
Program Generation and Components

D. Ancona and E. Moggi�

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
{davide, moggi}@disi.unige.it

Abstract. The first part of the paper gives a brief overview of meta-
programming, in particular program generation, and its use in software
development. The second part introduces a basic calculus, related to
FreshML, that supports program generation (as described through exam-
ples and a translation of MetaML into it) and programming in-the-large
(this is demonstrated by a translation of CMS into it).

1 Introduction

This paper explains what is program generation and what are the most promising
uses of it, recalls the role of names in software components, and then presents a
basic calculus, called MMLN

ν , which in the authors’ view is a suitable formalism
to describe program generation in terms of more primitive notions, namely name
generation, name resolution and linking.

In calculi of module systems as CMS [AZ99, MT00, WV00, AZ02] modules
can refer to deferred components by means of names. These calculi provide
primitive operators for linking modules and resolving external names of deferred
components, thus supporting programming in-the-large [Car97]. Analogously, in
the MMLN

ν calculus of [AM04] names are used to refer to external components
which need to be provided from the outside (by a name resolver).

In module (and record) calculi names are taken from some infinite set. On the
contrary, in MMLN

ν at any time during execution there is a finite set of names,
which can be extended dynamically by a construct νX.e for generating a fresh
name, borrowed from FreshML of [SPG03].

Fraenkel and Mostowski’s set theory (see [GP99]) provides the mathematical
underpinning of name generation for FreshML and MMLN

ν , but to understand
the operational semantics and type system there is no need to be acquainted
with FM-sets. Besides names X ∈ Name, the calculus has

– terms e ∈ E, a closed term corresponds to an executable program;
– name resolvers, which denote partial functions Name

fin→ E with finite domain.
We write r.X for the term obtained by applying r to resolve name X .

Terms include fragments b(r)e, i.e. term e abstracted w.r.t. resolver r, which

denote functions (Name
fin→ E) → E. We write e〈r〉 for the term obtained by

linking fragment e using resolver r.
� Supported by EU projects DART IST-2001-33477 and APPSEM-II IST-2001-38957.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 222–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Program Generation and Components 223

Remark 1. If resolvers were included in terms, we would get a λ-calculus with
extensible records [CM94]; indeed, a record amounts to a partial function map-
ping names (of components) to their values. More precisely, b(r)e would become
an abstraction λr.e and e〈r〉 an application e r. Even when resolvers are second
class terms, one can express in the calculus the staging constructs of MetaML
[Tah99, She01] and the mixin operations of CMS.

The ability to generate a fresh name is essential to prevent accidental overriding.
If we know in advance what names need to be resolved within a fragment (we call
such a fragment closed), then we can statically choose a name which is fresh (for
that fragment). However, generic functions manipulating open fragments will
have to generate fresh names at run-time. There are several reasons for working
with open fragments: reusability is increased, the need for naming conventions
(between independent developers) is reduced, and decisions can be delayed.

We present MMLN
ν as a monadic metalanguage, i.e. its type system makes

explicit which terms have computational effects, and its operational semantics is
given by a (semantic preserving) simplification relation on terms and a compu-
tation relation on configurations. Generation of fresh names is a computational
effect, as in FreshML, thus typing νX.e requires computational types.

Summary. Section 2 explains program generation within the broader context of
meta-programming, and mentions its most promising uses. Section 3 recalls the
role of names in software components. Section 4 recalls syntax, type system and
operational semantics of MMLN

ν . Section 5 gives several programming examples:
programming with open fragments, and benchmark examples for comparison
with other calculi (in particular MetaML). Section 6 introduces a 2-level version
of MetaML, and show how it can be translated into MMLN

ν . Section 7 introduces
MLN

Σ , a variant of MMLN
ν with records and recursive definitions, where one can

recover all (mixin) module operations of CMS. Finally, Section 8 discusses related
calculi based on names, i.e. FreshML of [SPG03] and ν� of [NPar].

Notation. In the paper we use the following notations and conventions.

– m ranges over the set N of natural numbers. Furthermore, m ∈ N is iden-
tified with the set {i ∈ N|i < m} of its predecessors.

– Term equivalence ≡ is α-conversion. FV(e) is the set of variables free in e,
while e[xi: ei | i ∈ m] denotes parallel capture avoiding substitution.

– f : A
fin→ B means that f is a partial function from A to B with a finite domain,

written dom(f). The image of f is denoted by img(f). A → B denotes the
set of total functions from A to B. We use the following operations:

• {ai: bi|i ∈ m} is the partial function mapping ai to bi (where the ai must
be different, i.e. ai = aj implies i = j);
∅ is the everywhere undefined partial function;
• f\a denotes the partial function f ′ s.t. f ′(a′) = b iff b = f(a′) and a′ �= a;

224 D. Ancona and E. Moggi

• f{a: b} denotes the (partial) function f ′ s.t. f ′(a) = b and f ′(a′) = f(a′)
when a′ �= a;
• f, f ′ denotes the union of two partial functions with disjoint domains.

– A#B means that the sets A and B are disjoint.

2 Program Generation

We explain what is program generation by placing it in the broader context of
meta-programming. We borrow from Sheard’s invited talk at SAIG’01 [She01],
which in addition discusses several areas of meta-programming research. Then we
mention some of the most promising uses of program generation in the context of
software development. We make no attempt to be exhaustive, instead we advise
the interested reader to browse through the proceedings of the conference on
Generative Programming and Component Engineering (GPCE) [BCT02, PS03,
KV04], and a compendium [LBCO04] of contributions presented at a Dagstuhl
seminar on “Domain-specific program generation”, where a new IFIP WG on
“Program Generation” was proposed.

2.1 What Is It?

In general programs manipulate data. Meta-programs are programs that ma-
nipulate object-programs, or more precisely data representing other programs.
We are not committed to a particular (programming) language, thus by object-
program we mean a syntactic element in a formal language. Broadly speaking
we can classify meta-programs in three categories:

– Generators, which construct object-programs. For instance, specializers gen-
erate a specialized program solving an instance of a general problem.

– Analyzers, which analyze the structure of object-programs. For instance,
type-checkers or tools that perform various kinds of static analysis.

– Transformers, which combine the features of analyzers and generators. For
instance, optimizers that perform source-to-source transformation, or aspect
weavers that insert code to address a cross-cutting concern.

A compiler is a typical example of program where the three kinds of meta-
programs co-exist: a static analyzer for the source language, an optimizer for
some intermediate language, and a program generator for the target language.

Object-programs can be represented at different level of abstraction (we call
code the data representing a program):

– White-box abstraction, where code is text (i.e. a string) or an abstract syntax
tree (AST). This representation is the most versatile, since it gives a low-level
description of the object-program, but could be error prone.

– White-box abstraction modulo α-conversion. This representation of syntax
has been considered in the context of logical frameworks to deal with binders
in object languages, alongside other representations like higher-order ab-
stract syntax. FreshML [GP99, SPG03] is the leading programming language
that supports this abstraction.

Program Generation and Components 225

– Black-box abstraction, where code can be executed and combined, but not
analyzed. This is the most abstract representation.

The black-box abstraction is incompatible with program analyzers and trans-
formers. On the other hand, program generators can work with any of the ab-
stractions, and the black-box abstraction ensures the maximum separation of
concerns between the generator and the user of the generated code.

We consider related concepts to clarify how they differ from the concept of
code and meta-program. A program configuration is a snapshot of a program
during execution, a computation is a description of the program execution, while
code represents (the syntax of) a program independently from execution. A
reflective program is a program that manipulates itself, thus it is a particular
instance of a meta-program. One can identify three forms of reflection:

– Introspection is the ability of a program to analyze itself, namely its code
(this introspection is called structural reflection) or its current configuration
or execution history (this introspection is called behavioral reflection).

– Self-modification is the ability to modify itself.
– Intercession is the ability to manipulate its semantics, i.e. the interpreter or

virtual machine for the reflective program.

A computation is staged when it is decomposed into stages along the tempo-
ral dimension. The change of stage is usually triggered by the acquisition of
new information. In a meta-programming system supporting program genera-
tion there are two natural stages: the computation of the meta-program and
the computation of the generated object-program. Depending on the nature of
the meta-program, its computation is called differently (e.g. generation-time,
compile-time, design-time, specialization-time), while the computation of the
object-program is usually called run-time or use-time computation. Moreover,
if the meta-programming system is homogeneous, i.e. the object-language for
describing object-programs coincides with the meta-language, then it provides a
natural support for multi-stage programming. MetaML [TS97] and MetaOCaml
[CTHL03, Met01] are among the leading multi-stage programming languages.
For several applications heterogeneous meta-programming systems are enough.
In this case, the main issue is to provide support for a variety of object-languages.

2.2 What Is for?

Generative and component approaches have the potential to revolutionize soft-
ware development in a similar way as automation and components revolutionized
manufacturing. Generative programming (developing programs that synthesize
other programs), component engineering (raising the level of modularization
and analysis in application design), and domain-specific languages (elevating
program specifications to compact domain-specific notations that are easier to
write and maintain) are key technologies for automating program development.
Before focusing on program generation, we mention some trends in software engi-
neering, in order to provide a broader picture. [GS04] identifies software factories
as the next methodology for software development. A software factory is

226 D. Ancona and E. Moggi

a collection of reusable assets (like patterns, models, frameworks, tools)
for rapidly and cheaply producing an open-ended set of unique variants
of a software product.

