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Abstract. Consider a program with m statements and n predicates,
where the predicates are derived from the conditional statements and as-
sertions in a program. An observable state is an evaluation of the n pred-
icates under some state at a program statement. The goal of predicate-
complete testing (PCT) is to evaluate all the predicates at every program
state. That is, we wish to cover every reachable observable state (at most
m × 2n of them) in a program. PCT coverage subsumes many existing
control-flow coverage criteria and is incomparable to path coverage. To
support the generation of tests to achieve high PCT coverage, we show
how to define an upper bound U and lower bound L to the (unknown)
set of reachable observable states R. These bounds are constructed au-
tomatically using Boolean (predicate) abstraction over modal transition
systems and can be used to guide test generation via symbolic execution.
We define a static coverage metric as |L|/|U |, which measures the ability
of the Boolean abstraction to achieve high PCT coverage.

1 Introduction

Control-flow-based test generation generally has as its goal to cover all the state-
ments or branches in a program. There are various control-flow adequacy criteria
that go beyond branch coverage, such as multiple condition coverage, the ulti-
mate of which is path coverage. Errors that go undetected in the face of 100%
statement or branch coverage may be due to complex correlations between the
predicates (that control the execution of statements) and the statements (that af-
fect the value of these predicates) of a program. However, paths are notoriously
difficult to work with as a coverage metric because there are an unbounded
number of them in programs with loops, which characterizes most interesting
programs in existence.

So, we seek an alternative to path coverage that has its “exhaustive” quality
but induces a finite (rather than infinite) state space. We start with a fixed
notation for atomic predicates (not containing Boolean connectives), taken from
the relevant programming language. A predicate maps a state to a Boolean
value. For example, the predicate (x > 0) observes whether or not variable x
has a positive value in a given state. Consider a program with m statements and
n predicates. These predicates can be drawn from the conditional statements
and assertions in a program, as well as from implicit run-time safety checks (for
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checking for array bounds violations or divide-by-zero errors, for example). An
observable state is an evaluation of the n predicates under some program state
at a statement. While the set of states in a program is unbounded, the size of
the set of observable states (S) is at most (m × 2n).

The goal of predicate-complete testing (PCT) is to evaluate all the predi-
cates at every program state. That is, we wish to cover all reachable observable
states. PCT coverage is motivated by the observation that certain errors in a
program only can be exposed by considering the complex dependences between
the predicates in a program and the statements whose execution they control.
The n predicates represent all the case-splits on the input that the program-
mer has identified (Of course, the programmer may have missed certain cases–
specification-based testing would need to be used to determine the absence of
such case-splits). In the limit, each of the m statements may have different be-
havior in each of the 2n possible observable states, and so should be tested in
each of these states. We show that PCT coverage subsumes traditional cover-
age metrics such as statement, branch and multiple condition coverage and that
PCT coverage is incomparable to path coverage. PCT groups paths ending at
a statement s into equivalence classes based on the observable states the paths
induce at s.

Control-flow coverage metrics result from dividing a dynamic measure (for
example, the number of statements executed by a test) into a static measure
(for example, the number of statements in a program). Clearly, such a metric
also can be defined for observable states. However, the choice of (m × 2n) as a
denominator will not do, as we expect many of the (m × 2n) states to be un-
reachable. (Statement coverage does not suffer greatly from this problem because
most statements are reachable). For example, if the set of predicates contains
(x = 0) and (x = 1) then not all combinations are possible.

Thus, we desire a way to define a better denominator for PCT coverage. The
main result of this paper is a way to overapproximate and underapproximate
the set of reachable observable states (R) using the theory of modal transition
systems and Boolean abstraction. The Boolean abstraction of a program with
respect to its n predicates is a non-deterministic program, whereas the original
concrete program is deterministic. We show how reachability analysis of this
abstract program yields an upper bound U for R (R ⊆ U) as well as a lower
bound L for R (L ⊆ R). The set U is an overapproximation of R: any state
outside U is not a reachable observable state and need not (indeed, cannot) be
tested. This set U provides a better denominator than (m × 2n).

Conversely, the set L is an underapproximation of R: any state in L must
be a reachable observable state. That is, every state in L must be testable.
We show how to use L to guide symbolic path-based test generation to cover
the untested states in L. Our definition of L relies on a novel enhancement to
modal transition systems that enlarges the set of states that can be proved to
be reachable observable states.

This paper is organized as follows. Section 2 compares predicate-complete
test coverage to other forms of control-flow coverage. Section 3 precisely defines



A Theory of Predicate-Complete Test Coverage and Generation 3

the system of abstraction we will use to compute the upper and lower bounds.
Section 4 gives algorithms to compute these upper and lower bounds. Section 5
gives an example that shows how the use of PCT coverage and the lower and
upper bounds can be used to expose an error in a small function. Section 6
presents an algorithm that uses the lower bound to guide test generation. Sec-
tion 7 discusses some of the implications of our results. Section 8 reviews related
work and Section 9 concludes the paper.

2 A Characterization of Predicate-Complete Test
Coverage

This section compares PCT coverage with other forms of control-flow coverage.
In this comparison, we decompose complex predicates into atomic predicates.
So, the program fragment “L1: if ((x<0)||(y<0)) S else T” contains two
branches corresponding to the atomic predicates (x<0) and (y<0). Based on
this decomposition, the concepts of branches, atomic predicates and conditions
are equivalent.

