

Lecture Notes in Computer Science 3657
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank S. de Boer Marcello M. Bonsangue
Susanne Graf Willem-Paul de Roever (Eds.)

Formal Methods
for Components
and Objects

Third International Symposium, FMCO 2004
Leiden, The Netherlands, November 2 – 5, 2004
Revised Lectures

13

Volume Editors

Frank S. de Boer
CWI, Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: F.S.de.Boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

Susanne Graf
VERIMAG
Centre Equitation
2 Avenue de Vignate, 38610 Grenoble-Gières, France
E-mail: Susanne.Graf@imag.fr

Willem-Paul de Roever
Christian-Albrechts-University of Kiel
Institute of Computer Science and Applied Mathematics
Hermann-Rodewald-Straße 3, 24118 Kiel, Germany
E-mail: wpr@informatik.uni-kiel.de

Library of Congress Control Number: 2005932547

CR Subject Classification (1998): D.2, D.3, F.3, D.4

ISSN 0302-9743
ISBN-10 3-540-29131-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29131-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11561163 06/3142 5 4 3 2 1 0

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in the development methodologies has switched in the last two decades
from functional issues to structural issues: both data and functions are encap-
sulated into software units which are integrated into large systems by means of
various techniques supporting reusability and modifiability. This encapsulation
principle is essential to both the object-oriented and the more recent component-
based software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
elling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages.

In order to stimulate interaction between the different areas of software en-
gineering and formal methods, with a special focus on component-based and
object-oriented software systems, we organized the 3rd International Sympo-
sium on Formal Methods for Components and Objects (FMCO) in Leiden, The
Netherlands, from November 2nd to 5th, 2004. The program consisted of tutorial
and technical presentations given by leading experts in the fields of theoretical
computer science and software engineering. The symposium was attended by
more than 75 people from all over the world.

This volume contains the contributions after the symposium of the invited
speakers. We believe that the presented material provides a unique combination
of ideas on software engineering and formal methods which reflect the expanding
body of knowledge on modern software systems.

July 2005 F.S. de Boer
M.M. Bonsangue

S. Graf
W.-P. de Roever

Organization

The series of FMCO symposia are organized in the context of the bilateral
NWO/DFG project Mobi-J and of the European IST project Omega.

The Mobi-J Project

Mobi-J is a project founded by a bilateral research program of The Dutch Orga-
nization for Scientific Research (NWO) and the Central Public Funding Organi-
zation for Academic Research in Germany (DFG). The partners of the Mobi-J
projects are: the Centrum voor Wiskunde en Informatica, the Leiden Institute
of Advanced Computer Science, and the Christian-Albrechts-Universität Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

The Omega Project

The overall aim of the European IST project Omega (2001-33522) is the defini-
tion of a development methodology in UML for embedded and real-time systems
based on formal verification techniques. The approach is based on a formal se-
mantics of a suitable subset of UML, adapted and extended where needed with
a special emphasis on time-related aspects.

The Omega project involves the following partners: VERIMAG (France, Co-
ordinator), Centrum voor Wiskunde en Informatica (The Netherlands),
Christian-Albrechts-Universität (Germany), University of Nijmegen (The
Netherlands), Weizmann Institute (Israel), OFFIS (Germany), EADS Launch
Vehicles (France), France Télécom R&D (France), Israeli Aircraft Industries
(Israel), and National Aerospace Laboratory (The Netherlands).

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)
The European project IST-2001-33522 Omega
The Lorentz Center, Leiden, The Netherlands
The Royal Netherlands Academy of Arts and Sciences (KNAW)
The Dutch Institute for Programming Research and Algorithmics (IPA)
TheCentrumvoorWiskunde en Informatica (CWI),Amsterdam,TheNetherlands
The Leiden Institute of Advanced Computer Science (LIACS), The Netherlands

Table of Contents

A Theory of Predicate-Complete Test Coverage and Generation
Thomas Ball . 1

A Perspective on Component Refinement
Lúıs S. Barbosa . 23

A Fully Abstract Semanti cs for UML Components
Frank S. de Boer, Marcello M. Bonsangue, Martin Steffen,
Erika Ábrahám . 49

From (Meta) Objects to Aspects: A Java and AspectJ Point of View
Pierre Cointe, Hervé Albin-Amiot, Simon Denier 70

MoMo: A Modal Logic for Reasoning About Mobility
Rocco De Nicola, Michele Loreti . 95

Probabilistic Linda-Based Coordination Languages
Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky 120

Games with Secure Equilibria
Krishnendu Chatterjee, Thomas A. Henzinger, Marcin Jurdziński 141

Priced Timed Automata: Algorithms and Applications
Gerd Behrmann, Kim G. Larsen, Jacob I. Rasmussen 162

rCOS: Refinement of Component and Object Systems
Zhiming Liu, He Jifeng, Xiaoshan Li . 183

Program Generation and Components
Davide Ancona, Eugenio Moggi . 222

Assertion-Based Encapsulation, Object Invariants and Simulations
David A. Naumann . 251

A Dynamic Binding Strategy for Multiple Inheritance and
Asynchronously Communicating Objects

Einar Broch Johnsen, Olaf Owe . 274

VIII Table of Contents

Observability, Connectivity, and Replay in a Sequential Calculus
of Classes

Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer,
Andreas Grüner, Martin Steffen . 296

Timing Analysis and Timing Predictability
Reinhard Wilhelm . 317

Author Index . 325

A Theory of Predicate-Complete Test Coverage

and Generation

Thomas Ball

Microsoft Research, Redmond, WA, USA
tball@microsoft.com

Abstract. Consider a program with m statements and n predicates,
where the predicates are derived from the conditional statements and as-
sertions in a program. An observable state is an evaluation of the n pred-
icates under some state at a program statement. The goal of predicate-
complete testing (PCT) is to evaluate all the predicates at every program
state. That is, we wish to cover every reachable observable state (at most
m × 2n of them) in a program. PCT coverage subsumes many existing
control-flow coverage criteria and is incomparable to path coverage. To
support the generation of tests to achieve high PCT coverage, we show
how to define an upper bound U and lower bound L to the (unknown)
set of reachable observable states R. These bounds are constructed au-
tomatically using Boolean (predicate) abstraction over modal transition
systems and can be used to guide test generation via symbolic execution.
We define a static coverage metric as |L|/|U |, which measures the ability
of the Boolean abstraction to achieve high PCT coverage.

1 Introduction

Control-flow-based test generation generally has as its goal to cover all the state-
ments or branches in a program. There are various control-flow adequacy criteria
that go beyond branch coverage, such as multiple condition coverage, the ulti-
mate of which is path coverage. Errors that go undetected in the face of 100%
statement or branch coverage may be due to complex correlations between the
predicates (that control the execution of statements) and the statements (that af-
fect the value of these predicates) of a program. However, paths are notoriously
difficult to work with as a coverage metric because there are an unbounded
number of them in programs with loops, which characterizes most interesting
programs in existence.

So, we seek an alternative to path coverage that has its “exhaustive” quality
but induces a finite (rather than infinite) state space. We start with a fixed
notation for atomic predicates (not containing Boolean connectives), taken from
the relevant programming language. A predicate maps a state to a Boolean
value. For example, the predicate (x > 0) observes whether or not variable x
has a positive value in a given state. Consider a program with m statements and
n predicates. These predicates can be drawn from the conditional statements
and assertions in a program, as well as from implicit run-time safety checks (for

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 1–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 T. Ball

checking for array bounds violations or divide-by-zero errors, for example). An
observable state is an evaluation of the n predicates under some program state
at a statement. While the set of states in a program is unbounded, the size of
the set of observable states (S) is at most (m× 2n).

The goal of predicate-complete testing (PCT) is to evaluate all the predi-
cates at every program state. That is, we wish to cover all reachable observable
states. PCT coverage is motivated by the observation that certain errors in a
program only can be exposed by considering the complex dependences between
the predicates in a program and the statements whose execution they control.
The n predicates represent all the case-splits on the input that the program-
mer has identified (Of course, the programmer may have missed certain cases–
specification-based testing would need to be used to determine the absence of
such case-splits). In the limit, each of the m statements may have different be-
havior in each of the 2n possible observable states, and so should be tested in
each of these states. We show that PCT coverage subsumes traditional cover-
age metrics such as statement, branch and multiple condition coverage and that
PCT coverage is incomparable to path coverage. PCT groups paths ending at
a statement s into equivalence classes based on the observable states the paths
induce at s.

Control-flow coverage metrics result from dividing a dynamic measure (for
example, the number of statements executed by a test) into a static measure
(for example, the number of statements in a program). Clearly, such a metric
also can be defined for observable states. However, the choice of (m × 2n) as a
denominator will not do, as we expect many of the (m × 2n) states to be un-
reachable. (Statement coverage does not suffer greatly from this problem because
most statements are reachable). For example, if the set of predicates contains
(x = 0) and (x = 1) then not all combinations are possible.

Thus, we desire a way to define a better denominator for PCT coverage. The
main result of this paper is a way to overapproximate and underapproximate
the set of reachable observable states (R) using the theory of modal transition
systems and Boolean abstraction. The Boolean abstraction of a program with
respect to its n predicates is a non-deterministic program, whereas the original
concrete program is deterministic. We show how reachability analysis of this
abstract program yields an upper bound U for R (R ⊆ U) as well as a lower
bound L for R (L ⊆ R). The set U is an overapproximation of R: any state
outside U is not a reachable observable state and need not (indeed, cannot) be
tested. This set U provides a better denominator than (m× 2n).

Conversely, the set L is an underapproximation of R: any state in L must
be a reachable observable state. That is, every state in L must be testable.
We show how to use L to guide symbolic path-based test generation to cover
the untested states in L. Our definition of L relies on a novel enhancement to
modal transition systems that enlarges the set of states that can be proved to
be reachable observable states.

This paper is organized as follows. Section 2 compares predicate-complete
test coverage to other forms of control-flow coverage. Section 3 precisely defines

A Theory of Predicate-Complete Test Coverage and Generation 3

the system of abstraction we will use to compute the upper and lower bounds.
Section 4 gives algorithms to compute these upper and lower bounds. Section 5
gives an example that shows how the use of PCT coverage and the lower and
upper bounds can be used to expose an error in a small function. Section 6
presents an algorithm that uses the lower bound to guide test generation. Sec-
tion 7 discusses some of the implications of our results. Section 8 reviews related
work and Section 9 concludes the paper.

2 A Characterization of Predicate-Complete Test
Coverage

This section compares PCT coverage with other forms of control-flow coverage.
In this comparison, we decompose complex predicates into atomic predicates.
So, the program fragment “L1: if ((x<0)||(y<0)) S else T” contains two
branches corresponding to the atomic predicates (x<0) and (y<0). Based on
this decomposition, the concepts of branches, atomic predicates and conditions
are equivalent.

To recap, complete PCT coverage means that each reachable observable state
of a program is covered by a test. This implies that each (executable) statement
is executed at least once, so PCT subsumes statement coverage. PCT coverage
requires that each predicate be tested so as to evaluate to both true and false
(of course this may not be possible for unsatisfiable predicates such as (x!=x)),
so it subsumes branch coverage. PCT clearly also subsumes multiple condition
coverage and its variants. Considering the program fragment given above, mul-
tiple condition coverage requires every possible Boolean combination of (x<0)
and (y<0) to be tested at L1, which seems similar to PCT. But now, consider
the sequencing of two if statements:

L2: if (A || B) S else T
L3: if (C || D) U else V

PCT requires that every Boolean combination over the set { A, B, C, D } be
tested at every statement in the program (six in this case, the two if statements
and the four statements S, T, U and V). Multiple condition coverage only requires
that every Boolean combination over { A, B } be tested at L2 and that every that
every Boolean combination over { C, D } be tested at L3. Similarly, predicate-
based test generation [Tai96, Tai97] focuses on testing predicates in a program.
It considers correlations between predicates that appear in a single conditional
statement but does not consider correlations between predicates that appear in
different conditional statements, as does PCT.

Of course, we can view paths as possible logical combinations of predicates,
so it is natural to ask how PCT relates to path coverage. As a loop-free program
with n predicates can have at most 2n paths, it seems like PCT might have the
ability to explore more behaviors (as it may explore m× 2n states in the limit).
In fact, we show PCT and path coverage are incomparable, even for loop-free
programs.

4 T. Ball

// reachable observable states

L0: y = 0; // (L0,x<0) (L0,!(x<0))

L1: if (x<0) // (L1,x<0) (L1,!(x<0))

L2: skip; // (L2,x<0)

else //

L3: x = -2; // (L3,!(x<0))

L4: x = x + 1; // (L4,x<0)

L5: if (x<0) // (L5,x<0) (L5,!(x<0))

L6: y = 1; // (L6,x<0)
(a)

L1: if (p)

L2: if (q)

L3: x=0;

L4: B;
(b)

Fig. 1. (a) A program that shows it is possible to attain full PCT coverage without

covering all feasible paths. (b) A program that that shows it is possible to cover all

feasible paths without attaining full PCT coverage.

The program in Figure 1(a) shows that it is possible to cover all reachable
observable states in a (loop-free) program without covering all feasible paths. In
this program, we assume that the uninitialized variable x can take on any initial
(integer) value. The program has one predicate (x<0). Thus an observable state
of this program is a pair of a program counter (program label) and a value for
the predicate (x<0).

The reachable observable states of this program are shown in the comments
to the right of the program. The set of tests { x→ −1, x→ 1 } covers all these
states. The test { x→ −1 } covers the observable states

{ (L0,x<0), (L1,x<0), (L2,x<0), (L4,x<0), (L5,!(x<0)) }

via the path (L0,L1,L2,L4,L5), while the test { x → 1 } covers the observable
states

{ (L0,!(x<0)), (L1,!(x<0)), (L3,!(x<0)), (L4,x<0), (L5,x<0), (L6,x<0) }

via the path (L0,L1,L3,L4,L5,L6). However, this set of tests does not cover the
feasible path (L0,L1,L2,L4,L5,L6), which is covered by the test { x→ −2 }.

Because of the assignment statement “x = -2;”, the set of reachable observ-
able states at label L4 (namely (L4,x<0)) cannot distinguish whether the executed
path to L4 traversed the then or else branch of the initial if statement. While
PCT can track many correlations, assignment statements such as the one above
can cause PCT to lose track of correlations captured by path coverage.

In this example, if we add the predicate (x==-2) to the set of observed
predicates then PCT coverage is equivalent to path coverage, as PCT coverage
will require the test { x→ −2 } in order to cover the reachable state (L2,x==-2).
It is an open question whether we can always find a minimal set of predicates for

A Theory of Predicate-Complete Test Coverage and Generation 5

which PCT coverage implies path coverage (or decide that only infinitely many
predicates will do).1

Figure 1(b) shows that it is possible to cover all feasible paths in a (loop-
free) program without covering all reachable observable states. The program has
three feasible paths: (L1,L2,L3,L4), (L1,L2,L4) and (L1,L4). However, a test set
of size three that covers these paths clearly will miss either the observable state
(L4,!p&&q) or (L4,!p&&!q).

In summary, PCT coverage is a new type of coverage criteria that subsumes
statement, branch, multiple condition and predicate coverage. PCT has simi-
larities to path coverage but is strictly incomparable, as the above examples
demonstrate. Section 8 compares PCT coverage to several other control-flow
coverage criteria.

3 Formalizing Abstraction

In this section, we define the concepts of concrete and abstract transition systems
that we will use to compute the upper and lower bounds, U and L, to the set of
reachable observable states R of a program.

3.1 Concrete Transition Systems

We represent a deterministic sequential program by a concrete transition system
(CTS) as follows:

Definition 3.1: (Concrete Transition System). A concrete transition system
is a triple (SC , IC ,−→) where SC and IC are non-empty sets of states and
−→⊆ SC × SC is a transition relation satisfying the following constraints:

– SC = {halt, error} ∪ TC , where TC is a non-empty set of states;
– IC ⊆ TC is the set of initial states;
– ∀sc ∈ TC , |{s′c ∈ SC | sc −→ s′c}| = 1

There are two distinguished end states, halt and error, which correspond to
execution terminating normally and going wrong, respectively. These two states
have no successor states. All other states have exactly one successor. Thus, a
CTS models a program as a set of traces.

3.2 Abstract Transition Systems

Modal Transition Systems (MTSs) [GR03] are a formalism for reasoning about
partially defined systems that we will use to model (Boolean) abstractions of
CTSs. We generalize modal transition systems to tri-modal transition systems
(TTSs) as follows:

1 Thanks to Orna Kupferman for suggesting this question.

6 T. Ball

Definition 3.2: (Tri-Modal Transition System). A TTS is a tuple (S,
may−→,

must+−→ ,
must−−→) where S is a nonempty set of states and

may−→⊆ S×S, must+−→ ⊆ S×S
and must−−→ ⊆ S×S are transition relations such that must+−→ ⊆may−→ and must−−→ ⊆may−→.

A total-onto abstraction relation2 ρ induces an abstract TTS MA from a CTS
MC as follows [God03]:

Definition 3.3: (Precise Abstraction Construction). Let MC = (SC , IC ,−→)
be a CTS. Let SA be a set of abstract states and ρ be a total-onto abstraction

relation over pairs of states in SC × SA. A TTS MA = (SA,
may−→A,

must+−→A ,
must−−→A)

is constructed from MC , SA and ρ as follows:

(a) sa
may−→A s′a iff ∃(sc, sa) ∈ ρ : ∃(s′c, s

′
a) ∈ ρ : sc −→ s′c;

(b) sa
must+−→A s′a iff ∀(sc, sa) ∈ ρ : ∃(s′c, s′a) ∈ ρ : sc −→ s′c;

(c) sa
must−−→A s′a iff ∀(s′c, s

′
a) ∈ ρ : ∃(sc, sa) ∈ ρ : sc −→ s′c;

It is easy to see that the definition of MA satisfies the constraints of a TTS,

namely that must+−→A⊆may−→A and must−−→A⊆may−→A.
We have emphasized the “iff” (if-and-only-if) text to make the point that we

assume it is possible to create a most precise abstract TTS MA from a given
CTS MC . In general, this assumption does not hold for infinite-state systems. It
does hold for the examples we consider here.

Figure 2 illustrates the three types of transitions in a TTS MA constructed
from a CTS MC via the above definition. In this figure, the grey nodes represent
states in SC and edges between the grey nodes represent transitions in −→. The
dotted circles to the right represent the abstract states in MA that the concrete
states map to under the abstraction relation ρ. Let us examine the four cases in
Figure 2:

– Case (a) shows a transition a
may−→A a′. May-transitions are depicted as dashed

edges. This transition exists because concrete state d maps to a (under ρ)
and transitions to d′ via d −→ d′, where d′ maps to a′. Note that there is no

transition a must+−→A a′ or a must−−→A a′.

– Case (b) shows a transition a must+−→A a′, depicted as a solid edge with a “+”
label. This transition exists because for all states x ∈ {b, c, d} (mapping to a
under ρ), there is a y′ such that transition x −→ y′ exists (namely, y′ = d′).
That is, must+-transitions identify a total relation between sets of concrete

states corresponding to a and a′. Note that there is no transition a must−−→A a′.

– Case (c) shows a transition a
must−−→A a′, which exists because for all states

y′ ∈ {c′, d′} (mapping to a′ under ρ), there is an x such that x −→ y′ exists
2 A total-onto relation over D × E contains at least one pair (d, e), e ∈ E, for each

element d ∈ D (it is total) and at least one pair (d′, e′), d′ ∈ D, for each element
e′ ∈ E′ (it is onto).

A Theory of Predicate-Complete Test Coverage and Generation 7

c d a

c’ d’ a’

MC MA

ρ

ρ

c d a

c’ d’ a’

MC MA

ρ

ρ

a

a’

ρ

ρ

(a) (b)

c d a

c’ d’ a’

ρ

ρ

(c) (d)

c d

c’ d’

b

b b

b

+

_

Fig. 2. Illustrations of (a) a may-transition; (b) a must+-transition; (c) a must−-

transition; (d) a transition that is a must+-transition and a must−-transition.

(namely x = c for y′ = c′ and x = d for y′ = d′). That is, must−-transitions
identify an onto relation between sets of concrete states corresponding to a
and a′. These transitions are depicted as solid edges with “-” labels.

– Case (d) shows the case in which there are both transitions a must+−→A a′ and

a
must−−→A a′. Let a must#−→A a′ denote the fact that a must+−→A a′ and a

must−−→A a′.
These transitions are depicted as bold edges.

3.3 Predicate Abstraction

Predicate abstraction maps a (potentially infinite-state) CTS into a finite-state
TTS via a finite set of quantifier-free formulas of first-order logic Φ = {φ1, · · · ,
φn}. A bit vector b of length n (b = b1 · · · bn, bi ∈ {0, 1}) defines an abstract
state whose corresponding concrete states are those satisfying the conjunction
〈b, Φ〉 = (l1 ∧ · · · ∧ ln) where li = φi if bi = 1 and li = ¬φi if bi = 0. We write
s |= 〈b, Φ〉 to denote that 〈b, Φ〉 holds in state s.

Definition 3.4: (Predicate Abstraction of a CTS). Given a CTS MC =
(SC , IC ,−→) and a set of predicates Φ = {φ1, · · · , φn}, predicate abstraction
defines the total-onto abstraction relation ρ and the set of abstract states SA:

– ρ ∈ (SC , {0, 1}n), where (s, b) ∈ ρ ⇐⇒ s |= 〈b, Φ〉
– SA = {b ∈ {0, 1}n | ∃(s, b) ∈ ρ}

8 T. Ball

which define the finite-state abstract TTS MA = (SA,
may−→A,

must+−→A ,
must−−→A) (per

Definition 3.3). We assume that SA contains abstract states haltA and errorA
that are in a one-to-one relationship with their counterparts halt and error
from SC .

It is useful to define an abstraction and concretization functions relating
states in SA to states in SC :

Definition 3.5: (Abstraction/Concretization Function). Let ρ : SC × SA be an
abstraction relation. Let αρ(C)={sa | ∃sc ∈ C : (sc, sa) ∈ ρ} be the abstraction
function mapping a set of concrete states to its corresponding set of abstract
states. Let γρ(A) = {sc | ∃sa ∈ A : (sc, sa) ∈ ρ} be the concretization function
mapping a set of abstract states to its corresponding set of concrete states. When
ρ is understood from context we will use α in place of αρ and γ in place of γρ.
The set of initial abstract states IA of MA can then be defined as IA =α(IC).

3.4 Predicate Abstraction of Programs

Algorithms for computing the may- and must+-transitions of a predicate ab-
straction of an MTS are given by Godefroid, Huth and Jagadeesan [GHJ01].
Computation of the must−-transitions can be done in a similar fashion. Com-
putation of the most precise abstract transitions is undecidable, in general. As
usual, we assume the existence of a complete theorem prover that permits the
computation of the most precise abstract transitions.

We review the basic idea here, where MC is a program where a concrete state
c ∈ SC gives a valuation to a program counter pc (ranging over a finite set of
program locations) and a valuation to each program variable.

Let WP (s, e) be the weakest pre-condition of a statement s with respect to
expression e and let SP (s, e) be the strongest post-condition of s with respect
to e [Gri81]. (For any state c1 satisfying WP (s, e) the execution of s from c1
results in a state c2 satisfying e. For any state c1 satisfying e the execution of s
from c1 results in a state c2 satisfying SP (s, e)).

Let P1 and P2 be the concretization of two bit vectors b1 and b2 (i.e., P1 =
〈b1, Φ〉 and P2 = 〈b2, Φ〉). Let pc1 and pc2 be two program counters such that
statement s is executed at pc1 and pc2 is a possible control successor of statement
s. Statement s induces a may-transition from (pc1, b1) to (pc2, b2) if ∃V : P1 ∧
WP (s, P2), where V is the set of free variables in the quantified expression.3

Statement s induces a must+-transition from (pc1, b1) to (pc2, b2) if ∀V.P1 =⇒
WP (s, P2). Finally statement s induces a must−-transition from (pc1, b1) to
(pc2, b2) if ∀V.P2 =⇒ SP (s, P1).

A näıve algorithm for computing all the abstract transitions of a program is
to consider for each statement s all the possible pairs bit vectors (b1 ∈ 2n, b2 ∈
2n) and use the method in the previous paragraph to determine the abstract

3 Note that we have somewhat abused notation by including the program counter in
the abstract state. However, since the program counter ranges over a finite set of n
locations, we can encode the program counter with log2n bits.

A Theory of Predicate-Complete Test Coverage and Generation 9

L0: y = 0;

L1: if (x<0)

L2: skip;

else

L3: x = -2;

L4: x = x + 1;

L5: if (x<0)

L6: y = 1;

(L0,x<0)

(L1,x<0)

(L0,!(x<0))

(L1,!(x<0))

(L2,x<0) (L3,!(x<0))

(L4,x<0)

+

(L5,x<0)

_

(L5,!(x<0))

(L6,x<0)

Fig. 3. (a) The program from Figure 1(a) and (b) its abstract transitions

transition(s) that s induces between P1 and P2 (the concretizations of b1 and
b2). The cost of this algorithm is O(m2n).

3.5 Example

Figure 3(a) shows the program from Figure 1(a) and its set of (reachable) ab-
stract transitions. Let us consider the statements in the program and the ab-
stract transitions that they induce. The assignment statement at L0 is “y=0”.
We have that SP (y=0,(x<0)) = WP (y=0,(x<0)) = (x<0). Therefore, we have

a must#-transition (L0,x<0)
must#−→ (L1,x<0). For similar reasons, we have the

must#-transition (L0,!(x<0))
must#−→ (L1,!(x<0)).

The next statement is the if-statement at label L1. Because this state-
ment branches exactly on the predicate (x<0), it induces the must#-transitions

(L1,x<0)
must#−→ (L2,x<0) and (L1,!(x<0))

must#−→ (L3,!(x<0)). The statement
at label L2 is a skip and so has no affect on the state, inducing the transition

(L2,x<0)
must#−→ (L4,x<0).

The assignment statement at label L3 is reachable only when !(x<0) is true.
It assigns the value -2 to variable x. We have that WP (x=-2,(x<0)) = (-2<0),
which reduces to true. This means that there is a must+-transition (L3,!(x<0))
must+−→ (L4,(x<0). However, WP (x=-2,!(x<0)) = (!(-2<0)), which reduces to
false. So there can be no transition from (L3,!(x<0)) to (L4,!(x<0)). Now,
let us consider strongest post-conditions. We have that SP (x=-2,!(x<0)) =
!(-2<0), which reduces to false, so there can be no must−-transition from
(L3,!(x<0)) to (L4,(x<0).

We now consider the assignment statement at label L4 which is reachable
only under (x<0) and which increments variable x. Because SP (x=x+1,(x<0) =

10 T. Ball

(x<1) and the set of states satisfying (x<0) is a subset of the set of states sat-

isfying (x<1), there is a must−-transition (L4,x<0)
must−−→ (L5,x<0). There is

no must+-transition between these states because WP (x=x+1,(x<0) = (x<-1)
and the set of states satisfying (x<0) is not a subset of the set of states satisfy-
ing (x<-1). The assignment statement induces a may-transition (L4,x<0)

may−→
(L5,!(x<0)), because this transition only takes places when variable x has the
value -1 before the increment and the (resulting) value 0 after the increment.

Finally, there is a must#-transition (L5,x<0)
must#−→ (L6,x<0) because the

if-statement at label L5 tests exactly the condition (x<0).

4 Defining the Upper and Lower Bounds

Recall that the goal of predicate-complete testing (PCT) is to cover all reach-
able observable states, as defined by the m statements and n predicates Φ =
{φ1, · · · , φn} in the program represented by the CTS MC . The set of reachable
observable states R is unknown, so we will use the Boolean (predicate) abstrac-
tion of MC with respect to Φ to construct an abstract TTS MA via the abstract
relation ρ induced by Φ (see Definition 3.4).

We now show how to analyze MA to compute both upper and lower bounds
to R. To do so, we find it useful to define a reachability function for a transition
system. Let S be a set of states and δ be a transition relation of type S ×
S. We define the reachability function over δ and S′ ⊆ S as reach[δ](S′) =
μX.(S′ ∪ δ(X)), where μ is the least fixpoint operator and δ(X) is the image
of set X under δ.

We now define reachability in a CTS: Let MC be a CTS. We denote the
set of states reachable from states in T (T ⊆ SC) as reachC(T) = reach[−→
](T). That is, reachability in MC is simply defined as the transitive closure
over the transitions in MC , starting from states in T . We then have that R =
α(reachC(IC)), where IC is the set of initial states of MC .

4.1 Upper Bound Computation

May-reachability in TTS MA defines the upper bound U . Let MC be a CTS
and let MA be an abstract TTS defined by abstraction relation ρ (via Definition
3.3). The upper bound is defined as U = reach[

may−→A](IA), where IA = α(IC).
That is, U is simply defined as the transitive closure over the may-transitions
in MA from the initial states IA. It is easy to see that α(reachC(IC)) ⊆ U , as
the may-transitions of MA overapproximate the set of transitions in MC (by
Definition 3.3).

4.2 Lower Bound Computation L

A set of abstract states X ⊆ SA is a lower bound of R if for each xa ∈ X , there is
a (xc, xa) ∈ ρ such that xc ∈ reachC(IC). This implies that X ⊆ R, as expected.

A Theory of Predicate-Complete Test Coverage and Generation 11

We define the lower bound L (based on analysis of MA) to be:

L = { va | ∃ta, ua : ta ∈ reach[must−−→A](IA) ∧
(ta

may−→A ua ∨ ta = ua) ∧
va ∈ reach[must+−→A]({ua}) }

That is, an abstract state va is in L if there is a (possibly empty) sequence of
must−-transitions leading from sa ∈ IA to ta, there is a may-transition from
ta to ua (or ta is equal to ua), and there is a (possibly empty) sequence of
must+-transitions from ua to va.

We now show that for each va ∈ L, there is a (vc, va) ∈ ρ such that vc ∈
reachC(IC). That is, L is a lower bound to R. The proof is done in three steps,
corresponding to the three parts of the definition of L:

– First, consider a sequence of must−-transitions leading from sa ∈ IA to ta
in MA. Each must−-transition xa

must−−→A ya identifies an onto relation from
γ(xa) to γ(ya). That is, for all concrete states yc mapping to ya, there is a
transition xc −→ yc such that xc maps to xa. The transitive closure of an
onto relation yields an onto relation. So, for all tc mapping to ta, we know
that tc ∈ reachC(IC).

– Second, by the construction ofMA fromMC there is a may-transition ta
may−→A

ua only if there exists a transition tc −→ uc, where states tc and uc map
to ta and ua, respectively. Since for all tc mapping to ta we know that
tc ∈ reachC(IC), it follows that if there is a may-transition ta

may−→A ua then
there is some uc mapping to ua such that uc ∈ reachC(IC).

– Third, consider a sequence of must+-transitions leading from ta to va in MA.

Each must+-transition xa
must+−→A ya identifies a total relation from γ(xa) to

γ(ya). That is, for all concrete states xc mapping to xa, there is a transition
xc −→ yc such that yc maps to ya. The transitive closure of a total relation
yields a total relation. So, for all tc mapping to ta, we know that there is a
vc mapping to va such that vc ∈ reachC({tc}). ��

5 Example

This section demonstrates upper and lower bounds to the reachable observable
states of a small function. Figure 4(a) presents a (buggy) example of QuickSort’s
partition function, a classic example that has been used to study test gener-
ation [BEL75]. We have added various control points and labels to the code for
explanatory purposes. The goal of the function is to permute the elements of the
input array so that the resulting array has two parts: the values in the first part
are less than or equal to the chosen pivot value a[0]; the values in the second
part are greater than the pivot value.

There is an array bound check missing in the code that can lead to an array
bounds error: the check at the while loop at label L2 should be (lo<=hi &&

12 T. Ball

void partition(int a[], int n) {

assume(n>2);

int pivot = a[0];

int lo = 1;

int hi = n-1;

L0: while (lo <= hi) {

L1: ;

L2: while (a[lo] <= pivot) {

L3: lo++;

L4: ;

}

L5: while (a[hi] > pivot) {

L6: hi--;

L7: ;

}

L8: if (lo < hi) {

L9: swap(a,lo,hi);

LA: ;

}

LB: ;

}

LC: ;

}

Fig. 4. The partition function

a[lo]<=pivot).4 This error only can be uncovered via an input array in which
all the elements of the array a have a value less than or equal to a[0].

There are thirteen labels in the partition function (L0-LC), but an un-
bounded number of paths. Instead of reasoning in terms of paths, we will use
predicates to observe the states of the partition function. Let us observe the
four predicates that appear in the conditional guards of the function: (lo<hi),
(lo<=hi), (a[lo]<=pivot) and (a[hi]>pivot). An observed state thus is a
bit vector of length four (lt, le,al,ah), where lt corresponds to (lo<hi), le cor-
responds to (lo<=hi), al corresponds to (a[lo]<=pivot), and ah corresponds
to (a[hi]>pivot). There only are ten feasible valuations for this vector, as six
are infeasible because of correlations between the predicates.5 These correlations
reduce the possible observable state space from 13 ∗ 16 = 208 to 13 ∗ 10 = 130.

4 The loop at L5 cannot decrement hi to take a value less than zero because the value
of variable pivot is fixed to be the value of a[0]. One could argue that one would
want to put a bounds check in anyway.

5 Since (lo<hi) implies (lo<=hi), the four valuations TFFF, TFTT, TFFT and TFTF
are infeasible. Also, if !(lo<hi)&&(lo<=hi) then (lo==hi) and so exactly one of the
predicates in the set { (a[lo]<=pivot), (a[hi]>pivot) } must be true. Thus, the
two valuations FTFF and FTTT are infeasible.

A Theory of Predicate-Complete Test Coverage and Generation 13

LC:FFFF

LB:FFFF

L0:FFFF

LB:TTTT

L0:TTTT

LA:TTTT

L9:TTFF

L8:FFFF

L8:TTFF

L7:FFFF

L5:FFFF

L7:TTFF

L5:TTFF

L7:FFFT

L5:FFFT

L7:FTFT

L5:FTFT

L7:TTFT

L5:TTFT

L6:FFFT

L6:FTFT

L6:TTFT

L4:FFFF

L2:FFFF

L4:TTFF

L2:TTFF

L4:FFTF

L2:FFTF

L4:FTTF

L2:FTTF

L4:TTTF

L2:TTTF

L4:FTFT

L2:FTFT

L4:TTFT

L2:TTFT

L4:TTTT

L2:TTTT

L3:FFTF

L3:FTTF

L3:TTTFL3:TTTT

L1:TTFF

L1:TTTF

L1:TTFT

L1:TTTT

L0:TTFFL0:TTTFL0:TTFT

Fig. 5. The reachable abstract state space of partition function. The ovals represent

the initial states IA = { L0:TTFT, L0:TTTT, L0:TTTF, L0:TTFF }. The ovals and

rectangles comprise the lower bound L, while the plaintext nodes represent the set

U − L.

Figure 5 shows the upper and lower bounds of the program as a graph of
abstract states. Each state is uniquely labeled LX:ABCD, where LX is the label
(program counter), and A, B, C and D are the values of the Boolean variables lt,
le, al, and ah. The (four) initial abstract states (IA) are denoted by ovals. Con-
sider the initial state L0:TTTT. This abstract state corresponds to all concrete
states that satisfy the expression:

(lo<hi) && (a[lo]<=pivot) && (a[hi]>pivot)

Each edge in the graph represents a transition between two reachable abstract
states (induced by the statement at the label of the first state). Solid edges
represent transitions that are must# (in this example, there are no transitions
that are only must+ or only must−). Dotted edges represents

may−→ transitions.
The set of nodes in Figure 5 represent the states that comprise the upper

bound U (|U | = 49). The rectangular nodes represent the set L (|L| = 35) and
the plaintext nodes represent the set U−L. The shading of the rectangular nodes
indicates the following:

14 T. Ball

– The white rectangular nodes represent those abstract states reachable from
IA via a sequence of must−-transitions (in our example, these are must#-
transitions which are, by definition, must−-transitions). For example, con-
sider the initial state L0:TTTF. There is a path of must#-transitions

L0:TTTF must#−→A L1:TTTF must#−→A L2:TTTF must#−→A L3:TTTF.
– The light-grey rectangular nodes (green in color) represent those abstract

states only reachable via a sequence of must−-transitions, followed by one
may-transition, followed by a sequence of must+-transitions. Thus, the set of
ovals plus the set of white and light-grey rectangular nodes represents the set
L. Consider the may-transition L3:TTTF

may−→A L4:FTTF, which continues
the path given above. Covering this transition is the only way in which the
state L4:FTTF can be reached. Then there is a path of must#-transitions

(which, by definition, also are must+-transitions): L4:FTTF must#−→A L2:FTTF
must#−→A L3:FTTF. So, these three nodes are colored light-grey.

The path given above is one of the paths that leads to an array bounds error.
Note that in this path the label L3 occurs twice, once in the state L3:TTTF
and then in the state L3:FTTF. In the first state, we have that (lo<=hi),
(a[lo]<=pivot) and (a[hi]<=pivot). At label L3, lo is incremented by one.
The path dictates (via the may-transition L3:TTTF

may−→A L4:FTTF) that the
value of lo and hi are now equal. Because (a[hi]<=pivot) the loop at label
L2 continues to iterate and we reach the second state, L3:FTTF, in which we
have that (lo==hi) and (a[lo]<=pivot) and (a[hi]<=pivot). When lo is in-
cremented the second time, its value becomes greater than hi, whose value still
is the index of the last element of the array. Thus, the next access of a[lo] at
label L2 is guaranteed to cause an array bounds violation.

6 Test Generation

The goal of test generation is to cover all the states in the lower bound L (plus
any additional states, if we are lucky). Our test generation process consists of
three steps:

– Path Generation: we use the set L to guide test generation. In particular,
using this set, we identify a set of paths that are guaranteed to cover all
states in L;

– Symbolic Execution: we use symbolic execution on this set of paths in order
to generate test data to cover these paths;

– Observe Test Runs: the program under test is run against this set of tests to
check for errors and collect the set of executed observable states.

6.1 Path Generation

Let IA be the set of initial abstract states in MA. Consider the set of states
L. The goal of the path generation phase is to enumerate all paths from IA

A Theory of Predicate-Complete Test Coverage and Generation 15

Generated Bounds
Path Endpoints Input Array Error?

(L0:TTTT, L4:FTFT) [0, -8, 1] no

(L0:TTTT, L4:TTFT) [0, -8, 2, 1] no

(L0:TTTT, L4:TTTT) [0, -8, -8, 1] no

(L0:TTTF, L4:TTFF) [1, -7, 3, 0] no

(L0:TTTF, L4:FTTF) [0, -7, -8] YES

(L0:TTTF, L4:TTTF) [1, -7, -7, 0] YES

(L0:TTFT, L7:TTFF) [0, 2, -8, 1] no

(L0:TTFT, L7:FTFT) [0, 1, 2] no

(L0:TTFT, L7:TTFT) [0, 3, 1, 2] no

(L0:TTFF, L0:TTTT) [1, 2, -1, 0] no

Fig. 6. The results of test generation for the running example

consisting of a sequence of must−-transitions followed by one (and perhaps no)
may-transition, while covering no state more than once. This can be done by
a simple depth-first search procedure. The idea is that if we generate tests to
cover these paths then we are guaranteed that the rest of the states in L will be
covered if the execution of program does not go wrong (uncover an error).

In Figure 5, using such a depth-first search identifies ten paths. These ten
paths through L are uniquely identified by their beginning and ending vertices,
as shown in the column “Path Endpoints” in Figure 6.

6.2 Symbolic Execution

Each of the ten paths induces a straight-line C“path”program that we automat-
ically generated by tracing the path through the partition function. Consider
the path from L0:TTTF to the L4:TTFF:

L0:TTTF → L1:TTTF → L2:TTTF → L3:TTTF → L4:TTFF

and its corresponding path program (see Figure 7). There are four transitions
between labels in this path. The transition L0:TTTF → L1:TTTF corresponds
to the expression in while loop at label L0 evaluating to true. This is mod-
eled by the statement assume(lo<=hi) in the path program in Figure 7. The
four statements corresponding to the four transitions are presented after the
“prelude” code in Figure 7. The assert statement at the end of the path pro-
gram asserts that the final state at label L4 (TTFF) cannot occur, which of
course is not true.

We used CBMC [CKY03], a bounded-model checker for C programs to gen-
erate a counterexample to the assertion that the state L4:TTFF cannot occur.
CBMC produces an input array a[] and array length n that will cause the
assert statement to fail, proving that L4:TTFF is reachable. For the generated
path program of Figure 7, CBMC finds a counterexample and produces the input
array [1, -7, 3, 0], as shown in the second column of Figure 6.

16 T. Ball

partition(int a[],int n) {

assume(n>2); // prelude

pivot = a[0]; // prelude

lo = 1; // prelude

hi = n-1; // prelude

assume(lo<=hi); // L0:TTTF -> L1:TTTF

; // L1:TTTF -> L2:TTTF

assume(a[lo]<=pivot); // L2:TTTF -> L3:TTTF

lo=lo+1; // L3:TTTF -> L4:TTFF

assert(! ((lo<hi)&&(lo<=hi)&&

!(a[lo]<=pivot)&&!(a[hi]>pivot))

);

}

Fig. 7. The “path” program corresponding to the path L0:TTTF → L1:TTTF →
L2:TTTF → L3:TTTF → L4:TTFF

6.3 Observe Test Runs

Instrumentation of the original program both collects the executed observable
states for each test run and checks for array bounds violations. In our example,
there are ten runs, two of which produce array bounds violations (because the lo
index is incremented past the end of the input array and then a[lo] is accessed),
as shown in the third column of Figure 6.

The set of observed states resulting from executing all ten tests contains
all the states in Figure 5 except four of the states in U − L (in particular,
L5:FFFT, L6:FFFT and L7:FFFT and L3:FFTF) and the state L2:FFFF, which
is unreachable due to an array bounds violation.

Fixing the error in the program and rerunning our entire process results in an
upper bound U with 56 states and a lower bound L of 37 states. Test generation
succeeds in covering all 37 states in the lower bound L and causes no array
bounds errors. Additionally, these tests cover 6 of the 19 tests in U − L.

6.4 Abstraction Refinement

This leads us to consider whether or not the remaining 13 states in U − L are
reachable at all and to the problem of refining the upper and lower bounds.
Consider the state L7:FFFT from Figure 5, which is in U − L and was not
covered by any test. The concretization of this abstract state is

lo>hi && a[lo]>pivot && a[hi]>pivot

Notice that partition function, while having an array bounds error, does cor-
rectly maintain the invariant that all array elements with index less than the
variable lo have value less than or equal to pivot. However, in the above state,
we have that hi<lo and a[hi]>pivot. Thus, it is not possible to reach this state.

A Theory of Predicate-Complete Test Coverage and Generation 17

We submit that rather than ignore abstract states whose concrete counter-
parts are unreachable, it is important to introduce new predicates to try and
eliminate such states in the abstraction. The reason is that these unreachable
states often will point to boundary conditions that have not yet been tested.

In order to eliminate the state L7:FFFT we will introduce three new predi-
cates into the Boolean abstraction (in addition to the four already there) in order
to track the status of the array when the variable lo takes on the value hi+1:

(lo==hi+1), (a[lo-1]<=pivot), (a[hi+1]>pivot)

These predicates track an important boundary condition that was not observed
by the initial four predicates. With these additional predicates, the generated
Boolean abstraction has matching lower and upper bounds (L = U) and our test
generation process covers all reachable observable states. As mentioned before,
we can not expect to be able to achieve matching lower and upper bounds in
general. We will next consider what the condition L = U means.

7 Discussion

To recap, U is the set of abstract states reachable (from the initial set of ab-
stract states IA) via a sequence of may-transitions, while L is the set of states
reachable from IA via a sequence of must−-transitions, followed by a most one
may-transition, followed by a sequence of must+-transitions.

An abstract TTS MA bisimulates [Mil99] a CTS MC if each may-transition

in MA is matched by a must+-transition (that is,
may−→A=must+−→A). It is easy to

see that if MA bisimulates MC then every abstract state in U is reachable
via a sequence of must+-transitions. Bisimulation guarantees a strong form of
reachability:

if MA bisimulates MC and s′a ∈ reach[may−→A]({sa}) then for all concrete
states sc ∈ γ(sa), there exists s′c ∈ γ(s′a) such that s′c ∈ reachC(sc)

Thus, bisimulation implies that L = U .
However, if L = U it does not follow that MA bisimulates MC because the

definition of L permits a sequence of must−-transitions, followed by a most
one may-transition, followed by a sequence of must+-transitions. The condition
L = U guarantees a weak form of reachability:

if L = U and s′a ∈ reach[
may−→A]({sa}) then there exists concrete state

sc ∈ γ(sa) and there exists s′c ∈ γ(s′a) such that s′c ∈ reachC(sc)

So, the condition L = U implies that there is a finite set of tests sufficient to ob-
serve all states in U . Since U is an upper bound to the set of reachable observable
states R this set of tests covers all states in R as well (that is, R = U = L). From
this it also follows that the condition L = U is a sufficient test for determining
the completeness of a may-abstraction [GRS00], since L = U implies that U = R
and R = α(reachC(IC)) is the most precise (complete) abstract answer possible.

18 T. Ball

In other words, if U = L then the set U is equal to the set of observable states
(R) that would be encountered during the (infinite) computation of the least
fixpoint over the concrete transition system MC , represented by α(reachC(IC)).

To summarize, the condition U = L joins together the worlds of testing and
abstraction. It implies both a sound and complete abstract domain that can be
completely covered by a finite set of tests.

8 Related Work

Related work breaks into a number of topics.

8.1 Control-Flow Coverage Criteria

We have already compared PCT coverage with statement, branch, multiple con-
dition, predicate and path coverage (see Section 2). We now consider other al-
ternatives to path coverage, namely linear code sequence and jump (LCSAJ)
coverage and data-flow coverage based on def-use pairs. An LCSAJ represents
a sequence of statements (which may contain conditional statements) ending
with a branch. An LCSAJ is an acyclic path (no edge appears twice) through
a control-flow graph ending with a branch statement. As we have shown, PCT
coverage is incomparable to path coverage for loop-free programs, so it also is
incomparable to LCSAJ coverage. The goal of def-use coverage is to cover, for
each definition d of a variable x and subsequent use u of variable x, a path from
d to u not containing another definition of x. If there is such a path from d to u
then there is an acyclic path from d to u that doesn’t contain another definition
of x, so again PCT coverage is incomparable to def-use coverage.

8.2 Symbolic Execution and Test Generation

The idea of using paths and symbolic execution of paths to generate tests has a
long and rich history going back to the mid-1970’s [BEL75, How76, Cla76, RHC]
and continuing to the present day [JBW+94, GBR98, GMS98]. Recently, Chli-
pala et al. proposed using counterexample-driven refinement to guide test gener-
ation [CHJM04]. The major contribution of our work over previous efforts in this
area is to guide test generation using Boolean abstraction and the computation
of upper and lower bounds to the set of reachable observable states.

A classic problem in path-based symbolic execution is the selection of pro-
gram paths. One way to guide the search for feasible paths is to execute the
program symbolically along all paths, while guiding the exploration to achieve
high code coverage. Clearly, it is not possible to symbolically execute all paths,
so the search must be cut off at some point. Often, tools will simply analyze
loops through one or two iterations [BPS00]. Another way to limit the search
is to bound the size of the input domain (say, to consider arrays of at most
length three) [JV00], or to bound the maximum path length that will be con-
sidered, as done in bounded model checking [CKY03]. An experiment by Yates

A Theory of Predicate-Complete Test Coverage and Generation 19

and Malevris provided evidence that the likelihood that a path is feasible de-
creases as the number of predicates in the path increases [YM89]. This led them
to use shortest-path algorithms to find a set of paths that covers all branches in
a function.

In contrast to all these methods, our technique uses the set of input pred-
icates to bound the set of paths that will be used to generate test data for a
program. The predicates induce a Boolean abstraction that guides the selection of
paths.

Other approaches to test generation rely on dynamic schemes. Given an ex-
isting test t, Korel’s “goal-oriented”approach seeks to perturb t to a test t′ cover
a particular statement, using function minimization techniques [Kor92]. The po-
tential benefit of Korel’s approach is that it is dynamic and has an accurate view
of memory and flow dependences. The downside of his approach is that test t
may be very far away from a suitable test t′.

Another dynamic approach to test generation is found in the Korat
tool [BKM02]. This tool uses a function’s precondition on its input to auto-
matically generate all (nonisomorphic) test cases up to a given small size. It
exhaustively explores the input space of the precondition and prunes large por-
tions of the search space by monitoring the execution of the precondition. For
an example such as the partition function that has no constraints on its input,
the Korat method may not work very well. Furthermore, it requires the user to
supply a bound on the input size whereas our technique infers the input size.

Harder, Mellen and Ernst [HME03] propose using operational abstractions
(properties inferred from observing a set of test executions) to guide the genera-
tion and maintenance of test suites. This is similar in spirit to predicate-complete
testing but unsound (the properties inferred are “likely” invariants but not guar-
anteed to hold in general). In contrast, our use of predicate abstraction and
reachability analysis in the abstract domain computes a (sound) overapprox-
imation to the set of reachable observable states of a program. Furthermore,
the invariants we can establish about a program’s behavior involve arbitrary
Boolean expressions over atomic predicates whereas Harder et al. limit them-
selves to atomic predicates and implications between atomic predicates.

8.3 Three-Valued Model Checking

Our work was inspired by the work on three-valued model checking by Bruns,
Godefroid, Huth and Jagadeesan [BG99, GHJ01, GR03]. Their work shows how
to model incomplete (abstract) systems using modal transition systems (equiva-
lently, partial Kripke Structures), as we have done here. It then gives algorithms
for model checking temporal logic formula with respect to such systems. Given
an MTS, these algorithms can determine whether a temporal logic formula is
definitely true, definitely false or unknown with respect to the MTS.

Our computation of lower and upper bounds achieves a similar result but
infers reachability properties of a concrete TTS MC from analysis of an ab-
stract TTS MA. The lower bound L characterizes those observable states that
are definitely reachable, the upper bound U (more precisely, its inverse S − U)

20 T. Ball

characterizes those observable states that are definitely not reachable, and the
reachability status of states in U − L are unknown.

To achieve a more precise lower bound for (weak) reachability, we general-
ized the definition of must-transitions given for MTS to account for three types
of must-transitions: must+ (which correspond to must-transitions in an MTS),
must− and must#.

In model checking of abstractions of concrete transition systems, one is inter-
ested in proving that a temporal property holds for all concrete execution paths
starting from some initial abstract state. This is the reason why only must+-
transitions are used in model checking of modal transitions systems. For (weak)
reachability, one is interested proving the existence of some concrete execution
path starting from some initial abstract state. Thus, must−-transitions are of
interest.

9 Conclusion

We have presented a new form of control-flow coverage that is based on observing
the vector consisting of a program’s conditional predicates, thus creating a finite-
state space. There are a number of open questions to consider. First, what is a
logical characterization of tri-modal transition systems? Second, how can one
automate the refinement process to bring the lower and upper bounds closer?
(It is well known that the set of must-transitions is not generally monotonically
non-decreasing when predicates are added to refine an abstract system. Recently,
Shoham and Grumberg [SG04] and Alfaro, Godefroid and Jagadeesan [dAGJ04]
independently proposed a new form of must-transition that permits monotonic
refinement of abstractions.) Finally, how does this technique work in practice?

Acknowledgements

Thanks to Daniel Kroening for his help with the CBMC model checker. Thanks
also to Byron Cook, Tony Hoare, Vladimir Levin, Orna Kupferman and Andreas
Podelski for their comments.

References

[BEL75] R. Boyer, B. Elspas, and K. Levitt. SELECT–a formal system for test-
ing and debugging programs by symbolic execution. SIGPLAN Notices,
10(6):234–245, 1975.

[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-
valued temporal logics. In CAV 99: Computer Aided Verification, LNCS
1633, pages 274–287. Springer-Verlag, 1999.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on java predicates. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 123–133. ACM, 2002.

A Theory of Predicate-Complete Test Coverage and Generation 21

[BPS00] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dy-
namic programming errors. Software-Practice and Experience, 30(7):775–
802, June 2000.

[CHJM04] A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In ICSE 04: International Conference on
Software Engineering (to appear). ACM, 2004.

[CKY03] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and
Verilog programs using bounded model checking. In Design Automation
Conference, pages 368–371, 2003.

[Cla76] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, 2(3):215–222,
September 1976.

[dAGJ04] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions
of games:uncertainty, but with precision. In LICS 04: Logic in Computer
Science, To appear in LNCS. Springer-Verlag, 2004.

[GBR98] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation
using constraint solving techniques. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 53–62. ACM, 1998.

[GHJ01] P. Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based
model checking using modal transition systems. In CONCUR 01: Confer-
ence on Concurrency Theory, LNCS 2154, pages 426–440. Springer-Verlag,
2001.

[GMS98] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data generation
using an iterative relaxation method. In FSE 98: Foundations of Software
Engineering. ACM, 1998.

[God03] P. Godefroid. Reasoning about abstract open systems with generalized
module checking. In EMSOFT 03: Conference on Embedded Software,
LNCS 2855, pages 223–240. Springer-Verlag, 2003.

[GR03] P. Godefroid and R.Jagadeesan. On the expressiveness of 3-valued models.
In VMCAI 03: Verification, Model Checking and Abstract Interpretation,
LNCS 2575, pages 206–222. Springer-Verlag, 2003.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, 1981.
[GRS00] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpreta-

tions complete. Journal of the ACM, 47(2):361–416, 2000.
[HME03] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via oper-

ational abstraction. In ICSE 2003: International Conference on Software
Engineering, pages 60–71. ACM, 2003.

[How76] W. E. Howden. Reliability of the path analysis testing strategy. IEEE
Transactions on Software Engineering, 2:208–215, 1976.

[JBW+94] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman.
Test data generation and feasible path analysis. In Proceedings of the
International Symposium on Software Testing and Analysis, pages 95–107.
ACM, 1994.

[JV00] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In Pro-
ceedings of the International Symposium on Software Testing and Analysis,
pages 14–25. ACM, 2000.

[Kor92] B. Korel. Dynamic method of software test data generation. Software
Testing, Verification and Reliability, 2(4):203–213, 1992.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, 1999.

22 T. Ball

[RHC] C. Ramamoorthy, S. Ho, and W. Chen. On the automated generation of
program test data. IEEE Transactions on Software Engineering, 2(4):293–
300.

[SG04] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL.
In TACAS 04: Tools and Algorithms for Construction and Analysis of
Systems, LNCS 2988, pages 546–560. Springer-Verlag, 2004.

[Tai96] K-C. Tai. Theory of fault-based predicate testing for computer programs.
IEEE Transactions on Software Engineering, 22(8):552–562, 1996.

[Tai97] K-C. Tai. Predicate-based test generation for computer programs. In
ICSE 97: International Conference on Software Engineering, pages 267–
276, 1997.

[YM89] D. Yates and N. Malevris. Reducing the effects of infeasible paths in branch
testing. In Proceedings of the Symposium on Software Testing, Analysis,
and Verification, pages 48–54. ACM, 1989.

A Perspective on Component Refinement

Lúıs S. Barbosa

Universidade do Minho, DI - CCTC, Campus de Gualtar,
4710-057 Braga, Portugal

lsb@di.uminho.pt

Abstract. This paper provides an overview of an approach to coalge-
braic modelling and refinement of state-based software components, sum-
ming up some basic results and introducing a discussion on the interplay
between behavioural and classical data refinement. The approach builds
on coalgebra theory as a suitable tool to capture observational semantics
and to base an abstract characterisation of possible behaviour models for
components (from partiality to different degrees of non-determinism).

1 Introduction

In recent years component-based software development [46,49] emerged as a
promising paradigm to deal with the ever increasing need for mastering com-
plexity in software design, evolution and reuse. However, as it happened before
with object-orientation, and software engineering in the broad sense, component-
orientation has grown up to a collection of popular technologies, methods and
tools, before consensual definitions and principles (let alone formal foundations)
have been put forward.

This paper focus on a particular corner of the ’componentware’ landscape.
A corner in which software components are regarded as specifications of state-
based modules, in the tradition of the so-called model oriented approach to formal
systems design — a widespread paradigm of which Vdm [23], Z [45], B [1] and
Raise [47] are well-known representatives. In a series of papers, starting with [6]
and including [8,7,9], a coalgebraic characterisation of this sort of components
and a corresponding calculus was proposed. This approach defines components as
persistent units which encapsulate a number of services through public interfaces
and provide limited access to internal state spaces. Coalgebra theory [42] was
found a suitable tool to capture observational semantics and to base an abstract
characterisation of possible behaviour models for components (e.g., partiality
or (different degrees of) non-determinism). Such models are introduced in the
framework in a generic [5] way — i.e., as a parameter, in the form of a strong
monad in the component calculus. More recently in [29,30] the framework was
extended from an equivalence to a refinement calculus, based on a weak form of
coalgebra morphism.

This paper provides an overview of this approach to component modelling
and refinement, summing up some basic results and introducing a discussion

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 23–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 L.S. Barbosa

on the interplay between behavioural refinement, as introduced in [29,30], and
classical data refinement [18,35] applied to software components.

Section 2 motivates the use of coalgebras in component modelling and reviews
the component calculus introduced in [8,7]. This paves the way for a detailed
discussion of component refinement at both the behavioural and data levels in
sections 3 and 4, respectively. Finally, section 5 introduces some recent research
concerns on this topic.

2 Coalgebraic Models for Software Components

2.1 Coalgebras

One of the most elementary models of a software component, or of any compu-
tational process whatsoever, is that of a function

f : O ←− I

which specifies a deterministic transformation rule between two structures I and
O. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s view’ of
reality: here is a recipe (a tool, a technology) to build gnus from gnats.

Often, however, reality is not so simple. For example, one may know how to
produce ‘gnus’ from ‘gnats’ but not in all cases. This is expressed by observing
the output of f in a more refined context: O is replaced by O + 1, where 1
denotes the singleton datatype and + is datatype sum or coproduct. Then f is
said to be a partial function. In other situations one may recognise that there
is some environmental (or context) information about ‘gnats’ that, for some
reason, should be hidden from input. It may be the case that such information
is too extensive to be supplied to f by its user, or that it is shared by other
functions as well. It might also be the case that building gnus would eventually
modify the environment, thus influencing latter production of more ‘gnus’. For
U a denotation of such context information, the signature of f becomes1

f : (O × U)U ←− I

A function computed within a context is often referred to as ‘state-based’,
in the sense the word ‘state’ has in automaton theory — the internal memory
of the automaton which both constraints and is constrained by the execution
of actions. In fact, the ‘nature’ of f as a ‘state-based function’ is made more
explicit by rewriting its signature as

f : (O × U)I ←− U

This, in turn, may suggest an alternative computational model, which (again in
a metaphorical sense) one may dub as the ‘natural scientist’s view’. Instead of

1 In the sequel we often adopt the standard mathematical notation BA for funtional
dependency, instead of the equivalent [A → B] more familiar in computing.

A Perspective on Component Refinement 25

a recipe to build ‘gnus’ from ‘gnats’, we are left with the awareness that there
exist gnus and gnats and that their evolution can be observed.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that
is, a tool to observe with, which necessarily entails a particular shape for ob-
servation. The basic ingredients required to support such an ‘observational’, or
‘state-based’, view of computational processes may be summarised as follows:

a lens : ©�© (a functor T)

an observation structure: ©�© universe
p←− universe (a T-coalgebra)

Technically, in the category Set of sets and set-theorectical functions, a coalgebra
for a functor T is a set U , which corresponds to the object being observed (the
carrier), and a function p : T U ←− U 2.

There is, of course, a great diversity of ‘lenses’ and, for the same ‘lens’, a va-
riety of observation structures, i.e., of coalgebras. Moreover, such structures can
be related and compared. This entails the need for a notion of homomorphism,
i.e., a map which preserves the shape of T as an observation tool. Therefore,
a T-coalgebra morphism h between, say, coalgebras p and q is just a function
between the respective carriers making the following diagram to commute:

U
p ��

h

��

T U

T h

��
V q

�� T V

Let us consider some possible lenses. An extreme case is the opaque lens:
no matter what we try to observe through it, the outcome is always the same.
Formally, such a lens is the constant functor 1 which maps every object to the
singleton set 1 and every morphism to the identity on 1. Since 1 is the final
object in Set, all 1-coalgebras reduce to ! — the canonical function to 1. A
slightly more interesting lens is 2, which allows states to be classified into two
different classes: black or white. This makes it possible to identify subsets of the
‘universe’ U under observation, as an observation structure p for this functor
2 The dual perspective emphasises the possibility of at least some (essentially finite)

things being not only observed, but actually built. In this case, one does not work
with a ‘lens’ but with a ‘toolbox’. The assembly process is specified in a similar (but
dual) way:

a tool box :
���

(a functor T)

an assembly process: artifact
d←−

���
artifact (a T-algebra)

26 L.S. Barbosa

maps elements of U to one or another element of 2. Should an arbitrary set O be
chosen to colour the lens, the possible observations become more discriminating.
A coalgebra for O is a ‘colouring’ device in the sense that elements of the universe
are classified (i.e., regarded as distinct) by being assigned to different elements
of O.

Thus, a ‘colour set’ as 1, 2 or O above, can be regarded as a classifier of the
state space. Coalgebras, for such constant functors, are pure observers providing
a limited access to the state space by mapping it into the ‘colour set’ — or
attributes, as they are known in object-oriented programming.

A common assumption on state-based components is that the state itself is
a ‘black box’: it may evolve either internally or as a reaction to external stimuli,
but the only way of tracing such an evolution is by observing the values of its
attributes. Under this assumption the ‘transparent’ lens is not particularly useful.
Technically, it corresponds to the identity functor Id. An observation structure
for Id amounts to a function p : U ←− U . This means that, by using p, the
state U can indeed be modified, an ability we hadn’t before. But, on the other
hand, the absence of attributes makes any meaningful observation impossible.
The best we can say, if no direct access to U is allowed, is just that things happen.
A better alternative is to combine attributes with such state modifiers, or update
operations, to model the ‘universe’ evolution. The latter will be called actions
here; in the object paradigm they are known as methods. Such a combination
leads to a richer stock of lens. We might consider, for example, that

– things happen and disappear : T U = U + 1
– things happen and, in doing so, some of their attributes become visible, i.e.,

(non trivial) output is produced: T U = U ×O

– additional input is required for an observation to take place: T U = U I

– we are not completely sure about what has happened, in the sense that the
evolution of the system being observed may be nondeterministic. In this case,
the lens above can be combined with T U = PU where PU is the finite
powerset of U .

In the second example, the action also has an input interface. Typically, actions
over the same state space cannot happen simultaneously and, therefore, if more
than one is specified in a particular structure, in each execution the input sup-
plied will also select the action to be activated. In some cases, the input is there
only for selection purposes: actions with trivial input (i.e., I = 1) correspond
to buttons that can be pressed. Then the input interface organises itself as a
coproduct. Attributes, on the other hand, can be inspected in parallel. In other
cases still we might be intereseted in methods which not only change the inter-
nal state of a component but also produce an observable output. Putting all the
ingredients together we arrive at the following functor as a possible shape for
software components modelled as coalgebras:

T = A× (Id ×O)I (1)

A Perspective on Component Refinement 27

whereA = Πk∈KAk stand for the product of the attribute types and I =
∑

j∈J Ij
and O =

∑
j∈J Oj correspond to the coproduct of, respectively, input and output

parameters of the component operations.
Functor T can still be enriched with a specification of a particular beha-

vioural model to which components may stick to. Notice the use of the maybe or
the powerset monads above to capture such models. Therefore functor T in (1)
becomes parametric on an arbitrary strong monad3 B, leading to coalgebras for

T = A × B(Id ×O)I (2)

as a possible general model for state based software components. Therefore com-
putation of an action will not simply produce an output and a continuation state,
but a B-structure of such pairs. The monadic structure provides tools to han-
dle such computations. Unit (η) and multiplication (μ), provide, respectively, a
value embedding and a ‘flatten’ operation to reduce nested behavioural effects.
Strength, either in its right (τr) or left (τl) version, cater for context information.

Several possibilities can be considered for B. The simplest case is, obviously,
the identity monad, Id, whereby components behave in a totally deterministic
way. Other possibilities capturing more complex behavioural features, include
the maybe monad (B = Id + 1) for partiality, the (finite) powerset (B = P) or
sequence (B = Id∗) monads for (arbitrary or ordered) non determinism or the
bag monad 4 to model cases in which among the possible future evolutions of a
component, some are stipulated to be more likely (cheaper, more secure, etc.)
than others (see [8] for further details on the use of monads in a calculus of
generic behaviour models).

2.2 Components

Building on the discussion above, this subsection introduces component’s spec-
ifications as coalgebras and gives a glimpse of the resulting calculus. Without
a major loss of generality, however, we shall concentrate in this text on coalge-
bras for

T = B(Id ×O)I (3)
3 A strong monad is a monad 〈B, η, μ〉 where B is a strong functor and both η and

μ are strong natural transformations [26]. B being strong means there exist natural
transformations T(Id×−) : T×− ⇐= T×− and T(−× Id) : −×T ⇐= −×T, called
the right and left strength, respectively, subject to certain conditions. Their effect
is to distribute the free variable values in the context “−” along functor B. Strength
τr, followed by τl maps BI × BJ to BB(I × J), which can, then, be flattened to
B(I × J) via μ. In most cases, however, the order of application is relevant for the
outcome. The Kleisli composition of the right with the left strength, gives rise to
a natural transformation whose component on objects I and J is given by δr =
τrI,J • τlBI,J

Dually, δl = τlI,J • τrI,BJ . Such transformations specify how the monad
distributes over product and, therefore, represent a sort of sequential composition of
B-computations.

4 Defined over a structure 〈M,⊕,⊗〉, where both ⊕ and ⊗ are Abelian monoids, the
latter distributing over the former.

28 L.S. Barbosa

therefore ommiting the attribute’s part in (2). Notice that, for B = Id, such
coalgebras correspond to classical Mealy machines [27]. In general a component
specification is defined as follows, where a collection of sets I, O, ..., acting as
component interfaces is assumed.

Definition 1. A software component is specified by a pointed coalgebra

〈up ∈ Up, ap : B(Up ×O)I ←− Up〉 (4)

where up is the initial state, often referred to as the seed of the component com-
putation, and the coalgebra dynamics is captured by currying a state-transition
function ap : B (Up ×O) ←− Up × I.

An elementary, but typical, example of a state based component is given by
the following specification of a buffering device which provides services to store
and deliver messages.

Example 1. Denoting by U its internal state, a buffer for messages of type M
is handled through operations

put : U ←− U ×M

pick : U ×M ←− U

An alternative, ‘black box’ view hides U from the component’s environment and
regards each operation as a pair of input/output ports. Such a ‘port’ signature
of, e.g., the pick operation is given by

pick : M ←− 1

The intuition is that pick is activated with the simple pushing of a ‘button’ (its
argument being the buffer private state space) whose effect is the production of a
M value in the corresponding output port. Similarly typing put as

put : 1 ←−M

means that an external argument is required on activation but no visible output
is produced, but for a trivial indication of successful termination. Such ‘port’ sig-
natures are grouped together in the diagram below. Note how input (respectively,
output) ‘ports’ are represented by the sum of their parameters. Such sums label
the buffer input (respectively, output) point represented by an empty (respectively,
full) circle in the diagram. Combined input type M+1 models the choice between
the two functionalities.
One might capture Store dynamics by a function aStore : P(U ×O) ←− U ×
I which describes how Store reacts to input stimuli, produces output data (if
any) and changes state. This can also be written in a curried form as aStore :
P(U ×O)I ←− U that is, as a coalgebra of signature U ←− T U where functor
T captures transition ‘shape’:

T = P(Id ×O)I (5)

A Perspective on Component Refinement 29

{
put : 1 ←− M

pick : M ←− 1
•

�������	

Store

O = 1 + M

I = M + 1

Fig. 1. The Store component

Built in this ‘shape’ is the possibility of non deterministic evolution captured
by the finite powerset monad. Concretely, our first model for Store given below
assumes that messages are labelled by a time tag (provided by a clock function
ttag()) so that on the arrival of a pick request any message stored for more than
a specified time interval (ε) can be delivered. Let U = P(M × T), where T stands
for a suitable representation of time, be its state space. Then,

aStore〈u, put m〉 = {〈u ∪ {〈m, ttag()〉}, ι1 ∗〉}
aStore〈u, pick〉 = {〈u \ {〈m, t〉}, ι2 m〉| 〈m, t〉 ∈ u ∧ t− ttag() ≥ ε}

where put m and pick abbreviate ι1 m and ι2 ∗, respectively.

Components can be regarded as arrows between (input/output) interfaces
and therefore arrows between components are arrows between arrows. Formally,
these three notions — interfaces, components and component morphisms — lead
to the notion of a bicategory 5 as a possible mathematical universe for compo-
nents to live. In brief, we take interfaces as objects of a bicategory Cp, whose
arrows are pointed T-coalgebras and 2-cells, the arrows between arrows, the
corresponding morphisms. Formally,

Definition 2. Assume arbitrary sets as Cp objects. For each pair 〈I,O〉 of ob-
jects, define a category Cp(I,O), whose arrows

h : 〈uq, aq〉 ←− 〈up, ap〉 Up
ap ��

h

��

T Up

TB h

��
Uq

aq

�� T Uq

5 Basically a bicategory [11] is a category in which a notion of arrows between arrows
is additionally considered. This means that the the space of morphisms between any
given pair of objects, usually referred to as a (hom-)set, acquires itself the structure
of a category. Therefore arrow composition and unit laws become functorial, since
they transform both objects and arrows of each hom-set in an uniform way.

30 L.S. Barbosa

satisfy the following morphism and seed preservation conditions:

aq · h = T h · ap (6)
h up = uq (7)

Composition is inherited from Set and the identity 1p : p←− p, on component p,
is defined as the identity idUp on the carrier of p. Next, for each triple of objects
〈I,K,O〉, a composition law is given by a functor

;I,K,O : Cp(I,O) ←− Cp(I,K) × Cp(K,O)

whose action on objects p and q is given by

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : B(Up × Uq ×O) ←− Up × Uq × I is detailed as follows

ap;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

ap×id−−−−→ B(Up ×K) × Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−−→ B(Up × B(Uq × O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

μ−−−−→ B(Up × Uq ×O)

The action of ń;ż on 2-cells reduces to h ; k = h × k. Finally, for each object
K, an identity law is given by a functor

copyK : Cp(K,K) ←− 1

whose action on objects is the constant component 〈∗ ∈ 1, acopyK
〉, where acopyK

=
η1×K . Slightly abusing notation, this will be also referred to as copyK . Similarly,
the action on morphisms is the constant morphism id1.

2.3 A Component Calculus

The fact that, for each strong monad B, components form a bicategory amounts
not only to a standard definition of two basic combinators ; and copyK of a possi-
ble component calculus, but also to setting up its laws in the form of bisimulation
equations. Therefore, the existence of a seed preserving morphism between two
components makes them TB-bisimilar, leading to the following laws, for appro-
priately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (8)
(p ; q) ; r ∼ p ; (q ; r) (9)

In previous papers [8,7,9] we have proposed an algebra of T-components
parametric on a behaviour model B. The development of such a calculus starts
from the simple observation that functions can be regarded as particular ins-
tances of components, whose interfaces are given by their domain and codomain
types. Formally,

A Perspective on Component Refinement 31

Definition 3. A function f : B ←− A is represented in Cp by

�f� = 〈∗ ∈ 1, a�f�〉

i.e., a coalgebra over 1 whose action is given by the currying of

a�f� = 1×A
id×f �� 1×B

η(1×B) �� B(1 ×B)

The pre- and post-composition of a component with Cp-lifted functions can
be encapsulated into an unique combinator, called wrapping, which is reminiscent
of the renaming connective found in process calculi (e.g., [31]). Let p : O ←− I be
a component and consider functions f : I ←− I ′ and g : O′ ←− O. Component
p wrapped by f and g, denoted by p[f, g] and typed as O′ ←− I ′, is defined by
input pre-composition with f and output post-composition with g. Formally,

Definition 4. The wrapping combinator is a functor

−[f, g] : Cp(I ′, O′) ←− Cp(I,O)

which is the identity on morphisms and maps component 〈up, ap〉 into
〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

Three tensor products are also introduced in the calculus to model choice
(�), concurrent (�) and parallel composition (�). The latter is detailed below
for illustration purposes.

Parallel composition, denoted by p�q, corresponds to a synchronous product:
both components are executed simultaneously when triggered by a pair of legal
input values. The behavioural effect, captured by monad B, propagates. For
example, if B expresses component failure and one of the arguments fails, product
fails as well. Formally,

Definition 5. The parallel combinator � is defined as I�J = I×J on objects
and a family of functors

�IOJR : Cp(I × J,O ×R) ←− Cp(I,O) × Cp(J,R)

which yields
p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q Up × Uq × (I × J)
∼= �� Up × I × (Uq × J)

ap×aq �� B (Up ×O) × B (Uq ×R)
δl �� B (Up ×O × (Uq ×R))
∼= �� B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.

32 L.S. Barbosa

A generic form of component interaction is achieved by a generalization of
sequential composition, leading to a family of hook combinators which forces
part of the output of a component to be fed back as input. For components
with the same input/output type, the hook combinator has a particularly simple
definition as the Kleisli composition of the original coalgebra. Formally,

Definition 6. Let p : Z ←− Z. Define

p �: Z ←− Z = 〈up ∈ Up, ap�〉

where

ap� = Up × Z
ap �� B(Up × Z)

Bap �� BB(Up × Z)
μ �� B(Up × Z)

i.e., ap� = ap • ap,

The following example illustrates the use of some component combinators
to connect elementary state-based specifications. The component to be built is
known as the game of life, a simple model of cellular behaviour which has been
popularised as a common screen locker for computers.

Example 2. The game is based on a grid of cells each of which sends and re-
ceives elementary stimulus to and from its four adjacent neighbours. A stimulus
is a Boolean value indicating whether the cell is either ‘alive’ or ‘dead’. The
following few rules govern the survival, death and birth of cell generations:

– Each living cell with less than two or more than three living neighbours dies
in the next generation.

– Each dead cell with exactly three living neighbours becomes alive.
– Each living cell with less than two or three living neighbours survives until

the next generation.

Each cell will be specified as a component Cell whose input is a tuple of four
Boolean values, each one to be supplied by one of the four adjacent cells. The
cell reacts to such a stimulus by computing its new state — ‘dead’ or ‘alive’ —
and by making it available as an output to its neighbours, used to compute the
next cell generation. Formally, we define

Cell : 2 ←− 2× 2× 2× 2 = 〈true ∈ 2, aCell〉

where

aCell 〈u, t〉 = let n = living t

in

⎧⎪⎨⎪⎩
〈false, false〉 if u = true ∧ (n < 1 ∨ n > 3)
〈true, true〉 if u = false ∧ n = 3)
〈u, u〉 otherwise

Function living above, counts the number of living stimuli (i.e., the number of
true values) in a four Boolean tuple. So, UCell = 2 and B = Id. The game’s

A Perspective on Component Refinement 33

behaviour is, of course, deterministic and all cells in the grid react simultaneously
to produce the new generation. To form a grid of n cells we simply connect them
using the parallel combinator �. The crucial point is to devise a wiring scheme
to guarantee that the joint output of the n connected cells is appropriately fed
back. The composed system is pictured below, where component

Bus : 24n

←− 2n

concentrates and correctly distributes the output.
The n cells are organised as a fully connected matrix of k rows and l columns

(n = k× l), so that the neighbours of cell 〈i, j〉 are 〈i− 1, j〉, 〈i+ 1, j〉, 〈i, j − 1〉
and 〈i, j + 1〉 (in the ‘west’, ‘east’, ‘north’ and ‘south’ directions, respectively)
computed in the k and l rings (i.e., 1−1 = k, k+1 = 1 and 1−1 = l, l+1 = 1).

•

�������	

2n

Cell � Cell � · · · � Cell

24n

•

�������	

Bus

24n

��
��
��
��

To specify Bus we adopt the following convention: the first cell in the �-expression
has coordinates 〈1, 1〉, second is 〈1, 2〉 and so on until column n is reached; the next
cell is then 〈2, 1〉. Under this convention the output produced by cell 〈i, j〉 is selected
from the global output tuple as the j + (n× (i− 1))-projection, i.e.

out〈i,j〉 : 2n −→ 2

out〈i,j〉 = πj+(n×(i−1))

Now, the input to cell 〈i, j〉 is simply the split of the outputs of its neighbours,
i.e.,

in〈i,j〉 : 2n −→ 24

in〈i,j〉 = 〈out〈i,decnj〉, out〈decni,j〉, out〈i,incnj〉, out〈incni,j〉〉

34 L.S. Barbosa

where decnx = (x = 1 → n, x − 1) and incnx = (x = n → 1, x + 1). Finally,
Bus is defined as the lifting of the split

w = 〈in〈i,j〉 | i, j ∈ 1..n〉

The game of life component is then written as

GameLife = ((Cell � Cell � · · · � Cell) ; Bus) �

where

Bus = �w�

Note how the hook combinator is responsible for extending the game’s behaviour
to the infinite, once the component has been stimulated with an initial input.

3 Behavioural Refinement

3.1 Component’s Behaviour and Bisimulation

Successive observations of (or experiments with) a T-coalgebra p reveals its be-
havioural patterns. These are defined in terms of the results of the observers as
recorded in the shape T. Then, just as the initial algebra is canonnically defined
over the terms generated by successive application of constructors, it is also pos-
sible to define a canonical coalgebra in terms of such ‘pure’ observations. Such a
coalgebra is the final object in CT, if it exists, and will be denoted by outT over
carrier νT.

Being final means that there exists a unique morphism to outT from each
other coalgebra 〈U, p〉. This is called the coinductive extension of p [48] or the
anamorphism generated by p [28], and written as [(p)]T or, simply, [(p)], if the
functor is clear from context. In other words, an anamorphism is defined as the
unique function making the following diagram to commute:

νT
outT �� T νT

U
p ��

[(p)]T

��

T U

T [(p)]T

��

or, alternatively, by the following universal law:

k = [(p)]T ⇔ outT · k = T k · p (10)

For each u ∈ U , [(p)]T u can be thought of as the (observable) behaviour of a
sequence of p transitions starting at state u. This explains yet another alternative

A Perspective on Component Refinement 35

designation for an anamorphism: unfold [14]. On its turn, u in [(p)]T u, is called
the seed of the anamorphism.

As in the algebraic case, the existence part of the universal property (i.e.,
the implication from left to right) provides a definition principle for (circular)
functions to the final coalgebra which amounts to equip their source with a
coalgebraic structure specifying the ‘one-step’ dynamics. Then the correspond-
ing anamorphism gives the rest. In other words, such functions are defined by
specifying their output under all different observers. The uniqueness part (i.e.,
the reverse implication), on the other hand, offers a powerful proof principle —
coinduction.

Agreeing with the intuition that the final coalgebra is the coalgebra of all
behaviours, observational equivalence can be defined as

u∼ v ⇐⇒ [(p)] u = [(q)] v (11)

for u and v in the carriers of coalgebras 〈U, p〉 and 〈V, q〉, respectively. The notion
of a bisimulation, which is central in coalgebra theory [42], entails a local proof
theory for observational equivalence. Informally, two states of a T-coalgebra (or
of two different T-coalgebras) are related by a bisimulation if their observation
produces equal results and this is maintained along all possible transitions. I. e.,
each one can mimic the other’s evolution. Originally the notion of bisimulation,
which can be traced back to [44] and [12], was introduced in the context of pro-
cess calculi in Park’s landmark paper [38]. Later [2] gave a categorical definition
which applies, not only to the kind of transition systems underlying the opera-
tional semantics of process calculi, but also to arbitrary coalgebras. Bisimulation
acquired a shape: the shape of the chosen observation interface T.

A notion of refinement should also be shaped by T. Intuitively component
p is a behavioural refinement of q if the behaviour patterns observed from p
are a structural restriction, with respect to the behavioural model captured by
monad B, of those of q. To make precise such a ‘definition’ we shall first describe
behaviour patterns concretely as generalized transitions.

3.2 Refinement

Just as transition systems can be coded back as coalgebras, any coalgebra 〈U, α :
TU ←− U〉 specifies a (T-shaped) transition structure over its carrier U . For
extended polynomial Set endofunctors6 such a structure may be expressed as a
binary relation α ←−: U ←− U , defined in terms of the structural membership
relation (which is an instance of generic datatype membership [19]) ∈T: U ←−
T U , i.e.,

u′ α←− u ≡ u′ ∈T α u

6 The class inductively defined as the least collection of functors containing the identity
Id and constant functors K for all objects K in the category, closed by functor
composition and finite application of product, coproduct, covariant exponential and
finite powerset functors.

36 L.S. Barbosa

or, in an equivalent but pointfree formulation which often simplifies formal rea-
soning, as the following relational equality7

α←− = ∈T ·α
where ∈T is defined by induction on the structure of T:

x ∈Id y iff x = y

x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

{
y = ι1 y

′ ⇒ x ∈T1 y
′

y = ι2 y
′ ⇒ x ∈T2 y

′

x ∈TK y iff ∃k∈K . x ∈T y k

x ∈PT y iff ∃y′∈y. x ∈T y
′

For any function h, relation ∈T satisfies the following naturality condition

h · ∈T = ∈T · T h (12)

which can be proved by induction on T. Applying shunting8 to the left to rigth
inclusion component of equation (12) leads to

∈T ⊆ h◦ · ∈T · Th (13)

The dynamics of a component p : O ←− I is based on functor B(Id × O)I .
Therefore a possible (and intuitive) way of regarding component p as a beha-
vioural refinement of q is to consider that p transitions are simply preserved in
q. For non deterministic components this is understood as set inclusion. But one
may also want to consider additional restrictions. For example, to stipulate that
if p has no transitions from a given state, q should also have no transitions from
the corresponding state(s). In any case the basic question is: how can such a
refinement situation be identified?

The general ‘recipe’ to identify a refinement situation is to look for an ab-
straction to witness it [18]. In other words: look for a morphism in the relevant
category, from the ‘concrete’ to the ‘abstract’ model such that the latter can
be recovered from the former up to a suitable notion of equivalence, though,
typically, not in a unique way. Component morphisms, however, are (seed pre-
serving) coalgebra morphisms which are known to entail bisimilarity. Actually
a T-coalgebra morphism h : β ←− α is a function from the state space of α to
that of β such that

Th · α = β · h (14)
7 In the sequel both functional and relational composition will be denoted by the same

symbol · given that the former is just a special case of the latter.
8 In the relational calculus [4] Galois connection f · R ⊆ S ≡ R ⊆ f◦ · S, involving

function f and arbitrary relations R and S, is known as the shunting rule. Also note
that notation R◦ stands for the converse of relation R.

A Perspective on Component Refinement 37

Regarding α and β as (generalised) transition systems equation (14) becomes a
relational equality:

h · α←− = β ←− ·h (15)

i.e., the conjunction of inclusions

h · α←− ⊆ β ←− ·h (16)

β ←− ·h ⊆ h · α←− (17)

which, by introducing variables and observing that by shunting inclusion (16)
can also be presented as α←− ⊆ h◦ · β ←− ·h, takes the following more familiar
shape

u′ α←− u ⇒ h u′ β ←− h u (18)
v′ β ←− h u ⇒ ∃u′∈U . u

′
α←− u ∧ u′ = h v′ (19)

They jointly state that, not only α dynamics, as represented by the induced
transition relation, is preserved by h (16), but also β dynamics is reflected back
over the same h (17). Is it possible to weaken the morphism definition to capture
only one of these aspects? In [29] this question got an afirmative answer, resorting
to the notion of a preorder ≤ on a Set endofunctor T introduced in [21]. Such a
preorder is defined as a functor ≤ in such a way that, for any function h : V ←−
U , Th preserves the order, i.e.

x1 ≤TX x2 ⇒ (Th) x1 ≤TY (Th) x2 (20)

or, in a pointfree formulation,

(Th)· ≤ ⊆ ≤ · (T h) (21)

Let us denote by
.
≤ the pointwise lifting of ≤ to the functional level, i.e.

f
.
≤ g ≡ ∀x. f x ≤ g x (22)

which can also be formulated in the following pointfree way as

f
.
≤ g ≡ f ⊆≤ ·g (23)

In [30] it is shown that, for any function h monotonic with respect to ≤ one has

f
.
≤ g ⇒ h · f .

≤ h · g (24)

f
.
≤ g ⇒ f · h .

≤ g · h (25)

In this context the main result in the above mentioned reference is the defi-
nition of a forward morphism h : β ←− α with respect to ≤ as a function from
U to V such that

T h · α .
≤ β · h

and the proof that

38 L.S. Barbosa

Lemma 1. For T an endofunctor in Set, T-coalgebras and forward morphisms
define a category. Moreover, forward morphisms preserve transitions if ≤ is com-
patible with the membership relation, i.e., for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (26)

or, in a pointfree formulation,

∈T · ≤ ⊆ ∈T (27)

Proof. We prove only the second part (see [30] for the full proof). Let h be a
forward morphism. Transition preservation follows from

α←−
= { definition }

∈T ·α
⊆ { (13), monotonicity }
h◦ · ∈T ·T h · α

⊆ { h forward entails Th · α ⊆ ≤ ·β · h, monotonicity }
h◦ · ∈T · ≤ ·β · h

⊆ { compatibility with ∈T (27), monotonicity }
h◦ · ∈T ·β · h

= { definition }
h◦ · β ←− · h �

A preorder ≤ on an endofunctor T satisfying inclusion (27) will be referred
to, in the sequel, as a refinement preorder. Then, the existence of a forward
morphism connecting two components p and q witnesses a refinement situation
whose symmetric closure coincides, as expected, with bisimulation. Formally,

Definition 7. Component p is a behaviour refinement of q, written q�p, if there
exist components r and s and a (seed preserving) forward morphism h such that

q ∼ s r ∼ ph��

The exact meaning of a refinement assertion q � p depends, of course, on
the concrete refinement preorder ≤ adopted. But what do we know about such
preorders? Condition (27) provides an upper bound leading to a definition of
structural inclusion:

x⊆Id y iff ∀e∈Tx. e ∈T y (28)

Several other cases arise by suitable restrictions. For example,

– Structural inclusion as defined above is too large to be useful in practice.
Actually its definition on a constant functor is the universal relation which

A Perspective on Component Refinement 39

would make refinement blind to the outputs produced. This suggests an
additional requirement on refinement preorders for Cp components: their
definition on a constant functor K must be equality on set K, i.e., x ≤K

y iff x=K y so that transitions with different O-labels could not be related.
Note that refinement of non deterministic components based on this preorder
captures the classical notion of non determinism reduction.

– A ‘failure forcing’ variant — ⊆E
T , whereE stands for ‘emptyset’ — guarantees

that the concrete component fails no more than the abstract one. It is defined
as ⊆T by replacing the clause for the powerset functor by

x ⊆E
PT y iff (x = ∅⇒ y = ∅) ∧ ∀e∈x∃e′∈y. e⊆T e

′

– For partial components refinement based on the preorders above collapse
into bisimilarity instead of entailing an increase of definition in the imple-
mentation side. An alternative is relation ⊆F

T (F standing for ‘failure’) which
adds a maybe clause

x ⊆F
T+1 y iff

{
x = ι1 x

′ ∧ y = ι1 y
′ ⇒ x′ ⊆T y

′

x = ι2 ∗ ⇒ true

taking precedence over the general sum clause.

We end this section with a small example. The reader is referred to [30]
for a glimpse of a refinement calculus for state based components based on the
existence of forward morphisms.

Example 3. For an example of behavioural refinement consider a new specifi-
cation of component Store which differs from the one in example 1 only in the
specification of operation pick. The idea is that instead of choosing the message to
be returned non deterministically from the set of messages waiting for more than
a specified ε delay, the operation selects the message in that set which is waiting
for a longer time. Formally, assuming function lwait computes such message, the
specification becomes

aStore〈u, pick〉 = let c = {〈m, t〉 ∈ u | t− ttag() ≥ ε}
in (c = ∅ → ∅, let 〈m, t〉 = lwait c in {〈u \ {〈m, t〉}, ι2 m〉})

where notation (φ → f, g) reads if φ then f else g. Clearly, the identity mor-
phism from this new coalgebra to the one in example 1 is a forward morphism
witnessing the former as a refinement of the latter.

4 Data Refinement

4.1 State Refinement

In the previous section component’s refinement was discussed at the behaviour
level based on a refinement preorder with respect to monad B. There is, however,

40 L.S. Barbosa

another axis for refinement: the data level, which amounts to the static refine-
ment of the data structure which specifies the component state space. Data
refinement, as discussed in formal development methodologies such as Vdm [23],
is the process of transforming abstract data structures into more concrete ones,
a transformation which presumably entails efficiency (e.g., the conversion of in-
ductive data types into ‘pointer’-based representations).

Refinement of a component specification p into another specification q has to
fulfil a number of requirements. First of all, the existence of enough redundancy
in the state space of q to represent all the elements in p is required. This is called
in [23] the adequacy requirement and is captured by the definition of a surjection
from the state space of q to that of p, called the abstraction or retrieve map.
Next, substitution is regarded as ‘complete’ in the sense that (concrete) actions
in q accept all the input values accepted by the corresponding abstract ones, and,
for the same inputs, the results produced are also the same, up to the retrieve
map. If components are specified, as they usually are in Vdm, by pre and post-
conditions, this amounts to say that, under refinement, neither pre-conditions
are strengthened, nor post-conditions are weakened. Note this approach to data
refinement, which can be traced back to Hoare’s landmark paper [18], is usual
in model-oriented design methods, even though several variants and alternatives
have been proposed in the literature (see [41] for a recent account).

In this section we shall resort to Sets [34,35] — a calculus of data represen-
tations, based on identical principles: any refinement is witnessed by a surjection
which, whenever partial, may induce a representation invariant on the concrete
side. Each concrete operation is then calculated (rather than ‘conjectured and
verified’ as in Vdm) by solving the corresponding refinement diagram.

The calculus consists of inequations of the form A ≤ B (read: data type B
refines or implements data type A) which witnesses the existence of an abstraction
map abs from B to A with a right-inverse rep (called the representation relation),
i.e.,

A ≤ B iff A
rep

��≤ B

abs
�� such that abs · rep = idA (29)

Note that rep is injective because ker rep ⊆ ker abs◦ and ker abs◦img abs which
coincides with identity as abs is surjective9. Moreover if abs is partial, the char-
acteristic predicate of the codomain of relation rep defines the invariant induced
by the refinement process.

Clearly (see [35] for a proof), the refinement relation is a preorder and is
preserved by extended polynomial functors, i.e.,

A
rep

��≤ B

abs
�� ⇒ TA

T rep

��≤ TB

T abs
		

(30)

9 Notation kerR (respectively, img R) stand for the kernel (respectively, image) of
relation R defined as kerR = R◦ · R (respectively, img R = R · R◦) [4].

A Perspective on Component Refinement 41

Example 4. A simple example of data refinement in the context of the Store
component is the implementation of its state space U = P(M × T) as a finite
sequence of type (M × T)∗ with abs = elems, the function which returns the set
of elements of a list. Other representations for sets, including the notion of a
bag (which retains the unordered structure of set while keeping track of element
repetition) are recorded in the following inequations:

PA ≤ Nat ↼ A ≤ A∗ (31)

where notation B ↼ A stands for a partial function (also called a simple relation
in [4] or a mapping in specification methods like Vdm [23]) from A to B. An
elementary example of a data refinement situation where the abstraction mor-
phism is not a function is the following representations of elements as ’pointers’:

A

rep=ι1

��≤ A+ 1

abs=ι◦1

 (32)

which, moreover, induce the concrete invariant φ = [true, false] over the imple-
mentation type. References [34,35] and [36] provide several applications of this
calculus to the derivation of imperative programs and data base schemes.

Once the state space of a component p = 〈u ∈ U, α : TU ←− U〉 is refined
into, say, V a new component is defined over V , whose seed is given by absu and
the dynamics β : TV ←− V computed as a solution to the following equation

α = Tabs · β · rep (33)

The basic result, from the point of view of a component calculus, is that data
refinement entails bisimilarity, i.e.,

Lemma 2. Components p and q as defined above satisfy p∼ q.

Proof. Consider the general case in which refinement U ≤ V , witnessed by abs
and rep, induces a concrete invariant φ over V , i.e., an inclusion i : V ←− Vφ.
Let also β′ denote the restriction of β to Vφ. The starting point is equation (33)
which defines the dynamics of q. The target is to show that absφ = abs · i is a
coalgebra morphism. I.e.,

α · absφ = Tabsφ · β′

≡ { absφ = abs · i}
α · abs · i = Tabs · Ti · β′

≡ { i is a coalgebra morphism, i.e., β · i = Ti · β′ }
α · abs · i = Tabs · β · i

⇒ { i is injective }
α · abs = Tabs · β

42 L.S. Barbosa

⇒ { Leibniz equality }
α · abs · rep = Tabs · β · rep

≡ { abs · rep = id and (33)}
α = α

4.2 Shape Refinement

In the approach to component modelling discussed in this paper, interfaces are
encoded in the shape of functor T corresponding to the component’s service
signature. Therefore applying data refinement to this level may capture some
forms of interface enrichment. Consider, for example, the elementary cases of
adding an attribute or an operation to the shape of a (deterministic) component:

– adding an attribute at : B ←− X

A×X ��
(A×B) ×X

abs=π1×id
		

– adding an operation op : X ←− X ×B

XA
��X

A+B

abs=(·ι1)

Now the interesting result is that refinement of the signature functor has a
counterpart at the behavioural level, i.e., the carriers of the corresponding final
coalgebras, which form the spaces of their behaviours, are also related by a data
refinement. Formally, we prove that the data refinement relation as introduced
above extends to coinductive types:

Lemma 3. Let T and G be extended polynomial functors. Then,

TX
rep

��≤ GX

abs
		 ⇒ νT

repν

��≤ νG

absν

		 (34)

where νT denotes the carrier of the final T-coalgebra. Moreover,

absν 	 [(abs · outG)]T and repν 	 [(rep · outT)]G

for abs and rep natural on X

Proof. We have to show that

[(abs · outG)]T · [(rep · outT)]G = id (35)

A Perspective on Component Refinement 43

in the context of the following diagram:

νG

outG

��

[(abs·outG)]T

TνG
rep

�� GνG

abs��

νT
outT ��

[(rep·outT)]G

��

TνT
rep

�� GνT

abs��

Therefore10,

[(abs · outG)]T · [(rep · outT)]G = id

≡ { re'ection for coinductive extension }
[(abs · outG)]T · [(rep · outT)]G = [(outT)]T

⇐ { fusion for coinductive extension }
abs · outG · [(rep · outT)]G = T[(rep · outT)]G · outT

≡ { cancellation for coinductive extension }
abs · G[(rep · outT)]G · rep · outT = T[(rep · outT)]G · outT

≡ { rep is natural}
abs · rep · T[(rep · outT)]G · outT = T[(rep · outT)]G · outT

≡ { hip }
T[(rep · outT)]G · outT = T[(rep · outT)]G · outT

Example 5. Another typical example is what could be called stream completion
induced by the following data refinement at the signature level:

1 +A×X ��
(A+ 1) ×X ∼= X +A×X

abs=!+id
��

Note that the final coalgebra for the ’abstract’ shape is A∞, i.e., the space of finite
and infiinite sequences of A, whereas for the concrete case one gets (A+1)ω, i.e.,
10 The laws of reflection, cancellation and fusion stated below, in this order, and used

in the proof are standard results on coinduction easily derived from the universal
property (10) [15].