Clearly, for a software product that has a big market and need to evolve, like an
operating system, this is an economically feasible approach. However, to make
software factories economically feasible for specific domains, it is essential to
empower the domain-experts and end-users.

Domain-specific languages (DSLs) are a way to give programming abilities
to domain-experts and end-users. Descriptions given in a DSL can be treated
as high-level source code, rather than non-executable requirement specifications.
Relational databases are a “classic” example of success story in the use of DSLs,
while UML is a counter-example of DSL. In fact, UML is too general (i.e. it is not
meant for any specific domain) and too imprecise (e.g. it cannot be used as source
code, although some subsets might). Other examples of domains where DSL
technology has been used successfully or appear highly promising are: language
parsers, reactive real-time programs and the telephony domain. For instance,
MetaCase Consulting (http://www.metacase.com) gave a demo at GPCE’03
entitled “MetaEdit+ revolutionized the way Nokia develops mobile phone soft-
ware”, and the choice of MetaEdit+ was motivated as follows

When Nokia was searching for an effective CASE tool, the prime cri-
teria was encapsulation of domain knowledge, flexible method support
and code generation. After evaluating a number of off-the-shelf CASE
tools, they undertook the development of their own solution using the
MetaEdit+ metaCASE tool.

DSLs provide language-based abstraction, which goes well beyond the ab-
straction provided by libraries (i.e. platform extension). In this context program
generators play the role of compiler back-ends for domain-specific languages, and
provide the following benefits

– Increase automation by exploiting domain features and knowledge.
– Improve performance via partial evaluation.

Usually program generators are co-designed with the DSL they implement, unlike
compilers for general-purpose languages. It is worth to adopt this approach,
when the effort to implement a program generator is comparable to that of
implementing a software library for the specific domain. In the DSL approach
there are other things one can do before the program generation stage, namely

– analysis, which exploits domain-knowledge to identify problems prior gener-
ation, or to provide static guarantees

– transformation, for instance to perform domain-specific optimization.

It is important that analysis and transformation take place before program gen-
eration, so that they can be understood and managed by the user of the DSL,
who can be expected to be knowledgeable of the domain but not of the target
language for the program generator.

http://www.metacase.com

Program Generation and Components 227

3 Names and Software Components

It has been argued that the notion of software component is so general that can-
not be defined in a precise and comprehensive way [CE00]. For instance, [Szy02]
provides three different definitions, that adopt different levels of abstraction.
Nevertheless, names play an important role, independently of the particular def-
inition adopted for software components. For clarity, we identify the notion of
software component with that of mixin module1, as done in CMS of [AZ02].

A basic module could be described as follows

import X1 as x1, . . . , Xm as xm

export Y1 = E1, . . . , Yn = En

local z1 = E′
1, . . . , zp = E′

p

A basic module make use of names and variables. The former are the names of the
components the module either imports from the outside (input components X1,
. . . , Xm) or exports to the outside (output components Y1,. . . , Yn). The latter
are the variables used in definitions inside the module (i.e. in the expressions
E1,. . . , En, E′

1,. . . , E′
p). These variables can be either deferred (x1,. . . , xn), i.e.

associated with some input component, or locally defined (z1,. . . , zp).
The distinction between names and variables is crucial: names correspond

to external references, while variables correspond to internal references. Techni-
cally speaking the main differences between variables and names are: expressions
include variables but not names; variables declared in a basic module are local
and can be α-converted; while component names belong to a global name space
and allow modules to talk to each other.

A useful operator which can be easily encoded in CMS is the link operator
link(M1, M2), used for merging two modules and resolving input names. This
operator may be regarded as either an operation provided by a module language
in order to define structured module expressions or an extra-linguistic mechanism
to combine object files provided by a tool for modular software development.
link(M1, M2) is well-defined if the sets of the output components of M1 and M2

are disjoint. In this case, link (M1, M2) corresponds to a module where some input
component of one module has been bound to the definition of the corresponding
output component of the other module, and conversely.

For instance, let the modules BOOL and INT define the evaluation of some
boolean and integer expressions in a mutually recursive way:

module BOOL is

import IntEv as ext_ev

export BoolEv = ev

local

fun ev EQ(ie1,ie2) = ext_ev(ie1)==ext_ev(ie2)

| ...

end BOOL;

1 In the sequel we will interchangeably use the terms “module” and “mixin” as ab-
breviations of “mixin module”.

228 D. Ancona and E. Moggi

module INT is

import BoolEv as ext_ev

export IntEv = ev

local

fun ev IF(be,ie1,ie2) = if ext_ev(be) then ev(ie1) else ev(ie2)

| ...

end INT;

The result of link (BOOL,INT) corresponds to the module

module BOOL_INT is

export IntEv = iev

export BoolEv = bev

local

fun bev EQ(ie1,ie2) = iev(ie1)==iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = ifbev(be) then iev(ie1) else iev(ie2)

| ...

end BOOL_INT;

The separation between component names and variables allows one to use inter-
nally the same name ev for the evaluation function in the two modules; in the
compound module, indeed, ev of BOOL and ev of INT are α-renamed to bev and
iev, respectively.

The link operation described above can be decomposed in two steps. First,
put together the declarations of the two arguments in one module, yielding

module

import IntEv as ext_iev

import BoolEv as ext_bev

export IntEv = iev

export BoolEv = bev

local

fun bev EQ(ie1,ie2) = ext_iev(ie1)==ext_iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = if ext_bev(be) then iev(ie1) else iev(ie2)

| ...

end;

Then, bind import components with export components with the same name,
yielding BOOL INT. Formally, this corresponds to the fact that link is a derived
operator which can be expressed by the sum and freeze basic operators of CMS.

CMS provides also a primitive operation for deleting module components,
which allows redefinition of components when used in conjunction with the link
operator. This is an important feature for enabling reuse of software components
and amortizing the investment over multiple applications [Szy02].

4 A Core Calculus with Names: MMLN
ν

This section recalls the monadic metalanguage MMLN
ν of [AM04]. For simplicity,

we focus on the key feature, i.e. names, and exclude imperative computations

Program Generation and Components 229

and functional types. Moreover, we restrict the formal treatment to a simply
typed language (Section 4.1), and recall only the main statements concerning
type safety (Section 4.4). We refer to [AM04] for details and a polymorphic ex-
tension of the type system, which is essential for typing the examples on open
fragments generators (see Example 1 in Section 5). The operational semantics
is given according to the general pattern proposed in [MF03], namely by a con-
fluent simplification relation > defined as the compatible closure of a set
of rewrite rules (see Section 4.2), and a computation relation > describing
how configurations may evolve (see Section 4.3).

Names X are syntactically pervasive, i.e. they occur both in types and in
terms. The term νX.e allows to generate a fresh name for private use within
e. Following FreshML of [SPG03], we consider generation of a fresh name a
computational effect, therefore for typing νX.e we need computational types.

We parameterize typing judgments w.r.t. a finite set of names, namely those
that can occur (free) in the judgment. The mathematical underpinning for names
is provided by [GP99]. In particular, properties are invariant w.r.t. name per-
mutation (equivariance), but not w.r.t. name substitution.

The syntax of MMLN
ν is abstracted over symbolic names X ∈ Name, basic

types b, term variables x ∈ X and resolver variables r ∈ R. The syntactic category
of types and signatures (i.e. the types of resolvers) is parameterized w.r.t. a finite
set X ⊆fin Name of names that can occur in the types and signatures.

– τ ∈ TX : : = b | [Σ|τ] | Mτ X -types, where

Σ ∈ ΣX
∆= X fin→ TX is a X -signature {Xi: τi|i ∈ m}

– e ∈ E: : = x | θ.X | e〈θ〉 | b(r)e | ret e | do x← e1; e2 | νX.e terms, where

θ ∈ ER: : = r | ? | θ{X : e} is a name resolver term.

We give an informal semantics of the language (see Section 5 for examples).

– The type [Σ|τ] classifies fragments which produce a term of type τ when
linked with a resolver for Σ. The terms θ.X and e〈θ〉 use θ to resolve name
X and to link fragment e. The term b(r)e represents the fragment obtained
by abstracting e w.r.t. r.

– The resolver ? cannot resolve any name, while θ{X : e} resolves X with e and
delegates the resolution of other names to θ.

– The monadic type Mτ classifies programs computing values of type τ . The
terms ret e and do x← e1; e2 are used to terminate and sequence computa-
tions, νX.e generates a fresh name for use within the computation e.

