. Springer, 2000.

15. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. Journal
of Logic and Algebraic Programming, 57(1-2):23–69, 2003.

16. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

17. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ.
In J. A. Goguen and G. Malcolm, editors, Software Engineering with OBJ: Algebraic Speci-
fication in Action, pages 3–167. Kluwer, 2000.

18. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In
U. Nestmann and B. C. Pierce, editors, High-Level Concurrent Languages (HLCL’98), vol-
ume 16(3) of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

19. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In B. Jacobs
and A. Rensink, editors, Proc. 5th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’02), pages 45–60. Kluwer, Mar. 2002.

A Dynamic Binding Strategy for Multiple Inheritance 295

20. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed con-
current objects. In Proc. 2nd Intl. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 188–197. IEEE Press, Sept. 2004.

21. E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In
O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, LNCS 2635, pages 137–164. Springer, 2004.

22. E. B. Johnsen and O. Owe. Inheritance in the presence of asynchronous method calls. In
Proc. 38th Hawaii Intl. Conf. on System Sciences (HICSS’05). IEEE Press, Jan. 2005.

23. E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic class construct for asynchronous
concurrent objects. In Proc. 7th Intl. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’05), LNCS 3535, pages 15–30. Springer, June 2005.

24. J. L. Knudsen. Name collision in multiple classification hierarchies. In S. Gjessing and
K. Nygaard, editors, Eur. Conf. on Object-Oriented Programming (ECOOP’88), LNCS 322,
pages 93–109. Springer, 1988.

25. S. Krogdahl. Multiple inheritance in Simula-like languages. BIT, 25(2):318–326, 1985.
26. C. Laneve. Inheritance in concurrent objects. In H. Bowman and J. Derrick, editors, Formal

methods for distributed processing – a survey of object-oriented approaches, pages 326–353.
Cambridge University Press, 2001.

27. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

28. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concur-
rent programming languages. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, pages 107–150. The MIT Press,
Cambridge, Mass., 1993.

29. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96:73–155, 1992.

30. J. Meseguer and G. Rosu. Rewriting logic semantics: From language specifications to formal
analysis tools. In D. A. Basin and M. Rusinowitch, editors, Proc. of the 2nd Intl. Joint Conf.
on Automated Reasoning (IJCAR 2004), LNCS 3097, pages 1–44. Springer, 2004.

31. B. Meyer. Object-Oriented Software Construction. Prentice Hall, NJ., 1997.
32. G. Milicia and V. Sassone. The inheritance anomaly: ten years after. In Proc. of the Symp.

on Applied Computing, pages 1267–1274. ACM Press, 2004.
33. E. Najm and J.-B. Stefani. A formal semantics for the ODP computational model. Computer

Networks and ISDN Systems, 27:1305–1329, 1995.
34. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modeling subobject-based inheritance. In

P. Cointe, editor, 10th Eur. Conf. on Object-Oriented Programming (ECOOP’96), LNCS
1098, pages 248–274. Springer, July 1996.

35. N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of be-
haviour. In L. Cardelli, editor, Proc. 17th Eur. Conf. on Object-Oriented Programming
(ECOOP 2003), LNCS 2743, pages 248–274. Springer, 2003.

36. A. Snyder. Inheritance and the development of encapsulated software systems. In B. Shriver
and P. Wegner, editors, Research Directions in Object-Oriented Programming, pages 165–
188. The MIT Press, 1987.

37. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In P. De-
vanbu and J. Poulin, editors, Proc. Fifth Intl. Conf. on Software Reuse (ICSR5), pages 206–
215. IEEE Press, 1998.

38. B. Stroustrup. Multiple inheritance for C++. Computing Systems, 2(4):367–395, Dec. 1989.
39. E. Tempero and R. Biddle. Simulating multiple inheritance in Java. The Journal of Systems

and Software, 55(1):87–100, Nov. 2000.

	Introduction
	Inheritance: Reuse of Behavior and Reuse of Code
	Multiple Inheritance
	Naming Policies for Conflict Resolution
	Virtual Binding

	A Language for Asynchronously Communicating Objects
	Multiple Inheritance
	Qualified Names
	Virtual Binding

	Example: Combining Authorization Policies
	An Operational Semantics of Inheritance and Virtual Binding
	System Configurations
	Concurrent Transitions
	Method Calls
	Virtual and Static Binding of Method Calls
	Guarded Statements
	Object Creation and Attribute Instantiation

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