[(outT)] = idνT

outT · [(p)] = T [(p)] · p

[(p)] · h = [(q)] if p · h = T h · q

44 L.S. Barbosa

streams of either elements of A or a mark ∗ ∈ 1. By the lemma above one may
easily conclude that A∞ ≤ (A+1)ω, a fact often used in coalgebraic specification
[22], where a finite sequence is extended to a stream by replication of a dummy
value.

5 Conclusions and Further Work

This paper provided an overview of an approach to refinement of (state-based)
components whose main theory has been developed in previous publications
(namely, [29,30]). The integration of behaviour and data refinement and the
application of the latter to a form of interface enrichement is, however, new.

The main possible interest of this approach is its parametrization by a model
of behaviour captured by a strong monad B. This is generic enough to capture a
number of situations, depending on both B and the refinement preorder adopted.
Non determinism reduction is one possibility among many others. For example,
Poll’s notion of behavioural subtyping in [39], at the model level, also emerges as
another instantiation.

A note on related work is now in order. First of all two major influences
should be acknowledged. The first one relates to the use of a bicategorical set-
ting to capture the ‘two-level structure’ in component models which is in debt to
previous work by R. Walters and his collaborators on models for deterministic
input-driven systems [24,25]. The other is the recent area of coalgebraic specifica-
tion of object-oriented systems (see e.g., [40,20]), which has been developed with
a similar motivation, although in a property-oriented, or axiomatic, framework.

An alternative, but related, approach to componentware is inspired by re-
search on coordination languages [17,37] and favors strict component decoupling
in order to support a looser inter-component dependency. Here computation
and coordination are clearly separated, communication becomes anonymous and
component interconnection is externally controlled. This model is (partially) im-
plemented in JavaSpaces on top of Jini [33] and fundamental to a number of
approaches to componentware which identify communication by generic chan-
nels as the basic interaction mechanism — see, e.g., Reo [3], Piccola [43,32],
as well as [16,13] or [10].

The genericity of the approach described in this paper and its coalgebraic
basis seems promising, although a lot of work remains to be done. Among the
current research directions we would like to underline the following two.

Backwards refinement. Behavioural refinement was defined in section 3 in terms
of transition preservation, i.e., as a sort of T-shaped simulation witnessed by
what we have called forward morphisms. An alternative point of view is based
on the dual notion of backward morphisms, morphisms which verify

β · h .
≤ T h · α (36)

In [29,30] these are shown to form a category and to reflect transitions, in the
sense of equation (19), although possible applications to component refinement
are still to be developed.

A Perspective on Component Refinement 45

Induced Distribution. Several laws of data refinement split components’ state
space into a number of factors. Typical examples are laws whose purpose is
to factorize mappings with structured domains or codomains, heavily used in
the derivation of database implementations [36]. For example the following laws,
studied in [35], refine a mapping to either a sum or a product type into a product
of two mappings:

(B + C) ↼ A ��
≤ (B ↼ A) × (C ↼ A)

cojoin

��

(B × C) ↼ A
��

≤ (B ↼ A) × (C ↼ A)

join

��

where abstractions are defined as

cojoin = ∪ · ((ι1·) × (ι2·))
join = 〈 , 〉

where 〈R,S〉 = ∩·((π◦
1 ·R)×(π◦

2 ·S)), is a relational split [15]. Similarly relational
either witnesses the decomposition of a mapping from a sum type:

A ↼ (B + C) ��
≤ (A ↼ B) × (A ↼ C)

peither

��

with
peither = [,]

where [R,S] = (R · ι◦1) ∪ (S · ι◦2).
The state space factorization underlying this sort of laws may lead to a si-

milar component factorization by aggregation of the original actions according
to the part of the state space they manipulate. This finds application in typi-
cal re-engineering processes in which clusters of related operations identified in
monolythic code are coupled together around specific state loci. The process is
suggested in the following diagram where data refinement induces the factor-
irization of the original component into two new ones which are composed in
parallel.

•

�������	

C (B×C)↼A

•

�������	

C B↼A �
•

�������	

C C↼A

46 L.S. Barbosa

Our main current research concern is the study of a precise characterization
of this phenomonom. In particular, a suitable approach entails the need for re-
thinking interfaces in terms of decomposition of operations’ signatures into pairs
of input/output ports (as in e.g., [10]) providing a basis for the specification
of component usage as a transition structure over port names. In this context,
representation invariants induced by data refinement (notice that both join and
cojoin abstractions are partial) would generate aditional constraints over such
component usage specifications.

Acknowledgements

This research was funded by the Portuguese Foundation for Science and Technol-
ogy, in the context of the PURe project, under contract POSI/ICHS/44304/2002.
The on-going collaboration with José Oliveira on the refinement problem is grate-
fully acknowledged.

References

1. J. R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, D. Rydeheard,
P. Dybjer, A. Pitts, and A. Poigne, editors, Proc. Category Theory and Computer
Science, pages 357–365. Springer Lect. Notes Comp. Sci. (389), 1988.

3. F. Arbab. Abstract behaviour types: a foundation model for components and their
composition. In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Proc. First International Symposium on Formal Methods for Components
and Objects (FMCO’02), pages 33–70. Springer Lect. Notes Comp. Sci. (2852),
2003.

4. R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of datatypes.
In B. Möller, H. Partsch, and S. Schuman, editors, Formal Program Development,
pages 7–42. Springer Lect. Notes Comp. Sci. (755), 1993.

5. R. C. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming:
An introduction. In S. D. Swierstra, P. R. Henriques, and J. N. Oliveira, editors,
Third International Summer School on Advanced Functional Programming, Braga,
pages 28–115. Springer Lect. Notes Comp. Sci. (1608), September 1998.

6. L. S. Barbosa. Components as processes: An exercise in coalgebraic modeling. In
S. F. Smith and C. L. Talcott, editors, FMOODS’2000 - Formal Methods for Open
Object-Oriented Distributed Systems, pages 397–417. Kluwer Academic Publishers,
September 2000.

7. L. S. Barbosa. Towards a Calculus of State-based Software Components. Journal
of Universal Computer Science, 9(8):891–909, August 2003.

8. L. S. Barbosa and J. N. Oliveira. State-based components made generic. In H. Peter
Gumm, editor, CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1. Elsevier,
2003.

9. L. S. Barbosa, M. Sun, B. K. Aichernig, and N. Rodrigues. On the semantics of
componentware: a coalgebraic perspective. In Jifeng He and Zhiming Liu, edi-
tors, Mathematical Frameworks for Component Software: Models for Analysis and
Synthesis, Series on Component-Based Development. World Scientific, 2005.

A Perspective on Component Refinement 47

10. M. A. Barbosa and L. S. Barbosa. Specifying software connectors. In K. Araki and
Z. Liu, editors, 1st International Colloquium on Theorectical Aspects of Computing
(ICTAC’04), pages 53–68, Guiyang, China, September 2004. Springer Lect. Notes
Comp. Sci. (3407).

11. J. Benabou. Introduction to bicategories. Springer Lect. Notes Maths. (47), pages
1–77, 1967.

12. J. van Benthem. Modal Correspondence Theory. Ph.D. thesis, University of Ams-
terdam, 1976.

13. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal Model for
Componentware. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 189–210. Cambridge University Press, 2000.

14. R. Bird. Functional Programming Using Haskell. Series in Computer Science.
Prentice-Hall International, 1998.

15. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

16. M. Broy. Semantics of finite and infinite networks of communicating agents. Dis-
tributed Computing, (2), 1987.

17. D. Gelernter and N. Carrier. Coordination languages and their significance. Com-
munication of the ACM, 2(35):97–107, February 1992.

18. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271–281, 1972.

19. P. F. Hoogendijk. A generic theory of datatypes. Ph.D. thesis, Department of
Computing Science, Eindhoven University of Technology, 1996.

20. B. Jacobs. Objects and classes, co-algebraically. In C. Lengauer B. Freitag,
C.B. Jones and H.-J. Schek, editors, Object-Orientation with Parallelism and Per-
sistence, pages 83–103. Kluwer Academic Publishers, 1996.

21. B. Jacobs and J. Hughes. Simulations in coalgebra. In H. Peter Gumm, editor,
CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1, Warsaw, April 2003.

22. Bart Jacobs. Exercises in coalgebraic specification. In R. Backhouse, R. Crole,
and J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics
of Program Construction, pages 237–280. Springer Lect. Notes Comp. Sci. (2297),
2002.

23. Cliff B. Jones. Systematic Software Development Using Vdm. Series in Computer
Science. Prentice-Hall International, 1986.

24. P. Katis, N. Sabadini, and R. F. C. Walters. Bicategories of processes. Journal of
Pure and Applied Algebra, 115(2):141–178, 1997.

25. P. Katis, N. Sabadini, and R. F. C. Walters. On the algebra of systems with
feedback and boundary. Rendiconti del Circolo Matematico di Palermo, II(63):123–
156, 2000.

26. A. Kock. Strong functors and monoidal monads. Archiv für Mathematik, 23:113–
120, 1972.

27. G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Techn.
Jour., 34(5):1045–1079, 1955.

28. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Programming Languages and Computer Architec-
ture, pages 124–144. Springer Lect. Notes Comp. Sci. (523), 1991.

29. Sun Meng and L. S. Barbosa. On refinement of generic software components. In
C. Rettray, S. Maharaj, and C. Shankland, editors, 10th Int. Conf. Algebraic Meth-
ods and Software Technology (AMAST), pages 506–520, Stirling, 2004. Springer
Lect. Notes Comp. Sci. (3116). Best Student Co-authored paper Award.

48 L.S. Barbosa

30. Sun Meng and L. S. Barbosa. Components as coalgebras: The refinement dimen-
sion. Theor. Comp. Sci. (accepted for publication), 2005.

31. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-
Hall International, 1989.

32. O. Nierstrasz and F. Achermann. A calculus for modeling software components.
In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Proc.
First International Symposium on Formal Methods for Components and Objects
(FMCO’02), pages 339–360. Springer Lect. Notes Comp. Sci. (2852), 2003.

33. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly and Associates, 2000.
34. J. N. Oliveira. A reification calculus for model-oriented software specification.

Formal Aspects of Computing, 2(1):1–23, 1990.
35. J. N. Oliveira. Software reification using the Sets calculus. In Proc. of the BCS

FACS 5th Refinement Workshop, Theory and Practice of Formal Software Devel-
opment, London, UK, pages 140–171. Springer-Verlag, 8–10 January 1992. (Invited
paper).

36. J. N. Oliveira and C. J. Rodrigues. Transposing relations: From Maybe functions
to hash tables. In D. Kozen, editor, 7th International Conference on Mathematics
of Program Construction, pages 334–356. Springer Lect. Notes Comp. Sci. (3125),
July 2004.

37. G. Papadopoulos and F. Arbab. Coordination models and languages. In Advances
in Computers — The Engineering of Large Systems, volume 46, pages 329–400.
1998.

38. D. Park. Concurrency and automata on infinite sequences. pages 561–572. Springer
Lect. Notes Comp. Sci. (104), 1981.

39. Erik Poll. A coalgebraic semantics of subtyping. Theorectical Informatica and
Apllications, 35(1):61–82, 2001.

40. H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Struct. in Comp. Sci., 5:129–152, 1995.

41. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

42. J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–
80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

43. J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca,
J. Hall, and P. Hall, editors, Software Architectures - Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

44. K. Segerberg. An essay in classical modal logic. Filosofiska Studier, (13), 1971.
45. J. M. Spivey. The Z Notation: A Reference Manual (2nd ed). Series in Computer

Science. Prentice-Hall International, 1992.
46. C. Szyperski. Component Software, Beyond Object-Oriented Programming.

Addison-Wesley, 1998.
47. The RAISE Language Group. The RAISE Specification Language. Prentice Hall

International, 1992.
48. D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-well-

founded sets, partial orders, metric spaces. Math. Struct. in Comp. Sci., 8(5):481–
540, 1998.

49. P. Wadler and K. Weihe. Component-based programming under different
paradigms. Technical report, Dagstuhl Seminar 99081, February 1999.

A Fully Abstract Semantics for UML Components

F.S. de Boer1,2, M.M. Bonsangue2,�, M. Steffen3, and E. Ábrahám3

1 CWI, Amsterdam, The Netherlands
frb@cwi.nl

2 LIACS, Leiden University, The Netherlands
marcello@liacs.nl

3 Christian-Albrechts-University, Kiel, Germany
{ms, eab}@informatik.uni-kiel.de

Abstract. We present a fully abstract semantics for components. This semantics
is formalized in terms of a notion of trace for components, providing a descrip-
tion of the component externally observable behavior inspired by UML sequence
diagrams. Such a description abstracts from the actual implementation given by
UML state-machines. Our full abstraction result is based on a may testing se-
mantics which involves a composition of components in terms of cross-border
dynamic class instantiation through component interfaces.

1 Introduction

The Unified Modelling Language (UML)[18] is widely adopted as the de facto industry
standard for modelling object-oriented software systems. It consists of several graphical
notations providing different views of the system being modelled. There are two basic
types of diagrams: behavior diagrams and structure diagrams. These diagrams include
sequence diagrams, state machines, class diagrams and component diagrams.

We use UML for investigating features such as state encapsulation, and name-
passing in synchronous communication in combination with dynamic class instantia-
tion. Basically, in UML a component is a set of classes with explicit contextual depen-
dencies. Some instances of classes of a component are called ports. Components can
communicate only through their ports. Most importantly, a port of a component can
also instantiate new ports of another component. The explicit context dependencies of
a component guarantee that ports have enough structural information about the envi-
ronment. However the behavior of such an external environment is not under control
of the component itself. In other words, a component is an open program, with imple-
mentation code containing calls to operations and constructors of interfaces that are not
bound to any particular behavior specification.

From the point of view of a component, the ports of other components belong to the
environment, and are internally known only as typed identifiers. Although the behavior
of the environment is not fixed at priori, it has to obey to certain laws. For example,
because the state of a port is encapsulated, external ports cannot always communicate

� The research of Dr. Bonsangue has been made possible by a fellowship of the Royal Nether-
lands Academy of Arts and Sciences.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 49–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 F.S. de Boer et al.

with each other. To illustrate this, consider a port of a component i that creates two
new ports e1 and e2 of some component in the environment. The ports e1 and e2 are
both external, but unable to communicate with each other unless the internal object i
let one of them know the identity of the other. The above situation is characteristic of
a framework with dynamic scope: new clusters of objects that know each other can be
created as new external instances appear, and old clusters may merge as a consequence
of a communication.

1.1 Contribution of This Paper

In this paper we select a subset of UML notations suitable as basis for modelling
component-based systems. Inspired by UML sequence diagrams, we give a denota-
tional semantics to UML components in terms of traces of their externally observable
events. A trace describes a sequence of interactions between the ports of a set of compo-
nents. Here a port is an instance of a class of a component realizing one of its interface,
and an interaction is a synchronization on an operation declared on one of the interface
of a component.

We define an observational equivalence for components based on may testing, and
show that ordinary traces are, in general, not fully abstract: two components can be ob-
servationally equivalent but their associated set of traces be different. Our main result is
the characterization of trace abstractions that takes into account the clustering structure
of objects dictated by their dynamic scope. These traces are full abstract with respect to
may testing observational equivalence.

1.2 Related Work

There is an increasing interest to give a rigorous foundation to UML for addressing,
e.g., the needs for modelling safety critical applications. Some approaches are based
on translating UML subsets into existing formalisms, like the π-calculus [19], other
have proposed new meta-modelling language calculi as foundation for the semantics of
UML, e.g. [11]. In this paper we present a variant of the UML subset considered by
Damm et al. and formalized as a transition system [12]. The most significant departures
from this work are that we do not consider asynchronous inter-object communications
and do not distinguish among active, reactive and passive objects.

There are several full abstraction results for may-testing semantics for calculi of pro-
cesses interacting in dynamically changing communication topology [6,14]. The UML
description of classes by state-machines combines mechanisms for dynamic process
creation similarly to object calculi [1,10,20,16] with synchronization mechanisms as in
process calculi [9,6,14].

The closest work to our is Jeffrey and Rathke [16] fully abstract semantics of con-
current objects. While our components are open, programs in [16] are closed, in the
sense we explained above, since their creation of a new object involves the specifica-
tion of the behavior of the newly created object. Consequently, in their setting, the en-
vironment can be basically viewed as a static and a priori given group of objects. This
contrasts with our setting, where the program itself creates dynamically its own envi-
ronment and imposes constraints on the communication topology of its environment.

A Fully Abstract Semantics for UML Components 51

Different from previous full abstraction results, the construction of a distinguishing
context in the full abstraction proof requires a novel technique for the definition of a
generic behavior capturing all instances of an external class. This we consider as one of
the main technical contribution of our paper, that helps in a better understanding of the
role of static class variables in class-based object-oriented languages like Java.

2 UML Classes, State-Machines and Components

Next we describe the subset of UML we use in this paper. We use UML as an inspiration
source, and have no pretence of fully formalizing the numerous concepts used in the
UML diagrams. UML is an object-oriented modelling technique based on the concept
of class. A class is a named description of a set of objects. Its signature consists of a
finite set of attributes and a finite set of operations (one of them declared as constructor).
Attributes and operations are typed either by basic types (like integers and Boolean) or
by the identifier of a class or of an interface. An interface is a named description of a
set of operations. Differently from a class signature, an interface does not declare any
attribute. We say that an interface is realized by a class (that for simplicity we assume
carrying the same name) if the set of operations of the interface is included in that of
the class realizing it.

An object is an instance of a class. There are different kinds of inter-object com-
munications in UML. We consider only communication via synchronous operations
restricting to operations with two parameter only: one for passing the identity of the
caller of the operation, and another for passing a value (that we will often assume to
be the identity of another object). The execution of a synchronous operation involves a
synchronization on the execution of an operation call by the sender and a corresponding
trigger by the receiver. Such a synchronization results in an assignment of the value of
the actual parameters of the operation call to the instance variables of the receiver that
appear as formal parameters of the operation.

In contrast to a synchronous operation, a primitive operation is an operation acting
directly on the instance variables of the objects, without any synchronization. Therefore
the meaning of a primitive operation is defined in terms of a state transformation.

2.1 Abstract State-Machines

In UML the behavior of an object is describe generically by means of an abstract state-
machine associated to the class of which it is an instance. A state-machine is a kind
of structured transition system that records the dependencies between the states of an
object and its reaction to messages. More formally, a state machine associated to a class
c consists of transitions of the form

l1
[g]t/a−−−→−−−→c l2

where l1 is the entry location and l2 is the exit location of the transition. Transitions
may be guarded by a boolean guard g and labelled by a trigger t and an action a. The
evaluation of the boolean guard g is assumed to be side-effect free.

52 F.S. de Boer et al.

A trigger t is of the form
op(x , y)

where op is the name of an operation (possibly the constructor) declared in the class c,
while x , y are attributes of c used to store the identity of the caller and the value it pass
when calling the operation.

An action a is either a primitive operation, a constructor call or a synchronous oper-
ation call. A constructor call is of the form c.new(self , x), where new is the constructor
of the class (or interface) c, and the attribute self store the identity of t the caller object.
The attribute x is typed by c and it will store the identity of the newly created object. A
synchronous operation call is of the form

x .op(self , y)

where op is an operation declared in the class (or interface) typing the attribute x , that
stores the identity of the callee of the operation. The attribute y is also declared in c
and stores the value to be passed to the callee. We have not considered the more usual
synchronous operations that return by means of a rendez-vous mechanism because we
can encode this mechanism by means of an appropriate operation call and a respective
trigger.

2.2 Components

In this paper we consider a component C as a part of a system consisting of a set of
classes B and a set of interfaces I = P ∪ R. Each class in B is associated with state-
machine. The operations of the interfaces in I are typed only by other interfaces in the
same set I . Interfaces in I can be either provided or required. Each provided interface
p ∈ P is realized by a class in B , and hence with the same name of p. A required
interface r ∈ R is an interface with a name different from that of any other class in B .
It can be used by classes in B for typing their attributes. This way a component declares
its dependencies on another components with interfaces in R as provided interfaces.

A class realizing a provided interface or depending on one or more required in-
terfaces is called a role, and its instances are called ports [5]. An internal class is a
class of a component that is not a role. Attributes of an internal class are typed only by
primitive types or by classes within the same component, whereas attributes of a role
may be typed also by the required interfaces. This means that a component is an open
system, with its ports as the only points of interactions with environment: ports may be
triggered by other ports in the environment, and call operations declared in the required
interfaces, including the declared constructors. However, a class realizing a required
interface is external, i.e., it belong to a different component. Encapsulation of the com-
ponent internal implementation is ensured because instances of internal classes may
synchronize only on operations of other objects within the same component, thus pre-
venting a tight coupling between the component internal structure and the component
environment.

Components can be composed by connecting the required interfaces of a constituent
component with the provided interfaces (that for simplicity we assume to have the same
name) that belongs to other constituent components. For simplicity we define interface

A Fully Abstract Semantics for UML Components 53

connection as set inclusion of operations. More formally, let C1 = 〈B1,P1 ∪ R1〉 and
C2 = 〈B2,P2 ∪ R2〉 be two components. Their composition C1 ⊕ C2 is defined as the
component C = 〈B , I 〉 with B = B1 ∪ B2 (that are assumed to be disjoint) and with
I = P∪R obtained by taking P = P1∪P2 and R = (R1\P2)∪(R2\P1). For example,
if one component provides all interfaces required by another one, then the component
resulting from their composition has no required interfaces, and remains open to the
environment only via its provided interfaces.

The above notion of component is inspired by that of UML as introduced in [18],
but it differs in a number of crucial points. In particular, for simplicity we do not allow
hierarchical composition of components (and hence we do not need delegation connec-
tors), and, contrary to UML 2.0 we do not consider components as unit of instantiation
but rather we consider a component as a static unit of abstraction with a dynamically
growing number of ports.

2.3 Operational Semantics

Next we define the operational semantics of a component in terms of the abstract state
machines associated with each of its constituent classes.

Let Class be a set of class (and interface) identifiers, with typical element c, and
assume given, for each class name c, an infinite set Obj (c) of names for the instances
of the class c. We denote by Obj the union of Obj (c) for all c ∈ Class . Further, let Att
be a set of attributes (including loc and self) and Val be a set of values (including the
undefined value nil).

A object diagram σ of a component C = 〈B , I 〉 is a partial function in Obj ⇀
(Att → Val) assigning values to attributes of the existing instances of classes in B .
The domain of an object diagram σ is denoted by dom(σ), and the value σ(o)(x) of
the instance variable x of the object o is denoted by σ(o.x). For all o ∈ dom(σ) we
require that σ(o.self) = o and that o ∈ Obj (c) for some class c in B .

Control information of each object o in an object-diagram is given by σ(o.loc),
assuming for each class that the attribute loc is used only to refer to the current location
of the state machine of the class of which o is an instance. An object diagram is called
initial if the only attributes different from nil are self and loc.

The operational semantics of a component C = 〈B ,P ∪ R〉 is defined in terms
of a transition relation −→ between object diagrams labelled by externally observable
communication events of the form

e.op(i , v) and i .op(e, v) , (1)

where e ∈ Obj (r), for some required interface r ∈ R, is the identity of an external port,
and i ∈ Obj (p), for some provided interface p ∈ P , is the identity of an internal port
of C. The idea is that i is an instance of the class of C realizing the interface p, whereas e
is an instance of the class r realizing the interface r in another component. We will use
this convention throughout this paper. The event e.op(i , v) denotes the synchronization
of the port e with the port i on the operation op provided by e. Similarly, i .op(e, v)
denotes the synchronization of the port i with the port e on an operation op provided
by i . In both cases the synchronization involves the transmission of the value v .

54 F.S. de Boer et al.

We label the transition relation −→ also with creation events of the form

new(o, u)

indicating the synchronization on the constructor new of the class c between the object
creator o and the new instance u of c. As usual, a transition labelled by τ denotes an
internal activity, such as the execution of a primitive operation or an intra-component
synchronization.

The flow of control of each object is described according to the transitions of the
state machine associated to the class of which it is an instance. For each transition

l1
[g]t/a−−−→−−−→ l2

of an abstract state machine we assume a unique intermediate location l1,2 to model
the interleaving point between the guard and trigger on the one hand, and the action on
the other hand. Further, we assume for each boolean guard g an evaluation function g
such that g(σ, o) denotes the boolean result of the evaluation of g by the object o in
the object diagram σ; note that guard evaluation is free of side effects, i.e., it does not
affect the object diagram itself. Similarly, we assume for each primitive operation a, a
state transformer function a such that a(σ, o) denotes the object diagram that results
from the application of a in the initial diagram σ by the object o. We consider only
state transformations that change only instance variables of the object executing it. We
do not allow, for example, that an object can assign values to instance variables of other
objects within the same component.

The transition relation −→ associated to a component C = 〈B ,P ∪ R〉 is defined
by distinguishing the following cases:

Internal Synchronization: Let o and u be instances of the classes c, d ∈ B , respec-
tively, both inside the component C. Assume the object o is in a location σ(o.loc) = l1
while the object u is in the intermediate location σ(u.loc) = l3,4, where σ(u.x) = o
and σ(u.y) = v . If the guard g(σ[o.x/u, o.y/v], o) evaluates to true then the syn-
chronization of the objects o and u on the operation op is described by the following
rule

l1
[g]op(x ,y)/−−−−−−−−−→−−−−−−−−→c l2 l3

−/x .op(self ,y)−−−−−−−−−→−−−−−−−−−→d l4
σ

τ−→ σ′ ,

where σ′ is the resulting object diagram with σ′(o.x) = u and σ(o.y) = v . The flow
of control of the objects o and u is described by their associated state machines and
their new locations are σ′(o.loc) = l1,2, σ′(u.loc) = l4, respectively. Note that the
evaluation of the guard is in parallel with the execution of the trigger, meaning that
the guard g is evaluated in a state that take into account the new values of the actual
parameters of the trigger.

Class Instantiation: Let o be an instance of a class c ∈ B . Assume o is in the inter-
mediate location σ(o.loc) = l2,3 ready to execute a call to the constructor new of the
class d ∈ B , with d in the same component of c. If the guard g(σ[u.x/o], u) evaluates
to true then class instantiation is specified by the following rule

A Fully Abstract Semantics for UML Components 55

l0
[g]new(x ,y)/−−−−−−−−−−→−−−−−−−−−→d l1 l2

−/d.new(self ,x)−−−−−−−−−−→−−−−−−−−−−→c l3

σ
new(o,u)−−−−−→σ′

,

where l0 is the initial location of the state machine associated with the class d , and the
domain of σ′ extends that of σ with the name u ∈ Obj (d) \ dom(σ) of the newly
created object. The resulting object diagram σ′ maps the new name u to the instance
variables o.x , u.y and u.self , while the caller o is assigned to the variable u.x . The
locations of the two objects o and u are updated to l1,2 and l4, respectively. Finally, all
other instance variables of u are set to the undefined value nil .

Primitive Operation: Let o be an object of a class c ∈ B of the component C with
σ(o.loc) = l1,2, and let op be a primitive operation. Then

l1
−/op−−−→−−−→c l2

σ
τ−→ σ′ ,

where σ′ = op(σ, o)[l2/o.loc]. The execution of a primitive operation op generates a
’silent’ transition transforming the object diagram σ according to the associated func-
tion op(σ, o) and updating the location loc of the object o to l2.

Synchronous Operation Call: Let i be a port instance of a role c ∈ B of the component
C, and let r ∈ R be a required interface of C declaring the synchronous operation op.
Assume that in the object diagram σ the port i is in an intermediate location σ(i .loc) =
l1,2 where it can call a synchronous operation op of the external port σ(i .x) = e. Then

l1
−/x .op(self ,y)−−−−−−−−−→−−−−−−−−−→c l2

σ
e.op(i,v)−−−−−→σ′

,

where σ(i .y) = v and σ′ is as σ, but for the location loc of i that is assigned to l2. Note
that because x typed by a required interface r ∈ R, there is no class in B with that
name. Therefore e is an object not in dom(σ).

Constructor Call: A port i instance of a role c ∈ B of the component C can create a
new port e ∈ Obj (r) of another component via a call of the constructor new declared
in a required interface r ∈ R of C. This is described by the rule

l1
−/r .new(self ,x)−−−−−−−−−−→−−−−−−−−−−→c l2

σ
new(i,e)−−−−−→σ′

,

where σ(i .loc) = l1,2, σ′(i .loc) = l2 and σ′(i .x) = e, for some e ∈ Obj (r). Note that
e �∈ dom(σ), because r ∈ R is a required interface of C.

Evaluation of a Guard and a Trigger: Let i be a port instance of a role c ∈ B of the
component C, and assume that op is a synchronous operation declared by the provided
interface c ∈ P . If in the object diagram σ the port i is in a location σ(i .loc) = l1,
and the guard g(σ[i .x/e], i) evaluates to true, then its trigger op can be executed as

56 F.S. de Boer et al.

consequence of the reception of the message op(e, v) sent by an external port e. This
inter-component synchronization is described by the rule

l1
[g]op(x ,y)/−−−−−−−−−→−−−−−−−−→c l2

σ
i.op(e,v)−−−−−→σ′

,

where σ′(i .loc) = l1,2, and σ′(i .x) = e and σ′(i .y) = v for some value v and object
e ∈ Obj (d) with d �∈ B .

Port Instantiation: A new instance i of a role c ∈ B of a component C can be created
by an external port e via a call to the constructor new declared in the provided interface
c ∈ P . If the guard g(σ[i .x/e], i) evaluates to true, this is described by the rule

l0
[g]new(x ,y)/−−−−−−−−−−→−−−−−−−−−→c l1

σ
new(e,i)−−−−−→σ′

,

where e ∈ Obj (d) with d �∈ B and i ∈ Obj (c) \ dom(σ) is the identity of the newly
created port. Here l0 is the initial location of the state machine associated to c, and σ′

extends σ by assigning i .loc to l0,1, i .self and i .y to i , and i .x to e (all other instance
variables of i are mapped to the undefined value nil).

Definition 1. An execution ξ of a component C is a finite sequence

σ0
�1−→σ1 · · ·σn−1

�n−→σn

of labelled transitions starting from an initial object diagram σ0.

From an execution sequence we can extract information about the order of creation
among the objects of the component. In fact, given an execution ξ of a component
C = 〈B , I 〉, we define the creation relation <ξ as the least binary transitive relation on
Obj such that

o <ξ u if new(o, u) appears as a label in ξ,

with new the constructor of the class of which u is an instance. Note that in general, the
above creation relation will form a forest rather than a tree, because an execution does
not record the creation of external ports by other external ports.

3 Testing Semantics

In this section we define a may testing semantics for components. To define the notion of
testing semantics, let ISuccess be a distinguished interface consisting of the constructor
new and one distinguished operation, success , with a parameter of type ISucess . We
say that a component C succeeds, denoted by C↓↓, if and only if we may observe only a
single call to the success operation by one of its port. More formally, C↓↓ if and only if
there exists an execution ξ of C such that

〈e.success(i , e)〉

A Fully Abstract Semantics for UML Components 57

appears as the only communication event in ξ, where e is an external port and i an
internal one. This implies that a component may succeed only if ISuccess is one of its
required interface.

Definition 2. Two components C1 and C2 with the same provided and required inter-
faces (not including ISuccess) are may-equivalent, denoted by C1 � C2, if

(C ⊕ C1)↓↓ if and only if (C ⊕ C2)↓↓

for any other component C.

This is a natural adaptation to components of the original definition of may testing
semantics for concurrent processes [15]. Note that we allow only the tester component
C to require the interface ISuccess and hence to call the success operation by one of
its port.

4 Trace Semantics

In the rest of this paper we look for another characterization of the may-equivalence be-
tween components that avoids a universal quantification on the tester components. Our
starting point are UML message sequence charts. They provide a visual representation
of the interactions among of a set of objects in terms of the messages they exchange.
Since component interfaces are intended to shield the details of a component imple-
mentation from the environment, a sensible semantics for components should abstract
from synchronization among objects within the component.

For a given component C, finite sequences of externally observable communication
events thus specify the interactions between instances of internal classes realizing the
provided interfaces and instances of external classes realizing the required interfaces.
Such sequences abstract both from the interactions between instances of classes in-
ternal to the components and the interactions between instances of classes external to
the component. However, these sequences can be ambiguous or describe information
that cannot be implemented by any component. Consider for example the following
sequence

e.op1(i , e) · e ′.op2(i , e ′) · i .op3(e ′′, e ′′) ,

where e, e ′, and e ′′ are assumed to be three distinct external ports. The first two events
indicate that both e and e ′ are known to the internal port i , for example because they
have been both created by i . In order to justify the last event which involves a call of
the operation op3 of i by e ′′, there are three possible scenarios:

1. e ′′ has created i ;
2. e ′′ has received its knowledge of i from e; and
3. e ′′ has received this knowledge from e ′.

These different scenarios are due to three valid assumptions on object creation outside
the component, namely e ′′ can be an ancestor of i ,e can be an ancestor of e ′′, or e ′ can
be an ancestor of e ′′.

This implicit non-determinism in a sequence of observable events thus allows dif-
ferent incompatible behaviors of the external objects. To resolve this non-determinism
we associate to each sequence t of observable events a creation tree.

58 F.S. de Boer et al.

Definition 3. A trace t is a finite sequence of communication events of the form
o.op(u, v) together with binary relation ≺t on Obj (called the tree of creation) such
that for each name u (but one, the root of the tree) occurring in the sequence there is a
unique different name o in the same sequence with o ≺t u .

In the sequel, we denote by t
o the sub-trace of t with events involving the object
o as either the caller or the callee of a synchronous operation. The associated tree of
creation is restricted to the names appearing in the restricted sequence (but the root).
Moreover, given a component C = 〈B , I 〉, we denote by ∂C(t) the result of removing
from the trace t all its events that are not externally observable, that is, those commu-
nication events involving instances of classes in B as caller or callee of a synchronous
operation.

Definition 4. We define a trace of a component C to be trace t consisting of a finite
sequence of observable events induced by an execution ξ of C together with a creation
tree ≺t such that for each ports o, u appearing in t , if o <ξ u then o ≺t u .

It should be observed that the creation tree of a trace of a component C is in fact an
abstraction from the actual information on object creation since the latter may involve
instances of classes that are strictly internal (or external) to C, i.e., instances of classes
that do not realize any provided (or required, respectively) interface. Consequently,
the relation ≺t is more adequately described as the ancestor relation between ports
appearing in t that are indirectly related because of a creation chain passing through
internal objects that do not appear in t .

In general, a trace of a component may still contain impossible events. For example,
consider the following execution of a component C

σ0
new(i,e)−−−−−→σ1

new(i,e′)−−−−−→σ2
e.op1(i,i)−−−−−→σ3

i.op2(e,e′)−−−−−−→σ4

inducing the trace t
e.op1(i , i) · i .op2(e, e ′)

with i ≺t e and i ≺t e ′. The root of the creation tree of t is the internal port i with both
the external ports e and e ′ as children. However, the last communication appearing in
t is not possible because the port e cannot possibly know the port e ′. To exclude this
case, we introduce the following notion of knowledge.

Definition 5. Given a trace t , we define the set κ(t , o) of objects that an object o may
knows by induction on t :

κ(ε, o) ={o} ∪ {o′|o ≺t o′}

κ(t · o′.op(o′′, v), o)=

⎧⎨⎩
κ(t , o) ∪ {o′′, v} o = o′ and v ∈ Obj
κ(t , o) ∪ {o′′} o = o′ and v �∈ Obj
κ(t , o) otherwise

Intuitively, an object o knows itself, all objects it created, and those objects it re-
ceived via some triggered operation. The above definition does not depend on a trace

A Fully Abstract Semantics for UML Components 59

to be generated by an execution of a component. Note however, that given a trace t of
a component C if an external port e ′ ∈ κ(t , e) then the external port e ′ may also have
knowledge of the external port e because an implementation of e and e ′ may involve
the communication of the identity of e to e ′. More generally, we can argue in a simi-
lar manner that if e ′ ∈ κ(t , e) then the external objects e and e ′ may have the same
knowledge.

Definition 6. Given a trace t and a component C, we define a cluster of external ports
possibly having the same knowledge as an equivalence class of the equivalence relation
�t , where �t is the least equivalence relation such that

e �t e ′ if e ′ ∈ κ(t , e) .

Because objects in a cluster may share their knowledge, we define their shared
knowledge κ∗(t , e), also called cluster knowledge, as

κ∗(t , e) =
⋃

{κ(t , e ′) | e �t e ′} .

We defined clusters only for external ports, because the flow of information of the inter-
nal ports is controlled by their respective implementation. For example if i knows e and
another external port e ′ then this in itself does not imply that e may have knowledge
of e ′. This knowledge can only be obtained by a chain of communications originating
from i .

A trace is called executable if external ports communicate only names known by
some ports in the same cluster. Formally, we have the following definition.

Definition 7. Given a component C, a trace t is executable if for every prefix t ′ ·
i .op(e, v) of t we have that both i and v (if it is an object) are in κ∗(t ′, e). We de-
fine T (C) to be the set of all executable traces of the component C.

Observe that executable traces are insensitive to the order in which ports are instan-
tiated. Also, because the creation tree of a trace refers only to names that appears in the
sequence of observable events (but possibly one, the root), executable traces concerns
only with objects that do play a role in an inter-components communication (and not
those objects that are created but never used in a communication).

The trace semantics defined above is compositional with respect to component
composition.

Theorem 1. For any two components C = C1 ⊕ C2 we have

T (C) = ∂C(T (C1) ∩ T (C2)) .

The proof of this compositionality result involves a fairly straightforward general-
ization of the compositional trace semantics for CSP (see [9]) to our setting.

The next theorem shows the correctness of the above compositional trace semantics
with respect to the above may equivalence.

Theorem 2. For any components C1 and C2 with the same provided and required inter-
faces (not including ISucess), if T (C1) = T (C2) then C1 � C2.

The proof of this theorem follows from the compositionality result in Theorem 1 in
a fairly standard manner. In the next section we investigate the converse of the above
Theorem: are executable traces fully abstract with respect to may equivalence?

60 F.S. de Boer et al.

4.1 Trace Definability

In order to show that executable traces can be implemented we introduce the notion
of extended traces, that is, traces augmented with events for synchronization between
external ports, so that they can be justified in terms of what external ports may know.

Definition 8. An extended trace t of an executable trace t ′ of a component C is a trace
with the same creation tree of t ′ and that extends the sequence of events of t ′ with
additional external communication events of the form e.op(e ′, v) (where op may denote
a possible operation of an implementation of e i.e., an operation that is not specified by
the required interface to which e belongs).

In an extended trace the events themselves can be justified directly in terms of
the exact knowledge of the ports (i.e. the objects created or received via a triggered
operation).

Definition 9. An abstract implementation of an executable trace is an extended trace t
of an executable trace of a component C such that for every prefix t ′ · o.op(e, v) of t
both objects o and v are in κ(t ′, e).

The following lemma can be proved in a straightforward manner by implementing
a protocol for broadcasting new knowledge to all external ports within a cluster.

Lemma 1. Every executable trace of a component C has an abstract implementation.

We arrived at the following definability result.

Theorem 3. For every executable trace t ∈ T (C) of a componentC there exists another
component C′ with as provided interfaces those required by C and such t is also an
executable trace of C′.

The sketch of the proof of the above theorem is as follows. Because t is an exe-
cutable trace it has an abstract implementation by Theorem 1. Further, we can reduce
the latter trace to a sequence s by prefixing it with creation events of the form new(o, u)
for each pair of names o and u with o ≺t u , and new the constructor associated to the
class of which u is an instance. This way, viewing the creation events above as a bind-
ing operator in the second argument, all names occurring in the sequence s are bound
but for the root of the tree of creation.

Next, for every external port e in the new sequence s we define an implementation
S (e, s) corresponding with the subsequence s of creation and communication events
of s involving e. This implementation uses the object names occurring in s as in-
stance variables of the object e. Basically, it is constructed by transforming every event
o.op(e, v) into a corresponding operation call o.op(self , v), every event e.op(o, v)
into a corresponding trigger op(o, v), every creation event new(e, o) into a corre-
sponding constructor call c.new(self , o), with new the constructor of the class c, for
o ∈ Obj (c), and, finally, the every creation new(o, e) into the trigger new(o, self).

As last step, for every required interface r of the component C, we define the UML
state-machine specifying the generic behavior of the class realizing the provided in-
terface r of C′ as the non-deterministic choice of the implementations S (e, t), where
e ranges over all instances of r appearing in t . By construction we have that t is an
executable trace of C′.

A Fully Abstract Semantics for UML Components 61

5 Trace Abstractions

In this section we show that the reverse implication of Theorem 2 does not hold. There-
fore executable traces are not fully abstract: there exist may-equivalent components
with different sets of executable traces. Moreover, we define trace abstractions for ob-
taining a fully abstract semantics. We proceed by presenting three typical examples for
which full abstraction fails and illustrate the need for respective abstractions on traces.

As a first example, consider a component C with two required interfaces, r1 and r2,
both declaring a constructor new . Further, r1 declares an operation op1 with a parameter
of type r1, while r2 declares an operation op2 with a parameter of type r1. Let c be a
role of the component depending on r1 and r2. The transitions of its associated state
machine are as follows:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4

Here x is an attribute of type r1 and y is an attribute of type r2. Observe that the
transition of the above state machine are not guarded and there is no trigger. This state
machine generates traces of the form

e1.op1(i , e1) · e2.op2(i , e2)

with i ≺ e1 and i ≺ e2, i ∈ Obj (c), e1 ∈ Obj (r1) and e2 ∈ Obj (r2). Consider now a
similar component C′ different from C in the state machine associated to the class c:

l0
/r1.new(self ,x)−−−−−−−−−→−−−−−−−−−→ l1

/r2.new(self ,y)−−−−−−−−−→−−−−−−−−−→ l2

〈 /x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l3a
/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l4a

/y.op2(self ,y)−−−−−−−−→−−−−−−−−→ l3b
/x .op1(self ,x)−−−−−−−−→−−−−−−−−→ l4b

This state machine generates the same traces as the previous one and additionally
also traces of the form

e2.op2(i , e2) · e1.op1(i , e1)

with i ≺ e1 and i ≺ e2, that differ with the previous ones only with respect to the
order of the synchronization on the operations op1 and op2. However there is no com-
ponent that can distinguish these two kinds of traces because the external instances
e1 and e2 cannot know each other and therefore cannot communicate or synchronize.
In other words, the order between these observable events cannot be imposed by the
environment because they belong to different clusters.

In general, the order between observable events involving external ports belong-
ing to different clusters cannot be observed in the may-testing semantics. We can ab-
stract from this information by the following closure condition on the traces of a given
component.

Definition 10. Given a component C, a set T of executable traces is closed with re-
spect to the order between events which actively involve external objects belonging to
different clusters, if

t · r .op(s , v) · r ′.op′(s ′, v ′) · t ′ ∈ T

62 F.S. de Boer et al.

such that
e ′ �∈ κ∗(t · r .op(s , v), e),

for e ∈ {r , s} and e ′ ∈ {r ′, s ′}, implies

t · r ′.op′(s ′, v ′) · r .op(s , v) · t ′ ∈ T .

This means that we can only swap events which belong to different clusters of the
corresponding prefix of the trace, a phenomena typical of asynchronous processes [6].
In our case, however, this captures the dynamic evolution of clusters, which grow
monotonically.

As a second example we consider the following two different state machines as-
sociated to a role c (with constructor newc) of a component depending on a required
interface r . This interface declares the constructor newr and an operation op with a
parameter typed by r itself. The first state machine creates an unbounded number of ex-
ternal instances of the required interface r by iteratively calling the constructor method
newr and synchronizes with each of them on the operation op:

l0
newc(x ,self)/−−−−−−−−→−−−−−−−−→ l1

/r .newr (self ,y)−−−−−−−−−→−−−−−−−−−→ l2
/y.op(self ,x)−−−−−−−−→−−−−−−−−→ l1 .

Observe that the iteration is expressed by the fact that, after the call of the operation
op, the state machine return in the location l1. The second state machine implements
the above iteration via recursion: it recursively generates an unbounded number of port
of c. Each of these ports creates an external instance of the required interface r and
synchronize with it via the operation op:

l0
newc(x ,self)/r .newr (self ,y)−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−→ l1

/y.op(self ,y)−−−−−−−−→−−−−−−−−→ l2
/c.newc(self,z)−−−−−−−−−−−→−−−−−−−−−−−→ l3 .

In term of traces, the component with the first state machine associated to c produces
traces of the form

e1.op(i0 , e1) · e2.op(i0, e2) · · · ek .op(i0, ek) ,

with e ≺ i0 and i0 ≺ en for n = 1, · · · , k . On the other hand, the component with the
second state machine associated to c produces traces of the form

e1.op(i0, e1) · e2.op(i1, e2) · · · ek .op(ik−1, ek) ,

with e ≺ i0, in−1 ≺ in and in−1 ≺ en for n = 1, · · · , k . Basically the two kinds
of traces differ on the identities of the internal ports that create new instances of the
required interface r . This difference cannot be observed by another component because
each of the external ports en ’s form a different cluster, and objects in different clusters
cannot share (and compare) their knowledge.

We can abstract from this difference by, roughly, a cluster-wise renaming of internal
instances. Formally, given a component C we define a relation t �α t ′ between the
executable traces t and t ′ if t ′ results from t by substituting (also in the creation tree)
an internal instance i for every occurrence of an other internal instance j , with the
same provided interface, in every event which actively involves an external object of

A Fully Abstract Semantics for UML Components 63

a cluster of t . To preserve the dynamic cluster structure of the internal instances, we
additionally require that i does not appear in those events which actively involve an
object of the cluster. For example, the first trace above can be obtained by the second
one by substituting i0 for in−1, with n = 2, · · · , k .

Definition 11. Given a component C, a set T of executable traces is closed with respect
to cluster-wise renaming of internal instances,if

t ∈ T and t �α t ′ implies t ′ ∈ T

Finally, we abstract from some information about object creation in a trace t that
is too specific, because, after all, the only relevant information concerns the dynamic
cluster structure of the trace. Consider the following two traces of a component with a
provided interface containing the operation opp and a required interface containing the
operation opr :

e.opp(i , i) · i .opr (e ′, e ′) · i .opr (e ′′, e ′′)

one time with creation tree i ≺ e ≺ e ′ ≺ e ′′, and another time with creation tree i ≺ e,
e ≺ e ′ and e ≺ e ′′. They are two different traces that, however, generate the same
cluster structure. In general, the object creator of an instance can be replaced by any
other object already existing within the same cluster.

Given a component, we therefore introduce an equivalence relation t ∼= t ′ on exe-
cutable traces that holds if the traces t and t ′ specify the same sequence of events with
the same dynamic cluster structure, i.e., t and t ′ have for every prefix the same cluster
structure. Formally, a prefix t ′′ of a trace t consists of a prefix of its sequence of events
together with a creation tree obtained by restricting that of t to the objects appearing in
t ′′. So, we define t1 ∼= t2 if for every two prefixes t ′1 of t1 and t ′2 of t2 with the same
sequence of observable events σ, we have o �t′1 u if and only if o �t′2 u , for every two
objects o, u appearing in σ.

Definition 12. Given a component C, a set T of executable traces is closed with respect
to to object creation if

t ∈ B and t ∼= t ′ implies t ′ ∈ B

We have arrived at the following definition of the fully abstract trace semantics Ta

for components.

Definition 13. Given a component C we define the set Ta (C) of its abstract traces as
the smallest set of executable traces containing T (C) and being closed with respect
the order between events that actively involve external objects belonging to different
clusters, and, the cluster-wise renaming of internal instances.

Correctness is straightforward because the above closure conditions do not affect
may-equivalence.

Theorem 4. For any components C1 and C2, Ta(C1) = Ta (C2) implies C1 � C2.

64 F.S. de Boer et al.

6 Full Abstraction

In this section we sketch a proof of full abstraction for the above semantics of compo-
nents. Full abstraction is expressed by the following theorem.

Theorem 5. May equivalent components have the same set of abstract traces.

In the following we give a sketch of the proof that proceeds by contraposition. Sup-
pose C1 and C2 are two may-equivalent components with different sets of abstract traces.
Without loss of generality, let t ∈ Ta(C1)\Ta(C2). Since abstract traces are executable,
by Theorem 1 there exists an abstract implementation t ′ of t .

This means that t ′ contains some protocol for broadcasting new knowledge so that
the actual knowledge of external objects coincides with their possible knowledge (de-
tails are straightforward and omitted here).

Next we reduce the trace t ′ to a sequence σ by prefixing it with creation events
of the form new(o, u) for each pair of names o and u with o ≺t′ u , and new the
constructor associated to the class of which u is an instance.

We can enrich the sequence σ with additional communication events modelling a
protocol for fixing the order of execution among those events of the sequence involving
external instances that belong to the same cluster. This protocol can be described using
the mechanism of passing a baton between the external instances of the same cluster as
in a relay team. Basically we insert between two synchronization events s1.op1(r1, v2)
and s2.op2(r2, v2) involving two external ports e1 and e2 in the same cluster as sender
or receiver of the operations, an external event e2.baton(e1, e1). Consequently, the ex-
ecution of events of instances that belong to the same cluster is sequentialized.

Finally, in order to obtain an observable difference in the may testing semantics, we
assume that each cluster of external objects in σ will create an instance o of the provided
interface ICluster and call after its last event the operation cluster of o indicating the
successful termination of the cluster. As a consequence, there will be as many instances
of the class ICluster as actual clusters in the sequence σ. When the last instance is
created, an instance of the required interface ISuccess is created and its operation succ
is called.

On the basis of the above sequence σ, we can construct a distinguishing compo-
nents C with as provided interface those required by C2 plus the interface ICluster
and as required interfaces those provided by C2 plus the interface ISuccess . The two
interfaces ISuccess and ICluster will be used to indicate the successful termination of
all the clusters of external objects of σ. In the state machines associated to the classes
realizing the provided interfaces of C we will use a pseudo-code to describe guards and
primitive operations, in particular we will use test for equalities, assignments composed
by standard operators like sequential composition ; and if-then-else.

Implementing Abstract Behaviors: First we discuss how to express in pseudo code the
abstract behavior of an external instance e in σ. Let σ
e denote the projection of σ onto
all the events actively involving the external instance e (as sender, receiver, or creator).
Let R(σ) = {o1, . . . , ok} be the name space of all the (internal and external) object
identities appearing in σ. For notational convenience, we use these object references

A Fully Abstract Semantics for UML Components 65

also as instance variables in the pseudo code. In order to check for the local consistency
of the object references stored in the variables of an external instance we introduce for
each object reference o a unique fresh variable o′ which will be used to store the actual
reference received when the object reference o is expected. Let o .= o′ abbreviate the
following pseudo code for for a guard checking the local consistency.

if o′ = nil
then fail
else if o �= nil

then if o �= o′ then fail fi
else for l = 1, . . . , k do

if o′ = ol then fail fi
od

fi
fi

Here fail is to denote the failure of the evaluation of the guard. This guard first
checks whether o′ is defined (if o′ is undefined the statement aborts because the object
reference o is expected). If so, we have two possibilities: either the variable o is already
initialized, in which case we simply check whether o equals o′, or o is not yet initial-
ized, e.g., not yet received, in which case we check whether o′ is different from all the
other stored object references.

We can now define a concrete state machine SM (σ
e) describing the abstract be-
havior of e in σ. For technical convenience we use prefixes of σ
e as locations (with ε
as initial location and σ
e as final one) and specify the transitions of the state machine
by induction on the length of σ
e :

σ′
e /o.op(self ,v)−−−−−−−−→−−−−−−−−→ (σ′ · o.op(e, v))
e

σ′
e /c.new(self ,o)−−−−−−−−−→−−−−−−−−−→ (σ′ · new(e, o))
e

σ′
e [o
.
=o′ and v

.
=v ′]op(o,v)/−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→ (σ′ · e.op(o, v))
e

The state machine SM (σ
e) is thus obtained by a straightforward transformation
of the events of σ
e into corresponding actions. The third clause describes the call of a
constructor method new which involves the storage of the newly cerated instance in the
variable o, with o ∈ Obj (c). In case of reception of an operation the guards additionally
involves a check that the received object references do agree with the corresponding
stored ones. Note that thus SM (σ
e) checks only the local consistency of the name
space of e. However the encoded protocol for broadcasting new knowledge to all the
(external) objects belonging to one cluster will ensure also the global consistency of
the name space of the cluster, i.e., any two external objects e and e ′ belonging to the
same cluster assign the same value to any (private) instance variable o ∈ R(σ). Note
however that we cannot ensure that this value is actually the expected object reference
o itself!

66 F.S. de Boer et al.

Implementing the Required Interfaces: For every required interface r of the given com-
ponent C1 we can define its implementation as a non-deterministic choice between the
state machines SM (σ
e), where e is an instance of r appearing in σ. However, for a full
abstraction result, we also need a mechanism which allows such an instance to select
its own ’predestined’ behavior. The only way we know to implement such a selection is
by means of a restricted use of static class variables: for each instance e of a required
interface r , we introduce a static class variable r .e.

Static class variables are variables associated with a class and shared by all its in-
stances only. In languages like Java, static class variables introduce another form of
communication besides message passing. Here this means that we associate to each
class c a special object with identity c containing the class variables of c. This means
that the state transformations associated with primitive operations are not allowed to
read and modify the instance variables of the object associated with the class of the
instance executing the primitive operation call. In general we want static variables to
have no influence on the knowledge of an object (so that two instances of the same
class need not necessarily to know each other). This can be enforced by requiring that
information stored in static class variables cannot be used in communications between
objects, but can only be written and read for private purposes by any instance of a class.
More syntactically, we can obtain this by allowing static class variables to appear only
in guards (recall that guard evaluation has no side effect) and as parameters of a trig-
ger (so to get assigned to a value). Static variables, however, cannot be communicated,
and hence cannot appear neither as parameters of operation calls nor used by a state
transformation associated by a primitive operation.

Let e1, . . . el be the instantiations of r appearing in σ in that order. The following
state machine with l0 as initial location allows each instance ei to select the right lo-
cation σ
ei where to continue the behavior of the e instance of r by means of a guard
preceding the constructor trigger newr :

l0

〈 [o1
.
=o′

1 and r .e2=nil and ··· and r .el=nil]newr (o1,r .e1)/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ
e1

[o2
.
=o′

2 and r .e1 �=nil and r .e3=nil and ··· and r .el=nil]newr (o2,r .e2)/−−−→−−−→ σ
e1

...
[ol
.
=o′

l and r .e1 �=nil and ··· and r .el−1 �=nil]newr (ol ,r .el)/−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ
el

Note that static class variables are assigned to the identities of the instances of the
class r . Further they do not introduce shared variable concurrency because in the above
transitions guard evaluation and trigger (and hence the corresponding test and assign-
ment of static variables) are executed atomically.

May Testing: It still remain to implement the class realizing the provided interfaces
ICluster The following state machine is associated to the class realizing the interface
ICluster so to ensures that only the last instance of ICluster will create an instance
of the interface ISuccess , thus indicating that all clusters of external objects have ter-
minated successfully. Again, we use static class variables for the instances of ICluster
to ’count’ how many instances have already been created (i.e. how many clusters have
successfully terminated).

A Fully Abstract Semantics for UML Components 67

Assuming that the initial trace t contains m clusters of external objects, let succi ,
i = 1, . . . ,m − 1 be m − 1 static class variables of ICluster (writing for simplicity
succi instead of ICluster .succi) in the following state machine associated to it:

l0

〈 [o1
.
=o′

1 and succ2=nil and ··· and succm−1=nil]new(o1 ,succ1)/−−→−−→ l1
[o2
.
=o′

2 and succ1 �=nil and succ3=nil and ··· and succm−1=nil]new(o2,succ2)/−−→−−→ l2
...
[om

.
=o′

m and succ1 �=nil and ··· and succm−1 �=nil]/ISuccess.new(self ,x)−−−→−−−→ lm
lm

/x .success(self ,x)−−−−−−−−−−−→−−−−−−−−−−−→ lend

By construction, an instance of ISuccess will be created only after all events of each
cluster in the trace t have occurred. Its identity is stored in x and the creator moves in
a location from where it calls the operation success of x . Since ISuccess is the only
required interface of C ⊕ C2, the latter call will generate the only observable event
e.sucess(i , e), where e ∈ Obj (ISuccess) and i ∈ Obj (ICluster).

Full Abstraction: By construction it follows that (C ⊕ C1)↓↓. Furthermore, by construc-
tion (C ⊕ C2)↓↓ implies t ∈ Ta (C2). The latter follows basically because the context C
forces C2 to behave as t up-to the closure conditions.

7 Conclusion and Future Work

We have presented a semantics specification of the behavior of UML-based components
that is fully abstract with respect to may equivalence. To focus on the semantic issues in-
volved we have chosen for simplified version of UML class diagrams, object diagrams,
state machines and components. However the concepts used are first step towards a
semantic approach integrating the several diagrams present in UML. We have applied
similar techniques to an extension of the concurrent object calculus with classes [3] and
to a sequential object calculus with classes [4]. Both calculi do not consider class inher-
itance. In fact, and contrary to [16], we do not believe that our result can be applied to
an object calculus with inheritance because of the fragile base class problem [21].

Our full abstraction result relies on the static class variables for the construction of
the behavior to be associated with a class. The are the key mechanism that allows an
object to select its own predestined behavior among those of all instances of a class.
Without them we do not know how to construct the behavioral specification of a class
from the set of behavior of all its instances. One possibility that we have explored [4] in
the context of the object calculus with classes [2], is to restrict it to sequential objects.

The results introduced in this paper are robust enough to support an extension of
the state-machine with class name passing, allowing processes to create instances of
classes known only at run-time, a form of very late binding typical of component-based
systems [22]. Further work is needed for extensions of our result to support more ad-
vanced features like inheritance hierarchies, and dynamic class allocation. The first will
introduce another way to cross the component borderline, whereas dynamic allocation
of behavior to classes (e.g., as studied in [13]) will make this borderline dynamic.

68 F.S. de Boer et al.

Our fully abstractness result is relevant for and applicable to the generation of test
suites for systems of objects. It shows first of all which tests, as sequences of messages,
are in fact the same (so it is relevant for defining a effective test suite). Moreover, it
shows that to what extent we can abstract from the identities of the test objects. It is
future work to apply our result to the theory of testing systems of objects in class based
language.

Acknowledgements. Thanks to the anonymous referees and Rocco De Nicola for their
comments and suggestions that have improved the paper. This work benefited from
discussion with Willem-Paul de Roever and other members of the NWO/DFG bilateral
project MobiJ.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. E. Ábrahám, M.M. Bonsangue, F.S. de Boer, and M. Steffen. A Structural Operational Se-

mantics for a Concurrent Class Calculus. Tech. rep. 0307 of the Univ. of Kiel, 2003.
3. M. Steffen, E. Ábrahám, M.M. Bonsangue, F.S. de Boer. Object Connectivity and Full Ab-

straction for a Concurrent Calculus of Classes In Proc. ICTAC 2004, vol 3704 of LNCS, pp.
38-52. Springer, 2005.

4. E. Ábrahám, M.M. Bonsangue, F.S. de Boer, A. Grüner, and M.Steffen. Observability, con-
nectivity, and replay in a sequential calculus of classes. In Proc. FMCO 2004, vol. 3657 of
LNCS, Springer, 2005.

5. F.S. de Boer, M.M. Bonsangue, and J. Guillen-Scholten. Components: From object to mobile
channels. In H. Jifeng and Z. Liu (eds.), Mathematical Frameworks for Component Software
– Models for Analysis and Synthesis, The World Scientific, 2005.

6. M. Boreale, R. De Nicola, and R. Pugliese. Trace and Testing Equivalence on Asynchronous
Processes. Information and Computation, 172(2):139-164, 2002.

7. F.S. de Boer and M.M. Bonsangue. A compositional model for confluent dynamic data-flow
networks. In Proc. MFCS, vol. 1893 of LNCS, Springer 2000.

8. M. Boreale and R. de Nicola. Testing equivalence for mobile processes. Information and
Computation, 120:279–303, 1995.

9. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential pro-
cesses. Journal of the ACM, 31(3):560–599, 1984.

10. K. Bruce. Foundations of Object-Oriented Languages: Types and Semantics. The MIT Press,
2002.

11. T. Clark, A. Evans, and E. Kent. The metamodelling language calculus: foundation semantics
for UML. In Proc. FASE 2001, vol.2029 of LNCS pp. 17–31, Springer 2001.

12. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal semantics
of concurrency and communication in Real-Time UML In Proc. FMCO 2002, vol. 2582 of
LNCS, Springer 2003.

13. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dynamic object
re-classification: Fickle II. ACM ToPLaS 24(2):153–191, 2002.

14. M. Hennessy. A fully abstract denotational semantics for the π-calculus. Theoretical Com-
puter Science, 278(2):53-89, 2002.

15. M. Hennessy and R. de Nicola. Testing equivalence for processes. Theoretical Computer
Science, 34:83-133, 1984.

16. A. Jeffrey and J. Rathke. A Fully Abstract May Testing Semantics for Concurrent Objects.
In Proc. of the 17th LICS, pp. 101-112. IEEE Computer Society Press, 2002.

A Fully Abstract Semantics for UML Components 69

17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–77, 1992.

18. Object Management Group, UML 2.0 Superstructure (Final Adopted specification). Docu-
ment – ptc/03-08-02, August 2004.

19. G. Övergaard Formal Specification of Object-Oriented Meta-Modelling. In Proc. FASE
2000, vol. 1783 of LNCS, Springer 2000.

20. B. Pierce. Types and Programming Languages. The MIT Press, 2002.
21. A. Snyder. Encapsulation and inheritance in object-oriented programming. In Proc. OOP-

SLA, pp. 38–45, SIGPLAN Notices 21:11, 1986.
22. C. Szyperski, D. Gruntz and S. Murer Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.

From (Meta) Objects to Aspects:

A Java and AspectJ Point of View

Pierre Cointe1, Hervé Albin-Amiot1,2, and Simon Denier1

1 OBASCO group, EMN-INRIA, LINA (CNRS FRE 2729),
École des Mines de Nantes, 4 rue Alfred Kastler, La Chantrerie,

44307 Nantes Cedex 3, France
{Pierre.Cointe, Herve.Albin-Amiot, Simon.Denier}@emn.fr

2 Sodifrance, 4, rue du Château de l’Éraudière, 44324 Nantes, France

Abstract. eWe point some major contributions of the object-oriented
approach in the field of separation of concerns and more particularly
design-patterns and metaobject protocols. We discuss some limitations of
objects focusing on program reusability and scalability. We sketch some
intuitions behind the aspect-oriented programming (AOP) approach as
a new attempt to deal with separation of concerns by managing scat-
tered and tangled code. In fact AOP provides techniques to represent
crosscutting program units such as display, persistency and transport
services. Then AOP allows to weave these units with legacy application
components to incrementally adapt them. We present a guided tour of
AspectJ illustrating by examples the new concepts of pointcuts, advices
and inter-type declarations. This tour is the opportunity to discuss how
the AspectJ model answers some of the issues raised by post-object ori-
ented programming but also to enforce the relationship between reflective
and aspect-oriented languages.

1 Lessons from Object-Oriented Languages

More than twenty years of industrial practices have clearly enlightened the con-
tributions but also the limitations of object-oriented technologies when dealing
with software complexity [15]. Obviously, OO languages have contributed to
significant improvements in the field of software engineering and open middle-
ware [30,9]. Nevertheless, programming the network as advocated by Java made
clear that the object model[33] even extended with the design of reusable micro-
architectures such as patterns or frameworks was not enough to deal with critical
issues such as scalability, reusability, adaptability and composability of software
components [2,19].

In this introduction, we develop some limitations but also two of the main
contributions of the OO. approach. These “pro and cons” put together, have
challenged new open research ideas in the field of programming languages design
and contributed to the emergence of new paradigms such as aspect-oriented
programming [19,31].

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 70–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 71

1.1 Limitations (CONS)

A first source of problems when programming in the large, is the lack of mech-
anisms to modularize crosscutting concerns and then to minimize code tangling
and code scattering1. A second source of problems is the difficulty of represent-
ing micro-architectures by using only classes and their methods. A third source
of problems is the need of mechanisms to incrementally modify the structure or
the behavior of a program. Considering object-oriented programming as THE
final technololgy to solve these issues has made clear some well known drawbacks
[9,10,15]:

1. Classes schizophrenia: as already quoted by Borning in 1986, classes play too
many roles and there is some confusion around the concerns of a class as an
object generator, a class as a method dispatcher and an (abstract) class as
a part of the inheritance graph.

2. Granularity of behavioral factoring: when expressing behavioral concerns
there is no intermediate level of granularity between a method and a class.
For instance, there is no way in Java to factorize and then manipulate a
set of methods as a whole. Similarly, a Java package - seen as a group of
related classes - has not direct manipulable representation at the code level.
Then, there is a real need for stateless groups of methods à la trait [28] to
implement and compose mixin modules.

3. Class inheritance and transversal concerns: inheritance is not the solution
for reusing crosscutting non-functional behaviors such as security or dis-
play that are by essence non hierarchical. For instance in Java, even very
elementary state-less concerns such as being colorable, traceable, memoiz-
able, movable, paintable, clonable, runnable, serializable, . . . must be ex-
pressed by interfaces to be reused. Unfortunately, these interfaces do not
provide any method implementations but only method specifications, lim-
itating reusability.

4. Design patterns traceability: patterns provide reusable micro-architectures
based on explicit collaborations between a group of classes [16]. Unfortu-
nately they have no direct representation (reification) at the programming
language level raising traceability and understandability issues [18].

1.2 Contributions (PRO)

On the one hand, the Model View Controller developed for Smalltalk has pro-
vided the user with a problem-oriented methodology based on the expression and
the combination of (three) separate concerns related to user-interfaces design.
The MVC was the precursor of event programming - in the Java sense - and con-
tributed to make explicit the notion of join point, e.g., some well defined points
1 As stated in [31], crosscutting concerns refer to functionalities which do not naturally

fit in usual module boundaries, scattering can be observed when a functionality must
be called from many places and tangling when an individual operation may need to
refer to many functionalities.

72 P. Cointe, H. Albin-Amiot, and S. Denier

in the execution of a model used to dynamically weave the codes associated to
the view and the controller.

On the other hand, object-oriented languages have demonstrated that reflec-
tion was a general conceptual framework to clearly modularize implementation
concerns and to separate them from the functional/business logic. The principle
is to introduce a metalevel description and two operations to switch between
the base level (user) to this metalevel (implementor). Nevertheless, reflection is
solution oriented since it relies on the protocols of the language to build a new
solution by opening the system [29].

Our purpose is to develop now those two OO contributions to point later
some interesting relationships between objects, design patterns and aspects.

The Model-View-Controller (MVC) was the first attempt to make the
notion of concerns explicit when designing the user interface. MVC was also the
inspirator of the well known Observer design pattern (see 3.3).

The main idea was to separate, at the design level, the model itself describ-
ing the application as a class hierarchy and two separate concerns: the display

public class Counter extends Object{

private int value;

public int getValue(){

return value;

}

public void setValue(int nv){

value=nv;

// this.changed();

}

public int incr(int delta){

this.setValue(value+delta);

return delta;

}

public void incr(){

this.incr(1);

}

public void raz(){

this.setValue(0);

}

public String toString(){

return "@" + value;

}

public static void main(String[] args) {

Counter c1 = new Counter();

c1.incr(); c1.incr(6); c1.raz();

}

}

Fig. 1. The Counter class

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 73

and the controller, themselves described as two other separate class hierarchies.
At the implementation level, standard object encapsulation and class inheri-
tance were not able to express these crosscutting concerns and not able to pro-
vide the coupling between the model, its view, and its controller. This coupling
necessitated:

– the introduction (for instance at the root level of the class model) of a depen-
dence mechanism in charge of notifying the observers when a source-object
state changes. This mechanism is required to automatically update the dis-
play when the state of the model changes.

– the instrumentation of (some) methods of the model to raise an event each
time the state of the model changed, e.g, each time a given instance variable
gets a new value.

To discuss in more details the MVC pattern, we transpose for Java the well
known Counter example used by Smalltalk teachers. The principle is to de-
velop the model first, as the Counter class, and then to introduce its associated
CounterView and CounterController classes.

The Counter Class provides two accessors methods and some basic behav-
iors such as incrementing, reseting and “stringing” (representing as a text).
None of these methods makes any assumption about the views and the con-
trollers used to build the user-interface. Indeed, the associated CounterView
and CounterController classes are defined separately.

Nevertheless, to use this Counter class according to the MVC paradigm, the
developer has to manually manage state changes by inserting a this.changed()
sentence every time the value field receives a new value. If the class is well
designed, this insertion can be localized in only one point. In our case, since
incr, raz, . . . refer to it, only the setter method setValue has to be modified.

The CounterView Class aggregates its Counter but also its CounterControl
ler. The constructor establishes the dependant link between the Counter model
and its view. In fact, every time the counter executes a this.changed(), the
view will by notified by receiving an update() message. This update will refresh
the view by redisplaying the new value of the Counter model.

Obviously the first challenge raised by the MVC was to automate the transfor-
mation of the model and the generation of the associated views and controllers.
The second challenge was to proceed this generation in a non invasive way from
the model side.

Metalevel Architectures à la Smalltalk and à la CLOS have clearly
illustrated the potential of reflection to deal with separation of concerns[30].
The reflective approach makes the assumption that it is possible to separate in
a given application, its why expressed at the base level, from its how expressed
at the metalevel.

In the case of a reflective object-oriented language à la Smalltalk, the prin-
ciple is to reify at the metalevel its structural representation, e.g., its classes,

74 P. Cointe, H. Albin-Amiot, and S. Denier

public class CounterView extends View {

private Counter model, CounterController controller;

private CounterView() {

model = new Counter();

model.addDependent(this); // dependency link

}

public void update(){

model.getValue().toString().displayAt(...);

}

}

public class CounterController extends MouseMenuController {

private Counter model, CounterView view;

...

}

Fig. 2. The CounterView and MouseMenuController classes

their methods and the error-messages but also its computational behavior, e.g.,
the message sending, the object allocation and the class inheritance. Depending
on which part of the representation is accessed, reflection is said to be structural
or behavioral. Meta-objects protocols (MOPs) are specific protocols describing
at the meta-level the behavior of the reified entities. Specializing a given MOP
by inheritance, is the standard way [8,17] to extend and to open the base lan-
guage with new mechanisms such as explict metaclasses [3], multiple-inheritance,
concurrency, distribution [24], aspects [4] or reified design patterns.

The design of metaobject protocol such as ObjVlisp, CLOS or ClassTalk
contributed to the development of techniques to introspect and to intercess with
program structures and behaviors [7,2,26,3]. The minimal ObjVlisp model was
built upon two classes: Object the root of inheritance tree, Class the first meta-
class and as such the root of the instantiation link, plus MethodDescription, the
reification of object methods. Then object creation (structural reflection) and
message sending (behavioral reflection) can be expressed as two compositions of
primitive operations defined in one of these three classes2:

– Class.allocate 0 Object.initialize
– Class.lookup 0 MethodDescription.apply

In the case of an open middleware [23], the main usage of behavioral re-
flection is to control message sending by interposing a metaobject in charge
of adding extra behaviors/services (such as transaction, caching, distribution)
to its base object. Nevertheless, the introduction of such interceptors/wrappers
metaobjects requires to instrument the base level with some hooks in charge of
causally connecting the base object with its metaobject. Those metaobjects pre-
figured the introduction of AspectJ crosscuts, e.g., the specification of execution
points where extra actions should be woven in the base program [20,13].
2 The dot notation Class.allocate meaning the allocate method defined in the
Class class.

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 75

2 The Java Class Model and Its Associated MOP

The Java model is close to the ObjVlisp one, the main difference being that
Class - the first metaclass - is final making Class and then the associated class
model non extensible [7]. In fact, the Java reflective API3 provides mainly a
self-description of its class architecture and a related MOP mainly dedicated to
its introspection.

2.1 Exposing the Java Class Model

On Figure 3, we recognize the Object class and the Class metaclass. Then the
Constructor, Field and Method classes reify the three main kind of Java class
members. Each of them implement the Member interface and specialize the
AccessibleObjectclass introduced to interact with the security manager and get
its authorization to intercede with the fields of an object. This simplified figure
summarizes also - at the level of every class and using the common Smalltalk
notation - the names of the metaobject protocols from which we would like to
point out:

1. Class.forName to reify a class and then to get the reification of its different
members,

2. Class.newInstance and Constructor.newInstance to allocate new
objects,

3. Method.invoke to call compiled method,
4. Field.get and Field.set to read/write instance variables.

These methods give access to the description and then the control of some key
events associated to OO program execution; respectively object creation, mes-
sage sending and field references. They can be used as developed below to explicit
and then to specialize by inheritance the associated mechanisms.

2.2 Using the Java MOP
ReflectiveObject. One key issue when using reflection is to control the execu-
tion flow by monitoring some key events (called hooks [29] or join points [20])
such as field accessing or message sending. The idea is to superimpose additional
behaviors before, instead of, or after such events for instance to check pre or post
conditions. In that perspective, the Java MOP can be used to explicit and then
monitor the accesses to members (field or method) by introducing such hooks
to execute extra code. This MOP makes possible the expression of the following
rewriting rules expliciting method calls and field references in a Smalltalk way:

1. o.selector(arg2...argn) ↪→ o.receive(“selector′′, arg2, ...argn)
2. o.field ↪→ o.instV arAt(“field′′, value)
3. o.field = value ↪→ o.instV arAtPut(“field′′, value)

3 We present here the java.lang.reflect package as provided by Java 1.4.

76 P. Cointe, H. Albin-Amiot, and S. Denier

The ReflectiveObject class uses the Java MOP to explicit these transforma-
tion rules via its receive and instVarAt methods.

public class ReflectiveObject {

public Object receive(String selector, Object[] args) {

Method mth = null; Object r = null; Class[] classes = null;

int lo = 0;

if (args != null) {

lo = Array.getLength(args);

classes = new Class[lo];

}

for (int i = 0; i < lo; i++) {classes[i] = args[i].getClass();}

try {

// LOOKUP join point

mth = getClass().getMethod(selector, classes);

// before method call

r = mth.invoke(this, args); // APPLY join point

// after method call

} catch (Exception e) {System.out.println(e); }

return r;

}

public Object receive(String selector) {

return receive(selector, null);

}

public Object receive(String selector, Object arg1) {

return receive(selector, new Object[] { arg1 });

}

public Object receive(String selector, int arg1) {

return receive(selector, new Object[] { new Integer(arg1) });

}

public void instVarAtPut(String name, Object value) {

try {

Field f = this.getClass().getDeclaredField(name);

if (!Modifier.isStatic(f.getModifiers()))

f.setAccessible(true);

// before field reference

f.set(this, value); // SET reference join point

// after field reference

} catch (Exception e) {

System.out.println("ReflectiveObject.instVarAtPut "+ e);}

}

}

More precisely:

1. receive : computes the signature of the associated message by extracting the
class of every argument (selector and classes), looking up for an associated
method in the class of the receiver (composition of getClass and getMethod)

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 77

Object

Class AccessibleObject

Constructor Field Method

Member

implements

inherits from

instance of

java.lang.Object(getClass, clone)

java.lang.Class(getName, newInstance, forName,

getDeclaredMethods, getDeclaredFields,

getDeclaredConstructors)

java.lang.reflect.Member(getName, getDeclaringClass, getModifiers)

java.lang.reflect.AccessibleObject(isAccessible, setAccessible)

java.lang.Reflect.Field(get, set, setInt)

java.lang.Reflect.Method(invoke)

java.lang.Reflect.Constructor(newInstance)

Fig. 3. The Java class model and its associated MOP

and then apply this method to its arguments (invoke). Obvioulsy, receive
can be specialized to call extra methods before, around or after the APPLY
join point4.

2. instVarAtPut: computes the representation of a field given by its name
(composition of getClass and getDeclaredField) checks if it is an in-
stance or a class variable (isStatic), turns the accessible security right to
true (setAccesible) and change its value (set). Consequently,
as soon as Counter is defined as a subclass of ReflectiveObject, its
Counter.setValue method body can be rewritten as: this.instVarAtPut
(‘‘value’’, new Integer(nv)). Then, instVarAtPut could be overridden
to notify the dependents. More generally, this method can be specialized to
call extra methods, before, after and around the SET reference join point.

MemoizingObject. The idea is to specialize the previous receive method to
memoize the already computed results in a cache. For simplification purpose,
we made the assumption that receive takes only one argument with type int.
The implementation is as follows; when a receive is executed, we extract the
first argument n and wrap it to a Java Integer, we check if the result as already
been computed and cached for this argument. If true we directly returns the
memoized result. If false, we call the super method in charge of realizing the
computation and we record the result:
4 receive allows also the computation of the selector to perform à la Smalltalk the

method to call: new ReflectiveObject().receive(‘‘get’’ + ‘‘class’’)

78 P. Cointe, H. Albin-Amiot, and S. Denier

public class MemoizingObject extends ReflectiveObject {

public static HashMap cache = new HashMap();

public Object receive(String selector, Object[] args) {

int n = ((Integer)args[0]).intValue();

Integer N = new Integer(n);

if (cache.containsKey(N)){return (Integer)cache.get(N);}

else {

Integer r = (Integer)super.receive(selector, args);

cache.put(N,r);

return r;

}

}

}

The example below develops how to use this memoization concern to compute
factorial numbers by the way of the EFP.fact method expressed in term of the
MemoizingObject.receive method:

public class EFP extends MemoizingObject {

static EFP f = new EFP();

public static int fact(Integer n){

int pn = n.intValue();

if (pn == 0)

return 1;

else

return pn * ((Integer)f.receive("fact",

(new Integer(pn - 1)))).intValue();

}

public static void main(String[] args) {

try {

System.out.println("The cache " + memo);

Integer r= (Integer)f.receive("fact", 4);

System.out.println("The cache " + memo + r);

r= (Integer)f.receive("fact", 5);

System.out.println("The cache " + memo + r);

} catch (Exception e) {

System.err.println("MemoizingObject.Main" + e);

}

}

}

/* Running EFP.main will produce :

The cache{}

The cache{2=2, 4=24, 1=1, 3=6, 0=1}24

The cache{2=2, 4=24, 1=1, 3=6, 5=120, 0=1}120

*/

ClassInspector uses the previous MOP to introspect a given Java class and
pretty print its “signature”. The main idea is to get its direct superclass, its

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 79

interfaces and then to enumerate the signature of its different declared members:
fields, methods and constructors.

public class ClassInspector {

private java.io.PrintStream out = System.out;

public void inspect(Class aClass) {

Field[] fields; Method[] methods; Constructor[] constructors;

Class[] interfaces = aClass.getInterfaces();

out.print(aClass.toString() + " extends "

+ aClass.getSuperclass().getName());

for (int j = 0; j < interfaces.length; j++) {

out.println("implements" + interfaces[j].getName());

}

out.println("");

out.println("--> declared fields");

fields = aClass.getDeclaredFields();

for (int j = 0; j < fields.length; j++)

out.println(" " + fields[j].toString());

out.println("--> declared methods");

methods = aClass.getDeclaredMethods();

for (int j = 0; j < methods.length; j++)

out.println(" " + methods[j].toString());

out.println("--> declared constructors");

constructors = aClass.getDeclaredConstructors();

for (int j = 0; j < constructors.length; j++)

out.println(" " + constructors[j].toString());

}

public static void main(String[] args) {

ClassInspector desc = new ClassInspector();

try {

desc.inspect(Class.forName("fmco.Counter"));

} catch (ClassNotFoundException e) {

System.err.println(e);

}

}

}

Annex A.2 gives an example of using ClassInspector to “pretty print” our
Counter class. The purpose is to check the members introduced by the AspectJ
weaver, as soon as Counter is crosscutted by the CounterObserver aspect
(see 3.3).

2.3 Some Drawbacks of the Java MOP

The previous examples have demonstrated how the Java API (via the
Reflective Object class) can be used to incrementally modify the behavior
of a program by controlling message sending or field accessing. Nevertheless the
proposed solutions are difficult to generalize since:

80 P. Cointe, H. Albin-Amiot, and S. Denier

– as for the fact and setValue examples, we need to manually transform
regular Java codes to explicit the usage of receive and instVarAtPut,

– contrary to Smalltalk, the associated rewriting rules have to deal with Java
primitive types and necessitates the introduction of casts and wrappers which
make the translations more complex,

– EFP and Counter have to subclass ReflectiveObject to get the associated
reflective behaviors. Since Java only provides single inheritance it is a strong
constraint for a class to use this specialization mechanism to get reflective
facilities.

At the conceptual level, we can reformulate these drawbacks as the difficulty to
systematically reify message sending and field accessing in a non-invasive way
and as the problem of modularizing extra code performed “around” such events
without using standard class inheritance. At the implementation level, we should
discuss the extra execution cost induced by metaprogramming, and the inherent
complexity of opening the Java class model [29].

3 A Guided Tour of AspectJ

“A characteristic of aspect-oriented programming, as embodied in AspectJ, is the
use of advice to incrementally modify the behavior of a program. An advice decla-
ration specifies an action to be taken whenever some condition arises during the
execution of the program. The condition is specified by a formula called a point-
cut designator. The events during execution at which advice may be triggered are
called joint points. In this model of aspect-oriented programming, join points are
dynamic in that they refer to events during the execution of the program [32].”

AspectJ is a general purpose language built as a super set of Java (see
[1] and chaper 6 of [14]). The main idea is to introduce a new unit called an
aspect in charge of modularizing crosscutted concerns. This unit looks like a class
definition but supports the declaration of pointcuts and advice. These pointcuts
are used by a specific compiler to weave the advice with regular Java code.

From an industrial perspective, it is the first largely diffused language used to
develop or reengineer relevant applications according to aspect-oriented design
[14]. From an academic perspective, AspectJ is historically the first aspect-
oriented language and the natural candidate to expose the relationships between
objects, metaobjects and aspects by answering some issues raised by post-object-
oriented programming.

3.1 The Join Point and Advice Models

The main intuition behind AOP is to introduce a join point model raising events
every time an interesting point is reached during the execution of a program.
Then the idea is to propose a pointcut language to select specific join points and
an an advice language to express some extra code to be woven at those pointcuts.
In the case of AspectJ both the pointcut language and the advice language are
extensions of Java. More precisely and revisiting [19] we propose the following
definitions:

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 81

– Join point: a well defined point in the execution of a program. As an extension
of Java, AspectJ proposes about ten different kinds of those points related
to object-oriented execution; method call, method execution, field reference
(get and set), constructor call, (static) initializer execution, constructor ex-
ecution, object (pre) initialization, exception handler execution [21].

– Pointcut (when): an expression designating a set of join points that option-
ally exposes some of the values in the associated execution context. These
pointcuts can be either user-defined or primitives. These pointcuts can be
composed (like predicates) according to three logical operators : logical and
(&& operator), logical or (|| operator) and logical negation (! operator).

– Advice (how/what): a declaration of what an aspect computes at intercepted
join points. In fact a method like mechanism used to declare that certain
code should execute when a given pointcut matched. The associated code
can be told to run before the actual method starts runing, after the actual
method body has run and instead/around the actual method body. Notice
that AspectJ provides a reification of the current join point by introducting
the new thisJoinPoint pseudo variable (see the DummyTrace2 aspect in 3.2).

– Inter-type declaration (introductions): declarations of members that cut
across multiple classes or declarations of change in the inheritance relation-
ship between classes. In a reflective way, those declarations are used to open
a class by statically introducing new members or by changing its super class
or super interfaces.

– Aspect: a modular unit of crosscutting implementation, composed of point-
cuts and advice, plus ordinary Javamember declarations. An AspectJ aspect
declaration has a form similar to that of a Java class declaration.

The rest of this section is a guided tour of AspectJ introducing step by
step the previous concepts and illustrating them with examples. We will distin-
guish between behavioral crosscutting affecting the run time behavior and static
crosscutting affecting the class and object structures (page 185 of [21]).

3.2 Behavioral Crosscutting

The principle is to modularize simple crosscutting concerns such as monitoring,
tracing and memoizing with AspectJ aspects and then to adapt existing Java
classes such as Counter and FP by weaving their associated advice.

Introducing Pointcuts (Counter and the Daemon aspect). Coming back
to the Counter class exposed in Figure 1, we still want to notify a dependent (an
observer) every time its value field is changed. Contrary to the MOP approach,
we expect to proceed without editing the definition of the Counter class and
without evading its setValue method. The AspectJ solution is to modify auto-
matically and a posteriori the code of the Counter class by weaving the advice
associated to the Daemon aspect. This aspect allows to monitor the write access
to the Counter.value field as follows:

82 P. Cointe, H. Albin-Amiot, and S. Denier

– declaration of a user defined changed poincut designator associated to the
Counter.value set event:

– declaration of an after advice which method body will be executed after a
set event occur. More precisely after a logical combination of a changed and
an args and a target. The two primitives pointcuts (args and target) are
used to catch - in the dynamic context - the values of the current receiver r
and the current argument n.

public aspect Daemon {

// pointcut designator

pointcut changed(): set(int Counter.value);

// after advice

after(int n, Counter r): changed() && args(n) && target(r){

r.getDependent().update(n);

}

}

Obviously, poincuts enables to abstract over control flow [25]. In particular,
it becomes easy to materialize the execution trace of different method calls. The
next three examples develop how to define trace aspects within AspectJ.

Introducing Before and After Advice (DummyTrace1). The idea is to
define a DummyTrace aspect to visualize the computation of the two mutually
recursive methods FP.odd and FP.even are associated to the FP (standing for
Functional Programming) class. defined in Annex 5.1. The first expected trace
looks like the left part of Figure 4. We define the DummyTrace1 aspect as follows:

– a traceCounter field counting the number of the traced method calls. It is
used to indent the outputs,

– two calleven and callodd poincut descriptors monitoring the FP.even and
FP.odd method calls,

– four advice in charge ofwrapping thesemethod calls byprinting in the standard
output the value of the n argument before the associated pointcut and the
value of the same argument plus the computed b result after the pointcut.

-->Before calleven(3) -->call(FP.even(..)) 3

-->Before callodd(2) -->call(FP.odd(..)) 2

-->Before calleven(1) -->call(FP.even(..)) 1

-->Before callodd(0) -->call(FP.odd(..)) 0

false<--After callodd(0) false<--call(FP.odd(..)) 0

false<--After calleven(1) false<--call(FP.even(..)) 1

false<--After callodd(2) false<--call(FP.odd(..)) 2

false<--After calleven(3) false<--call(FP.even(..)) 3

Fig. 4. FP class crosscuted by the DummyTrace aspects (DummyTrace1 at left, Dum-

myTrace2 at right)

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 83

public aspect DummyTrace1 {

int traceCounter=0;

void indent(){

for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}

}

pointcut calleven(): call(static boolean FP.even(int)) ;

pointcut callodd(): call(static boolean FP.odd(int)) ;

before(int n): calleven() && args(n){

traceCounter++; indent();

System.out.println("-->Before calleven(" + n + ")");

}

after(int n) returning (boolean b) : calleven()&& args(n){

indent();

System.out.println(b + "<--After calleven(" + n + ")");

traceCounter--;

}

after(int n) returning (boolean b) : callodd()&& args(n){

indent();

System.out.println(b + "<--After callodd(" + n + ")");

traceCounter--;

}

before(int n): callodd() && args(n){

traceCounter++; indent();

System.out.println("-->Before callod(" + n + ")");

}

}

Using Wildcards in Pointcut Signature (DummyTrace2). Our first ver-
sion of the trace aspect can be improved by i) using only one pointcut desig-
nator to declare the methods to be traced and then by ii) factorizing the two
before/after advice.

– AspectJ supports the use of wild cards in the signatures of pointcuts. The *
character matches any number of characters and .. matches zero and more
arguments [21]. Consequently the expression static boolean FP.*(int)
designates all the static methods defined in FP taking only one int as argu-
ment and returning a boolean.

– AspectJ introduces also the thisJoinPoint pseudo-variable to provides re-
flective dynamic information about the kind of join point, its signature and
its context.

By combining wildcard and join point reification, we get a more concise and
more generic aspect which corresponding execution trace is given in the right
part of Figure 4.

84 P. Cointe, H. Albin-Amiot, and S. Denier

public aspect DummyTrace2 {
int traceCounter=0;
void indent(){
for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}

}
pointcut boolean_FP_int(): call(static boolean FP.*(int)) ;

before(int n): boolean_FP_int() && args(n){
traceCounter++; indent();
System.out.println("-->" + thisJoinPoint.toShortString() + " " + n);

}
after(int n) returning (boolean b) : boolean_FP_int()&& args(n){
indent();
System.out.println(b + "<--" + thisJoinPoint.toShortString() + " " + n);
traceCounter--;

}
}

Introducing Abstract Aspect (the TraceProtocol Aspect). Since its
pointcut descriptor explicitly refers to the FP class, the DummyTrace2 aspect
cannot be reused to trace any kind of method in any kind of class. But quoting
page 340 of [20]): “AspectJ provides a simple mechanism of pointcut overriding
and advice inheritance. To use this mechanism a programmer defines an ab-
stract aspect, with one or more abstract pointcuts, and with advice on the poin-
cut(s). This, then, is a kind of library that can be parameterized by aspects that
extend it”.

To make the trace aspect reusable, we introduce the abstract TracePro-
tocol aspect, its associated abstract trace pointcut descriptor and its two
before/after advice:

abstract aspect TraceProtocol {
int traceCounter=0;
void indent(){
for (int j = 0; j < traceCounter; j++) {System.out.print(" ");}

}

abstract pointcut trace();

before(int n): trace() && args(n){
traceCounter++;
indent();
System.out.println("-->" + thisJoinPoint.toShortString() + " " + n);

}
after(int n) returning (int r): trace() && args(n){
indent();
System.out.println(r + "<--" + thisJoinPoint.toShortString() + " " + n);
traceCounter--;

}
}

Then we can provide different concrete implementations of this trace proto-
col. For instance, to trace the fact and fib static methods also associated to
FP together with the incr method of Counter we define the Tracing aspect as
an extension of TraceProtocol:

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 85

public aspect Tracing extends TraceProtocol {

pointcut trace() :

call(int Counter.incr(int)) ||

call(static int FP.fact(int)) ||

call(static int FP.fib(int));

}

Introducing Around Advice (the Memoizing Aspect). The around ad-
vice allows to use a join point for adding extra behavior to the proceeding of the
standard code execution or by replacing this standard code execution by a to-
tally new code. The Memoizing aspect illustrates how to use it in the case of the
FP.fact static method. As for MemoizingObject class in section 2.2, the princi-
ple is to memoize all the already computed results in a cache. Then when a new
call occurs, if the result is already cached then it is directly returned, otherwise
the computation is done in a regular way due to the proceed construction, the
result cached and returned:

public aspect Memoizing {

public static HashMap cache = new HashMap();

pointcut callfact(): call(static int FP.fact(int)) ;

int around(int n): callfact() && args(n){

Integer N = new Integer(n);

if (cache.containsKey(N)){

return ((Integer)cache.get(N)).intValue();

}

else {

int r = proceed(n);

cache.put(N, new Integer(r));

return r;

}

}

}

A few enhancements would transform this skeleton aspect into a more generic,
multiple methods caching aspect. Compared to the usage of reflection and the
definition of the MemoizingObjectwe observe a symetry between the super and
proceed as two constructs allowing to call some overridden behaviors. Obviously
the AspectJ solution looks better since the definition of the FP class is not
impacted by the definition of a Memoizing concern.

Composing Memoizing and Tracing. AspectJ automatically compose dif-
ferent crosscutting aspects. In the case of FP, after the definition of the Memoiz-
ing and Tracing aspects and their associated callfact and trace pointcuts,
every call to the FP.fact static method will be memoized and traced. As shown
by Figure 5, after a first call of FP.fact(3) (left part) the results of fact(0),
fact(1), fact(2) and fact(3) are cached, then when calling FP.fact(5), only the
computations of FP.fact(5) and FP.fact(4) are proceeded (right part):

86 P. Cointe, H. Albin-Amiot, and S. Denier

fact(3) fact(5)

-->call(FP.fact(..)) 3 -->call(FP.fact(..)) 5

-->call(FP.fact(..)) 2 -->call(FP.fact(..)) 4

-->call(FP.fact(..)) 1 -->call(FP.fact(..)) 3

-->call(FP.fact(..)) 0 6<--call(FP.fact(..)) 3

1<--call(FP.fact(..)) 0 24<--call(FP.fact(..)) 4

1<--call(FP.fact(..)) 1 120<--call(FP.fact(..)) 5

2<--call(FP.fact(..)) 2 fact(5)=120

6<--call(FP.fact(..)) 3

fact(3)=6

Fig. 5. FP crosscutted by the Memoizing and Tracing aspects

Threading: The Concurrent Aspect. One recurrent question is how to make
concurrent the execution of objects. Java suggests to use a Runnable interface
in charge of adapting a class to the Java concurrency model. An AspectJ alter-
native programming idiom is to replace the standard execution of a main static
method by the launching of a new instance of an anonymous Thread. Coming
back to the clock example discussed in [5] we get:

public aspect Concurrent {

void around() : execution(public static void Clock.main(String[])) {

new Thread(){

public void run() {

System.out.println("Started in another thread");

proceed();

}

}.start();

}

}

3.3 Structural Crosscutting

In the tradition of reflective architecture, AspectJ provides a mechanism known
as inter-types declaration to open Java classes (and interfaces) by introducing
new members or by changing the inheritance relationship between classes (and
interfaces). Quoting the “Introduction to AspectJ” available at [1]; “unlike ad-
vice, which operates primarily dynamically, introduction operates statically, at
compile-time.”