As a simple example, let us consider the fragment b(r)(r.X*r.X) which
can be correctly linked with resolvers mapping X to integer expressions and
whose type is [X:int|int]. Then we can link the fragment with the resolver
?{X:2}, as in b(r)(r.X*r.X)<?{X:2}>, and obtain 2*2 of type int. Note that
b(r)(r.X*r.X) is not equivalent to b(r)(r.Y*r.Y), whose type is [Y:int|int].
This is in clear contrast with what happens with variables and λ-abstractions:
\x->x*x and \y->y*y are equivalent and have the same type. The sequel of this

230 D. Ancona and E. Moggi

section is devoted to the formal definition of MMLN
ν . More interesting examples

(with informal explanatory text) can be found in Section 5.
One can define (by induction on τ , e and θ) the following syntactic functions:

– the set FV() ⊆fin Name
X
R of free names and variables in , in particular
FV({Xi: τi|i ∈ m}) = (∪i∈mFV(τi)) ∪ {Xi|i ∈ m}

– the capture-avoiding substitution [x0: e0] for term variable x0.
– the capture-avoiding substitution [r0: θ0] for resolver variable r0.
– the action [π] of a name permutation π on .

4.1 Type System

The typing judgments are X ; Π ; Γ � e: τ (i.e. e has type τ) and X ; Π ; Γ � θ: Σ
(i.e. θ resolves the names in the domain of Σ, and only them, with terms of the
assigned type), where

– τ is a X -type and Σ is a X -signature

– Π : R
fin→ ΣX is a signature assignment {ri: Σi|i ∈ m} for resolver variables

– Γ : X
fin→ TX is a type assignment {xi: τi|i ∈ m} for term variables

The typing rules are given in Table 1. All the rules, except that for νX.e, use
the same finite set X of names in the premises and the conclusion. The typing
rule for e〈θ〉 supports a limited form of width subtyping, namely it allows linking
of a fragment e: [Σ|τ] with a resolver θ whose signature Σ′ includes Σ. All the
other rules are standard.

4.2 Simplification

We define a confluent relation on terms, called simplification. There is no need
to define a deterministic simplification strategy, since computational effects are
insensitive to further simplification. Simplification > is the compatible
closure of the following rules

(resolve) (θ{X : e}).X > e

(delegate) (θ{X : e}).X ′ > θ.X ′ if X ′ �= X

(link) (b(r)e)〈θ〉 > e[r: θ]

Simplification enjoys the following properties.

Theorem 1 (Church-Rosser). The simplification relation > is confluent.

Theorem 2 (Subject Reduction).

– If X ; Π ; Γ � e: τ and e > e′, then X ; Π ; Γ � e′: τ .
– If X ; Π ; Γ � θ: Σ and θ > θ′, then X ; Π ; Γ � θ′: Σ.

Program Generation and Components 231

Table 1. Type System for MMLN
ν

x X ; Π ;Γ � x: τ
Γ (x) = τ resolve

X ; Π ;Γ � θ: Σ

X ;Π ; Γ � θ.X: τ
τ = Σ(X)

link

X ; Π ; Γ � e: [Σ|τ]
X ; Π ; Γ � θ: Σ′

X ;Π ; Γ � e〈θ〉: τ Σ ⊆ Σ′ box
X ;Π, r: Σ; Γ � e: τ

X ; Π ;Γ � b(r)e: [Σ|τ]

r
Π(r) = Σ

X ;Π ; Γ � r: Σ
? X ; Π ;Γ �?: ∅ extr

X ;Π ; Γ � θ: Σ
X ;Π ; Γ � e: τ

X ;Π ; Γ � θ{X: e}: Σ{X: τ}

ret
X ; Π ; Γ � e: τ

X ;Π ; Γ � ret e: Mτ
do

X ; Π ; Γ � e1: Mτ1

X ; Π ; Γ, x: τ1 � e2: Mτ2

X ;Π ; Γ � do x← e1; e2: Mτ2

ν
X ,X; Π ;Γ � e: Mτ

X ; Π ;Γ � νX.e:Mτ
X /∈ FV(Π,Γ, τ)

4.3 Computation

The computation relation Id > Id ′ | done is defined using evaluation contexts
and configurations Id ∈ Conf. A configuration records the current name space
as a finite set X of names. The computation rules (see Table 2) consist of those
given in [MF03] for the monadic metalanguage MML (these rules do not change
the name space) plus a rule for generation of a fresh name (this is the only rule
that extends the name space).

– E ∈ EC: : = � | E[do x← �; e] evaluation contexts

– (X|e, E) ∈ Conf
∆= Pfin(Name) × E × EC configurations consist of the cur-

rent name space X (which grows as computation progresses), the program
fragment e under consideration, and its evaluation context E

– rc ∈ RC: : = ret e | do x← e1; e2 | νX.e computational redexes.

Simplification > is extended in the obvious way to a confluent relation on
configurations (and related notions). The bisimulation property, i.e. computation
is insensitive to further simplification, is like that stated in [MF03] for MML.

Theorem 3 (Bisimumation). If Id ≡ (X|e, E) with e ∈ RC and Id
∗
> Id ′,

then

1. Id > D implies ∃D′ s.t. Id ′ > D′ and D
∗
> D′

2. Id ′ > D′ implies ∃D s.t. Id > D and D
∗
> D′

where D and D′ range over Conf ∪ {done}.

232 D. Ancona and E. Moggi

Table 2. Computation Relation

Administrative steps

(A.0) (X|ret e,�) > done
(A.1) (X|do x← e1; e2, E) > (X|e1, E[do x← �; e2])
(A.2) (X|ret e1, E[do x← �; e2]) > (X|e2[x: e1], E)

Name generation step

(ν) (X|νX.e, E) > (X , X|e, E) with X renamed to avoid clashes, i.e. X /∈ X

Table 3. Well-formed Evaluation Contexts

� X ;�: Mτ � �:Mτ

X ; �: Mτ2 � E: Mτ ′ X ; ∅; x: τ1 � e: Mτ2

X ;�: Mτ1 � E[do x← �; e]: Mτ ′

4.4 Type Safety

Following Felleisen, type safety can be decomposed in two properties: subject
reduction and progress. We refer to [MF03] for a formulation of these properties
in the context of a monadic metalanguage.

Definition 1 (Well-formed configuration). � (X|e, E): τ ′ ∆⇐⇒ τ ′ ∈ T∅ and
∃τ ∈ TX s.t. X ; ∅; ∅ � e: Mτ and X ; �: Mτ � E: Mτ ′ (see Table 3).

Theorem 4 (Subject Reduction).

– If � Id1: τ ′ and Id1 > Id2, then � Id2: τ ′.
– If � Id1: τ ′ and Id1 > Id2, then � Id2: τ ′.

Theorem 5 (Progress). If � (X|e, E): τ ′, then

1. either e �∈ RC and e >
2. or e ∈ RC and (X|e, E) >

5 Programming Examples

We demonstrate the use and expressivity of MMLN
ν with a few examples:

– the first exemplifies programming with open fragments;
– the second recasts the multi-stage programming method of [TS97] by making

a simplified use of open fragments;

Program Generation and Components 233

– the third uses closed fragments, and allows a further comparison with other
calculi for run-time code generation and staging.

To improve readability we use ML-like notation for functions (β-reduction is a
sound simplification in monadic metalanguages) and operations on references,
and Haskell’s do-notation do {x1 <- e1; ...; xn <- en; e}. In the sequence
of commands of a do-expression we allow computations ei whose value is not
bound to a variable (because it is not used by other commands) and non-recursive
let-bindings like xi = ei (which amounts to replace xi with ei in the commands
following the let-binding).

Example 1. We consider an example of generative programming, which moti-
vates the need for fresh name generation. In our calculus, a component is identi-
fied with a fragment of type [Σ|τ], where Σ specifies what information needs to
be provided for deployment. Generative programming supports dynamic man-
ufacturing of customized components from elementary (highly reusable) com-
ponents. The most appropriate building block for generative programming are
polymorphic functions G: ∀p.[p, Σi|τi] → M [p, Σ|τ] (we refer to [AM04] for a
polymorphic extension of the type system). The result type of G is computa-
tional, because generation may require computational activities, while the sig-
nature variable p classifies the information passed to the parameters of G, but
not directly used or provided in the implementation of G itself. Applications of
G may instantiate p with different signatures, thus we say that G manipulates
open fragments. An over-simplified example of open fragment generator is

Ac: [p|a->a] -> M[p|{add: a -> M unit, update: M unit}]

Ac creates a data structure to maintain an (initially empty) set of accounts.
Since we don’t really need to know the structure of an account, we use a type
variable a. The generator makes available two functionalities for operating on a
set (of accounts): add inserts a new account in the set, and update modifies all
the accounts in the set by applying a function of type a->a, which depends on
certain parameters (e.g. the interest rate) represented by the signature variable
p. These parameters are decided by the bank after the data structure has been
created, and they change over time.