To recap, complete PCT coverage means that each reachable observable state
of a program is covered by a test. This implies that each (executable) statement
is executed at least once, so PCT subsumes statement coverage. PCT coverage
requires that each predicate be tested so as to evaluate to both true and false
(of course this may not be possible for unsatisfiable predicates such as (x!=x)),
so it subsumes branch coverage. PCT clearly also subsumes multiple condition
coverage and its variants. Considering the program fragment given above, mul-
tiple condition coverage requires every possible Boolean combination of (x<0)
and (y<0) to be tested at L1, which seems similar to PCT. But now, consider
the sequencing of two if statements:

L2: if (A || B) S else T
L3: if (C || D) U else V

PCT requires that every Boolean combination over the set { A, B, C, D } be
tested at every statement in the program (six in this case, the two if statements
and the four statements S, T, U and V). Multiple condition coverage only requires
that every Boolean combination over { A, B } be tested at L2 and that every that
every Boolean combination over { C, D } be tested at L3. Similarly, predicate-
based test generation [Tai96, Tai97] focuses on testing predicates in a program.
It considers correlations between predicates that appear in a single conditional
statement but does not consider correlations between predicates that appear in
different conditional statements, as does PCT.

Of course, we can view paths as possible logical combinations of predicates,
so it is natural to ask how PCT relates to path coverage. As a loop-free program
with n predicates can have at most 2n paths, it seems like PCT might have the
ability to explore more behaviors (as it may explore m× 2n states in the limit).
In fact, we show PCT and path coverage are incomparable, even for loop-free
programs.
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// reachable observable states

L0: y = 0; // (L0,x<0) (L0,!(x<0))

L1: if (x<0) // (L1,x<0) (L1,!(x<0))

L2: skip; // (L2,x<0)

else //

L3: x = -2; // (L3,!(x<0))

L4: x = x + 1; // (L4,x<0)

L5: if (x<0) // (L5,x<0) (L5,!(x<0))

L6: y = 1; // (L6,x<0)
(a)

L1: if (p)

L2: if (q)

L3: x=0;

L4: B;
(b)

Fig. 1. (a) A program that shows it is possible to attain full PCT coverage without

covering all feasible paths. (b) A program that that shows it is possible to cover all

feasible paths without attaining full PCT coverage.

The program in Figure 1(a) shows that it is possible to cover all reachable
observable states in a (loop-free) program without covering all feasible paths. In
this program, we assume that the uninitialized variable x can take on any initial
(integer) value. The program has one predicate (x<0). Thus an observable state
of this program is a pair of a program counter (program label) and a value for
the predicate (x<0).

The reachable observable states of this program are shown in the comments
to the right of the program. The set of tests { x → −1, x → 1 } covers all these
states. The test { x → −1 } covers the observable states

{ (L0,x<0), (L1,x<0), (L2,x<0), (L4,x<0), (L5,!(x<0)) }
via the path (L0,L1,L2,L4,L5), while the test { x → 1 } covers the observable
states

{ (L0,!(x<0)), (L1,!(x<0)), (L3,!(x<0)), (L4,x<0), (L5,x<0), (L6,x<0) }
via the path (L0,L1,L3,L4,L5,L6). However, this set of tests does not cover the
feasible path (L0,L1,L2,L4,L5,L6), which is covered by the test { x → −2 }.

Because of the assignment statement “x = -2;”, the set of reachable observ-
able states at label L4 (namely (L4,x<0)) cannot distinguish whether the executed
path to L4 traversed the then or else branch of the initial if statement. While
PCT can track many correlations, assignment statements such as the one above
can cause PCT to lose track of correlations captured by path coverage.

In this example, if we add the predicate (x==-2) to the set of observed
predicates then PCT coverage is equivalent to path coverage, as PCT coverage
will require the test { x → −2 } in order to cover the reachable state (L2,x==-2).
It is an open question whether we can always find a minimal set of predicates for



A Theory of Predicate-Complete Test Coverage and Generation 5

which PCT coverage implies path coverage (or decide that only infinitely many
predicates will do).1

Figure 1(b) shows that it is possible to cover all feasible paths in a (loop-
free) program without covering all reachable observable states. The program has
three feasible paths: (L1,L2,L3,L4), (L1,L2,L4) and (L1,L4). However, a test set
of size three that covers these paths clearly will miss either the observable state
(L4,!p&&q) or (L4,!p&&!q).

In summary, PCT coverage is a new type of coverage criteria that subsumes
statement, branch, multiple condition and predicate coverage. PCT has simi-
larities to path coverage but is strictly incomparable, as the above examples
demonstrate. Section 8 compares PCT coverage to several other control-flow
coverage criteria.

3 Formalizing Abstraction

In this section, we define the concepts of concrete and abstract transition systems
that we will use to compute the upper and lower bounds, U and L, to the set of
reachable observable states R of a program.

3.1 Concrete Transition Systems

We represent a deterministic sequential program by a concrete transition system
(CTS) as follows:

Definition 3.1: (Concrete Transition System). A concrete transition system
is a triple (SC , IC ,−→) where SC and IC are non-empty sets of states and
−→⊆ SC × SC is a transition relation satisfying the following constraints:

– SC = {halt, error} ∪ TC , where TC is a non-empty set of states;
– IC ⊆ TC is the set of initial states;
– ∀sc ∈ TC , |{s′c ∈ SC | sc −→ s′c}| = 1

There are two distinguished end states, halt and error, which correspond to
execution terminating normally and going wrong, respectively. These two states
have no successor states. All other states have exactly one successor. Thus, a
CTS models a program as a set of traces.

3.2 Abstract Transition Systems

Modal Transition Systems (MTSs) [GR03] are a formalism for reasoning about
partially defined systems that we will use to model (Boolean) abstractions of
CTSs. We generalize modal transition systems to tri-modal transition systems
(TTSs) as follows:

1 Thanks to Orna Kupferman for suggesting this question.
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Definition 3.2: (Tri-Modal Transition System). A TTS is a tuple (S,
may−→,

must+−→ ,
must−−→ ) where S is a nonempty set of states and

may−→⊆ S×S, must+−→ ⊆ S×S

and must−−→ ⊆ S×S are transition relations such that must+−→ ⊆may−→ and must−−→ ⊆may−→.

