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Abstract. We provide a complete description of dynamic algorithms for
constructing convex hulls and Voronoi diagrams of additively weighted
points of R

d. We present simple algorithms and provide a description
of the predicates. The algorithms have been implemented in R

3 and ex-
perimental results are reported. Our implementation follows the CGAL

design and, in particular, is made both robust and efficient through the
use of filtered exact arithmetic.

1 Introduction

In this paper, we provide a complete description of dynamic algorithms for con-
structing convex hulls and Voronoi diagrams of additively weighted points of
R

d. The algorithms have been implemented in R
3 and experimental results are

reported.
Our motivation comes from the fact that weighted points can be considered as

hyperspheres when the weights are positive and is twofold. On one hand, spheres
are non linear objects and, besides the combinatorial and algorithmic questions,
numerical and robustness issues deserve a careful investigation, which has not
been fully done yet. On the other hand, spheres are objects of major concern in
various fields, most notably structural biology, and effective implementations of
basic geometric algorithms for spheres are needed.

We first revisit the problem of computing the convex hull of n weighted
points of R

d. This problem has already been solved optimally [1,2]. We present
a simpler fully dynamic algorithm and provide a complete description of all the
predicates for any d.

We then consider the construction of additively weighted Voronoi diagrams.
It is known that the construction of such diagrams reduces to intersecting a
power diagram in R

d+1 with half-cones [3]. We are not aware of robust imple-
mentations of this algorithm. Other algorithms have been recently designed and
implemented in the planar case [4,5]. In R

3, we are only aware of two prototype
implementations, one by Will [6] for computing a single cell, and one by Kim
et al. [7] that computes the entire diagram. None of these implementations is
provably robust. Moreover, the algorithm by Kim et al. assumes that the graph
of the edges of each cell is connected, which is not true in general.
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We apply our result on the construction of the convex hull of additively
weighted points to the construction of a Voronoi cell in the Voronoi diagram of
n additively weighted points. The construction, which makes use of inversion, is
close to the algorithm of [2]. The main contribution of this work is to provide
a full analysis of the predicates involved, a thorough treatment of the degen-
erate cases, and a CGAL implementation. Our predicates, when specialized to
the planar case (d = 2), are simpler and of lower degree than the best predi-
cates known so far [8,9]. Our implementation follows the CGAL design and, in
particular, is made both robust and efficient through the use of filtered exact
arithmetic.

The paper is organized as follows. In section 2, we establish a new corre-
spondence between convex hulls of additively weighted points in R

d and power
diagrams of spheres of R

d, from which we deduce an algorithm to construct such
hulls. In section 3, we recall a similar correspondence for a cell in the Voronoi
diagram of additively weighted points and present an algorithm for constructing
such a cell. In section 4, we describe the predicates. In section 5, we show how
to handle the degenerate cases. In section 6, we report on experimental results.
Finally, we conclude in section 7.

In the sequel, a weighted point, or site for short, of R
d is a pair s = (p, w)

where p is a point of R
d, and w is a real number, we refer to p and w as the

center and the weight of the site, respectively. When w is positive, we also call a
weighted point a hypersphere. Given a set n hyperspheres Σ = {σ1, . . . , σn} of
R

d, σi = (ci, ri), the power of a point x ∈ R
d to σi is dP (σi, x) = (x − ci)2 − r2

i

and the power diagram of Σ, noted P(Σ), is the subdivision of R
d consisting of

the n cells P (σ1), . . . , P (σn) where P (σi) = {x ∈ R
d, dP (σi, x) � dP (σj , x), j =

1, . . . , n}. We write P (σ1, . . . , σk) = P (σ1) ∩ . . . ∩ P (σk). When non empty,
P (σ1, . . . , σk) is a face of P(Σ), of dimension d − k + 1 if the hyperspheres are
in general position.