In many countries bank accounts are taxed, according to local criteria. So we
need a more refined generator, with an extra parameter for computing the new
balance based on the state of the account after the bank’s update

TaxedAc: [p’|a->a] -> [p|a->a] ->
M[p’|[p|{add: a -> M unit, update: M unit}]]

The signature variable p’ classifies the information needed to compute local
taxes. In general p’ and p are unrelated, and identifying them means that banks
and local authorities rely on the same information. TaxedAc is defined as follows

fun TaxedAc tax upd = nu Tax.
do {m <- Ac(b(r2) fn x => r2.Tax (upd<r2> x));

ret (b(r’) b(r1) m<r1{Tax:tax<r’>}>)};

234 D. Ancona and E. Moggi

It is essential that the name Tax is fresh and private to TaxedAc, otherwise we
may override some information in r1, which is needed by upd. In fact, TaxedAc
is an open fragment generator that does not know in advance how the signa-
ture variable p could be instantiated. On the other hand, with closed fragment
generators G: [Σi|τi] → M [Σ|τ] the problem does not arise, but reusability is
impaired. For instance, it is not reasonable to expect that all banks will use the
same parameters to update the accounts of their customers.

Example 2. We recast the multi-stage programming method of [TS97] (see also
[CMS03]) using the power function, which is a classical example for staged
programming.

1. The method starts from a “conventional” program exp with two parame-
ters. In the specific example, exp takes an exponent n, a base x, and then
computes xn by making recursive calls

fun exp n x = if n=0 then ret(1.0)
else do {y <- (exp (n-1) x); ret(x*y)};

> exp = ... : int -> real -> M real

The result type of exp is computational, because we consider recursion a
computational effect.

2. Then one obtains a “staged” version exp_a, which replaces the second pa-
rameter (the base x) with an open fragment u, and builds an open fragment
representing the desired result (i.e. xn)

fun exp_a n u = if n=0 then ret(b(r) 1.0)
else do {v <- exp_a (n-1) u; ret(b(r) u<r>*v<r>)};

> exp_a = ... : int -> [p|real] -> M[p|real]

The staged version is polymorphic in the signature variable p.
3. By exploiting the polymorphism of exp_a, one defines a code generator

exp_cg. Given the base n, the generator calls exp_a with a “dummy” pa-
rameter b(r) r.X, then builds an open fragment representing a function

fun exp_cg n = nu X. do {v <- exp_a n (b(r) r.X);
ret (b(r) fn x => v<r{X:x}>)};

> exp_cg = ... : int -> M[p|real -> real]

The type of exp_cg says that recursion is unfolded at “specialization” time,
when the exponent n is known.

4. By instantiating p with the empty signature, one gets an optimized program

fun exp_o n = do {v <- exp_cg n; ret(v<?>)};
> exp_o = ... : int -> M(real -> real)

The type of exp_o differs from the type of the conventional program exp
to reflect the different timing in unfolding recursion. Namely, exp_o unfolds
the recursion when the parameter n is known. For instance, when n = 2

Program Generation and Components 235

do sq_o <- exp_o 2;
> sq_o = (fn x => x*(x*1.0)) : real -> real

The multi-stage programming method makes use of open fragments of type [p|τ]
(these types are similar to the code types annotated with environment classifiers
〈τ〉α used by [TN03, CMT04]). One can easily recast the multi-stage program-
ming method also in the presence of more complex computational effects (while
in MetaML there are typing problems). For instance, when the conventional pro-
gram is an imperative variant p:int->real->(real ref)->M unit of exp

fun p n x y = if n=0 then y:=1.0
else do {p (n-1) x y; y’ <- !y; y:=x*y’};

> p = ... : int -> real -> (R real) -> M unit

p takes an exponent n, a base x and a reference y, then it initializes y with
1.0 and repeatedly multiplies the content of y with x until it becomes xn. The
“staged” version, p_a, is defined in the obvious way, and its type says that some
computations are postponed to the second stage

fun p_a n u v= if n=0 then ret(b(r) v<r>:=1.0)
else do {

w <- p_a (n-1) u v;
ret(b(r) do {w<r>; y’ <-!v<r>; v<r>:=u<r>*y’})};

> p_a = ... : int -> [p|real] -> [p|Ref real] -> M[p|M unit]

In comparison to MetaML, we don’t face the problems due to execution of poten-
tially open code or scope extrusion, which motivated the introduction of closed
types in [CMS03]. The reason is that in MMLN

ν one has a better control of the
name space and name resolution.

Example 3. We reconsider the power function exp:int->real->M real, and
give an alternative way to define exp_o:int-> M(real-> real), which does
not involve fresh name generation.

(* conventional program *)
fun exp n x = if n=0 then ret(1.0)

else do {y <- (exp (n-1) x); ret(x*y)};
> exp = ... : int -> real -> M real
(* staged program *)
fun exp_a n u = if n=0 then ret(b(r) 1.0)

else do {v <- exp_a (n-1) u; ret(b(r) u<r>*v<r>)};
> exp_a = ... : int -> [p|real] -> M[p|real]
(* exp_c generates a fragment with hook X for base *)
fun exp_c n = do {v <- exp_a n (b(r) r.X);

ret (b(r) fn x => v<r>)};
> exp_c = ... : int -> M[X:real|real]
(* optimized program *)
fun exp_o n = do {v <- exp_c n; ret(fn x => u<?{X:x}>)};
> exp_o = ... : int -> M(real -> real)

236 D. Ancona and E. Moggi

The definition of exp_c relies on a pre-existing name X, while exp_cg uses a
freshly generated name. MetaML does not allow to mention names explicitly,
thus it has no analogue of exp_c nor of the type [X:real|real]. On the other
hand, ν� has an analogue of exp_c (see exp’ in [NPar, Example 2]), but the
name X has to be declared of type real globally.

6 Relating MMLN
ν to MetaML

In this section we define a monadic CBV translation of a 2-level version of
MetaML into MMLN

ν (extended with functional types), and show that the trans-
lation preserves the operational semantics. We make no formal claim about
preservation of typing, since we have not been able to extend the translation
to types. We have not defined a monadic CBV translation of the whole MetaML,
since key ideas would get confused with orthogonal issues involved in the trans-
lation of a multi-level language. Restricting to a 2-level language allows to bring
these ideas in the foreground.

6.1 MetaML2

We give the formal definition (syntax, a simplified type system and big-step CBV
operational semantics) of MetaML2, a 2-level version of MetaML. As customary
for 2-level languages, the syntax (type system and operational semantics) is
stratified in two levels: the meta-level 0, and the object-level 1.

– τ0 ∈ T0: : = b | τ0
1 → τ0

2 | 〈τ1〉
τ1 ∈ T1: : = b | τ1

1 → τ1
2

types at level 0 and 1, note that T1 ⊂ T0

– e0 ∈ E0: : = v0 | e0
1e

0
2 | 〈e1〉 | run e0

v0 ∈ V0: : = x0 | λx0.e0 | 〈v1〉
e1 ∈ E1: : = v1 | λx1.e1 | e1

1e
1
2 | ẽ0

v1 ∈ V1: : = x1 | λx1.v1 | v1
1v1

2

terms and values at level 0 and 1

We give an informal semantics of the language.

– A value v1 corresponds to an object-level program, while a term e1 may
require some meta-level computation to get an object-level program.

– The type 〈τ1〉 classifies code, i.e. meta-level values of the form 〈v1〉 repre-
senting an object-level program v1. Brackets 〈e1〉 and escape ẽ0 allow to
move between meta-level code and the corresponding object-level program,
in particular 〈̃e1〉 and e1 evaluate to the same object-level program.

– The construct run e0 first evaluates e0 to code 〈v1〉, then evaluates the object-
level program v1 (provided it is a complete program, i.e. FV(v1) = ∅).

Besides the stratification in two levels, there are the following syntactic differ-
ences between MetaML2 and MetaML of [CMT04]:

Program Generation and Components 237

– MetaML2 values are explicitly marked in terms. This avoids re-evaluation
and a general pitfall of monadic CBV translations, namely preservation of
the operational semantics (as stated in Theorem 6) would fail.

– Cross-stage persistence, i.e. the ability to include meta-level values (v0: τ1)
into object-level programs, is excluded from MetaML2. This simplifies some
definitions and technical lemmas.

– In MetaML2 code types are not annotated with environment classifiers.

A type system (without the environment classifiers of [TN03, CMT04]) is
given by the following rules, where n ranges over levels (i.e. is either 0 or 1):

xn
Γ (xn) = τn

Γ �n xn: τn
val

Γ �n vn: τn

Γ �n vn: τn
brkv

Γ �1 v1: τ1

Γ �0 〈v1〉: 〈τ1〉
λn

Γ, xn: τn
1 �n en: τn

2

Γ �n λxn.en: τn
1 → τn

2

@n
Γ �n en

1 : τn
1 → τn

2 Γ �n en
2 : τn

1

Γ �n en
1 en

2 : τn
2

λv

Γ, x1: τ1
1 �1 v1: τ1

2

Γ �1 λx1.v1: τ1
1 → τ1

2

@v

Γ �1 v1
1 : τ

1
1 → τ1

2 Γ �1 v1
2 : τ1

1

Γ �1 v1
1v

1
2 : τ1

2

run
Γ �0 e0: 〈τ1〉

Γ �0 run e0: τ1
brk

Γ �1 e1: τ1

Γ �0 〈e1〉: 〈τ1〉 esc
Γ �0 e0: 〈τ1〉
Γ �1 ẽ0: τ1

The operational semantics of Table 4 consists of two relations en ⊂ n
> vn,

that evaluate terms to values. The operational semantics uses only the substitu-
tion [x0: v0] and enjoys the following properties.