A total-onto abstraction relation2 ρ induces an abstract TTS MA from a CTS
MC as follows [God03]:

Definition 3.3: (Precise Abstraction Construction). Let MC = (SC , IC ,−→)
be a CTS. Let SA be a set of abstract states and ρ be a total-onto abstraction

relation over pairs of states in SC × SA. A TTS MA = (SA,
may−→A,

must+−→A ,
must−−→A )

is constructed from MC , SA and ρ as follows:

(a) sa
may−→A s′a iff ∃(sc, sa) ∈ ρ : ∃(s′c, s

′
a) ∈ ρ : sc −→ s′c;

(b) sa
must+−→A s′a iff ∀(sc, sa) ∈ ρ : ∃(s′c, s′a) ∈ ρ : sc −→ s′c;

(c) sa
must−−→A s′a iff ∀(s′c, s

′
a) ∈ ρ : ∃(sc, sa) ∈ ρ : sc −→ s′c;

It is easy to see that the definition of MA satisfies the constraints of a TTS,

namely that must+−→A⊆may−→A and must−−→A⊆may−→A.
We have emphasized the “iff” (if-and-only-if) text to make the point that we

assume it is possible to create a most precise abstract TTS MA from a given
CTS MC . In general, this assumption does not hold for infinite-state systems. It
does hold for the examples we consider here.

Figure 2 illustrates the three types of transitions in a TTS MA constructed
from a CTS MC via the above definition. In this figure, the grey nodes represent
states in SC and edges between the grey nodes represent transitions in −→. The
dotted circles to the right represent the abstract states in MA that the concrete
states map to under the abstraction relation ρ. Let us examine the four cases in
Figure 2:

– Case (a) shows a transition a
may−→A a′. May-transitions are depicted as dashed

edges. This transition exists because concrete state d maps to a (under ρ)
and transitions to d′ via d −→ d′, where d′ maps to a′. Note that there is no

transition a
must+−→A a′ or a

must−−→A a′.

– Case (b) shows a transition a
must+−→A a′, depicted as a solid edge with a “+”

label. This transition exists because for all states x ∈ {b, c, d} (mapping to a
under ρ), there is a y′ such that transition x −→ y′ exists (namely, y′ = d′).
That is, must+-transitions identify a total relation between sets of concrete

states corresponding to a and a′. Note that there is no transition a
must−−→A a′.

– Case (c) shows a transition a
must−−→A a′, which exists because for all states

y′ ∈ {c′, d′} (mapping to a′ under ρ), there is an x such that x −→ y′ exists
2 A total-onto relation over D × E contains at least one pair (d, e), e ∈ E, for each

element d ∈ D (it is total) and at least one pair (d′, e′), d′ ∈ D, for each element
e′ ∈ E′ (it is onto).
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Fig. 2. Illustrations of (a) a may-transition; (b) a must+-transition; (c) a must−-

transition; (d) a transition that is a must+-transition and a must−-transition.

(namely x = c for y′ = c′ and x = d for y′ = d′). That is, must−-transitions
identify an onto relation between sets of concrete states corresponding to a
and a′. These transitions are depicted as solid edges with “-” labels.

– Case (d) shows the case in which there are both transitions a
must+−→A a′ and

a
must−−→A a′. Let a

must#−→A a′ denote the fact that a
must+−→A a′ and a

must−−→A a′.
These transitions are depicted as bold edges.

3.3 Predicate Abstraction

Predicate abstraction maps a (potentially infinite-state) CTS into a finite-state
TTS via a finite set of quantifier-free formulas of first-order logic Φ = {φ1, · · · ,
φn}. A bit vector b of length n (b = b1 · · · bn, bi ∈ {0, 1}) defines an abstract
state whose corresponding concrete states are those satisfying the conjunction
〈b, Φ〉 = (l1 ∧ · · · ∧ ln) where li = φi if bi = 1 and li = ¬φi if bi = 0. We write
s |= 〈b, Φ〉 to denote that 〈b, Φ〉 holds in state s.

Definition 3.4: (Predicate Abstraction of a CTS). Given a CTS MC =
(SC , IC ,−→) and a set of predicates Φ = {φ1, · · · , φn}, predicate abstraction
defines the total-onto abstraction relation ρ and the set of abstract states SA:

– ρ ∈ (SC , {0, 1}n), where (s, b) ∈ ρ ⇐⇒ s |= 〈b, Φ〉
– SA = {b ∈ {0, 1}n | ∃(s, b) ∈ ρ}
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which define the finite-state abstract TTS MA = (SA,
may−→A,

must+−→A ,
must−−→A ) (per

Definition 3.3). We assume that SA contains abstract states haltA and errorA

that are in a one-to-one relationship with their counterparts halt and error
from SC .

It is useful to define an abstraction and concretization functions relating
states in SA to states in SC :

Definition 3.5: (Abstraction/Concretization Function). Let ρ : SC × SA be an
abstraction relation. Let αρ(C)={sa | ∃sc ∈ C : (sc, sa) ∈ ρ} be the abstraction
function mapping a set of concrete states to its corresponding set of abstract
states. Let γρ(A) = {sc | ∃sa ∈ A : (sc, sa) ∈ ρ} be the concretization function
mapping a set of abstract states to its corresponding set of concrete states. When
ρ is understood from context we will use α in place of αρ and γ in place of γρ.
The set of initial abstract states IA of MA can then be defined as IA =α(IC).

3.4 Predicate Abstraction of Programs

Algorithms for computing the may- and must+-transitions of a predicate ab-
straction of an MTS are given by Godefroid, Huth and Jagadeesan [GHJ01].
Computation of the must−-transitions can be done in a similar fashion. Com-
putation of the most precise abstract transitions is undecidable, in general. As
usual, we assume the existence of a complete theorem prover that permits the
computation of the most precise abstract transitions.