2 Convex Hull of Additively Weighted Points

Let S = {s1, . . . , sn} be a set of weighted points of R
d. We write si = (pi, wi),

i = 0, . . . , n. We consider first the case where all the weights wi are non negative,
i.e. the sites are hyperspheres. The convex hull of S, CH(S), is the smallest
closed convex subset of R

d containing all the hyperspheres of S. A supporting
hyperplane H of S is a hyperplane tangent to at least one of the hyperspheres
of S, and such that all the hyperspheres of S lie in the same half-space limited
by H . A facet of CH(S) of circularity k, 0 � k < d, is the portion of ∂CH(S)
that consists of the points whose supporting hyperplanes are tangent to a same
subset of d − k hyperspheres. For d = 3, faces of circularity 0 are planar faces
tangent to three hyperspheres, faces of circularity 1 are conical patches tangent
to two hyperspheres, and faces of circularity 2 are spherical patches contained
in some si.

From Power Diagrams to Convex Hulls of Hyperspheres. Let Π be
a supporting hyperplane tangent to k hyperspheres, and m be the unit normal
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vector of Π pointing away from S. As there is exactly one supporting hyperplane
that has a given oriented normal, m defines Π uniquely. Π is a supporting
hyperplane tangent to s1, . . . , sk if and only if:

m · (pi − p1) = w1 − wi, 1 � i � k (1)
m · (pi − p1) < w1 − wi, k < i � n (2)

We rewrite (2) as follows:

m · (pi − p1) < w1 − wi

⇐⇒ −m · p1 − w1 < −m · pi − wi

⇐⇒ (m − p1)2 − (p2
1 + 2w1) < (m − pi)2 − (p2

i + 2wi) ,

(1) can be rewritten the same way. Thus, denoting r2
i = p2

i + 2wi, σi = (pi, ri)
and Σ = {σ1, . . . , σk}, this is equivalent to m being in the open (d−k+1)-face of
P (σ1, . . . , σk) in the power diagram P(Σ). As m belongs to the unit hypersphere
S = {x ∈ R

d : ‖x‖ = 1}, we have proven

Lemma 1. The k-faces of P(Σ) ∩ S are in 1-1 correspondence with the facets
of circularity k of ∂CH(S).

The above construction works also when some or all wi are negative. Although
a geometric interpretation in terms of convex hull is then missing, the result of
our construction is called the convex hull of the weighted points, or AWCH for
short, by analogy to the case of positive weights.

We now present a static algorithm and an incremental algorithm for contr-
sucting a AWCH. The affine hull of a face f is denoted aff(f). We say that a
k-face f ′ is a sub-face of a (k + 1)-face f (and conversely that f is a super-face
of f ′) when f ′ ⊆ f . For a face f and a sub-face f ′ of f , H(f, f ′) denotes the
halfspace of aff(f) bounded by aff(f ′) that contains f . For instance, when f is a
1-face (a line segment), f ′ is one of its endpoints, and H(f, f ′) is the ray issued
from f ′ that contains f . We assume that the si are in general position so that
we do not have any degeneracy. Degeneracies will be considered in section 5.

Static Algorithm. The algorithm first constructs the power diagram P(Σ)
and then determines, for each face f of P(Σ), whether f intersects S or not. The
result is stored in tag[f ]:

– tag[f ] = ∅ if and only if aff(f) is outside S,
– tag[f ] = � if and only if f does not intersect S but aff(f) intersects S,
– tag[f ] = ⊕ if and only if f intersects S,
– tag[f ] = 	 if and only if f is inside S.

Assuming we know tag[f ′] for each sub-face f ′ of f , we compute tag[f ] as follows:

1. If aff(f) does not intersect S, then tag[f ] = ∅,
2. else, if for each sub-face f ′ of f , tag[f ′] = 	, then, by convexity of f , tag[f ] =

	,
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3. else, if there is a sub-face f ′ of f such that tag[f ′] = 	 or tag[f ′] = ⊕, then,
by connexity of f , tag[f ] = ⊕.