Proposition 1 (Operational properties).

– demote
{x1

i : τ
1
i |i ∈ m} �1 v1: τ1

{x0
i : τ

1
i |i ∈ m} �0 v1 ↓: τ1

– SR
Γ �n en: τn en ⊂ n

> vn

Γ �n vn: τn

6.2 Translation of MetaML2 into MMLN
ν

Table 5 defines (by induction on the syntax of MetaML2) a translation [[en]]ρ,
[[v0]]ρ and [[v1]]ρθ , where θ is a resolver and ρ is a (partial) mapping from variables
of MetaML2 to terms of MMLN

ν such that

– a meta-level variable x0 is mapped to a term e
– an object-level variable x1 is mapped to a fragment b(r)e

The parameters ρ and θ are convenient to state some properties (see Lemma 1),
but for the definition of the translation it suffices to take θ = r and ρ(x0) = x.

Some clauses in the definition of the translation deserve to be commented:

– terms of the form vn are always translated into terms of the form ret e, since
values vn do not require meta-level computation

238 D. Ancona and E. Moggi

Table 4. Big-Step Operational Semantics for MetaML2

vn ⊂ n
> vn

e0
1

⊂ 0
> λx0.e0 e0

2
⊂ 0

> v0 e0[x0: v0] ⊂ 0
> v0

1

e0
1e

0
2

⊂ 0
> v0

1

e1 ⊂ 1
> v1

〈e1〉 ⊂ 0
> 〈v1〉

e0 ⊂ 0
> 〈v1〉 v1 ↓ ⊂ 0

> v0

run e0 ⊂ 0
> v0

FV(v1) = ∅

e1 ⊂ 1
> v1

λx1.e1 ⊂ 1
> λx1.v1

e1
1

⊂ 1
> v1

1 e1
2

⊂ 1
> v1

2

e1
1e

1
2

⊂ 1
> v1

1v1
2

e0 ⊂ 0
> 〈v1〉

ẽ0 ⊂ 1
> v1

where demotion v1 ↓ is defined by induction on v1

x1 ↓= x0 (λx1.v1) ↓= λx0.v1 ↓ (v1
1v1

2) ↓= v1
1 ↓ v1

2 ↓

– the translations of 〈e1〉 and e1 are the same (and similarly for ẽ0 and e0),
because the bijection between meta-level code and object-level programs is
collapsed to an equality

– the translation of 〈v1〉 is a fragment, which results into an object-level pro-
gram after linking, thus the translation of v1 depends on a resolver θ

– the translations of e1
1e

1
2 and λx1.e1 are meta-level computations to generate

code representing an application and abstraction in the object language
– the translation of values at level 1 (i.e. object-level programs) is like the

monadic CBV translation of the λ-calculus, as the object language is CBV.

There are problems in extending the translation to types (thus we make no
formal claim about preservation of typing). More precisely, the problem is to
identify a signature to replace of . . . in the following inductive definition

[[b]] = b [[τn
1 → τn

2]] = [[τn
1]] →M [[τn

2]] [[〈τ1〉]] = [. . . |M [[τ1]]]

The translation preserves the operational semantics in the following sense:

Theorem 6. e0 ⊂ 0
> v0 and FV(e0) = ∅ imply (∅|[[e0]], �) ==

∗⇒ (X|ret [[v0]], �)
for some X , where ===⇒ ∆= > ∪ > .

The result is a consequence of the following lemmas (stated without proof).

Lemma 1 (Properties of Translation).

1. If e = [[v0]]ρ, then [[[x0: v0]]]ρ = [[]]ρ,x0:e and [[[x0: v0]]]ρθ = [[]]ρ,x0:e
θ

2. [[v1]]ρθ = [[v1 ↓]]ρ′
, if ρ′(x0) = e[r: θ] when ρ(x1) = b(r)e and x1 ∈ FV(v1)

3. [[v1]]ρ1
θ1

∗
> [[v1]]ρ2

θ2
, if e1[r: θ1]

∗
> e2[r: θ2] when ρi(x1) = b(r)ei and x1 ∈

FV(v1).

Program Generation and Components 239

Table 5. Translation of MetaML2 terms and values

e0 [[e0]]ρ

v0 ret [[v0]]ρ

e0
1e

0
2 do x1 ← [[e0

1]]
ρ; x2 ← [[e0

2]]
ρ; x1x2

〈e1〉 [[e1]]ρ

run e0 do x← [[e0]]ρ; x〈?〉
v0 [[v0]]ρ

x0 e where e = ρ(x0)

λx0.e0 λx.[[e0]]ρ,x0:x

〈v1〉 b(r)[[v1]]ρr

e1 [[e1]]ρ

v1 ret (b(r)[[v1]]ρr)

e1
1e

1
2 do x′

1 ← [[e1
1]]

ρ; x′
2 ← [[e1

2]]
ρ; ret (b(r)do x1 ← x′

1〈r〉; x2 ← x′
2〈r〉; x1x2)

λx1.e1 νX.do x′ ← [[e1]]ρ,x1:b(r)r.X ; ret (b(r)ret λx.x′〈r{X: x}〉)
ẽ0 [[e0]]ρ

v1 [[v1]]ρθ
x1 ret e[r: θ] where b(r)e = ρ(x1)

λx1.v1 ret λx.[[v1]]
ρ,x1:b(r)x
θ

v1
1v1

2 do x1 ← [[v1
1]]ρθ ; x2 ← [[v1

2]]ρθ ; x1x2

Lemma 2 (Preservation of Evaluation). For any X and E

– e0 ⊂ 0
> v0 implies (X|[[e0]]ρ, E) ===

∗⇒ (X ′|ret [[v0]]ρ, E) for some X ′

– e1 ⊂ 1
> v1 implies (X|[[e1]]ρ, E) ===

∗⇒ (X ′|ret b(r)[[v1]]ρr , E) for some X ′

provided x1 ∈ FV(en) implies ρ(x1) = b(r)r.Xfor some X ∈ X .

We conclude with three examples of MetaML2- terms. Each term evaluates

to the same MetaML2-value v0 ∆≡ 〈λx1.x1〉, i.e. the code representing the object-
level identity function. However, the MMLN

ν -translation of these terms reflect
the different complexity of the evalution to v0.

– The term e0
0

∆≡ v0 evaluates immediately to v0.

The translation [[v0]]∅ is given by e
∆≡ b(r)ret λx.ret x, where ret λx.ret x is

the CBV monadic translation of λx.x. The translation [[e0
0]]

∅ is simply ret e.
Therefore, Theorem 6 holds trivially for e0

0
⊂ 0

> v0
0 .

– The term e0
1

∆≡ 〈λx1.x1〉 evaluates to v0, but the evaluation steps are more
complex. This complexity is mirrored in the translation [[e0

1]]∅ given by

240 D. Ancona and E. Moggi

e1
∆≡ νX.do x′ ← ret (b(r)ret r.X);

ret (b(r)ret λx.x′〈r{X : x}〉)
Theorem 6 for e0

1
⊂ 0

> v0 yields (∅|e1, �) ===
+⇒ (X |ret e, �).

– The term e0
2

∆≡ 〈λx1 .̃ ((λx0.x0)〈x1〉)〉 evaluates to v0, and requires evaluation
within the body of the λx1-binder. The translation [[e0

2]]
∅ is given by

e2
∆≡ νX.do x′ ← do x1 ← ret (λx.ret x);

x2 ← ret (b(r)ret r.X);
x1x2;

ret (b(r)ret λx.x′〈r{X : x}〉)
Theorem 6 yields (∅|e2, �) ===

+⇒ (X |ret e, �), but the steps needed to reach
the final configuration are strictly more than in the previous case.

7 Relating MMLN
ν to CMS

In this section we recall CMS [AZ02], a purely functional calculus of mixin mod-
ules, and introduce MLN

Σ , a variant of MMLN
ν . Then we define a translation of

CMS in MLN
Σ preserving CMS typing and simplification up to Ariola’s equational

axioms [AB02] for recursion. We summarize the main differences between MMLN
ν

and CMS (for those already familiar with CMS).

– CMS has a fixed infinite set of names (but a program uses only finitely many
of them) and no fresh name generation facility.

– CMS is a pure calculus, thus we can restrict to the fragment of MMLN
ν

without computational types, called MLN .
– In CMS recursion is bundled in mixin, and removing it results in a very

inexpressive calculus. On the contrary, MLN is an interesting calculus (com-
parable to the λ-calculus) even without recursion, and one can add recursion
following standard approaches.

7.1 CMS

We recall the calculus of mixin modules CMS, and refer to [AZ99, AZ02] for
further details. The syntax of CMS is abstracted over symbolic names X ∈ Name,
and term variables x ∈ X. For simplicity, we avoid to introduce core terms and
types (in [AM04] the calculus is parametrized w.r.t. a core calculus).