AspectJ supports four kinds of such declarations introductions: field, method
and constructor introductions plus class hierarchy alteration. Their syntax is as
follows:

1. modifiers type ClassName.newFieldName [= expression]
adds the newFieldName to the ClassName class with optionally the initial
value associated to expression,

2. modifiers type ClassName.newMethodName(parameters) body
adds the newMethodName to the ClassName class with the corresponding
parameters and method body,

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 87

3. modifiers type InterfaceName.addedMethodName(parameters) body
adds the newMethodName to all the classes implementing the InterfaceName
class with the corresponding parameters and method body,

4. declare parents: ClassName extends SuperClassName
SuperClassName becomes the new direct superclass of ClassName,

5. declare parents: ClassName implements ListOfInterfaceNames
ClassName implements the new set of ListOfInterfaceNames.

In this section, we address the issue of representing the Observer design
pattern as an aspect. We revisit the presentation of [18] about implementing
in AspectJ the different design patterns presented in [16]. Obviously, this is
an opportunity to reintroduce the Counter example and to come back to the
Smalltalk MVC.

The Observer Design Pattern as an Aspect. Quoting [16, page 294], the
intent of the Observer pattern is to “define a one-to-many dependency between
objects so that when one object changes state, all its dependents are notified and
updated automatically”. The key roles in the Observer design patten are subject
and observer. Here we made the assumption of the existence of two interfaces,
respectively Subject and Observer, plus a Printer class, all of them defined
in Annex A.2. Then the idea is to use a CounterObserver aspect to adapt the
Counter and Printer classes to play the roles of subject and observer.

As shown by Figure 6, the aspect has to adapt the Counter class to make
it implement the Subject interface and in the same time to adapt the Printer
class to make it implement the Observer.

Notice that [12] uses “interface” introductions to address another issue dis-
cussed in 1.1 of providing an implementation of traits (set of stateless related
methods) in Java [28].

The PatternObserverProtocol Aspect. modularizes the update logic and
the registration logic for observers. The update logic is handled by the after
stateChanges advice in charge of updating the list of observers whereas the
registration logic is due to a set of introductions. Seven of them are in charge
of adding the members subject, getSubject(), setSubject(), observers,
addObserver(), removeObserver(), getObservers(), to the Observer and
Subject classes. Notice finally how the abstract aspect is parameterized both
by the abstract stateChanges(Subject) pointcut and the update abstract
method.

The CounterObserver Aspect. specializes the PatternObserverProtocol
for a configuration where Counter plays the role of a Subject and Printer the
role of an Observer. The introduction mechanism is used for this configuration
task. First we declare that Counter implements Subject and Printer imple-
ments Observer. Then we define a concrete update method for the Printer
class. Finally we declare the stateChanged pointcut to target and monitor every
call of the Counter.setValue(int) method.

88 P. Cointe, H. Albin-Amiot, and S. Denier

aspect CounterObserver extends PatternOberverProtocol {

pointcut stateChanges(Subject s):

target(s) && call(public void Counter.setValue(int));

declare parents: Counter implements Subject;

declare parents: Printer implements Observer;

public void Printer.update() {

this.print("update occured in Counter" + this.getSubject());

}

}

Testing the DemoPatternObserver. An important property of this design is
the lack of coupling between Counter, Printer and the PatternObserverProto
col abstract aspect. In fact, all coupling are localized in CounterObserver and
some client such as Client.main on Figure 8. Obviously, another aspect can
specialize PatternObserverProtocol to define its own schema involving other
classes. It is one possible reusable implementation of the Observer design pat-
tern: however it is not a universal one. For example, only one instance of the
pattern/aspect is allowed per subject, so there is no distinction between non-
related observers when updating.

Further Reading About the Join Point Model. This presentation of
AspectJ is quite short and does not present all the details of its join point
model. In particular we do not say anything about so called scoping join point
matching any join point where the associated code is defined within a given scope
or based on the control flow in which they occur. For more details see [1,21].

Printer

print(String)
toString ()

Observer subject

Observer

update()
getSubject ()
setSubject (Subject)

Subject

addObserver (Observer)
removeObserver (Observer)
getObservers ()

Counter

int value

getValue ()
setValue (int)
incr(int)
incr()
raz()
toString ()

Vector observers

addObserver (Observer)
removeObserver (Observer)
getObservers ()

getSubject ()
setSubject (Subject)
update()

Observers

implements implements

Subject

Fig. 6. Counter as a Subject in the Observer design pattern

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 89

abstract aspect PatternObserverProtocol {

abstract pointcut stateChanges(Subject s);

// Update Logic

after(Subject s, int value): stateChanges(s) && args(value){

for (int i = 0; i < s.getObservers().size(); i++) {

((Observer)s.getObservers().elementAt(i)).update();

}

}

// Registration Logic

private Vector Subject.observers = new Vector();

public void Subject.addObserver(Observer obs) {

observers.addElement(obs);

obs.setSubject(this);

}

public void Subject.removeObserver(Observer obs) {

observers.removeElement(obs);

obs.setSubject(null);

}

public Vector Subject.getObservers() { return observers; }

private Subject Observer.subject = null;

public void Observer.setSubject(Subject s) { subject = s; }

public Subject Observer.getSubject() { return subject; }

}

Fig. 7. The Observer Design Pattern as an Aspect

public static void Client. main(String[] args) {

Counter c1 = new Counter();

Printer scribe = new Printer();

c1.raz();

scribe.print(c1.toString());

c1.addObserver(scribe);

c1.incr(3);

scribe.print(c1.toString());

c1.raz();

scribe.print(c1.toString());

}

/* Will produce

[Printer] @0

-->call(Counter.incr(..)) 3

[Printer] update occured in Counter@3

3<--call(Counter.incr(..)) 3

[Printer] @3

[Printer]update occured in Counter@0

[Printer] @0

*/

Fig. 8. Counter crosscutted by the CounterObserver and Tracing aspects

90 P. Cointe, H. Albin-Amiot, and S. Denier

4 Conclusion and Open Questions

In this paper we have discussed reflective and aspect-oriented languages two
fields of research boosted by the object-oriented community. For pointing out
the continuum between objects, metaobjects and aspects we have chosen Java
and AspectJ as the two test beds to express crosscutting concerns in a modular
way. Nevertheless, as demonstrated by the proceedings of conferences such as
Reflection, ICFP or AOSD (see http://aosd.net), meta-entities and aspects
are not limited to OO languages but can impact the design of all programming
languages including functional, logical and constraint based ones.

In this area, promising open research issues includes providing operational
and formal semantics for advice and pointcut models [13,32], using the same
general purpose language for defining advices and joint points versus developing
multi-paradigm languages, exploring the application of domain specific languages
to the definition of aspects, building a reflective kernel as a basis to implement
aspect-oriented languages [5,27] and in the opposite direction using AOP as a
basis for reflective and metalevel architectures [22], understanding the contribu-
tion of aspects to the field of generative programming [6,25], experimenting with
the refactoring of legacy codes based on reusable aspects [18].

Acknowledgments

This work is part of the new AOSD network of excellence and its language labora-
tory (see http://www.aosd-europe.net). It benefited from previous discussions
presented in [10,11].

References

1. AspectJ site. : See http://eclipse.org/aspectj
2. Aksit, M., Black, A., Cardelli, L., Cointe. P., Guerraoui, R. (editor), and al.: Strate-

gic Research Directions in Object-Oriented Programming, ACM Computing Sur-
veys, volume 8, number 4, page 691-700, (1996).

3. Bouraqadi-Sadani , M.N. , Ledoux, T., Rivard F.: Safe Metaclass Programming.
Proceedings of OOPSLA 1998. Editor Craig Chambers,ACM-Sigplan, pages 84-96,
volume 33, number 10, Vancouver, British Columbia, USA, October 1998.

4. Bouraqadi-Sadani , M.N. , Ledoux, T.: Supporting AOP Using Reflection. Chapter
12 of [14], pages 261-282, 2005.

5. Chiba, Shigeru.: Generative Programming from a Post Object-Oriented Program-
ming ViewPoint. Proceedings of the Unconventional Programming Paradigms
workshop. To appear as LNCS volume. Mont St Michel, France, 2005.

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Methods, Tools, and
Applications. Addison-Wesley (2000).

7. Cointe, P.: Metaclasses are First Class: The ObjVlisp Model. Proceedings of the
second ACM SIGPLAN conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA 1987). Editor Jerry L. Archibald, ACM
SIGPLAN Notices, pages 156-167, volume 22, number 12, Orlando, Florida, USA,
October 1987.

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 91

8. Cointe, P.: CLOS and Smalltalk : a Comparison. Chapter 9, pages 215-250 of [26].
The MIT Press, 1993.

9. Cointe, P.: Les langages à objets. Technique et Science Informatiques (TSI), volume
19, number 1-2-3, pages 139-146, 2000.

10. Cointe, P., Noyé, J., Douence, R., Ledoux, T., Menaud, J.M., Muller, G., Sud-
holt, M.: Programmation post-objets. Des langages d’aspect aux langages de com-
posants. RSTI série L’objet. volume 10, number 4, pages 119-143, 2004. See also
http://www.lip6.fr/colloque-JFP.

11. Cointe, P.: Towards Generative Programming. Unconventional Programming Par-
adigms workshop, UPP 04. LNCS 3566, pp 302-312. J.-P. Banâtre et al. Editors.
Springer Verlag, 2005.

12. Denier, S.: Traits Programming with AspectJ. RSTI série L’objet. Special issue on
Aspect-Oriented Programming (to appear). See also pages 62-78 of the unformal
proceeding at http://www.emn.fr/x-info/obasco/events/jfdlpa04/actes/,
2005.

13. Douence, R., Motelet, O., Sudholt, M.: A formal definition of crosscuts. Proceedings
of the 3rd International Conference on Reflection 2001, LNCS volume 2192, pages
170-186, (2001).

14. Filman, E. R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Devel-
opment. Addison-Wesley, 2005.

15. Gabriel, R.: Objects Have Failed. See http://www/dreamsongs/com/Essays.html
and also http://www.lip6.fr/colloque-JFP/

16. Gamma, E., Helm, R., Johnson. R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. 1995

17. Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., Bobrow, D.: Metaobject Proto-
cols Why We Want Them and What Else They Can Do. Chapter 4, pages 101-118
of [26]. The MIT Press, 1993.

18. Hannemann , J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ.
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA
2002. ACM SIGPLAN Notices, volume 37, number 11, pages 161-173.

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C, Loingtier, J.-M.,
Irwin, J.: Aspect-Oriented Programming. ECOOP 1997 - Object-Oriented Pro-
gramming - 11th European Conference, volume 1241, pages 220–242. 1997

20. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ ECOOP 2001 - Object-Oriented Programming - 15th Euro-
pean Conference, LNCS volume 2072, pages 327–354. 2001

21. Kiselev, I.: Aspect-Oriented Progamming with AspectJ. Sams Publishing, 2003.
22. Kojarski, S., Lorenz, D., Hirschfeld, R.: Reflective Mechanism in AOP Languages.

Draft paper.
23. Ledoux, T.: OpenCorba: A Reflective Open Broker. Proceedings of the second

international conference on Meta-Level Architectures and Reflection. Cointe, P.:
editor. LNCS 1616, Pages 197-214, Saint-Malo, France, 1999.

24. McAffer, J,: Meta-level Programming with CodA. Proceedings of ECOOP 95. Page
190-214, Springer LNCS, Aarhus, Danemark, 1995

25. Mezini, M., Ostermann, K.: A Comparison of Program Generation with Aspect-
Oriented Programming. Proceedings of the Unconventional Programming Para-
digms workshop. To appear as LNCS volume. Mont St Michel, France, 2005.

26. Pæpcke, A.: Object-Oriented Programming : The CLOS perspective. The MIT
Press, 1993.

92 P. Cointe, H. Albin-Amiot, and S. Denier

27. Rodriguez, L., Tanter, E., Noyé J,: Supporting Dynamic Crosscutting with Partial
Behavioral Reflection : a Case Study. RSTI série L’objet. Special issue on Aspect-
Oriented Programming (to appear). See also pages 118-137 of the unformal pro-
ceeding at http://www.emn.fr/x-info/obasco/events/jfdlpa04/actes/, 2005.

28. Scharli, N., Ducasse, S., Nierstrasz, O., Black, P.: Traits: Composable Units of
Behaviour. ECOOP 2003 - Object-Oriented Programming - 17th European Con-
ference, Editor L. Cardelli. LNCS volume 2743, pages 248–274. 2003

29. Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial Behavioral Reflection: Spatial
and Temporal Selection of Reification. Proceedings of the 18th ACM SIGPLAN
conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA 2003. ACM SIGPLAN Notices, volume 38, number 11, pages 27-46.

30. Thomas, D.: Reflective Software Engineering - From MOPS to AOSD. Journal Of
Object Technology, volume 1, number 4, pages 17-26. October 2002.

31. Wand, M.: Understanding Aspects. Invited talk at ICFP 2003. Available at
www.ccs.neu.edu/home/wand/ICFP 2003.

32. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for Advice and Dynamic Join
Points in AOP. ACM Toplas, volume 26, issue 5, pages 890-910. 2004.

33. Wegner, P.: Dimensions of Object-Based Language Design. Proceedings of the sec-
ond ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA 1987). Editor Jerry L. Archibald, ACM SIG-
PLAN Notices, pages 168-182, volume 22, number 12, Orlando, Florida, USA,
October 1987.

A Annex

A.1 FP: Our Testbed (Ugly Class)

public class FP extends ReflectiveObject{

public static int fact(int n) {

if (n == 0)

return 1;

else

return n * fact(n - 1);

}

public static int fib(int n) {

if (n <= 1)

return 1;

else

return fib(n - 1) + fib(n - 2);

}

public static boolean even(int n) {

if (n == 0)

return true;

else

return odd(n - 1);

}

public static boolean odd(int n) {

if (n == 0)

return false;

From (Meta) Objects to Aspects: A Java and AspectJ Point of View 93

class fmco.Counter extends java.lang.Object implements fmco.Subject

--> declared fields

private int fmco.Counter.value

public java.util.Vector fmco.Counter.ajc$...$observers

--> declared methods

public static void fmco.Counter.main(java.lang.String[])

public java.lang.String fmco.Counter.toString()

public int fmco.Counter.getValue()

public void fmco.Counter.setValue(int)

public void fmco.Counter.incr()

public void fmco.Counter.incr(int)

public void fmco.Counter.raz()

public void fmco.Counter.addObserver(fmco.Observer)

public java.util.Vector fmco.Counter.getObservers()

public void fmco.Counter.removeObserver(fmco.Observer)

--> declared constructors

public fmco.Counter()

Fig. 9. Counter crosscutted by CounterObserver

else

return even(n - 1);

}

public static void main(String[] args) {

System.out.println("fact(5)=" + fact(5));

System.out.println("fib(4)=" + fib(4));

}

}

A.2 The Printer Class and the Subject and Observer Interfaces

public interface Subject {

public void addObserver(Observer o);

public void removeObserver(Observer o);

public java.util.Vector getObservers();

}

public interface Observer {

void setSubject(Subject s);

Subject getSubject();

void update();

}

public class Printer {

public void print(String s){

System.out.println("[Printer] " + s);

}

public String toString(){

return "aPrinter";

94 P. Cointe, H. Albin-Amiot, and S. Denier

}

public static void main(String[] args) {

new Printer().print("Hello Word");

}

}

A.3 Inspecting Counter Crosscutted by CounterObserver

The reader can check the presence of the obervers field as the one of the
addObserver, getObservers, removeObserver methods, all of them introduced
by the CounterObserver aspect.

MoMo: A Modal Logic
for Reasoning About Mobility

Rocco De Nicola and Michele Loreti

Dipartimento di Sistemi e Informatica, Università di Firenze,
Viale Morgagni, 65, I-50134 Firenze

Abstract. A temporal logic is proposed as a tool for specifying prop-
erties of Klaim programs. Klaim is an experimental programming lan-
guage that supports a programming paradigm where both processes and
data can be moved across different computing environments. The lan-
guage relies on the use of explicit localities. The logic is inspired by
Hennessy-Milner Logic (HML) and the μ−calculus, but has novel fea-
tures that permit dealing with state properties and impact of actions
and movements over the different sites. The logic is equipped with a
sound and complete tableaux based proof system.

1 Introduction

The increasing use of wide area networks, especially the Internet, has stimulated
the introduction of new programming paradigms and languages that model in-
teractions among hosts by means of mobile agents; these are programs that are
transported and executed on different sites.

In the last decade, several process calculi have been developed to gain a
more precise understanding of network awareness and mobility. We mention
the Distributed Join-calculus [14], the Distributed π-calculus [20], the Ambi-
ent calculus [5], the Seal calculus [9], and Nomadic Pict [25]. The new calculi
are equipped with primitives for dealing with the distribution of resources and
computational components, for handling code and agent mobility and for co-
ordinating processes. Some of the above mentioned calculi deal also with the
key issue of security, namely privacy and integrity of data, hosts and agents. It
is important to prevent malicious agents from accessing private information or
modifying private data.

For this class of formalisms, it is thus needed to guarantee sites hosting
mobile agents that their privacy is not violated and their data are not modified.
Similarly, it is important to guarantee mobile agents that their execution at other
sites will not compromise their security. Modal logics have been largely used
as formal tools for specifying and verifying properties of concurrent systems.
Properties are specified by means of temporal and spatial modalities. In this
paper we advocate the use of modal logics for specifying and verifying dynamic
properties of mobile agents running over a wide area network.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 95–119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 R. De Nicola and M. Loreti

We present a new modal logic that is inspired on one hand by HML
(Hennessy-Milner Logic) [18] with recursion and on the other hand by the op-
erators of Klaim (Kernel Language for Agents Interaction and Mobility, [11]).

HML is a well-known modal logic used to describe properties of concurrent
systems modelled as process algebra terms or as labelled transition systems, its
modalities are indexed by the actions that processes can perform.

Klaim is a language specifically designed to program distributed systems
consisting of several mobile components interacting through multiple distrib-
uted tuple spaces. Its components, both stationary and mobile, can explicitly
refer and control the spatial structures of the network at any point of their evo-
lution. Klaim primitives allow programmers to distribute and retrieve data and
processes to and from the nodes of a net. Moreover, localities are first-class citi-
zens, they can be dynamically created and communicated over the network and
are handled via sophisticated scoping rules.

The logics that we describe here can be seen as a simplification of the one
presented in [12]. That one is (too) closely related to Klaim and all its oper-
ators are specifically designed for modelling Klaim systems; its modalities are
those dictated by the labels of the Klaim transition system. The logic that we
consider in the current paper aims at being simpler and more general at the
same time. It consists of a number of basic operators to be used to describe spe-
cific properties/behaviours of mobile and distributed systems. Thus, together
with the usual logical connectives and the operators for minimal and maximal
fixed points, we have operators for describing dynamic behaviours (temporal
properties), for modelling resource management (state properties), for keeping
into account names handling (nominal properties), and for controlling mobile
processes (mobility properties). To have concrete examples of systems proper-
ties, we interpret our logical formulae in terms of μKlaim, a simplified version
of Klaim. However, we do not see much difficulties in using the proposed op-
erators for describing properties of other calculi like π-calculus [23], Dπ [19] or
Ambients [5].

Other foundational approaches have adopted logics for the analysis of mo-
bility. In [6] a modal logic for Mobile Ambients has been presented. This very
interesting logic is equipped with operators for spatial and temporal properties,
for compositional specification of systems properties, and specific modal opera-
tors are introduced for expressing logical properties of names. However, the main
weakness of Ambient logic is that it is not completely decidable; a complete proof
system is provided only for a subset of the logic. The main contribution of [6] is
the introduction and the analysis of a large set of spatial and temporal modalities
for specifying properties of mobile systems. A variant of this logic for asynchro-
nous π-calculus has been presented in [3,4]. This paper introduce a general proof
theory for a temporal and spatial logics for mobility.

In [22] and in [10] two variants of Hennessy-Milner Logic for specifying and
verifying properties of π-calculus processes have been introduced. The former
aims at studying the different equivalences between processes and at under-
standing the differences between late and early bisimulation. The latter aims at

MoMo: A Modal Logic for Reasoning About Mobility 97

defining the modal operators that permits describing properties concerning the
use, the generation and the transmission of names. Both logics are close related
to the π-calculus and cannot be easily generalised to other locality based calculi.

A different approach has been followed in MobileUnity [21] and MobAdtl
[13], two program logics specifically designed to specify and reason about mobile
systems by exploiting a Unity-like proof system. These specification languages
rely on the use of implementation languages equipped with a formal semantics
that permits deriving logical properties of specified systems. The implementation
language is not fixed and programmers are left with the problem of guaranteeing
the relationship between the implementation and the logical specification. The
specification and implementation phase are closely intertwined.

The rest of the paper is organised as follows. In Section 2, we present μKlaim
and its operational semantics. The modal logic is presented in Section 3, while
the associated proof system is presented in 4. In Section 5 we exemplify the
use of the proposed proof system by considering three simple properties of a
simple client-server system that we have previously used as a running example.
Section 6 contains some concluding remarks.

2 μKlaim

Klaim [11] is a formalism that can be used to model and program mobile sys-
tems. It has been designed to provide programmers with primitives for han-
dling physical distribution, scoping and mobility of processes. Klaim is based
on process algebras but makes use of Linda-like asynchronous communication
and models distribution via multiple shared tuple spaces [7,16,17]. Tuple spaces
and processes are distributed over different localities and the classical Linda
operations are indexed with the location of the tuple space they operate on.

For the sake of simplicity, we shall use a simplified version of Klaim that
has been called μKlaim (see e.g. [1]). The main differences between Klaim and
μKlaim is that the former allows high-level communication (processes can be
used as tuple fields) while the latter only permits evaluating process remotely.
Moreover, the simpler language does not make any distinction between physical
and logical localities and does not need allocation environments.

2.1 μKlaim Syntax

A μKlaim system, called a net, is a set of nodes, each of which is identified by a
locality. Localities can be seen as the addresses of nodes. We shall use L to denote
the set of localities l, l1, Every node has a computational component (a set of
processes running in parallel) and a data component (a tuple space). Processes
interact with each other either locally or remotely inserting and withdrawing
tuples from tuple spaces.

A tuple is a sequence of actual fields. Each actual field can be either a locality
(l), a value v, from the (finite) set of basic values Val (not specified here), or a
variable x, from the set of variables Var. Tuples are retrieved from tuple spaces

98 R. De Nicola and M. Loreti

Table 1. μKlaim Syntax

N ::=
0˛̨
l :: P˛̨
l :: 〈t〉˛̨
N1 ‖ N2˛̨
ν l.N

act ::=
out(t)@l˛̨
in(T)@l˛̨
eval(P)@l

P ::=̨˛ nil˛̨
act.P˛̨
P |P˛̨
X˛̨
recX.P˛̨
ν l.P

t ::= f
˛̨

f, t
f ::= l

˛̨
v

˛̨
x

T ::= F
˛̨

F, T
F ::= f

˛̨
! l

˛̨
! x

via pattern matching using templates (T). Templates are sequences of actual and
formal fields. The second ones are variables that will get a value when a tuple
is retrieved. Formal fields are signalled by a ’!’ before the variable name.

The pattern-matching function match is defined in Table 2. The meaning of
the rules is straightforward: a template matches against a tuple if both have
the same number of fields and the corresponding fields do match; two values
(localities) match only if they are identical, while formal fields match any value
of the same type. A successful matching returns a substitution function (denoted
by σ) associating the variables contained in the formal fields of the template with
the values contained in the corresponding actual fields of the accessed tuple. Let
σ1 and σ2 be two substitutions, we use σ1 · σ2 to denotes the composition of
substitutions:

σ1 · σ2(x) =
{

y if σ2(x) = y
σ1(x) otherwise

The syntax of μKlaim nets is defined in the first part of Table 1. Term 0
denotes the empty net, i.e. the net that does not contain any node. Terms l :: P
(located process) and l :: 〈t〉 (located tuple) are used to describe basic μKlaim
nodes: the former states that process P is running at l whilst the latter that the
tuple space located at l contains tuple 〈t〉. μKlaim nets are obtained by parallel
composition (‖) of located processes and tuples. Finally, ν l.N states that l is a
private name within N : We will say that l is private in N .

The following term denotes a net consisting of two nodes, named l1 and l2.

l1 :: P1 ‖ l1 :: P2 ‖ l2 :: (Q1|Q2) ‖ l2 :: 〈t1〉 ‖ l2 :: 〈t2〉

Processes P1 and P2 are running at l1 while Q1 and Q2 are running at l2.
The tuple space located at l2 contains tuples 〈t1〉 and 〈t2〉 while that located at
l1 is empty.

The syntax of μKlaim processes is defined in the second part of Table 1.
There nil stands for the process that cannot perform any actions, P1|P2 stands

MoMo: A Modal Logic for Reasoning About Mobility 99

Table 2. Matching Rules

(1) match(l, l) = [] (2) match(! l1, l2) =
ˆ
l2/l1

˜

(3)
match(F, l) = σ1 match(T, t) = σ2

match((F, T) , (l, t)) = σ1 · σ2

Table 3. A simple μKlaim system

Printer :: recX.in(!from)@Printer.
(X|out(from)@PrintServer.nil

PrintServer :: 〈PrintSlot〉
| 〈PrintSlot〉
| recX.in(Print, !from)@PrintServer.

(X|out(from)@Printer.
in(from)@PrintServer.
out(PrintOk)@from.
out(PrintSlot)@PrintServer.nil)

for the parallel composition of P1 and P2 and act.P stands for the process that
executes action act then behaves like P . Possible actions are out(t)@l, in(T)@l
and eval(P)@l.

Action out(t)@l adds t to the tuple space at locality l. Action, eval(P)@l
spawns a process P at locality l. Action in(T)@l is used to retrieve tuples from
tuple spaces. Differently from out this is a blocking operation: The computation
is blocked until a tuple matching template T is found in the tuple space located
at l. When such a tuple t is found, it is removed from the tuple space and the
continuation process is closed with substitution σ = match(T, t) that replaces
the formals in T with the corresponding values in t. For instance, if T = (!u, 4)
and et = (l, 4) then match(T, t) = [l/u]. For this reason, in(T)@l.P acts as
a binder for variables in the formal fields of T . Finally, ν l.P declares a new
name l that will be used in P : ν l.N and ν l.P act as binders for l in N and P ,
respectively.

In the rest of the paper, we will use l̃ to denote a finite sequence of names.
Moreover, if l̃ = l1, . . . , ln, ν l̃.N will stand for ν l1. . . . ν ln..N while {l̃} will
denote the set {l1, . . . , ln}.

Let γ be a generic syntactic term, we will use f n(γ) to denote the set of
names free.

Finally, we will write P1 =α P2 whenever P1 is equal to P2 up to renaming
of bound names and variables.

Example 1 (A PrintServer). In Table 3 we show how μKlaim can be used
for modelling a simple print server. We have two μKlaim nodes: PrintServer

100 R. De Nicola and M. Loreti

and Printer. Located at PrintServer there is a process that waits for a print
request. Each such request contains the locality from which it has been sent.
When a request appears in the tuple space at PrintServer, the process sends
the document to the printer (out(from)@Printer), waits for the printing sig-
nal (in(from)@PrintServer) and sends an ack (out(PrintOk)@from) to the
client. In order to send a print request a print client has to retrieve a PrintSlot
from the tuple space located at PrintServer. There two PrintSlots are available.

Table 4. μKlaim operational semantics

l1 :: out(t)@l2.P
l1:t�l2−−−−−→ l1 :: P l1 :: eval(Q)@l2.P

l1:Q�l2−−−−−−→ l1 :: P

σ = match(T, t)

l1 :: in(T)@l2.P
l1:t�l2−−−−−→ l1 :: P{σ}

N1
l1:et�l2−−−−−−→ N2

N1 ‖ l2 :: P
τ−−→ N2 ‖ l2 :: P ‖ l2 :: 〈t〉

N1
l1:Q�l2−−−−−−→ N2

N1 ‖ l2 :: P
τ−−→ N2 ‖ l2 :: P ‖ l2 :: Q

N1
l1:et�l2−−−−−−→ N2

N1 ‖ l2 :: 〈et〉 τ−−→ N2 ‖ l2 :: nil

N1
λ−−→ N2 l ∈ λ

ν l.N1
λ−−→ ν l.N2

N1
λ−−→ N2

N1 ‖ N
λ−−→ N2 ‖ N

N1 ≡ N ′
1 N ′

1
λ−−→ N ′

2 N ′
2 ≡ N2

N1
λ−−→ N2

Table 5. Structural congruence

N1 ‖ N2 ≡ N2 ‖ N1 (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

l :: P ≡ l :: (P |nil) l :: recX.P ≡ l :: P [recX.P/X]

l :: (P1|P2) ≡ l :: P1 ‖ l :: P2

l ∈ f n(N2)

ν l.(N1 ‖ N2) ≡ (ν l.N1) ‖ N2

N1 ‖ 0 ≡ N1 ν l.0 ≡ 0

P1 =α P2

l :: P1 ≡ l :: P2

l2 ∈ f n(N)

ν l1.N ≡ ν l2.N [l2/l1]

MoMo: A Modal Logic for Reasoning About Mobility 101

2.2 Operational Semantics

In this section we present a labelled operational semantics for μKlaim where
transition labels contain information about the actions performed by located
processes.

We let Λ be the set of transition labels λ defined using the following grammar:

λ ::= τ
∣∣ l1 : t � l2

∣∣ l1 : t � l2
∣∣ l1 : P � l2

Label τ denotes silent transitions while l1 : t � l2, l1 : t � l2 and l1 : P � l2
denote that a process located at l1 respectively: inserts tuple t in the tuple space
located at l2; withdraws tuple t from the tuple space located at l2; or spawns
process P to be evaluated at l2. In the rest of the paper we shall use α to denote
transition labels that do not involve process mobility.

The labelled transition relation, ·−→⊆ Net × Λ × Net, is the least relation
induced by the rules in Table 4 where the structured equivalence of Table 5 is
used.

The structural congruence, ≡, identifies terms which intuitively represent the
same net. It is defined as the smallest congruence relation over nets that satisfies
the laws in Table 5. The structural laws express that ‖ is commutative and asso-
ciative, α-equivalent processes give rise to equivalent nodes, that the null process
and the empty net can always be safely removed/added, that a process identi-
fier can be replaced with the body of its definition, that it is always possible to
transform a parallel of co-located processes into a parallel over nodes. Notice that
commutativity and associativity of ‘|’ is somehow derived from commutativity
and associativity of ‘‖’ and from the fact that l :: (P |Q) ≡ l :: P ‖ l :: Q.

3 MoMo: A Modal Logic for Mobility

MoMo contains five groups of logical operators that we will describe separately:
kernel fragment, state formulae, temporal formulae, nominal formulae and mo-
bility formulae.

The kernel fragment contains standard first-order logic operators and recur-
sive formulae that permit describing recursive properties.

State formulae are used to assert properties concerning allocation of resources
in the net whilst temporal formulae describe how resources are used. Properties
of names, like freshness, are specified using nominal formulae. Finally, mobility
formulae describe properties of processes spawned over the net.

In the rest of this section we describe and motivate separately each fragment
of the logic and discuss formulae satisfaction. We shall interpret logical formulae
over the structure induced by the operational semantics on μKlaim Nets. The
formal syntax and semantics of MoMo will be defined in Section 3.6. In Table 6
we present a set of somehow standard derivable operators that we will use as
macro of the logic in the examples in the rest of the paper.

102 R. De Nicola and M. Loreti

Table 6. Derivable Operators

μκ.φ = ¬νκ.¬φ[¬κ/κ] φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2)

ρ ⇒ φ = ¬ρ → ¬φ [δ] φ = ¬〈δ〉¬φ

∀l.φ = ¬∃l.¬φ {l1 = l2} = ¬{l1 = l2}
Alwaysδ(φ) = νκ.φ ∧ [δ] κ κ ∈ φ Neverδ(φ) = Alwaysδ(¬φ)

Eventuallyδ(φ) = ¬Neverδ(φ)

3.1 Kernel Fragment

This fragment of the logics is standard. Propositional part of this fragment con-
tains True (T), Conjunction (φ1 ∧ φ2) and Negation (¬φ). The interpretation
of this part of the logic is as expected. Every net satisfies True, a net satisfies
φ1∧φ2 if and only if both φ1 and φ2 are satisfied. Finally, ¬φ is satisfied by each
net that does not satisfy φ.

Kernel fragment also contains formulae for specifying recursive properties:
maximal fixed point and logical variables. Intuitively, a net N satisfies νκ.φ if N
satisfies φ[νκ.φ/κ]. Formally, the interpretation of νκ.φ is defined as the maximal
fixed point of the interpretation of φ.

If M[[]] is the interpretation function of the proposed logic (formally defined
later), the set of nets satisfying νκ.φ is defined as the maximal fixed point of the
function Fφ : 2Net → 2Net defined as follows:

Fφ(N) def= M[[φ]][κ → N]

To guarantee well-definedness of the interpretation function it is assumed
that in every formula νκ.φ, logical variable κ is positive in φ (i.e. it appears
within the scope of an even number of negations). This permits defining M[[·]]
like composition of monotone functions in 2Net → 2Net. Moreover, since 2Net

is a complete lattice, we can use Tarski’s Fixed Point Theorem that guarantee
existence of a unique maximal fixed point for M[[φ]], when all logical variables
in φ are positive.

3.2 State Properties

This fragment of the logic aims at describing two categories of properties: com-
position properties, that are used to specify the number of available resources
and their distribution over different sites, and reaction properties, that describe
system reactions to placement of new resources in the net.

To formalise state properties, we have first to specify how to refer resources.
In μKlaim one has to consider two kinds of resources: nodes and tuples. To
indicate availability of tuples or presence of nodes we let a resource specification
ρ be one of the following:

– @l indicating existence of a node named l;
– t@l indicating the presence of tuple t at l;
– T@l indicating the presence of a tuple matching template T at l.

MoMo: A Modal Logic for Reasoning About Mobility 103

Table 7. Consumption Relation

l :: P � @l

∅
� l :: P l :: 〈t〉 � t@l� l :: nil

N1 � ρ

σ
� N2

N1 ‖ N � ρ

σ
� N2 ‖ N

N1 � t@l

∅
� N2 σ = match(T, t)

N1 � T@l

σ
� N2

N1 ≡ N ′
1 N ′

1 � ρ

σ
� N ′

2 N ′
2 ≡ N2

N1 � ρ

σ
� N2

A possible solution to specify distribution of resources could be using just
resource specifications as basic formulae. Following this approach a property like
“at l we have either tuple t1 or tuple t2” can be expressed as:

t1@l ∨ t2@l

However, this solution would not be completely satisfactory. Because, it
would not permit counting the number of available resources. Properties of the
form:

“at l we have two tuples matching template T ” †
cannot be specified.

For this reason, we introduce the consumption operator ρ → φ. Intuitively,
we have that a net satisfies ρ → φ if after using a resource corresponding to ρ
the system is in a state where φ is satisfied.

A net N satisfies @l → φ if N ≡ N ′ ‖ l :: nil and N satisfies φ. N satisfies
T@l → φ if N ≡ N ′ ‖ l :: 〈t〉 and N ′ satisfies φσ, where σ = match(T, t).

To simplify the definition of the semantics of the logic, we introduce relation
! ρ

σ
� (formally defined by the rules of Table 7), where N1 ! ρ

σ
� N2 if and

only if within N1 a resource described by ρ can be consumed leading to N2; σ is
the substitution induced by the consumption. For instance:

l1 :: 〈l2〉 !
(!l)@l1

[l2/l]
� l1 :: nil

With this additional relation we have that the satisfaction relation for the
consumption operator is:

N |= ρ → φ if and only if ∃N ′. N ! ρ

σ
� N ′ and N ′ |= φσ

With the consumption operator, the property (†) above would be rendered as:

T@l → T@l → T

Production properties are used to state properties depending on the avail-
ability of new resources. For instance: “After inserting tuple t1 at l1, eventually
l2 will contain tuple t2”.

104 R. De Nicola and M. Loreti

This kind of properties are specified using production operator ρ ← φ, which
is satisfied by every net that, after inserting the resource specified by ρ, satisfies
φ. Hence, a net N satisfies @l ← φ if N ‖ l :: nil satisfies φ. N satisfies t@l ← φ
if N ‖ l :: 〈t〉 satisfies φ.

To model production of a resource described by ρ we let ⊕ ρ� be the relation
induced by the rules of Table 8.

Table 8. Production relation

N ⊕ @l� N ‖ l :: nil N ⊕ t@l� N ‖ l :: 〈t〉

By using ⊕ ·� , the satisfaction relation for the production operator is:

N |= ρ ← φ if and only if ∃N ′. N ⊕ ρ� N ′ and N ′ |= φ

Please notice that production operator is somehow reminiscent of separating
implication of Separation Logic [24]. This operator permits describing properties
of shared memories extended with a set of values satisfying a given specification.

Example 2. Let us consider the system presented in Example 1. A possible prop-
erty to establish is that the print server handles all requests. In other words, one
could require that if a client retrieves a print slot and sends a document for
printing then sooner or later the document will be printed and the client will be
notified. This property can be specified by the following formula:

φ
def= (PrintSlot)@PrintServer →

@l ←
(l, ”test”)@PrintServer ←

Eventuallyτ(PrintOk@l → T)

(1)
(2)
(3)
(4)

that can be read as:

1. Let (PrintSlot) be a tuple available at PrintServer

2. and let l be the locality of a print client,
3. if (l, ”test”) is inserted at PrintServer
4. then eventually tuple (PrintOK) will be at l.

3.3 Temporal Properties

The logical operators presented in the previous section permits expressing prop-
erties concerning resource availability at specific locations. However, they do not
permit describing (constraining) resources usage.

For instance, if we consider the print server of Example 1, the specification
of a generic client C located at l would say that:

MoMo: A Modal Logic for Reasoning About Mobility 105

ClientProp1. C acquires a print slot and sends a print request at PrintSer-
ver.

ClientProp2. C never sends a print request before acquiring a print slot ;
ClientProp3. C never reads tuples space located at PrintServer

These properties cannot be specified by relying only on state formulae. In-
deed, these formulae cannot be used to describe how a given component interacts
with the rest of the system.

Temporal properties are specified using operator 〈·〉φ. This permits describing
properties concerning interaction protocols among components. Modal operator
〈〉 is indexed either with a transition label α or with �. The former can be τ ,
l1 : t� l2 or l1 : t� l2 (see Section 2.2). The latter, denotes any possible transition
label. We shall sometimes use δ to denote either α or �. We will refer to 〈α〉 as
diamond, while 〈�〉 will be called next.

The satisfaction relation for diamond and next operators is:

N |= 〈α〉φ if and only if ∃N ′. N
α−−→ N ′ and N ′ |= φ

N |= 〈�〉φ if and only if ∃λ.∃N ′. N
λ−−→ N ′ and N ′ |= φ

Example 3 (PrintClient formalisation). Specifications of desired temporal prop-
erties of a print client can be formalised as follows. We assume that the client is
located at l.

ClientProp1.

φ1 = [l : 〈PrintSlot〉 � PrintServer]
Eventually�(〈l : Print, l � PrintServer〉T) (1)

ClientProp2.

φ2 = νκ. [l : (Print, l) � PrintServer] F
∧([l : PrintSlot � PrintServer] T ∨ [�] κ) (2)

ClientProp3.

φ3 = Never�(〈l : Print, l � PrintServer〉T) (3)

3.4 Nominal Properties

In this section we introduce operators for dealing with properties for establish-
ing freshness of names and name quantification. They will enable us to describe
properties of the form: there exists a node in the net that satisfies a given prop-
erty, two nodes use a restricted (private) location to interact. Below, we shall
consider four different operators: quantification, matching, revelation and name
freshness.

Name Quantification. (∃l.φ) is useful when some names of components in a
specified system are not known. For instance, the desired properties of a print
client can be rephrased quantifying the locality l. Formally:

N |= ∃l.φ if and only if ∃l′ ∈ L. N |= φ[l′/l]

106 R. De Nicola and M. Loreti

Name Matching. ({l1 = l2}) permits verifying whether two localities correspond
to the same node:

N |= {l1 = l2} if and only if l1 = l2

This operator, combined with name quantification, permits specifying prop-
erties like:

– tuple t can only be located at l1:

Alwaysτ (∀l.¬(t@l → T) ∨ {l = l1})

– only processes located at l1 can read tuple t from the tuple space at l2

Alwaysτ (∃l. [l : t � l2] {l = l1})

Name Revelation. (l � φ) means that if l is a restricted name that is uncovered,
then formula φ holds.

We will say that a net N reveals a locality l (reveal(N, l)) if and only if either
l is contained in a tuple at a public node of N , or N can perform a transition
whose label reveals l, i.e. N performs an action at l that operates on a public
localities of N , or an action that involves two public localities and moves data
containing l. Predicate reveal(N, l) is formally defined as follows:

Definition 1. Let L be a set of localities, N be a net and l be a locality:

1. a transition label λ reveals l under L if and only if l �∈ L and:
– either λ = l1 : t � l2, l = l1 or l ∈ f n(t), and l2 �∈ L ∪ {l};
– or λ = l1 : t � l2, l = l1, l �∈ f n(t) and l2 �∈ L ∪ {l};
– or λ = l1 : P � l2 and l = l1 and l2 �∈ L ∪ {l}.

2. N reveals l (reveal(N, l)) if and only if:
– either N ≡ ν l̃′.N1, N1

λ−−→ N2, and λ reveals l under {l̃′},
– or N ≡ l′ :: 〈t〉 ‖ N ′, l′ �= l and l ∈ f n(t).

The satisfaction relation for the name revelation operator is the following:

N |= l � φ if and only if ∃N ′.N ≡ ν l.N ′, reveal(N ′, l′) and N ′ |= φ

Name Freshness. (|�|l.φ) acts as a quantifier over all names that do not occur
free either in the formula φ or in the described system. It is an adaptation of the
Gabbay-Pitts quantifiers |�|l.φ [15]. The satisfaction relation for |�|l.φ is:

N |= |�|l1.φ if and only ∃l2. l2 �∈ f n(φ) ∪ f n(N) : N |= φ[l2/l1]

The fresh name quantifier, when used with state formulae (and in particular
with production operator), permits asserting properties related to the creation
of new resources.

For instance, we can modify the formula φ introduced in Example 2 for
specifying that every print request is satisfied in order to guarantee that the
location of the print client is new : |�|l.φ.

MoMo: A Modal Logic for Reasoning About Mobility 107

3.5 Mobility Properties

The logical operators presented in previous sections do not permit describing
properties related to mobility. For instance, properties like “never a process
spawned at l1 will read tuple t from l2” cannot be specified.

To specify this kind of properties we introduce a new modal operator 〈〉. that
is indexed with a predicate of the form l1 : φ1 � l2 specifying that: a process
satisfying φ1 is spawned from l1 at l2.

Informally, a net N satisfies 〈l1 : φ1 � l2〉.φ2 if and only if formula φ2 is
satisfied after a process satisfying φ1 is spawned from l1 at l2. In the actual
interpretation of φ1 all names shared by the remote evaluated process and the
rest of them are considered public. Formally,

N |= 〈l1 : φ1 � l2〉.φ2 if and only if: N ≡ ν l̃.N1 ‖ l2 :: nil (l1, l2 �∈ l̃) and
N1 ‖ l2 :: nil l1:P�l2−−−−−−→ N2, l2 :: P |= φ1 and ν l̃.N2 ‖ l2 :: P |= φ2

We will write N1
ν l.l1:P�l2−−−−−−−−→ N2 if and only if N1 ≡ ν l̃.N ′ ‖ l2 :: nil

(l1, l2 �∈ {l̃}) and N ′ l1:P�l2−−−−−−→ N2.
The previously considered property “never a process evaluated at l1 will read

tuple t from l2”, can be specified as follows:

Neverτ (〈l1 : Eventually�(〈l1 : t � l2〉T) � l2〉.T)

Table 9. Syntax of Formulae

φ ::=
T˛̨
φ ∧ φ˛̨ ¬φ˛̨
νκ.φ˛̨
κ˛̨
ρ → φ˛̨
ρ ← φ˛̨ 〈	〉φ2˛̨ 〈α〉φ2˛̨ ∃l.φ˛̨ {l1 = l2}˛̨
l � φ˛̨ |�|l.φ˛̨ 〈l1 : φ1 � l2〉.φ2

108 R. De Nicola and M. Loreti

Table 10. Interpretation of Formulae

M[[T]]ε = Net
M[[¬φ]]ε = Net − M[[φ]]ε
M[[φ1 ∨ φ2]]ε = M[[φ1]]ε ∪ M[[φ2]]ε

M[[ρ → φ]]ε = {N |N � ρ

σ
� N ′ N ′ ∈ M[[φσ]]ε}

M[[ρ ← φ]]ε = {N |N ⊕ ρ� N ′ N ′ ∈ M[[φ]]ε}
M[[〈α〉φ]]ε = {N |N α−−→ N ′ N ′ ∈ M[[φ]]ε}
M[[〈	〉φ]]ε = {N |N λ−−→ N ′ N ′ ∈ M[[φ]]ε}
M[[νκ.φ]]ε =

S{N |N ⊆ M[[φ]]ε · [κ �→ N]}
M[[κ]]ε = ε(κ)
M[[∃l.φ]]ε =

S
l′∈L M[[φ[l′/l]]]ε

M[[{l1 = l2}]]ε =

j
Net l1 = l2
∅

M[[l � φ]]ε = {N |N ≡ ν l.N ′, reveal(N ′, l) N ′ ∈ M[[φ]]ε}
M[[|�|l1.φ]]ε = {N |∃l2.l2 ∈ f n(φ) ∪ f n(N) N ∈ M[[φ[l2/l1]]]ε}
M[[〈l1 : φ1 � l2〉.φ2]]ε = {N |N ν l̃.l1:P�l2−−−−−−−−→ N2 :

l2 :: P ∈ M[[φ1]]ε ν l̃.N2 ‖ l2 :: P ∈ M[[φ2]]ε}

3.6 Syntax and Semantics of MoMo

In this section we formally define syntax and semantics of MoMo logic. The ac-
tual syntax is summarised in Table 9 while the interpretation function is formally
defined in Table 10.

Interpretation function M[[]] takes a formula φ and a logical environment
and yields the set of nets satisfying φ or, equivalently, the set of nets that are
models of φ. A logical environment, denoted by ε, is a function that for each
logical variable yields a set of μKlaim nets. We use ε0 to denote the logical
environment such that, for each logical variable κ, ε0(κ) = ∅.

We shall use L to denote the set of MoMo formulae. Moreover, in the rest of
the paper, we will write φ1 ≺ φ2 to denote that φ1 is a proper subformula of φ2.

The following lemma guarantees that names can be consistently replaced in
nets and formulas preserving the satisfaction relation.

Lemma 1. For every net N , formula φ and localities l1 and l2: N ∈ M[[φ]]ε if
and only if N [l2/l1] ∈ M[[φ[l2/l1]]].

4 Proof System

To verify whether a concurrent system satisfies a formula two main approaches
are classically available. These are respectively based on proof systems and model
checking. In the proof system approach, inference rules are provided in order to
build proofs that establish formulae satisfaction. In the model checking approach,
instead, a methodology is introduced to verify automatically whether a system
is a model of a formula.

MoMo: A Modal Logic for Reasoning About Mobility 109

In this section, we introduce a so called tableau based proof system for our
logic. Tableau systems are finite families of deduction rules which sanction re-
duction of goals to subgoals. They are similar in style to structured operational
semantics. With tableau one can systematically generate subcases until elemen-
tary contradictions/assertions are reached.

Now, we briefly introduce some basic notions about derivation trees and
their component, then we describe the proof system for our logic by introducing
specific set of rules for each of its.

4.1 Sequents and Proofs

The proof system operates on sequents (denoted by π, π1, π2, . . .) of the form
H " N : φ where N is a net, φ is a formula and H is a set of hypothesis, i.e. a
set of pairs of the form Ni : φi.

Proof system derivation rules have the following form:

{π1, . . . , πn}
π cond

where {π1, . . . , πn} is the (finite) set sequents to prove in order to assess validity
of π and cond is a side condition. A rule like the above can be applied only when
the side condition is satisfied. Δ will be used to denote a derivation (a proof)
within the proof system.

A derivation Δ is a derivation from π if and only if it has π as root and it is
maximal, in the sense that nothing can be derived from its leaves.

A sequent π = H " N : φ is successful when one of the following conditions
holds:

– φ = T;
– φ = {l = l};
– there exists N ′ such that N ′ ≡ N and (N ′ : φ) ∈ H ;
– sequent π is derivable from ∅.

A derivation Δ is successful if all its leaves are successful. If Δ is a successful
derivation from π, then Δ is a proof for π. A sequent π is provable if there exists
a derivation Δ that is a proof for π. We will say that N satisfies φ under the
assumptions H if H " N : φ is provable.

4.2 Names Handling

To manage name quantification while guaranteeing finiteness of derivations, we
need to introduce a mechanism for selecting new localities. For this reason, we
assume that the set of localities L is totally ordered by the ordering relation ≤L
with l0 as minimal element. Moreover, if L is a subset of L, we let sup(L) be the
locality not in L that is a least upper bound for the elements in L.

Similarly, we need to set up a machinery for handling all the transitions a
net can perform. In principle, these could be infinite. Indeed, we have that if

110 R. De Nicola and M. Loreti

Next(N) is the set of pairs (λ, N ′) such that N
λ−−→ N ′ (see Table 4), we have

no guarantee that Next(N) is finite. For instance, if we consider the net:

N1 = l1 :: in(!l)@l1.out(l1)@l.nil

we have Next(N1) =
{
(l1 : l′ � l1, l1 :: out(l1)@l′.nil)

∣∣ l′ ∈ L
}

that is infinite
because L is such.

A solution to this problem would be considering a finite representation of all
the possible transitions up to renaming. This would enable us to consider, for
any net N and any formula φ, only transitions whose label λ contains interesting
localities that are either free names of N and φ or names taken from a finite set of
localities that come immediately after them according to ≤L. Now we have that
the cardinality of the set from which localities are taken is equal to the (finite)
number of localities that are free in the net (and in the analysed formula) plus
the cardinality of the (finite) set of free localities in λ. This intuition can be
formalised as follows:

Definition 2. Let L be a set of localities and λ be a transition label, we say that
λ is interesting for L, notationally λ ⇑ L, if f n(λ) ⊆ Ei(L). Where i = |f n(λ)|
and Ei(L) is inductively defined as follows:

– E0(L) = L;
– Ei+1(L) = Ei(L ∪ {sup(L)}).

For net N1, described above, when considering the satisfaction of formula
[�]T, we would have that:

Next(N1) = {(l1 : l1 � l1, l1 :: out(l1)@l1.nil), (l1 : l2 � l1, l1 :: out(l2)@l1.nil)}

where l2 is equal to sup(f n(N1) ∪ f n([�]T)) = sup({l1}).
The following lemma ensures that, at each step of a proof, only a finite set

of possible next configurations can be take into account.

Lemma 2. Let N be a net and L a finite set of localities such that f n(N) ⊆ L

the set
{
(λ, N ′)

∣∣ N
λ−−→ N ′ and α ⇑ L

}
is finite.

4.3 Proof Rules

The rules of the proof system for our logic are presented in Tables 11–17. For
each operator of the logic the proposed proof system provides two rules; one for
the operator and one for its negation.

Propositional Fragment. The proof rules for the propositional fragment of
the logic are presented in Table 11, and are somehow exptected. To prove H "
N : φ1 ∧ φ2 both H " N : φ1 and H " N : φ2 have to be proved. A proof for
H " N : ¬(φ1 ∧ φ2) can derived either from H " N : ¬φ1 or from H " N : ¬φ2.
Double negation can be removed in order to prove H " N : ¬¬φ.

MoMo: A Modal Logic for Reasoning About Mobility 111

Table 11. Proof System: Propositional Fragment

H � N : φ1 H � N : φ2

H � N : φ1 ∧ φ2

H � N : ¬φi

H � N : ¬(φ1 ∧ φ2)

H � N : φ

H � N : ¬¬φ

Recursive Formulae. The rules for recursive formulae are formally defined in
Table 12. They rely on the proper subformula relation (φ1 ≺ φ2), introduced
in Section 3.6, and on the hypothesis discharging technique at the bottom of
Table 12. We let H ↓ φ be the set of hypotheses obtained from H by removing
all the formulae containing φ as proper subformula.

Table 12. Proof System: Recursive Formulae

H ↓ νκ.φ ∪ N : νκ.φ � N : φ[νκ.φ/κ]

H � N : νκ.φ
 ∃N ′ : N ≡ N ′, (N ′ : φ) ∈ H

H ↓ νκ.φ ∪ N : νκ.φ � N : ¬φ[νκ.φ/κ]

H � N : ¬νκ.φ
 ∃N ′ : N ≡ N ′, (N ′ : φ) ∈ H

H ↓ φ = H − ˘
N ′ : φ′|φ ≺ φ′¯

In order to prove that N satisfies νκ.φ under H , two cases have to be consid-
ered. If there exists N ′ such that N ≡ N ′ and N ′ : νκφ ∈ H , then H " N : νκ.φ
is a successful sequent and the wanted result is established. Otherwise, a proof
for H " N : νκ.φ can be obtained by establishing satisfaction of the formula
obtained by unfolding νκ.φ, i.e. φ[νκ.φ/κ], under the assumption that N satis-
fies νκ.φ. To avoid interferences between different hypotheses, all formulae that
contains νκ.φ as a proper subformula are removed (discharged) from H . These
formulae do not play any role in determining whether N satisfies νκ.φ. How-
ever, when νκ.φ is unfolded to φ[νκ.φ/κ], some of the assumptions may play an
improper role in the proof for H " N : φ[νκ.φ/κ].

To see how missing the discharging of a formula can lead to problems, let
us consider the derivation of Table 13. There it is proved that net N , whose
transitions are described in the accompanying figure, satisfies ¬φA, where:

φA = νκ1.¬〈α1〉 (¬κ1 ∨ φB) (4)
φB = νκ2.〈α2〉¬νκ1.¬〈α1〉 (¬κ1 ∨ φB) (5)

The formula asserts that it is possible to perform infinitively often a any
number of transitions labelled α1 and then a transition labelled α2. The deriva-

112 R. De Nicola and M. Loreti

Table 13. A derivation

N

α1 α2

N : φB , N : φA � N : φB

N : φB , N : φA � N : ¬φA ∨ φB
(10)

N : φB , N : φA � N : 〈α1〉 (¬φA ∨ φB)
(9)

N : φB , N : φA � N : ¬¬〈α1〉 (¬φA ∨ φB)
(8)

N : φB � N : ¬φA
(7)

N : φB � N : 〈α2〉¬φA

(6)

N : φA � N : φB
(5)

N : φA � N : ¬φA ∨ φB
(4)

N : φA � N : 〈α1〉 (¬φA ∨ φB)
(3)

N : φA � N : ¬¬〈α1〉 (¬φA ∨ φB)
(2)

� N : ¬φA
(1)

tion is successful since the last sequent amounts to requiring to prove that N
satisfies φB when is assumed that N : φB.

If N : φA was not discharged at step (5), no successful derivation for " N :
¬φA would exist, and the proof system would be unsound. Indeed, rule of step
(7) could not be applied anymore.

When considering the proof of H " ¬νκ.φ, we have again to distinguish
two cases depending on whether or not an assumption involving N and νκ.φ
belongs to H . If N ′ : νκ.φ ∈ H , with N ≡ N ′, a contradiction is reached and
the derivation cannot be continued. Otherwise, to prove that N satisfies ¬νκ.φ
under H , one has to establish that N satisfies ¬φ[νκ.φ/κ] under the assumptions
that are obtained from H by discharging all the formulae containing νκ.φ as a
proper subformula.

State Formulae. Rules in Table 14 can be used to prove state formulae.

Table 14. Proof System: State Formulae

H � N2 : φσ

H � N1 : ρ → φ
N1 � ρ

σ
� N2

n
H � N2 : ¬φσ

˛̨ ∃N2, σ.N1 � ρ

σ
� N2

o
H � N1 : ¬ρ → φ

H � N2 : φ

H � N1 : ρ ← φ N1 ⊕ ρ� N2

H � N2 : ¬φ

H � N1 : ¬@l ← φ N1 ⊕ ρ� N2

To verify that a net N1 satisfies ρ → φ one has to prove that after consuming
a resource specified by ρ, N1 satisfies φ. Hence, a proof for H " N1 : ρ → φ

can be obtained by providing a net N2, such that N1 !
ρ

σ
� N2, and a proof for

H " N2 : φσ.
Conversely, a net satisfies ¬(ρ → φ) if a resource described by ρ cannot be

consumed without obtaining a net satisfying ¬φ. For this reason, to prove that

MoMo: A Modal Logic for Reasoning About Mobility 113

N1 satisfies ¬(ρ → φ) under the assumptions H one has to prove that each N2,
such that N1 !

ρ

σ
� N2, satisfies ¬φσ under assumptions H .

For the production rules, if one can prove that the introduction of a resource
specified by ρ leads to a net satisfying φ, then ρ ← φ is satisfied: If N1⊕

ρ� N2,
then a proof for H " N1 : ρ ← φ is obtained from a proof for H " N2 : φ.

Finally, since a net satisfies ¬ρ ← φ if and only if it satisfies ρ ← ¬φ, to
prove that N1 satisfies ρ ← φ under assumptions H , it is sufficient to exhibit a
net N2, such that N1 ⊕

ρ� N2, and a proof for H " N2 : φ.

Temporal Formulae. The rules of the proof system for temporal formulae
are presented in Table 15. Some of them are reminiscent of standard rules for
Hennessy-Milner Logic.

Table 15. Proof System: Temporal Formulae

H � N2 : φ

H � N1 : 〈α〉φ N1
α−−→ N2

n
H � N1 : ¬φ

˛̨
N1

α−−→ N2

o
H � N1 : ¬〈α〉φ

H � N2 : φ

H � N1 : 〈	〉φ N1
λ−−→ N2 f n(N) ∪ f n(φ) ⇑ λ

n
H � N1 : ¬φ

˛̨ ∀N1
λ−−→ N2 f n(N1) ∪ f n(φ) ⇑ λ

o
H � N1 : ¬〈	〉φ

To prove H " N1 : 〈α〉φ one has to provide a net N2, such that N1
α−−→ N2,

and then a proof for H " N2 : φ. Conversely, to prove that N1 satisfies ¬〈α〉φ
under assumptions H , one has to prove that, for each N2, such that N1

α−−→ N2,
N2 satisfies ¬φ under assumptions H .

Similarly, to prove that N1 satisfies 〈�〉φ, one has to provide a transition label
λ and a net N2, such that N1

λ−−→ N2, and a proof for H " N ′ : φ. However,
when considering 〈�〉, to avoid infinite branching, not all the transitions are
taken into account. As discussed in Section 4.2, only transition labels that are
interesting (⇑) for f n(N1)∪ f n(φ) are considered. All the ignored transitions can
be obtained from the considered ones by renaming localities that do not appear
in N2 and in φ.

Finally, a proof for H " N1 : ¬〈�〉φ is obtained by proving that for each
λ and N2, such that N1

λ−−→ N2 when λ is interesting for f n(N1) ∪ f n(φ), N1

satisfies φ under assumptions H .

Nominal Formulae. In Table 16, the rules for nominal formulae are presented.
To prove H " N : ∃l.φ one has to provide a locality l′ and a proof for

H " N : φ[l′/l]. Thanks to Lemma 1, which permits consistently replacing names

114 R. De Nicola and M. Loreti

Table 16. Proof System: Nominal Formulae

H � N : φ[l′/l]

H � N : ∃l.φ
l′ ∈ f n(N) ∪ f n(φ) ∪ {sup(f n(N) ∪ f n(φ))}

{H � N : ¬φ[l′/l]|l′ ∈ f n(N) ∪ f n(φ) ∪ {sup(f n(N) ∪ f n(φ))}}
H � N : ¬∃l.φ

{H � N : φ[l′/l]|l′ = sup(f n(N) ∪ f n(φ))}
H � N : |�|l.φ

{H � N : φ[l′/l]|l′ = sup(f n(N) ∪ f n(φ))}
H � N : |�|l.φ

H � N ′ : φ

H � N : l � φ
N ≡ ν l.N ′ reveal(l, N ′)

{H � N ′ : ¬φ
˛̨

N ≡ ν l.N ′ reveal(l, N ′)}
H � N : ¬l � φ

in nets and formulae, it is sufficient to choose such locality among those belonging
to f n(N)∪ f n(φ)∪{sup(f n(N)∪ f n(φ))}. Similarly, a proof for H " N : ¬∃l.φ is
obtained by proving H " N : φ[l′/l], for each l′ ∈ f n(N)∪ f n(φ)∪{sup(f n(N)∪
f n(φ))}.

Rules for handling sequents involving fresh name quantifiers are similar.
Indeed, a net N satisfies ¬|�|l.φ if and only if N satisfies |�|l.¬φ. If l′ =
sup(f n(N) ∪ f n(φ)), to prove H " N : |�|l.φ (resp. H " N : ¬|�|l.φ), one
has to prove that N satisfies φ[l′/l] (resp. ¬φ[l′/l]).

Finally, if N ≡ ν l.N ′ and N ′ reveals l, then a proof for H " N : l � φ can
be obtained from a proof for H " N ′ : φ. Conversely, to prove H " N : ¬l � φ
one has to prove that each N ′ (N ≡ ν l.N ′) that reveals l satisfies ¬φ.

Mobility Formulae. To prove formulae involving mobility, the rules in Table 17
have to be used. A net N1 satisfies 〈l1 : φ1 � l2〉.φ2 if a process satisfying φ1 can
be spawned from l1 to l2 contributing to form a net satisfying φ2. Hence, when
considering satisfaction of 〈l1 : φ1 � l2〉.φ2 by a net N1, under assumptions H ,

one has to exhibit a net N2 and a process P , such that N1
ν l.l1:P�l2−−−−−−−−→ N2, for

which H " l2 :: P : φ1 and H " ν l̃.N2 ‖ l2 :: P : φ2 are provable. Please notice
that, the spawned process is analysed as located at l2 when checking satisfaction
of φ1. Moreover, as described in Section 3.5, all names (l̃) shared by the remote
evaluated process (P) and the rest of the system (N2) are considered public
when it is checked that l2 :: P satisfies φ1.

Conversely, to prove that N1 satisfies ¬〈l1 : φ1 � l2〉.φ2, one has to prove that
a process satisfying φ1 cannot be spawned from l1 to l2 without leading to a net
satisfying ¬φ2. In other words, a proof for H " N1 : ¬〈l1 : φ1 � l2〉.φ2 is obtained

by proving that if N1
ν l.l1:P�l2−−−−−−−−→ N2, then it holds that H " l2 :: P : φ1 and

H " ν l̃.N2 ‖ l2 :: P : φ2.

MoMo: A Modal Logic for Reasoning About Mobility 115

Table 17. Proof System: Mobility Formulae

H � l2 :: P : φ1 H � ν l.(N2 ‖ l2 :: P) : φ2

H � N : 〈l1 : φ1 � l2〉.φ2
N1

ν l.l1:P�l2−−−−−−−−→ N2

{H � l2 :: P : φ1, H � ν l.(N2 ‖ l2 :: P) : ¬φ2|N1
ν el.l1:P�l2−−−−−−−−→ N2}

H � N1 : ¬〈l1 : φ1 � l2〉.φ2

5 Proving Properties of Mobile Systems

In this section we show how the proposed proof system can be used for assessing
correctness of different print client implementations. The simplest implemen-
tation for a print client that satisfies all the formulae of example 3, is simply
obtained by considering the lazy client:

PClient1 :: nil

If φ1, φ2 and φ3 are the formulae of Example 3 we have that:

– " PClient1 :: nil : φ1 is a successful sequent;
– " PClient1 :: nil : φ2 and " PClient1 :: nil : φ3 can be reduced, after some

application of rule (ν), to successful sequents.

The actual derivations for φ1 and for φ2 are represented in Table 181 and
Table 19 respectively.

Table 18. A derivation for the empty client (φ2)

PClient1 :: nil : φ1 � PClient1 :: nil : [l : PrintSlot � PrintServer]T

PClient1 :: nil : φ1 � PClient1 :: nil : [l : PrintSlot � PrintServer]T ∨ [] φ1

[∗]

PClient1 :: nil : φ1 � PClient1 :: nil : [l : (Print, l) � PrintServer]F [∗]

PClient1 :: nil : φ1 �
PClient1 :: nil : [l : (Print, l) � Prin‘tServer]F

∧([l : PrintSlot � PrintServer]T
∨ [] φ1)

�
PClient1 :: nil : νκ. [l : (Print, l) � PrintServer]F

∧([l : PrintSlot � PrintServer]T
∨ [] κ)

The above amounts to saying that every net which never interacts with the
print server, implements a correct print client.

1 The proof in Table 18 is split in two parts where [∗] is the contact point.

116 R. De Nicola and M. Loreti

Table 19. A derivation for the empty client (φ3)

PClient1 :: nil : φ3 �
PClient1 :: nil : ¬〈l : Print, l � PrintServer〉T

PClient1 :: nil : φ3 �
PClient1 :: nil : ¬〈	〉φ3

PClient1 :: nil : φ3 � PClient1 :: nil : ¬〈l : Print, l � PrintServer〉T ∧ ¬〈	〉φ3

� PClient1 :: nil : νκ.¬〈l : Print, l � PrintServer〉T ∧ ¬〈	〉κ

Let us now consider an incorrect specification for a client:

PClient2 :: in(!l)@l1.in(!x)@l2.in(l)@x, !l′.nil

We have that it satisfies ClientProp1 and ClientProp2, but does not
satisfy ClientProp3. This is due to the fact that, subtle interactions with
the environment can take place leading to an action that violates the security
constraints describe with formula ClientProp3.

Indeed, the system above presents the following computation:

N1 = PClient2 :: in(!l)@l1.in(!x)@l2.in(x, !l′)@l.nil
PClient2 :PrintServer�l1−−−−−−−−−−−−−−−−−−→

N2 = PClient2 :: in(!x)@l2.in(x, !l′)@PrintServer.nil
PClient2:Print�l2−−−−−−−−−−−−−→

N3 = PClient2 :: in(Print, !l′)@PrintServer.nil
PClient2 :Print,l0�PrintServer−−−−−−−−−−−−−−−−−−−−−−→

N4 = PClinet3 :: nil

where first locality PrintServer is retrieved from l1 then value Print is retrieved
from l2 and, finally, tuple (Print, l0) is retrieved from PrintServer. The proof
for " N1 : ¬φ3 is presented in Table 20.

Table 20. A derivation

N1 : φ3, N2 : φ3, N3 : φ3 � N4 : T

N1 : φ3, N2 : φ3, N3 : φ3 � N3 : 〈l : Print, l � PrintServer〉T
N1 : φ3, N2 : φ3, N3 : φ3 � N3 : ¬¬〈l : Print, l � PrintServer〉T

N1 : φ3, N2 : φ3, N3 : φ3 � N3 : ¬(¬〈l : Print, l � PrintServer〉T ∧ ¬〈	〉¬φ3)

N1 : φ3, N2 : φ3 � N3 : ¬φ3

N1 : φ3, N2 : φ3 � N2 : 〈	〉¬φ3

N1 : φ3, N2 : φ3 � N2 : ¬¬〈	〉¬φ3

N1 : φ3, N2 : φ3 � N2 : ¬(¬〈l : Print, l � PrintServer〉T ∧ ¬〈	〉¬φ3)

N1 : φ3 � N2 : ¬φ3

N1 : φ3 � N1 : 〈	〉¬φ3

N1 : φ3 � N1 : ¬¬〈	〉¬φ3

N1 : φ3 � N1 : ¬(¬〈l : Print, l � PrintServer〉T ∧ ¬〈	〉¬φ3)

� N1 : ¬φ3

MoMo: A Modal Logic for Reasoning About Mobility 117

A correct implementation for a client would be the following:

PClient3 :: in(PrintSlot)@PrintServer.
out(Print, PClient)@PrintServer.
in(PrintOk)@PClient.X

It models the following behaviour: a process located at PClient first retrieves
tuple 〈PrintSlot〉 at PrintServer, then sends a print request and waits for a re-
sult. One can prove, using the proof system, that all the properties of Example 3
are satisfied by this.

6 Conclusions and Future Works

In this paper we have presented a temporal logic for specifying properties of
mobile and distributed system. The logic is inspired by Hennessy-Milner Logic
(HML) and the μ−calculus, but has novel features that permit dealing with
state properties and to describe the effect of data and processes movements over
different sites of nets. The logic is equipped with a sound and complete proof
system based on the tableaux approach.

It is possible to prove that the proposed proof system is sound and, under
the assumption that the set of possible configurations of the considered system
is finite, that it is also complete. That proofs will appear in the full version of
the paper.

To have concrete examples of systems properties, we interpreted our logical
formulae relatively in terms of μKlaim, a simplified version of Klaim. However,
most of its operators are not specific of this language but can be used for any
naming passing calculus with localities.

The main limitation of the proposed approach is that in order to establish
system properties detailed descriptions of the whole systems under consideration
are required. Obviously, this is a very strong assumption for wide area networks,
because, very often only some components of the system are known; and one
has only a limited knowledge of the overall context in which the component
is operating. Nevertheless, one would like to guarantee that components well
behave whenever the context guarantees specific resources or interactions.

For this reason we plan to set up a framework for specifying contexts for
μKlaim nets. By means of contexts, we will be able to provide abstract spec-
ifications of a given system and avoid describing all of its components in full.
Indeed, some of these components could be known or implemented only at a
later stage. Then, the implemented component can be removed from the context
and added to the implemented part thus performing a concretion operation. We
aim at setting up a framework that would guarantee preservation of satisfaction
of formulae at each stage of refinement, if the introduced implementation agrees
with the original specification.

Acknowledgements. We are grateful to the anonymous referees and to Diego
Latella for many useful comments and suggestions that have helped in removing
inaccuracies and improving the presentation.

118 R. De Nicola and M. Loreti

References

1. L. Bettini, V. Bono, , R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The klaim project: Theory and practice.
In Global Computing, volume 2874 of Lecture Notes in Computer Science, pages
88–150. Springer, 2003.

2. M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile ambi-
ents. In Concur 2001, number 2154 in Lecture Notes in Computer Science, pages
102–120. Springer, 2001.

3. L. Caires and L. Cardelli. A spatial logic for concurrency (part i). Inf. Comput.,
186(2):194–235, 2003.

4. L. Caires and L. Cardelli. A spatial logic for concurrency - ii. Theor. Comput. Sci.,
322(3):517–565, 2004.

5. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

6. L. Cardelli and A. D. Gordon. Ambient logic. Mathematical Structures in Computer
Science, 2005. to appear.

7. N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,
32(10):444–458, October 1989. Technical Correspondence.

8. G. Castagna, G. Ghelli, and F. Zappa Nardelli. Typing mobility in the seal calculus.
In Concur 2001, number 2154 in Lecture Notes in Computer Science, pages 82–101.
Springer, 2001.

9. G. Castagna and J. Vitek. Seal: A framework for secure mobile computations. In
H. Bal, B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages,
number 1686 in Lecture Notes in Computer Science, pages 47–77. Springer, 1999.

10. M. Dam. Model checking mobile processes. Journal of Information and Computa-
tion, 129(1):35–51, 1996.

11. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

12. R. De Nicola and M. Loreti. A Modal Logic for Mobile Agents. ACM Transactions
on Computational Logic, 5(1), 2004.

13. G. Ferrari, C. Montangero, L. Semini, and S. Semprini. Mark, a reasoning kit for
mobility. Automated Software Engineering, 9:137–150, 2002.

14. C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus of
Mobile Agents. In U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf. on
Concurrency Theory (CONCUR’96), volume 1119 of Lecture Notes in Computer
Science, pages 406–421. Springer-Verlag, 1996.

15. M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
In LICS, pages 214–224, 1999.

16. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

17. D. Gelernter. Multiple Tuple Spaces in Linda. In J. G. Goos, editor, Proceedings,
PARLE ’89, volume 365 of Lecture Notes in Computer Science, pages 20–27, 1989.

18. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, Jan. 1985.

19. M. Hennessy and J. Riely. Distributed processes and location failures. Theoretical
Computer Science, 266(1–2):693–735, Sept. 2001.

20. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173(1):82–120, 2002.

MoMo: A Modal Logic for Reasoning About Mobility 119

21. P. McCann and G.-C. Roman. Compositional programming abstraction for mobile
computing. IEEE Transactions on Software Engineering, 24(2):97–110, 1998.

22. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114:149–171, 1993.

23. R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40, 41–77, 1992.

24. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings, pages 55–74. IEEE Computer Society,
2002.

25. P. T. Wojciechowski and P. Sewell. Nomadic pict: Language and infrastructure
design for mobile agents. In ASA/MA, pages 2–12. IEEE Computer Society, 1999.

Probabilistic Linda-Based Coordination

Languages

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 Dipartimento di Informatica, Universitá di Pisa, Italy
2 Department of Computing, Imperial College London, UK

Abstract. Coordination languages are intended to simplify the develop-
ment of complex software systems by separating the coordination aspects
of an application from its computational aspects. Coordination refers to
the ways the independent active pieces of a program (e.g. a process, a
task, a thread, etc.) communicate and synchronise with each other. We
review various approaches to introducing probabilistic or stochastic fea-
tures in coordination languages. The main objective of such a study is
to develop a semantic basis for a quantitative analysis of systems of in-
terconnected or interacting components, which allows us to address not
only the functional (qualitative) aspects of a system behaviour but also
its non-functional aspects, typically considered in the realm of perfor-
mance modelling and evaluation.

1 Introduction

An early example of a Coordination Language was Linda [1]; Gelernter and
Carriero offer the following equation [2]:

Concurrent Programming = Computation + Coordination

The intention being that Coordination Languages are “glue” languages for
controlling the various computational components of a concurrent program.

Linda is an example of a Shared Data Space coordination language – the glue
is provided by interaction through a shared tuple space. Alternative ways of
synchronising components could be Message Passing, as in the Manifold model
[3], or broadcast (cf Sands use of the CBS calculus [4]).

In this paper we consider various ways in which probabilities/quantities can
be added to this basic paradigm; we distinguish between a data-driven and a
schedule-driven approach. We also consider ways in which mobility can be added.

Our main objective is to develop a semantic basis for a quantitative analy-
sis of networks. A quantitative analysis allows in general for the consideration
of more “realistic” situations. For example, a probabilistic analysis allows for
establishing the security of a system up to a given tolerance factor expressing
how much the system is actually vulnerable. This is in contrast to a qualitative
analysis which typically might be used to validate the absolute security of a given

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 120–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Linda-Based Coordination Languages 121

system. In a distributed environment quantitative analysis is also of a great prac-
tical use in the consideration of timing issues which involve the asynchronous
communications among processes running with different clocks.

The rest of this paper is structured into three main parts. First we con-
sider how probabilities/quantities might be added to a Linda-like language. We
consider a data-driven approach as presented in [5]; we also consider a schedule
driven approach where probabilities/quantities are explicitly attached to parallel
operators. We then consider a slightly more complicated language which includes
mobility by introducing located processes and distributing the tuple space. For
this part we will survey the approaches in [6,7,8]. We consider two alternatives:
one in which nodes are visited with a certain probability (the discrete case) and
the other in which nodes are visited at a certain rate (the continuous case). Fi-
nally, we consider an analysis framework for studying the properties of networks
of processes; we briefly consider two variants which correspond to the discrete
and continuous case respectively.

2 Linda

Linda [1] is a coordination language that relies on an asynchronous and associa-
tive communication mechanism based on a shared global space called the Tuple
Space (TS), consisting of a multiset of tuples. The Linda language provides four
simple operations for manipulating tuples by introducing, removing and reading
tuples from the space TS. These operations allow processes to communicate and
synchronise by interacting with the Tuple Space.

In order to investigate the introduction of quantitative information in the
Linda paradigm, [5] introduces a minimal language, called Linda Calculus or
LinCa, which includes the Linda core calculus expressed via only three con-
structs: prefix, parallel composition and replication. The syntax is presented in
Table 1. nil represents the inactive process. The out(e) action causes a tuple
to be deposited into the tuple space. The in t (x) and read t (x) actions both
input tuples from the tuple space; the tuple is required to match the pattern
t and the fields of the matching tuple are bound to the components of x. The
in action removes one matching tuple from the tuple space whereas read is
non-destructive.

The original Linda language also includes an action eval which is similar
to out(e), but capable of creating processes: for each tuple element which is
a function, this primitive creates a new process to evaluate the function. Once
all functions have been evaluated, eval will place the resulting tuple into the
tuple space.

The semantics of LinCa is shown in Table 2. This is a small-step operational
semantics. The configurations or states consist of a process and a tuple space,
TS . The tuple space is essentially a multiset; ⊕ represents multiset union and
− represents multiset subtraction. We use � to represent pattern matching; the
exact details of how a tuple matches a pattern need not concern us in this paper.
We have omitted the symmetric rule for parallel composition. Finally, we use the

122 A. Di Pierro, C. Hankin, and H. Wiklicky

Table 1. The LinCa syntax

P ::= nil null process

| out(e).P output prefix

| in t (x).P input prefix

| read t (x).P non-destructive input prefix

| P | P parallelism

| !in t (x).P replication

Table 2. LinCa semantics

[out(e).P,TS] −→ [P, TS ⊕ e]

∃e ∈ TS : e � t

[in t (x).P, TS] −→ [P [e/x],TS − e]

∃e ∈ TS : e � t

[read t (x).P,TS] −→ [P [e/x], TS]

[P, TS] −→ [P ′,TS ′]
[P | Q,TS] −→ [P ′ | Q,TS ′]

[in t (x).P, TS] −→ [P ′,TS ′]
[!in t (x).p,TS] −→ [P ′ | !in t (x).P,TS]

notation P [e/x] to represent the process P where all instances of the components
of x (i.e. x1, . . . , xn) have been replaced by corresponding ”values” from e.

2.1 Adding Probabilities/Quantities

In the recent literature three proposals have been presented aimed at extending
the basic coordination model à la Linda with quantities (probabilities, priorities,
rates). These proposals follow two main approaches:

– Data Driven: In this approach the quantitative information is added to the
data (tuples); it is adopted in [5] to define two quantitative versions of the
core Linda language LinCa called PrioLinCa and ProbLinCa respectively
(cf. Section 2.2). The main objective of [5] is the investigation of the ex-
pressive power of the different quantitative extensions compared to the basic
paradigm.

– Schedule Driven: In this approach quantitative information is added to the
“processes”; this is the approach taken in pKLAIM [6,7] and StocKLAIM

Probabilistic Linda-Based Coordination Languages 123

[8], where the motivation is more analysis-oriented. We will describe these
two proposals in Section 3.2 and Section 3.3 in the context of a coordination
language which extends Linda with distributed programming and mobility
features.
We will also adopt this approach to define in Section 2.3 alternative versions
of the prioritised and probabilistic LinCa introduced in [5].

2.2 Data Driven Approach

The starting point of the approach in [5] is the observation that nondeterminism
is inherent in the definition of the Linda primitives. It occurs when a tuple
becomes available on which more than one in t (x) or read t (x) action were
suspended, or similarly when there is more than one tuple matching x in a
in t (x) or read t (x) operation. This nondeterminism can be controlled by
labelling tuples with quantities that can be interpreted respectively as priority or
probability. For the resulting models, called PrioLinCa and ProbLinCa, Bravetti
et al. have shown the following results:

– LinCa is not Turing complete (termination is decidable)
– PrioLinCa is Turing complete (encoding of RAM)
– ProbLinCa can solve the Leader Election problem; neither LinCa nor Pri-

oLinCa can.

PrioLinCa. In PrioLinCa priorities (positive natural numbers) are added as
attributes of tuples. The significant change in the language is in the semantics
of in and read. For example the rule for in becomes:

∃e ∈ TS : e � t ∀e′ ∈ TS : e′ � t ⇒ prio(e) ≥ prio(e′)
[in t (x).P,TS] −→ [P [e/x],TS − e],

where prio(e) denotes the quantity labelling the tuple e. A matching tuple
is only removed from the tuple space if its priority is higher than any other
matching tuple.

Rather than use priorities, it is possible to take a probabilistic approach
which is exemplified by the alternative calculus called ProbLinCa.

ProbLinCa. In ProbLinCa weights (positive real numbers) are added as at-
tributes of tuples. A tuple is then selected with a probability which is propor-
tional to its weight. This is reflected in the semantics of the language by defining
transition rules which probabilistically determine the next state according to a
distribution which depend on the basic action of the starting state. Thus the
rule for in becomes:

∃e ∈ TS : e � t
[in t (x).P,TS] −→ ρ

where ρ is a distribution on states which is computed as follows:

ρ(s) =

⎧⎨⎩
weight(e) · TS (e) if s = [P [e/x],TS − e],∑

e′∈TS:e′�t weight(e′) · TS (e′) e � t, e ∈ TS
0 otherwise.

124 A. Di Pierro, C. Hankin, and H. Wiklicky

where TS (e) is the number of occurrences of the tuple e in TS . The probability
of picking a particular tuple is thus computed in the following way:

– if the tuple, e, matches the pattern, t, the probability is the weight of the
tuple times the number of occurrences of that tuple, normalised by the sum
of the weights times multiplicities of all matching tuples.

– otherwise, when e doesn’t match t, the probability is zero.

The rule for the read action determines an analogous distribution, while the
rule for out(e) deterministically (i.e. with probability 1) leads to the state where
the tuple e is added to the space independently of its weight:

[out(e).P,TS] −→ ρ,

where ρ([P,TS ⊕ e]) = 1 and ρ(s) = 0 for all the other states.
Finally, the rule for the parallel composition P1 | P2 nondeterministically

chooses among the probability distributions determined by the transition rules
for P1 and P2.

2.3 Schedule Driven Approach

In this section we propose alternative quantitative extensions of LinCa by adopt-
ing a schedule driven approach. In this approach we add priorities or probabilities
to the operators – in particular, to the parallel operator.

A useful notion for the definition of a prioritised or probabilistic scheduler
is the notion of “active state” which identifies those processes (essentially those
prefixed by a in t (x) or read t (x) action) that are able to make a transition
(essentially are not blocked awaiting for a tuple to become available).

Definition 1. We define the set Active of active states as

Active = {[P, TS] | P ≡ in t (x).P ′ and ∃e ∈ TS : e � t}
∪ {[P, TS] | P ≡ read t (x).P ′ and ∃e ∈ TS : e � t}
∪ {[P, TS] | P ≡ out(e).P ′}.

Prioritised Scheduling. We replace the LinCa parallel composition P | P by the
prioritised parallel operator p1 : P1 | p2 : P2 where p1 and p2 are numbers (e.g.
positive natural numbers as in PrioLinCa) expressing some priorities. A priori-
tised scheduler will (nondeterministically) select the state with higher priority
among the active ones. Thus the semantics of the prioritised parallel operator
can be defined by the rule:

[P1,TS] −→ [P ′
1,TS ′] and p1 ≥ p2

[p1 : P1 | p2 : P2,TS] −→ [p1 : P ′
1 | p2 : P2,TS ′]

and the symmetric rule with P2 in the premise.
From this semantics we can retrieve the data driven semantics of PrioLinCa.

To see this, define the weight weight(s) of a state s = [P, TS] as the maximal
weight of a matching tuple for P if s is active; weight(s) = 0 otherwise. Then
assume that in the previous rule, priorities p1 and p2 are defined respectively as
weight([P1,TS]) and weight([P2,TS]).

Probabilistic Linda-Based Coordination Languages 125

Table 3. Schedule Driven Probabilistic Semantics

[out(e).P,TS] −→1 [P, TS ⊕ e]

∃e ∈ TS : e � t

[in t (x).P, TS] −→1 [P [e/x], TS − e]

∃e ∈ TS : e � t

[read t (x).P,TS] −→1 [P [e/x],TS]

[Pi,TS] −→p [P ′
i ,TS ′]

[|nj=1 pj : Pj ,TS] −→p·p̃i [pi : P ′
i | |nj=1,j �=i pj : Pj ,TS ′]

[P [e/x], TS] −→p [P ′,TS ′]
[A(e),TS] −→p [P ′,TS ′]

if A(x) ≡ P

Probabilistic Scheduling. A probabilistic LinCa can be defined in the schedule-
driven approach by replacing the parallel operator P | P in the syntax of LinCa
by a probabilistic one p1 : P1 | p2 : P2, where p1 and p2 are probabilities,
that is real numbers in [0, 1]. Alternatively, we can let p1 and p2 range over the
interval [0,∞): the normalisation process occurring at run-time guarantees that
our quantities will indeed be transformed into probabilities.

The semantics of this alternative probabilistic Linda language can be defined
in the usual SOS style via a probabilistic transition system (S,−→p), where the
the parameter p in the transition relation −→p on states specifies the probability
of a single step transition from one state to another. The rules defining −→p are
given in Table 3.

For the probabilistic parallel composition, in line with our previous work we
opted for a more convenient n-ary version rather than the binary version used
in Linda. In this rule the probability pi is normalised to take account of the
fact that the other branches of the parallel operator might be blocked. More
precisely, we define the cumulative probability, C[P,TS], of all active processes in
a parallel composition P = |nj=1 pj : Pj as

C[P,TS] =
∑

j

{pj | [Pj ,TS] ∈ Active}.

Then the normalised probability p̃i is given by pi

C[P,TS]
if at least one of the two

processes in P is active, and zero otherwise.
Replication introduces a new parallel operator; we must add probabilities

to this:
[in t (x).P,TS] −→q [P ′,TS ′]

[!in t (x).P,TS] −→q [p : P ′ | (1 − p) :!in t (x).P,TS]

This raises an issue about the choice of a value for p. This could be avoided
by adding named processes and recursion rather than replication. We therefore
introduce process constants, ranged over by A, and recursive definitions of the

126 A. Di Pierro, C. Hankin, and H. Wiklicky

form A(x) ≡ P . The transition rule for recursion simply models the execution
of a call to a procedure named A.

As a comparison with the probabilistic semantics for ProbLinCa defined in
[5], we observe that the probabilistic model at the base of our semantics is gener-
ative according to the classification introduced in [9]: at each step the scheduler
can select the next state according to one single probability distribution over the
states. In the data driven semantics the probabilistic transition system conforms
to the reactive model of probability instead: the scheduler can choose among
different distributions depending on the (out/in/read) action taken. As a con-
sequence our semantics contains strictly more information than the data driven
semantics.

3 Distributed Tuple Spaces: KLAIM

The original Linda primitives are not completely adequate for programming dis-
tributed systems composed of mobile components. The KLAIM language (Kernel
Language for Agents Interaction and mobility) was introduced in [10] as a dis-
tributed mobile version of Linda which extends the Linda interaction model by
replacing the single shared tuple space with multiple distributed tuples spaces
and allowing for explicit manipulation of localities and locality names.

3.1 A Core KLAIM Calculus

As before we will identify a simple core language where we consider only the basic
constructs for prefixing, parallel composition and recursion. Moreover, we restrict
to the actions out, in and read excluding the other KLAIM primitives, namely
eval(P)@� which allows for a remote evaluation of the process argument1, and
newloc(u) which creates a new location accessible via the locality variable u. We
also omit the consideration of allocation environments, that is partial functions
used in the the full KLAIM language for the linking of symbolic names to physical
addresses of nodes. The syntax of this minimal language, which we call cKLAIM,
is given in Table 4.

The idea is to ‘localise’ processes P and their tuple spaces at some sites s
and to construct networks N out of such nodes. We assume that locations are
unique, i.e. only one process is attached to each location. The primitive actions
out, in and read must now specify the local tuple space they refer to; this is
done by introducing in their syntax the suffix “@�”.

The operational semantics of cKLAIM is a restriction of the semantics of
full KLAIM as presented in [10]. This is a two levels semantics: there are rules

describing local transitions P
action �� P ′ which are labelled with some (possible)

action, and a global network semantics N �� �� N ′ which specifies how a whole
network evolves. The transition relation �� �� is defined in terms of the local
semantics �� .
1 This is different from the operation eval(t) in Linda whose argument is a tuple.

Probabilistic Linda-Based Coordination Languages 127

Table 4. cKLAIM Process and Network Syntax

P ::= nil null process

| out(e)@�.P output prefix

| in t (x)@�.P input prefix

| read t (x)@�.P non-destructive input prefix

| P | P parallelism

| !in t (x)@�.P replication

N ::= s :: P node

| N1 ‖ N2 composition

Table 5. Discrete and Continuous Time Network Syntax

N ::= s ::q P node

| N1 ‖ N2 composition

N ::= s ::λ P node

| N1 ‖ N2 composition

3.2 Probabilistic KLAIM

Our main motivation for adding probabilities/quantities to coordination lan-
guages is to support quantitative analysis of distributed systems. The techniques
that we have developed, based on Discrete or Continuous Time Markov Chains,
provide a strong link between program analysis and recent advances in Per-
formance Analysis [11]. A primary application of our work is in the study of
quantitative aspects in Language Based Security, relative to e.g. denial of ser-
vice, viruses, epidemiology, etc.

We will consider here only a probabilistic version of cKLAIM, and omit a
prioritised one. Based on the two layered semantics of cKLAIM we will intro-
duce probabilities both on the local and the global level. Locally we introduce
probabilities into the parallel construct (scheduling information); globally, we in-
troduce two different versions: in one we associate a probability with each node,
while in the other we associate a rate. As a result we obtain two probabilistic
extensions of KLAIM according to a discrete time and a continuous time Markov
chain model respectively.

The only changes to the syntax are thus, as before, the introduction of a
probabilistic parallel composition with scheduling probabilities p (in the discrete
time model) or scheduling rates λ (in the continuous time model) for nodes.
These changes are depicted in Table 5 with p and λ positive real numbers.

Local Semantics. Local transitions are labelled with an action label and are
of the form:

[P, TS] action �� p [P ′, TS].

128 A. Di Pierro, C. Hankin, and H. Wiklicky

Table 6. The Local Structural Semantics

[out(t)@�.P, TS]
o(t)@	 ��

1 [P, TS]

[in(t)@�.P, TS]
i(t)@	 ��

1 [P, TS]

[read(t)@�.P,TS]
r(t)@	 ��

1 [P, TS]

[Pj , TS]
μ ��

p [P ′
j , TS′]

[|ni=1pi : Pi, TS]
μ �� p·pj [|nj �=i=1Pi | P ′

j , TS′]

[P [e/x], TS]
μ ��

p [P ′, TS′]

[A(e), TS]
μ ��

p [P ′, TS′]
with A(x) ≡ P

This does not correspond to an actual change of the (local) configuration of a
node but indicates the possibility of a local transition. It will be up to the global
scheduler to activate such a potential update. In the local semantics we only
consider how the process P changes, while the local tuple spaces TS remains
the same and again it will be the global semantics to determine or not an actual
update of TS.

The local semantics is defined in Table 6. As in the original semantics for
KLAIM, we use the label action to describe the activities performed in the
evolution; thus, for example o(t)@� refers to the action of sending the tuple t in
the tuple space specified by �, and r(t)@� is the action of consuming the tuple t
in the tuple space specified by �.

Global Semantics. The global semantics relies on the idea that state changes
(transitions) do occur at certain points in time. In the discrete time case, every
time step the scheduler selects one node to initiate an update of the whole net-
work according to a (normalised) probability q. In the continuous time case
jumps from one network state to another occur at rates specified by the schedul-
ing rates λ. These rates determine an exponentially distributed time between
transitions from one configuration of the network into another, according to a
continuous time Markov chain model (cf. e.g. [12,13,14]).

According to Table 5 a probabilistic KLAIM network is either of the form
N ≡ ‖n

i=1si ::qi Pi or N ≡ ‖n
i=1si ::λi Pi. We define a network configuration as a

pair [N, TS] with TS a global tuple space which is constructed out of the local
tuple spaces TSi, i.e. TS = (TS1, TS2, . . . , TSn) = (TSi)n

i=1. We will denote a
network configuration [N, TS] = [‖n

i=1si ::xi Pi, (TSi)n
i=1] also as:

‖n
i=1si ::xi [Pi, TSi] = s1 ::x1 [P1, TS1] ‖ s2 ::x1 [P2, TS2] ‖ . . . sn ::xi [Pn, TSn],

where xi = qi or xi = λi.

Probabilistic Linda-Based Coordination Languages 129

Discrete Time Version. The discrete time semantics of KLAIM networks is
defined as a Discrete Time Markov Chain (DTMC) where the states are the
network configurations; we will denote by N the set of all such configurations. A
discrete time random process is a sequence {Xt}∞t=1 of random variables, i.e. of
functions Xt : Ω → S from a probability space Ω into a state space S. We will
restrict our presentation to finite2 state spaces S and identify random variables
X(t) = Xt with their associated probability distributions P(Xt = s), i.e. the
probability that the random variable Xi will be in state s. For finite state spaces
S we can represent this probability distribution with a (column) vector which
we will also denote by Xt.

A discrete time random process with initial distribution X0 is called a discrete
time Markov chain if the distribution for Xt+1 only depends on the previous
distribution Xt

P(Xt+1 = st+1 | X0 = s0, . . . , Xt = st) = P(Xt+1 = st+1 | Xt = st).

This allows us to determine the distribution Xt+1 via Xt+1 = XtP(t) where
P(t) is a stochastic matrix, i.e. a matrix with row sums equal to one. For so
called homogeneous DTMCs we have P(t) = P for all t and:

Xt = Xt−1P or Xt = Xt−nPn

In the case of the discrete time KLAIM networks we define their seman-
tics as a (homogeneous) DTMC as follows: The state space S is the set of all
possible network configurations N . We can restrict ourselves to the set of net-
work configurations N (N(0)) which are reachable from the initial configuration
N(0) = [N0, TS0] and assume that N (N(0)) is finite. The entries in the transi-
tion matrix P are then defined by using the rules in Table 7 as:

PNi,Nj =

⎧⎨⎩
∑

pij with Ni
��
pij �� Nj

0 otherwise.