4. else, if for each sub-face f ′ of f , tag[f ′] = ∅, and aff(f)∩S ⊆ H(f, f ′), then
f intersects S and tag[f ] = ⊕,

5. else, tag[f ] = �.

Assume w.l.o.g. that f = P (σ1, . . . , σk) and f ′ = P (σ1, . . . , σk+1). This algo-
rithm needs to evaluate the two following geometric predicates.

k-RadicalIntersection(f) determines whether aff(f) is outside S or not.
k-RadicalSide(f, f ′) determines whether aff(f) ∩ S ⊂ H(f, f ′), assuming
that aff(f) intersects S and aff(f ′) is outside S.

To computes the tags, we proceed by induction on the dimension of the faces.
This takes a time proportional to the size of the diagram. It follows that the time
complexity of the algorithm is upbounded by the time complexity of a power di-
agram algorithm. Hence, our algorithm computes the additively weighted convex
hull of n sites in O

(
n log n + n�d

2 �
)

time.

Incremental Algorithm. We now present an incremental alogrithm for com-
puting the additively weighted convex hull. We use an incremental algorithm
for constructing the power diagram, and we attach to each face f the number
num[f ] of its sub-faces that are tagged ⊕. Updating the power diagram when
inserting a new hypersphere in the power diagram amounts to creating some new
faces, deleting some faces, and replacing some faces by smaller ones. In this last
case, a face f is replaced by a smaller face f̄ ⊂ f that is incident to the cell of
the new hypersphere. f̄ is called a cut face. Notice that a cut face of dimension
less than d has exactly one new subface. We denote by m the number of deleted
faces plus the number of new faces.

1. For a new face f , num[f ] is easily computed by looking at all its sub-faces.
This can be done in time proportional to m.

2. We now update num[f̄ ] for a cut face f̄ . We set num[f̄ ] = num[f ]. Then
num[f̄ ] is decremented by the number of the sub-faces of f that are deleted,
and updated according to the tag of the new and cut sub-faces of f̄ . This
can be done in the following way. When the tag of a face f ′ changes, or f ′

is deleted, we update num[f ] for each super -face f of f ′. Updating num[f̄ ]
therefore takes O(m) time.

3. We update tag[f̄ ] for a cut k-face f̄ , k > 1. We compute tag[f̄ ] from num[f̄ ]
and tag[f ′], where f ′ is the new sub-face f ′ of f̄ . As f̄ is a cut face, tag[f̄ ]
differs from tag[f ] only when tag[f ] = ⊕. If num[f̄ ] is positive, then tag[f̄ ] =
⊕. Now, if num[f̄ ] is 0, only the relative interior of f̄ can intersect S. Hence
– if tag[f ′] = ∅, then we update tag[f̄ ] according to the outcome of k-

RadicalSide(f̄ , f ′)
– otherwise, as the set of the sub-faces of f̄ is connected (f̄ is of dimension

at least 2), f̄ has the same tag as f ′.
For a cut 1-face f̄ , we compute tag[f̄ ] directly. Updating the tag of a cut
face takes a constant time.
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The incremental algorithm for constructing an additively weighted convex hull
has therefore the same complexity as the incremental algorithm that computes
the associated power diagram. When the sites are inserted in random order, the
expected time complexity of our algorithm is therefore O

(
n logn + n�d

2 �
)
.

Practical Complexity. Under realistic assumptions, our algorithms perfom
better than in the worst case. First, according to our experiments (see section
6), the number of hyperspheres with a non empty cell in the power diagram
is usually proportional to the number of points h on the additively weighted
convex hull. In that case, the running time for n insertions is O

(
n log h + h� d

2�
)

.