– τ ∈ CMST: : = [Σ1; Σ2] types, where Σ: Name
fin→ CMST

– E ∈ CMSE: : = x | [ι; o; ρ] | E1 + E2 | E \X | E!X | E.X terms, where

ι: X
fin→ Name, o: Name

fin→ CMSE, ρ: X
fin→ CMSE and we implicitly require

that dom(ι)#dom(ρ) for well-formed of [ι; o; ρ].

Free variables are defined as follows (omitting trivial cases): FV([ι; o; ρ]) =
(FV(o) ∪ FV(ρ)) \ (dom(ι) ∪ dom(ρ)). Thus one can freely rename the bound

Program Generation and Components 241

variables in dom(ι) ∪ dom(ρ), as done implicitly in the reduction rule (sum)
below. We first give an informal overview of the calculus:

– The type [Σ1; Σ2] specifies the names and types of the deferred (Σ1) and de-
fined (Σ2) components of a mixin. The deferred components can be referred
in the mixin, but are not defined, therefore they need to be resolved (see the
freeze operation described below). The defined components corresponds to
the exported definitions of the mixin.

– Term variables are used for local referencing of components, whereas names
are needed for dealing with global access and linking of components. As in
MMLN

ν , names are not terms.
– In a basic mixin [ι; o; ρ], ι specifies the deferred components. The mapping to

names is needed for component resolution (see the freeze operation described
below). The defined components (o) are associated with names, whereas local
components (ρ) are introduced by variables and can be mutually recursive.

– The sum operation (E1+E2) performs the union of the deferred components
(in the sense that components with the same name are shared), and the
disjoint union of the defined and local components of the two mixins.

– The freeze operation (E!X) binds the deferred component X to the expres-
sion of the defined component X in the same mixin; in this way a name can
be resolved, and a deferred component becomes local. Cross-module recur-
sion is obtained as a combination of the sum and the freeze operations.

– The delete operation (E \X) is used for hiding defined components.
– Selection of a defined component (E.X) is only allowed for mixin with no

deferred components.

Typing Rules. The typing judgment has form Γ �CMS E: τ , where Γ : X
fin→

CMST. The typing rules are given in Table 6, where two signatures Σ1 and Σ2

are compatible iff Σ1(X) = Σ2(X) for all X ∈ dom(Σ1) ∩ dom(Σ2).

Simplification Rules. We define the relation
CMS

> as the compatible closure
of the simplification rules defined in Table 7.

7.2 MLN
Σ

The syntax of MLN
Σ is defined in two steps. First, we remove from MMLN

ν compu-
tational types (and consequently monadic operations, like νX.e). In the resulting
calculus, called MLN , the computation relation disappears (CMS is a pure calcu-
lus), and X could be left implicit in the typing judgments X ; Π ; Γ � e: τ , since
the typing judgments of a derivation must use the same X . Then we add records
and mutual recursion:

– τ ∈ TX+ = Σ types, where Σ ∈ ΣX
∆= X fin→ TX is a X -signature

– e ∈ E+ = o | e.X | e1 + e2 | e \X | let ρ in e terms, where

o: Name
fin→ E is a record {Xi: ei|i ∈ m} and

ρ: X
fin→ E is a (recursive) binding {xi: ei|i ∈ m}.

242 D. Ancona and E. Moggi

Table 6. Type System for CMS

var
Γ �CMS x: τ

Γ (x) = τ delete
Γ �CMS e: [Σ1; Σ2]

Γ �CMS e \X: [Σ1; Σ2 \X]

mixin

{Γ, Σ1 ◦ ι, Γ ′ �CMS o(X): Σ2(X) | X ∈ dom(o)}
{Γ, Σ1 ◦ ι, Γ ′ �CMS ρ(x):Γ ′(x) | x ∈ dom(ρ)}

Γ �CMS [ι; o; ρ]: [Σ1; Σ2]

dom(Γ ′) = dom(ρ)
dom(Σ1) = img(ι)
dom(Σ2) = dom(o)

sum
Γ �CMS e1: [Σ

1
1 ; Σ1

2] Γ �CMS e2: [Σ
2
1 ; Σ2

2]

Γ �CMS e1 + e2: [Σ
1
1 , Σ2

1 ; Σ1
2 , Σ2

2]

Σ1
1 compatible with Σ2

1

dom(Σ1
2)#dom(Σ2

2)

freeze
Γ �CMS e: [Σ1; Σ2]

Γ �CMS e!X: [Σ1 \X; Σ2]
τ = Σ1(X) = Σ2(X)

select
Γ �CMS e: [∅; Σ]

Γ �CMS e.X: τ
τ = Σ(X)

Table 7. Simplification rules for CMS

sum) [ι1; o1; ρ1] + [ι2; o2; ρ2]
CMS

> [ι1, ι2; o1, o2; ρ1, ρ2] if dom(o1)#dom(o2)

delete) [ι; o; ρ] \X
CMS

> [ι; o\X ; ρ]

freeze) [ι, {x: X}; o, {X: E}; ρ]!X
CMS

> [ι; o, {X: E}; ρ, {x: E}]

select) [; o, {X: E}; ρ].X
CMS

> E[x: [; X: ρ(x);ρ].X | x ∈ dom(ρ)]

Free variables are defined as follows (omitting trivial cases): FV(let ρ in e) =
FV(e) \ dom(ρ).

The type Σ ≡ {Xi: τi|i ∈ m} classifies records of the form {Xi: ei|i ∈ m},
i.e. with a fixed set of components. Notice that records should not be confused
with resolvers. In particular, a fragment of type [Σ|τ] can be linked with a re-
solver of any signature Σ′ ⊇ Σ. The operations on records correspond to the
CMS primitives for mixins: e.X selects the component named X , e1 + e2 con-
catenates two records (provided their component names are disjoint), and e \X
removes the component named X (if present). The let construct allows mutually
recursive declarations, which are used to encode the local components of a CMS
module. The order of record components and mutually recursive declarations
are immaterial, therefore o and ρ are not sequences but functions (with finite
domain).

Table 8 gives the typing rules for the new constructs. The properties of
the type system in Section 4 extend in the obvious way to MLN

Σ . We define

Program Generation and Components 243

Table 8. Additional Typing Rules for MLN
Σ

o
{X ; Π ; Γ � ei: τi | i ∈ m}

X ; Π ;Γ � {Xi: ei|i ∈ m}: {Xi: τi|i ∈ m} select
Σ(X) = τ X ;Π ; Γ � e: Σ

X ; Π ;Γ � e.X: τ

plus
X ; Π ; Γ � e1: Σ1 X ;Π ; Γ � e2: Σ2

X ; Π ; Γ � e1 + e2: Σ1, Σ2

dom(Σ1)#dom(Σ2)

delete
X ; Π ;Γ � e: Σ

X ; Π ;Γ � e \X: Σ \X

rec
{X ; Π ; Γ, Γ ′ � ρ(x):Γ ′(x) | x ∈ dom(ρ)} X ; Π ; Γ, Γ ′ � e: τ

X ; Π ;Γ � let ρ in e: τ
dom(Γ ′) = dom(ρ)

simplification > for MLN
Σ as the compatible closure of the simplification

rules for MMLN
ν (see Section 4.2) and the following simplification rules for record

operations and mutually recursive declarations:

select) o.X > e if e ≡ o(X)
plus) o1 + o2 > o1, o2 if dom(o1)#dom(o2)
delete) o \X > o\X

unfolding) let ρ in e > e[x: let ρ in ρ(x) | x ∈ dom(ρ)]

Simplification for MLN
Σ enjoys confluence (Theorem 1) and subject reduction

(Theorem 2).

7.3 Translation of CMS into MLN
Σ

The key idea of the translation consists in translating a mixin type [Σ1; Σ2] in
[Σ′

1|Σ′
2], in this way we obtain a compositional translation of CMS terms. In

contrast, a translation based on functional types, where [Σ1; Σ2] is translated
in Σ′

1 → Σ′
2, is not compositional (the problem is in the translation of e1 + e2,

which must be driven by the type of e1 and e2).
Table 9 gives the translation of CMS in MLN

Σ . The translation can be easily
extended to core terms (see [AM04]).

In the translation of a basic mixin [ι; o; ρ] the deferred variables x (x ∈
dom(ι)) are replaced with the resolution r.X of the corresponding name X =
ι(x), whereas the local variables x (x ∈ dom(ρ)) are bound by the let construct
for mutually recursive declarations. (A similar translation would not work in ν�,
because of the limitations in typing discussed in Section 8).

The translation of selection E.X uses the empty resolver ?, since in CMS
selection is allowed only for mixins without deferred components.