We review the basic idea here, where MC is a program where a concrete state
c ∈ SC gives a valuation to a program counter pc (ranging over a finite set of
program locations) and a valuation to each program variable.

Let WP (s, e) be the weakest pre-condition of a statement s with respect to
expression e and let SP (s, e) be the strongest post-condition of s with respect
to e [Gri81]. (For any state c1 satisfying WP (s, e) the execution of s from c1

results in a state c2 satisfying e. For any state c1 satisfying e the execution of s
from c1 results in a state c2 satisfying SP (s, e)).

Let P1 and P2 be the concretization of two bit vectors b1 and b2 (i.e., P1 =
〈b1, Φ〉 and P2 = 〈b2, Φ〉). Let pc1 and pc2 be two program counters such that
statement s is executed at pc1 and pc2 is a possible control successor of statement
s. Statement s induces a may-transition from (pc1, b1) to (pc2, b2) if ∃V : P1 ∧
WP (s, P2), where V is the set of free variables in the quantified expression.3

Statement s induces a must+-transition from (pc1, b1) to (pc2, b2) if ∀V.P1 =⇒
WP (s, P2). Finally statement s induces a must−-transition from (pc1, b1) to
(pc2, b2) if ∀V.P2 =⇒ SP (s, P1).

A näıve algorithm for computing all the abstract transitions of a program is
to consider for each statement s all the possible pairs bit vectors (b1 ∈ 2n, b2 ∈
2n) and use the method in the previous paragraph to determine the abstract

3 Note that we have somewhat abused notation by including the program counter in
the abstract state. However, since the program counter ranges over a finite set of n
locations, we can encode the program counter with log2n bits.
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L0: y = 0;

L1: if (x<0)

L2: skip;

else

L3: x = -2;

L4: x = x + 1;

L5: if (x<0)

L6: y = 1;

(L0,x<0)

(L1,x<0)

(L0,!(x<0))

(L1,!(x<0))

(L2,x<0) (L3,!(x<0))

(L4,x<0)

+

(L5,x<0)

_

(L5,!(x<0))

(L6,x<0)

Fig. 3. (a) The program from Figure 1(a) and (b) its abstract transitions

transition(s) that s induces between P1 and P2 (the concretizations of b1 and
b2). The cost of this algorithm is O(m2n).

3.5 Example

Figure 3(a) shows the program from Figure 1(a) and its set of (reachable) ab-
stract transitions. Let us consider the statements in the program and the ab-
stract transitions that they induce. The assignment statement at L0 is “y=0”.
We have that SP (y=0,(x<0)) = WP (y=0,(x<0)) = (x<0). Therefore, we have

a must#-transition (L0,x<0)
must#−→ (L1,x<0). For similar reasons, we have the

must#-transition (L0,!(x<0))
must#−→ (L1,!(x<0)).

The next statement is the if-statement at label L1. Because this state-
ment branches exactly on the predicate (x<0), it induces the must#-transitions

(L1,x<0)
must#−→ (L2,x<0) and (L1,!(x<0))

must#−→ (L3,!(x<0)). The statement
at label L2 is a skip and so has no affect on the state, inducing the transition

(L2,x<0)
must#−→ (L4,x<0).

The assignment statement at label L3 is reachable only when !(x<0) is true.
It assigns the value -2 to variable x. We have that WP (x=-2,(x<0)) = (-2<0),
which reduces to true. This means that there is a must+-transition (L3,!(x<0))
must+−→ (L4,(x<0). However, WP (x=-2,!(x<0)) = (!(-2<0)), which reduces to
false. So there can be no transition from (L3,!(x<0)) to (L4,!(x<0)). Now,
let us consider strongest post-conditions. We have that SP (x=-2,!(x<0)) =
!(-2<0), which reduces to false, so there can be no must−-transition from
(L3,!(x<0)) to (L4,(x<0).

We now consider the assignment statement at label L4 which is reachable
only under (x<0) and which increments variable x. Because SP (x=x+1,(x<0) =
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(x<1) and the set of states satisfying (x<0) is a subset of the set of states sat-

isfying (x<1), there is a must−-transition (L4,x<0)
must−−→ (L5,x<0). There is

no must+-transition between these states because WP (x=x+1,(x<0) = (x<-1)
and the set of states satisfying (x<0) is not a subset of the set of states satisfy-
ing (x<-1). The assignment statement induces a may-transition (L4,x<0)

may−→
(L5,!(x<0)), because this transition only takes places when variable x has the
value -1 before the increment and the (resulting) value 0 after the increment.

Finally, there is a must#-transition (L5,x<0)
must#−→ (L6,x<0) because the

if-statement at label L5 tests exactly the condition (x<0).

4 Defining the Upper and Lower Bounds

Recall that the goal of predicate-complete testing (PCT) is to cover all reach-
able observable states, as defined by the m statements and n predicates Φ =
{φ1, · · · , φn} in the program represented by the CTS MC . The set of reachable
observable states R is unknown, so we will use the Boolean (predicate) abstrac-
tion of MC with respect to Φ to construct an abstract TTS MA via the abstract
relation ρ induced by Φ (see Definition 3.4).

We now show how to analyze MA to compute both upper and lower bounds
to R. To do so, we find it useful to define a reachability function for a transition
system. Let S be a set of states and δ be a transition relation of type S ×
S. We define the reachability function over δ and S′ ⊆ S as reach[δ](S′) =
µX.(S′ ∪ δ(X)), where µ is the least fixpoint operator and δ(X) is the image
of set X under δ.

We now define reachability in a CTS: Let MC be a CTS. We denote the
set of states reachable from states in T (T ⊆ SC) as reachC(T ) = reach[−→
](T ). That is, reachability in MC is simply defined as the transitive closure
over the transitions in MC , starting from states in T . We then have that R =
α(reachC(IC)), where IC is the set of initial states of MC .