Moreover, h is typically much smaller than n. It is known that the convex hull of
a set of n points uniformly distributed inside a sphere of R

3 has O(
√

n) points on
its convex hull. The same result holds trivially for spheres with the same radius.
In R

3, assuming that the number of cells in the power diagram is proportional
to h and that h is O(

√
n), the complexity of our algorithm is O(n log n).

3 Additively Weighted Voronoi Diagram

The additively weighted distance, denoted d+, from a point m of R
d to a site

si = (pi, wi) is d+(si, m) = ‖pi − m‖ −wi. Considering the set S = {s1, . . . , sn}
of sites, the additively weighted Voronoi cell of si, V (si) is:

V (si) =
{
m ∈ R

d | ∀j, d+(si, m) � d+(sj , m)
}

.

It is possible that V (si) = ∅: this happens when ∀m ∈ R
d, ∃j, d+(sj , m) �

d+(si, m). In that case, we say that si is hidden by sj . When dealing with
hyperspheres (i.e. wi, wj > 0), si is hidden by sj when si ⊆ sj . The additively
weighted Voronoi diagram, or AWVD for short, of S, noted V(S), is the cell
complex whose d-cells are the V (si).

The construction of a single cell of the diagram reduces to computing an
additively weighted convex hull, via an inversion. More precisely, the cell of s1

in V(S) is combinatorially equivalent to the additively weighted convex hull of
S′ = {s′1, . . . , s′n}, where s′1 is centered at the origin and has weight 0, s′i is
centered at pi−p1

αi
and has weight wi−w1

αi
, αi = (pi−p1)2− (wi−w1)2, i = 2 . . . n.

This scheme only works when s1 is not hidden by, nor does it hide any other site
si. See [2] for details.

Using the construction of a single cell as a subroutine, we can compute the
whole diagram in a fully dynamic manner. All the Voronoi cells are stored in a
data structure with pointers between the corresponding elements. In this data
structure, Γ (s) denotes the set of neighbors of s and Γs(s′) the set of neighbors
of s that are also neighbors of s′. Two sites s and s′ are called neighbors if V (s)
and V (s′) share a (d − 1)-face. We add to the data structure an infinite cell,
which is actually the plain additively weighted convex hull of the sites. That
way, we handle unbounded faces, and sites lying on the convex hull seamlessly.

In order to keep track of the hidden sites, we keep, for each site s, a list
hidden[s] of the sites s hides. We now describe the three main ingredients needed
to update an additively weighted Voronoi diagram.
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Localization. Given a point m of R
d and a starting site s, this procedure,

called Locate(m, s), returns the cell of the diagram in which m lies. This is
done by means of a simple walk: if a neighbor s′ is closer to m than s, jump
to s′ and we iterate; otherwise, m belongs to the cell of s and we stop. This
localization algorithm requires only one predicate: given two sites s1 and s2,
determine if a query point m is closer to s1 than to s2. This predicate is called
SideOfBisector.

Insertion. The insertion procedure needs to decide whether a site s1 hides
another site s2 : we call this predicate IsTrivial(s1, s2). To avoid ambiguities
when considering diagrams of different sets of sites, we introduce the following
notation. Given a set of sites S and s, s′ ∈ S, we denote VS(s) the cell of s in
the additively weighted Voronoi diagram of S, and VS(s, s′) = VS(s) ∩ VS(s′).
A site s /∈ S is in conflict with s′ ∈ S if and only if VS(s′) �= VS∪{s}(s′). Notice
that only the non-hidden sites of S may be in conflict with s. The conflict graph
of a site s /∈ S is G = (X, E) where X ⊆ S is the set of sites in conflict with s,
and xy ∈ E if and only if VS(x, y) ∩ VS∪{s}(s) �= ∅. In other words, the conflict
graph of s is the dual of the restriction of V(S) to VS∪{s}(s).

Lemma 2. The conflict graph of s is connected.