The rules in Table 7 describe how a global scheduler can utilise potential local
transitions in order to update the global network configuration. The update is
triggered by one of the nodes, at s1, with a probability corresponding to its
scheduling probability pi. Each update involves at most two nodes at sites s1

and s2 in the context of the remaining nodes of the network, denoted by N . If
s1 = s2 the rules in Table 7 have to be applied in the obvious way.

As some nodes could be blocked — e.g. because no matching tuple is available
for an in to proceed — we have to use the normalised probabilities p̃i. For this
we define the set of active sites in a global configuration [P, TS] = ‖n

i=1si ::pi

[Pi, TSi] as:

Active([P, TS]) = {si | [Pi, TSi]
a �� p [P ′

i , TS′
i]}}

2 For countable infinite state spaces we have to use probability measures instead of
probability distributions.

130 A. Di Pierro, C. Hankin, and H. Wiklicky

Table 7. Discrete Time Network Semantics

[P1, TS1]
o(t)@s2 ��

p [P ′
1, TS1]

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1, TS1]‖s2 ::p2 [P2, TS2 ⊕ t]‖N

[P1, TS1]
i(t)@s2 ��

p [P ′
1, TS1] ∃e ∈ TS2 : e � t

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1[x/e], TS1]‖s2 ::p2 [P2, TS2 − e]‖N

[P1, TS1]
r(t)@s2 �� p [P ′

1, TS1] ∃e ∈ TS2 : e � t

s1 ::p1 [P1, TS1]‖s2 ::p2 [P2, TS2]‖N ��
p̃p̃1 �� s1 ::p1 [P ′

1[x/e], TS1]‖s2 ::p2 [P2, TS2]‖N

i.e. a site si is active if its process Pi can make at least one local transition with
some action a and probability p. Then we define

p̃i =
pi

C[P,TS]
with C[P,TS] =

∑
j

{pj | sj ∈ Active([P, TS])}.

In a similar way we also have to normalise the local probability p. The active
actions of a local configuration (in some network context) are given by:

Active([Pi, TSi]) = {o(t)@sj | [Pi, TSi]
o(t)@sj �� p [P ′

i , TS′
i]}

∪ {i(e)@sj | [Pi, TSi]
i(t)@sj �� p [P ′

i , TS′
i] and ∃e ∈ TSj : e � t}

∪ {r(e)@sj | [Pi, TSi]
r(t)@sj �� p [P ′

i , TS′
i] and ∃e ∈ TSj : e � t}

and with this we get the normalised local transition probabilities as:

p̃ =
pi

C[P,TS]
with C[Pi,TSi] =

∑
j

{pj | aj ∈ Active([Pi, TSi])}.

If no node is active for a network configuration N we will force a diagonal
entry PN,N = 1 to guarantee that P is indeed a stochastic matrix. Opera-
tionally this corresponds to introducing a self-transition or loop for stuck network
configurations.

Continuous Time Version. In this model each node can initiate a network up-
date independently at any time with a certain probability which is proportional
to its rate. This parameter is specified by the superscript λ in the syntax of
a node. We assume that these rates are independent from the time and there-
fore each node “fires”, i.e. initiates an update, via a so called Poisson process
(see e.g. [13–Sect 2.4]).

Probabilistic Linda-Based Coordination Languages 131

We model the continuous time semantics of KLAIM networks as a Continu-
ous Time Markov Chains (CTMC), i.e. as a particular continuous time random
process {Xt}t∈[0,∞). Like in the case of DTMCs the dependency between the
random variables Xt = X(t) in a CTMC is very restricted: it depends only on
(any) single previous moment. This means that there exist stochastic matrices
P(t), with t ∈ [0,∞), such that we can compute the distribution Xt as:

Xt = Xt−�tP(%t).

The matrices P(t) form a semi-group, i.e. P(0) = I the identity matrix (pij(0) =
1 for i = j and pij(0) = 0 otherwise) and for any t, s ∈ [0,∞) we have the so
called semi-group property: P(s + t) = P(s)P(t).

It is possible to obtain the P(t) matrices as solutions to certain linear differen-
tial equations (cf. e.g. [13]). This allows us to specify the P(t)s via the parameters
describing these differential equations. These parameters are referred to as the
rate or Q-matrix Q = (qij)ij which has the following properties:

– 0 ≤ −qii < ∞ for all i,
– qij ≥ 0 for all i �= j,
–
∑

j qij = 0 for all i.

From the Q-matrix of a system we can obtain the transition probabilities
P(t) via:

P(t) = exp(tQ) =
∞∑

n=0

(tQ)n

n!

In the case of the continuous time semantics for KLAIM networks we only
need to specify the rate matrix Q using the rules in Table 8:

QNi,Nj =

⎧⎪⎨⎪⎩
∑
wij for Ni

��
wij �� Nj

−
∑

j �=i wij for Ni = Nj

0 otherwise.

In Table 8 the relation ��
wij �� between two network configurations Ni and

Nj is labelled by rates wij which are obtained as a product between the firing
rate λk of the node which initiates the update and the normalised probabilities
p̃ of the local transitions occurring in the nodes involved in the update. The
normalisation of the local transition probabilities is again needed in order to
accommodate locally blocked transitions. The rates λ need no normalisation
and we need no special treatment of completely blocked network configurations
(this is achieved via the construction of the diagonal elements in Q and related
to the basic fact that exp(0) = 1).

The continuous time model realises true concurrency as several transitions
seem to happen in “parallel”. In fact, two transitions are actually never happen-
ing at exactly the same moment, as the probability for this is zero. However, after
a single time unit we can observe that two or more transitions have happened.

132 A. Di Pierro, C. Hankin, and H. Wiklicky

Table 8. Continuous Time Network Semantics

[P1, TS1]
o(t)@s2 ��

p [P ′
1, TS1]

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1, TS1]‖s2 ::λ2 [P2, TS2 ⊕ t]‖N

[P1, TS1]
i(t)@s2 ��

p [P ′
1, TS1] ∃e ∈ TS2 : e � t

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1[x/e], TS1]‖s2 ::λ2 [P2, TS2 − e]‖N

[P1, TS1]
r(t)@s2 �� p [P ′

1, TS1] ∃e ∈ TS2 : e � t

s1 ::λ1 [P1, TS1]‖s2 ::λ2 [P2, TS2]‖N ��
p̃λ1 �� s1 ::λ1 [P ′

1[x/e], TS1]‖s2 ::λ2 [P2, TS2]‖N

This allows us to avoid considering “clashes” like for example two in(t) ac-
tions trying to access the same token: the probability of this happening vanishes.
We can however ask for the probability that either of the two in’s is executed
first and in this way determine the chances that the token in question has been
consumed by the first or the second in after a given time (or, as also could be
the case, that neither of them has already consumed the token).

3.3 Stochastic KLAIM

An alternative stochastic version of KLAIM is the proposal in [8]. The language
defined in this work, called StocKLAIM, extends a core subset of KLAIM by
associating to each action some specific rates representing the time taken by the
action to be executed. Similarly to the continuous time version of our pKLAIM,
this time is determined by random variables which are exponentially distributed,
so that the operational semantics of the language can be represented in terms
of stochastic processes and in particular as a Continuous Time Markov Chain.

In StocKLAIM the only source of probabilistic information is therefore the
action prefix process whose syntax (a, r).P allows for the specification of a rate
by instantiating the name r. All the other constructs of the language, namely
the choice P +P and the parallel composition P | P as well the network parallel
operator N ‖ N keep their nondeterministic syntax, so that for example no
information (coming e.g. from statistical or other form of data which are available
for a given application) can be specified at this level.

The straightforward relation of the structural operational semantics defined
via a labelled transition system with the CTMC model, makes various tools and
techniques which have been developed for stochastic model checking directly
available for the analysis of a network specified in StochKLAIM. In fact one
main motivation of this approach is towards the definition of logics and semantics
based tools for the performance modelling and analysis of mobile and distributed
application.

Probabilistic Linda-Based Coordination Languages 133

Alternatively, a probabilistic model like the one offered by probabilistic
KLAIM (cf. Section 3.2) is more oriented (even when it is based on a CMTC
model) towards a quantitative analysis of networks based on tools and techniques
which are typical of program analysis; these are obtained by transforming the
approaches that have been developed for a purely qualitative static analysis of
program properties into probabilistic/quantitative ones suitable for a distributed
setting (cf. Section 4).

4 Analysis

Given a program in probabilistic Linda or a network in probabilistic KLAIM
we are interested in analysing properties such as the chances that a program
terminates, or the chance that a token (worm) moves from one node in the net-
work to another one in a given number of steps (or time interval). As in classical
program analysis, also probabilistic properties can be expressed as solutions to a
set of (in)equations. Since most properties are undecidable, an exact solution of
these (in)equations is often not possible. We are thus led to construct reasonable
approximations. Depending on the structure of the domain of the (in)equations
there are various options regarding a formal definition of “reasonable approxi-
mation”. In particular, we can consider the following two settings:

Order Theoretic: This is based on partial orders or lattice structures and
aims at computing the best “safe” solution. Classical Abstract Interpretation
[15,16] utilises the notion of a Galois Connection to achieve this aim.

Linear Structures: This is based on linear spaces or operator algebras and al-
lows for the construction of least squares solution as “closest” fit. Probabilis-
tic Abstract Interpretation [17] uses the so-called Moore-Penrose Pseudo-
inverse for this purpose.

In this paper we will assume the second setting as the base of our treatment.

4.1 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation (PAI) is a general framework introduced
in [17] for the static analysis of probabilistic programs. Similarly to the classical
abstract interpretation framework, it provides general techniques for construct-
ing approximations of the semantics of a system relatively to a given property of
interest. However, the correctness of these approximations which is guaranteed in
the classical case by the order-theoretic notion of Galois connection, is replaced
in PAI by a notion of closeness which includes some quantitative measurement of
the loss of precision. This is obtained by moving from the order-theoretic setting
of classical abstract interpretation to one based on linear spaces and linear op-
erators, where the notion of so-called Moore-Penrose pseudo-inverse (see below)
replaces the classical notion of a Galois connection. Moreover, the properties
of the Moore Penrose inverse guarantees the optimality of the approximations
constructed via PAI: they are the closest possible to the concrete semantics of
the given system.

134 A. Di Pierro, C. Hankin, and H. Wiklicky

The definition of a probabilistic abstract interpretation is given in terms
of probabilistic domains. A probabilistic domain is essentially a space which
represents the distributions Dist(S) on a state space S. In the general case
including infinite dimensional vector spaces, a probabilistic domain is defined
as the Hilbert space H(S) = �2(S) on S (cf. [18,19]). However, in the finite
dimensional case this is equivalent to consider the simple vector space V(S),
built out of all linear combinations of elements from S with coefficients in R:

V(S) =
{∑

css | cs ∈ R, s ∈ S
}
.

For the purpose of this work it is sufficient for us to consider only finite dimen-
sional vector spaces, so we will present the PAI framework in this
restricted setting.

Definition 2. Let C an D be two probabilistic domains. A probabilistic abstract
interpretation is a pair of bounded linear operators A : C → D and G : D → C,
between (the concrete domain) C and (the abstract domain) D, such that G is
the Moore-Penrose pseudo-inverse of A, and vice versa.

A particular PAI technique similar to the classical abstract interpretation
technique defining a so-called induced abstract semantics consists in the follow-
ing: Given a linear operator Φ on some Hilbert space V expressing the probabilis-
tic semantics of a concrete system, and a linear abstraction function A : V → W
from the concrete domain into an abstract domain W , we compute the Moore-
Penrose pseudo-inverse G = A† of A. The abstract semantics can then be defined
as the linear operator on the abstract domain W :

Ψ = A ◦ Φ ◦ G.

Moore-Penrose Pseudo-Inverse. We can define the notion of a Moore-
Penrose pseudo-inverse of a bounded linear operator A ∈ B(H) on a Hilbert
space H purely algebraically (cf. Section 4.7 of [20], and Section 8.43 of [21]).
This is sufficient for the finite-dimensional setting, while for dealing with the
infinite-dimensional case we need some topological considerations [22].

Definition 3. Let C and D be two Hilbert spaces and A : C → D a bounded
linear map between them. A bounded linear map A† = G : D → C is the Moore-
Penrose pseudo-inverse of A iff

(i) A ◦ G = PA, and
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.

In the finite dimensional case, the Moore-Penrose pseudo inverse of a linear
operator always exists and is unique; moreover various algorithms are known
for its construction [23]. A general technique for computing the Moore-Penrose
pseudo-inverse of infinite operators is to approximate them by a sequence of

Probabilistic Linda-Based Coordination Languages 135

finite dimensional operators. For infinite dimensional operators — i.e. operator
algebras over infinite dimensional Hilbert spaces — various results guarantee
the existence of the Moore-Penrose pseudo-inverse for every operator. For the
general case we mention here the one in [20] (Theorem 4.24) which also states
how one can “construct” the Moore-Penrose Pseudo-Inverse.

Probabilistic Abstract Interpretation and Classification. In many cases the ab-
straction is a surjective function. An alternative view of abstraction in this case
is that it maps concrete values to equivalence classes. Equivalence relations can
be represented by a particular kind of operators, namely classification operators.
In the finite dimensional setting these can be described as follows.

We call an n × m-matrix K a classification matrix, if it is a 0/1-matrix,
where every row has exactly one non-zero entry and columns have at least one
non-zero entry. Classification matrices are thus particular kinds of stochastic
matrices. We denote by K(n, m) the set of all n× m-classification matrices. Let
X = {x1, . . . , xn} be a finite set. Then for each equivalence relation ≈ on X with
|X/≈| = m, there exists a classification matrix K ∈ K(n, m) and vice versa.

The Moore-Penrose pseudo-inverse of a classification matrix K ∈ K(n, m)
corresponds to its normalised transpose or adjoint (these coincide for real
K), i.e.

K† = N (KT) = N (K∗).

where the normalisation operation N is defined for a matrix A by:

N (A)ij =

{
Aij

aj
if aj =

∑
i Aij �= 0

0 otherwise.

4.2 Analysis – Discrete Case

In order to exploit the framework of Probabilistic Abstract Interpretation in
the case of probabilistic KLAIM we need a semantics given in terms of linear
(transition) operators. This is provided by the operators P and P(t) introduced
in Section 3.2.

In the case of the discrete time model we have to consider a single step op-
erator P which describes the probabilistic transitions between (network) config-
urations. For KLAIM we can construct this operator either as a direct encoding
of the operational semantics (as in Section 3.2) or compositionally reflecting the
two-layered semantics:

The local semantics defines a Probabilistic Transition System (PTS) — this
is represented as a linear operator, in particular a stochastic matrix [24].

The global semantics is then constructed compositionally as the tensor prod-
uct of the local semantics [25].

Based on the concrete semantics given by P we can construct an abstract
induced semantics GPA using some abstraction operator A and its Moore-
Penrose pseudo inverse G = A†. This amounts effectively to a “simplification”
of the DTMC by reducing the dimension of the transition matrix P.

136 A. Di Pierro, C. Hankin, and H. Wiklicky

Example 1. Consider the following 5 × 5 transition matrix:

P =

⎛⎜⎜⎜⎜⎝
0 3

4
1
4 0 0

3
4 0 1

4 0 0
1
4

1
4 0 1

4
1
4

0 0 1
4 0 3

4
0 0 1

4
3
4 0

⎞⎟⎟⎟⎟⎠
Suppose that we abstract states into one of two classes. This corresponds

to partition the set of states in two equivalence classes which can suitably be
represented via the classification operator K and its pseudo-inverse K†:

K =

⎛⎜⎜⎜⎜⎝
1 0
1 0
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎠ and K† =
(

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

)

In this case the abstract 2 × 2 transition matrix is:

K†PK =
(

3
4

1
4

1
6

5
6

)
,

which can then be safely used to replace P to simplify our analysis. Note that
in our PAI framework “safely” means that the approximation error we make is
controllable, that is always quantifiable.

In fact, one advantage of the use of linear operators is that we can measure
them. The standard way to measure the “size” of a linear operator is via an
operator norm which in turn may have its origins in a vector norm. This allows
us, for example, to quantify the error introduced by the abstraction. The close
relation between least squares approximation and the Moore-Penrose pseudo-
inverse (cf. e.g. [23]) guarantees that the abstract induced semantics is giving
the closest (with respect to the Euclidean norm) approximation to the concrete
behaviour among all the possible ones.

4.3 Analysis – Continuous Case

We can also apply this simplification technique to CTMCs. Concretely, we have
to construct the generator Q as described in Section 3.2. The probability that the
network configuration N(t) at any time t is Nj starting from initial configuration
Ni is then P(t)ij = P(N(t) = nj | N(0) = Ni) = (exp(tQ))ij .

In the same way as with the discrete time model we can simplify the operator
P(t) by subjecting it to an abstract interpretation.

In fact, the common method for effectively computing P(t) is closely related
to a particular form of probabilistic abstract interpretation. It is based on the fact
that every matrix — in particular the generator matrix Q — can be “abstracted”
into a so called Jordan canonical form, e.g. [26–Chap 7] or [27–Sect III.12].

Probabilistic Linda-Based Coordination Languages 137

A Jordan matrix J is a square matrix of the form J = diag(Jr1(λ1), . . . ,Jrm

(λm) with Jri(λi) so called Jordan blocks, i.e. ri × ri matrices of the form:

Jri(λi) =

⎛⎜⎜⎜⎜⎜⎝
λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 1
0 0 0 · · · 0 λi

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
λi 0 0 · · · 0 0
0 λi 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 0
0 0 0 · · · 0 λi

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠
Theorem 1. [27–Thm III.12.2] Any complex square matrix A is similar to
a Jordan matrix J, i.e. there exists an invertible matrix X such that A =
X−1JX = X†JX.

As every Jordan block Jri(λi) is the sum of a diagonal Dri(λi) = diag
(λi, . . . ,λi) and a strict upper triangular matrix Nri the same holds for Jor-
dan matrices, i.e. J = D + N. Furthermore, it is easy to see that N is nilpotent,
i.e. there exists a n ∈ N such that Nm is the null matrix, and that D and N
commute: DN = ND, see e.g. [26,27].

This allows for an efficient way of computing P(t) = exp(tQ): With the
Jordan canonical form J of Q, i.e. Q = X−1JX, we get:

exp(tQ) =
∞∑

k=0

1
k!

(tQ)k =
∞∑

k=0

tk

k!
(X−1JX)k =

∞∑
k=0

tk

k!
X−1JkX

= X−1

(∞∑
k=0

1
k!

(tJ)k

)
X = X−1 exp(tJ)X

Furthermore, we can compute the exponential of a Jordan matrix J easily (ex-
ploiting the fact that D and J commute):

exp(tQ) = exp(tD + tN)) = exp(tD) exp(tN).

Finally, we observe that the exponential of diagonal matrices D is simply:

exp(diag(d1, d2, . . . , dn)) = diag(exp(d1), exp(d2), . . . , exp(dn))

and that for nilpotent matrices N the series

exp(N) =
∞∑

k=0

1
k!

Nk =
m∑

k=0

1
k!

Nk

degenerates to a finite sum, with m the nilpotency of N. In the case of diagonal-
isable matrices Q the Jordan canonical form is a diagonal matrix, i.e. N is the
null matrix, which means that we obtain P(t) = exp(tQ) = X−1 exp(tD)X =
X−1diag(exp(td1), exp(td2), . . . , exp(tdn))X.

This approach is a special instance of a general way for solving linear differ-
ential equations, see e.g. [28]. Unfortunately, the key property exp(X−1JX) =
X−1 exp(J)X does not hold if we consider proper abstractions, i.e. X† instead
of X−1, i.e. exp(X†JX) �= X† exp(J)X. This is due to the fact that (X†JX)k �=
X†JkX as XX† �= I. The factor XX† describes exactly the approximation error
we introduce by considering the abstract in place of the concrete semantics.

138 A. Di Pierro, C. Hankin, and H. Wiklicky

5 Conclusions

We have explored the design space for adding quantitative information to coordi-
nation languages. We have used a basic Linda calculus for this. We showed that
one could either add priorities or probabilities; we also demonstrated how such
quantities could be added to the data in the tuple space or to the processes for
scheduling parallel threads. We have also shown how to add mobility, as in the
KLAIM language. We introduced probabilities both at the local (or process) level
and at the network level. We also presented a continuous-time model where we
use rates to determine how often a node is active. This information contributes
to the probability of network updates.

The probabilistic version of KLAIM we have introduced in this paper is
closely related to various probabilistic programming languages and probabilis-
tic process calculi proposed in the recent literature. Among these we mention
discrete time approaches — e.g. PCCS [29,30], PCCP [31], etc. — as well as
continuous time approaches — e.g. PEPA [11], Stochastic π calculus [32].

Work in performance analysis is often based on probabilistic process calculi,
for example, on Hillston’s PEPA [33], or EMPA by Bernardo and Gorrieri [34].
One of the long term aims of the work presented in this paper is the develop-
ment of semantics based approaches towards performance analysis along similar
lines as in classical program analysis. We also aim to investigate more closely
the relation of our work to recent work on probabilistic verification and model
checking, such as PRISM [35] and de Alfaro [36].

We have considered here a model based on Poisson processes which are some
of the simplest examples of continuous-time Markov chains. More complicated
continuous time behaviour could be considered, but this might require more
parameters than just rate to describe the time distributions [14]. The language
could also be extended so as to allow for a dynamic change of probabilities and
rates, i.e. for rate and probability which depend on the time. These last two
extensions require further work.

References

1. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

2. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35 (1992) 97–107

3. Arbab, F.: Manifold. Future Generation Computer Systems 10 (1994) 273–277
4. Sands, D., Weichert, M.: From gamma to cbs: Refining multiset transformations

with broadcasting processes. In El-Rewini, H., ed.: Proceedings of 31st Hawaii
International Conference on System Sciences. Volume VII., IEEE (1998) 265–274

5. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in
the tuple space coordination model. Theoretical Computer Science (To appear)

6. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In Nicola, R.D.,
Ferrari, G., Meredith, G., eds.: Proceedings of Coordination 2004. Number 2949 in
Lecture Notes in Computer Science, Berlin — Heidelberg — New York, Springer
Verlag (2004) 119–134

Probabilistic Linda-Based Coordination Languages 139

7. Di Pierro, A., Hankin, C., Wiklicky, H.: Continuous-time probabilistic KLAIM. In:
SecCo’04 — CONCUR Workshop on Security Issues in Coordination Models, Lan-
guages, and Systems. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

8. Nicola, R.D., Latella, D., Massink, M.: Formal modeling and quantitative analysis
of KLAIM-based mobile systems. In: 20th Annual ACM Symposium on Applied
Computing, ACM (2005)

9. van Glabbeek, R., Smolka, S., Steffen, B.: Reactive, generative and stratified models
of probabilistic processes. Information and Computation 121 (1995) 59–80

10. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24 (1998)
315–330

11. Hillston, J.: PEPA: Performance enhanced process algebra. Technical Report
CSR-24-93, University of Edinburgh, Edinburgh, Scotland (1993)

12. Tijms, H.C.: Stochastic Models – An Algorithmic Approach. John Wiley & Sons,
Chichester (1994)

13. Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, Cambridge (1997)

14. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory.
second edn. Vieweg Verlag (2002)

15. Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13 (1992) 103–180

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Verlag, Berlin – Heidelberg (1999)

17. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-
abilistic Abstract Interpretation. In: Proceedings of PPDP’00, Montréal, Canada,
ACM (2000) 127–138

18. Di Pierro, A., Wiklicky, H.: Linear structures for concurrency in probabilistic
programming languages. In: Proceedings of MFCSIT00 – First Irish Conference on
the Mathematical Foundations of Computer Science and Information Technology,
Cork, Ireland. Volume 40 of Electronic Notes in Theoretical Computer Science.,
Elsevier (2001)

19. Di Pierro, A., Wiklicky, H.: Operator algebras and the operational semantics of
probabilistic languages. In: Proceedings of MFCSIT04 – Third Irish Conference on
the Mathematical Foundations of Computer Science and Information Technology,
Dublin, Ireland. Electronic Notes in Theoretical Computer Science, Elsevier (To
appear)

20. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices.
Springer Verlag, New York (1999)

21. Deutsch, F.: Best Approximation in Inner Product Spaces. Volume 7 of CMS
Books in Mathematics. Springer Verlag, New York — Berlin (2001)

22. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340 (2005) 3–56

23. Ben-Israel, A., Greville, T.: Generalised Inverses — Theory and Applications.
second edn. Volume 15 of CMS Books in Mathematics. Springer Verlag, New York
— Berlin (2003)

24. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate
process equivalences. In Lugiez, D., ed.: Proceedings of CONCUR’03 — Inter-
national Conference on Concurrency Theory. Number 2761 in Lecture Notes in
Computer Science, Berlin — Heidelberg — New York, Springer Verlag (2003) 508–
522

140 A. Di Pierro, C. Hankin, and H. Wiklicky

25. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative static analysis of distributed
systems. Journal of Functional Programming 15 (2005) 1–47

26. Friedberg, S., Insel, A., Spence, L.: Linear Algebra. forth edn. Prentice Hall (2003)
27. Prasolov, V.: Problems and Theorems in Linear Algebra. Volume 134 of Translation

of Mathematical Monographs. American Mathematical Society, Providence, Rhode
Island (1994)

28. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press, Orlando (1974)

29. Giacalone, A., Jou, C.C., Smolka, S.: Algebraic reasoning for probabilistic con-
current systems. In: Proceedings of the IFIP WG 2.2/2.3 Working Conference on
Programming Concepts and Methods, Sea of Galilee, North-Holland (1990) 443–
458

30. Jonsson, B., Yi, W., Larsen, K.: 11. In: Probabilistic Extensions of Process Alge-
bras. Elsevier Science, Amsterdam (2001) 685–710 see [?].

31. Di Pierro, A., Wiklicky, H.: Quantitative observables and averages in Probabilistic
Concurrent Constraint Programming. In Apt, K., Kakas, T., Monfroy, E., Rossi,
F., eds.: New Trends in Constraints — Selected Papers of the ERCIM/Compulog
Workshop on Constraints, October 1999, Paphos, Cyprus. Number 1865 in Lecture
Notes in Computer Science, Berlin — Heidelberg — New York, Springer Verlag
(2000)

32. Priami, C.: Stochastic π-calculus. Computer Journal 38 (1995) 578–589
33. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press (1996)
34. Bernardo, M., Gorrieri, R.: A tutorial on empa: A theory of concurrent processes

with nondeterminism, priorities, probabilities and time. Technical Report UBLCS-
96-17, Department of Computer Science, University of Bologna (1997)

35. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. In Katoen, J.P., Stevens, P., eds.: Proceedings of
TACAS’02. Volume 2280 of Lecture Notes in Computer Science., Springer Verlag
(2002) 52–66

36. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science (1998)

Games with Secure Equilibria�,��

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, USA

{c krish, tah, mju}@eecs.berkeley.edu

Abstract. In 2-player non-zero-sum games, Nash equilibria capture the
options for rational behavior if each player attempts to maximize her
payoff. In contrast to classical game theory, we consider lexicographic
objectives: first, each player tries to maximize her own payoff, and then,
the player tries to minimize the opponent’s payoff. Such objectives arise
naturally in the verification of systems with multiple components. There,
instead of proving that each component satisfies its specification no mat-
ter how the other components behave, it often suffices to prove that each
component satisfies its specification provided that the other components
satisfy their specifications. We say that a Nash equilibrium is secure if
it is an equilibrium with respect to the lexicographic objectives of both
players. We prove that in graph games with Borel winning conditions,
which include the games that arise in verification, there may be several
Nash equilibria, but there is always a unique maximal payoff profile of
a secure equilibrium. We show how this equilibrium can be computed in
the case of ω-regular winning conditions, and we characterize the mem-
ory requirements of strategies that achieve the equilibrium.

1 Introduction

We consider 2-player non-zero-sum games, i.e., non-strictly competitive games. A
possible behavior of the two players is captured by a strategy profile (σ, π), where
σ is a strategy of player 1, and π is a strategy of player 2. Classically, the behavior
(σ, π) is considered rational if the strategy profile is a Nash equilibrium [7] —
that is, if neither player can increase her payoff by unilaterally changing her
strategy. Formally, let vσ,π

1 be the real-valued payoff of player 1 if the strategies
(σ, π) are played, and let vσ,π

2 be the corresponding payoff of player 2. Then
(σ, π) is a Nash equilibrium if (1) vσ,π

1 ≥ vσ′,π
1 for all player 1 strategies σ′, and

(2) vσ,π
2 ≥ vσ,π′

2 for all player 2 strategies π′. Nash equilibria formalize a notion
of rationality which is strictly internal : each player cares about her own payoff
but does not in the least care (cooperatively or adversarially) about the other
player’s payoff.
� This research was supported in part by the ONR grant N00014-02-1-0671, the

AFOSR MURI grant F49620-00-1-0327, and the NSF grant CCR-0225610.
�� This is an extended version of the paper “Games with Secure Equilibria” that ap-

peared in the proceedings of Logic in Computer Science (LICS), 2004.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 141–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

Choosing Among Nash Equilibria. A classical problem is that many games
have multiple Nash equilibria, and some of them may be preferable to others.
For example, one might partially order the equilibria by (σ, π) ((σ′, π′) if both
vσ,π
1 ≥ vσ′,π′

1 and vσ,π
2 ≥ vσ′,π′

2 . If a unique maximal Nash equilibrium exists
in this order, then it is preferable for both players. However, maximal Nash
equilibria may not be unique. In these cases external criteria, such as the sum
of the payoffs for both players, have been used to evaluate different rational
behaviors [9,14]. These external criteria, which are based on a single preference
order on strategy profiles, are cooperative, in that they capture social aspects of
rational behavior. We define and study, for the first time, an adversarial external
criterion for rational behavior. Put simply, we assume that each player attempts
to minimize the other player’s payoff as long as, by doing so, she does not decrease
her own payoff. This yields two different preference orders on strategy profiles,
one for each player, and gives rise to a new notion of equilibrium.

Adversarial External Choice. According to our notion of rationality, among
two strategy profiles (σ, π) and (σ′, π′), player 1 prefers (σ, π), denoted (σ, π) (1

(σ′, π′), if either vσ,π
1 > vσ′,π′

1 , or both vσ,π
1 = vσ′,π′

1 and vσ,π
2 ≤ vσ′,π′

2 . In other
words, the preference order (1 of player 1 is lexicographic: the primary goal of
player 1 is to maximize her own payoff; the secondary goal is to minimize the
opponent’s payoff. The preference order (2 of player 2 is defined symmetrically.
It should be noted that, defined in this way, adversarial external choice cannot
be internalized uniformly over all games by changing the payoff functions of the
two players: if vσ,π

1 = vσ′,π′
1 and vσ,π

2 ≤ vσ′,π′
2 , then uniform internalization would

require to increase vσ,π
1 by an arbitrarily small ε > 0.

Secure Equilibria. The two orders (1 and (2 on strategy profiles, which
express the preferences of the two players, induce the following refinement of
the Nash equilibrium notion: (σ, π) is a secure equilibrium if (1) (vσ,π

1 , vσ,π
2) (1

(vσ′,π
1 , vσ′,π

2) for all player 1 strategies σ′, and (2) (vσ,π
1 , vσ,π

2) (2 (vσ,π′
1 , vσ,π′

2)
for all player 2 strategies π′. Note that every secure equilibrium is a Nash equi-
librium, but a Nash equilibrium need not be secure. The name “secure” equi-
librium derives from the following equivalent characterization. We say that a
strategy profile (σ, π) is secure if any rational deviation of player 2 —i.e., a
deviation that does not decrease her payoff— will not decrease the payoff of
player 1, and symmetrically, any rational deviation of player 1 will not decrease
the payoff of player 2. Formally, (σ, π) is secure if for all player 2 strategies π′,
if vσ,π′

2 ≥ vσ,π
2 then vσ,π′

1 ≥ vσ,π
1 , and for all player 1 strategies σ′, if vσ′,π

1 ≥ vσ,π
1

then vσ′,π
2 ≥ vσ,π

2 . The secure profile (σ, π) can thus be interpreted as a contract
between the two players which enforces cooperation: any unilateral selfish devi-
ation by one player cannot put the other player at a disadvantage if she follows
the contract. It is not difficult to show (see Section 2) that a strategy profile
is a secure equilibrium iff it is both a secure profile and a Nash equilibrium.
Thus, the secure equilibria are those Nash equilibria which represent enforceable
contracts between the two players.

Games with Secure Equilibria 143

Motivation: Verification of Component-Based Systems. The motivation
for our definitions comes from verification. There, one would like to prove that
a component of a system (player 1) can satisfy a specification no matter how
the environment (player 2) behaves [3]. Classically, this is modeled as a strictly
competitive (zero-sum) game, where the environment’s objective is the com-
plement of the component’s objective. However, the zero-sum model is often
naive, as the environment itself typically consists of components, each with its
own specification (i.e., objective). Moreover, the individual component specifi-
cations are usually not complementary; a common example is that each com-
ponent must maintain a local invariant. So a more appropriate approach is to
prove that player 1 can meet her objective no matter how player 2 behaves as
long as player 2 does not sabotage her own objective. In other words, classical
correctness proofs of a component assume absolute worst-case behavior of the
environment, while it would suffice to assume only relative worst-case behavior
of the environment —namely, relative to the assumption that the environment
itself is correct (i.e., meets its specification). Such relative worst-case reasoning
called assume-guarantee reasoning [1,2,13] so far has not been studied in the
natural setting offered by game theory.

Existence and Uniqueness of Maximal Secure Equilibria. We will see
that in general games, such as matrix games, there may be multiple secure
equilibrium payoff profiles, even several incomparable maximal ones. However,
the games that occur in verification have a special form. They are played on
directed graphs whose nodes represent system states, and whose edges represent
system transitions. The nodes partitioned into two sets: in player 1 nodes, the
first player chooses an outgoing edge, and in player 2 nodes, the second player
chooses an outgoing edge. By repeating these choices ad infinitum, an infinite
path through the graph is formed, which represents a system trace. The objective
ϕi of each player i is a set of infinite paths; for example, an invariant (or “safety”)
objective is the set of infinite paths that do not visit unsafe states. Each player i
attempts to satisfy her objective ϕi by choosing a strategy that ensures that the
outcome of the game lies in the set ϕi. The objective ϕi is typically an ω-regular
set (specified, e.g., in temporal logic), or more generally, a Borel set [8] in the
Cantor topology on infinite paths. We call these games 2-player non-zero-sum
graph games with Borel objectives. Our main result shows that for these games,
which may have multiple maximal Nash equilibria, there always exists a unique
maximal secure equilibrium payoff profile. In other words, in graph games with
Borel objectives there is a compelling notion of rational behavior for each player,
which is (1) a classical Nash equilibrium, (2) an enforceable contract (“secure”),
and (3) a guarantee of maximal payoff for each player among all behaviors that
achieve (1) and (2).

Examples. Consider the game graph shown in Fig. 1. Player 1 chooses the
successor node at square nodes and her objective is to reach the target s4, a
reachability (co-safety) objective. Player 2 chooses the successor node at diamond
nodes and her objective is to reach s3 or s4, also a reachability objective. There
are two player 1 strategies: σ1 chooses the move s0 → s1, and σ2 chooses s0 → s2.

144 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

s0

s4

s1

s3

s2

R2 R2,R1

Fig. 1. A graph game with reachability objectives

s0

s2 s3

B1
s1

s4B2

Fig. 2. A graph game with Büchi objectives

There are also two player 2 strategies: π1 chooses s1 → s3, and π2 chooses
s1 → s4. The strategy profile (σ1, π1) leads the game into s3 and therefore gives
the payoff profile (0,1), meaning player 1 loses and player 2 wins (i.e., only
player 2 reaches her target). The strategy profiles (σ1, π2), (σ2, π1), and (σ2, π2)
give the payoffs (1,1), (0,0), and (0,0), respectively. All four strategy profiles
are Nash equilibria; for example, in (σ1, π1) player 1 does not have an incentive
to switch to strategy σ2 (which would still give her payoff 0), and neither does
player 2 have an incentive to switch to π2 (she is already getting payoff 1).
However, the strategy profile (σ1, π1) is not a secure equilibrium, because player 2
can lower player 1’s payoff (from 1 to 0) without changing her own payoff by
switching to strategy σ2. Similarly, the strategy profile (σ1, π2) is not secure,
because player 1 can lower player 2’s payoff without changing her own payoff by
switching to σ1. So if both players, in addition to maximizing their own payoff,
also attempt to minimize the opponents payoff, then the resulting payoff profile
is unique, namely, (0,0). In other words, in this game, the only rational behavior
for both players is to deny each other’s objectives.

This is not always the case: sometimes it is beneficial for both players to
cooperate to achieve their own objectives, with the result that both players win.
Consider the game graph shown in Fig. 2. Both players have Büchi objectives:
player 1 (square) wants to visit s0 infinitely often, and player 2 (diamond) wants
to visit s4 infinitely often. If player 2 always chooses s1 → s0 and player 1
always chooses s2 → s4, then both players win. This Nash equilibrium is also
secure: if player 1 deviates by choosing s2 → s0, then player 2 can “retaliate”
by choosing s0 → s3; similarly, if player 2 deviates by choosing s1 → s2, then
player 2 can retaliate by s2 → s3. It follows that for purely selfish motives (and
not some social reason), both players have an incentive to cooperate to achieve
the maximal secure equilibrium payoff (1,1).

Outline and Results. In Section 2, we define the notion of secure equilibrium
and give several interpretations through alternative definitions. In Section 3 we

Games with Secure Equilibria 145

prove the existence and uniqueness of maximal secure equilibria in graph games
with Borel objectives. The proof is based on the following classification of strate-
gies. A player 1 strategy is called strongly winning if it ensures that player 1 wins
and player 2 loses (i.e., the outcome of the game satisfies ϕ1 ∧ ¬ϕ2). A player 1
strategy is retaliating if it ensures that player 1 wins if player 2 wins (i.e., the
outcome satisfies ϕ2 → ϕ1). In other words, a retaliating strategy for player 1
ensures that if player 2 causes player 1 to lose, then player 2 will lose too. If
both players follow retaliating strategies (σ, π), they may both win —in this
case, we say that (σ, π) is a winning pair of retaliating strategies— or they may
both lose. We show that at every node of a graph game with Borel objectives,
either one of the two players has a strongly winning strategy, or there is a pair of
retaliating strategies. Based on this insight, we give an algorithm for computing
the secure equilibria in graph games in the case that both players’ objectives are
ω-regular. In Section 4, we analyze the memory requirements of strongly winning
and retaliating strategies in graph games with ω-regular objectives. Our results
(in Table 1 and 2) consider safety, reachability, Büchi, co-Büchi, and general
parity objectives. We show that strongly winning and retaliating strategies often
require memory, even in the simple case that a player pursues a reachability ob-
jective. In Section 5, we generalize the notion of secure equilibria from 2-player
to n-player games. We show that there can be multiple maximal secure equilibria
in 3-player graph games with reachability objectives.

2 Definitions

In a secure game the objective of player 1 is to maximize her own payoff and then
minimize the payoff of player 2. Similarly, player 2 maximizes her own payoff and
then minimizes the payoff of player 1. We want to determine the best payoff that
each player can ensure when both players play according to these preferences. We
formalize this as follows. A strategy profile (σ, π) is a pair of strategies, where σ
is a player 1 strategy and π is a player 2 strategy. The strategy profile (σ, π) gives
rise to a payoff profile (vσ,π

1 , vσ,π
2), where vσ,π

1 is the payoff of player 1 if the two
players follow the strategies σ and π respectively, and vσ,π

2 is the corresponding
payoff of player 2. We define the player 1 preference order)1 and the player 2
preference order)2 on payoff profiles lexicographically:

(v1, v2) ≺1 (v′1, v
′
2) iff (v1 < v′1) ∨ (v1 = v′1 ∧ v2 > v′2),

that is, player 1 prefers a payoff profile which gives her greater payoff, and if two
payoff profiles match in the first component, then she prefers the payoff profile
in which the player 2’s payoff is minimized; symmetrically,

(v1, v2) ≺2 (v′1, v
′
2) iff (v2 < v′2) ∨ (v2 = v′2 ∧ v1 > v′1).

Given two payoff profiles (v1, v2) and (v′1, v
′
2), we write (v1, v2) = (v′1, v

′
2) iff

v1 = v′1 and v2 = v′2, and (v1, v2))1 (v1, v
′
2) iff either (v1, v2) ≺1 (v′1, v′2) or

(v1, v2) = (v′1, v
′
2). We define)2 analogously.

146 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

Definition 1 (Secure strategy profiles). A strategy profile (σ, π) is secure if
the following two conditions hold:

∀π′. (vσ,π′
1 < vσ,π

1) → (vσ,π′
2 < vσ,π

2)

∀σ′. (vσ′,π
2 < vσ,π

2) → (vσ′,π
1 < vσ,π

1)

A secure strategy for player 1 ensures that if player 2 tries to decrease player 1’s
payoff, then player 2’s payoff decreases as well, and vice versa.

Definition 2 (Secure equilibria). A strategy profile (σ, π) is a secure equi-
librium if the strategy profile is a Nash equilibrium and it is secure.

Lemma 1 (Equivalent characterization). The strategy profile (σ, π) is a se-
cure equilibrium iff the following two conditions hold:

∀π′. (vσ,π′
1 , vσ,π′

2))2 (vσ,π
1 , vσ,π

2)

∀σ′. (vσ′,π
1 , vσ′,π

2))1 (vσ,π
1 , vσ,π

2)

Proof. Given (σ, π) is a Nash equilibrium strategy profile we have for all π′,
vσ,π′
2 ≤ vσ,π

2 . Since the strategy profile is also a secure strategy profile for all
strategy π′ we have (vσ,π′

1 < vσ,π
1) → (vσ,π′

2 < vσ,π
2). It follows from above that

for any arbitrary π′ the following condition hold:

(vσ,π′
2 = vσ,π

2 ∧ vσ,π
1 ≤ vσ,π′

1) ∨ (vσ,π′
2 < vσ,π

2).

Hence for all π′ we have (vσ,π′
1 , vσ,π′

2))2 (vσ,π
1 , vσ,π

2). The argument for the other
case is symmetric.

Hence neither player 1 nor player 2 has any incentive to switch from the strat-
egy profile (σ, π) to increase the payoff profile according to their respective payoff
profile ordering.

Example 1 (Matrix games). A secure equilibrium need not exist in a matrix
game. We give an example of a matrix game where no Nash equilibrium is
secure. Consider the game M1 below, where the row player can choose row 1 or
row 2 (denoted r1 and r2, respectively), and the column player chooses between
the two columns (denoted c1 and c2). The first component of the payoff is the
row player payoff, and the second component is the column player payoff.

M1 =
[
(3, 3) (1, 3)
(3, 1) (2, 2)

]
In this game the strategy profile (r1, c1) is the only Nash equilibrium. But (r1, c1)
is not a secure strategy profile, because if the row player plays r1, then the
column player playing c2 can still get payoff 3 and decrease the row player’s
payoff to 1. In the game M2 there are two Nash equilibria, namely, (r1, c2) and
(r2, c1), and the strategy profile (r2, c1) is a secure strategy profile as well. Hence
the strategy profile (r2, c1) is a secure equilibrium. However the strategy profile
(r1, c2) is not secure.

Games with Secure Equilibria 147

M2 =
[

(0, 0) (1, 0)
(1
2 , 1

2) (1
2 , 1

2)

]
Multiple secure equilibria can exist, as in the case, for example, in a matrix
game where all entries of the matrix are the same. We now present an example
of a matrix game with multiple secure equilibria profile. Consider the following
matrix game M3. The strategy profile (r1, c1) and (r2, c2) are both secure equi-
libria. The former has a payoff profile (2, 1) and the later has a payoff profile
(1, 2). Hence there can be multiple secure equilibria payoff profiles and in case
there are multiple secure equilibria payoff profiles the maximal payoff profile is
not always unique.

M3 =
[
(2, 1) (0, 0)
(0, 0) (1, 2)

]

3 2-Player Non-zero-sum Games on Graphs

We consider 2-player infinite path-forming games played on graphs. A game
graph G = ((V, E), (V1, V2)) consists of a directed graph (V, E), where V is the
set of states (vertices) and E is the set of edges, and a partition (V1, V2) of the
states. For technical convenience we assume that every state has at least one
outgoing edge. The two players, player 1 and player 2, keep moving a token
along the edges of the game graph: player 1 moves the token from states in V1,
and player 2 moves the token from states in V2. A play is an infinite path
Ω = 〈s0, s1, s2, . . .〉 through the game graph, that is, (sk, sk+1) ∈ E for all
k ≥ 0. A strategy for player 1, given a prefix of a play (i.e., a finite sequence of
states), specifies a next state to extend the play. Formally, a strategy for player 1
is a function σ: V ∗ · V1 → V such that for all x ∈ V ∗ and s ∈ V1, we have
(s, σ(x · s)) ∈ E. A strategy π for player 2 is defined symmetrically. We write
Σ and Π to denote the sets of strategies for player 1 and player 2, respectively.
A strategy is memoryless if it is independent of the history of play. Formally, a
strategy τ of player i, where i ∈ {1, 2}, is memoryless if τ(x · s) = τ(x′ · s) for
all x, x′ ∈ V ∗ and all s ∈ Vi; hence a memoryless strategy of player i can be
represented as a function τ : Vi → V . A playΩ = 〈s0, s1, s2, . . .〉 is consistent with
a strategy τ of player i if for all k ≥ 0, if sk ∈ Vi, then sk+1 = τ(s0, s1, . . . , sk).
Given a state s ∈ V , a strategy σ of player 1, and a strategy π of player 2, there
is a unique play Ωσ,π(s), the outcome of the game, which starts from s and is
consistent with both σ and π.

Objectives of the players are specified generally as sets ϕ ⊆ V ω of infinite
paths. We write Ω |= ϕ instead of Ω ∈ ϕ for infinite paths Ω and objectives ϕ.
We use boolean operators such as ∨, ∧, and ¬ on objectives to denote set union,
intersection, and complement. A Borel objective is a Borel set ϕ ⊆ V ω in the
Cantor topology on V ω. The following celebrated result of Martin establishes
that all games with Borel objectives are determined.

Theorem 1 (Borel determinacy [11]). For every 2-player graph game G,
every state s, and every Borel objective ϕ, either (1) there is a strategy σ of

148 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

player 1 such that for all strategies π′ of player 2, we have Ωσ,π′(s) |= ϕ, or
(2) there is a strategy π of player 2 such that for all strategies σ′ of player 1, we
have Ωσ′,π(s) |= ¬ϕ.

In verification, objectives are usually ω-regular sets. The ω-regular sets oc-
cur in the low levels of the Borel hierarchy (in Σ3 ∩ Π3) and form a robust and
expressive class for determining the payoffs of commonly used system specifica-
tions [10,16].

We consider non-zero-sum games on graphs. For our purposes, a graph game
(G, s,ϕ1,ϕ2) consists of a game graph G, say with state set V , together with
a start state s ∈ V and two Borel objectives ϕ1,ϕ2 ⊆ V ω. The game starts at
state s, player 1 pursues the objective ϕ1, and player 2 pursues the objective ϕ2

(in general, ϕ2 is not the complement of ϕ1). Player i ∈ {1, 2} gets payoff 1 if the
outcome of the game is a member of ϕi, and she gets payoff 0 otherwise. In the
following, we fix the game graphG and the objectives ϕ1 and ϕ2, but we vary the
start state s of the game. Thus we parameterize the payoffs by s: given strategies
σ and π for the two players, we write vσ,π

i (s) = 1 if Ωσ,π(s) |= ϕi, and vσ,π
i (s) = 0

otherwise, for i ∈ {1, 2}. Similarly, we sometimes refer to Nash equilibria and
secure strategy profiles of the graph game (G, s,ϕ1,ϕ2) as equilibria and secure
profiles at the state s.

3.1 Unique Maximal Secure Equilibria

Consider a game graph G with state set V , and Borel objectives ϕ1 and ϕ2 for
the two players.

Definition 3 (Maximal secure equilibria). For v,w ∈ {0, 1}, we write
Sv,w ⊆ V to denote the set of states s such that a secure equilibrium with
the payoff profile (v,w) exists in the game (G, s,ϕ1,ϕ2), that is, s ∈ Sv,w iff
there is a secure equilibrium (σ, π) at s such that (vσ,π

1 (s), vσ,π
2 (s)) = (v,w).

Similarly, MSv,w ⊆ Sv,w denotes the set of states s such that the payoff profile
(v,w) is a maximal secure equilibrium payoff profile at s, that is, s ∈ MS v,w iff
(1) s ∈ Sv,w and (2) for all v′,w′ ∈ {0, 1}, if s ∈ Sv′,w′ , then (v′,w′))1 (v,w)
and (v′,w′))2 (v,w).

We now define the notions of strongly winning and retaliating strategies, which
capture the essence of secure equilibria. A strategy for player 1 is strongly win-
ning if it ensures that the objective of player 1 is satisfied and the objective of
player 2 is not. A retaliating strategy for player 1 ensures that for every strategy
of player 2, if the objective of player 2 is satisfied, then the objective of player 1
is satisfied as well. We will show that every secure equilibrium either contains
a strongly winning strategy for one of the players, or it consists of a pair of
retaliating strategies.

Definition 4 (Strongly winning strategies). A strategy σ is strongly win-
ning for player 1 from a state s if she can ensure the payoff profile (1, 0) in the
game (G, s,ϕ1,ϕ2) by playing the strategy σ. Formally, σ is strongly winning

Games with Secure Equilibria 149

for player 1 if for all player 2 strategies π, we have Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2). The
strongly winning strategies for player 2 are defined symmetrically.

Definition 5 (Retaliating strategies). A strategy σ is a retaliating strategy
for player 1 from a state s if for all player 2 strategies π, we have Ωσ,π(s) |=
(ϕ2 → ϕ1). Similarly, a strategy π is a retaliating strategy for player 2 from s
if for all player 1 strategies σ, we have Ωσ,π(s) |= (ϕ1 → ϕ2). We write Re1(s)
and Re2(s) to denote the sets of retaliating strategies for player 1 and player 2
from s. A strategy profile (σ, π) is a retaliation strategy profile at a state s if
both σ and π are retaliating strategies from s.

Example 2 (Büchi-Büchi game). Recall the game shown in Fig. 2. Consider the
memoryless strategies of player 2 at state s0. If player 2 chooses s0 → s3, then
player 2 does not satisfy her Büchi objective. If player 2 chooses s0 → s2, then at
state s2 player 1 chooses s2 → s0, and hence player 1’s objective is satisfied, but
player 2’s objective is not satisfied. Thus, no memoryless strategy for player 2
can be a winning retaliating strategy at s0.

Now consider the strategy πg for player 2 which chooses s0 → s2 if between
the last two consecutive visits to s0 the state s4 was visited, and otherwise it
chooses s0 → s3. Given this strategy, for every strategy of player 1 that satisfies
player 1’s objective, player 2’s objective is also satisfied. Let σg be the player 1
strategy that chooses s2 → s4 if between the last two consecutive visits to s2

the state s0 was visited, and otherwise chooses s2 → s3. The strategy profile
(σg, πg) consists of a pair of winning retaliating strategies, as it satisfies the
Büchi objectives of both players. If instead, player 2 always chooses s0 → s3,
and player 1 always chooses s2 → s3, we obtain a memoryless retaliation strategy
profile, which is not winning for either player: it is a Nash equilibrium at state
s0 with the payoff profile (0, 0). Finally, suppose that at s0 player 2 always
chooses s2, and at s2 player 1 always chooses s0. This strategy profile is again
a Nash equilibrium, with the payoff profile (0, 1) at s0, but not a retaliation
strategy profile. This shows that at state s0 the Nash equilibrium payoff profiles
(0, 1), (0, 0), and (1, 1) are possible, but only (0, 0) and (1, 1) are secure.

Definition 6 (Winning sets). We define the following state sets in terms of
strongly winning and retaliating strategies.

– The sets of states where player 1 or player 2 have a strongly winning strategy,
denoted by W10 and W01, respectively:

W10 = { s ∈ V : ∃σ ∈ Σ. ∀π ∈ Π. Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2) }

W01 = { s ∈ V : ∃π ∈ Π. ∀σ ∈ Σ. Ωσ,π(s) |= (ϕ2 ∧ ¬ϕ1) }
– The set of states where both players have retaliating strategies and there

exists a retaliation strategy profile whose strategies satisfy the objectives of
both players:

W11 = { s ∈ V : ∃σ ∈ Re1(s). ∃π ∈ Re2(s). Ωσ,π(s) |= (ϕ1 ∧ ϕ2) }

150 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

– The set of states where both players have retaliating strategies and for every
retaliation strategy profile, neither the objective of player 1 nor the objective
of player 2 is satisfied:

W00 = { s ∈ V : Re1(s) �= ∅ and Re2(s) �= ∅ and
∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∧ ¬ϕ2) }

We show that the four sets W10, W01, W11, and W00 form a partition of the
state space. This result fully characterizes each state of a 2-player non-zero-sum
graph game with Borel objectives, just like the determinacy result (Theorem 1)
fully characterizes the zero-sum case. In the zero-sum case, where ϕ2 = ¬ϕ1, the
sets W10 and W01 specify the winning states for players 1 and 2, respectively,
W11 = ∅ by definition, and W00 = ∅ by determinacy. We also show that for all
v,w ∈ {0, 1}, we have MS v,w = Wv,w. It follows that for 2-player graph games
(1) secure equilibria always exist, and moreover, (2) there is always a unique
maximal secure equilibrium payoff profile. (Example 2 showed that there can be
multiple secure equilibria with different payoff profiles). The proof proceeds in
several steps.

Lemma 2. W10 = { s ∈ V : Re2(s) = ∅ } and W01 = { s ∈ V : Re1(s) = ∅ }.

Proof. We show the inclusion of one set in the other for both the direction:

1. W10 ⊆ { s : Re2(s) = ∅ } as a strongly winning strategy σ of player 1 to
satisfy (ϕ1 ∧ ¬ϕ2) against any strategy π of player 2 is a witness to exhibit
that there is no retaliation strategy for player 2.

2. It follows from Borel determinacy (Theorem 1) that from every state s in
V \ W10 there is a strategy π for player 2 to satisfy (¬ϕ1 ∨ ϕ2) against any
strategy of player 1. The strategy π is a retaliation strategy for player 2.
Hence we have V \ W10 ⊆ { s : Re2(s) �= ∅ }.

The claim is a consequence of the above facts.

Lemma 3. Consider the following sets:

T1 = { s ∈ V : ∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∧ ¬ϕ2) }

T2 = { s ∈ V : ∀σ ∈ Re1(s). ∀π ∈ Re2(s). Ωσ,π(s) |= (¬ϕ1 ∨ ¬ϕ2) }
Then T1 = T2.

Proof. The inclusion T1 ⊆ T2 follows from the fact that (¬ϕ1 ∧ ¬ϕ2) → (¬ϕ1 ∨
¬ϕ2). We show that T2 ⊆ T1. By the definition of retaliating strategies, if σ is
a retaliating strategy of player 1, then for all strategies π of player 2, we have
Ωσ,π(s) |= (ϕ2 → ϕ1), and thus Ωσ,π(s) |= (¬ϕ1 → ¬ϕ2). Symmetrically, if π is
a retaliating strategy of player 2, then for all strategies σ of player 1, we have
Ωσ,π(s) |= (¬ϕ2 → ¬ϕ1). The claim follows.

It follows from Lemma 2 and Lemma 3 that W00 = V \ (W01 ∪ W10 ∪ W11). It
also follows from Lemma 2 that the sets W01, W10, and W11 are disjoint. This
gives the following result.

Games with Secure Equilibria 151

Theorem 2 (State space partition). For all 2-player graph games with Borel
objectives, the four sets W10, W01, W11, and W00 form a partition of the state set.

Lemma 4. Consider the sets Sij for i, j ∈ { 0, 1 } as defined in Definition 3.
The following equalities hold:

S00 ∩ S01 = ∅; S00 ∩ S10 = ∅;

S01 ∩ S10 = ∅; S11 ∩ S01 = ∅; S11 ∩ S10 = ∅.

Proof. Consider a state s ∈ S10 and a secure equilibrium (σ, π) at s. Since the
strategy profile is secure and player 2 gets the least possible payoff, it follows that
for all player 1 strategies π′, the payoff for player 1 cannot decrease. Hence for
all player 2 strategies π′, we have Ωσ,π′(s) |= ϕ1. So there is no Nash equilibrium
at state s which assigns payoff 0 to player 1. Hence we have S10 ∩ S01 = ∅ and
S10 ∩ S00 = ∅. By symmetry, S01 ∩ S00 = ∅.

Consider a state s ∈ S11 and a secure equilibrium (σ, π) at s. Since the
strategy profile is secure, it ensures that for all player 2 strategies π′, ifΩσ,π′(s) |=
¬ϕ1, then Ωσ,π′ |= ¬ϕ2. Hence s �∈ S01. Thus we have S11 ∩ S01 = ∅, and by
symmetry S11 ∩ S10 = ∅.

Lemma 5. The following equalities hold:

MS 00 ∩ MS 01 = ∅; MS 00 ∩ MS 10 = ∅;

MS 01 ∩ MS 10 = ∅; MS 11 ∩ MS 00 = ∅.

Proof. The first three equalities follow from Lemma 4. The last equality follows
from the facts that (0, 0))1 (1, 1) and (0, 0))2 (1, 1). So if s ∈ MS 11, then
(0, 0) cannot be a maximal secure payoff profile at s.

Lemma 6. W11 = MS 11; W10 = MS 10; W01 = MS 01.

Proof. Consider a state s ∈ MS 10 and a secure equilibrium (σ, π) at s. Since
player 2 gets the least possible payoff and (σ, π) is a secure strategy profile, it
follows that for all strategies π′ of player 2, we have Ωσ,π′(s) |= ϕ1. Since (σ, π)
is a Nash equilibrium, for all strategies π′ of player 2, we have Ωσ,π′(s) |= ¬ϕ2.
Thus we have MS 10 ⊆ W10. Now consider a state s ∈ W10 and let σ be a strongly
winning strategy of player 1 at s, that is, for all strategies π of player 2, we have
Ωσ,π(s) |= (ϕ1 ∧ ¬ϕ2). For all strategies π of player 2, the strategy profile (σ, π)
is a secure equilibrium. Hence, s ∈ S10. Since (1, 0) is the greatest payoff profile
in the preference ordering of the payoff profiles for player 1, we have s ∈ MS 10.
Therefore W10 = MS 10. Symmetrically, W01 = MS 01.

Consider a state s ∈ MS 11 and let (σ, π) be a secure equilibrium at s. We
prove that σ ∈ Re1(s) and π ∈ Re2(s). Since (σ, π) is a secure strategy profile,
for all strategies π′ of player 2, if Ωσ,π′(s) |= ¬ϕ1, then Ωσ,π′(s) |= ¬ϕ2. In other
words, for all strategies π′ of player 2, we have Ωσ,π′(s) |= (ϕ2 → ϕ1). Hence
σ ∈ Re1(s). Symmetrically, π ∈ Re2(s). Thus MS 11 ⊆ W11. Consider a state

152 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

s ∈ W11 and let σ ∈ Re1(s) and π ∈ Re2(s) such that Ωσ,π(s) |= (ϕ1 ∧ ϕ2). A
retaliation strategy profile is, by definition, a secure strategy profile. Since the
strategy profile (σ, π) assigns the greatest possible payoff to each player, it is a
Nash equilibrium. Therefore W11 ⊆ S11 ⊆ MS 11.

Lemma 7. W00 = MS 00.

Proof. It follows from Lemma 4 and Lemma 5 that MS 00 = S00 \ S11 = S00 \
MS 11. We will use this fact to prove that W00 = MS 00.

– Consider a state s ∈ MS 00. Then we have s �∈ (MS 11 ∪MS 10 ∪MS 11) ⇒ s �∈
(W11 ∪W10 ∪W01). By Lemma 2 we have W00, W11, W10, W01 is a partition
and hence we have s ∈ W00. It follows that MS 00 ⊆ W00.

– Consider a state s ∈ W00. We claim that there is a strategy σ for player 1
such that for all strategy π′ we have Ωσ,π′(s) |= ¬ϕ2. Assume by the way of
contradiction this is not the case. By Borel determinacy then we have there
is a strategy π′′ for player 2 such that for all σ′ we have Ωσ′,π′′(s) |= ϕ2.
It follows that either π′′ is a strongly winning strategy for player 2 or a
retaliation strategy such that player 2 gets payoff 1. Hence s �∈ W00, which
is a contradiction. Hence there is a strategy σ such that for all π′ we have
Ωσ,π′(s) |= ¬ϕ2. Similarly, there is a strategy π such that for all σ′ we have
Ωσ′,π(s) |= ¬ϕ1. We claim that (σ, π) is a secure equilibrium strategy profile.
By property of σ for any π′, Ωσ,π′(s) |= ¬ϕ2. Similar argument hold for π
as well. Hence we have (σ, π) is a Nash equilibrium strategy profile. For the
strategy profile (σ, π) we have the payoff profile is (0, 0) and it assigns the
least possible payoff to each player. Hence it is a secure strategy profile.
Hence s ∈ S00. Also s ∈ W00 ⇒ s �∈ W11 = MS 11. Hence s ∈ S00 \ MS 11.
This gives us W00 ⊆ MS 00.

Theorem 2 together with Lemmas 6 and 7 yields the following result.

Theorem 3 (Unique maximal secure equilibrium). At every state of a 2-
player graph game with Borel objectives, there exists a unique maximal secure
equilibrium payoff profile.

3.2 Algorithmic Characterization

We now give an alternative characterization of the sets W00, W01, W10, and W11.
The new characterization is useful to derive computational complexity results
for computing the four sets when player 1 and player 2 have ω-regular objec-
tives. The characterization itself, however, is general and applies to all objectives
specified as Borel sets.

Definition 7 (Cooperative strategy profiles). Given a game graph G with
state set V , and an objective ψ ⊆ V ω, we define the following sets:

〈〈1〉〉G ψ = {s ∈ V : ∃σ ∈ Σ. ∀π ∈ Π. Ωσ,π(s) |= ψ}

Games with Secure Equilibria 153

〈〈2〉〉G ψ = {s ∈ V : ∃π ∈ Π. ∀σ ∈ Σ. Ωσ,π(s) |= ψ}
〈〈1, 2〉〉G ψ = {s ∈ V : ∃σ ∈ Σ. ∃π ∈ Π. Ωσ,π(s) |= ψ}

We omit the subscript G if it is clear from the context. Let s be a state in 〈〈1, 2〉〉ψ
and let (σ, π) be a strategy profile such that Ωσ,π(s) |= ψ. We refer to (σ, π) as
a cooperative strategy profile at s, and informally say that the two players are
cooperating to satisfy ψ.

It follows from the definitions that W10 = 〈〈1〉〉(ϕ1 ∧¬ϕ2) and W01 = 〈〈2〉〉(ϕ2 ∧
¬ϕ1). Define A = V \ (W10 ∪ W01), the set of “ambiguous” states from which
neither player has a strongly winning strategy. Let Wi = 〈〈i〉〉ϕi, for i ∈ { 1, 2 },
the winning sets of the two players, and let U1 = W1 \W10 and U2 = W2 \W01,
the sets of “weakly winning” states for players 1 and 2, respectively. Define
U = U1 ∪ U2. Note that U ⊆ A.

Lemma 8. U ⊆ W11.

Proof. Let s ∈ U1. By the definition of U1, player 1 has a strategy σ from the
state s to satisfy the objective ϕ1, which is obviously a retaliating strategy, be-
cause ϕ1 implies ϕ2 → ϕ1. Again by the definition of U1, we have s �∈ W10.
Hence, by the determinacy of zero-sum games (Theorem 1), player 2 has a strat-
egy π to satisfy the objective ¬(ϕ1 ∧ ¬ϕ2), which is a retaliating strategy, be-
cause ¬(ϕ1 ∧ ¬ϕ2) is equivalent to ϕ1 → ϕ2. Clearly we have Ωσ,π(s) |= ϕ1 and
Ωσ,π(s) |= (ϕ1 → ϕ2), and hence Ωσ,π(s) |= (ϕ1 ∧ ϕ2). The case of s ∈ U2 is
symmetric.

Example 2 shows that in general we have U � W11. Given a game graph G =
((V, E), (V1, V2)) and a subset V ′ ⊆ V of the states, we write G
 V ′ to denote the
subgraph induced by V ′, that is, G
 V ′ = ((V ′, E∩(V ′×V ′)), (V1∩V ′, V2∩V ′)).
The following lemma characterizes the set W11.

Lemma 9. W11 = 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2).

Proof. Let s ∈ 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2). The case s ∈ U is covered by Lemma 8, so
let s ∈ A \ U . Let (σ, π) be a cooperative strategy profile at the state s, that
is, Ωσ,π(s) |= (ϕ1 ∧ ϕ2). Observe that if t ∈ A \ U then t �∈ 〈〈1〉〉G(ϕ1) and
t �∈ 〈〈2〉〉G(ϕ2). Hence, by the determinacy of the zero-sum games, from every
state t ∈ A \U , player 1 (resp. player 2) has a strategy σ (resp. π) to satisfy the
objective ¬ϕ2 (resp. ¬ϕ1) from the state s. We define a pair (σ + σ, π + π) of
strategies from s as follows. Let x ∈ A∗ be a prefix of a play.

– When the play reaches a state t ∈ U , the players follow their winning retal-
iating strategies from t. It follows from Lemma 8 that U ⊆ W11.

– If x ∈ (A\U)∗, that is, if the play has not yet reached the set U , then player 1
uses the strategy σ and player 2 uses the strategy π. If, however, player 2
deviates from the strategy π, then player 1 switches to the strategy σ from
the first state after the deviation, and symmetrically, if player 1 deviates
from σ, then player 2 switches to the π.

154 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

It is easy to observe that both strategies (σ + σ) and (π + π) are retaliating
strategies and Ωσ+σ,π+π(s) |= (ϕ1 ∧ϕ2), because Ωσ+σ,π+π(s) = Ωσ,π(s). Hence
s ∈ W11.

Let s �∈ 〈〈1, 2〉〉G�A(ϕ1∧ϕ2). Then s �∈ W11, because for every strategy profile
(σ, π) we have either Ωσ,π(s) |= ¬ϕ1 or Ωσ,π(s) |= ¬ϕ2.

We now define two forms of ω-regular objectives, Rabin and parity objec-
tives. For an infinite path Ω = 〈s0, s1, s2, . . .〉, we define Inf(Ω) = { s ∈ V :
sk = s for infinitely many k ≥ 0 }.

– Rabin: We are given a set α ⊆ 2V × 2V of pairs such that α =
{ (E1, F1), (E2, F2), . . . , (Ed, Fd) }, where Ei, Fi ⊆ V for all 1 ≤ i ≤ d. A
Rabin objective has the form ϕRabin = { Ω ∈ V ω : there exists 1 ≤ i ≤
d such that Inf(Ω) ∩ Ei = ∅ and Inf(Ω) ∩ Fi �= ∅ }.

– Parity: For d ∈ N, we write [d] to denote the set {0, 1, . . . , d}, and [d]+ =
{1, 2, . . . , d}. We are given a function p: V → [d] that assigns a priority
p(s) to every state s ∈ V . A parity (or Rabin chain) objective has the form
ϕP = {Ω ∈ V ω : min

(
p(Inf(Ω))

)
is even }.

Every ω-regular set can be defined as a parity objective [17]. It follows from
Lemma 9 that in order to compute the sets W10, W01, W11, and W00, it suffices
to solve two games with conjunctive objectives and a model-checking (1-player)
problem for a conjunctive objective. If the objectives ϕ1 and ϕ2 are ω-regular
sets specified as parity objectives, then the conjunctions can be expressed as the
complement of a Rabin objective [17]. This gives the following result. (The size
of a game graph G is |V | + |E|).

Theorem 4 (Complexity of computing secure equilibria). Consider a
game graph G of size n, and two Borel objectives ϕ1 and ϕ2 for the two players.

– The four sets W10, W01, W11, and W00 can be computed as W10 =
〈〈1〉〉G(ϕ1 ∧ ¬ϕ2); W01 = 〈〈2〉〉G(ϕ2 ∧ ¬ϕ1); W11 = 〈〈1, 2〉〉G�A(ϕ1 ∧ ϕ2),
where A = V \ (W10 ∪ W01); and W00 = V \ (W10 ∪ W01 ∪ W11).

– If ϕ1 and ϕ2 are ω-regular objectives specified as LTL formulas, then deciding
W10, W01, W11, and W00 is 2EXPTIME-complete. The four sets can be
computed in time O

(
n2� × 22� log �)

, where � = |ϕ1| + |ϕ2| [15].
– If ϕ1 and ϕ2 are parity objectives, then W10, W01, W11, and W00 can

be decided in co-NP. The four sets can be computed in time O
(
(nd)2d

)
,

where d is the maximal number of priorities in the priority functions for ϕ1

and ϕ2 [5,4].

4 ω-Regular Objectives

In this section we consider special cases of graph games, where the two players
have reachability, safety, Büchi, co-Büchi, and parity objectives. We fix a game
graph G with state space V . Given state sets R, S, B, C ⊆ V , these objectives
are defined as follows.

Games with Secure Equilibria 155

1. Reachability: ϕR = {s0s1 . . . ∈ V ω : ∃k. sk ∈ R}. We refer to R as the
target set.

2. Safety: ϕS = {s0s1 . . . ∈ V ω : ∀k. sk ∈ S}. We refer to S as the safe set.
3. Büchi: ϕB = {s0s1 . . . ∈ V ω : ∀k. ∃l > k. sl ∈ B}. We refer to B as the

Büchi set.
4. co-Büchi: ϕC = {s0s1 . . . ∈ V ω : ∃k. ∀l > k. sl ∈ C}. We refer to C as the

co-Büchi set.

Parity objectives were defined in the previous section. Note that Büchi and co-
Büchi objectives are special cases of parity objectives with two priorities: in the
Büchi case, take the priority function p: V → [1] such that p(s) = 0 if s ∈ B, and
p(s) = 1 otherwise; in the co-Büchi case, take the priority function p: V → [2]+
such that p(s) = 2 if s ∈ C, and p(s) = 1 otherwise.

We characterize the memory requirements for strongly winning and retali-
ating strategies if both players have ω-regular objectives. A retaliation strategy
profile (σ, π) is called winning at a state s ∈ V if Ωσ,π(s) |= (ϕ1∧ϕ2). A strategy
σ is a winning retaliating strategy for player 1 at state s if there is a strategy π
for player 2 such that (σ, π) is a winning retaliation strategy profile at s. Until
the end of this section, let ϕR be a reachability objective, ϕS a safety objective,
ϕB a Büchi objective, ϕC a co-Büchi objective, and ϕP a parity objective.

Proposition 1 (Conjunctive objectives as parity objectives).

1. ¬ϕR is a safety objective and ¬ϕS is a reachability objective,
2. ¬ϕC is a Büchi objective, and ¬ϕB is a co-Büchi objective.
3. ¬ϕP , ϕS ∧ ϕP , and ϕC ∧ ϕP are parity objectives.

Proof. A negation of a parity objective with priority function p can be obtained
as the parity objective with the priority function p′(s) = p(s)+1. It follows that
the negation of a Büchi objective is equivalent to a co-Büchi objective and the
negation of a co-Büchi objective is equivalent to a Büchi objective.

If ϕP is a parity objective and ϕD is a safety objective or a co-Büchi objective
then the conjunction ϕD ∧ ϕP is equivalent to a parity objective. For example,
the conjunction of a parity objective ϕP and a coBüchi objective ϕD is a parity
objective with the following priority function:

p′(s) =

{
1 if s �∈ D,

p(s) + 2 if s ∈ D.

The result for conjunction of parity and safety objective follows from similar
construction.

While in zero-sum games played on graphs, memoryless winning strategies
exists for all parity objectives [6], this is not the case for non-zero-sum games.
The following two theorems give a complete characterization.

Theorem 5. If player 1 has a strongly winning strategy in a graph game where
both players have reachability, safety, Büchi, co-Büchi, or parity objectives ϕ1

and ϕ2, then player 1 has a memoryless strongly winning strategy if and only if
there is a “+” symbol in the corresponding entry of the Table 1.

156 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

Table 1. Strongly winning strategies

ϕ2

ϕR ϕB ϕC ϕP ϕS

ϕS + + + + +
ϕC + + + + −

ϕ1 ϕB + + − − −
ϕP + + − − −
ϕR + − − − −

Table 2. Winning retaliating strategies

ϕ2

ϕR ϕB ϕC ϕP ϕS

ϕS + + + + +
ϕC + − − − −

ϕ1 ϕB + − − − −
ϕP + − − − −
ϕR + − − − −

Proof. For player 1, strongly winning a non-zero-sum game with objectives
ϕ1 and ϕ2 is equivalent to winning a zero-sum game with the objective
ϕ1 ∧ ¬ϕ2. Hence by existence of memoryless winning strategies for zero-sum
parity games [6] player 1 has memoryless strongly winning strategies if the ob-
jective ϕ1 ∧ ¬ϕ2 is equivalent to a parity objective. Using Proposition 1 it is
easy to observe that the objective ϕ1 ∧ ¬ϕ2 is equivalent to a parity objective
for all “+” entries in Table 1, except for safety–reachability, safety–safety, and
reachability–reachability games. For these three cases, it is easy to argue that
memoryless strongly winning strategies exist. The other “+” entries follow from
the existence of memoryless winning strategies for zero-sum parity games [6].

s1s2 s3

Fig. 3. A counterexample for memoryless strongly winning strategies

We now show that player 1 does not necessarily have a memoryless strongly
winning strategy in non-zero-sum games with “−” entries in Table 1. It suffices to
give counterexamples for the following four cases: co-Büchi–safety, Büchi–safety,
reachability–safety, and Büchi–co-Büchi games. The cases of reachability–Büchi
and reachability–co-Büchi games follow from the former two cases, respectively,
by symmetry. The cases of Büchi–parity and parity–parity games follow triv-
ially from the Büchi–co-Büchi case, and the case of parity–safety games fol-
lows trivially from the Büchi–safety case. The game graph of Fig. 3 serves as a

Games with Secure Equilibria 157

counterexample for all four cases. For all the cases, let C = S = {s1, s2} and
B = R = {s2}.

For the co-Büchi–safety case, the player 1 strategy that chooses s1 → s3

for the first time and then always chooses s1 → s2 is strongly winning at the
state s1, but the two possible memoryless strategies are not strongly winning.
For all other cases, the player 1 strategy that alternates between the two moves
available at s1 is strongly winning, but again the two memoryless strategies
are not.

Theorem 6. If player 1 has a winning retaliating strategy in a graph game
where both players have reachability, safety, Büchi, co-Büchi, or parity objectives
ϕ1 and ϕ2, then player 1 has a memoryless winning retaliating strategy if and
only if there is a “+” symbol in the corresponding entry of the Table 2.

Proof. First we show that player 1 has memoryless winning retaliating strategies
in parity–reachability and safety–parity games. Recall the weakly winning sets
U1 = W1 \ W10 and U2 = W2 \ W01, where Wi = 〈〈i〉〉ϕi for i ∈ {1, 2}. In
U1 ⊆ W11 player 1 uses her memoryless winning strategy in the zero-sum game
with the objective ϕP . In W11 \ U1 player 1 uses a memoryless strategy that
shortens the distance in the game graph to the set U1. This strategy is a winning
retaliating strategy for player 1 in U1, because it satisfies the objective ϕP . We
prove that it is also a winning retaliating strategy for player 1 in W11 \ U1,
that is, satisfaction of the objective ϕR implies satisfaction of the objective ϕP .
Observe that R ∩ (W11 \U1) = ∅. Otherwise there would be a state in W11 \ U1

in which the objective ϕR of player 2 is satisfied and player 2 has a strategy
to satisfy ¬ϕP , and hence the state belongs to W01; this however contradicts
W11 ∩ W01 = ∅. Therefore, as long as a play stays in W11 \ U1, the objective
ϕR cannot be satisfied. On the other hand, if player 2 cooperates with player 1
in reaching U1, then player 1 plays her memoryless retaliating strategy in U1.
The proof for safety–parity games is similar. There, the key observation is that
W11 \ U1 ⊆ S, where ϕS is the safety objective of player 1.

s1s0 s2s3 R1R2

Fig. 4. A counterexample for memoryless winning retaliating strategies

We now argue that player 1 does not have memoryless winning retaliating
strategies in games with “−” entries in Table 2. It suffices to give counterexam-
ples for the nine cases that result from co-Büchi, Büchi, or reachability objectives
for player 1, and Büchi, co-Büchi, or safety objectives for player 2. The remain-
ing seven cases involving parity objectives follow as corollaries, because Büchi
and co-Büchi objectives are special cases of parity objectives. The game graph of
Fig. 4 serves as a counterexample for all nine cases: take C1 = B1 = R1 = {s2}

158 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

and B2 = C2 = S2 = {s0, s1, s2}, where C1, B1, and R1 are the co-Büchi, Büchi,
and reachability objectives of player 1, respectively, and B2, C2, and S2 are the
Büchi, co-Büchi, and safety objectives of player 2. It can be verified that in each
of the nine games neither of the two memoryless strategies for player 1 is a win-
ning retaliating strategy at the state s0, but the strategy that first chooses the
move s0 → s1 and then chooses s0 → s3 if player 2 chooses s1 → s0, is a winning
retaliating strategy for player 1.
Note that if both players have parity objectives, then at all states in W00 mem-
oryless retaliation strategy profiles exist. To see this, consider a state s ∈ W00.
There are a player 1 strategy σ and a player 2 strategy π such that for all strate-
gies σ of player 1 and π of player 2, we have Ωσ,π(s) |= ¬ϕ1 and Ωσ,π(s) |= ¬ϕ2.
The strategy profile (σ, π) is a retaliation strategy profile. If the objectives ϕ1

and ϕ2 are both parity objectives, then ¬ϕ1 and ¬ϕ2 are parity objectives as
well. Hence there are memoryless strategies σ and π that satisfy the above con-
dition.

5 n-Player Games

We generalize the definition of secure equilibria to the case of n > 2 players. We
show that in n-player games on graphs, in contrast to the 2-player case, there
may not be a unique maximal secure equilibrium. The preference ordering ≺i

for player i, where i ∈ {1, . . . , n}, is defined as follows: given two payoff profiles
v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n), we have v ≺i v′ iff (v′i > vi) ∨ (v′i =

vi ∧ (∀j �= i. v′j ≤ vj) ∧ (∃j �= i. v′j < vj)). In other words, player i prefers v′

over v iff she gets a greater payoff in v′, or (1) she gets equal payoff in v′ and v,
(2) the payoff of every other player is no more in v′ than in v, and (3) there is at
least one player who gets a lower payoff in v′ than in v. Given a strategy profile
σ = (σ1, . . . , σn), we define the corresponding payoff profile as vσ = (vσ

1 , . . . , vσ
n),

where vσ
i is the payoff for player i when all players choose their strategies from

the strategy profile σ. Given a strategy σ′
i for player i, we write (σ−i, σ

′
i) for

the strategy profile where each player j �= i plays the strategy σj , and player i
plays the strategy σ′

i. An n-player strategy profile σ is Nash equilibrium if for
all players i and all strategies σ′

i of player i, if σ′ = (σ−i, σ
′
i), then vσ′

i ≤ vσ
i .

Definition 8 (Secure n-player profile). An n-player strategy profile σ is
secure if for all players i and j �= i, and for all strategies σ′

j of player j, if
σ′ = (σ−j , σ

′
j), then (vσ′

j ≥ vσ
j) → (vσ′

i ≥ vσ
i).

Observe that if a secure profile σ is interpreted as a contract between the players,
then any unilateral selfish deviation from σ must be cooperative in the following
sense: if player j deviates from the contract σ by playing a strategy σ′

j (i.e.,
the new strategy profile is σ′ = (σ−j , σ

′
j)) which gives her an advantage (i.e.,

vσ′
j ≥ vσ

j), then every other player i �= j is not put at a disadvantage if she
follows the contract (i.e., vσ′

i ≥ vσ
i). By symmetry, the player j enjoys the same

security against unilateral selfish deviations of other players.

Games with Secure Equilibria 159

Definition 9 (Secure n-player equilibrium). A n-player strategy profile σ
is a secure equilibrium if σ is both a Nash equilibrium and secure.

Similar to Lemma 1 we have the following result.

Lemma 10 (Equivalent characterization). An n-player strategy profile σ is
a secure equilibrium iff for all players i, there does not exist a strategy σ′

i of
player i such that σ′ = (σ−i, σ

′
i) and vσ ≺i vσ′

.

We give an example of a 3-player graph game where the maximal secure
equilibrium payoff profile is not unique. Recall the game graph from Fig. 3, and
consider a 3-player game on this graph where each player has a reachability
objective. The target set for player 1 is {s2, s3}; for player 2 it is {s2}; and for
player 3 it is {s3}. In state s1 player 1 can chose between the two successors
s2 and s3. If player 1 chooses s1 → s3, then the payoff profile is (1, 0, 1), and
if player 1 chooses s1 → s2, then the payoff profile is (1, 1, 0). Both are secure
equilibria and maximal, but incomparable.

6 Conclusion

We considered non-zero-sum graph games with lexicographically ordered objec-
tives for the players in order to capture adversarial external choice, where each
player tries to minimize the other player’s payoff as long as it does not decrease
her own payoff. We showed that these games have a unique maximal equilibrium
for all Borel winning conditions. This confirms that secure equilibria provide a
good formalization of rational behavior in the context of verifying component-
based systems.

Concretely, suppose the two players represent two components of a system
with the specifications ϕ1 and ϕ2, respectively. Classically, component-wise ver-
ification would prove that for an initial state s, player 1 can satisfy the objective
ϕ1 no matter what player 2 does (i.e., s ∈ 〈〈1〉〉ϕ1), and player 2 can satisfy
the objective ϕ2 no matter what player 1 does (i.e., s ∈ 〈〈2〉〉ϕ2). Together,
these two proof obligations imply that the composite system satisfies both spec-
ifications ϕ1 and ϕ2. The computational gain from this method typically arises
from abstracting the opposing player’s (i.e., the environment’s) moves for each
proof obligation. Our framework provides two weaker proof obligations that sup-
port the same conclusion. We first show that player 1 can satisfy ϕ1 provided
that player 2 does not sabotage her ability to satisfy ϕ2, that is, we show that
s ∈ (W10 ∪ W11): either player 1 has a strongly winning strategy, or there is
a winning pair of retaliation strategies. This condition is strictly weaker than
the condition that player 1 has a winning strategy, and therefore it is satisfied
by more states. Second, we show the symmetric proof obligation that player 2
can satisfy ϕ2 provided that player 1 does not sabotage her ability to satisfy ϕ1,
that is, s ∈ (W01∪W11). While they are weaker than their classical counterparts,
both new proof obligations together still suffice to establish that s ∈ W11, that
is, the composite system satisfies ϕ1 ∧ ϕ2 assuming that both players behave
rationally and follow the winning pair of retaliation strategies.

160 K. Chatterjee, T.A. Henzinger, and M. Jurdziński

It should be noted that the other possible lexicographic ordering of ob-
jectives captures cooperative external choice, where each player tries to max-
imize the other player’s payoff as long as it does not decrease her own pay-
off. However, cooperation does not uniquely determine a preferable behavior:
there may be multiple maximal payoff profiles for cooperative external choice,
even for reachability objectives. To see this, define (v1, v2) ≺co

1 (v′1, v
′
2) iff

(v1 < v′1)∨(v1 = v′1∧v2 < v′2), and (v1, v2))co
1 (v1, , v

′
2) iff (v1, v2) ≺co

1 (v′1, v
′
2) or

(v1, v2) = (v′1, v′2). A symmetric definition yields)co
2 . A cooperative equilibrium

is a Nash equilibrium with respect to the precedence orderings)co
1 and)co

2 on
payoff profiles. Consider the game shown in Fig. 4, where each player has a reach-
ability objective. The target for player 1 is s2, and the target for player 2 is s3.
The possible cooperative equilibria at state s0 are as follows: player 1 chooses
s0 → s1 and player 2 chooses s1 → s2, or player 1 chooses s0 → s3 and player 2
chooses s1 → s0. The former equilibrium has the payoff profile (1, 0), and the
latter has the payoff profile (0, 1). These are the only cooperative equilibria and,
therefore, the maximal payoff profile for cooperative equilibria is not unique.

Acknowledgment. We thank Christos Papadimitriou for helpful discussions
regarding the formalization of rational behavior in game theory.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17:507–534, 1995.

2. R. Alur and T.A. Henzinger. Reactive modules. In Formal Methods in System
Design, 15:7–48, 1999.

3. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

4. S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How much memory is needed
to win infinite games? In Logic in Computer Science (LICS), pages 99–110. IEEE
Computer Society Press, 1997.

5. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In Foundations of Computer Science (FOCS), pages 328–337. IEEE Com-
puter Society Press, 1988.

6. E.A. Emerson and C. Jutla. Tree automata, μ-calculus, and determinacy. In
Foundations of Computer Science (FOCS), pages 368–377. IEEE Computer Society
Press, 1991.

7. J.F. Nash Jr. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36:48–49, 1950.

8. A. Kechris. Classical Descriptive Set Theory. Springer-Verlag, 1995.

9. D.M. Kreps. A Course in Microeconomic Theory. Princeton University Press,
1990.

10. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

11. D.A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

12. D.A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic,
63:1565–1581, 1998.

Games with Secure Equilibria 161

13. K. Namjoshi N. Amla, E.A. Emerson and R. Trefler. Abstract patterns for composi-
tional reasoning. In Concurrency Theory (CONCUR), LNCS 2761, pages 423–448.
Springer-Verlag, 2003.

14. G. Owen. Game Theory. Academic Press, 1995.
15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Principles of

Programming Languages (POPL), pages 179–190. ACM Press, 1989.
16. W. Thomas. On the synthesis of strategies in infinite games. In Symposium on The-

oretical Aspects of Computer Science (STACS), LNCS 900, pages 1–13. Springer-
Verlag, 1995.

17. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
eds., Handbook of Formal Languages, volume 3, pages 389–455. Springer-Verlag,
1997.

Priced Timed Automata:

Algorithms and Applications

Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen�,��

Aalborg University

Abstract. This contribution reports on the considerable effort made re-
cently towards extending and applying well-established timed automata
technology to optimal scheduling and planning problems. The effort of
the authors in this direction has to a large extent been carried out as part
of the European projects Vhs [22] and Ametist [17] and are available
in the recently released Uppaal Cora [12], a variant of the real-time
verification tool Uppaal [20,5] specialized for cost-optimal reachability
for the extended model of priced timed automata.

1 Introduction and Motivation

Since its introduction by Alur and Dill [2] the model of timed automata has
established itself as a standard modeling formalism for describing real-time sys-
tem behavior. A number of mature model checking tools (e.g. Kronos, Uppaal,
IF [11,20,16]) are by now available and have been applied to the quantitative
analysis of numerous industrial case-studies [25].

An interesting application of real-time model checking that has recently been
receiving substantial attention is to extend and re-target the timed automata
technology towards optimal scheduling and planning. The extensions include
most importantly an augmentation of the basic timed automata formalism al-
lowing for the specification of the accumulation of cost during behavior [7,3].
The state-exploring algorithms have been modified to allow for “guiding” the
(symbolic) state-space exploration in order that “promising” and “cheap” states
are visited first, and to apply branch-and-bound techniques [6] to prune parts
of the search tree that are guaranteed not to improve on solutions found so far.
Also new symbolic data structures allowing for efficient symbolic state-space
representation with additional cost-information have been introduced and im-
plemented in order to efficiently obtain optimal or near-optimal solutions [19].
Within the Vhs and Ametist projects successful applications of this technology
have been made to a number of benchmark examples and industrial case stud-
ies. With this new direction, we are entering the area of Operations Research
and Artificial Intelligence with a well-established and extensive list of existing
techniques (MILP, constraint programming, genetic programming, etc.). How-
ever, what we put forward is a completely new and promising technology based
� BRICS, Aalborg University, Denmark.

�� Work partially done within the European IST project AMETIST.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 162–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Priced Timed Automata: Algorithms and Applications 163

t1
(3,−)

t2
(−, 5)

t3

(10, 7)

Processor costs:
Processor 1 - Idle: 2 -
InUse: 5
Processor 2 - Idle: 1 -
InUse: 4

Fig. 1. Task graph scheduling problem with 3 tasks and 2 processors

on the efficient algorithms/data structures coming from timed automata analy-
sis, and allowing for very natural and compositional descriptions of even highly
non-standard scheduling problems with timing constraints.

Abstractly, a scheduling or planning problem may be understood in terms
of a number of objects (e.g. a number of different cars, persons) each associated
with various distinguishing attributes (e.g. speed, position). The possible plans
solving the problem are described by a number of actions, the execution of
which may depend on and affect the values of (some of) the objects attributes.
Solutions, or feasible schedules, come in (at least) two flavors:

Finite Schedule: a finite sequence of actions that takes the system from the initial
configuration to one of a designated collection of desired goal configurations.

Infinite Schedule: an infinite sequence of actions that – when starting in the
initial configuration – ensures that the system configuration stays indefinitely
within a designated collection of desired configurations.

In order to reinforce quantitative aspects, actions may additionally be equip-
ped with constraints on durations and have associated costs. In this way one
may distinguish different feasible schedules according to their accumulated cost
or time (for finite schedules) or their cost per time ratio in the limit (for infinite
schedules) in identifying optimal schedules. It is understood that independent
actions, in terms of the set of objects the actions depend upon and affect, may
overlap time-wise.

One concrete scheduling problem is that of optimal task graph scheduling
(TGS) consisting in scheduling a number of interdependent tasks (e.g. perform-
ing some arithmetic operations) onto a number of heterogeneous processors. The
interdependencies state that a task cannot start executing before all its prede-
cessors have terminated. Furthermore, each task can only execute on a subset
of the processors. An example task graph with three tasks is depicted in Fig. 1.
The task t3 cannot start executing until both tasks t1 and t2 have terminated.
The available resources are two processors p1 and p2. The tasks (nodes) are an-
notated with the required execution times on the processors, that is, t1 can only
execute on p1, t2 only on p2 while t3 can execute on both p1 and p2. Further-
more, the idling costs per time unit of the processors are 2 and 1, respectively,
and operations costs per time unit are 5 and 4, respectively.

Now, scheduling problems are naturally modeled using networks of timed
automata. Each object is modeled as a separate timed automaton annotated with
local, discrete variables representing the attributes associated with the object.

164 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

Interaction often involves only a few objects and can be modeled as synchronizing
edges in the timed automata models of the involved objects. Actions involving
time durations are naturally modeled using guarded edges over clock variables.
Furthermore, operation costs can be associated with states and edges in the
model of priced timed automata (PTA) which was, independently, introduced in
[7] and [3]. The separation of independent objects into individual processes and
representing interaction between objects as synchronizing actions allows timed
automata to make the control flow of scheduling problems explicit. In turn, this
makes the models intuitively understood and easy to communicate. Figure 2
depicts PTA models for the task graph in Fig. 1 and is explained in detail in
Section 4.2.

Fig. 2. Screen shot of the Uppaal Cora simulator for the task graph scheduling
problem of Fig. 1

The outline of the remainder of the paper is as follows: In Sections 2 and 3
we introduce the model of PTA, the problem of cost-optimal reachability and
sketch the symbolic branch-and-bound algorithm used by Uppaal Cora for
solving this problem. Then in Section 4 we show how to model a range of
generic scheduling problems using PTA, provide experimental results and de-
scribe two industrial scheduling case-studies. Finally, in Section 5, we comment
on other PTA-related optimization problems to be supported in future releases of
Uppaal Cora.

Priced Timed Automata: Algorithms and Applications 165

2 Priced Timed Automata

In this section we give a formal definition of priced timed automata (PTA) and
their semantics1. Let X be a set of clocks. Intuitively, clocks are non-negative
real valued variables that can be reset to zero and grow at a fixed rate with
the passage of time. A priced timed automaton over X is an annotated directed
graph with a distinguished vertex called the initial location. In the tradition of
timed automata, we call vertices locations. An edge is decorated with a guard,
an action and a reset set. We say that an edge is enabled if the guard evaluates
to true and the source location is active. A reset set is a set of clocks. The
intuition is that the clocks in the reset set are set to zero whenever the edge is
taken. Note that following edges is instantaneous and thus takes no time. Finally,
locations are labeled with invariants. Intuitively, an invariant must evaluate to
true whenever its location is active. Both guards and invariants are conjunctions
of simple constraints x $% k, where x is a clock in X , k is a non-negative integer
value, and $% ∈ {<,≤, =,≥, >}. Let B(X) be the set of all such expressions. The
previous definition is in fact that of a timed automaton. To form a priced timed
automaton, we annotate the edges and the locations with costs and cost rates,
respectively. The above is summarized in the following definition.

Definition 1 (Priced Timed Automata). Let X be a set of clocks and Act
a set of actions. A priced timed automaton over X and Act is a tuple A =
(L, E, l0, I, P), where L is a set of locations, E ⊆ L × B(X) × Act × 2X × L is
a set of edges, l0 ∈ L is the initial location, I : L → B(X) assigns invariants
to locations, and P : L ∪ E → N0 assigns cost rates and costs to locations and
edges, respectively.

The semantics of a PTA is defined as a priced transition system. A priced
transition system is a labeled transition system, where the transition relation is
given by a partial function from transitions to the non-negative reals, intuitively
being the cost of the transition. We write s

a→p s′ whenever the function is
defined on the transition (s, a, s′) and the cost is p.

Definition 2 (Priced Transition System). A priced transition system is a
tuple T = (S, s0,Σ, →), where S is a (possibly infinite) set of states, s0 ∈ S is
the initial state, Σ is a set of labels, and →: (S × Σ × S) ↪→ R≥0 is a partial
function from transitions to the non-negative reals.