The freeze operator E!X resolves a deferred component X with the corre-
sponding output component. This resolution may introduce a recursive defini-
tion, since the output component X could be defined in terms of the corre-

244 D. Ancona and E. Moggi

Table 9. Translation of CMS in MLN
Σ

CMS typing MLN
Σ typing

Γ �CMS E: τ X ; ∅; Γ ′ � E′: τ ′

CMS type MLN
Σ type

[Σ1; Σ2] [Σ′
1|Σ′

2]

CMS term MLN
Σ term

x x

[ι; o; ρ] b(r)(let ρ′ in o′)[x: r.X | ι(x) = X]

E1 + E2 b(r)E′
1〈r〉+ E′

2〈r〉
E \X b(r)E′〈r〉 \X

E.X E′〈?〉.X
E!X b(r)let {x1: x2.X, x2: E

′〈r{X: x1}〉} in x2

the translations of Γ , Σ, o and ρ are defined pointwise.

sponding deferred component. Therefore, the translation defines the record x2

by resolving the name X with the X component of the record x2 itself.
The typing preservation property of the translation can be proved

Theorem 7 (Typing preservation). If Γ �CMS E: τ , then X ; ∅; Γ ′ � E′: τ ′,
where X includes all names occurring in the derivation of Γ �CMS E: τ .

The translation preserves also the semantics of CMS, but this can be proved
only up to some equational axioms for mutually recursive declarations

C[let ρ in e] = let ρ in C[e] (lift)
let ρ1 in let ρ2 in e = let ρ1, ρ2 in e (ext-merge)
let ρ1, x: (let ρ2 in e2) in e1 = let ρ1, ρ2, x: e2 in e1 (int-merge)
let ρ, x: e1 in e2 = let ρ[x: e1] in e2[x: e1] if x �∈ FV(e1) (sub)

The (lift) axiom corresponds to Ariola’s lift axioms, in principle it can be in-
stantiated with any MLN

Σ context C[], but for proving Theorem 8 it suffices to
consider the following contexts: C[]: : = � + e | e + � | � \X | �.X .

The (ext-merge) and (int-merge) axioms are Ariola’s merge axioms, whereas
(sub) is derivable from Ariola’s axioms.

Let R denotes the set of the three axioms above, and S denotes the set of
equational axioms corresponding to the simplification rules for MLN

Σ ; then the
translation is proved to preserve the CMS simplification up to =S∪R (i.e. the
congruence induced by the axioms in S ∪R).

Theorem 8 (Semantics preservation). If E1
CMS

> E2, then E′
1 =S∪R E′

2.

The translation of the non-recursive subset of CMS (i.e. no local declarations ρ
and no freeze E!X) is a lot simpler, moreover its simplifications are mapped to
plain MLN

Σ simplifications.
We conclude this section with some examples of CMS reductions and their

translations in MLN
Σ .

Program Generation and Components 245

Example 4. Consider the plus reduction E1
CMS

> E2, where

E1 ≡ [{x:A}; {R: x}; ∅] + [∅; {A: y}; ∅],
E2 ≡ [{x:A}; {A: y,R: x}; ∅].

The translations of E1 and E2 are given by
E′

1 ≡ b(r)(b(r1)(let ∅ in {R: r1.A}))〈r〉 + (b(r2)let ∅ in {A: y})〈r〉
E′

2 ≡ b(r)let ∅ in {A: y,R: r.A}.
By repeatedly applying simplifications and equational axioms in R we get
E′

1

∗
> (by link)

b(r)(let ∅ in {R: r.A}) + let ∅ in {A: y} =R (by lift)
b(r)let ∅ in let ∅ in {R: r.A}+ {A: y} =R (by ext-merge)
b(r)let ∅ in {A: y,R: r.A} ≡ E′

2.

Example 5. Consider the freeze reduction E3
CMS

> E4, where
E3 ≡ E2!A with E2 defined as in the previous example,
E4 ≡ [∅; {A: y,R: x}; {x: y}].

The translations of E3 and E4 are given by
E′

3 ≡ b(r)let {x1: x2.A, x2: E′
2〈r{A: x1}〉} in x2

E′
4 ≡ b(r)let {x: y} in {A: y,R: x}.

By repeatedly applying simplifications and equational axioms in R we get
E′

3 > (by link)
b(r)let {x1: x2.A, x2: let ∅ in {A: y,R: (r{A: x1}).A}} in x2 > (by resolve)
b(r)let {x1: x2.A, x2: let ∅ in {A: y,R: x1}} in x2 =R (by sub)
b(r)let {x1: (let ∅ in {A: y,R: x1}).A} in let ∅ in {A: y,R: x1} =R (by ext-
merge)
b(r)let {x1: (let ∅ in {A: y,R: x1}).A} in {A: y,R: x1} =R (by lift)
b(r)let {x1: let ∅ in {A: y,R: x1}.A} in {A: y,R: x1} =R (by int-merge)
b(r)let {x1: {A: y,R: x1}.A} in {A: y,R: x1} > (by resolve)
b(r)let {x1: y} in {A: y,R: x1} which is α-equivalent to E′

4.

Example 6. Consider the select reduction E5
CMS

> E6, where
E5 ≡ E4.R with E4 defined as in the previous example,
E6 ≡ [∅; {X : y}; {x: y}].X .

The translations of E5 and E6 are given by
E′

5 ≡ (b(r)let {x: y} in {A: y,R: x})〈?〉.R,
E′

6 ≡ (b(r)let {x: y} in {X : y})〈?〉.X .
By repeatedly applying simplifications we get
E′

5 > (by link)
(let {x: y} in {A: y,R: x}).R > (by unfolding)
{A: y,R: let {x: y} in y}.R > (by resolve)
let {x: y} in y > (by unfolding)
y.

Analogously, E′
6

∗
> y, therefore E′

5 =S E′
6. Unlike the other examples,

there is no way to get from E′
5 to E′

6 by applying simplifications and equations
axioms in R. This explains the use of =S∪R in stating Theorem 8.

246 D. Ancona and E. Moggi

8 Conclusions and Related Work

This section compares MMLN
ν with the CBV calculi FreshML and ν�. First,

we recall briefly the main features of these two calculi, then we make a critical
assessment based on a comparison with MMLN

ν .

– FreshML of [SPG03]2 is an extension of ML, based on a solid mathematical
theory [GP99], that provides a convenient support for meta-programming.
Namely, in FreshML abstract representations (i.e. modulo α-conversion) of
object-level syntax co-exist with pattern matching facilities (similar to those
usable on concrete parse trees) to analyse these representations.

– ν� of [Nan02, NPar] is a refinement of λ� [DP01], which provides better
support for symbolic manipulation by exploiting some features of FreshML
(the calculus presented in [NPar] does not support program analysis). The
stated aim is to combine safely the best features of λ� (the ability to execute
closed code) and λ© [Dav96] (the ability to manipulate open code). MetaML
has similar aims, but adopts the opposite strategy, i.e. it starts from λ©, nor
does it build on top of FreshML (names are not part of the MetaML syntax).

If we ignore the different styles for describing the operational semantics of
FreshML (a CBV evaluation relation), ν� (a CBV small-step reduction relation)
and MMLN

ν (a simplification and a computation relation), the key differences are:

– FreshML supports program transformation, in particular the analysis of
object-level programs represented as values of an inductive datatype involv-
ing abstraction types 〈name〉τ .

– ν� of [NPar] supports only program generation, (object-level) programs e of
type τ with unresolved names in X are represented by values of type �X τ .
The typing rules for �X τ are fairly restrictive, because X has to include all
unresolved names in e (and e should not contain free variables x).

– MMLN
ν supports only program generation, (object-level) programs e of type

τ abstracted w.r.t. a name resolver r of signature Σ are represented by terms
of type [Σ|τ]. The typing rules for [Σ|τ] are similar to those for a functional
type Σ → τ , in particular e may use other name resolvers besides r.

MMLN
ν versus FreshML. Typing judgments of FreshML have the standard for-

mat Γ � e: τ , because names do not occur in types (and in particular there are
no resolvers and no signatures for typing resolvers).

In FreshML names are terms (and there is a type name of names), so gener-
ation of a fresh name is denoted by νx.e, where x is a term variable which gets
bound to the fresh name, and e is the term where the fresh name can be used.
In MMLN

ν names occur both in types and in terms, and using x in place of a
name X would entail a type system with dependent types (which would be prob-
lematic), thus we must use a different binder νX.e for names. FreshML, unlike
MMLN

ν , supports the manipulation of object-level syntax modulo α-conversion.
This is possible because FreshML has:
2 There is another version of FreshML [PG00] with a more elaborate type system,

which is able to mask the computational effects due to generation of fresh names.

Program Generation and Components 247

– an equality type name of names
– abstraction types 〈name〉τ classifying equivalence classes of pairs (X, e) mod-

ulo renaming of X with names fresh for e (of type τ), terms 〈e1〉e2 to form
name abstractions, and patterns 〈x〉p to deconstructed them.

– a name swapping operation, which is crucial (in combination with name gen-
eration) to define the operational semantics of name abstraction matching.

It should be possible to extend MMLN
ν with these features of FreshML. However,

one should keep a clear distinction between the types 〈name〉τ and [Σ|τ]. The first
type classifies representations of object-level syntax modulo α-conversion, while
the second classifies fragments modulo simplification, thus it cannot support
program analysis.