Proof. Given two sites x and y in the conflict graph G of some s, we take px in
VS(x)∩VS∪{s}(s) and py in VS(y)∩VS∪{s}(s). As VS∪{s}(s) is arc connected, we
can follow a path from px to py in VS∪{s}(s), and each time we cross a (d−1)-face
of the diagram, we follow the corresponding edge of G. This gives a path from
x to y in G. ��

The first insertion (i.e. the insertion in an empty diagram) is easy: we just
create a new cell covering all R

d. Once there is a least one site in the diagram,
the insertion procedure of a new site s is the following.

1. Locate the center of s, let s′ be the site such that the center of s lies in V (s′).
2. If s is hidden by s′, then add s to hidden[s′].
3. Else, s′ is a vertex in the conflict graph G of s, so we walk on G, starting

from s′, and for each s′′ in G:
– if s′′ is hidden by s, add s′′ to hidden[s],
– else, insert s in V (s′′) and s′′ in V (s).

Removal. Removing a site s from a diagram is straightforward. Firstly, remove
s from the cells adjacent to V+(s), Secondly, let {s1, . . . , sk} be the neighbors of
s; for all 1 � i, j � k, i �= j, insert si into the cell of sj to rebuild the hole made
by the removal of s. And finally, insert all the sites s was hiding.

Complexity. The localization algorithm described here takes time linear in the
size of the diagram, which can be improved to randomized logarithmic time by
using a hierarchical data structure as in [4].
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The construction of the Voronoi diagram of n sites performs O(n) localiza-
tions, and constructs O(n) additively weighted convex hulls of O(n) sites. The
overall time to construct the Voronoi diagram of n sites is therefore:

O
(
n log n + n

(
n log n + n� d

2 �
))

= O
(
n2 log n + n� d

2�+1
)

.

Which gives, for d = 3, O (
n3

)
. This bound can be improved under the following

assumptions:

1. O(
√

n) sites appear on the additively weighted convex hull of S,
2. the sites have O(1) neighbors,
3. the underlying power diagram of every Voronoi cell has O(s) non-hidden

points, where s is the number of neighbors of the cell.

Those assumptions are not too restrictive, and happen to be satisfied on a variety
of input data (see section 6.) Assumptions 1 and 3 implies that the construction
of the infinite cell (i.e. the AWCH) take O(n log n) time. Assumptions 2 and 3
implies that we construct O(n) finite cells of size O(1), and that it takes O(n)
time. This leads to an expected running time of O(n log n), for constructing the
additively weighted Voronoi diagram.

4 Predicates

We consider a set S = {s1, . . . , sn} of sites, where si is centered at pi, and
has weight wi. If each input data is a b-bit integer, the size of each monomial
occuring in a predicate is upper bounded by 2(b+1)d. Moreover, let v be the
number of variables that occur in a predicate; for the predicates considered in this

Table 1. Predicate degree summary

Algorithm AWCH AWVD

Dimension 2 3 d > 3 2 3 d > 3

IsTrivial 2 2 2

SideOfBisector 4 4 4

Orientation 2 3 d 4 5 d + 2

PowerTest 3 4 d + 1 5 6 d + 3

1-RadicalIntersection 2 2 2 6 6 6

2-RadicalIntersection 4 8 8 8 16 16

3-RadicalIntersection 6 12 10 20

k-RadicalIntersection, 1 < k < d 4k 4k + 8

d-RadicalIntersection 2d 2d + 4

1-RadicalSide 1 1 1 3 3 3

2-RadicalSide 3 3 3 7 7 7

3-RadicalSide 5 5 9 9

k-RadicalSide, 1 < k � d 2k − 1 2k + 3

Maximum degree 4 8 4d − 4 8 16 4d + 4
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paper, v is a constant. It follows that a predicate of degree d requires precision
p � d(b+1+log v). Here, the predicates are polynomials in the unknowns pi, wi,
and the algebraic degree of each of them is given. In addition to the predicates
mentioned in section 2 and 3, we need the two well-known predicates that are
needed to construct the power diagram: Orientation and PowerTest.