In case of PTA, a state consists of the active location l ∈ L and a valuation
of all clocks v : X → R≥0 such that the invariant of l evaluates to true for v.
There are two types of transitions between these states: discrete transitions and
delay transitions. That is, transitions that instantaneously change the control lo-
cation of the automaton without time passing and transitions that pass time in
a fixed control location, respectively. Consequently, the labels of the correspond-
ing priced transition system consists of the labels of the priced timed automaton
and the non-negative reals. We formalize this in the following definition.
1 We ignore the syntactic extensions of discrete variables and parallel composition of

automata and note that these can be added easily.

166 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

ċ = 1

l0

y := 0

x ≤ 2

ċ = 2

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3

y ≤ 2

l2

Fig. 3. A priced timed automaton, A

Definition 3 (Semantics of a Priced Timed Automaton). The semantics
of a PTA A = (L, E, l0, I, P) over clocks X and actions Act is given by a priced
transition system T = (S, s0,Σ, →), where S = {(l, u) ∈ L × RX

≥0 | u |= I(l)} is
the set of states satisfying the invariants, s0 = (l0, u0) is the initial state for u0

evaluating to zero for all clocks in X, Σ = Act∪R≥0 is the set of labels, and →
consists of discrete and delay transitions as defined below.

Discrete transitions are the result of following an enabled edge in the PTA.
As a result, the destination location is activated and the clocks in the reset set
are set to zero. The cost of the transition is given by the cost of the edge.

Definition 4 (Discrete transitions). A transition (l, v) a→p (l′, v′) is a dis-
crete transition iff there is an edge (l, g, a, r, l′) from l to l′, such that the guard,
g, evaluates to true in the source state (l, v), v′ is derived from v by resetting all
clocks in the reset set, r, and p = P (e) is the cost of the edge.

Delay transitions are the result of the passage of time and do not cause a
change of location. A delay is only valid if the invariant of the active location is
satisfied by all intermediary states. The cost of a delay transition is given by the
product of the duration of the delay and the cost rate of the active location.

Definition 5 (Delay transitions). A transition (l, v) d→p (l, v′) is a delay
transition iff p = d · P (l), v′ = v + d,2 and the invariant of l is satisfied by the
source, target and all intermediary states, i.e., for all non-negative delays d′ less
than or equal to d we have v + d′ |= I(l).

For networks of timed automata we use vectors of locations and the cost rate
of a vector of locations is the sum of cost rates in the locations of the vector.

Example 1. Now consider the priced timed automaton A in Fig. 3 having two
clocks x and y, a single goal location l2 and two locations l0 and l1 with cost
rate 1 and 2 respectively. Below we offer three sample traces of A:

α0 = (l0, x = 0, y = 0) −→0 (l1, x = 0, y = 0) 2−→4 (l1, x = 2, y = 2)
−→0 (l2, x = 2, y = 0)

2 v + d is the clock valuation derived from v by incrementing all clocks by d.

Priced Timed Automata: Algorithms and Applications 167

α1 = (l0, x = 0, y = 0) 2−→2 (l0, x = 2, y = 2) −→0 (l1, x = 2, y = 0)
1−→2 (l1, x = 3, y = 1) −→0 (l2, x = 3, y = 0)

α2 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)
1−→2 (11, x = 2, y = 1) −→0 (l2, x = 2, y = 0) ��

3 Optimal Scheduling

We now turn to the definition of the optimal reachability problem for PTA and
provide a brief and intuitive overview of Uppaal Cora’s branch and bound
algorithm for cost-optimal reachability analysis.

Cost-optimal reachability is the problem of finding the minimum cost of
reaching a given goal location. More formally, an execution of a PTA is a path
in the priced transition system defined by the PTA (see above), i.e., α = s0

a1→p1

s1
a2→p2 s2 · · ·

an→pn sn. The cost, cost(α), of execution α is the sum of all the
costs along the execution, i.e.

∑
i pi. The minimum cost, mincost(s) of reaching

a state s is the infimum of the costs of all finite executions from s0 to s. Given a
PTA with location l, the cost-optimal reachability problem is to find the largest
cost k such that k ≤ mincost((l, v)) for all clock valuations v.

Example 2. Referring to example 1, the accumulated cost of the three traces are,
respectively, cost(α0) = cost(α1) = 4 and cost(α2) = 3. Thus, among the three
suggested traces, α2, leads to l2 with minimum cost. In fact, as we shall see later,
this is the minimum cost by which l2 may be reached by any trace of A. ��

Since clocks are defined over the non-negative reals, the priced transition
system generated by a PTA can be uncountably infinite, thus an enumerative,
explicit state approach to the cost-optimal reachability problem is infeasible. In-
stead, we build upon the work done for timed automata by using priced symbolic
states. Priced symbolic states provide symbolic representations of possibly infi-
nite sets of actual states and their association with costs. The idea is that during
exploration, the infimum cost along a symbolic path (a path of symbolic states)
is stored in the symbolic state itself. If the same state is reached with different
costs along different paths, the symbolic states can be compared, discarding the
more expensive state.

Analogous to timed automata, a priced symbolic state of a PTA can be
represented as a location and a priced zone. Priced zones describe sets of clock
valuations and their associated costs. The set of clock valuations is described
as a simple constraint system over clocks and differences between clocks, called
zones. The cost is an affine hyperplane in an |X | + 1 dimensional Euclidean
space, where each point is a clock valuation and an associated cost, i.e., for each
clock valuation in the zone, the hyperplane provides a cost of that valuation.
We observe that the constraint system describing a zone can be simplified by
adding an additional clock, 0, that by definition is zero in all valuations. Then
constraints on individual clocks can be represented as constraints on differences

168 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

between clocks, e.g., x < 5 becomes x− 0 < 5. A zone be efficiently represented
as a difference bound matrix or DBM [13]. It represents the constraint system
describing the zone as a |X | + 1 dimensional matrix, with entries cij meaning
xi−xj ≤ cij for clocks xi, xj ∈ X∪{0}. Extending the data structure to a priced
DBM, we add an affine hyperplane. The offset point is the unique valuation such
that all valuations in the zone are component-wise equal or larger than the offset
point. Alternatively, the cost at the origin could be given.

Definition 6 (Priced Zone). A priced zone over a set of clocks X is a pair
(Z, f), where Z is a zone, i.e., a conjunction of constraints on clocks or differ-
ences between clocks, and f is an affine function over X providing the cost of
the clock valuations satisfying the constraints of Z.

Without going into details on how to compute the successors of a priced sym-
bolic state, we notice that the representation of priced zones as priced DBMs
support the necessary operations to do so. In particular, the data structure sup-
ports computing the set of delay successors of a priced zone and computing the
projection of a priced zone (for resetting clocks). The crucial addition compared
to regular DBMs is the efficient manipulation of the hyperplane in such a man-
ner, that any state in the resulting zone is associated with the lowest cost of
immediately reaching that state from a state in the predecessor. Also, given two
symbolic states S and S′, computing whether one dominates the other is effi-
ciently computable. E.g. S is dominated by S′ if for all states s in S, s is in S′

and the cost of s in S′ is lower than the cost in S.

0 1 2 3
0

1

2

x

y

(Z0, x)

0 1 2 3
0

1

2

x

y

(Z1, x)

0 1 2 3
0

1

2

x

y

(Z2, x + y)

(Z′
2, x + y)

0 1 2 3
0

1

2

x

y

(Z3, x + 1)

Fig. 4. Symbolic exploration of A using priced zones

Priced Timed Automata: Algorithms and Applications 169

Example 3. Figure 4 illustrates a symbolic exploration of the priced timed au-
tomaton A from Fig. 3 in terms of the following symbolic trace:

Γ = (l0, (Z0, x)) −→ (l1, (Z1, x))
−→ (l1, (Z2, x + y)) −→ (l2, (Z3, x + 1))

where Z0 = (x = y ∧ x ≤ 2), Z1 = (y = 0 ∧ x ≤ 2), Z2 = (y ≤ 2 ∧ x ≤ 3 ∧ 0 ≤
x−y ≤ 2) and Z3 = (y = 0∧2 ≤ x ≤ 3). The zone Z ′

2 = (1 ≤ y ≤ 2∧2 ≤ x ≤ 3)
is the subset of Z2 for which the edge from l1 to l2 is enabled. Now, from the
final symbolic state (l2, (Z3, x + 1)) we see that we may reach l2 with cost 3
given as the minimum value of the affine function x + 1 with respect to the
constraints of the zone Z3. This minimum value is clearly obtained at the state
(l2, x = 2, y = 0). Now, we may follow this state backwards within the given
symbolic trace Γ constantly selecting the predecessor-state with minimum cost.
In this way we are to (re)produce the concrete minimum-cost trace:

α2 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)
1−→2 (l1, x = 2, y = 1) −→0 (l2, x = 2, y = 0) ��

Cost := ∞
Passed := ∅
Waiting := {S0}
while Waiting �= ∅ do

select S ∈ Waiting //based on branching strategy
C ← infimum(S)
if Passed ≤/dom S and C + remain(S) < Cost then

Passed ← Passed ∪ {S}
if S ∈ Goal then

Cost ← C
else

Waiting ← {S ′ | S ′ ∈ Waiting or S → S ′}
return Cost

Fig. 5. Branch and bound algorithm for cost optimal reachability analysis of priced
timed automata. The algorithm works on priced symbolic states and uses auxiliary
functions for computing the infimum cost of all states in a symbolic state and for
checking whether a symbolic state dominates another symbolic state.

In Uppaal Cora, cost-optimal reachability analysis is performed using a stan-
dard branch and bound algorithm. Branching is based on various search strate-
gies implemented in Uppaal Cora which, currently, are breadth-first, ordinary,
random, or best depth-first with or without random restart, best-first, and user
supplied heuristics. The latter enables the user to annotate locations of the model
with a special variable called heur and the search can be ordered according to
either largest or smallest heur value. Bounding is based on a user-supplied, lower-
bound estimate of the remaining cost to reach the goal from each location, i.e.
an admissible heuristic.

170 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

The algorithm depicted in Fig. 5 is the cost-optimal reachability algorithm
used by Uppaal Cora. It maintains a Passed-list of symbolic states that have
been explored and a Waiting-list of symbolic state that need to be explored
and is instantiated with the initial symbolic state S0. The variable Cost holds
the currently best known cost of reaching the goal location; initially it is infinite.
The algorithm iterates until no more symbolic states need to be explored. Inside
the while-loop we select and remove a symbolic state, S, from Waiting based
on the branching strategy. If S is dominated by another symbolic state that has
already been explored or it is not possible to reach the goal with a lower cost
than Cost, we skip this symbolic state. Otherwise, we add S to Passed and if
S is a goal location we update the best known cost to the best cost in S. If not,
we add all successors of S to Waiting and continue to the next iteration. Note
that the algorithm does not terminate when the first goal location is discovered
which is custom with a best-first branch and bound algorithm. The reason is
that we allow various branching strategies some which do not guarantee the first
found goal location to be optimal.

4 Modeling

As mentioned earlier, one of the main strengths of using priced timed automata
for specifying and analyzing scheduling problems is the simplicity of the modeling
aspect in terms of compositional descriptions. In this section, we show how to
model well-known, generic scheduling problems, provide experimental results,
and describe two industrial case studies.

Scheduling problems often consist of a set of passive objects, called resources,
and a set of active objects, called tasks. The resources are passive in the sense
that they provide a service that tasks can utilize. Traditionally, the scheduling
problem is to complete the tasks as fast as possible using the available resources
under some constraints, e.g. limited availability of the resource, no two tasks
can, simultaneously, use the same resource, etc. The models we provide in this
section are all cost extensions of classical scheduling problems.

A generic resource model (see Fig. 6a) is a two-location cyclic process with
a single local clock, c. The two locations indicate whether the resource is Idle
or InUse. The resource moves from Idle to InUse, when a task initiates a
synchronization over the channel start and in the process, c is reset. The resource
will maintain InUse until the clock reaches some usage time, busy, it then
initiates synchronization over the channel done.

A generic task model (see Fig. 6b) is an acyclic process progressing from an
initial location, Init, to a final location Done, indicating task completion. Inter-
mediate locations describe acquiring resources and releasing them, i.e. the task
will transit to state Using by initiating synchronization over a start channel
and setting the busy variable of the resource. The task will remain here until
the resource initiates synchronization using the done channel.

To solve the scheduling problem, we pose the reachability question of whether
we can reach a state in which all tasks are in the location Done. In the following

Priced Timed Automata: Algorithms and Applications 171

InUse

c <= busy

Idle

c == busy

done! start?

DoneUsingInit
done?start!

busy = x

a) b)

Synchronization

Guard
Invariant

Variable update

Fig. 6. a) Resource template with clock c. b) Task template.

four sections we present some classical scheduling problems, all of which are slight
modifications of the generic templates.

4.1 Job Shop Scheduling

Problem: We are given a number of machines (resources) and a number jobs
(tasks) with corresponding recipes. A recipe for a job dictates the subset
of machines that the job should be processed by, the order in which the
processing should happen, and the duration of each processing step. Now,
the scheduling problem is to assign to each job a starting time for every
required machine such that no machine is occupied by two jobs at the same
time.

Cost: The model can be extended with costs by assigning to each machine an
idling cost and a operation cost.

Modeling : Figure 7a depicts a job and a machine. The model of the machine
is identical to the resource template, except that both locations have been
extended with cost rates. The job model is a “serial composition” of the task
template, i.e. the job serially requests the machines described by the recipe,
in this case machines 0, 1, and 2 for 7, 5, and 15 time units, respectively.

4.2 Task Graph Scheduling

Problem: This problem is described in Section 1.
Cost: We assign to each processor an energy consumption rate while idle and

while executing. Now, the overall objective is to find the schedule that min-
imizes the total cost while respecting a global (or task individual) deadline.

Modeling : The models for a task and a processor are depicted in Fig. 2. Again,
the processor model is an exact instance of the resource template with added
cost rates. Tasks 1 and 2 are exact instances of the task template, while
task 3 is not. The reason is that tasks 1 and 2 can only execute on one
processor each, while task 3 can execute on both, thus, task 3 is an extension
of the task template with a nondeterministic choice between the processors.
Furthermore, the edges leaving the initial state have been extended with a
guard specifying the dependencies of the task graph, i.e. task 3 requires tasks
1 and 2 to be finished, i.e. f[1] && f[2].

172 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

4.3 Vehicle Routing with Time Windows

Problem: We are given a depot owning a fleet of vehicles (resources) with lim-
ited capacity of some good and a number of dispersed customers (tasks) with
individual demands and time windows. The scheduling problem is to assign
routes to each vehicle such that customers are served within their time win-
dows and the total demand of a route does not exceed the capacity of the
vehicle. Usually, the unloading process is also associated with a delay linear
in the amount to unload and each vehicle is expected to return to the depot.

Cost: For a schedule, costs are incurred while vehicles are in operation (driver
salary, ds), i.e. away from the depot, and extra costs are added while driving
corresponding to the fuel consumption, fc.

Modeling : Figure 7b depicts models for a customer and for a vehicle. The cus-
tomer model (having time window [30,90]) is a combination of the job model
and the model of task 3 above. The customer can acquire either vehicle, hence
the nondeterministic choice and the sequential part corresponds to acquiring
the vehicle to arrive (ComingHere) and to unload the goods (Unloading).
Note that besides updating the vehicle busy time with a driving distance,
the vehicle capacity, carcap, is updated to reflect the demand. The require-
ments for the time window are realized through guards and invariants on the
global time. The vehicle model is a slight variation of the resource template,
as the InUse location has been replaced by two locations to distinguish
between Driving and Unloading. Furthermore, there is an acyclic part re-
flecting the possibility of DrivingHome to the depot and thus completing
the route. In all locations except Home, there is a cost rate corresponding
to the driver salary and in the driving locations there is an added fuel cost.

4.4 Aircraft Landing

Problem: Given a number of aircrafts (tasks) with designated type and landing
time window, assign a landing time and runway (resource) to each aircraft
such that the aircraft lands within the designated time window while re-
specting a minimum wake turbulence separation delay between aircrafts of
various types landing on the same runway.

Cost: The cost extended problem associates with each aircraft an additional tar-
get landing time corresponding to approaching the runway at cruise speed.
Now, if an aircraft is assigned a landing time earlier than the
target landing time, a cost per time unit is incurred, corresponding to pow-
ering up the engines. Similarly, if an aircraft is assigned a later landing time
than the target landing time a cost per time unit is added corresponding to
increased fuel consumption while circling above the airport.

Modeling : Figure 7c depicts a runway that can handle aircrafts of types B747
and A420, and an aircraft with target landing time 153, type A420 and time
window [129,559]. Unlike the other models, the runway model has only a
single location in its cycle indicating both that the resource is IdleAndI-
nUse. A single location is used since the duration that a runway is occupied

Priced Timed Automata: Algorithms and Applications 173

a) Job: Machine:

Done

UsingM2

Done1UsingM1Done0

UsingM0

Init

done[2]?

start[2]!
busy[2] = 15

done[1]?start[1]!
busy[1] = 5

done[0]?

start[0]!
busy[0] = 7

InUse

c <= busy[1]
&& cost’ == 6

Idle

cost’ == 2

c == busy[1]

done[1]!
start[1]?

c = 0

b) Customer: Vehicle:

Init
time <= 90

ComingHere
time <= 90

Unloading

Done

carcap[0] >= 10

drive[0]!

busy[0] = dd[vehicleAt[0]][1],
car = 0,
carcap[0] -= 10

carcap[1] >= 10

drive[1]!

busy[1] = dd[vehicleAt[1]][1],
car = 1,
carcap[1] -= 10

time >= 30
unload[car]!
busy[car] = 50

done[car]?
vehicleAt[car] = 1

Idle
cost’ == ds

Driving

c <= busy[1] &&
cost’ == fc+ds

Unloading

c <= busy[1] &&
cost’ == ds

DrivingHome
c <= busy[1] &&
cost’ == fc+ds

Home

drive[1]?
c = 0

c == busy[1]
unload[1]?

c = 0

c == busy[1]
done[1]!

busy[1] = dd[vehicleAt[1]][0],
c = 0

c == busy[1]

c) Aircraft: Runway:

Approaching

time <= 153

Delayed time <= 559 &&
cost’ == 10

OnTime

time <= 153 &&
cost’ == 10

Done

time == 153

time == 153
land[A420]!

time >= 129

land[A420] ! Temp

IdleAndInUse

land[B747] ?
c[0] = 0

land[A420] ?
c[1] = 0

c[0]>=wait[B747][B747] &&
c[1] >= wait[A420][B747]

land[B747] ?
c[0] = 0

c[0] >=wait[B747][A420] &&
c[1] >= wait[A420][A420]

land[A420] ?
c[1] = 0

Fig. 7. Priced timed automata models for two classical scheduling problems

depends solely on the types of consecutively landing aircrafts. Thus, the
runway maintains a clock per aircraft type holding the time since the latest
landing of an aircraft of the given type and access to the runway is con-
trolled by guards on the edges. The nondeterminism of the aircraft model
does not distinguish between the runway to use, but whether to land early
([129,153]) or late ([153,559]). Choosing to land early, the aircraft model
moves to the OnTime location and must remain here until the target land-
ing time while incurring a cost rate per time unit for landing early, simi-
larly, the aircraft can choose to land late and move to Delayed may re-
main there until the latest landing time while paying a cost rate for landing
late.

174 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

4.5 PTA Versus MILP

We only provide experimental results for the aircraft landing problem comparing
the PTA approach to that of MILP. For performance results of the job shop and
task graph scheduling problems, we refer to [6,23,1].

RW Planes 10 15 20 20 20 30 44
Types 2 2 2 2 2 4 2

1 MILP (s) 0.4 5.2 2.7 220.4 922.0 33.1 10.6
MC (s) 0.8 5.6 2.8 20.9 49.9 0.6 2.2

Factor 2.0 1.08 1.04 10.5 18.5 55.2 48.1

2 MILP (s) 0.6 1.8 3.8 1919.9 11510.4 1568.1 0.2
MC (s) 2.7 9.6 3.9 138.5 187.1 6.0 0.9

Factor 4.5 5.3 1.02 13.9 61.5 261.3 4.5

3 MILP (s) 0.1 0.1 0.2 2299.2 1655.3 0.2 N/A
MC (s) 0.2 0.3 0.7 1765.6 1294.9 0.6

Factor 2.0 3.0 3.5 1.30 1.28 3.0

4 MILP (s) N/A N/A N/A 0.2 0.2 N/A N/A
MC (s) 3.3 0.7

Factor 16.5 3.5

Fig. 8. Computational result for the aircraft landing problem using PTA and MILP
on comparable machines

Figure 8 displays experimental results for various instances of the aircraft
landing problem using MILP and PTA. The results for MILP have been taken
from [4] and the results for PTA have been executed on a comparable computer.
Factors in bold indicate the performance difference in favor of PTA and similarly
for italics and MILP. The experiments clearly indicate that PTA is a compet-
itive approach to solving scheduling problems and for one non-trivial instance
it is even more than a factor 250 faster than the MILP approach. However, the
required computation time of the PTA approach grows exponentially with the
number of added runways (and thus clocks) while no similar statement can be
made for the MILP approach. The exponential growth of the PTA approach is
no surprise as reachability is exponential in the number of clocks. However, this
does not mean that PTA are unsuited for larger problems, but merely that the
models should be carefully considered to minimize the number of clocks. Fur-
thermore, techniques from timed automata theory to deal with clocks such as
omitting certain “inactive” clocks from locations has been extended to PTA.

In conclusion, PTA is a promising method for solving scheduling problems,
but further experiments need to be conducted before saying anything more
conclusive.

4.6 Industrial Case Study: Steel Production

Problem: Proving schedulability of an industrial plant via reachability analysis
of a timed automaton model was first applied to the SIDMAR steel plant,

Priced Timed Automata: Algorithms and Applications 175

which was included as a case study of the Esprit-LTR Project 26270 VHS
(Verification of Hybrid Systems). The plant consists of five processing ma-
chines placed along two tracks and a casting machine where the finished steels
leaves the system. The tracks and machines are connected via two overhead
cranes. Each quantity of raw iron enters the system in a ladle and depending
on the desired final steel quality undergoes treatments in the different ma-
chines for different durations. The planning problem consists in controlling
the movement of the ladles of steel between the different machines, taking
the topology (e.g. conveyor belts and overhang cranes) into consideration.

Performance: A schedule for three ladles was produced in [14] for a slightly
simplified model using Uppaal. In [15] schedules for up to 60 ladles were
produced also using Uppaal. However, in order to do this, additional con-
straints were included that reduce the size of the state-space dramatically,
but also prune possibly sensible behavior. A similar reduced model was used
by Stobbe [24] using constraint programming to schedule 30 ladles. All these
works only consider ladles with the same quality of steel. In [6], using a search
order based on priorities, a schedule for ten ladles with varying qualities of
steels is computed within 60 seconds CPU-time on a Pentium II 300MHz.
The initial solution found is improved by 5% within the time limit. Allowing
the search to go on for longer, models with more ladles can be handled.

4.7 Industrial Case Study: Lacquer Production

Problem: The problem was provided by an industrial partner of the European
AMETIST project as a variation on job shop scheduling. The task is to
schedule lacquer production. Lacquer is produced according to a recipe in-
volving the use of various resources, possibly concurrently, see Fig. 9. An
order consists of a recipe, a quantity, an earliest starting date and a delivery
date. The problem is then to assign resources to the order such that the
constraints of the recipes and of the orders are met. Additional constraints
are provided by the resources, as they might require cleaning when switching
from one type of lacquer to another, or might require manual labor and thus
are unavailable during the night or in weekends.

Cost: The cost model is similar to that of the aircraft landing problem. Orders
finished on the delivery date do not incur any costs (except regular produc-
tion costs which are not modeled as these are fixed). Orders finishing late are
subject to delay costs and orders finishing too early are subject to storage
costs. Cleaning resources might generate additional costs.

Modeling : Resources are modeled using the resource template. Resources requir-
ing cleaning are extended with additional information to keep track of the
last type of lacquer produced on the resource. Cleaning costs are typically a
fixed amount and are added to the cost when cleaning is performed. Orders
are modeled similarly to tasks in the task graph scheduling problem, except
that multiple resources may be acquired simultaneously. Storage and delay
costs are modeled similarly to costs in the aircraft landing problem.

176 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

5 Other Optimization Problems

At present Uppaal Cora supports cost-optimal location-reachability for PTAs.
However, a number of other optimization problems are planned to be included
in future releases. In the following we give a brief description of these extensions
with illustrating examples.

Infinite Schedules

For several planning problems the objective is to repeat a treatment or process
indefinitely and to do so in a cost-optimal manner. Now let α = s0

a1→p1 s1
a2→p2

s2 · · ·
an→pn sn · · · be an infinite execution of a given PTA, let cn (tn) denote

the accumulated cost (time) after n steps (i.e. cn =
∑n

i=1 pi). Then the limit of
cn/tn when n → ∞ describes the cost per time of α in the long run and is the
cost of α. The optimization problem is to determine the (value of the) optimal
such infinite execution α∗.

Example 4. Consider the priced timed automaton B of Fig. 10 being a cyclic
extension of the priced timed automaton A of Fig. 3. Below we offer two infinite
(cyclic) traces (* indicates the nested cycle):

β0 = (l0, x = 0, y = 0) 1−→1 (l0, x = 1, y = 1) −→0 (l1, x = 1, y = 0)∗

2−→4 (l1, x = 3, y = 2) −→0 (l2, x = 3, y = 0)
1−→3 (l2, x = 3, y = 1) −→0 (l0, x = 0, y = 1)
1−→1 (l0, x = 1, y = 2) −→0 (l1, x = 1, y = 0)∗

β1 = (l0, x = 0, y = 0) −→0 (l1, x = 0, y = 0)∗ 2−→4 (l1, x = 2, y = 2)

−→0 (l2, x = 0, y = 0) 2−→6 (l2, x = 2, y = 2)
−→0 (l0, x = 0, y = 2) −→0 (l1, x = 0, y = 0)∗

For the two infinite traces β0 and β1 their cyclic nature entails that the limit of
cost per time is given as the ratio of cost per time of the nested cycles. Thus we
find that:

ratio(β0) = (4 + 3 + 1)/(2 + 1 + 1) = 2
ratio(β1) = (4 + 6)/(2 + 2) = 2.5

and hence that β0 offers the better solution. ��

In [8] the problem of identifying the optimal infinite execution (and the limit-
ratio of this execution) has been shown decidable for PTA using a so-called
“corner-point” abstraction which is an extension of the classical region-technique
for timed automata. In case of non-strict guards — as is the case of the priced
timed automaton of Fig. 10 — the “corner-point” abstraction is identical to the

Priced Timed Automata: Algorithms and Applications 177

dose spinner

lab

filling station

disperging line

disperser

wait
arbitrary,
if not specified

synchronize

mixing vessel uni

[0,4]

[2,4]

11.02

5.18

7.35

23.95

25.69

[6,6]

48.98

26.44

Fig. 9. A lacquer recipe. Each bar represents the use of a resource. Horizontal lines
indicate synchronization points. Timing constraints for how long resources are used or
separation times between the use of resources can be provided either as a fixed time or
time window.

ċ = 1

l0

y := 0

x ≤ 2

ċ = 2

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3

y ≤ 2

ċ = 3

l2

y ≤ 2

y ≥ 1; x := 0

Fig. 10. A cyclic priced timed automaton, B

discrete-time semantics of the automaton. The problem now reduces to that of
identifying a cycle with minimum mean-cost in the corresponding finite weighted
graph, a problem for which Karp’s algorithm [18] provides a cubic solution.
Figure 11 illustrates the discrete semantics of the priced timed automaton B of
Fig. 10.

Though the “corner-point” abstraction technique nicely demonstrates decid-
ability of the problem (and many other decision problems for timed automata) it
does not provide a practical implementation, which is still to be identified. How-
ever, a method for determining approximate optimal infinite schedules have been
identified and applied to the synthesis of Dynamic Voltages Scaling scheduling
strategies.

178 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

l0

0 1 2 3

0

1

2

3

+

+

+

+

+

+

+

+

+

1

11

1 1

1 l1

0 1 2 3

0

1

2

3

+

+

+

+ +

+ +

+

2

2

2

2

2

2

l2

0 1 2 3 4

0

1

2

3

+ +

+ +

+ +

3 3

3 3

+ : State
ċ

: Delay successor : Discrete successor

Fig. 11. Discrete time semantics for PTA, B

Multiple Cost Variables

Optimization problems may involve multiple cost variables (e.g. money, energy,
pollution, etc.). Currently Uppaal Cora is only capable of optimizing with
respect to single costs. However, for scheduling problems with multiple costs,
there might well be several optimal solutions due to “negative” dependencies
between costs, i.e. minimizing one cost variable (e.g. money) might maximize
others (e.g. pollution).

ċ = 1
ḋ = 4

l0

y := 0

d+= 1

x ≤ 2

ċ = 2
ḋ = 1

l1

y := 0

x ≥ 2
y ≥ 1

x ≤ 3

y ≤ 2

l2

Fig. 12. A dual-priced timed automaton, C

Example 5. Figure 12 illustrates a dual-priced TA C extending the (single)
priced TA A of Fig. 3 with a second cost variable d. The following two traces
both reach the goal location l2 but with incompatible cost-pairs, namely (4, 2)
versus (3, 5).

γ0 = (l0, x = 0, y = 0) −→(0,0) (l1, x = 0, y = 0) 2−→(4,2) (l1, x = 2, y = 2)
−→(0,0) (l2, x = 2, y = 0)

γ1 = (l0, x = 0, y = 0) 1−→(1,4) (l0, x = 1, y = 1) −→(0,0) (l1, x = 1, y = 0)
1−→(2,1) (11, x = 2, y = 1) −→(0,0) (l2, x = 2, y = 0) ��

Priced Timed Automata: Algorithms and Applications 179

0 1 2 3
0

1

2

x

y

Z0

{(x, 4x)}
0 1 2 3

0

1

2

x

y

Z1

{(x, 4x)}

0 1 2 3
0

1

2

x

y

Z2

Z′
2

{(x + y, 4x− 3y + 1)}
0 1 2 3

0

1

2

x

y

Z3

{(x + 1, 4x− 2), (x + 2, 4x− 5)}

Fig. 13. Symbolic exploration of C using dual-priced zones

In [21] the notion of priced zone for PTA has been extended to multi-price TA
allowing efficient synthesis of solutions optimal with respect to a chosen primary
cost variable, but subject to user-specified upper bounds on the remaining sec-
ondary cost variables. More precisely, the symbolic exploration of multi-priced
TAs uses multi-priced zones of the type P = (Z, {c1, . . . , cn}), where ci is a
vector of affine cost-functions (one for each cost variable). Now, any concrete
trace to a given state will be associated with a cost-vector giving a value (cost)
for each of the involved cost variables. As illustrated by Example 5, two dif-
ferent traces to a given state may, in the multi-priced case, be associated with
incomparable cost-vectors in the sense that neither one dominates the other with
respect to component-wise ≤. In our symbolic treatment we deal with this phe-
nomenon by associating the zone Z with sets of cost-function vectors. Now for
any clock-valuation u ∈ Z the multi-priced zone P will associate not only the
set of cost-vectors {c1(u), . . . , cn(u)}) but also all convex combinations of these
vectors. We refer the interested reader to [21] for more information on this. In
the following example we try to illustrate our symbolic treatment.

Example 6. Figure 13 illustrates the symbolic exploration of the dual-priced TA
C of Fig. 12. In the final symbolic state the zone Z3 is associated with a set
containing two cost-function pair: {(x+1, 4x−2), (x+2, 4x−5)}. Now evaluating
these two pairs with respect to the extrema points of Z3 we obtain a set of 4

180 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

cost-pairs: {(3, 6), (4, 10), (4, 3), (5, 7)}, all combinations of which are (according
to the theory) realizable. Thus, in case we want to minimize c subject to the
condition that d stays below 4 it can be seen that c = 11

4 is the minimum
such value. ��

Uncertainty

Finally, scheduling problems may involve uncertainties due to certain actions
being under the control of an adversary. In this case the (optimal) scheduling
problem is a game-theoretic problem consisting of determining a winning and
optimal strategy for how to respond to any action chosen by this adversary. In [9]
the problem of synthesizing optimal, winning strategies for priced timed games
has been shown to be computable under certain non-zenoness assumptions. How-
ever, the problem is not solvable using zone-based technology, but needs general
polyhedral support in order to represent the optimal strategies (see [10] for a
methodology using HyTech).

ċ = 5

l0

y := 0

x ≤ 2

l1

y = 0

ċ = 1

l3 x ≥ 2
c+ = 7

ċ = 10

x ≥ 2
c+ = 1

l2

l4

Fig. 14. A priced timed game automaton, D

Example 7. Consider the priced timed game automaton D of Fig. 14. Here the
cost-rates in locations l0, l2 and l3 are 5, 10 and 1 respectively. In l1 the adversary
may choose to move to either l2 or l3 (dashed arrows are under control of the
adversary). However, due to the invariant y = 0 this choice must be made
instantaneously. Obviously, once l2 or l3 has been reached the optimal strategy
for the controller is to move to the goal location l4 immediately. Note that there
is a discrete cost (respectively 1 and 7) on each discrete transition. The crucial
(and only remaining) question is how long the controller should wait in l0 before
taking the transition to l1. Obviously, in order for the controller to win this
duration must be no more than two time units. However, what is the optimal
choice for the duration in the sense that the overall cost of reaching l4 will be
minimal? Denote by t the chosen delay in l0. Then 5t + 10(2 − t) + 1 is the
minimal cost through l2 and 5t + (2 − t) + 7 is the minimal cost through l3.

Priced Timed Automata: Algorithms and Applications 181

As the adversary chooses between these two transitions the best choice for the
controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is minimum, which is
obtained for t = 4

3 giving a minimal cost of 14 1
3 . ��

References

1. Y. Abdeddaim, A. Kerbaa, and O. Maler. Task graph scheduling using timed au-
tomata. In Proc. of International Parallel and Distributed Processing Symposium,
pages 8–15, 2003.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.
Lecture Notes in Computer Science, 2034:pp. 49–62, 2001.

4. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. Transportation Science, 34(2):pp. 180–197, 2000.

5. G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In Formal Methods
for the Design of Real-Time Systems, number 3185 in Lecture Notes in Computer
Science, pages 200–236. Springer Verlag, 2004.

6. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn. Effi-
cient guiding towards cost-optimality in Uppaal. In Proc. of Tools and Algorithms
for the Construction and Analysis of System.s, number 2031 in Lecture Notes in
Computer Science, pages 174–188. Springer–Verlag, 2001.

7. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson,
Judi Romijn, and Frits Vaandrager. Minimum-Cost Reachability for Priced Timed
Automata. In Proc. of Hybrid Systems: Computation and Control, number 2034
in Lecture Notes in Computer Sciences, pages 147–161. Springer–Verlag, 2001.

8. P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as cheaply as possible. In
Proc. of Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes
in Computer Science, pages 203–218. Springer–Verlag, 2004.

9. P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Optimal strategies in priced timed
game automata. In Proc. of Foundations of Software Technology and Theoretical
Computer Science, volume 3328 of Lecture Notes in Computer Science, pages 148–
160. Springer–Verlag, 2004.

10. Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Synthesis
of optimal strategies using hytech. In Workshop on Games in Design and Verifi-
cation, volume 119(1) of Electronic Notes in Theoretical Computer Science, pages
11–31, Boston, MA, USA, July 2004. Elsevier Science Publishers.

11. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In Proc. of Computer Aided Verifica-
tion, volume 1427 of Lecture Notes in Computer Science, pages 546–550. Springer-
Verlag, 1998.

12. UPPAAL CORA. http://www.cs.aau.dk/∼behrmann/cora, Jan. 2005.
13. D. L. Dill. Timing assumptions and verification of finite-state concurrent sys-

tems. In J. Sifakis, editor, Proc. Of Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notex in Computer Science, pages 197–212.
Springer–Verlag, 1989.

14. A. Fehnker. Scheduling a steel plant with timed automata. In Proc. of Real-Time
and Embedded Computing Systems and Applications., page 280. IEEE Computer
Society, 1999.

182 G. Behrmann, K.G. Larsen, and J.I. Rasmussen

15. T. Hune, K. Larsen, and P. Pettersson. Guided synthesis of control programs using
Uppaal. Nordic Journal of Computing, 8(1):43–64, 2001.

16. IF. http://www-verimag.imag.fr/∼async/IF, Jan. 2005.
17. Advanced Methods in Timed Systems (AMETIST). http://ametist.cs.

utwente.nl, Jan. 2005.
18. R. M. Karp. A characterization of the minimum mean-cycle in a digraph. Discrete

Mathematics, 23(3):309–311, 1978.
19. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and

J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed
automata. In Proc. of Computer Aided Verification, volume 2102, pages pp. 493+,
2001.

20. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1-2):134–152, 1997.

21. K. Larsen and J. Rasmussen. Optimal conditional reachability for multi-priced
timed automata. In Proc. of Foundations of Software Science and Computation
Structures, volume 3441 of Lecture Notes in Computer Science, pages 234–249.
Springer–Verlag, 2005.

22. Verification of Hybrid Systems (VHS). http://www-verimag.imag.fr/VHS/, Jan.
2005.

23. J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. of Tool and Algortihms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science, pages
220–235. Springer Verlag, 2004.

24. M. Stobbe. Results on scheduling the sidmar steel plant using constraint program-
ming. Internal report, 2000.

25. UPPAAL. http://www.uppaal.com, Jan. 2005.

rCOS: Refinement of Component and Object Systems�

Zhiming Liu1, He Jifeng1,��, and Xiaoshan Li2

1 International Institute for Software Technology,
United Nations University, Macao SAR, China

{lzm, hjf}@iist.unu.edu
2 Faculty of Science and Technology,

University of Macau, Macao SAR, China
xsl@umac.mo

Abstract. We present a model of object-oriented and component-based refine-
ment. For object-orientation, the model is class-based and refinement is about
correct changes in the structure, methods of classes and the main program, rather
than changes in the behaviour of individual objects. This allows us to prove re-
finement laws for both high level design patterns and low level refactoring. For
component-based development, we focus on the separation of concerns of in-
terface and functional contracts, leaving refinement of interaction protocols in
future work. The model supports the specification of these aspects at different
levels of abstractions and their consistency.

Based on the semantics, we also provide a general definitional approach to
defining different relational semantic models with different features and con-
straints.

Keywords: Object-Orientation, Component-Based Development, Refinement,
Specification, Consistency.

1 Introduction

Today’s software engineering is mainly concerned with systematic development of large
and complex systems. To cope with the scale of the problem traditional software engi-
neers divide the problem along three axes:

1. Along the temporal axis the development activities are divided into three stages of
requirements specification, design and implementation.

2. Different activities in each stage deal with different aspects of the system. Require-
ment analysis is split into specification of aspects of static data structure, control
flows or processes and operations or services. Similarly, design may be split into
design strategies for concurrency, design strategies for efficiency and design strate-
gies for security. These strategies are commonly expressed as design patterns [13].
Finally implementation may be split into databases, user interfaces and libraries for
security.

� This is a revised and extended version of the combination of the papers [17,31]. This work is
partly supported by e-Macao project funded by the Government of Macao, and the research
grant 02104 MoE and the 973 project 2002CB312000 of MoST of P.R. China.

�� On leave from East China Normal University, Shanghai, China.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 183–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 Z. Liu, H. Jifeng, and X. Li

3. The third axis is that of system evolution and maintenance [20,24] where each
evolutionary or maintenance step enhances the system by iterating through the re-
quirements to implementation cycle.

Unfortunately in practical software engineering, all aspects are specified using infor-
mal techniques and therefore this approach does not give the desired assurances and
productivity. The main problems are, among others, the following:

– Since the requirements specification is informal there is no way to ascertain its
completeness resulting in a lot of gaps.

– The gaps in requirements are filled by ad-hoc decisions taken by programmers who
are not qualified for the job of requirement analysis. This results in code of poor
quality.

– There is no traceability between requirements and implementation making it very
expensive to accommodate changes and maintain the system.

– Most of the tools are for project management and system testing. Although these
are useful, they are not enough for ensuring the semantic correctness of the im-
plementation for a requirements specification and semantic consistency of changes
made in the system.

Formal methods, on the other hand, attempt to complement the informal engineering
methods by techniques for formal modelling, specification, verification and refinement
[46,15]. Formal methods were born and has grown up in those years of structured analy-
sis and design. So we have theories of formal specification, verification, refinement, de-
composition and composition. In principle, a formal system development starts with an
abstract specification and transforms it into a program through a number of refinement
steps. A formal method is supported by a sound logical framework. These have helped
in improving the quality of software systems so that they are more correct and safer to
use. However, they do not yet support the three dimensional development process well.
It is still a great challenge to scale up formal methods to industry scale because of the
problems listed below.

– Formal methods have inherited the same disadvantages from the one-dimensional
“water-fall model” of development activities. They suffer even more seriously from
those disadvantages as a specification of the whole system at any level, e.g. the
requirement level, in a formal notation is not understandable to most system engi-
neers, not to mention about formal verification.

– Because of the theoretical goal of completeness and independence, refinement cal-
culi, including those for object-oriented programming [22,23,1,8], provide only re-
finement rules for a small change in each step. Refinement calculi can therefore
be difficult to be used in practice. Data refinement always requires definition of a
semantic relation between the programs (their state space) and is hard to be applied
systematically and to deal with “big-step refinement”.

– There is no clear separation of concerns making it difficult for domain experts,
architects and programmers to collaborate towards a single solution. The existing
object-oriented models, e.g. [22,23,1,8], focus on much programming aspects and it
is not clear what kind of properties of an object-oriented program can be described

rCOS: Refinement of Component and Object Systems 185

and proven in such a model. Therefore, these models cannot be used for software
development as we do not know from what a specification that the system is to be
developed or refined.

– It is not easy for software engineers to build correct and proper models, from low
level designs or implementations, that can be verified by model checking tools.

– There is no explicit support for productivity enhancing techniques such as compo-
nent based development.

So far, both the formal methods and the methods adopted by practical software
engineers are far from meeting the quality and productivity needs of the industry. The
industry continues to be plagued by high development and maintenance costs and poor
quality. However, recently there have been encouraging developments in both
approaches. The software engineering community has started using precise models
for early requirements analysis and design [37,12]. Theories and methods for object-
oriented, component-based and aspect-oriented modelling and development are gaining
attention of the formal methods community1. There are various attempts at investigating
formal aspects of object-oriented refinement, design patterns, refactoring and coordina-
tion [5,17,31].

In this article, we present a calculus of Refinement of Component and Object
Systems (rCOS)2. It captures the essential features of object-orientation including ref-
erence types, inheritance, dynamic binding, and visibility. Unlike the object logic in [1],
rCOS is class-based and refinement is about correct changes in the structure, methods
of classes and the main program, rather than changes in the behaviour of individual
objects. For component-based development, we are concerned with the separation of
concerns of interfaces, functional contracts and interaction protocols. In this paper, we
focus on interfaces and functional contracts. rCOS reflects the basic object-oriented
and component-based principles of component and class decomposition, task delega-
tion and data encapsulation. It allows refinement for both high level design patterns
and low level refactoring [34].

We briefly introduce in Section 2, as our semantic basis, the notion of designs in
Unifying Theories of Programming [19]. In Section 3, we define the model for object
systems. We present refinement calculus of object-oriented designs in Section 4.1. We
then show in Section 5 how the model for object systems is extended to deal with
component systems. In Section 6, we conclude the article with discussion and related
work.

2 Semantic Basis

We take a classical approach to modelling the execution of a program in terms of a
relation between the states of the program. However, the concept of state is more gen-
eral than what programmers usually understand and it depends on what the modeler

1 In addition to the well-established conferences such OOPSLA and ECOOP, many new confer-
ences and workshops on component systems, object systems and aspect-oriented techniques.

2 rCOS is produced by LATEX command {\large r}\textsc{COS}. In [17], the calculus was
named as OOL.

186 Z. Liu, H. Jifeng, and X. Li

wants to observe of the execution of a program. For example, for a terminating se-
quential program, we are only interested in the initial inputs and final outputs. For a
possible non-terminating program, we need an observable by which we can describe if
the program terminates for some inputs. For concurrent and communicating program,
we would like to observe the possible traces of interactions, divergencies and refusals,
in order to verify if program is deadlock free and livelock free. If we are interested in
real-time programs, we need to observe the time. Identification of what to observe in
different kinds of systems is one of the core ideas of the Unifying Theories of Program-
ming [19].

We call what to be observed of a program P the observables or alphabet of the
program, denoted by α(P) and simply α when there is no confusion. An observable of P
may take different values for different executions or runs, but from the same value space
called the type of the observable. Therefore, an observable is also a variable. Though
not all observables have to appear in a program text, but they are all needed to define
the semantics of the program.

Given an alphabet α, a state of α is a (well-typed) mapping from α to the value
spaces of the observables. A program P with an alphabet α is then defined as a pair
of predicates, called a design and represented as Pre � Post, with free variables in α. It
means that if the value of observables satisfies the precondition Pre at the beginning of
the execution, the execution will generate observables satisfying the postcondition Post,
and thus defined as the implication

(Pre � Post)
def
= Pre ⇒ Post

2.1 Programs as Designs

This subsection briefly shows how the basic programming constructs can be defined as
designs. For details, we refer the reader to [19].

For an imperative sequential program, we are interested in observing the values
of the input variables inα and output variables outα. Here we take the convention that
for each input variable x ∈ inα, its primed version x′ is in an output variable in outα,
that gives the final value of x after the execution of the program. We use a Boolean
variable ok to denote whether a program is started properly and its primed version ok′

to represent whether the execution has terminated. The alphabet α is defined as the
union inα ∪ outα ∪ {ok, ok′}, and a design is of the form

(p(x) � R(x, x′))
def
= ok ∧ p(x)⇒ ok′ ∧R(x, x′)

where

– p is a predicate over inα and R is a predicate over outα,
– p is the precondition, defining the initial states
– R is the postcondition, relating the initial states to the final states.
– ok and ok′: describe the termination, they do not appear in expressions or assign-

ments of program texts

The design represents a contract between the “user” and the program such that if the
program is started properly in a state satisfying the precondition it will terminate in a
state satisfying the postcondition R.

rCOS: Refinement of Component and Object Systems 187

A design is often framed in the form

β : (p � R)
def
= p � (R ∧ w′ = w)

where w contains all the variables in inα but those in β.
Before we define the semantics of a program, we first define some operations on

designs.

– Given two designs such that the output alphabet of P is the same as primed version
of the input alphabet of Q, the sequential composition

P(inα1, outα1); Q(inα2, outα2)
def
= ∃m · P(inα1, m) ∧ Q(m, outα2)

– Conditional choice: (D1 � b � D2)
def
= (b ∧ D1) ∨ (¬b ∧ D2)

– Demonic and angelic choice operators:

D1 � D2
def
= D1 ∨ D2 D1 � D2

def
= D1 ∧ D2

– while b do D is defined as the weakest fixed point

X = ((D; X) � b � skip)

We can now define the meaning of primitive commands program commands as
framed designs in Table 1. Composite statements are then defined by the operations on
designs.

Table 1. Basic commands as designs

command: c design: [[c]] description

skip {} : true � true does not change anything, but termi-
nates

chaos {} : false � true
any thing, including non-terminating,
can happen

x := e {x} : true � x′ = val(e) side-effect free assignment; updates x
with the value of e

m(e; v)
[[var in, out]];

[[in:=e]]; [[body(m)]]; [[v:=out]];
[[end in, out]]

m(in; out) is the signature with input
parameters in and output parameters
out; body(m) is the body command of
the procedure/method

In general, when defining a particular programming language, the preconditions
are usually strengthen with some well-definedness conditions of the commands, and a
program or command c is generally of the form

[[c]]
def
= D(c)⇒ Spec

where Spec is a design. Some of the well definedness conditions may even be dynamic.
Strengthening precondition with well-definedness conditions allows us to treat cor-

recting a unwell-defined command to a well-formed one as refinement. This is essential
to support incremental and iterative development as most cases of unwell-defined are
due to the insufficiency of data or services. Therefore, adding more data, services and
components, without altering the existing ones, will be refinement in our framework.

188 Z. Liu, H. Jifeng, and X. Li

In this article, we will add variables about dynamic typing, visibility, etc, to define
object-oriented programs. This ensures that the logic of rCOS is a conservative exten-
sion to that for imperative programs. Therefore, all the laws about imperative commands
will remain valid without the need of reproving. rCOS can be further extended to deal
with features of communication, interaction, real-time and resources. If we adding vari-
ables for traces, refusals and divergencies into the alphabet, different kinds of seman-
tics of communicating processes can be defined as designs [19,10]. Also, using clock
variables in the alphabet, we can define real-time programs as designs too [43]. It is
possible to further extend rCOS to describe resource consumptions, such as memory
and processor nodes, by introducing resource variables [21].

2.2 Refinement of Designs

The refinement relation between designs is then defined to be logical implication. A
design D2 = (α, P2) is a refinement of design D1 = (α, P1), denoted by D1 � D2, if P2

entails P1 if

∀x, x′, . . . , z, z′ · (P2 ⇒ P1)

where x, x′, . . . , z, z′ are variables contained in α. We write D1 = D2 if they refine each
other.

If they do not have the same alphabet, we can use data refinement. Let ρ be a map-
ping from α2 to α1. Design D2 = (α2, P2) is a refinement of design D1 = (α1, P1) under
ρ, denoted by D1 �ρ D2, if (ρ; P1) � (P2; ρ). It is easy to prove that chaos is the worst
program, i.e. chaos � P for any program P. For more algebraic laws of imperative pro-
grams, please see [19].

The following theorem is the basis for the fact that the notion of designs can be used
for defining a semantics of programs.

Theorem 1. The notion of designs is closed under programming constructors:

((p1 � R1); (p2 � R2)) = ((p1 ∧ ¬(R1;¬p2)) � (R1; R2))
(p1 � R1) � (p2 � R2) = (p1 ∧ p2) � (R1 ∨R2)
(p1 � R1) � (p2 � R2) = (p1 ∨ p2) � ((p1 ⇒ R1) ∧ (p2 ⇒ R2))
((p1 � R1) � b � (p2 � R2)) = ((p1 � b � p2)) � (R1 � b � R2)

3 Object Systems

In this section we introduce to the syntax and semantics of rCOS for object systems.

3.1 Syntax

In rCOS, an object system (or program) S is of the form Cdecls •Main, consisting of
class declaration section Cdecls and a main method Main. The main method is a pair
(glb, c) of a finite set glb of global variables declaration and a command c. The class

rCOS: Refinement of Component and Object Systems 189

declaration section Cdecls is a finite sequence of class declarations cdecl1; . . . ; cdeclk,
where each class declaration cdecli is of the following form

[private] class M [extends N] {
private U1 a1 = u1, . . . , Um am = um;
protected V1 b1 = v1, . . . , Vn bn = vn;
public W1 d1 = w1; . . . Wk dk = wk;
method m1(T11 x1; T12 y

1
; T13 z1){c1};

· · · ;
m�(T�1 x�; T�2 y

�
; T�3 z�){c�}

}
Note that

– Each part in the body of the declaration is optional too.
– A class can be declared as private or public, but by default it is assumed to be

public. We can understand the class section as a Java-like package and Main as
an application program using the package. Only a public class or a primitive type
can be used in the global variable declarations glb of Main. Later in Section 4.1,
structural refinement laws allow us to add, delete, change (e.g. adding, deleting or
changing attributes or methods), decomposing or composing private classes and as-
sociations among them without changing the behaviour of the system. Refinement
is also allowed for consistent change in public classes and the main method.

– N and M are distinct names of classes, and M is called the direct superclass of N.
– Attributes annotated with private are private attributes of the class, and similarly,

the protected and public declarations for the protected and public attributes. Types
and initial values of attributes are also given in the declaration.

– The method declaration declares the methods, their value parameters (Ti1 xi), result
parameters (Ti2 y

i
), value-result parameters (Ti3 zi) and bodies (ci). The body of a

method ci is a command that will be defined later.

We will use Java convention to write a class specification, and assume an attribute pro-
tected when it is not tagged with private or public. We have these different kinds of
attributes to show how visibility issues can be dealt with. We can have different kinds
of methods too for a class. However, we omit the declaration of private or public meth-
ods for the simplicity of the theory. Instead, we assume all methods are public and can
be inherited by a subclass.

Symbols

To make the presentation precise we assume the following disjoint infinite sets of sym-
bols,

– VNAME denotes the set of symbols of variables names and we use x, y, and z and
their versions with subscripts when we talk about arbitrary variables.

– CNAME is used for the set of class names. We use C, D, M and N with possible
subscripts to range over this set.

– ANAME is the set of symbols to be used as names of attributes, ranged over by a
with possible subscripts.

190 Z. Liu, H. Jifeng, and X. Li

Commands

rCOS supports typical object-oriented programming constructs, but it also allows some
commands for the purpose of specification and refinement:

c ::= skip | chaos | var T x = e | end x | c; c | c � b � c | c � c
| b ∗ c | le.m(e, v, u) | le := e| C.new(x)

where b is a Boolean expression e is an expression, and le is an expression which may
appear on the left hand side of an assignment and is of the form le ::= x | le.a where x

is a simple variable and a an attribute. Unlike [41] that introduces “statement expres-
sions”, we use le.m(e; v; u) to denote a call of method m of the object denoted by the
left-expression le. Expressions e, v and u are the actual value input parameters result
parameters and actual value-result parameters, respectively. They can be changed dur-
ing the execution of the method call and with final output returned in the actual result
and value-result parameters. The command C.new(x) is to create a new object of class C
with the initial values of its attributes as declared in C and assign it to variable x. Thus,
C.new(x) uses x with type C to store the newly created object.

Expressions

Expressions, which can appear on the right hand sides of assignments, are constructed
according to the rules below.

e ::= x | a | null | e.a | (C)e | f(e)

where null represents the special object of the special class NULL and has null as its
unique object, e.a is the a-attribute of e, and (C)e is type casting. Notice that we do not
define NULL as a subclass of any other class as we do not allow multiple inheritance.

3.2 Semantics

rCOS adopts an observation-oriented and relational semantics. To formalize the behav-
ior of an object-oriented program, we have to take into account the following features:

– A program operates not only on variables of primitive types, such as integers,
Boolean values, but also on objects of reference types.

– To protect attributes from illegal accesses, the model has to address the problem of
visibility of attributes to the environment.

– An object can be associated with any subclass of its originally declared one. To
validate expressions and commands in a dynamic binding environment, the model
must keep track of the current type of each object.

– The dynamic type M of an object can be casted up to any superclass N and later
casted down to any class which is a subclass of N and a superclass of M or M itself.
We therefore need to record both the casted type N and the dynamic type M of the
object.

rCOS: Refinement of Component and Object Systems 191

Static Semantics. The class declaration section Cdecls of a program defines the types
(value space) and static structure of the program:

– pricname: the set {C | C is declared in Cdecls} of the private class names declared in
Cdecls. We also use pubcname to record the sets of names of the public classes in
declared in Cdecls. Let cname be the union of these two sets.

– superclass: the partial function {M �→ N | Class M extends N is declared in Cdecls},
recording that N is a direct superclass of M. We define the general superclass class
relation � as transitive closure of superclass, and N � M if N � M or N = M.

– pri, prot, and pub: they associate each class name C ∈ cname to its private attributes
pri(C), protected attributes prot(C), and public attributes pub(C), respectively:

pri(C)
def
= {〈a : T, d〉 | T a = d is (declared as) a private attribute of C}

prot(C)
def
= {〈a : T, d〉 | T a = d is a protected attribute of D � C for some D ∈ cname}

pub(C)
def
= {〈a : T, d〉 | T a = d is a public attribute of D � C for some D ∈ cname}

– op: it associates each class C ∈ cname to its set of methods (op)(C)

(op)(C)
def
= {m �→ (x : T1, y : T2, z : T3, c) |

m(x : T1; y : T2; z : T3){c} is declared as method of C}

We define the following notations

1. The function attr is the union of pri, prot and pub; for each C, attr(C) is the set of
attributes declared in C itself.

2. The function Attr extends attr(C) for each C to include the protected and public
attributes that C inherited from its super classes, i.e. Attr(C) contains all attributes
directly accessible in methods of C.

3. The function AAttr extends attr(C) for each C to include all attributes of C and those
of it superclasses. Thus, AAttr(C) determines the whole state space of an object
of class C and when an object C is created, all attributes in AAttr(C) need to be
initialized.

4. init(C.a) denotes the initial value of attribute a of C.
5. dtype(C.a) denotes the declared type T if 〈a : T, d〉 ∈ AAttr(C). This is used to calcu-

late the declared type of an attribute expression in C inductively:
(a) dtype(a)

def
= dtype(C.a)

(b) dtype(e.a)
def
= dtype(dtype(e).a)

We call the tuple 〈cname, superclass, (pri, prot, pub), op〉 a program structure, denoted by
ΩCdecls. We take the whole declaration section as a command which sets up the struc-
ture:

[[Cdecls]]
def
= {ΩCdecls} : true � Ω′

Cdecls = 〈cname, superclass, (pri, prot, pub), op〉

Definition 1. A class declaration section Cdecls is well-defined, denoted D(Cdecls), if
the following conditions hold

1. each class name M ∈ cname and the name of its direct superclass N are distinct,
2. if M ∈ cname and superclass(M) = N, then N ∈ cname,

192 Z. Liu, H. Jifeng, and X. Li

Bank

name
address

w ithD raw (A ccount a, amount)
getBalance(A ccount a, alD)
op enA cc(name, amount)

*

Acount

aN o: integer
balance: integer

getBalance()
w ithD raw (amount)

CA

w ithD raw (amount)

SA

w ithD raw (amount)

Fig. 1. A bank system

3. any type used in declarations of attributes and parameters is either a primitive
built-in type or a class in cname,

4. the superclass relation � is acyclic,
5. any attribute of a class is not redeclared in its subclasses, i.e. we do not allow

attribute hiding and alias in a subclass3,
6. the names of the attributes of each class are distinct,
7. the names of the methods of each class and the names of parameters of each meth-

ods are distinct respectively.

A well-defined declaration section corresponds to a UML [4] class diagram, and thus it
and its semantics can be used for formalisation of UML class diagrams, such as the one
in Figure 1. For related work on formal support to UML-based development, we refer
to our work in [32,33,47].

Type, Values and Objects. We assume a set T of built-in primitive types. We also
assume an infinite set REF of object identities (or references), and null ∈ REF. A value
is either a member of a primitive type in T or an object identity in REF with its dynamic
typing information. Let the set of values be

VAL
def
=
⋃
T ∪ (REF× CNAME)

For a value v = 〈r, C〉 ∈ REF× CNAME, we use ref(v) to denote r and type(v) to denote C.

Definition 2. An object o is either the special object null, or a structure 〈r, C, σ〉, where

– reference r, denoted by ref(o), is in REF,
– C, denoted by type(o), is a class names.
– σ is called the state of o, denoted by state(o), and it is a mapping that assigns each

a ∈ AAttr(C) to a value in dtype(a) if dtype(a) ∈ T and otherwise to the null object
or a value in REF× CNAME. We use o.a to denote σ(a)

3 If we allow attribute hiding and alias, we have to introduce special object variables this and
super. We not consider this problem in this paper.

rCOS: Refinement of Component and Object Systems 193

We extend the equality relation on values to the relation on both values and objects

(v1 = v2)
def
=

(
(type(v1) = type(v2) ∧ type(v1) ∈ T ∧ (v1 = v2))∨
∀a ∈ AAttr(type(v1)) · (v1.a = v2.a)

)
Notice that this equality ignores the references of objects, but only concerns about the
structure and the primitive attributes of the objects in the structure.

Some Notations. Let O be the set of all objects, including null. The following notations
will be employed in the semantics definitions.

– For a non-empty finite sequence of elements s = 〈s1, .., sk〉, we define the head
element head(s) = s1, and the tail sequence tail(s) = 〈s2, .., sk〉.

– For sets S and S1, S1 � S is the set difference removing elements in S1 from S. Let
� have higher associativity than the normal set operators like ∪ and ∩.

– For a mapping f : D −→ E, d ∈ D and r ∈ E,

f ⊕ {d �→ r} def
= f ′ where f ′(b)

def
=
{ r, if b = d;

f(b), if b ∈ {d}� D.

– For an object o = 〈r, M, σ〉, an attribute a of M and a value d,

o⊕ {a �→ d} def
= 〈r, M, σ ⊕ {a �→ d}〉

– For a set S ⊆ O of objects,

S � {〈r, M, σ〉} def
= {o | ref(o) = r}� S ∪ {〈r, M, σ〉}

ref(S)
def
= {r | r = ref(o), o ∈ S}

For a given class declaration section Cdecls, we use ΣCdecls to denote the set of all
objects of the classes declared in Cdecls, called the object space of Cdecls. ΣCdecls
corresponds to the set of all UML object diagrams [4] of the UML class diagram of
Cdecls [32]. We call the pair (ΩCdecls, ΣCdecls) a program context and denote it by
ΞCdecls. When there is no confusion, we omit the subscript Cdecls from these notations.
All the dynamic semantic definitions in the rest of this section are given under a fixed
context, that is defined by a given class declaration section. Therefore the evaluation
value(e) of an expression e is carried out in the context Ξ and the semantics [[c]]Ξ defines
the state change by the execution of c in the context Ξ.

Dynamic Semantics. In rCOS, we define the behavior of an object program by a
design over a set of observables or state variables. We first identify the state variables
and define their states.

Variables. Now we look at what variables can be changed during the execution of the
program.

194 Z. Liu, H. Jifeng, and X. Li

System Configuration. First, we introduce a variable Π whose value is the set of objects
created so far. We call Π the current configuration of the program in [41]. During the
execution of the program, the value of Π is set in the powerset 2Σ that satisfies the
following conditions:

1. objects in Π are complete: if o ∈ Π and a ∈ AAttr(type(o)) with a class type, then
o.a is either null or there is an object o1 ∈ Π and ref(o.a) = ref(o1), and

2. Objects are uniquely identified by their references: for any objects o1 and o2 in Π

if ref(o1) = ref(o2) then
(a) type(o1) = type(o2), and
(b) ref(state(o1)) = ref(state(o2)), where for each a : T ∈ AAttr(type(o))

ref(state(o))(a)
def
=

{
ref(o.a) if T ∈ cname
o.a if T ∈ T

When a new object is created or the value of an attribute of an existing object is mod-
ified, the system configuration Π will be changed. For each class C, we use variable
Π(C) to denote the set of existing objects of class C.

External Variables. A set glb = {x1 : T1, . . . , xk : Tk} of variables with their types are
declared in the main method of the program, where each type Ti is called the declared
type of xi, denoted as dtype(xi), and it is either a built-in primitive type or a public class
in pubcname. Their values will be modified by methods and commands of the main
method containing them.

Local Variables. A set localvar identifies the local variables which occur in the local
variable declaration and undeclaration commands. This set includes self whose current
value represents the current active object, parameters of methods of classes, and other
variables introduced by the local declaration command. We assume that localvar and glb
are disjoint.

Because method calls may be nested inside a method body, self and a parameter of
a method may be declared a number of times with possible different types before it
is undeclared. A local variable x has a sequence of declared types and is syntactically
represented in the form of (x : 〈T1, . . . , Tn〉). We use TypeSeq to denote the sequence of
types of x, and T1 is the most recently declared type of x and denoted by dtype(x).

We use x as a variable to denote the value of a local variable x. This value comprises
a finite sequence of values, whose first (head) element, which is simply denoted by x

itself, represents the current value of the variable. We use the conventions that x : 〈T〉
and x for x for an external variable x : T ∈ glb.

Visibility. We introduce a variable visibleattr to hold the set of attributes which are vis-
ible to the command under execution. There the value of visibleattr defines the current
execution environment. Before executiing a method of an object o, visibleattr is set to set
Attr(o) of the attributes of the current type of o, including all the declared attributes of
the class, the protected and public attributes of its super classes and all public attributes
of public classes; and it will be reset to the global environment consisting of all the
public attributes of the public classes after the execution of the method. We will de-
fine auxiliary commands that set and reset the execution environments when we define

rCOS: Refinement of Component and Object Systems 195

the semantics of a method invocation. Notice that the value space of visibleattr is the
powerset of {C.a | C ∈ CNAME, a ∈ ANAME}.

We use

– var to denote the union of glb and localvar,
– VAR to denote the union of var plus Π and visibleattr, and we call it the set of dynamic

variables,
– glb is the set of elements of VAR excluding those out of glb,
– for a set V of variables, V′ to denote the set of the primed versions of the variables

of V.

States. We now define the notion of states in the object-oriented setting.

Definition 3. For a program S = Cdecls •Main, a (dynamic) state of S is a mapping Γ

from the variables VAR to their value spaces that satisfies the following conditions:

1. If x ∈ VAR and dtype(x) ∈ T then Γ (x) is a value in dtype(x),
2. If x ∈ VAR and dtype(x) ∈ cname then Γ (x) is

(a) either null, or
(b) a value in v ∈ REF× CNAME such that there exists an object o ∈ Γ (Π) for

which ref(o) = ref(v) and type(o) � type(v).
This attachment of an object o to a variable x provides the information about
type casting: type(o) is the current (based) type of x, denoted as atype(x), and
type(v) is the casted type of x.

Two states Γ1 and Γ2 are equal, denoted by Γ1 = Γ2, if

1. Γ1(x) = Γ2(x) for any x ∈ VAR such that dtype(x) ∈ T ,
2. for any x ∈ VAR and dtype(x) ∈ cname

(a) Γ1(x) = null if and only if Γ2(x) = null, and
(b) if oi ∈ Γi(Π) and ref(Γi(x)) = ref(oi), then type(Γ1(x)) = type(Γ2(x)) and

o1 = o2.

For state Γ and a subset V ⊆ VAR, Γ (Π↓V) projects Π onto V and it is defined as follows:

1. if x : C ∈ V, C ∈ cname, o ∈ Γ (Π) and ref(Γ (x)) = ref(o), then o ∈ Γ (Π↓V)

2. if o ∈ Γ (Π↓V) and a is an attribute of type(o) with a class type, o1 ∈ Γ (Π) and
ref(o.a) = ref(o1), then o1 ∈ Γ (Π↓V)

3. Γ (Π↓V) only contains objects constructed from Γ (Π) and the values of the external
variables following the above two rules.

In particular, when we restrict a state Γ on the external variables glb and projects Π

onto these variables, we obtain an external state in which all objects in the system con-
figuration are attached to variables. Therefore, the restriction plays the role of garbage
collection.

For a given state, each expression e, visible(e) is true if and only if one of the fol-
lowing conditions holds:

196 Z. Liu, H. Jifeng, and X. Li

1. e is a declared simple variable x ∈ var, or
2. e ≡ self.a and there exists a class name N ∈ cname such that N � atype(self) and

N.a ∈ visibleattr, or
3. e is of the form e1.a and e1 is not self such that visible(e1), there exists a N � type(e1)

and N.a ∈ visibleattr.

Condition (2) says that if type(self) is C and atype(self) is D, then the attributes of D can
be accessed in the method bodies of the methods D which are inherited or over rewritten
from the casted class C. Condition (3) ensures an attribute of an object other than self
can be directly accessed if and only if it is an attribute in the casted type, i.e. the type of
the expression itself. This would become clearer after understanding the semantics of a
method invocation.

3.3 Evaluation of Expressions

The evaluation of an expression e under a given state determines its type type(e) and its
value that is a member of type(e) if this type is a built-in primitive type, otherwise a value
in REF× CNAME. The evaluation makes use of the system configuration. An expression
can only be evaluated when it is well-defined. Some well-definedness conditions are
static that can be checked at compiling time, but some are dynamic. The evaluation
results of expressions are given in Table. 2, where we only give an example (at the
bottom of the table) about well-defined expression on built-in primitive types.

Notice the definition of type casting (C)e requires that the base type e be a subclass
of C. This is implemented in Java by the testing command C.class.isInstance(e). This
covers all the following both casting up when the casted type type(e) is a subclass of C
too, and casting down when type(e) is superclass of C.

Semantics of Commands. A typical aspect of an execution of an object-oriented pro-
gram is about how objects are to be attached to program variables (or entities [38]).
An attachment is made by an assignment, the object creation of an object or passing a
parameter in a method invocation. With the approach of UTP, these different cases are
unified as an assignment of a value to a program variable. Also, all other programming
constructs will be defined in exactly the same way as their counter-parts in a procedural
language. We only define the commands which are typical for object-orientation and
the definition for the other commands remains same as in the imperative programming
as we introduced in Section 2, provided they are well-defined. The semantics [[c]] of each
command c has its well-defined condition D(c) as part of its precondition and thus has
the form of D(c) ⇒ (p � R) or D(c) ∧ p � R.

Assignments. An assignment le := e is well-defined if both le and e are well-defined
and current type of e matches the declared type of le

D(le := e)
def
= D(le) ∧ D(e) ∧ (type(e) ∈ cname⇒ (e = null) ∨ (type(e) � dtype(le)))

Notice that the well-definedess checking here includes dynamic type matching. How-
ever, for a language with strong typing, the strong static typing condition would be

rCOS: Refinement of Component and Object Systems 197

Table 2. Evaluation of Expressions

Expression Evaluation

null D(null)
def
= true, type(null)

def
= NULL, ref(null)

def
= null

x

D(x)
def
= visible(x) ∧ (dtype(x) ∈ T ∨ dtype(x) ∈ cname)
∧ dtype(x) ∈ T ⇒ head(x) ∈ dtype(x)
∧ dtype(x) ∈ cname ⇒

ref(head(x)) ∈ ref(Π(dtype(x)))

type(x)
def
=

{
dtype(x) dtype(x) ∈ T
type(head(x)) otherwise

le.a

D(le.a)
def
= D(le) ∧ le �= null

∧ dtype(le) ∈ cname ∧ visible(le.a)

type(le.a)
def
= type(state(le)(a))

ref(le.a)
def
= ref(state(le)(a))

(C)e

D((C)e)
def
= D(e) ∧ type(e) �∈ T ∧ atype(e) � C

type((C)e)
def
= C

ref((C)e)
def
= ref(e)

e/f
D(e/f)

def
= D(e) ∧ D(f) ∧ dtype(e) = Real

∧ dtype(f) = Real ∧ value(f) �= 0

value(e/f)
def
= value(e)/value(f)

enough dtype(e) � dtype(le), as it implies type(e) � dtype(le). Also, together with the
well-definedness D(e), when e is an object D(le := e) ensures that atype(e) � dtype(le).

There are two cases of assignment. The first is to (re-)attach a value to a variable
(i.e. change the current value of the variable), but this can be done only when the type of
the object is consistent with the declared type of the variable. The attachment of values
to other variables are not changed.

[[x:=e]]
def
= {x} : D(x:=e) � (x′ = 〈value(e)〉 · tail(x))

As we do not allow attribute hiding or redefinition in subclasses, the assignment to a
simple variable has not side-effect, and thus the Hoare triple

{o2.a = 3} o1 := o2 {o1.a = 3}

is valid in our model, where o1 : C1 and o2 : C2 are variables, C2 � C1 and a : Int is
protected attribute of C1. This has made the theory simpler than the Hoare-Logic based
semantics for object-oriented programming in [41].

The second case is to modify the value of an attribute of an object attached to an
expression. This is done by finding the attached object in the system configuration Π
and modifying its state accordingly. Thus, all variables attached to the reference of this
object will be updated.

[[le.a := e]]
def
= {Π(dtype(le))} : D(le.a:=e) �(

Π(dtype(le))′ = Π(dtype(le))�
{o⊕ {a �→ value(e)} | o ∈ Π ∧ ref(o) = ref(le)}

)

198 Z. Liu, H. Jifeng, and X. Li

For example, let x be a variable of type C such that C has an attribute d of D and D
has an attribute a of integer type. x.d.a := 4 will change state of x = 〈r1, C, {d �→ r2}〉,
where reference r2 is the identity of 〈r2, D, {a �→ 3}〉 to x = 〈r1, C, {d �→ r2}〉, but the r2

is now the identity of the object 〈r2, D, {a �→ 4}〉.
This semantic definition shows the side-effect of an assignment and does reflect the

object-oriented feature pointed out by Broy in [6] that an invocation to a method of
an object which contains such an assignment or an instance creation defined later on,
changes the system configuration Π .

Law 1. (le := e; le := f(le)) = (le := f(e))

Law 2. (le1 := e1; le2 := e2) = (le2 := e2; le1 := e1), provided le1 and le2 are distinct
simple names which do not occur in e1 or e2.

Note that the law might not be valid if lei are composite expressions. For instance, the
following equation is not valid when x and y have the same reference:

(x.a := 1; y.a := 2) = (y.a = 2; x.a = 1)

Object Creation. The C.new(le) is well-defined if

C ∈ cname ∧ D(le) ∧ dtype(le) � C

The command creates a new object, attaches the object to x and set the initial values of
the attributes to the attributes of x too.

[[C.new(le)]]
def
= {le, Π(C)}:

D(C.new(le)) � ∃r �∈ ref(Π)·(AddNew(C, r) ∧Modify(le))

where

AddNew(C, r)
def
= Π(C)′ = Π(C)
∪ {〈r, C, {ai �→ init(C.ai)}〉 | ai ∈ AAttr(C)}

Modify(le)
def
=

⎛⎝ le ∈ localvar ∧ le
′
= 〈r, C〉 · tail(le)∧

TypeSeq′(le) = 〈C〉 · tail(TypeSeq(le))
∨ le �∈ localvar ∧ {le} : true � (le′ = (r, C))

⎞⎠
Here we assume if dtype(C.ai) = M, the assignment ai �→ init(C.ai) is ai �→ M.new(C.ai).

For creation of objects, we have the following laws

Law 3. C1.new(x); C2.new(y) = C2.new(y); C1.new(x), provided x and y are distinct.

Law 4. If x is not free in the Boolean expression b, then

C.new(x); (P � b � Q) = (C.new(x); P) � b � (C.new(x); Q)

Local Variable Declaration and Undeclaration. Command var T x = e declares a vari-
able and initialises it:

[[var T x = e]]
def
= {x} : D(var T x = e) �

(x′ = 〈value(e)〉 · x) ∧ TypeSeq′(x) = 〈T〉 · TypeSeq(x)

rCOS: Refinement of Component and Object Systems 199

where

D(var T x = e)
def
= (x ∈ localvar) ∧ D(e) ∧ type(e) �∈ T ⇒ type(e) � T

We define [[var T x]]
def
= �d∈T[[var T x = d]].

Command end terminates the block of permitted use a variable:

[[end x]]
def
= {x}:D(end x) � x′ = tail(x) ∧ TypeSeq′(x) = tail(Tseq(x))

where D(end x)
def
= x ∈ localvar.

Declaration and undeclaration distribute over conditional choice.

Law 5. If x is not free in b, then

var T x = e; (P � b � Q) = (var T x = e; P) � b � (var T x = e; Q)
end x; (P � b � Q) = (end x; P) � b � (end x; Q)

Initialisation becomes void if the declared variable is updated immediately.

Law 6. (var T x = e;x := f) � var T x = f

Note that the two commands in the above law are not equivalent it is possible that e is
not well-defined.

Assignment to a variable just before the end of its scope is irrelevant if it is well-
defined.

Law 7. (x := e; end x) � end x

Both declaration and undeclaration are commutative.

Law 8. (var T1 x = e1; var T2 y = e2) = (var T2 y = e2; var T1 x = e1), provided y is
not in e1 and x does not appear in e2.

Law 9. (end x; end y) = (end y; end x)

Law 10. (var T x = e; end y) = (end y; var T x = e), provided y is not in e.

Method Call. For a method signature m(T1 x; T2 y; T3 z), let ve, re and vre be lists of
expressions. Command le.m(ve; re; vre) is well-defined if le is well-defined and it is a
non-null object such that a method m �→ (T1 x; T2 y; T3 z, c) is in the casted type type(le)
of le:

D(le.m(ve; re; vre))
def
= D(le) ∧ type(le) ∈ cname ∧ (le �= null)
∧ N ∈ cname · N � type(le)
∧ ∃(m �→ (T1 x; T2 y; T3 z, c)) ∈ op(N)

The execution of this method invocation assigns the values of the actual parameters
v and vr to the formal value and value-result parameters of the method m of the ob-
ject o that le refers to, and then executes the body of m under the environment of the
class owning method m(). After it terminates, the value of the result and value-result
parameters of m are passed back to the actual parameters r and vr.

[[le.m(ve; re; vre)]]
def
= (D(le.m(ve; re; vre)) ⇒

∃C ∈ cname · (atype(le) = C)

∧

⎛⎜⎜⎝
[[var T1 x = ve, T2 y, T3 z = vre]];
[[var C self = le]];
[[Execute(C.m)]]; [[re, vre := y, z]];
[[end self, x, y, z]]

⎞⎟⎟⎠

200 Z. Liu, H. Jifeng, and X. Li

where Execute(M.m) sets the execution environment, then executes the body and reset
the environment afterwards. There are the following cases:

Case 1: If m(T1 x; T2 y; T3 z) is not declared in C but in a superclass of C, i.e. there
exists a command c such that (m �→ (T1 x; T2 y; T3 z, c)) ∈ op(N) for some N � C,
then

Execute(C.m)
def
= ExC(superclass(C).m)

where if m() ∈ op(M) then

ExC(M.m)
def
= Set(C, M); SELFM

C (body(M.m)); Reset

else

ExC(M.m)
def
= ExC(superclass(M).m)

Case 2: If m(T1 x; T2 y; T3 z) is declared in class C itself, that is for some command c
(m �→ (T1 x; T2 y; T3 z, c)) ∈ op(C), then

Execute(C.m)
def
= Set(C, C); SELFC

C(body(C.m)); Reset

where
– body(C.m) is the body c of the method being called.
– The design Set(C, M) finds out all attributes visible to class M in order for the

invocation of method m of M to be executed properly, whereas Reset resets the
environment to be the set of variables that are accessible to the main program
only:

Set(C, C)
def
= {visibleattr} : true �

visibleattr′ =

⎛⎝ {C.a | a ∈ pri(C)}∪⋃
C�N{C.a | a ∈ prot(N) ∪ pub(N)}∪⋃
N∈pubcname{N.a | a ∈ pub(N)}

⎞⎠
and when C and M are different

Set(C, M)
def
= {visibleattr} : true "

visibleattr′ =

⎛⎝{C.a | a ∈ pri(M)}∪⋃
M�N{C.a | a ∈ prot(N) ∪ pub(N)}∪⋃
N∈pubcname{N.a | a ∈ pub(N)}

⎞⎠
Reset

def
= {visibleattr} : true �

visibleattr′ =
⋃

N∈pubcname{N.a | a ∈ pub(N)}
Set and Reset are used to ensure data encapsulation that is controlled by
visibleattr and the well-definedness condition of an expression.

– The transformation SELFC on a command is defined in Table 3, which adds
a prefix self to each attribute and each method in the command. Notice that
as a method call may occur in a command that will change the execution en-
vironment, therefore after the execution of the nested call is completed the
environment needs to be set back to that of C.

rCOS: Refinement of Component and Object Systems 201

Table 3. The Definition of SELF

c or e SELFM
C (c) or SELFM

C (e)

skip skip
chaos chaos

c1 � b � c2 SELFM
C (c1) � SELFM

C (b) � SELFM
C (c2)

c1 � c2 SELFM
C (c1) � SELFM

C (c2)

var T x = e T var x = SELFM
C (e)

end x end x

C.new(x) C.new(SELFM
C (x))

le := e SELFM
C (le) := SELFM

C (e)

le.m(ve; re; vre) SELFM
C (le).m(SELFM

C (ve); SELFM
C (re); SELFM

C (vre))

m(ve; re; vre) self.m(SELFM
C (ve); SELFM

C (re); SELFM
C (vre))

c1; c2 SELFM
C (c1); Set(C, M); SELFM

C (c2)

b ∗ c SELFM
C (b) ∗ (SELFM

C (c); Set(C, M))

le.a SELFM
C (le).a

f(e) f(SELFM
C (e))

null null
self self

x
{ self.x, x ∈ ⋃C�N Attr(N)

x, otherwise

Notice that semantics of a method call defines the method binging rules to ensure that

– only a method with a signature declared in the casted type or above the casted type
in the inheritance hierarchy can be accessed, and

– method that is executed is the one defined in the lowest position the inheritance
hierarchy from the current type of the active object.

We did not introduce the syntax super.m to explicitly indicate the call to a method
according to its definition in the superclass. There is no difficulty to introduce super.m
and define its semantics accordingly.

Example 1. To illustrate the semantics of a method invocation, we can consider the
bank system with the UML class diagram in Figure 1. We define Execute(C.m) for the
method withdraw() in the classes of current account and saving account CA and SA. We
assume all classes, except for Bank, are private classes, and further notice that

1. the body of withdraw() in the superclass Account is

balance > x � balance′ = balance− x

2. subclass SA inherits withdraw() from Account, and
3. subclass CA overwrites the body of withdraw() into

balance := balance − x

202 Z. Liu, H. Jifeng, and X. Li

For class CA,

Execute(CA.withdraw) = Set(CA, CA); SELFCA
CA(balance := balance− x); Reset

= visibleattr := {CA.blance, CA.aNo};
self.balance := self.balance − x;
visibleattr := ∅

According to the semantics of a method call to o.withdraw(e), where o is an object of CA,
the execution of this method call first attaches o to self, and then executes the method
according to the semantics of Execute(CA.withdraw) defined above. It shows that the
method is executed according to the current type CA and the method is the method of
the subclass.

For the case of a saving account

Execute(SA.withdraw)

= Set(SA, Account); SELFAccount
SA (Account.withdraw); Reset

= visibleattr := {SA.blance, SA.aNo};
self.balance > x � self.balance′ = self.balance − x;
visibleattr := ∅

Thus, the invocation to a withdraw method of a saving account is executed according to
the definition of the method in the superclass Account. ♣

Semantics of Object Systems. Having defined the semantics of a class declaration
section and a command, we combine them to define the semantics of an object program
(Cdecls •Main).

Recall that Main consists of a set externalvar of the external variables with their types
and a command c. For simplicity but without loss of expressive power, we assume that
any primitive command in c is in one of the following forms:

1. an assignment x := e such that x ∈ externalvar and e does not contain sub-
expressions of the form le.a. That is, we do not allow direct access to object at-
tributes in the main method.

2. a creation of a new object C.New(x) for a variable x ∈ externalvar,
3. a method call x.m(ve; re; vre), where x is a variable in externalvar.

Main is well-defined if the types of all variables in externalvar are either built-in primitive
types or public classes declared in pubcname:

D(Main)
def
=

∧
x∈externalvar

(dtype(x) ∈ pubcname ∨ dtype(x) ∈ T)

The semantics of Main is then defined to be

[[Main]]
def
= D(Main)⇒ [[c]]

Before Main is executed, the well-definedness of the declaration section has to be
checked and the local variables have to be initialised to empty sequences. For this we
define a design Init:

Init
def
= D(Cdecls) " visibleattr′ = ∅ ∧ (Π ′ = ∅)∧∧

x∈var
(x′ =< > ∧TypeSeq′(x) =< >)

rCOS: Refinement of Component and Object Systems 203

Definition 4. The semantics of an object program Cdecls •Main is defined to be the
following sequential composition

[[Cdecls •Main]]
def
= ∃Ω, Ω′, glb, glb′ · ([[Cdecls]]; Init; [[Main]])

This definition of the closed semantics allows us to hide the internal information in
the execution of a program, only observing the relation between the pre-state and post-
state of the external variables whose types are built-in primitive types, and the object
type information of the external variables whose types are declared as classes. We can-
not observe the information of the objects attached to these variables. We have a less
abstract definition for the semantics of an object program.

We define the open semantics [[Cdecls •Main]]o of Cdecls •Main as

∃{Π}� glb, {Π ′} � glb′, Ω, Ω′·
([[Cdecls]]; Init; [[Main]]; [[Π ′ := Π↓externalvar]])

The open semantics allows us to observe the full information about the states of external
variables. We can insert the command Π ′ := Π↓externalvar at any point of the main
method without changing the open and close semantics of a program.

Lemma 1. For any object program S = Cdecls •Main with c as the command in the
main method, we have

1. [[S]] = ∃Π,Π ′ · [[S]]o.
2. If c is of the form c1; c2, let S2 be the program which replaces the command c with

c1; Π
′ := Π↓externalvar; c2, then [[S]]o = [[S2]]o.

3. If c is of the form c1; b ∗ (c2; c3); c4, let S3 be the program which replaces the loop in
Main with b ∗ (c2; Π

′ := Π↓externalvar; c3), then [[S]]o = [[S3]]o.
4. If c is of the form c1; (c2; c3) � b � c4; c5, let S4 be the program which replaces the

conditional choice in Main with (c2; Π
′ := Π↓externalvar; c3) � b � c4, then

[[S]]o = [[S4]]o.
5. If c is of the form c1; (c2; c3) � c4, let S5 be the program which replaces command c

in Main with c1; (c2; Π
′ := Π↓externalvar; c3) � c4, then [[S]]o = [[S5]]o.

4 Object-Oriented Refinement

We would like the refinement calculus to cover not only the early development stages
of requirements analysis and specification but also the later stages of design and im-
plementation. This section presents the results of our exploration on three kinds of
refinement:

1. Refinement relation between object systems.
2. Refinement relation between declaration sections (structural refinement).

We only present the definitions and some laws. For detailed study with proofs, we refer
to the full version of the paper in [16]. The refinement calculus is used in a case study
of the development of a Point of Sale Terminal (POST) [36].

204 Z. Liu, H. Jifeng, and X. Li

4.1 Refinement of Object Systems

We have defined the refinement relation between commands and shown some examples
in the previous section. We now define what we mean by a refinement between two
object programs and then focus on the structural refinement. The notation of structural
refinement is actually an extension to the notion of data refinement [19].

Definition 5. Let Si = Cdeclsi •Maini, i = 1, 2, be object programs which have the same
set of external variables externalvar. S1 is a refinement of S2, denoted by S1 "sys S2, if
the following implication holds:

∀externalvar, externalvar′, ok, ok′ · ([[S1]] ⇒ [[S2]])

Example 2. For any class declaration Cdecls, we have the following:

1. S1 = Cdecls • ({x : C}, C.new(x)) and S2 = Cdecls • ({x : C}, C.new(x); C.new(x)) are
equivalent.

2. We assume class C ∈ pubcname, 〈a : Int, d〉 ∈ attr(C), get(∅; Int z; ∅){z := a} and
update(){a := a + c} in op(C), then

Cdecls • ({x : C, y : Int}, C.new(x);x.update();x.get(y))

and

Cdecls • ({x : C, y : Int}, C.new(x);x.update();x.get(y); C.new(x))

are equivalent.

Proof. We give a proof for item (2) of this example. We denote the first program by S1

and the second by S2. Assume the declaration section is well-defined, as otherwise both
programs are chaos. Then it is easy to check the main methods are both well-defined.
The structural variables Ω are calculated according to the definition. Let d be the initial
value of attribute a of C and σ0 denote the initial state of an object of C when it is
created. We calculate the semantics of S1:

[[C.new(x);x.update(), x.get(y)]]

=

(
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0〉} ∧ x′ = 〈r, C〉);
[[x.update(); x.get(y)]]

)
=

⎛⎝ true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0〉} ∧ x′ = 〈r, C〉)∧
self′ =<> ∧Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉 | r = ref(x)});
[[x.get(y)]]

⎞⎠
=

⎛⎝ true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉}∧
x′ = 〈r, C〉) ∧ (self′ =< >);

[[x.get(y)]]

⎞⎠
=

⎛⎜⎜⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉}∧

x′ = 〈r, C〉) ∧ self′ =< >);
true � self′ =<> ∧z′ =<> ∧y′ = d + c∧

visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞⎟⎟⎠
=

⎛⎝ true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉}∧
x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞⎠

rCOS: Refinement of Component and Object Systems 205

The semantics [[S1]] hides Ω, Π , self and z by existential quantification. Let [[Cdecls]] be
true � Ω = ∅ ∧Ω′ = Ω0, we have [[S1]] equals to

∃
{

Ω, Ω′, self, self′, z, z′,
visibleattr, visibleattr′

}
· ([[Cdecls]]; Init; [[C.new(x);x.update(), x.get(y))]])

= true � ∃r ∈ REF · x′ = 〈r, C〉 ∧ y′ = c + d

The main method of S2 is the main method of S1 followed by command C.new(x) and
thus its semantics equals

[[C.new(x);x.update(), x.get(y)]]; [[C.new(x)]]

=

⎛⎜⎜⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉}∧

x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)};

[[C.new(x)]]

⎞⎟⎟⎠
=

⎛⎜⎜⎝
true � ∃r ∈ REF · (Π ′ = {〈r, C, σ0 ⊕ {a �→ d + c}〉∧

x′ = 〈r, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)};

true � ∃p �∈ ref(Π) ·Π ′ = Π ∪ {〈p, C, σ0〉} ∧ (x′ = 〈p, C〉)

⎞⎟⎟⎠
=

⎛⎜⎜⎝
true � ∃r, p ∈ REF · ((p �= r)∧

Π ′ = {〈p, C, σ0〉, 〈r, C, σ0 ⊕ {a �→ d + c}〉}∧
x′ = 〈p, C〉) ∧ self′ =< > ∧z′ =<> ∧y′ = c + d∧
visibleattr′ = {M.a | M ∈ pubname ∧ a ∈ pub(M)}

⎞⎟⎟⎠
Hiding the internal variables, [[S2]] equals

true � ∃p ∈ REF · x′ = (p, C) ∧ y′ = c + d

Thus, we have proved, S1 and S2 refines each other.

However, If we change the main methods of these two programs by adding another
x.get(y) to the end of both of them. They are not equivalent anymore. The final value of
y for the first program remains will be still d + c, but for the second one, the final value
of y gets the initial value d after the execution. ♣

The discussion at the end of the example shows that program refinement is not quite
compositional. In other words, for two main methods, Maini = (externalvar, ci), i = 1, 2,

Cdecls1 •Main1 "sys Cdecls2 •Main2

does not in general imply

Cdecls • (externalvar, c1; c) "sys Cdecls • (externalvar, c2; c)

The main reason for this is the global internal variable Π is hidden in the semantics. In
fact any program that has internal variables does not have such compositionality.

Theorem 2. Let Cdecls •Main, C be a public class declared in Cdecls and Cdecls1 be
obtained from Cdecls by changing C to a private class. Then if C is not referred in Main,

Cdecls •Main =sys Cdecls1 •Main

where =sys is the equivalence relation "sys ∩ �sys.

The relation "sys is reflexive and transitive.

206 Z. Liu, H. Jifeng, and X. Li

4.2 Structure Refinement

The proof in Example 2 shows that the local variables and visibleattr of a program are
constants after each method invocation. When the main methods in the programs are
syntactically identical, the relation between their system states is determined by the
relation between the structure of these programs, i.e. their class names, attributes, sub-
superclass relations, and methods in the classes.

An object-oriented program design is mainly about designing classes and their
methods, and a class declaration section can in fact support many different application
main programs. The rest of this section focuses on structural refinement.

Definition 6. Let Cdecls1 and Cdecls2 be two declaration sections. Cdecls1 is a refine-
ment of Cdecls2, denoted by Cdecls1 "class cdecls2, if the former can replace the later
in any object system:

Cdecls1 "class Cdecls2
def
= ∀Main · (Cdecls1 •Main "sys Cdecls2 •Main)

Intuitively, it states that Cdecls1 supports at least the same set of services as Cdecls2. It is
obvious that "class is reflexive and transitive. We use =class to denote the equivalence
relation "class ∩ �class. When there is no confusion, we omit the subscript when we
discuss about structural refinement.

A structural refinement does not allow to change the main method. So every public
class in Cdecls2 has to be declared in the refined declaration section Cdecls1, and every
method signature in a public class of Cdecls2 has to be declared in Cdecls1, otherwise
there are main methods which are well-defined under Cdecls2 but not under Cdecls1.
Also recall that a main method only change objects by method invocations to public
classes.

In the full version of rCOS for object systems [16], we have shown how struc-
tural refinement between two class declaration sections by structural transformations
and upwards and downwards simulations of public class methods. A structural trans-
formation between two declaration sections is actually a transformation between the
corresponding UML class diagrams of the declaration sections. In [16], a proof is given
to show that the two classes diagrams (class declaration sections) in Figure 2 refine each
other if C is the only public class.

4.3 Laws of Structural Refinement

The following refinement laws capture the basic principles in object-oriented design
and decomposition, and can be used to prove general object-oriented design patterns
within the UML framework:

1. Adding a class declaration: this allows us to add a class into the class diagram,
sequence diagrams and state machines of the methods of the new class.

2. Introducing a fresh private attribute to a class: this corresponds to adding a fresh
attribute of a primitive type to the class or adding a directed association from the
class to another in the class diagram.

3. Promoting a private attribute of a class to a protected attribute, and a protected at-
tribute to a public attribute: the same refinements can be applied to a class diagram.

rCOS: Refinement of Component and Object Systems 207

C

o :C1

get(Ø,x,Ø){
o.get (Ø,x,Ø)}

update(x, Ø,Ø){
o.update (x,Ø,Ø)}

C

o :C1

get(Ø,x,Ø){
o.get (Ø,x,Ø)}

update(x, Ø,Ø){
o.update (x,Ø,Ø)}

C1

a:Int
b: Int

get(Ø,x,Ø){x:=a}
update(x, Ø,Ø){a:=a+x}

C2

o3 :C3
o4 :C4
o5 :C5

get(Ø,x,Ø){
 var Int y ; o3.get (Ø,y ,Ø);

o4.get (Ø,x,Ø);x:=x+ y ;
 end y }
update(x, Ø,Ø){

o3.update (x,Ø,Ø) []
o4.update (x,Ø,Ø)}

C3

a3 :Int

get(Ø,x,Ø){x:=a3 }
update(x, Ø,Ø){a3 :=a3 +x}

C4

a4 :Int

get(Ø,x,Ø){x:=a4 }
update(x, Ø,Ø){a4 :=a4 +x}

C5

a5 :Int

get(Ø,x,Ø){x:=a5 }
update(x, Ø,Ø){a5 :=a5 +x}

Cdecls 1 Cdecls 2

Fig. 2. Example of Structural Refinement

4. Adding a fresh method into a class: this allows us to add a method signature into the
class in the class diagram, and add a sequence diagram, modify the state machine
to incorporate this method. The newly added methods must not violate any state
constraint required by the model.

5. Refining the body command of a method m(){c} in a class: this leads to the re-
placement of the subsequence diagrams corresponding to the occurrences of m(),
and refine the actions of transitions with m() as the triggering event in the state
machine of the class.