4.1 Upper Bound Computation

May-reachability in TTS MA defines the upper bound U . Let MC be a CTS
and let MA be an abstract TTS defined by abstraction relation ρ (via Definition
3.3). The upper bound is defined as U = reach[

may−→A](IA), where IA = α(IC).
That is, U is simply defined as the transitive closure over the may-transitions
in MA from the initial states IA. It is easy to see that α(reachC(IC)) ⊆ U , as
the may-transitions of MA overapproximate the set of transitions in MC (by
Definition 3.3).

4.2 Lower Bound Computation L

A set of abstract states X ⊆ SA is a lower bound of R if for each xa ∈ X , there is
a (xc, xa) ∈ ρ such that xc ∈ reachC(IC). This implies that X ⊆ R, as expected.
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We define the lower bound L (based on analysis of MA) to be:

L = { va | ∃ta, ua : ta ∈ reach[must−−→A ](IA) ∧
(ta

may−→A ua ∨ ta = ua) ∧
va ∈ reach[must+−→A ]({ua}) }

That is, an abstract state va is in L if there is a (possibly empty) sequence of
must−-transitions leading from sa ∈ IA to ta, there is a may-transition from
ta to ua (or ta is equal to ua), and there is a (possibly empty) sequence of
must+-transitions from ua to va.

We now show that for each va ∈ L, there is a (vc, va) ∈ ρ such that vc ∈
reachC(IC). That is, L is a lower bound to R. The proof is done in three steps,
corresponding to the three parts of the definition of L:

– First, consider a sequence of must−-transitions leading from sa ∈ IA to ta

in MA. Each must−-transition xa
must−−→A ya identifies an onto relation from

γ(xa) to γ(ya). That is, for all concrete states yc mapping to ya, there is a
transition xc −→ yc such that xc maps to xa. The transitive closure of an
onto relation yields an onto relation. So, for all tc mapping to ta, we know
that tc ∈ reachC(IC).

– Second, by the construction of MA from MC there is a may-transition ta
may−→A

ua only if there exists a transition tc −→ uc, where states tc and uc map
to ta and ua, respectively. Since for all tc mapping to ta we know that
tc ∈ reachC(IC), it follows that if there is a may-transition ta

may−→A ua then
there is some uc mapping to ua such that uc ∈ reachC(IC).

– Third, consider a sequence of must+-transitions leading from ta to va in MA.

Each must+-transition xa
must+−→A ya identifies a total relation from γ(xa) to

γ(ya). That is, for all concrete states xc mapping to xa, there is a transition
xc −→ yc such that yc maps to ya. The transitive closure of a total relation
yields a total relation. So, for all tc mapping to ta, we know that there is a
vc mapping to va such that vc ∈ reachC({tc}). 
�

5 Example

This section demonstrates upper and lower bounds to the reachable observable
states of a small function. Figure 4(a) presents a (buggy) example of QuickSort’s
partition function, a classic example that has been used to study test gener-
ation [BEL75]. We have added various control points and labels to the code for
explanatory purposes. The goal of the function is to permute the elements of the
input array so that the resulting array has two parts: the values in the first part
are less than or equal to the chosen pivot value a[0]; the values in the second
part are greater than the pivot value.

There is an array bound check missing in the code that can lead to an array
bounds error: the check at the while loop at label L2 should be (lo<=hi &&
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void partition(int a[], int n) {

assume(n>2);

int pivot = a[0];

int lo = 1;

int hi = n-1;

L0: while (lo <= hi) {

L1: ;

L2: while (a[lo] <= pivot) {

L3: lo++;

L4: ;

}

L5: while (a[hi] > pivot) {

L6: hi--;

L7: ;

}

L8: if (lo < hi) {

L9: swap(a,lo,hi);

LA: ;

}

LB: ;

}

LC: ;

}

Fig. 4. The partition function

a[lo]<=pivot).4 This error only can be uncovered via an input array in which
all the elements of the array a have a value less than or equal to a[0].

There are thirteen labels in the partition function (L0-LC), but an un-
bounded number of paths. Instead of reasoning in terms of paths, we will use
predicates to observe the states of the partition function. Let us observe the
four predicates that appear in the conditional guards of the function: (lo<hi),
(lo<=hi), (a[lo]<=pivot) and (a[hi]>pivot). An observed state thus is a
bit vector of length four (lt, le,al, ah), where lt corresponds to (lo<hi), le cor-
responds to (lo<=hi), al corresponds to (a[lo]<=pivot), and ah corresponds
to (a[hi]>pivot). There only are ten feasible valuations for this vector, as six
are infeasible because of correlations between the predicates.5 These correlations
reduce the possible observable state space from 13 ∗ 16 = 208 to 13 ∗ 10 = 130.

4 The loop at L5 cannot decrement hi to take a value less than zero because the value
of variable pivot is fixed to be the value of a[0]. One could argue that one would
want to put a bounds check in anyway.

5 Since (lo<hi) implies (lo<=hi), the four valuations TFFF, TFTT, TFFT and TFTF
are infeasible. Also, if !(lo<hi)&&(lo<=hi) then (lo==hi) and so exactly one of the
predicates in the set { (a[lo]<=pivot), (a[hi]>pivot) } must be true. Thus, the
two valuations FTFF and FTTT are infeasible.
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LC:FFFF

LB:FFFF

L0:FFFF

LB:TTTT

L0:TTTT

LA:TTTT

L9:TTFF

L8:FFFF

L8:TTFF

L7:FFFF

L5:FFFF

L7:TTFF

L5:TTFF

L7:FFFT

L5:FFFT

L7:FTFT

L5:FTFT

L7:TTFT

L5:TTFT

L6:FFFT

L6:FTFT

L6:TTFT

L4:FFFF

L2:FFFF

L4:TTFF

L2:TTFF

L4:FFTF

L2:FFTF

L4:FTTF

L2:FTTF

L4:TTTF

L2:TTTF

L4:FTFT

L2:FTFT

L4:TTFT

L2:TTFT

L4:TTTT

L2:TTTT

L3:FFTF

L3:FTTF

L3:TTTFL3:TTTT

L1:TTFF

L1:TTTF

L1:TTFT

L1:TTTT

L0:TTFFL0:TTTFL0:TTFT

Fig. 5. The reachable abstract state space of partition function. The ovals represent

the initial states IA = { L0:TTFT, L0:TTTT, L0:TTTF, L0:TTFF }. The ovals and

rectangles comprise the lower bound L, while the plaintext nodes represent the set

U − L.