Predicates IsTrivial and SideOfBisector are detailed in [10] for d = 2,
and are straightforward to extend to arbitary dimension. IsTrivial is of degree
2, and SideOfBisector is of degree 4. Basic linear algebra provides explicit
formulas for the other predicates. The maximum degree of the predicates for the
AWCH is 4 in 2D, 8 in 3D, and in general, 4d−4 in dimension d. The maximum
degree of the predicates for the AWVD is 8 in 2D, 16 in 3D, and in general,
4d + 4 in dimension d. See Table 1. This compares very well to the predicates of
the algorithm for the additively weighted Voronoi diagram of [4], detailed in [8],
which have a maximal degree of 16 for d = 2.

5 Degenerate Cases

Additively Weighted Convex Hull. Here, we show how to handle degen-
eracies in the algorithm for the convex hull of additively weighted points. We
call a case degenerate when some predicate returns 0, instead of “positive” or
“negative”. A simple way of dealing with these cases is to carefully choose a
non-zero sign to be returned by a predicate when it evaluates to 0.

– Predicates Orientation or PowerTest return zero when Σ is not in gen-
eral position. Any standard perturbation scheme will work for us.

– When predicate k-RadicalIntersection returns 0, some (d − k)-flat is
tangent to S (it intersects S but not the open ball bounded by S.) We can
consider that this (d − k)-flat lies outside S.

– Predicate k-RadicalSide(f, f ′) returns 0 when the projection of the origin
on aff(f) is on aff(f ′). In that case, both aff(f) and aff(f ′) intersects S, or
both do not intersect S. As predicate k-RadicalSide is only called when
aff(f) intersects S and aff(f ′) does not, this predicate is never called on
degenerate inputs.

Additively Weighted Voronoi Diagram. In the case of the additively
weighted Voronoi diagram, the previous perturbation scheme does not work.
Indeed, as we compute the Voronoi cells separately, we not only need to re-
solve degeneracies in each cell, but also to ensure that consistent decisions are
taken when we compute the neighboring cells. A set of sites S is called de-
generate when there exists k + 1 sites of S s0, . . . , sk, 1 � k < d, such that
V (s0, . . . , sk) is not empty and is of dimension strictly less than d − k. When
an input is non-degenerate, any small enough perturbation will let the combi-
natorial structure of the Voronoi diagram unchanged. For a face f , we define
L(f) = {s ∈ S : f ⊆ V (s)}. If a degeneracy {s0, . . . , sk} is minimal (i.e. if
{s0, . . . , sk} \ {si} is not degenerate for 0 � i � k) then perturbing the weight
of any site in L(V (s0, . . . , sk) will remove the degeneracy.
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Given a degenerate input {s0, . . . , sk}, finding a minimal degeneracy is easy:
w.l.o.g. we check if {s0, . . . , sk−1} is still degenerate. As V (s0, . . . , sk) �= ∅,
V (s0, . . . , sk−1) has dimension at least 1. A degeneracy of dimension m � 1 in
the intersection between the unit hypersphere and a power diagram can only
appear if two (m +1)-faces of the power diagram are equal, which can be tested
with the Orientation and PowerTest predicates.

Now, we can handle the degeneracies in our algorithm by means of
symbolic perturbations. When faced with a predicate that returns zero on
{s0, . . . , sk}, we find a minimal degeneracy {s0, . . . , sk′} and perturb one site, in
L(V (s0, . . . , sk′)), say si, i.e. we replace wi by wi + ε. The predicates are now
polynomials in ε and we need to evaluate the sign of the non-zero coefficient
of smallest degree. Notice that this scheme does not increase the degree of the
predicates since the perturbation is linear. It can occur that some predicate re-
turns zero, and the Voronoi diagram is not degenerate, and thus some site gets
perturbed unnecessarily.