6. Introducing inheritance: If none of the attribute of class N is defined in class M or
any superclass of M, we can make M a direct superclass of N.

7. Moving some attributes from a class to its direct superclass.
8. Introducing a fresh superclass to a class: If M is not in the class declaration, we can

introduce M and make it a superclass of an existing class N.
9. Moving common attributes of classes which are direct subclasses of a class to the

superclass.
10. Moving a method from a class to its direct superclass.
11. Copying (not removing) a method of a class to its direct subclass.
12. Removing unused attributes: for a private attribute, it can be removed if it does not

appear in any method of the class; for a protected attribute, it can be removed if
it does not appear in any method of the class or any of its subclasses; for a public
attribute, it can be removed if it does not appear in any method. This is because the
main method does not access attributes directly.

208 Z. Liu, H. Jifeng, and X. Li

We can also refine a class diagram by flattening it into a diagram without inheritance
relations between classes. Refinement rules are also available for the object-oriented
design patterns. General Responsibility Assignment Software Patterns (GRASP) [25] is
a frequently used object-oriented design technique. We have used the facade controller
in a requirement specification. One of the most important design patterns is called the
expert pattern, which shows how part of a functionality of a class can be delegated to
another class:

Law 11. (Expert) If a method of a class contains a subcommand that can be real-
ized by a method of another class, we can replace that subcommand with a method
invocation to the of the latter class (see Figure 3).

1n{c[c (o.x)]}

N
o

N

n{c[o.m]}

M

x

1m{c (x)}

M

x

1m{c (x)}

o

Fig. 3. Expert Pattern

Note that the sequence diagrams and state machines involving N :: m() are refined
accordingly. They are not shown here due to the length limit of this paper.

The Low-Coupling Pattern of GRASP, on the other hand, can help us remove un-
necessary associations to reduce the coupling between classes and simplify reuse and
maintenance.

Law 12. (Low Coupling) A call from one class to a method of another can be realized
via a third class that is associated with these two classes. This is shown in Figure 4.

M1

m1{c[o1.m3()]

M2

M3

m3()

o2

o3

o1
o: M1 o.o2.o3=o.o1.

m2{o3.m3()}

M2

M3

m3()

o3

M1

m1{c[o2.m2()]

o2

Fig. 4. Low Coupling Pattern

The High-Cohesion Pattern corresponds to the principle to decompose a complex class
into several related classes. A highly cohesive design makes reuse and maintenance
more flexible.

Law 13. (High Cohesion) Assume two methods m1() and m2() in a class M and m1

does not depend on m2 (though m2() may call m1()), we can decompose the class into
three associated classes so that the original class M only delegates the functionalities
to the newly introduced classes. There are two ways of doing this, as shown in Figure 5.

rCOS: Refinement of Component and Object Systems 209

 M 2

o : M (o . o = o . o . o) .
1 2 1

1 1

M 1

22 2m {o . .m }

y
 1 1

2m {c . [o . m] } 2 1 1

x
m {c (x)}

M o

 1

2

1

2 1
m {c [m]}
m {c (x)}

y
x

M

m {o . .m } 1 1 1

o
1

o
2

M

 M 2

22 2m {o . .m }

1 1

M 1

2

M

m {o . .m } 1 1

 1

2

1

2 1
m {c [m]}
m {c (x)}

x
m {c (x)}

y
x

M

m { c [o . m] } 2 1 1

m {o . m } 1 1 1

y

o

o 1

2

2

(a) (b)

Fig. 5. High Cohesion pattern

The case (a) in Law 13 requires M to be coupled with both M1 and M2; and in case (b)
M is only coupled with M2, but more interactions are needed between M2 and M1.

The other design patterns in [13], such as Adaptor Pattern, Observer Pattern, Strat-
egy Pattern and Abstract Factory Pattern can also be formalized.

In fact the laws above are also reversible and thus can be used for re-engineering.
This also implies the result in [5] that every object-oriented program can be converted
back to a normal form specification corresponding to an imperative program. Moreover,
such a normal form in our framework corresponds to the requirement specification in
terms of use cases [26,32]. In [25,29], the five GRASP patterns are systematically used
for the development of a case study.

5 Component Systems

Using components to build and maintain software systems is not a new idea. How-
ever, it is today’s growing complexity of these systems that forces us to turn this idea
into practice [45,9,18]. While component technologies such as COM, CORBA, and
Enterprise JavaBeans are widely used, there is so far no agreement on standard tech-
nologies for designing and creating components, nor on methods for composing them.
Finding appropriate formal approaches for specifying components, the architectures for
composing them, and the methods for component-based software construction, is cor-
respondingly challenging. In this section, we consider a contract-oriented approach to
the specification, design and composition of components. Component specification is
essential as it is impossible to manage change, substitution and composition of compo-
nents if components have not been properly specified.

5.1 Introduction

When we specify a component, it is important to separate different views about the
component. From its user’s (i.e. external) point of view, a component Comp consists

210 Z. Liu, H. Jifeng, and X. Li

of a set of provided services [45]. The syntactic specification of the provided services
is described by an interface, defining the operations that the component provides with
their signatures. This is also called the syntactic specification of a component. COM and
CORBA use IDL, and JavaBeans uses Java Programming Language to specify compo-
nent interfaces. Such a syntactic specification of a component does not provide any in-
formation about the effect, i.e. the functionality of invoking an operation of a component
or the behavior, i.e. the temporal order of the interface operations, of the component.

For the functional specification of the operations in an interface, it is however nec-
essary to know the conceptual state of the component. Consequently, the interface spec-
ification contains a so-called information model [9,11]. In the context of such a model,
we still specify an operation m by a design p(x) � R(x, x′) that is seen as a contract
between the component and its client [9,18]. This definition of a contract also agrees
with that of [39,40]. To use the service m, a client has to ensure the pre-condition p(x),
and when this is true the component must guarantee the post-condition Q. We then de-
fine a contract of an interface by associating the interface with a set of features that we
will call fields and assigning each a design MSpec(m) to each interface operation m. The
types of the fields are given in a data/class model.

The contract for the provided interface of a component allows the user to check
whether the component provides the services required by other components in the sys-
tem, without the need to know the design and implementation of the component. It also
commits (or requires) the designers of the component who have to design the com-
ponent’s provided services. A designer of the component under consideration (CuC)
may decide to use services provided by other components. These services are called
required services [45] of CuC. Components that provide the required services of CuC
can be built by another team or bought as a component-off-the-shelf (COTS). To use
a component to assemble a system, one needs to know the specifications of both its
provided and required services.

We will specify the design of a component by giving each operation m in the pro-
vided interface a program specification text MImpl(m) in rCOS. In MImpl(m), calls to
operations in a required interface are allowed. We can then verify whether MImpl(m)

refines the specification of m given in a contract of the provided interface. The verifier
of a component needs to know the contracts of the provided interfaces, the contracts of
the required interfaces, and the specification text for each operation m of the provided
interface. We can thus understand a component as a relation between contracts of the
required interfaces and contracts of the provided interface: given a contract for each
required interface, we can calculate a design of an m from MImpl(m) and check whether
it conforms to the specification MSpec(m) defined by the contract of the provided inter-
face. A design of a component can be further refined into an implementation by refining
the data/class model and then operation specifications MImpl(m).

A component assumes an architectural context defined by its interfaces. We connect
or compose two components Comp1 and Comp2 by linking the operations in the provided
interface of one component to the matching operations of a required interface of another.
For this, we have to check whether the provided interface of component Comp1 contains
the operations of a required interface of component Comp2, and whether the contract of
the provided interface of Comp1 meets the contract of the required interface of Comp2.

rCOS: Refinement of Component and Object Systems 211

If Comp1 and Comp2 match well, the composition Comp1||Comp2 forms another compo-
nent. The provided interface of Comp1||Comp2 is the merge of the provided interfaces of
Comp1 and Comp2. The required interfaces of Comp1||Comp2 are the union of required
interfaces of Comp1 and Comp2, excluding (by hiding) the matched interfaces of Comp1

and Comp2. For defining composition, interfaces can be hidden and renamed.
A component is also replaceable, meaning that the developer can replace one com-

ponent with another, may be better, as long as the new one provides and requests the
same services. A component is better than another if it can provide more services, i.e.
the contracts for its provided interfaces refine those of the other, with the same required
services. Component replaceability is based on the notion of component refinement.

In this section we present a model of components that allows us to

– describe and check the syntactic dependency and composability among compo-
nents in terms of interfaces,

– specify and reason about function composability and substitutability of a compo-
nent in terms contracts,

– correctness and substitutability of component designs and implementation with re-
spect the contract specification of the component.

We leave the specification, correctness and substitutability of interaction protocols of
components in future work.

5.2 Interfaces

An interface I is a set of operation (or method) signatures m(U x; V y; W z), where m is
called the name of the operation. An interface can be specified as a family of operation
signatures in the following format:

Interface I {
Method : m1(U1 x1; V 1 y

1
; W 1 z1);

. . . ;
mk(Uk xk; V k y

k
; W k zk)

}

Merge Interfaces

It is often the case that there are a number of components, each providing a part of the
operations in the required interface of another component. We thus need to merge these
components to provide one single interface to match the interface required by the other
component.

Two interfaces I1 and I2 are composable provided that every operation name that
appears in both I1 and I2 must be declared with the same signature. This condition is
not too restrictive as to use a component designed for an application in another or spe-
cialize a generic component for a special application, renaming or adding a connector
component [2,42] can be used to customize the component.

Definition 7. Let {Ik : | k ∈ K} be a finite family of composable interfaces. Their merge
�k∈KIk is defined by �k∈KIk

def
= ∪k∈KIk.

212 Z. Liu, H. Jifeng, and X. Li

5.3 Contracts

Only a syntactic specification of its interface is not enough for the use or the design
of a component. We also need to specify the effect, i.e. the functionality, of invoking
an interface operation. This requires one to associate the interface to a conceptual state
space, and a specification of how the states are changed by the operation under certain
pre-conditions. We view such a functional specification of an interface as a contract
between the component client and the component developer. The contract is the spec-
ification of the component that the developer has to implement. The contract is also
between a user of the component and a provider of an implementation of the inter-
face: the component has to provide the services promised by the specification provided
that the user uses the component according to the precondition. To define the conceptual
state space of a contract for an interface and the types for the parameters of the interface
operations, we assume that a type is either a primitive built-in or a class of objects. This
allows our framework to support both imperative and object-oriented programming in
the design of a component. The type definitions is given by a class declaration section
and it declares a class structure Ω, called the information model of the component.

Given an interface I, an information modelΩ declared by a class declaration section,
a set A of variable declarations of the form T x where T is either a primitive type or a
class declared in Ω, called the type of x, we define the alphabet α as the union of sets
of the variables, the input and output parameters of the operations of I.

inα
def
= A ∪ {x ∈ x ∪ z |m(U x; V y; W z) ∈ I}

outα
def
= A ∪ {y ∈ y ∪ z |m(U x; V y; W z) ∈ I}

outα′ def
= {x′ | x ∈ outα}

α
def
= inα ∪ outα

A conceptual state for 〈I, Ω〉 is a well-typed mapping from the variables α to their value
spaces. It is in fact the state space Ξ determined by Ω, plus values of variables in outα
of primitive types that is a snapshot of the models consisting the current objects of the
classes and links by the associations or attributes that relate these objects, as well as
the values of variables of primitive types. As before, a specification of an operation
m(U x; V y; W z) in an alphabet α is a framed design β : Spec.

Definition 8. A contract is a tuple Contr = (I, Ω, A, MSpec, Init) where I is an interface,
Ω is the information model, A is a set of variables, called the fields of Contr, whose
types are either declared in Ω or primitive types, and MSpec a function that maps each
operation of I to a specification, and Init an initial condition that defines some values to
fields as their initial values.

If no field is of an object type, we will omit the information model from the specifica-
tion of a contract. In modular programming, a primitive contract is a specification of a
module that defines the behavior of the operations in its interface. However, later we
will see that contracts can be merged to form another contract and this corresponds to
the merge of a number of modules. In object-oriented programming, a primitive con-
tract specifies an initialized class, i.e. an object, whose public methods are operations in
the interface. This class wraps the classes in the information model Ω, and provides the

rCOS: Refinement of Component and Object Systems 213

interface operations to the environment. In the Java-like rCOS syntax, such a contract
can be written as

Interface I {Meth : {m() |m() ∈ I}};
Cdecls;
Class C implements I {Attr : A = Init;

Method : {m(){MSpec(m)} |m ∈ I};
main(){C.New(x)}
}

where main provides the condition Init when creating the new object of C attached to x

with the initial values of the attributes in A.
Contracts of interfaces can be merged only when their interfaces are composable

and the specifications of the common methods are consistent. This merge will be used
to calculate the provided and required services when components are composed.

Definition 9. Contracts (Ii, Ωi, Ai, MSpeci, Initi), i = 1, 2, are consistent if

1. I1 and I2 are composable.
2. If x is declared in both A1 and A2, it has the same type; and Init1(x) = Init2(x).
3. Any class name C in both Ω1 and Ω2 has the same class declaration in them.
4. MSpec1(m)⇔ MSpec2(m) for all m ∈ I1 ∩ I2.

This definition can be extended to a finite family of contracts.

Definition 10. Let {Contrk = (Ik, Ωk, Ak, MSpeck, Initk)} be a consistent finite family
of contracts. Their merge, (denoted by ‖k∈K Contrk), is defined by

I
def
= �kIk, Ω

def
= ⊗kΩk, A

def
= ⊗kAk,

Init
def
= ⊗kInitk, MSpec

def
= ⊗kMSpeck

where⊗ denotes the overriding operator, e.g. (MSpeck ⊗MSpeck+1)(m) = MSpeck+1(m)

if m ∈ Ik ∩ Ik+1; MSpeck(m) if m ∈ Ik but m �∈ Ik+1; MSpeck+1(m) otherwise.

A merge of a family of contracts corresponds the construction of a conceptual model
from the partial models of the application domain in the contracts. There are three cases
about the partial models:

1. The contracts do not share any fields or modelling elements in their conceptual
models. In this case, the system formed by the components of these contracts are
most loosely coupled. All communications are via method invocations. Such a sys-
tem is easy to design and maintain. Composing these components is only plug-in
composition.

2. The contracts may share fields, but their conceptual models do not share any com-
mon model elements. In this case, application domain is partitioned by the concep-
tual models of these contracts. And components of the system are also quite loosely
coupled and easy to construct and maintain. When composing these components,
some simple wiring is needed.

214 Z. Liu, H. Jifeng, and X. Li

3. The contracts share common model elements in their conceptual models. The re-
finement/design of the contracts has to preserve the consistency and integrity, gen-
erally specified by state invariants, of the model. The more elements they share,
the more tightly the components are coupled and the more wiring is needed when
composing these components.

Definition 11. We say that a contract Contr1 = (I1, Ω1, A1, MSpec1, Init1) is refined by
Contr2 = (I2, Ω2, A2, MSpec2, Init2), denoted by Contr1 � Contr2, if there is a mapping ρ

from A1 to A2 satisfying

1. The initial state is preserved: (x := Init1(x); ρ) � (ρ; y := Init2(y)), where x is the
list of variables defined in A1, and y the list of variables in A2.

2. The behavior of the operations of Contr1 are preserved: every operation m declared
in I1 is also declared in I2 and (MSpec1(m);ρ) � (ρ; MSpec2(m)).

The refinement relation between contracts will be used to define component refinement.
The state mapping ρ allows that a component developed in an application domain can
be used in another application domain if such a mapping can be found.

Theorem 3. Contract refinement enjoys the properties of program refinement.

1. � is reflexive and transitive and a pre-order.
2. (An upper bound condition) The merge of a family of contracts refines any con-

tract in the family.
3. (A monotonicity condition) The refinement relation is preserved by the merge op-

eration on contracts. That is for two consistent families of contracts
{Contri

k | k ∈ K}, i = 1, 2. If they do have shared fields and Contr1k � Contr2k for all
k ∈ K, then we have ‖k∈K Contr1k �‖k∈K Contr2k.

5.4 Component

A component consists of a provided interface and optionally a required interface, and
an executable code which can be coupled to the codes of other components via their
interfaces.

Definition 12. A component Comp is a tuple < O, I, Ω, A, MImpl, Init, R > where

– O is an interface, called the provided or (output) interface of Comp.
– I is an interface disjoint from O, called the internal interface of Comp
– Ω is an information model
– A is a set of fields whose types are all declared in Ω.
– MImpl maps each operation declared in O ∪ I to a pair (α, Q), where Q is a command

written in rCOS, and α is the alphabet obtained from A and the input and output
parameters of the operations in O ∪ I.

– R is the interface that is disjoint from O and I and consists of the operations (not
methods of classes in Ω) which are referenced in the program text MImpl(m) and
bodies of methods of classes in Ω but not in O ∪ I, where m ∈ O ∪ I. R is called the
input or required interface of Comp.

rCOS: Refinement of Component and Object Systems 215

We call Contr = (O, I, Ω, A, MImpl, Init) a generalized contract, as it has internal oper-
ations and MImpl provides the specification of each operation of O in terms a general
rCOS command.

We will use the 4-tuple (Contr, I, O, R) to denote a component, where Contr is a general-
ized contract for the interface O � I.

A contract for R is called a required services of the component and a contract of the
interface O a provided services. Operations in R can be seen as holes in the component
where their specifications or implementation given in other components that are to be
plugged in. Therefore, the provided services of a component depends on its required
services plugged in from other components. This leads to the definition of our semantics
of a component.

In the above definition, we introduced private operations so that we can hide an
output operation by making it a private operation. This will keep the definition MImpl
valid as the hidden operations may be called in MImpl(m). Hiding interface operations
allows to offer different services to different clients.

Definition 13. (Hiding) Let Contr = (O, I, A, Ω, MImpl, Init) be a general contract, and
H ⊆ O a set of operations. The notation Contr\H represents the contract

(O \ H, I ∪ H, Ω, A, MImpl, Init)

where S\S1 is set-subtraction.

Theorem 4. The hiding operator enjoys the following properties.

1. (Contr\H) � Contr.
2. Contr\∅ = Contr.
3. Contr\H = Contr\(H ∩ O), where I is the interface of Contr.
4. (Contr\H1)\H2 = Contr\(H1 ∪ H2) = (Contr\H2)\H1

5. (‖k∈KContrk)\H = ‖k∈K(Contrk\H)

5.5 Semantics Components

Definition 14. The semantics of a component Comp is defined as a binary relation
between its required services and their corresponding provided services

[[Comp]](ContrR, Contr′O)
def
= (ContrR >> Comp) � Contr′O

where the variable ContrR takes an arbitrary required service as its value, Contr′O takes
a provided service for O, and the notation ContrR >> Comp denotes the provided service

(O, F(Ω), A, MSpec, Init)

where F(Ω) is the class model obtained from Ω by removing the methods of its classes,
and mapping MSpec is defined from the given required service

ContrR =< R, ΩR, AR, MSpecR, InitR >

216 Z. Liu, H. Jifeng, and X. Li

by the recursive equations MSpec(m) = M(MImpl(m)), where M replaces every call of
m(inexp, outvar) with the actual input parameters inexp, output parameters outvar and
value-result parameters vrexp of O by its corresponding specification.

M(m(inexp; outvar; vrexp))
def
=

⎛⎝var T1 x = inexp, T2 y = outvar, T3 z = vrexp;
MSpecR(m); outvar, vrexp := y, z;
end x, y, z

⎞⎠
if m(T1 x; T2 y; T3 z) ∈ R

M(m(inexp; outvar; vrexp))
def
=

⎛⎝var T1 x = inexp, T2 y = outvar, T3 z = vrexp;
MImpl(m); outvar, vrexp := y, z;
end x, y, z

⎞⎠
if m(T1 x; T2 y; T3 z) ∈ O ∪ I

M(v := e)
def
= v := e

M(F(c))
def
= F(M(c)) for any comand c and context F

Notice that when a component Comp has an empty set of required interface operations,
Comp is a closed component and the notation Contr∅ >> Comp becomes a constant that
is the semantics of the closed program Comp.

For a given contract ContrR for the required interface of Comp, ContrR >> Comp is
a closed component. Let ContrO be a contract of the provided interface of Comp which
serves as the specification of the component. We say that Comp correctly realizes or im-
plements ContrO with a given required service ContrR if ContrO � (ContrR >> Comp).

In a modular programming paradigm, a component can be designed and imple-
mented as a module in which each of the operations in the output interface is “pro-
grammed” using procedures or functions that are defined either locally in the module
or externally in other modules. In this case, the external modules that the component
calls methods from must be declared, as well as the types of the attribute values and
parameters of its methods. Therefore, a component is in fact not a single module, but an
artifact that contains all these declared types and modules. In an object-oriented para-
digm, such as Java, a component can be seen as a class that implements the interfaces in
O. Including the notation for interfaces and contracts in rCOS, the language provides
a formal model for components and the calculus of contract refinement and component
refinements.

5.6 Refinement and Composition of Components

For a component Comp with provided and required interfaces O and R, the semantics
[[Comp]] is a binary relation between the input services and output services.

Theorem 5. (Monotonicity and Upwards Closure [44]) Let Comp =< Contr, I, O, R >

and �R and �O are the refinement relations among contracts of R and among con-
tracts of O respectively. Then �R ◦[[Comp]]◦ �O = [[Comp]], where ◦ denotes relational
composition.

Thus, for any required services ContrR � Contr′R, and provided services ContrO �
Contr′O, then

[[Comp]](ContrR, Contr′O)⇒ [[Comp]](Contr′R, ContrO)

rCOS: Refinement of Component and Object Systems 217

A component Comp1 is a refinement of a component Comp2, denoted by Comp2 � Comp1,
if Comp1 is a sub-relation of Comp2.

Definition 15. Component Comp1 is a refinement of Comp2 if R1 = R2 ∧ O1 = O2 and
for any required service ContrR1

,

(ContrR1
>> Comp2) � (ContrR1

>> Comp1)

We therefore have when Comp1 refines Comp2, then for any given required service
ContrR and a contract a provided service ContrO as the specification, Comp1 realizes
ContrO with ContrR if Comp2 realizes ContrO with ContrR.

Definition 16. Let Compi = (Contri, Ii, Oi, Ri), i = 1, 2, be two components with con-
tracts Contri = (Oi ∪ Ii, Ωi, Ai). Assume that I1 ∩ I2 = ∅, O1 ∩ O2 = ∅ and R1 ∩ R2 = ∅.
The composition Comp1||Comp2 is defined to merge their contracts, output interfaces
and input interfaces, and to remove those input interfaces of each component that are
matched by the output interfaces in another:

Comp1||Comp2

def
= < Contr1‖Contr2, I1 ∪ I2, O1 � O2, R1\O2 ∪ R2\O1 >

Let I
def
= I1 ∪ I2, R

def
= R1\O2 ∪ R2\O1 and O

def
= O1 ∪ O2. The composition of Comp1 and

Comp2 is defined by

[[Comp1‖Comp2]](ContrR, Contr′O)
def
= ∃ContrR1

, Contr′O1
, ContrR2

, Contr′O2
•

[[Comp1]](ContrR1
, Contr′O1

)∧
[[Comp2]](ContrR2

, C′
O2

)∧
ContrR1

\(R1\O2)=Contr′O2
\(O2\R1)∧

ContrR2\(R2 \ O1)=Contr′O1
\(O1 \ R2)∧

ContrR =ContrR1
\(R1\O2)‖ContrR2

\(R2\O1)∧
Contr′O = Contr′O1

\(R2\O1)‖Contr′O2
\(R1\O2)

This definition allows an output interface and thus part of provided service of one com-
ponent to be shared among a number other components. Hiding can be used to internal-
ize the part of a provided service of one component that is used in another component:
(Comp1‖Comp2)\(R1 ∩ O2)\(R2 ∩ O1).

Examples of component specifications and composition can be found in [31].
Client-server systems are often seen as applications in component software. The ar-
chitecture of such a system is organized as a layered structure and can be model with in
our model as shown in the full version [30] of paper [31].

6 Conclusion

We have proposed a classical relational model (rCOS) for component-based and object-
oriented development. This model provides a smooth link between component-based
design and object-oriented development. It supports rigorous application of UML in an
iterative and incremental development process (RUP). The formalism is based on the
design calculus in Hoare and He’s Unifying Theories of Programming [19]. In a top-
down process, model provides the fundamental basis for Model Driven Development.
If we take a bottom-up approach, it supports re-engineering. Our message is: in order
to support programming in the large,

218 Z. Liu, H. Jifeng, and X. Li

– we need a multi-view modelling approach,
– a multi-notational modelling language is of a great advantage (though not everyone

has to use UML),
– consistent refinement of different views is important,
– different verification techniques may be applied to refinement of different views.

The semantic model allows us to specify a system at different levels of abstraction.
At the requirement, we can specify the functional requirements as use-case operations
defined as methods of use-case controller classes. Each of these operations can be ab-
stractly specified as a design in terms object creation, object destruction, and object
attributes modification. Objects at these levels can be decomposed latter. These use-
case operations can then refinement using the refinement laws for expert pattern, low
coupling, high cohesion and attribute encapsulation. For details of requirement analy-
sis and design by refinement, we refer the reader to [26,32]. With the refinement laws,
algebraic reasoning is also supported.

This paper not only presents a semantics, but also provides a definitional approach
to defining different semantics with different constraints and features.

6.1 Related Work

In the framework of ROOL [8], Borba, et al, also investigate refinement of object sys-
tems in [5]. Although, ROOL and rCOS share a number of common refinement laws,
rCOS supports more features, such as references, and enjoys more refinement laws
than ROOL.

There is an increasing amount of research in formal techniques for component-
based development, e.g. [7,3,14]. These models are channel-based and process oriented.
They can easily related to state machine models or automata and thus existing verifi-
cation techniques and model checking tools can be readily applied. These models are
flexible in describing interactions and coordinations among components due to the fine
granularity of the interaction actions, that is channel-based message passing. We are
aiming at a definitional semantic model that is easier to be related to software engineer-
ing concepts and terminology, such as provided services, required services and con-
tracts, and programming languages, object-oriented languages in particular. We hope
that this model will provide effective formal support to model-based development by
pattern-guided transformations.

rCOS is motivated by our work on formal support to UML-based software devel-
opment. We have studied the application of rCOS to support UML-based requirement
modelling, analysis and design process. rCOS is used in [32] for formalisation of
UML models of requirements, but a requirement model there only consists of a con-
ceptual class diagram and a use-case model directly specified by rCOS. Article [28]
uses rCOS for the specification of design class diagrams and sequence diagrams, but
without rules for model transformation. A tool for requirement analysis has been devel-
oped using this framework [27]. Algorithms are also designed for consistency checking
and executable code generation from a system model [35]. The technical report [16]
presents detailed study of rCOS for object systems with examples and proofs of laws.
A case study of the use of the refinement laws in software development is given in [36].

rCOS: Refinement of Component and Object Systems 219

These publications show how rCOS can be used to support engineering methods and
processes in software development.

6.2 Future Work

Future work includes the completion of the calculus rCOS for synchronization and
concurrency in both object and component systems. This requires the model of compo-
nents to be extended with the specification of the protocol in the interface, contract of a
component. We plan to use traces (or regular expressions of operations for this purpose.
The notion of designs of operations of active and reactive components have to be ex-
tended to reactive designs to capture synchronization. Consistency between the protocol
and the reactive designs have to be checked to avoid from deadlock and divergence.

We will work on case studies to test the theory and the method. We are also inter-
ested in a theory of tool integration within this framework.

Acknowledgments

We are grateful to the organizers of FMCO’04 to invite Zhiming Liu to give a talk
at the simposium and to the participants of the simposium for their comments. We
would like thank Dines Bjorner at Technical University of Denmark, Kung-Kiu Lau
at Manchester University, Anders Ravn at Aalborg University of Denmark and Uday
Reddy from Birmingham University of the UK for their helpful comments and discus-
sions at and after the seminars that Zhiming Liu gave on parts of the works when he
visited them. Our UNU-IIST fellows Jing Liu, Xiaojian Liu, Quan Long, Bhim Upad-
hyaya and Jing Yang contributed to the whole research project. They also read and gave
useful comments on this article. Zhiming Liu would also like to thank the students at
the University of Leicester and those participants of the UNU-IIST training schools and
courses who took his courses on Software Engineering and System Development with
UML for their feedback on the understanding of the use-case driven, incremental and
iterative object-oriented development and design patterns. Part of the work was also
presented at the Workshop on Predictable Software Component Assembly held in the
University of Manchester in 2004, and as an invited talk in Brazilian Symposium on
Formal Methods (SBMF 2004). The discussion and comments were very much useful
in bringing the presentation of the work into its current form.

References

1. M. Abadi and L. Cardeli. A Theory of Objects. Springer-Verlag, 1996.
2. R. Allen and D Garlan. A formal basis for architectural connection. ACM Transactions on

Software Engineering and Methodology, 6(3), 1997.
3. F. Arbab. Reo: A channel-based coordination of model for component composition. Mathe-

matical Structures in Computer Science, 14(3):329–366, 2004.
4. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.

Addison-Wesley, 1999.
5. P. Borba, A. Sampaio, and M. Cornélio. A refinment algebra for object-oriented program-

ming. In L. Cardelli, editor, Proc. ECOOP03, LNCS2743, pages 457–482. Springer, 2003.

220 Z. Liu, H. Jifeng, and X. Li

6. M. Broy. Object-oriented programming and software development - a critical assessment. In
A. McIver and C. Morgan, editors, Programming Methodology. Springer, 2003.

7. M. Broy and K. Stolen. Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Springer, 2001.

8. A. Cavalcanti and D.A. Naumann. A weakest precondition semantics for an object-oriented
language of refinement. Technical Report CS Report 9903, Stevens Institute of Technology,
Hoboken, NJ 07030, February 2000.

9. J. Cheesman and J. Daniels. UML Components. Component Software Series. Addison-
Wesley, 2001.

10. Y. Chen and J.W. Sanders. The weakest specifunction. Acta Informatica, 41(7), 2005.
11. J.K. Filipe. A logic-based formalization for component specification. Journal of Object

Technology, 1(3):231–248, 2002.
12. M. Fowler. What is the point of UML. In P. Srevens, J. Whittle, and G. Booch, editors,

<<UML>> 2003 -The Unified Modeling Language, 6th International Conference, LNCS
2863, San Fancisco, CA, USA, 2003. Springer.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, 1995.

14. G. Goessler and J. Sifakis. Composition for component-based modeling. Science of Com-
puter Programming.

15. J.A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, 1990.
16. J. He, Z Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical Report

322, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
17. J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. In Proceed-

ings of the Second ASIAN Symposium on Programming Languages and Systems (APLAS04),
LNCS 3302, pages 415–436, Taiwan, March 2004. Springer.

18. G.T. Heineman and W.T. Councill. Component-Based Software Engineering, Putting the
Pieces Together. Addison-Wesley, 2001.

19. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
20. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.
21. N. Jin and J. He. Resource models and pre-compiler specification for hardware/software. In

J.R. Cuellar and Z. Liu, editors, Proc. 2nd International Conference on Software Engineering
and Formal Methods (SEFM’04), Beijing, China, 28-30 September, 2004. IEEE Computer
Society.

22. C.B. Jones. Process algebra arguments about an object-oriented design notation. In A.W
Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice-Hall, 1994.

23. C.B. Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, 1996.

24. P. Kruchten. The Rational Unified Process – An Introduction (2nd Edition). Addison-Wesly,
2000.

25. C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001.
26. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In

COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.
27. X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML model of re-

quirements. In International Conference on Distributed Computing and Internet Technol-
ogy(ICDIT2004), LNCS 3347, pages 255–265, Bhubaneswar, India, 2004. Springer.

28. J. Liu, Z. Liu, J. He, and X. Li. Linking UML models of design and requirement. In Proceed-
ings of ASWEC2004, pages 329–338, Melbourne, Australia, 2004. IEEE Computer Society.

29. Z. Liu. Object-oriented software development in UML. Technical Report UNU/IIST Report
No. 228, UNU/IIST, P.O. Box 3058, Macau, SAR, P.R. China, March 2001.

rCOS: Refinement of Component and Object Systems 221

30. Z. Liu, J. He, and X. Li. Contract-oriented component software development. Technical
Report UNU/IIST, Report No 298, 2004. http://www.iist.unu.edu/newrh/III/1/page.html.

31. Z. Liu, J. He, and X. Li. Contract-oriented development of component systems. In Proceed-
ings of IFIP WCC-TCS2004, pages 349–366, Toulouse, France, 2004. Kulwer Academic
Publishers.

32. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for formal requirements analysis in
UML. In J.S. Dong and J. Woodcock, editors, Formal Methods and Software Engineering,
ICFEM03, LNCS 2885, pages 641–664. Springer, 2003.

33. Z. Liu, J. He, X. Li, and J. Liu. Unifying views of UML. Electronic Notes of Theoretical
Computer Science (ENTCS), 101:95–127, 2004.

34. Q. Long, J. He, and Z. Liu. Refactoring and pattern-directed refactoring: A formal perspec-
tive. Technical Report 318, UNU-IIST, P.O.Box 3058, Macau, January 2005.

35. Q. Long, Z. Liu, X. Li, and J. He. Consistent code generation from UML models. In Pro.
of Australian Software Engineering Conference (ASWEC’2005), pages 168–177, Brisbane,
Australia, 2005. IEEE Computer Sciety.

36. Q. Long, Z. Qiu, Z. Liu, L. Shao, and J. He. POST: A case study for rcos incremental
development. Technical Report 324, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.

37. S.J. Mellor and M.J. Balcer. Executable UML: a foundation for model-driven architecture.
Addison-Wesley, 2002.

38. B. Meyer. From structured programming to object-oriented design: the road to Eiffel. Struc-
tured Programming, 10(1):19–39, 1989.

39. B. Meyer. Applying design by contract. IEEE Computer, May 1992.
40. B. Meyer. Object-oriented Software Construction (2nd Edition). Prentice Hall PTR, 1997.
41. C. Pierik and F.S. de Boer. A syntax-directed hoare logic for object-oriented programming

concepts. Technical Report UU-CS-2003-010, Institute of Information and Computing Sci-
ence, Utrecht University, 2003.

42. B. Selic. Using UML for modelling complex real-time systems. In F. Muller and
A. Bestavros, editors, Languages, compilers, and Tools for Embedded Systems, Volume 1474
of Lecture Notes in Computer Science, pages 250–262. Springer Verlag, 1998.

43. A. Sherif, J. He, A Cavalcanti, and A. Sampaio. A framework for specification and valida-
tion of real-time systems using circus actions. In Z. Liu and K. Araki, editors, Theoretical
Aspects of Computing ICTAC 2004. First International Colloquium Guiyang, China, Sep-
tember 2004, Revised Selected Papers. LNCS 3407, pages 478 – 494. Springer, 2005.

44. M. Smyth. Powerdomain. Journal of Computer Science and System Sciences, 16:23–36,
1978.

45. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 2002.

46. J.M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 23(9):8–24, 1990.
47. J. Yang, Q. Long, Z. Liu, and X. Li. A predicative semantic model for integrating UML

models. In Z. Liu and K. Araki, editors, Theoretical Aspects of Computing – ICTAC 2004,
First International Colloquium, Guiyang, China, September 2004, Revised Selected Papers,
LNCS 3407, pages 170–186. Springer, 2005.

Program Generation and Components

D. Ancona and E. Moggi�

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
{davide, moggi}@disi.unige.it

Abstract. The first part of the paper gives a brief overview of meta-
programming, in particular program generation, and its use in software
development. The second part introduces a basic calculus, related to
FreshML, that supports program generation (as described through exam-
ples and a translation of MetaML into it) and programming in-the-large
(this is demonstrated by a translation of CMS into it).

1 Introduction

This paper explains what is program generation and what are the most promising
uses of it, recalls the role of names in software components, and then presents a
basic calculus, called MMLN

ν , which in the authors’ view is a suitable formalism
to describe program generation in terms of more primitive notions, namely name
generation, name resolution and linking.

In calculi of module systems as CMS [AZ99, MT00, WV00, AZ02] modules
can refer to deferred components by means of names. These calculi provide
primitive operators for linking modules and resolving external names of deferred
components, thus supporting programming in-the-large [Car97]. Analogously, in
the MMLN

ν calculus of [AM04] names are used to refer to external components
which need to be provided from the outside (by a name resolver).

In module (and record) calculi names are taken from some infinite set. On the
contrary, in MMLN

ν at any time during execution there is a finite set of names,
which can be extended dynamically by a construct νX.e for generating a fresh
name, borrowed from FreshML of [SPG03].

Fraenkel and Mostowski’s set theory (see [GP99]) provides the mathematical
underpinning of name generation for FreshML and MMLN

ν , but to understand
the operational semantics and type system there is no need to be acquainted
with FM-sets. Besides names X ∈ Name, the calculus has

– terms e ∈ E, a closed term corresponds to an executable program;
– name resolvers, which denote partial functions Name

fin→ E with finite domain.
We write r.X for the term obtained by applying r to resolve name X .

Terms include fragments b(r)e, i.e. term e abstracted w.r.t. resolver r, which

denote functions (Name
fin→ E) → E. We write e〈r〉 for the term obtained by

linking fragment e using resolver r.
� Supported by EU projects DART IST-2001-33477 and APPSEM-II IST-2001-38957.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 222–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Program Generation and Components 223

Remark 1. If resolvers were included in terms, we would get a λ-calculus with
extensible records [CM94]; indeed, a record amounts to a partial function map-
ping names (of components) to their values. More precisely, b(r)e would become
an abstraction λr.e and e〈r〉 an application e r. Even when resolvers are second
class terms, one can express in the calculus the staging constructs of MetaML
[Tah99, She01] and the mixin operations of CMS.

The ability to generate a fresh name is essential to prevent accidental overriding.
If we know in advance what names need to be resolved within a fragment (we call
such a fragment closed), then we can statically choose a name which is fresh (for
that fragment). However, generic functions manipulating open fragments will
have to generate fresh names at run-time. There are several reasons for working
with open fragments: reusability is increased, the need for naming conventions
(between independent developers) is reduced, and decisions can be delayed.

We present MMLN
ν as a monadic metalanguage, i.e. its type system makes

explicit which terms have computational effects, and its operational semantics is
given by a (semantic preserving) simplification relation on terms and a compu-
tation relation on configurations. Generation of fresh names is a computational
effect, as in FreshML, thus typing νX.e requires computational types.

Summary. Section 2 explains program generation within the broader context of
meta-programming, and mentions its most promising uses. Section 3 recalls the
role of names in software components. Section 4 recalls syntax, type system and
operational semantics of MMLN

ν . Section 5 gives several programming examples:
programming with open fragments, and benchmark examples for comparison
with other calculi (in particular MetaML). Section 6 introduces a 2-level version
of MetaML, and show how it can be translated into MMLN

ν . Section 7 introduces
MLN

Σ , a variant of MMLN
ν with records and recursive definitions, where one can

recover all (mixin) module operations of CMS. Finally, Section 8 discusses related
calculi based on names, i.e. FreshML of [SPG03] and ν� of [NPar].

Notation. In the paper we use the following notations and conventions.

– m ranges over the set N of natural numbers. Furthermore, m ∈ N is iden-
tified with the set {i ∈ N|i < m} of its predecessors.

– Term equivalence ≡ is α-conversion. FV(e) is the set of variables free in e,
while e[xi: ei | i ∈ m] denotes parallel capture avoiding substitution.

– f :A
fin→ B means that f is a partial function fromA toB with a finite domain,

written dom(f). The image of f is denoted by img(f). A → B denotes the
set of total functions from A to B. We use the following operations:

• {ai: bi|i ∈ m} is the partial function mapping ai to bi (where the ai must
be different, i.e. ai = aj implies i = j);
∅ is the everywhere undefined partial function;

• f\a denotes the partial function f ′ s.t. f ′(a′) = b iff b = f(a′) and a′ �= a;

224 D. Ancona and E. Moggi

• f{a: b} denotes the (partial) function f ′ s.t. f ′(a) = b and f ′(a′) = f(a′)
when a′ �= a;

• f, f ′ denotes the union of two partial functions with disjoint domains.

– A#B means that the sets A and B are disjoint.

2 Program Generation

We explain what is program generation by placing it in the broader context of
meta-programming. We borrow from Sheard’s invited talk at SAIG’01 [She01],
which in addition discusses several areas of meta-programming research. Then we
mention some of the most promising uses of program generation in the context of
software development. We make no attempt to be exhaustive, instead we advise
the interested reader to browse through the proceedings of the conference on
Generative Programming and Component Engineering (GPCE) [BCT02, PS03,
KV04], and a compendium [LBCO04] of contributions presented at a Dagstuhl
seminar on “Domain-specific program generation”, where a new IFIP WG on
“Program Generation” was proposed.

2.1 What Is It?

In general programs manipulate data. Meta-programs are programs that ma-
nipulate object-programs, or more precisely data representing other programs.
We are not committed to a particular (programming) language, thus by object-
program we mean a syntactic element in a formal language. Broadly speaking
we can classify meta-programs in three categories:

– Generators, which construct object-programs. For instance, specializers gen-
erate a specialized program solving an instance of a general problem.

– Analyzers, which analyze the structure of object-programs. For instance,
type-checkers or tools that perform various kinds of static analysis.

– Transformers, which combine the features of analyzers and generators. For
instance, optimizers that perform source-to-source transformation, or aspect
weavers that insert code to address a cross-cutting concern.

A compiler is a typical example of program where the three kinds of meta-
programs co-exist: a static analyzer for the source language, an optimizer for
some intermediate language, and a program generator for the target language.

Object-programs can be represented at different level of abstraction (we call
code the data representing a program):

– White-box abstraction, where code is text (i.e. a string) or an abstract syntax
tree (AST). This representation is the most versatile, since it gives a low-level
description of the object-program, but could be error prone.

– White-box abstraction modulo α-conversion. This representation of syntax
has been considered in the context of logical frameworks to deal with binders
in object languages, alongside other representations like higher-order ab-
stract syntax. FreshML [GP99, SPG03] is the leading programming language
that supports this abstraction.

Program Generation and Components 225

– Black-box abstraction, where code can be executed and combined, but not
analyzed. This is the most abstract representation.

The black-box abstraction is incompatible with program analyzers and trans-
formers. On the other hand, program generators can work with any of the ab-
stractions, and the black-box abstraction ensures the maximum separation of
concerns between the generator and the user of the generated code.

We consider related concepts to clarify how they differ from the concept of
code and meta-program. A program configuration is a snapshot of a program
during execution, a computation is a description of the program execution, while
code represents (the syntax of) a program independently from execution. A
reflective program is a program that manipulates itself, thus it is a particular
instance of a meta-program. One can identify three forms of reflection:

– Introspection is the ability of a program to analyze itself, namely its code
(this introspection is called structural reflection) or its current configuration
or execution history (this introspection is called behavioral reflection).

– Self-modification is the ability to modify itself.
– Intercession is the ability to manipulate its semantics, i.e. the interpreter or

virtual machine for the reflective program.

A computation is staged when it is decomposed into stages along the tempo-
ral dimension. The change of stage is usually triggered by the acquisition of
new information. In a meta-programming system supporting program genera-
tion there are two natural stages: the computation of the meta-program and
the computation of the generated object-program. Depending on the nature of
the meta-program, its computation is called differently (e.g. generation-time,
compile-time, design-time, specialization-time), while the computation of the
object-program is usually called run-time or use-time computation. Moreover,
if the meta-programming system is homogeneous, i.e. the object-language for
describing object-programs coincides with the meta-language, then it provides a
natural support for multi-stage programming. MetaML [TS97] and MetaOCaml
[CTHL03, Met01] are among the leading multi-stage programming languages.
For several applications heterogeneous meta-programming systems are enough.
In this case, the main issue is to provide support for a variety of object-languages.

2.2 What Is for?

Generative and component approaches have the potential to revolutionize soft-
ware development in a similar way as automation and components revolutionized
manufacturing. Generative programming (developing programs that synthesize
other programs), component engineering (raising the level of modularization
and analysis in application design), and domain-specific languages (elevating
program specifications to compact domain-specific notations that are easier to
write and maintain) are key technologies for automating program development.
Before focusing on program generation, we mention some trends in software engi-
neering, in order to provide a broader picture. [GS04] identifies software factories
as the next methodology for software development. A software factory is

226 D. Ancona and E. Moggi

a collection of reusable assets (like patterns, models, frameworks, tools)
for rapidly and cheaply producing an open-ended set of unique variants
of a software product.

Clearly, for a software product that has a big market and need to evolve, like an
operating system, this is an economically feasible approach. However, to make
software factories economically feasible for specific domains, it is essential to
empower the domain-experts and end-users.

Domain-specific languages (DSLs) are a way to give programming abilities
to domain-experts and end-users. Descriptions given in a DSL can be treated
as high-level source code, rather than non-executable requirement specifications.
Relational databases are a “classic” example of success story in the use of DSLs,
while UML is a counter-example of DSL. In fact, UML is too general (i.e. it is not
meant for any specific domain) and too imprecise (e.g. it cannot be used as source
code, although some subsets might). Other examples of domains where DSL
technology has been used successfully or appear highly promising are: language
parsers, reactive real-time programs and the telephony domain. For instance,
MetaCase Consulting (http://www.metacase.com) gave a demo at GPCE’03
entitled “MetaEdit+ revolutionized the way Nokia develops mobile phone soft-
ware”, and the choice of MetaEdit+ was motivated as follows

When Nokia was searching for an effective CASE tool, the prime cri-
teria was encapsulation of domain knowledge, flexible method support
and code generation. After evaluating a number of off-the-shelf CASE
tools, they undertook the development of their own solution using the
MetaEdit+ metaCASE tool.

DSLs provide language-based abstraction, which goes well beyond the ab-
straction provided by libraries (i.e. platform extension). In this context program
generators play the role of compiler back-ends for domain-specific languages, and
provide the following benefits

– Increase automation by exploiting domain features and knowledge.
– Improve performance via partial evaluation.

Usually program generators are co-designed with the DSL they implement, unlike
compilers for general-purpose languages. It is worth to adopt this approach,
when the effort to implement a program generator is comparable to that of
implementing a software library for the specific domain. In the DSL approach
there are other things one can do before the program generation stage, namely

– analysis, which exploits domain-knowledge to identify problems prior gener-
ation, or to provide static guarantees

– transformation, for instance to perform domain-specific optimization.

It is important that analysis and transformation take place before program gen-
eration, so that they can be understood and managed by the user of the DSL,
who can be expected to be knowledgeable of the domain but not of the target
language for the program generator.

Program Generation and Components 227

3 Names and Software Components

It has been argued that the notion of software component is so general that can-
not be defined in a precise and comprehensive way [CE00]. For instance, [Szy02]
provides three different definitions, that adopt different levels of abstraction.
Nevertheless, names play an important role, independently of the particular def-
inition adopted for software components. For clarity, we identify the notion of
software component with that of mixin module1, as done in CMS of [AZ02].

A basic module could be described as follows

import X1 as x1, . . . , Xm as xm

export Y1 = E1, . . . , Yn = En

local z1 = E′
1, . . . , zp = E′

p

A basic module make use of names and variables. The former are the names of the
components the module either imports from the outside (input components X1,
. . . , Xm) or exports to the outside (output components Y1,. . . , Yn). The latter
are the variables used in definitions inside the module (i.e. in the expressions
E1,. . . , En, E′

1,. . . , E
′
p). These variables can be either deferred (x1,. . . , xn), i.e.

associated with some input component, or locally defined (z1,. . . , zp).
The distinction between names and variables is crucial: names correspond

to external references, while variables correspond to internal references. Techni-
cally speaking the main differences between variables and names are: expressions
include variables but not names; variables declared in a basic module are local
and can be α-converted; while component names belong to a global name space
and allow modules to talk to each other.

A useful operator which can be easily encoded in CMS is the link operator
link(M1,M2), used for merging two modules and resolving input names. This
operator may be regarded as either an operation provided by a module language
in order to define structured module expressions or an extra-linguistic mechanism
to combine object files provided by a tool for modular software development.
link(M1,M2) is well-defined if the sets of the output components of M1 and M2

are disjoint. In this case, link (M1,M2) corresponds to a module where some input
component of one module has been bound to the definition of the corresponding
output component of the other module, and conversely.

For instance, let the modules BOOL and INT define the evaluation of some
boolean and integer expressions in a mutually recursive way:

module BOOL is

import IntEv as ext_ev

export BoolEv = ev

local

fun ev EQ(ie1,ie2) = ext_ev(ie1)==ext_ev(ie2)

| ...

end BOOL;

1 In the sequel we will interchangeably use the terms “module” and “mixin” as ab-
breviations of “mixin module”.

228 D. Ancona and E. Moggi

module INT is

import BoolEv as ext_ev

export IntEv = ev

local

fun ev IF(be,ie1,ie2) = if ext_ev(be) then ev(ie1) else ev(ie2)

| ...

end INT;

The result of link (BOOL,INT) corresponds to the module

module BOOL_INT is

export IntEv = iev

export BoolEv = bev

local

fun bev EQ(ie1,ie2) = iev(ie1)==iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = ifbev(be) then iev(ie1) else iev(ie2)

| ...

end BOOL_INT;

The separation between component names and variables allows one to use inter-
nally the same name ev for the evaluation function in the two modules; in the
compound module, indeed, ev of BOOL and ev of INT are α-renamed to bev and
iev, respectively.

The link operation described above can be decomposed in two steps. First,
put together the declarations of the two arguments in one module, yielding

module

import IntEv as ext_iev

import BoolEv as ext_bev

export IntEv = iev

export BoolEv = bev

local

fun bev EQ(ie1,ie2) = ext_iev(ie1)==ext_iev(ie2)

| ...

fun iev IF(be,ie1,ie2) = if ext_bev(be) then iev(ie1) else iev(ie2)

| ...

end;

Then, bind import components with export components with the same name,
yielding BOOL INT. Formally, this corresponds to the fact that link is a derived
operator which can be expressed by the sum and freeze basic operators of CMS.

CMS provides also a primitive operation for deleting module components,
which allows redefinition of components when used in conjunction with the link
operator. This is an important feature for enabling reuse of software components
and amortizing the investment over multiple applications [Szy02].

4 A Core Calculus with Names: MMLN
ν

This section recalls the monadic metalanguage MMLN
ν of [AM04]. For simplicity,

we focus on the key feature, i.e. names, and exclude imperative computations

Program Generation and Components 229

and functional types. Moreover, we restrict the formal treatment to a simply
typed language (Section 4.1), and recall only the main statements concerning
type safety (Section 4.4). We refer to [AM04] for details and a polymorphic ex-
tension of the type system, which is essential for typing the examples on open
fragments generators (see Example 1 in Section 5). The operational semantics
is given according to the general pattern proposed in [MF03], namely by a con-
fluent simplification relation > defined as the compatible closure of a set
of rewrite rules (see Section 4.2), and a computation relation > describing
how configurations may evolve (see Section 4.3).

Names X are syntactically pervasive, i.e. they occur both in types and in
terms. The term νX.e allows to generate a fresh name for private use within
e. Following FreshML of [SPG03], we consider generation of a fresh name a
computational effect, therefore for typing νX.e we need computational types.

We parameterize typing judgments w.r.t. a finite set of names, namely those
that can occur (free) in the judgment. The mathematical underpinning for names
is provided by [GP99]. In particular, properties are invariant w.r.t. name per-
mutation (equivariance), but not w.r.t. name substitution.

The syntax of MMLN
ν is abstracted over symbolic names X ∈ Name, basic

types b, term variables x ∈ X and resolver variables r ∈ R. The syntactic category
of types and signatures (i.e. the types of resolvers) is parameterized w.r.t. a finite
set X ⊆fin Name of names that can occur in the types and signatures.

– τ ∈ TX : : = b | [Σ|τ] | Mτ X -types, where

Σ ∈ ΣX
Δ= X fin→ TX is a X -signature {Xi: τi|i ∈ m}

– e ∈ E: : = x | θ.X | e〈θ〉 | b(r)e | ret e | do x← e1; e2 | νX.e terms, where

θ ∈ ER: : = r | ? | θ{X : e} is a name resolver term.

We give an informal semantics of the language (see Section 5 for examples).

– The type [Σ|τ] classifies fragments which produce a term of type τ when
linked with a resolver for Σ. The terms θ.X and e〈θ〉 use θ to resolve name
X and to link fragment e. The term b(r)e represents the fragment obtained
by abstracting e w.r.t. r.

– The resolver ? cannot resolve any name, while θ{X : e} resolves X with e and
delegates the resolution of other names to θ.

– The monadic type Mτ classifies programs computing values of type τ . The
terms ret e and do x← e1; e2 are used to terminate and sequence computa-
tions, νX.e generates a fresh name for use within the computation e.

As a simple example, let us consider the fragment b(r)(r.X*r.X) which
can be correctly linked with resolvers mapping X to integer expressions and
whose type is [X:int|int]. Then we can link the fragment with the resolver
?{X:2}, as in b(r)(r.X*r.X)<?{X:2}>, and obtain 2*2 of type int. Note that
b(r)(r.X*r.X) is not equivalent to b(r)(r.Y*r.Y), whose type is [Y:int|int].
This is in clear contrast with what happens with variables and λ-abstractions:
\x->x*x and \y->y*y are equivalent and have the same type. The sequel of this

230 D. Ancona and E. Moggi

section is devoted to the formal definition of MMLN
ν . More interesting examples

(with informal explanatory text) can be found in Section 5.
One can define (by induction on τ , e and θ) the following syntactic functions:

– the set FV() ⊆fin Name*X*R of free names and variables in , in particular
FV({Xi: τi|i ∈ m}) = (∪i∈mFV(τi)) ∪ {Xi|i ∈ m}

– the capture-avoiding substitution [x0: e0] for term variable x0.
– the capture-avoiding substitution [r0: θ0] for resolver variable r0.
– the action [π] of a name permutation π on .

4.1 Type System

The typing judgments are X ;Π ; Γ " e: τ (i.e. e has type τ) and X ;Π ; Γ " θ: Σ
(i.e. θ resolves the names in the domain of Σ, and only them, with terms of the
assigned type), where

– τ is a X -type and Σ is a X -signature

– Π : R
fin→ ΣX is a signature assignment {ri: Σi|i ∈ m} for resolver variables

– Γ : X
fin→ TX is a type assignment {xi: τi|i ∈ m} for term variables

The typing rules are given in Table 1. All the rules, except that for νX.e, use
the same finite set X of names in the premises and the conclusion. The typing
rule for e〈θ〉 supports a limited form of width subtyping, namely it allows linking
of a fragment e: [Σ|τ] with a resolver θ whose signature Σ′ includes Σ. All the
other rules are standard.

4.2 Simplification

We define a confluent relation on terms, called simplification. There is no need
to define a deterministic simplification strategy, since computational effects are
insensitive to further simplification. Simplification > is the compatible
closure of the following rules

(resolve) (θ{X : e}).X > e

(delegate) (θ{X : e}).X ′ > θ.X ′ if X ′ �= X

(link) (b(r)e)〈θ〉 > e[r: θ]

Simplification enjoys the following properties.

Theorem 1 (Church-Rosser). The simplification relation > is confluent.

Theorem 2 (Subject Reduction).

– If X ;Π ; Γ " e: τ and e > e′, then X ;Π ; Γ " e′: τ .
– If X ;Π ; Γ " θ: Σ and θ > θ′, then X ;Π ; Γ " θ′: Σ.

Program Generation and Components 231

Table 1. Type System for MMLN
ν

x X ; Π ;Γ � x: τ
Γ (x) = τ resolve

X ; Π ;Γ � θ: Σ

X ;Π ; Γ � θ.X: τ
τ = Σ(X)

link

X ; Π ; Γ � e: [Σ|τ]
X ; Π ; Γ � θ: Σ′

X ;Π ; Γ � e〈θ〉: τ Σ ⊆ Σ′ box
X ;Π, r: Σ; Γ � e: τ

X ; Π ;Γ � b(r)e: [Σ|τ]

r
Π(r) = Σ

X ;Π ; Γ � r: Σ
? X ; Π ;Γ �?: ∅ extr

X ;Π ; Γ � θ: Σ
X ;Π ; Γ � e: τ

X ;Π ; Γ � θ{X: e}: Σ{X: τ}

ret
X ; Π ; Γ � e: τ

X ;Π ; Γ � ret e: Mτ
do

X ; Π ; Γ � e1: Mτ1

X ; Π ; Γ, x: τ1 � e2: Mτ2

X ;Π ; Γ � do x ← e1; e2: Mτ2

ν
X ,X; Π ;Γ � e: Mτ

X ; Π ;Γ � νX.e:Mτ
X /∈ FV(Π,Γ, τ)

4.3 Computation

The computation relation Id > Id ′ | done is defined using evaluation contexts
and configurations Id ∈ Conf. A configuration records the current name space
as a finite set X of names. The computation rules (see Table 2) consist of those
given in [MF03] for the monadic metalanguage MML (these rules do not change
the name space) plus a rule for generation of a fresh name (this is the only rule
that extends the name space).

– E ∈ EC: : = � | E[do x← �; e] evaluation contexts

– (X|e, E) ∈ Conf
Δ= Pfin(Name) × E × EC configurations consist of the cur-

rent name space X (which grows as computation progresses), the program
fragment e under consideration, and its evaluation context E

– rc ∈ RC: : = ret e | do x← e1; e2 | νX.e computational redexes.

Simplification > is extended in the obvious way to a confluent relation on
configurations (and related notions). The bisimulation property, i.e. computation
is insensitive to further simplification, is like that stated in [MF03] for MML.

Theorem 3 (Bisimumation). If Id ≡ (X|e, E) with e ∈ RC and Id
∗
> Id ′,

then

1. Id > D implies ∃D′ s.t. Id ′ > D′ and D
∗
> D′

2. Id ′ > D′ implies ∃D s.t. Id > D and D
∗
> D′

where D and D′ range over Conf ∪ {done}.

232 D. Ancona and E. Moggi

Table 2. Computation Relation

Administrative steps

(A.0) (X|ret e,�) > done
(A.1) (X|do x← e1; e2, E) > (X|e1, E[do x ← �; e2])
(A.2) (X|ret e1, E[do x ← �; e2]) > (X|e2[x: e1], E)

Name generation step

(ν) (X|νX.e, E) > (X , X|e, E) with X renamed to avoid clashes, i.e. X /∈ X

Table 3. Well-formed Evaluation Contexts

� X ;�: Mτ � �:Mτ

X ; �: Mτ2 � E: Mτ ′ X ; ∅; x: τ1 � e: Mτ2

X ;�: Mτ1 � E[do x← �; e]: Mτ ′

4.4 Type Safety

Following Felleisen, type safety can be decomposed in two properties: subject
reduction and progress. We refer to [MF03] for a formulation of these properties
in the context of a monadic metalanguage.

Definition 1 (Well-formed configuration). " (X|e, E): τ ′ Δ⇐⇒ τ ′ ∈ T∅ and
∃τ ∈ TX s.t. X ; ∅; ∅ " e:Mτ and X ; �:Mτ " E:Mτ ′ (see Table 3).

Theorem 4 (Subject Reduction).

– If " Id1: τ ′ and Id1 > Id2, then " Id2: τ ′.
– If " Id1: τ ′ and Id1 > Id2, then " Id2: τ ′.

Theorem 5 (Progress). If " (X|e, E): τ ′, then

1. either e �∈ RC and e >
2. or e ∈ RC and (X|e, E) >

5 Programming Examples

We demonstrate the use and expressivity of MMLN
ν with a few examples:

– the first exemplifies programming with open fragments;
– the second recasts the multi-stage programming method of [TS97] by making

a simplified use of open fragments;

Program Generation and Components 233

– the third uses closed fragments, and allows a further comparison with other
calculi for run-time code generation and staging.

To improve readability we use ML-like notation for functions (β-reduction is a
sound simplification in monadic metalanguages) and operations on references,
and Haskell’s do-notation do {x1 <- e1; ...; xn <- en; e}. In the sequence
of commands of a do-expression we allow computations ei whose value is not
bound to a variable (because it is not used by other commands) and non-recursive
let-bindings like xi = ei (which amounts to replace xi with ei in the commands
following the let-binding).

Example 1. We consider an example of generative programming, which moti-
vates the need for fresh name generation. In our calculus, a component is identi-
fied with a fragment of type [Σ|τ], where Σ specifies what information needs to
be provided for deployment. Generative programming supports dynamic man-
ufacturing of customized components from elementary (highly reusable) com-
ponents. The most appropriate building block for generative programming are
polymorphic functions G: ∀p.[p,Σi|τi] → M [p,Σ|τ] (we refer to [AM04] for a
polymorphic extension of the type system). The result type of G is computa-
tional, because generation may require computational activities, while the sig-
nature variable p classifies the information passed to the parameters of G, but
not directly used or provided in the implementation of G itself. Applications of
G may instantiate p with different signatures, thus we say that G manipulates
open fragments. An over-simplified example of open fragment generator is

Ac: [p|a->a] -> M[p|{add: a -> M unit, update: M unit}]

Ac creates a data structure to maintain an (initially empty) set of accounts.
Since we don’t really need to know the structure of an account, we use a type
variable a. The generator makes available two functionalities for operating on a
set (of accounts): add inserts a new account in the set, and update modifies all
the accounts in the set by applying a function of type a->a, which depends on
certain parameters (e.g. the interest rate) represented by the signature variable
p. These parameters are decided by the bank after the data structure has been
created, and they change over time.

In many countries bank accounts are taxed, according to local criteria. So we
need a more refined generator, with an extra parameter for computing the new
balance based on the state of the account after the bank’s update

TaxedAc: [p’|a->a] -> [p|a->a] ->
M[p’|[p|{add: a -> M unit, update: M unit}]]

The signature variable p’ classifies the information needed to compute local
taxes. In general p’ and p are unrelated, and identifying them means that banks
and local authorities rely on the same information. TaxedAc is defined as follows

fun TaxedAc tax upd = nu Tax.
do {m <- Ac(b(r2) fn x => r2.Tax (upd<r2> x));

ret (b(r’) b(r1) m<r1{Tax:tax<r’>}>)};

234 D. Ancona and E. Moggi

It is essential that the name Tax is fresh and private to TaxedAc, otherwise we
may override some information in r1, which is needed by upd. In fact, TaxedAc
is an open fragment generator that does not know in advance how the signa-
ture variable p could be instantiated. On the other hand, with closed fragment
generators G: [Σi|τi] → M [Σ|τ] the problem does not arise, but reusability is
impaired. For instance, it is not reasonable to expect that all banks will use the
same parameters to update the accounts of their customers.

Example 2. We recast the multi-stage programming method of [TS97] (see also
[CMS03]) using the power function, which is a classical example for staged
programming.

1. The method starts from a “conventional” program exp with two parame-
ters. In the specific example, exp takes an exponent n, a base x, and then
computes xn by making recursive calls

fun exp n x = if n=0 then ret(1.0)
else do {y <- (exp (n-1) x); ret(x*y)};

> exp = ... : int -> real -> M real

The result type of exp is computational, because we consider recursion a
computational effect.

2. Then one obtains a “staged” version exp_a, which replaces the second pa-
rameter (the base x) with an open fragment u, and builds an open fragment
representing the desired result (i.e. xn)

fun exp_a n u = if n=0 then ret(b(r) 1.0)
else do {v <- exp_a (n-1) u; ret(b(r) u<r>*v<r>)};

> exp_a = ... : int -> [p|real] -> M[p|real]

The staged version is polymorphic in the signature variable p.
3. By exploiting the polymorphism of exp_a, one defines a code generator

exp_cg. Given the base n, the generator calls exp_a with a “dummy” pa-
rameter b(r) r.X, then builds an open fragment representing a function

fun exp_cg n = nu X. do {v <- exp_a n (b(r) r.X);
ret (b(r) fn x => v<r{X:x}>)};

> exp_cg = ... : int -> M[p|real -> real]

The type of exp_cg says that recursion is unfolded at “specialization” time,
when the exponent n is known.

4. By instantiating p with the empty signature, one gets an optimized program

fun exp_o n = do {v <- exp_cg n; ret(v<?>)};
> exp_o = ... : int -> M(real -> real)

The type of exp_o differs from the type of the conventional program exp
to reflect the different timing in unfolding recursion. Namely, exp_o unfolds
the recursion when the parameter n is known. For instance, when n = 2

Program Generation and Components 235

do sq_o <- exp_o 2;
> sq_o = (fn x => x*(x*1.0)) : real -> real

The multi-stage programming method makes use of open fragments of type [p|τ]
(these types are similar to the code types annotated with environment classifiers
〈τ〉α used by [TN03, CMT04]). One can easily recast the multi-stage program-
ming method also in the presence of more complex computational effects (while
in MetaML there are typing problems). For instance, when the conventional pro-
gram is an imperative variant p:int->real->(real ref)->M unit of exp

fun p n x y = if n=0 then y:=1.0
else do {p (n-1) x y; y’ <- !y; y:=x*y’};

> p = ... : int -> real -> (R real) -> M unit

p takes an exponent n, a base x and a reference y, then it initializes y with
1.0 and repeatedly multiplies the content of y with x until it becomes xn. The
“staged” version, p_a, is defined in the obvious way, and its type says that some
computations are postponed to the second stage

fun p_a n u v= if n=0 then ret(b(r) v<r>:=1.0)
else do {

w <- p_a (n-1) u v;
ret(b(r) do {w<r>; y’ <-!v<r>; v<r>:=u<r>*y’})};

> p_a = ... : int -> [p|real] -> [p|Ref real] -> M[p|M unit]

In comparison to MetaML, we don’t face the problems due to execution of poten-
tially open code or scope extrusion, which motivated the introduction of closed
types in [CMS03]. The reason is that in MMLN

ν one has a better control of the
name space and name resolution.

Example 3. We reconsider the power function exp:int->real->M real, and
give an alternative way to define exp_o:int-> M(real-> real), which does
not involve fresh name generation.

(* conventional program *)
fun exp n x = if n=0 then ret(1.0)

else do {y <- (exp (n-1) x); ret(x*y)};
> exp = ... : int -> real -> M real
(* staged program *)
fun exp_a n u = if n=0 then ret(b(r) 1.0)

else do {v <- exp_a (n-1) u; ret(b(r) u<r>*v<r>)};
> exp_a = ... : int -> [p|real] -> M[p|real]
(* exp_c generates a fragment with hook X for base *)
fun exp_c n = do {v <- exp_a n (b(r) r.X);

ret (b(r) fn x => v<r>)};
> exp_c = ... : int -> M[X:real|real]
(* optimized program *)
fun exp_o n = do {v <- exp_c n; ret(fn x => u<?{X:x}>)};
> exp_o = ... : int -> M(real -> real)

236 D. Ancona and E. Moggi

The definition of exp_c relies on a pre-existing name X, while exp_cg uses a
freshly generated name. MetaML does not allow to mention names explicitly,
thus it has no analogue of exp_c nor of the type [X:real|real]. On the other
hand, ν� has an analogue of exp_c (see exp’ in [NPar, Example 2]), but the
name X has to be declared of type real globally.

6 Relating MMLN
ν to MetaML

In this section we define a monadic CBV translation of a 2-level version of
MetaML into MMLN

ν (extended with functional types), and show that the trans-
lation preserves the operational semantics. We make no formal claim about
preservation of typing, since we have not been able to extend the translation
to types. We have not defined a monadic CBV translation of the whole MetaML,
since key ideas would get confused with orthogonal issues involved in the trans-
lation of a multi-level language. Restricting to a 2-level language allows to bring
these ideas in the foreground.

6.1 MetaML2

We give the formal definition (syntax, a simplified type system and big-step CBV
operational semantics) of MetaML2, a 2-level version of MetaML. As customary
for 2-level languages, the syntax (type system and operational semantics) is
stratified in two levels: the meta-level 0, and the object-level 1.

– τ0 ∈ T0: : = b | τ0
1 → τ0

2 | 〈τ1〉
τ1 ∈ T1: : = b | τ1

1 → τ1
2

types at level 0 and 1, note that T1 ⊂ T0

– e0 ∈ E0: : = v0 | e01e02 | 〈e1〉 | run e0

v0 ∈ V0: : = x0 | λx0.e0 | 〈v1〉
e1 ∈ E1: : = v1 | λx1.e1 | e11e12 | ẽ0
v1 ∈ V1: : = x1 | λx1.v1 | v1

1v
1
2

terms and values at level 0 and 1

We give an informal semantics of the language.

– A value v1 corresponds to an object-level program, while a term e1 may
require some meta-level computation to get an object-level program.

– The type 〈τ1〉 classifies code, i.e. meta-level values of the form 〈v1〉 repre-
senting an object-level program v1. Brackets 〈e1〉 and escape ẽ0 allow to
move between meta-level code and the corresponding object-level program,
in particular 〈̃e1〉 and e1 evaluate to the same object-level program.

– The construct run e0 first evaluates e0 to code 〈v1〉, then evaluates the object-
level program v1 (provided it is a complete program, i.e. FV(v1) = ∅).

Besides the stratification in two levels, there are the following syntactic differ-
ences between MetaML2 and MetaML of [CMT04]:

Program Generation and Components 237

– MetaML2 values are explicitly marked in terms. This avoids re-evaluation
and a general pitfall of monadic CBV translations, namely preservation of
the operational semantics (as stated in Theorem 6) would fail.

– Cross-stage persistence, i.e. the ability to include meta-level values (v0: τ1)
into object-level programs, is excluded from MetaML2. This simplifies some
definitions and technical lemmas.

– In MetaML2 code types are not annotated with environment classifiers.

A type system (without the environment classifiers of [TN03, CMT04]) is
given by the following rules, where n ranges over levels (i.e. is either 0 or 1):

xn
Γ (xn) = τn

Γ "n x
n: τn

val
Γ "n vn: τn

Γ "n v
n: τn

brkv

Γ "1 v1: τ1

Γ "0 〈v1〉: 〈τ1〉

λn
Γ, xn: τn

1 "n e
n: τn

2

Γ "n λxn.en: τn
1 → τn

2

@n
Γ "n e

n
1 : τn

1 → τn
2 Γ "n e

n
2 : τn

1

Γ "n e
n
1 e

n
2 : τn

2

λv

Γ, x1: τ1
1 "1 v

1: τ1
2

Γ "1 λx1.v1: τ1
1 → τ1

2

@v

Γ "1 v
1
1 : τ

1
1 → τ1

2 Γ "1 v
1
2 : τ1

1

Γ "1 v
1
1v

1
2 : τ1

2

run
Γ "0 e

0: 〈τ1〉
Γ "0 run e0: τ1

brk
Γ "1 e

1: τ1

Γ "0 〈e1〉: 〈τ1〉
esc

Γ "0 e
0: 〈τ1〉

Γ "1 ẽ0: τ1

The operational semantics of Table 4 consists of two relations en ⊂ n
> vn,

that evaluate terms to values. The operational semantics uses only the substitu-
tion [x0: v0] and enjoys the following properties.

Proposition 1 (Operational properties).

– demote
{x1

i : τ
1
i |i ∈ m} "1 v

1: τ1

{x0
i : τ

1
i |i ∈ m} "0 v

1 ↓: τ1

– SR
Γ "n e

n: τn en ⊂ n
> vn

Γ "n v
n: τn

6.2 Translation of MetaML2 into MMLN
ν

Table 5 defines (by induction on the syntax of MetaML2) a translation [[en]]ρ,
[[v0]]ρ and [[v1]]ρθ , where θ is a resolver and ρ is a (partial) mapping from variables
of MetaML2 to terms of MMLN

ν such that

– a meta-level variable x0 is mapped to a term e
– an object-level variable x1 is mapped to a fragment b(r)e

The parameters ρ and θ are convenient to state some properties (see Lemma 1),
but for the definition of the translation it suffices to take θ = r and ρ(x0) = x.

Some clauses in the definition of the translation deserve to be commented:

– terms of the form vn are always translated into terms of the form ret e, since
values vn do not require meta-level computation

238 D. Ancona and E. Moggi

Table 4. Big-Step Operational Semantics for MetaML2

vn ⊂ n
> vn

e0
1

⊂ 0
> λx0.e0 e0

2
⊂ 0

> v0 e0[x0: v0] ⊂ 0
> v0

1

e0
1e

0
2

⊂ 0
> v0

1

e1 ⊂ 1
> v1

〈e1〉 ⊂ 0
> 〈v1〉

e0 ⊂ 0
> 〈v1〉 v1 ↓ ⊂ 0

> v0

run e0 ⊂ 0
> v0

FV(v1) = ∅

e1 ⊂ 1
> v1

λx1.e1 ⊂ 1
> λx1.v1

e1
1

⊂ 1
> v1

1 e1
2

⊂ 1
> v1

2

e1
1e

1
2

⊂ 1
> v1

1v1
2

e0 ⊂ 0
> 〈v1〉

ẽ0 ⊂ 1
> v1

where demotion v1 ↓ is defined by induction on v1

x1 ↓= x0 (λx1.v1) ↓= λx0.v1 ↓ (v1
1v1

2) ↓= v1
1 ↓ v1

2 ↓

– the translations of 〈e1〉 and e1 are the same (and similarly for ẽ0 and e0),
because the bijection between meta-level code and object-level programs is
collapsed to an equality

– the translation of 〈v1〉 is a fragment, which results into an object-level pro-
gram after linking, thus the translation of v1 depends on a resolver θ

– the translations of e11e
1
2 and λx1.e1 are meta-level computations to generate

code representing an application and abstraction in the object language
– the translation of values at level 1 (i.e. object-level programs) is like the

monadic CBV translation of the λ-calculus, as the object language is CBV.

There are problems in extending the translation to types (thus we make no
formal claim about preservation of typing). More precisely, the problem is to
identify a signature to replace of . . . in the following inductive definition

[[b]] = b [[τn
1 → τn

2]] = [[τn
1]] →M [[τn

2]] [[〈τ1〉]] = [. . . |M [[τ1]]]

The translation preserves the operational semantics in the following sense:

Theorem 6. e0 ⊂ 0
> v0 and FV(e0) = ∅ imply (∅|[[e0]],�) ==

∗
⇒ (X|ret [[v0]],�)

for some X , where ===⇒ Δ= > ∪ > .

The result is a consequence of the following lemmas (stated without proof).

Lemma 1 (Properties of Translation).

1. If e = [[v0]]ρ, then [[[x0: v0]]]ρ = [[]]ρ,x0:e and [[[x0: v0]]]ρθ = [[]]ρ,x0:e
θ

2. [[v1]]ρθ = [[v1 ↓]]ρ
′
, if ρ′(x0) = e[r: θ] when ρ(x1) = b(r)e and x1 ∈ FV(v1)

3. [[v1]]ρ1
θ1

∗
> [[v1]]ρ2

θ2
, if e1[r: θ1]

∗
> e2[r: θ2] when ρi(x1) = b(r)ei and x1 ∈

FV(v1).

Program Generation and Components 239

Table 5. Translation of MetaML2 terms and values

e0 [[e0]]ρ

v0 ret [[v0]]ρ

e0
1e

0
2 do x1 ← [[e0

1]]
ρ; x2 ← [[e0

2]]
ρ; x1x2

〈e1〉 [[e1]]ρ

run e0 do x ← [[e0]]ρ; x〈?〉
v0 [[v0]]ρ

x0 e where e = ρ(x0)

λx0.e0 λx.[[e0]]ρ,x0:x

〈v1〉 b(r)[[v1]]ρr

e1 [[e1]]ρ

v1 ret (b(r)[[v1]]ρr)

e1
1e

1
2 do x′

1 ← [[e1
1]]

ρ; x′
2 ← [[e1

2]]
ρ; ret (b(r)do x1 ← x′

1〈r〉; x2 ← x′
2〈r〉; x1x2)

λx1.e1 νX.do x′ ← [[e1]]ρ,x1:b(r)r.X ; ret (b(r)ret λx.x′〈r{X: x}〉)
ẽ0 [[e0]]ρ

v1 [[v1]]ρθ
x1 ret e[r: θ] where b(r)e = ρ(x1)

λx1.v1 ret λx.[[v1]]
ρ,x1:b(r)x
θ

v1
1v1

2 do x1 ← [[v1
1]]ρθ ; x2 ← [[v1

2]]ρθ ; x1x2

Lemma 2 (Preservation of Evaluation). For any X and E

– e0 ⊂ 0
> v0 implies (X|[[e0]]ρ, E) ===

∗
⇒ (X ′|ret [[v0]]ρ, E) for some X ′

– e1 ⊂ 1
> v1 implies (X|[[e1]]ρ, E) ===

∗
⇒ (X ′|ret b(r)[[v1]]ρr , E) for some X ′

provided x1 ∈ FV(en) implies ρ(x1) = b(r)r.Xfor some X ∈ X .

We conclude with three examples of MetaML2- terms. Each term evaluates

to the same MetaML2-value v0 Δ≡ 〈λx1.x1〉, i.e. the code representing the object-
level identity function. However, the MMLN

ν -translation of these terms reflect
the different complexity of the evalution to v0.

– The term e00
Δ≡ v0 evaluates immediately to v0.

The translation [[v0]]∅ is given by e
Δ≡ b(r)ret λx.ret x, where ret λx.ret x is

the CBV monadic translation of λx.x. The translation [[e00]]
∅ is simply ret e.

Therefore, Theorem 6 holds trivially for e00 ⊂ 0
> v0

0 .

– The term e01
Δ≡ 〈λx1.x1〉 evaluates to v0, but the evaluation steps are more

complex. This complexity is mirrored in the translation [[e01]]∅ given by

240 D. Ancona and E. Moggi

e1
Δ≡ νX.do x′ ← ret (b(r)ret r.X);

ret (b(r)ret λx.x′〈r{X :x}〉)
Theorem 6 for e01 ⊂ 0

> v0 yields (∅|e1,�) ===
+
⇒ (X |ret e,�).

– The term e02
Δ≡ 〈λx1 .̃ ((λx0.x0)〈x1〉)〉 evaluates to v0, and requires evaluation

within the body of the λx1-binder. The translation [[e02]]
∅ is given by

e2
Δ≡ νX.do x′ ← do x1 ← ret (λx.ret x);

x2 ← ret (b(r)ret r.X);
x1x2;

ret (b(r)ret λx.x′〈r{X :x}〉)
Theorem 6 yields (∅|e2,�) ===

+
⇒ (X |ret e,�), but the steps needed to reach

the final configuration are strictly more than in the previous case.

7 Relating MMLN
ν to CMS

In this section we recall CMS [AZ02], a purely functional calculus of mixin mod-
ules, and introduce MLN

Σ , a variant of MMLN
ν . Then we define a translation of

CMS in MLN
Σ preserving CMS typing and simplification up to Ariola’s equational

axioms [AB02] for recursion. We summarize the main differences between MMLN
ν

and CMS (for those already familiar with CMS).

– CMS has a fixed infinite set of names (but a program uses only finitely many
of them) and no fresh name generation facility.

– CMS is a pure calculus, thus we can restrict to the fragment of MMLN
ν

without computational types, called MLN .
– In CMS recursion is bundled in mixin, and removing it results in a very

inexpressive calculus. On the contrary, MLN is an interesting calculus (com-
parable to the λ-calculus) even without recursion, and one can add recursion
following standard approaches.

7.1 CMS

We recall the calculus of mixin modules CMS, and refer to [AZ99, AZ02] for
further details. The syntax of CMS is abstracted over symbolic namesX ∈ Name,
and term variables x ∈ X. For simplicity, we avoid to introduce core terms and
types (in [AM04] the calculus is parametrized w.r.t. a core calculus).

– τ ∈ CMST: : = [Σ1; Σ2] types, where Σ: Name
fin→ CMST

– E ∈ CMSE: : = x | [ι; o; ρ] | E1 + E2 | E \X | E!X | E.X terms, where

ι: X
fin→ Name, o: Name

fin→ CMSE, ρ: X
fin→ CMSE and we implicitly require

that dom(ι)#dom(ρ) for well-formed of [ι; o; ρ].

Free variables are defined as follows (omitting trivial cases): FV([ι; o; ρ]) =
(FV(o) ∪ FV(ρ)) \ (dom(ι) ∪ dom(ρ)). Thus one can freely rename the bound

Program Generation and Components 241

variables in dom(ι) ∪ dom(ρ), as done implicitly in the reduction rule (sum)
below. We first give an informal overview of the calculus:

– The type [Σ1; Σ2] specifies the names and types of the deferred (Σ1) and de-
fined (Σ2) components of a mixin. The deferred components can be referred
in the mixin, but are not defined, therefore they need to be resolved (see the
freeze operation described below). The defined components corresponds to
the exported definitions of the mixin.

– Term variables are used for local referencing of components, whereas names
are needed for dealing with global access and linking of components. As in
MMLN

ν , names are not terms.
– In a basic mixin [ι; o; ρ], ι specifies the deferred components. The mapping to

names is needed for component resolution (see the freeze operation described
below). The defined components (o) are associated with names, whereas local
components (ρ) are introduced by variables and can be mutually recursive.

– The sum operation (E1+E2) performs the union of the deferred components
(in the sense that components with the same name are shared), and the
disjoint union of the defined and local components of the two mixins.

– The freeze operation (E!X) binds the deferred component X to the expres-
sion of the defined component X in the same mixin; in this way a name can
be resolved, and a deferred component becomes local. Cross-module recur-
sion is obtained as a combination of the sum and the freeze operations.

– The delete operation (E \X) is used for hiding defined components.
– Selection of a defined component (E.X) is only allowed for mixin with no

deferred components.

Typing Rules. The typing judgment has form Γ "CMS E: τ , where Γ : X
fin→

CMST. The typing rules are given in Table 6, where two signatures Σ1 and Σ2

are compatible iff Σ1(X) = Σ2(X) for all X ∈ dom(Σ1) ∩ dom(Σ2).

Simplification Rules. We define the relation
CMS
> as the compatible closure

of the simplification rules defined in Table 7.

7.2 MLN
Σ

The syntax of MLN
Σ is defined in two steps. First, we remove from MMLN

ν compu-
tational types (and consequently monadic operations, like νX.e). In the resulting
calculus, called MLN , the computation relation disappears (CMS is a pure calcu-
lus), and X could be left implicit in the typing judgments X ;Π ; Γ " e: τ , since
the typing judgments of a derivation must use the same X . Then we add records
and mutual recursion:

– τ ∈ TX+ = Σ types, where Σ ∈ ΣX
Δ= X fin→ TX is a X -signature

– e ∈ E+ = o | e.X | e1 + e2 | e \X | let ρ in e terms, where

o: Name
fin→ E is a record {Xi: ei|i ∈ m} and

ρ: X
fin→ E is a (recursive) binding {xi: ei|i ∈ m}.

242 D. Ancona and E. Moggi

Table 6. Type System for CMS

var
Γ �CMS x: τ

Γ (x) = τ delete
Γ �CMS e: [Σ1; Σ2]

Γ �CMS e \X: [Σ1; Σ2 \X]

mixin

{Γ, Σ1 ◦ ι, Γ ′ �CMS o(X): Σ2(X) | X ∈ dom(o)}
{Γ, Σ1 ◦ ι, Γ ′ �CMS ρ(x):Γ ′(x) | x ∈ dom(ρ)}

Γ �CMS [ι; o; ρ]: [Σ1; Σ2]

dom(Γ ′) = dom(ρ)
dom(Σ1) = img(ι)
dom(Σ2) = dom(o)

sum
Γ �CMS e1: [Σ

1
1 ; Σ1

2] Γ �CMS e2: [Σ
2
1 ; Σ2

2]

Γ �CMS e1 + e2: [Σ
1
1 , Σ2

1 ; Σ1
2 , Σ2

2]

Σ1
1 compatible with Σ2

1

dom(Σ1
2)#dom(Σ2

2)

freeze
Γ �CMS e: [Σ1; Σ2]

Γ �CMS e!X: [Σ1 \X; Σ2]
τ = Σ1(X) = Σ2(X)

select
Γ �CMS e: [∅; Σ]

Γ �CMS e.X: τ
τ = Σ(X)

Table 7. Simplification rules for CMS

sum) [ι1; o1; ρ1] + [ι2; o2; ρ2]
CMS

> [ι1, ι2; o1, o2; ρ1, ρ2] if dom(o1)#dom(o2)

delete) [ι; o; ρ] \X
CMS

> [ι; o\X ; ρ]

freeze) [ι, {x: X}; o, {X: E}; ρ]!X
CMS

> [ι; o, {X: E}; ρ, {x: E}]

select) [; o, {X: E}; ρ].X
CMS

> E[x: [; X: ρ(x);ρ].X | x ∈ dom(ρ)]

Free variables are defined as follows (omitting trivial cases): FV(let ρ in e) =
FV(e) \ dom(ρ).

The type Σ ≡ {Xi: τi|i ∈ m} classifies records of the form {Xi: ei|i ∈ m},
i.e. with a fixed set of components. Notice that records should not be confused
with resolvers. In particular, a fragment of type [Σ|τ] can be linked with a re-
solver of any signature Σ′ ⊇ Σ. The operations on records correspond to the
CMS primitives for mixins: e.X selects the component named X , e1 + e2 con-
catenates two records (provided their component names are disjoint), and e \X
removes the component named X (if present). The let construct allows mutually
recursive declarations, which are used to encode the local components of a CMS
module. The order of record components and mutually recursive declarations
are immaterial, therefore o and ρ are not sequences but functions (with finite
domain).

Table 8 gives the typing rules for the new constructs. The properties of
the type system in Section 4 extend in the obvious way to MLN

Σ . We define

Program Generation and Components 243

Table 8. Additional Typing Rules for MLN
Σ

o
{X ; Π ; Γ � ei: τi | i ∈ m}

X ; Π ;Γ � {Xi: ei|i ∈ m}: {Xi: τi|i ∈ m} select
Σ(X) = τ X ;Π ; Γ � e: Σ

X ; Π ;Γ � e.X: τ

plus
X ; Π ; Γ � e1: Σ1 X ;Π ; Γ � e2: Σ2

X ; Π ; Γ � e1 + e2: Σ1, Σ2

dom(Σ1)#dom(Σ2)

delete
X ; Π ;Γ � e: Σ

X ; Π ;Γ � e \X: Σ \X

rec
{X ; Π ; Γ, Γ ′ � ρ(x):Γ ′(x) | x ∈ dom(ρ)} X ; Π ; Γ, Γ ′ � e: τ

X ; Π ;Γ � let ρ in e: τ
dom(Γ ′) = dom(ρ)

simplification > for MLN
Σ as the compatible closure of the simplification

rules for MMLN
ν (see Section 4.2) and the following simplification rules for record

operations and mutually recursive declarations:

select) o.X > e if e ≡ o(X)
plus) o1 + o2 > o1, o2 if dom(o1)#dom(o2)
delete) o \X > o\X

unfolding) let ρ in e > e[x: let ρ in ρ(x) | x ∈ dom(ρ)]

Simplification for MLN
Σ enjoys confluence (Theorem 1) and subject reduction

(Theorem 2).

7.3 Translation of CMS into MLN
Σ

The key idea of the translation consists in translating a mixin type [Σ1; Σ2] in
[Σ′

1|Σ′
2], in this way we obtain a compositional translation of CMS terms. In

contrast, a translation based on functional types, where [Σ1; Σ2] is translated
in Σ′

1 → Σ′
2, is not compositional (the problem is in the translation of e1 + e2,

which must be driven by the type of e1 and e2).
Table 9 gives the translation of CMS in MLN

Σ . The translation can be easily
extended to core terms (see [AM04]).

In the translation of a basic mixin [ι; o; ρ] the deferred variables x (x ∈
dom(ι)) are replaced with the resolution r.X of the corresponding name X =
ι(x), whereas the local variables x (x ∈ dom(ρ)) are bound by the let construct
for mutually recursive declarations. (A similar translation would not work in ν�,
because of the limitations in typing discussed in Section 8).

The translation of selection E.X uses the empty resolver ?, since in CMS
selection is allowed only for mixins without deferred components.

The freeze operator E!X resolves a deferred component X with the corre-
sponding output component. This resolution may introduce a recursive defini-
tion, since the output component X could be defined in terms of the corre-

244 D. Ancona and E. Moggi

Table 9. Translation of CMS in MLN
Σ

CMS typing MLN
Σ typing

Γ �CMS E: τ X ; ∅; Γ ′ � E′: τ ′

CMS type MLN
Σ type

[Σ1; Σ2] [Σ′
1|Σ′

2]

CMS term MLN
Σ term

x x

[ι; o; ρ] b(r)(let ρ′ in o′)[x: r.X | ι(x) = X]

E1 + E2 b(r)E′
1〈r〉+ E′

2〈r〉
E \X b(r)E′〈r〉 \X

E.X E′〈?〉.X
E!X b(r)let {x1: x2.X, x2: E

′〈r{X: x1}〉} in x2

the translations of Γ , Σ, o and ρ are defined pointwise.

sponding deferred component. Therefore, the translation defines the record x2

by resolving the name X with the X component of the record x2 itself.
The typing preservation property of the translation can be proved

Theorem 7 (Typing preservation). If Γ "CMS E: τ , then X ; ∅; Γ ′ " E′: τ ′,
where X includes all names occurring in the derivation of Γ "CMS E: τ .

The translation preserves also the semantics of CMS, but this can be proved
only up to some equational axioms for mutually recursive declarations

C[let ρ in e] = let ρ in C[e] (lift)
let ρ1 in let ρ2 in e = let ρ1, ρ2 in e (ext-merge)
let ρ1, x: (let ρ2 in e2) in e1 = let ρ1, ρ2, x: e2 in e1 (int-merge)
let ρ, x: e1 in e2 = let ρ[x: e1] in e2[x: e1] if x �∈ FV(e1) (sub)

The (lift) axiom corresponds to Ariola’s lift axioms, in principle it can be in-
stantiated with any MLN

Σ context C[], but for proving Theorem 8 it suffices to
consider the following contexts: C[]: : = � + e | e+ � | � \X | �.X .

The (ext-merge) and (int-merge) axioms are Ariola’s merge axioms, whereas
(sub) is derivable from Ariola’s axioms.

Let R denotes the set of the three axioms above, and S denotes the set of
equational axioms corresponding to the simplification rules for MLN

Σ ; then the
translation is proved to preserve the CMS simplification up to =S∪R (i.e. the
congruence induced by the axioms in S ∪R).

Theorem 8 (Semantics preservation). If E1
CMS
> E2, then E′

1 =S∪R E′
2.

The translation of the non-recursive subset of CMS (i.e. no local declarations ρ
and no freeze E!X) is a lot simpler, moreover its simplifications are mapped to
plain MLN

Σ simplifications.
We conclude this section with some examples of CMS reductions and their

translations in MLN
Σ .

Program Generation and Components 245

Example 4. Consider the plus reduction E1
CMS
> E2, where

E1 ≡ [{x:A}; {R:x}; ∅] + [∅; {A: y}; ∅],
E2 ≡ [{x:A}; {A: y,R:x}; ∅].

The translations of E1 and E2 are given by
E′

1 ≡ b(r)(b(r1)(let ∅ in {R: r1.A}))〈r〉 + (b(r2)let ∅ in {A: y})〈r〉
E′

2 ≡ b(r)let ∅ in {A: y,R: r.A}.
By repeatedly applying simplifications and equational axioms in R we get
E′

1

∗
> (by link)

b(r)(let ∅ in {R: r.A}) + let ∅ in {A: y} =R (by lift)
b(r)let ∅ in let ∅ in {R: r.A} + {A: y} =R (by ext-merge)
b(r)let ∅ in {A: y,R: r.A} ≡ E′

2.

Example 5. Consider the freeze reduction E3
CMS
> E4, where

E3 ≡ E2!A with E2 defined as in the previous example,
E4 ≡ [∅; {A: y,R:x}; {x: y}].

The translations of E3 and E4 are given by
E′

3 ≡ b(r)let {x1:x2.A, x2:E′
2〈r{A:x1}〉} in x2

E′
4 ≡ b(r)let {x: y} in {A: y,R:x}.

By repeatedly applying simplifications and equational axioms in R we get
E′

3 > (by link)
b(r)let {x1:x2.A, x2: let ∅ in {A: y,R: (r{A:x1}).A}} in x2 > (by resolve)
b(r)let {x1:x2.A, x2: let ∅ in {A: y,R:x1}} in x2 =R (by sub)
b(r)let {x1: (let ∅ in {A: y,R:x1}).A} in let ∅ in {A: y,R:x1} =R (by ext-
merge)
b(r)let {x1: (let ∅ in {A: y,R:x1}).A} in {A: y,R:x1} =R (by lift)
b(r)let {x1: let ∅ in {A: y,R:x1}.A} in {A: y,R:x1} =R (by int-merge)
b(r)let {x1: {A: y,R:x1}.A} in {A: y,R:x1} > (by resolve)
b(r)let {x1: y} in {A: y,R:x1} which is α-equivalent to E′

4.

Example 6. Consider the select reduction E5
CMS
> E6, where

E5 ≡ E4.R with E4 defined as in the previous example,
E6 ≡ [∅; {X : y}; {x: y}].X .

The translations of E5 and E6 are given by
E′

5 ≡ (b(r)let {x: y} in {A: y,R:x})〈?〉.R,
E′

6 ≡ (b(r)let {x: y} in {X : y})〈?〉.X .
By repeatedly applying simplifications we get
E′

5 > (by link)
(let {x: y} in {A: y,R:x}).R > (by unfolding)
{A: y,R: let {x: y} in y}.R > (by resolve)
let {x: y} in y > (by unfolding)
y.

Analogously, E′
6

∗
> y, therefore E′

5 =S E′
6. Unlike the other examples,

there is no way to get from E′
5 to E′

6 by applying simplifications and equations
axioms in R. This explains the use of =S∪R in stating Theorem 8.

246 D. Ancona and E. Moggi

8 Conclusions and Related Work

This section compares MMLN
ν with the CBV calculi FreshML and ν�. First,

we recall briefly the main features of these two calculi, then we make a critical
assessment based on a comparison with MMLN

ν .

– FreshML of [SPG03]2 is an extension of ML, based on a solid mathematical
theory [GP99], that provides a convenient support for meta-programming.
Namely, in FreshML abstract representations (i.e. modulo α-conversion) of
object-level syntax co-exist with pattern matching facilities (similar to those
usable on concrete parse trees) to analyse these representations.