Figure 5 shows the upper and lower bounds of the program as a graph of
abstract states. Each state is uniquely labeled LX:ABCD, where LX is the label
(program counter), and A, B, C and D are the values of the Boolean variables lt,
le, al, and ah. The (four) initial abstract states (IA) are denoted by ovals. Con-
sider the initial state L0:TTTT. This abstract state corresponds to all concrete
states that satisfy the expression:

(lo<hi) && (a[lo]<=pivot) && (a[hi]>pivot)

Each edge in the graph represents a transition between two reachable abstract
states (induced by the statement at the label of the first state). Solid edges
represent transitions that are must# (in this example, there are no transitions
that are only must+ or only must−). Dotted edges represents

may−→ transitions.
The set of nodes in Figure 5 represent the states that comprise the upper

bound U (|U | = 49). The rectangular nodes represent the set L (|L| = 35) and
the plaintext nodes represent the set U−L. The shading of the rectangular nodes
indicates the following:
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– The white rectangular nodes represent those abstract states reachable from
IA via a sequence of must−-transitions (in our example, these are must#-
transitions which are, by definition, must−-transitions). For example, con-
sider the initial state L0:TTTF. There is a path of must#-transitions

L0:TTTF must#−→A L1:TTTF must#−→A L2:TTTF must#−→A L3:TTTF.
– The light-grey rectangular nodes (green in color) represent those abstract

states only reachable via a sequence of must−-transitions, followed by one
may-transition, followed by a sequence of must+-transitions. Thus, the set of
ovals plus the set of white and light-grey rectangular nodes represents the set
L. Consider the may-transition L3:TTTF

may−→A L4:FTTF, which continues
the path given above. Covering this transition is the only way in which the
state L4:FTTF can be reached. Then there is a path of must#-transitions

(which, by definition, also are must+-transitions): L4:FTTF must#−→A L2:FTTF
must#−→A L3:FTTF. So, these three nodes are colored light-grey.

The path given above is one of the paths that leads to an array bounds error.
Note that in this path the label L3 occurs twice, once in the state L3:TTTF
and then in the state L3:FTTF. In the first state, we have that (lo<=hi),
(a[lo]<=pivot) and (a[hi]<=pivot). At label L3, lo is incremented by one.
The path dictates (via the may-transition L3:TTTF

may−→A L4:FTTF) that the
value of lo and hi are now equal. Because (a[hi]<=pivot) the loop at label
L2 continues to iterate and we reach the second state, L3:FTTF, in which we
have that (lo==hi) and (a[lo]<=pivot) and (a[hi]<=pivot). When lo is in-
cremented the second time, its value becomes greater than hi, whose value still
is the index of the last element of the array. Thus, the next access of a[lo] at
label L2 is guaranteed to cause an array bounds violation.

6 Test Generation

The goal of test generation is to cover all the states in the lower bound L (plus
any additional states, if we are lucky). Our test generation process consists of
three steps:

– Path Generation: we use the set L to guide test generation. In particular,
using this set, we identify a set of paths that are guaranteed to cover all
states in L;

– Symbolic Execution: we use symbolic execution on this set of paths in order
to generate test data to cover these paths;

– Observe Test Runs: the program under test is run against this set of tests to
check for errors and collect the set of executed observable states.

6.1 Path Generation

Let IA be the set of initial abstract states in MA. Consider the set of states
L. The goal of the path generation phase is to enumerate all paths from IA
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Generated Bounds
Path Endpoints Input Array Error?

(L0:TTTT, L4:FTFT) [ 0, -8, 1 ] no

(L0:TTTT, L4:TTFT) [ 0, -8, 2, 1 ] no

(L0:TTTT, L4:TTTT) [ 0, -8, -8, 1 ] no

(L0:TTTF, L4:TTFF) [ 1, -7, 3, 0 ] no

(L0:TTTF, L4:FTTF) [ 0, -7, -8 ] YES

(L0:TTTF, L4:TTTF) [ 1, -7, -7, 0 ] YES

(L0:TTFT, L7:TTFF) [ 0, 2, -8, 1 ] no

(L0:TTFT, L7:FTFT) [ 0, 1, 2 ] no

(L0:TTFT, L7:TTFT) [ 0, 3, 1, 2 ] no

(L0:TTFF, L0:TTTT) [ 1, 2, -1, 0 ] no

Fig. 6. The results of test generation for the running example

consisting of a sequence of must−-transitions followed by one (and perhaps no)
may-transition, while covering no state more than once. This can be done by
a simple depth-first search procedure. The idea is that if we generate tests to
cover these paths then we are guaranteed that the rest of the states in L will be
covered if the execution of program does not go wrong (uncover an error).

In Figure 5, using such a depth-first search identifies ten paths. These ten
paths through L are uniquely identified by their beginning and ending vertices,
as shown in the column “Path Endpoints” in Figure 6.

6.2 Symbolic Execution

Each of the ten paths induces a straight-line C“path”program that we automat-
ically generated by tracing the path through the partition function. Consider
the path from L0:TTTF to the L4:TTFF:

L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF → L4:TTFF

and its corresponding path program (see Figure 7). There are four transitions
between labels in this path. The transition L0:TTTF → L1:TTTF corresponds
to the expression in while loop at label L0 evaluating to true. This is mod-
eled by the statement assume(lo<=hi) in the path program in Figure 7. The
four statements corresponding to the four transitions are presented after the
“prelude” code in Figure 7. The assert statement at the end of the path pro-
gram asserts that the final state at label L4 (TTFF) cannot occur, which of
course is not true.