To ensure consistency from one cell to another, we just need to choose the
site to perturb in a way that is independent of the site whose cell is under
construction when we detect the degeneracy. One way to do that is to choose the
smallest site according to some global ordering (for instance, the lexicographical
order on the centers.)

6 Experimental Results

We have implemented both our algorithms for constructing the convex hull
and the Voronoi diagram of weighted points in R

3. The implementations use
CGAL 3.1, mainly its 3D regular triangulations (see [11]), which are the du-
als of the power diagrams. While not yet fully optimized, this implementation
already follows the CGAL standard of genericity and robustness. The predi-
cates are dynamically filtered to avoid problems of precision in degenerate, or
near-degenerate, cases. We plan to have the code included in the CGAL library
soon. The running times are obtained on a Athlon running at 1333MHz, with
133MHz DDR-SDRAM memory and 256KB of L2 cache.

On Fig. 1, the degenerate input is a set of sites randomly chosen in a cube,
with their weight equal to their height, so that all the sites are tangent to the
lower face of the cube and the non-degenerate input is a set of sites uniformly
distributed inside a sphere, the weights uniformly distributed in an interval.

On Fig. 2, the input comes from a direct application of our algorithm. The
sites have their centers on a surface and the weights are of the form − lfs(x)

k where
lfs(x) is an approximation of the local feature size of the surface at x, and k is
a parameter. This kind of diagram has been used to efficiently compute a sizing
field, for 3D meshing (see [12] for details). On Fig. 2, k = 1 on the left and
k = 0.3 on the right.

Both algorithms are incremental, and as such, their running time is likely to
depend on the insertion order. Fig. 1 and 2 show three insertion orders: sites with
small weights first, sites with large weights first, and random. In all cases, the
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Fig. 1. Additively Weighted convex hull benchmarks, all using filtered predicates, for
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Fig. 2. Additively weighted Voronoi diagram benchmarks using filtered predicates for

various input sizes, numbers of hidden sites, and insertion orders

algorithms are faster when the sites are inserted in order of decreasing weights.
The reason is that a site with a larger weight tends to have more neighbors, and
thus, tends to take longer to insert. The difference is even greater when there
are many hidden spheres.

A screenshot is shown in Figure 3, where one cell is represented by meshing
its boundary. Our implementation computes all the edges of the cell (i.e. facets
of circularity 1 in the underlying convex hull), and sample them. Then, each face
of the cell (i.e. each facet of circularity 2 in the convex hull) is approximated
using the meshing algorithm of [13]. We plan to have the code included in the
cgal library soon.

In our experiments, we observed a remarkable phenomenon: almost all the
spheres that do not contribute to the additively weighted convex hull are hidden
(i.e. have empty cells) in the underlying power diagram. This also occur when
the AWCH are cells of an additively weighted Voronoi diagram. In no Voronoi
cell the examples shown here, the number of cells in the power diagram is more
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Fig. 3. A screenshot of one cell of a 3D additively weighted Voronoi diagram

than seven times the number of neighbors of the Voronoi cell. Moreover, for only
1% of the Voronoi cells, the number of cells in the underlying power diagram is
more than twice the number of neighbors in the Voronoi diagram. Although this
observation does not hold in general —it is possible to construct n spheres such
that only O(1) of them contribute to the convex hull, while all of them appear
in the power diagram— this makes our algorithms efficient in practice.

7 Conclusion

We have presented fully robust implementations of two algorithms for construct-
ing the convex hull and the Voronoi diagram of additively weighted points (and
hyperspheres). To the best of our knowledge, no certified algorithms existed
previously.

This work does not settle the main open question in this area : what is the
combinatorial complexity of the Voronoi diagram of n additively weighted points
in R

d? Tight bounds are only known for d = 2 and odd dimensions. We hope
that experimenting with our code may provide new insights such as the one
mentionned in section 6 that eventually will help improving the combinatorial
bounds.
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