– ν� of [Nan02, NPar] is a refinement of λ� [DP01], which provides better
support for symbolic manipulation by exploiting some features of FreshML
(the calculus presented in [NPar] does not support program analysis). The
stated aim is to combine safely the best features of λ� (the ability to execute
closed code) and λ© [Dav96] (the ability to manipulate open code). MetaML
has similar aims, but adopts the opposite strategy, i.e. it starts from λ©, nor
does it build on top of FreshML (names are not part of the MetaML syntax).

If we ignore the different styles for describing the operational semantics of
FreshML (a CBV evaluation relation), ν� (a CBV small-step reduction relation)
and MMLN

ν (a simplification and a computation relation), the key differences are:

– FreshML supports program transformation, in particular the analysis of
object-level programs represented as values of an inductive datatype involv-
ing abstraction types 〈name〉τ .

– ν� of [NPar] supports only program generation, (object-level) programs e of
type τ with unresolved names in X are represented by values of type �X τ .
The typing rules for �X τ are fairly restrictive, because X has to include all
unresolved names in e (and e should not contain free variables x).

– MMLN
ν supports only program generation, (object-level) programs e of type

τ abstracted w.r.t. a name resolver r of signature Σ are represented by terms
of type [Σ|τ]. The typing rules for [Σ|τ] are similar to those for a functional
type Σ → τ , in particular e may use other name resolvers besides r.

MMLN
ν versus FreshML. Typing judgments of FreshML have the standard for-

mat Γ " e: τ , because names do not occur in types (and in particular there are
no resolvers and no signatures for typing resolvers).

In FreshML names are terms (and there is a type name of names), so gener-
ation of a fresh name is denoted by νx.e, where x is a term variable which gets
bound to the fresh name, and e is the term where the fresh name can be used.
In MMLN

ν names occur both in types and in terms, and using x in place of a
name X would entail a type system with dependent types (which would be prob-
lematic), thus we must use a different binder νX.e for names. FreshML, unlike
MMLN

ν , supports the manipulation of object-level syntax modulo α-conversion.
This is possible because FreshML has:
2 There is another version of FreshML [PG00] with a more elaborate type system,

which is able to mask the computational effects due to generation of fresh names.

Program Generation and Components 247

– an equality type name of names
– abstraction types 〈name〉τ classifying equivalence classes of pairs (X, e) mod-

ulo renaming of X with names fresh for e (of type τ), terms 〈e1〉e2 to form
name abstractions, and patterns 〈x〉p to deconstructed them.

– a name swapping operation, which is crucial (in combination with name gen-
eration) to define the operational semantics of name abstraction matching.

It should be possible to extend MMLN
ν with these features of FreshML. However,

one should keep a clear distinction between the types 〈name〉τ and [Σ|τ]. The first
type classifies representations of object-level syntax modulo α-conversion, while
the second classifies fragments modulo simplification, thus it cannot support
program analysis.

MMLN
ν versus ν�. Typing judgments of ν� take the form Σ; Δ; Γ " e: τ [X],

where X ⊆ dom(Σ) includes the names occurring free in e, and Δ has declara-
tions of the form ui: τi[Xi] with Xi ⊆ dom(Σ).

In ν� the type of a name X is fixed at name generation time. This is a
bad name space management policy, which goes against common practice in
programming language design (e.g. of modules systems). MMLN

ν follows the ap-
proach of mainstream module languages, where different modules can assign to
the same name different types (and values). Therefore, programming in ν� forces
an overuse of name generation, because the language restricts name reuse.

In ν� terms includes names, so our θ.X is replaced by X , in other words
there is a default resolver which is left implicit. Linking u〈Θ〉 uses a function
Θ ≡ 〈Xi → ei|i ∈ m〉 to modify the default resolver. The typing judgments for
explicit substitutions Θ take the form Σ; Δ; Γ " Θ:X [X ′], where X ′ includes
the names used by the modified resolver to resolve the names in X , e.g. X ⊆ X ′

when Θ is empty. The following explicit substitution principle is admissible

Σ; Δ; Γ " Θ:X [X ′] Σ; Δ; Γ " e: τ [X]
Σ; Δ; Γ " e[Θ]: τ [X ′]

Our type [Σ|τ] corresponds to �X τ with X = dom(Σ). Typing rules for �X τ
are related to those for necessity of S4 modal logic, e.g. �X τ introduction is

Σ; Δ; ∅ " e: τ [X]
Σ; Δ; Γ " box e: �X τ [X ′]

This rule is very restrictive: it forbids having free term variables x in e, and
acts like an implicit binder for the free names X of e (i.e. it binds the default
resolver for e). Without these restrictions substitution would be unsound in the
type system of ν�. Such restrictions have no reason to exist in MMLN

ν , because
we allow multiple name resolvers, and fragments b(r)e are formed by abstracting
over one name resolver. Furthermore, making name resolvers explicit, avoid the
need to introduce non-standard forms of substitution.

248 D. Ancona and E. Moggi

The observations above are formalized by a CBV translation ′ of ν�-terms3

into MMLN
ν , where the resolver variable r corresponds to the default resolver,

which is implicit in ν�.

e ∈ ν� e′ ∈ MMLN
ν

x ret x
λx: τ.e ret (λx.e′)
e1 e2 do x1 ← e′1;x2 ← e′2;x1x2

νX : τ.e νX.e′

e ∈ ν� e′ ∈ MMLN
ν

X r.X
u〈Xi → ei〉 u〈r{Xi: e′i}〉
box e ret (b(r)e′)
letbox u = e1 in e2 do u← e′1; e

′
2

We do not define the translation on types and assignments, since in ν� the
definition of well-formed signatures Σ " and types Σ " τ is quite complex.

In conclusion, the key novelty of MMLN
ν is to make name resolvers explicit

and to allow a multiplicity of them, as a consequence we gain in simplicity and
expressivity. Moreover, by building on top of a fairly simple form of extensible
records, we are better placed to exploit existing programming language imple-
mentations (like O’Caml).

References

[AB02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with
letrec. Annals of pure and applied logic, 117(1-3):95–178, 2002.

[AM04] D. Ancona and E. Moggi. A fresh calculus for names management. In
Karsai and Visser [KV04].

[AZ99] Davide Ancona and Elena Zucca. A primitive calculus for module systems.
In Proc. Int’l Conf. Principles & Practice Declarative Programming, vol-
ume 1702 of Lecture Notes in Computer Science, pages 62–79. Springer,
1999.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. J. Funct. Pro-
gramming, 12(2):91–132, March 2002. Extended version of [AZ99].

[BCT02] D. Batory, C. Consel, and W. Taha, editors. Generative Programming
and Component Engineering, volume 2487 of Lecture Notes in Computer
Science. Springer, October 2002.

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In Conf.
Rec. POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., pages 266–277,
1997.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CM94] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter
and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design, pages 295–350. The
MIT Press, Cambridge, MA, 1994.

[CMS03] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe imperative
MetaML. J. Funct. Programming, 13(3):545–571, 2003.

3 In [NPar] the operational semantics (and the typing) of νX.e differs from that
adopted by (us and) FreshML. To avoid unnecessary complications, we work as
if ν� is FreshML compliant.

Program Generation and Components 249

[CMT04] C. Calcagno, E. Moggi, and W. Taha. ML-like inference for classifiers. In
Programming Languages & Systems, 13th European Symp. Programming,
volume 2986 of Lecture Notes in Computer Science. Springer, 2004.

[CTHL03] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Im-
plementing multi-stage languages using ASTs, gensym, and reflection. In
Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis, editors,
Generative Programming and Component Engineering (GPCE), Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[Dav96] R. Davies. A temporal-logic approach to binding-time analysis. In the
Symposium on Logic in Computer Science (LICS ’96), pages 184–195, New
Brunswick, 1996. IEEE Computer Society Press.

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. Journal of the ACM, 48(3):555–604, 2001.

[ESOP00] Programming Languages & Systems, 9th European Symp. Programming,
volume 1782 of Lecture Notes in Computer Science. Springer, 2000.

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax involving binders. In Proc. 14th Ann. IEEE Symp. Logic in Comput.
Sci., pages 214–224, July 1999.

[GS04] J. Greenfield and K. Short. Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. Wiley Publishing Inc,
2004.

[HW03] Christian Haack and J. B. Wells. Type error slicing in implicitly typed,
higher-order languages. In Programming Languages & Systems, 12th Eu-
ropean Symp. Programming, volume 2618 of Lecture Notes in Computer
Science, pages 284–301. Springer, 2003. Superseded by [HW04].

[HW04] Christian Haack and J. B. Wells. Type error slicing in implicitly typed,
higher-order languages. Sci. Comput. Programming, 50:189–224, 2004. Su-
persedes [HW03].

[KV04] G. Karsai and E. Visser, editors. Generative Programming and Component
Engineering, volume 3286 of Lecture Notes in Computer Science. Springer,
October 2004.

[LBCO04] Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky,
editors. Domain-Specific Program Generation. Number 3016 in Lecture
Notes in Computer Science. Springer-Verlag, 2004.

[Met01] MetaOCaml: A compiled, type-safe multi-stage programming language.
Available online from http://www.cs.rice.edu/∼{}taha/MetaOCaml/,
2001.

[MF03] E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage. In Proc.
FoSSaCS ’03, volume 2620 of Lecture Notes in Computer Science. Springer,
2003.

[MT00] Elena Machkasova and Franklyn A. Turbak. A calculus for link-time com-
pilation. In ESOP ’00 [ESOP00], pages 260–274.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In
Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming (ICFP-02), ACM SIGPLAN notices, New York,
October 2002. ACM Press.

[NPar] A. Nanevski and F. Pfenning. Staged computations with names and ne-
cessity. J. Funct. Programming, to appear.

250 D. Ancona and E. Moggi

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse and J. N.
Oliveira, editors, Proc. Mathematics of Program Construction, 5th Int’l
Conf. (MPC 2000), volume 1837 of Lecture Notes in Computer Science,
pages 230–255, Ponte de Lima, Portugal, July 2000. Springer.

[PS03] F. Pfenning and Y. Smaragdakis, editors. Generative Programming and
Component Engineering, volume 2830 of Lecture Notes in Computer Sci-
ence. Springer, September 2003.

[She01] T. Sheard. Accomplishments and research challenges in meta-
programming. In W. Taha, editor, Proc. of the Int. Work. on Seman-
tics, Applications, and Implementations of Program Generation (SAIG),
volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
Programming with binders made simple. In Proc. 8th Int’l Conf. Func-
tional Programming. ACM Press, 2003.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming, 2nd Edition. Addison Wesley, 2002.

[Tah99] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Inst. of Science and Technology, 1999. Available
from ftp://cse.ogi.edu/pub/tech-reports/README.html.

[TN03] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In
The Symposium on Principles of Programming Languages (POPL ’03),
New Orleans, 2003.

[TS97] W. Taha and T. Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the Symposium on Partial Evaluation and
Semantic-Based Program Manipulation (PEPM), pages 203–217, Amster-
dam, 1997. ACM Press.

[WV99] J. B. Wells and René Vestergaard. Confluent equational reasoning for
linking with first-class primitive modules (long version). A short version is
[WV00]. Full paper, 3 appendices of proofs, August 1999.

[WV00] J. B. Wells and René Vestergaard. Equational reasoning for linking with
first-class primitive modules. In ESOP ’00 [ESOP00], pages 412–428. A
long version is [WV99].

Assertion-Based Encapsulation,
Object Invariants and Simulations

David A. Naumann�

Department of Computer Science,
Stevens Institute of Technology, Hoboken, NJ 07030, USA

Abstract. In object-oriented programming, reentrant method invocations and
shared references make it difficult to achieve adequate encapsulation for sound
modular reasoning. This tutorial paper surveys recent progress using auxiliary
state (ghost fields) to describe and achieve encapsulation. Encapsulation is as-
sessed in terms of modular reasoning about invariants and simulations.

1 Introduction

This paper addresses two problems in reasoning about sequential object-oriented pro-
grams in languages like Java: reentrant callbacks and sharing of mutable objects. We
present an approach to modular reasoning based on the addition of ghost (“fictitious”,
auxiliary) fields with which intended structural relationships can be expressed —in par-
ticular, dependency relationships. The difficulties have various manifestations in in-
formal practice but can be understood most clearly in terms of formal reasoning, in
particular reasoning about object invariants and simulation relations. Object invariants
are essential for modular proof of correctness and simulations are essential for modular
proof of equivalence or refinement of class implementations. The approach offers inter-
dependent solutions to the two problems. It was developed initially by Barnett et al. [5]
and has been extended by Leino, Müller, and others [27, 7, 40, 43].

Besides giving a tutorial introduction to the approach, we compare it with other
approaches and suggest possible extensions and opportunities for future work. Müller
et al. [36] and Jacobs et al. [24] give good introductions to the problems and other
solution approaches. The book by Szyperski et al. [52] illustrates the problems using
more realistic examples than can fit in a research paper. We assume the reader has
minimal familiarity with Java-like languages; some familiarity with design patterns [22]
may be helpful.

Outline. Section 2 sketches the problems. Section 3 addresses invariants and reentrant
callbacks in detail and how they are handled in the ghost variable approach. Section 4
addresses invariants and object sharing using a notion of ownership. Section 5 discusses
additional issues concerning ownership-based invariants and Section 6 shows how the
approach can be used with simulations. Section 7 considers extension of the approach
to invariants that depend on non-owned objects —a discipline for friendly cooperation.
Section 8 discusses prospects and challenges for further extensions.

� Supported in part by the US National Science Foundation (CCR-0208984 and CCF-0429894)
and by Microsoft.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 251–273, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 D.A. Naumann

2 How Shared Objects and Reentrant Callbacks Violate
Encapsulation

Several constructs in Java and similar programming languages are intended to provide
encapsulation. A package collects interrelated classes and serves as a unit of scope.
Each instance of a class provides some abstraction, as simple as a complex number or
as complex as a database server. A method specification describes an operation in terms
of the abstraction. A method implementation uses other abstractions and is verified, for
the sake of modularity, with respect to their specifications.

Less frequently, a class itself provides some abstraction, represented using static
fields.1 More frequently, instances of multiple classes collectively provide an abstrac-
tion of interest, e.g., a collection and its iterators. In this paper we focus on the abstrac-
tion provided by a single instance or small group of instances.

To show that a method implementation satisfies its specification it is often essen-
tial to reason in terms of an object invariant2 for the target or receiver object self . An
object’s invariant involves consistency conditions on internal data structures —its rep-
resentation, made up of so-called rep objects— and the connection with the abstraction
they represent. To a first approximation, an object’s invariant is an implicit precondition
and postcondition for every method [23]. More precisely, it is not suitable to be visible
to clients and is maintained solely by the methods of the object’s class since, owing to
encapsulation, it is not susceptible to interference by client code.

These notions are clear and effective in situations where abstractions are composed
by hierarchical layering. As we shall explain, however, both reentrant callbacks and
object sharing can violate simple hierarchical structure.

Reentrant Callbacks. Consider some kind of sensor playing the role of Subject in the
Observer pattern [22]. The sensor maintains a set of registered Views: when the sensor
value reaches the threshhold, v .thresh, of a given view v , the sensor invokes method
v .notify() and removes v from the set. This description is in terms of a set, part of the
abstraction offered by the Subject; the implementation might store views in an array
ordered by thresh values. The pattern cannot be seen simply as a client layered upon an
abstraction, because notify is an upcall to the client. The difficulty is that v .notify may
make a reentrant callback to the sensor. Consider the following sequence of invocations,
where s is a sensor: A client or asynchronous event invokes s .update() which changes
the value of the sensor. Before returning, update invokes v .notify() where v is a view
registered with s . Now v maintains a reference, v .sensor , to s and in order for notify to
do its job it invokes v .sensor .getval() to determine the current sensor value. Because
v .sensor = s , this invocation of getval is known as a reentrant callback as control
returns to s while another method invocation (here update) is in progress.

It is common that a reentrant callback is intended. In the example, getval might
simply read a field and cause no problem. However, trouble is likely if v invokes on s a

1 Associated with a class rather than with each instance.
2 In a class-based language it is natural to include in a class the declaration of an invariant, with

the interpretation that each instance satisfies the invariant. To emphasize the instance-oriented
nature of such invariants, we use the term object invariant although some authors prefer “class
invariant”.

Assertion-Based Encapsulation, Object Invariants and Simulations 253

item

where

Solver
NS

Ilist
Clist

F

T

T

F

F

Client

y<=w

f(x)<=z

Fig. 1. An example data structure

method enum that enumerates the current set of views of s , since enum likely depends
on the invariant that the array of views is in a consistent state. In terms of the abstract
interface, is v still in the set of registered views? In terms of the array, is v in fact in the
array?

This example involves cyclic linking s → v → s of heap objects. We consider next
a different problem due to shared references.

Shared Mutable Objects. An illustration of the challenging invariants found in object-
oriented programs is the structure of objects and references in Fig. 1. This depicts the
data structures used in a constraint solving algorithm [49]. Several structural invariants
must be maintained by Solver for correctness and efficiency of the algorithm. For ex-
ample, the objects in the vertical column on the far right form a doubly linked list rooted
at NS and their item fields point to elements of the list rooted at Ilist . Moreover, each
of those items is in the range of the array of arrays Clist . And there is cross-linking
between Ilist and NS . These examples can be written as follows:3

(NS = null ∨ NS .prev = null)
∧ (∀ p ∈ NS .next∗ | (p.next = null ∨ p.next .prev = p)

∧ p.item ∈ Ilist .next∗ ∧ (∃ x , j | Clist [x][j] = p.item)
∧ p.item.where = p)

The client program is intended to have a reference to the Solver object, and the data
structure includes pointers to client objects that represent constraints (e.g., “y ≤ w”).
The latter pointers go against a strict hierarchical layering of abstractions (clients using
solvers), but this is not necessarily a problem. But there is no reason for clients to have
references to the objects within the dashed boundary; these are intended to comprise the
encapsulated representation of the solver. A reference to one of these rep objects would

3 Here ∗ denotes reflexive transitive closure of field dereferences. We use a Java-like notation
with implicit dereferencing: p.next is the value of field next in the object pointed to by p.

254 D.A. Naumann

class Subject{
private x , y : int := 0, 1; view : View := . . . ;
invariant ISubject where ISubject =df (self .x < self .y)
method m() { x := x + 1; view .notify(); y := y + 1; }
method f () : float { return 1/(y − x); }

}
class View {

z : Subject := . . . ;
method notify() { . . . z .f (); }

}

Fig. 2. Simple example of reentrant callback. (Occurrence of a field name like x without qualifier
abbreviates self .x .)

be problematic because the client could update the object and falsify the invariant of
Solver .

Suppose for simplicity that class Solver has no proper subclasses or superclasses,
other than Object (which is reasonable in this example since the class basically provides
a single algorithm). Fields NS , Ilist , and Clist can be given private scope so no code
of other classes can update them. We can reason in a modular way about invariants that
depend only on these fields, e.g., Clist �= null. If such an invariant is established by the
constructor then —absent reentrant callbacks— we can assume it as a precondition of
every method of Solver so long as it is established as a postcondition of every method
of Solver .

The formula displayed above, however, depends on other objects; scope-based en-
capsulation does not protect them from interference by client code. For example, if the
client held a reference o to the first node in NS , i.e., o = NS with NS �= null, then it
could set o.prev := o, violating the first line of the invariant which enforces acyclic-
ity. If a method of Solver is then invoked, it is not sound to assume the invariant as a
precondition.

A notion of heap encapsulation that fits this situation is ownership. The idea has
three parts. First, the objects comprising the representation of an instance of Solver
are considered to be owned by it —the encapsulation boundary encloses exactly the
owned objects. Second, the invariant is only allowed to depend on owned objects. Third,
invariant-falsifying updates are prevented by some means. The most common means is
to disallow references to owned objects from outsiders. This is the dominator prop-
erty [16]: Every path to a rep of Solver s from an object that is not a rep of s must go
through s . Ownership is the topic of Section 4.

3 Reentrance and Object Invariants

In this section we set aside ownership and present a discipline for invariants in the
presence of reentrant callbacks.

For clarity we use the contrived example in Fig. 2. In class Subject , the object
invariant x < y is established by initialization x , y := 0, 1. Method f relies on the
invariant (to avoid division by 0); it maintains the invariant because it does no updates.

Assertion-Based Encapsulation, Object Invariants and Simulations 255

At first glance, the invariant is also maintained by m since it increments x and y by the
same amount. Because x and y are local, they are not susceptible to update in code out-
side of class Subject —and this is what we need for modular reasoning about Subject .
But there is the possibility of a reentrant callback. For object s of type Subject , an
invocation of s .m results in the invocation s .view .notify in a state where the declared
invariant does not hold for s . Now s .view .notify in turn invokes z .f , so if s .view .z = s
then an error occurs. If instead notify invoked z .m then the program would diverge due
to nonterminating recursion.

Possible Solutions. One reaction to the example is to disallow any reentrant callback.
This could be done using static analysis for control flow, taking into account aliasing
in order not to disallow too many programs. Such analyses are usually not modular,
however. A specification of allowed calling patterns might also be required, since for
example if f simply returned x then the callback m → notify → f is harmless and
possibly desirable.

The problem is similar to interference found in concurrent programs and one might
try to solve it using locks. But here we are concerned with a single thread of control;
if a lock was taken by the initial call to m and that lock prevented a reentrant call then
deadlock would result. (In Java, a lock held by a given thread does not prevent that
thread from reentering the object, precisely to avoid deadlock.) A related solution is to
introduce a boolean field inm to represent that a call of m is in progress and to use
¬inm as precondition of m and f . This has similarities to the approach advocated later.

Another approach to the problem is to require the invariant to hold prior to any
method call, lest that call lead to a reentrant callback. This has been advocated in the
literature [29, 32] and is sometimes called visible state semantics [36]. Our example
can be revised to fit this discipline, by changing the body of m to this:

x := x + 1; y := y + 1; view .notify(); (1)

Note that ISubject holds after the second assignment so it is sound for view .notify to
rely on it, e.g., by making reentrant calls. But this approach does not scale to more
realistic programs, where the invariant may involve several data structures, update of
which is done by method calls. Most method calls do not lead to reentrant callbacks
and we already noted that some reentrant callbacks are harmless, even desirable.

Another alternative would be to state the invariant as an explicit precondition for
those methods that depend on it. Then notify in the example would be rejected because
it could not establish the precondition for z .f (). This alternative must be rejected on
grounds of information hiding, the predicate ISubject , like most invariants, depends on
internals that should be encapsulated within the class.

Various techniques have been proposed to hide information about an invariant while
expressing that it is in force. One alternative is to introduce a typestate [20] to stand for
“the invariant is in force”. Another approach is to treat its name as opaque with respect
to its definition [8], as may be done in higher order logic using existential quantifica-
tion [9]. Another way to treat the invariant as an opaque predicate, which to the author’s
knowledge has not been explored, is to use a pure method [26] to represent the invari-
ant; this could be of practical use in runtime verification and hiding of internals could
be achieved using visibility rules of the programming language.

256 D.A. Naumann

class Subject {
private x , y : int := 0, 1;
private view : View := . . . ;
invariant ISubject

where ISubject =df self .x < self .y
method m()

requires self .inv
ensures self .inv

{ unpack self ;
assert ¬self .inv
x := x + 1;
view .notify(self);
y := y + 1; }

}
class View {

method notify(Subject z) {z .m(); }
}

Fig. 3. Variation on Fig. 2 (incomplete)

The Boogie Approach. The best fea-
tures of the preceding alternatives are
combined in the so-called Boogie ap-
proach of Barnett et al. [5]. The idea
is to make explicit in preconditions not
the invariant predicate, e.g., ISubject ,
but rather a boolean abstraction of it
(similar to the typestate approach). For
reasons that will become clear, we use
the term inv/own discipline for the Boo-
gie approach.

To a first approximation, the disci-
pline uses a ghost (auxiliary) field inv
of type boolean so that o.inv repre-
sents the condition that “the invariant
I[o/self] is in force”.4 The idea is that
the implication o.inv ⇒ I[o/self] can
be made to hold in every state, while
I[o/self] itself is violated from time to
time for field updates. The idea can be
used with an ordinary field, but here we
use a ghost field that has no runtime significance but rather is used only for reasoning.
Field inv is considered to be public and declared in the root class Object , so self .inv
can appear as a precondition of any method that depends on the invariant. For our run-
ning example, both methods f and m would have precondition self .inv .

The discipline imposes several proof obligations in order to ensure that the follow-
ing is a program invariant, i.e., it holds in all reachable states:

(∀ o | o.inv ⇒ I[o/self]) (2)

Consider a method m with (at least) precondition self .inv . To reason about correctness
of an implementation of m, within the scope where I is visible, the conjunction of (2)
and self .inv yield I. On the other hand, outside the scope a reasoner sees only the
precondition self .inv .

To emphasize that inv is a ghost variable used only for reasoning, the discipline
uses special commands pack and unpack to set inv true and false, respectively. Key
proof obligations are imposed on these. The obligations are most easily understood in
terms of allowed proof outlines. In particular, certain preconditions are stipulated for
the special commands and for field updates. The two most important obligations are:

– The precondition for pack E is ¬E .inv ∧ I[E/self]. Clearly I[E/self] is neces-
sary to maintain (2) upon truthification of E .inv . The first conjunct prevents reen-
trance to this region of code since pack sets E .inv true.

– The precondition for a field update E .f := E ′ is ¬E .inv . This ensures that the
update does not falsify (2) for the object E .

4 Here [o/self] denotes substitution of o for self , taking aliasing into account.

Assertion-Based Encapsulation, Object Invariants and Simulations 257

Consider the code in Fig. 3, a variation on Fig. 2. Here the Subject passes self as an
argument to notify and an incomplete annotation is sketched. The update x := x + 1,
which abbreviates self .x := self .x + 1, is subject to precondition ¬self .inv . As the
precondition of m is self .inv , the special command unpack self is needed to set inv
false. Now we consider some options in reasoning about notify .

unpack self ;
assert ¬self .inv
x := x + 1;
y := y + 1;
assert ISubject

pack self ;
view .notify(self);

One possibility is for z .inv to be a precondition for
notify . Then the implementation of notify is correct: ac-
cording to the specification of m, the call z .m() has pre-
condition z .inv . The implementation of Subject .m is thus
forced to establish self .inv preceding the call to notify .

Setting self .inv true is the effect of the special com-
mand pack self , but the stipulated precondition for
pack self is I and this assertion would not hold imme-
diately following the update x := x + 1. The situation can
be repaired as in the code at right, where, as in (1), the as-
signment y := y + 1 precedes invocation of notify so that
the implementation of m can be verified. This seems satisfactory for the example but in
general it is impractical to impose the visible state semantics for invariants. The exam-
ple does show that the discipline can handle this pattern of reasoning.

unpack self ;
assert ¬self .inv
x := x + 1;
view .notify(self);
y := y + 1;
assert ISubject

pack self ;

Another possibility is to retain the implementation of
m, so that inv is only restored at the end, as in the code on
the right. For the call to notify to be correct, notify can-
not have precondition z .inv . But then the implementation
of notify is not correct, because it has no way to establish
z .inv which is the precondition for z .m. On the other hand,
notify is free to invoke on z any method that does not re-
quire z .inv .

Summary. Through use of ghost field inv following the
rules of the discipline, a harmful reentrant callback can be
prevented while allowing some callbacks. There is a clear intuition, that z .inv stands
for “z is in a consistent state” (it is packed, for short). Yet the internal representation
of Subject is not exposed to View ; there is no need for predicate ISubject to be visible
outside Subject .

4 Sharing and Object Invariants

Let us set aside the issue of reentrance and consider another toy example, now involving
shared references (see Fig. 4). The initialization of Subject2 establishes ISubject2. The
annotation of m is correct: The first assertion follows from precondition self .inv and
program invariant (2). The second assertion follows from the first by straightforward
reasoning about incr . Method leak does no updates and thus maintains ISubject2.

Unfortunately, main uses leak to falsify (2). In a state where s .inv is true, and thus
ISubject2[s/self] by (2), main uses s .leak() to obtain a (shared) reference i to s .x .
The invocation i .incr() then updates the val field, falsifying s .x .val < s .y.val and
thus falsifying s .inv ⇒ ISubject2[s/self].

258 D.A. Naumann

class Integer { public val : int;
method incr() { val := val + 1; }

}
class Subject2 {

private x : Integer := new Integer(0);
private y : Integer := new Integer(1);

invariant ISubject2 where ISubject2 =df (x �= null �= y ∧ x .val < y .val)
method m()

requires self .inv
ensures self .inv

{ unpack self ;

assert ISubject2; x .incr(); y .incr(); assert ISubject2;
pack self ; }

method leak() : Integer { return x ; }
}
class Main{ s : Subject2 := new Subject2; . . .

method main() { i : Integer := s.leak(); i .incr(); s.m(); }
}

Fig. 4. Invariant dependent on rep objects

One diagnosis is that the invariant of Subject2 should not be allowed to depend on
fields of objects other that self . Indeed, some proposals in the literature on invariants
for object-oriented programs are only sound under this restriction [30]. But for many
classes this is highly impractical. For an example, consider updates to the structure of
the solver in Section 2, assuming list operations are coded in object-oriented style, e.g.,
using methods of the node classes for setting fields and for recursive list operations.

The name “leak” indicates our diagnosis: just as field x is private, so too the object
referenced by x belongs within class Subject2. More precisely, it is a rep object —
part of the representation of an abstraction provided by an instance of Subject2. A rep
belongs to its owner and this licenses its owner’s invariant to depend on it. Thus the
programming discipline must prevent updates of reps by code outside Subject2.

Ownership. As mentioned in Section 2, some ownership systems prevent harmful up-
dates by preventing the existence of references from client to rep (the dominator prop-
erty that all paths to a rep go through its owner). It is easy to violate the dominator
property: a method could return a rep pointer, or pass one as an argument to a client
method.

The dominator property can be enforced using a type system such as the Universe
system [35] and variations on Ownership Types [17, 13, 12, 1]. These systems do not
directly enforce the dominator property, which is expressed in terms of paths. Rather,
they constrain references, disallowing any object outside an ownership domain from
having a pointer to inside the domain. This means that from the point of view of a
particular object s , the heap can be partitioned into three blocks:

– the singleton containing just s
– the objects owned by s (which, together with s , are called an island)
– all other objects

Assertion-Based Encapsulation, Object Invariants and Simulations 259

In these terms, the invariant for s is only allowed to depend on fields of objects in the
island of s .

The name “leak” suggests that what has gone wrong in the example is the very
existence of a shared reference. Ownership type systems prevent harmful updates by
alias control: static rules would designate that x is owned and would reject method
leak . This approach has attractive features but it has proved difficult to find an own-
ership type system that admits common design patterns and also enforces sufficiently
strong encapsulation for modular reasoning about object invariants. In particular, many
examples call for the transfer of ownership (see Section 5) which does not sit well with
type-based systems. Moreover ownership typing involves rather special program anno-
tations (decorating declarations with ownership information).

The alternative presented below controls uses of references and represents owner-
ship restrictions with assertions.5

Before turning to that topic we note that Separation Logic [50] provides a way
to express that a predicate depends on only some objects in the heap (and correctness
assertions that express on what part of the heap the correctness of a command depends).
The logic has been used for encapsulating dependence of invariants in simple imperative
programs [41] but in its current form the logic depends on a concrete view of heap cells
in which all fields are explicit. This is at odds with subtyping and inheritance which
affords modular reasoning about extensible classes. This is an exciting line of research,
but adoption of a nonstandard logic for specification and verification has significant
cost.

Ownership Using Ghost Fields. The first step is quite direct. Each object has ghost field
own to point to its owner. If an object o currently has no owner (as is the case when
initially constructed), o.own = null. An object encapsulates the objects it transitively
owns. We define transitive ownership as a relation on references as follows: o - p iff
either o = p.own or o - p.own . Note that - is state-dependent. The invariant, IC ,
for a class C is considered admissible just if whenever IC depends on p.f for some
object p then either self = p or self - p.

In virtue of representing the ownership relation by a ghost pointer to the owner, we
have imposed the invariant that an object has at most one owner. Transitive ownership
thus imposes a hierarchical structure on the heap —though one that is mutable.6

Rather than preventing aliases to encapsulated reps from clients, the inv/own dis-
cipline prevents updates that falsify the invariant. For invariants that depend only on
fields of self , this was achieved by imposing on every update E .f := E ′ the precondi-
tion ¬E .inv . It would be sound, but hardly practical, to impose now the precondition

¬E .inv ∧ (∀ o | o - E ⇒ ¬o.inv)

so that no object with an invariant dependent on E .f is packed. One reason this pre-
condition is impractical is that the code performing the update of E would have to have
ensured that many objects are unpacked, which hardly seems modular. Another reason

5 Skalka and Smith [51] also study use-based object confinement, for different purposes.
6 Because field own is mutable, it is possible to create a cycle of owners. But owing to the

stipulated preconditions of the discipline, objects in a cycle cannot be packed.

260 D.A. Naumann

is that if o owns p it makes no sense to unpack p unless o is already unpacked, since
when it is packed o’s invariant depends on p.

The idea with precondition ¬E .inv for an update E .f := E ′ is that E should get
unpacked before updates are performed on it. This means in a sense that control crosses
the encapsulation boundary for E . The discipline uses one more ghost field, com :
bool, in order to impose a discipline whereby the flow of control across encapsulation
boundaries respects the current ownership hierarchy. The name stands for “committed”:
o.com implies o.inv but says in addition that o is committed to its owner and can only
be unpacked after its owner gets unpacked. This idea is embodied in two additional
program invariants:

(∀ o, p | o.inv ∧ p.own = o ⇒ p.com) (3)

(∀ o | o.com ⇒ o.inv) (4)

The key consequence of these invariants is the transitive ownership lemma: If o - p
and ¬p.inv then ¬o.inv . It is now possible to maintain program invariant (2) simply
by stipulating for every field update E .f := E ′ the precondition ¬E .inv . If the update
is made in a state where for some object o we have that I[o/self] depends on E .f then
o - E by admissibility of I. And by the transitive ownership lemma, ¬E .inv implies
¬o.inv .

We have prevented interference not by alias control nor by syntactic conditions but
rather by a precondition, expressed in terms of auxiliary state that encodes dependency
and hierarchy.

Typically, the precondition of a method that performs updates is self .inv ∧
¬self .com. If it performs updates on a parameter x , an additional precondition will
be x .inv ∧¬x .com. Manipulation of the com field is part of what it means to pack and
unpack an object. For unpack E , the stipulated precondition is now E .inv ∧¬E .com
and the effect7 is

E .inv := false; foreach o such that o.own = E do o.com := false;

For pack E , the stipulated precondition is ¬E .inv ∧ IC [E/self] ∧ (∀ o | o.own =
E ⇒ o.inv ∧ ¬o.com) where C is the type of E . The effect is

E .inv := true; foreach o such that o.own = E do o.com := true;

5 Additional Aspects of the inv/own Discipline

The ingredients of the discipline are

– Assertions.
– Ghost fields.8

7 The “foreach” part of the effect can be expressed using a specification statement: modifies
com , ensures (∀ o | (o.own = E ∧ ¬o.com) ∨ (o.own �= E ∧ o.own = old(o.own))).

8 With inv , own ranging over values that include class names, i.e., slightly beyond ordinary
program data types. Similar use of class names is available in the JML specification via the
type operator [26].

Assertion-Based Encapsulation, Object Invariants and Simulations 261

– Updates to ghost fields, including update of an unbounded number of objects (in
pack E , for example, the com field of every object owned by E is updated).

This is quite limited machinery and thus the discipline is suitable for use in a variety
of settings. It could be formalized within an ordinary program logic, most attractively
a proof outline logic [45]. It is being explored in the context of Spec#, a tool based
directly on a system of verification conditions, and in a tool developed by de Boer and
Pierik [18]. In both cases the assertion language is (roughly) first order plus reachability
but that is not essential.

Rather than relying entirely on annotations, practical use of the discipline can be
streamlined through some simple abbreviations [5, 27]. A marked field declaration
rep f : T is syntactic sugar for the invariant self .f .own = self and peer f : T
is syntactic sugar for self .f .own = self .own . It is also possible to infer, absent other
annotation, that the implementation of a method with precondition self .inv should be
annotated with unpack self ; . . . ;pack self so this need not be written explicitly.

The discipline supports an attractive extension to frame conditions: without mention
in a modifies clause, a method can update committed objects. For details see [5].

Quantification. We have formalized the program invariants (2–4) using quantifications
that range over all allocated objects. Quantification is problematic. If quantification
ranges over currently allocated objects then a quantified formula can be falsified by
garbage collection, e.g., (∃ o | P(o)) is falsified if the only object with property P
gets collected. This cannot happen if P connects o with other objects via ordinary fields,
e.g., P(o) = (o.f = C .x) with x a static field of class C , as then o is not garbage. But
the problem occurs with as simple a property as y.f = 1 if y is a ghost field. Garbage
sensitivity has been studied in depth by Calcagno et al. [14]. A workable solution is to
ignore garbage collection in program logic, so quantifications range over all objects that
have been allocated.

This still leaves the possibility of falsification by allocating a new object. Pierik, de
Boer, and Clarke [43] have explored, for example, the Singleton pattern [22] where one
might want the invariant of Singleton to be

(∀ p | type(p) ≤ Singleton ⇒ p = Singleton.it) (5)

where it is a static field of class Singleton and ≤ denotes subtype. (Recall that our
quantifications range over non-null object references; we write type(o) for the dy-
namic type of an object.)

This problem can be taken into account by including in the definition of admissi-
bility that an invariant cannot be falsifiable by construction of new objects. The authors
of the Boogie papers [5, 27] intend that invariants use quantification only over owned
objects, which achieves this effect. Barnett and Naumann [40] impose it explicitly in
their definition of admissibility.

An alternative is for predicates like (5) to be considered admissible and to stipulate
a suitable precondition for object construction (new). This alternative has been worked
out by Pierik et al. [43] based on a notion of update guard that we discuss in Section 7.

Ownership Transfer. A useful feature of the inv/own discipline is that, while it im-
poses hierarchical structure on the heap, that structure is mutable. Field own is ini-
tially null; a fresh object has no owner. The field is updated by special command

262 D.A. Naumann

set-owner E to E ′, the effect of which is simply E .own := E ′. As with ordinary
field update, it is subject to precondition ¬E .inv . Moreover, in the case that E ′ �= null
the command adds to the objects owned by E ′ —and it adds to those transitively owned
by the transitive owners of E ′. Their invariants depend on their owned objects so we
require them to be unpacked. The stipulated precondition for set-owner E to E ′ is
¬E .inv ∧ (E ′ = null ∨ ¬E ′.inv). Thus the ownership structure can change dynami-
cally when the relevant invariants are not in force.

Change in ownership structure is difficult or impossible with ownership type sys-
tems, in part because the type system imposes the ownership conditions as a program
invariant, i.e., true in every state. Transfer has been found to be useful in a number of
situations. The most common seems to be initialization by the client of an abstraction
that then becomes owned by another; this was pointed out by Leino and Nelson [21]
with the example of a lexer that owns an input stream but that stream is constructed
by the client. Transfer between peer owners is appropriate, for example, with several
queues of tasks that are moved between queues for load balancing. The trickiest form
of transfer is when an encapsulated rep is released to clients; this form has been high-
lighted by O’Hearn in the example of a memory allocator, considering that the allocator
owns elements of the free list [41]. Other examples can be found in [27, 4].

Taking Subclasses into Account. If C is a subclass of D then an instance of C has
fields of D and of C . Moreover, it should maintain the invariant, ID , of D but C may
impose an additional invariant IC . Instead of using a boolean to track whether “the”
invariant is in effect, the general form of the inv/own discipline lets inv range over
classnames, with the interpretation that o.inv ≤ C means that o is packed with respect
to the invariant of C and of any superclasses of C . This works smoothly if we assume
IObject is true.

Owned objects are now owned at a particular class, i.e., field own ranges over null
and pairs (C , o) with type(o) ≤ C indicating that the object is owned by o at class C
and is part of the representation on which IC depends.

The pack and unpack commands are revised to mention the class involved. For
unpack E from C , the stipulated precondition is now E .inv = C ∧¬E .com and the
effect is

E .inv := super(C); foreach o such that o.own = (E ,C) do o.com := false;

For pack E to C , the stipulated precondition is E .inv = super(C) ∧ IC [E/self] ∧
(∀ o | o.own = E ⇒ o.inv ∧ ¬o.com) and the effect is

E .inv := C ; foreach o such that o.own = (E ,C) do o.com := true;

The program invariants are also adapted slightly.

(∀ o,C | o.inv ≤ C ⇒ IC [o/self])
(∀ o, p,C | o.inv ≤ C ∧ p.own = (o,C) ⇒ p.com)

(∀ o | o.com ⇒ o.inv ≤ type(o))

Methods are dynamically dispatched, which raises the question how to express the pre-
condition that before was just inv = true. The Boogie paper [5] introduces notation

Assertion-Based Encapsulation, Object Invariants and Simulations 263

class Subject2 { //Alternate version
private rep x : Integer := new Integer(0);
private rep z : int := 0;

invariant ISubject2′ where ISubject2′ =df 0 ≤ z
method m() { x .incr(); } }

Fig. 5. Revised Subject2

which at a method call site means E .inv = type(E) but in the method implementa-
tion means that self .inv equals the static type. This is worked out by treating method
inheritance as an abbreviation for a stub method with appropriate unpack and pack;
this generates a proof obligation on an inherited method.

Soundness and Completeness. Soundness of the discipline is taken to mean that the
three displayed conditions hold in every reachable state of a properly annotated pro-
gram, i.e., one in which every field update and every instance of a special command
pack, unpack, or set-owner is preceded by an assertion that implies the stipulated
precondition.

For sequential programs in a Java-like language, soundness is sketched in the origi-
nal Boogie paper [5] and more rigorously in [40]; see also [27]. Extension of the disci-
pline to concurrent programs has also been investigated [25].

Completeness is another matter. It is not at all clear to this author how to formu-
late an interesting notion of completeness. Clearly it should be relative to completeness
of an underlying proof system. The discipline hinges on having every object invariant
expressed in the form inv ⇒ I with I admissible. Does completeness say that every
predicate of this form that is in fact invariant can be shown so in a proof outline follow-
ing the discipline? Related questions are which admissible predicates are expressible
as formulas and which formulas denote admissible predicates. A convincing notion of
completeness would be especially useful if it could be adapted to other disciplines like
the one discussed in Section 7.

In what sense are invariants necessary at all? One could perhaps simply conjoin (2),
(3), and (4) to preconditions and postconditions throughout the program. But this raises
another expressiveness question. And for modularity it might require abstraction from
internals, e.g., using model fields. Notions of completeness that take modularity into
account have recently been studied by Pierik and de Boer [44].

Static Invariants. We have focused on object invariants that depend on instance fields.
It is also sensible for an object invariant to depend on static fields, e.g., the Singleton
invariant (5). There is also the possibility of a static invariant for a class. Examples are
given by Leino and Müller [28] and by Pierik et al. [43]. The basic idea is to use a static
field in the same way as inv , to represent whether the invariant of a class is in force.
There are intricacies due to the way in which classes are initialized in Java.

6 Pointer Confinement and Simulation

Fig. 5 shows an alternate implementation of class Subject2 from Fig. 4. The behavior of
the two versions is the same (at the level of abstraction of the programming language,

264 D.A. Naumann

e.g., ignoring speed and size of object code). The standard way to prove behavioral
equivalence of two modular units such as classes is by means of a coupling relation
that has the simulation property. A coupling relates states for one implementation with
states for the other. For an instance s of Subject2 in the first version (Fig. 4) and s ′ for
the second version (Fig. 5), a suitable coupling is

s .x .val = s ′.x .val ∧ s .y.val − s .x .val = s ′.z

Such a relation is a simulation provided that it is preserved by corresponding method
implementations —as it is by the two versions of m in the example. (The same tech-
nique is also used to prove refinement: in case one implementation diverges less often
or is less nondeterministic, the notion of preservation is adapted slightly.) The tech-
nique is practical because the simulation property only needs to be proved for the re-
implemented methods: For arbitrary program contexts, simulation should follow from
simulation for the revised class, by a general representation independence property of
the language.

The technique was articulated by Hoare [23] drawing on work of Milner [33] and
has seen much development for use with purely functional programs [48, 34, 47] as
well as first order imperative and concurrent programs [31]. For first order imperative
programs the topic is thoroughly surveyed in the textbook by de Roever et al. [19].
Object oriented programs have features in common with higher order imperative pro-
grams, for which representation independence is nontrivial owing to semantic difficul-
ties [42, 46, 39]. Two sources of complication in object oriented programs are inheri-
tance and the ubiquitous use of recursive classes; these were addressed by Cavalcanti
and the author [15] —under the drastic simplification that copying is used instead of
sharing. Their results have been used to validate laws of program refactoring [11, 10].

The representation independence property, i.e., the possibility of reasoning in a
modular way using simulations, is a measure of the encapsulation facilities of a lan-
guage. We have seen how reentrant callbacks and heap sharing pose a challenge for
encapsulation in object oriented programs. Using a static analysis for alias control in
order to impose an ownership structure just for the class under revision, Banerjee and
Naumann [2] are able to show representation independence for a rich imperative frag-
ment of Java with class-based visibility, inheritance and dynamic binding, type casts
and tests, recursive types, etc. A key feature of this work is the notion of local coupling
which is a binary relation not on complete program states but just on a fragment of the
heap consisting of a single instance of the class under revision together with its reps.
That is, a local coupling relates pairs of islands. This induces a coupling relation for the
entire program state.

There are two main shortcomings to the work of Banerjee and Naumann [2]. First,
ownership transfer is disallowed by their confinement rules. Second, the result is in-
adequate for programs with callbacks because it is in terms of the standard notion of
simulation: for method m to preserve the coupling means that if two states are initially
coupled, then running the two versions of the implementation of m leads to coupled
states. Recall that representation independence says, with A the class for which two
versions are considered, that if all methods m of class A have the simulation property
then the relation is preserved when those methods are used in arbitrary program con-
texts. In fact the proof obligation is not simply that m preserves the coupling, but rather

Assertion-Based Encapsulation, Object Invariants and Simulations 265

that it preserves the coupling under the hypothesis that any method m invokes preserves
the coupling.9 This assumption can be useful in establishing the simulation property for
m, but only if the two implementations make the same method call and from a state
where the coupling holds. But at intermediate steps in paired invocations of (the two
versions of) m, the coupling relation need not hold —essentially for the same reason as
invariants need not hold during updates of local state. The hypothesis is of no help if a
client method is invoked at an intermediate step where the coupling does not hold.

It turns out that the inv/own discipline, which is concerned with preservation of
invariants, can be adapted to simulations, i.e., preservation of coupling relations; see [4].
The intuition is that a coupling is just an invariant over two copies of program state.
Moreover, field inv is observable (by specifications), so both versions of a method m
of A have the same unpack/pack structure, so the coupling can take the form of an
implication with antecedent inv . This form of coupling can then hold at intermediate
points in m, in particular at method calls —so the hypothesis is now of use.

The adaptation is not trivial because the inv/own discipline only controls updates.
Recall the example leak in Section 4. If we revise it as follows, so that the leaked
reference is only read, then the program is compatible with the inv/own discipline.

class Main { s : Subject2 := new Subject2;
method main() { i : Integer := s .leak(); Print(i .val); } }

For invariants, it is only a problem if i is updated. But for simulations, we need indepen-
dence from reps —not even dependence by reading— as otherwise a client’s behavior
can be affected and the representation is not fully encapsulated. This can be achieved by
stipulating additional preconditions for field access [4] (which in practice can usually
be discharged trivially in virtue of standard visibility rules).

Informal considerations of information hiding suggests that clients should not read
fields of reps, and this is confirmed by the analysis of representation independence. In
this regard it seems that the main advantage of the inv/own discipline over ownership
types is the ability to temporarily violate the ownership property in order to transfer ob-
jects between owners. The Spec# project [6] is exploring inference to determine where
the set-owner, pack , and unpack commands are needed. Integration with owner-
ship types merits investigation.

7 Beyond Single-Object Invariants

At the beginning of Section 2 we focused attention on situations where each instance
of a class is intended to provide some cohesive abstraction such as a collection. Such
examples are ubiquitous, but so too are situations where several objects cooperate to
provide some abstraction.

One example is iterators. To equip a Collection with the possibility of enumerat-
ing its elements, a separate object is instantiated for each enumeration. These Iterator

9 The reason this is sound is similar to the justification for proof rules for recursive procedures: it
is essentially the induction step for a proof by induction on the maximum depth of the method
call stack.

266 D.A. Naumann

objects need access to the internal data structure of the Collection, to get elements of
the Collection and to track whether the Collection has changed in a way that makes the
Iterator inconsistent and unusable.

One can imagine formulating a single invariant that pertains to the collective state
of a Collection and its Iterators, but it is not clear with what program structure this
invariant would be associated. Perhaps the iterator and Collection classes could be put
in a single module, but associating the invariant with the module does not reflect that
the natural unit is a single Collection instance together with its iterators.

An alternative using more familiar notions is to express the conditions in the object
invariant for an Iterator. But it is not feasible for an Iterator to own the Collection
on which it depends, since Iterators serve as part of the interface to clients. Aldrich
and Chambers [1] explore a flexible notion of ownership type where the dominator
property is not necessarily imposed, but absent this property it is not clear what modular
reasoning is supported.

The need for object invariants to depend on non-owned objects arises in quite simple
situations. In Section 2 we considered the Solver invariant that involves doubly-linked
list conditions p.next = null ∨ p.next .prev = p for all p in NS .next∗. It is possible
to associate the entire invariant with class Solver , but at the cost of a quantifier and
reasoning about reachability. A less centralized formulation would push some of the
conditions into object invariants for the rep objects, e.g., each node could maintain
the invariant next = null ∨ next .prev = self . But for this to be admissible, a node
would need to own its successor. Such an ownership structure is workable for acyclic
doubly-linked lists but not for cyclic ones (and awkward if iteration is used instead of
recursion).

As a more elaborate example, consider the variation on the Observer pattern de-
picted in Fig. 6, where a separate Listener object is the target of the notify callback.
The dashed and dotted arrows are explained in due course. Dashed rectangles are used
as before to indicate ownership encapsulation. In this arrangement it would seem that
both the Listener and the View need to read and update their shared Cache object. The
situation is similar to that for Collections/Iterators. We return to this point later. The next
point to consider is that we aim to specify that notifications are required: the Subject
has a version number that is incremented each time it is updated, and notify brings the
View back in sync. For simplicity we treat the state of the Subject as an integer —see
the code in Fig. 6. The View maintains a copy of the state of the sensor, with its version
number, in its Cache object. View also maintains the invariant that this version is not
more than one step behind. We assume it is untenable for the View to own its Subject
sbj . So this invariant is inadmissible according to the previous definition, because it
depends on fields val and vsn of sbj .

A prerequisite for this dependence is of course that those fields are visible in View .
Rather than giving them public visibility, let us suppose that Subject3 includes an ex-
plicit declaration

friend View reads vsn, val ;

to extend the scope of visibility. The intention is not only to broaden the scope (as little
as possible) but also to license dependence of IView on these fields. It is thereby also
signalled to Subject3 that it has a proof obligation: if s has type Subject3 then updates

Assertion-Based Encapsulation, Object Invariants and Simulations 267

Subject3

List

Listen

Cache

View

Listen

owner

pointer

dependent

class Subject3 { val : int; vsn : int; listeners : List〈Listener〉;
. . .}
class Cache { vsn : int; val : int; }
class View { sbj : Subject ; rep st : Cache;

invariant IView where IView =df sbj .vsn − 1 ≤ st .vsn ≤ sbj .vsn
∧(st .vsn = sbj .vsn ⇒ st .val = sbj .val);

. . .}
class Listener { st : Cache;

method notify() { . . . } }

Fig. 6. Observer pattern using separate listeners

to s .val and s .vsn must not falsify the invariant of any object v of type View that is
dependent on s .

Visibility Based Invariants. Müller and others [35, 27, 36] have worked out sound rules
for reasoning about invariants in this sort of peer relationship. They use the term vis-
ibility based invariant, in contrast to ownership based invariants. In our example, the
idea would be that Subject3 is responsible to maintain any invariants visible to it. In
some examples this is quite manageable, but in general there is a problem. The visi-
bility based approach works at the level of classes. In reasoning about an update of a
given instance s of Subject , one must consider the invariant of any v : View since the
invariant of View depends on fields of Subject . The question is how the reasoner gets
a handle on those objects, given that there can be many instances of View , dependent
on many different instances of Subject3.

In the example at hand, s .listeners is intended to hold references to all listeners for
views dependent on s , so that they can be notified of updates. Suppose that listeners have
a field myview so that the views dependent on s are those in s .listeners.next∗.myview .
Then it suffices to prove that updating s .val or s .vsn does not falsify the invariant of
those views. Thus the precondition for s .val := . . . would say that the dependent views
are unpacked:

self .inv > Subject∧(∀ v | v in s .listeners.next∗.myview ⇒ v .inv > View) (6)

It is certainly possible to establish this precondition. In order to update fields declared
in Subject , s must be unpacked from Subject , so s is not committed. If the views have
the same owner, they also are not committed and thus they can be unpacked if they are
not already. But must they have the same owner?

268 D.A. Naumann

Anyway, packing and unpacking is designed to embody hierarchical encapsula-
tion. Here we are considering peers that are in some sense within the same encapsu-
lation boundary. Moreover, to repack a view v , the Subject would need to justify that
IView [v/self] but why should IView [v/self] be visible in Subject?

The preceding challenges are not insurmountable using just standard proof rules and
the visibility assumptions. But by using a ghost field to track the relevant dependencies,
more localized reasoning can be achieved.

The Friendship Discipline. We posited temporarily that an instance s of Subject3 has
access to its dependent views via listener and myview , but in fact Listener has no
such field so Subject3 only has references to the Listeners on which it is supposed to
invoke notify . For another example of such a situation, a long-lived Collection might
have many associated Iterators. The Iterators could depend on a timestamp field in the
collection, so an Iterator can be considered invalid if the collection gets updated. But
there may be no reason for the Collection to maintain a list of its iterators. Instead of
incurring a performance cost to maintain the list merely for the sake of reasoning, it can
be stored in a ghost field.

The Friendship discipline [7] extends the inv/own discipline by adding a ghost field
deps to hold references to dependents (the dashed arrows in Fig. 6). As before, consider
a declaration “friend View reads vsn, val ;” in Subject3. We use the terminology
granter for class Subject3 and friend for the class View to which access is granted.
Here access means that the admissibility condition is relaxed to allow the invariant of
class View to depend on vsn and val in Subject3. Moreover each instance v of View
is required to maintain the following invariant:

If in the current state IView [v/self] depends on s then v ∈ s .deps .

One can now adapt the precondition (6) for field update to quantify over just s .deps .
Special commands attach and detach are used to manipulate deps , much like pack
and unpack [7, 40].

The discipline also rectifies another flaw of (6). Instead of requiring that all depen-
dent views are unpacked, we account for the possibility that the update is not going
to falsify the invariant of a packed view. For example, suppose that we dropped the
requirement, sbj .vsn − 1 ≤ st .vsn , that a View not lag too far behind, keeping as
invariant only this:

st .vsn ≤ sbj .vsn ∧ (st .vsn = sbj .vsn ⇒ st .val = sbj .val) (7)

Then an update of the form vsn, val := vsn + 1, . . . never falsifies the invariant of a
view.

More generally, we allow View to declare conditions —visible to the granting class
Subject3— under which its invariant is not falsified. The declaration

guard sbj .vsn := α by U where U =df α− 1 ≤ self .st .vsn ≤ α

protects the original invariant IView including condition sbj .vsn − 1 ≤ st .vsn . This is
because the proof obligation imposed on View for U is satisfied:

IView ∧ U ⇒ wp(self .sbj .vsn := α)(IView)

Assertion-Based Encapsulation, Object Invariants and Simulations 269

Owing to this we can now weaken the precondition (6) for field update, since under
condition U the invariant of a packed view cannot be falsified. For update vsn :=
vsn + 1 in code of Subject3, the precondition is

inv > Subject3 ∧ (∀ v | v in deps ⇒ v .inv > View
∨ U [self/sbj , v/self , (vsn + 1)/α])

(8)

Just as, for any object o, the field o.inv serves as a publicly visible abstraction of
I[o/self], here U serves to abstract from wp(self .sbj .vsn := α)(IView) in a way
suitable to be visible in Subject , without fully revealing IView . The substitutions adapt
the update guard from the nomenclature of View to that of Subject3 and to the partic-
ular update vsn := vsn + 1.

History Constraints. For the invariant (7), an alternative to the friendship discipline is
to use history constraints [30]. A history constraint is a two-state predicate on an object,
interpreted as a constraint on any two successive visible states of the object (e.g., states
at method call or return). Let us use primes on field names to designate the “after” state,
to give an example history constraint that is satisfied by Subject3:

vsn ≤ vsn ′

That is, vsn increases monotonically. Invariant (7) cannot be falsified by any update of
vsn that satisfies the constraint.

In general, if the granter declares a history constraint and the friend’s invariant is
not falsifiable by updates satisfying the constraint then no precondition concerning the
friend needs to be imposed on updates by the granter. To the author’s knowledge, history
constraints have only been studied in the case where they depend on the object’s own
fields, not on fields of reps [30]. It could be valuable to study constraints that depend
on fields of reps (just as our example update guard depends on fields of the Cache of
View).

A shortcoming of history constraints is that their meaning depends on a notion of
visible state, just like the visible state semantics of invariants. The inv/own discipline
dodges this by using field inv to maintain program invariants which are true “at every
semicolon”. Perhaps there is a comparable notion of history constraint.

It is not clear how to use a history constraint if IView includes the condition
sbj .vsn − 1 ≤ st .vsn which we use to force notifications. It is true that the vsn field
of a Subject is incremented by one in each atomic update, but the strongest history con-
straint is that it is nondecreasing, since at some computation steps it is unchanged and
after sufficiently many steps it can change by more than one.

An advantage of history constraints is that they handle a sequence of multiple up-
dates to Subject whereas the update guard is formulated in terms of an atomic update.

Update/Yielding. How can a granter establish the U case in precondition (8)? To reason
that a given view satisfies U , in the context of Subject , it might be possible to use
specifications of methods of View . In particular, U could be given as postcondition of
notify .

A history constraint is something like a pre/post specification that applies not to a
particular method or command but to arbitrary pairs of observations. One can see an

270 D.A. Naumann

update guard as a precondition for arbitrary steps; what about a postcondition thereof
(in addition to the invariant)? Under precondition U , increment of sbj .vsn by one yields
a state where the view’s version lags exactly one step behind. This can be declared as a
postcondition in the guard declaration; the idea is worked out in [7].

8 Challenges for Future Work

We have not exhausted the issues brought up by the last example. The guard U de-
pends on owned objects (the Cache) of View, exposing some of the internal state of
a view to its Subject3. Moreover the Listener could well update the cache, indeed
one could imagine that Listener maintains an invariant similar to IView . In Fig. 6 we
draw common ownership arrows from the cache to hint that, as in the case of a Collec-
tion/Iterators, the situation seems to be one where multiple objects comprise the public
interface for an abstraction and have shared access to the reps.

Such increasingly elaborate patterns have motivated increasingly complicated own-
ership type systems and may well necessitate more complicated versions of the
inv/own and friendship disciplines. We mention two more ways in which the friend-
ship discipline, as currently formulated [7, 40], is inadequate. Consider a variation on
Subject3 where its state is not just val : int but rather some data structure; then IView

would depend not on sbj .val , but on sbj .f .g . . ., i.e., a path into that data structure.
With ownership, the admissibility condition requires that each of sbj , sbj .f , sbj .f .g
etc. is owned. Friendship instead imposes mutual obligations and it appears nontrivial
to generalize the conditions to longer paths owing to the various possibilities of sharing.

The second inadequacy of the current friendship discipline is that each atomic up-
date must restore the friend’s invariant. In the case at hand, the friend’s invariant de-
pends on two fields val and vsn . It happens that if sbj .val is updated before sbj .vsn
then the discipline can be followed, but in general one would like to require the invari-
ant to hold only after several related updates are done. Perhaps this can be achieved by
a protocol with a ghost variable to track whether the friendship dependence is in effect?
Would that explicit expression of atomicity lead to very different reasoning than using
history constraints?

While incremental extensions can be made to address these two inadequacies of
the friendship discipline, what really seems to be needed is a general setup for such
disciplines. While ownership is widely applicable and provides a strong form of en-
capsulation at fairly low cost, attempts to extend it to multiple owners or cooperating
peers seem more specialized. For example, friendship caters to the situation where one
instance of the granter class is depended on by multiple instances of a single other class,
the friend. What about situations where several objects of the same class, or of several
different classes, are interdependent and collectively provide some abstraction?

Packages are not the answer because a package is a collection of classes and does
nothing to describe the configurations in which instances are intended to be deployed.
What we seek is a notation in which a design and reasoning pattern can be expressed.
A design pattern typically involves a configuration of instances (e.g., subject and view,
collection and iterators) with certain operations and protocol. A pattern-specific disci-
pline for reasoning could be based on a single invariant for the pattern’s object con-

Assertion-Based Encapsulation, Object Invariants and Simulations 271

figuration, expressed with the help of ghost fields to encode the configuration10 and
its protocol; or perhaps the invariant can be decentralized into interdependent object
invariants.

Pattern-specific rules would need to be given —stipulated annotations for critical
operations including updates of ghost variables to track the structure of interest. Ver-
ification of the pattern would involve establishing designated program invariants as a
consequence of the stipulated annotations.

About the friendship discipline, Tony Hoare asked “Would it not be better to define
a general facility for the user to introduce ghost variables and assertions, rather like
aspects in aspect-oriented programming?”11 Another possible source of inspiration is
Separation Logic, which offers notation that can transparently depict groups of objects
and their interrelation. In separation logic, quantification over predicates is needed for
interesting specifications, in part because patterns of heap structure are expressed using
separation at the level of predicates. Why not expressions describing regions? Pattern
matching for such expressions has been given a semantic foundation [37, 38] but not
thoroughly investigated. A less speculative question to be investigated concerns the
requirement, in Separation Logic, that invariants be precise predicates, i.e., supported
by a definite region of the heap [41]. In simple cases, invariants are precise in virtue
of being formulated by reachability in some data structure. Ghost structure may offer a
scalable and precise shadow of encapsulation.

Acknowledgements. Thanks to the organizers of FMCO 2004 for the opportunity to
present this work and meet with other researchers in such a congenial and supportive
environment. This paper reflects feedback from the meeting as well as corrections and
suggestions from reviewers and from Mike Barnett.

References

[1] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mecha-
nism. In European Conference on Object-Oriented Programming (ECOOP), pages 1–25,
2004.

[2] A. Banerjee and D. A. Naumann. Ownership confinement ensures representation inde-
pendence for object-oriented programs. Journal of the ACM, 2002. Accepted, revision
pending. Extended version of [3].

[3] A. Banerjee and D. A. Naumann. Representation independence, confinement and access
control. In ACM Symp. on Princ. of Program. Lang. (POPL), pages 166–177, 2002.

[4] A. Banerjee and D. A. Naumann. State based ownership, reentrance, and encapsulation. In
European Conference on Object-Oriented Programming (ECOOP), 2005. To appear.

[5] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.
Special issue: ECOOP 2003 workshop on Formal Techniques for Java-like Programs.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS post-proceedings, 2004.

[7] M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. In D. Kozen, editor, Mathematics of Program Construction, pages 54–84, 2004.

10 The Aldrich-Chambers system might help here [1].
11 Personal communication, April 2004.

272 D.A. Naumann

[8] G. Bierman and M. Parkinson. Separation logic and abstraction. In ACM Symp. on Princ.
of Program. Lang. (POPL), pages 247–258, 2005.

[9] L. Birkedal and N. Torp-Smith. Higher order separation logic and abstraction. Submitted.,
Feb. 2005.

[10] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio. Algebraic reasoning for object-
oriented programming. Sci. Comput. Programming, 52(1-3):53–100, 2004.

[11] P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A refinement algebra for object-
oriented programming. In L. Cardelli, editor, European Conference on Object-oriented
Programming (ECOOP), number 2743 in LNCS, pages 457–482, 2003.

[12] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing
data races and deadlocks. In OOPSLA, 2002.

[13] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In ACM
Symp. on Princ. of Program. Lang. (POPL), pages 213–223, 2003.

[14] C. Calcagno, P. O’Hearn, and R. Bornat. Program logic and equivalence in the presence of
garbage collection. Theoretical Comput. Sci., 298(3):557–581, 2003.

[15] A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes.
In L. Eriksson and P. A. Lindsay, editors, Formal Methods Europe, volume 2391 of LNCS,
pages 471–490, 2002.

[16] D. Clarke. Object ownership and containment. Dissertation, Computer Science and Engi-
neering, University of New South Wales, Australia, 2001.

[17] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment.
In J. L. Knudsen, editor, ECOOP 2001 - Object Oriented Programming, 2001.

[18] F. de Boer and C. Pierik. Computer-aided specification and verification of annotated object-
oriented programs. In B. Jacobs and A. Rensink, editors, Formal Methods for Open Object-
Based Distributed Systems, pages 163–177, 2002.

[19] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and
their Comparison. Cambridge University Press, 1998.

[20] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In
ACM Conf. on Program. Lang. Design and Implementation (PLDI), pages 59–69, 2001.

[21] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Research 156,
DEC Systems Research Center, 1998.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[23] C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf., 1:271–281, 1972.
[24] B. Jacobs, J. Kiniry, and M. Warnier. Java program verification challenges. In F. de Boer,

M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Components and
Objects (FMCO 2002), LNCS.

[25] B. Jacobs, K. R. M. Leino, and W. Schulte. Multithreaded object-oriented programs with
invariants. In SAVCBS, 2004.

[26] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML
accommodates both runtime assertion checking and formal verification. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Components
and Objects (FMCO 2002), volume 2852 of LNCS, pages 262–284. 2003.

[27] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In European Confer-
ence on Object-Oriented Programming (ECOOP), pages 491–516, 2004.

[28] K. R. M. Leino and P. Müller. Modular verification of static class invariants. In Formal
Methods, 2005.

[29] B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT
Press, 1986.

[30] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Prog. Lang.
Syst., 16(6), 1994.

Assertion-Based Encapsulation, Object Invariants and Simulations 273

[31] N. Lynch and F. Vaandrager. Forward and backward simulations part I: Untimed systems.
Information and Computation, 121(2), 1995.

[32] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, second edition,
1997.

[33] R. Milner. An algebraic definition of simulation between programs. In Proceedings of
Second Intl. Joint Conf. on Artificial Intelligence, pages 481–489, 1971.

[34] J. C. Mitchell. Representation independence and data abstraction. In ACM Symp. on Princ.
of Program. Lang. (POPL), pages 263–276, 1986.

[35] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume
2262 of LNCS. Springer-Verlag, 2002.

[36] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object
structures. Technical Report 424, Department of Computer Science, ETH Zurich, 2004.

[37] D. A. Naumann. Ideal models for pointwise relational and state-free imperative program-
ming. In H. Sondergaard, editor, ACM International Conference on Principles and Practice
of Declarative Programming, pages 4–15, 2001.

[38] D. A. Naumann. Patterns and lax lambda laws for relational and imperative programming.
Technical Report 2001-2, Computer Science, Stevens Institute of Technology, 2001.

[39] D. A. Naumann. Soundness of data refinement for a higher order imperative language.
Theoretical Comput. Sci., 278(1–2):271–301, 2002.

[40] D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants
and sharing of mutable state (extended abstract). In IEEE Symp. on Logic in Computer
Science (LICS), pages 313–323, 2004.

[41] P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding. In ACM Symp.
on Princ. of Program. Lang. (POPL), pages 268–280, 2004.

[42] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Journal of the ACM,
42(3):658–709, 1995.

[43] C. Pierik, D. Clarke, and F. S. de Boer. Controlling object allocation using creation guards.
In Formal Methods 2005, 2005.

[44] C. Pierik and F. de Boer. On behavioral subtyping and completeness. In ECOOP Workshop
on Formal Techniques for Java-like Programs. 2005. To appear.

[45] C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming. Theo-
retical Comput. Sci., 2005. to appear.

[46] A. M. Pitts. Reasoning about local variables with operationally-based logical relations. In
P. W. O’Hearn and R. D. Tennent, editors, Algol-Like Languages, volume 2, chapter 17,
pages 173–193. Birkhauser, 1997. Reprinted from Proceedings Eleventh Annual IEEE
Symposium on Logic in Computer Science, Brunswick, NJ, July 1996, pp 152–163.

[47] A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Struc-
tures in Computer Science, 10:321–359, 2000.

[48] G. Plotkin. Lambda definability and logical relations. Technical Report SAI-RM-4, Uni-
versity of Edinburgh, School of Artificial Intelligence, 1973.

[49] Rehof and Mogensen. Tractable constraints in finite semilattices. Sci. Comput. Program-
ming, 1996.

[50] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS, pages
55–74, 2002.

[51] C. Skalka and S. Smith. Static use-based object confinement. Springer International Jour-
nal of Information Security, 4(1-2), 2005.

[52] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, NY, second edition, 2002.

A Dynamic Binding Strategy for Multiple Inheritance
and Asynchronously Communicating Objects

Einar Broch Johnsen and Olaf Owe

Department of Informatics, University of Oslo, Norway
{einarj, olaf}@ifi.uio.no

Abstract. This paper considers an integration of asynchronous communication,
virtual binding, and multiple inheritance. Object orientation is the leading para-
digm for concurrent and distributed systems, but the tightly synchronized RPC
communication model seems unsatisfactory in the distributed setting.
Asynchronous messages are better suited, but lack the structure and discipline
of traditional object-oriented methods. The integration of messages in the object-
oriented paradigm is unsettled, especially with respect to inheritance and
redefinition.

Asynchronous method calls have been proposed in the Creol language, reduc-
ing the cost of waiting for replies in the distributed environment while avoiding
low-level synchronization constructs such as explicit signaling. A lack of reply to
a method call need not lead to deadlock in the calling object. Creol has an opera-
tional semantics defined in rewriting logic. This paper considers a formal opera-
tional model of multiple inheritance, virtual binding, and asynchronous commu-
nication between concurrent objects, extending the semantics of Creol.

1 Introduction

Object orientation is the leading paradigm for concurrent and distributed systems. The
importance of such systems is increasing in society, driving the need for formal models
and reasoning support for object-oriented distributed systems. With the current domi-
nation of languages such as Java and C++, one may think that there is only one way to
understand object-oriented languages. In the setting of distributed systems, these lan-
guages may be criticized for their approach to concurrency as well as to communica-
tion. An alternative approach is taken in the Creol language: concurrent objects typed by
interfaces which communicate by means of asynchronous method calls. This communi-
cation model integrates asynchronous message passing with the high-level structuring
mechanism of method definition and invocation [20].

In this paper we discuss multiple inheritance in the setting of open distributed sys-
tems and consider the combination of multiple inheritance and virtual (or late) binding.
Multiple inheritance provides a flexible way to combine class hierarchies, but is gener-
ally considered error-prone. Multiple inheritance is often explained in terms of run-time
data structures such as virtual pointer tables [38], which are complex and hard to under-
stand. High-level formal treatments are scarce (e.g., [34,6,3,15]) but needed to clarify
intricacies, thus facilitating design and correctness reasoning for programs using mul-
tiple inheritance. In this paper, an operational semantics capturing multiple inheritance
and virtual binding of methods for Creol is defined, extending work reported in [22].

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 274–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Binding Strategy for Multiple Inheritance 275

In particular, common restrictions on the name space of methods to avoid name
conflicts either severely limit the use of class inheritance or become impractical in large
class hierarchies and break the encapsulation principle for class inheritance. In order to
maintain local reasoning control without abandoning common features of virtual bind-
ing such as method overloading and overriding, virtual binding of method calls must
be handled carefully. For this purpose, a dynamic pruned binding strategy is introduced
in this paper and formalized with an operational semantics given in rewriting logic.
Rewriting logic [29] is chosen due to its high level of abstraction with inherent support
for distribution, concurrency, and asynchronous communication, as well as its simu-
lation and model checking facilities through the Maude tool [8,30]. This allows us to
focus the formalization on issues related to inheritance and virtual binding. The strategy
is integrated in the Creol interpreter in Maude. An example demonstrates that a form of
binding anomaly is avoided with this strategy.

Paper Overview. Sect. 2 provides a background discussion on multiple inheritance.
Sect. 3 introduces the Creol language. Sect. 4 extends Creol with mechanisms for mul-
tiple inheritance and pruned virtual binding, Sect. 5 illustrates the mechanisms, and
Sect. 6 defines its operational semantics. Sect. 7 considers related work and Sect. 8
concludes the paper.

2 Inheritance: Reuse of Behavior and Reuse of Code

Inheritance is a powerful feature of object orientation, but its exact role as a structur-
ing mechanism for programs varies between different object-oriented languages. With
single inheritance, a class is derived from one direct ancestor class, while with multi-
ple inheritance there may be several direct ancestors. Inheritance may be understood
as a mechanism for sharing and specialization of behavior as well as code. Formal ap-
proaches to inheritance tend to favor the first interpretation and understand inheritance
in terms of behavioral reuse, obeying the substitutability principle: As a subclass is a
specialization of a superclass, an object of the subclass may masquerade as an object of
the superclass. This interpretation of inheritance has led to an active field of research on
behavioral subtyping [2,27,14], identifying conditions for safe substitutability. A type
describes a collection of objects which share the same externally observable behavior.
Subtyping provides a powerful structuring mechanism for defining, specializing, and
understanding the external behavior of objects.

A class describes a collection of objects which share the same internal structure; i.e.,
attributes and method definitions. Code inheritance provides an equally powerful mech-
anism for defining, specializing, and understanding the imperative structure of classes
through code reuse and modification. Class extension and method redefinition are con-
venient both for development and understanding of code. Calling superclass methods
in a subclass method enables reuse in redefined methods, making the relationship be-
tween the method versions explicit. Thus, this facility is clearly superior to cut-and-
paste programming with regard to the ease with which existing code may be inspected
and understood and it is also clearly superior to inheritance mechanisms which do not
distinguish between locally defined and inherited definitions. A denotational semantics
for code sharing and reuse based on single inheritance is given in [9].

276 E.B. Johnsen and O. Owe

Although many languages identify the subclass and subtype relations, in particular
for parameter passing, several authors argue that inheritance relations for code and for
behavior should be distinct [10,2,5,37]. From the pragmatic point of view, combining
these relations leads to severe restrictions on code reuse which seem unattractive to pro-
grammers. From a reasoning perspective, the separation of these relations allows greater
expressiveness while providing type safety. In order to solve the conflict between unre-
stricted code reuse in subclasses, and behavioral subtyping and incremental reasoning
control [27,37], we use behavioral interfaces [19,21] to type object variables (i.e., ref-
erences) and external (remote) calls, and allow multiple inheritance for both interfaces
and classes. Interface inheritance is restricted to a form of behavioral subtyping, whereas
class inheritance may be used freely for code reuse. A class may implement several in-
terfaces, provided that it satisfies their syntactic and semantic requirements. An object of
class C supports an interface I if the class C implements I. Reasoning control is ensured
by substitutability at the level of interfaces: an object supporting an interface I may be
replaced by another object supporting I or a subinterface of I in a context depending on
I, although the latter object may be of another class. Subclassing is unrestricted in the
sense that implementation claims and class invariants are not in general inherited.

With distinct inheritance and subtyping hierarchies, class inheritance could allow
a subset of the attributes and methods of a class to be inherited. However, this would
require considerable work establishing invariants for parts of the superclass that appear
desirable for inheritance, either anticipating future needs or while designing subclasses.
The encapsulation principle for class inheritance states that it should suffice to work
at the subclass level to ensure that the subclass is well-behaved when inheriting from
a superclass: Code design as well as new proof obligations should occur in the sub-
class only. Situations that break this principle are called inheritance anomalies [28,32].
Reasoning considerations therefore suggest that all attributes and methods of a super-
class are inherited, but method redefinition may violate the semantic requirements of an
interface of the superclass.

2.1 Multiple Inheritance

The focus of this paper is the formalization of an operational semantics for code reuse
through class level multiple inheritance. Multiple inheritance seems desirable because
it provides much better possibilities for sharing than single inheritance, allowing named
features (attributes and methods) from several classes to be integrated. The combination
of single inheritance and interfaces is sometimes proposed as an alternative to multiple
inheritance, but this approach has some difficulties. In particular virtual binding does
not integrate directly with delegation, and the use of private methods as well as program
variables from superclasses is problematic. Tempero and Biddle show how the reusabil-
ity of the Java Core API is adversely affected by the lack of multiple inheritance [39].

Multiple inheritance is found in languages such as C++ [38], CLOS [12], Eiffel
[31], Full Maude [8], POOL [2], and Self [7]. Although multiple inheritance provides
a flexible way to describe class hierarchies, it is avoided or only allowed in a restricted
version (such as interfaces, abstract classes, or traits) in many languages, e.g., Java and
C#. Apart from semantic issues, two important arguments against multiple inheritance
are: (1) the run-time system of languages with multiple inheritance is more complex and

A Dynamic Binding Strategy for Multiple Inheritance 277

less efficient, and (2) inheriting from many classes increases the possibility of program-
mer mistakes. However, efficient run-time systems for languages with multiple inheri-
tance have been developed [25,38]. In order to address argument (2), formal methods
may contribute to a better understanding of existing multiple inheritance mechanisms
and hopefully contribute to mechanisms with better support for reasoning. The multiple
inheritance relation is transitive and defines a class hierarchy structured as a directed
acyclic graph. A class in the class hierarchy extends the features declared in its inher-
ited classes (or superclasses), possibly overloading or redefining some of these features.
We shall say that a feature is defined above a class C if it is defined in C or in at least
one of the classes inherited by C.

2.2 Naming Policies for Conflict Resolution

From a reasoning perspective, the difficulties regarding multiple inheritance occur when
the name spaces of several inherited classes conflict, both with regard to program vari-
ables and methods [24]. A name conflict is vertical if a name occurs in a class and in
one of its ancestors, corresponding to overridden method declarations. A name conflict
is horizontal if the name occurs in distinct branches of the graph. While vertical name
conflicts are fairly well understood, different solutions have been proposed to deal with
horizontal name conflicts. One approach is to remove ambiguities by explicit resolution.
This is achieved if a name which is inherited from several superclasses is redefined in
the subclass or directed to a superclass definition through qualification [38]. If a class is
multiply inherited, qualification by class path leads to a duplication of attributes while
qualification by class name leads to unification (virtual classes in C++). This choice
leads to one or two copies of the attributes of class A in Fig. 1b. Path qualification is
not always sufficient to distinguish two inherited instances of a class and may therefore
fail, as illustrated by Fig. 1c. Explicit resolution can also be achieved by renaming at-
tributes and methods [2,31], thus eliminating name conflicts. When there are no name
conflicts, the inheritance graph may be linearized and the need for explicit support for
multiple inheritance in the run-time system is avoided. This is also the case with mixin-
based inheritance [4], and with traits [35]. Mixins and traits are integrated in the linear
inheritance graph to extend and modify the resulting behavior of the superclass. How-
ever linearization has been criticized for changing the parent-child relationship between
classes in the inheritance hierarchy [36].

Ambiguities may also be seen as a natural feature of multiple inheritance, occur-
ring when related methods in different superclass hierarchies are given the same name.
From this point of view it seems less desirable to apply a naming discipline which forces
the programmer to modify names a posteriori, making the class definitions more diffi-
cult to understand. Taking this approach, ambiguities are addressed by implicit resolu-
tion. Three approaches can be used to explain implicit resolution of ambiguous method
names. First, methods with the same name may be seen as equally appropriate. In this
case the method definitions may nondeterministically compete for selection, as in Full
Maude [8] and the Join-calculus [15]. (Redefinition is not supported by Full Maude,
whereas renaming is required in the Join-calculus.) Second, methods of the same name
may be jointly selected, extending the binding strategy of Beta to multiple inheritance.
Third, ambiguities may be solved by fixing the order of the inherited classes; this way

278 E.B. Johnsen and O. Owe

A

B C

D

x
m

mm
B

D

B
x x mm

B C

D

A

B
m

m

D

Fig. 1. Examples of class inheritance: (a) single inheritance, (b) a common ancestor in the inher-
itance graph, (c) duplicate inheritance, and (d) multiple inheritance

the strategy for selecting method definitions will be unambiguous [12,22,7]. This seems
desirable as it leaves the programmer in control.

2.3 Virtual Binding

Virtual binding (or dynamic dispatch) is a powerful mechanism of object orientation,
originally introduced in [11] for single inheritance in Simula. A method is virtually
bound if the body corresponding to a method invocation is selected at run-time. Virtual
binding is applied when the actual class of an object is not statically known. Tradition-
ally, this happens when a method invoked from a class is overridden above the actual
class of the object. When objects are typed by interfaces, many classes may implement
the same interface. Consequently all external method calls are virtually bound.

Combined with class inheritance, virtual binding allows programming with the so-
called template method pattern [16]: a base class provides architecture and subclasses
provide the specialized (auxiliary) methods, while code reuse is supported for the ar-
chitecture. The mechanism can be illustrated by an object of class D which executes
a method defined in its superclass A (cf. Fig. 1a) and this method makes a call to a
method m. With virtual binding, the code selected for execution will be associated to
the first matching signature for m above D; i.e., the method in B is selected. However it
is unsettled how to virtually bind method invocations in a class hierarchy with multiple
inheritance, if methods are defined in different classes in the hierarchy. In the example
of Fig. 1b, a strategy is needed to clearly express which method definition to select
among the candidates for m.

Formal models of possible solutions to multiple inheritance may contribute to better
understanding and use of multiple inheritance, and facilitate reasoning about code in-
heritance. A denotational account of multiple inheritance has been given [6], but virtual
binding is not considered as name conflicts are assumed not to occur.

An operational semantics in rewriting logic allows executable experimentation with
different strategies for virtual binding. For this purpose, we consider multiple inheri-
tance in the setting of the Creol language, which has a complete formalization in rewrit-
ing logic. In previous work [22], an ordered solution was proposed in which the binding
strategy did not distinguish a virtual call from a superclass (A in Fig. 1a) and a stan-
dard call from the subclass (C in Fig. 1a). In this paper a novel version of the ordered
approach is considered in which the order may vary between calls, as the ordering is
dynamically decided by the context of each call. This new approach, called pruned

A Dynamic Binding Strategy for Multiple Inheritance 279

binding, avoids renaming while providing better support for the encapsulation princi-
ple. Calls are always bound to specializations of the definition found by static analysis,
allowing reasoning reuse for virtual calls in the setting of multiple inheritance.

Consider the case where D inherits two unrelated classes B and C (Fig. 1d), both with
a method m. Assume that a D object calls a method inCwhich in turn calls m locally. With
the ordered approach this call will bind to the m of B rather than that of C, assuming no
redefinition of m in D. This binding is clearly undesirable since the m of B is not a redefi-
nition of that of C. The two m methods have no relationship since they are from unrelated
class hierarchies. The example in Sect. 5 demonstrates resulting problems. These prob-
lems are avoided with the pruned binding strategy. Furthermore, the strategy ensures the
principle that when the actual class of an object is smaller, each local call will be bound
to a smaller class. This principle is intuitive and is also useful for reasoning control.

3 A Language for Asynchronously Communicating Objects

This section provides a basis for the technical discussion which follows. We consider a
small object-oriented language which is a subset of Creol [20,22], a high-level language
for distributed concurrent objects. We distinguish data, typed by data types, and ob-
jects, typed by interfaces. The language allows both blocking and nonblocking method
calls, based on a uniform semantics. Attributes (instance variables) and method decla-
rations are organized in classes, which may have data and object parameters. Objects
are concurrent and have their own processor which evaluates local processes. A pro-
cess consists of program code with processor release points together with a local state,
representing remaining parts of method activations. Processes may be active, reflecting
autonomous behavior initiated at creation time by the run method, or reactive; i.e., in
response to method invocations. Due to processor release points, the evaluation of pro-
cesses may be interleaved. The values of an object’s program variables may depend on
the nondeterministic interleaving of processes. However, a method activation may have
local variables supplementing the object variables, in particular the values of formal
parameters are stored locally. An object may contain several (pending) activations of
the same method, possibly with different values for local variables.

Guards b in statements await b explicitly declare potential processor release points.
When a guard which evaluates to false is encountered during process evaluation, the
process is suspended and the processor released. After processor release, any enabled
pending process may be selected for evaluation. For the examples of this paper, it suf-
fices to consider guards as boolean expressions over program variables, but we intro-
duce reply guards in the operational semantics (cf. Sect. 6.5).

Statements can be composed sequentially or by conditional branching. Let S1 and
S2 denote statement lists. Sequential composition may introduce inner guards: await b
is a potential release point in S1;await b; S2. Assignment to local and object variables
is expressed as V : E for a disjoint list of program variables V and an expression list E,
of matching types. The reserved word self is used for self reference. In-parameters as
well as the self and caller pseudo-variables are read-only variables.

All object interaction happens through method calls. We consider here blocking
calls and nonblocking calls. (The full language provides more expressiveness [20].)

280 E.B. Johnsen and O. Owe

A nonblocking method call is written await x.m(E; V). The calling process emits the
call to an object x and suspends itself while waiting for a reply. When the reply arrives,
return values are assigned to V and evaluation continues.

A blocking method call, immediately blocking the processor while waiting for a
reply, is written x.m(E; V). When x evaluates to self, the call is said to be local. The
language does not support monitor reentrance (except for calls to self), mutual blocking
calls may therefore lead to deadlock. In order to evaluate local blocking calls, the evalu-
ation of the call will precede the continuation of the active process, thereby unblocking
the processor (self-reentrance).

Internal calls are not prefixed by an object identifier and are identified syntactically,
otherwise the call is external. All calls are virtually bound, except when the method
name is explicitly qualified by a class name, m@C. In our setting method calls can al-
ways be emitted, as a receiving object cannot block communication. Method overtaking
is allowed: if methods offered by an object are invoked in one order, the object may start
execution of the method activations in another order.

With nonblocking method calls, the object will not block while waiting for replies.
This approach allows flexibility in the distributed setting: suspended processes or new
method calls may be evaluated while waiting. If the called object never replies, deadlock
is avoided as other activity in the object is possible. However, when the reply arrives, the
continuation of the process must compete with other pending and enabled processes.

4 Multiple Inheritance

A mechanism for multiple inheritance is now considered, where all attributes and meth-
ods of a superclass are inherited by the subclass, and where superclass methods may be
redefined. In the syntax, the keyword inherits is introduced followed by an inheritance
list; i.e., a list of class names C(E) where E provides the actual class parameters.

Let a class hierarchy be a directed acyclic graph of parameterized classes. Each class
consists of a list of inherited classes, a set of attributes (program variables including
class parameters), and method definitions. The encapsulation provided by interfaces
suggests that external calls to an object of class C are virtually bound to the closest
method definition above C. However, the object may internally invoke methods of its
superclasses. In the setting of multiple inheritance and overloading, methods defined in
a superclass may be accessed from the subclass by qualified references. Vertical name
conflicts for method names are resolved in a standard way: the first matching definition
with respect to the types of the actual parameters is chosen while ascending a branch of
the inheritance tree. Horizontal name conflicts will be resolved dynamically depending
on the class of the object and the context of the call.

4.1 Qualified Names

Qualified names may be used to uniquely refer to an attribute or method in a class. For
this purpose, we adapt the qua construct of Simula to the setting of multiple inheritance.
For an attribute x or a method m declared in a class C, we denote by x@C and m@C
the qualified names which provide static references to x and m. By extension, if x or m

A Dynamic Binding Strategy for Multiple Inheritance 281

Syntactic categories. Definitions.
s in Stm v in Var
t in Label e in Expr
m in Mtd x in ObjExpr
p in MtdCall b in BoolExpr

p ::= m | x.m |m@classname |m < classname
S ::= s | s; S

s ::= skip | (S) |V := E | v := new classname(E)
| p(E; V) |await p(E; V) |await b | if b then S1 else S2 fi

Fig. 2. A subset of the Creol language for method definitions, with typical terms for each category.
Capitalized terms such as E denote lists, sets, or multisets of the given syntactic categories.

is not declared in C, but inherited from the superclasses of C, the qualified reference
m@C binds as an unqualified reference m from C.

Attribute names are not visible through an object’s external interfaces. Consequently
attribute names should not be merged if inheritance leads to name conflicts, and at-
tributes of the same name should be allowed in different classes of the inheritance hier-
archy [36]. In order to allow the reuse of attribute names, these will always be expanded
into qualified names. This is desirable in order to avoid run-time errors that may occur
if methods of superclasses assign to overloaded attributes. This qualification convention
has the following consequence: unlike C++, there is no duplication of attributes when
branches in the inheritance graph have a common superclass. Consequently if multiple
copies of the superclass attributes are needed, one has to rely on delegation techniques.

Instantiation of Attributes. At object creation time, attributes are collected from the
object’s class and superclasses. An attribute in a class C is declared by var x : T = e,
where x is the name of the attribute, T its type, and e its initial value. The expression
e may refer to the values of the class parameter variables V, as well as to the values
of inherited attributes by means of qualified references. The initial state values of an
object of class C then depend on the actual parameter values bound to V. These may be
passed as parameter values to inherited classes in order to derive values for the inherited
attributes, which in turn may be used to instantiate the locally declared attributes.

Accessing Inherited Attributes and Methods. If C is a superclass of C′, we introduce the
syntax await m@C(E; V) for nonblocking, and m@C(E; V) for blocking, internal calls to
a method above C in the inheritance graph. These calls may be bound without knowing
the exact class of the self object, so they are called static, in contrast to calls without @,
called virtual. We assume that attributes have unique names in the inheritance graph;
this may be enforced at compile time by extending each attribute name x with the name
of the class in which it is declared, which implies that attributes are bound statically.
Consequently, a method declared in a class C may only access attributes declared above
C. In a subclass, an attribute x of a superclass C is accessed by the qualified reference
x@C. This means that multiply inherited superclasses are shared, rather than duplicated.
Duplication may be achieved by class renaming in an inheritance list. The language
syntax is summarized in Fig. 2.

4.2 Virtual Binding

Let the nominal subtype relation ≺ be a reflexive partial ordering on types, including
interfaces. A data type may only be a subtype of a data type and an interface only of an

282 E.B. Johnsen and O. Owe

D

C

D D

C

C’

Fig. 3. Binding calls to m, m@C, and m <C′ from class D

interface. If T ≺ T ′ then any value of T may masquerade as a value of T ′. For product
types R and R′, R ≺ R′ is the point-wise extension of the subtype relation; i.e., R and R′

have the same length l and Ti ≺ T ′
i for every i (0 ≤ i ≤ l) and types Ti and T ′

i in position
i in R and R′ respectively. To explain the typing and binding of methods, ≺ is extended
to function spaces A → B, where A and B are (possibly empty) product types:

A → B ≺ A′ → B′ = A ≺ A′ ∧B′ ≺ B

expressing the relationship between actual and formal parameters, but not subtyping
over function spaces, which are not part of the functional language. The static analysis
of an internal call m(E; V) will assign unique types to the in and out parameter depend-
ing on the textual context, say that the parameters are textually declared as E : TE and
V : TV. The call is type correct if there is a method declaration m : A → B in the class C,
possibly inherited, such that TE → TV ≺ A → B. The binding of an internal nonblocking
call await m(E; V) is handled as the corresponding blocking call m(E; V). An external
call to an object of interface I is type correct if it can be bound to a method declaration
in I in a similar way. The static analysis of a class will verify that it implements the
methods declared in its interfaces.

Let a class C be below a class C′ if C is C′, or is a direct or indirect subclass of
C′. Similarly, a method declaration inside a class C is below a class C′ if C is below
C′. We introduce the syntax m<C′ for constrained method calls, restricting the virtual
binding of m to methods below C′. (Static typing requires the class enclosing the call
to be below C′.) The pruned virtual binding of method calls is now explained. (The
formalization is given in Sec. 6.4.) At run-time, a call to a method of an object o will
always be bound above the class of o. Let m be a method declared in an interface I and
let o be an instance of a class C implementing I. There are two cases:

1. m is called externally, in which case C is not statically known. In this case, C is
dynamically identified as the class of o.

2. m is called internally from C′, a superclass of the actual class C of o. In this case
static analysis will identify the call with a declaration of m above C′, say in C′′.
Consequently, we let the call be constrained by C′′, and compilation replaces the
reference to m with a reference to m <C′′.

The dynamically decided context of a call may eliminate parts of the inheritance graph
above the actual class of the callee with respect to the binding of a specific call. If a

A Dynamic Binding Strategy for Multiple Inheritance 283

method name is ambiguous within the dynamic constraint, we assume that any solution
is acceptable. For a natural and simple model of priority, the call will be bound to the
first matching method definition above C, in a left-first depth-first order. (An arbitrary
order may be obtained by replacing the inheritance list by a multiset.)

It is easy to see that run-time binding always succeeds in any well-typed pro-
gram. When a method m : TE → TV in an object o of interface I is externally
called at run-time, the actual class C of o is dynamically decided and the virtual
binding mechanism will bind to a declaration m : A→ B such that TE → TV ≺ A →
B, taking the first such m when traversing the inheritance graph above C. Static
analysis guarantees that C implements I and consequently that at least one method
declaration of m above C may be bound to the call. An internal call m : TE → TV
is made by an object of a subclass D of C (from the static analysis) and the
virtual binding mechanism will bind to a declaration of m : A′ → B′ such that
TE → TV ≺ A′ → B′, following the binding strategy constrained by D. Because C
is inherited by D, the virtual binding is guaranteed to succeed. However, it is not
guaranteed that the declaration above C which was found by static analysis will
be selected. In order to ensure that a call to m in D will choose the declaration
above C, the method may be qualified as m@C in D. For virtual calls from a
superclass C′ of C, such qualification cannot be used. In order to ensure that a
virtually bound call from a superclass will select a specialization of the statically
found declaration, the binding will be constrained by C′. Even if no specialization
is found, the binding will succeed as the constraint does not remove the declara-
tion found by static analysis.