We used CBMC [CKY03], a bounded-model checker for C programs to gen-
erate a counterexample to the assertion that the state L4:TTFF cannot occur.
CBMC produces an input array a[] and array length n that will cause the
assert statement to fail, proving that L4:TTFF is reachable. For the generated
path program of Figure 7, CBMC finds a counterexample and produces the input
array [ 1, -7, 3, 0 ], as shown in the second column of Figure 6.
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partition(int a[],int n) {

assume(n>2); // prelude

pivot = a[0]; // prelude

lo = 1; // prelude

hi = n-1; // prelude

assume(lo<=hi); // L0:TTTF -> L1:TTTF

; // L1:TTTF -> L2:TTTF

assume(a[lo]<=pivot); // L2:TTTF -> L3:TTTF

lo=lo+1; // L3:TTTF -> L4:TTFF

assert(! ((lo<hi)&&(lo<=hi)&&

!(a[lo]<=pivot)&&!(a[hi]>pivot))

);

}

Fig. 7. The “path” program corresponding to the path L0:TTTF → L1:TTTF →
L2:TTTF → L3:TTTF → L4:TTFF

6.3 Observe Test Runs

Instrumentation of the original program both collects the executed observable
states for each test run and checks for array bounds violations. In our example,
there are ten runs, two of which produce array bounds violations (because the lo
index is incremented past the end of the input array and then a[lo] is accessed),
as shown in the third column of Figure 6.

The set of observed states resulting from executing all ten tests contains
all the states in Figure 5 except four of the states in U − L (in particular,
L5:FFFT, L6:FFFT and L7:FFFT and L3:FFTF) and the state L2:FFFF, which
is unreachable due to an array bounds violation.

Fixing the error in the program and rerunning our entire process results in an
upper bound U with 56 states and a lower bound L of 37 states. Test generation
succeeds in covering all 37 states in the lower bound L and causes no array
bounds errors. Additionally, these tests cover 6 of the 19 tests in U − L.

6.4 Abstraction Refinement

This leads us to consider whether or not the remaining 13 states in U − L are
reachable at all and to the problem of refining the upper and lower bounds.
Consider the state L7:FFFT from Figure 5, which is in U − L and was not
covered by any test. The concretization of this abstract state is

lo>hi && a[lo]>pivot && a[hi]>pivot

Notice that partition function, while having an array bounds error, does cor-
rectly maintain the invariant that all array elements with index less than the
variable lo have value less than or equal to pivot. However, in the above state,
we have that hi<lo and a[hi]>pivot. Thus, it is not possible to reach this state.
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We submit that rather than ignore abstract states whose concrete counter-
parts are unreachable, it is important to introduce new predicates to try and
eliminate such states in the abstraction. The reason is that these unreachable
states often will point to boundary conditions that have not yet been tested.

In order to eliminate the state L7:FFFT we will introduce three new predi-
cates into the Boolean abstraction (in addition to the four already there) in order
to track the status of the array when the variable lo takes on the value hi+1:

(lo==hi+1), (a[lo-1]<=pivot), (a[hi+1]>pivot)

These predicates track an important boundary condition that was not observed
by the initial four predicates. With these additional predicates, the generated
Boolean abstraction has matching lower and upper bounds (L = U) and our test
generation process covers all reachable observable states. As mentioned before,
we can not expect to be able to achieve matching lower and upper bounds in
general. We will next consider what the condition L = U means.

7 Discussion

To recap, U is the set of abstract states reachable (from the initial set of ab-
stract states IA) via a sequence of may-transitions, while L is the set of states
reachable from IA via a sequence of must−-transitions, followed by a most one
may-transition, followed by a sequence of must+-transitions.

An abstract TTS MA bisimulates [Mil99] a CTS MC if each may-transition

in MA is matched by a must+-transition (that is,
may−→A=must+−→A ). It is easy to

see that if MA bisimulates MC then every abstract state in U is reachable
via a sequence of must+-transitions. Bisimulation guarantees a strong form of
reachability:

if MA bisimulates MC and s′a ∈ reach[
may−→A]({sa}) then for all concrete

states sc ∈ γ(sa), there exists s′c ∈ γ(s′a) such that s′c ∈ reachC(sc)

Thus, bisimulation implies that L = U .
However, if L = U it does not follow that MA bisimulates MC because the

definition of L permits a sequence of must−-transitions, followed by a most
one may-transition, followed by a sequence of must+-transitions. The condition
L = U guarantees a weak form of reachability:

if L = U and s′a ∈ reach[
may−→A]({sa}) then there exists concrete state

sc ∈ γ(sa) and there exists s′c ∈ γ(s′a) such that s′c ∈ reachC(sc)

So, the condition L = U implies that there is a finite set of tests sufficient to ob-
serve all states in U . Since U is an upper bound to the set of reachable observable
states R this set of tests covers all states in R as well (that is, R = U = L). From
this it also follows that the condition L = U is a sufficient test for determining
the completeness of a may-abstraction [GRS00], since L = U implies that U = R
and R = α(reachC(IC)) is the most precise (complete) abstract answer possible.
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In other words, if U = L then the set U is equal to the set of observable states
(R) that would be encountered during the (infinite) computation of the least
fixpoint over the concrete transition system MC , represented by α(reachC(IC)).

To summarize, the condition U = L joins together the worlds of testing and
abstraction. It implies both a sound and complete abstract domain that can be
completely covered by a finite set of tests.

8 Related Work

Related work breaks into a number of topics.