MMLN
ν versus ν�. Typing judgments of ν� take the form Σ; ∆; Γ � e: τ [X],

where X ⊆ dom(Σ) includes the names occurring free in e, and ∆ has declara-
tions of the form ui: τi[Xi] with Xi ⊆ dom(Σ).

In ν� the type of a name X is fixed at name generation time. This is a
bad name space management policy, which goes against common practice in
programming language design (e.g. of modules systems). MMLN

ν follows the ap-
proach of mainstream module languages, where different modules can assign to
the same name different types (and values). Therefore, programming in ν� forces
an overuse of name generation, because the language restricts name reuse.

In ν� terms includes names, so our θ.X is replaced by X , in other words
there is a default resolver which is left implicit. Linking u〈Θ〉 uses a function
Θ ≡ 〈Xi → ei|i ∈ m〉 to modify the default resolver. The typing judgments for
explicit substitutions Θ take the form Σ; ∆; Γ � Θ:X [X ′], where X ′ includes
the names used by the modified resolver to resolve the names in X , e.g. X ⊆ X ′

when Θ is empty. The following explicit substitution principle is admissible

Σ; ∆; Γ � Θ:X [X ′] Σ; ∆; Γ � e: τ [X]
Σ; ∆; Γ � e[Θ]: τ [X ′]

Our type [Σ|τ] corresponds to �X τ with X = dom(Σ). Typing rules for �X τ
are related to those for necessity of S4 modal logic, e.g. �X τ introduction is

Σ; ∆; ∅ � e: τ [X]
Σ; ∆; Γ � box e: �X τ [X ′]

This rule is very restrictive: it forbids having free term variables x in e, and
acts like an implicit binder for the free names X of e (i.e. it binds the default
resolver for e). Without these restrictions substitution would be unsound in the
type system of ν�. Such restrictions have no reason to exist in MMLN

ν , because
we allow multiple name resolvers, and fragments b(r)e are formed by abstracting
over one name resolver. Furthermore, making name resolvers explicit, avoid the
need to introduce non-standard forms of substitution.

248 D. Ancona and E. Moggi

The observations above are formalized by a CBV translation ′ of ν�-terms3

into MMLN
ν , where the resolver variable r corresponds to the default resolver,

which is implicit in ν�.

e ∈ ν� e′ ∈ MMLN
ν

x ret x
λx: τ.e ret (λx.e′)
e1 e2 do x1 ← e′1; x2 ← e′2; x1x2

νX : τ.e νX.e′

e ∈ ν� e′ ∈ MMLN
ν

X r.X
u〈Xi → ei〉 u〈r{Xi: e′i}〉
box e ret (b(r)e′)
letbox u = e1 in e2 do u← e′1; e

′
2

We do not define the translation on types and assignments, since in ν� the
definition of well-formed signatures Σ � and types Σ � τ is quite complex.

In conclusion, the key novelty of MMLN
ν is to make name resolvers explicit

and to allow a multiplicity of them, as a consequence we gain in simplicity and
expressivity. Moreover, by building on top of a fairly simple form of extensible
records, we are better placed to exploit existing programming language imple-
mentations (like O’Caml).

References

[AB02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with
letrec. Annals of pure and applied logic, 117(1-3):95–178, 2002.

[AM04] D. Ancona and E. Moggi. A fresh calculus for names management. In
Karsai and Visser [KV04].

[AZ99] Davide Ancona and Elena Zucca. A primitive calculus for module systems.
In Proc. Int’l Conf. Principles & Practice Declarative Programming, vol-
ume 1702 of Lecture Notes in Computer Science, pages 62–79. Springer,
1999.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. J. Funct. Pro-
gramming, 12(2):91–132, March 2002. Extended version of [AZ99].

[BCT02] D. Batory, C. Consel, and W. Taha, editors. Generative Programming
and Component Engineering, volume 2487 of Lecture Notes in Computer
Science. Springer, October 2002.

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In Conf.
Rec. POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., pages 266–277,
1997.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CM94] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter
and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design, pages 295–350. The
MIT Press, Cambridge, MA, 1994.

[CMS03] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe imperative
MetaML. J. Funct. Programming, 13(3):545–571, 2003.

3 In [NPar] the operational semantics (and the typing) of νX.e differs from that
adopted by (us and) FreshML. To avoid unnecessary complications, we work as
if ν� is FreshML compliant.

Program Generation and Components 249

[CMT04] C. Calcagno, E. Moggi, and W. Taha. ML-like inference for classifiers. In
Programming Languages & Systems, 13th European Symp. Programming,
volume 2986 of Lecture Notes in Computer Science. Springer, 2004.

[CTHL03] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Im-
plementing multi-stage languages using ASTs, gensym, and reflection. In
Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis, editors,
Generative Programming and Component Engineering (GPCE), Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[Dav96] R. Davies. A temporal-logic approach to binding-time analysis. In the
Symposium on Logic in Computer Science (LICS ’96), pages 184–195, New
Brunswick, 1996. IEEE Computer Society Press.

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. Journal of the ACM, 48(3):555–604, 2001.

[ESOP00] Programming Languages & Systems, 9th European Symp. Programming,
volume 1782 of Lecture Notes in Computer Science. Springer, 2000.

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax involving binders. In Proc. 14th Ann. IEEE Symp. Logic in Comput.
Sci., pages 214–224, July 1999.

[GS04] J. Greenfield and K. Short. Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. Wiley Publishing Inc,
2004.

[HW03] Christian Haack and J. B. Wells. Type error slicing in implicitly typed,
higher-order languages. In Programming Languages & Systems, 12th Eu-
ropean Symp. Programming, volume 2618 of Lecture Notes in Computer
Science, pages 284–301. Springer, 2003. Superseded by [HW04].

[HW04] Christian Haack and J. B. Wells. Type error slicing in implicitly typed,
higher-order languages. Sci. Comput. Programming, 50:189–224, 2004. Su-
persedes [HW03].

[KV04] G. Karsai and E. Visser, editors. Generative Programming and Component
Engineering, volume 3286 of Lecture Notes in Computer Science. Springer,
October 2004.

[LBCO04] Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky,
editors. Domain-Specific Program Generation. Number 3016 in Lecture
Notes in Computer Science. Springer-Verlag, 2004.

[Met01] MetaOCaml: A compiled, type-safe multi-stage programming language.
Available online from http://www.cs.rice.edu/∼{}taha/MetaOCaml/,
2001.

[MF03] E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage. In Proc.
FoSSaCS ’03, volume 2620 of Lecture Notes in Computer Science. Springer,
2003.

[MT00] Elena Machkasova and Franklyn A. Turbak. A calculus for link-time com-
pilation. In ESOP ’00 [ESOP00], pages 260–274.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In
Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming (ICFP-02), ACM SIGPLAN notices, New York,
October 2002. ACM Press.

[NPar] A. Nanevski and F. Pfenning. Staged computations with names and ne-
cessity. J. Funct. Programming, to appear.

http://www.cs.rice.edu/~{}taha/MetaOCaml/

250 D. Ancona and E. Moggi

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse and J. N.
Oliveira, editors, Proc. Mathematics of Program Construction, 5th Int’l
Conf. (MPC 2000), volume 1837 of Lecture Notes in Computer Science,
pages 230–255, Ponte de Lima, Portugal, July 2000. Springer.

[PS03] F. Pfenning and Y. Smaragdakis, editors. Generative Programming and
Component Engineering, volume 2830 of Lecture Notes in Computer Sci-
ence. Springer, September 2003.

[She01] T. Sheard. Accomplishments and research challenges in meta-
programming. In W. Taha, editor, Proc. of the Int. Work. on Seman-
tics, Applications, and Implementations of Program Generation (SAIG),
volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
Programming with binders made simple. In Proc. 8th Int’l Conf. Func-
tional Programming. ACM Press, 2003.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming, 2nd Edition. Addison Wesley, 2002.

[Tah99] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Inst. of Science and Technology, 1999. Available
from ftp://cse.ogi.edu/pub/tech-reports/README.html.

[TN03] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In
The Symposium on Principles of Programming Languages (POPL ’03),
New Orleans, 2003.

[TS97] W. Taha and T. Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the Symposium on Partial Evaluation and
Semantic-Based Program Manipulation (PEPM), pages 203–217, Amster-
dam, 1997. ACM Press.

[WV99] J. B. Wells and René Vestergaard. Confluent equational reasoning for
linking with first-class primitive modules (long version). A short version is
[WV00]. Full paper, 3 appendices of proofs, August 1999.

[WV00] J. B. Wells and René Vestergaard. Equational reasoning for linking with
first-class primitive modules. In ESOP ’00 [ESOP00], pages 412–428. A
long version is [WV99].

	Introduction
	Program Generation
	What Is It?
	What Is for?

	Names and Software Components
	A Core Calculus with Names: \MMLNnu
	Type System
	Simplification
	Computation
	Type Safety

	Programming Examples
	Relating \MMLNnu to \MetaML
	\MetaML_2
	Translation of \MetaML_2 into \MMLNnu

	Relating \MMLNnu to \CMS
	\CMS
	\MLNr
	Translation of CMS into \MLNr

	Conclusions and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