5 Example: Combining Authorization Policies

In a database containing sensitive information and different authorization policies, the
information returned for a request will depend on the clearance level of the agent mak-
ing the request. Let Any denote the interface of arbitrary objects, Agent the interface of
agents, and Auth an authorization interface with methods grant(x), revoke(x), auth (x),
and delay for agents x. The two classes SAuth and MAuth, both implementing Auth,
implement single and multiple authorization policies, respectively. Since the attribute
gr in SAuth is implemented as an object identifier, SAuth only authorizes one agent at
a time whereas MAuth authorizes multiple agents. The method grant(x) returns when
x becomes authorized, and authorization is removed by revoke(x). The method auth (x)
suspends until x is authorized, and delay returns once no agent is authorized.

class SAuth implements Auth
begin with Any

var gr: Agent= null
op grant(in x:Agent) == delay; gr := x
op revoke(in x:Agent) ==

if gr = x then gr := null fi
op auth(in x:Agent) == await (gr = x)
op delay == await (gr = null)

end

class MAuth implements Auth
begin with Any

var gr: Set[Agent] = /0
op grant(in x:Agent) == gr := gr ∪ {x}
op revoke(in x:Agent) == gr := gr \ {x}
op auth(in x:Agent) == await (x ∈ gr)
op delay == await (gr = /0)

end

284 E.B. Johnsen and O. Owe

Authorization Levels. Low clearance agents may share access to unclassified data while
high clearance agents have unique access to (classified) data. Proper usage is defined
by two interfaces, defining open and close operations at both access levels:

interface High
begin with Agent

op openH(out ok:Bool)
op access(in k:Key; out y:Data)
op closeH

end

interface Low
begin with Agent

op openL
op access(in k:Key; out y:Data)
op closeL

end

When the openH method returns, the calling agent would not know whether high access
was granted, unless a boolean out parameter is present.

Let a class DB provide the actual operations on the database. We assume given
the operations access(in k:Key, high:Bool; out y:Data), where high defines the access
level, and clear(in x : Agent; out b : Bool) to give clearance to sensitive data for agent
x. Any agent may get low access rights, while only agents cleared by the database may
be granted exclusive high access. The class MAuth will authorize low clearance, and
SAuth will authorize high clearance. SAuth authorizes only one agent at a time.

class HAuth implements High
inherits SAuth, DB

begin with Agent
op openH(out ok:Bool) ==

await clear(caller;ok);
if ok then grant(caller) fi

op access(in k:Key; out y:Data) ==
auth(caller);
await access@DB(k,true; y)

op closeH == revoke(caller)
end

class LAuth implements Low
inherits MAuth, DB

begin with Agent
op openL == grant(caller)
op access(in k:Key; out y:Data) ==

auth(caller);
await access@DB(k,false; y)

op closeL == revoke(caller)
end

The code given here uses nonblocking calls whenever there is a possibility of local
deadlock. Thus, objects of the four classes above will be able to respond to new requests
even when used improperly, for instance when agent access is not initiated by open.
Notice that the caller pseudo-variable is used to pass on agent identity in local calls.
The with Agent clauses imply that Agent is the type of caller, ensuring strong typing.

The database itself has no interface containing access, therefore all database access
is through the High and Low interfaces. Notice also that objects of the LAuth and HAuth
classes may not be used through the Auth interface. This would have been harmful for
the authorization provided in the example. For instance, a call to grant to a HAuth
object could then result in high access without clearance of the calling agent! This
supports the approach not to inherit implementation clauses.

Combining Authorization Levels. High and low authorization policies may be com-
bined in a subclass HLAuth which implements both interfaces, inheriting LAuth and
HAuth.

A Dynamic Binding Strategy for Multiple Inheritance 285

class HLAuth implements High, Low
inherits LAuth, HAuth

begin with Agent
op access(in k:Key; out y:Data) == if caller=gr@SAuth

then access@HAuth(k; y) else access@LAuth(k; y) fi
end

Notice that the same database is used for both High and Low interaction. Although the
DB class is inherited twice, HLAuth gets only one copy (cf. Sect. 4.1).

The example demonstrates natural usage of classes and multiple inheritance. Nev-
ertheless, it reveals problems with the combination of inheritance and statically ordered
virtual binding: Objects of the classes LAuth and HAuth work well, in the sense that
agents opening access through the Low and High interfaces get the appropriate access.
However the addition of the common subclass HLAuth is detrimental, assuming a fixed
inheritance ordering: When used through the High interface, this class would allow mul-
tiple high access to data! Calls to the High operations of HLAuth will trigger calls to
the HAuth methods. From these methods the virtual internal calls to grant, revoke, and
auth will now bind to those of the MAuth class, if selected in a left-most depth-first
traversal of the inheritance tree of the actual class HLAuth. Note that if the inheritance
ordering in HLAuth were reversed, similar problems occur with the binding of Low
interaction.

The pruned binding strategy proposed in this paper ensures that the virtual internal
calls inside classes HAuth and LAuth will be bound in classes SAuth and MAuth,
respectively, regardless of the actual class of the caller (HAuth, LAuth, or HLAuth)
and of the inheritance ordering in HLAuth. In particular the grant call inside HAuth
will be understood as grant< SAuth, which may not bind to grant of MAuth.

6 An Operational Semantics of Inheritance and Virtual Binding

The operational semantics is defined using rewriting logic [29]. A rewrite theory is
a 4-tuple R = (Σ,E,L,R), where the signature Σ defines the function symbols of the
language, E defines equations between terms, L is a set of labels, and R is a set of
labeled rewrite rules. From a computational viewpoint, a rewrite rule t −→ t ′ may be
interpreted as a local transition rule allowing an instance of the pattern t to evolve into
the corresponding instance of the pattern t ′. Each rewrite rule describes how a part of
a configuration can evolve in one transition step. If rewrite rules may be applied to
non-overlapping subconfigurations, the transitions may be performed in parallel. Con-
sequently, concurrency is implicit in rewriting logic (RL). A number of concurrency
models have been successfully represented in RL [29,8], including Petri nets, CCS, Ac-
tors, and Unity, as well as the ODP computational model [33]. RL also offers its own
model of object orientation [8].

Informally, a state configuration in RL is a multiset of terms of given types. Types
are specified in (membership) equational logic (Σ,E), the functional sublanguage of RL
which supports algebraic specification in the OBJ [17] style. When modeling computat-

286 E.B. Johnsen and O. Owe

ional systems, configurations may include the local system states. Different parts of the
system are modeled by terms of the different types defined in the equational logic.

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules, supplementing the equations which
define the term language. Assuming that all terms can be reduced to normal form,
rewrite rules transform terms modulo the defining equations of E . Conditional rewrite
rules are allowed, where the condition is formulated as a conjunction of rewrites and
equations which must hold for the main rule to apply:

subconfiguration−→ subconfiguration if condition.

Rules in RL may be formulated at a high level of abstraction, closely resembling a
compositional operational semantics. In fact, structural operational semantics can be
uniformly mapped into RL specifications [30].

6.1 System Configurations

A method call will be reflected by a pair of messages, and object activity will be orga-
nized around a message queue which contains incoming messages and a process queue
which contains suspended processes, i.e. remaining parts of method activations. Mes-
sages have the general form message to dest where dest is a single object or class, or a
list of classes. A state configuration is a multiset combining Creol objects, classes, and
messages. (In order to increase the parallelism in the model, message queues could be
external to object bodies as shown in [20,22].) As usual in RL, the associative construc-
tor for lists, as well as the associative and commutative constructor for multisets, are
represented by whitespace.

In RL, objects are commonly represented by terms of the type 〈o : C |a1 : v1, . . . ,an :
vn〉 where o is the object’s identifier, C is its class, the ai’s are the names of the ob-
ject’s attributes, and the vi’s are the corresponding values [8]. We adopt this form of
presentation and define Creol objects and classes as RL objects. Omitting RL types,
a Creol object is represented by an RL object 〈Ob |Cl,Pr,PrQ,Lvar,Att,Lab,EvQ〉,
where Ob is the object identifier, Cl the class name, Pr the active process code, PrQ
a multiset of suspended processes with unspecified queue ordering, EvQ a multiset of
unprocessed messages, and Lvar and Att the local and object state, respectively. Let
τ be a type partially ordered by <, with least element 1, and let next : τ → τ be such
that ∀x .x < next(x). Lab is the method call identifier corresponding to labels in the
language, of type τ. Thus, the object identifier Ob and the generated local label value
provide a globally unique identifier for each method call.

The classes of Creol are represented by RL objects 〈Cl | Inh,Att,Mtds, Tok〉, where
Cl is the class name, Inh is the inheritance list, Att a list of attributes, Mtds a multiset
of methods, and Tok is an arbitrary term of type τ. When an object needs a method, it
is bound to a definition in the Mtds multiset of its class or of a superclass.

In RL’s object model [8], classes are not represented explicitly in the system config-
uration. This leads to ad hoc mechanisms to handle object creation, which we avoid by
explicit class representation. The Creol construct new C(E) creates a new object with
a unique object identifier, attributes as listed in the class parameter list and in Att, and
places the code from the run method in Pr.

A Dynamic Binding Strategy for Multiple Inheritance 287

6.2 Concurrent Transitions

Concurrent change is achieved in the operational semantics by applying concurrent
rewrite steps to state configurations. There are four different kinds of rewrite rules:

– Rules that execute code from the active process: For every program statement there
is at least one rule. For example, the assignment rule for the program V := E binds
the values of the expression list E to the list V of local and object variables.

– Rules for suspension of the active process: When an active process guard evaluates
to false, the process and its local variables are suspended, leaving Pr empty.

– Rules that activate suspended processes: When Pr is empty, suspended processes
may be activated. When this happens, the local state is replaced.

– Transport rules: These rules move messages into the message queues, representing
network flow.

When auxiliary functions are needed in the semantics, these are defined in equational
logic, and are evaluated in between the state transitions [29]. The rules related to method
calls, virtual binding, and object creation are now considered in detail. In the presenta-
tion irrelevant attributes are ignored in the style of Full Maude [8].

6.3 Method Calls

Blocking and nonblocking calls are given a uniform semantics. In the operational se-
mantics, objects communicate by sending messages. Two messages encode a method
call. We here assume that the types of the actual in- and out-parameters of the call have
been added to the method invocation as an additional argument Sig at compile time.
If an object o1 calls a method m of an object o2, with actual type Sig and actual pa-
rameters In, and the execution of m(Sig, In) results in the return values Out, the call is
reflected by two messages invoc(m,Sig,(n o1 In)) to o2 and comp(n,Out) to o1, which
represent the invocation and completion of the call, respectively. In the asynchronous
setting, invocation messages must include the caller’s identity, so completions can be
transmitted to the correct destination. Objects may have several pending calls to another
object, so the completion message includes a locally unique label value n, generated by
the caller.

A blocking call p(Sig, In; V), where V is a list of variables and p one of the forms
x.m, m@C, or m <C, is translated into an asynchronous call, !p(Sig, In), immediately
followed by a blocking reply statement, n?(V), where n is the label value uniquely
identifying the call:

〈o :Ob |Pr : p(Sig, In; V); S,Lab : n〉 = 〈o :Ob |Pr : !p(Sig, In);n?(V); S,Lab : n〉
A nonblocking call is understood as an asynchronous call followed by a reply guard:

〈o :Ob |Pr : await p(Sig, In; V); S,Lab : n〉
= 〈o :Ob |Pr : !p(Sig, In);await n?;n?(V); S,Lab : n〉

A reply guard await n? evaluates to true when a comp message with the label value
n has arrived, in which case the reply statement n?(V) will assign the return values to
V, otherwise the active process is suspended (see below). Consequently, it suffices to

288 E.B. Johnsen and O. Owe

consider asynchronous invocations, and blocking and guarded replies to capture both
blocking and nonblocking method calls.

When an object calls an external method, a message is placed in the configuration:

〈o :Ob |Pr : !x.m(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o :Ob |Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(m,Sig,(n o eval(In,(A; L)))) to eval(x,(A; L))

where x is an object expression, m a method name, and eval is a function which evalu-
ates an expression (list) in the context of a state. When x evaluates to o, the object creates
an invoc message to itself. Similarly, an internal call gives rise to the same invocation
message:

〈o :Ob |Pr : !p(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o :Ob |Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(p,Sig,(n o eval(In,(A; L)))) to o

where p is of the form m@C or m < C. The constraint C will be used in the virtual
binding as described below.

Transport rules take charge of messages, which eventually arrive at the destination’s
message queue:

(invoc(E) to o) 〈o : Ob |EvQ : Q〉 −→ 〈o : Ob |EvQ : Q invoc(E)〉
(comp(E) to o) 〈o : Ob |EvQ : Q〉 −→ 〈o : Ob |EvQ : Q comp(E)〉
These rules model loose distribution of objects. Message overtaking is captured by the
nondeterminism inherent in RL: messages sent by an object to another object in one
order may arrive in any order.

The caller may wait for a completion in a reply statement to synchronize on the
completion of the call, or in a reply guard. The reply statement n?(V) blocks until the
appropriate reply message has arrived in the message queue. This blocking is captured
by a rule requiring matching label values in the active statement and the event queue:

〈o :Ob |Pr : (n?(V); S),EvQ : Q comp(n,Out)〉
−→ 〈o :Ob |Pr : (V := Out; S),EvQ : Q〉

In the model, EvQ is a multiset; thus the rule will match any occurrence of comp(n,Out)
in the queue. Remark that blocking reply statements associated with calls to self require
special treatment in order to avoid deadlock [20].

6.4 Virtual and Static Binding of Method Calls

In order to allow concurrent and dynamic execution, the full inheritance graph will not
be statically given. Rather, the binding mechanism dynamically inspects the current
class hierarchy as present in the configuration. Our approach to virtual binding is to use
a bind message to be sent from a class to its superclasses, resulting in a bound message
returned to the object generating the bind message. This way, the inheritance graph is
explored dynamically and as far as necessary when needed. When the invocation of a

A Dynamic Binding Strategy for Multiple Inheritance 289

method m is found in the message queue of an object o, a message bind(o,m, In,C) can
be generated by dynamically retrieving the class C of the object. Here Sig is the method
signature as provided by the caller and In is the list of actual in-parameters:

〈o :Ob |Cl : C,EvQ : invoc(m,Sig, In) Q〉
−→ 〈o :Ob |Cl : C,EvQ : Q〉 (bind(m,Sig, In,o) to C)

The same applies to internal static calls m@C. Static method calls are generated without
inspecting the actual class of the callee, thus surpassing local definitions:

〈o :Ob |EvQ : invoc(m@C,Sig, In) Q〉 −→ 〈o :Ob |EvQ : Q〉 (bind(m,Sig, In,o) to C)

If a suitable m is defined locally in C, a process with the method code and local state is
returned in a bound message. Otherwise, the bind message is retransmitted to the su-
perclasses of C in a left-first, depth-first order. In order to easily traverse the inheritance
graph, an inheritance list is used as the destination of the bind message:

(bind(m,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉
−→ if match(m,Sig,M) then bound(get(m,M, In)) to o

else bind(m,Sig, In,o) to (I′ I) fi 〈C :Cl | Inh : I′,Mtds : M〉
The auxiliary predicate match(m,Sig,M) evaluates to true if m is declared in M with
a signature Sig′ such that Sig ≺ Sig′, and the function get returns a process with the
method’s code and local state from the method multiset M of the class. (Static checking
ensures that virtual binding will succeed.) Values of the actual in-parameters In, the
caller o′, and the label value n are stored locally. The process w resulting from the
binding is loaded into the internal process queue:

(bound(w) to o) 〈o :Ob |PrQ : W〉 −→ 〈o :Ob |PrQ : W w〉
Note that the use of rewrite rules rather than equations mimics distributed and concur-
rent processing of method lookup.

Internal Virtual Binding. The binding of an internal virtual call m <C′ constrained by
C′ is slightly more complex. When a match in a class C is found, the inheritance graph
of C is checked to ensure that C is below C′, otherwise the binding must resume:

(bind(m<C′,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉
−→ if match(m,Sig,M) then (find(C′,C) to C) (stopbind(m<C′,Sig, In,o) to C I)

else bind(m,Sig, In,o) to (I′ I) fi 〈C :Cl | Inh : I′,Mtds : M〉
(found(b,C′) to C) (stopbind(m,Sig, In,o) to C I) 〈C :Cl | Inh : I′,Mtds : M〉

−→ if b then bound(get(m,M, In)) to o else bind(m,Sig, In,o) to I fi
〈C :Cl | Inh : I′,Mtds : M〉

where stopbind is an additional message used to suspend binding while checking that
C is below C′. This is done by two auxiliary messages: The message find(C,o) to I
represents that o is asking I if C is found in I or further up in the hierarchy, whereas
found(b,C) to o gives the answer to o, where the boolean b is true if the request was
successful. This can be formalized by the rewrite rules (ignoring class parameter lists)

290 E.B. Johnsen and O. Owe

find(C,o) to ε −→ found(false,C) to o

find(C,o) to I C I′ −→ found(true,C) to o

(find(C,o) to C′ I) 〈C′ :Cl | Inh : I′〉 −→ (find(C,o) to I I′) 〈C′ :Cl | Inh : I′〉 if (C �= C′)

This search corresponds to breadth-first, left-first traversal of the inheritance graph.

6.5 Guarded Statements

Guards represent potential processor release points. Guards may be boolean or reply
guards. When a guard is encountered, the execution continues if the guard is enabled:

〈o : Ob |Pr : await g; S,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : S,Lvar : L,Att : A,EvQ : Q〉 if enabled(g,(A,L),Q)

Enabledness is defined by induction over the construction of guards by the predicate

enabled(n?,D,Q) = n in Q enabled(b,D,Q) = eval(b,D)

where D denotes a state, and the function in checks whether a completion message
corresponding to the given label value is in the message queue Q. Enabledness is ex-
tended to statement lists, considering the head statement, and considering unguarded
statements as enabled. When a non-enabled guard is encountered, the active process is
suspended on the process queue:

〈o : Ob |Pr : S,PrQ : W,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : ε,PrQ : (W 〈S, L〉),Lvar : ε,Att : A,EvQ : Q〉 if not enabled(S,(A; L),Q)

where 〈S,L〉 denotes the process with statements S and local state L. If there is no active
process, a suspended process can be reactivated if it is enabled:

〈o : Ob |Pr : ε,PrQ : 〈S,L〉 W,Lvar : L′,Att : A,EvQ : Q〉
−→

〈o : Ob |Pr : S,PrQ : W,Lvar : L,Att : A,EvQ : Q〉 if enabled(S,(A,L),Q)

This rule allows any enabled process to continue because PrQ is a multiset.

6.6 Object Creation and Attribute Instantiation

Object creation results in a new object with a unique identifier. The new object makes an
initial blocking call to its run method (if present in the class), thereby initiating active
object behavior and leaving the programmer in control of defining the initial release
point. New object identifiers are created by concatenating tokens n from the unbounded
set Tok to the class name. The identifier is returned to the object which initiated the
object creation.

A Dynamic Binding Strategy for Multiple Inheritance 291

〈o :Ob |Pr : v := new C(In); S,Lvar : L,Att : A〉 〈C :Cl |Att : A′,Tok : n〉
−→

〈o :Ob |Pr : v := newid; S,Lvar : L,Att : A〉 〈C :Cl |Att : A′,Tok : next(n)〉
〈newid:Ob |Cl : C,Pr : run,PrQ : ε,Lvar : ε,Att : ε,Lab : 1,EvQ : ε〉
inherit(newid,ε) to C(eval(In,(A,L)))

Here, newid denotes the new identifier. Before the new object can be activated, its
initial state must be created. This is done by collecting attribute lists, which consist of
program variables bound to initial expressions, from the classes inherited by C. The
initial expressions must be reduced to values and bound to the program variables in the
state. Class parameters and inherited attributes provide a mechanism to pass values to
the initial expressions of the inheritance list in a class. The variables bound by the class
parameters are stored first in the attribute list of a class in the textual order.

An inherit message, which sends an object identifier and a substitution to a class
inheritance list, causes the inheritance tree to be traversed in a right-first depth-first
order, while dynamically accumulating all inherited attributes and their initializing ex-
pressions, passing on appropriate class parameters as stated in the inheritance lists. The
traversal results in a list of attributes with initializing expressions, which are evaluated
by evalS from left to right and delivered to the new object. The attribute list is ordered
such that the attributes of a superclass precede those of a subclass, for all classes above
the class of the object. Consequently, the type system can guarantee that all variables
occurring in an initial expression of a program variable v have been instantiated before
v is instantiated.

inherit(o, IA) to nil = inherited(evalS((self �→ o) IA),ε) to o

inherit(o, IA) to (I C(In)) 〈C :Cl | Inh : I′,Att : IA′〉
= inherit(o,(pass(IA′, In) IA)) to (I I′) 〈C :Cl | Inh : I′,Att : IA′〉

The auxiliary function pass passes class parameters, given as expressions, to an attribute
list and evalS(IA,A) evaluates attributes in IA from left to right, given a state A.

pass(IA,ε) = IA

pass(((v �→ e) IA),e′ E′)(v �→ e′) pass(IA,E′)

evalS(ε,A) = ε
evalS((v �→ e) IA,A) = (v �→ eval(e,A)) evalS(IA,(v �→ eval(e,A)) A)

The resulting state is consumed by the new object by the equation

(inherited(A) to o) 〈o :Ob |Att : ε〉 = 〈o :Ob |Att : A〉

Notice again that the use of equations enables a new object to be created and initialized
in a single rewriting step.

In the presence of multiple inheritance, a class C may inherit a superclass several
times. The equation

A (v �→ e) A′ (v �→ e′) = A (v �→ e) A′

292 E.B. Johnsen and O. Owe

on attribute lists ensures that an attribute is only stored once. Thus multi-inheritance of
the same class is the same as inheriting the class once, keeping the leftmost instantiation.
Duplicate classes may be achieved by class renaming in inheritance lists.

7 Related Work

Formal models clarify the intricacies of object orientation and may thus contribute to
better programming languages in the future, making programs easier to understand,
maintain, and reason about. Work on object calculi such as the ς-calculus [1] capture
object-oriented features such as self-reference, encapsulation, and method calls. Con-
current object calculi [18,13] extend these mechanisms to multithreaded and distributed
systems, but the complexities of class inheritance are not addresses in [1,18,13]. A con-
current object calculus with single inheritance is presented by Laneve [26]. Methods
of superclasses are accessible and virtual binding is addressed due to a careful renam-
ing discipline. A denotational semantics for single inheritance with similar features is
studied by Cook and Palsberg [9]. Multiple inheritance is not addressed in these works.

Formalizations of multiple inheritance in the literature are usually based on the
objects-as-records paradigm. This approach focuses on subtyping issues related to sub-
classing, but issues related to method binding are not easily captured. Even access to
methods of superclasses is not addressed in Cardelli’s denotational semantics of multi-
ple inheritance [6]. Rossi, Friedman, and Wand [34] propose a formal definition of mul-
tiple inheritance based on subobjects, a run-time data structure used for virtual pointer
tables [25,38]. This formalism focuses on compile time issues and does not clarify mul-
tiple inheritance at the abstraction level of the programming language.

Multiple inheritance is supported in languages such as C++ [38], CLOS [12], Eiffel
[31], POOL [2], and Self [7]. As discussed in Sect. 2.1, horizontal name conflicts in
C++, POOL, and Eiffel are removed by explicit resolution, after which the inheritance
graph may be linearized. Multiple dispatch, or multi-methods[12], gives a more pow-
erful binding mechanism, but does not handle the problems considered here, since they
appear even for methods without any parameters. Also reasoning about multi-methods
is difficult in case of redefinition.

A natural semantics for virtual binding in Eiffel is proposed in [3]. This work is
similar in spirit to ours and models the binding mechanism at the abstraction level
of the program, capturing Eiffel’s renaming mechanism. Mixin-based inheritance [4]
and traits [35] also depend upon linearization to be merged correctly into the single
inheritance chain. Linearization changes the parent-child relationship between classes
in the inheritance hierarchy [36]. Consequently understanding, e.g., method binding
quickly becomes difficult.

Full Maude [8] and the Join-calculus [15] model multiple inheritance by disjoint
union of methods. Name ambiguity lets method definitions compete for selection. The
definition selected when an ambiguously named method is called, may be nondeter-
ministically chosen. Alternatively, programmer control may be improved if inherited
classes are ordered [7,12], resulting in a deterministic binding strategy. However, the

A Dynamic Binding Strategy for Multiple Inheritance 293

ordering of superclasses may result in surprising but “correct” behavior. The example
of Sect. 5 displays such surprising behavior regardless of how the inherited classes are
ordered.

The dynamically typed prototype-based language Self [7] proposes an elegant pri-
oritized binding strategy to solve this problem, although a formal semantics is not given.
The strategy is based on combining ordered and unordered multiple inheritance. Each
superclass is annotated with a priority, and many superclasses may have the same pri-
ority. A name is only ambiguous if it occurs in two superclasses with the same priority,
in which case a class related to the caller class is preferred. However, explicit class
priorities may have surprising effects in large class hierarchies: names may become
ambiguous through inheritance. If neither class is related to the caller the binding does
not succeed, resulting in a method-not-understood error.

The pruned binding strategy proposed in this paper solves these issues without
the need for manually declaring (equal) class priorities and without the possibility of
method-not-understood errors: Calls are only bound to intended method redefinitions.
The new binding strategy seems particularly useful during system maintenance to avoid
introducing unintentional errors in evolving class hierarchies, as targeted by the Creol
language [23]. In particular, we have given an operational semantics based on dynamic
and distributed traversal of the available classes, rather than through virtual pointer ta-
bles. Our approach may therefore be combined with dynamic constructs for changing
the class inheritance structure, such as adding a class C and enriching an existing class
with C as a new superclass, which could be useful in open reconfigurable systems.

8 Conclusion

The treatment of ambiguous naming in object-oriented languages with multiple inher-
itance is unsettled. Disallowing naming ambiguities when inheriting multiple super-
classes imposes undesirable restrictions with regard to, e.g., programming flexibility
and code maintenance. Ordering inherited classes solves ambiguities by fixing the bind-
ing strategy above a given class. However, virtual binding combined with a fixed order
may lead to surprising but “correct” effects. This paper has proposed the pruned bind-
ing strategy to ensure that overriding is intended. This strategy dynamically restricts
the ordered inheritance graph depending on the context of the call, using the concept of
constrained method call (m<C). This construct is also useful for fine grained program-
mer control of virtual binding in the case of multiple inheritance. The pruned binding
strategy and constrained method calls remove unintended effects of ordered inheritance
while ensuring that binding will always succeed. The binding strategy is combined with
intentional redirection through qualified references and with redefinition in the subclass.
In this paper, an operational semantics for the proposed binding strategy has been given
in rewriting logic. Although the formalization is given in the setting of Creol, the mech-
anisms presented here could easily be lifted to another setting.

Acknowledgment. The authors would like to thank Stein Krogdahl for interesting dis-
cussions on multiple inheritance and virtual binding. The comments of the FMCO
anonymous referees have improved the presentation.

294 E.B. Johnsen and O. Owe

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, NY, 1996.
2. P. America and F. van der Linden. A parallel object-oriented language with inheritance and

subtyping. In N. Meyrowitz, editor, Proc. of the Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 161–168. ACM Press, Oct. 1990.

3. I. Attali, D. Caromel, and S. O. Ehmety. A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Languages and Systems, 18(6):711–729, 1996.

4. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Proc. of the
Conf. on Object-Oriented Programming: Systems, Languages, and Applications / Eur. Conf.
on Object-Oriented Programming, pages 303–311. ACM Press 1990.

5. K. B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe polymor-
phic object-oriented language. ACM Transactions on Programming Languages and Systems,
25(2):225–290, 2003.

6. L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2-
3):138–164, 1988.

7. C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symb. Computation, 4(3):207–222, 1991.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting logic. Theoretical Computer Science,
285:187–243, Aug. 2002.

9. W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. Infor-
mation and Computation, 114(2):329–350, Nov. 1994.

10. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In 17th Symp. on
Principles of Programming Languages (POPL’90), pages 125–135. ACM Press, Jan. 1990.

11. O.-J. Dahl and K. Nygaard. Class and subclass declarations. In J. Buxton, editor, Simulation
Programming Languages, pages 158–174. North-Holland, 1968. Reprinted in M. Broy and
E. Denert, eds., Software Pioneers — Contributions to Software Engineering, Springer, 2002.

12. L. G. DeMichiel and R. P. Gabriel. The common lisp object system: An overview. In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, Eur. Conf. on Object-Oriented
Programming (ECOOP’87), LNCS 276, pages 151–170. Springer, 1987.

13. P. Di Blasio and K. Fischer. A calculus for concurrent objects. In U. Montanari and V. Sas-
sone, editors, 7th Intl. Conf. on Concurrency Theory (CONCUR’96), LNCS 1119, pages
655–670. Springer, Aug. 1996.

14. C. Fischer and H. Wehrheim. Behavioural subtyping relations for object-oriented for-
malisms. In T. Rus, editor, 8th Intl. Conf. on Algebraic Methodology and Software Tech-
nology (AMAST 2000), LNCS 1816, pages 469–483. Springer, 2000.

15. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. Journal
of Logic and Algebraic Programming, 57(1-2):23–69, 2003.

16. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

17. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ.
In J. A. Goguen and G. Malcolm, editors, Software Engineering with OBJ: Algebraic Speci-
fication in Action, pages 3–167. Kluwer, 2000.

18. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In
U. Nestmann and B. C. Pierce, editors, High-Level Concurrent Languages (HLCL’98), vol-
ume 16(3) of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

19. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In B. Jacobs
and A. Rensink, editors, Proc. 5th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’02), pages 45–60. Kluwer, Mar. 2002.

A Dynamic Binding Strategy for Multiple Inheritance 295

20. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed con-
current objects. In Proc. 2nd Intl. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 188–197. IEEE Press, Sept. 2004.

21. E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In
O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, LNCS 2635, pages 137–164. Springer, 2004.

22. E. B. Johnsen and O. Owe. Inheritance in the presence of asynchronous method calls. In
Proc. 38th Hawaii Intl. Conf. on System Sciences (HICSS’05). IEEE Press, Jan. 2005.

23. E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic class construct for asynchronous
concurrent objects. In Proc. 7th Intl. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’05), LNCS 3535, pages 15–30. Springer, June 2005.

24. J. L. Knudsen. Name collision in multiple classification hierarchies. In S. Gjessing and
K. Nygaard, editors, Eur. Conf. on Object-Oriented Programming (ECOOP’88), LNCS 322,
pages 93–109. Springer, 1988.

25. S. Krogdahl. Multiple inheritance in Simula-like languages. BIT, 25(2):318–326, 1985.
26. C. Laneve. Inheritance in concurrent objects. In H. Bowman and J. Derrick, editors, Formal

methods for distributed processing – a survey of object-oriented approaches, pages 326–353.
Cambridge University Press, 2001.

27. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

28. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concur-
rent programming languages. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, pages 107–150. The MIT Press,
Cambridge, Mass., 1993.

29. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96:73–155, 1992.

30. J. Meseguer and G. Rosu. Rewriting logic semantics: From language specifications to formal
analysis tools. In D. A. Basin and M. Rusinowitch, editors, Proc. of the 2nd Intl. Joint Conf.
on Automated Reasoning (IJCAR 2004), LNCS 3097, pages 1–44. Springer, 2004.

31. B. Meyer. Object-Oriented Software Construction. Prentice Hall, NJ., 1997.
32. G. Milicia and V. Sassone. The inheritance anomaly: ten years after. In Proc. of the Symp.

on Applied Computing, pages 1267–1274. ACM Press, 2004.
33. E. Najm and J.-B. Stefani. A formal semantics for the ODP computational model. Computer

Networks and ISDN Systems, 27:1305–1329, 1995.
34. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modeling subobject-based inheritance. In

P. Cointe, editor, 10th Eur. Conf. on Object-Oriented Programming (ECOOP’96), LNCS
1098, pages 248–274. Springer, July 1996.

35. N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of be-
haviour. In L. Cardelli, editor, Proc. 17th Eur. Conf. on Object-Oriented Programming
(ECOOP 2003), LNCS 2743, pages 248–274. Springer, 2003.

36. A. Snyder. Inheritance and the development of encapsulated software systems. In B. Shriver
and P. Wegner, editors, Research Directions in Object-Oriented Programming, pages 165–
188. The MIT Press, 1987.

37. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In P. De-
vanbu and J. Poulin, editors, Proc. Fifth Intl. Conf. on Software Reuse (ICSR5), pages 206–
215. IEEE Press, 1998.

38. B. Stroustrup. Multiple inheritance for C++. Computing Systems, 2(4):367–395, Dec. 1989.
39. E. Tempero and R. Biddle. Simulating multiple inheritance in Java. The Journal of Systems

and Software, 55(1):87–100, Nov. 2000.

Observability, Connectivity, and Replay in a

Sequential Calculus of Classes�

Erika Ábrahám2, Marcello M. Bonsangue3, Frank S. de Boer4,
Andreas Grüner1, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 Albert-Ludwigs-University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. Object calculi have been investigated as semantical founda-
tion for object-oriented languages. Often, they are object-based, whereas
the mainstream of object-oriented languages is class-based.

Considering classes as part of a component makes instantiation a pos-
sible interaction between component and environment. As a consequence,
one needs to take connectivity information into account.

We formulate an operational semantics that incorporates the connec-
tivity information into the scoping mechanism of the calculus. Further-
more, we formalize a notion of equivalence on traces which captures the
uncertainty of observation cause by the fact that the observer may fall
into separate groups of objects. We use a corresponding trace semantics
for full abstraction wrt. a simple notion of observability. This requires
to capture the notion of determinism for traces where classes may be
instantiated into more than one instance during a run and showing thus
twice an equivalent behavior (doing a “replay”), a problem absent in an
object-based setting.

Keywords: class-based object-oriented languages, formal semantics, de-
terminism, full abstraction.

1 Introduction

Classes are a structuring concept for object-oriented languages such as Java or
C#. This raises the question what the semantics of a program is when considering
classes as composition units. A simple, elegant, and common semantical approach
is to take an observational point of view: two program fragments are equal, if,
when put in any possible context, no difference can be seen. Starting from a
simple notion of observation, [10] presented a fully abstract trace semantics for
a multithreaded object calculus, i.e., a language without classes; [2] generalized
the result by taking classes into account.
� Part of this work has been financially supported by the IST project Omega (IST-

2001-33522) and the NWO/DFG project Mobi-J (RO 1122/9-1/2).

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 296–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 297

In this paper, we re-address the problem in a single-threaded setting. This
is interesting for two reasons. First, simplifying the language does not simplify
the problem per se. Certain complications in connection with concurrency cer-
tainly get simpler, e.g., by absence of race conditions. On the other hand, new
complications arise. In particular, with one thread only, the language becomes
deterministic which needs to be accounted for in the description of the semantics.
Secondly, concentrating on a single thread allows to understand the semantical
impact of classes more clearly and independently from the orthogonal aspects of
concurrency.

One key observation is that in the presence of classes one needs to take
connectivity information into account, i.e., the way objects may have knowledge
of each other, to characterize the observable behavior. In particular, unconnected
environment objects can neither determine the absolute order of interaction, nor
can they exchange information to compare object identities. Furthermore, with
a deterministic language, one needs to capture the notion of determinism for
traces where classes may be instantiated into more than one instance during a
run and showing thus twice an equivalent behavior (doing a “replay”), a problem
absent in an object-based setting.

Overview. The paper is organized as follows. We start in Section 2 with an in-
formal account of the semantics and the underlying intuitions. Section 3 contains
the syntax of the calculus and a sketch of its semantics. In particular, the notions
of lazy instantiation and connectivity of objects are formalized. Afterwards, Sec-
tion 4 elaborates on the trace semantics and in particular an equivalence relation
on traces capturing the uncertainty of observation in a class-based setting. In
Section 5 we fix the notion of observation and state the full abstraction result.
Section 6 concludes with related and future work.

2 Observability and Classes

This section presents on an intuitive level the consequences of incorporating
classes into the observational set-up.

2.1 Cross-Border Instantiation and Connectivity

The observational set-up separates classes into component and environment
classes. Hence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well.

If, for instance, the component creates an instance of an environment class,
the interaction between the component and the newly created object can entail
observable effects in the future, as the code of the object is externally provided
and therefore this interaction belongs to the externally visible observer-program
behavior. Hence, instances of environment classes belong to the environment,
and dually those of internal classes to the component. However, in the above
situation, the reference to the new external object is kept at the creator for

298 E. Ábrahám et al.

the time being. So if the component instantiates two objects o2 and o3 of the
environment, the situation looks informally as in Figure 1, where the dotted
bubbles indicate the scope of o2, respectively of o3.

o1

o2

o3

c1 c2 c3
component environment

Fig. 1. Instances of external classes

For an exact account of the semantics,
the inability of o2 and o3 to be in con-
tact must be accounted for. More gener-
ally, the semantics must contain a repre-
sentation of which object can possibly be
in contact with others, i.e., an overapprox-
imation of the heap’s connectivity. Sets of
objects which can possibly be in contact
with each other form therefore equivalence
classes of names —we call them cliques—
and the semantics must include a represen-
tation of them. New cliques can be created,
as new objects can be instantiated without
contact to others, and furthermore cliques
can merge, if the component leaks the iden-

tity of a member of one clique to a member of another.

2.2 Different Observers and Order of Events

That the observer may fall into separate cliques of unconnected objects has
implications for what can be observed. First of all, the absolute order of events
cannot be determined, as the observer cliques may not be able to coordinate. For
instance, the environment or observer, split into 1 and 2 on the right-hand sides
of the three scenarios of Figure 2 cannot distinguish between the three variants
of the component on the respective left-hand sides. Note that the clique struc-
ture is dynamic, since communication can merge previously separate observer
cliques. After merging, the now joint clique, indicated by the big “bubble” con-
taining 1 and 2 in Figure 3, can coordinate and thus observe the order of further
interaction, but the order of past interaction cannot be reconstructed. I.e., in
Figure 3, the three components, i.e., the components on the left-hand side of
Figure 3(a) – 3(c) respectively, are observably equivalent.

2.3 Classes as Generators of Objects, Replay, and Determinism

Classes are generators for objects, and two instances of a class are “identical
up-to their identity” i.e., they have the same behavior up-to renaming. If the
trace of a component contains a certain behavior of an object (or more generally
of a clique of objects), then it is unavoidable that the component shows a trace
where the equivalent behavior is realized by a second instance of the object (or
object clique): each behavior can be “replayed” on a fresh instance. With the
possibility of cross-border instantiation, the component can create more than
one equivalent instances of its observer, which perform equivalently.

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 299

1

2

Comp. Env.

(a)

1

2

Comp. Env.

(b)

1

2

Comp. Env.

(c)

Fig. 2. Order of interaction

Comp. Env.

1

2

(a)

Comp. Env.

1

2

(b)

Comp. Env.

1

2

(c)

Fig. 3. Order of interaction and merging

Consider Figures 4(a) and 4(b). The second one resembles Figure 3(a) before
the merge. This time, however, we assume, that the interaction s′ with the first
clique is a prefix of the longer s t up-to renaming. If s t is a possible behavior
of the system, then clearly also scenario 4(b). One can use the argument also
in the reverse direction: if 4(b) is possible, then so is 4(a); in other words, both
behaviors are equivalent.

If afterwards the observers are merged (cf. Figure 4(c)), this scenario clearly
differs from the one where the interaction s′ with the formerly separate clique
is missing. Unlike in the situation of Figure 3, where the order of the previously
separate cliques could not be enforced in retrospect, the merging here allows to
compare the different identities (but of course still not the order).

300 E. Ábrahám et al.

Comp. Env.

s t

(a) Scenario s t

Comp. Env.

s′

s t

(b) Replay

Comp. Env.

s′

s t

(c) Merged

Fig. 4. Replay and merging

The possibility to create more than one instance from a class has a further
impact when dealing with deterministic programs in the single-threaded setting.
If a class is instantiated twice, its instances must behave “the same” up-to re-
naming, i.e., when confronted with the same input, show the same reaction. For
instance, the shorter trace s′ of Figure 4(b) is not only possible, given s t, but
the clique on the left of 4(b) can do nothing else than what does the one on
the right, when stimulated by the same input from the component. The sce-
nario used environment cliques for illustration, but the same arguments apply
to component cliques, as well.

3 A Single-Threaded Calculus with Classes

Concentrating on the semantical issues, we only sketch the syntax and ignore
typing issues as they are rather standard and similar to [2]. Indeed, the calculus
is a restriction to single threaded programs of the one used in [2], which in turn
is an extension of the concurrent object calculus from [6,10] namely by adding
classes.

A program is given by a collection of classes where a class c[(O)] carries a
name c and defines the implementation of its methods and fields.1 An object
o[c, F] stores the current value of the fields or instance variables and keeps a ref-
erence to the class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xk:Tk).t provides
the method body abstracted over the ς-bound “self” parameter and the formal
parameters of the method [1]. Besides named objects and classes, the dynamic

1 For names, we will generally use o and its syntactic variants as names for objects, c
for classes, and n when being unspecific, for instance in Table 1.

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 301

Table 1. Abstract syntax

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | �〈t〉 program
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ(). stop field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expression
| v.l(v, . . . , v) | v.l := f | new n

v ::= x | n value

configuration of a program contains one single thread *〈t〉 as active entity.2 A
thread basically is either a value or a sequence of expressions, notably method
calls (written v.l(+v)) and the creation of new objects new c where c is a class
name. Furthermore we will use f specifically for instance variables or fields, we
use f = v for field variable declaration, field access is written as x.f , and field
update as x.f := v.

The operational semantics is given in two levels: internal steps whose effect
is confined within a component, and those with external effect. The external
behavior of a component is given in terms of labeled transitions describing the
communication at the interface of an open program. For the completeness of
the semantics, it is crucial ultimately to consider only communication traces
realizable by an actual program context which, together with the component,
yields a well-typed closed program.

Being concerned with the dynamic connectivity among objects, we omit in
this paper most of the typing aspects, e.g., that transmitted values need to
adhere to the static typing assumptions, that only publicly known objects can
be called from the outside, and the like, since this part is rather standard and
also quite similar to the one in [10].

3.1 Operational Semantics

We start with component internal steps in the following section; Section 3.1.2
contains the small-step semantics describing the component-environment
interaction.

3.1.1 Internal Steps. The internal steps are given in Table 2, where we
distinguish between confluent steps, written �, and other internal transitions,
written τ−→.3

2 The �-symbol is only meant to distinguish the syntactic entity t from a running
thread �〈t〉.

3 In the single-threaded setting, the distinction is not too important, since at any time
at most one reduction step is enabled. It may nevertheless enhance understanding
to conceptually distinguish between side-effect free steps and those that may lead to
race conditions when executed in the presence of other threads.

302 E. Ábrahám et al.

Table 2. Internal steps

�〈let x:T = v in t〉� �〈t[v/x]〉 Red

�〈let x2:T2 = (let x1:T1 = e1 in e) in t〉� �〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

�〈let x:T = (if v = v then e1 else e2) in t〉� �〈let x:T = e1 in t〉 Cond1

�〈let x:T = (if v1 = v2 then e1 else e2) in t〉� �〈let x:T = e2 in t〉 Cond2

�〈let x:T = stop in t〉� �〈stop〉 Stop

c[(F, M)] ‖ �〈let x:c = new c in t〉�
c[(F, M)] ‖ ν(o:c).(o[c, F] ‖ �〈let x:c = o in t〉) NewOi

c[(F, M)] ‖ o[c, F ′] ‖ �〈let x:T = o.l(�v) in t〉 τ−→
c[(F, M)] ‖ o[c, F ′] ‖ �〈let x:T = M.l(o)(�v) in t〉 Calli

o[c, F] ‖ �〈let x:T = o.f := v in t〉 τ−→ o[c, F.f := v] ‖ �〈let x:T = o in t〉 FUpdate

Table 3. Structural congruence

0 ‖ C ≡ C

C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2)

ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 3 where in the fourth axiom,
n does not occur free in C1.

3.1.2 External Steps. While the component-internal steps are fairly stan-
dard and straightforward, the external semantics is more complex. With the
goal of full-abstraction in mind it is necessary to ultimately characterize the
interaction between component and environment which is realizable by some
program (cf. the legal traces from Section 5.2). To ease the full abstraction
argument, we formulate the semantics under the assumption that the compo-
nent together with the (absent or abstracted) environment gives a well-formed
program adhering to the syntactical and the context-sensitive restrictions of
the language at hand.

So the interface behavior is phrased in an assumption-commitment frame-
work and based on three orthogonal abstractions:

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 303

– a static abstraction, i.e., the type system (largely omitted here);
– an abstraction of the stacks of recursive method invocations, representing the

recursive and reentrant nature of method calls in a multi-threaded setting;
– finally an abstraction of the heap topology, approximating potential connec-

tivity of objects and threads. The heap topology is dynamic in that new ob-
jects may be created and tree structured in that previously separate groups
of objects may merge.

Connectivity Contexts and Cliques. As discussed, in the presence of internal and
external classes and cross-border instantiation, the semantics must contain a
representation of the object connectivity. The external semantics is formalized
as labeled transitions between judgments of the form

Δ;EΔ " C : Θ;EΘ , (1)

where Δ;EΔ are the assumptions about the environment of the component C
andΘ;EΘ the commitments. The assumptions consist of a part Δ concerning the
existence (plus static typing information) of named entities in the environment.
For the book-keeping of which objects of the environment have been told which
identities, a well-typed component must take into account the relation of object
names from the assumption context Δ amongst each other, and the knowledge
of objects from Δ about those exported by the component, i.e., those from Θ.
In analogy to the name contexts Δ and Θ, EΔ expresses assumptions about the
environment, and EΘ commitments of the component:

EΔ ⊆ Δ × (Δ +Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + Δ), where × denotes the pairing and + the disjoint
combination of Δ and Θ. We write o1 ↪→ o2 (“o1 may know o2”) for pairs
from these relations. Without full information about the complete system, the
component must make worst-case assumptions concerning the proliferation of
knowledge, which are represented as the reflexive, transitive, and symmetric
closure of the ↪→-pairs of objects from Δ. Given Δ, Θ, and EΔ, we write for
this closure, i.e.,

 	 (↪→↓Δ ∪ ←↩↓Δ)∗ ⊆ Δ × Δ . (3)

In the definition, ↓Δ stands for the projection of the relation onto the restricted
domain Δ. Note that we close ↪→ only wrt. environment objects, but not wrt.
objects at the interface, i.e., the part of ↪→ ⊆ Δ × Θ. We also need the union
 ∪ ; ↪→ ⊆ Δ× (Δ+Θ), where the semicolon denotes relational composition.
We write ↪→ for that union. As judgment, we use Δ;EΔ " o1 o2 : Θ, resp.
Δ;EΔ " o1 ↪→ o2 : Θ. For Θ, EΘ, and Δ, the definitions are applied dually.

The relation is an equivalence relation on the objects from Δ and partitions
them into equivalence classes. We call a set of object names from Δ (or dually
from Θ) such that for all objects o1 and o2 from that set, Δ;EΔ " o1 o2 : Θ,
a clique, and if we speak of the clique of an object we mean the equivalence class.

304 E. Ábrahám et al.

External Steps. The external semantics is given by transitions between Δ;EΔ "
C : Θ;EΘ judgments in Table 5. Besides internal steps a component exchanges
information with the environment via calls and returns (cf. Table 4).

Table 4. Labels

γ ::= 〈call o.l(�v)〉 | 〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

To formulate the external communication, we need to augment the syntax by
two additional expressions o1 blocks for o2 and o2 returns to o1 v. The first one
denotes a method body in o1 waiting for a return from o2, and dually the second
expression returns v from o2 to o1. Furthermore, we augment the syntax of the
method definitions accordingly, such that each method call is preceded by an
annotation of the caller; i.e., instead of ς(self :c).λ(+x:+T).(. . . x.l(+y) . . .) we write
ς(self :c).λ(+x:+T).(. . . self x.l(+y) . . .).

Connectivity Assumptions and Commitments. As for the relationship of com-
municated values, incoming and outgoing communication play dual roles: EΘ

over-approximates the actual connectivity of the component, while the assump-
tion context EΔ is consulted to exclude impossible combinations of incoming
values. Incoming calls update the commitment context EΘ in that it remem-
bers that the callee o2 now knows (or rather may know) the arguments +v. For
incoming communication (cf. rules CallI and RetI) we require that the sender
is acquainted with the transmitted arguments.

For the role of the caller identity o1: The antecedent of the call-rules requires,
that the caller o1 is acquainted with the callee o2 and with all of the arguments.
However, the caller is not transmitted in the label which means that it remains
anonymous to the callee.4 To gauge, whether an incoming call is possible and
to adjust the book-keeping about the connectivity appropriately. With the sole
exception of the initial (external) step, the scope of at least one object of the
calling clique must have escaped to the component, for otherwise there would
be now way of the caller to address o2 as callee. In other words, for at least one
object o1 from the clique of the actual caller (which remains anonymous), the
judgment Δ " o1 : c holds prior to the call, where the judgment —the typing
rules are not shown here— asserts that object o1 carries type c according to the
environment (and not the component) context.

While EΔ imposes restrictions for incoming communication, the commitment
context EΘ is updated when receiving new information. For instance in CallI,
the commitment ÉΘ after reception marks that now the callee o2 is acquainted
with the received arguments. For outgoing communication, the EΔ and EΘ play
4 Of course, the caller may transmit its identity to the callee as argument, but this

does not reveal to the callee who “actually” called. Indeed, the actual identity of the
caller is not needed; it suffices to know the clique of the caller. As representative for
the clique, an equivalence class of object identities, we simply pick one object.

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 305

Table 5. External steps

a = ν(Δ′, Θ′). 〈call o2.l(�v)〉? dom(Δ′, Θ′) ⊆ fn(〈call o2.l(�v)〉) � Δ, Θ : static

Θ́; ÉΘ = Θ; EΘ + Θ′; o2 ↪→ �v Δ́; ÉΔ = Δ; EΔ + Δ′;� ↪→ (Δ′, Θ′) Δ � �
; Θ́ � o2 : c2 ; Δ; Θ � c2 : [(. . . , l:�T → T, . . .)] ; Δ́, Θ́ � �v : �T Δ́; ÉΔ � � 	↪→ �v, o2 : Θ́

CallI0
Δ; EΔ � C : Θ; EΘ

a−→
Δ́; ÉΔ � C ‖ C(Θ′) ‖ �〈let x:T = o2.l(�v) in o2 returns to � x〉 : Θ́; ÉΘ

a = ν(Θ′, Δ′). 〈call o2.l(�v)〉! (Θ′, Δ′) = fn(〈call o2.l(�v)〉 ∩ Φ Φ́ = Φ \(Θ′, Δ′)

Δ́ � o2 : c2 � Δ, Θ : static

Δ́; ÉΔ = Δ; EΔ + Δ′; o2 ↪→ �v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
CallO0

Δ; EΔ � ν(Φ).(C ‖ �〈let x:T = � o2.l(�v) in t〉) : Θ; EΘ
a−→

Δ́; ÉΔ � ν(Φ́).(C ‖ �〈let x:T = � blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(Δ′, Θ′). 〈call o2.l(�v)〉? dom(Δ′, Θ′) ⊆ fn(〈call o2.l(�v)〉)
Θ́; ÉΘ = Θ; EΘ + Θ′; o2 ↪→ �v Δ́; ÉΔ = Δ; EΔ + Δ′; o1 ↪→ (Δ′, Θ′)

; Θ́ � o2 : c2 ; Δ; Θ � c2 : [(. . . , l:�T → T, . . .)] ; Δ́, Θ́ � �v : �T

Δ́; ÉΔ � o1 	↪→ �v, o2 : Θ́ tblocked = let x′:T ′ = o′
2 blocks for o1 in t

CallI
Δ; EΔ � C ‖ �〈tblocked〉 : Θ; EΘ

a−→
Δ́; ÉΔ � C ‖ C(Θ′) ‖ �〈let x:T = o2.l(�v) in o2 returns to o1 x; tblocked〉 : Θ́; ÉΘ

a = ν(Θ′, Δ′). 〈return(v)〉! (Θ′, Δ′) = fn(v) ∩ Φ Φ́ = Φ \(Θ′, Δ′)

Δ́; ÉΔ = Δ; EΔ + Δ′; o1 ↪→ v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
RetO

Δ; EΔ � ν(Φ).(C ‖ �〈let x:T = o2 returns to o1 v in t〉) : Θ; EΘ
a−→

Δ́; ÉΔ � ν(Φ́).(C ‖ �〈t〉) : Θ́; ÉΘ

a = ν(Θ′, Δ′). 〈call o2.l(�v)〉! (Θ′, Δ′) = fn(〈call o2.l(�v)〉 ∩ Φ Φ́ = Φ \(Θ′, Δ′)

Δ́ � o2 : c2 Δ́; ÉΔ = Δ; EΔ + Δ′; o2 ↪→ �v Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′)
CallO

Δ; EΔ � ν(Φ).(C ‖ �〈let x:T = o1 o2.l(�v) in t〉) : Θ; EΘ
a−→

Δ́; ÉΔ � ν(Φ́).(C ‖ �〈let x:T = o1 blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(Δ′, Θ′). 〈return(v)〉? dom(Δ′, Θ′) ⊆ fn(v)

Θ́; ÉΘ = Θ; EΘ + Θ′; o1 ↪→ v Δ́; ÉΔ = Δ; EΔ + Δ′; o2 ↪→ (Δ′, Θ′)

; Δ � o2 : c2 ; Δ; Θ � c2 : [(. . . , l:�T → T, . . .)] ; Δ́, Θ́ � v : T Δ́; ÉΔ � o2 	↪→ v : Θ́
RetI

Δ; EΔ � C ‖ �〈let x:T = o1 blocks for o2 in t〉 : Θ; EΘ
a−→ Δ́; ÉΔ � C ‖ �〈t[v/x]〉 : Θ́; ÉΘ

Δ � c : T
NewOlazy

Δ; EΔ � �〈let x:c = new c in t〉 : Θ; EΘ
 Δ; EΔ � ν(o3:c).�〈let x:c = o3 in t〉 : Θ; EΘ

dual roles. In the respective rules, E(Ć, Θ′) stands for the actual connectivity of
the component after the step, which needs to be made public in the commitment
context, in case new names escape to the environment.

306 E. Ábrahám et al.

In case of the very first interaction, either an incoming or outgoing call (cf.
rules CallI0 or CallO0), we take / as the source of the call, which is assumed
to be resident either in the environment or the component. Furthermore, at
the beginning, no objects are visible yet across the border which is asserted
by static(Δ, Θ). The remaining premises of the form ; Δ " n : T or similar
deal with static typing issue, i.e., guaranteeing subject reduction. We omit the
formalization of the static typing system here, as it is straightforward.

Scoping and Lazy Instantiation. In the explanation so far, we omitted the han-
dling of bound names, in particular bound object references. In the presence
of classes, a possible interaction between component and environment is in-
stantiation. Without constructor methods and assuming an infinite heap space,
instantiation itself has no immediate, observable side-effect. An observable effect
is seen only at the point when the object is accessed.

Rule NewOlazy describes the local instantiation of an external class. Instead
of exporting the newly created name of the object plus the object itself immedi-
ately to the environment, the name is kept local until, if ever, it gets into contact
with the environment. When this happens, the new instance will not only be-
come known to the environment, but the object will also be instantiated in the
environment.

For incoming calls, for instance, the binding part is of the form (Δ′, Θ′) where
we mean by convention, that Δ′ are the object name being added to Δ, and anal-
ogously for Θ′ and Θ. The distinction is based on the class types which are never
transmitted. For the object names in the incoming communication, Δ′ contains
the external references which are freshly introduced to the component by scope
extrusion. Θ′ on the other hand are the objects which are lazily instantiated as
side-effect of this step, and which are from then on part of the component. In
the rules, the newly instantiated objects are denoted as C(Θ′).

Note that whereas the acquaintance of the caller with the arguments trans-
mitted free is checked against the current assumption, acquaintance with the
ones transmitted bound is added to the assumption context.

4 Trace Semantics and Ordering on Traces

Next we present the semantics for well-typed components, which takes the traces
of the program fragment as starting point. A trace t is a sequence of external
steps, i.e., given by Ξ1 " C1

s=⇒ Ξ2 " C2.
The clique structure of the environment influences what is observable and

the fact that the observer falls into a number of independent groups of objects
increases the “uncertainty of observation”. In Section 2, we informally discussed
two reasons responsible for this effect. One is that the clique of objects can only
observe the order of events projected to its own members but not the relative
order among separate cliques. Secondly, separate observers cannot cooperate to
compare identities.

For the definition, we need to connect the labels of a trace to the clique they
belong to. With the exception of the callee of a call, the communication labels

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 307

do not carry information about the identity of the communication partners (cf.
Table 4). Given a trace of past interaction, which adheres to a strict call-return
discipline and which is strictly alternating between input and output, it contains
enough information to determine the communication partners.

4.1 Balance Conditions

We start with auxiliary definitions concerning the parenthetic nature of calls
and returns of a legal trace (cf. Definition 1). The definition is similar to the
one from [10]. It is easy to see that, starting from an initial configuration, the
operational semantics from Section 3.1.2 assures strict alternation of incoming
and outgoing communication and additionally that there is no return without
a preceding matching call. Later, we will need this property of traces for the
characterization of legal traces.

Definition 1 (Balance). The balance of a sequence s is given by the rules of
Table 6, where the dual rules for balanced− are omitted. We write " s : balanced
if " s : balanced+ or " s : balanced−. We call a (not necessarily proper) prefix

Table 6. Balance

B-Empty+

� ε : balanced+

� s1 : balanced+ � s2 : balanced+ s1, s2 �= ε
B-II

� s1 s2 : balanced+

� s : balanced−
B-OI

� ν(Φ).〈call or.l(�v)〉! s ν(Φ′).〈return(v)〉? : balanced+

of a balanced trace weakly balanced. We write " s : wbalanced+ if the trace is
weakly balanced and if the last label is an incoming communication or if s is
empty; dually for " s : wbalanced−.

The function pop on traces is defined as follows:

1. pop s = ⊥, if s is balanced.
2. pop (s1as2) = s1a if a = ν(Δ, Θ). 〈call o2.l(+v)〉? and s2 is balanced+.
3. pop (s1as2) = s1a if a = ν(Δ, Θ). 〈call o2.l(+v)〉! and s2 is balanced−.

Note that the definition of pop, when defined, yields a unique value. Especially,
the three cases are mutually exclusive and in case 2. resp. 3, the requirement
that s2 is balanced determines s1a uniquely.

Based on a balanced past, the following definition formalizes the notion of
source and target of a communication event at the end of a trace with the help
of the function pop.

308 E. Ábrahám et al.

Definition 2 (Sender and receiver). Let r a be a balanced trace. Sender
and receiver of a after history r are defined by mutual recursion and pattern
matching over the following cases:

sender(ν(Φ).〈call o2.l(+v)〉!) = /
sender(r′ a′ ν(Φ).〈call o2.l(+v)〉!) = receiver(r′ a′)

sender(r′ a′ ν(Φ).〈return(l(+v))〉!) = receiver(pop(r′ a′))

receiver (r ν(Φ).〈call o2.l(+v)〉!) = o2
receiver (r ν(Φ).〈return(+v)〉!) = sender(pop(r))

For a = ν(Φ)〈call o2.l(+v)〉? resp. a = ν(Φ).〈return(+v)〉?, the definition is dual.

4.2 Equivalences

Now given a global trace, its projection onto one particular clique of objects as
given at the end of the trace is defined straightforwardly by induction on the
length of the trace. We write [o]/EΔ

for the equivalence class of objects according
to EΔ, i.e., the clique in connection with o, or in general just shorter [o] when
EΔ is clear from the context.

Definition 3 (Projection). Assume as trace Δ;EΔ " C : Θ;EΘ
s=⇒ Δ́; ÉΔ "

Ć : Θ́; ÉΘ and let Δ́ contain at least one object reference, then the projection
of s onto a clique [o] of environment objects according to Δ́; ÉΔ is written as
s ↓[o] and defined by induction on the length of s: s ↓[o] is defined as the first
component of (s, Φ) ↓[o], where Φ = Δ, Θ, and the projection of (s, Φ) ↓[o] is
given by Table 7. The definition of the projection onto a component clique is
defined dually.

The projection of the empty trace surely is empty (rule P-Empty). For
output actions in P-Out1 and P-Out2 we distinguish according to the receiver,
i.e., the callee in case of a call resp. the caller in case of a return. If the receiver
is not involved in the communication, the label is “projected out”; dually for
incoming communication. More interesting is P-Out2: fresh names are not only
the globally fresh ones Φ′

1, but also the locally fresh ones Φ′
2. The situation for

incoming new names is not symmetric! It is simpler as we need not distinguish
between locally and globally new names: Everything that the clique has created
in isolation is globally new as well as locally new.

Besides “local freshness” we have to cater for the fact that the order of
events cannot be determined by separate observers, i.e., we need to formalize
the ideas illustrated in Section 2.2. We do this by a notion of swappability,
where sub-sequences can be reordered when indistinguishable by the environ-
ment. This means the definition takes into account the worst-case estimations
from EΔ about the clique structure of the environment, which we indicate by the

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 309

Table 7. Projection to an environment clique

P-Empty
(ε, Φ) ↓[o]= (ε, Φ)

(t, Φ) ↓[o]= (t′, Φ′) receiver (tγ!) /∈ [o]
P-Out1

(tγ!, Φ) ↓[o]= (t′, Φ′)

Φ′
2 = fn(ν(Φ′

1).γ) \Φ′

(t, Φ) ↓[o]= (t′, Φ′) receiver (tγ!) ∈ [o]
P-Out2

(t ν(Φ′
1).γ!, Φ) ↓[o]= (t′ ν(Φ′

1, Φ
′
2).γ!, (Φ′, Φ′

1, Φ
′
2))

(t, Φ) ↓[o]= (t′, Φ′) sender (tγ?) /∈ [o]
P-In1

(tγ?, Φ) ↓[o]= (t′, Φ′)

(t,Φ) ↓[o]= (t′, Φ′) sender (tγ?) ∈ [o]
P-In2

(t ν(Φ′′).γ?, Φ) ↓[o]= (t′ ν(Φ′′).γ?, (Φ′, Φ′′))

subscript5 Δ. The dual version of the relation, written 1Θ, takes into account
the clique structure of the component. It captures the possible reorderings of a
given behavior of the component.

Whether or not the order of two actions in a trace is indistinguishable depends
on clique situation of the environment at the point where the actions occur.
Therefore we generalize the judgment Δ;EΔ " o1 o2 : Θ from Section 3 to
express acquaintance after executing some trace.

Definition 4 (Dynamic acquaintance). Assume Δ;EΔ " C : Θ;EΘ . We
write Δ;EΔ " s � o1 o2 : Θ;EΘ , if Δ;EΔ " C : Θ;EΘ

s=⇒ Δ́; ÉΔ " Ć :
Θ́; ÉΘ and Δ́; ÉΔ " o1 o2 : Θ́. The notation is used analogously for ↪→.

We use the definition analogously for subsequences of a trace, i.e., given Δ;EΔ "
C : Θ;EΘ

st1t2u=⇒ Δ́; ÉΔ " Ć : Θ;EΘ , we write Δ;EΔ " s � t1 t2 : Θ if there
exists a communication partner6 o1 of the environment mentioned in t1 and a
communication partner o2 from t2 acquainted according to Definition 4.

Definition 5 (Swapping). The relation 1Δ on traces is given as the reflexive,
symmetric, and transitive closure of the rules of Table 8. The two rules silently
assume that the traces involved are weakly balanced. The relation 1Θ is defined
dually.
5 The Δ is meant just as indication, that swappability is interpreted from the per-

spective of the environment, not as a concrete argument of the definition of '.
6 Sender or receiver depending on whether the action is incoming or outgoing.

310 E. Ábrahám et al.

Table 8. Swapping

Ξ � s � t1 � t2 � t1 : balanced
E-SwapBΔ

Ξ � s ν(Φ).t1t2u 'Δ sν(Φ).t2t1u

Ξ � s � t1 � t2 � t1, t2 : wbalanced
E-SwapWΔ

Ξ � s ν(Φ).t1t2 'Δ sν(Φ).t2t1

The definition of 1Δ distinguishes between swapping of two neighboring
subsequences in the middle of a trace (rule E-SwapBΔ) and at the end (rule
E-SwapWΔ). In case of E-SwapBΔ, we require that one of the subsequences, in
the rule t1, is in itself balanced, i.e., without the preceding and trailing “contexts”
s resp. t2u. Note that t2 is not required to be balanced, as well (but the rule
can be applied symmetrically); the swapping, however, must preserve overall
weak balance. That balance requirement for t1 is needed illustrates the following
consideration: Take for instance the right-hand side st2t1u, then moving t2 after
an unbalanced (for instance only weakly balanced) t1 may (re-)connect returns
in t2 to unanswered calls in t1. Similarly, returns in u may be reconnected, which
means that they belong to a different environment cliques when comparing st1t2u
and st2t1u. This may lead to observably different behavior. Requiring that one of
the sub-sequences is balanced avoids this effect. Similar considerations imply that
for swapping sub-sequences at the end, we must require weak balance (cf. rule
E-SwapWΔ). Note that it is not sufficient that only one of the sub-sequences
involved is weakly balanced.

Remains the formalization of the fact that different instances of the same
class, or more generally different cliques identical up-to their identities, do not
count as adding new behavior to the system, i.e., next we formalize the intuition
from Section 2.3. The equivalence relation 1 from above is extended to consider
two behaviors as equivalent if one clique is just a “replay” (up-to renaming of
behavior) already witnessed in the trace. In other words: a trace can be equiv-
alently extended by an additional action, if the behavior of the extended clique
is contained as behavior of another clique already, i.e., in the form of a prefix,
for which we write �. Note that the prefix is understood up-to α-renaming.

Definition 6 (Swapping and replay). The relation 1−Δ on traces is given by
the reflexive, transitive, and symmetric closure of the relation given in Table 9.
The relation 1−Θ is defined dually.

We can now define the order on traces as follows.

Definition 7. Δ;EΔ " C1 : Θ;EΘ 2trace Δ;EΔ " C2 : Θ;EΘ , if the following
holds. If Δ;EΔ " C1 : Θ;EΘ

s=⇒, then Δ;EΔ " C2 : Θ;EΘ
t=⇒ such that

Δ;EΔ " t : detΔΘ;EΘ .

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 311

Table 9. Swapping and replay

receiver (sγ!) = o

sγ! ↓[o]� s ↓[o′]
E-ReOΔ

Δ; EΔ � sγ! '−Δ s : trace Θ; EΘ

sender (sγ?) = o

sγ? ↓[o]� s ↓[o′]
E-ReIΔ

Δ; EΔ � sγ? '−Δ s : trace Θ; EΘ

Δ; EΔ � s 'Δ t : Θ; EΘ
E-SwapΔ

Δ; EΔ � s '−Δ t : Θ; EΘ

5 Full Abstraction

After fixing the notion of observation, we address one core problem for estab-
lishing the connection between the trace preorder and the contextual preorder,
namely the characterization of legal traces, i.e., the traces which are realizable
by a component together with an arbitrary (but well-formed, well-typed . . .)
context. Especially in the single-threaded setting this requires to capture deter-
ministic traces.

5.1 Notion of Observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on a
some notion of observability.

As starting point we choose, as [10], a (standard) notion of semantic equiva-
lence or rather semantic implication —one program allows at least the observa-
tions of the other— based on a particular, simple form of contextual observation:
being put into a context, the component, together with the context, reaches a
defined point, which is counted as the successful observation. Being determinis-
tic, there is no need to distinguish whether the program “may” reach the point
of observation or “must” reach it. A context C[] is a program “with a hole”. In
our setting, the hole is filled with a program fragment consisting of a component
C in the syntactical sense, i.e., consisting of the parallel composition of (named)
classes, named objects, and named threads, and the context is the rest of the
programs such that C[C] gives a well-typed closed program Δ;EΔ " C′ : Θ;EΘ ,
where closed means that it can be typed in the empty contexts, i.e., " C′ : ().

To report success, we assume an external class with a particular success re-
porting method. So assume a class cb of type [(succ : () → none)], abbreviated as
barb. A component C strongly barbs on cb, written C ↓cb

, if C ≡ ν(+n:+T , b:cb).C′ ‖
*〈let x:none = b.succ() in t〉, i.e., the call to the success-method of an instance of
cb is enabled. Furthermore, C barbs on cb, written C ⇓cb

, if it can reach a point
which strongly barbs on cb, i.e., C =⇒ C′ ↓cb

. We can now define observable pre-
order [7] similar as in [10]. Since the programs are deterministic, the distinction
between a “may” and a “must” success disappears.

312 E. Ábrahám et al.

Definition 8 (Observable preorder). Assume Δ;EΔ " C1 : Θ;EΘ and
Δ;EΔ " C2 : Θ;EΘ . Then Δ;EΔ " C1 2obs C2 : Θ;EΘ , if (C1 ‖ C) ⇓cb

implies (C2 ‖ C) ⇓cb
for all Θ, cb:barb;EΘ " C : Δ;EΔ.

5.2 Legal Traces

As mentioned, we must characterize which traces, the “legal” ones, can occur
at all, and again the crucial difference to the object-based case is to take con-
nectivity into account to exclude impossible combinations of transmitted object
names and threads. Furthermore, we need to filter out non-deterministic ones in
the single-threaded setting.

The legal traces are specified by a system for judgments of the form Δ;EΔ "
r � s : trace Θ;EΘ stipulating that under the type and relational assumptions
Δ and EΔ and with the commitments Θ and EΘ, the trace s is legal. The rules
are shown in Table 10. The premises of the form ; Θ́ " o2 : c2, ; Δ, Θ " c2 :
[(. . . , l:+T → T, . . .)], and ; Δ́, Θ́ " +v : +T , e.g., as mentioned in rule L-CallI, check
that message exchange respects the static typing assumptions.

Table 10. Legal traces

Δ; EΔ � r � ε : trace Θ; EΘ L-Empty

� r � os
a→ or Ξ́ = Ξ + os

a→ or Δ́, Θ́ � �a� :ok Ξ́ � os
�a�→ or :ok

Δ, Θ �� static a = ν(Φ′). 〈call or.l(�v)〉? Δ́; ÉΔ � r a � s : trace Θ́; ÉΘ
L-CallI

Δ; EΔ � r � a s : trace Θ; EΘ

� r � os
a→ or Ξ́ = Ξ + os

a→ or Ξ́ � os
�a�→ or :ok Δ′, Θ′ � �a� :ok

a = ν(Φ′). 〈return(v)〉? Δ́; ÉΔ � r a � s : trace Θ́; ÉΘ
L-RetI

Δ; EΔ � r � a s : trace Θ; EΘ

� ε � � a→ or Ξ́ = Ξ + � a→ or Δ́, Θ́ � �a� :ok Ξ́ � � �a�→ or :ok

Δ0, Θ0 � static Δ � � a = ν(Δ′, Θ′). 〈call or.l(�v)〉? Δ́; ÉΔ � a � s : Θ́; ÉΘ
L-CallI0

Δ0 � ε � a s : trace Θ0

The premise Δ " r � a : Θ asserts that after r, the action a is enabled.

Definition 9 (Enabledness). Given a method call γ = ν(Φ).〈call o2.l(+v)〉.
Then call-enabledness of γ after the history r and in the contexts Δ and Θ is
defined as:

Δ;EΔ " r � γ? : Θ;EΘ if pop r = ⊥ and Δ " / or
pop r = r′γ′!

(4)

Δ;EΔ " r � γ! : Θ;EΘ if pop r = ⊥ and Δ " / or
pop r = r′γ′?

(5)

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 313

For return labels γ = ν(Φ).〈return(v)〉, Δ;EΔ " r � γ! : Θ;EΘ abbreviates
pop r = r′ν(Φ′).〈call o2.l(+v)〉?, and dually for incoming returns γ?.

We also say, the thread is input-call enabled after r if Δ " r � γ? : Θ for some
incoming call label, respectively input-return enabled in case of an incoming
return label. The definitions are used dually for output-call enabledness and
output-return enabledness. When leaving the kind of communication unspecified
we just speak of input-enabledness or output-enabledness. Note that return-
enabledness implies call-enabledness, but not vice versa.

Being single-threaded, the language is deterministic, i.e., given a configura-
tion, the next operational step is determined (up-to possible renamings). This
is not only a fact about the global system behavior, but also —and more in-
terestingly in our context— tells us that two instances of the same class, when
stimulated by the same input history must react identically, up-to renaming (cf.
also the discussion in Section 2.3). We thus need a characterization of determin-
istic traces to define when a trace is legal or not.

The issue has various aspects. That we can speak of a single trace being
deterministic or not is a consequence of having classes with the possibility of
cross-border instantiation and thus the possible presence of separate cliques of
objects. Only then, different behaviors of “the same” object or more generally
“the same” clique can show up in the trace, where the non-deterministic ones
need to be filtered out to obtain an adequate characterization of the legal traces.
Furthermore, the intuition “determinism means the same reaction to the same
stimulus” needs some fleshing out. The past of a clique is the projection of
the global trace onto the clique, which is, as usual, considered only up-to α-
renaming. Furthermore, the dynamic nature of the clique structure has to be
taken into account; for instance, the histories corresponding to Figure 3(a) –
3(c) are to be considered equivalent because the order of events of previously
separate sub-cliques of a given clique cannot be reconstructed in retrospect.

The mentioned ideas are captured in the 1− relation, which we can use in the
following definition.

Definition 10 (Deterministic trace). Given the label a = γ! and a trace ra
with Δ " r � a : Θ. The trace r can be extended deterministically by a, written
Δ " r � a : detΘ Θ, if the following holds:

Δ;EΔ " ra 1−Θ r : Θ;EΘ or
there does not exist a label b with Δ;EΔ " rb 1−Θ r : Θ;EΘ

(6)

The definition for incoming communications a is dual, and especially refers to
1−Δ instead of 1−Θ.

Note that the condition from Equation (6) does not in itself guarantee determin-
ism for the trace; if the shorter r is deterministic, it preserves determinism when
extending the trace, which is the way, the check is used in the legal trace system.
We use the judgment Δ;EΔ " r � a : detΘ Θ;EΘ to combine enabledness and
the output determinism requirement for the next action in a single assertion. Du-
ally we use detΔ for input determinism for incoming communication. We write

314 E. Ábrahám et al.

also Δ;EΔ " s : detΔΘ;EΘ resp. Δ;EΔ " t : detΘΘ;EΘ , when the whole trace
is deterministic wrt. the environment, resp. wrt. component.

5.3 Soundness and Completeness

The proof that the observational order coincides with the order on traces given in
Definition 7 has two directions: compared to 2obs , the relation 2trace is neither
too abstract (soundness) nor too concrete (completeness). For lack of space, we
simply state the soundness result here.

For correspondence of the two notions is guaranteed only when assuming
that the environment behaves deterministic. Therefore we refine the definition
of 2trace from Definition 7, in that we explicitly require that the traces com-
pared by 2trace are deterministic wrt. the environment; we write 2det

trace for that
relation. The reason is that the external operational semantics of Table 5 results
in deterministic behavior as far as the component is concerned —one cannot
program non-deterministic behavior with the given syntax— but not for the en-
vironment. One could have checked deterministic environment behavior in the
assumptions of the operational rule; the price for this more exact representation
of possible behavior would have been to augment the semantics to contain the
history of past interaction concerning the environment behavior, in a similar way
as we have done when formalizing the legal traces.

Proposition 1 (Soundness). If Δ;EΔ " C1 : Θ;EΘ 2det
trace Δ;EΔ " C2 :

Θ;EΘ , then Δ;EΔ " C1 2obs C2 : Θ;EΘ .

Completeness asserts the reverse direction:

Proposition 2 (Completeness). If Δ;EΔ |= C1 2obs C2 : Θ;EΘ , then
Δ;EΔ " C1 : Θ;EΘ 2det

trace Δ;EΔ " C2 : Θ;EΘ .

At the heart, completeness is a constructive argument: given a trace s, con-
struct a component Cs that exhibits the trace s and moreover realize it exactly.
Restricted to deterministic traces, the proof is rather similar to the one for the
multi-threaded case and rests on the ability to compose a component and an
environment, performing complementary traces, into one global program (plus
the dual property of decomposition). Indeed, the very same construction could
be used in the single-threaded setting as in the multi-threaded setting. However,
the absence of concurrency allows to simplify the construction, in particular, one
can leave out the code that assures mutual exclusion, when accessing objects,
resp. cliques of objects.

6 Conclusion

Related Work. Smith [17] presents a fully abstract model for Object-Z, an
object-oriented extension of the Z specification language. called the complete-
readiness model, related to the readiness model of Olderog and Hoare. [18] in-
vestigates full abstraction in an object calculus with subtyping. The setting is

Observability, Connectivity, and Replay in a Sequential Calculus of Classes 315

a bit different from the one as used here as the paper does not compare a con-
textual semantics with a denotational one, but a semantics by translation with
a direct one. The paper considers neither concurrency nor aliasing. Recently,
Jeffrey and Rathke [11] extended their work on trace-based semantics from an
object-based setting to a core of Java, called JavaJr, including classes and sub-
typing. However, their semantics avoids the issue of object connectivity by using
a notion of package. Cf. also [14]. [5] tackles the problem of full abstraction and
observable component behavior and connectivity in a UML-setting. Unlike this
contribution, [5] features concurrency

Future Work. The trace semantics together with the equivalence relation cap-
turing the undefinednes of order of interacting with separe cliques is a “tree”
semantics. As illustrated also by the informal examples of Section 2, the seman-
tics more precisely can be understood as a forest of interactions, where each
tree represents one current clique of objects. As shown in this paper, the cliques
can be dynamically created and the branching structure is cause by merging of
cliques. We are currently working on a direct tree representation of the semantics.
The resulting semantic is is simpler as it can do without the secondary notion of
equivalence relation on traces, and furthermore one can avoid an explicit repre-
sentation of object connectivity as. However, e.g., the derivation system for legal
traces gets more involved in that it must reflect the branching structure.

Game theory has in recent years been successfully employed for (fully ab-
stract) semantics of open system (“game semantics”). Cf. for instance [3] for an
introduction. It seems interesting to capture our set-up especially the connectiv-
ity contexts in a game semantical framework.

Acknowledgements. We thank Harald Fecher and Marcel Kyas for stimulating
discussions on various aspects of this topic.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Li [12], pages 38–52.

3. S. Abramsky. Algorithmic game semantics: A tutorial introduction. In Schichten-
berg and Steinbruggen [16], pages 21–47.

4. M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors. Proceedings
of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004), Lecture Notes in Computer Science. Springer-Verlag, 2005.
To appear.

5. F. S. de Boer, M. Bonsangue, M. Steffen, and E. Ábrahám. A fully abstract trace
semantics for UML components. In Bosangue et al. [4]. To appear.

6. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In Nestmann and Pierce [13].

7. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

316 E. Ábrahám et al.

8. IEEE. Thirteenth Annual Symposium on Logic in Computer Science (LICS) (In-
diana). Computer Society Press, July 1998.

9. IEEE. Seventeenth Annual Symposium on Logic in Computer Science (LICS)
(Copenhagen, Denmark). Computer Society Press, July 2002.

10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In LICS’02 [9].

11. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. In Sagiv [15], pages 423–438.

12. Z. Li, editor. Proceedings of the First International Colloquium on Theoretical
Aspects of Computing, ICTAC 2004, volume 3407 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

13. U. Nestmann and B. C. Pierce, editors. HLCL ’98: High-Level Concurrent Lan-
guages (Nice, France, September 12, 1998), volume 16.3 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 1998.

14. J. Rathke. A fully abstract trace semantics for a core Java language (preliminary
title). In Bosangue et al. [4]. To appear.

15. M. Sagiv, editor. Proceedings of ESOP 2005, volume 3444 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

16. H. Schichtenberg and R. Steinbruggen, editors. Proof and System Reliability, Sum-
mer School (Marktoberdorf, Germany, 2001), Series F: Computer and System Sci-
ences. NATO Advanced Study Institute, Kluwer Academic Publishers, 2001.

17. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

18. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In LICS’98 [8].

Timing Analysis and Timing Predictability

Extended Abstract

Reinhard Wilhelm�

Informatik, Universität des Saarlandes, Saarbrücken

Abstract. Hard real-time systems need methods to determine upper
bounds for their execution times, usually called worst-case execution
times. This paper explains the principles of our Timing-Analysis meth-
ods, which use Abstract Interpretation to predict the system’s behavior
on the underlying processor’s components and use Integer Linear Pro-
gramming to determine a worst-case path through the program. Under
the assumption that non-trivial systems are subject of the analyses, ex-
haustive analyses can not be performed and some uncertainty about the
system’s behavior remains. Uncertainty, i.e., lack of information about a
system’s execution states incurs cost in terms of precision of the upper
and lower bounds on the execution times. Some cost figures are given for
missing information of different types. These are measured in machine
clock cycles. It is (intuitively) argued, that component-based software
design and the use of middleware may induce intolerable costs in terms
of precision.

1 Execution-Time Variability

Hard real-time systems need methods to determine upper bounds for their exe-
cution times, usually called worst-case execution times, WCET. Based on these
bounds, a schedulability analysis must check whether the underlying hardware
is fast enough to execute the system’s task such that they all finish before their
deadlines. This problem is nontrivial because performance-enhancing architec-
tural features such as caches, pipelines, and all kinds of speculation destroy
the traditional compositional methods to determine bounds on execution time.
These used so-called Timing Schemata [Sha89] for the statements of the pro-
gramming language describing how to use the bounds for the constituents of the
statements to compose bounds for the statement.

For example, upper bounds for a conditional statement would be computed
according to the rule:

u−bound(if cthen s1else s2)=u−bound(c)+max{u−bound(s1), u−bound(s2)}

Execution times for individual instructions were assumed to be constant and
available from a table in the manual of the processor.
� Work reported herein is supported by the Transregional Collaborative Research Cen-

ter AVACS of the Deutsche Forschungsgemeinschaft and by the European Network
of Excellence ARTIST2.

F.S. de Boer et al. (Eds.): FMCO 2004, LNCS 3657, pp. 317–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 R. Wilhelm

The above mentioned architectural features introduce “local non-
determinism” into the processor behavior; local inspection of the program can
not determine the contribution of an instruction to the program’s overall ex-
ecution time. The execution history determines this contribution. It depends
on whether in the actual state the instruction’s memory accesses hit or miss
the cache, whether the pipeline units needed by the instruction are occupied
or not, and whether branch prediction succeeds or fails. The variability of an
instruction’s execution time currently is roughly two orders of magnitude, with
an increasing tendency.

This variability of execution times exists on all levels of granularity [TW04],
not only for the individual memory access or the single instruction, but also for
a context switch, for a function call, for a task or a distributed system of tasks,
the communication of a message over a channel, and the delivery of a requested
service on top of some middleware.

Lack of information about a system’s execution time results from uncertainty
of the system environment (input data, timing of input events) and from the in-
terference on shared resources. For example, the variation in execution times for
individual instructions results from the competition between different memory
accesses and instructions for the caches and for functional units. The variation
of communication times is caused by competition for communication channels
with restricted bandwidth. This variance is at the heart of non-predictability,
since the safe strategy to deal with uncertainty is to assume worst cases and thus
overestimate real execution times. Overall, the remedy is over-provisioning.

1.1 Timing Analysis

Methods have been developed and tools based on them have been implemented
that bound the variance of instructions’ execution times [FHL+01, Wil05]. State-

Fig. 1. Architecture of a Timing Analysis tool

Timing Analysis and Timing Predictability 319

of-the-art Timing-Analysis methods split the task into a sequence of subtasks,
starting with a number of static analyses, which are based on the theory of
Abstract Intepretation [CC77]. The first attempt to determine properties of each
task’s control flow and the effective addresses of its memory accesses. They
use a variant of interval analysis [CH78] to determine the contents in processor
registers and the values of variables. These analyses are followed by another
one attempting to predict each task’s behavior on the processor components
such as caches and pipelines. Result of this phase are upper bounds on the
execution times of basic blocks. The control flow of each task is translated into
an integer linear program with the execution time of the program over all paths
as objective function. Maximizing this objective function determines a worst-case
path [LMW99, TFW00]. A more or less standard tool architecture has evolved
shown in Figure 1.

2 Cost of Uncertainty

Software systems of realistic sizes to be run on powerful processor architectures
exhibit state spaces that are too big to be exhaustively analyzed. That’s why
the above listed sequence of static program analyses use abstraction to reduce
this space. The analyses compute at each program point invariants in the form
of over-approximations of the set of execution states that can be reached when
program execution reaches this point. In general, several invariants are computed
for a program point, one for each context, i.e., control flow path by which this
point can be reached. Differentiating by contexts is absolutely mandatory to
obtain enough precision. Each invariant expresses the computed information
about the processor’s components, e.g. contents of caches, occupancy of pipeline
units, state of the branch predictor etc. This information is then used to exclude
the possibility of cache misses, pipeline stalls etc. and thereby safely reducing
the assumptions about the execution times of instructions.

The information contained in the invariants is by necessity incomplete. First,
information about the program’s interference with the environment is not avail-
able, which may influence the program’s execution. This requires that information
on several possible control-flowpaths be merged. Second, the analyses are based on
an abstract model of the processor. This must be conservative with respect to the
timing behavior of the concrete processor, but may abstract from details. Third,
language features and software design methods can build unsurmountable barriers
for even the most powerful analyses as we will attempt to show next.

Figure 2 shows the basic notions we are dealing with. Firstly, the program
exhibits a variability in execution time depending on input, thus may have a
range of execution times between a best-case and a worst case execution time.
However, these two extreme cases can in general not be determined. With the
methods described above, one can determine safe lower and upper bounds. Any
worst-case guarantee can only be an upper bound. Useful bounds are not too
far away from the best-case and worst-case times, resp. A system exhibiting
predictable behavior will allow the analyses to arrive at precise bounds.

320 R. Wilhelm

t0 best
case

worst
case

upper
bound

lower
bound

variation of execution time

w.c. performance

w.c. guarantee

predictability

Fig. 2. Basic terms

We will now consider several types of missing information and their costs
in terms of precision. Costs are measured in machine cycles. The figures given
are taken from a currently popular architecture, a Motorola PowerPC processor
equipped with a realistic memory system. A cache analysis will have computed
safe, but approximate information about the cache contents at each program
point. Missing information about whether an accessed memory block is in the
cache has to be accounted for by the cache miss penalty, which is roughly 40
cycles. Depending on the write-back strategy of the cache, we may need to also
account for a write back, which means adding another 40 cycles.

Furthermore, assume that the clever designer decided to use virtual memory.
This comes with a translation-lookaside buffer (TLB). A TLB miss requires 12
reads and 1 write. Assuming that one can not safely exclude that these reads
and writes miss the cache. This means that a TLB miss that can not safely be
excluded has to be accounted for with at least 13×40 = 520 cycles. A page fault
costs around 2000 cycles.

Assume, that an object-oriented language has been used for the implemen-
tation of the system’s tasks. Dynamic method invocation uses a data structure
to identify the actual method to activate. An efficient implementation spend-
ing some memory overhead for virtual-function tables [WM97] still needs two
indirect references to activate the correct method. If we can not exclude the
possibility that these two table lookups cause page faults, a method invocation
costs 2 × 2000 cycles in the worst-case.

Now come the second-order effects. Let us consider a pointer to data whose
value can not be statically inferred. When analyzing an access through this
pointer, the analysis must assume accesses to all sets of the cache. With an access
to a known address, the cache analysis removes some information, namely the
memory block that may be replaced, but it also gains some information, namely
the memory block that was loaded into the cache. With unknown access, the
analysis only looses information; it must reflect, that one memory block may
be removed from each set of the cache, but does not know where the memory
block moves into the cache. This is a second-order effect, because it ruins the

Timing Analysis and Timing Predictability 321

Fig. 3. The ZEN open-source RT-CORBA middleware. Picture taken from [KKSC03]

information about cache contents for future accesses. Even worse are statically
unresolvable function pointers. Their damaging effect is of even higher order,
because for each indirect call through such a function pointer the worst-case
damage for all the potentially called functions has to be assumed.

Middleware has its motivation in the potential for reuse of software com-
ponents. Object request brokers have to be tailored for the use in real-time
systems. In CORBA, requests for services may be served remotely over the net.
No time guarantees can be given in this case. A real-time version of CORBA
called RT CORBA has been developed. Attempts have been undertaken to in-
crease its predictability [KKSC03]. Figure 3 shows the demultiplexing steps in
CORBA request processing. Demultiplexing uses a recursive data structure. To
achieve predictability, recursion depth of this data structure has been statically
bounded. Still, traversing it to demultiplex a service request potentially causes
several page faults and cache misses at very high costs in the case of uncertainty
about the memory state.

3 On the Multiplicative Nature of Uncertainty in Layered
Systems

Real-life systems are not monolithic, but mostly structured into a layered hierar-
chy. Often, several layers interfere on a shared resource increasing the variability
of execution times. We have already seen, how the brokerage of a service by a

322 R. Wilhelm

middleware may cause page several faults. The page fault may cause a TLB miss,
which in turn may cause several cache misses. Variabilities on different layers
combine in a multiplicative way.

The sense behind all this is the following observation:

Observation 1. At each level, uncertainty has to be accounted for in terms of a
number of steps of lower levels. Let us assume that a step on level n costs mn−1

n

steps of level n− 1. Then it costs
∏

1≤i≤n−1m
i
i−1 machine cycles.

Hence, in the worst case, a negative amplification of mechanisms on different
layers will happen.

It should however be stressed that many modern powerful processors exhibit
timing anomalies [LS99], which relate execution times on the different levels
in more complex ways than the observation indicates. Timing anomalies are
counter-intuitive dependencies of a program’s execution times on the execution
times of individual instructions. Faster execution of an instruction can lead to
a longer execution time of the program, and slower execution of an instruction
to shorter time for the program. Timing anomalies often are caused by cyclic
influences between system components. One such dependency is the following:
the contents of the instruction cache determines whether instruction fetch hits
or misses the cache, a cache miss may prevent a branch prediction, a wrong
branch prediction may ruin the instruction-cache contents. The resulting timing
anomaly is, that the local worst case, a cache miss, prevents a branch mispre-
diction, which would have caused a greater damage than the cache miss. Thus,
the program runs faster in the case of the cache miss.

4 Towards a Rational Basis for Design

A promising approach to increase predictability would encompass all system
layers. It would start with a multiplicative term of the kind given in Observa-
tion 1. As stated above, the design would have to exclude timing anomalies or
bound the damage on cycles of dependencies. The design would then soften this
multiplicative rule by reducing the factors on some layers, if it could make these
layers behave predictably by static implementation decisions. This is a successful
strategy to achieve a synergistic, quantifiable reduction of variability.

I admit that this looks like a dream in the light of the fact that the trends
in systems development go towards less and less predictable systems. Experi-
ence with industrial projects lead me to believe that a discipline Design for
Predictability is needed to reverse these trends and arrive at systems whose be-
havior as far as consumption of time, space, and energy is predictable.

Acknowledgements

Joint work on increasing the predictability of real-time systems is enjoyed with
Lothar Thiele. Contributions to the discussion have come from Stephan Thesing,
Oleg Parshin, Reinhold Heckmann, and Peter Marwedel.

Timing Analysis and Timing Predictability 323

References

[CC77] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic
Properties of Generalized Type Unions. In Proceedings of an ACM Con-
ference on Language Design for Reliable Software, volume 12(3), pages
77–94, Raleigh, NC, March 1977.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the Fifth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New
York, NY.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET de-
termination for a real-life processor. In EMSOFT, volume 2211 of LNCS,
pages 469 – 485, 2001.

[KKSC03] Arvind S. Krishna, Raymond Klefstad, Douglas C. Schmidt, and Angelo
Corsaro. Towards predictable real-time java object request brokers. In Real
Time Technology and Applications Symposium, pages 49–. IEEE, 2003.

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance es-
timation of embedded software with instruction cache modeling. Design
Automation of Electronic Systems, 4(3):257–279, 1999.

[LS99] Thomas Lundquist and Per Stenström. Timing anomalies in dynamically
scheduled microprocessors. In 20th IEEE Real-Time Systems Symposium,
1999.

[Sha89] Alan C. Shaw. Reasoning About Time in Higher-Level Language Software.
IEEE Transactions on Software Engineering, 15(7):875–889, 1989.

[TFW00] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and Precise WCET
Prediction by Separate Cache and Path Analyses. Real-Time Systems,
18(2/3):157–179, May 2000.

[TW04] Lothar Thiele and Reinhard Wilhelm. Design for timing predictability.
Real-Time Systems, 28:157 – 177, 2004.

[Wil05] Reinhard Wilhelm. Determination of bounds on execution times. In
Richard Zurawski, editor, Embedded Systems Handbook, pages 14–1,14–24.
CRC Press, 2005.

[WM97] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison Wesley,
1997.

Author Index

Ábrahám, Erika 49, 296
Albin-Amiot, Hervé 70
Ancona, Davide, 222

Ball, Thomas, 1
Barbosa, Lúıs S. 23
Behrmann, Gerd 162
Bonsangue, Marcello M. 49, 296

Chatterjee, Krishnendu 141
Cointe, Pierre 70

de Boer, Frank S. 49, 296
De Nicola, Rocco 95
Denier, Simon 70
Di Pierro, Alessandra 120

Grüner, Andreas 296

Hankin, Chris 120
Henzinger, Thomas A. 141

Jifeng, He 183
Johnsen, Einar Broch 274
Jurdziński, Marcin 141

Larsen, Kim G. 162
Li, Xiaoshan 183
Liu, Zhiming 183
Loreti, Michele 95

Moggi, Eugenio 222

Naumann, David A. 251

Owe, Olaf 274

Rasmussen, Jacob I. 162

Steffen, Martin 49, 296

Wiklicky, Herbert 120
Wilhelm, Reinhard 317

	Frontmatter
	A Theory of Predicate-Complete Test Coverage and Generation
	A Perspective on Component Refinement
	A Fully Abstract Semantics for UML Components
	From (Meta) Objects to Aspects: A Java and AspectJ Point of View
	{\sc MoMo}: A Modal Logic for Reasoning About Mobility
	Probabilistic Linda-Based Coordination Languages
	Games with Secure Equilibria<Superscript>,</Superscript>
	Priced Timed Automata: Algorithms and Applications
	r{\sc COS}: Refinement of Component and Object Systems
	Program Generation and Components
	Assertion-Based Encapsulation, Object Invariants and Simulations
	A Dynamic Binding Strategy for Multiple Inheritance and Asynchronously Communicating Objects
	Observability, Connectivity, and Replay in a Sequential Calculus of Classes
	Timing Analysis and Timing Predictability
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