8.1 Control-Flow Coverage Criteria

We have already compared PCT coverage with statement, branch, multiple con-
dition, predicate and path coverage (see Section 2). We now consider other al-
ternatives to path coverage, namely linear code sequence and jump (LCSAJ)
coverage and data-flow coverage based on def-use pairs. An LCSAJ represents
a sequence of statements (which may contain conditional statements) ending
with a branch. An LCSAJ is an acyclic path (no edge appears twice) through
a control-flow graph ending with a branch statement. As we have shown, PCT
coverage is incomparable to path coverage for loop-free programs, so it also is
incomparable to LCSAJ coverage. The goal of def-use coverage is to cover, for
each definition d of a variable x and subsequent use u of variable x, a path from
d to u not containing another definition of x. If there is such a path from d to u
then there is an acyclic path from d to u that doesn’t contain another definition
of x, so again PCT coverage is incomparable to def-use coverage.

8.2 Symbolic Execution and Test Generation

The idea of using paths and symbolic execution of paths to generate tests has a
long and rich history going back to the mid-1970’s [BEL75, How76, Cla76, RHC]
and continuing to the present day [JBW+94, GBR98, GMS98]. Recently, Chli-
pala et al. proposed using counterexample-driven refinement to guide test gener-
ation [CHJM04]. The major contribution of our work over previous efforts in this
area is to guide test generation using Boolean abstraction and the computation
of upper and lower bounds to the set of reachable observable states.

A classic problem in path-based symbolic execution is the selection of pro-
gram paths. One way to guide the search for feasible paths is to execute the
program symbolically along all paths, while guiding the exploration to achieve
high code coverage. Clearly, it is not possible to symbolically execute all paths,
so the search must be cut off at some point. Often, tools will simply analyze
loops through one or two iterations [BPS00]. Another way to limit the search
is to bound the size of the input domain (say, to consider arrays of at most
length three) [JV00], or to bound the maximum path length that will be con-
sidered, as done in bounded model checking [CKY03]. An experiment by Yates
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and Malevris provided evidence that the likelihood that a path is feasible de-
creases as the number of predicates in the path increases [YM89]. This led them
to use shortest-path algorithms to find a set of paths that covers all branches in
a function.

In contrast to all these methods, our technique uses the set of input pred-
icates to bound the set of paths that will be used to generate test data for a
program. The predicates induce a Boolean abstraction that guides the selection of
paths.

Other approaches to test generation rely on dynamic schemes. Given an ex-
isting test t, Korel’s “goal-oriented”approach seeks to perturb t to a test t′ cover
a particular statement, using function minimization techniques [Kor92]. The po-
tential benefit of Korel’s approach is that it is dynamic and has an accurate view
of memory and flow dependences. The downside of his approach is that test t
may be very far away from a suitable test t′.

Another dynamic approach to test generation is found in the Korat
tool [BKM02]. This tool uses a function’s precondition on its input to auto-
matically generate all (nonisomorphic) test cases up to a given small size. It
exhaustively explores the input space of the precondition and prunes large por-
tions of the search space by monitoring the execution of the precondition. For
an example such as the partition function that has no constraints on its input,
the Korat method may not work very well. Furthermore, it requires the user to
supply a bound on the input size whereas our technique infers the input size.

Harder, Mellen and Ernst [HME03] propose using operational abstractions
(properties inferred from observing a set of test executions) to guide the genera-
tion and maintenance of test suites. This is similar in spirit to predicate-complete
testing but unsound (the properties inferred are “likely” invariants but not guar-
anteed to hold in general). In contrast, our use of predicate abstraction and
reachability analysis in the abstract domain computes a (sound) overapprox-
imation to the set of reachable observable states of a program. Furthermore,
the invariants we can establish about a program’s behavior involve arbitrary
Boolean expressions over atomic predicates whereas Harder et al. limit them-
selves to atomic predicates and implications between atomic predicates.

8.3 Three-Valued Model Checking

Our work was inspired by the work on three-valued model checking by Bruns,
Godefroid, Huth and Jagadeesan [BG99, GHJ01, GR03]. Their work shows how
to model incomplete (abstract) systems using modal transition systems (equiva-
lently, partial Kripke Structures), as we have done here. It then gives algorithms
for model checking temporal logic formula with respect to such systems. Given
an MTS, these algorithms can determine whether a temporal logic formula is
definitely true, definitely false or unknown with respect to the MTS.

Our computation of lower and upper bounds achieves a similar result but
infers reachability properties of a concrete TTS MC from analysis of an ab-
stract TTS MA. The lower bound L characterizes those observable states that
are definitely reachable, the upper bound U (more precisely, its inverse S − U)
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characterizes those observable states that are definitely not reachable, and the
reachability status of states in U − L are unknown.

To achieve a more precise lower bound for (weak) reachability, we general-
ized the definition of must-transitions given for MTS to account for three types
of must-transitions: must+ (which correspond to must-transitions in an MTS),
must− and must#.

In model checking of abstractions of concrete transition systems, one is inter-
ested in proving that a temporal property holds for all concrete execution paths
starting from some initial abstract state. This is the reason why only must+-
transitions are used in model checking of modal transitions systems. For (weak)
reachability, one is interested proving the existence of some concrete execution
path starting from some initial abstract state. Thus, must−-transitions are of
interest.

9 Conclusion

We have presented a new form of control-flow coverage that is based on observing
the vector consisting of a program’s conditional predicates, thus creating a finite-
state space. There are a number of open questions to consider. First, what is a
logical characterization of tri-modal transition systems? Second, how can one
automate the refinement process to bring the lower and upper bounds closer?
(It is well known that the set of must-transitions is not generally monotonically
non-decreasing when predicates are added to refine an abstract system. Recently,
Shoham and Grumberg [SG04] and Alfaro, Godefroid and Jagadeesan [dAGJ04]
independently proposed a new form of must-transition that permits monotonic
refinement of abstractions.) Finally, how does this technique work in practice?
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